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Preface

The 6th China International Conference on Information Security and Cryptology
(Inscrypt 2010) was held in Shanghai, China, during October 20–23, 2010. The
conference is a leading annual international event in the area of cryptography and
information security taking place in China. Inscrypt continues to get the support
of the entire international community, reflecting the fact that the research areas
covered by the conference are important to modern computing, where increased
security, trust, safety and reliability are required.

Inscrypt 2010 was co-organized by the State Key Laboratory of Information
Security and by the Chinese Association for Cryptologic Research, in cooper-
ation with Shanghai Jiaotong Univeristy and the International Association for
Cryptologic Research (IACR). The conference was further sponsored by the In-
stitute of Software, the Graduate University of the Chinese Academy of Science
and the National Natural Science Foundations of China.

The scientific program of the conference covered all areas of current research
in cryptography and security, with sessions on central subjects of cryptographic
research and on some important subjects of information security. The interna-
tional Program Committee of Inscrypt 2010 received a total of 125 submissions
from more than 29 countries and regions, from which only 35 submissions were
selected for presentation in the regular papers track and 13 submissions in the
short papers track. Regular track papers appear in these proceedings volume.
All anonymous submissions were reviewed by experts in the relevant areas and
based on their ranking, technical remarks and strict selection criteria the papers
were chosen to the various tracks. The selection to both tracks was a highly
competitive process. We further note that due to the conference format, many
good papers were regrettably not accepted. Besides the contributed papers, the
program also included two invited presentations by Bart Preneel and Moti Yung.

Inscrypt 2010 was made possible by a joint effort of numerous people and
organizations worldwide. We take this opportunity to thank the Program Com-
mittee members and the external experts they employed for their invaluable help
in producing the conference program. We further thank the conference Organiz-
ing Committee, the various sponsors, and the conference attendees. Last but not
least, we express our great gratitude to all the authors who submitted papers to
the conference, the invited speakers, and the session Chairs.

December 2010 Xuejia Lai
Moti Yung
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VIII Inscrypt 2010
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New Constructions of Public-Key Encryption

Schemes from Conjugacy Search Problems

Lihua Wang1, Licheng Wang2,1, Zhenfu Cao3, Eiji Okamoto4, and Jun Shao5

1 Information Security Research Center, National Institute of Information and
Communications Technology, Tokyo 184-8795, Japan

2 Information Security Center, State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications

Beijing, 100876, P.R. China
3 Trusted Digital Technology Laboratory, Shanghai Jiao Tong University
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4 Graduate School of Systems and Information Engineering, University of Tsukuba,

Tsukuba 305-8573, Japan
5 College of Computer and Information Engineering, Zhejiang Gongshang University

Hangzhou, 310018, P.R. China

Abstract. We propose new public-key encryption schemes based on the
conjugacy search problems (CSP) over noncommutative monoids. Under
the newly developed cryptographic assumptions, our basic construction
is proven IND-CPA secure in the standard model. Then, we describe two
extensions: The first is proven IND-CCA secure in the random oracle
model, while the second achieves the IND-CCA security in the standard
model. Finally, our proposal is instantiated by using the monoid of ma-
trices over truncated multivariable polynomials over rings. Meanwhile,
we also give a discussion on the possibility to instantiate our schemes
with braid groups.

Keywords: public-key encryption, conjugacy search problems, trun-
cated multivariable polynomials over rings, braid groups.

1 Introduction

Most public-key cryptosystems that remain unbroken are based on the perceived
difficulty of solving certain problems in large finite (abelian) groups. The the-
oretical foundations of these cryptosystems are related to the intractability of
problems that are closer to number theory than to group theory [23]. In a quan-
tum computer, most of these problems on number theory can be efficiently solved
by using algorithms developed by Shor [27], Kitaev [17] and Proos-Zalka [26].
Although the quantum computation is still in its infancy, the knowledge regard-
ing their potential will soon create distrust in the current cryptographic methods
[21]. In order to enrich cryptography and not to put all eggs in one basket [21],
many attempts have been made to develop alternative public-key cryptography
(PKC) based on different kinds of problems [2,19,21,23].

X. Lai, M. Yung, and D. Lin (Eds.): Inscrypt 2010, LNCS 6584, pp. 1–17, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 L. Wang et al.

Under this background, some noncommutative groups have been attracted con-
siderable attentions. One of the most popular groups in this category is the braid
group. In 1999, Anshel et al. [2] proposed an algebraic method for PKC. Shortly
afterward, Ko et al. [19] published a fully fledged encryption scheme using braid
groups. In these schemes, the conjugacy search problem (CSP) (i.e., given two
braids a and xax−1, output the braid x) and its variants play a core role. Although
there is no deterministic polynomial algorithms that can solve the CSP problem
over braid groups [28] till now, many heuristic attacks, such as length-based at-
tacks, linear representation attacks, have obtained remarkable success in attack-
ing braid-based cryptosytems and lowered the initial enthusiasm on this subject.
Naturally, two crucial questions arise: (1) Can we find some concrete platforms in
which the CSP problems are intractable? If so, then many braid-based schemes
can be transplanted into the new platforms; (2) Under the intractability assump-
tion of certain platforms, how to design secure cryptographic schemes? Most re-
cently, Grigoriev and Shpilrain [15] gave an informal analysis on the intractability
of the CSP problem in the monoid of n×n matrices over truncated multivariable
polynomials over a ring. This can be viewed as a potential answer for the first
question. In this paper, we mainly focus on the second question.

We at first develop some cryptographic assumptions related to the CSP prob-
lem over noncommutative monoids, and then propose new public-key encryp-
tion schemes based on these assumptions. Under a stronger assumption, i.e., the
CSP-DDH assumption, the ciphertext of our basic construction is proven indis-
tinguishable against chosen plaintext attacks (IND-CPA) in the standard model.
Then, two extended schemes that achieve the IND-CCA security are described.
Finally, we instantiate our proposal by using the monoid of matrices over trun-
cated multivariable polynomials over a ring [15]. Meanwhile, if the problem of
sampling hard CSP instances from braid groups is solved, our proposal can also
be instantiated with braid groups.

The rest of contents are organized as follows: In Section 2, we at first give
a review on the CSP problem and left self-distributive system; and then we
prove some properties for the CSP-based left self-distributive (Conj-LD) system;
more fledged cryptographic assumptions over the Conj-LD system are developed
in Section 3; based on these newly developed assumptions, a Diffie-Hellman-
like key agreement protocol, an ElGamal-like encryption scheme and its hashed
extension, as well as a Cramer-Shoup-like encryption scheme are proposed in
Section 4; meanwhile, possible implementations on our proposal are addressed.
Concluding remarks are given in Section 5.

2 Conjugacy Search Problem and Conj-LD System

At first, let us recall the definition of the conjugacy search problem and the
so-called left self-distributive system [9].

Let (G, ◦, 1) be a noncommutative monoid with identity 1. For a ∈ G, if there
exists an element b ∈ G so that a ◦ b = 1 = b ◦ a, then we say that a is invertible,
and call b an inverse of a; the inverses of a, if they exist, are unique, and thus
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denoted by a−1. Note that not all elements in G are invertible. In a monoid, one
can define positive integer powers of an element a: a1 = a, and an = a ◦ · · · ◦ a︸ ︷︷ ︸

n times
for n > 1; if b is inverse of a, one can also define negative powers of a by setting
a−1 = b and a−n = b ◦ · · · ◦ b︸ ︷︷ ︸

n times

for n > 1. In addition, let us denote a0 = 1 for

each element a ∈ G.
Throughout this paper, let G−1 be the set of all invertible elements belonging

to G, i.e.,

G−1 � {a ∈ G : ∃b ∈ G so that a ◦ b = 1 = b ◦ a}. (1)

In fact, (G−1, ◦, 1) forms a group. For clarity, we omit “◦” in the following
presentation, i.e., writing a ◦ b as ab directly.

The conjugacy problem is extensively studied in group theory. But is this
paper, we would like to use the conjugacy concept in the context of monoid by
a similar manner: Given a monoid G with elements a ∈ G and x ∈ G−1, there
must be an element b ∈ G which is a similarity transformation of a, b = xax−1

so we say that a and b are conjugate with respect to x [12].

Definition 1 (Conjugacy Search Problem, CSP). Let G be a noncommu-
tative monoid. Given two elements a, b ∈ G so that b = xax−1 for some unknown
element x ∈ G−1, the objective of the conjugacy search problem in G is to find
x′ ∈ G−1 such that b = x′ax′−1 holds. Here, x′ is not required to be equivalent
to x.

Definition 2 (Left self-distributive system, LD[9]). Suppose that S is a
non-empty set, F : S×S → S is a well-defined function and let us denote F (a, b)
by Fa(b). If the following rewrite formula holds,

Fr(Fs(p)) = FFr(s)(Fr(p)), (∀p, r, s ∈ S) (2)

then, we call F·(·) a left self-distributive system, abbreviated as LD system.

The terminology “left self-distributive” arises from the following analogical ob-
servation: If we consider Fr(s) as a binary operation r ∗ s, then the formula (2)
becomes

r ∗ (s ∗ p) = (r ∗ s) ∗ (r ∗ p), (3)

i.e., the operation “∗” is left distributive with respect to itself [9].
Then, combining the above two concepts together, one can define the following

LD system, named as Conj-LD system, which means an abbreviation of left self-
distributive system defined by conjugate operations.

Definition 3 (Conj-LD System). Let G be a noncommutative monoid. The
binary function F given by the following conjugate operation

F : G−1 × G → G, (a, b) �→ aba−1. (4)

is an LD system, abbreviated as Conj-LD.
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Proof. It is easy to see that F caters to the rewrite formula (2). Thus, Fa(b) is
an LD system. 	

To proceed, we prove some properties of the Conj-LD system. These proper-
ties are considerable simple, but very useful from the cryptographic viewpoint,
providing that the related hardness assumptions hold.

Proposition 1. Let G be a noncommutative monoid and F be a Conj-LD sys-
tem defined over a noncommutative monoid G. For given a ∈ G−1 and b, c ∈ G,
we have that

(i) F is idempotent in the sense of Fa(a) = a;
(ii) F is mutual inverse in the sense of Fa(b) = c ⇔ Fa−1(c) = b;

(iii) F is homomorphic in the sense of Fa(bc) = Fa(b)Fa(c).

Proof. See Appendix A.

Proposition 2 (Power Law). Let G be a noncommutative monoid and F be
a Conj-LD system defined over a noncommutative monoid G. Suppose that a ∈
G−1 and b ∈ G are given and fixed. Then, for arbitrary three positive integers
m, s, t such that m = s + t, we have that

Fa(bm) = Fa(bs)Fa(bt) = Fm
a (b) and Fam(b) = Fas(Fat(b)). (5)

Proof. It is easy to obtain by combining the property (iii) in Proposition 1, and
the definition of the Conj-LD system given by the formula (4).

Remark 1. Careful readers might find that the above properties are essentially
irrelevant for the so-called left self-distributiveness. However, for the following
reasons we would like to use the term of left self-distributive system:

– First, the binary function defined by the formula (4) does satisfy the left self-
distributiveness defined by the formula (2). Thus, we have no serious reason
to refute referring it as a LD system. In addition, it is more convenient to use
Fa(b) than to user aba−1 in the sequel presentation, especially when some
additional operations are exerted on a and a−1 simultaneously from both
sides.

– Second, our originality is enlightened by Dehornoy’s previous work on left
self-distributive systems. In 2006, Dehorney [9] proposed an authentication
scheme based on left self-distributive systems in braid groups. Although
some cryptanalysis on Dehorney’s authentication scheme were reported [22],
we find that Dehorney’s work is still meaningful at least in the following
two aspects: (1) self-distributive systems can be defined over arbitrary non-
commutative monoids, rather than braid groups only; (2) self-distributive
systems have the potential for building variety of cryptographic schemes,
rather than authentication schemes only. Therefore, in this paper, we would
like to use the terminology of (left) self-distributive system with the purpose
to give Dehornoy the credit for his pioneering work.
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Now, using the notation of F·(·), the intractability assumption of the CSP
problem in G can be re-formulated as follows: It is hard to retrieve a′ from
the given pair (a, Fa(b)) such that Fa(b) = Fa′(b). We must take care of the
relationship between the intractability assumption of CSP and the hardness CSP
instances. The CSP problem is defined here as a worst-case problem, whereas
from the cryptographic viewpoint, one needs average-case hardness for CSP
instances. Therefore, we need a practical sample algorithm that can produce
hard instances of CSP over G. For a generic noncommutative monoid G without
explicit definition or presentation, it is difficult to discuss whether we can sample
hard CSP instances from G. As for possible platforms on which our proposal is
instantiated, we will address this issue in detail later(See Section 4.3). In sequel,
the CSP instances used in our proposal are always assumed to be hard.

3 New Cryptographic Assumptions over Conj-LD
Systems

Let G be a noncommutative monoid. Given a Conj-LD system F over a non-
commutative monoid G (cf. Definition 3). For given a ∈ G−1, let Ga denote the
subgroup generated by {a, a−1}, i.e., Ga � 〈a, a−1〉. Now, for given a ∈ G−1

and b ∈ G, let us define the following notations and use them in sequel without
further explanation:

– T � {1, · · · , n} is a finite subset of Z, where n is the order of Ga.1

– The symbols “∈ T” and “ $←−− T” always indicate sampling procedures that
pick random integers uniformly from T.

– K[a,b] � {Fai(b) : i ∈ T} is a finite subset of G.

Note that in cryptographic applications, a, b should be chosen appropriately so
that n as well as K[a,b] are large enough to resist exhaustive attacks.

Definition 4 (CSP-based Computational Diffie-Hellman: CSP-CDH).
Let G be a noncommutative monoid. Suppose F be a Conj-LD system over a
noncommutative monoid G and let A be an adversary. For given a ∈ G−1 and
b ∈ G, consider the following experiment

experiment Expcsp−cdh
F,A

i
$←− T; X ← Fai(b);

j
$←− T; Y ← Faj (b);

Z ← A(X, Y );
if Z = Fai+j (b) then b ← 1 else b ← 0;
return b.

1 In case of Ga is infinite, we can set n as a fixed integer that is large enough to
resist exhaustive attacks, say 2160. Furthermore, with the purpose to ensure the
randomness of sampling from K[a,b], n should be the order of a factor-group of Ga

modulo the centralizer of b in Ga.
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Now define the advantage of A in violating the CSP-based computational Diffie-
Hellman assumption as

Advcsp−cdh
F,A = Pr[Expcsp−cdh

F,A = 1]. (6)

The CSP-CDH assumption states, roughly, that given Fai(b) and Faj (b),
where i, j were drawn at random from T, it is hard to compute Fai+j (b). Under
the CSP-CDH assumption it might well be possible for the adversary to compute
something interesting about Fai+j (b) given Fai(b) and Faj (b); for example, the
adversary might be able to compute the most significant bit, or even half of the
bits. This makes the assumption too weak to directly use in typical applications.
Thus, we need the following stronger variants.

Definition 5 (CSP-based Decisional Diffie-Hellman: CSP-DDH). Let G
be a noncommutative monoid. Suppose F be a Conj-LD system over a noncom-
mutative monoid G and let A be an adversary. For given a ∈ G−1 and b ∈ G,
consider the following two experiments in a paralleled manner

experiment Expcsp−ddh−real
F,A experiment Expcsp−ddh−rand

F,A
i

$←− T; X ← Fai(b); i
$←− T; X ← Fai(b);

j
$←− T; Y ← Faj (b); j

$←− T; Y ← Faj (b);

Z ← Fai+j (b); �
$←− T; Z ← Fa� (b);

b ← A(X, Y, Z); b ← A(X, Y, Z);
return b. return b.

Now define the advantage of A in violating the CSP-based decisional Diffie-
Hellman assumption as

Advcsp−ddh
F,A = |Pr[Expcsp−ddh−real

F,A = 1] − Pr[Expcsp−ddh−rand
F,A = 1]|. (7)

In other words, the CSP-DDH assumption states, roughly, that the distribu-
tions (Fai(b), Faj (b), Fai+j (b)) and (Fai(b), Faj (b), Fa�(b)) are computationally
indistinguishable when i, j, � are drawn at random from T.

We now move on to another assumption that will be used in our proposal.
Here, the adversary is allowed to access a restricted CSP-DDH oracle Ov(·, ·),
which behaves as follows:

Ov(X, U) =
{

1, if U = Fv(X);
0, otherwise. (8)

That is, the oracle tells whether the second argument equal to conjugating the
first argument by v. This oracle can be seen as a restricted form a CSP-DDH
oracle for which we fix one of its arguments as being Fv(b).

Definition 6 (CSP-based Strong Diffie-Hellman: CSP-SDH). Let G be
a noncommutative monoid. Suppose F be a Conj-LD system over a noncommu-
tative monoid G and let A be an adversary. For given a ∈ G−1 and b ∈ G,
consider the following experiment
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experiment Expcsp−sdh
F,A

i
$←− T; X ← Fai(b);

j
$←− T; Y ← Faj (b);

Ov(X, U)
def
= (U = Fv(X));

Z ← AOv(·,·)(X, Y );
if Z = Fai+j (b) then b ← 1 else b ← 0;
return b.

Now define the advantage of A in violating the CSP-based strong Diffie-Hellman
assumption as

Advcsp−sdh
F,A = Pr[Expcsp−sdh

F,A = 1]. (9)

The intuition behind the CSP-SDH assumption is that the restricted CSP-DDH
oracle is useless because the adversary already “knows” the answer to almost
any query it will ask. Similar to [6], it is also worth mentioning that the CSP-
SDH assumption is different from (and weaker than) the so-called gap CSP-CDH
assumption where an adversary gets access to a full CSP-DDH desicion oracle.

Remark 2. At present, it is unclear whether the CSP-DDH problem is actually
hard or not. Intuitively, we cannot solve the CSP-DDH problem without solving
the CSP problem if G is modeled as a generic monoid model. In fact, the CSP
problem and the CSP-DDH problem over Conj-LD systems over a noncommu-
tative monoids are direct analogies of the DLP problem and the DDH problem
over finite fileds, respectively. According to [24], we know that the DLP problem
and the DDH problem are polynomially equivalent in a generic cyclic group.
Therefore, by an analogical manner, we speculate that the CSP problem and
the CSP-DDH problem in a generic noncommutative monoid are polynomially
equivalent.

4 Cryptosystems from CSP-Based Left Self-distributive
Systems

In this section, we always assume that G is a noncommutative monoid and F
is a Conj-LD system defined over a noncommutative monoid G, while a ∈ G−1

and b ∈ G are two fixed elements.

4.1 Constructions

As a warmup step, let us at first describe a Diffie-Hellman-like key agreement
protocol [10] by using the CSP-DDH assumption over a noncommutative monoid
G. Assume that Alice and Bob want to negotiate a common session key. Then,
Alice (resp. Bob) picks s ∈ T (resp. t ∈ T) and then sends Fas(b) (resp. Fat (b)) to
Bob (resp. Alice). Finally, both of them can extract Fas+t(b), by which a session
key can be defined as



8 L. Wang et al.

Ksession = Kdf(Fas+t(b)), (10)

where Kdf(·) is a key derivation function, such as KDF1 defined in IEEE Std
1363-2000.

The above protocol2 immediately implies the following ElGamal-like construc-
tion.

The Basic Scheme—CSP-ElG. Our basic construction, which is an analogy
of the ElGamal cryptosystem [11] and thus denoted by CSP-ElG, consists of the
following three algorithms:

– Key-generation. Suppose that k is the security parameter, M = {0, 1}k is
the message space, and C = K[a,b] ×M is the ciphertext space. In addition,
we need a cryptographic hash function H : K[a,b] → M. A user at first picks
s ∈ T, and then publishes pk = Fas(b) as his public key, while keeps his
secret key sk = s unrevealed.

– Encryption. Given the public-key pk ∈ K[a,b] and a message m ∈ M, one
picks t ∈ T, and then constructs a ciphertext as follows:

c = (Fat (b), m ⊕ H(Fat(pk))) (11)

– Decryption. Given the secret key s ∈ T and a ciphertext c = (c1, c2) ∈
K[a,b] ×M, one can extract a plaintext as follows:

m = c2 ⊕ H(Fas(c1)) (12)

The consistency of the CSP-ElG scheme is directly implied by the power law
of the Conj-LD system, while the security of the CSP-ElG scheme is captured
by the follow theorem.

Theorem 1 (IND-CPA of CSP-ElG). Based on the CSP-DDH assumption,
the ciphertexts of the encryption scheme CSP-ElG are indistinguishable under
chosen plaintext attacks in the standard model.

Proof. See Appendix B.

Based on the above scheme, it is not difficult to derive a CCA secure encryption
scheme by employing the Fujisaki-Okamoto transformation [13]. Here, we would
like to give two different extensions that are enlightened by [6,1,20,7]. The first
extension is called the hashed ElGamal variant that is IND-CCA secure in the
random oracle model, while the second is called the Cramer-Shoup-like variant
that is IND-CCA secure even in the standard model.

2 This protocol cannot resist the so-called man-in-the-middle attack. But in this study
we don’t pay attention to how to remedy it.
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The First Extended Scheme—CSP-hElG. Our first extension is the hashed
version of the above CSP-ElG scheme and thus denoted by CSP-hElG. The CSP-
hElG scheme consists of the following three algorithms:

– Key-generation. Suppose that k is the security parameter, M = {0, 1}k is
the message space, and C = K[a,b] ×M is the ciphertext space. In addition,
we need a symmetric cipher Π = (E, D) with the key space K and a hash
function H : K2

[a,b] → K. A user at first picks an integer s ∈ T, and then
publishes pk = Fas(b) as his public key, while keeps his secret key sk = s
unrevealed.

– Encryption. Given the public-key pk ∈ K[a,b] and a message m ∈ M, one
picks an integer t ∈ T, and then constructs a ciphertext c = (c1, c2) as
follows:

c1 := Fat(b), T := Fat(pk), K := H(c1, T ), c2 := EK(m) (13)

– Decryption. Given the secret key s ∈ T and a ciphertext c = (c1, c2) ∈
K[a,b] ×M, one can extract a plaintext as follows:

Z := Fas(c1), K := H(c1, Z), m := DK(c2) (14)

The consistency of the CSP-hElG scheme can also be easily verified according
to the power law of the Conj-LD system, while the security of the CSP-ElG
scheme is formulated by the follow theorem.

Theorem 2 (IND-CCA of CSP-hElG). If H is modeled as a random oracle,
and the underlying symmetric cipher Π is itself secure against chosen ciphertext
attacks, then the hashed ElGamal encryption scheme CSP-hElG is secure against
chosen ciphertext attacks under the strong CSP-CDH assumption.

Proof. Analogically implied by Theorem 2 in [1] and Theorem 1 in [20], as well
as the improvement of DHIES given in Section 5.1 of [20]. 	


The Second Extended Scheme—CSP-CS. Our second extension, denoted
by CSP-CS, is an analogy of the well-known cryptosystem due to Cramer and
Shoup [7]. The CSP-CS scheme consists of the following three algorithms:

– Key-generation. Suppose that k is the security parameter, M = {0, 1}k

is the message space, and C = K2
[a,b] × K̃[a,b] × M is the ciphertext space,

where K̃[a,b] is defined as

K̃[a,b] � {Fai(Faj1 (b)Faj2 (b)) : i, j1, j2 ∈ T}. (15)

In addition, we need a symmetric cipher Π = (E, D) with the key space
K and two hash functions H : K2

[a,b] → T, and H1 : K[a,b] → K. A user at
first picks x1, x2, x3, x4 ∈ T, and then publishes pk = (X1, X2, X3, X4) as his
public key, while keeps his secret key sk = (x1, x2, x3, x4) unrevealed, where
Xi = Faxi (b) for i = 1, 2, 3, 4.
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– Encryption. Given the public-key pk = (X1, X2, X3, X4) ∈ K4
[a,b] and a

message m ∈ M, one picks t ∈ T, and then constructs a ciphertext c =
(c1, c2, c3, c4) as follows:

c1 := Fat(b), c2 := Fat(X1), c3 := Fat(Fah (X2)X3), c4 := EK(m), (16)

where h := H(c1, c2) and K := H1(Fat(X4)).
– Decryption. Given the secret key (x1, x2, x3, x4) ∈ T4 and a ciphertext

c = (c1, c2, c3, c4) ∈ K2
[a,b] × K̃[a,b] ×M, one at first computes h := H(c1, c2)

and then tests if

Fax1 (c1) =? c2 and Fah+x2 (c1)Fax3 (c1) =? c3.

If not, outputs ⊥ indicating an invalid ciphertext. Otherwise, computes K :=
H1(Fax4 (c1)) and outputs m := DK(c4).

The consistency and the security of the CSP-CS scheme are formulated by
the follow theorems, respectively.

Theorem 3 (Consistency of CSP-CS). The CSP-CS scheme is consistent.

Proof. See Appendix C.

Theorem 4 (IND-CCA of CSP-CS). Suppose H is a target collision resis-
tant hash function. Further, suppose the CSP-DDH assumption holds, and the
symmetric cipher Π = (E, D) is secure against chosen ciphertext attack. Then
CSP-CS is secure against chosen ciphertext attack.

Proof. Analogically implied by Theorem 13 in [6].

4.2 Security and Efficiency Issues About Fat(b)

For computing Fat(b), we should at first compute at, and then plus one inversion
and two multiplications in the underlying noncommutative monoid G. When t
is large, say several hundreds of digits, rather than to multiply a for t times, a
similar “successive doubling” method should be employed, and thus a factor of
log t would be taken into consideration in performance evaluations. At present,
it is enough to set t as an integer with 160 bits to resist exhaustive attacks.

It is necessary to assume that the basic monoid operations (i.e., multiplica-
tion and inversion) can be finished efficiently. This assumption implies that the
lengths of the representations of all elements in G, including a, b, at and Fat(b),
should be polynomial in the system security parameters, since the results have
to be output bit-by-bit by using classical computers.

Moreover, we require that there is a secure efficient canonical form for repre-
senting elements in G. This means that

(C-1) By using this form, the representation of an element in G is unique. Oth-
erwise, the proposed schemes cannot work.
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(C-2) The transformation from an element in G to its canonical form can be
finished efficiently. Otherwise, the proposed schemes are impractical.

(C-3) By using this form, the length of an element Fat(b) does not reveal any
information about at. Otherwise, the developed assumptions could suffers
from the so-called length-based attacks [16].

4.3 Possible Implementations

Now, let us proceed to discuss possible implementations on our proposal.

The monoid of matrices over truncated multivariable polynomials. The
first promising platform that have generically hard CSP problem is, introduced
by Grigoriev and Shpilrain’s [15] recently, the monoid of μ × μ matrices over
λ-truncated κ-variable polynomials over a ring R. According to [15], we can
choose the parameters as follows: μ = 3, λ = 1000 and κ = 10, while the ring R
is instantiated with Z12. Given a polynomial

f =
∑

i1,··· ,iκ

fi1,··· ,iκxi1
1 · · ·xiκ

κ ∈ Z12[x1, · · · , xκ] (17)

in κ > 1 variables, we let deg 0 = −1 and define the degree of f by

deg f = max{i1 + · · · + iκ : fi1,··· ,iκ �= 0}. (18)

Now, let us define 3

R̂λ,κ � {f ∈ Z12[x1, · · · , xκ] : deg(f) < λ}. (19)

Then, for f, g ∈ R̂λ,κ, the product of f � g will merely keep the term

(fi1,··· ,iκxi1
1 · · ·xiκ

κ ) · (gj1,··· ,jκxj1
1 · · ·xjκ

κ ) (20)

if i1 + j1 + · · · + iκ + jκ < λ. Now, let us define

G � Matμ(R̂λ,κ), (21)

(i.e., the set of μ × μ square matrices over R̂λ,κ) and for two matrices A =
(aij)μ×μ ∈ G and B = (bij)μ×μ ∈ G, the monoid operation is defined by

AB � C = (cij)μ×μ ∈ G, (22)

where

cij =

(
μ∑

�=1

ai� � b�j

)
. (23)

3 In a more rigorous manner, R̂λ,κ should be defined as a quotient of the algebra of
κ-variable polynomials by the ideal generated by all monomials of degree λ. But for
simplicity, we would like to follow the formulation given in [14], where Gastineau gave
a detailed introduction on the operations about truncated multivariate polynomials,
especially from a perspective of complexity.
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In our proposal, K[A,B] ⊂ G is specified by two specified matrices A, B ∈ G.
Here, the matrix B is not required to be invertible and easy to generate, while
the matrix A should be invertible and can be generated as a random product of ν
(μ3 ≤ ν ≤ 2μ3) elementary matrices. Here, a square matrix is called elementary
if it differs from the identity matrix by exactly one non-zero element outside the
diagonal [15]. In other words, A can be specified by ν random triples {(i, j, u)} ∈
{1, · · · , μ}2 × R̂λ,κ: Each triple (i, j, u) indicates an elementary matrix that has
a non-zero entry u �= 0 in the (i, j)th place (i �= j) and A is the product of all
these ν elementary matrices.

According to [15], by using the above sample technique, the CSP problem
over G seems intractable. According to the best of our knowledge, finding the
matrix A ∈ G from given (B, ABA−1) ∈ G2, one has to solve a system of μ2

linear equations and μ2 quadratic equations, with 2μ2 unknowns, over R̂λ,κ. The
adversary can further translate this into a system of linear equations over Z12

if she collects coefficients at similar monomials, but this system is going to be
huge: as explained in [15], it is going to have more than 1020 equations (by the
number of monomials). As far as we know, this monoid G seems to be the first
serious candidate for the platforms that have generically hard CSP problem [15].

Moreover, it is not difficult to see that this platform satisfies the additional
requirements (C-1), (C-2) and (C-3) mentioned in Section 4.2. Therefore, it can
be used to define the Conj-LD system and then give an instantiation for our
proposal.

The braid group. Is the braid group Bn qualified as a secure platform for
supporting our proposal? Instead of giving a hasty negative answer, we would
like to address this issue from the following aspects.

Is the CSP problem over braid groups intractable? For most instances, the
answer is negative. But at present, finding a thorough solution for the CSP
problem over braid groups is still out of reach.

On the one hand, Birman, Gebhardt and González-Meneses launched a project,
referred as BGGM project, to find polynomial algorithms for solving the CSP
problem over Garside groups, including braid groups [3,4,5]. The BGGM project
might be the strongest known efforts for solving the CSP problem over braid
groups in polynomial-time (w.r.t. the input size). Up to now, the BGGM project
has already made a great progress: Except for rigid pseudo-Anosov braids, the
CSP instances over other braids can be solved in polynomial time [5].

On the other hand, some researchers still keep on finding hard instances of the
CSP problem in braid groups. For examples, in 2007, Ko et al. [18] proposed some
ideas on generating hard instances for braid cryptography, and in 2009, Prasolov
[25] constructed some small braids with large ultra summit set (USS). Prasolov’s
result means a frustration toward the BGGM project, but an encouragement
toward the intractability assumption of the CSP problem over braid groups.

Does the braid group satisfy the condition (C-1), (C-2) and (C-3)? The answer
is affirmative for (C-1) and (C-2), but partially negative for (C-3).
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According to [8], if p and s are random braids, then the length of sps−1 is,
with a high probability, about the length of p plus the double of the length of
s. This is the reason why the length-based attacks work. This also suggests that
one can defeat the length-based attacks by requiring that the length of sps−1

is closer to the length of p. This in turn requires that p should lie in its super
summit set (SSS) [8]. We know that USS ⊂ SSS. Therefore, if we can work
with the braids suggested by Prasolov, then not only the CSP instances are
hard, but also the condition (C-3) holds. If so, we reach the point to instantiate
our proposal with braid groups in a secure manner.

5 Conclusion

New public-key encryption schemes were constructed from the Conj-LD sys-
tems over generic noncommutative monoids with intractable CSP problems. A
promising instantiation of our proposal is to use the monoid of matrices over
truncated multivariable polynomials over rings. Meanwhile, if the problem of
sampling hard CSP instances from braid groups is solved, our proposal can also
be instantiated with braid groups. It is worth mentioning that even if the CSP
problems in the above mentioned platforms were proven easy in future, our pro-
posal is still realizable in other noncommutative algebraic systems in which the
CSP problem is intractable.
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A Proof of Proposition 1

Proof. Suppose F is a Conj-LD system defined over noncommutative group G.
Then, for given a, b, c ∈ G, we have that

– Property (i): Idempotent. Since aaa−1 = a, i.e., a will remain unchanged
when it conjugates to itself. By using the notation as in the formula (2), we
have Fa(a) = a.

– Property (ii): Mutual inverse. According to the definition of F (cf. (4)), we
have

Fa(b) = c ⇔ c = aba−1 ⇔ a−1ca = b ⇔ Fa−1(c) = b.

– Property (iii): Homomorphic.

Fa(bc) = a(bc)a−1 = (aba−1)(aca−1) = Fa(b)Fa(c).

This concludes the proposition. 	


B Proof of Theorem 1

Proof. Assume that the CSP-DDH assumption holds for the underlying noncom-
mutative monoid G. We will prove by contradiction that CSP-ElG is IND-CPA.
Suppose that CSP-ElG is not IND-CPA, and let A be an algorithm which, on
the system parameters a ∈ G−1, b ∈ G and a random public key pk ∈ K[a,b],
has probability non-negligibly greater than 1/2 of distinguishing random en-
cryptions Enc(m0) and Enc(m1) of two messages m0, m1 of its choice. Let
Z = (Fas(b), Fat(b), Fau(b)) ∈ K3

[a,b] be either a random CSP-DDH triple
or a random triple, with equal probability. We will produce an algorithm B
which can distinguish between the two cases, using A as an oracle, with high
probability.

The algorithm B who interacts with the algorithm A can be defined as fol-
lows:

1. B at first picks a random integer v ∈ T and sets the public-key as pk =
Fas+v (b) ∈ K[a,b], which is then sent to A.

2. Upon receiving the public-key pk, A selects two messages m0, m1 ∈ M with
equal length as the challenge messages, which is then sent to B.

3. Upon receiving the challenge messages pair (m0, m1), B randomly picks an-
other integer w ∈ T, flips a coin β ∈ {0, 1} and then replies A with the
challenge ciphertext as follows:

c∗β = (Fat+w (b), mβ ⊕ H(Fau+v+w (b))).
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4. Upon receiving the challenge ciphertext c∗β , A replies B with β̂ ∈ {0, 1}, i.e.,
A’s guess on β.

5. Upon receiving β̂ ∈ {0, 1}, i.e., A’s guess on β, B checks whether A’s guess
is correct, i.e., whether β̂ = β holds.

6. By repeating the above process with several different choices of random in-
tegers v, w, the algorithm B can determine with high probability whether or
not A can determine the value of β. Based on the detailed analysis given
below, B can, in this way, determine whether or not Z is a CSP-DDH triple,
thus violating the CSP-DDH assumption for G.

In detail, there are now two cases to consider for a single executing the above
interactive process between B and A.

– Suppose that u = s + t holds. Then u + v + w = (s + v) + (t + w), so
Z is a CSP-DDH triple in K3

[a,b]. Moreover, all possible CSP-DDH triples
w.r.t. (a, b) are equally likely to occur as Z, since v and w are random.
Therefore c∗β is a valid random encryption of mβ (random since Fat+w (b) is
random in K[a,b]). Under these conditions, the algorithm A by hypothesis will
succeed in outputting β with probability exceeding 1/2 by a non-negligible
quantity.

– Suppose that u is random. Then Z is a random triple in K3
[a,b], and all possi-

ble triples belonging to K3
[a,b] occur with equal probability. In this situation,

the probability distribution of c∗0 is identical to that of c∗1, over all possible
random choices of v and w. It follows that the algorithm A cannot exhibit
different behavior for β = 0 and β = 1. Note that we can arrive at this
conclusion even though the expression c∗β is an invalid encryption of mβ —
that is, even though we have no information about how A behaves on invalid
inputs, we know for certain that A cannot behave differently depending on
the value of β.

The above analysis reveals that if Z is a CSP-DDH triple then A with non-
negligible probability exhibits different behavior depending on whether β = 0 or
β = 1, whereas if Z is not a CSP-DDH triple then A must behave identically
regardless of the value of β. 	


C Proof of Theorem 3

Proof. Suppose that c = (c1, c2, c3, c4) is a well-formed ciphertext on the message
m. Then, there exists some integer t ∈ T such that

c1 := Fat (b), c2 := Fat(X1), c3 := Fat (Fah(X2)X3), c4 := EK(m),

where h := H(c1, c2) and K := H1(Fat(X4)). Since Xi = Faxi (b) for i = 1, 2, 3, 4,
we have that
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c2 = Fat(Fax1 (b))
= Fax1+t(b) (∵ power law)
= Fax1 (Fat(b)) (∵ power law)
= Fax1 (c1), (24)

c3 = Fat(Fah(Fax2 (b))Fax3 (b))
= Fat(Fah+x2 (b)Fax3 (b)) (∵ power law)
= Fat(Fah+x2 (b))Fat (Fax3 (b)) (∵ property (iii))
= Fat+h+x2 (b)Fat+x3 (b) (∵ power law)
= Fah+x2 (Fat(b))Fax3 (Fat (b)) (∵ power law)
= Fah+x2 (c1)Fax3 (c1), (∵ power law) and (25)

K = H1(Fat(Fax4 (b)))
= H1(Fat+x4 (b) (∵ power law))
= H1(Fax4 (Fat(b)) (∵ power law))
= H1(Fax4 (c1)). (26)

That is, the ciphertext c can stand the validation and the value of K used in en-
cryption c4 = EK(m) is exactly the value of K used in decryption m = DK(c4).
Since Π = (E, D) is symmetric, the output m of the decryption is exactly the
input m of the encryption. Therefore, the CSP-CS scheme is consistent. 	
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CCA1-security of the Elgamal cryptosystem is equivalent to another
assumption ddhcsdh, while we show that ddhdsdh is insufficient for El-
gamal’s CCA1-security. Finally, we prove a generic-group model lower
bound Ω( 3

√
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1 Introduction

Of the common security notions of public-key cryptosystems, CPA-security (se-
curity against chosen plaintext attacks) is not sufficient in many real-life appli-
cations. On the other hand, CCA2-security (security against adaptive chosen ci-
phertext attacks) is often too strong since it does forbid homomorphic properties
that are necessary to efficiently implement many cryptographic protocols. CCA2-
secure cryptosystems are also typically less efficient than CPA-secure cryptosys-
tems. CCA1-security (security against nonadaptive chosen ciphertext attacks),
a notion that is strictly stronger than CPA-security but does not yet forbid the
cryptosystem to be homomorphic, seems to be a reasonable compromise.

In particular, CCA1-secure cryptosystems can be used instead of CPA-secure
cryptosystems in many cryptographic protocols (say, e-voting) to achieve bet-
ter security without any loss in efficiency. For example, one might be able to
design an e-voting protocol where a vote cannot be decrypted even by an ad-
versary who can non-adaptively (say, before the e-voting period starts) decrypt
any ciphertexts of her choosing. We emphasize that while designing such crypto-
graphic protocols, one should still recall that CCA1-security is a strictly weaker
assumption than CCA2-security.

Unfortunately, CCA1-security itself has received very little study, and in par-
ticular not much is known about CCA1-security of most of the commonly used
cryptosystems. As a concrete (and important) example, while the Elgamal cryp-
tosystem [7] is one of the best-known and most efficient (number-theory based)

X. Lai, M. Yung, and D. Lin (Eds.): Inscrypt 2010, LNCS 6584, pp. 18–35, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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public-key cryptosystems, results on its security have been slow to come. Only
in 1998, it was proven that Elgamal is CPA-secure [14]. On the other hand, the
Elgamal cryptosystem is clearly not CCA2-secure, because it is homomorphic.
However, Elgamal’s CCA1-security is a well-known open problem.

In 1991, Damg̊ard proposed what we will call the DEG (Damg̊ard’s Elga-
mal) cryptosystem [4]. DEG is a relatively straightforward modification of Elga-
mal that employs an additional exponentiation to reject “incorrect” ciphertexts.
Damg̊ard proved DEG to be CCA1-secure under a nonfalsifiable [11] knowledge-
of-the-exponent assumption. Only in 2006, Gjøsteen [8] proved that DEG is
CCA1-secure under a more standard assumption that we will call ddhdsdh: it
basically states that DDH remains secure when the adversary is given a nonadap-
tive access to the Decisional Static Diffie-Hellman (DSDH) oracle [2]. Gjøsteen’s
security reduction consisted of a relatively long chain of games. Recently, in an
unpublished preprint, Wu and Stinson [15] presented two alternative proofs of the
CCA1-security of the DEG cryptosystem. First, they showed that DEG is CCA1-
secure if both the DDH assumption and a weaker version of the knowledge-of-
exponent assumption (see [15] for precise statement) hold. Second, they pre-
sented an alternative proof that it is CCA1-secure under the ddhdsdh assumption,
which is simpler than Gjøsteen’s original proof.

Our contributions. In this paper, we establish the complete complexity land-
scape of CCA1-security of the Elgamal and the DEG cryptosystems. We establish
precise security assumptions under which these cryptosystems are CCA1-secure.
To be able to do so, we need to introduce several assumptions where the ad-
versary has a nonadaptive oracle access to an oracle solving a more primitive
assumption. Denote by XY the assumption that no adversary, given a nonadap-
tive oracle access to the Y oracle, can break the assumption X . Here, since Y
is usually a static security assumption [2], it will be assumed that the fixed pa-
rameters of Y will be the same as the corresponding parameters in X . As an
example, in the ddhdsdh assumption, the adversary for the ddh problem has four
inputs: a generator g and three group elements h1, h2, h3. The DSDH problem
is defined with respect to two fixed group elements g′ and h′

1, and the adver-
sary obtains two random group elements h′

2 and h′
3. We will assume that in the

ddhdsdh assumption, g′ = g and h′
1 = h1. For the sake of clarity, we will give full

definitions of all three used XY -type assumptions later.
All our reductions can be seen as simple hybrid arguments following the gen-

eral guideline “if X ⇒ X ′ and Y ′ ⇒ Y , then XY ⇒ (X ′)Y ′
”.(Here and in what

follows, X ⇒ Y means that the assumption Y can be reduced to the assump-
tion X .) Thus all our reductions consist of at most two game hops. Our proof
technique, albeit simple, may be a contribution by itself.

Regarding DEG, we first give a simple proof that DEG is CCA1-secure if and
only if the ddegcsdeg assumption holds, where both csdeg and ddeg are new but
standard-looking (falsifiable) assumptions; we will give the precise definition of
ddegcsdeg in Sect. 3. This result is a tautology which is mainly useful to sim-
plify further results. As for Elgamal, we show that Elgamal is CCA1-secure iff the
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ddhcsdh assumption holds, that is, if ddh is secure given nonadaptive access to
a Computational Static Diffie-Hellman (csdh, [2]) oracle. This result is also a
tautology. While ddhcsdh is a new assumption, it is again standard-looking (and
falsifiable). We emphasize once more that it is the first known positive result
about the CCA1-security of Elgamal at all.

We then concentrate on showing that the used assumptions are all (poten-
tially) different. For this we construct several irreductions [3,1]. However, due to
the nature of the studied problems, our irreductions are not ideally strong, and
thus only of (somewhat) indicative nature. Briefly, the problem is that the CCA1-
security is a static assumption, where the decryption oracle queries are limited
to use the same secret key that is later used for encryption. For this reason, not
only the underlying assumptions (like ddhdsdh) inherit the same property, but
also reductions and irreductions. On the one hand, for the underlying assump-
tions and reductions, this is good: for assumptions, since such static assumptions
are weaker than non-static assumptions; for reductions, since static reductions
are weaker than non-static reductions. On the other hand, for the irreductions
this is bad, since static irreductions are weaker than non-static irreductions (i.e.,
they only show the nonexistence of static reductions and not all possible reduc-
tions). A possible solution here is to strengthen the CCA1-security assumption
by allowing the decryption oracle to decrypt with a secret key that corresponds
to any public key. This would solve the mentioned problem. However, since such
a strengthened version of CCA1-security is nonstandard, we leave its study to a
followup work.

We present (static) irreductions showing that ddh cannot be reduced to
ddegcsdeg (unless ddh is easy), ddegcsdeg cannot be reduced to ddhdsdh (unless
ddegcsdeg is easy) and ddhdsdh cannot be reduced to the ddhcsdh (unless ddhdsdh

is easy). All those irreductions are optimal in the sense that they show that if
assumption X can be reduced to Y in polynomial time, then X has to be solvable
in polynomial time itself and thus both assumptions are broken.

Intuitively, the new irreductions show that DEG is CCA1-secure under an as-
sumption that is strictly stronger than DDH (and thus there is no hope to prove
that it is CCA1-secure just under the DDH assumption) and strictly weaker than
ddhdsdh, the assumption under which its CCA1-security was known before. Thus
means that the CCA1-security of DEG can be rightfully seen as an independent
(and plausible) security assumption, which is a new and possibly surprising re-
sult. Moreover, the CCA1-security of Elgamal is based on an assumption that is
strictly stronger than the assumption that underlies the CCA1-security of DEG.
In a nutshell, this means that while being somewhat less efficient than Elgamal,
DEG is “more CCA1-secure” in a well-defined sense.

Finally, we show in the generic group model that the hardest considered
assumption, ddhcsdh (that is, the CCA1-security of Elgamal), is secure in the
generic group model [13]. More precisely, we show that any generic group algo-
rithm that breaks ddhcsdh must take Ω( 3

√
q) steps, where q is the largest prime

factor of the group order. We prove this lower bound in the generic group model
by using the formalization of Maurer [10], but due to the use of nonadaptive
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oracle in our assumption, the proof of lower bound is more involved than any of
the proofs in [10]. This can be compared to the known exact lower bound Ω(

√
q)

for ddh (that is, the CPA-security of Elgamal) [13], and shows that ddhcsdh is
likely to be secure (in generic group model) while the defined irreductions are
likely to be meaningful due to the different lower bound.

To summarize, we prove that:

Elgamal-CCA1
⇐

ddhcsdh
⇐

ddhdsdh
⇐

ddegcsdeg
⇐

DEG-CCA1
⇐

ddh
⇒ �⇒ � �⇒ � ⇒ �⇒ �

Here, we have denoted with a star (	) the new (ir)reductions that are most
important in our opinion. We use theorems to prove the starred (ir)reductions,
and lemmas to prove other reductions.

Therefore, we give a complete map of the related security reductions and
irreductions between these security assumptions. We stress that irreductions are
not yet commonly used, and we hope that the current paper provides an insight
to their significance. (And shows, that they are often not difficult to construct.)

Recent Related Work. First, a number of recent papers [6,5,9] have studied
the CCA1/CCA2-security of hybrid versions of the DEG cryptosystem. Such
versions use additional cryptographic primitives like symmetric encryption and
MAC. Compared to them, nonhybrid versions studied in this paper are both
better known and simpler. Moreover, the study of nonhybrid versions is impor-
tant because they are homomorphic and thus widely usable in cryptographic
protocols. Second, in an unpublished preprint [15], Wu and Stinson also show
that the Elgamal cryptosystem is one-way (under nonadaptive chosen ciphertext
attacks) under two different conditions. They did not study the CCA1-security
of Elgamal.

2 Preliminaries

2.1 Assumptions

Let the value of the predicate [a ?= b] be 1, if a = b, and 0 otherwise. In the
case of any security assumption X , we let the public variables (X1, . . . , Xm) be
all variables seen by the adversary (in a fixed order implicit in the definition).
In the cases that we study in this paper, the first public variables are system
parameters (like a generator of the underlying group), then the public key and
finally the variables sent to the adversary during the security game.

Denote

cdh(g, gx, gy) := gxy , ddh(g, gx, gy, gz) := [gz ?= cdh(g, gx, gy)] .

Based on these standard cdh and ddh oracles, we also define the Computational
and Decisional Static Diffie-Hellman oracles [2]:

csdh(g,gx)(gy) := cdh(g, gx, gy) = gxy ,

dsdh(g,gx)(gy, gz) := ddh(g, gx, gy, gz) = [gz ?= cdh(g, gx, gy)] .
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Note that cdh and csdh are essentially the same functions, but as oracles they
behave differently since (g, gx) have been hardcoded in csdh and thus cannot be
chosen by the adversary. The same comment is true for ddh and dsdh.

Fix a group � = 〈g〉 of order q. The ddh game is defined as follows:

Setup phase. Challenger sets sk ← �q, pk ← gsk. He sends pk to adversary A.
Challenge phase. Challenger sets bA ← {0, 1}, y∗ ← �q, z∗ ← �q, h∗

1 ← gy∗
.

He sets h∗
2 ← gz∗

if bA = 0 and h∗
2 = pky∗

if bA = 1. Challenger sends
(h∗

1, h
∗
2) to A.

Guess phase. A returns a bit b′A ∈ {0, 1}. A wins if b′A = bA, that is, if
b′A = ddh(g, pk, h∗

1, h
∗
2).

Group � is a (τ, ε)-ddh group if for any adversary A working in time τ ,
Pr[A wins in the ddh game] ≤ 1

2 +ε. Note that the public variables are ddh1 = g,
ddh2 = pk, ddh3 = h∗

1, ddh4 = h∗
2.

For comparison, we now give a complete description of a static game, csdh.
Fix a group� = 〈g〉 of order q, a generator g of group�, and a random pk ← �.
The csdh(g,pk) game is defined as follows:

Challenge phase. Challenger sets xA ← �q. He sets h ← gxA. Challenger
sends h to A.

Guess phase. A returns a group element h′
A ∈ �. A wins if h′

A =
csdhg,pk(h) = pkxA .

Group � is a (τ, ε)-csdh group if for any g, pk and any adversary A working in
time τ , Pr[A wins in the csdh game] ≤ 1

q + ε.
Based on arbitrary assumptions X and Y we define a new assumption XY . In

the XY game, an adversary has nonadaptive oracle access to an oracle solving
assumption Y , and she has to break a random instance of the X assumption. In
our case, the Y assumption is always a static assumption, that is, it is defined
with respect to some public parameters that come from the instance that the
adversary for XY has to solve. Note that if Y is static, then we have to always fix
the public parameters in the definition of X and Y . Clearly, XY ⇒ (X ′)Y ′

when
X ⇒ X ′ and Y ′ ⇒ Y . This can be proven by using a hybrid argument, showing
say that XY ⇒ XY ′

, that XY ′ ⇒ (X ′)Y ′
, etc. A group is (τ, ε)-XY group if for

any adversary A working in time τ , Pr[A wins in the XY game] ≤ δ + ε, where
δ = 1

2 in a decisional assumption, and δ = 1
q in a computational assumption.

For the sake of clarity, we now give a precise definition of the ddhdsdh game,
and we state its relation to some of the existing assumptions. Similarly, we will
later define all other used assumptions. Fix a group � = 〈g〉 of order q. The
ddhdsdh game is defined as follows:

Setup phase. Challenger sets sk ← �q, pk ← gsk. He sends pk to adversary A.
Query phase. A has a (nonadaptive) access to oracle dsdh(g,pk)(·, ·).
Challenge phase. Challenger sets bA ← {0, 1}, y∗, z∗ ← �q, h∗

1 ← gy∗
. He sets

h∗
2 ← gz∗

if bA = 0 and h∗
2 ← pky∗

= csdh(g,pk)(h∗
1) if bA = 1. Challenger

sends (h∗
1, h

∗
2) to A.
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Guess phase. A returns a bit b′A ∈ {0, 1}. A wins if b′A = bA, that is, if
b′A = ddh(g, pk, h∗

1, h
∗
2).

Group � is a (τ, ε)-ddhdsdh group if for any adversary A working in time τ ,
Pr[A wins in the ddhdsdh game] ≤ 1

2 + ε. Here, the 2 variables are g and pk are
shared by the ddh oracle invoked in the query phase and by the instance the
adversary is trying to solve.

Several versions of the XY game for different values of X and Y , have been
used before. ddhdsdh assumption has been used before say in [8]. The gap DH
assumption of [12] is similar to cdhdsdh (defined later), except that there the
adversary gets access to the oracle also after seeing the challenge. Some other
papers deal with the so called one-more DDH assumption, where A has to
answer correctly to t + 1 DDH challenges after making only t DDH queries. See,
for example, [3].

2.2 Reductions and Irreductions

We say that security assumption Y can be reduced to assumption X , X ⇒ Y , if
there exists a reduction R, such that: for every adversary A that breaks assump-
tion X , R can break assumption Y by using A as an oracle. More precisely, in an
X ⇒ Y reduction game, the challenger C generates for R the public parameters
of an Y instance. Then, the challenger sends to R a challenge of the game Y
that R has to solve. R can use A as an oracle.

Following [3], we call an algorithm I an irreduction Z �⇒Y X , if it can, given as
an oracle an arbitrary reduction algorithm Z ⇒ X , solve problem Y . If Y = X ,
then we say that I is an optimal irreduction algorithm and write Z �⇒! X . More
precisely, in a Z �⇒Y X irreduction game, the challenger C generates for I the
public parameters of an Y instance. Then, the challenger sends to I a challenge
of the game Y that I has to solve. I can use a reduction R of the game Z ⇒ X
as an oracle.

Now, in our case, most of the assumptions are static in nature. That is, we
either have an assumption Xα with some externally given variables α, or an as-
sumption X

Yα,β

α,β′ , where variables α of the X ’s instance are fixed in the invocation
of the oracle for Y . (To simplify the notation, we will usually not write down α, β
and β′, but define them while defining the static assumption XY .) Analogously,
in a static reduction XY ⇒ (X ′)Y ′

game, the adversary in the XY ⇒ (X ′)Y ′

game (1) has to know how to answer the Y queries only when some variables are
fixed, and (2) can only query the oracle that solves XY or Y ′ under some fixed
variables. Analogously, an adversary in the irreduction XY �⇒Z (X ′)Y ′

game
has similar restrictions.

Briefly, the problem is that the CCA1-security is a static assumption, where
the decryption oracle queries are limited to use the same secret key that is later
used for encryption. For this reason, not only the underlying assumptions (like
ddhdsdh) inherit the same property, but also reductions and irreductions. This
is since in the reduction and irreduction games, some of the oracles are equal
to the decryption oracle (or to some other static oracle). On the one hand, for the
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underlying assumptions and reductions, this is good: for assumptions, since such
static assumptions are weaker than non-static assumptions; for reductions, since
static reductions are weaker than non-static reductions. On the other hand, for
the irreductions this is bad, since static irreductions are weaker than non-static
irreductions (i.e., they only show the nonexistence of static reductions and not
all possible reductions).

Thus, In our (ir)reductions, it is important to see which variables are fixed in
all X , Y , and Z. For example, in an reduction X ⇒ Z, both instances X and Z
may depend on some public generator g and public key pk. In all our reductions,
the reduction algorithm only uses the oracle A with all public parameters and
public keys being fixed. We say that such a reduction is static. Analogously, we
say that an irreduction Z �⇒Y X is static, if its oracle reduction algorithm is
static. To make this completely clear, we state the names of fixed parameters in
all of our results. We refer to the beginning of Sec. 5 for further discussion.

Finally, when we show the existence of a reduction (resp., irreduction), we
construct a reduction R (resp., irreduction I) that simulates the challenger C to
adversary A (resp., reduction R). In the case of an irreduction, I also simulates
A to R. If a party X simulates party Y, then we denote X as X [Y] for the sake
of clarity.

2.3 Cryptosystems

A public-key cryptosystem Π is a triple of efficient algorithms (G, E, D), where
G(1k) outputs a key pair (sk, pk), Epk(m; r) returns a ciphertext and Dsk(c)
returns a plaintext, so that Dsk(Epk(m; r)) = m for any (sk, pk) ∈ G(1k). Here,
k is a security parameter that we will just handle as a constant.

Fix a cyclic group � = 〈g〉 of order q. The Elgamal cryptosystem [7] in group
� is defined as follows:

Key generation G(1k). Select a random sk ← �q, set pk ← gsk. Publish pk.
Encryption Epk(m; ·). Return ⊥ if m �∈ �. Otherwise, select a random r ← �q,

set Epk(m; r) ← (gr, m · pkr).
Decryption Dsk(c). Parse c = (c1, c2), return ⊥ if ci �∈ � for some i. Otherwise,

return Dsk(c) ← c2/csk
1 .

Fix a group � = 〈g〉 of order q. The Damg̊ard’s Elgamal (DEG) cryptosys-
tem [4] in group � is defined as follows:

Key generation G(1k). Select random sk1, sk2 ← �q, set pk1 ← gsk1 , pk2 ←
gsk2 . Publish pk ← (pk1, pk2), set sk ← (sk1, sk2).

Encryption Epk(m; ·). Return ⊥ if m �∈ �. Otherwise, select a random r ← �q,
set Epk(m; r) ← (gr, pkr

1, m · pkr
2).

Decryption Dsk(c). Parse c = (c1, c2, c3), return ⊥ if ci �∈ � for some i. Return
⊥ if c2 �= csk1

1 . Otherwise, return Dsk(c) ← c3/csk2
1 .

Let Π = (G, E, D) be a public-key cryptosystem. The CCA1-game for Π is
defined as follows:
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Setup phase. Challenger chooses (sk, pk) ← G(1k) and sends pk to adversary
A.

Query phase. A has access to an oracle Dsk(·).
Challenge phase. A submits (m0, m1) to the challenger, who picks a random

bit bA ← {0, 1} and a random r ← �q, and returns Epk(mbA ; r).
Guess phase. A returns a bit b′A ∈ {0, 1}. A wins if b′A = bA.

A public-key cryptosystem is (τ, γ, ε)-CCA1-secure if for any adversary A work-
ing in time τ and making γ queries, Pr[A wins in the CCA1-game] ≤ 1

2 + ε.
A (τ, 0, ε)-CCA1-secure cryptosystem is also said to be (τ, ε)-CPA-secure. Note
that CCA1-security is an explicitly static assumption, since the adversary can
only access the decryption oracle with respect to a fixed secret key.

The DEG cryptosystem was proven to be CCA1-secure under the ddhdsdh

assumption in [8]. More precisely, Gjøsten proved the CCA1-security of a (hash-
proof based) generalization of the DEG cryptosystem under a generalization of
the ddhdsdh assumption. Elgamal’s cryptosystem is known to be CPA-secure [14]
but not known to be CCA1-secure for γ = poly(k).

3 CCA1-Security of DEG

In this section we investigate the CCA1-security of DEG.

3.1 DEG Is CCA1-Secure ⇔ ddegcsdeg

First, we prove that the security of DEG is equivalent to a new but standard-
looking assumption ddegcsdeg. This result itself is not so interesting, but com-
bined with the result from the next subsection it will provide a reduction of the
CCA1-security of DEG to the more standard (but as we will also see later, a
likely stronger) ddhdsdh assumption.

The ddegcsdeg Assumption. We first define the new assumption. For im-
plicitly defined g, pk1, pk2, let DEG0 := {(gy, pky

1 , pkz
2) : y, z ← �q} and

DEG1 := {(gy, pky
1 , pky

2) : y ← �q}. Define the next oracles csdeg(·,·,·) and ddeg:

– csdeg(g,pk1,pk2)
(h1, h2) first checks if ddh(g, pk1, h1, h2) = 1. If this is not

true, it returns ⊥. Otherwise, it returns h3 ← cdh(g, pk2, h1).
– ddeg(g, pk1, pk2, h1, h2, h3) has to distinguish between DEG0 and

DEG1. That is, on the promise that ddh(g, pk1, h1, h2) = 1,
ddeg(g, pk1, pk2, h1, h2, h3) ← [ddh(g, pk2, h1, h3) ?= 1]. The oracle is
not required to output anything if ddh(g, pk1, h1, h2) = 0.

Fix a group � = 〈g〉 of order q. The ddegcsdeg game in group � is defined as
follows:

Setup phase. Challenger sets sk1, sk2 ← �q, pk1 ← gsk1 , pk2 ← gsk2 . He sends
pk ← (pk1, pk2) to adversary A, and sets sk ← (sk1, sk2).

Query phase. A has access to the oracle csdeg(g,pk1,pk2)(·, ·).
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Challenge phase. Challenger sets bA ← {0, 1}, y∗, z∗ ← �q, h∗
1 ← gy∗

, and
h∗

2 ← pky∗
1 . If bA = 0, then h∗

3 ← �. If bA = 1, then h∗
3 ← pky∗

2 . Challenger
sends (h∗

1, h
∗
2, h

∗
3) to A.

Guess phase. A returns a bit b′A ∈ {0, 1}. A wins if b′A = bA.

Group � is a (τ, γ, ε)-ddegcsdeg group if for any adversary A working in time τ
and making γ queries, Pr[A wins] ≤ 1

2 +ε. Note that this definition does directly
follow from the definition of the csdeg(·,·,·) and ddeg oracles.

Security Results. In all next results, small denotes some unspecified small
value (usually O(1) group operations) that is dominated by some other addend
in the same formula. The next lemma is basically a tautology, and useful mostly
to simplify further proofs.

Lemma 1 (DEG-CCA1 ⇔ ddegcsdeg). Fix a group � = 〈g〉 of order q.
(1) Assume that � is a (τ, γ, ε)-ddegcsdeg group. Then DEG is (τ − γ ·
(τcsdeg + small) − small, γ, 2ε)-CCA1-secure where τcsdeg is the working time of
the csdeg(·,·,·) oracle.
(2) Assume that DEG is (τ, γ, ε)-CCA1-secure. Then � is a (τ−γ ·(τD +small)−
small, γ, ε)-ddegcsdeg group, where τD is the working time of the decryption
oracle D.

Proof. 1) First direction (DEG-CCA1 ⇒ ddegcsdeg with fixed
(g, pk1, pk2)): Assume A is an adversary who can (τ ′, γ′, ε′)-break the CCA1-
security of DEG with probability ε′ and in time τ ′, making γ′ queries. Construct
the next reduction R that aims to break ddegcsdeg:

– Challenger generates new sk ← (sk1, sk2) ← �2
q , pk1 ← gsk1 , pk2 ← gsk2

and sends pk ← (pk1, pk2) to R. R forwards pk to A.
– In the query phase, whenever A asks a decryption Dsk query (c1, c2, c3)

from Dsk(·, ·, ·), R rejects if either c1, c2 or c3 is not a valid group element.
Otherwise R makes a csdeg(g,pk1,pk2)

(c1, c2) query. R receives a c′ such
that c′ ← ⊥, if c2 �= csk1

1 , and c′ ← csk2
1 otherwise. R returns ⊥ in the first

case, and c3/c′ in the second case.
– In the challenge phase, whenever A submits her challenge (m∗

0, m
∗
1), R

asks the challenger for his own challenge. The challenger sets bR ← {0, 1},
y∗ ← �q, h∗

1 ← gy∗
, h∗

2 ← pky∗
1 . If bR = 0, then he sets h∗

3 ← �, otherwise
h∗

3 ← pky∗
2 . R picks a random bit bA ← {0, 1}, and sends (h∗

1, h
∗
2, m

∗
bA ·h∗

3)
to A. A returns a bit b′A.

– In the guess phase, if b′A = bA, then R returns b′R ← 1, otherwise R returns
b′R ← 0.

Now,Pr[R wins] = Pr[b′R = bR] = Pr[A wins|bR = 1] · Pr[bR = 1] +
Pr[A wins|bR = 0] · Pr[bR = 0] =

(
1
2 + ε′

) · 1
2 + 1

2 · 1
2 = 1

2 + ε′
2 . Clearly R

works in time τ = τ ′ + γ · (τcsdeg + small) + small. 	
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2) Second direction (ddegcsdeg ⇒ DEG-CCA1 with fixed (g, pk1, pk2)):
Assume A is an adversary who can (τ ′, γ′, ε′)-break the ddegcsdeg assumption.
Construct the next reduction R that aims to break the CCA1-security of the
DEG cryptosystem:

– Challenger generates new sk ← (sk1, sk2) ← �2
q , pk1 ← gsk1 , pk2 ← gsk2 ,

and sends pk = (pk1, pk2) to R. R forwards pk to A.
– In the query phase, whenever A asks a query csdeg(g,pk1,pk2)(h1, h2), R

makes a decryption Dsk query (h1, h2, 1), and receives back either ⊥ or
k ← h− sk2

1 . R returns h3 ← ⊥ in the first case, and h3 ← k−1 in the
second case.

– In the challenge phase, whenever A asks for a challenge, R sends his chal-
lenge pair (m∗

0, m
∗
1) ← (gr∗

1 , 1), for r∗1 ← �q, to the challenger. Challenger
picks a random bit bR ← {0, 1} and a random r∗2 ← �q, and sends
(c∗1, c∗2, c∗3) ← (gr∗

2 , pkr∗
2

1 , gr∗
1(1−bR) · pkr∗

2
2 ) to R. R forwards (c∗1, c∗2, c∗3) to

A, who returns a guess b′A.
– In the guess phase, R returns b′R ← b′A to challenger.

Now, Pr[R wins] = Pr[b′R = bR] = Pr[A wins] = ε′. Clearly R works in time
τ ′ + γ · (τD + small) + small. 	

Lemma 2 (DEG-CCA1 ⇒ ddhdsdh with fixed (g, pk = pk1)).
(1) Assume that � = 〈g〉 is a (τ, γ, ε)-ddhdsdh group. Then the DEG cryptosys-
tem is CCA1-secure in group �.
(2) Any ddhdsdh group � = 〈g〉 is also a ddegcsdeg group.

Proof. Proof of the first claim is given in [8,15]. The second claim follows from
the first claim and Lem. 1. 	

By following a very similar proof, a variant of the DEG cryptosystem where the
decryption, given an invalid ciphertext, returns a random plaintext instead of
⊥, is CCA1-secure under the ddh assumption.

Relation with ddh. It is obviously important to establish the relationships
of the new assumptions with the well-known assumptions like ddh. Here we
construct a static reduction ddh ⇒ ddegcsdeg and in Thm. 1, we construct a
static irreduction ddegcsdeg �⇒! ddh. As a careful reader will observe, in fact
both the reduction and the irreduction will be to the static version of ddh,
where the first three inputs (g, pk1, pk2) are fixed, and the adversary can only
choose the four inputs. This static version of ddh is clearly at least as strong as
ddh since anybody who can break the static version can also break the ddh.

Lemma 3 (ddh ⇒ ddegcsdeg with fixed (g, pk1, pk2)). Any (τ, γ, ε)-ddegcsdeg

group � = 〈g〉 is also a (τ − small, ε)-ddh group.

Proof. Fix a group � = 〈g〉 of order q. Assume A is an adversary who can
(τ ′, γ′, ε′)-break the ddh assumption. Construct the next reduction R that aims
to break ddegcsdeg in the same group:
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– Challenger generates new (sk1 ← �q, sk2 ← �q, pk1 ← gsk1 , pk2 ← gsk2)
and sends pk = (pk1, pk2) to R. R forwards (g, pk2) to A as her system
parameters.

– In the challenge phase, if A asks for a challenge, then R asks for a challenge.
Challenger sets bR ← {0, 1}, y∗ ← �q, h∗

1 ← gy∗
, h∗

2 ← pky∗
1 . If bR = 0,

then he sets h∗
3 ← �, otherwise h∗

3 ← pky∗
2 . He sends (h∗

1, h
∗
2, h

∗
3) to R.

R sends (h∗
1, h

∗
3) to A. A returns a bit b′A. R returns b′R ← b′A to the

challenger.

Clearly, R wins if and only if A wins. 	


4 CCA1-Security of ElGamal

To prove the security of ElGamal we need the next assumption. As we will see
from the security proofs, this assumption basically just asserts that Elgamal is
CCA1-secure.

Fix a group � = 〈g〉 of order q. The ddhcsdh game is defined as follows:

Setup phase. Challenger sets sk ← �q, pk ← gsk. He sends pk to adversary A.
Query phase. A has access to oracle csdh(g,pk)(·), that is, csdh(g,pk)(h) := hsk.
Challenge phase. Challenger sets bA ← {0, 1}, y∗ ← �q, h∗

1 ← gy∗
. He sets

h∗
2 ← � if bA = 0 and h∗

2 ← pky∗
= csdh(g,pk)(h∗

1) if bA = 1. Challenger
sends (h∗

1, h
∗
2) to A.

Guess phase. A returns a bit b′A ∈ {0, 1}. A wins if b′A = bA, that is, if
bA = ddh(g, pk, h∗

1, h
∗
2).

Group � is a (τ, γ, ε)-ddhcsdh group if for any adversary A working in time τ
and making γ queries, Pr[A wins in the ddhcsdh game] ≤ 1

2 + ε.

Lemma 4 (Elgamal-CCA1 ⇔ ddhcsdh with fixed (g, pk)). Fix a group
� = 〈g〉 of order q.
(1) Assume that � is a (τ, γ, ε)-ddhcsdh group. Then ElGamal is (τ − γ ·
(τcsdh + small) − small, γ, 2ε)-CCA1-secure, where τcsdh is the working time of
the csdh(g,pk)(·) oracle.
(2) Assume that ElGamal is (τ, γ, ε)-CCA1-secure. Then � is a (τ − γ ·
(τD + small) − small, γ, ε)-ddhcsdh group, where τD is the working time of the
D oracle.

Proof. 1) First direction (Elgamal-CCA1 ⇒ ddhcsdh with fixed (g, pk)):
Assume A is an adversary who can (τ ′, γ′, ε′)-break the CCA1-security of Elga-
mal in group � with probability ε′ and in time τ ′, making γ′ queries. Construct
the next reduction R that aims to break ddhcsdh in group �:
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– Challenger generates a new keypair (sk ← �q, pk ← gsk) and sends pk to
R. R forwards pk to A.

– In the query phase, whenever A asks a decryption Dsk query (c1, c2), R
rejects if either c1 or c2 is not a valid group element. Otherwise R asks a
CSDH query c3 ← csdh(g,pk)(c1). R returns c2/c3.

– In the challenge phase, whenever A gives a pair (m∗
0, m

∗
1) of messages, R

asks his challenge from the challenger. The challenger sets bR ← {0, 1},
y∗ ← �q, h∗

1 ← gy∗
. If bR = 0, then he sets h∗

2 ← �, otherwise h∗
2 ← pky∗

.
R picks a random bit bA ← {0, 1} and sends (h1, mbA ·h2) to A. A returns
a bit b′A.

– In the guess phase, if b′A = bA, then R returns b′R = 1, otherwise R returns
b′R = 0.

Now, Pr[R wins in the ddhcsdh game] = Pr[b′R = bR] = Pr[A wins|bR = 1] ·
Pr[bR = 1] + Pr[A wins|bR = 0] · Pr[bR = 0] = (1

2 + ε′) · 1
2 + 1

2 · 1
2 = 1

2 + ε′
2 .

Clearly R works in time τ ′ + γ · (τcsdh + small) + small. 	


2) Second direction (ddhcsdh ⇒ Elgamal-CCA1 with fixed (g, pk)): As-
sume A is an adversary who can (τ ′, γ′, ε′)-break the ddhcsdh assumption in
group �. Construct the next reduction R that aims to break the CCA1-security
of Elgamal:

– Challenger generates a new keypair (sk ← �q, pk ← gsk) and sends pk to
R. R forwards pk to A.

– In the query phase, whenever A asks a CSDH query csdh(g,pk)(h), R asks
a decryption Dsk query (h, 1), and receives back c ← h− sk. R returns c−1

to A.
– In the challenge phase, whenever A asks for a challenge, R sends his mes-

sage pair (m∗
0, m

∗
1) ← (gr, 1) to challenger, where r ← �q. Challenger

picks a random bit bR ← {0, 1} and a random r∗ ← �q, and sends
(c∗1, c

∗
2) ← (gr∗

, gr(1−bR) · pkr∗
) to R. R forwards (c∗1, c

∗
2) to A, who re-

turns a guess b′A. R returns b′R ← b′A to challenger.

Now, Pr[R wins] = Pr[b′R = bR] = Pr[A wins] = ε. Clearly R works in time
τ ′ + γ · (τD + small) + small. 	


It is straightforward to prove the next lemma.

Lemma 5 (ddhdsdh ⇒ ddhcsdh). If ddhcsdh holds, then ddhdsdh holds.

Proof (Sketch). Build a wrapper that uses the oracle that solves the CDH prob-
lem to solve the DDH problem. 	


5 Irreductions

We will now show irreductions between the main security assumptions of this pa-
per. We emphasize, see Sect. 2.2, that the irreductions will be somewhat limited
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by fixing some of the parameters. For example, Lem.3 stated that there does ex-
ist a reduction that solves ddegcsdeg on some input (g, pk1, pk2, h

∗
1, h

∗
2, h

∗
3) (with

pk1, pk2) being randomly generated) given an access to a dsdh(g,pk2)
oracle with

inputs (·, ·), i.e., with (g, pk2) being fixed. As an example, the next Thm. 1
shows that there does not exist a reduction that solves dsdh on some input
(g, pk, h∗

1, h
∗
2) (with pk being randomly generated) given an access to a ddegcsdeg

oracle with inputs (g, pk, ·, ·, ·), i.e., again with two inputs being fixed. Other
irreductions are similar. Thus, the next irreductions are somewhat limited, since
they do exclude the existence of reductions with arbitrary oracle queries. Nev-
ertheless, they are still important, since all (known to us) reductions between
similar problems in fact have limited oracle access.

In what follows, we will not state the concrete security parameters in the
theorems, however, they are easy to calculate and one can verify that all following
theorems provide exact (ir)reductions.

Theorem 1 (ddegcsdeg �⇒! ddh). If there exists a static reduction R that
reduces ddh to ddegcsdeg, then there exists an efficient static irreduction I that,
given R as an oracle and with fixed (g, pk), solves ddh.

Proof. Fix a cyclic group � = 〈g〉 of prime order q. Assume that R = RA is an
arbitrary reduction that uses A as an oracle to solve ddh. Here, A is an arbi-
trary algorithm that solves ddegcsdeg. Equivalently, A = Acsdeg(g,pk1,pk2)(·,·) solves
ddeg. In particular, A can have an access to a csdeg(g,pk1,pk2) oracle provided to
her by R. We now construct the next oracle machine I = IR to solve ddh in time
and with success probability comparable with those of R. Note that I simulates
the oracle A to R, and therefore has access to the oracle csdeg(g,pk1,pk2)

(·, ·).
Moreover, I simulates the challenger C2 of the internal ddegcsdeg ⇒ ddh game
to R.

– The challenger C1 of the ddegcsdeg �⇒! ddh game sets sk ← �q and pk ← gsk.
He sends pk to I as the public key in the ddegcsdeg �⇒! ddh game.

– I simulates the challenger C2 to R in the ddegcsdeg ⇒ ddh game as follows:
• Setup phase: I[C2] forwards pk1 ← pk, as the public parameter of

the ddegcsdeg ⇒ ddh game, to R. R generates pk2 ← �.
• Query phase: If R asks a ddegcsdeg(g,pk1,pk2) query (h1, h2, h3) from
A, then I[A] simulates A as follows:
1. I sends the query (h1, h2) to her csdeg(g,pk1,pk2)

(·, ·) oracle in the
ddegcsdeg game. The oracle replies with some h′

3.
2. If h′

3 = h3, then I sets b′A ← 1, otherwise I sets b′A ← 0.
3. I replies with b′A as her answer to the ddegcsdeg challenge.

• Challenge phase: If R asks C2 for his challenge in the ddegcsdeg ⇒
ddh game, then I[C2] simulates C2 as follows. She asks the challenger
C1 for her challenge (h∗

1, h
∗
2) in the irreduction game. I[A] forwards

(h∗
1, h

∗
2) to R as his challenge.

• Guess phase: R outputs a bit b′R.
– Guess phase (of irreduction game): I returns b′R.
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Clearly, I emulates A correctly. Thus, Pr[I wins] = Pr[R wins], and I spends
marginally more time than R. 	

Theorem 2 (ddhdsdh �⇒! ddegcsdeg for static reductions with fixed
(g, pk1, pk2)). If there is a static reduction R that reduces ddegcsdeg to ddhdsdh,
then there is an efficient static irreduction I that, given R as an oracle and with
fixed (g, pk1, pk2), solves ddegcsdeg.

Proof. Fix a cyclic group � = 〈g〉 of prime order q. Let A be an arbitrary
algorithm that solves ddhdsdh. Equivalently, Addh(g,pk,·,·) solves ddh. Assume
that R = RA is an efficient algorithm that uses A as an oracle to solve ddegcsdeg.
Equivalently, R = RA,csdeg(g,pk1,pk2)(·,·) is an efficient algorithm that solves ddeg.
Construct now the next oracle machine I = IR,csdeg(·,·,·) to solve ddeg with the
help of R and csdeg(g,pk1,pk2)

(·, ·) as oracles, in time and with success probability
comparable with those of R.

– Setup phase: The challenger C1 of the ddhdsdh �⇒! ddegcsdeg game sets
sk1, sk2 ∈ �q and pk ← (pk1 ← gsk1 , pk2 ← gsk2). He sends pk to I as the
public key in the ddhdsdh �⇒! ddegcsdeg game.

– I simulates both the challenger C2 and A to R in the ddhdsdh ⇒ ddegcsdeg

game as follows:
• Setup phase: I[C2] forwards pk to R as R’s public key in the

ddhdsdh ⇒ ddegcsdeg game.
• Query phase:

∗ If R asks a csdeg(g,pk1,pk2)(·, ·) query (h1, h2) from A, then I[A]
forwards it to her own csdeg(g,pk1,pk2) oracle.

∗ If R asks a ddhdsdh query (h1, h2) from A, then I[A] forwards it
to her csdeg(g,pk1,pk2)(·, ·) oracle. If the oracle returns ⊥, then I
returns 0. Otherwise, I returns 1. (Note that I does not need to
use a ddh oracle of the ddhdsdh game here.)

• Challenge phase: If R asks for a ddeg challenge from C2, then I[C2]
simulates C2 as follows:
1. I asks challenger C1 for her challenge in the ddh game. C1 sets

bI ← {0, 1} and y∗ ← �q. He sets h∗
1 ← gy∗

and h∗
2 ← pky∗

1 . If
bI = 0 then he sets h∗

3 ← �, otherwise he sets h∗
3 ← pky∗

2 . C1 sends
(h∗

1, h
∗
2, h

∗
3) to I as a challenge.

2. I[C2] forwards (h∗
1, h

∗
2, h

∗
3) to R as his challenge.

• Guess phase: R outputs a bit b′R.
– Guess phase (of the irreduction game): I returns b′I ← b′R.

First, I emulates the queries correctly. Thus if R responds with a correct
answer to the ddh query, then I responds with a correct answer to the ddhdsdh

query. Thus Pr[I wins] = Pr[R wins], and I works in time τ + γddeg · (τddeg +
small) +γA · small+ small, where τ is the working time of R, τddeg is the working
time of the ddeg oracle, γddeg is the number of queries to the ddeg oracle, γA is
the number of queries to A. 	
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Theorem 3 (ddhcsdh �⇒! ddhdsdh for static reductions with fixed
(g, pk)). If there is a static reduction R that reduces ddhdsdh to ddhcsdh, then
there is an efficient static irreduction I that, given R as an oracle and with fixed
(g, pk), solves ddhdsdh.

Proof. Fix a cyclic group � = 〈g〉 of prime order q. Let A be an arbitrary algo-
rithm that solves ddhcsdh. Equivalently, A = Acsdh(g,pk1)(·) solves ddh. Assume
that R = RA is an efficient algorithm that uses A as an oracle to solve ddhdsdh.
Equivalently, R = RA,dsdh(g,pk)(·) is an efficient algorithm that solves ddh. Con-
struct now the next oracle machine I = IR,ddh to solve ddh with the help of
R and dsdh(g,pk)(·) as oracles, in time and with success probability comparable
with those of R.

– Challenger C1 of the ddhcsdh �⇒! ddhdsdh game sets sk ∈ �q and pk ← gsk.
He sends pk to I as the public key.

– I simulates the challenger C2 of the ddhcsdh ⇒ ddhdsdh game to R:
• Setup phase: I forwards pk to R as his public key in the ddhcsdh ⇒

ddhdsdh game. R forwards pk as the public key to A in the ddhcsdh

game.
• Query phase:

∗ If R asks a dsdh(g,pk)(·, ·) query (h1, h2) from A, then I[A] forwards
it to her dsdh oracle.

∗ If R asks a ddhcsdh query (h1, h2) from A, then I[A] forwards h1

to her csdh(g,pk)(·) oracle, getting back some value h′. If h′ = h2

then I returns 1, otherwise I returns 0.
• Challenge phase: When R asks his challenge from I[C2], then I[C2]

asks her challenge from C1. C1 sets bI ← {0, 1} and y∗ ← �q. He
sets h∗

1 ← gy∗
. If bI = 0 then he sets h∗

2 ← �, otherwise he sets
h∗

2 ← pky∗
= cdh(g, pk, h∗

1). C1 sends (h∗
1, h

∗
2) to I as a challenge. I

forwards (h∗
1, h

∗
2) to R as his challenge.

• Guess phase: R outputs a bit b′R.
– Guess phase (of the irreduction game): I returns b′I ← b′R.

First, I emulates the queries correctly. Thus if R responds with a correct
answer to the cdh query, then I responds with a correct answer to the ddhcsdh

query. Thus Pr[I wins] = Pr[R wins], and I works in time τ + γddh · (τddh +
small) + γA · small + small, where τ is the working time of R, τddh is the working
time of the ddh oracle, γddh is the number of queries to the ddh oracle, γA is
the number of queries to A. 	


6 Hardness in Generic Group Model

Maurer’s Formalization of Generic Group Model. In this section, we
show that ddhcsdh is hard in the generic group model [13]. To do this, we use
the abstraction of generic group model from [10]. Namely, we assume that B is a
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black-box that can store values from a certain ring R in internal state variables
V1, V2, . . ., Vm. The storage capacity m is in our case unbounded. The initial
state consists of the values of V d := [V1, . . . , Vd] for some d < m, which are set ac-
cording to some probability distribution PV d . The black-box B allows two types
of operations, computation operations on internal state variables, and queries
about the internal state. No other interaction with B is possible. Formally, for
a set Π of operations on R, a computation operation consists of selecting a
(say) t-ary operation f ∈ Π and indices i1 . . . , it+1 ≤ m. Then B computes
f(Vi1 , . . . , Vit) and stores the result in Vit+1 . Since m is unbounded, we can al-
ways assume that it+1 is a unique index. We also assume that no computation
operation (f, Vi1 , . . . , Vit) is repeated. As for queries, for a set Σ of relations on R,
a query consits of selecting a (say) t-ary relation σ ∈ Σ and indices i1 . . . , it ≤ m.
The query is replied by σ(Vi1 , . . . , Vit ).

In the case of proving lower bounds for a decisional problem, the task is to
distinguish between two black boxes B and B′ of the same type with different
distributions of the initial state V d. The success probability of an algorithm
is taken over the choice of the initial state V d, and of the randomness of the
algorithm.

Let C denote the set of constant operations on R. Let L denote the set of
linear functions (of the form of a1V1 + · · · + adVd) on the initial state V d. For a
given set Π of operations, let Π be the set of functions on the initial state that
can be computed using operations in Π . See [10] for more details.

We also use the following lemma from [13].

Lemma 6 (Shoup [13]). The fraction of solutions (x1, . . . , xk) ∈ �n of the
multivariate polynomial equation p(x1, . . . , xk) ≡ 0 (mod n) of degree d is at
most d/q, where q is the largest prime factor of n.

Hardness of ddhcsdh in Generic Group Model. Recall that the hardest
assumption of this paper is ddhcsdh, which is equivalent to the assumption that
Elgamal is CCA1-secure. To motivate that ddhcsdh is a reasonable assumption,
we now prove its security in the generic group model. We note here that differ-
ently from [10], the adversary here has a nonadaptive access to a multiplication
operator in R. This will add another level of complication to the proof.

Theorem 4. Let R = �n, where p is the smallest prime factor of n and q is
the largest prime factor of n. For Π = C ∪ {+} and Σ = {=}, the advantage
of every k-step adversary, k ≥ 1, that has access to a nonadaptive oracle for
multiplication with x, for distinguishing a random triple (x, y, z) from a triple
(x, y, x · y) is upper bounded by (4k3 − (3 +

√
3)k2 − k + 2)/(54q).

Proof. As in [10], the basic strategy of the proof is to consider two black boxes,
one of which has initial state (x, y, z), and another one has initial state (x, y, x·y).
For either of the black boxes, we assume that the adversary has been successful if
it has found a collision between two different elements Vi and Vj . The distinguish-
ing probability is upperbounded by the maximum of those two collision-finding
probabilities.
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We only analyze the case where the initial state is (x, y, x · y). Let Q be the
number of queries made by the adversary to the nonadaptive oracle (thus the
adversary obtains values x, . . ., xQ), P the number of degree ≤ Q polynomials
computed by the adversary before the challenge phase starts, and R be the
number of polynomials computed after the challenge phase. For simplicity, we
assume that when xi are already given, any degree � polynomial can be computed
in 1 step. (The precise bound depends crucially on this. For example, if it took �
steps to compute a single polynomial, we would get upper bound (k2−k)/(2q).)
Due to this,

Q + P + R ≤ k . (1)

Due to the presence of the nonadaptive oracle, the adversary first asks the
black-box to compute P different polynomials

fi(x, y) :=
Q∑

j=0

fijx
j + ciy + dixy (2)

for i ∈ {0, . . . , P − 1}. Since neither y or x · y is available yet, ci = di = 0. Thus,
after the query phase, B’s state is equal to (x, y, x · y, f0(x, y), . . . , fP−1(x, y)).

After the challenge phase, the adversary can ask the black-box to com-
pute R functions fi(x, y) :=

∑Q
j=0 aijfj(x) + bix + ciy + dixy + ei =∑Q

t=0

(∑P−1
j=0 aijfjt

)
xt + bix + ciy + dixy + ei for i ∈ {P, . . . , P + R − 1}.

Clearly, each fi(x, y) for i ≥ P can be also written in form Eq. (2) though not
with ci and di necessarily being equal to 0. Here we assume that fi �= fj as a
polynomial.

Now, any fi(x, y) is a degree ≤ Q polynomial. According to Lem. 6, the
probability that any two of the P + R functions fi �= fj have a common root is
Q/q, and thus the total probability of finding a collision is bounded by

Q · (P+R
2

)
q

. (3)

Let k′ =
√

k2 − k + 1. Note that
√

3
2 · k ≤ k′ ≤ k for k ≥ 1. Observe that,

under the inequality Eq. (1), Eq. (3) is largest if Q = (2k − k′ − 1)/3 and
P + R = (k + k′ + 1)/3. Then for k ≥ 1,

Q ·
(

P + R

2

)
=

2k3 + 2k2k′ − 3k2 − 2kk′ − 3k + 2k′ + 2
54

≤4k3 − (3 +
√

3)k2 − k + 2
54

.

In particular, constant success probability requires k = Ω( 3
√

q) steps. 	
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Abstract. In this paper, we redefine a cryptographic notion called
Online/Offline Identity-Based Signcryption. It is an “online/offline” ver-
sion of identity-based signcryption, where most of the computations are
carried out offline while the online part does not require any heavy com-
putations such as pairings or multiplications on elliptic curve. It is par-
ticularly suitable for power-constrained devices such as smart cards. We
give a concrete implementation of online/offline identity-based signcryp-
tion, which is very efficient and flexible. Unlike all the previous schemes
in the literature, our scheme does not require the knowledge of receiver’s
information (either public key or identity) in the offline stage. The re-
ceiver’s identity and the message to be signcrypted are only needed in the
online stage. This feature provides a great flexibility to our scheme and
makes it practical to use in real-world applications. To our knowledge,
our scheme is the first one in the literature to provide this kind of feature.
We prove that the proposed scheme meets strong security requirements
in the random oracle model, assuming the Strong Diffie-Hellman (SDH)
and Bilinear Diffie-Hellman Inversion (BDHI) are computationally hard.

1 Introduction

1.1 Motivation

Providing efficient mechanisms for authentication and confidentiality is proba-
bly the most important requirement in electronic transactions, especially in mo-
bile devices or smart cards. Since attackers can easily access the physical layer
and launch some potential attacks in such devices, inclusion of cryptographic
protection as a countermeasure should be very effective. However, due to the
power-constrained nature of these devices, only light operations are allowed to
be implemented. For this reason, efficiency becomes the main concern in the
design of cryptographic algorithm for such environment.

Identity-Based Cryptography. Identity (ID)-based Cryptography, intro-
duced by Shamir [18], eliminates the need for checking the validity of certificates
in traditional public key infrastructure (PKI). In an ID-based cryptography, pub-
lic key of each user is easily computable from an arbitrary string corresponding
� This work is funded by the A*STAR project SEDS-0721330047.

X. Lai, M. Yung, and D. Lin (Eds.): Inscrypt 2010, LNCS 6584, pp. 36–51, 2011.
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to this user’s identity (e.g. an email address, a telephone number, and etc.). Us-
ing its master key, the private key generator (PKG) then computes a private key
for each user. This property avoids the requirement of using digital certificates
(which contain Certificate Authority (CA)’s signature on each user’s public key)
and associates implicitly a public key (i.e. user identity) to each user within the
system. One only needs to know the recipient’s identity in order to send an en-
crypted message to him. It avoids the complicated and costly certificate (chain)
verification for the authentication purpose. In the case of signature schemes, ver-
ification takes only the identity together with the message and a signature pair
as input and executes the algorithm directly. In contrast, the traditional PKI
needs an additional certification verification process, which is in fact equivalent
to the computation of two signature verifications.

We argue that ID-based cryptography is particularly suitable for smart cards.
The most important reason is that it eliminates the costly certificate verification
process and the storage of the lengthy certificate. In addition, when there is a
new card issued, other terminals or payment gateways do not need to have its
certificate verified in order to communicate in a secure and authenticated way.
This can greatly reduce communication overhead and computation cost.

Signcryption. Signcryption, whose concept was introduced by Zheng [23], is
a cryptographic primitive aiming to provide unforgeability and confidentiality
simultaneously as typical signature-then-encryption technique does but with less
computational complexity and lower communication cost. Due to the efficiency
one can obtain, signcryption is suitable for many applications which require
secure and authenticated message delivery using resource-constrained devices.

The idea of ID-based signcryption was first proposed by Malone-Lee [16]. It
was further improved in [7,13,2,8] for efficiency and security.

Online/Offline Signature. Online/Offline Signature was first introduced by
Even, Goldreich and Micali [9]. The main idea is to perform signature generation
in two phases. The first phase is performed offline (before the message to be
signed is given) and the second phase is performed online (after the message to
be signed is given). Online/offline signature schemes are useful, since in many
applications the signer has a very limited response time once the message is
presented, but he can carry out costly computations between consecutive signing
requests. We note that smart card applications may take full advantages of
online/offline signature schemes: The offline phase is implemented during the
card manufacturing process, while the online phase uses the stored result of the
offline phase to sign actual messages. The online phase is typically very fast, and
hence can be executed efficiently even on a weak processor.

Online/Offline Signcryption. The notion of online/offline signcryption was
first introduced by An, Dodis and Rabin [1]. As in the case of online/offline signa-
ture schemes, online/offline signcryption schemes should satisfy a basic property
that online computation should be performed very efficiently. All expensive op-
erations such as exponentiation or pairing computation should be conducted
offline in the first phase of the scheme. Similar to online/offline signature, it
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is also reasonable to assume that the offline operations are independent of the
particular message to be signed and encrypted, since the message only becomes
available at a later stage. The second phase is performed online, once the message
is presented.

An, Dodis and Rabin [1] did not give any concrete construction of online/offline
signcryption, but focused mainly on establishing formal security model for sign-
cryption and analysis of some generic constructions. The first concrete online/
offline signcryption scheme was given by Zhang, Mu and Susilo [22], and it requires
an additional symmetric key encryption scheme to achieve confidentiality. Another
scheme can be found in [21]. However, its practicality is dubious since the scheme
requires every user to execute a key exchange protocol with the remaining users
in the system. Moreover, both of them are in the PKI (non ID-based) setting. The
first ID-based online/offline signcryption scheme was given by Sun, Mu and Susilo
[19] in a semi-generic setting, from any ID-based signature scheme.

1.2 Limitation of Existing Schemes

All of the schemes mentioned above have a restriction which renders them im-
practical in many situations: They require the receiver’s public key / identity to
be known in the offline phase, which can result in serious performance degrada-
tion. Smartcard is one of the examples. Suppose there are some sensitive data
stored in a smartcard, which has only very limited computation power. In order
to send the sensitive data to a recipient in a secure and authenticated way, it
should be encrypted using the recipient’s public key and signed with the card
owner’s private key. To ensure timely and efficient delivery, it would be much
better if part of the signcryption process could be done prior to know the data
to be encrypted and the recipient’s public key. Wireless sensor network (WSN)
or mobile devices can be another example. Similar to smartcard, wireless sensors
or mobile devices such as PDA or smart phone have only limited resources. It
may take very long time, or even impossible to execute heavy computations on
those tiny devices. Yet the data they process may be sensitive which is necessary
to be encrypted and authenticated before sending off to the terminal stations.
By using online/offline signcryption, the offline part (containing all heavy com-
putation) can be done by a third party at the setup or manufacturing stage or
when external power is connected. However, it is obvious that the data to be
processed and the receiver’s information is unknown at this stage.

In the above examples, the previous online/offline signcryption schemes (such
as [1,22]) cannot be used, since they require the receiver’s public key in the offline
stage. This maybe one of the very important reasons that previous online/offline
signcryption schemes are not practical to be used in daily life applications.

1.3 Our Contributions

In this paper, we make the following contributions.

1. We reformulate the notion of online/offline signcryption in the ID-based set-
ting. We argue that it would be the best solution to provide authentication
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and confidentiality to smart cards or mobile devices for the following rea-
sons. First, it combines the separate process of sign and encrypt into one
“signcryption”. Second, it even splits the signcryption process into online
and offline stages, so that all the heavy computations can be performed in
the offline stage, leaving only light operations such as hashing or integer
multiplication to be done on tiny devices when the signcrypted message is
known. Third, it is in the identity-based setting which gets rid of the costly
process of certificate verification.

2. We present a concrete online/offline ID-based signcryption scheme, which
does not require any heavy computation (such as pairing or elliptic curve
multiplication) in the online stage. The security is proven using two assump-
tions, namely the Strong Diffie-Hellman (SDH) and Bilinear Diffie-Hellman
Inversion (BDHI) assumptions in the random oracle model.

3. More importantly, unlike all other previous schemes1, our proposed scheme
does not require the receiver’s information (in our case, the identity) in the
offline stage. The receiver’s identity, together with the message to be sign-
crypted, are needed only in the online stage. This feature greatly increases
the practicality of online/offline signcryption scheme. Our scheme is the first
in the literature to allow this kind of flexibility.

4. When compared to the combination of online/offline ID-based encryption
and online/offline ID-based signature, although the combination may achieve
the same features as our scheme, efficiency is far more behind. Our scheme
is about 30% − 50% more efficient than any combination of the state of the
art online/offline ID-based encryption and signature schemes.

1.4 Organization

The rest of the paper are organized as follows. We review some definitions in
Section 2. It is followed by our proposed scheme in Section 3. We analyze the
performance of our scheme in Section 4. Our paper is concluded in Section 5.

2 Definitions

2.1 Pairings

We briefly review the bilinear pairing. Let G and GT be two multiplicative cyclic
groups of prime order q. Let g be a generator of G, and e be a bilinear map such
that e : G × G → GT with the following properties:
1 Very recently, another identity-based online/offline signcryption scheme was pro-

posed [17] in eprint. They have some comments to the preliminary version of our
scheme [14] in eprint. However, the comments are not true in the current version. We
also note that although the authors in [17] claimed that they are the first to propose
such an ID-based online/offline signcryption with similar features as our scheme, it
is not accurate. Our preliminary version [14] appeared before their scheme. It is, at
most to say, two schemes with the same features were proposed almost at the same
time. In addition, they do not contain any proof in the eprint version. We do not
include their scheme for comparison.
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1. Bilinearity: For all u, v ∈ G, and a, b ∈ Z, e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) �= 1.
3. Computability: It is efficient to compute e(u, v) for all u, v ∈ G.

2.2 Intractability Assumption

Definition 1 (�-Strong Diffie-Hellman Assumption (�-SDH)). [4] The �-
Strong Diffie-Hellman (�-SDH) problem in G is defined as follow: On input a
(� + 1)-tuple (g, gα, gα2

, · · · , gα�

) ∈ G�+1, output a pair (g
1

α+c , c) where c ∈ Z∗
q.

We say that the (t, ε, �)-SDH assumption holds in G if no t-time algorithm has
advantage at least ε in solving the �-SDH problem in G.

Definition 2 (�-Bilinear Diffie-Hellman Inversion Assumption
(�-BDHI)). [3] The �- Diffie-Hellman (�-BDHI) problem in G is defined as fol-
low: On input a (�+ 1)-tuple (g, gα, gα2

, · · · , gα�

) ∈ G�+1, output e(g, g)
1
α ∈ GT .

We say that the (t, ε, �)-BDHI assumption holds in G if no t-time algorithm has
advantage at least ε in solving the �-BDHI problem in G.

2.3 Definition of Signcryption

An ID-based online/offline signcryption scheme consists of the following six prob-
abilistic polynomial time (PPT) algorithms:

– (param, msk) ← Setup(1k) takes a security parameter k ∈ N and generates
param the global public parameters and msk the master secret key of the
PKG.

– DID ← Extract(1k, param, msk, ID) takes a security parameter k, a global
parameters param, a master secret key msk and an identity ID to generate
a secret key DID corresponding to this identity.

– φ̄ ← Offline-Signcrypt(1k, param, DIDs) takes a security parameter k, a global
parameters param, a secret key of the sender DIDs , to generate an offline
ciphertext φ̄.

– φ ← Online-Signcrypt(1k, param, m, φ̄, IDr) takes a security parameter k, a
global parameters param, a message m, an identity of the receiver IDr where
IDs �= IDr, an offline ciphertext φ̄ to generate a ciphertext φ.

– (m, σ)/ ⊥← De-Signcrypt(1k, param, φ, DIDr ) takes a security parameter k,
a global parameters param, a ciphertext φ, a secret key of the receiver DIDr

to generate a message m and a signature σ, or ⊥ which indicates the failure
of de-signcryption.

– valid/ ⊥← Verify(1k, param, m, σ, IDs) takes a security parameter k, a global
parameters param, a message m, a signature σ, an identity IDs to output
valid of ⊥ for an invalid signature.

For simplicity, we omit the notation of 1k and param from the input arguments
of the above algorithms in the rest of this paper. For correctness, if

φ̄ ← Offline-Signcrypt(DIDs)
φ ← Online-Signcrypt(m, φ̄, IDr)

(m̃, σ̃) ← De-Signcrypt(φ, DIDr )
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we require that

m̃ = m

valid ← Verify(m̃, σ̃, ˜IDs)

Note that our definition differs from the one in [19] in the way where the
offline signcrypt stage does not require the receiver’s identity as input. In our
definition, the receiver’s identity is only required in the online signcrypt stage.

2.4 Security of Signcryption

Definition 3 (Confidentiality). An ID-based online/offline signcryption
scheme is semantically secure against chosen ciphertext insider attack (SC-IND-
CCA) if no PPT adversary has a non-negligible advantage in the following game:

1. The challenger runs Setup and gives the resulting param to adversary A. It
keeps msk secret.

2. In the first stage, A makes a number of queries to the following oracles which
are simulated by the challenger:

(a) Extraction oracle: A submits an identity ID to the extraction oracle
for the result of Extract(msk, ID).

(b) Signcryption oracle: A submits a sender identity IDs, a receiver iden-
tity IDr and a message m to the signcryption oracle for the result of
Online-Signcrypt(m, Offline-Signcrypt(DIDs), IDr).

(c) De-signcryption oracle: A submits a ciphertext φ and a receiver iden-
tity IDr to the oracle for the result of De-Signcrypt(φ, DIDr ). The result
is made of a message and a signature if the de-signcryption is success-
ful and the signature is valid under the sender’s identity. Otherwise, a
symbol ⊥ is returned for rejection.

These queries can be asked adaptively. That is, each query may depend on
the answers of previous ones.

3. A produces two messages m0, m1, two identities ID∗
s , ID∗

r and a valid secret
key DID∗

s
corresponding to ID∗

s . The challenger chooses a random bit b ∈
{0, 1} and computes a signcryption ciphertext φ∗ = Online-Signcrypt(mb,
Offline-Signcrypt(DID∗

s
), ID∗

r). φ∗ is sent to A.
4. A makes a number of new queries as in the first stage with the restriction that

it cannot query the de-signcryption oracle with (φ∗, ID∗
r) and the extraction

oracle with ID∗
r .

5. At the end of the game, A outputs a bit b′ and wins if b′ = b.

A’s advantage is defined as AdvIND−CCA(A) = |Pr[b′ = b] − 1
2 |.

Definition 4 (Unforgeability). A signcryption scheme is existentially un-
forgeable against chosen-message insider attack (SC-EUF-CMA) if no PPT ad-
versary has a non-negligible advantage in the following game:
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1. The challenger runs Setup and gives the resulting param to adversary A. It
keeps msk secret.

2. A makes a number of queries to the following oracles which are simulated by
the challenger:
(a) Extraction oracle: A submits an identity ID to the extraction oracle

for the result of Extract(msk, ID).
(b) Signcryption oracle: A submits a sender identity IDs, a receiver iden-

tity IDr and a message m to the signcryption oracle for the result of
Online-Signcrypt(m, Offline-Signcrypt(DIDs), IDr).

(c) De-signcryption oracle: A submits a ciphertext φ and a receiver iden-
tity IDr to the oracle for the result of De-Signcrypt(φ, DIDr ). The result
is made of a message and a signature if the de-signcryption is success-
ful and the signature is valid under the sender’s identity. Otherwise, a
symbol ⊥ is returned for rejection.

These queries can be asked adaptively. That is, each query may depend on
the answers of previous ones.

3. A produces a signcryption ciphertext φ∗ and two identity ID∗
r , ID∗

s . A wins
if
(a) De-Signcrypt(φ∗, DID∗

r
) returns a tuple (m∗, σ∗) such that valid ← Verify

(m∗, σ∗, ID∗
s);

(b) No output of the signcryption oracle decrypts to (m∗, σ∗) such that valid
← Verify(m∗, σ∗, ID∗

s); and
(c) No extraction query was made on ID∗

s .

A’s advantage is defined as AdvEUF−CMA(A) = Pr[A wins ].

3 The Proposed Online/Offline ID-Based Signcryption
Scheme

3.1 Construction

Let G and GT be groups of prime-order q, and let e : G×G → GT be the bilinear
pairing. We use a multiplicative notation for the operation in G and GT .

Setup: The PKG selects a generator g ∈ G and randomly chooses s ∈R Z∗
q . It

sets g1 = gs and g2 = gs
1. Define M to be the message space. Let nM = |M|. Also

let nd be the length of an identity, H1 : {0, 1}nd → Z∗
q , H2 : {0, 1}∗ × GT → Z∗

q

and H3 : {0, 1}∗ → {0, 1}nM be some cryptographic hash functions. The public
parameters param and master secret key msk are given by

param = (G, GT , q, g, g1, g2,M, H1, H2, H3) msk = s

Extract: To generate a secret key for a user with identity ID ∈ {0, 1}nd, the
PKG computes:

dID ← g
1

H1(ID)+s
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The user also computes and stores GID = e
(
gH1(ID)g1, g

)
for future use.

Offline-Signcrypt: The user with identity IDs ∈ {0, 1}nd, with secret key dIDs ,
at the offline stage first randomly generates u, x, α, β, γ, δ ∈R Z∗

q and computes:

U ← dIDsg
−u R ← (GIDs)x

T0 ←
(
gαH1(IDs)g

H1(IDs)+γ
1 g2

)x

T1 ← gxβ−1H1(IDs) T2 ← gxδ−1

1

Outputs the offline ciphertext φ̄ = (U, R, x, u, T0, T1, T2, α, β, γ, δ).

Online-Signcrypt: At the online stage, to encrypt a message m ∈ M to a user
with identity IDr ∈ {0, 1}nd computes:

t′1 ← β
(
H1(IDr) − α

)
mod q t′2 ← δ

(
H1(IDr) − γ

)
mod q

t ← h2x + u mod q c ← h3 ⊕ m

where h2 = H2(m, IDs, R, T0, T1, T2, t
′
1, t

′
2, U) and h3 = H3(R, T1, T2, U). Out-

puts the ciphertext φ = (U, t, c, T0, T1, T2, t
′
1, t

′
2).

De-Signcrypt: To de-signcrypt φ using secret key DIDr , computes

R ← e(T0T
t′1
1 T

t′2
2 , dIDr ) m ← c ⊕ H3(R, T1, T2, U)

and outputs (m, σ, IDs) where σ = {R, t, U, T0, T1, T2, t
′
1, t

′
2}.

Verify: Computes h2 = H2(m, IDs, R, T0, T1, T2, t
′
1, t

′
2, U) and checks whether

Rh2 ?= e
(
gtU, gH1(IDs)g1

) · e(g, g)−1 (1)

Outputs valid if it is equal. Otherwise outputs ⊥.
We note that the term e(g, g)−1 can be pre-computed or published as part

of the public parameter by the PKG. Thus the number of pairing required in
the whole de-signcryption process is just 2, while there is no pairing required in
either offline signcrypt or online signcrypt stage.

3.2 Security Analysis

Theorem 1 (Confidentiality). If there is a SC-IND-CCA adversary A of the
proposed scheme in Section 3 that succeeds with probability ε, then there is a
simulator B running in polynomial time that solves the (� + 1)-BDHI problem
with probability at least

ε · 1
q1

(
1 − qs

qs + q2

q

)(
1 − qd

q

)
where q1, q2, q3, qs, qd are the number of queries allowed to the random oracle
H1, H2, H3, signcryption oracle and de-signcryption oracle respectively and we
assume q1 = �.
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Proof. Setup: Suppose B is given a random instance of the (�+1)-BDHI problem
(g, gα, gα2

, . . . , gα�

, gα�+1
), B runs A as a subroutine to output e(g, g)

1
α . B sets

up a simulated environment for A as follow.
B first randomly selects π ∈R {1, . . . , q1}, Iπ ∈R Z∗

q and w1, . . . , wπ−1,
wπ+1, . . . , w� ∈R Z∗

q . For i ∈ {1, . . . , �}\{π}, it computes Ii = Iπ−wi. Construct
a polynomial with degree � − 1 as

f(z) =
�∏

i=1,i�=π

(z + wi)

to obtain c0, . . . , c�−1 ∈ Z∗
q such that f(z) =

∑�−1
i=0 ciz

i. Then it sets generator
ĝ = g

∑ �−1
i=0 ciα

i

= gf(α).
For i ∈ {1, . . . , �} \ {π}, B expands fi(z) = f(z)

(z+wi)
=

∑�−2
j=0 di,jz

j to obtain
di,1, . . . , di,�−2 ∈ Z∗

q and sets

H̃i = g
∑ �−2

j=0 di,jαj

= gfi(α) = g
f(α)

α+wi = ĝ
1

α+wi

It computes the public key g1 and g2 as

g1 = ĝ−αĝ−Iπ = ĝ−α−Iπ g2 = ĝα2
ĝ2IπαĝI2

π = ĝ(α+Iπ)2

where ĝα = g
∑ �−1

i=0 ciα
i+1

and ĝα2
= g

∑ �−1
i=0 ciα

i+2
so that its unknown private

key is implicitly set to x = −α − Iπ ∈ Z∗
q . For all i ∈ {1, . . . , �} \ {π}, we have

(Ii,−H̃i) = (Ii, ĝ
1

Ii+x ).

Oracle Simulation: B first initializes a counter ν to 1 and starts A. Throughout
the game, we assume that H1-queries are distinct, that the target identity ID∗

r

is submitted to H1 at some point.

1. Random Oracle: For H1-queries (we denote IDν the input of the νth one of
such queries), B answers Iν and increments ν.
For H2-queries on input (m, IDs, R, T0, T1, T2, t

′
1, t

′
2, U) and H3-queries on

input (R, T1, T2, U), B returns the defined value if it exists and a randomly
chosen h2 ∈R Z∗

q for H2 and h3 ∈R {0, 1}nM for H3 respectively, otherwise.
B stores the information {h2, (m, IDs, R, T0, T1, T2, t′1, t

′
2, U, γ)} in L2, where

γ = Rh2 · e(ĝ, ĝ), and {h3, (R, T1, T2, U)} in L3.
2. Extraction Oracle: On input IDν , if ν = π, B aborts. Otherwise, it knows

that H1(IDν) = Iν and returns −H̃ν = ĝ1/(Iν+x).
3. Signcryption Oracle: On input a plaintext m and identities (IDs, IDr) =

(IDμ, IDν) for μ, ν ∈ {1, . . . , q1}, we observe that if μ �= π, B knows the
sender’s private key dIDμ = −H̃μ and can answer the query according to the
specification of the algorithm. We thus assume μ = π and hence ν �= π. Also
observe that B knows the receiver’s private key dIDν = −H̃ν . The remaining
task is to find a triple (U, t, T0, T1, T2, t

′
1, t

′
2, h) such that

e(T, dIDν )h = e(ĝtU, gIDπ ) · e(ĝ, ĝ)−1
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where T = T0T
t′1
1 T

t′2
2 , gIDπ = ĝIπg1. To do so, B randomly generates t, t′, h, t′1,

t′2, t̃1, t̃2 ∈R Z∗
q , computes

U = dIDν

t′+t′1t̃1+t′2 t̃2 ĝ−t R = e(T, dIDν )

T0 = gIDπ

t′
h gIDν

− 1
h T1 = gIDπ

t̃1
h T2 = gIDπ

t̃2
h

where gIDν = ĝIν g1, and back patching the hash value H2(m, IDπ, R, T0, T1,
T2, t

′
1, t

′
2, U) to h. These values satisfy equation (1) as

Rh = e(T0T
t′1
1 T

t′2
2 , dIDν )h

= e(gIDπ

t′+t′1t̃1+t′2t̃2gIDν

−1, dIDν )

= e(gIDπ , dIDν )t′+t′1 t̃1+t′2t̃2 · e(ĝ, ĝ)−1

= e(Uĝt, gIDπ ) · e(ĝ, ĝ)−1

and they are valid ciphertext tuples as the distribution of the simulated
ciphertexts is the same as the one in the real protocol. The ciphertext φ =
(U, T0, T1, T2, t

′
1, t

′
2, t, m ⊕ H3(R, T1, T2, U)) is returned.

4. De-signcryption Oracle: On input a ciphertext φ = (U, T0, T1, T2, t
′
1, t

′
2, t, c)

for identity (receiver) IDr = IDν , we assume that ν = π because otherwise
B knows the receiver’s private key dIDν = −H̃ν and can normally run the
decryption algorithm.

First, we note the following fact. Let x̃ ∈ Zq such that

dIDμ

x̃ = ĝtUdIDμ

−1

(ĝ
1

Iμ+x )x̃ = ĝtUĝ
−1

Iμ+x

ĝx̃ = (ĝtU)Iμ+xĝ−1 (2)

Also let T = T0T1
t′1T2

t′2 , gIDν = ĝIν g1, and h = H2(m, IDμ, R, · · ·) (which
is yet unknown to B at this moment). As all valid ciphertext satisfies

Rh = e(ĝtU, ĝIμ+x) · e(ĝ, ĝ)−1

e(T h, ĝ
1

Iν+x ) = e((ĝtU)Iμ+x, ĝ) · e(ĝ−1, ĝ)

e(T
h

Iν+x , ĝ) = e((ĝtU)Iμ+xĝ−1, ĝ)

⇒ T
h

Iν+x = (ĝtU)Iμ+xĝ−1 (3)

Let x̃′ ∈ Zq such that

gIDν

x̃′
= T h

ĝx̃′
(Iν+x) = T h

ĝx̃′
= T

h
Iν+x
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= (ĝtU)Iμ+xĝ−1 ( from equation(3) )

= ĝx̃ ( from equation(2) )
⇒ x̃′ = x̃

⇒ logdIDμ
(ĝtUdIDμ

−1) = loggIDν
(T h) (4)

From equation (4), we have

e(T h, dIDμ) = e(gIDν , S · dIDμ

−1) (5)

where S = ĝtU , which yields e(T h, dIDμ) = e(gIDν , S) · e(gIDν , dIDμ)−1.

The query is handled by computing γ = e(S, ĝIμg1), and search through the
list L2 for entries of the form (mi, Ri, h2,i, · · · , γ) indexed by i ∈ {1, . . . , q2}.
If none is found, φ is rejected. Otherwise, each one of them is further exam-
ined: for the corresponding indexes, B checks if

e(T, dIDμ)h2,i

e(S, gIDν )
= e(gIDν , dIDμ)−1 (6)

meaning that equation (5) is satisfied. If the unique i ∈ {1, . . . , q2} satis-
fying equation (6) is detected, the matching pair (mi, h2,i, S) is returned.
Otherwise φ is rejected.

Challenge: A outputs messages (m0, m1) and identities ID∗ for which it never
obtained ID∗’s private key. If ID∗ �= IDπ, B aborts. Otherwise it randomly
selects t, t′1, t′2, t̃0, t̃1, t̃2 ∈R Z∗

q , c ∈R {0, 1}nm and U ∈R G. Computes T0 =

ĝt̃0 , T1 = ĝt̃1 , T2 = ĝt̃2 to return the challenge ciphertext φ∗ = (U, t, T0, T1,
T2, t

′
1, t

′
2, c). Let ξ = t̃0 + t′1t̃1 + t′2t̃2 and T = ĝ−ξ. Since x = −α − Iπ, we let

ρ = ξ
α(Iμ−α−Iπ) = − ξ

(Iπ+x)(Iμ+x) , we can check that

T = ĝ−ξ = ĝ−α(Iμ−α−Iπ)ρ

= ĝ(Iπ+x)(Iμ+x)ρ

= ĝ(IπIμ+(Iμ+Iπ)x+x2)ρ

A cannot recognize that φ∗ is not a proper ciphertext unless it queries H2 or
H3 on e(ĝIμg1, ĝ)ρ. Along the guess stage, its view is simulated as before and its
output is ignored. Standard arguments can show that a successful A is very likely
to query H2 or H3 on the input e(gIDμ , ĝ)ρ if the simulation is indistinguishable
from a real attack environment.

Output Calculation: B fetches a random entry (m, R, T0, T1, T2, t
′
1, t

′
2, U, h2) or

(R, T1, T2, U, ·) from the lists L2 or L3. With probability 1/(2q2 +q3), the chosen
entry will contain the right element

R = e(gIDμ , ĝ)ρ = e(ĝ, ĝ)−ξ/(Iπ+x) = e(g, g)f(α)2ξ/α
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where f(z) =
∑�−1

i=0 ciz
i is the polynomial for which ĝ = gf(α). The (�+1)-BDHI

solution can be extracted by computing(
R1/ξ

e
(
g
∑ �−2

i=0 ci+1αi
, gc0

)
e
(
g
∑ �−2

j=0 cj+1αj

, ĝ
))1/c2

0

=

(
e(g, g)f(α)2/α

e(g, g)c0(c1+c2α+c3α2+...c�−1α�−2)e(g, g)f(α)(c1+c2α+c3α2+...c�−1α�−2)

)1/c2
0

=

(
e(g, g)f(α)2/α

e(g, g)
c0(c1α+c2α2+...c�−1α�−1)+f(α)(c1α+c2α2+...c�−1α�−1)

α

)1/c2
0

= e(g, g)
f(α)2−(c1α+c2α2+...c�−1α�−1)(c0+f(α))

c02α

= e(g, g)
c0

2

c02α

= e(g, g)1/α

Probability Analysis: B only fails in providing a consistent simulation because
one of the following independent events happen:

– E1 : A does not choose to be challenged on IDπ.
– E2 : A key extraction query is made on IDπ.
– E3 : B aborts in a Signcryption query because of a collision on H2.
– E4 : B rejects a valid ciphertext at some point of the game.

We have Pr[¬E1] = 1/q1 and ¬E1 implies ¬E2. Also observe that Pr[E3] ≤
qs(qs + q2)/q and Pr[E4] ≤ qd/q. Combining together, the overall successful
probability Pr[¬E1 ∧ ¬E3 ∧ ¬E4] is at least

1
q1

(
1 − qs

qs + q2

q

)(
1 − qd

q

)
	


Theorem 2 (Unforgeability). If there is an SC-UEF-CMA adversary A of
the proposed scheme in Section 3 that succeeds with probability ε, then there is a
simulator B running in polynomial time that solves the � + 1-SDH problem with
probability at least

ε2 · 1
q1q2

(
1 − qs

qs + q2

q

)(
1 − qd

q

)
where q1, q2, q3, qs, qd are the number of queries allowed to the random oracle
H1, H2, H3, signcryption oracle and de-signcryption oracle respectively and we
assume q1 = �.
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Proof. Setup: Suppose B is given a random instance of the (�+1)-SDH problem
(g, gα, gα2

, . . . , gα�

, gα�+1
), B runs A as a subroutine to output (c, g

1
c+α ). B sets

up a simulated environment for A as follow.
B first randomly selects π ∈R {1, . . . , q1}, Iπ ∈R Z∗

q and w1, . . . , wπ−1,
wπ+1, . . . , w� ∈R Z∗

q . Construct a polynomial with degree � − 1 as

f(z) =
�∏

i=1,i�=π

(z + wi)

to obtain c0, . . . , c�−1 ∈ Z∗
q such that f(z) =

∑�−1
i=0 ciz

i. Then it sets generator
ĝ = g

∑ �−1
i=0 ciα

i

= gf(α).
For i ∈ {1, . . . , �} \ {π}, B expands fi(z) = f(z)/(z + wi) =

∑�−2
j=0 di,jz

j to
obtain di,1, . . . , di,�−2 ∈ Z∗

q and sets

H̃i = g
∑ �−2

j=0 di,jαj

= gfi(α) = g
f(α)

α+wi = ĝ
1

α+wi

It computes the public key g1 and g2 as

g1 = ĝα g2 = ĝα2

where ĝα = g
∑ �−1

i=0 ciα
i+1

and ĝα2
= g

∑ �−1
i=0 ciα

i+2
so that its unknown private

key is implicitly set to x = α. For all i ∈ {1, . . . , �} \ {π}, we have (Ii, H̃i) =
(wi, ĝ

1
wi+α ).

Oracle Queries are answered in the same way as in Theorem 1.

Output Calculation:A has produced a forged ciphertext (U, T0, T1, T2, t
′
1, t

′
2, t1, c),

a sender identity IDs and a receiver identity IDr. If IDs �= IDπ, B aborts. Oth-
erwise B uses DIDr to decrypt and gets R and m∗.

We denote h1 for the reply of the H2 query on (m∗, IDπ, R, T0, T1, T2, t
′
1, t

′
2, U).

B rewinded to the point just before making this particular query. This time B
supplies to a different value h2 �= h1 to this query. A produced another forged ci-
phertext (U, T̂ 0, T1, T2, t̂′1, t̂

′
2, t̂, ĉ) based on h2. Note that (U, T1, T2) are the same

in both ciphertext as they are inputs to the H2 query. R and m∗ are also the
same, as they are also one of the inputs to the H2 query. By rewinding to the
point just before making this particular query does not change the input values,
but only the output values. If both forgeries satisfy equation (1), we obtain the
relations

e(S1, gIDπ )
1

h1 e(ĝ, ĝ)−
1

h1 = e(S2, gIDπ )
1

h2 e(ĝ, ĝ)−
1

h2

where S1 = ĝtU , S2 = ĝt̂U and gIDπ = ĝH1(IDπ)g1 = ĝIπ+α. Then, it comes that

e
(
S1

h2
h2−h1 S2

− h1
h2−h1 , gIDπ

)
= e(ĝ, ĝ)
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Let T̃ = S1

h2
h2−h1 S2

− h1
h2−h1 = ĝ

1
Iπ+α . From T̃ , B can proceed as in [4] to extract

σ∗ = g
1

Iπ+α : it first obtains γ−1, γ0, . . . , γq−2 ∈ Z∗
q for which f(z)/(z + Iπ) =

γ−1
z+Iπ

+
∑�−2

i=1 γiz
∗ and computes

σ∗ =
(

T̃ g−
∑ �−2

i=0 γiα
i

) 1
γ−1

= g
1

Iπ+α

and returns the pair (Iπ , σ∗) as a result.

Probability Analysis is similar to the one in Theorem 1. In addition, there is
a rewind here, with successful probability ε/q2. Combine together, the overall
successful probability is at least

ε2 · 1
q1q2

(
1− qs

qs + q2

q

)(
1− qd

q

)
	


4 Performance Analysis

The performance of our scheme is comparable to previous non-identity based
online/offline signcryption scheme, such as [1,22]. Yet they need to fix the re-
ceiver’s public key in the offline stage but we allow it to be known only in the
online stage.

In terms of functionality, our scheme can be replaced by an online/offline
identity-based encryption (OOIBE) (such as [11,15]) plus an online/offline
identity-based signature (OOIBS) (such as [10]) to obtain the same features.
However, the efficiency of our scheme highly surpasses the combination of an
OOIBE and OOIBS. The advantages are shown in the following table. In the
comparison, we assume that |G| = 160 bits, |q| = 160 bits, |GT | = 1024 bits and
|M| = |q| = 160 bits. We denote by E the point multiplication in G or GT , ME
the multi-point multiplication in G or GT (which costs about 1.3 times more
than a single point multiplication), M the point addition in G or GT and mc

the modular computation in Zq.

Table 1. Comparison of computation cost and size

GMC-1 GMC-2 LZ Our scheme
+ OOIBS + OOIBS + OOIBS

Offline computation 6E + 2ME 5E + 2ME 5E + 1ME 4E + 1ME

Online computation 1M + 3mc 1M + 3mc 4mc 3mc

Offline storage (bits) 2944 5376 2944 2624

Ciphertext length (bits) 3104 7424 2080 1280

Number of pairing for 9 4 5 2
decryption + verification

Security model selective ID standard random oracle random oracle
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Currently there are just 3 OOIBE schemes that allow the intended receiver’s
identity to be unknown in the offline stage. We use GMC-1 and GMC-2 to denote
the first two in [11] and LZ to denote the one in [15]. For OOIBS, there is only
one concrete scheme by Xu et al. [20]. However it was proven insecure by Li
et al. [12] later. We use the generic construction by Galindo et al. [10]. The
generic construction requires one public key based signature scheme and one
online/offline signature scheme. The underlying signature schemes we use are
from [6] (random oracle) and [4] (without random oracle) and the underlying
online/offline signature scheme we use is from [5]. All these signature schemes
are the most efficient one in the state of the art within their respective security
model.

From the above table, we can see that our scheme achieves the least compu-
tation and the smallest size in both offline and online stage, when compare to
the combinations of OOIBE and OOIBS.

5 Conclusion

In this paper, we redefined the notion “online/offline ID-based signcryption” and
provided a scheme that realizes it. Our construction is very efficient in a sense
that it does not require any pairing operation in offline and online signcryp-
tion stages. Furthermore, we do not require the receiver’s information (in our
case, identity) in the offline signcryption stage. It is the first in the literature
to remove such requirement. Without this restriction, our scheme is more flexi-
ble and practical. Our scheme is particularly suitable to provide authentication
and confidentiality to power-constrained communication devices. We believe our
proposed scheme may provide a practical solution in secure and authenticated
transaction for smart cards or mobile devices such as smart phone.

References

1. An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002)

2. Barreto, P.S.L.M., Libert, B., McCullagh, N., Quisquater, J.-J.: Efficient and
provably-secure identity-based signatures and signcryption from bilinear maps. In:
Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 515–532. Springer, Heidel-
berg (2005)

3. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

4. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

5. Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh
assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)



Online/Offline Identity-Based Signcryption 51

6. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

7. Boyen, X.: Multipurpose Identity-Based Signcryption (A Swiss Army Knife
for Identity-Based Cryptography). In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 383–399. Springer, Heidelberg (2003)

8. Chen, L., Malone-Lee, J.: Improved Identity-Based Signcryption. In: Vaudenay, S.
(ed.) PKC 2005. LNCS, vol. 3386, pp. 362–379. Springer, Heidelberg (2005)

9. Even, S., Goldreich, O., Micali, S.: On-line/Off-line digital signatures. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263–275. Springer, Heidelberg (1990)

10. Galindo, D., Herranz, J., Kiltz, E.: On the generic construction of identity-based
signatures with additional properties. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 178–193. Springer, Heidelberg (2006)

11. Guo, F., Mu, Y., Chen, Z.: Identity-Based Online/Offline Encryption. In: Tsudik,
G. (ed.) FC 2008. LNCS, vol. 5143, pp. 247–261. Springer, Heidelberg (2008)

12. Li, F., Shirase, M., Takagi, T.: On the security of online/offline signatures and
multisignatures from acisp’06. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.)
CANS 2008. LNCS, vol. 5339, pp. 108–119. Springer, Heidelberg (2008)

13. Libert, B., Quisquater, J.-J.: New Identity Based Signcryption Schemes from Pair-
ings. In: IEEE Information Theory Workshop 2003, pp. 155–158 (2003)

14. Liu, J.K., Baek, J., Zhou, J.: Online/offline identity-based signcryption re-visited.
Cryptology ePrint Archive, Report 2010/274 (2010), http://eprint.iacr.org/

15. Liu, J.K., Zhou, J.: An efficient identity-based online/offline encryption scheme.
In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009.
LNCS, vol. 5536, pp. 156–167. Springer, Heidelberg (2009)

16. Malone-Lee, J.: Identity-Based Signcryption. Cryptology ePrint Archive, Report
2002/098 (2002), http://eprint.iacr.org/

17. Selvi, S.S.D., Vivek, S.S., Rangan, C.P.: Identity based online/offline
signcryption scheme. Cryptology ePrint Archive, Report 2010/376 (2010),
http://eprint.iacr.org/

18. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

19. Sun, D., Mu, Y., Susilo, W.: A generic construction of identity-based online/offline
signcryption. In: ISPA, pp. 707–712. IEEE, Los Alamitos (2008)

20. Xu, S., Mu, Y., Susilo, W.: Online/offline signatures and multisignatures for AVOD
and DSR routing security. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006.
LNCS, vol. 4058, pp. 99–110. Springer, Heidelberg (2006)

21. Xu, Z., Dai, G., Yang, D.: An efficient online/offline signcryption scheme for
MANET. In: AINA Workshop 2007, pp. 171–176. IEEE Computer Society, Los
Alamitos (2007)

22. Zhang, F., Mu, Y., Susilo, W.: Reducing security overhead for mobile networks. In:
AINA Workshop 2005, pp. 398–403. IEEE Computer Society, Los Alamitos (2005)

23. Zheng, Y.: Digital Signcryption or How to Achieve Cost (Signature & Encryption)
<< Cost(Signature) + Cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


Error-free, Multi-bit Non-committing Encryption with
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Abstract. This paper studies error-free, multi-bit non-committing encryptions
in the universally composable (UC) framework with constant round complex-
ity. Previous efficient protocols such as the Beaver’s protocol and the Damgard-
Nielsen’s protocol cause errors with certain probability, and require restarting the
channel setup procedures if an error happens. This causes the main problem of
UC-security of a non-committing protocol with error. The proposed error-free, l-
bit non-committing encryption is fixed 4-round and it is as efficient as l-instance
of the Beaver’s protocol running in parallel. We show that the proposed scheme
realizes the UC-security in the presence of adaptive adversary assuming that the
decisional Diffie-Hellman problem is hard.

Keywords. Adaptive security, non-committing encryptions, universal compos-
ability.

1 Introduction

Non-committing encryption introduced and formalized by Canetti, Feige, Goldreich
and Naor [9] is a key to realize adaptive security. The known protocols with error dur-
ing the course of the channel setup such as the Beaver’s protocol [1], the Damgård and
Nielsen’s protocol [12] (based on the general notion of oblivious public key encryp-
tion scheme), the Lei, Chen and Chen’s scheme [15] (based on the quadratic residue
problem) and Zhu and Bao’s scheme [18] (based on the notion of oblivious public-key
encryptions instantiated by the DDH problem) and Zhu, Araragi, Nishide and Saku-
rai [20] (based on the notion of the oblivious transfer protocols) consist of two stages: a
channel setup stage and a message transfer stage, where the channel setup stage essen-
tially needs rewinding. This is because when an error occurs two parties (a sender and
a receiver involved in a non-committing encryption scheme with error) have to rewind
to the beginning of this channel setup stage until agreeing on a common coin tossing
result. The parties might try the channel setup many times.

To prove a coin-tossing protocol causing error with certain probability in the UC-
security, Backes, Müller-Quade and Unruh [3], and Backes and Unruh [4] have men-
tioned that one must consider the tries before agreeing on the coin-tossing result. How-
ever, the ideal adversary only considers the current try and simulates the internal states
of adaptively corrupted parties accordingly and the previous tries are neglected. Thus,
the internal states of corrupt parties in previous tries are also neglected. This causes the
main problem of UC-security of a protocol with error.

X. Lai, M. Yung, and D. Lin (Eds.): Inscrypt 2010, LNCS 6584, pp. 52–61, 2011.
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1.1 Error-free, Single-bit Non-committing Encryptions

Canetti, Feige, Goldreich and Naor [9] have proposed the first error free non-committing
encryptions based on so called common-domain permutations in the stand-alone,
simulation-based framework. To encrypt 1 bit, Θ(k2) public key bits are communicated.

At Asiacrypt’09, Soled, Malkin and Wee [11] have presented a new implementation
of non-committing encryptions based on a weaker notion called trapdoor simulatable
cryptosystems in the simulation-based framework. To encrypt a bit b ∈ {0, 1}, the
sender sends 4k ciphertexts of which k ciphertexts are encrypted b and the remain-
ing 3k ones are obliviously sampled. The non-committing encryption scheme in [11]
achieves the UC-security in the presence of adaptively semi-honest adversaries but is at
the expense of higher computation and communication than the Damgård and Nielsen’s
protocol [12]. The CSMW protocol nevertheless is of interest since it is an error-free
non-committing encryption.

Very recently, Zhu, Araragi, Nishide and Sakurai [19] have presented an new im-
plementation of error-free, single-bit non-committing encryption. The idea is to use a
pair of Diffie-Hellman and non-Diffie-Hellman quadruples as a 1-bit one-sided non-
committing encryption and let the receiver to select the one-time one-bit key for every
transmission of 1 bit. The proposed scheme realizes the UC-security in the presence of
adaptive adversary assuming that the decisional Diffie-Hellman problem is hard.

1.2 This Work

This paper studies error-free, multi-bit non-committing encryptions in the universally
composable framework of Canetti [5,6]. There are known error-free, single-bit non-
committing encryptions [9,12,11,19], but there has not been any work that extends the
single-bit non-committing encryption to the multi-bit setting so far. Although the univer-
sal composability ensures that an l-bit non-committing encryption can be implemented
trivially by invoking an adaptive and composable, error-free, single-bit non-committing
encryption scheme l times, the round complexity of the resulting l-bit non-committing
encryption scheme is linear with l. A challenging task now is to construct error-free,
multi-bit non-committing encryption schemes with constant round complexity.

The Technique. The idea behind our construction is that the sender generates l-pair
of random Diffie-Hellman and non-Diffie-Hellman quadruples {Si

αi
, Si

αi
}l

i=1 in paral-
lel. Similarly, the receiver randomly generates l-pair of random Diffie-Hellman and
non-Diffie-Hellman quadruples {Ri

βi
, Ri

βi
}l

i=1 in parallel indexed by an l-bit string

(β1, . . . , βl) serving as a session key. A Diffie-Hellman randomizer (say, the Naor-
Pinkas randomizer, see Section 2 for more details) now is applied to the Diffie-Hellman
quadruple Si

βi
to generate a response (uSi,βi

, vSi,βi
) while an oblivious sampling al-

gorithm (say, the Canetti-Fischlin’s oblivious sampling algorithm, see Section 2 for
more details) is applied to Si

βi
to generate a random response (uSi,βi

, vSi,βi
). Since the

sender holds the auxiliary strings skSi that has been used to generate the Diffie-Hellman
quadruple Si

αi
, it follows that the sender is able to distinguish whether (uSi,αi

, vSi,αi
)

is a random response or not from which the sender retrieves the session key specified
by the receiver. At this point, a secure channel has been established between the parties.
We refer to the reader Section 3 for more details.
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The Proof of Security. We claim that the proposed error-free, multiple bits non-
committing encryption scheme realizes the UC-security in the presence of adaptive
adversary assuming that the decisional Diffie-Hellman problem is hard. To prove the se-
curity, a simulator first generates 2l random Diffie-Hellman quadruples {Si

αi
, Si

αi
}l

i=1

in parallel for the sender and then generates 2l random Diffie-Hellman quadru-
ples {Ri

αi
, Ri

αi
}l

i=1 in parallel for the receiver. The simulator also generates 2l re-
sponse messages {(uSi,βi

, vSi,βi
), (uSi,βi

, vSi,βi
)}l

i=1, where each response message
(uSi,γi

, vSi,γi
) is generated by the Naor-Pinkas randomizer with auxiliary string

(xRi,γi
, yRi,γi

) ∈ Zq × Zq which is chosen randomly and independently. If a corrup-
tion occurs, the simulator S invokes the Canetti-Fischlin’s faking algorithm to generate
randomness that will be revealed to the adversary A such that the view of environment
Z in the real-world when it interacts with the adversary A is computationally indistin-
guishable from that when the environmentZ interacts with the simulator S in the ideal-
world. This technique is crucial for proving the security of multi-bit non-committing
encryption scheme.

The Computation, Communication and Round Complexity. The total communi-
cation for encrypting l-bit message requires to generate 2l Diffie-Hellman quadru-
ples and 2l two random quadruples, together with 2l Naor-Pinkas randomizers and 2l
oblivious randomizers. Thus, our non-committing encryption protocol is as efficient as
l-instance of Beaver’s protocol running in parallel (in [1], the probability that a
failure occurs during the course of one bit communication is 1/2. This stand-alone,
non-committing encryption scheme is possibly the most efficient implementation of
single-bit non-committing encryptions with error so far). Furthermore, the proposed
l-bit non-committing encryption is fixed 4-round, a significant feature of our protocol.

RoadMap: The rest of this paper is organized as follows: The functionality and se-
curity definition of non-committing encryption protocols and the building blocks are
presented in Section 2. In Section 3, a new implementation of error-free, string non-
committing encryption scheme is proposed and we show that the proposed scheme re-
alizes the UC-security in the presence of adaptive adversaries. We conclude our work
in Section 4.

2 Non-committing Encryptions: Functionality, Security Definition
and Building Blocks

We assume that the reader is familiar with the universally composable framework [5,6]
and thus the detailed description of real-world vs. ideal-world framework is omitted.

2.1 Functionality of Non-commitment Encryptions

The functionality of a non-committing encryption scheme depicted in Fig. 1 (in terms
of secure message transmission) is due to Canetti [5]

Definition 1. We call the functionality FN
NCE a secure message transmission channel.

A real-world protocol π which realizes FN
NCE is called a secure non-committing en-

cryption protocol.
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Functionality FN
NCE

FN
NCE proceeds as follows, when parameterized by leakage function N : {0, 1}∗ → {0, 1}∗

1. Upon receiving an input (send, sid, m), do: If sid =(S, R, sid′) for some R then send
(send, sid,N (m)) to the adversary, generate a private delayed output (send, sid, m) to
R and halt. Else, ignore the input.

2. Upon receiving (corrupt, sid, P ) from the adversary, where P ∈ {S, R}, disclose m to
the adversary. Next, if the adversary provides a value m′, and P =S, and no output has
been yet written to R, then output (send, sid, m′) to R and halt.

Fig. 1. The non-committing encryption functionality parameterized by leakage function N .

2.2 Building Blocks

In this section, we sketch the building blocks for constructing non-committing encryp-
tions.

The Naor-Pinkas randomizer. Let p = 2q + 1 and p, q be large prime numbers. Let
G ⊆ Z∗

p be a cyclic group of order q. Let g be a random generator of G. For any 0 �= x ∈
Zq, we define DLogG(x) ={(g, gx) : g ∈ G}. On input (g1, h1) ∈ DLogG(x1), and
(g2, h2) ∈ DLogG(x2), a mapping φ called Naor-Pinkas randomizer is defined below:

φ((g1, g2, h1, h2) × (s, t)) = (gs
1g

t
2 mod p, hs

1h
t
2 mod p)

where s, t ∈U Zq

Denote u= gs
1g

t
2 mod p and v =hs

1h
t
2 mod p. Naor and Pinkas [17] have shown that

– if x1 = x2 (=x), then (u, v) is uniformly random in DLogG(x);
– if x1 �= x2, then (u, v) is uniformly random in G2.

The oblivious sampling and faking algorithms. The oblivious sampling and faking
algorithms described below are due to Canetti and Fischlin [8].

Oblivious sampling algorithm: Let p =wq + 1 for some w not divisible by q, and G
is a cyclic group of order q in Z∗

p . The Canetti-Fischlin oblivious sampling algorithm
sample takes r ∈ {0, 1}2|p| as input and outputs an element rG ∈ G via the following
computations

– the sampling algorithm sample chooses a string r ∈ {0, 1}2|p| uniformly at ran-
dom, where |p| be the bit length of the prime number p.

– Let rp = r mod p and rG =rw
p mod p.

Lemma 1. (due to [8]) Let X = [X = x : x ∈U G], and Y = [Y = y : y ←
sample(r), r ∈U {0, 1}2|p|], then the distributions between two random variables X
and Y are statistically indistinguishable.
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Oblivious faking algorithm: Let p =wq + 1 for some w not divisible by q, and G is
a cyclic group of order q in Z∗

p . The Canetti-Fischlin oblivious faking algorithm fake
takes a random element h ∈ G as input and outputs rh ∈ {0, 1}2|p| via the following
computations

– On input h ∈ G, the faking algorithm fake picks a random integer i ∈ Zw. Let hp

= hxgiq mod p, where xw ≡ 1 mod q;
– fake randomly selects j ∈ Zp and let rh = Len(jp + hp), where Len(x) denotes

the bit length of an integer x.

Lemma 2. (due to [8]) Let X = [X = x : x ∈U {0, 1}2|p|], and Y = [Y = y : y ←
fake(g), g ∈U G], then the distributions between two random variables X and Y are
statistically indistinguishable.

3 Universally Composable Non-Committing Encryptions

In this section, a new error-free, multiple bits non-committing encryption is described
and analyzed. We show that the proposed scheme realizes the UC-security in the pres-
ence of adaptive adversaries.

3.1 The Description of Non-Committing Encryptions

INITIALIZATION. The environmentZ takes security parameter k as input and outputs
(p, q, G), where p is a large safe prime number (i.e., p=2q +1, q is a prime number) and
G is a cyclic group with order q. Let pk =(p, q, G). The environment Z then provides
a description des of algorithm sample defined over G. Let gpk =(pk, des) (the global
key for all participants). Finally, the environment provides input message m ∈ {0, 1}l

to the sender S.

CHANNEL SETUP. The error-free, multiple bits channel setup phase comprises the
following four steps in parallel

STEP 1 On input 1k, the sender S performs the following computations for i =
1, . . . , l

– S selects αi ∈ {0, 1} uniformly at random;
– S randomly generates a Diffie-Hellman quadruple (Si

αi,1, Si
αi,2, Si

αi,3, Si
αi,4) such

that logSi
αi,1

(Si
αi,3) = logSi

αi,2
(Si

αi,4). Let Si
αi

= (Si
αi,1, Si

αi,2, Si
αi,3, Si

αi,4) and

skSi = logSi
αi,1

(Si
αi,3) = (logSi

αi,2
(Si

αi,4));

– S invokes sample to obliviously generate a random quadruple (Si
αi,1

, Si
αi,2

, Si
αi,3

,
Si

αi,4
). Let Si

αi
= (Si

αi,1
, Si

αi,2
, Si

αi,3
, Si

αi,4
), where αi =1 − αi;

– Let skS = (skS1 , . . . , skSl). S keeps skS secret and sends {(Si
0, S

i
1)}[l] to R, where

[l] = {1, . . . , l};

STEP 2 upon receiving {(Si
0, S

i
1)}[l], the receiver R performs the following compu-

tations for j = 1, . . . , l
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– R selects a bit βj ∈ {0, 1} uniformly at random;
– R randomly generates a Diffie-Hellman quadruple (Rj

βj ,1, Rj
βj,2, Rj

βj ,3, Rj
βj ,4)

such that logRj
βj,1

(Rj
βj ,3) = logRj

βj,2
(Rj

βj ,4). Let Rj
βj

= (Rj
βj ,1, Rj

βj,2, Rj
βj ,3,

Rj
βj ,4) and skRj = logRj

βj,1
(Rj

βj ,3) = (logRj
βj,2

(Rj
βj ,4));

– R invokes sample to obliviously generate a random quadruple (Rj

βj ,1
, Rj

βj ,2
, Rj

βj ,3
,

Rj

βj ,4
); Let Rj

βj
= (Rj

βj ,1
, Rj

βj ,2
, Rj

βj ,3
, Rj

βj ,4
);

– R invokes the Naor-Pinkas randomizer with the randomness xRj ∈ Zq and yRj ∈
Zq to generate uSj ,βj

= Sj
βj,1

xRj
Sj

βj ,2

yRj
and vSj ,βj

= Sj
βj ,3

xRj
Sj

βj ,4

yRj
for the

given quadruple Sj
βj

. Let wSj ,βj
=(uSj ,βj

, vSj ,βj
).

– R invokes sample to output two random strings uSj,βj
∈ Z∗

p and vSj ,βj
∈ Z∗

p for

the given quadruple Sj

βj
. Let wSj ,βj

=(uSj ,βj
, vSj ,βj

).

– Let skR = (skR1 , . . . , skRl). R keeps skR secret and sends {(Rj
0, R

j
1)}[l] and

{(wSj ,0, wSj ,1)}[l] to S;

STEP 3 upon receiving {(Rj
0, R

j
1)}[l] and {(wSj ,0, wSj ,1)}[l] from R, the sender S

performs the following computations for i = 1, . . . , l

– parsing wSi,αi
as (uSi,αi

, vSi,αi
), S checks vSi,αi

?= u
skSi

Si,αi
:

• if the check is valid, S selects xSi ∈ Zq and ySi ∈ Zq uniformly at
random, and then invokes the Naor-Pinkas randomizer to generate uRi,αi

=
Ri

αi,1
xSi Ri

αi,2
ySi and vRi,αi

= Ri
αi,3

xSi Ri
αi,4

ySi .
S then invokes sample to output random elements (uRi,αi

, vRi,αi
) ∈ G2; Let

γi =αi and let wRi,αi
=(uRi,αi

, vRi,αi
) and wRi,αi

=(uRi,αi
, vRi,αi

);
• otherwise, S selects (xSi , ySi) ∈ (Zq)2 uniformly at random, and then invokes

the Naor-Pinkas randomizer to generate uRi,αi
= Ri

αi,1
xSi Ri

αi,2
ySi and vRi,αi

= Ri
αi,3

xSi Ri
αi,4

ySi ;
S then invokes sample to output random elements (uRi,αi

, vRi,αi
) ∈ G2; Let

γi =1 − αi and let wRi,αi
=(uRi,αi

, vRi,αi
) and wRi,αi

=(uRi,αi
, vRi,αi

);
– Let γ =(γ1, . . . , γl). S then sends {(wRi,0, wRi,1)}[l] to R and outputs γ;

STEP 4 upon receiving {(wRi,0, wRi,1)}[l], the receiver R performs the following
computations for j = 1, . . . , l

– parsing wRj ,βj
as (uRj ,βj

, vRj ,βj
), R checks vRj ,βj

?= u
skRj

Rj ,βj
;

• if the check is valid, let γi =βi and outputs γi;
• otherwise, output ⊥ (notice that the probability that the honest party R outputs
⊥ is negligible in case that the sender is honest).

MESSAGE TRANSFER On input m ∈ {0, 1}l and γ ∈ {0, 1}l, S computes m ⊕ γ.
Let c =m ⊕ γ. S then sends the ciphertext c to R. Upon receiving a ciphertext c, R
obtains m by computing c ⊕ γ.

This ends the description of the protocol π.
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3.2 The Proof of Security

Theorem 1. The protocol π realizes the UC-security in the presence of adaptive adver-
sary in the authenticated channel assuming that the decisional Diffie-Hellman problem
is hard.

Proof. Same as that presented in the initial procedure in the real-world protocol, the
environment Z first takes security parameter k as input and outputs gpk =(pk, des),
the global key for all participants. The environment Z then provides input message
m ∈ {0, 1}l to the sender S. We assume the channel between the sender S and the
receiver R is authenticated and consider the following cases

1. the first corruption occurs after a ciphertext c has been received successfully by the
receiver R;

2. the first corruption occurs after a secure channel has been setup but before a ciph-
tertext c is generated;

3. the first corruption occurs during the course of a channel setup phase.

CASE 1: Upon receiving (corrupt, sid, P ), where P ∈ {S, R}, the simulator
S performs the following computations on behalf of the honest sender S (simulating
views of the environment Z from Step 1 to Step 4)

– generates two random Diffie-Hellman quadruples (Si
0,1, Si

0,2, Si
0,3, Si

0,4) and (Si
1,1,

Si
1,2, Si

1,3, Si
1,4) such that logSi

0,1
(Si

0,3) = logSi
0,2

(Si
0,4) (=: skSi

0
) and logSi

1,1
(Si

1,3)
= logSi

1,2
(Si

1,4) (=: skSi
1
).

Let Si
αi

= (Si
αi,1, Sj

αi,2
, Si

αi,3, Sj
αi,4

) and Si
αi

= (Si
αi,1

, Sj
αi,2

, Si
αi,3

, Sj
αi,4

). Let
skSi = (skSi

0
, skSi

1
). The simulator S keeps the trapdoor string skSi secret for

i = 1, . . . , l.
– selects (xRi,αi

, yRi,αi
) ∈ Zq × Zq and (xRi,αi

, yRi,αi
) ∈ Zq × Zq uniformly at

random;
– invokes the Naor-Pinkas randomizer to generate uSi,αi

= Si
αi,1

xRi,αi Si
αi,2

yRi,αi

and vSi,αi
= Si

αi,3
xRi,αi Si

αi,4
yRi,αi for each Diffie-Hellman quadruple Si

αi

also, invokes the Naor-Pinkas randomizer to generate uSi,αi
=

Si
αi,1

xRi,αi Si
αi,2

yRi,αi and vSi,αi
= Si

αi,3
xRi,αi Si

αi,4
yRi,αi for each Diffie-

Hellman quadruple Si
αi

.
Let wSi,αi

=(uSi,αi
, vSi,αi

), wSi,αi
=(uSi,αi

, vSi,αi
) and wSi = (wSi,0, wSi,1).

Similarly, S performs the following computations on behalf of the honest receiver R
(simulating views of the environment Z from Step 1 to Step 4)

– generates two random Diffie-Hellman quadruples (Rj
0,1, Rj

0,2, Rj
0,3, Rj

0,4) and

(Rj
1,1, Rj

1,2, Rj
1,3, Rj

1,4) such that logRj
0,1

(Rj
0,3) = logRj

0,2
(Rj

0,4) (=: skRj
0
) and

logRj
1,1

(Rj
1,3) = logRj

1,2
(Rj

1,4) (=: skRj
1
).

Let Rj
βj

= (Rj
βj ,1, Rj

βj ,2, Rj
βj ,3, Rj

βj,4) and Rj

βj
= (Rj

βj ,1
, Rj

βj,2
, Rj

βj ,3
, Rj

βj ,4
).

Let skRj = (skRj
0
, skRj

1
). The simulator S keeps the trapdoor string skRj secret for

j = 1, . . . , l;
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– selects (xRj ,βj
, yRj ,βj

) ∈ Zq × Zq and (xRj ,βj
, yRj,βj

) ∈ Zq × Zq uniformly at
random;

– invokes the Naor-Pinkas randomizer to generate uSj ,βj
= Sj

βj ,1

x
Rj,βj Sj

βj,2

y
Rj,βj

and vSj ,βj
= Sj

βj,3

xRj,βj Sj
βj,4

yRj,βj for each Diffie-Hellman quadruple Sj
βj

;
also, invokes the Naor-Pinkas randomizer to generate uSj,βj

=

Sj

βj ,1

x
Rj,βj Sj

βj ,2

y
Rj,βj and vSj ,βj

= Sj

βj,3

x
Rj,βj Sj

βj ,4

y
Rj,βj for the each Diffie-

Hellman quadruple Sj

βj
;

Let wSj ,βj
=(uSj ,βj

, vSj ,βj
), wSj ,βj

=(uSj ,βj
, vSj ,βj

) and wSj = (wSj ,0, wSj ,1).

Let P ∈ {S, R} be the first corrupted party after a ciphertext c has been received by
R. The simulator S corrupts the corresponding dummy party P̃ ∈ {S̃, R̃} in the ideal
world and learns m from the functionality FN

NCE. Let γ ← c ⊕ m and (γ1, . . . , γl) ←
γ. The simulator S now invokes fake to interpret Ri

γi
as a random non-Diffie-Hellman

quadruple and interprets Ri
γi

as a random Diffie-Hellman quadruple. That is, for i =
1, . . . , l, the simulator performs the following computations:

– extracting the randomness (rRi
γi,1

, rRi
γi,2

, rRi
γi,3

, rRi
γi,4

) used to generate Ri
γi

(via

the Canetti-Fischlin’s faking algorithm). Let rRi
γi

= (rRi
γi,1

, rRi
γi,2

, rRi
γi,3

, rRi
γi,4

)
and reveals rRi

γi
to the adversary A;

– extracting the randomness (rRi
γi,1

, rRi
γi,2

, rRi
γi,3

, rRi
γi,4

) used to generate Ri
γi

and

skRi
γi

. Let rRi
γi

= (rRi
γi,1

, rRi
γi,2

, rRi
γi,3

, rRi
γi,4

) and reveals rRi
γi

and skRi
γi

to the
adversary A.

Similarly, S interprets (uSi,γi
, vSi,γi

) as randomness (ru
Si,γi

, rv
Si,γi

) generated by

the Naor-Pinkas randomizer with the auxiliary string (xRi,γi
, yRi,γi

) and interprets
(uSi,γi

, vSi,γi
) as randomness (ru

Si,γi
, rv

Si,γi
) generated by fake. The simulator re-

veals the randomness (ruSi,γi
, rvSi,γi

), (ruSi,γi
, rvSi,γi

) and (xRi,γi
, yRi,γi

) to A.

S then interprets (uRi,γi
, vRi,γi

) as randomness (ruRi,γi
, rvRi,γi

) generated by fake
and interprets (uRi,γi

, vRi,γi
) as randomness (ruRi,γi

, rvRi,γi
) generated by the Naor-

Pinkas randomizer with the auxiliary string (xSi,γi
, ySi,γi

). All these randomness are
revealed to A. Finally, the simulator S then randomly selects a bit bi ∈ {0, 1} and
interprets Si

bi
as a random Diffie-Hellman quadruple and interprets Si

bi
as a random

quadruple and reveals all these randomness (rSi
bi

, rSi
bi

) together with skSi,bi
to the

adversary A.
Assuming the hardness of the DDH problem, one can check that the view of envi-

ronment Z in the real-world when it interacts with the adversary A is computationally
indistinguishable from that when the environment Z interacts with the simulator S in
the ideal-world, i.e., REALπ,A,Z ≈ IDEALF ,S,Z .

CASE 2: The first corruption occurs after a secure channel has been set up but before
a ciphtertext c is generated; Upon receiving (corrupt, sid, P ) from the environmentZ ,
where P ∈ {S, R}, the simulator randomly selects l-bit string γ ∈ {0, 1}l uniformly
at random as a random string selected by the receiver R. The specified l-bit string γ is
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then shared between the sender S and the receiver R. The rest work of the simulator is
same as that described in CASE 1 and the details are thus omitted.

CASE 3: The first corruption occurs during the course of the channel setup phase.
Upon receiving (corrupt, sid, P ) from the environment Z , where P ∈ {S, R}, the
ideal world adversary simulates the following two cases for i = 1, . . . , l:

– if the receiver R gets corrupted at first, then the simulator S parses wSi,αi
as

(uSi,αi
, vSi,αi

), S checks vSi,αi

?= u
skSi,αi

Si,αi
(all these values are generated as that

interpreted in CASE 1); If yes, the simulator S sets γi = αi; otherwise, the simula-
tor S sets γi =1-αi. The rest of the simulation is same as that described in CASE 1
and the details are thus omitted.

– if the sender S gets corrupted at first, then the simulator randomly selects a bit βi.
The simulator then provides a simulation session key βi same as that described in
CASE 1 and the details are thus omitted. 	


4 Conclusion

In this paper, an error-free, multi-bit non-committing encryption scheme has been pre-
sented and analyzed. Interestingly, our protocol is fixed 4-round and thus independent
the length of session key. We have shown that the proposed non-committing scheme
realizes the UC-security in the presence of adaptive adversary assuming that the deci-
sional Diffie-Hellman problem is hard.
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Abstract. A new key recovery attack under related-key model on RC4
is presented in this paper. This novel attack is based on the property that
RC4 can generate a large amount of colliding key pairs. By making use
of this property, we are able to recover any random key in practical time
when the length of the key is large under a new proposed related key
model. Differing from the attack against WEP, neither the knowledge
of the IVs nor the keystream outputs are required. Also compared with
some recent key recovery attacks, which assume that the attacker knows
the S-Box after KSA algorithm and can only recover very short keys (5
bytes) efficiently, our attack works very well for keys with larger size. We
give the theoretical proof for the complexity of our attack which matches
with the experimental result very well. An 86-byte random secret key can
be recovered in about 21.2 hours time by using a standard desktop PC.
This novel attack provides us with another theoretical approach to attack
WPA and WEP. Remark that our model can be used for more efficient
key recovering if any new key collisions can be further discovered in the
future.

Keywords: RC4, KSA, Related Keys, Key Collisions, Key Recovery.

1 Introduction

The stream cipher RC4 is one of the most famous ciphers widely used in real
world applications such as Microsoft Office, Secure Socket Layer (SSL), Wired
Equivalent Privacy (WEP), etc. Due to its popularity and simplicity, RC4 has
become a hot cryptanalysis target since its specification was made public on the
Internet in 1994 [5]. More than twenty-year study on RC4 has revealed a lot of
weaknesses of this cipher and a lot different attacks have been proposed since
then. Generally speaking, all these attacks can be categorized into two kinds,
namely, distinguishing attack and key recovery attack. This paper focuses on
key recovery attack. In a distinguishing attack, the attacker tries to distinguish
between an output stream generated by PRGA and a random stream [7,8,9].
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Other various general weaknesses of RC4 have been discovered in the previous
works [6,10,11], etc. We first briefly summarize the previous key recovery attack
against RC4.

The first class of this kind of attack applies to the WEP environment, where
RC4 is used with a session key which is derived from a shared secret key and an
Initial Value (IV). The secret key is concatenated after the IV which is transmit-
ted unencrypted. First chosen IV attack was shown in [12]. By observing the first
many keystream outputs, they recovered the secret key with high probability.
Another statistical bias between the keystream output and the value of S[j] was
discovered in [13] and [14]. By using this bias, they can also recover the entire
key in practical time, which was then improved by reducing the dependency
when recovering the key bytes later in [15]. The above attacks assume that the
attacker has the knowledge of the IVs and the keystream outputs.

Another kind of key recovery approach is just by observing the final S-Box
after KSA algorithm [17,18,19]. The basic idea is that the first few bytes of the
S-Box is obviously biased, which indicates a connection to the secret key. By
creating equations which hold with certain probability, they try to recover the
whole keys. This kind of attack works only when the key has a very small size (5
byte), and the successful probability will drop dramatically to impractical level
when the key size is larger than 16 bytes.

We propose yet another approach to launch a practical key recovery attack
against RC4. Our attack is based on the property that RC4 has a large amount
of colliding key pairs [2,4] especially when the key size is very large. Since the col-
liding key pairs of RC4 follow some specific patterns, some key information will
leak if the attacker knows under which pattern the two unknown keys can achieve
a collision. In our attack, the attacker is allowed to query key differentials to the
KSA Oracle, which will return the S-Box differences to the attacker. If KSA
Oracle returns with a (near) collision, then the attacker is able to recover some
information of this tweaked key pair according to the key collision properties.
And since the attacker knows the key differentials he submitted to the Oracle,
he thus can trace back to recover the key based on the key differentials and the
leaked key information from the tweaked key pair. Compared with the attacks
against WEP, neither the knowledge of the IVs nor the keystream outputs are
required. If the first hundreds keystream output bytes are discarded, which is
the usual way to fix this weak point, the first kind of attack will not work while
our attack will still be available. Compared with the attacks that require the
knowledge of the final S-Box, our attack works efficiently for any random keys
having large size with probability one, which can be seen as a complement to
the second kind of previous attack.

Structure of the paper. In Section 2, we briefly describe the RC4 algorithm
followed by the key collision techniques which are needed for the attack in Sec-
tion 3. Section 4 describes the detailed attack starting with the description of the
related key model, and then followed by the detailed techniques to recover full
length keys as well as the short keys. Section 5 gives the comparison between our
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attack and some of the previous attacks in complexity and probability, and also
the experimental results are shown in this section. Finally, we give the conclusion
in Section 6.

2 The RC4 Stream Cipher and Notations

2.1 RC4

The internal state of RC4 consists of a permutation S of the numbers 0, ..., N−1
and two indices i, j ∈ {0, ..., N −1}. The index i is determined and known to the
public, while j and permutation S remain secret. RC4 consists of two algorithms:
The Key Scheduling Algorithm (KSA) and the Pseudo Random Generator Al-
gorithm (PRGA). The KSA generates an initial state from a random key K of k
bytes as described in Algorithm 1. It starts with an array {0, 1, ..., N − 1} where
N = 256 by default. At the end, we obtain the initial state SN−1.
Once the initial state is created, it is used by PRGA. The purpose of PRGA
is to generate a keystream of bytes which will be XORed with the plaintext to
generate the ciphertext. PRGA is described in Algorithm 2. In this paper, we
mainly focus on KSA.

Algorithm 1. KSA
1: for i = 0 to N − 1 do
2: S[i] ← i
3: end for
4: j ← 0
5: for i = 0 to N − 1 do
6: j ← j + S[i] + K[i mod l]
7: swap(S[i], S[j])
8: end for

Algorithm 2. PRGA
1: i ← 0
2: j ← 0
3: loop
4: i ← i + 1
5: j ← j + S[i]
6: swap(S[i], S[j])
7: keystream byte zi = S[S[i] + S[j]]
8: end loop

2.2 Notations

The following are the notations used in this paper.

– K: target random secret key.
– K1, K2: two secret keys related in some pattern, which will be described in

the next section.
– ΔKt

1[i](ΔKt
2[i]): Differential between target key K and K1 (K2) at index i

at attacking step t.
– j1,i(j2,i): internal state j at step i for K1,t (K2,t) respectively.
– S1,i(S2,i): the S-Box at step i for K1,t (K2,t) before the swap operation.
– d: the first key difference index.
– k: the lengths (bytes) of the secret keys.
– n: the number of times the differences of the keys appear during KSA. n =

� 256+k−1−d
k �.
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3 Key Collisions of RC4

This novel attack is based on the fact that RC4 can generate a large amount
of (near) colliding key pairs. Before going into detail of the attack, we briefly
describe the key collision techniques here.

We call a key pair K1 and K2 (K1 �= K2) a colliding key pair if after KSA,
the two corresponding S-Boxes are equal to each other (S1,255 = S2,255). A
near colliding key pair is only different at that the final two S-Boxes need not
to be totally the same. The corresponding procedures are called key collisions
and near key collisions. The previous researches showed that key collisions or
near key collisions can be achieved under some specific key pattern with some
probability.

The key collision of RC4 has been first studied back in 2000 in [1]. They
pointed out the existence of the near collisions for large size keys. First key
collisions with the pattern that two keys differ at one position from each other
were found in [2], where we say that those key pairs have hamming distance one.
In [3], key collisions with another pattern which has hamming distance three
was confirmed, and later in [4], formalized key collisions have been studied and
generalized RC4 collision patterns were demonstrated in the paper. Our attack
is divided into two categories based on the key collision properties, namely, key
collision for full length 256-byte keys, and short keys. We describe the two key
collision techniques below.

3.1 Key Collisions for Full Length 256-byte Keys

The previous researches have demonstrated that the probability for a key pair
following some certain pattern to form a colliding key pair will drop as the key
size gets shorter and the hamming distance gets larger. Thus for a full length
key pair with length 256 bytes, it is very easy to achieve a collision under some
specific pattern. We describe one here that will be used in the later attack.

Key Pattern: K2[d]=K1[d]+1, K2[d+1] = K1[d+1]−1, K2[d+2] = K1[d+2]+1

The following extra conditions during KSA are necessary for two keys with
the above pattern to achieve a collision.

1. When i touches index d, we require S1,d[d + 1] = S1,d[d] + 1 (S2,d[d + 1] =
S2,d[d] + 1).

2. At step i = d after the swap, we require j1,d = d (j2,d = d + 1).
3. At step i = d + 1 after the swap, we require j1,d+1 = d + 1 (j2,d+1 = d).

Table 1 illustrates how it works when d = 0. The S-Box part of the internal
state shown in Table 1 demonstrates the S-Box state after the swap operation
at each step of KSA.

Table 1 shows that for a key pair, which follows the previous pattern (differing
from each other at indices 0, 1 and 2 in this example), will achieve a collision
after round 2 (The internal states j and S-Box become the same again after
round 2).
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Table 1. Collisions for 256-byte full length keys when d = 0

Internal State Difference

i K1[i]/K2[i] j1,i/j2,i 0 1 2 3 4

0 0 0 0 1 2 3 4 K2[0] = K1[0] + 1
1 1 1 0 2 3 4 j2,0 = j1,0 + 1, S1 �= S2

1 0 1 0 1 2 3 4 K2[1] = K1[1] − 1
255 0 0 1 2 3 4 j2,1 = j1,1 − 1, S1 = S2

2 X X + 3 0 1 S[X + 3] 3 4 K2[2] = K1[2] + 1
X + 1 X + 3 0 1 S[X + 3] 3 4 j1,2 = j2,2, S1 = S2

3.2 (Near) Key Collisions for Short Keys

To recover random keys with shorter size using the above collision pattern will
result in a relatively high complexity time. Here we introduce another collision
pattern which was first discovered in [2] and later generalized in [4].

In this pattern, two keys can differ from each other at h places, which is
called to have hamming distance h. We will only use h = 1 in our attack. The
general idea is that when i touches the different index d, two consecutive S-Box
differences are expected to be generated, and one of them will be swapped to the
later key difference indices. And the differences will be absorbed when i touches
the last key difference in the KSA.

Key Pattern: K2[d] = K1[d] + 1

The following extra conditions during KSA are necessary for two keys with
the above relations to achieve a collision.

1. When i touches index d, we require S1,d[d + 1] = S1,d[d] + 1 (S2,d[d + 1] =
S2,d[d] + 1).

2. At step i = d after the swap, we require j1,d = d (j2,d = d + 1).
3. At step i = d + 1, we require j1,d+1 = j2,d+1 = d + k.
4. During steps i = d + 2 to i = d + k, we require j1,i �= d + k.
5. At step i = d + p × k, p = 1, ..., n − 2, we require j1,i = j2,i = i + k.
6. During steps i = d + p× k + 1 to i = d + (p + 1)× k, we require j1,i �= i + k.
7. At step i = d + (n − 1) × k − 2, we require the two S-Box differences to be

at indices d + (n − 1) × k − 2 and d + (n − 1) × k − 1.
8. At step i = d + (n − 1) × k − 1, we require j1,i = i − 1(j2,i = i).

Table 2 illustrates how it works when d = 0, k = 128.
Notice that we can achieve a near collision if we replace the conditions 7 and

8 with the condition: At step i = d + (n − 1)k, we require j1,i ≤ i(j2,i < i).
Namely, we will have two S-Boxes with three differences between them since i
will never touch those differences again.
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Table 2. Collisions for short keys when d = 0, k = 128

Internal State Difference

i K1[i]/K2[i] j1,i/j2,i 0 1 2 3 ... 126 127 128

0 K1[0] = 0 0 0 1 j, S-Box
K2[0] = K1[0] + 1 = 1 1 1 0

1 K1[1] = 127 128 0 1 S-Box
K2[1] = 127 128 1 0

126 K1[126] 0 0 1 S-Box
K2[126] = K1[126] 0 1 0

127 K1[127] 127 0 1 j, S-BoX
K2[127] = K1[127] 126 0 1

128 K1[0] = 0 S1,127[128] + 127 0 1 Same
K2[0] = K1[0] + 1 = 1 S2,127[128] + 127 0 1

4 New Key Recovery Attacks

4.1 Related-Key Model

First, we define the related-key model under which the attack is carried. In
this model, the attacker’s goal is to recover a random secret key K and the
attacker has no prior information about it. We assume that there is a KSA Oracle
service which can be queried by the attacker. The attacker has the power to do
the following things. He can specify key differential sets ΔK1[i] and ΔK2[i] for
i ∈ [0, 255] and send them to the KSA Oracle. Then the KSA Oracle will run the
KSA algorithm under the new key pair K1 = K +ΔK1[i] and K2 = K1 +ΔK2[i]
and send back the S-Box differential information, namely, whether ΔS = 0 to
the attacker (key relations is shown in Figure 1). Repeat the previous procedure
many times. The attacker tries to recover the target key K from the submitted
key differentials and the corresponding S-Box differentials. Key recovery attack
under the related-key model is described in Figure 2. Although recovering full
size 256-byte key is different from recovering short size key, the procedure of the
algorithm is the same. There are three blocks we need to explain specifically,
namely the querying differentials block, observing the S-Box differentials block
and recovering two key bytes block.

Querying Differentials Block. In this block, the attacker tries to query the
KSA Oracle a key differential set ΔK and expecting the KSA Oracle to send
back the two S-Box differentials. The attacker tries to recover two consecutive
key bytes at one time and starts from the beginning of the key to the end in turn.
For two target consecutive key bytes, the attacker will submit the corresponding
designed key differentials.

Observing the S-Box differentials Block. In this block, the KSA Oracle
will return the corresponding S-Box differentials (ΔS) to the attacker. Here
the ΔS specifically means how many indices the two S-Boxes differ from each
other. The attacker needs not to know the detailed values of the S-Boxes nor the



68 J. Chen and A. Miyaji

Fig. 1. Related Key Model

differentials. The attacker will decide whether to submit new key differentials to
the KSA Oracle again depending on the ΔS.

Recovering two key bytes Block. In this block, the attacker has already
gotten the expected ΔS after querying the key differentials several times. He will
check the corresponding key collision patterns described previously to search for
clues of the target key bytes. After he recovered the two key bytes successfully,
go to the querying differentials block to repeat the previous procedures until the
key is fully recovered.

4.2 Recovering the Full Length Random 256-byte Key

The querying differentials block for recovering 256-byte key is shown in Figure 3.
The attacker’s goal is to recover a 256-byte secret key K in turn, namely,

from K[0] to K[255], two consecutive key bytes can be recovered at one time as
illustrated in Figure 1. The attacker first queries two differentials ΔK1

1 [0] and
ΔK1

1 [1] to the KSA Oracle, and ask it to run the KSA algorithm under two keys
K1 and K2 which satisfy K1[0] = K[0]+ΔK1

1 [0], K1[1] = K[1]+ΔK1
1 [1], K1[i] =

K[i] for i �= 0, 1 and K2[0] = K1[0] + 1, K2[1] = K1[1] − 1, K2[2] = K1[2] +
1, K2[i] = K1[i] for i �= 0, 1, 2 respectively. If he is lucky enough, he will observe
a collision. Recall the previous collision requirements that a collision means that
j1,0 = i = 0 (j2,0 = i + 1 = 1) and j1,1 = i = 1 (j1,2 = i − 1 = 0). This
gives K1[0] = 0 − S1,0[0] = 0 (K2[0] = 1) and K1[1] = 1 − 0 − S1,1[1] = 0
(K2[1] = 255). Then the attacker can easily recover K[0] and K[1] by computing
K[0] = K1[0] − ΔK1

1 [0] and K[1] = K1,1[1] − ΔK1
1 [1] with the two known

differentials. We call this two differentials (ΔK1
1 [0], ΔK1

1 [1]) a right differential
pair, and (K1,1, K1,2) a right related key pair at step one. The worst case to
the attacker is that he won’t be able to get the right differential pair until he
queries all the 256 possible values for one differential, namely, 2562 time queries
in total.
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Fig. 2. New Key Recovery Algorithm

Fig. 3. Querying Differentials Block for recovering 256-byte keys

Now the attacker has successfully recovered K[0] and K[1]. To recover the next
two bytes K[2] and K[3], the attacker tries to query two differentials ΔK2

1 [2]
and ΔK2

2 [3], hoping it to be a right differential pair, also along with the previous
right pair (ΔK1

1 [0], ΔK1
2 [1]). The KSA Oracle will run the KSA algorithm under

two keys K1 and K2 which satisfy K1[0] = K[0] + ΔK1
1 [0], K1[1] = K[1] +

ΔK1
1 [1], K1,2[2] = K[2] + ΔK2

1 [2], K1,2[3] = K[3] + ΔK2
1 [3], K1,2[i] = K[i] for

i �= 0, 1, 2, 3 and K2[2] = K1[2] + 1, K2[3] = K1[3]− 1, K2[4] = K1[4] + 1, K2[i] =
K1[i] for i �= 2, 3, 4 respectively, and sends back the information whether a
collision happens or not. If he is unlucky, query differentials ΔK2

1 [2] and ΔK2
2 [3]

again until it is a right pair (collision happens). Notice that the differential pair
(ΔK1

1 [0], ΔK1
1 [1]) need not be changed since it is the right pair results from the

previous stage and we need it there to satisfy the first collision condition for the
second stage attack.
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Each time when the attacker successfully recovers two key bytes K[i] and
K[i + 1], he has the knowledge of the right differential pair, and with all the
previous known right differential pairs, he is able to recover the future key bytes.
The complexity of the attack can be computed from the worst case in which the
attacker has to try 2562 times before he can find the right pair to recover two
bytes key. Thus the total complexity time in the worst case is O(128 × 2562) =
O(223) with probability 1.

4.3 Recovering the Random Short Keys

When recovering the full size 256-byte keys, the attacker at each step only need
to query key differentials at the two target key indices. Because he knows that
due to the collision pattern, he will observe a collision no later than the worst
case. However, in case of short keys, only changing the target key bytes will
not grantee a collision even in the worst case. It is straightforward because the
worst case in querying key differentials at two target key bytes involves 2562

operations, since the probability for the collision may be smaller than 1
2562 , in

other words, we may need to query also some other key bytes to ensure a (near)
collision observation. We illustrate how many key bytes differentials we need to
query by computing the collision probability in Figure 4. It is an example of
64-byte key and difference is at index 0.

Recall that for a key pair to achieve a collision in short key pattern, we need
j1,0 = 0 and j touches 64, 128 and 192 when i touches 1, 64 and 128 respectively.
And when i is between [1, 63], [65, 127] or [129, 191], j is not allowed to touch the
later bound. Finally, when i touches 192, if j is less or equal than 192, it will result
in a near collision with two different indices. We assume the internal variable
j behaves randomly, which is a reasonable assumption in most of the cases, we
get the probability for the collision of a 64-byte key: ( 1

256 )4(255
256 )62+63+63 193

256 ≈
8.5× 10−11. In other words, we’ll need to query log2(8.5×10−11)−1

8 ≈ 4 bytes each
time, two extra indices except the two target key bytes. By generalizing this
analysis, we can get the following theorem.

Fig. 4. Determine the number of differentials to query
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(a) Relations between m and k (b) Complexity for recovering two key bytes

Fig. 5. Theorem 1

Theorem 1. To construct a related key K1 which has a colliding key pair under
the short key collision pattern from the target key K, the attacker has to query
m key differential bytes at two target key bytes indices and m− 2 other indices.
m is given below:

m = log2

((
1

256

)n

×
(

255
256

)k−2+(k−1)(n−2)

× (n − 1)k + d

256

)−1

/8

Here, k is the key length, n is the number of times the differences of the keys
appear during KSA, and d denotes the first key difference index.

Figure 5(a) is the direct visualization of the Theorem 1. From the figure, we
know that for key size smaller than 16 bytes, the attacker has to query more
than 16 bytes in order to observe a collision, thus makes the attack impossible.
We give the theoretical bound of the complexity time for the attack in Figure
5(b). We can conclude that for keys with length larger than 40 bytes, they will
fall into our practical attack area.

After the attacker knows how many bytes he should query, he is ready to
launch the attack. The querying differentials block for short keys is illustrated
in Figure 6.

Suppose the target key has length k and will repeat n times during KSA. Again
the attacker tries to recover the key one by one starting from the beginning. His
first two target key bytes is K[0] and K[1]. According to Theorem 1, he can
compute m, thus besides indices 0 and 1, he can randomly choose other m − 2
indices and submit the differential queries ΔK1

1 [0], ΔK1
1 [1], ΔK1

1 [i], ..., ΔK1
1 [i +

m−2]. To ease the explanation, we assume the m−2 indices to be the consecutive
ones. The KSA Oracle will return the differential information of two S-Boxes
under K1 and K2 which differs from K1 at index 0 by value 1. If he observes
that ΔS = 2, then he confirms that a near collision has happened. According
to the short key collision pattern, j1,0 = i = 0 (j2,0 = i + 1 = 1) and j1,1 =
j2,1 = i + k = k + 1. Thus, K1[0] = 0 − S1,0[0] = 0(K2[0] = 1), and K1[1] =
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Fig. 6. Querying Differentials Block for Recovering Short keys

K2 = k + 1− 1 = k. Then the attacker can recover K[0] and K[1] by computing
K[0] = K1[0] − ΔK1

1 [0] and K[1] = K1[1] − ΔK1
1 [1]. Store the right differential

pair ΔK1
1 [0] and ΔK1

1 [1] to recover the next two target key bytes, repeat the
procedure until the whole key is recovered.

5 Experiment and Comparison

5.1 Implementation

The following table illustrates the implementation details we used to recover the
short keys. Each time two consecutive bytes of key are recovered once a near
collision (ΔS = 2) is found.

Table 3 illustrates the experimental results of key recovery by using our new
algorithm. We show the data of recovering three random secret key with length
256, 128 and 86 bytes. Actually, this three random key represents three classes
of keys with parameter n equals to 1, 2 and 3, respectively. The experiment
is performed by randomly choosing many target keys and the average data is
shown in the table. For key length 256 and 128, 100 times were performed, but
due to the long time period, only 3 times were done for the key length 86. We
list the number of bytes (m) we need to query in order to recovery two key bytes.
For 256-byte full length key, we only need to query two key bytes, and can be
recovered in a very short time (0.038 seconds). For 128-byte key, 55% of the key
bytes need querying two bytes in order to be recovered, and rest 45% of the key
need to query three key bytes in order to be recovered. The number of query
bytes increased to four when we try to recover 86-byte key. About 63% of the key
requires to query four bytes in order to be recovered. The experimental value of
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Short Key Recovery Implementation

Input:

1. Target key length (bytes) of target secret key K: k.

2. S-Box difference: ΔS.

3. Key differentials: ΔK1(randomly chosen) and ΔK2 = 1 (fixed).

Output:

Target secret key K.

Procedures:

1. Set target key index byte d = 0.

1-1. Set the number of query bytes m = 2.

1-2. Prepare the differentials ΔK1 = (ΔK1[d], ΔK[d + 1], ..., ΔK[d + m − 1]) and

ΔK1 + ΔK2 = (ΔK1[d] + 1, ΔK[d + 1], ..., ΔK[d + m − 1]), and run the

KSA under the related keys K1 = K + ΔK1 and K2 = K + ΔK1 + ΔK2.

1-3. If ΔS �= 2 after running KSA with 256m related key pairs, m = m + 1, goto 1-2.

1-4. If ΔS �= 2 before running KSA with 256m related key pairs, goto 1-2.

1-5. If ΔS = 2, then recover two bytes K[d] and K[d + 1], d = d + 2, goto 1-1.

m is very close to the theoretical value which can be calculated from Theorem
1. The experiment is done on an i7 CPU desktop PC with Windows XP system
(parallel computing is not involved).

Table 3. Experimental Results of the New Key Recovery Algorithm

n Key Length Number of Query Bytes Time

m = 2 m = 3 m = 4 Exp Value Theo Value

1 256 128(100%) 0 0 2 2 0.038s

2 128 35(55%) 29(45%) 0 2.42 2.21 287s

3 86 0 16(37%) 27(63%) 3.63 3.19 76323s (21.2h)

5.2 Comparison and Other Applications

We summarize all the key recovery attacks on RC4 in Table 4. Compared with
the previous works, our main contribution is that we can attack long keys within
practical complexity time. And also, due to various biases discovered at the be-
ginning of PRGA, it is the usual case that the implementation will discard the
first hundreds output bytes of the keystream, which make the attacks such as
by taking advantage of the weak IVs impossible. Our attack can survive this
kind of remedies because discarding the first hundreds output keystream bytes
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Table 4. Comparison of the Key Recovery Attacks

Paper Resources available to the attacker Key Length Complexity Probability

[12,13,14,15] IV, Keystream output All keys Practical 1

[17] k = 5 220 0.86

[18] S-Box k = 16 264 0.005

k � 16 Impractical Impractical

k = 5 224 0.998

[19] S-Box k = 16 235 0.075

k � 16 Impractical Impractical

k = 256 223 1

Ours ΔK, ΔS k > 40 < 248 1

k < 16 Impractical Impractical

will not affect the observation of the output differences, especially when the
total key collisions are achieved. Early in [15], the authors proposed a new way
to attack WEP and pointed out that their passive attack can be theoretically
adapted to WPA, although no further detailed explanation was given. Here we
give another theoretical way to attack WPA. Recall the pattern we use to recover
the full 256-byte key, where two keys differ from each other at three indices.
Here treat the first one as IV, by changing its value so that let the second and
third key differences step through the whole key. Once a collision or a near
collision is observed, the attacker can recover the key at the second and third
difference indices. Similarly, we can also use the transitional pattern to recover.
The main difficulty is that all the currently known key collision patterns have a
high complexity when the key is short, and in WPA as well as in WEP settings,
only 16-byte key is used. This makes our attack impractical in such environments.
However, we cannot rule out the existence of other kinds of colliding key pairs
with short key size and low complexity. If that is possible, than the attack is not
theoretical any more.

6 Conclusion

In this paper, we presented a new approach to recover secret keys of RC4 in
practical time in a related-key model by making use the property that RC4 can
generate a large mount of colliding key pairs. Our main contribution is that
our attack can recover large keys efficiently with probability 1 while some the
previous researches can only recover very short keys with small probability. Al-
though the attack against WEP can efficiently recover the secret keys within
practical time, it requires the knowledge of IVs and the keystream outputs. It
will not work if the first hundreds keystream outputs are discarded, while our
attack is not affected by this remedy. Thus our method shows another way to
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attack the applications which use the IV setting, especially when the key size is
large. Theoretically speaking, our method can also be adapted to attack WPA
if colliding key pairs with shorter key size (lower complexity) can be found.
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Abstract. In stream ciphers, the ratio of performance to the security is
the most important issue. However, the S-boxes used in a stream cipher
can become a bottleneck of speed due to use of large memory, difficulty in
hardware realization and more processing. This paper proposes an S-box
construction that is easy to implement both in hardware and software.
The proposed S-box is efficient in speed, parameterized and scalable with
excellent security properties. It also provides a designer with the flexi-
bility to trade-off among speed, area and the security properties. The
security analysis has been performed on the S-box. The security proper-
ties are found to be comparable with the existing standards.

Keywords: Cellular Automata, S-box, Stream Cipher, Security
Properties.

1 Introduction

Stream Ciphers provide ultra-fast encryption that can be used in communication
channels. In search of a good stream cipher ESTREAM [24] project has been
launched. S-boxes are integral part of most of the cryptographic algorithms and
provide the non-linearity that is essential for all cryptographic algorithms. At
the same time, the S-boxes can also become a bottleneck for speed and source
of attacks. Since, there is no standard S-box for stream ciphers, every algorithm
either has to devise a new S-box or use the S-boxes used in block ciphers. Some
of the contemporary stream ciphers like Trivium [6], Salsa [3] and RC4 do not
use S-boxes but use other methods for non-linearity. Using an S-box of a block
cipher directly in a stream cipher may not be a good idea as there are basic
differences in the requirements of the block ciphers and stream ciphers.

First, the block ciphers go through multiple rounds of processing of plaintext
and key before producing the ciphertext. In stream cipher, the plaintext is just
XORed with the pseudo-random key that is generated from the key stream
generation algorithm. So, in a stream cipher, S-box must be large enough to
hide the key information completely. That is why Rabbit [5], HC-256[25] use
32 bit S-box. Next, the speed of the S-box must be very high in the stream
cipher as that is the main intention of a stream cipher, so it should not use large
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look-up tables. Next, the S-box of the stream cipher should be easily scalable in
terms of security and size as stream ciphers are prone to attacks; so that even
if the stream cipher is attacked, the security properties of the stream ciphers
can be preserved by an easy upgrade. Finally, nowadays most of the encryption
functions are performed in hardware to have a greater speed. Also, there is a
need for implementation of cryptographic primitives on small micro-chips in
applications like PDAs which have limited memory and power. So, the hardware
realization of the S-box must be easy along with an efficient way for software
implementation.

Keeping all the above conflicting requirements in mind, we have proposed
an S-box that is scalable, parameterized and which has a flexible design option
to optimize speed vs area in hardware implementation. For ease of hardware
implementation, we have used Cellular Automata (CA) which display locality
and topological regularity that are important attribute for VLSI implementa-
tion. In [8], the authors have shown that CA provide better performance than
LFSR, which have been used traditionally in hardware oriented stream ciphers,
while not consuming much more area. Also, the length of the CA can easily be
increased without redesigning the circuit, which can provide scalability to the
application. The proposed S-box is scalable not only in terms of size but also in
terms of its security properties. The parameterizations of the S-box will aid to
the setting and modification of Initial Value of the stream ciphers. This can also
provide key dependent S-boxes which can be very useful tool for cipher design.

In the S-box proposed in this paper, first we vary the number of cycles de-
pending on input in a maximum length CA with a constant seed to get the
output. That is, input to the mapping decides the number of cycles to be run
in a maximum length CA with a constant seed. For a CA with small number of
cells (say, four, five or six) it gives a good value of non-linearity with acceptable
number of cycles. The high non-linearity generated from a small length of CA
can be utilized as a non-linear primitive in a large CA. In this paper, we pro-
pose a scheme where these primitives are utilized to generate highly non-linear,
scalable boolean mappings having seeds as parameters. These mappings can be
used as S-boxes and hence we use the terms S-box and non-linear mapping in-
terchangeably. Note that, there are other S-box construction methods that are
present in literature [18], [21]. All of them can execute in polynomial time. There
are two advantages of the S-box described here over those constructions. First,
this method of generating S-boxes runs in linear time helping in scalability and
second, it provides key dependent S-boxes unlike others. Both these facts will aid
to the design of the stream ciphers and other cryptographic algorithms. In [22]
and [23], the authors propose S-box construction based on non-linear CA rules
and running for few cycles. In the current S-box, the non-linearity is derived from
varying the number of clock cycles, whereas in those S-boxes the non-linearity
is derived using non-linear rules. In addition to the above advantages, the ad-
vantages of the current S-box over those CA based S-boxes are more efficiency,
less hardware and coverage of complete state space.
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This paper begins with an introduction of CA in section 1.1. In section 1.2,
it introduces the generation of non-linear CA mappings by varying the num-
ber of cycles with respect to input. Section 2 shows how to generate scalable
S-boxes from the mappings. A few sample S-boxes generated in this fashion are
also shown in section 2. Section 3 presents the hardware implementation of the
proposed S-boxes and a pseudo-code for the software implementation. Section 4
provides the security analysis of the proposed S-boxes. In section 5, it compares
the proposed S-boxes with non-linear blocks used in contemporary stream ci-
phers. Finally, we give a schematic of a new stream cipher, based on the S-boxes
designed in this paper, to concretize the motivation of designing such S-boxes
in section 6. In the next subsection, we provide an introduction to Cellular
Automata.

1.1 Cellular Automata (CA)

The CA structure can be viewed as a lattice of cells where every cell can take
values either 0 or 1 [20]. The cells evolve in each time step depending on some
combinational logic on itself and its neighbors. The combinational logic is called
the rule of the CA. Two of the common rules used are Rule 90 which is the XOR
of left neighbor and right neighbor; and the Rule 150 which is the XOR of left
neighbor, self and right neighbor.

The characteristic matrix of a CA operating over GF (2) is a matrix that
describes the behavior of the CA with linear rules. We can calculate the next
state of the CA by multiplying the characteristic matrix by the present state of
the CA. A characteristic matrix is constructed as:

T [i, j] =1, if the next state of the ith cell depends on jth cell
=0, otherwise

If S(t) represents the state of the CA at the ith instant of time then the state
at the next time instant can be represented as:

S(t + 1) = [T ]S(t) and S(t + 2) = [T ]2S(t) and so on. So we can write:
S(t + p) = [T ]pS(t)
The following subsection describes how to generate the Non-linearity using

CA.

1.2 A Highly Non-linear Boolean Mapping Using CA

Cellular Automata take two input parameters; one is the seed of the CA and
the other one is the number of cycles that needs to be run. The relationship
between the input seed and the output is completely linear, if the CA rules are
linear. However, we have studied and observed that, the relationship between
the number of cycles and the output is highly non-linear even if the linear rules
are used in the CA. If n denotes the seed, m denotes the number of cycles and
y denotes the output of a CA transformation, then, any CA transformation can
be expressed as:

y = T mn,where T is the characteristic matrix of the CA.
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If we keep the seed constant and vary the number of cycles based on input x,
the CA transformation becomes:

y = T (x)n (1)

Hence the output varies exponentially with input giving rise to Non-linearity.
The above construction can also be viewed as O = S(cycles, seed), where the
output varies non-linearly in terms of number of cycles and linearly in terms of
seed. The seed can be used as a parameter in a key dependent S-box.

Note that varying the clock rate is also a common way to achieve non-linearity
in LFSR based stream ciphers (to combine one or more LFSRs, to obtain a
nonlinear construction, e.g.,self-shrinking generator in stream ciphers, and the
use of majority clocking in A5/1). However, unlike LFSR we can achieve parallel
non-linear transformations by this method.

2 The Proposed Scalable, Parameterized S-box

The S-box, that is described in this paper, has been generated using Cellular
Automata (CA). For the non-linear primitive, we have used a Maximum Length
Linear Hybrid CA, but the non-linearity is achieved by governing the number of
cycles of the CA based the input to the mapping. Then a mixing between the
non-linear primitives are achieved using a bigger Linear Hybrid CA whose length
is equal to the S-box size. The Khazad S-box uses a similar idea by putting
simple permutation. However, scaling up Khazad S-boxes requires additional
layers of costly look-up tables. This S-box can be scaled up in size without
any additional layers. The next subsection describes the construction of large,
non-linear boolean mappings using these non-linear primitives.

2.1 Design of a Scalable, Non-linear Boolean Mapping

Since, there is a latency involved for varying the number of cycles with respect
to input, the method described in section 1.2 will not scale very well with the
length of the cellular automata. But for a small length of CA, this construction
can be used as a non-linear primitive which can be placed in a large length of
CA application to achieve maximum non-linearity. For example, a four cell CA
may be used where the worst case complexity is sixteen cycles if run sequentially.
Such a small non-linear primitive can also be implemented using a look-up table
or combinational logic with a complexity of only one cycle.

The detail schematic of such a CA based non-linear mapping (S-box) is shown
in figure 1. This S-box takes n bits constants (parameters) to be used as seeds in
the non-linear layer and one n bits input variable that is transformed to output.
For each different value of this constant (used as seed), a different S-box will
be generated. Internally, the S-box has a layered architecture. For an n × n
bits transformation, the first layer consists of a series of four bits non-linear
CA transformations as described in section 1.2. For simplicity, we show and
describe the non-linear layer consisting of only four cell maximum length CAs.
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Fig. 1. Processing of the Non-linear Mapping

However, there can be a combination of four, five and six cell maximum length
CAs in the non-linear layer, the total number of input bits should be distributed
among them accordingly. There are a total of n/4 such transformations running
in parallel. The input bits are divided into n/4 groups where each group being
of size four bits. These four bits determine the number of cycles to be run for
each of the four cell CAs. This can also be an asymmetric four, five and six cells
CA running in the same fashion. The output of those transformations are simply
concatenated to provide the input to an n bit maximum length linear CA run
with a fixed number of cycles. The output of the layer 2 (the linear CA) is again
fed to a series of four bits non-linear CA transformations (layer 3) similar to the
first layer. The output of the layer 3 is again simply concatenated to produce the
output to the mappings (S-box). These layers are the basic layers of the S-box.
Layer 2 and 3, that are linear CA and the CA based non-linear operation, can
be repeated after layer 3 so that better security properties can be achieved. At
the minimum two non-linear layers and one linear layer are required.

2.2 Analytical Framework

The theoretical basis for the above construction is as follows. At the end of the
first non-linear layer each intermediate output bit depends on the input bits for
the non-linear CA element (that it is a part of) in an exponential manner.
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y1 = T (xk) ∗ n (2)

where y1 denotes the intermediate output of the first non-linear layer and xk

denotes the input bits of the kth non-linear element in non-linear layer for which
individual intermediate output bit is involved. This has a theoretical similarity
with the finite field exponentiation done in Magenta S-boxes [14]. In Magenta, the
look-up table is the main option for implementation, but this CA based variable
clock method provides sequential implementation and also parameterized.

If we design the linear layer such that each output bit of the linear transforma-
tion depends on all the input bits, then the output of the linear transformation
layer (denoting y2) becomes:

y2 =
∑

aiy1i =
∑

ai(T (xk) ∗ n) (3)

where ai ∈ 0, 1.
In the third non-linear layer, the output (denoting it as y3) becomes,

y3 = T (y2k) ∗ n = T (
∑

ai(T
(xk)∗n)) ∗ n = T f(x) ∗ n (4)

The net effect of the above equation is exponentiation and multiplication with
respect to the input bits. y3 can be extracted directly to give the final output. We
can add more layers to have a better mixing and better exponentiation giving
rise to more non-linearity.

2.3 Sample S-boxes

Using the schema described in section 2.1, different S-boxes can be generated.
In this section, we take some specific examples and show how different S-boxes
can be generated using some specific values of the parameters. We also show the
security properties of few of them in the next section.

8× 8 S-box: We have implemented the non-linear mapping (S-box) for 8× 8
bits using one linear and two non-linear layers. Similarly, we have implemented
the S-box using three nonlinear layers and two linear layers in between them.
Table 1 shows the output of the S-box implemented with seeds 0101 for all the
four cell CAs.

16×16 S-box: We have also implemented 16×16 S-box using a few different
ways. Instead of using four cell maximum length CA for non-linearity, we have
also used a combination of four, five and six cell maximum length CA in the
non-linear layer in bigger S-boxes. The combination gives even better security
properties. The following are the few different ways to design the 16× 16 S-box.

Case1: In this case, we have implemented the 16 × 16 S-box using two non-
linear layers with four 4-cell maximum length CA and one sixteen cell linear CA
running a constant twelve cycles.

Case2: In this case, we have generated 16 × 16 S-box using three non-linear
layers with four 4-cell maximum length CA and two sixteen cell linear CA run-
ning a constant six cycles.
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Table 1. The S-box Output

0 7a d4 be ed 29 74 64 ba 5 85 a3 6a 75 eb d0

87 6d e8 4d c8 59 17 c2 8e df 89 8c 8a a 81 3b

5f 2d ee 47 28 58 c 79 40 61 a1 16 49 af 27 c7

b0 7e bd e9 d9 2c 68 bf d8 80 2a c0 45 2e 9d da

98 22 6 e0 1b f1 f4 5d b7 7c 4c 9c 2b f8 88 37

9 fc c9 42 bb 1e 7f aa 2f c5 ec d dd 34 57 94

b d7 91 a2 3c 1d 99 46 6f 93 3d 33 d1 8f 8 f9

4a 72 e 4b c4 66 e2 a6 48 c6 6e 13 ef 67 4 a7

11 35 71 2 63 7 36 db ce 69 cc 24 1c 55 5e 60

18 15 38 10 e4 31 78 f6 e6 83 44 e7 d6 84 30 f0

fb fe 9e ff 26 b3 9b 52 cf cd 32 a8 fa 7b b6 1

82 e1 43 4f a9 70 51 ae de 56 f7 1f d3 fd 97 ad

12 b5 90 3f e5 3e ea e3 b2 d5 9a a5 1a f 39 4e

23 b9 cb 92 f5 ca 73 6b ab 21 3 f3 d2 54 c3 5b

8d 3a b4 14 19 41 f2 7d b8 65 50 b1 5c 62 20 bc

95 96 25 5a 76 c1 9f ac a0 86 53 8b a4 6c 77 dc

Case3: In this case, we bring in asymmetry in the non-linear layer. Here the
non-linear layers consist of a five cell maximum length CA, followed by a six cell
maximum cell CA which is again followed by a five cell maximum length CA.

Case4:In this case, we bring more asymmetry to the non-linear layer. Here
the first non-linear layer consists of five, six and five cell maximum length CA
respectively in parallel. The second non-linear layer consists of six, four and six
cell maximum length CA respectively in parallel.

Case5:This case is similar to case 4 as described above. The difference is, we
have added one more non-linear layer. The third non-linear layer consisted of a
symmetric four 4-cell CA as in case 1 and case 2. Obviously, we achieved the best
result in this configuration, and the results are shown in the analysis section.

32×32 S-box: We have also implemented 32×32 S-box using four 5-cell CAs
with three 4-cell CAs in between them in the first non-linear layer. For the linear
layer, we used 32-cell maximum length CA. Finally, in the third non-linear layer,
we have used one four cell CA in the extreme left and one in extreme right, one
four cell CA in the middle and two five cell CA each in between them.

3 Implementation and Performance

In this section, we describe specifics of implementation both in hardware and
software. First we describe the complexity of the S-box (boolean mapping).

3.1 The Complexity of the Mapping

The main advantage of the mapping is that it scales very well as the size of the
transformation (n) increases. The number of cycles required for the mapping
increases only linearly with the size of the non-linear mapping. In the first layer,
the total number of cycles remains constant irrespective of the size, n, of the
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mapping. Similarly, in the third layer also, the number of cycles doesn’t vary
with the size of the input. All the CA transformations in both layer one and
layer three will be run in parallel. In the second layer (linear transformation),
the number of cycles required to achieve the mixing of the CA is less than n. The
time complexity of this mapping is O(n) only. We can add more layers to have
better security margins and better non-linearity. In that case also the number
of cycles required increases linearly.

Since CA based transformations can also be viewed as multiplication of powers
of T matrices, the full construction can be implemented using combinational logic
of hardware. In that case the whole S-box can be implemented using a single
cycle. This would require additional hardware. So this construction gives the
designer the flexibility to trade-off between the area and speed.

We recommend to take a combined approach of combinational and sequential
logic where the non-linear layer should be implemented using combinational logic
and the linear layer should be implemented using sequential logic. The non-linear
elements can be implemented using small look-up tables. The purpose of the
linear layer is to mix the bits between different non-linear elements. Since each
non-linear element mixes the bits very well within itself, running 3 cycles on the
linear layer should be enough to achieve the mixing for an 8 × 8 S Box.

So far as hardware complexity is concerned, a four bit counter for each of
the four bit maximum length CA and three layers of CAs each of complexity
n are required, if implemented using sequential logic. For a combinational im-
plementation, a small look-up table and a few AND-XOR gates are required to
implement the whole construction. Since the layers are in serial, the hardware
complexity does not increase with the number of additional layers. In fact, the
first and the third layers can be realized with a single layer of four cell CAs with
a switch to toggle between the first non-linear layer and the second non-linear
layer. This necessitates only two layers (for hardware realization) of CA with
complexity n for linear and non-linear transformation.

We can also have more layers to have better security properties with no addi-
tional hardware complexity. This is because the non-linear layer and the linear
layer can be reused as many times as required with a simple switch to toggle be-
tween the successive layers. So this S-box is scalable in terms of security margin
without any additional hardware complexity.

3.2 Hardware Implementation

The hardware implementation of the mapping is simple. The re-usable non-linear
component can be implemented in three different ways.

Using Look-up Table: A simple look-up table can be synthesized by its reduced
boolean equation without using any memory.

Using ROM: The non-linear CA can also be implemented using a ROM, for
example, for a 4-Cell CA, a 16× 4 bit ROM i.e. 4 bit address and 4 bit data can
be used.

Using Sequential Logic: Using a pure sequential logic, the non-linear primitive
can be implemented using a CA, a counter and a comparator.
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Fig. 2. Hardware Architecture of the S-box

The linear layer is implemented with a series of flip-flops with neighboring
combinational logic using XOR gates as in normal Cellular Automata. The clock
signal is fed into the structure and it is controlled by a lg(n) bit counter. Since
the S-Box has a modular architecture, the architecture diagram in figure 1 can
be directly translated into hardware implementation using one of the above
schemes. The hardware architecture using ROM for 8 × 8 S-box is shown in
figure 2.

We have implemented the 8 × 8 S-box in FPGA using Xilinx Synthesis Tool.
Four 16× 4 bit ROMs were used for the two non-linear layers. The linear trans-
formation was implemented using an eight cell maximum length CA running for
four times. Overall this construction required one two bit up-counter, eight 1-bit
registers, one 8-bit latch, five 2-input XOR and three 3-input XOR gate when
implemented using Xilinx ISE v7.1i on Spartan 3 xc3s5000-4-fg900 device. The
speed of execution was 313 MHz and number of slices was 23. When three non-
linear layers were used with two linear layers in between running for 2 cycles, the
area estimates were 41 slices and speed estimation was 314 MHz. For a 16 × 16
S-box using two non-linear layers, with the linear layer running for 12 cycles, the
area estimation was 47 slices and the speed estimation was 312 MHz. Finally,
for a 16 × 16 S-box using three non-linear layers, with two linear layers running
for 6 cycles, the area estimation was 84 slices and the speed estimation was 313
MHz. It can be easily seen that in each of the above cases the throughput is in
the order of magnitude of giga-bits per second.

3.3 Software Implementation

The software implementation consists of three 16, 32 and 64 element re-usable
arrays for the non-linear layers and a linear layer. The implementation of a 32×32
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Table 2. The C Code Snippet for the S-box

1 #define Rule 0x4609BBD5

2 int fourCellCA[16] = / ∗ Initialize with pre − computed output ∗ /;

3 int fiveCellCA[32] = / ∗ Initialize with pre − computed output ∗ /;

4 temp1 = fiveCellCA[input & 0x1F ] + fourCellCA[(input � 5) & 0xF ] � 5 +
fiveCellCA[(input � 9) & 0x1F ] � 9 + fourCellCA[(input � 14) & 0xF ] � 14
+fiveCellCA[(input � 18) & 0x1F ] � 18 + fourCellCA[(input � 23) & 0xF ] � 23
+ fiveCellCA[(input � 27) & 0x1F ] � 27;

5 for(i = 0; i < LINCY CLES; i + +) /* LINCYCLES = No of Cycles in Lin Layer.*/
temp1 = (temp1 � 1) ⊕ (temp1&Rule) ⊕ (temp1 � 1);

6 output = fourCellCA[temp1 & 0xF ] + fiveCellCA[(temp1 � 4) & 0x1F ] � 4+
fiveCellCA[(temp1 � 9)& 0x1F ] � 9 + fourCellCA[(temp1 � 14)& 0xF ] � 14+
fiveCellCA[(temp1 � 18)& 0x1F ] � 18 + fiveCellCA[(temp1 � 23)& 0x1F ] � 23
+ fourCellCA[(temp1 � 28) & 0xF ] � 28;

element S-box was described before. A pseudo-code for a 32× 32 element S-box
is given in table 2 which can be used as a reference in other implementations.
The variable input denotes the input to the S-box and the variable output stores
the output of the S-box.

The above function, with both three non-linear layers and two non-linear
layers, was run on HP rp3440-4core server with OS HP-UX B.11.23 and PA8900
CPU (999MHz). Also the same program was run on Windows XP SP2 OS,
Intel(R) Core(TM) Duo CPU T2500 @2.00GHz. The time taken in nano-seconds
(ns) is shown in the table 3. HP-UX took more time because the CPU speed is
less. Since these measurements are for 32 bits S-box, we can see that the per-bit
substitution took in the order of 10−9 seconds on average for these S-boxes.

Table 3. Software Performance

Parameters HP-UX Windows Parameters HP-UX Windows

LINCYCLES=32, 2 NL layers 426ns 255ns LINCYCLES=24, 2 NL layers 351ns 198ns

LINCYCLES=10, 3 NL layers 351ns 178ns LINCYCLES=12, 3 NL layers 396ns 208ns

4 Security Analysis

From equation 4, we can see that each output bit depends on the input in an
exponential manner. Hence, if we expand, we can easily observe that the S-box
will have a strong algebraic immunity. The non-linearity of an n × n S-box is
given by [7], [21]:

Nf = 2n−1 − 0.5max | ∑u,v,x∈Vn
(−1)v·f(x)⊕u·x |, where Vn denotes a vector

space of n tuples in GF(2).
If we substitute f(x), with equation 4, we get:
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Nf = 2n−1 − 0.5max |
∑

u,v,x∈Vn

(−1)v·T f(x)⊕u·x | (5)

From equation 5, v · T f(x) will not be equal to u · x in most of the cases for
u, v ∈ Vn giving rise to the high non-linearity of the proposed S-box. This is
because v ·T f(x) varies exponentially with x whereas u ·x varies linearly with x.

Another important property of any boolean function is its balancedness. A
boolean function is said to be balanced, if its output has equal number of zeros
and ones for all possible inputs. Since, we are using maximum length CA for
all the CAs in this S-box construction, the period of the S-box is the maximum
possible. This automatically guarantees the balancedness for the proposed S-box.

We experimentally determined the security properties of the proposed S-box
described in section 2. We show the results for 8 × 8 S-box with two non-linear
layers (SBOX1 ) and with three non-linear layers (SBOX2 ). We chose all the
seeds to be alternating ones and zeros starting with one. The results are com-
parable with AES S-box. The main advantage of these S-boxes over AES S-box
is the scalability in terms of size with linear increase of hardware and cycles. In
addition, the security of the proposed S-box can be increased with very little
extra hardware and linear increase of cycles.

4.1 Algebraic Normal Form

The algebraic normal form for all the output bits in terms of input bits is calcu-
lated. We found that each output bit depends complexly on all the input bits.
The algebraic degree of each of the output bit is six for SBOX1. For SBOX2 the
algebraic degree is seven which is equivalent to AES S-box.

For a random Boolean function in 8 variables, the average total number of
monomials is 27 = 128. Table 4 shows the number of monomials for both SBOX1
and SBOX2 and compared with AES S-box. It can be seen that SBOX2 is
comparable with AES; for bits 4 to 7 the number of terms are more than AES,
while for bits 0 to 3 they are less. Table 5 shows the degree distribution for
each of the output bits of both SBOX1 and SBOX2. That shows the proximity
towards the random boolean functions. We also considered the overlap between
the monomials in the expression of the output bit. The number of monomials
not occurring at all in any of the output bit expression is 33 and the number
of terms occurring only once is 14 for SBOX1. The number of monomials not
occurring at all is 4 and the number of monomials occurring only once is 11 in
all the output bits of SBOX2. To compare, for the AES S-box, the number of
monomials not occurring at all is 2 and the number of monomials occurring only
once is 13. Hence, SBOX2 is competitive with AES S-box in this aspect. These
tables also show how the security properties are scaled up in SBOX2 compared
to SBOX1.

4.2 Linear and Differential Cryptanalysis

The maximum linear probability bias [16] for both the S-boxes, SBOX1 and
SBOX2, is 2−3 which is good for an 8 × 8 S-box. The robustness parameter, as



88 S. Das and D. RoyChowdhury

Table 4. Number of Monomials in the Algebraic Normal Form

Output Bit 0 1 2 3 4 5 6 7

SBOX1 122 101 108 108 99 100 97 90

SBOX2 115 137 115 127 123 129 132 119

AES 131 132 145 136 131 113 111 110

Table 5. The Distribution of Algebraic Degree in the Algebraic Normal Form

SBOX1 1 2 3 4 5 6 SBOX2 1 2 3 4 5 6 7

Bit 0 5 15 31 34 27 10 Bit 0 4 16 28 31 23 8 5

Bit 1 3 10 23 35 22 8 Bit 1 5 16 29 41 30 11 5

Bit 2 2 12 26 38 22 8 Bit 2 4 14 18 29 33 14 3

Bit 3 5 12 26 33 20 12 Bit 3 4 12 26 42 26 15 2

Bit 4 2 12 26 30 22 7 Bit 4 2 11 27 36 31 12 4

Bit 5 4 10 26 31 20 9 Bit 5 4 16 34 30 33 8 4

Bit 6 3 13 24 29 20 8 Bit 6 6 13 34 31 31 13 4

Bit 7 5 7 15 29 25 9 Bit 7 3 15 21 32 24 18 6

defined in [21], measures the immunity from differential cryptanalysis [4]. The
maximum value of any entry in the difference distribution table was found to be
16 for SBOX1. The robustness against differential cryptanalysis was found to be
0.9375 for SBOX1. For SBOX2, the maximum entry was 10 and the correspond-
ing robustness value was found to be 0.953125. We compare the robustness of
DES S-boxes and AES S-box with our S-box in the table 6, where S1 to S8 are
DES S-boxes. We can see that the robustness of the proposed S-box is as good
as the S-boxes proposed by Sebbary [21] (Seb1, Seb2 and Seb3 in the table) and
AES; it is approximately three times more than the DES S-boxes.

Table 6. Robustness Comparison

S1 S2 S3 S4 S5 S6 S7 S8 Seb1 Seb2 Seb3 AES SBOX1 SBOX2

0.316 0.363 0.316 0.469 0.387 0.367 0.340 0.328 0.875 0.969 0.992 0.984 0.938 0.961

4.3 Non-linearity

The theoretical maximum non-linearity for an 8×8 S-box is 28−1−2.5(8−1) = 116.
The maximum non-linearity for the SBOX1 was found to be 108 and minimum
was 100. The maximum non-linearity for the SBOX2 was found to be 110 and
the minimum was 102. For AES S-box, the maximum non-linearity is 114 and
the minimum is 112, which are comparable with the S-boxes generated in this
paper.
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4.4 Strict Avalanche Criterion

We did see an equal number of zeros and ones for each of the input bit flipping
and then XORing the output differences except for very few cases. For the map-
ping SBOX1, after flipping each input bits, the maximum value of number of
ones was seen to be 160 and minimum value as 88. For SBOX2,the maximum
value was 152 and the minimum value was 96, thereby scaling up the security
properties of SBOX1. For AES S Box, maximum SAC value is 144 and the min-
imum is 116. Although, AES S-boxes are better in terms of SAC properties, the
main advantage of these S-boxes over AES S-boxes is the scalability to an extent
that the whole non-linear block of a stream cipher can be generated using this
method. Multiplicative inverse, as employed by AES S-boxes, is undoubtedly
one of the most secure cryptographic primitives, but it is difficult to scale up
(increased complexity of implementation) beyond a certain size and the only
variability of multiplicative inverse is the choice of the primitive polynomial.
The intention of the comparison is to show that, we can generate scalable and
key-dependent S-boxes with comparable (better in some cases and worse in some
cases) security properties using the method described in this paper.

4.5 Effect of Parameter on Security

Since this S-box is parameterized, we have evaluated the effect of the parame-
ter (i.e. seed of the non-linear layer) on the security properties. Note that, the
parameter is the variable n in equation 4. The table 7 shows some of the key
security properties after varying the seed (parameter). These properties were cal-
culated for the construction with three non-linear layers, with two linear layers
in between them, in an 8 × 8 S-box. It can be seen that the security properties
do not vary much with the change in parameter (seed). However, the security
properties reduced for the penultimate row (with seed 11110000). The reason
being, with this seed, the second non-linear CA does not run at all (having 0000
as seed). In this case, the input is directly returned to the output in the code.
Hence care should be taken while selecting the parameter so that it does not
make any of the non-linear elements not run at all. The same seed has been
used for each non-linear layer except for the last row, where, the seeds 10101010,
11111111 and 01010101 were used for the three non-linear layers. Here also the
security properties did not vary much.

4.6 Security Analysis for 16 × 16 S-box

Similar security analysis was performed for 16×16 S-box (the case5 in the previ-
ous section). Table 8 summarizes the results obtained. The maximum differential
value was found to be 22 with the robustness value as 0.9996. Hence differential
attack is difficult for this S-box. The maximum value in linear distribution table
was 33396 and minimum was 32110. For zero probability bias (in an ideal case)
it should be 32768. Hence there were not much variation from the ideal one in
linear distribution table. The algebraic degree was maximum possible for all the
output bits. Number of terms not occurring at all in algebraic normal form was
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Table 7. Parameter Effect on Security Properties

Seed Mx Term Mn Term Mx Deg Mn Deg Mx Diff Mx Bias Mx SAC Mn SAC Mx NL Mn NL

10101010 137 115 7 7 10 -3 152 96 110 102

01010101 140 109 7 7 12 -2.76 152 112 108 98

00110011 139 115 7 7 12 -2.68 152 108 108 98

00011000 141 115 7 7 12 -2.92 152 104 110 102

00010001 131 118 7 7 12 -2.83 152 104 110 102

11111111 131 115 7 7 10 -3 152 108 108 100

11110000 133 61 7 5 64 -2 160 64 104 96

Mixed 147 123 7 7 10 -2.92 152 104 108 98

Table 8. Security Properties for 16 × 16 S-box

Mx ANF Term Mn ANF Term Mx Deg Mn Deg Mx Diff Mx SAC Mn SAC Mx NL Mn NL Robustness

32985 32633 15 15 22 33556 32192 32268 32204 0.9996

4 and the number of terms occurring only once in algebraic normal form of all
the output bits was 13. The non-linearity for each of the output bit was also
quite close to the theoretical maximum value 32586 of non-linearity for 16 bits.
Finally, the SAC table also showed the values near the ideal value of 32768.

4.7 Statistical Properties

To evaluate the statistical properties of the proposed construction, NIST [19]
test suit was run for each individual output bit and the overall S-box output.
Among the tests, the Approximate Entropy, Block Frequency, Cumulative Sum,
FFT, Frequency, Linear Complexity, Longest Run, Non-overlapping templates,
Overlapping template, Rank, Runs and Serial tests were passed for each individ-
ual output bit as well as all output bits. The tests Universal, Random Excursion
and Random Excursion Variant were run and passed for all output bits in 16×16
S-box only as the sample size was in-sufficient for the other cases.

5 Comparison with Existing Stream Cipher

In the proposed S-box, the whole 2n state space of the n bit S-box can be
utilized. Hence, after scaling up the S-box in terms of size, this can directly
be used as a non-linear block in a stream cipher. This maximum period is not
guaranteed in any of the non-linear blocks used in current finalists of ESTREAM
stream ciphers e.g. Trivium’s [6] strong non-linear state transitions; Grain’s [13]
non-linear feedback shift registers and Micky’s [1] irregular clocking. Also, due
to parallel transformation in CA, the speed will be much better compared to
any of the non-linear blocks in those stream ciphers. However, the hardware
requirement for the proposed method will be more than the non-linear blocks of
those three ciphers.

Since the proposed S-box can also be implemented in software, we compare
this S-box with Rabbit’s [5] G function. Rabbit’s G function is difficult to realize
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in hardware as it involves square function, however the proposed S-box in this
paper is easy to implement in hardware. The security properties claimed in
Rabbit G function are achievable by the current S-box as it is flexible in terms of
enhancement of security properties. The Rabbit G function of 32 variables has an
algebraic degree of at least 31. In the current S-box also the maximum algebraic
degree is achievable in a large S-box by the asymmetric design. For example,
for the 16 × 16 S-box shown in the previous sections, the algebraic degree came
out to be 15. The average number of monomials in a random boolean function
of n bits is 2n−1. For Rabbit 32 bits G functions it ranged from 224.5 to 230.9

whereas in this construction the number of monomials were seen to be nearing
the random boolean function. The overlap of monomials is also better in the
proposed S-box as compared to rabbit G function. In Rabbit the number of
monomials that do not occur at all is 226.2 and monomials occurring only once
is 226.03, whereas for a random function it should average to 1. Our construction
also nears the random function as seen for the 16 bit and 8 bit S-boxes.

6 Application

An obvious application for these S-boxes is design of a stream cipher. We in-
troduce one schema for a new stream cipher here. We acknowledge that a new
stream cipher requires complete security analysis and performance evaluation.
But, since the scope of this paper is an S-box and due to page limitation, we keep
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Fig. 3. An Application of the S-boxes in Stream Cipher Construction
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the detailed security analysis and performance evaluation of the stream cipher
as a future work. However, we justify why we believe the proposed steam cipher
should work and worth giving future attention.

Figure 3 shows the proposed application of the S-boxes in a stream cipher.
The key stream generation process is shown here. The outputs of two non-linear
blocks are XORed to produce the key streams. The left hand side non-linear
block contains four 32-bits S-boxes followed by a 128 bits CA which are run
equal number of cycles that the 32-bits S-boxes would require. The right hand
side non-linear block contains a 128 bits CA running same number of cycles
that the 32-bits S-box would require; followed by a layer of four 32-bits S-boxes.
At each round the state bits of each side are updated with a simple 32 bit
permutation of the output of the other side. Basically, the first, second, third
and fourth 32 bits blocks of each side update the third, fourth, first and second
32 bits blocks of the other side.

This stream cipher uses a non-linear combiner model. Unlike NFSR based
non-linear combiners which output one bit as a key stream at every cycle, this
design performs a block-wise non-linear combination. Traditionally, NFSR based
non-linear combiners have been subjected to correlation attacks [15], [17] and
algebraic attacks [9], [10]. Even non-linear combiners with non-linear filters have
been attacked [2]. During the initial key-stream generations the NFSR based
stream ciphers do not provide enough algebraic immunity. This however in-
creases with the number of key stream produced. The attacks exploit the al-
gebraic weakness of the initial key stream bits. Hence, if there is a non-linear
combiner whose constituents produce parallel bits in a highly non-linear manner,
attacks such as correlation or distinguishing attacks would not be possible. In
order to produce highly non-linear block generators, the S-boxes that are de-
scribed in this paper are very useful. It has been shown that [11] the reported
attacks on Grain stream cipher can be prevented with parallel transformation of
CA by replacing the LFSR with CA. Moreover, these S-boxes are key dependent,
hence this will aid to the good initialization algorithm of such stream ciphers to
prevent slide-re-synchronization or chosen IV attacks on stream ciphers. Again,
NFSRs are known for low period whereas each constituent non-linear generators
in this stream cipher is maximum length by design. Questions can be raised on
power attacks as the number of cycles in the S-box depends on the input. How-
ever, please note that in each layer the 32 × 32 S-box contains smaller S-boxes
whose outputs are not sent to the linear layer till all of them complete execution,
which would average out the power or cycles consumed for different inputs. It
will be easy to show that time/memory/data tradeoff attack will not be possi-
ble with maximum sampling resistance. As far as the performance estimation
is concerned, it is possible to get two to four bits per clock cycles even though
there is a latency involved in the S-boxes without compromising on security. Fi-
nally, an optimized hardware implementation is possible by reusing the same 128
bits CA and 32-bits S-box layer. The construction will aid to efficient software
implementation as all permutations are with 32 bits that can fit into integers.



An Efficient, Parameterized and Scalable S-box 93

7 Conclusions

This paper devices a method for generating scalable, parameterized S-boxes
that are very well suited for the stream ciphers. The S-boxes are realized with
cellular automata and hence are easy to implement using hardware. This paper
also evaluates some specific S-boxes in terms of security and shows that all these
S-boxes can give very good security properties. As an application, a new stream
cipher can be proposed with these S-boxes.
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1 Introduction

In a series of papers starting from [9], Mauduit and Sárközy (partly with fur-
ther coauthors) studied finite binary pseudorandom sequences. They introduced
certain measures of pseudorandomness for finite pseudorandom binary sequences

ET = {e0, . . . , eT−1} ∈ {−1, +1}T .

The well-distribution measure of ET is defined by

W (ET ) = max
a,b,t

∣∣∣∣∣∣
t−1∑
j=0

ea+bj

∣∣∣∣∣∣ ,
where the maximum is taken over all a ∈ N ∪ {0}, b, t ∈ N such that 0 ≤ a ≤
a + b(t − 1) ≤ T − 1, and the correlation measure of order � of ET is defined as

C�(ET ) = max
M,D

∣∣∣∣∣
M−1∑
n=0

en+d1en+d2 · · · en+d�

∣∣∣∣∣ ,
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where the maximum is taken over all D = (d1, . . . , d�) and M such that 0 ≤
d1 < · · · < d� ≤ T − M .

It was shown in [2] that for a “truly random” sequence both W (ET ) and
C�(ET ) are “small”. More precisely, a binary sequence ET can be considered as
a “good” pseudorandom sequence if both W (ET ) and C�(ET ) (for “small” �)
are ideally greater than T 1/2 only by at most a power of log T .

In [6] Hubert, Mauduit and Sárközy extended the constructive theory of pseu-
dorandomness of binary sequences to several dimensions called binary lattice. A
binary lattice (or an r-dimensional binary T -lattice) is a function of the type

η(x) : Ir
T → {+1,−1},

where Ir
T = {x = (x1, . . . , xr)|x1, . . . , xr ∈ {0, 1, . . . , T −1}}. The pseudorandom

measure of order � of dimension r of η(x) is defined by

Q�(η) = max
B,d1,··· ,d�,T

∣∣∣∣∣∣
t1∑

j1=0

· · ·
tr∑

jr=0

η(
r∑

m=1

jmbmum + d1) · · · η(
r∑

m=1

jmbmum + d�)

∣∣∣∣∣∣
where um(m = 1, . . . , r) denotes the r-dimensional unit vector whose m-th co-
ordinate is 1 and the other coordinates are 0 and the maximum is taken over
all r-dimensional vectors B = (b1, . . . , br), d1, . . . , d�, T = (t1, . . . , tr) such that
their coordinates are non-negative integers, b1, . . . , br are non-zero, d1, . . . , d�

are distinct, and all the points
r∑

m=1
jmbmum + di occurring in the multiple sum

belong to Ir
T .

An r-dimensional binary T -lattice η is considered as a “good” pseudorandom
binary lattice if Q�(η) is “small” and ideally greater than T r/2 only by at most a
power of log T r, see [6]. Some constructions of binary lattices were presented in
[6,11] by using the quadratic character of a finite field Fq, q = pr, an extension
field of the prime field Fp.

This paper contributes to estimating the well-distribution measure and the
correlation measure of order � of a family of binary lattices, which were con-
structed by using the multiplicative inverse of the finite field Fq in [12], in terms
of discrepancy bounds on pseudorandom numbers in the interval [0, 1). We also
consider the modified measures (the modified well-distribution measure and the
modified correlation measure of order �, see Section 4 for the definitions), which
were introduced by Sárközy and Winterhof in [16]. Finally a lower bound on the
linear complexity profile of the binary lattices is derived from the correlation
measure of order � in Section 5.

2 Binary Lattice and Binary Threshold Sequence

Now we review the construction of binary lattices studied in [12]. For an ordered
basis {γ1, . . . , γr} of Fq over Fp, we order the elements of Fq = {ξ0, ξ1, . . . , ξq−1}
as

ξn = n1γ1 + n2γ2 + · · · + nrγr, 0 ≤ n < q
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if
n = n1 + n2p + · · · + nrp

r−1, 0 ≤ ni < p, i = 1, . . . , r.

For n ≥ 0 we define ξn+q = ξn. Define the boxes A1, A2, . . . , Ar by

A1 =
{

r∑
l=1

alγl : 0 ≤ a1 ≤ p−3
2 , a2, . . . , ar ∈ Fp

}
A2 =

{
r∑

l=1

alγl : a1 = p−1
2 , 0 ≤ a2 ≤ p−3

2 , a3, . . . , ar ∈ Fp

}
· · · · · ·
Ar =

{
r∑

l=1

alγl : a1 = a2 = . . . = ar−1 = p−1
2 , 0 ≤ ar ≤ p−3

2

}
and write

A = ∪r
l=1Al.

Then for distinct elements α1, . . . , αk ∈ Fq and

f(x) = (x + α1)(x + α2) · · · (x + αk) ∈ Fq[x], (1)

the binary lattice is defined by

η(n) = η(n1, · · · , nr) =
{

+1, if f(ξn) �= 0 and f(ξn)−1 ∈ A,
−1, otherwise. (2)

It was shown in [12] that Q�(η) is “small” for the binary lattice (2) above

Q�(η) < (2�+3 + 1)k�r�q1/2(2 + log p)r+�,

where k, � < p, k + � ≤ p + 1 and k� ≤ q/2.
Now we define a binary threshold sequence using the multiplicative inverse.

Let
f(ξn)−1 = cn,1γ1 + cn,2γ2 + · · · + cn,rγr, 0 ≤ n ≤ q − 1

with all cn,i ∈ Fp = {0, 1, . . . , p − 1} for 1 ≤ i ≤ r. If f(ξn) = 0 we set cn,i = 0
for 1 ≤ i ≤ r. We obtain a sequence {y0, y1, . . . , yq−1} of numbers in the interval
[0, 1) by defining

yn =
r∑

j=1

cn,jp
−j . (3)

Then we obtain the binary threshold sequence Eq = {e0, e1, . . . , eq−1} by defining

en =
{

+1, if 0 ≤ yn < 1
2 ,

−1, if 1
2 ≤ yn < 1.

(4)

Indeed, the binary threshold sequence Eq is almost the same as the binary lattice
(2) except n = (p−1

2 , . . . , p−1
2 ) and those n (only k many such n) with f(ξn) = 0.

We note that this difference will not influence the properties considered in this
article.
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In particular, Eq extends a construction of binary sequences studied in our
work [3,4]. As a finite binary sequence, it seems that we can’t estimate the well-
distribution measure W (Eq) and the correlation measure C�(Eq) of order � for
Eq according to Q�(η). So we will apply another technique (see [8]) to estimating
W (Eq) and C�(Eq).

Note that in some references actually the sequences {e′0, e′1, . . . , e′T−1}∈{0, 1}T

with ei = (−1)e′
i , 0 ≤ i ≤ T − 1, and the corresponding definitions of the well-

distribution measure and the correlation measure are considered.
The implied constants in the symbols ‘O’ and ‘�’ are absolute. We recall that

the notations U = O(V ) and U � V are both equivalent to the assertion that
the inequality |U | ≤ cV holds for some constant c > 0.

3 Classical Measures

Given a sequence Γ of N points

Γ =
{

(ωn,0, . . . , ωn,s−1)N
n=1

}
in the s-dimensional unit cube [0, 1)s, the discrepancy Δ(Γ ) is defined by

Δ(Γ ) = sup
B⊆[0,1)s

∣∣∣∣TΓ (B)
N

− |B|
∣∣∣∣ ,

where TΓ (B) is the number of points of Γ inside the box

B = [0, β0) × · · · × [0, βs−1) ⊆ [0, 1)s

and the supremum is taken over all such boxes, see [14, Definition 2.1].
Mauduit, Niederreiter and Sárközy [8] developed a technique to estimate the

well-distribution measure W (Eq) and the correlation measure C�(Eq) of order �
for Eq by using discrepancy bounds on the sequences

{ya, ya+b, . . . , ya+(t−1)b}, a ∈ N ∪ {0}, b, t ∈ N, 0 ≤ a ≤ a + b(t − 1) ≤ q − 1

and
{(yn+d1 , yn+d2, . . . , yn+d�

)}, 0 ≤ d1 < · · · < d� < q, n ≥ 0,

respectively. Below we present the corresponding discrepancy bounds. We will
fix the notations deg(f) = k and k, � < p with k + � ≤ p + 1 and k� ≤ q/2.

Lemma 1. Let {yn} be numbers defined as in (3). For any integers a ∈ N∪{0}
and b, t ∈ N with 0 ≤ a ≤ a + b(t − 1) ≤ q − 1, the discrepancy Δ(t; a, b) of the
sequence {ya, ya+b, . . . , ya+(t−1)b} satisfies

Δ(t; a, b) � t−1kpr−1/2 log q(2 + log p)r,

where k = deg(f).
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Proof. Let ep(z) = exp(2πiz/p) for integers z. Let λi ∈ Fp (1 ≤ i ≤ r) be not all
zero and

St(λ1, . . . , λr) =
t−1∑
j=0

ep

(
r∑

i=1

λica+jb,i

)
,

where f(ξa+jb)−1 = ca+jb,1γ1 + ca+jb,2γ2 + · · · + ca+jb,rγr. According to [14,
Proposition 2.4, Theorem 3.12 and Lemma 3.13] we have

Δ(t; a, b) � 1
t

log q max
λ1,...,λr

|St(λ1, . . . , λr)| . (5)

So we only consider St(λ1,. . ., λr). Let {γ′
1, . . . ,γ

′
r} be the dual basis of {γ1,. . . ,γr}.

Since f(x) has at most k roots in Fq, we have

St(λ1, . . . , λr) =
t−1∑
j=0

ep

(
r∑

i=1

λiTrq|p(γ′
jf(ξa+jb)−1)

)
+ O(k)

=
t−1∑
j=0

ep

(
Trq|p

(
r∑

i=1

λiγ
′
jf(ξa+jb)−1)

))
+ O(k)

=
t−1∑
j=0

ψ
(
λf(ξa+jb)−1

)
+ O(k),

where ψ is the additive canonical character of Fq and λ =
r∑

i=1

λiγ
′
j . Since λi ∈ Fp

(1 ≤ i ≤ r) are not all zero and {γ′
1, · · · , γ′

r} is a basis of Fq over Fp, we have
λ �= 0. Then exactly in the same way as in [16,4], we get∣∣∣∣∣∣

t−1∑
j=0

ψ
(
λf(ξa+jb)−1

)∣∣∣∣∣∣ ≤ 3(k + 1)pr−1/2(2 + log p)r.

We obtain the desired result. �

Lemma 2. Let {yn} be numbers defined as in (3). For � ∈ N, non-negative
integers d1, . . . , d� with 0 ≤ d1 < · · · < d� < q and an positive integer N with
1 ≤ N + d� ≤ q, the discrepancy Δ(N ; d1, . . . , d�) of N points

(yn+d1 , yn+d2 , . . . , yn+d�
) ∈ [0, 1)�, n = 0, 1, . . . , N − 1

satisfies

Δ(N ; d1, . . . , d�) � N−12r+r�rk�q1/2(log q)�(2 + log p)r,

where k = deg(f).

Proof. Let λij ∈ Fp (1 ≤ i ≤ �, 1 ≤ j ≤ r) be not all zero and

SN (λ11, . . . , λ�r) =
N−1∑
n=0

ep

⎛⎝ �∑
i=1

r∑
j=1

λijcn+di,j

⎞⎠ ,
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where f(ξn+di)−1 = cn+di,1γ1 + cn+di,2γ2 + · · · + cn+di,rγr. According to [14,
Proposition 2.4, Theorem 3.12 and Lemma 3.13] we have

Δ(N ; d1, . . . , d�) � 2�(log q)� 1
N

max
λ11,...,λ�r

|SN (λ11, . . . , λ�r)| . (6)

So it suffices to estimate SN(λ11, . . . , λ�r). Since {γ′
1, . . . , γ

′
r} is the dual basis

of the ordered basis {γ1, . . . , γr} of Fq over Fp, we have

SN (λ11, . . . , λ�r) =
N−1∑
n=0

ep

⎛⎝ �∑
i=1

r∑
j=1

λijTrq|p(γ′
jf(ξn+di)

−1

⎞⎠ + O(k�)

=
N−1∑
n=0

ep

⎛⎝Trq|p

⎛⎝ �∑
i=1

r∑
j=1

λijγ
′
jf(ξn+di)

−1

⎞⎠⎞⎠ + O(k�)

=
N−1∑
n=0

ψ

(
�∑

i=1

μif(ξn+di)
−1

)
+ O(k�),

where ψ is the additive canonical character of Fq as in Theorem 1 and

μi =
r∑

j=1

λijγ
′
j , i = 1, . . . , �.

Since λij ∈ Fp (1 ≤ i ≤ �, 1 ≤ j ≤ r) are not all zero and {γ′
1, · · · , γ′

r} is a basis
of Fq over Fp, it follows that μ1, . . . , μ� are not all zero.

Combining with the idea of [16,4], we get∣∣∣∣∣
N−1∑
n=0

ψ

(
�∑

i=1

μif(ξn+di)
−1

)∣∣∣∣∣ � 2(r−1)�2rrk�q1/2(2 + log p)r.

Now by (6), we obtain the desired result. �

By [8, Theorems 1 and 2], we bound the well-distribution measure W (Eq) for
Eq defined in (4) by

W (Eq) ≤ 2 max
1≤t≤q−1

(
t max

a+(t−1)b≤q−1
Δ(t; a, b)

)
and the correlation measure C�(Eq) of order � by

C�(Eq) ≤ 2� max
M∈N

0≤d1<···<d�<q−M

MΔ(M + d�; d1, . . . , d�).

So we get the following results.

Theorem 1. Let Eq be the binary sequence of length q = pr defined as in (4)
with f(x) of degree k as in (1). If k, � < p, k + � ≤ p + 1 and k� ≤ q/2, then the
well-distribution measure of Eq holds

W (Eq) � kpr−1/2 log q(2 + log p)r,



Binary Threshold Sequences Constructed by Using the Multiplicative Inverse 101

and the correlation measure of order � of Eq holds

C�(Eq) � 2r+r�+�rk�q1/2(log q)�(2 + log p)r.

Of course, one can use the inequality (see [10, Theorem 1])

W (Eq) ≤ 3(q · C2(Eq))1/2

to obtain an improved upper bound for W (Eq).

4 Modified Measures

In [16], a slight modifications of the measures W (Eq) and C�(Eq) were introduced
for the sequence Eq in (4). For the ordering ξn ∈ Fq, define

n ⊕ d = m if and only if ξn + ξd = ξm, 0 ≤ n, d, m < q,

and
n � d = m if and only if ξn · ξd = ξm, 0 ≤ n, d, m < q.

Then the modified well-distribution measure W⊕(Eq) is defined by

W⊕(Eq) = max
0≤a<q, 1≤b<q

1≤t≤q

∣∣∣∣∣∣
t−1∑
j=0

ea⊕(b�j)

∣∣∣∣∣∣
and the modified correlation measure of order � by

C⊕
� (Eq) = max

0≤d1<d2<...<d�<q

1≤t≤q

∣∣∣∣∣
t−1∑
n=0

en⊕d1 · · · en⊕d�

∣∣∣∣∣ .
Theorem 2. Let Eq be the binary sequence of length q = pr defined as in (4)
with f(x) of degree k as in (1). If k, � < p, k + � ≤ p + 1 and k� ≤ q/2, then we
have

W⊕(Eq) � kq1/2(log q)2,

and
C⊕

� (Eq) � 2�k�q1/2(log q)�+1.

Similar to Theorem 1, the results follow from [8, Theorems 1 and 2]. So we only
need to estimate the discrepancy bound Δ⊕(t; a, b) on the sequence

{ya, ya⊕b, . . . , ya⊕(t−1)�b}, 0 ≤ a < q, 1 ≤ b < q, 1 ≤ t ≤ q

and the discrepancy bound Δ⊕(t; d1, . . . , d�) on the points of �-dimension

{(yn⊕d1 , yn⊕d2 , . . . , yn⊕d�
)}t−1

n=0, 0 ≤ d1 < · · · < d� < q, 1 ≤ t ≤ q.
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As in the proofs of Lemmas 1 and 2, it suffices to consider the exponential sums

S⊕
t (λ1, . . . , λr) =

t−1∑
j=0

ep

(
r∑

i=1

λica⊕j�b,i

)
and

S⊕
t (λ11, . . . , λ�r) =

t−1∑
n=0

ep

⎛⎝ �∑
i=1

r∑
j=1

λijcn⊕di,j

⎞⎠
respectively. We first present a lemma, which is an extension of [17, Lemma 3.9].

Lemma 3. Let S ⊆ Fq and g(x), h(x) ∈ Fq[x]. Then∣∣∣∣∣
∑
z∈S

ψ

(
g(x)

h(x)

)∣∣∣∣∣ ≤ 1

q

∑
ω∈F∗

q

∣∣∣∣∣
∑
z∈S

ψ (ωz)

∣∣∣∣∣
∣∣∣∣∣∣
∑
x∈Fq

ψ

(
g(x)

h(x)
− ωx

)∣∣∣∣∣∣+
|S|
q

∣∣∣∣∣∣
∑
x∈Fq

ψ

(
g(x)

h(x)

)∣∣∣∣∣∣
Proof. We get the desired result by using the standard method for reducing
incomplete exponential sums to complete ones [7, Chapter 12]. �

Now we return to prove Theorem 2. We also adopt the notations in the proofs
of Lemmas 1 and 2.

S⊕
t (λ1, . . . , λr) =

t−1∑
j=0

ep

(
r∑

i=1

λica⊕j�b,i

)

=
t−1∑
j=0

ep

(
r∑

i=1

λiTrq|p(γ′
jf(ξa⊕j�b)−1)

)
+ O(k)

=
t−1∑
j=0

ψ
(
λf(ξa⊕j�b)−1

)
+ O(k)

=
t−1∑
j=0

ψ
(
λf(ξa + ξj · ξb)−1

)
+ O(k),

where λ =
r∑

i=1

λiγ
′
j . Then by Lemma 3, [15, Lemma 2], [15, Lemma 1] (which in

turns comes from [13, Theorem 2]), and [17, Lemma 3.11], we obtain

S⊕
t (λ1, . . . , λr) � kq1/2(1 + log q)

Similarly, with

μi =
r∑

j=1

λijγ
′
j , i = 1, . . . , �

we obtain

S⊕
t (λ11, . . . , λ�r) =

t−1∑
n=0

ψ

(
�∑

i=1

μif(ξn + ξdi)
−1

)
+ O(k�)

� k�q1/2(1 + log q).
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Now we use (5) and (6) with S⊕
t (λ1, . . . , λr) and S⊕

N (λ11, . . . , λ�r) to obtain

Δ⊕(t; a, b) � 1
t
kq1/2(log q)2

and
Δ⊕(t; d1, . . . , d�) � 1

t
k�q1/2(log q)�+1.

Then by [8, Theorems 1 and 2] we obtain the desired results. �

5 Linear Complexity Profile

The linear complexity profile is an important cryptographic characteristic of
sequences and provides information on the predictability and thus suitability for
cryptography.

The linear complexity profile of a sequence E′
T = (e′0, e

′
1, . . . , e

′
T−1) ∈ {0, 1}T

over F2 is the smallest L, denoted by L(E′
T , N), such that a linear recurrence of

order L over F2 can generate the first N terms of E′
T , see, e.g. [5,18].

The linear complexity profile L(E′
T , N) of E′

T and the correlation measure
C�(ET ) of order � of ET = (e0, e1, . . . , eT−1) ∈ {−1, +1}T defined by en =
(−1)e′

n are related by the relation

L(E′
T , N) ≥ N − max

1≤�≤L(E′
T ,N)+1

C�(ET ), 2 ≤ N ≤ T − 1,

see [1]. By Theorem 1, we have the following result.

Corollary 1. Let Eq be the binary sequence of length q = pr defined as in (4).
Then the linear complexity profile of E′

q = (e′0, e′1, . . . , e′q−1) ∈ {0, 1}q defined by
en = (−1)e′

n satisfies

L(E′
q, N) = Ω

(
log(Nq−1/22−rr−1k−1(2 + log p)−r)

r + log log q

)
, 2 ≤ N < q.
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11. Mauduit, C., Sárközy, A.: On large families of pseudorandom binary lattices. Uni-
form Distribution Theory 2, 23–37 (2007)
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Abstract. Verheul’s theorem [20,21] on some certain supersingular el-
liptic curves is usually considered as an evidence for the difficulty of
pairing inversion. Moody in [16] generalized it to some other supersin-
gular curves. In this paper, we construct two types of ordinary elliptic
curves with embedding degree k = 1, and give the corresponding distor-
tion maps. Following their method, we generalize Verheul’s theorem to
our curves.

Keywords: Elliptic curve, Diffie-Hellman problem, pairing, distortion
map.

1 Introduction

Bilinear pairings such as the Tate pairing and the Weil pairing on elliptic curves
are very important in cryptography. Let E be an elliptic curve defined over a
finite field Fq, and let P be a base point with prime order n dividing #E(Fq).
Let k be the embedding degree of E(Fq), in other words, the smallest positive
integer such that n|qk − 1. It is proved by Menezes, Okamoto and Vanstone
in [17] that the Weil pairing can reduce the discrete logarithm problem in the
group 〈P 〉 ⊂ E(Fq) to the same problem in F∗

qk (This method is called as MOV
embedding). The Tate pairing was introduced into cryptography by Frey and
Rück [4], and can similarly do as the Weil pairing does (also known as FR
embedding). They also induces some varieties of bilinear pairings, and have even
been used to construct numerous cryptosystems.

In 2001, Verheul in [20] proved that by using pairings, there was a computable
homomorphism from certain supersingular elliptic curves to the group used in
the XTR cryptosystems [13]. He also proved that if the map could be efficiently
inverted, then the Difffie-Hellman problem would be efficiently solved in the
certain finite fields. Verheul proved the following:
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Theorem 1. Let p be a prime p ≡ 2 mod 3, and n a prime number such that
n|(p2 + p − 1). Let g be a generator of μn, the group of nth roots of unity in
F∗

p6 . Let P a point of order n on a supersingular curve E defined over Fp2 with
#E(Fp2) = p2− p+ 1. If an efficiently computable homomorphism can be found
from μn to 〈P 〉, then the Diffie-Hellman problem can be efficiently solved in both
μn and 〈P 〉.
This theorem can be generalized to some other classes of supersingular curves.
Moody generalized it as

Theorem 2 ([16]). Let Fq be an arbitrary finite field. Then there is an elliptic
curve E over Fq such that the twisted curve Ẽ(Fq2) is a product of two cyclic
groups of order q−1. Given such a curve, let P be a generator for one of the cyclic
subgroups of order q − 1. Under the MOV embedding, we have an isomorphism
from 〈P 〉 to F∗

q. If an efficiently computable isomorphism can be found from F∗
q

to 〈P 〉, then (assuming the Generalized Riemann Hypothesis) the Diffie Hellman
problem can be efficiently solved in both F∗

q and 〈P 〉.
An open question is to generalize some form of Verheul’s theorem to ordinary
curves with low embedding degree. It would be interesting to find a way to
construct distortion maps efficiently for ordinary curves with embedding degree
k = 1, since Verheul proved that distortion maps for ordinary curves existed
only in this case.

Our main contribution of this work is to answer the above question by two
types of ordinary elliptic curves with k = 1. The paper is organized as follows.
Section 2 introduces some basic notions for pairings and pairing inversion prob-
lems. We compare the supersingular curves and ordinary curves in some aspects
in section 3. In section 4 we put our two types of ordinary curves with k = 1 and
give the corresponding distortion maps. At last in section 5 we generalize the
Verheul’s theorem and estimate the cost of pairing computation in our cases.

2 Pairing and Pairing Inversion

2.1 Pairing

We consider cryptographic pairings in a formal way. Let G1, G2 and GT be cyclic
groups of prime order r. Supposing non-degenerate bilinear pairings of the form

e : G1 ×G2 → GT .

Galbraith, Paterson and Smart in [7] separated different possible pairings in-
stantiations into three basic types:

Type 1: G1 = G2;
Type 2: G1 �= G2 but there is an efficiently computable homomorphism φ :
G1 → G2;



A Generalization of Verheul’s Theorem for Some Ordinary Curves 107

Type 3: G1 �= G2 and there are no efficiently computable homomorphisms be-
tween G1 and G2.

A Type 2 pairing is essentially a Type 1 pairing. Usually we call Type 1 & 2
pairings are symmetric pairings, while the Type 3 ones are called as asymmetric
pairings.

The Weil and Tate pairings in some certain case (with the help of distortion
maps) can be modified to symmetric ones.

2.2 Pairing Inversion

The approach to construct an efficiently computable homomorphism from F∗
qk

to 〈P 〉 is to invert a pairing. Verheul’s results are usually considered as evidence
for the difficulty of pairing inversion.

Galbraith, Hess and Vercauteren in [6] defined some pairing inversion prob-
lems under consideration:

FAPI-1. (Fixed Argument Pairing Inversion 1) Problem: Given g1 ∈ G1 and
z ∈ GT , compute g2 ∈ G2 such that e(g1, g2) = z.
FAPI-2. (Fixed Argument Pairing Inversion 2) Problem: Given g2 ∈ G2 and
z ∈ GT , compute g1 ∈ G1 such that e(g1, g2) = z.
GPI. (Generalized Pairing Inversion) Problem: Given a pairing e and a value
z ∈ GT , find g1 ∈ G1 and g2 ∈ G2 with e(g1, g2) = z.

For pairing of Type 1 & 2, the FAPI-1,FAPI-2 problems are essentially the
same. In the following, we focus on pairing of Type 1 & 2 (For convenience, we
set G1 = G2).

We also consider the following problems:

BDHP. (bilinear Diffie-Hellman problem): Given g, ga, gb, gc ∈ G1, determine
e(ga, gb)c.
DHP. (Diffie-Hellman problem): Given g, gx, gy ∈ G1 or GT , determine gxy.
DLP. (discrete logarithm problem): Given g, gx ∈ G1 or GT , determine x.

We summarize the complexity relations between these problems in pairing based
cryptography as (The arrow goes from a complexity assumption to a weaker one):

BDHPG1

���

���

DHPG1

DHPGT

���

���
GPI � FAPI

�

�

DLPG1

DLPGT

���

���
�
�

3 Supersingular vs. Ordinary

Let E be an elliptic curve defined over Fq where q is a power of prime p. If
#E(Fq) ≡ 1 mod p, the curve E is supersingular, otherwise E is said to be
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ordinary. There are several equivalent conditions for the definition of super-
singular curves [18, Chapter V, Theorem 3.1]. We compare the supersingular
elliptic curves and ordinary ones in some aspects:

3.1 The Torsion Group

Let Fq be a finite field of characteristic p and E be an elliptic curve over Fq. Let
Fq be the algebraic closure of Fq. Let r ∈ Z, r �= 0. Define

E(Fq)[r] = {P ∈ E(Fq) : [r]P = O}.
E(Fq)[r] is called as the r-torsion group of E(Fq). Recall that it is another
notation for Ker[r], the set of points of E having order r. It has the property [19]:
If (r, p) = 1, then

E(Fq)[r] ∼= Z/rZ ⊕ Z/rZ

If r = pe, e = 1, 2, 3, ..., then

E(Fq)[r] ∼=
{
{O} if E is supersingular
Z/peZ Otherwise.

3.2 The Distortion Map

A distortion map φ (defined over Fqk ) with respect to a cyclic subgroup 〈P 〉
of order r is an endomorphism (defined over Fqk ) of the curve that maps any
non-zero point Q ∈ 〈P 〉 to a point φ(Q) independent from Q [21]. Verheul
proved that the distortion maps always exist on groups of points on supersingular
elliptic curves [21, Theorem 5]. Verheul in [21, Theorem 6,7] and Charles in [2,
Theorem 2.1] proved that distortion maps for ordinary curves exist only when
the embedding degree k = 1 and under some certain conditions. Here we deduce
an obvious conclusion.

Theorem 3. Let E be a non-supersingular curve defined over Fq and let P ∈
E(Fq) of order r, where r is prime and coprime to q. If there exist a distortion
map w.r.t. P , then the r-torsion group E(Fq)[r] ⊂ E(Fq). Moreover, r2|#E(Fq)
and r|(q − 1).

Proof. This can be derived from [20, Theorem 11] and [19, Proposition 3.7].

3.3 The Embedding Degree

For supersingular elliptic curves the embedding degree is either 1, 2, 3, 4 or 6.
For ordinary ones the degree is various.

As far as we know, most papers concerned the embedding degree from the
beginning that k ≥ 2, few papers discussed the case k = 1. Let t = q+1−#E(Fq)
be the Frobenius trace. We briefly introduce the existent types of curves with
k = 1.
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Supersingular Curves. Supersingular curves with k = 1 exists only over finite
field Fq where q = ps with s even [17]. In this case, we must have t = ±2

√
q,

and thus #E(Fq) = (
√
q ± 1)2.

Ordinary Curves with Frobenius trace t = 2.

1. Joux et al. in [11,12] considered the elliptic curve E(Fq) with Frobenius trace
t = 2, thus #E(Fq) = q − 1.

2. Koblitz and Menezes in [10] constructed a type of curves with t = 2 as
follows. Let q > 2 be a prime of the form A2 + 1. If A ≡ 0 mod 4, let
E : y2 = x3 − x be the elliptic curve defined over Fq. If A ≡ 2 mod 4, then
let E : y2 = x3 − 4x be the curve. In both cases,#E(Fq) = A2.

3. Freeman, Scott and Teske in [5] extended the above results and parameter-
ized a complete family of elliptic curves with k = 1 and t = 2.

4 Our Ordinary Elliptic Curves

Motivated by Theorem 3, we construct two types of ordinary elliptic curves with
embedding degree k = 1 in this section.

4.1 Type I

Let ω = −1+
√−3
2 represent the third root of unity in C, as usual we have ω2 = ω.

The ring Z[ω] = {c + dω|c, d ∈ Z} is known as the ring of Eisenstein integers,
which is a principal ideal domain. The norm of c + dω ∈ Z[ω] is given by N(c +
dω) = (c + dω)(c + dω) = (c2 − cd + d2).

Let r ≡ 2 mod 3 be an odd integer and set R = r2 + r + 1. Apparently, R ≡
1 mod 3. Let π = ω− rω, then π ≡ 2 mod 3, and thus we have the factorizations
R = ππ. Denote (·)6 as the six residue symbol. Assume r,R are both primes,
and (4b

π )
6

= −ω, we consider the ordinary elliptic curve

E(FR) : y2 = x3 + b. (1)

Note that (4b
π )

6
= ( b

π )
6

= −ω, thus b is neither a square nor a cube in F∗
R. We

claim that such b always exists in F∗
R, since R ≡ 1 mod 6, only one third of the

elements of F∗
R are cubes and only one half of the elements of F∗

R are squares.
Moreover, if we find some β satisfying that polynomial X6−β is irreducible over
FR[X ], then b can be given by b = β or b = β5.

The action [3, §7.2.3 Example]

ω : E(FR) → E(FR)
(x, y) → (r · x, y)

O → O
is an endomorphism of E(FR). We note that the group E(FR) can be viewed as
a Z[ω]-module.
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Lemma 1. #E(FR) = r2.

Proof. By [9, Chap. 18, § 3, Theorem 4], we have

#E(FR) = R + 1 + (
4b
π

)
6
π + (

4b
π

)
6
π = R + 1− (r + 2) = r2.

��
Since r|R − 1, we deduce that the embedding degree of E(FR) is 1. Note that
this type of curve is not some one with Frobenius trace t = 2.

Lemma 2. E(FR) ∼= Z[ω]/(r) ∼= Z/rZ ⊕ Z/rZ.

Proof. Since Z[ω] is a principal ideal domain and E(FR) is a finite group and a
finitely generated Z[ω]-module, then E(FR) is isomorphic to the additive group:

Z[ω]/(α1)⊕ Z[ω]/(α2)⊕ · · · ⊕ Z[ω]/(αd)

for some d ∈ N and {αi} ⊂ Z[ω], α1|α2| · · · |αd. We can view each Z[ω]/(αi) as a
subgroup of E(FR) and thus #Z[ω]/(αi) = N(αi) = αiαi divides #E(FR) = r2.

Since r ≡ 2 mod 3 is prime, then (−3
r ) = −1, and hence polynomial

X2 + 3 is irreducible over Fr[X ], which indicates that r is inert in Z[ω] and
(r) is the unique prime ideal in Z[ω] with norm equal to a power of r. By
uniqueness of factorization, we obtain that for each i there exists some ni such
that (αi) = (r)ni . At last, since [r] is a degree r2 endomorphism, which implies
that d = 1. ��
To generalize Verheuls theorem, we need to find distortion maps. We have the
following result

Theorem 4. The action ω is a distortion map on the group E(FR).

Proof. Let P be a point of E(FR) with order r. We prove that ω is a distortion map
on 〈P 〉. If not, there exists some λ ∈ Z such that ω(P ) = [λ]P , then λ2 + λ + 1 ≡
0 mod r. Thus λ is a solution for the equation x2 + x + 1 ≡ 0 mod r and hence
(−3

r ) = 1, which contradicts to r ≡ 2 mod 3. So we have ω(P ) �∈ 〈P 〉. ��
In fact, {P, ω(P )} generates E(FR)[r], and we have

ω

(
P

ω(P )

)
=

[
0 1
−1 −1

](
P

ω(P )

)

4.2 Type II

Let r ≡ 3 mod 4 be an integer and set R = 16r2 + 1. Apparently, R ≡ 1 mod 4.
Setting π = 1+4ri, we have the factorizations R = ππ. Note that π ≡ 1 mod (2+
2i). Assume r and R are both primes, we consider the ordinary elliptic curve

E(FR) : y2 = x3 − x. (2)
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The action [3, §7.2.3 Example]

i : E(Fp) → E(Fp)
(x, y) → (−x, 4r · y)

O → O
is an endomorphism on the group E(FR). We observe that the group E(FR) can
be viewed as a Z[i]-module.

Lemma 3. #E(FR) = 16r2.

Proof. By [9, Chap. 18, § 4, Theorem 5], we have

#E(FR) = R + 1− (
1
π

)
4
π − (

1
π

)
4
π = R + 1− 2 = 16r2.

��
Since r|R − 1, we deduce that the embedding degree k = 1.

Lemma 4. E(FR) ∼= Z[i]/(4ri) ∼= Z/4rZ⊕ Z/4rZ.

Proof. The proof is similar to that for Lemma 2. Actually, as claimed in [10],
since all FR-points on E are in the kernel of the endomorphism π− 1 = 4ri, the
Z[i]-module E(FR) is isomorphic to Z[i]/(4ri) ∼= Z/4rZ⊕ Z/4rZ. ��
The corresponding distortion map is given by the following theorem

Theorem 5. The action i is a distortion map on the group E(FR).

Proof. Note that (−1
r ) = −1, the proof is similar to that for Theorem 3. ��

Our type II curve is a special case of Koblitz and Menezes’s trace 2 curves in
[10]. Let P be a point of E(FR) with order r, {P, i(P )} generates E(FR)[r], and
we have

i

(
P

i(P )

)
=

[
0 1
−1 0

](
P

i(P )

)

5 Applications

5.1 Generalized Verheul’s Theorem

We would like to show that if the pairing inversion problem could be solved
on our embedding degree k = 1 curves, then the DLP on the same curves is
equivalent to (and not easier than) the DLP in F∗

R. The result is put as follows:

Theorem 6. Given an ordinary elliptic curve E(FR) as Type I or II. Then
E(FR)[r] is a product of two cyclic groups of order r. Let P be a generator for
one of the cyclic subgroups. Let μr be the group of rth roots of unity in F∗

R. Under
the MOV embedding, we have an isomorphism from 〈P 〉 to μr. If an efficiently
computable isomorphism can be found from μr to 〈P 〉, then the DHP can be
efficiently solved in both μr and 〈P 〉.
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Proof. (Sketch) Denote by I : μr → 〈P 〉 the isomorphism. Let φ be the corre-
sponding distortion map on E(FR) for P , then P and φ(P ) are linearly inde-
pendent. Let e be the Weil pairing. Set ζ = e(P, φ(P )), then ζ is a generator
for μr. Suppose we are given P, [a]P, [b]P . If I(ζ) = [c]P , then by the method of
Verheul in [20,21], we compute Q = [c−2]P = [cr−3]P as follows: Given [ci]P one
can compute [ci+1]P = I(e(P, φ([ci]P ))) and [c2i+1]P = I(e([ci]P, φ([ci]P ))). At
last, we have [ab]P = I(e(I(e([c−2]P, φ([a]P ))), φ([b]P ))), which shows that the
DHP in 〈P 〉 can be efficiently solved. Moreover, it follows that the DHP in μr

can also be efficiently solved. ��

5.2 Pairings on Our Curves

Let fr,P be the function whose divisor is r(P ) − r(O). For P,Q ∈ E(FR)[r],
Q �∈ 〈P 〉, the Weil pairing e and the Tate pairing t of P,Q are given by

e(P,Q) = fr,P (Q)/fr,Q(P ), t(P,Q) = fr,P (Q)(R−1)/r
.

The distortion map φ on our curve maps point P (�= O) to φ(P ), which is
linearly independent from P . As consequences, the Weil pairing e and the Tate
pairing t of P and φ(P ) are non-trival, thus we can modify both e and t of
P1, P2 ∈ 〈P 〉 as

ê(P1, P2) = e(P1, φ(P2)), t̂(P1, P2) = t(P1, φ(P2))

which are non-degenerate type 1 pairings in Section 2.1, thus they satisfy all the
required properties for realizing a single point tripartite Diffie-Hellman protocol
in [11] and other type 1 pairing based protocols.

Since the pairings on our type I or II curves take values in the base prime field
FR over which the curves are defined, we do not need computation in any exten-
sion field. The Miller algorithm [14,15] has been widely used to compute the Weil
and Tate pairings. It is convenient for us to use the Jacobian coordinates [1,8] on
our curves. For elliptic curve E : Y 2Z = X3 + aXZ2 + bZ3 in Jacobian coordi-
nates, a point (X,Y, Z) corresponds to the point (x, y) in affine coordinates with
x = X/Z2, y = Y/Z3. Doubling a point T = (X,Y, Z) as [2]T = (X2, Y2, Z2).

X2 = (3X2 + aZ4)2 − 8XY 2,

Y2 = (3X2 + aZ4)(4XY 2 −X2)− 8Y 4,

Z2 = 2Y Z.

We should also evaluate the iterative function

f1 ← f2
1 · ι1υ2;

f2 ← f2
2 · ι2υ1;

ι(x, y) = ι1(x, y)/ι2
= (Z2Z

2y − 2Y 2 − (3X2 + aZ4)(xZ2 −X))/(Z2Z
2);

υ(x) = υ1(x)/υ2 = (Z2
2x−X2)/Z2

2 .
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Let S denote squaring and M denote multiplying in FR. For each doubling
step of Miller algorithm, the field operation count for computing Tate pairing
on Type I curves is 8S + 12M (w.r.t. 9S + 12M on Type II curves). Since
computing Weil pairing needs this procedure twice, each doubling step of Miller
algorithm costs 16S+24M for Weil pairing computation on Type I curves (w.r.t.
18S + 24M on Type II curves). The computation of Tate pairing also needs a
extra final exponentiation which costs about (BR/Br−1)BrS, where Bx denotes
the bit length of x.

Note that in our construction, if r has a low hamming weight, then so does
R (Example curves are given in Appendix). Hence the cost of adds/substracts
is negligible compared to that of doublings. Since BR/Br ≈ 2 for Type I and
II curves, and then (BR/Br − 1)BrS < Br(8S + 12M), we point out that the
computation of Tate pairing is usually faster than that of Weil pairing on our
curves.

Acknowledgments. The authors would like to thank Prof. Nigel Smart for
some suggestions on the pairing inversion problem, and thank the anonymous
reviewers for their helpful comments and constructive suggestions on an earlier
version of this paper.
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Appendix: Examples

Type I
80-bit security level:

r = 2160 + 29431, E(FR) : y2 = x3 + 97.

128-bit security level:

r = 2256 + 98545, E(FR) : y2 = x3 + 3.

256-bit security level:

r = 2512 + 436711, E(FR) : y2 = x3 + 29.

Type II
80-bit security level:

r = 2160 + 23923, E(FR) : y2 = x3 − x.

128-bit security level:

r = 2256 + 95203, E(FR) : y2 = x3 − x.

256-bit security level:

r = 2512 + 611515, E(FR) : y2 = x3 − x.
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Abstract. Computing the information rate of access structures is an
important part of the research of secret sharing schemes. In this paper,
we investigate two combinatorial approaches of computing upper bounds
on the information rate of access structures - the Csirmaz’s polymatroid
approach and the independent sequence approach. We prove that the
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alent to finding a maximum alternating cycle-free matching in a bipartite
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1 Introduction

A secret sharing scheme (SSS) consists of a dealer p0, a finite set P of partic-
ipants and a collection A of subsets of P called the access structure. In a SSS
realizing access structure A, the dealer p0 distributes shares of a secret to par-
ticipants such that any qualified subset A ∈ A can reconstruct the secret from
its shares, whereas any unqualified subset A �∈ A can’t reveal any partial infor-
mation about the secret in information theoretic sense. SSS was firstly proposed
for the threshold case by Blakley [1] and Shamir [15] in 1979, and generalized
by Ito et al. [11] to general cases.

In a SSS, data expansion, i.e. the size of every share set is no less than that
of the secret set [12], makes it difficult to manage shares. In order to measure
it, the concept of information rate was introduced by Brickell et al. [6]. By
information theoretic approach, Capocelli et al.[7] firstly gave upper bounds on
the information rate of some access structures. Henceforward, the information
rates of some access structures were given in [3–6, 9, 16].
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Computing the information rate of access structures consists of computing
an upper bound on the information rate by information theoretic approach and
computing a lower bound on the information rate by an approach called decom-
position of access structures. When an upper bound and a lower bound on the
information rate of an access structure are equal, the exact value of the informa-
tion rate of the access structure is reached. However, the information theoretic
approach is so technical and empirical that it seems very difficult to compute
upper bound on the information rate of an access structure over a large set of
participants. Up to date, the known upper bounds on the information rate of
access structures are confined to that of some graph-based access structures [3–
6, 9, 16] and that of some special access structures [8]. By submodularity of a
polymatroid, a class of access structures with known upper bounds on the in-
formation rate is constructed by Csirmaz [8]. For the first time, this approach
makes it possible to compute upper bounds on the information rate only by com-
binatorial property of access structures. Based on the previous works, Blundo
et al. [2] introduced an approach called independent sequence. With the help of
the Csirmaz’s polymatroid approach and the independent sequence approach,
researchers can compute upper bounds on the information rate of access struc-
tures from combinatorial point of view. However, few research works had been
devoted to this area, the relationship between the Csirmaz’s polymatroid ap-
proach and the independent sequence approach, and how to find an independent
sequence with maximum length are still not known.

In this paper, the relationship between the Csirmaz’s polymatroid approach
and the independent sequence approach, and properties of independent sequences
with respect to graph-based access structures have been investigated, and the
problem of finding an independent sequence with respect to a graph-based access
structure with maximum length has been reduced to that of finding a maximum
alternating cycle-free matching in a bipartite graph. In Section 2, some basic
notions and related results will be introduced. In Section 3, the relationship
between the Csirmaz’s polymatroid approach and the independent sequence
approach will be discussed. Finally, properties of independent sequences with
respect to graph-based access structures will be investigated.

2 Notions and Related Results

Let P be a set of participants, a collection of subsets A ⊆ 2P is an access
structure over P , if it is monotone, i.e. A ∈ A and A ⊆ B ⊆ P implies B ∈ A.
Given an access structure A over P , let Am = {A ∈ A : B ⊂ A ⇒ B �∈ A}. Let
A be an access structure over P and X ⊆ P , the restriction of A to X is defined
as A|X = {A ∈ A : A ⊆ X}. Obviously, the restriction of access structure A to
X is still an access structure, and (A|X)m = Am|X .

Firstly, let’s introduce the formal definition of secret sharing schemes.

Definition 1. Let P = {p1, p2, · · · , pn} be a set of participants, A ⊆ 2P be an
access structure over P , and S, S1, · · · , Sn be n + 1 finite sets. Suppose π ⊆
S × S1 × · · · × Sn is the probability space of random variables (p0, p1, · · · , pn)
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such that for any α ∈ π, the probability P (α) > 0. π is a secret sharing scheme
(SSS) realizing access structure A, if it satisfies the following conditions:

1. ∀A ∈ A, H(S|A) = 0,
2. ∀A �∈ A, H(S|A) = H(S),

where H(·) is the entropy function.

Let P ′ = P ∪ {p0} and A = {pj1 , pj2 , · · · , pjk
} be a subset of P ′, where 0 ≤

j1 ≤ · · · ≤ jk ≤ n. For α = (s, s1, · · · , sn) ∈ π, let α(A) = (sj1 , sj2 , · · · , sjk
).

S′ = {α(p0) : α ∈ π} is the secret space of the SSS π, and S′
j = {α(pj) : α ∈ π}

is the share space of the SSS π corresponding to pj , where 1 ≤ j ≤ n. For
convenience, we still denote the secret space by S, and denote the share space
corresponding to pj by Sj .

Karnin et al.[12] proved that in a SSS, H(Si) ≥ H(S), ∀1 ≤ i ≤ n. To measure
data expansion in a SSS, Brickell et al. [6] introduced the concept of information
rate.

Definition 2. Let P be a set of participants, A be an access structure over P ,
and PS(A) be a SSS realizing access structure A. The information rate of SSS
PS(A) is defined as

ρ(PS(A)) = min
pi∈P

H(S)/H(Si)

where S is the secret space and Si(1 ≤ i ≤ n) is the share space. ρ(A) =
sup{ρ(PS(A))} is called the information rate of access structure A.

To derive an upper bound on the information rate, computing a lower bound on
the mutual information I(A;B) between A ⊆ P and B ⊆ P is the key point[16].
To solve this problem, Csirmaz [8] used a polymatroid approach, and Blundo et
al. [2] proposed the concept of independent sequence.

In the following, we will introduce the concept of polymatroid and its prop-
erties, please refer to [14, 17] for details.

Definition 3. A polymatroid is a pair S = (Q, f) satisfying the following con-
ditions, where f : 2Q →R.

1. f(∅) = 0,
2. monotone: if X ⊆ Y ⊆ Q, then f(X) ≤ f(Y ),
3. submodular: if X,Y ⊆ Q, then f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ).

Let π be a SSS, and A ⊆ P ′, define f(A) = H(A)/H(S). It’s easy to verify that
(P ′, f) is a polymatroid, and satisfies the following conditions [8].

Proposition 1. The function f defined above satisfies the following conditions:

1. if A ⊆ B, A �∈ A and B ∈ A, then f(B) ≥ f(A) + 1,
2. if A ∈ A, B ∈ A and A∩B �∈ A, then f(A)+f(B) ≥ f(A∪B)+f(A∩B)+1.
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Based on the previous works, Blundo et al.[2] proposed an independent sequence
approach.

Definition 4. Let A be an access structure over P , and A,B ⊆ P , where B �∈
A. A sequence of pairs (A1, B1), · · · , (An, Bn) is an independent sequence of
(A,B) with respect to access structure A with length n− 1, if A1, · · · , An ⊆ A,
B1 ⊆ · · · ⊆ Bn = B and the following conditions are satisfied.

1. ∀1 ≤ i ≤ n, Ai ∪Bi ∈ A,
2. ∀1 ≤ i ≤ n− 1, Ai+1 ∪Bi �∈ A.

Given an independent sequence (A1, B1), · · · , (An, Bn), it can be proved

H(A|Bi)−H(A|Bi+1) ≥ H(S), ∀1 ≤ i ≤ n− 1.

By this property, lower bound on the conditional mutual information between
A and B can be derived as follows:

I(A;B|B1) = H(A|B1)−H(A|Bn)
=

∑n−1
i=1 (H(A|Bi)−H(A|Bi+1))

≥ (n− 1)H(S)

In this paper, we will investigate independent sequences with respect to graph-
based access structures. Now, let’s introduce some basic concepts of graph theory.

Let G = (V,E) be a finite, undirected simple graph. A sequence (v1, v2, · · · , vk)
of distinct vertices forms a path in G, if for any 2 ≤ i ≤ k, {vi−1, vi} ∈ E. A
path (v1, v2, · · · , vk) forms a cycle in G if {v1, vk} ∈ E. A graph G = (V,E) is a
bipartite graph, if there is a partition of V into two disjoint subsets X,Y such
that every edge has its end in different sets. A bipartite graph is also denoted
by (X,Y,E). A set M ⊆ E of nonadjacent edges is a matching in G. For a given
matching M , a cycle C is an alternating cycle if there is a numeration such that
C = (v1, v2, · · · , v2k) and for any i ∈ {1, 2, · · · , k}, {v2i−1, v2i} ∈ M . A matching
M in G is alternating cycle-free if G has no alternating cycle with respect to M .

Given a graph G with the participants as its vertices, an access structure
based on G consists of all subsets containing an edge of G.

3 On the Relationship between the Csirmaz’s
Polymatroid Approach and the Independent Sequence
Approach

At first, let’s summarize the Csirmaz’s polymatroid approach as follows.

Definition 5. Let A1, A2, B1, B2 ⊆ P , where A1 ∪ B2 = A2, A1 ∩ B2 = B1

and A1 ∈ A, B2 �∈ A. (A1, B1), (A2, B2) is a grid of (A1, B2) with respect to
access structure A, if there is B2 ⊆ Y ⊆ A2 such that Y ∈ A and X = A1 ∩
Y �∈ A. (A1, B1), (A2, B2), · · · , (An, Bn) is a sequence of grids of (A1, Bn) with
respect to access structure A with length n − 1, if for any 1 ≤ i ≤ n − 1,
(Ai, Bi), (Ai+1, Bi+1) is a grid with respect to access structure A.
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B1 B2 B3 Bn

A1 A2 A3 An

X1 X2 X3Y2 Y3 Yn

Fig. 1. A sequence of grids

Given a grid (A1, B1), (A2, B2), it’s obvious that A1 ∪ Y = A2, X ∪ B2 = Y
and X ∩B2 = B1. And for a sequence of grids (A1, B1), (A2, B2), · · · , (An, Bn),
it can be proved that A1 ∪ Bn = An and A1 ∩ Bn = B1. By submodularity of
polymatroid and Proposition 1(2), we have

f(A1) + f(Y ) ≥ f(A2) + f(X) + 1
f(X) + f(B2) ≥ f(Y ) + f(B1)

Add the above inequalities, we get

f(A1)− f(B1) ≥ f(A2)− f(B2) + 1

Then for a sequence (A1, B1), (A2, B2), · · · , (An, Bn) of grids,

f(Ai)− f(Bi) ≥ f(Ai+1)− f(Bi+1) + 1, ∀1 ≤ i ≤ n− 1

Hence
f(A1)− f(B1) ≥ f(An)− f(Bn) + (n− 1)

By definition of grid, we have A1 ∪ Bn = An, A1 ∩ Bn = B1. By definition of
function f in the polymatroid induced by a SSS, the following inequality can be
deduced.

I(A1;Bn|B1) = H(A1|B1)−H(A1|Bn)
= H(A1)−H(B1)−H(An) + H(Bn)
= (f(A1)− f(B1)− f(An) + f(Bn))H(S)
≥ (n− 1)H(S)

Similar to that of the independent sequence approach, from the above inequal-
ity we can obtain an upper bound on the information rate of access structure A.

Theorem 1. There is a sequence of grids of (A,B) with respect to access struc-
ture A with length n−1 ⇔ there is an independent sequence (A′

1, B1), · · · , (A′
n, Bn)

of (A,B) with respect to access structure A with length n−1 such that A∩B ⊆ B1.

Proof: “⇐” Let (A1, B1), · · · , (An, Bn) be a sequence of grids of (A,B) with
respect to access structure A. By the definition of grid, for any 2 ≤ i ≤ n, there
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is Bi ⊆ Yi ⊆ Ai such that Yi ∈ A and Xi = Ai−1 ∩Yi �∈ A. Let A′
1 = A1\B1 and

A′
i = Yi\Bi(2 ≤ i ≤ n). For any 2 ≤ i ≤ n,

A′
i ∪Bi−1 = (Yi\Bi) ∪Bi−1

= (Xi−1\Bi) ∪Bi−1 (from the fact that Xi−1 ∪Bi = Yi)
= (Xi−1\Bi) ∪ (Xi−1 ∩Bi) (from the fact that Xi−1 ∩Bi = Bi−1)
= Xi−1 �∈ A.

For any 2 ≤ i ≤ n,

A′
i = Yi\Bi

⊆ Ai\Bi (from the definition of a grid)
= (A1 ∪Bi)\Bi (frome the fact that A1 ∪Bi = Ai)
= A1\Bi

⊆ A1.

Hence (A′
1, B1), · · · , (A′

n, Bn) is an independent sequence of (A,B) with respect
to access structure A.

”⇒” Let (A′
1, B1), · · · , (A′

n, Bn) be an independent sequence of (A,B) with
respect to A such that A∩B ⊆ B1. For any 1 ≤ i ≤ n, let Ai = A∪Bi. Obviously,
for 2 ≤ i ≤ n, Ai−1 ∪Bi = (A ∪Bi−1) ∪Bi = A ∪Bi = Ai, and since A ∩Bi ⊆
A ∩ Bn ⊆ B1 ⊆ Bi−1, Ai−1 ∩ Bi = (A ∪ Bi−1) ∩Bi = (A ∩ Bi) ∪Bi−1 = Bi−1.
Let Yi = A′

i ∪ Bi, and Xi = Ai−1 ∩ Yi. By definition of independent sequence,
Yi = A′

i ∪ Bi ∈ A, Xi = (A ∪ Bi−1) ∩ (A′
i ∪ Bi) = A′

i ∪ Bi−1 �∈ A. Hence
(A1, B1), · · · , (An, Bn) is a sequence of grids of (A,B) with respect to access
structure A.

4 Independent Sequences with Respect to Graph-Based
Access Structures

For convenience, we adopt the following definition of independent sequence,
which is equivalent to Definition 4.

Definition 6. Let A be an access structure over P . Given A,B ⊆ P , where
B �∈ A. (A1, B1), · · · , (An, Bn) is an independent sequence of (A,B) with respect
to access structure A with length n − 1, if it satisfies the following conditions,
where ∀1 ≤ i ≤ n, Ai ⊆ A and Bi ⊆ B.

1. ∀1 ≤ i ≤ n, Ai ∪Bi ∈ A,
2. ∀2 ≤ i ≤ n, Ai ∪ (

⋃i−1
1 Bj) �∈ A.

Obviously, (A1, B1), · · · , (An, Bn) is an independent sequence of (A,B) with re-
spect to access structureA if and only if (A1, B1), · · · , (An, Bn) is an independent
sequence of (A,B) with respect to access structure A|A∪B. Hence in this section,
we always assume P = A ∪B.

An independent sequence (A1, B1), · · · , (An, Bn) of (A,B) with respect to
access structure A is reduced, if for any 1 ≤ i ≤ n, Ai∪Bi ∈ Am and Ai∩Bi = ∅.
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It can be verified that there is an independent sequence of (A,B) with respect to
access structure A with length n−1 if and only if there is a reduced independent
sequence of (A,B) with respect to access structure A with length n− 1. Unless
specified definitely, we always assume the independent sequence in the following
paper is reduced.

Let A∗ be an access structure over P such that (A∗)m = Am\(A|A\B)m.
Obviously, A∗ ⊆ A.

Lemma 1. Let A be a graph-based access structure over P , and B �∈ A. (A1, B1),
· · · , (An, Bn) is an independent sequence of (A,B) with respect to access struc-
ture A, where B1 �= ∅ if and only if (A1, B1), · · · , (An, Bn) is an independent
sequence of (A\B,B) with respect to access structure A∗.

Proof: “⇐” Let (A1, B1), · · · , (An, Bn) be an independent sequence of (A,B)
with respect to access structure A, and B1 �= ∅. Then for any 1 ≤ i ≤ n,
Bi �= ∅. For any 1 ≤ i ≤ n, since A is a graph-based access structure over P
and Ai ∪ Bi ∈ Am, then |Ai ∪ Bi| = 2. In addition, since Bi �= ∅, we have
|Ai| = 1. Hence Ai ⊆ A\B. From Ai ∪ Bi �⊆ A\B, we can deduce Ai ∪ Bi �∈
(A|A\B)m. Hence Ai ∪Bi ∈ A∗

m. For any 2 ≤ i ≤ n, Ai ∪ (
⋃i−1

1 Bj) �∈ A implies
Ai ∪ (

⋃i−1
1 Bj) �∈ A∗.

“⇒” Let (A1, B1), · · · , (An, Bn) be an independent sequence of (A\B,B) with
respect to access structure A∗. Then B1 �= ∅. Now prove that ∀2 ≤ i ≤ n,Ai ∪
(
⋃i−1

1 Bj) �∈ A. Assume that there exists 2 ≤ i ≤ n such that Ai ∪ (
⋃i−1

1 Bj) ∈
A. Choose X ⊆ Ai ∪ (

⋃i−1
1 Bj) arbitrarily such that X ∈ Am, then either

X ∈ (A∗)m or X ∈ (A|A\B)m. Since Ai ∪ (
⋃i−1

1 Bj) �∈ A∗, then X �∈ (A∗)m.
If X ∈ (A|A\B)m, then X ⊆ A\B. Hence X = X\B ⊆ Ai, contradicted with
Ai �∈ A.

Lemma 2. Let A be a graph-based access structure over P , and B �∈ A. If
A1 ∈ Am, B1 = ∅ and (A2, B2), · · · , (An, Bn) is an independent sequence of
(A,B) with respect to access structure A, where ∀2 ≤ i ≤ n, Bi �= ∅, then
(A1, B1), · · · , (An, Bn) is an independent sequence of (A,B) with respect to access
structure A.

Proof: Since B2 �= ∅ and A2 ∪B2 ∈ Am, A2 �∈ A. Hence A2 ∪B1 = A2 �∈ A. On
the other hand, ∀2 ≤ i ≤ n, Ai ∪ (

⋃i−1
1 Bj) = Ai ∪ (

⋃i−1
2 Bj) �∈ A.

Proposition 2. Let A be a graph-based access structure over P , and A,B �∈ A.
(A1, B1), · · · ,
(An, Bn) is an independent sequence of (A,B) with respect to access structure
A if and only if (A1, B1), · · · , (An, Bn) is an independent sequence of (A\B,B)
with respect to access structure A∗.

Proof: Since A �∈ A, B1 �= ∅. By Lemma 1, this proposition can be proved.

Proposition 3. Let A be a graph-based access structure over P , and A ∈ A, B �∈
A. (A1, B1), · · · ,
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(An, Bn) is an independent sequence of (A,B) with respect to access structure A
with maximum length if and only if A1 ∈ Am, B1 = ∅ and (A2, B2), · · · , (An, Bn)
is an independent sequence of (A\B,B) with respect to access structure A∗ with
maximum length.

Proof: “⇐” Let (A1, B1), · · · , (An, Bn) be an independent sequence of (A,B)
with respect to A with maximum length. Obviously, ∀2 ≤ i ≤ n, Bi �= ∅.
Now prove B1 = ∅. Assume B1 �= ∅. Choose A0 ⊆ A, B0 = ∅ arbitrarily such
that A0 ∈ Am. By Lemma 2, (A0, B0), · · · , (An, Bn) is an independent sequence
of (A,B) with respect to access structure A, contradiction.
Assume (A′

2, B
′
2), · · · , (A′

n′ , B′
n′) is an independent sequence of (A\B,B) with

respect to access structure A∗ (where n′ > n). By Lemma 1, we have that
(A′

2, B
′
2), · · · , (A′

n′ , B′
n′) is an independent sequence of (A,B) with respect to

access structure A and B′
2 �= ∅. By Lemma 2, (A1, B1), (A′

2, B
′
2), · · · , (A′

n′ , B′
n′)

is an independent sequence of (A,B) with respect to A, contradiction.
“⇒” Let A1 ∈ Am, B1 = ∅, and (A2, B2), · · · , (An, Bn) is an independent

sequence of (A\B,B) with respect to A∗ with maximum length. By Lemma
1, (A2, B2), · · · , (An, Bn) is an independent sequence of (A,B) with respect to
access structure A and B2 �= ∅. By Lemma 2, (A1, B1), · · · , (An, Bn) is an in-
dependent sequence of (A,B) with respect to A. If there is an independent se-
quence (A′

1, B
′
1), · · · , (A′

n′ , B′
n′) (where n′ > n) of (A,B) with respect to A, then

(A′
2, B

′
2), · · · , (A′

n′ , B′
n′) is an independent sequence of (A\B,B) with respect to

access structure A∗, contradiction.
From the above propositions, we can deduce that finding an independent

sequence of (A,B) with respect to access structure A with maximum length
is equivalent to finding an independent sequence of (A\B,B) with respect to
A∗ with maximum length. Since neither A\B nor B contains an element of
graph-based access structure A∗, A∗ is a bipartite graph-based access structure.
Consider an access structureA based on bipartite graph G = (A,B,E). From the
above proof, we know that if (A1, B1), · · · , (An, Bn) is an independent sequence
of (A,B) with respect to the access structureA, then |Ai| = |Bi| = 1, ∀1 ≤ i ≤ n.
For convenience, we denote an independent sequence of (A,B) with respect to
the bipartite graph-based access structure A by (a1, b1), · · · , (an, bn). It is easy to
verify that (a1, b1), · · · , (an, bn) is an independent sequence of (A,B) with respect
to a bipartite graph-based access structure A if and only if {ai, bi} ∈ Am and
{ai, bj} �∈ Am, j < i.

Theorem 2. Let A be an access structure based on a bipartite graph G =
(A,B,E). (a1, b1), · · · ,
(an, bn) is an independent sequence of (A,B) with respect to A if and only
if {{a1, b1}, · · · , {an, bn}} is an alternating cycle-free matching in the bipartite
graph G.

Proof: “⇐” Let (a1, b1), · · · , (an, bn) be an independent sequence of (A,B) with
respect to access structureA. Given (ai, bi), (aj , bj), where i < j, it’s obvious that
ai �= aj and bi �= bj. Hence, M = {{a1, b1}, · · · , {an, bn}} is a matching in the
bipartite graph G. Assume that there is an alternating cycle C in the bipartite
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graph G. Suppose C ∩M = {{ai1 , bi1}, · · · , {aik
, bik

}}, where i1 ≤ i2 ≤ · · · ≤ ik.
Since (a1, b1), · · · , (an, bn) is an independent sequence, (ai1 , bi1), · · · , (aik

, bik
) is

also an independent sequence. On the other hand, since C is a cycle, there is
ij < ik such that {aik

, bij} ∈ C ⊆ A, contradiction.
“⇒” Suppose M = {(a1, b1), · · · , (an, bn)} is a matching in the bipartite

graph G, and there is no alternating cycle in this graph, where ∀1 ≤ i ≤
n, ai ∈ A, and bi ∈ B. Let p(i) = {j �= i : {aj, bi} ∈ Am}. Let’s prove
firstly that for any X ⊂ {1, · · · , n}, there is i ∈ Y = {1, · · · , n}\X such that
p(i) ⊆ X . Otherwise, assume there is X ⊆ {1, · · · , n} such that for any i ∈ Y ,
p(i)\X �= ∅. Choose arbitrarily i1 ∈ Y, i2 ∈ p(i1)\X, · · · , ik ∈ p(ik−1)\X, · · ·.
It can be verified that for any j < k, ij �∈ p(ik). If not, assume that ik is
the first element such that {i1, · · · , ik−1} ∩ p(ik) �= ∅. Let ij ∈ {i1, · · · , ik−1} ∩
p(ik). So we can obtain a cycle C = (aij , bij , aij+1 , bij+1 , · · · , aik

, bik
), where

{aij , bij}, · · · , {aik
, bik

} ∈ M . Since M is a matching in the bipartite graph de-
termined by A, {aij+1 , bij}, · · · , {aik

, bik−1}, {aij , bik
} �∈M . Hence C is an alter-

nating cycle of bipartite graph determined by A, contradiction. Since p(ik) ⊆
{1, · · · , n}\{i1, · · · , ik−1}, p(ik)\X ⊆ Y \{i1, · · · , ik−1}. Since Y is finite, there
is ik such that p(ik)\X = ∅. By the above proof, we can arrange 1, · · · , n as
i1, · · · , in such that ∀ 1 ≤ j ≤ n, p(ij) ⊆ {i1, · · · , ij−1}. Obviously, ∀1 ≤ j ≤
n, {aij , bij} ∈ Am. On the other hand, ∀1 ≤ k < j, p(ik) ⊆ {i1, · · · , ik−1} and
ij �∈ {i1, · · · , ik−1}, then ij �∈ p(ik), i.e. {aij , bik

} �∈ Am.
The above theorem shows that finding an independent sequence with respect

to a bipartite graph-based access structure with maximum length is equivalent
to finding a maximum alternating cycle-free matching in a bipartite graph. The
problem of finding a maximum alternating cycle-free matching in a bipartite
graph is NP hard, and there are some polynomial time algorithms to solve this
problem only for some special bipartite graphs [10, 13].
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Abstract. In the information-theoretic setting, where adversaries have
unlimited computational power, the fundamental cryptographic primi-
tive Oblivious Transfer (OT) cannot be securely achieved if the parties
are communicating over a clear channel. To preserve secrecy and se-
curity, the players have to rely on noise in the communication. Noisy
channels are therefore a useful tool to model noise behavior and build
protocols implementing OT. This paper explores a source of errors that
is inherently present in practically any transmission medium, but has
been scarcely studied in this context: delays in the communication.

In order to have a model for the delays that is both general and com-
parable to the channels usually used for OT – such as the Binary Sym-
metric Channel (BSC) – we introduce a new noisy channel, the Binary
Discrete-time Delaying Channel (BDDC). We show that such a channel
realistically reproduces real-life communication scenarios where delays
are hard to predict and we propose a protocol for achieving oblivious
transfer over the BDDC. We analyze the security of our construction in
the semi-honest setting, showing that our realization of OT substantially
decreases the protocol sensitivity to the user’s knowledge of the channel
compared to solutions relying on other channel properties, and is very
efficient for wide ranges of delay probabilities. The flexibility and gen-
erality of the model opens the way for future implementation in media
where delays are a fundamental characteristic.

Keywords: Oblivious transfer, secure multi-party computation, infor-
mation theoretic security, cryptography on noisy channels.

1 Introduction

The first uses of cryptography arose from the necessity of sending a secret mes-
sage to some trusted correspondent in a way that only the intended receiver could
learn the information. However, we may sometime be interested in communicat-
ing with someone we do not trust. Secure multi-party computation allows several
parties to perform a shared computation while preserving the secrecy of their
respective inputs and the correctness of the results [2].

In the case of two-party computation, where only two players are involved in
the communication, a primitive of central importance is Oblivious Transfer (OT).
In a protocol that realizes OT, a sender sends some information to a receiver,
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which is however able to learn only part of it, while the sender remains oblivious
as to what is received. The relevance of OT is due to its universality: any other
two-party computation can be achieved on top of it [10]. However, if we make
no computational assumption, that is, if we assume adversaries have unlimited
computational capabilities, such a fundamental primitive cannot be implemented
with unconditional security over a standard, error-free communication medium.
Thus is the importance of using noisy channels, where we can exploit errors in
the communication to our advantage in order to implement oblivious transfer in
an unconditionally secure fashion. In general, any non-trivial noisy channel can
be used for this purpose [6,11].

The first protocol for OT was built on the Binary Symmetric Channel (BSC)
[5,4], a noisy channel where bits have some fixed probability of being flipped
during the transmission. Other models of communication channels have since
been designed and studied, in respect of their property of being a good medium
over which to build OT. Of the fair number of noisy channels proposed over
the years, most are derived from the BSC itself. The Unfair Noisy Channel
(UNC), a weaker and therefore less assuming noisy channel, was introduced
by Damg̊ard, Kilian and Salvail [8]. Instead of a fixed error probability, as in
the case of a regular BSC, this channel allows for a known range of possible
noise levels, and, to add more generality, it also let the potential attacker to
be given the advantage of knowing exactly what the actual noise level is (from
which the name “unfair” is derived). In [17], Wullschleger proposes a new set of
noisy channels, called Weak Noisy Channels (WNC). In particular, he revised
two common primitives redesigning them into a new fashion: the Weak Erasure
Channel (WEC) and the Weak Binary Symmetric Channel (WBSC). The aim
of this work is to define the channels not with a predefined set of functionalities,
but only by a set of conditions that the channels must satisfy. In this way, the
primitives allow the attacker some more freedom. For instance, it is taken into
account the possibility for a malicious player to know, with a certain probability,
if the bit received through the channel was in fact correct or not.

Despite the differences in the channels, the respective protocols designed to
build OT usually follow the same scheme: the channel is used repeatedly by the
parties, to benefit from privacy amplification, and error correcting codes (ECC)
are used to ensure the correctness of the communication. Unfortunately, the use
of ECC’s also limits the flexibility of the construction by reducing the ranges of
acceptable error probabilities, while applying privacy amplification techniques
implies that a considerable amount of data needs to be transmitted through
the channel for each single bit of private information we want to send. These
factors, along with the strong requirements still imposed by current noisy channel
models, prevent any real application of oblivious transfer protocols not based on
computational assumptions.

1.1 Contribution

In order to decrease the sensitivity of OT protocols to the precise knowledge of
channel characteristics and make actual implementation a more realistic prospect,
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we propose a new noisy channel primitive, called Binary Discrete-time Delaying
Channel (BDDC). The BDDC preserves the basic characteristics of the BSC: it
is a binary, discrete and memoryless channel; but it is based on a common but
rarely used error source, the delays in communication. Delays happen in almost
any telecommunication medium, both wired and wireless, but, to the best of our
knowledge, have never been used in the design of oblivious transfer protocols in
the information theoretic setting before.

To show how the channel can be used to achieve any secure two-party compu-
tation, we propose a protocol that implements oblivious transfer over the BDDC,
and we provide a proof of the security of our realization in a scenario where play-
ers are honest-but-curious. The protocol design has two original features that
largely increase its flexibility and efficiency compared to current constructions.
First, the information sent by the sender through the channel is structured in a
specific way in order to exploit the peculiarities of the channel and reduce the
amount of communication required. Second, the protocol does not need error
correcting codes to preserve the correctness of the communication. This allows
for a much larger tolerance of variations in the error probability of the channel,
even during the protocol execution.

The flexibility and generality of the model opens the way for future imple-
mentation, especially in media where delays are a fundamental characteristic, as
in the case of wireless communication, or wired IP networks.

1.2 Outline of the Paper

In Section 2 we introduce a new noisy channel based on data transmission de-
lays, and we show how it actually models realistic communication scenarios. In
Section 3 we provide a security definition for oblivious transfer, as well as some
other useful definitions and preliminary notions which will be needed. We also
propose a protocol that implements oblivious transfer over the new channel.
In Section 4 we prove the security in the semi-honest model and we show the
efficiency of our construction.

2 Transmission Delays as a Source of Noise

Digital communications are almost always affected by delays in data transmis-
sion, a fundamental characteristic of wireless communication, but also a common
problem in wired IP networks [14]. Reducing or limiting delays has always been
one of the main challenges in the communication field. Delays are quite often
difficult to predict and almost impossible to eliminate. Moreover, in real and
non-isolated systems, they usually depend on external, uncontrollable factors.
But what can be a daunting property in the field of communication, can turn
out to be extremely useful in cryptography, where noisy channels have long been
studied in order to achieve secure computation.

However, despite having these appealing characteristics, delays have not been
systematically used as a source of noise in noise-demanding security applica-
tions. In particular, specific studies in the field of secure two-party computation
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against computationally unbounded adversaries are still missing. In this paper
we address this by proving that oblivious transfer can be achieved on a channel
whose only source of noise is transmission delays.

In order to obtain results as general and widely applicable as possible, we need
a channel model that makes no unnecessary assumptions on the delay. At the
same time, to be able to make meaningful comparisons, we want the channel to
maintain the common features of the other channels currently used for oblivious
transfer protocols in the information-theoretic setting – most notably the binary
symmetric channel and its modifications. In information theory literature, there
is an abundance of channel definitions that model most, if not all, forms of delay.
However, those channels are designed around specific communication scenarios
and for purposes different from those of cryptography. Therefore, we define a new
noisy channel that is based on a small set of assumptions and is simple enough
to allow for clear constructions and proofs, the Binary Discrete-time Delaying
Channel (BDDC). In section 2.2 we show how the BDDC succeeds in modeling
real-life communication scenarios.

2.1 Binary Discrete-Time Delaying Channel (BDDC)

Our model of communication channel is a box accepting binary strings and
emitting each accepted string after a certain delay. The channel operates at
discrete times, which means that it is not continuously accepting inputs and
emitting outputs, but these actions can only occur at specific instants in time.
For simplicity, we assume that the action of accepting or emitting a string is
instantaneous, that is, it takes no time to be accomplished.

Definition 1. A Binary Discrete-time Delaying Channel with delaying proba-
bility p consists of

– an input alphabet {0, 1}n,
– an output alphabet {0, 1}n,
– a set of consecutive input times T = {t0, t1, . . .} ⊆ N,
– a set of consecutive output times U = {u0, u1, . . .} ⊆ N where ∀ui ∈ U, ti ∈

T, ui ≥ ti .

Each input admitted into the channel at input time ti ∈ T is output once by the
channel, with probability of being output at time uj ∈ U

Pr [uj ] = p(j−i) − p(j−i+1) . (1)

Example 1. The probability of a string x, admitted into the channel at t0, to be
emitted without delay at u0 is

Pr [u0] = 1− p .

The channel is memoryless. A string of symbols is delayed with probability
p independent of the history of strings, symbols or delays. For instance, the
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probability for two strings sent at the same input time ti of being both delayed
while transmitted is p2. Neither the sender nor the receiver gets any feedback
about the transmission, i.e. they do not learn any information about whether or
not a string sent or received was actually delayed.

Informally put, the channel models a non-instantaneous communication be-
tween two parties, where the transmission takes a standard time (ti − ui). Some
of the content transmitted suffers unpredictable delays, which are usually short,
but can sometimes take much longer.

Remark 1. It should be noted that there is no strict requirement regarding the
discrete output times in relation to the input ones. For example, while logically
ui cannot precede ti on the time-line, it is perfectly acceptable for the purpose of
the channel both having ui and ti happen simultaneously, or having ui happening
later, even after any number of tj with j > i. The channel also makes no claim
whether or not the distance between each input (or output) time has to be fixed,
but for clarity’s sake we assume that to be the case.

Channel

t0

t1

u0

u1

Pr (p)

c1, c2

c3, c4

c2

c1, c3, c4

t u

Fig. 1. A schematization representing a Binary Discrete-time Delaying Channel ac-
cepting two strings at time t0, one of which gets delayed once, and two at time t1, none
of which gets delayed. This results in the channel emitting one string at time u0 and
three at u1.

2.2 Real-World Communication Scenarios

While delays generally occur in most forms of telecommunication, a digital net-
working communication method that is particularly sensitive to them is packet
switching. Packets moving through a shared network are usually delivered to
destination passing by a variable number of nodes, routers and switches. At
each hop a packet may be buffered and queued, building up a variable delay
depending on the traffic load of the network. For a deliberate design choice, the
Internet Protocol (IP) does not guarantee that packets are delivered in the same
order in which they were originally sent. The behavior of a network resulting in
out-of-order delivery of packets is known as packet reordering. A 2004 study by
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Zhou and Van Mieghem found that, tracing sets composed of 50 100-byte UDP
packets between 12 Internet test boxes, around 56% of the streams were subject
to packet reordering [18], while Bellardo and Savage found in [1] that minium-
sized TCP packets are reordered more than 10 percent of the time. Mesurements
techniques are available to assess the impact of this phenomenon [1], and the
analysis of the reordering caused by multipath forwarding (the choice of differ-
ent routes for packets in the same stream) indicates that the current trend of
increase in parallelism necessary to handle high speed links is also increasing the
occurrence of packet reordering [12].

The binary discrete-time delaying channel is well suited to simulate the be-
havior of an IP network affected by packet reordering. The model approximates
reality by introducing the requirement of discrete times for inputs and outputs,
which allows for a remarkably more flexible and easier to study noisy channel.
Generally, any packet switching network where a packet has some probability of
being delayed during the transmissions can be modeled using a BDDC.

3 Building Oblivious Transfer over a BDDC

In the original concept of oblivious transfer, as presented by Rabin [15], the
sender, Sam, sends his secret bit b to the receiver, Rachel. Rachel receives the
bit with probability 1

2 and, whether or not she receives it, she will not tell Sam.
A variant of the primitive, named chosen one-out-of-two oblivious transfer, or
simply 1-2 oblivious transfer, was later presented by Even, Goldreich and Lempel
[9]. In this case Sam has two secrets bits, b0 and b1, and wants to communicate
one of them to Rachel, without at the same time revealing the other. Rachel
wants to choose which one to receive without letting Sam know her selection s,
but should not be able to learn any information other than the secret bit bs she
has selected. The two versions of the primitive were shown to be equivalent by
Crépeau [3]. We choose to focus on 1-2 oblivious transfer, and in the following,
for simplicity, we refer to it simply as oblivious transfer.

3.1 A Security Definition for Oblivious Transfer

A protocol implements OT in a secure manner if three conditions are satisfied
after a successful execution: Rachel learns the value of bs (correctness); Rachel
gains no further information about the value of b1−s (security for Sam); Sam
learns nothing about the value of s (security for Rachel) [5]. We give a formal
definition of these security conditions by using the concept of prediction advan-
tage. The prediction advantage is a measure of the advantage an adversary has
in guessing a secret bit when using all the information available to her. We use
the notation found in [16].

Definition 2. ([16]) Let PXY be a distribution over {0, 1} × Y. The maximal
bit prediction advantage of X from Y for a function f is

PredAdv (X | Y ) = 2 ·max
f

Pr [f (Y ) = X ]− 1 . (2)
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We call view of a player all the information that the player obtains during an
execution of the protocol. For each execution there are both a receiver’s view and
a sender’s view. In the semi-honest model, the adversary is passive: she follows
the protocol, but outputs her entire view [16].

When proving the security of our construction, we use the following definition
of oblivious transfer.

Definition 3. A protocol Π between a sender and a receiver, where the sender
inputs (b0, b1) ∈ {0, 1} and outputs nothing, and the receiver inputs s ∈ {0, 1}
and outputs S, securely computes 1-2 oblivious transfer with an error of at most
ε, assuming that U and V represent the sender and receiver views respectively,
if the following conditions are satisfied:

– (Correctness) If both players are honest, we have

Pr [S = bs] ≥ 1− ε . (3)

– (Security for Sam) For an honest sender and an honest (but curious) receiver
we have

PredAdv (b1−s | V, s) ≤ ε . (4)

– (Security for Rachel) For an honest receiver and an honest (but curious)
sender we have

PredAdv (s | U, b0, b1) ≤ ε . (5)

3.2 A Protocol for Oblivious Transfer over a BDDC

The protocol we introduce allows the construction of oblivious transfer over a
BDDC. The protocol is composed of a first phase, during which the sender Sam
transmits through the channel multiple times and the receiver Rachel listen, and
a second phase, where communication happens on a clear channel and the parties
exploit the noise introduced by the channel to achieve their goals of secrecy
and security. Before any communication can actually begin, some introductory
computation by the sending party is needed, in order to craft the strings that
will be sent later on to the receiver through the channel.

This construction follows the basic concepts introduced by Crépeau and Kilian
while describing for the first time how to build OT over the BSC [5].

Protocol 1. Before starting any communication, some preparatory computa-
tion needs to be completed. Sam selects two disjoints sets E and E′ of n distinct
binary strings of length l: e1, . . . , en and e′1, . . . , e

′
n.

Then, Sam builds the following sets:

– C, that contains the strings c1, . . . , cn defined as the concatenation ci := ei‖i;
– C′, that contains the strings c′1, . . . , c

′
n defined as c′i := e′i‖i.

We call the i’s sequence numbers, while the strings in E ∪ E′ are used as string
identifiers. The values n and l are shared between the parties. The players can
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communicate either using a binary discrete-time delaying channel with proba-
bility p, called p-BDDC, or a clear channel.

Completed these preliminary steps, the parties are ready to proceed with the
protocol as follows:

1. Sam sends C to Rachel using the p-BDDC at instant t0.
2. Sam sends the set C′ to Rachel using the p-BDDC at instant t1.
3. At instant u0 Rachel receives over the p-BDDC all the strings in C that have

not been delayed by the channel. If less than n
2 strings are received Rachel

instructs Sam to abort the communication.
4. At instant u1 Rachel receives over the p−BDDC the strings from C delayed

once, plus the strings of set C′ that have not been delayed. She keeps listening
on the channel at instants u2, u3, . . . until all the delayed strings have been
received.

5. Rachel selects a set of string identifiers Is, where s ∈ {0, 1} is her selection
bit, such that |Is| = n

2 and so that every string c ∈ C with i ∈ Is has been
received for the first time at u0. Then she puts the remaining i’s in I1−s and
sends I0 and I1 to Sam over a clear channel.1

6. Sam receives I0 and I1, and chooses two universal hash functions f and f ′,
whose output is 1-bit long for any input. Let Ej ⊂ E be the set containing
every ei ∈ E corresponding to an i ∈ Ij , such that

ei ∈ Ej ⇔ i ∈ Ij . (6)

For each set Ij , Sam computes the string gj by concatenating each ej
k ∈ Ej ,

ordering them for increasing binary value, so that

gj =
(
ej
1 ‖ . . . ‖ ej

n
2

)
with ej

1, . . . , e
j
n
2
∈ Ej . (7)

The two strings g0, g1 are given in input to the hash functions f , f ′ to obtain
the two values

h0 = f (g0) , h1 = f ′ (g1) . (8)

When the computation is complete, Sam sends to Rachel the functions f , f ′

and the two values

i0 = (h0 ⊕ b0) , i1 = (h1 ⊕ b1) . (9)

7. Rachel computes her guess for bs, according to the formula

bs = fs (gs)⊕ is . (10)

Remark 2. It should be noted that the steps 2 and 3 of the protocol could also
happen in the inverse order, or simultaneously. This is due to the fact that there
is no explicit constraint regarding the chronological order of t1 and u0.
1 Or Rachel can just send one of these two sets in order to save bandwidth as Sam

can easily reconstruct the other.
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Remark 3. Since the elements in E ∪E′ have to be distinct, we gather that

2l ≥ |E ∪ E′| = 2n . (11)

Remark 4. While in our constructions we use the sequence numbers i’s, it should
be noted that any set D of n distinct binary strings d1, . . . , dn might be used in
their place in a setting where using unordered strings may be preferred.

4 Security in the Semi-honest Scenario

In the semi-honest setting, both parties are honest-but-curious, meaning that
they follow the protocol, but try afterward to learn extra knowledge from their
record of the conversation. In particular, Sam wants to guess which secret Rachel
selected, while Rachel’s aim is to get as much information as possible on the other
secret.

Theorem 1. The protocol described in Section 3.2, securely computes 1-2 obliv-
ious transfer with error probability ε when it is executed on a p-BDDC with
0 < p < 1

2 and

n > max

(
−2 log (ε)
(1− 2p)2

,
log

(
ε
2

)
log

(
1− p

2

)) . (12)

Proof. We prove the security of our construction by showing that each of the
three conditions of Definition 3 hold.

Correctness. Rachel is able to compute the bit bs when she receives, at step 3 of
the protocol, a number of non-delayed strings that is greater than n

2 . If we use
X to denote the random variable counting this number, we see that Pr

[
X < n

2

]
,

that is, the probability that too many strings are delayed for the protocol to suc-
ceed, follows the cumulative distribution function of the binomial distribution.
Using Hoeffding’s inequality, we then observe that

Pr
[
X <

n

2

]
≤ exp

(
−2n

(
1
2
− p

)2
)

, (13)

which shows that the correctness condition is satisfied by our protocol with
overwhelming probability in n when p < 1

2 .2 By extracting n in this inequal-
ity, we obtain the first argument of the maximum function in the theorem
statement.

2 Note that, for channels where 1
2

≤ p < 1, the correctness condition on p can be
relaxed by requiring Rachel to build sets containing less than half of the strings,
which would allow the protocol to succeed even if more than half of the strings are
delayed.
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Security for Sam. We evaluate the probability that Rachel is able to compute
both bs and b1−s in a protocol session. In the semi-honest setting, which we
consider here, this probability is upper-bounded by the probability that Rachel
is able to compute b1−s. Let us call this event Success.

Rachel has two ways to compute b1−s: by evaluating the appropriate universal
hash function on the correct inputs, as Sam does in Step 6 of the protocol
(let us call GuessInputHash this event), or by not doing so. So, Pr[Success] =
Pr[Success ∧ GuessInputHash] + Pr[Success ∧ ¬GuessInputHash]. The probability
of the second alternative is upper-bounded by 1

2 , due to the properties of the
universal hash function. The probability of the first alternative is in turn upper-
bounded by Pr[GuessInputHash]. Let us now evaluate that probability.

For each pair of strings sharing the same sequence number i, four events can
happen:

1. The first string of the pair is not delayed, which happens with probability
1− p.

2. The first string of the pair is delayed, but the two strings still reach Rachel
in the same order they were sent. This happens with probability p2

1+p .
3. Those two strings are delivered to Rachel in reverse order, which also happens

with probability p2

1+p .
4. The two strings are delivered to Rachel at the same time, which happens

with probability p(1−p)
1+p .

When the first string is not delayed, Rachel can be sure of which was sent first.
When the first string is delayed, and the two strings are delivered at differ-
ent times, Rachel cannot guess with a probability better than 1

2 whether the
two strings are switched or delivered in the sending order: both events happen
with the same probability. This is obviously also true when the two strings are
delivered at the same time.

So, as soon as the first of the two strings is delayed, no strategy can pro-
vide a probability higher than 1

2 to guess which string was sent first, mean-
ing that Rachel is able to guess with probability 1 − p

2 which one among any
two strings with identical sequence number was sent first. Let us denote by
GuessCorrectOrder the number of such correct guesses among n pairs of strings.

We have that Pr[GuessInputHash] = Pr[GuessInputHash∧GuessCorrectOrder =
n] + Pr[GuessInputHash ∧ GuessCorrectOrder < n]. Let us now observe that the
first term of this sum is upper bounded by:

Pr [GuessCorrectOrder = n] =
(

1− p

2

)n

, (14)

which is negligible in n as soon as p > 0. Besides, since the input of the hash
function is not correctly guessed when GuessCorrectOrder < n, we have that the
second term of the sum is null. This shows that:

Pr [Success] ≤ 1
2

+
(

1− p

2

)n

. (15)
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By using the definition of prediction advantage and extracting n in this inequal-
ity, we obtain the second argument of the maximum function in the theorem
statement.

Security for Rachel. The only step in the protocol in which Rachel uses her
selection s to generate messages to Sam is number 5, when she sends back I0
and I1. During any other step Rachel is not sending any information at all to
Sam. A BDDC gives no feedback to the sender or the receiver about which strings
are delayed: each string c is delayed at least once with probability p independent
of c. Therefore, from Sam’s point of view, the distribution (I0, I1) is independent
of s, and Sam’s prediction advantage on s given his view and his input bits is
null. ��

Remark 5. We observe that the semi-honest assumption is only required for the
sender, but not for the receiver. When acting as a malicious receiver, Rachel can
either produce a malformed set I1−s (reducing the number of strings included,
or including non-delayed strings already present into Is) in order to put only
non-delayed strings into the set, or swap delayed strings with non-delayed ones
between the sets Is and I1−s. In the first case, a simple additional check on the
sender’s side of the protocol will prevent any response to a malformed I1−s. In
the second case Rachel, by moving delayed strings from I1−s to Is, increases
her probability to get the other bit b1−s at the cost of lowering her probability
to get the selected bit bs. In fact, the number of delayed strings, which is also
the total number of guesses needed by Rachel, remains the same. Therefore the
probability of decoding both bits is the same whether she acts honestly or in a
malicious way.

5 Conclusion

In this paper, we proposed using channel delays as a source of uncertainty to
realize oblivious transfer. To this purpose, we introduced a new channel, called
Binary Discrete-time Delaying Channel (BDDC), and propose an OT protocol
built on this channel.

We believe that building OT on communication delays provides important
benefits compared to the existing solutions. In particular, our protocol has a
remarkably low sensitivity to the precise knowledge of the channel parameters,
a factor that often constitutes one of the main inconveniences of cryptographic
protocols relying on communication channel properties.

Figure 2 illustrates this little sensitivity by plotting the two curves of which
the maximum is taken in the statement of Theorem 1, for a security parameter
ε = 10−9. The curve that grows when p tends to 0 shows that the number of
strings to be sent must increase when p is small in order to ensure that Rachel
is not able to decode both of the sender bits of the OT protocol. The curve that
grows with p shows that the number of strings to be sent must increase when p
tends to 1

2 in order to ensure that Rachel gets one of the two sender bits.
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Fig. 2. n as a function of p for ε = 10−9

This graph shows that our protocol is able to tolerate a very wide range
of uncertainty on the channel parameters: the exchange of 1000 strings (that
is, approximately 42000 bits transferred on the BDDC channel and less than
12000 bits sent on the noiseless channel) guarantees oblivious transfer with error
ε = 10−9 for values of p ranging from 0.05 to 0.4 approximately. This practically
means that an active adversary able to set the probability to a desired level
within this range does not reduce the security of the construction. The idea of
letting the adversary choose the channel probability was first introduced with
the Unfair Noisy Channel (UNC) [8], a binary symmetric channel where the
error rate is only known to be in a certain interval [γ · · · δ]. This work shows
that OT cannot be achieved as soon as the difference δ − γ becomes too large,
namely, if δ ≥ 2γ(1−γ). This interval has a maximum width equal to 0.125 when
γ = 0.25 and δ = 0.375, even though no protocol is known that can tolerate such
a wide interval width on a UNC. Interval widths for which OT can be achieved
on UNCs have also been studied [7], showing experimentally that OT can be
built on a UNC for intervals of maximum width around 0.04.

We believe that these figures show a crucial benefit of exploiting delays on
channels: delays provide the uncertainty that is needed to build security, but
they also offer the possibility to be sure that some strings have been sent before
others (if they are received before other strings are sent, for instance). This is
not the case on other channels that have been considered until now, like the BSC
channel and its variants, where one can never be sure that a string is delivered
correctly, raising the need to precisely calibrate error correction mechanisms.

Our protocol also appears to be very efficient for important delay probability
ranges: we observe that sending 250 pairs of strings on the p-BDDC channel,
that is, around 8500 bits, is enough to realize OT for 0.17 ≤ p ≤ 0.29 and
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ε = 10−9. We eventually observe that, in many practical applications, the proto-
col parameters might be adapted in order to influence the delaying probability
if needed. For instance, it appears that packet size has an important impact on
reordering occurrences in IP networks [1].
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Abstract. We introduce a statistical experiment setting to carry out a
multicollision attack on any iterated hash function. We develop a method
for finding multicollisions that gives larger multicollision sets for the same
amount of work as Joux’s famous method i.e. with 2.5 ·k2

n
2 work one can

find greater than 2k-collisions for large k. Furthermore, if the message
length is not restricted, we show that we can create arbitrarily large
multicollisions by finding two cycles in the iterated hash function. This
applies even when an ideal compression function is used.

1 Introduction

Hash functions are functions, which take as input arbitrary strings from a fixed
alphabet (usually assumed to be the binary alphabet {0, 1}) and return a (bi-
nary) string of fixed length as their output. These functions are used in various
cryptographic protocols such as message authentication, digital signatures and
electronic voting. In order to be useful in cryptographic context, hash functions
need to have three properties, preimage resistance, second preimage resistance
and collision resistance.

Merkle and Damg̊ard [1,2] devised a method for constructing hash functions
from compression functions (functions f : {0, 1}m → {0, 1}n,m > n). In this
method, the message to be hashed is divided into blocks and hash value is com-
puted by the repeated use of the compression function to the message blocks and
to the previous value of the computation. The value after the final computation
is then defined as the hash value of the message. Both Merkle and Damg̊ard
were able to prove that if the length of the message is added to the end of the
message and the resulting message is hashed in this iterative fashion using a col-
lision resistant compression function, the resulting hash function is also collision
resistant.

The iterative method for constructing hash functions has been found quite
susceptible to multicollision attacks. Multicollisions are sets of distinct messages
all giving the same hash value under the hash function. Joux [3] demonstrated
that for iterated hash functions 2k-multicollisions can be found with O(k · 2n/2)
compression function operations. For an ideal hash function this would be much
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higher [4]. Further improvements have been made by Kelsey & Schneier [5] and
Aumasson [6] where fixed points and memory are used to generate larger multi-
collisions for O(2n/2) work. These methods are discussed in more detail later.

There are also methods for finding multicollisions for generalized versions of
iterated hash functions, where one may use the message blocks several times
and in permuted order instead of just going through them once from beginning
to end. Nandi & Stinson [7] have shown that when message blocks are used no
more than two times in the iteration, multicollisions can still be found fairly
easily. Hoch & Shamir [8] have generalized these results to cover the cases where
message blocks can be used more than two times.

Multicollisions can be utilized in attacks against iterated hash functions, both
particular hash functions and the iterative structure itself. For example many
second preimage attacks use multicollisions as a starting point. Furthermore, the
herding attack [9] uses multicollisions of a special type as a starting point for
the attack. The herding attack has also been applied to the dithered variants of
iterated hash functions successfully [10].

This paper is organized in the following way. In the next two sections, we
give some necessary definitions and results on algebra and hash functions. The
fourth section describes some of the earlier methods for finding multicollisions for
iterated hash functions in more detail. The fifth section presents a variant on the
attack proposed by Joux [3] and analyzes its complexity, memory consumption
and shows that for large k the new method outperforms Joux’s attack. The sixth
section introduces an automata perspective of iterated hash functions. We show
that by finding two cycles one can obtain arbitrarily large multicollisions if the
length of the messages is not restricted. The final section contains conclusions
and further research proposals.

2 Basics on Alphabets and Words

Denote by N+ the set of all positive integers, i.e., N+ = {1, 2, . . .}. Then N =
N+ ∪ {0} is the set of all natural numbers. For each finite set S, let |S| be the
cardinality of S that is to say, the number of elements in S.

An alphabet is any finite, nonempty set of abstract symbols called letters or
symbols. Let A be an alphabet. A word (over A) is any finite sequence of symbols
(in A). Thus, assuming that w is a word over A, we can write w = x1x2 · · ·xn,
where n is a nonnegative integer and xi ∈ A for i = 1, 2, . . . , n. Above n is the
length |w| of w. Notice that n may be equal to zero; then w is the empty word,
often denoted by ε, which contains no letters. The catenation of two words u and
v in is the word uv obtained by writing u and v after one another. The powers of
the word u are defined recursively as: u0 = ε, u1 = u, and ui+1 = uiu for i ∈ N+.

For each n ∈ N+, denote by An the set of all words of length n over A. Then
A+ =

⋃∞
n=1 A

n is the set of all nonempty words over A. Clearly catenation
defines a binary operation · in A+: u · v = uv for all u, v ∈ A+. In algebraic
terms (A+, ·) is a free semigroup.
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Any subset of A+, where A is an alphabet, is a language over A. Let L and
T be languages over A. The product of L and T is the language LT = {uv |u ∈
L, v ∈ T }. The powers of L are defined recursively as: L0 = {ε}, L1 = L, and
Li+1 = LiL for i ∈ N+. Denote L+ = ∪∞

i=1L
i and L∗ = L+ ∪ {ε}. If L contains

only one word, say u, we write respectively u+ and u∗ instead of L+ and L∗.

3 Hash Functions and Collisions

Assume (without loss of generality) that all our messages are nonempty words
over the (message block) alphabet A. Let B = {0, 1} be the binary alphabet.

Definition 1. A hash function (of length n, where n ∈ N+) is a mapping g :
A+ → Bn.

An ideal hash function g is a variable input length random oracle (VIL-RO): for
each x ∈ A+, the value g(x) ∈ Bn is chosen uniformly at random.

Let k ∈ N+. A k-collision in the hash function g is a set C ⊆ A+ such that
|C| = k and g(x) = g(y) for all x, y ∈ C.

According to the (generalized) birthday paradox, a k-collision in g can be found
(with probability approx. 1

2 ) by hashing (k!)
1
k 2

n(k−1)
k messages [4]. Two remarks

can be made immediately:

• In the case k = 2 approximately
√

2 · 2
n
2 hashings are needed; intuitively

most of us would expect the number to be around 2n−1.
• For each k in N+, finding a (k + 1)-collision consumes much more resources

than finding a k-collision.

Joux proved in [3] that the latter property does not hold for the so called iterated
hash functions which we rigorously introduce next.

Definition 2. A compression function (of length n) is a mapping f : Bn×A →
Bn where A is an alphabet, n ∈ N+, and |A| > 2n.

Again, an ideal compression function f is a fixed input length random oracle
(FIL-RO for short): for each h ∈ Bn and y ∈ A, the value f(h, y) ∈ Bn is chosen
uniformly at random.

Let now f be as above; define the iterated hash function f+ : Bn ×A+ → Bn

(based on f) inductively as follows. Let h ∈ Bn, y1 ∈ A, and y2 ∈ A+. Then
f+(h, y1) = f(h, y1) and f+(h, y1y2) = f+(f(h, y1), y2).

Given k ∈ N+ and h0 ∈ A, a k-collision (with initial value h0) in the iterated
hash function f+ is a set C ⊆ A+ such that |C| = k and for all u, v ∈ C, |u| = |v|
and f+(h0, u) = f+(h0, v).

We assume that the attacker knows f (and thus f+) only as a black box.
She/he does not know anything about the internal structure of f , but can make
queries on f and get the respective responses.

A k-collision attack on a f+ can loosely be defined to be a probabilistic process
(often based on the birthday problem) that, given any initial value h0, finds a
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k-collision on f+ with probability one. Moreover, it is assumed that the expected
number of queries on f in the aforementioned probabilistic process remains the
same with any initial value. The complexity of a k-collision attack on f+ is then
the expected number of queries on f required to get an k-collision. The attacks
are realised in a stepwise manner; in each step a statistical experiment, often
a birthday attack -like procedure, is carried out. The execution of the step is
repeated until a collision is found.

4 Previous Work

In this section, we describe some of the previous methods for finding multicol-
lisions. First of all, a basic brute force multicollision attack against any hash
function has the complexity O(k!

1
k 2

n(k−1)
k ) for k colliding messages [4]. This was

thought to be optimal also for iterated hash functions, until Joux’s discovery.
In the following, we denote by f the compression function used in the iterated
hash function.

The Joux’s method [3] for generating 2k-collisions is of the (average) com-
plexity O(k2

n
2 ). In this method, one can begin with any initial value h0 and one

finds two message blocks x1 and x′
1 such that h1 = f(h0, x1) = f(h0, x

′
1). Now,

continuing the same approach to h1 and so on, one obtains a 2k-collision after
finding k collisions. In Joux’s method there is no restriction on the initial values
or the function f , which can be assumed to be a FIL-RO or any other compres-
sion function. Also the birthday attacks in each of the steps can be performed
with the memoryless birthday attack described in [11] and [12].

Kelsey and Schneier describe a multicollision finding algorithm in their paper
[5]. This algorithm is used to generate a second preimage attack against iterated
hash functions and it has the complexity O(2

n
2 ) for arbitrarily large multicolli-

sions. However, there are some assumptions on the underlying function f and
the memory required by the attacker. The function f is assumed to have easily
found fixed points, i.e. such values of f denoted by h and message blocks m for
which f(h,m) = h. Also the attacker is assumed to have O(2

n
2 ) memory avail-

able for storing the intermediate values. There is also a variant which does not
rely on fixed points and generates large multicollisions in O(2n/2) time. These
messages are too long to be used in practice.

Aumasson [6] has modified the above method in such a way that there is no
need to assume any memory for the attacker and the complexity remains the
same O(2

n
2 ) for arbitrarily large multicollisions. This method also assumes that

fixed points are easily found for f and that the attacker can choose the initial
value. After this, one only needs to find one fixed point collision and arbitrarily
large multicollisions can be generated. Messages generated with this method are
fairly short and could be used in practical attacks.

Multicollisions have been applied in recent attacks against iterated hash func-
tions. Kelsey & Kohno [9] describe a generic chosen target forced prefix preim-
age attack and apply a special diamond structure multicollision in their attack.
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This method has been applied to gain second preimage attacks on dithered hash
functions [10].

5 A Variant of Joux’s Attack

Next we present a variant of Joux’s multicollision attack. The attack is a gen-
eralization of Joux’s method and uses the information on messages and hash
values gathered in previous steps of the attack.

5.1 Background Contemplations

Let us suppose that Joux’s attack is carried out as a statistical experiment
in the following way. In step k of the attack we create 2

n
2 message blocks

mk,1,mk,2, . . . ,mk,2
n
2

and hash values f(hk−1,mk,i) = hk,i for all i = 1, 2, . . . ,
2

n
2 . Then we look for a value hk = hk,ik

= hk,jk
, where jk, ik ∈ {1, 2, . . . , 2 n

2 }
and jk �= ik. In k steps this method creates a collision with size 2k where the
colliding messages are m1m2 · · ·mk, with mt ∈ {mt,it ,mt,jt} for t = 1, 2, . . . , k.

In 2
n
2 hash values we have

(
2

n
2

2

)
pairs of hash values. Thus we assume, that in(

2
n
2

2

)
= 2n−1 − 2

n
2 −1

possible pairs of messages there should be at least one pair with the same hash
value thus providing an 2-collision. The probability for finding a 2−collision
in 2

n
2 messages is approximately 0.4 [13,7,4]. We repeat the procedure until a

collision is found and the expected number of repetitions is 2.5. This implies that
the expected complexity of creating a 2k-collision with Joux attack as described
above is approximately 2.5 · k 2

n
2 . Note that the amount of memory needed is

approximately 2
n
2 ; having less memory increases the number of compression

function calls [11].
The basic idea of our attack is to create smaller sets of message blocks and

instead of searching for the collision only in the current set, we also compare
the hash values of the current set with s previous ones. This gives us greater
probability of finding collisions with less work. The downside is that we need
more memory space to store the message blocks and hash values .

Let s ∈ N+. Suppose that we have enough memory to store the message
blocks and the respective hash values produced during the previous s steps of
the attack. Suppose furthermore that in each step approx. 1√

2s
2

n
2 message blocks

are generated and their respective hash values computed. The amount of memory
needed here is approximately s+1√

2s
2

n
2 .

Assume that we are in the (k + 1)st step of the attack (k ∈ N, k ≥ s). Let Mj

be the set of pairs of message blocks and respective hash values computed in the
step j = k−s+1, k−s+2, . . . , k. Next we generate 1√

2s
2

n
2 new random messages

and hash values. According to Theorem 2.1 in [7] the probability p1(s) of finding
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a collision within this new set through birthday paradox is approximately 1 −
e−

q(s)2

2n+1 , where q(s) = 1√
2s

2
n
2 and we get p1(s) ≈ 1− e−

1
4s .

Let Hi be the set of hash values in step i, where i = k− s+ 1, k− s+ 2, . . . , k.
Denote by p2(s) the probability that a collision is found between the newest set
and some of the previously generated s sets, i.e., that Hk+1∩Hi is nonempty for
at least one i ∈ {k − s + 1, k − s + 2, . . . , k}. Let us evaluate the value of p2(s).
We can calculate the number of possible pairs h1, h2, where h1 ∈ Hk+1, h2 ∈ H ,
where H = ∪k

i=k−s+1Hi and get

|Hk+1 ×H | ≈ 1√
2s

2
n
2 · s√

2s
2

n
2 = 2n−1

which is more pairs of hash values than 2n−1 − 2
n
2 −1 that is provided in each

step of Joux’s attack. Thus we can safely assume, that p2(s) ≈ 0.4.
Suppose now that p3(s) is the probability that either 1◦ there is a collision

between hash values calculated in the (k + 1)st step or that 2◦ there exists a
common hash value in the sets Hk+1 and H . Since the events in 1◦ and in 2◦ are
clearly statistically independent, the equality p3(s) = p1(s) + p2(s)− p1(s)p2(s)
holds. This means that

p3(s) ≈ 1− e−
1
4s +

2
5
− (1− e−

1
4s )

2
5

= 1− 3
5
e−

1
4s .

When we let s grow, p3(s) approaches from above the number 0.4, the collision
probability of Joux’s attack.

5.2 The (Probabilistic) Attack Algorithm

Let an iterated hash function f+ : Bn × A+ → Bn, an initial value h0 ∈ Bn,
and an integer s ∈ N+ be given. Denote d = 1√

2s
2

n
2 .

Initialization. Let h := h0, i := 1, and C0 := {ε}. While i < s + 1 do the
following.

Generate d random message blocks m1,m2, . . . ,md. Compute the respective
compression function values f(h,mj) for j = 1, 2, . . . , d. Let (mi,j , hi,j) :=
(mj , f(h,mj)) for j = 1, 2, . . . , d, Mi := {(mi,j , hi,j)|j = 1, 2, . . . , d} and Hi =
{hi,j|j = 1, 2, . . . , d}. Search for a collision in hi,1, hi,2 . . . , hi,d.

A. Suppose that a collision is found. Let j1, j2 ∈ {1, 2, . . . , d}, j1 �= j2, be such
that hi,j1 = hi,j2 . Then set D := {mi,j1 ,mi,j2}, h := hi,j1 , and Ci := Ci−1 ·D.
Finally set i := i + 1.

B. Suppose that no collision is found in hi,1, hi,2, . . . , hi,d. If i = 1, set h := hi,1,
C1 := C0 · {mi,1}, and i := i + 1. Assume that i > 1. Search for a collision
between the values in the set Hi and the values in the union ∪i−1

j=1Hj .

1◦ Assume that a collison is found. Let i1 ∈ {1, 2, . . . , i − 1} be the greatest
number such that there exist l1, l2 ∈ {1, 2, . . . , d}, l1 �= l2, for which hi,l1 = hi1,l2 .
Set Ci := Ci−1 · {mi,l1} ∪Ci1−1 · {mi1,l2}, and i := i + 1.
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2◦ Assume that no collision between the values in the set Hi and the values in
the union ∪i−1

j=1Hj is found. Then set Ci := Ci−1 · {mi1} and i := i + 1.

We have now completed the initialization and are ready to describe the real
attack. The procedure is exactly the same as before, except that if no collision is
found, we shall repeat the generation of the set of random message blocks (and
the execution of the step) until a collision is found.

Assumptions for the general step. Let k ∈ N+, k ≥ s. Suppose that the sets
Mk−i := {(mk−i,j , hk−i,j)|j = 1, 2, . . . , d} and Hk−i = {hk−i,j |j = 1, 2, . . . , d}
for i = 0, 1, . . . , s−1 are created as well as the collision sets Ck−s, Ck−s+1, . . . , Ck.
Assume that h is given.

The general (k+1)st step. Generate d random message blocks m1,m2, . . . ,
md. Compute the respective hash values f(h,mi) for i = 1, 2, . . . , d. Set

(mk+1,j , hk+1,j) := (mj , f(h,mj))

for j = 1, 2, . . . , d, Mk+1 := {(mk+1,j , hj)|j = 1, 2, . . . , d} and Hk+1 = {hk+1,j |
j = 1, 2, . . . , d}. Search for collision in hk+1,1, hk+1,2, . . . , hk+1,d.

C. Suppose that a collision is found. Let j1, j2 ∈ {1, 2, . . . , d}, j1 �= j2 are such
that hi,j1 = hi,j2 . Then set D := {mk+1,j1 ,mk+1,j2} and h := hk+1,j1 . Finally
set Ck+1 := Ck ·D.

D. Suppose that no collision is found in hk+1,1, hk+1,2 . . . , hk+1,d. Search for
a collision between the values in the set Hk+1 and the values in the union
∪k

j=k−s+1Hj .

3◦ Assume that a collison is found. Let i1 ∈ {k − s + 1, k − s + 2, . . . , k} be
the greatest number such that there exist l1, l2 ∈ {1, 2, . . . , d}, l1 �= l2 for which
hk+1,l1 = hi1,l2 . Set Ck+1 := Ck · {mk+1,l1} ∪Ci1−1 · {mi1,l2}.
4◦ Assume that no collision between the values in the set Hk+1 and the values
in the union ∪k

j=k−s+1Hj is found. Then repeat the execution of the (k + 1)st
step.

Let us now assume that the (k+1)st step is carried out successfully and we have
found a match. It is time to look at the size of the created multicollision. If there
is a match between hash values hk+1,1, hk+1,2, . . . , hk+1,d, say hk+1,i = hk+1,j ,
i �= j, then we have just doubled the size of our multicollision, because the last
block of the colliding messages can be chosen to be {mk+1,i,mk+1,j}. This means
that the value |Ck+1| = 2 |Ck|. If this is not the case then hk+1,l1 = hi1,l2 for
some i1 ∈ {k − s + 1, k − s + 2, . . . , k} and l1, l2 ∈ {1, 2, . . . , d}, l1 �= l2. This
means that almost certainly the equality |Ck+1| = |Ck|+ |Ci1−1| holds.

Remark 1. Obviously all the messages in our collision set Ck+1 are not of equal
length, which at first seems to be a problem. We shall address this problem later.
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5.3 Calculating the Expected Value

Let us now evaluate the size of the created multicollision in step k + 1, k ≥ s.
If there is a match in hk+1,1, hk+1,2, . . . , hk+1,d the size of the created collision
is |Ck+1| = 2 |Ck| and the probability for this is p1(s)

p3(s)
. Otherwise the collision

is between sets Hk+1 and some set Hi, where i1 ∈ {k − s + 1, k − s + 2, · · · , k}
which means that |Ck+1| = |Ck|+ |Ci1−1|. We may assume that each of the sets
Hk−s+1, Hk−s+2, . . . , Hk contains the matching hash value with equal likelihood;
this probability is p3(s)−p1(s)

sp3(s) since the number of sets is s.
If we now mark the expected size of the multicollision in step i with Ei we

get the equations

Ek+s+1 =
p1(s)
p3(s)

(2Ek+s)+
p3(s)− p1(s)

p3(s)
(Ek+s +

1
s

(Ek+s−1 +Ek+s−2 + · · ·+Ek))

=
(

1 +
p1(s)
p3(s)

)
(Ek+s) +

(
1− p1(s)

p3(s)

)
1
s

(Ek+s−1 + Ek+s−2 + · · ·+ Ek) (1)

for each k ∈ N. From the definitions of p1(s) and p3(s), it is easy to see that
when s is large Ek+s+1 ≈ Ek+s + 1

s (Ek+s−1 + Ek+s−2 + · · ·+ Ek), k ∈ N.
Let us now assume that s is large and evaluate the size of the multicollision

in step k + s + 1. We agree that the equation

Ek+s+1 = Ek+s +
1
s

(Ek+s−1 + Ek+s−2 + · · ·+ Ek)

holds when k ∈ N. Moreover, we set Ei = |Ci| for all i = 1, 2, . . . , s, where
|C1|, |C2|, . . . , |Cs| are the cardinalities of the sets determined in the initialization
step of our attack. The above recursive equation has the characteristic polyno-
mial fs(x) = xs+1 − xs − 1

s (xs−1 + xs−2 + · · ·+ 1). The roots of this polynomial
certainly determine the values of Ek, where k > s. For large values of k the root
that has the greatest absolute value dominates the values of the sequence and
gives us the ratio Ek+1

Ek
, k ∈ N.

The basic analysis shows that there exists exactly one positive real root xs

for fs(x), with xs ∈ ]1 + 1√
s+2

, 1 + 1√
s
[. When s is odd, there is also a negative

real root y for f(x), with |y| < 1. Also all the complex roots have absolute
values strictly less than xs. The rigorous mathematical proof of the last fact
can be found in the appendix. Thus we have found the ratio Ek+1

Ek
for the large

values of k. This means that by taking k steps where k is large we can create a
multicollision with expected size xk

s , where xk
s > (1 + 1√

s+2
)k.

5.4 Comparing the Procedure to Joux’s Attack

MD-strengthening means that the length of the message is added to the end of
the original message before hashing. This forces all of the colliding messages in
our method to have the same length. In Joux’s attack, this is not a problem be-
cause all the messages have the same length. At first this might seem problematic
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to our attack, since the lengths of the created messages are not equal. However
when the number of the steps taken is large, we can overcome this obstacle.

If we take k steps, then there are certainly fewer than k possible lengths for
the messages. This means that the expected value for the largest set with the
same length messages is at least

(1 + 1√
s+2

)k

k
.

In reality the largest collision set with messages of the same length is of course
much greater, but even this evaluation shows that when we are considering large
values of k the length of the messages is not really a hindrance.

Let us now compare the complexity of our attack with the complexity of the
Joux’s attack. As we have stated before, with 2.5 · k2

n
2 work, we should get

0.4 · 2.5k2
n
2

2
n
2

= k

successful steps in Joux’s attack. Each step of Joux’s attack multiplies the size
of the multicollision by two and thus, k steps gives us a 2k-collision.

With 2.5 · k2
n
2 work our method yields us

p3(s) · 2.5 · k · 2 n
2

1√
2s
· 2 n

2
= p3(s) · 2.5 · √2sk >

√
2sk

successful steps. In each step of our attack the size of the multicollision is mul-
tiplied by xs. Thus, the expected size of the multicollision is greater than

x
√

2sk
s√
2sk

>
1√
2sk

· (1 +
1√
s + 2

)
√

2sk.

From this equation we get
1√
2sk

· ([1 +
1√
s + 2

]
√

2s)k

Thus, when s→∞(
1 +

1√
s + 2

)√
2s

=

[(
1 +

1√
s + 2

)√
s
]√

2

→ e
√

2 ≈ 4.113.

So, if we are creating large multicollisions (k is large) and using a large number
of stored sets of message blocks (s is large), our attack creates a 1√

2sk
(e

√
2)k-

collision, whereas Joux’s attack creates a 2k-collision, with the same amount of
compression function calls. This means that, assuming that s and k are large,
while Joux’s attack produces a 2k-collision, our method (with the same amount
of work), provides us with a multicollision of size approximately 22k.

Remark 2. Assume momentarily that fixed points for the compression function
are easy to generate. Then the above attack can be initiated by generating a
fixed point and, proceeding as presented above and applying the fixed point,
adjust the lengths of the generated attack messages to be of equal length.
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6 Special Cases with Small Values of s

In practice the amount of usable memory and the maximum length of the mes-
sages limit the use of our attack. However, even the small values of s give us
quite nice results for large k. We can assume that the case s = 0 is the standard
attack by Joux.

If we choose s = 1, the probability of succeeding in a step is p3(1) ≈ 0.53272
and by (1) the expected size of the created multicollision is

Ek+2 =
(

1 +
p1(1)
p3(1)

)
(Ek+1) +

(
1− p1(1)

p3(1)

)
(Ek).

By using MAPLE or similar mathematical software, we may evaluate the positive
real root of the characteristic polynomial f1(x) and obtain

x1 =

(
1 + p1(1)

p3(1)

)
+

√(
1 + p1(1)

p3(1)

)2

+ 4
(

1− p1(1)
p3(1)

)
2

≈ 1.74948.

If we now call compression function 2.5 k2
n
2 times, we should get p3(1)2.5k2

n
2

1√
2
2

n
2

=
√

2 · 2.5 p3(1)k successful steps. Thus the expected value for multicollisions with
equal length messages is approximately

1√
2k

(1.74948)
√

2·2.5p3(1)k ≈ 1√
2k

(2.87)k.

When s = 2 we get p3(2) ≈ 0.47050 and the positive real root of f2(x) is
approximately 1.62322. Thus with 2.5 ·k2

n
2 work, the number of successful steps

should be p3(2)2.5k2
n
2

0.5·2 n
2

= 2 · 2.5 · p3(2)k. This means that our attack creates a
multicollision with a total expected size of approximately 1

2k (3.13)k.
The last case we are able to solve simply by using a general formula (for the

equation with power 4) is the case s = 3. Now we get p3(3) ≈ 0.44797 and the
positive real root of f3(x) is approximately 1.54478. Thus with 2.5 · k2

n
2 work,

the number of successful steps should be p3(3)2.5k2
n
2

1√
6
2

n
2

=
√

6·2.5 ·p3(3)k. Thus our

attack creates a multicollision with a total expected size of approx. 1√
6k

(3.30)k.

7 Borderline Considerations: Collisions Based either on
Very Long Messages or Fixed Points of the Function f

Given a compression function f : Bn×A→ Bn, we can interpret the functioning
of f+ as a (deterministic) finite state automaton (abbrev. dfsa) Af :

• locally in any (inner) state h ∈ Bn, the automaton Af reads an arbitrary
(input) symbol a ∈ A, changes its state to f(h, a) and is ready to read a
new symbol; and
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• globally starting in the initial state (or value) h0 ∈ Bn, after reading the
word a1a2 · · ·am, where m ∈ N+ in a stepwise manner described above,
the automaton Af is in the state f+(h, a1a2 · · · am).

7.1 Multicollisions Induced by the Cycle Structure of the Finite
State Automaton Af

Fix a ∈ A and, starting from the initial value h0, generate the compression
function values hi = f(hi−1, a) for i = 1, 2, 3, . . .. By the birthday paradox,
there exists, with a probability approx. 0.4, a collision among the first 2

n
2 values

of the above sequence. As seen before, the expected number of queries required
to find such a sequence is 2.5 · 2 n

2 . Let p, p′ ∈ {1, 2, . . .2 n
2 }, p < p′, be such that

hp = hp′ . Denote r = p′− p. Obviously all the messages in the language ap(ar)∗

induce the same hash value hp. The language ap(ar)∗, however, does not contain
a proper multicollision set in f+; all the messages in ap(ar)∗ are of different
length. From automata-theoretic point of view, we have found a cycle

(hp, a, hp+1)(hp+1, a, hp+2) · · · (hp′−1, a, hp)

starting and ending in the state hp in the set of computations of Af .
To solve the length problem, we proceed as follows. Let b ∈ A \ {a}, be a new

symbol; starting from the hash value l0 = hp generate the compression function
values li = f(li−1, b) for i = 1, 2, 3, . . . Again, with a significant probability, there
exists a collision among the values l0, l1, l2 . . . , l2n/2. Let q, q′ ∈ {1, 2, . . .2 n

2 },
q < q′, be such that lq = lq′ . Denote s = q′ − q and notice that all the messages
in the language ap(ar)∗bq(bs)∗ have the same hash value. A second cycle

(lq, b, lq+1)(lq+1, b, lq+2) · · · (lq′−1, b, lq)

starting and ending in the state lq among the computations of Af has been
located. It is also important to notice that there exist equal length messages
in the above language. Our next task is to pick those up. Let d be the least
common multiplier of the integers r and s. Since both r and s divide the positive
integer d, the language R = ap(ad)∗bq(bd)∗ is a subset of ap(ar)∗bq(bs)∗. Thus
f+(h0, w) = lq for all w ∈ R. Let k ∈ N+. Then

Rk = { ap(ad)ibq(bd)k−1−i | i ∈ {0, 1, . . . , k − 1} }

is a k-multicollision set in f+ with initial value h0 since all its messages are of
the same length (= p + q + (k − 1)d) and have the same hash value (= lq).

Some complexity remarks are now well justified.

1. To find the language ap(ar)∗bq(bs)∗, and thus a multicollision set Rk on
f+, in average 5 · 2 n

2 queries on f is required. The same symbols a and
b of A and the same cycles of the automaton Ak can be exploited for all
sets Rk, k ∈ N+,.
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2. The messages in the sets Rk can be very long. For randomly chosen pos-
itive integers i and j, the probability that the greatest common divisor
of i and j is equal to one, is approximately 6/π2. Thus there is no reason
to assume that the integers r and s in our construction possess a large
common divisor. A reasonable upper bound for least common multiplier
d of r and s is 2n. The length of any message in Rk is thereby at most
2

n
2 +1 + (k − 1) · 2n, k ∈ N+. This makes these collision sets useless in

practice.

3. Regardless of the huge length, the (information theory or Kolmogorov)
complexity of messages in Rk, k ∈ N+, is very small. To present and
store the multicollision set Rk, very little resources is required. In fact,
one only needs to store the symbols a and b and the numbers p, r, q
and s. Also the possibility to choose, instead of the symbols a and b, any
messages x and y, x �= y, should increase the flexibility of the collision
set and the number of alternatives to create it.

As we have seen above, the cycle construction in Af creates infinitely large
multicollisions while the work we have to do remains constant. In the basic
construction, the expected number of calls of the compression function f is 5·2 n

2 .
On the downside, the generated messages are extremely long, the length is in the
order of magnitude O(k · 2n) blocks. This is of course huge, when we compare it
with the attack by Joux, which gives us 2r-collision, where the messages size is
r blocks.

The downside of the Joux attack is that we have to search for k 2-collisions
to create a 2k-collision. It is possible to combine our attack with that of Joux’s
and retain many properties from both of them.

Suppose that the attacker is capable of processing messages of length approx-
imately 2

n
2 .

We start by generating the values hi = f(hi−1, a) for i = 1, 2, . . . , 2
n
2 , where

h0 is an initial value and a a fixed symbol in A. Next we, applying Joux’s
method, search message block symbols b and c in A such that b �= c and
f(h

2
n
2
, b) = f(h

2
n
2
, c). Denote l0 = f(h

2
n
2
, c). We continue by generating the

values li = f(li−1, a) for i = 1, 2, . . . , 2
n
2 . By the birthday paradox, with a sig-

nificant probability, there exist r, s ∈ {1, 2, . . . , 2 n
2 } such that hr = ls. Obviously

all the messages in the language

T = ar{ a2
n
2 −rb as, a2

n
2 −rc as}∗

have the same hash value ls. To create T , on average 5.5 · 2
n
2 queries on f are

required.
Let now k ∈ N+ and

Tk = ar{ a2
n
2 −rb as, a2

n
2 −rc as}k .

All the messages in Tk are of the same length (= r + k(2
n
2 − r + s)) with the

same hash value (= ls), so Tk is a k-collision set on f+ with initial value h0.
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We have to do more work than would be necessary for the normal cycle
construction. Basically, the expected number of compression function calls is
5.5 · 2n/2 times. On the other hand, the length of the messages for 2k-collision is
r + k(2n/2 − r + 1 + s) blocks, which gives us messages the size of which is the
order of magnitude O(k 2n/2) blocks.

7.2 When Fixed Points of f Are Easily Constructed

A fixed point of the compression function f is a pair (h, x) ∈ Bn × A such that
f(h, x) = h. Suppose for a while that fixed points of f can easily be found [5].
In our case, this means that there exists a random fixed point generator for f ,
i.e., a randomized algorithm RFPGf which, when requested, returns a random
fixed point of f . Suppose furthermore that RFPGf works in constant time in
the sense that the generation of 2

n
2 fixed points of f requires only O(2

n
2 ) queries

on f .
Multicollision sets in f+ can now be generated as follows.

1. Given an initial value h0, generate 2
n
2 random messages ai, i = 1, 2, . . . , 2

n
2

and their respective compression function values hi = f(h0, ai), i = 1, 2, . . . ,
2

n
2 .

2. Using RFPGf , generate 2
n
2 random fixed points (k1, b1), (k2, b2) . . . , (k

2
n
2
,

b
2

n
2

) of f .
3. Find p, q ∈ {1, 2, . . . , 2 n

2 } such that hp = kq.
4. Let l0 = hp. Generate 2

n
2 random messages ci, i = 1, 2, . . . , 2

n
2 and their

respective compression function values li = f(l0, ci), i = 1, 2, . . . , 2
n
2 .

5. Using the previously generated random fixed point sequence (k1, b1), (k2, b2)
. . . , (k

2
n
2
, b

2
n
2

) of f , find r, s ∈ {1, 2, . . . , 2 n
2 } such that lr = ks.

6. Return the set R = apb
∗
qcrb

∗
s.

We may assume that the probability that bq = cr is negligible. Certainly f(h0, ap)
= f(hp, bq) = hp. On the other hand f(l0, cr) = f(lr, bs) = lr. This means that
each message in R has the same hash value (= lr). The construction of the set
R can (with nonnegligible probability) be carried out with 2

n
2 requests on f .

Let k ∈ N+ and Rk = {apb
i
qcrb

k−i
s |i ∈ {0, 1, . . . , k − 1}}. Obviously each

message in Rk is of length k + 2, so Rk is a k-collision set on f with initial
value h0.

We have proved that if we have RFPGf available, then by making 2
n
2 +1

queries on f plus 2
n
2 requests on RFPGf , one can construct a multicollison set

from which any k-collision set, k ∈ N+, easily can be picked.

Remark 3. The above method is essentially the same as presented in [5].

Remark 4. In information sciences in general and in information security in
particular it is a common habit to visualize iterated structures with (directed)
graphs. It is well known that finite digraphs represent an equivalent notion to
finite state automata. However, when the state space of a system grows large,
graphs loose their power of expression. Also when it is necessary treat com-
putations as rigorous mathematical objects, system description with automata
substantially outweighs graph representation.
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8 Conclusion

In this paper, we have demonstrated some generalizations of recent multicollision
attacks on iterated hash functions. Our first method shows that by using some
memory and computing several smaller sets of hash values for comparison we
can achieve better performance than with Joux’s method with the same amount
of work. Although Joux’s method can also be applied with the so called mem-
oryless birthday attacks, it should be noted that in [11] the authors mention,
that any available memory can be used to enhance the performance of the algo-
rithm. Thus memoryless birthday attacks have large constant factors affecting
their performance. Similarly our method can be applied with smaller memory
than 2n/2, but then one must do a lot more calculations to gain the necessary
collisions.

The second method shows a fundamental property of iterated hash functions,
which has been previously used in multicollision finding algorithms with some
added assumptions. We were able to show that when the length of the messages
is not restricted, finding arbitrarily large multicollisions takes only the same
amount of work as finding two collisions. This idea is only of theoretical interest,
as the messages generated with our method are utterly impractical to be used
with real iterated hash functions.

The results, however, raise some interesting research problems. As the results
of Joux and this paper show, one can generate practical multicollisions for iter-
ated hash functions, even when the underlying compression function would be
a FIL-RO. This requires a logarithmic factor of the size of the multicollision to
enter in to the complexity. On the other hand, the theoretical result in this paper
shows that arbitrarily large multicollisions for an ideal iterated hash function can
be constructed without the logarithmic factor, when the message length is not
restricted. The most intriguing result would be to find a result, which states that
this theoretical limit can be reached even with practical message lengths. Also
finding that there is a trade-off between the message length and the complexity
of a multicollision attack would be an interesting result. We believe that such
a trade-off exists and that practical multicollisions cannot be found for ideal
iterated hash functions without some factor of the multicollision size coming in
to the complexity.
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Appendix

Now we have to find the solution to equation xs+1−xs− 1
s (xs−1+xs−2+· · ·+1) =

0 with the greatest absolute value. It is easy to see, that x = 0 is not root for
the equation and so it can be written in the form 1 = x−1 + 1

s (x−2 + x−3 +
· · · + x−s−1). Clearly x−1 + 1

s (x−2 + x−3 + · · · + x−s−1) is decreasing when
x ∈ R+ and so our equation can have only one positive real root. Polynomial
xs+1 − xs − 1

s (xs−1 + xs−2 + · · · + 1) is clearly increasing without limit, when
the values of x are large enough. It follows that if x ∈ R+ the values of the
polynomial will be neqative before this root value and positive after it. It is also
obvious that x �= 1 so the equation can be written as

xs(x− 1)− 1
s

(xs−1 + xs−2 + · · ·+ 1)

= xs(x− 1) +
1− xs

s(x− 1)
=

xs[s(1− x)2 − 1] + 1
s(x− 1)

= 0.

Finding a general solution to such equation is a hard if not impossible task.
However finding an approximation is relatively easy. Let us set g(x) = xs[s(1−
x)2 − 1] + 1. Now g(1 + 1√

s
) = (1 + 1√

s
)s[s( 1√

s
)2 − 1] + 1 = 1 > 0. On the other

hand g(1 + 1√
s+2

) = (1 + 1√
s+2

)s[s( 1√
s+2

)2 − 1] + 1 = (1 + 1√
s+2

)s (−2)
s+2 + 1 =

1− (1 + 1√
s+2

)s 1
s
2+1 . It is easy to compute this value for all s = 2, 3, · · · , 19 and

see that in these cases g(1 + 1√
s+2

) < 0.
Now we can assume, that s ≥ 20. In this case, we get

(1 +
1√
s + 2

)s = 1 +
s

(s + 2)
1
2

+
s(s− 1)
2(s + 2)1

+
s(s− 1)(s− 2)

6(s + 2)
3
2

+
s∑

i=4

(
s

i

)
1√

s + 2
i .

Now s(s−1)(s−2)

6(s+2)
3
2

= s
6 · s−1

s+2 · s−2√
s+2

. If s = 20, s−1
s+2 · s−2√

s+2
> 3. Since s−1

s+2 and s−2√
s+2

are clearly increasing when s ≥ 20 we get s(s−1)(s−2)

6(s+2)
3
2

> s
2 , when s ≥ 20. Thus

(1 + 1√
s+2

)s > s
2 + 1 which in turn means that g(1 + 1√

s+2
) < 0 also for values

s = 20, 21, · · ·.
We have now proven that there is a positive real root x ∈]1 + 1√

s+2
, 1 + 1√

s
[ for

g(x). This root is also the only positive real root of our equation. We mark this
root with x1. Next we will prove that other roots will have smaller absolute values.

Our equation can also be written in the form

xs+1 = xs +
1
s

(xs−1 + xs−2 + · · ·+ 1).

Let us now assume, that y is the root of equation and y /∈ R+. This means that
|y + 1| < |y| + 1. It follows that |ys+1| < |ys| + 1

s (|ys−1| + |ys−2| + · · · |y| + 1).
This in turn means that

|y|s+1 − |y|s − 1
s

(|y|s−1 + |y|s−2 + · · ·+ 1) < 0.

Since this equation has only single root in R+ and |y| ∈ R+ we have |y| < x1 = |x1|.
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Abstract. Grøstl[1] is one of the second round candidates of the SHA-3
competition[2] hosted by NIST, which aims to find a new hash stan-
dard. In this paper, we studied equivalent expressions of the generalized
AES-like permutation. We found that four rounds of the AES-like per-
mutation can be regarded as a Hyper-Sbox. Then we further analyzed
the differential properties of both Super-Sbox and Hyper-Sbox. Based
on these observations, we give an 8-round truncated differential path of
the generalized AES-like permutation, which can be used to construct a
distinguisher of 8-round Grøstl-256 permutation with 264 time and 264

memory. This is the best known distinguisher of reduced-round Grøstl
permutation.

Keywords: Super-Sbox, Hyper-Sbox, AES-like permutation, Distin-
guisher, Grøstl, SHA-3 candidates.

1 Introduction

In the last few years, the cryptanalysis of hash functions has been significantly
improved. The attacks on widely used hash standards, such as MD5 [3,4] and
SHA-1 [5,6], have become serious threats to the security of the cryptographic
systems based on these standards. In 2007, NIST announced the SHA-3 com-
petition calling for new hash function designs in order to find a replacement of
SHA-2. Since then, many new hash function designs have been submitted to
the competition and only 14 of them are selected by NIST as the second round
candidates.

The AES-like permutation is a very popular building block used in the second
round candidates, such as ECHO[7], Grøstl[1], JH[8], Luffa[8] and SHAvite-3[9].
Some designers proved that properties of their hash functions can be reduced to
the properties of the underlying building blocks. Cryptanalysis of the AES-like
permutations is of significant value since it helps us to improve our understanding
of these designs.

In FSE 2009, Florian Mendel et al. proposed a new tool of “Rebound” tech-
nique [10], which works amazingly well on AES-like designs. Then following re-
searches focused on how to use degrees of freedom more efficiently [11,12,13,14].
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In FSE 2010, Henri Gilbert et al. introduced the Super-Sbox view of AES-like
permutations [15]. A Super-Sbox consists of two Sbox layers with an MDS layer
inserted in the middle. They found that two rounds of AES-like permutation can
be considered as a Super-Sbox, which allows more efficient use of the degrees of
freedom in a rebound attack. Improved distinguishers of AES, Grøstl and ECHO
permutations are constructed based on their observation.

Our contributions. In this paper, we considered the equivalent expressions
of AES-like permutation and find that four rounds of the permutation can be
considered as a Hyper-Sbox. Then we studied differential properties of both
Super-Sbox and Hyper-Sbox and analyzed the complexity to find solutions for
them with given input and output truncated differences.

Based on these observations, we tried to construct distinguisher of a general-
ized permutation based on an 8-round truncated differential path. Then we found
that this distinguisher only works on permutations with state size of r× r cells,
where r ≥ 7. Since r = 8 for Grøstl-256, this generalized distinguisher works
on 8-round Grøstl-256 permutation. The distinguisher has a complexity of 264

computations and 264 memory. Comparison with the distinguishers proposed by
others are listed in Table 1.

Distinguisher proposed by Thomas Peyrin taks advantages of the different
constant additions between two permutations P and Q used in Grøstl. It is
the best known distinguisher on Grøstl compression function. Our result is a
generalized distinguisher on AES-like permutations, also the best distinguisher
on Grøstl-256 permutation.

We also considered distinguisher for AES-like permutations with non-square
states. We found that this kind of distinguisher does not exist for 8-round Grøstl-
512 permutation, because of some impossible truncated differential characteris-
tics implied by the shift vector.

Table 1. Comparison to previous works

type target rounds
computational memory

source
complexity requirement

distinguisher

7 256 - [11]

Grøstl-256 8 2112 264 [15]

compression 8 264 264 this paper

function 9 280 264 [16]

10 2192 264 [16]

Grøstl-512

compression 11 2640 264 [16]

function

Grøstl-256
7 256 - [11]

permutation
8 2112 264 [15]

8 264 264 this paper
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2 Preliminary

2.1 The Generalized AES-like Permutation

In this paper, we consider the generalized AES-like permutation. The state of a
generalized AES-like permutation is considered as a r × r matrix of c-bit cells.
One round of the permutation is written as

R = MixColumns ◦ ShiftRows ◦ SubBytes ◦AddConstant.

The four transformations are defined as:

– AddConstant: The AddConstant operation XORs a round-dependent con-
stant to the state.

– SubBytes: The SubBytes transformation applies an S-box to each cell of
the state.

– ShiftRows: The ShiftRows transformation cyclically rotates the cells of the
i-th row leftwards by i positions.

– MixColumns: In the MixColumns operation, each column of the matrix is
multiplied by an MDS matrix.

We use AC, SB, SR and MC to denote these transformations for short. One
round of AES-like permutation is illustrated is Figure 1.

Fig. 1. One round of the generalized AES-like permutation

2.2 Specification of Grøstl Compression Function

The compression function f of Grøstl is constructed using two AES-like
permutations P and Q: f(h,m) = P (h ⊕ m) ⊕ Q(m) ⊕ h, as illustrated in
Figure 2. The only difference between P and Q is that they use different round
constants.

Grøstl-256 uses 10-round 512-bit permutations and Grøstl-512 uses 14-round
1024-bit permutations. State of the 512-bit permutation is processed as an 8× 8
matrix of bytes. The 1024-bit permutation uses an 8 × 16 matrix of bytes. The
8-bit S-box used in Grøstl is the same as the one used in AES. ShiftRows
transformations in the 512-bit and 1024-bit permutations use different shift vec-
tors: (0, 1, 2, 3, 4, 5, 6, 7) for the former one and (0, 1, 2, 3, 4, 5, 6, 11) for the latter
one. The MDS matrix used in the MC transformation is a circulant matrix
B = circ(02, 02, 03, 04, 05, 03, 05, 07).
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Fig. 2. Compression function of Grøstl

2.3 The Rebound Techniques and Properties of S-Boxes

The rebound techniques are proposed by Florian Mendel et al. at FSE 2009 [10].
The main idea is to solve the most expensive part of a truncated differential path
and leave the cheaper part fulfilled by chance. In the intermediate part of the
path, differences match with surprisingly high probability. The matching part of
the attack takes advantage of differential properties of S-boxes.

For an c-bit S-box S, we say that its input difference �a and output difference
�b match, if solutions exist for this equation S[x] ⊕ S[x ⊕ �a] = �b. In this
paper, this fact is denoted as “�a��b”. The set of solutions to this equation is
denoted as D(�a,�b). Since S-box is a bijective function, we can immediately
find that 0 � 0, �c � 0 and 0 � �c, where �c �= 0.

If x is a solution to this equation S[x]⊕S[x⊕�a] = �b, x⊕�a �= x is another
solution. So, if �a��b, at least two solutions can be found. For the 8-bit S-box
used in AES and Grøstl, element numbers of D(�a,�b) for all non-zero �a
and �b are shown in Table 2, which proves another property: randomly chosen
non-zero differences can match at the S-box with probability of about 1/2.

Table 2. Solution numbers of the AES S-box for non-zero difference pair (�a,�b)

|D(�a,�b)| Number of pair (�a,�b)

0 32640

2 32130

4 255

all 65025 in total

For s × t matrices M and N of c-bit cells, notation �M � �N stands for
the fact that differences in all cells of M and N at the same positions match.
Namely, �M ��N ⇔�Mi,j ��Ni,j for 1 ≤ i ≤ s and 1 ≤ j ≤ t.

3 Study of Super-Sbox and Hyper-Sbox

3.1 Super-Sbox and Hyper-Sbox View of AES-Like Permutations

The Super-Sbox view are independently discovered and used by two research
groups [13,15],which can be used to increase one round of inbound steps in
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Fig. 3. Four equivalent expressions of 8-round AES-like permutation

a rebound attack. Since SubBytes and ShiftRows are exchangeable, namely
SB ◦ SR() = SR ◦ SB(), there are several alternative expressions of AES-like
permutations as illustrated in Figure 3. Two rounds of AES-like permutations
can be regarded as Super-Sboxes, where

SuperSbox() = SB ◦AC ◦MC ◦ SB(),

SuperMC() = SR ◦AC ◦MC ◦ SR().

We will use the alternative expressions in the following sections, since the
structure of our differential path can be described more clearly in the alternative
expressions.

The Super-Sbox consists of two S-boxes, inserted by an MDS transformation
in the middle, which can be considered as a (r × c)-bit S-box. We can find a
fact that the Super-MC transformation is an MDS transformation on (r× c)-bit
columns. Proof of this fact is described in appendix A. The branch number of
Super-MC is also r + 1.

Now we try to combine two Super-Sboxes with a Super-MC in the middle, just
like the inner structure of a Super-Sbox. We call the combination a “Hyper-Sbox”,
which is part of the equivalent expression of four-round AES-like permutations.

HyperSbox() = SuperSbox ◦ SuperMC ◦ SuperSbox().

Due to the similar inner structures of Super-Sbox and Hyper-Sbox, one may
be inspired that they should have similar properties. We studied their differential
properties and found something in common.

3.2 Differential Property of Super-Sbox

Now, consider a generalized Super-Sbox illustrated in Figure 4 with c-bit S-boxes
and r cells in a column as input. Suppose there are n active cells in the input
difference and m active cells in the output difference, where m + n ≥ r + 1.
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Fig. 4. A generalized Super-Sbox

Without loss of generality, we assume that n ≤ m. Since if n > m, we can
reverse the Super-Sbox and get an equivalent expression. In the following anal-
ysis, we name the four states in Figure 4 as L,L′, R′ and R. Now, the question
is, given valid input and output difference pairs (�L,�R), how many solutions
exist? In a trivial case that m = n = 0, there are 2rc solutions. In another trivial
case that m > 0, n > 0 and m+n ≤ r, no solution exists. The proposition below
answers the question of non-trivial cases. We prove it using facts about S-boxes.

Proposition 1. For random input and output difference pair (�L,�R) of the
generalized Super-Sbox(with m ≥ n active bytes, where m + n ≥ r + 1), expected
number of solutions is about 1.

Proof. Let C = {(�L′,�R′)|�R′ = MDS(�L′)}. Element number of C is:

|C| = (2c − 1)(m+n−r) ≈ 2(m+n−r)c

Let C� = {(�L′,�R′) ∈ C|�L ��L′,�R′ ��R},
|C�| = |C| · 2−m−n = 2(m+n)(c−1)−rc

Let SL′ = {L′|S−1[L′]⊕S−1[L′⊕�L′] = �L},SR′ = {R′|S[R′]⊕S[R′⊕�R′] =
�R}. For each (�L′,�R′) ∈ C�,

|SL′ | = 2n(2c)r−n = 2rc−(c−1)n

|SR′ | = 2m(2c)r−m = 2rc−(c−1)m

This is a meet-in-the-middle setting for solutions from both sides. So we can find
a common element of SL′ and SR′ with probability of

Pr =
|SL′ | · |SR′ |

2rc
= 2rc−(c−1)(m+n)

Expected number of solutions we can find for one pair of �L and �R is:

|C�| · Pr = 1,

which completes the proof.
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Note that the meet-in-the-middle solution matching step can be done by solving
a linear equation group. Since we can freely choose values of the non-active cells,
one non-active cell can be considered as c variables in bits. For active cells,
once the differences matched, there are two values fulfilling the differences of the
active cell. We use one bit variable to indicate which value it is. So, the matching
step becomes a linear equation group. Solutions to this equation group are the
values fulfilling the input and output differences of the generalized Super-Sbox.

3.3 Differential Property of Hyper-Sbox

Proposition 2. For random input and output difference pair (�L,�R) (with
m ≥ n active columns, where m + n ≥ r + 1) of the generalized Hyper-Sbox,
expected number of solutions is 1.

Fig. 5. A generalized active pattern for Hyper-Sbox

Proof. A generalized active pattern is shown in Figure 5. Since Super-Sbox be-
haves like a big S-box on each column and Super-MC is also an MDS transfor-
mation on columns with a branch number of r + 1.

We can easily adapt notations used in proof of Proposition 1 and prove Propo-
sition 2. Since the difference between two proofs is minor, here we don’t describe
details of this proof.

4 Distinguisher of 8-Round Grøstl Permutation

4.1 A Generalized Differential Path

In this section, instead of considering a specific algorithm, we try to construct a
differential path for the generalized AES-like permutation. An 8-round truncated
differential path for the permutations with states of r× r c-bit cells is illustrated
in Figure 6. Without loss of generality, let n ≤ m. From property of MDS
transformation, we have m + n ≥ r + 1.

Now we consider the complexity to find one solution to this differential path
and the complexity to find one pair fulfilling the input and output truncated
differences of a random permutation.



162 S. Wu et al.

Fig. 6. 8-round truncated differential path for AES-like permutations

Claim (1). It takes 2(m+n−r)rc computations and 2rc memory to find one solu-
tion to Hyper-Sbox part of this generalized differential path.

Proof. Randomly choose �L′′ and �R′′ s.t. �L = SuperMC(�L′′) and �R =
SuperMC−1(�R′′) follow the truncated differential pattern in Figure 6.�L and
�R are the input and output differences for the Hyper-Sbox. (About 2(m+n−r)rc

such differences exist for both sides.)
Since the uncontrolled rounds can be fulfilled with probability of 1. The prob-

lem is simplified: What is the complexity to find one solution to the Hyper-Sbox,
with given valid input and output differences?

This problem can be solved in three steps:
1. Local pre-computations: For each active column �Li of �L, go through all

2rc values of Li, calculate and store (L′
i,�L′

i) with difference mask �Li. Do the
same thing to �R in backward direction. This step requires 2rc computations
and 2rc memory.

2. For all difference pairs (�L′,�R′) s.t. �R′ = SuperMC(�L′) (2(m+n−r)rc

pairs in total), check if differences in their active columns are stored in the pre-
computation tables of both sides. If we found one such difference pair, we obtain
the solutions to the Super-Sboxes immediately from pre-computations tables and
go to step 3, otherwise check another difference pair.

3. The matching problem of solutions can be solved with similar techniques
used in cryptanalysis of Super-Sbox in Section 3.2: view this problem as solving
a linear equation group, though in this case only one value can be selected for
each active cell. The matching probability is 2(r−m−n)rc. We leave the details
of the matching step explained in section 4.2. If not all inner pairs (�L′,�R′)
have been checked, go to step 2 and continue.

Since there are about 2(m+n−r)rc intermediate pairs (�L′,�R′), according to
proposition 1, we expect to match the solutions 2(m+n−r)rc times. So the total
complexity is about 2(m+n−r)rc computations and 2rc memory. After we went
through all the possible pairs (�L′,�R′), we expect to find one solution to the
Hyper-Sbox, according to proposition 2. Note that solution to the Hyper-Sbox
part is also solution to this generalized differential path, since the uncontrolled
rounds can be fulfilled with probability of 1.

Claim (2). It takes 2(r−m)rc/2 computations to find one pair of solution for a
random permutation with n active columns and m active columns at prescribed
positions of input and output states.
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Proof. Consider the limited birthday problem discussed by Henri Gilbert et al.
in section 4.1 of [15]. Our case has a setting of i = (r − n)rc and j = (r −m)rc.
With assumption that m ≥ n, it’s easy to see that i ≥ j. Introduction to the
limited birthday problem is illustrated in Appendix B.

Since m + n ≥ r + 1 ⇒ j < 2(r2c− i), the complexity is 2j/2 = 2(r−m)rc/2.

4.2 How to Match the Solutions

As illustrated in Figure 7, values of the active cells in L′ and R′ have been
determined while values of the non-active cells are free to choose. We can match
them in the inner states L′′′ and R′′′ column by column.

Fig. 7. Solution matching step with r = 8, m = 5 and n = 4

For example, considering the case of r = 8,m = 5 and n = 4, the first column
of L′′′ and R′′′ can be matched by solving this linear equation group:

B ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

c0

c1

c2

c3

c4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x3

c5

c6

c7

c8

x4

x5

x6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where B = circ(02, 02, 03, 04, 05, 03, 05, 07) is the matrix used in MixBytes op-
eration and C is the round constant used in AddRoundConstant operation.
c0, c1, ...c8 are the values of active bytes, which are also solutions we get from two
Super-Sboxes. Because we can freely choose values of the non-active cells, and
consider them as variables. So, there are 7 variables (non-active cells x0, x1, ...x6)
and 8 equations, the probability that we can find one solution of this equation
group is 2−c for each column.

In the generic case, there are (r −m) + (r − n) = 2r −m− n variables (non-
active cells) and r equations in one column. The probability that we can find one
solution is 2(−c)·(r−(2r−m−n)) = 2(r−m−n)c for each column. So, for r columns,
the matching probability is 2(r−m−n)rc.
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4.3 Conclusion of the Distinguisher

If the complexity of finding one solution to our differential path is lower than
the complexity of finding one solution to a random permutation, the fact can
be considered as a distinguisher. For our distinguisher, we need 2(m+n−r)rc <
2(r−m)rc/2, which is equivalent to

3r > 3m + 2n. (1)

Since m + n ≥ r + 1 and m ≥ n, we have m ≥ r + 1− [ r+1
2 ]. So,

3r > m + 2(m + n) ≥ r + 1− [
r + 1

2
] + 2r + 2 ⇒ [

r + 1
2

] > 3 ⇒ r ≥ 7.

This means the generalized distinguisher doesn’t work on algorithms with a state
size smaller than 7× 7 cells, like AES. Note that the ECHO permutation uses a
structure with 4× 4 state of 128-bit big cells, so our distinguisher does not work
on ECHO, too.

From m ≥ n and equation 1, we have

3r > 3m + 2n ≥ 5n⇒ n ≤ 3
5
r.

We also have n ≥ r + 1−m, then from equation 1,

3r > 3m + 2n ≥ 3m + 2(r + 1−m) ⇒ r > m + 2 ⇒ m ≤ r − 3

Now we have the bounds of m and n:

r + 1− [
r + 1

2
] ≤ m ≤ r − 3,

r + 1−m ≤ n ≤ 3
5
r.

For Grøstl permutation, r = c = 8.

r = 8 ⇒ 5 = 8 + 1− [
8 + 1

2
] ≤ m ≤ 8− 3 = 5 ⇒ m = 5.

Since

4 = 8 + 1− 5 = r + 1−m ≤ n ≤ 3
5
r = 4.8 ⇒ n = 4,

we have the only pattern m = 5 and n = 4 for the distinguisher of 8-round
Grøstl permutation.

It takes 264 computations and 264 memory to find one solution of the differ-
ential path for Grøstl. For an ideal permutation, the complexity is 296. This fact
distinguishes 8-round Grøstl permutation from an ideal permutation.
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5 Considering Non-square States

In this section, we aim to find a similar distinguisher of 8-round Grøstl-512
permutation. First, we also consider a generalized permutation with a state of
r× 2r cells. We use the same active pattern as in Figure 6, namely, m and n full
active columns appearing alternately.

For the non-square state, shift vector could lead to impossible differentials for
non-square states. In fact, we found that distinguishers with similar structure
don’t exist for Grøstl-512, due to such impossible differentials. We will talk about
the details later. Now we assume that the SuperMC transformation can turn m
full active columns into n full active columns in the (r × 2r)-sized state, where
m ≥ n.

In order to construct the distinguisher, we need some calculation first. Suppose
that all columns of the input and output state of the intermediate MC of the
SuperMC are active, there are at least r+1 active cells. So, at least 2r× (r+1)
active cells exist in total. This fact implies an inequality r(m + n) ≥ 2r(r + 1),
from which the first restriction on m and n can be derived:

m + n ≥ 2(r + 1).

With similar techniques, we can calculate the complexity to find one solution
of the differential path is 2(m+n−r)rc computations and 2rc memory. For a ran-
dom permutation, the complexity to find one solution fulfilling the input and
output truncated differential pattern is 2(2r−m)rc/2. The distinguisher requires
that 2(m+n−r)rc < 2(2r−m)rc/2, which can be simplified to:

6r > 3m + 2n.

m + n ≥ 2(r + 1) and m ≥ n implies that m ≥ r + 1. So,

6r > 3m + 2n = m + 2(m + n) ≥ m + 4r + 4 ≥ 5r + 5 ⇒ r > 5

From this inequality, we know such distinguisher doesn’t work on algorithms
using r × 2r states with r ≤ 5, like AES-256. In Grøstl-512 permutation, r = 8
and c = 8. It’s easy to find all the solutions fulfilling both inequalities above:
m = n = 9, m = 10, n = 8 and m = 11, n = 7.

We searched for the possible positions of active columns, but unfortunately,
no possible differential patterns exist with the shift vector (0, 1, 2, 3, 4, 5, 6, 7, 11).
An impossible differential pattern is illustrated in Figure 8. All columns are valid
except for the 9-th column, since there are only 8 active bytes in that column,
which are indicated by the black cells.

Then we tried another shift vector from message expansion of Cheetah hash
function[17]. As we know, this is the only AES-like permutation with 8×16 states
except the one used in Grøstl-512. The shift vector used in message expansion of
Cheetah is (0, 1, 2, 3, 5, 6, 7, 8). Again, we found no possible differential pattern
with m = n = 9, m = 10, n = 8 or m = 11, n = 7 for this shift vector.

Does such differential pattern exist for some shift vector? The answer is posi-
tive. We found that for the shift vector (0, 1, 2, 3, 4, 5, 6, 15) a differential pattern
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Fig. 8. An impossible differential pattern of Grøstl-512

Fig. 9. A differential pattern with m = n = 9 for shift vector (0,1,2,3,4,5,6,15)

with m = n = 9 exists, which is illustrated in Figure 9. As we know, no algo-
rithms use this shift vector. So, our attempts to construct similar distinguisher
for non-square states failed.

6 Conclusion

In this paper, we introduced the Hyper-Sbox view of AES-like permutations.
based on this observation, we studied the differential properties of Super-Sbox
and Hyper-Sbox and found their similarity. Then we proposed a new type of
distinguisher which works on 8-round AES-like permutations if the state size
is r × r, where r ≥ 7. This distinguisher can be applied directly on 8-round
Grøstl-256 permutation.

Though there is a better distinguisher on the full-round Grøstl-256 compres-
sion function, its application is restricted by the specific structure of Grøstl. Our
proposal is a generalized distinguisher and the best one of 8-round Grøstl-256
permutation with 264 time and 264 memory.

We also considered similar distinguisher on the non-square AES-like permu-
tation. We found that if size of the state is r×2r, where r < 6, the distinguisher
doesn’t work. We also found that this distinguisher doesn’t work on Grøstl-512
permutation or any other known algorithm due to the shift vector.
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A Proof of the Fact that Super-MC Is MDS

This proof is illustrated using Figure 7 again. Assume that the number of active
bytes in the i-th column of L′′′ is mi and the number of active bytes in the i-th
column of R′′′ is ni. Number of active columns in L′ and R′ are m and n. It’s
easy to find the relation: for any i, m ≥ mi and n ≥ nI . Then we have

m ≥ maxi{mi},

n ≥ maxi{ni}.
Branch number of MC is r + 1, which means if the i-th column(1 ≤ i ≤ r) of
L′′′ is active,

mi + ni ≥ r + 1.

Since at least one column in L′′′ is active, we have maxi{mi + ni} ≥ r + 1. So,

m + n ≥ maxi{mi}+ maxi{ni} ≥ maxi{mi + ni} ≥ r + 1,

which completes the proof.

B The Limited Birthday Problem

In [15], Henri Gilbert discussed the limited birthday problem: What is the
generic attack complexity of finding a solution with i zero bits in prescribed
positions of the input and j zero bits in prescribed positions of the output for
an ideal(random) permutation?

Assume that i ≥ j and n is the bit size of the permutation. Due to the birthday
paradox, each structure of 2n−i input values with those i zero bits fixed allows
to provide at most 2(n− i) zero bits in prescribed positions of the output value.

– if j ≤ 2(n − i), degrees of freedom is sufficient to achieve a collision on the
j prescribed bit position. So, the complexity is 2j/2.

– if j > 2(n − i), since on structure of 2n−i input values can provide at most
2(n−i) collision bits, j−2(n−i) structures are required to achieve j collision
bits. The complexity is 2n−i × 2j−2(n−i) = 2i+j−n.
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Abstract. This paper presents the first results on the preimage resis-
tance of ISO standard hash functions RIPEMD-128 and RIPEMD-160.
They were designed as strengthened versions of RIPEMD. While preim-
age attacks on the first 33 steps and intermediate 35 steps of RIPEMD
(48 steps in total) are known, no preimage attack exists on RIPEMD-128
(64 steps) or RIPEMD-160 (80 steps). This paper shows three variations
of attacks on RIPEMD-128; the first 33 steps, intermediate 35 steps,
and the last 32 steps. It is interesting that the number of attacked steps
for RIPEMD-128 reaches the same level as RIPEMD. We show that our
approach can also be applied to RIPEMD-160, and present preimage
attacks on the first 30 steps and the last 31 steps.

Keywords: RIPEMD-128, RIPEMD-160, hash, preimage, meet-in-the-
middle.

1 Introduction

Cryptographic hash functions are one of the most basic primitives. For symmetric-
key primitives, it is quite standard to evaluate their security by demonstrating
cryptanalysis on them or weakened versions e.g. step-reduced versions. In fact,
analysis on the step-reduced versions is useful to know the security margin.

Preimage resistance is an important security for hash functions. When digests
are n-bits, the required security is usually n-bits e.g. the SHA-3 competition [1].

Since the collision resistance of MD5 and SHA-1 have been significantly bro-
ken [2,3], many hash functions with various designs such as RIPEMD, Tiger,
Whirlpool, and FORK-256 have been pointed out to be vulnerable or non-
ideal [4,5,6,7,8]. Meanwhile, no attack is known against (full specifications of)
RIPEMD-128 and RIPEMD-160 [9] though they were designed more than ten
years ago.

RIPEMD [10] is a double-branch hash function, where the compression func-
tion consists of two parallel copies of a compression function. In 1996, Dobbertin
et al. designed RIPEMD-128 and RIPEMD-160 [9] as strengthened versions of
RIPEMD. They are standardized in ISO/IEC 10118-3:2003 [11].

X. Lai, M. Yung, and D. Lin (Eds.): Inscrypt 2010, LNCS 6584, pp. 169–186, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Table 1. Summary of attack results

Target Steps Method Time for Time for Mem. Ref.
pseudo-preimage (2nd-)preimage

RIPEMD-128 first 33 IE 2119 2124.5 212 Ours
middle 35 LC 2112 2121 216 Ours

last 32 IE 2122.4 2126.2 † 212 Ours

RIPEMD-160 first 30 IE 2148 2155 † 216 Ours
last 31 IE 2148 2155 217 Ours

IE and LC represent the Initial-Exchange and Local-Collision approaches, respectively.
Attacks with † can generate second-preimages but cannot generate preimages.

In 2005, Wang et al. showed a collision attack on full RIPEMD [4]. They used
a property where two compression functions are identical but for the constant
value and thus the same differential path can be used for both branches. Because
RIPEMD-128 and -160 adopt different message expansion for two branches, the
attack cannot be applied to them. For RIPEMD-128 and -160, only pseudo-
(near-)collisions against step-reduced and modified versions are known [12].

On the preimage resistance, Wang et al. attacked the first 29 steps of RIPEMD
[13]. Then, Sasaki et al. attacked more steps; the first 33 and intermediate 35
steps [14]. These attacks seem inefficient for RIPEMD-128 and -160 due to the
different message expansion between two branches. In fact, as far as we know, no
preimage attack exists on RIPEMD-128 and -160 even for step-reduced versions.

Saarinen [8] presented a preimage attack on a 4-branch hash function FORK-
256 [15]. It uses several properties particular to FORK-256, and thus the same
approach cannot be applied to RIPEMD, RIPEMD-128, or RIPEMD-160.

Our contributions. We present the first results on the preimage resistance
of RIPEMD-128 and -160. Our attacks employ the meet-in-the-middle preim-
age attack [16]. Firstly, we devise initial-exchange technique, which exchanges a
message-word position located in the first several steps for a branch with the one
for the other branch. Secondly, we use a local-collision approach, which was first
proposed by [14] to attack RIPEMD. The results are summarized in Table 1.
Note that the approach of attacking the last few rounds was also taken by [17].

2 Specifications

RIPEMD-128. RIPEMD-128 [9] takes arbitrary and finite length messages as
input and outputs 128-bit digest. It follows the Merkle-Damg̊ard hash function
mode (with standard length encoding). The input message is padded to be a
multiple of 512 bits and is divided into 512-bit blocks Mi. Then, the hash value
is computed as follows:
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H0 ← IV, Hi+1 ← CF(Hi,Mi) for i = 0, 1, . . . , N − 1

where IV is the initial value defined in the specification, HN is the output hash
value, and CF: {0, 1}128 × {0, 1}512 → {0, 1}128 is a compression function.

The compression function has a double-branch structure. Two compression
functions CFL(Hi,Mi) : {0, 1}128 × {0, 1}512 → {0, 1}128 and CFR(Hi,Mi) :
{0, 1}128 × {0, 1}512 → {0, 1}128 are computed and the output of the com-
pression function is a mixture of (Hi,Mi), CFL(Hi,Mi), and CFR(Hi,Mi). Let
pL

j , a
L
j , b

L
j , c

L
j , d

L
j be 128-bit, 32-bit, 32-bit, 32-bit, 32-bit variables, respectively,

satisfying pL
j = aL

j ‖bL
j ‖cL

j ‖dL
j . Similarly, we define pR

j , aR
j , bR

j , cR
j , dR

j . Details of
the computation procedure is as follows.

1. Mi is divided into sixteen 32-bit message words mj (j = 0, 1, . . . , 15) and Hi

is divided into four 32-bit chaining variables Ha
i ‖Hb

i ‖Hc
i ‖Hd

i .
2. pL

0 and pR
0 are set to Hi (and thus pL

0 = pR
0 ).

3. Compute pL
j+1 ← RL

j (pL
j ,mπL(j)) and pR

j+1 ← RR
j (pR

j ,mπR(j)) for j =
0, 1, . . . , 63, where RL

j ,mπL(j), R
R
j , and mπR(j) will be explained later.

4. Compute the output value Hi+1 = (Ha
i+1‖Hb

i+1‖Hc
i+1‖Hd

i+1) as follows,
where “+” denotes a 32-bit word-wise addition.

Ha
i+1 = Hb

i + cL
64 + dR

64, Hb
i+1 = Hc

i + dL
64 + aR

64,

Hc
i+1 = Hd

i + aL
64 + bR

64, Hd
i+1 = Ha

i + bL
64 + cR

64.

RL
j and RR

j are the step functions for Step j. RL
j (pL

j ,mπL(j)) is defined as follows:

aL
j+1 = dL

j , bL
j+1 = (aL

j + ΦL
j (bL

j , c
L
j , d

L
j ) + mπL(j) + kL

j ) ≪ sL
j ,

cL
j+1 = bL

j , dL
j+1 = cL

j ,

where ΦL
j , k

L
j , and ≪ sL

j are Boolean function, constant, and left rotation de-
fined in Table 2. πL(j) is the message expansion of CFL. RR

j is similarly defined.

RIPEMD-160. Each branch of RIPEMD-160 consists of 80 steps using 160-bit
state. Let the chaining variables in step j of CFL be pL

j = aL
j ‖bL

j ‖cL
j ‖dL

j ‖eL
j . Step

function RL
j (pL

j ,mπL(j)) is as follows. (RR
j (pR

j ,mπR(j)) is similarly described.)

aL
j+1 = eL

j , cL
j+1 = bL

j , dL
j+1 = cL

j ≪ 10, eL
j+1 = dL

j ,

bL
j+1 = ((aL

j + ΦL
j (bL

j , c
L
j , d

L
j ) + mπL(j) + kL

j ) ≪ sL
j ) + eL

j .

π(j), Φj , and ≪ sj are shown in Table 2. Finally, the output value Hi+1 =
(Ha

i+1‖Hb
i+1‖Hc

i+1‖Hd
i+1‖He

i+1) is computed as follows.

Ha
i+1 = Hb

i + cL
80 + dR

80, Hb
i+1 = Hc

i + dL
80 + eR

80, Hc
i+1 = Hd

i + eL
80 + aR

80,

Hd
i+1 = He

i + aL
80 + bR

80, He
i+1 = Ha

i + bL
80 + cR

80.
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Table 2. Detailed specifications of RIPEMD-128 and RIPEMD-160

r πL(r), πL(r + 1), . . . , πL(r + 15) πR(r), πR(r + 1), . . . , πR(r + 15)
0 0 1 2 3 4 5 6 7 8 9 101112131415 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12

16 7 4 13 1 10 6 15 3 12 0 9 5 2 1411 8 6 11 3 7 0 13 5 101415 8 12 4 9 1 2
32 3 1014 4 9 15 8 1 2 7 0 6 1311 5 12 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13
48 1 9 1110 0 8 12 4 13 3 7 1514 5 6 2 8 6 4 1 3 1115 0 5 12 2 13 9 7 1014
64 4 0 5 9 7 12 2 1014 1 3 8 11 6 1513 121510 4 1 5 8 7 6 2 1314 0 3 9 11

j Φj(X, Y, Z) Abbreviation
0 ≤ j ≤ 15 X ⊕ Y ⊕ Z ΦF

16 ≤ j ≤ 31 (X ∧ Y ) ∨ (¬X ∧ Z) ΦG

32 ≤ j ≤ 47 (X ∨ ¬Y ) ⊕ Z ΦH

48 ≤ j ≤ 63 (X ∧ Z) ∨ (Y ∧ ¬Z) ΦI

64 ≤ j ≤ 79 X ⊕ (Y ∨ ¬Z) ΦJ

For RIPEMD-128: ΦL
j = Φj, ΦR

j = Φ63−j

For RIPEMD-160: ΦL
j = Φj, ΦR

j = Φ79−j

r sL
r , sL

r+1, . . . , sL
r+15 sR

r , sR
r+1, . . . , sR

r+15
0 11141512 5 8 7 9 11131415 6 7 9 8 8 9 9 11131515 5 7 7 8 11141412 6

16 7 6 8 1311 9 7 15 7 1215 9 11 7 1312 9 1315 7 12 8 9 11 7 7 12 7 6 151311
32 1113 6 7 14 9 131514 8 13 6 5 12 7 5 9 7 1511 8 6 6 141213 5 141313 7 5
48 111214151415 9 8 9 14 5 6 8 6 5 12 15 5 8 111414 6 14 6 9 12 9 12 5 15 8
64 9 15 5 11 6 8 1312 5 12131411 8 5 6 8 5 12 9 12 5 14 6 8 13 6 5 15131111

3 Related Work

3.1 Converting Pseudo-Preimage Attack to Preimage Attack

Given a hash value HN , a pseudo-preimage is a pair of (HN−1,MN−1) such that
CF(HN−1,MN−1) = HN , and HN−1 �= IV. In n-bit narrow-pipe iterated hash
functions, if pseudo-preimages with appropriate padding string can be generated
with a complexity of 2m, where m < n − 2, preimages can be generated with
a complexity of 2

m+n
2 +1 [18, Fact9.99]. Leurent pointed out that constraints of

the padding string can be ignored when we generate second preimages [19].

3.2 Meet-in-the-Middle Preimage Attack

Aoki et al. proposed a framework of the meet-in-the-middle preimage attack
[16]. The attack divides the compression function into two chunks of steps so
that each chunk includes independent message words, which are called neu-
tral words. Then, pseudo-preimages are obtained by performing the meet-in-
the-middle attack, namely, computing each chunk independently and matching
the partially-computed intermediate chaining variables. The framework is illus-
trated in Figure 1. Please refer [16] for more details such as terminologies and
procedure.

Assume that the first chunk has d1 free bits and the second chunk has d2

free bits, where d1 ≤ d2. Also assume that each chunk computes d3 bits of
intermediate chaining variables used for the match, where d3 ≥ min(d1, d2) = d1.
In this framework, an attacker computes d3 match bits of the first chunk for 2d1

possible values and store the results in a table. The table is sorted with time 2d1

(e.g. Bucket Sort) so that look-up can later be carried out with time 1. Then, for
each of 2d2 possible values, compute the d3 match bits of the second chunk and
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Hi-1 Hi

Mi-1

ma (d1-bits) mb (d2-bits)

ma mamb ma mb

message expansion

1st chunk 2nd chunk 1st chunk

partially 
computed

Check the match of the partial-bits (d3-bits)

Independent 
of mb

Independent 
of ma

Independent 
of mb

Fig. 1. Framework of the meet-in-the-mid-
dle preimage attack

1st chunk 1st chunk
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Match?
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collision

mC
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mB

mC

mC
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mB

Constant

step S1

step S3
step S3+1

step S2

Fig. 2. Local-collision approach
by [14] against RIPEMD

check if they exist in the table. If exist, compute and check the match of the other
n − d3 bits with the matched message words, where n is the state size. Using
the 2d2 computations of the second chunk, 2d1+d2−d3 pairs whose d3 bits match
are obtained. Finally, by iterating the procedure 2n−(d1+d2) times, a pseudo-
preimage will be obtained. The attack complexity is (2d1 + 2d2) · 2n−(d1+d2) in
time, and 2d1 in memory.

The initial-structure technique proposed by Sasaki et al.[20] is a technique for
this attack framework, which exchanges the positions of two message words in
neighbouring steps. This can increase the search space of neutral words.

3.3 Preimage Attacks on RIPEMD

Since the internal state size of RIPEMD is double of the digest size, a simple
application of the meet-in-the-middle attack for RIPEMD does not give any
advantage. Sasaki et al. proposed an approach using a local-collision to solve
this problem [14], which is depicted in Figure 2. In this approach, the attack
target (steps S1 to S2) is divided into two chunks; S1 to S3 are the first chunk
and S3 + 1 to S2 are the second chunk. The independent computations start
from the middle of CFL and find a match in the middle of CFR. However,
because of the feed-forward operation, the second chunk cannot be computed
independently of the first chunk in a straight-forward manner. To avoid this, [14]
used local-collisions. Namely, the first chunk includes two neutral words, and the
attacker chooses neutral words so that the impact of changing one neutral word
is always cancelled by the other neutral word. This fixes the feed-forward value
to a constant, and thus independent computations can be carried out.

4 New Analytic Tool: Initial-Exchange Technique

In this section, we explain the initial-exchange technique, which exchanges the
message-word positions located in the top of the steps across the right and left
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Fig. 6. Exchanging addition positions over
a rotation. Top is for the standard initial-
exchange. Bottom is for the partial-bit initial-
exchange.

branches. This technique can be applied to both of RIPEMD-128 and RIPEMD-
160. In this section, we explain the technique based on RIPEMD-128. We intro-
duce the basic concept in Sect. 4.1 and extend the idea in Sect. 4.2.

4.1 Basic Idea of the Initial-Exchange Technique

We explain the basic idea; how to exchange the positions of mπL(0) and mπR(0).
The idea is illustrated in Figure 3. In the standard computation, the value of
Hi−1 is fixed, and we compute CFL by using mπL(0) and CFR by using mπR(0).
We transform this computation by exchanging the order of additions so that
the positions of mπL(0) and mπR(0) are exchanged (bottom of Figure 3). This
enables us to compute CFL and CFR independently for more steps. Note that
the value of Ha

i used in the feed-forward operation is affected by both of mπL(0)

and mπR(0), and thus, we cannot fix it until we fix mπL(0) and mπR(0). However,
we can still partially compute the feed-forward operation for other variables.

4.2 Extension of the Initial-Exchange Technique

The basic idea only exchanges the messages in the first steps. By consider-
ing absorption properties of ΦL

j and ΦR
j , we can exchange messages in various
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Table 3. Summary of the initial-exchange technique for RIPEMD-128

Left Right FF effect Conditions comments
(ΦF ) (ΦI) for M ′

i for Mi

M ′
0 M0 Ha — —

M ′
0 M1 Ha ,Hd — b0 = c0

M ′
0 M2 Ha,Hc d1 = 0 d0 = 1, b1 = c1 partial bit condition

M ′
0 M3 Ha,Hb d1 = 0, d2 = 1 d0 = 0, d1 = 1, b2 = c2 partial bit condition

M ′
0 M4 Ha same as right d1 = 0, d2 = 1, b3 = c3

M ′
0 M8 Ha same as right d1 = 0, d2 = 1, b3 = c3,

d5 = 0, d6 = 1, b7 = c7

M ′
1 M0 Ha ,Hd b′0 = c′0 —

M ′
1 M1 Ha ,Hd b′0 = c′0 b0 = c0 same condition

On the 1st round (similar on the 4th round)

Left Right FF effect Conditions comments
(ΦH) (ΦG) for M ′

i for Mi

M ′
0 M0 Ha — —

M ′
0 M1 Ha,Hd — b0 = 1

M ′
0 M2 Ha ,Hc c1 = d1 b0 = 0, b1 = 1 partial bit condition

M ′
0 M3 Ha,Hb c1 = d1, b2 = 0 c0 = d0, b1 = 0, b2 = 1 partial bit condition

M ′
0 M4 Ha same as right c1 = d1, d2 = 0, b3 = 1

M ′
0 M8 Ha same as right c1 = d1, d2 = 0, b3 = 1,

c5 = d5, d6 = 0, b7 = 1

M ′
1 M0 Ha,Hd b′0 = 0,c′0 = 1 —

M ′
1 M1 Ha,Hd b′0 = 0,c′0 = 1 b0 = 1 partial bit condition

On the 3rd round (similar on the 2nd round)

positions. Note that the absorption property is the one where the output of
Φ(X,Y, Z) can be independent of one input variable. For example, the output
of ΦI(X,Y, Z) = (X ∧Z)∨ (Y ∧¬Z) can be independent of X by fixing Z to 0.
It is well-known that ΦG and ΦI have absorption properties [2].

The first round of CFR uses ΦI , which has the absorption property. In such
a case, messages words located in the second or latter step can be exchanged.
Figure 4 shows an example where M4 and M0′ are exchanged. Mi is a message
word mπR(i) for a branch with the absorption property and Mi′ is mπL(i) for
the other branch.

Moreover, even if Φ does not have the absorption property, we may exchange
the message words in a few steps from the initial step. For example, we consider
exchanging message words of the second steps, which is illustrated in Figure 5.
ΦL

j is ΦF , which does not have the absorption property. Therefore, the impact of
changing the value of M1′ always go through ΦL

0 . However, we still can apply the
corresponding transformation by fixing ΦL

0 as a simple function. In Figure 5, we
guarantee that the output of ΦL

0 is always−M1′ by setting the condition bL
0 = cL

0

and dL
0 = −M1′. On the other hand, because the corresponding condition bR

0 =
cR
0 also makes the absorption property for ΦR

0 , we can apply the corresponding
transformation and thus can exchange the positions of these message words.

Note that when we exchange positions of message-word additions over a bit-
rotation, we need to set conditions as shown in Figure 6 in order to avoid the
uncontrolled carry. We confirmed all of our attacks could satisfy this restriction.
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Besides the above two examples, many other extensions of initial-exchange are
possible. Some of such extension, for example the case shown in Figure 8 which
will be explained later, require more complicated analysis to exchange message
words. In several steps of this example, two input variables to Φ are changed
depending on different neutral words. It is known that Φ used in RIPEMD-128
cannot absorb independent changes of two different input variables, and thus
the initial-exchange cannot be applied directly. To overcome this problem, we
adopt a partial-bit initial-exchange, where only a part of bits in neutral words are
changed so that the active-bit positions of two input chaining variables do not
overlap each other. This enables us to use the cross-absorption property proposed
by Sasaki et al.[20] to absorb the changes of two input variables of Φ. Finally,
we can exchange message words even in such a complicated case.

Table 3 summarizes the initial-exchange technique applied to each round of
RIPEMD-128. The first two columns show the message words where we exchange
their positions. The third column shows feed-forward variables which cannot be
fixed in advance. We denote by ”FF effect” such an effect. The forth and fifth
columns list the conditions to set up the absorption properties for ΦF or ΦH .

5 Attacks on RIPEMD-128

5.1 Attack on the First 33 Steps of RIPEMD-128

With the initial-exchange technique explained in Sect. 4, we attack the first 33
steps of RIPEMD-128. The chunk separation for the first 33 steps is shown in
Figure 7. Note that for all attacks in this paper, we searched for the chunk
separations by hand. In this attack, m2 is a neutral word for computing CFL

and m0 is for CFR. The positions of mπL(0) and mπR(5) are exchanged with the
initial-exchange technique, and the last 8 steps of CFL and the last 2 steps of
CFR, in total 10 steps are skipped in the partial-matching phase.

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index L 0© 1 2© 3 4 5 6 7 8 9 10 11 12 13 14 15

IE first chunk (depends on m2)
index R 5 14 7 0© 9 2© 11 4 13 6 15 8 1 10 3 12

IE second chunk (depends on m0)

Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index L 7 4 13 1 10 6 15 3 12 0© 9 5 2© 14 11 8

first chunk (depends on m2) skip
index R 6 11 3 7 0© 13 5 10 14 15 8 12 4 9 1 2©

second chunk (depends on m0) skip

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index L 3 10 14 4 9 15 8 1 2© 7 0© 6 13 11 5 12

skip excluded
index R 15 5 1 3 7 14 6 9 11 8 12 2© 10 0© 4 13

skip excluded
“IE” represents that the message positions will be exchanged with the initial-exchange technique.

Fig. 7. Chunk separation for the first 33 steps of RIPEMD-128
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Set up for the initial-exchange technique. Because this attack includes
another neutral word mπR(3) in the initial-exchange section, the construction,
especially selection of the active-bit positions of neutral words is complicated.
The details of the construction is shown in Figure 8. As a result of our by-
hand analysis, we determine that 9 bits (bit positions 23–31) of m2 and 9 bits
(bit positions 2–10) of m0 are active. This avoids the overlap of the active bit
positions for Φj , and thus we can absorb the impact of changes of these bits
with absorption or cross-absorption properties [20]. Please refer to Table 3 for
conditions to achieve these properties. With this effort, the positions of mπL(0) =
m0 and mπR(5) = m2 are exchanged, hence CFL and CFR can be computed
independently by using 9 free bits of m2 and m0, respectively. Note that the
active bits of m0 make the 9 bits (bit positions 2–10) of a feed-forward value
Hi

a unfixed. In other words, 23 bits (bit positions 0–1 and 11–31) of Hi
a are

fixed. Similarly, m2 makes 9 bits (bit positions 14–22) of a feed-forward value
Hi

d unfixed and 23 bits (bit positions 0–13 and 23–31) of Hi
d are fixed.

Partial-matching phase. Computation for steps 25 to 32 of CFL and 31 and
32 of CFR are performed only partially. Because each neutral word has 9 active
bits, we need to match at least 9 bits of results from each chunk. Details of the
partial-computations are shown in Figure 9. We compute 23 bits of dL

28, 23 bits
of cL

28, and 14 bits of bL
28 in the first chunk. We denote these partially computed

bits in the first chunk by α. In the second chunk, we compute 4 bits of dL
28, 11

bits of cL
28, and 11 bits of bL

28, which are denoted by β. Note that α and β include
15 bit positions in common (4 bits of dL

28, 5 bits of cL
28, and 6 bits of bL

28).
In the computations of α and β, we often compute the modular additions

without knowing the carry from the lower bit positions. For example in Figure 9,
to compute the bit positions 0–13 and 23–31 of bL

26, we compute the addition of

a b c d

a b c

a b c
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a b c d
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Fig. 8. Construction of the initial-exchange for the first 33 steps of RIPEMD-128
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Fig. 9. Partial-match for the first 33 steps of RIPEMD-128

m0 where only bit positions 0–1 and 11–31 are known. In this case, we obtain
two candidates of bit positions 11–31 of the addition results, because we need
to consider two carry patterns from bit positions 10 to 11. The computations
of α and β require such a trick 3 times and 3 times respectively as marked in
Figure 9. Hence, the number of pairs where we check the match will increase 26

times. To filter out these wrong candidates efficiently, we need to check the match
of additional 6 bits of the results from each chunk. (9 bits for the standard meet-
in-the-middle and 6 bits for filtering wrong candidates, in total 15 bits.) Because
it can match 15 bits, our attack can filter out wrong candidates efficiently, and
has the same efficiency as the standard meet-in-the-middle attack.

Attack procedure

1. Fix message words and chaining variables so that the set up for the initial-
exchange technique and the padding for 2-block messages are satisfied. In
the followings, every time we are short of freedom degrees, we go back to
this step and restart the procedure by changing the values fixed in this step.
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2. For 9 active bits (positions 23–31) of m2, compute the first chunk. For each
m2, we obtain 23 candidates of α due to the unknown carry. Hence, we obtain
29 · 23 = 212 candidates of α. Store them in a table, and sort the table.

3. For each of 9 active bits (positions 2–10) of m0, compute the second chunk to
obtain β. For each of m0, we obtain 23 candidates of β due to the unknown
carry. For 29 values of m0, we obtain 29 · 23 = 212 candidates of β.

4. For each β, check the match of 15 bits described in Figure 9 with all ‘α’s
stored in the table.

5. If they match, with the corresponding m0 and m2, check the correctness of
the carry assumptions step by step.

6. If all carry assumptions are correct, compute the remaining 128− 15 = 113
bits and check if all 113 bits will match or not.

7. If all bits match, the corresponding p0 and message words are the pseudo-
preimage of the given hash value.

Complexity evaluation. Steps 2 and 3 require 29 computations of the half
of the compression function. Step 4 matches the 15 bits of 212 · 212 = 224 pairs
and 224 · 2−15 = 29 pairs will remain. In Step 5, a pair satisfies all the carry
assumptions with a probability of 2−6, hence 23 pairs will remain. So far, we
obtain 23 pairs whose 15 bits match. Therefore, by iterating Step 6 2110 times,
we will find a pair where all bits match, namely, a pseudo-preimage is obtained.

The complexity of the pseudo-preimage attack is 29 ·2110 = 2119, and we need
212 memory for Step 2. Note that Step 3 can be performed sequentially, and
thus we do not need 213 memory. Finally, this pseudo-preimage attack can be
converted to a preimage attack with a complexity of 2

119+128
2 +1 = 2124.5 by using

the conversion algorithm explained in Sect. 3.1.

5.2 Attack on Intermediate 35 Steps of RIPEMD-128

To attack intermediate steps, the local-collision approach [14] explained in
Sect. 3.3 is more effective than the initial-exchange approach. The chunk sepa-
ration for the intermediate 35 steps is shown in Figure 10, where neutral words
are (m0,m6) and m2. We make local collisions in Steps 21 to 25 of CFL. For
the partial-matching, we only activate bit positions 16 to 31 of m0 and 5 to 20
of m2.

Set up for the attack. Fix chaining variables between pL
21 and pL

26 as shown in
Table 4, where C0, C1, . . . , C4 are arbitrary fixed values, 0 denotes
0 (=0x00000000), 1 denotes -1 (=0xffffffff), and ∗ denotes a variable that
changes depending on the values of (m0,m6). Compute m15,m3, and m12 with
a equation mπL(j) ← (bL

j+1 ≫ sL
j )−kL

j −ΦL
j (bL

j , c
L
j , d

L
j )−aL

j , so that the values
fixed in Table 4 can be achieved. This equation can be computed without fixing
the value of ∗ due to the absorption property. Now, every time we choose the
value of m6, we can make a local collision by adaptively choosing m0 as follows:
m0 ← (bL

26 ≫ sL
25) − kL

25 − ΦL
25(bL

25, c
L
25, d

L
25) − ((aL

21 + ΦL
21(bL

21, c
L
21, d

L
21) + m6 +
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Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index L 0© 1 2© 3 4 5 6© 7 8 9 10 11 12 13 14 15

excluded fix
index R 5 14 7 0© 9 2© 11 4 13 6© 15 8 1 10 3 12

excluded fix first chunk

Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index L 7 4 13 1 10 6© 15 3 12 0© 9 5 2© 14 11 8

fix local-collision fix second chunk
index R 6© 11 3 7 0© 13 5 10 14 15 8 12 4 9 1 2©

first chunk skip

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index L 3 10 14 4 9 15 8 1 2© 7 0© 6© 13 11 5 12

second chunk excluded
index R 15 5 1 3 7 14 6© 9 11 8 12 2© 10 0© 4 13

skip 2nd chunk excluded

Fig. 10. Chunk separation for intermediate 35 steps of RIPEMD-128

Table 4. Set up for the local-collision

j mπL(j) aL
j bL

j cL
j dL

j

21 m6 C0 C1 C1 C2

22 m15 C2 ∗ C1 C1

23 m3 C1 0 ∗ C1

24 m12 C1 1 0 ∗
25 m0 ∗ C3 1 0
26 0 C4 C3 1

kL
21) ≪ sL

21). With this equation, fix the bit positions 0 to 15 of m6 and compute
the corresponding bits of m0 so that local-collision can be formed. Then, fix the
values of mj , where 0 ≤ j ≤ 15, j /∈ {15, 3, 12, 0, 2, 6}, to randomly chosen val-
ues. Finally, compute the fixed part (pL

7 , . . . , p
L
20, p

L
27, p

L
28, p

R
8 , p

R
9 ) of the attack

target. Store the randomly chosen values and corresponding pL
28 and pR

9 .

Attack procedure

1. Carry out the set up procedure.
2. For all active bits (bit positions 16 to 31) of m6, do as follows.

(a) Compute the values of m0 so that the local-collision can be formed.
(b) Compute pR

j+1 ← RR
j (pR

j ,mπR(j)) for j = 9, 10, . . . , 30.
(c) Compute the bit positions 0 to 15 of bR

32 by using RR
31(pR

31,mπR(31)) with
fixed bits (bit positions 0 to 4 and 21 to 31) of mπR(31) = m2.

(d) Store the values of m6,m0, p
R
31 and the lower half bits of bR

32 in a table.
3. For all active bits (bit positions 5 to 20) of m2, do as follows.

(a) Compute pL
j+1 ← RL

j (pL
j ,mπL(j)) for j = 28, 29, . . . , 41,

(b) Compute pR
42 by using feed-forward equations.

(c) Compute pR
j ← R

R(−1)
j (pR

j ,mπR(j)) for j = 41, 40, and, 39.
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Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index L 3© 10 14 4 9 15 8 1 2 7© 0 6 13 11 5 12

IE first chunk (depends on m7)
index R 15 5 1 3© 7© 14 6 9 11 8 12 2 10 0 4 13

IE second chunk (depends on m3)

Step 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
index L 1 9 11 10 0 8 12 4 13 3© 7© 15 14 5 6 2

first chunk (depends on m7) skip
index R 8 6 4 1 3© 11 15 0 5 12 2 13 9 7© 10 14

second chunk (depends on m3) skip

Fig. 11. Chunk separation for the last 32 steps of RIPEMD-128

(d) Compute bit positions 0 to 15 of bR
32 by using R

R(−1)
j (pR

j+1,mπR(j))
for j = 38, 37, . . . , 32 with fixed bits (positions 0 to 15) of mπR(38) = m6.

(e) Check if the computed results (bit positions 0 to 15 of bR
32) match the

one of the values stored at Step 2d.
(f) If they match, compute all values of pR

32 from both chunks with the
corresponding m0,m6, and m2.

(g) If all bits match, the corresponding message words and p7 are the pseudo-
preimage of the given output value.

Complexity evaluation. Complexity for the set up part can be ignored be-
cause it is less often repeated. Complexity for Steps 2 and 3 are roughly 216

computations of the half compression function, respectively. In the matching
part, we check the match of 216 items of 16 bits stored at Step 2d and 216 items
of 16 bits computed at Step 3d. Therefore, we obtain 216 pairs where 16 bits of
pR
32 are matched. Other 112 bits are randomly satisfied. Therefore, by repeating

the above procedure 2112−16 = 296 times, we will find a matched pair. The to-
tal complexity is 216 · 296 = 2112 compression function computations. Note that
for Step 2d, we need 216 memory. Finally, this pseudo-preimage attack can be
converted to a second-preimage attack with a complexity of 2

112+128
2 +1 = 2121.

Note that in the set up procedure using Table 4, we can make the freedom
degrees for m15 instead of C2. This enables us satisfy the padding string located
in m13,m14, and m15. Therefore, this attack can generate preimages.

5.3 Attack on the Last 32 Steps of RIPEMD-128

We use the initial-exchange technique to attack the last 32 steps of RIPEMD-
128. The chunk separation is shown in Figure 11.

The form of the initial-exchange used in this attack is exactly the same as
the one in Figure 4. Hence we omit the details. Different from the attack for the
first 33 steps, we do not have to use the partial-bit initial-exchange. However,
due to the large number of skipped steps in the partial-matching phase, many
bits of neutral words need to be fixed. In this attack, we make 7 bits (positions
18–24) of m3 and 9 bits (positions 0–3 and 27–31) of m7 active. Then, in the
partial-matching phase, we can match 14 bits as shown in Figure 12. Note that
the partial-computation with unknown carry effect is performed 8 times.
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Fig. 12. Partial-match for the last 32 steps of RIPEMD-128

Attack summary. To avoid the redundancy, we omit the details of the attack
procedure. In summary, the first and second chunks include 7 and 9 active bits,
respectively. During the partial-computation, the number of candidates will in-
crease 28 times, and we can match 14 bits of the results from two chunks. As
a result, with a complexity of 27 + 29 half compression function computations,
we will obtain 27+9+8−14 = 210 matched pairs. Then, with a complexity of 210,
we can check the correctness of the carry assumption and 210−8 = 22 pairs will
remain. By iterating this procedure 2112 times, we will find a pseudo-preimage.
The attack complexity is (1

2 ·27+ 1
2 ·29 +210) ·2112 ≈ 2122.39 and we use 212 mem-

ory (for 27 values of m3, we obtain 25 candidates of α). In this attack, the value of
m15 cannot be controlled because we need to fix it to a certain constant value in
order to achieve the absorption property used in the initial-exchange technique.
Therefore, with the conversion algorithm explained in Section 3.1, this can only
be a second-preimage attack with a complexity of 2

122.39+128
2 +1 ≈ 2126.20.

6 Attacks on RIPEMD-160

RIPEMD-160 follows the same structure as RIPEMD-128. However, several dif-
ferent characteristics give influence to the attack strategy. Specifically, the direct
addition of ej to update bj+1 increases the resistance against our attacks. In this
section, we first summarize our observations particular to RIPEMD-160.
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Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index L 0© 1 2 3 4 5 6 7 8 9 10 11 12 13 14© 15

IE first chunk (depends on m14)
index R 5 14© 7 0© 9 2 11 4 13 6 15 8 1 10 3 12

IE second chunk (depends on m0)

Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index L 7 4 13 1 10 6 15 3 12 0© 9 5 2 14© 11 8

first chunk (depends on m14) skip excluded
index R 6 11 3 7 0© 13 5 10 14© 15 8 12 4 9 1 2

2nd chunk (depends on m0) skip excluded

Fig. 13. Chunk separation for the first 30 steps of RIPEMD-160
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Step 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
index L 1 9 11© 10 0 8 12 4 13 3© 7 15 14 5 6 2

excluded IE first chunk (depends on m3)
index R 8 6 4 1 3© 11© 15 0 5 12 2 13 9 7 10 14

excluded IE second chunk (depends on m11)

Step 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
index L 4 0 5 9 7 12 2 10 14 1 3© 8 11© 6 15 13

first chunk (depends on m3) skip
index R 12 15 10 4 1 5 8 7 6 2 13 14 0 3© 9 11©

second chunk (depends on m11) skip

Fig. 15. Chunk separation for the last 31 steps of RIPEMD-160

– Due to the addition of ej to bj+1, 3 message words are necessary to form a
local-collision. This makes the local-collision approach inefficient.

– Basic strategy of the initial-exchange technique can be applied to RIPEMD-
160. However, the direct addition of ej , which can be regarded as a function
without the absorption property, makes its extension very hard.

– The number of chaining variables increases from RIPEMD-128. This enables
attackers to skip more steps in the partial-matching phase.

– Φ in the first round do not have the absorption property in both sides. This
makes the attack from the first steps harder than RIPEMD-128.

6.1 Attack on the First 30 Steps of RIPEMD-160

The chunk separation for the first 30 steps of RIPEMD-160 is shown in Figure 13.
Due to the difficulties of applying the initial-exchange technique in the first round
of RIPEMD-160, the positions where we can exchange the message words are
limited. On the other hand, we can skip more steps in the partial-matching phase.
As a result, the number of attacked steps reaches 30 steps. In this attack, we
make 12 bits of m14 and 12 bits of m0 active. In the partial-matching phase, we
consider unknown carry effects 8 times and match the results in 20 bits, which
results in the same efficiency as the standard meet-in-the-middle attack. Details
of the partial-matching phase is described in Figure 14. Finally, the pseudo-
preimages can be found with a complexity of 2148 and with a memory of 216.
Note that we cannot satisfy the padding because m14 is a neutral word. Finally,
this attack is converted to a second preimage attack with a complexity of 2155.

6.2 Attack on the Last 31 Steps of RIPEMD-160

The chunk separation for the last 31 steps is shown in Figure 15. We make
12 bits of m3 and 12 bits of m11 active. The initial-exchange construction is
depicted in Figure 16. In the partial-matching phase, we consider the match of
15+8 = 23 bits in the feed-forward equation with 5 unknown carry effects. Note
that increasing match bits is possible by considering more unknown carry effects.
However, because this does not impact to the final complexity, we simply match
only 23 bits. Details of the partial-matching phase is described in Figure 17.
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Pseudo-preimages can be found with a complexity of 2148 and 217 memory.
Finally, the attack is converted to a preimage attack with a complexity of 2155.

7 Concluding Remarks

We presented the first results on preimage resistance of RIPEMD-128 and -160.
By using the initial-exchange technique, we discovered the (second) preimage
attacks on the first 33, intermediate 35, and the last 32 steps of RIPEMD-128,
and the first 30 and the last 31 steps of RIPEMD-160.

RIPEMD-128 and -160, have been believed to be more secure than RIPEMD.
This may be true with respect to the collision resistance due to the differences
between CFL and CFR. However, meet-in-the-middle attacks do not care most
of the components except for the message order, and their security could be the
same level as RIPEMD with respect to the preimage resistance.
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Abstract. In this paper, we present the pseudo-collision, pseudo-second-preimage
and pseudo-preimage attacks on the SHA-3 candidate algorithm Luffa. The
pseudo-collisions and pseudo-second-preimages can be found easily by comput-
ing the inverse of the message injection function at the beginning of Luffa. We
explain in details the pseudo-preimage attacks. For Luffa-224/256, given the hash
value, only 2 iteration computations are needed to get a pseudo-preimage. For
Luffa-384, finding a pseudo-preimage needs about 264 iteration computations with
267 bytes memory by the extended generalized birthday attack. For Luffa-512, the
complexity is 2128 iteration computations with 2132 bytes memory.

It is noted that, we can find the pseudo-collision pairs and the pseudo-second
images only changing a few different bits of initial values. That is directly con-
verted to the forgery attack on NMAC in related key cases.

Keywords: Luffa, pseudo-collision, pseudo-second-preimage, pseudo-preimage,
generalized birthday attack.

1 Introduction

A cryptographic hash function is defined as a function that computes a fixed size mes-
sage digest from arbitrary size messages. It has been widely used as a fundamental
primitive in many cryptographic schemes and protocols, such as electronic signature,
authentication of messages, electronic commerce and bit commitment, etc. In the past
years, the cryptanalysis of hash functions has achieved tremendous progress with the
construction of collisions. In particular, Wang et al. proposed new techniques to find
efficiently collisions on the main hash functions from the MD4 family (e.g., MD4 [8],
RIPEMD [8], MD5 [11], SHA-0 [9] and SHA-1 [10]). Moreover the techniques can be
applied to explore the second-preimage of MD4 [12], forgery and partial key-recovery
attacks on HMAC and NMAC [3,4]. Kelsey and Schneier [5] provided a second preim-
age attack on the iterated hash functions with Merkle-Damgård strengthening, which
shows a vulnerability of the Merkle-Damgård construction. Responding to advances
in the cryptanalysis of hash functions, NIST held two hash workshops to evaluate the
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security of its approved hash functions and to solicit public comments on its crypto-
graphic hash function policy and standard. Finally, NIST opened a public competition
to develop a new hash function called “SHA-3”, similar to the development process of
the Advanced Encryption Standard (AES). There are 64 new proposals for hash func-
tions have been submitted to the SHA-3 project, of which 51 submissions have come
into the first round. In July, 2009, NIST has selected 14 second round candidates of the
SHA-3. Luffa [2] is one of them, proposed by De Cannière, Sato and Watanabe.

In this paper, we give some cryptanalytic results of Luffa with free initial values. The
pseudo-collision and pseudo-second-preimage can be obtained easily by the message
injection function of Luffa, which only changes a few bits of the initial values. This pa-
per shows a pseudo-collision and pseudo-second-preimage example for Luffa-256 and
gives the actual attacks. For Luffa-224/256, only 2 iteration computations are needed
to get the pseudo-preimage. A pseudo preimage example for Luffa-256 is shown in this
paper, which only changes 2 256-bit words of the initial values with 3 256-bit words.
We use the extended generalized birthday attack [7] to compute the pseudo-preimage of
Luffa-384 with 264 iteration computations and 264 table lookups. The time complexity
and data complexity are both 2128 to get the pseudo-preimage for Luffa-512.

This paper is organized as follows. In Section 2, we list some notations and give a
brief description of Luffa. Section 3 shows the pseudo-collision and pseudo-second-
preimage attacks on Luffa. The pseudo-preimage attacks for Luffa is given in Section
4. The improved pseudo-preimage attacks for Luffa-384/512 are shown in Section 5.
Finally, we summarize our results in Section 6.

2 Preliminaries and Notations

In this section, we first list some notations used in this paper, and then give a brief
description of Luffa.

2.1 Notations

X‖Y : the concatenation of two messages X and Y .
hw(X) : the w most significant bits of X .
lw(X) : the w least significant bits of X .
#a$ : the greatest integer less than or equal to a.

(b0,b1, . . . ,bm)T : the transposed matrix of (b0,b1, . . . ,bm), where bi(1≤ i≤ m) are
column vectors.

a ≪ j : left rotation of a by j bits.

2.2 Description of Luffa

Luffa [2], a candidate algorithm for the second round of the SHA-3, was proposed by
De Cannière et al. The chaining of Luffa is a variant of a sponge function. Fig.1 depicts
the basic structure. For any message, Luffa can produce the hash values with 224, 256,
384 or 512 bits, which are denoted as Luffa-224/256/384/512 respectively. The message
padding method consists of appending a single bit ‘1’ followed by the minimum bits of
‘0’ such that the length of the result is a multiple of 256. Let M = M0‖· · ·‖Mm−1 be a
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message after padding, where Mi(0≤ i < m) are 256-bit blocks. The iteration function
of Luffa is a composition of a message injection function MI and a permutation P
with w 256-bit inputs, where w = 3,4 or 5 for Luffa-224/256, Luffa-384 and Luffa-
512 respectively. The permutation P includes w permutations Q0, Q1, . . . , Qw−1, where
Q j is the permutation with 256-bit input, j = 0,1, . . . ,w− 1. Let the input of the i−th

iteration be (H(i−1)
0 , . . . ,H(i−1)

w−1 ,Mi−1), the i−th iteration is computed as follows,

X0‖· · ·‖Xw−1 = MI(H(i−1)
0 , . . . ,H(i−1)

w−1 ,Mi−1),
H(i)

j = Q j(Xj), j = 0,1, . . . ,w−1,

where (Hi
0, . . . ,H

i
w−1) is the i-th iteration output, and (H0

0 , . . . ,H
0
w−1) is the initial value.

Final operations, called a finalization are used to the chaining value (H(m−1)
0 , . . . ,

H(m−1)
w−1 ). For Luffa-224/256, the finalization consists of a blank iteration and a XOR op-

eration OF , where the blank iteration means an iteration with a fixed message Mm = �,
where � denotes 256-bit zeros, the operation OF XORs w 256-bit values and outputs
the result 256-bit value. For Luffa-384/512, the finalization includes two blank itera-
tions and two XOR operations, see Fig. 1. The output of Luffa-256 is Z0, the output of
Luffa-512 is Z0‖Z1. The outputs of Luffa-224 and Luffa-384 are the truncation of the
Luffa-256 and Luffa-512 respectively. Here

Zi =
w−1⊕
j=0

H(m+i)
j , i = 0,1.

Vw−1
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0M 1M
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Fig. 1. The Structure of Luffa Hash Function

Message Injection Function MI. The message injection functions MI can be repre-
sented by the matrix over a field GF(28). The multiplication over the field GF(28) is
modulo φ(x) = x8 + x4 + x3 + x + 1, corresponding to “0x11b”. The map from 8 32-bit
words (h0, . . . ,h7) to 32 8-bit elements of the field is defined by (Σ0≤k<8hk,lxk)0≤l<32.
Let Aw×(w+1) = (a0,a1, . . . ,aw−1,aw) represent the matrix of MI, where ai(0 ≤ i ≤ w)
are column vectors. Then (X0,X1, . . . ,Xw−1)T = Aw×(w+1)◦(H0,H1, . . . ,Hw−1,M)T . For
Luffa-224/256, w=3,
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Aw×(w+1) =

⎛⎝0x3,0x2,0x2,0x1
0x2,0x3,0x2,0x2
0x2,0x2,0x3,0x4

⎞⎠ ,

where the elements 0x1, 0x2, 0x3, 0x4 correspond to polynomials 1,x,x + 1,x2

respectively.
For Luffa-384,

Aw×(w+1) =

⎛⎜⎜⎝
0x4,0x6,0x6,0x7,0x1
0x7,0x4,0x6,0x6,0x2
0x6,0x7,0x4,0x6,0x4
0x6,0x6,0x7,0x4,0x8

⎞⎟⎟⎠ .

For Luffa-512,

Aw×(w+1) =

⎛⎜⎜⎜⎜⎝
0x0F,0x08,0x0A,0x0A,0x08,0x01
0x08,0x0F,0x08,0x0A,0x0A,0x02
0x0A,0x08,0x0F,0x08,0x0A,0x04
0x0A,0x0A,0x08,0x0F,0x08,0x08
0x08,0x0A,0x0A,0x08,0x0F,0x10

⎞⎟⎟⎟⎟⎠ .

The Permutation Q j. The permutation Q j is defined as a composition of an input
tweak and 8 steps. Let a0, . . . ,a7 be the 256-bit input of the Q j, b0, . . . ,b7 be the output
of tweak. The tweak is defined as follows:

bi = ai, for 1≤ i < 4;

bi = ai ≪ j, for 4≤ i < 8.

After tweak, there are 8 steps in the permutation, and each step consists of the following
three functions: SubCrumb, MixWord and AddConstant.

SubCrumb is defined as:

x3,l‖x2,l‖x1,l‖x0,l = S(b3,l‖b2,l‖b1,l‖b0,l),0≤ l < 32,

x4,l‖x7,l‖x6,l‖x5,l = S(b4,l‖b7,l‖b6,l‖b5,l),0≤ l < 32,

where S denotes a S-box with 4-bit input and 4-bit output. MixWord is defined as:

yk+4 = xk+4⊕ xk, yk = xk ≪ 2,
yk = yk⊕ yk+4, yk+4 = yk+4 ≪ 14,

yk+4 = yk+4⊕ yk, yk = yk ≪ 10,
yk = yk⊕ yk+4, yk+4 = yk+4 ≪ 1.

We do not give the description for AddConstant since it has no impact on our crypt-
analysis. For more details about Luffa, consult [2].

3 Pseudo-Collision and Pseudo-Second-Preimage Attacks on
Luffa

In this section, we give some cryptanalysis for Luffa when the initial value IV is
free. Flipping 5 bits of IV for Luffa-256 is enough to get a pseudo-collision or
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pseudo-second-preimage. For Luffa-384, 7 bits of IV are needed to be changed to get
a pseudo-collision or pseudo-second-preimage. There is a 12-bit difference in the IV
to get a pseudo-collision or pseudo-second-preimage for Luffa-512. This can be used
to construct the related key attack for the corresponding MACs using the secret key as
initial value.

For the message injection function MI, the input is (w + 1) 256-bit words, and the
output is w 256-bit words. So, it is a many-to-one function. It is easy to know that, any w
columns of the MI matrix consists of an invertible matrix. So there are exactly 2256 in-
puts corresponding to any given output of MI. Given any MI output (X0,X1, . . . ,Xw−1),
if one entry of H0,H1, . . . ,Hw−1 and M is fixed, we can easily compute the solution
to other entries. Any pair of inputs with the same output of MI consists of a pseudo-
collision of Luffa, that is the output difference of MI is zero.

For Luffa-224/256, the input difference is (ΔH0, ΔH1, ΔH2, ΔM), and the output
difference of MI is (�,�,�), here � denotes 256-bit zeros. They satisfy the following
equations.

3 ◦ΔH0⊕2 ◦ΔH1⊕2 ◦ΔH2⊕ΔM = �,
2 ◦ΔH0⊕3 ◦ΔH1⊕2 ◦ΔH2⊕2ΔM = �,
2 ◦ΔH0⊕2 ◦ΔH1⊕3 ◦ΔH2⊕4ΔM = �.

From the equations, it is easy to get ΔH0 = 0x f 2 ◦ΔM, ΔH1 = 0x f 1 ◦ΔM and ΔH2 =
0x f 7 ◦ΔM. Let IV be the standard initial value, given a message M, the message M′ =
M⊕ΔM, with another initial value IV ′ = IV ⊕(ΔH0,ΔH1,ΔH2) is the pseudo-preimage
of M, i.e. Luffa-256(IV,M)=Luffa-256(IV ′,M′). There are only 5 bits
different between IV and IV ′, which is minimum, when the message difference ΔM =
(2i,2i,0,0,0,0,0,0), (0,2i,2i,0,0,0,0,0), (0,0,2i,2i,0,0,0,0), (0,0,0,2i,2i,0,0,0) or
(0,0,0,0,2i,2i,0,0) for (0≤ i < 32).

Let the input difference be (ΔH0, ΔH1, ΔH2, ΔH3, ΔM), and the output difference of
MI be (�,�,�,�) for Luffa-384 such that

4 ◦ΔH0⊕6 ◦ΔH1⊕6 ◦ΔH2⊕7 ◦ΔH3⊕ΔM = �,
7 ◦ΔH0⊕4 ◦ΔH1⊕6 ◦ΔH2⊕6 ◦ΔH3⊕2ΔM = �,
6 ◦ΔH0⊕7 ◦ΔH1⊕4 ◦ΔH2⊕6 ◦ΔH3⊕4ΔM = �,
6 ◦ΔH0⊕6 ◦ΔH1⊕7 ◦ΔH2⊕4 ◦ΔH3⊕8ΔM = �.

By the system of equations, we can deduce ΔH0 = 8 ◦ΔM, ΔH1 = 0xa ◦ΔM, ΔH2 =
8 ◦ ΔM and ΔH3 = 0x f ◦ ΔM. There is a 7-bit difference in the initial values when
ΔM = (2i,0,2i,2i,0,0,0,2i)(0≤ i < 32). The message M′ = M⊕ΔM with IV ′ = IV ⊕
(ΔH0,ΔH1,ΔH2,ΔH3) is the pseudo-preimage of the given message M, that is to say
Luffa-384(IV,M)=Luffa-384(IV ′,M′).

Given the input difference of Luffa-512 (ΔH0, ΔH1, ΔH2, ΔH3, ΔH4, ΔM) and the
output difference of MI (�,�,�,�,�), we can compute that ΔH0 = 0xbe ◦ΔM, ΔH1 =
0x3c ◦ΔM, ΔH2 = 0x25 ◦ΔM, ΔH3 = 0x17 ◦ΔM and ΔH4 = 0x75 ◦ΔM from the fol-
lowing equations.
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0x f ◦ΔH0⊕0x8 ◦ΔH1⊕0xa ◦ΔH2⊕0xa ◦ΔH3⊕0x8 ◦ΔH4⊕ΔM = �,
0x8 ◦ΔH0⊕0x f ◦ΔH1⊕0x8 ◦ΔH2⊕0xa ◦ΔH3⊕0xa ◦ΔH4⊕0x2ΔM = �,
0xa ◦ΔH0⊕0x8 ◦ΔH1⊕0x f ◦ΔH2⊕0x8 ◦ΔH3⊕0xa ◦ΔH4⊕0x4ΔM = �,
0xa ◦ΔH0⊕0xa ◦ΔH1⊕0x8 ◦ΔH2⊕0x f ◦ΔH3⊕0x8 ◦ΔH4⊕0x8ΔM = �,

0x8 ◦ΔH0⊕0xa ◦ΔH1⊕0xa ◦ΔH2⊕0x8 ◦ΔH3⊕0x f ◦ΔH4⊕0x10ΔM = �.

When ΔM = (0,2i,2i,2i,0,2i,0,0), (2i,2i,0,0,2i,0,0,2i) or (0,0,2i,0,0,2i,2i,2i) for
(0≤ i < 32), the number of bits with difference in the initial value is least, which is 12.

Table 1 shows a pseudo-second-preimageexample for the message M0 = (0xaaaaaaaa,
0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa).

From the above description, only a few bits are needed to be changed to get a colli-
sion pair or the second-preimage for a given message. It is obvious that we can directly
construct the forgery attack on NMAC based on Luffa in the related key case, for the
NMAC replaces the fixed IV in hash function with a secret key[1]. The NMAC function,
on input message M and a pair of independent keys (K1,K2), is defined as:

NMAC(K1,K2)(M) = H(K1,H(K2,M)).

When H is the Luffa hash function, a forgery message M⊕ΔM with the same NMAC
value as the message M in the related key case is given:

Lu f f a(K1,Lu f f a(K2,M)) = Lu f f a(K1,Lu f f a(K2⊕ΔIV,M⊕ΔM)).

Where ΔM and ΔIV satisfy MI(ΔIV,ΔM) = 0.

4 The Pseudo-Preimage Attack on Luffa

For Luffa-256, given a hash value Z0, the adversary can compute a pseudo-preimage
with the following process. An example is shown in Table 2 with Z0 = �.

1. Select Y0, Y1 arbitrary, and get Y3 = Z0⊕Y0⊕Y1.
2. Compute X0 = Q−1

0 (Y0), X1 = Q−1
1 (Y1), X2 = Q−1

2 (Y2).
3. Because the message M = � for the blank iteration, the adversary can compute

MI−1(X0,X1,X2) as follows,⎛⎝H0

H1

H2

⎞⎠ =

⎛⎝0x3,0x2,0x2
0x2,0x3,0x2
0x2,0x2,0x3

⎞⎠−1

◦
⎛⎝X0

X1

X2

⎞⎠ .

4. For the chaining variables H0, H1, H2, the adversary can obtain X0 = Q−1
0 (H0),

X1 = Q−1
1 (H1), X2 = Q−1

2 (H2).
5. For (X0,X1,X2), the adversary computers (IV ′

1, IV
′
2,M) with the fixed IV0 by the

following equations,⎛⎝ IV ′
1

IV ′
2

M

⎞⎠ =

⎛⎝0x2,0x2,0x1
0x3,0x2,0x2
0x2,0x3,0x4

⎞⎠−1

◦
⎛⎝X0⊕ (3 ◦ IV0)

X1⊕ (2 ◦ IV0)
X2⊕ (2 ◦ IV0)

⎞⎠ .
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6. Output (IV0, IV ′
1, IV

′
2,M) which is the pseudo-preimage of Z0, i.e.,

Luffa-256(IV ′,M) = Z0.

There are w−1 256-bit words changed of the initial value with w 256-bit words.
For Luffa-384, the hash value consists of Z0 cascaded with the 128 most significant

bits of Z1, and
Z1 = Z1,0‖Z1,1‖Z1,2‖Z1,3‖Z1,4‖Z1,5‖Z1,6‖Z1,7,

where Z1,i for 0≤ i< 8 are 32-bit words. The adversary randomly chooses (H0,H1,H2),
and gets H3 = H0⊕H1⊕H2⊕Z0, computes Z′1 using the finalization function.

If the equation Z′1,0‖Z′1,1‖Z′1,2‖Z′1,3 = Z1,0‖Z1,1‖Z1,2‖Z1,3 holds, let Y0 = H0,Y1 =
H1,Y2 = H2. The adversary can now compute (IV ′

0, IV
′
1, IV

′
2, IV

′
3) and message M0 which

has the same hash value Z0‖Z1,0‖Z1,1‖Z1,2‖Z1,3, using the similar method with Luffa-
256. The total complexity is 2128 iteration computations.

For Luffa-512, the complexity is 2255 using a similar attack.

5 Improved Pseudo-Preimage Attacks on Luffa-384/512

In this section, we introduce an algorithm to improve the pseudo-preimage attack on
Luffa-384/512 by the extended generalized birthday attack which is used to solve a
system of equations, proposed by Schnorr [6]. The k-dimensional generalization of the
birthday problem is, given k lists L0, L1, . . ., Lk−1 independently at random from {0,1}n,
to find k elements xi ∈ Li for 0≤ i≤ k−1 such that x0⊕ x1⊕·· ·⊕ xk−1 = 0. Wagner’s
algorithm [7] builds a binary tree starting from the input lists L0, L1, . . ., Lk−1. The time
complexity and data complexity are both t ·2 n

1+t , where t = #log2 k$.

5.1 The Extended Generalized Birthday Attack

We give a brief description of Wagner’s generalized birthday attack in the following.

Wagner’s Algorithm

1. The adversary constructs 2t sets S0
0, S0

1, . . ., S0
2t−1, where t = #log2 k$, S0

i = {x j
i |

x j
i ∈ Li, j = 0,1, . . . ,2

n
1+t −1} for 1≤ i < 2t −1 and S0

2t−1 = {x j
2t−1⊕x2t ⊕·· ·⊕xk |

x j
2t−1 ∈ L2t−1, j = 0,1, . . . ,2

n
1+t −1}, where xl ∈ Ll for l = 2t , . . . ,k−1.

2. The adversary searches 2
n

1+t element pairs x j
2i ∈ S0

2i, xk
2i+1 ∈ S0

2i+1 with the same low
n

1+t bits by the birthday attack. Construct 2t−1 new sets S1
i , i = 0,1, . . . ,2t−1− 1,

where S1
i = { x j

2i⊕ xk
2i+1 | the low n

1+t bits are zeros}.

3. For m = 2 to t− 1, the adversary searches 2
n

1+t pairs x j
2i ∈ Sm−1

2i and xk
2i+1 ∈ Sm−1

2i+1
with the m-th low n

1+t bits same. Construct 2t−m new sets Sm
i , i = 0,1, . . . ,2t−m−1,

where Sm
i = { x j

2i⊕ xk
2i+1 | the low m · n

1+t bits are zeros}.

4. The adversary searches a pair x j
0 ∈ St−1

0 , xk
1 ∈ St−1

1 , s.t. x j
0⊕ xk

1 = 0.
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The above algorithm can find one solution x0,x1, . . . ,xk−1 such that x0⊕x1 · · ·⊕xk−1 = 0
with time complexity and data complexity being both t ·2 n

1+t .
Now consider the solution to the following two equations instead of one equation.

f1(x1)⊕ f2(x2)⊕·· ·⊕ fk(xk) = c1, (1)

g1(x1)⊕g2(x2)⊕·· ·⊕gk(xk) = c2, (2)

where fi and gi (1 ≤ i ≤ k) are random functions, fi : 2m → 2n1 , gi : 2m → 2n2 . The
equations (1) and (2) can be solved together by the extended generalized birthday attack
[6] described in the following.

It is easy to construct the following equation from equations (1) and (2):

( f1(x1)‖g1(x1))⊕ ( f2(x2)‖g2(x2))⊕·· ·⊕ ( fk(xk)‖gk(xk)) = c1‖c2. (3)

For the new equation (3), the Wagner’s algorithm can be applied to obtain x1, . . . ,xk.

The data and time complexity is t ·2 n1+n2
1+t , where t = #log2 k$ and m≥ n1+n2

1+t .
It is clear that, the algorithm can be extended to solve more equations.

f (1)
1 (x1)⊕ f (1)

2 (x2)⊕·· ·⊕ f (1)
k (xk) = c1,

f (2)
1 (x1)⊕ f (2)

2 (x2)⊕·· ·⊕ f (2)
k (xk) = c2,

...

f (l)
1 (x1)⊕ f (l)

2 (x2)⊕·· ·⊕ f (l)
k (xk) = cl,

where f (i)
j : 2m → 2ni are random functions,0≤ i≤ l, and 0≤ j ≤ k. The data and time

complexity is t ·2 n1+n2+···+nt
1+t , where t = #log2 k$ and m≥ n1+n2+···+nt

1+t .

5.2 The Improved Pseudo-Preimage Attack on Luffa-384

Let (H0,H1,H2,H3,�) be the input of the last blank iteration function, and (X0,X1,X2,X3)
be the output of its MI. The hash value is Z0‖Z̄1, where Z̄1 = Z1,0‖Z1,1‖Z1,2‖Z1,3. Then

h128(Q0(X0)⊕Q1(X1)⊕Q2(X2)⊕Q3(X3)) = Z̄1. (4)

From the message injection function MI, we know that (H0,H1,H2,H3)T = A−1
4×4(X0,

X1,X2,X3)T , where A4×4 is the first 4 column vectors of the matrix A4×5, i.e.,

A4×4 =

⎛⎜⎜⎝
0x4,0x6,0x6,0x7
0x7,0x4,0x6,0x6
0x6,0x7,0x4,0x6
0x6,0x6,0x7,0x4

⎞⎟⎟⎠ .

It’s inverse matrix is

A−1
4×4 =

⎛⎜⎜⎝
0x20,0x43,0x84,0x11
0x11,0x20,0x43,0x84
0x84,0x11,0x20,0x43
0x43,0x84,0x11,0x20

⎞⎟⎟⎠ .
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From H0⊕H1⊕H2⊕H3 = Z0, we can prove that,

X0⊕X1⊕X2⊕X3 = Z′0, (5)

where Z′0 = 0x3 ◦Z0.
Obviously, it is necessary for us to find the solution (X0,X1,X2,X3) to make equations

(4) and (5) hold together. We search the solution by the extended generalized birthday
attack and some specific properties of Luffa. The algorithm is as follows.

1. The adversary constructs four sets such that,

S0 = {X0 | X0 ∈ {0,1}n, l192(X0) = c0},
S1 = {X1 | X1 ∈ {0,1}n, l192(X1) = c0⊕ l192(Z′0)},
S2 = {X2 | X2 ∈ {0,1}n, l192(X2) = c1},
S3 = {X3 | X3 ∈ {0,1}n, l192(X3) = c1},

where c0, c1 are two 192-bit constants, and each set includes 264 elements. It is
clear that,

l192(X0⊕X1⊕X2⊕X3) = l192(Z′0),

where Xi ∈ Si for 0≤ i≤ 3.
2. The adversary searches the solution (X0,X1,X2,X3) satisfying the following two

equations by the extended generalized birthday attack.

h64(X0⊕X1⊕X2⊕X3) = h64(Z′0),

h128(Q0(X0)⊕Q1(X1)⊕Q2(X2)⊕Q3(X3)) = Z̄1,

where Xi ∈ Si, i = 0,1,2,3. It is clear that, The solution (X0,X1,X2,X3) guarantees
the equations (4) and (5) hold together.

3. For (X0,X1,X2,X3), the adversary can calculate (IV0, IV ′
1, IV

′
2, IV

′
3) and the message

M, and get the pseudo-preimage using the similar pseudo-preimage attack on Luffa-
256.

There are 264 Q0, Q1, Q2, Q3 computations and 264 table lookups in the above al-
gorithm. So the total complexity is about 264 iteration computations and 267 bytes
memory.

5.3 The Improved Pseudo-Preimage Attack on Luffa-512

For Luffa-512, let (H0,H1,H2,H3,H4,�) be the input of the last blank iteration function,
and (X0,X1,X2,X3,X4) be the output of MI. Then

Q0(X0)⊕Q1(X1)⊕Q2(X2)⊕Q3(X3)⊕Q4(X4) = Z1. (6)
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For the message injection function MI, we know that, (H0,H1,H2,H3,H4)T = A−1
5×5(X0,

X1,X2,X3,X4)T , where A5×5 is the first 5 column vectors of the matrix A5×6, i.e.,

A5×5 =

⎛⎜⎜⎜⎜⎝
0x f ,0x8,0xa,0xa,0x8
0x8,0x f ,0x8,0xa,0xa
0xa,0x8,0x f ,0x8,0xa
0xa,0xa,0x8,0x f ,0x8
0x8,0xa,0xa,0x8,0x f

⎞⎟⎟⎟⎟⎠ .

Its inverse matrix is

A−1
5×5 =

⎛⎜⎜⎜⎜⎝
0xc7,0x8b,0x f 4,0x f 4,0x8b
0x8b,0xc7,0x8b,0x f 4,0x f 4
0x f 4,0x8b,0xc7,0x8b,0x f 4
0x f 4,0x f 4,0x8b,0xc7,0x8b
0x8b,0x f 4,0x f 4,0x8b,0xc7

⎞⎟⎟⎟⎟⎠ .

Since H0⊕H1⊕H2⊕H3⊕H4 = Z0, we obtain

X0⊕X1⊕X2⊕X3⊕X4 = Z′0, (7)

where Z′0 = 0x f ◦Z0.
We can search a solution to equations (6) and (7) by the extended generalized birth-

day attack and some specific properties of Luffa.

1. The adversary constructs four sets such that,

S0 = {X0 | X0 ∈ {0,1}n, l128(X0) = c0},
S1 = {X1 | X1 ∈ {0,1}n, l128(X1) = c0⊕ l128(Z′0)},
S2 = {X2 | X2 ∈ {0,1}n, l128(X2) = c1}
S3 = {(X3,X4) | X3,X4 ∈ {0,1}n, l128(X3⊕X4) = c1},

where c0, c1 are two 128-bit constants, and each set includes 2128 elements. It is
clear that,

l128(X0⊕X1⊕X2⊕X3⊕X4) = l128(Z′0).

2. The adversary searches a solution (X0,X1,X2,X3,X4) satisfying the following two
equations by the extended generalized birthday attack.

h128(X0⊕X1⊕X2⊕X3⊕X4) = h128(Z′0),

Q0(X0)⊕Q1(X1)⊕Q2(X2)⊕Q3(X3)⊕Q4(X4) = Z̄1,

where Xi ∈ Si, i = 0,1,2 and (X3,X4) ∈ S3. It is clear that, The solution (X0,X1,X2,
X3,X4) guarantees equations (6) and (7) hold.

3. For (X0,X1,X2,X3,X4), the adversary can calculate (IV0, IV ′
1, IV

′
2, IV

′
3, IV

′
4) and the

message M, and get the pseudo-preimage using the similar pseudo-preimage attack
on Luffa-256.

The total complexity is about 2128 iteration computations and 2132 bytes memory.
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6 Conclusion

In this paper, we give pseudo-collision, pseudo-second-preimage and pseudo-preimage
attacks on Luffa, one of the second round candidates of SHA-3. For any given output
of the message injection function MI, it is easy to get the input to MI using the inverse
operation of MI. So we can find pseduo-collisions and pseudo-second-preimages easily
for Luffa by applying the MI property. It is noted that, the pseudo-collisions and pseudo-
second-preimages only with a few different bits are easily searched. The attack can be
directly converted to a forgery attack on NMAC with related keys.

Especially, we focus on the the pseudo-preimage attack on Luffa. For Luffa-224/256,
the attack can find the the pseudo-preimage only with 2 iteration computations. It takes
about 264 iteration computations and 267 bytes memory to search a pseudo-preimage
for Luffa-384, and search a pseudo-preimage with 2128 iteration computations and 2132

bytes memory for Luffa-512 with the extended generalized birthday attack.
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Appendix

In the appendix,we give two examples for the pseudo-second-preimage and pseudo-
preimage.

Table 1. A Pseudo-second-preimage for Luffa-256

IV0 0x6d251e69 0x44b051e0 0x4eaa6fb4 0xdbf78465 0x6e292011 0x90152df4 0xee058139 0xdef610bb
IV1 0xc3b44b95 0xd9d2f256 0x70eee9a0 0xde099fa3 0x5d9b0557 0x8fc944b3 0xcf1ccf0e 0x746cd581
IV2 0xf7efc89d 0x5dba5781 0x04016ce5 0xad659c05 0x0306194f 0x666d1836 0x24aa230a 0x8b264ae7
M0 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa
IV ′

0 0x6d251e68 0x44b051e0 0x4eaa6fb5 0xdbf78464 0x6e292011 0x90152df4 0xee058139 0xdef610bb
IV ′

1 0xc3b44b95 0xd9d2f256 0x70eee9a0 0xde099fa2 0x5d9b0557 0x8fc944b3 0xcf1ccf0e 0x746cd581
IV ′

2 0xf7efc89d 0x5dba5780 0x4016ce5 0xad659c05 0x306194f 0x666d1836 0x24aa230a 0x8b264ae7
M′

0 0xaaaaaaab 0xaaaaaaab 0xaaaaaaaa aaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa
X0 0xe6333b1e 0x96d8e9f6 0x24d83129 0x6aa44be3 0x4da482a5 0x0a0bbb57 0x3d1e5ae2 0x71efd72c
X1 0x48a26ee2 0xa110e0ea 0x1a9cb73d 0xc5f0fa8f 0xd4bc0d49 0x15d7d210 0x1c0714d5 0xdb751216
X2 0x7cf9edea 0x2578453d 0xc4d998d2 0xb69cf929 0x208bbbfb 0x56d9243f 0xf7b1f8d1 0x243f8d70

Table 2. A Pseudo-preimage for Luffa-256

IV0 0x6d251e69 0x44b051e0 0x4eaa6fb4 0xdbf78465 0x6e292011 0x90152df4 0xee058139 0xdef610bb
IV ′

1 0x6a366118 0x3ee79df6 0x39643181 0x60793777 0x8ddc9066 0x1d50cebd 0xb1cfd39b 0x967da4e4
IV ′

2 0x9622ac99 0xb752bbbb 0xd256db58 0x73db6cac 0x9ae49b27 0xeb1666b4 0x805027ed 0x8176bfc6
M 0x7c08aa09 0x52f9e2bf 0x27ce6bb9 0x11af8970 0x22c8478d 0x9eebde0e 0x78ae77ef 0xdafc7fa8
H0 0xd42f102f 0x94316735 0xec5bb8a2 0xceb338ee 0x6d35036f 0x85d4ba8c 0xc9a85c96 0xed839a52
H1 0x70238338 0x4461e9a7 0xa3012529 0xb6a10e0f 0xdfdf5bc0 0x2fd50d38 0xe98ddd20 0xf90f4fe9
H2 0xe0d87b07 0x5704423f 0xb8ba00ed 0xeaa52759 0x8bc1b72b 0xc5720d53 0x41cde665 0x1288c8fc
Z0 0 0 0 0 0 0 0 0
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functions as primitives. A MAC algorithm based on hash function takes a mes-
sage and a secret key as inputs and outputs a short digest. The MAC algorithm
is used to ensure data integrity and authenticity, and it is widely used in secu-
rity protocols, such as IPsec, SNMP, and SSL/TLS. A series attacks on hash
functions [2–4, 7, 15, 16, 18, 21–23, 25, 26, 28, 30] etc. have shown that the
prevailing hash functions such as MD4, HAVAL, MD5, SHA-0, SHA-1 etc. are
not collision resistant. Therefore reevaluating the actual security of the MACs
based on hash functions is a hot topic [5, 9, 11, 19, 20]. There are many methods
to construct MACs based on hash functions such as the secret prefix method,
secret suffix method, envelope method and HMAC/NMAC [1] etc.. The secret
prefix method prepends a secret K to the message before hashing. In order to
guarantee the security of the secret prefix MAC, one suggestion is appending
the message length to the message before hashing [17], and this type of MAC is
denoted as LPMAC in [24, 29].

There are mainly three kinds of attacks on MACs: distinguishing attack,
forgery attack and key-recovery attack. The distinguishing attack can be divided
into two kinds of attacks: distinguishing−R and distinguishing−H attacks[11].
The distinguishing-R attack means distinguishing a MAC from a random func-
tion, and distinguishing-H attack detects which kind of hash function is em-
bedded in a MAC under the situation that the cryptanalyst somehow already
knows that the output is produced by a MAC algorithm, but does not know
the underlying hash function. Preneel and van Oorschot [12] proposed a gen-
eral distinguishing-R attack on MAC by the birthday paradox. This attack re-
quires about 2

n
2 message queries, where n is the length of the initial value.

For the distinguishing-H attack, there does not exist a general attack, and its
ideal complexity is about 2n message queries. In this paper, we only focus on
the distinguishing-H attack on MACs based on hash functions, which is called
distinguishing attack for simplicity.

Some attacks can be implemented successfully on the MACs based on MD4,
HAVAL and SHA-0 [5, 9, 20] etc., because it’s easy to find the differential
paths with high probability for these hash functions. Generally, the pseudo-
near-collision differential path holds with higher probability than the real differ-
ential path. Therefore, for the hash functions which are difficult to find the real
differential path with high enough probability, the attacks on MACs use pseudo-
near-collision differential paths, and most of these attacks are in the related-key
setting. For example, for MD5, there is only one available dBB pseudo-collision
path [6], and all the attacks [5, 9, 13, 20] on MACs based on MD5 are in the
related-key setting. For SHA-1, [13] proposed attacks on 62-step HMAC-SHA-1
and 34-step NMAC-SHA-1, both attacks are in the related-key setting.

Wang et al. [27] presented a new distinguishing attack on HMAC/NMAC-
MD5 and MD5-MAC without related-key setting. They use a distinguisher with
a pair of two-block messages to detect a dBB collision from random collisions.
The first iteration ensures the appearance of the dBB difference by the birthday
attack, and the second iteration uses a dBB difference to make a collision. Wang
et al. improved this work to give a distinguishing attack on the LPMAC based on
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61-step SHA-1 [24]. The distinguisher also contains a pair of two-block messages,
and it is used to detect an inner near-collision occurring in the second iteration.
The first 960 bits of the messages (the first block in addition to 448 bits of the
second block) ensure the presence of a specific difference in the 14-th step of the
second block, and the last 64 bits messages distinguish the specific difference. By
using the technique in [24], a distinguishing attack on LPMAC based on 39-step
SHA-256 was proposed in [29] without related-key setting.

RIPEMD was developed in the European RIPE project [14]. RIPEMD−{128,
160, 256, 320} [8] were proposed in 1996. RIPEMD and RIPEMD−{128, 160, 256,
320} belong to RIPEMD-family, which uses two parallel lines of computations.
In this paper, we apply the distinguishing techniques in [24, 27] to attack the
LPMAC based on RIPEMD, 58-step RIPEMD-256 and 48-step RIPEMD-320
respectively. Firstly, we find a differential path of RIPEMD with probability
2−31 × 2−31 = 2−62. Based on it, we give a distinguishing attack on the LP-
MAC based on RIPEMD with complexity 266. Secondly, for RIPEMD-256, we
find a 37-step differential path of Line1 operation with probability 2−12, and
a 42-step differential path of Line2 operation with probability 2−15. By using
the differential paths, we can give a distinguishing attack on the LPMAC based
on 58-step RIPEMD-256 with complexity 2163.5. Thirdly, for RIPEMD-320, we
find a 36-step differential path of Line1 operation with probability 2−16, and
a 33-step differential path of Line2 operation with probability 2−7. Then we
can give a distinguishing attack on the LPMAC based on 48-step RIPEMD-320
with complexity 2208.5. All of RIPEMD and RIPEMD−{256, 320} consist of two
different and independent parallel operations called Line1 operation and Line2
operation. There are different constants, amounts of rotations and most impor-
tantly, different message schedules in Line1 and Line2 operations. Therefore, the
difficulty of our attack is to choose proper message differences and to find proper
differential paths of Line1 and Line2 operations.

The rest of the paper is organized as follows. In Section 2, we define some
notations and give a brief description of RIPEMD and RIPEMD−{256, 320}
and LPMAC. In Section 3, we describe our distinguishing attack on the LPMAC
based on RIPEMD. In Section 4, we describe our distinguishing attack on 58-step
RIPEMD-256. The distinguishing attack on 48-step RIPEMD-320 is described
in Section 5. Finally, we summarize the paper in Section 6.

2 Background and Definitions

2.1 Notations

We introduce some notations in the follows, where 1 ≤ j ≤ 32. ¬,∧,⊕,∨ denote
bitwise complement, AND, XOR and OR respectively. ≪ s denotes circular shift
s-bit positions to the left. x‖y denotes concatenation of the two bitstrings x and
y. +,− denote addition and subtraction modulo 232 respectively. Both xi and
mi are 32-bit words. xi,j denotes the j-th bit of xi, where the most significant bit
is the 31-st bit. Δmi = m′

i −mi denotes the modular subtraction difference of
two words mi and m′

i, where 0 ≤ i ≤ 15. x′
i − xi = [j] denotes xi,j = 0, x′

i,j = 1,
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and the other bits of xi and x′
i are all equal. x′

i − xi = [−j] denotes xi,j = 1,
x′

i,j = 0, and the other bits of xi and x′
i are all equal. M = (m0,m1, . . . ,m15)

denotes 512-bit block, where mi (0 ≤ i ≤ 15) is a 32-bit word.

2.2 Description of RIPEMD

RIPEMD [14] was developed in the European RIPE project. Its compression
function consists of two parallel copies of MD4’s compression function, identical
but for some internal constants. The results of both copies are combined to
yield the output of RIPEMD’s compression function. RIPEMD compresses any
arbitrary length message into a message with the length of 128 bits. For each
512-bit padded message block, RIPEMD compresses it into a 128-bit hash value
by a compression function.

The two copies of the compression function of RIPEMD are denoted by Line1
operation and Line2 operation respectively. Line1 and Line2 operations have the
same initial value, and the initial value is: (a, b, c, d) = (0x67452301, 0xefcdab89,
0x98badcfe, 0x10325476). The nonlinear functions in each round are as follows:
F (X,Y, Z)
= (X∧Y )∨(¬X ∧ Z), G(X,Y, Z) = (X∧Y )∨(X ∧ Z)∨(Y ∧ Z), H(X,Y, Z) =
X⊕Y ⊕Z. Here X , Y and Z are 32-bit words. The operations of the three func-
tions are all bitwise. Each line has three rounds, and each round is composed
of 16-step operations, and in each step, one of the four chaining variables is
updated. φ0(a, b, c, d,mk, s) = (a + F (b, c, d) + mk) ≪ s, φ1(a, b, c, d,mk, s) =
(a+G(b, c, d)+mk+0x5a827999) ≪ s, φ2(a, b, c, d,mk, s) = (a+H(b, c, d)+mk+
0x6ed9eba1) ≪ s, Φ0(a, b, c, d,mk, s) = (a + F (b, c, d) + mk + 0x50a28be6) ≪
s, Φ1(a, b, c, d,mk, s) = (a + G(b, c, d) + mk) ≪ s, Φ2(a, b, c, d,mk, s) = (a +
H(b, c, d) + mk + 0x5c4dd124) ≪ s.

For a 512-bit block M = (m0,m1, . . . ,m15), let (aa, bb, cc, dd) and (aaa, bbb,
ccc, ddd) be the inputs of Line1 and Line2 processes respectively. If M is the
first block to be hashed, (aa, bb, cc, dd) and (aaa, bbb, ccc, ddd) are the initial
values. Otherwise they are the outputs of the previous block of Line1 and Line2
processes respectively.

Line1 operation process. Perform the following 48 steps (three rounds):
For j = 0, 1, 2, for i = 0, 1, 2, 3,
aa = φj(aa, bb, cc, dd,mj,4i, sj,4i), dd = φj(dd, aa, bb, cc,mj,4i+1, sj,4i+1), cc =
φj(cc, dd, aa, bb,mj,4i+2, sj,4i+2), bb = φj(bb, cc, dd, aa,mj,4i+3, sj,4i+3).

Line2 operation process. Perform the following 48 steps (three rounds):
For j = 0, 1, 2, For i = 0, 1, 2, 3,
aaa = Φj(aaa, bbb, ccc, ddd,mj,4i, sj,4i), ddd = Φj(ddd, aaa, bbb, ccc, mj,4i+1, sj,4i+1),

ccc = Φj(ccc, ddd, aaa, bbb, mj,4i+2, sj,4i+2), bbb = Φj(bbb, ccc, ddd, aaa,mj,4i+3, sj,4i+3).

The ordering of message words and the details of the shift positions can be seen
in Table 3. The compressing result for the message block M is (H1, H2, H3, H4) =
(b + cc + ddd, c + dd + aaa, d + aa + bbb, a + bb + ccc).
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2.3 Description of RIPEMD-320

For each padded 512-bit message block, RIPEMD-320 compresses it into a 320-
bit hash value by a compression function, which has two parallel lines denoted by
Line1 operation and Line2 operation respectively. Each line has five rounds, and
each round is composed of 16 steps. The nonlinear functions are: f1(X,Y, Z) =
X ⊕ Y ⊕ Z, f2(X,Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z), f3(X,Y, Z) = (X ∨ ¬Y ) ⊕
Z, f4(X,Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z), f5(X,Y, Z) = X ⊕ (Y ∨ ¬Z). There is an
interaction between Line1 operation and Line2 operation. After round 1, swap the
contents of registers aa16 and aaa16, after round 2, swap the contents of registers
bb32 and bbb32, etc. The details of RIPEMD-320 can refer to [8].

For a 512-bit block M = (m0,m1, . . . ,m15), let (aa0, bb0, cc0, dd0, ee0) and
(aaa0, bbb0, ccc0, ddd0, eee0) be the inputs of Line1 and Line2 processes respec-
tively. If M is the first block to be hashed, (aa0, bb0, cc0, dd0, ee0) and (aaa0,
bbb0, ccc0, ddd0, eee0) are the initial values. Otherwise they are the output of the
previous block compressing of Line1 and Line2 processes respectively.

Line1 operation process. Perform the following 80 steps (five rounds):
For j = 1, 2, 3, 4, 5, For i = 16(j − 1) + 1, 16(j − 1) + 2, ..., 16(j − 1) + 16,

TTi = (aai−1 + fj(bbi−1, cci−1, ddi−1) + mord1(j,i) + k1
j ) ≪ s1

j,i + eei−1,
aai = eei−1, bbi = TTi, cci = bbi−1, ddi = cci−1 ≪ 10, eei = ddi−1.
ord1(j, i) denotes the value in the j-th row and i − 16(j − 1)-th column in

Table 1. For example, ord1(2, 27) denotes the value 9. The ordering of message
words can be seen in Table 1. The details of the shift positions can be seen in
Table 9. The final chaining variables of Line1 operation is: (hh1, hh2, hh3, hh4, hh5)
= (aa80 + aa0, bb80 + bb0, cc80 + cc0, dd80 + dd0, ee80 + ee0).

Line2 operation process. Perform the following 80 steps (five rounds):
For j = 1, 2, 3, 4, 5, For i = 16(j − 1) + 1, 16(j − 1) + 2, ..., 16(j − 1) + 16,

TTTi = (aaai−1 + f6−j(bbbi−1, ccci−1, dddi−1) + mord2(j,i) + k2
j ) ≪ s2

j,i + eeei−1,

aaai = eeei−1, bbbi = TTTi, ccci = bbbi−1, dddi = ccci−1 ≪ 10, eeei = dddi−1.

ord2(j, i) denotes the value in the j-th row and i − 16(j − 1)-th column in
Table 2. The ordering of message words can be seen in Table 2. The details of
the shift positions can be seen in Table 11. The final chaining variables of Line2
operation is: (hhh1, hhh2, hhh3, hhh4, hhh5) = (aaa80+aaa0, bbb80+bbb0, ccc80+
ccc0, ddd80+ddd0, eee80+eee0). Then (hh1, hh2, hh3, hh4, hh5, hhh1, hhh2, hhh3,
hhh4, hhh5) is the compressing result for the message block M .

Table 1. Ordering of the message words in Line1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8

3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12

1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2

4 0 5 9 7 12 2 10 14 1 3 8 11 6 15 13
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Table 2. Ordering of the message words in Line2

5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12

6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2

15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13

8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14

12 15 10 4 1 5 8 7 6 2 13 14 0 3 9 11

2.4 Description of RIPEMD-256

For each padded 512-bit message block, RIPEMD-256 compresses it into a 256-
bit hash value by a compression function, which has two parallel lines denoted
by Line1 operation and Line2 operation respectively. Each line has four rounds,
and each round is composed of 16-step operations. The nonlinear functions
f1, f2, f3, f4 in each round are described above. There is an interaction between
Line1 operation and Line2 operation. After round 1, swap the contents of regis-
ters aa16 and aaa16, after round 2, swap the contents of registers bb32 and bbb32,
etc. The details of RIPEMD-256 can refer to [8].

For a 512-bit block M = (m0,m1, . . . ,m15), let (aa0, bb0, cc0, dd0) and (aaa0,
bbb0, ccc0, ddd0) be the inputs of Line1 and Line2 processes respectively. If M is
the first block to be hashed, (aa0, bb0, cc0, dd0) and (aaa0, bbb0, ccc0, ddd0) are the
initial values. Otherwise they are the outputs of the previous block compressing
of Line1 and Line2 processes respectively.

Line1 operation process. Perform the following 64 steps (four rounds):
For j = 1, 2, 3, 4, For i = 16(j − 1) + 1, 16(j − 1) + 2, ..., 16(j − 1) + 16,
TTi = (aai−1 + fj(bbi−1, cci−1, ddi−1) + mord1(j,i) + k1

j ) ≪ s1
j,i, aai = ddi−1,

bbi = TTi, cci = bbi−1, ddi = cci−1. The ordering of message words can be seen
in Table 1. The details of the shift positions can be seen in Table 5. The final
chaining variables of Line1 operation is: (hh1, hh2, hh3, hh4) = (aa64+aa0, bb64+
bb0, cc64 + cc0, dd64 + dd0).

Line2 operation process. Perform the following 64 steps (four rounds):
For j = 1, 2, 3, 4, For i = 16(j − 1) + 1, 16(j − 1) + 2, ..., 16(j − 1) + 16,
TTTi = (aaai−1 + f5−j(bbbi−1, ccci−1, dddi−1) + mord2(j,i) + k2

j ) ≪ s2
j,i, aaai =

dddi−1, bbbi = TTTi, ccci = bbbi−1, dddi = ccci−1. The ordering of message
words can be seen in Table 2. The details of the shift positions can be seen in
Table 7. The final chaining variables of Line1 operation is: (hhh1, hhh2, hhh3,
hhh4) = (aaa64+aaa0, bbb64+bbb0, ccc64+ccc0, ddd64+ddd0). Then (hh1, hh2, hh3,
hh4, hhh1, hhh2, hhh3, hhh4) is the compressing result for the message block M .

2.5 MAC Using Secret-Prefix Method and LPMAC

The secret prefix method is to append a message M to a secret key K before
the hashing operation: MAC(M) = h(k‖M). It was proposed in the 1980s, and
suggested for MD4 independently in [10, 17]. The MAC using the secret prefix
method is insecure: given a message-MAC, the given MAC value can be regarded
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as the initial chaining value for the appended message, an attacker can easily
append any blocks to the message and update the MAC accordingly [12]. To
avoid the above attack, a countermeasure is proposed in [17], and it prepends
the length of the unpadded message before hashing, and this type of MAC is
denoted as the LPMAC [24, 29]: LPMACk(M) = h(k‖length‖M), where M is
the padded message of M , and k‖length is a complete block.

3 Distinguishing Attack against the LPMAC-RIPEMD

In this section and the following two sections, by using the techniques in [24,
27], we give distinguishing attacks on the LPMAC based on RIPEMD, 58-
step RIPEMD-256 and 48-step RIPEMD-320. The difficulty in our attack is
to find some differential paths with high enough probability because the com-
pression function of RIPEMD-family contains two parallel and independent op-
erations. Furthermore, there are different message schedules in two operations
in RIPEMD−{256, 320}, so we must choose proper message difference to ensure
the differential paths contain as many rounds as possible.

In the following, we will use the pseudo-near-collision of a compression func-
tion, so we present the definition of pseudo-near-collision first. The pseudo-near-
collision of the compression function defined in [29] etc. is described as follows: for
any compression function f : {0, 1}n×{0, 1}m −→ {0, 1}n, and (h, x) �= (h′, x′),
if the Hamming distance between f(h, x) and f(h′, x′) is sufficiently small, then
(h, x) and (h′, x′) is called a pseudo-near-collision of the compression function
f . In this section, we apply the distinguisher in [27] to give an adaptive chosen
message attack on the LPMAC-RIPEMD. The pseudo-near-collision differential
path of RIPEMD is shown in Table 3.

3.1 The Pseudo-Near-Collision Differential Path for RIPEMD

We select ΔM = M ′−M = (Δm0, Δm1, ..., Δm15) as follows: ΔM = (0, 0, 0, 0, 0,
231, 0, ..., 0). The input difference is ΔIV = (Δa0, Δd0, Δc0, Δb0)= (0, [17], 0, [23]),
and the pseudo-near-collision differential path is shown in Table 3. The output
difference is (ΔH1, ΔH2, ΔH3, ΔH4) = (Δb0 + Δcc12 + Δddd12, Δc0 + Δdd12 +
Δaaa12, Δd0 + Δaa12 + Δbbb12, Δa0 + Δbb12 + Δccc12) = (223 + 26, 0, 217 ±
211,±211 + 26). ΔIV = (0, [17], 0, [23]) means IV ⊕ IV ′ = (a0⊕ a′0, d0⊕ d′0, c0⊕
c′0, b0 ⊕ b′0) = (0, 217, 0, 223) and d0,17 = 0, b0,23 = 0. If ΔIV = (0, [17], 0, [23]) is
fulfilled, we say that the IV difference satisfies the R-condition.

According to the properties of the Boolean function F , G and H , it is easy to
derive the sufficient conditions that ensure the differential path in Table 3 hold.
There are 31 conditions in the differential path of Line1 or Line2 operation.
The sufficient conditions are shown in Table 4. Therefore, if the input difference
ΔIV = (0, [17], 0, [23]) is fulfilled, the differential path of RIPEMD holds with
probability 2−62 = 2−31 × 2−31.
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3.2 Adaptive Chosen Message Distinguishing Attack on
LPMAC-RIPEMD

We apply the distinguishing attack technique presented in [27] to present a
distinguishing attack on the LPMAC based on RIPEMD combined with the
differential path in Table 3. The attack algorithm is as follows:

1. Randomly choose a structure T = {M i|i = 1, ..., 266} composed of 266 dif-
ferent messages, and query their corresponding MAC values Ci.

2. Find two messages Ma and M b such that Ca and Cb satisfies the R-condition
by the birthday attack.

3. The paddings for Ma and M b are denoted by pada and padb respectively.
Randomly choose 263 different messages M j , and query the MACs of two sets
of messages {Ma‖pada‖M j|j = 1, ..., 263} and {M b‖padb‖M j|j = 1, ..., 263}.
Obviously, there are 263 messages in each set.

4. Once a near-collision (Ma‖pada‖M c and M b‖padb‖M c) is found, we con-
clude that the LPMAC is based on RIPEMD. Otherwise, it is based on a
random function.

Complexity Evaluation. The data complexity of the attack is 266 + 2× 263 ≈
266 chosen messages. Step 1 takes 266 MAC queries. We keep a table of 266

entries in step 2, and there are 266 table look-ups in step 2 by the birthday
attack. There are 264 MAC queries in step 3. So the time complexity is about
266 MAC queries and 266 table look-ups.

Success Rate. For two random messages Ma and M b, the outputs Ca and Cb

satisfy the R-condition with probability 1
2128 × 1

22 = 1
2130 . From the birthday

paradox, a near-collision pair (Ma,M b) among the 266 messages occurs with
probability 1−(1− 1

2130 )C2
266 ≈ 1− 1

e2 ≈ 0.86. The following success rate analysis
can be divided into two parts: If the LPMAC is based on RIPEMD, the attack
succeeds when we can find a near-collision among 263 messages. The success
probability is 1 − (1 − 1

262 )2
63 ≈ 0.86. If the LPMAC is based on a random

function, the attack succeeds when no near-collision can be found. The success
probability is (1− 1

2128 )2
63 ≈ 1. Therefore, the success rate of the whole attack is

about 0.86× (1
2 × 0.86 + 1

2 × 1) ≈ 0.80. The success probability can be improved
by increasing the number of selected messages and repeating the attack several
times.

4 Distinguishing Attack against the LPMAC Based on
58-Step RIPEMD-256

In this section, we apply the distinguisher in [24] to give an adaptive chosen
message attack on the LPMAC based on 58-step RIPEMD-256. The Line1 and
Line2 operations differential paths of RIPEMD-256 are shown in Tables 5 and 7
respectively. The pseudo-near-collision differential path in Table 5 can be divided
into two parts. The first part is from step-7 to step-27, and the second part is from
step-28 to step-64. For the first part, we only consider the output difference of
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step-27. It serves as the input of the second part, and the pseudo-near-collision
differential path of the second part holds with probability 2−12. Similarly, in
Table 7, the pseudo-near-collision differential path can also be divided into two
parts. The first part is from step-7 to step-22, and the second part is from step-23
to step-64. The pseudo-near-collision differential path of the second part holds
with probability 2−15. It is noted that the swap operation at the end of each
round has no impact on the differential paths of Line1 and Line2 operations.

4.1 The Pseudo-Near-Collision Differential Path for 58-Step
RIPEMD-256

Select the message difference ΔM = M ′ − M = (Δm0, Δm1, ..., Δm15) =
(0, ..., 0, 231, 0). RRi and RRRi denote the outputs of step i of Line1 and Line2
operations respectively.

The Pseudo-near-collision Differential Path of 58-Step Line1 Oper-
ation. For the pseudo-near-collision differential path from step-28 to step-64
of Table 5, the input difference ΔRR27 = (Δaa27, Δbb27, Δcc27, Δdd27) is se-
lected as (0, [18],[24, 31], 0) (which means RR′

i⊕RRi = (0, 218, 224 + 231, 0), and
bb27,18 = 0, cc27,24 = 0, cc27,31 = 0), and the output difference of ΔRR64 is
([7], 0, 0, 0). According to the properties of the Boolean function f2, f3 and f4, it
is easy to derive the sufficient conditions that ensure the differential path in Ta-
ble 5 hold. There are 6 conditions in RR27 and 12 conditions in RR28 ∼ RR64.
The sufficient conditions are shown in Table 6. Therefore, if the input differ-
ence ΔRR27 = (0, 218, 224 + 231, 0) and 6 conditions in RR27 are fulfilled, the
pseudo-near-collision differential path of Line1 operation holds with probability
2−12.

The Pseudo-near-collision Differential Path of 58-Step Line2 Opera-
tion. For the pseudo-near-collision differential path from step-23 to step-64 of
Table 7, the input difference ΔRRR22 = (Δaaa22, Δbbb22, Δccc22, Δddd22) is
selected as (0, [2], [31], [31]), and the output difference of ΔRRR64 is (0, [7], 0, 0).
According to the properties of the Boolean functions, it is easy to derive the
sufficient conditions that ensure the differential path in Table 7 hold. There are
5 conditions in RRR22 and 15 conditions in RRR23 ∼ RRR64. The sufficient
conditions are shown in Table 8. Therefore, if the input difference ΔRRR22 =
(0, 22, 231, 231) and 5 conditions in RRR22 are fulfilled, the pseudo-near-collision
differential path of Line2 operation holds with probability 2−15.

4.2 Distinguishing Algorithm on the LPMAC Based on 58-Step
RIPEMD-256

We apply the technique in [24] to present a distinguishing attack on the LPMAC
based on 58-step RIPEMD-256 combined with the differential path in Tables 5, 7.
Firstly, we select a 448-bit messages Y = (y0, y1, y3, y4, y6, ..., y15) and two 64-bit
messages Z1 = (z1,2, z1,5), Z2 = (z2,2, z2,5). Denote W1 = (y0, y1, z1,2, y3, y4, z1,5,
y6, ..., y13, y14, y15),W ′

1 = (y0, y1, z1,2, y3, y4, z1,5, y6, ..., y13, y
′
14, y15),W2 = (y0, y1,
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z2,2, y3, y4, z2,5, y6, ..., y13, y14, y15), and W ′
2 = (y0, y1, z2,2, y3, y4, z2,5, y6, ..., y13,

y′14, y15), which are four fixed one-block messages. Both ΔW1 = W ′
1 − W1 and

ΔW2 = W ′
2 −W2 satisfy the target message difference: Δm14 = 231, Δmi = 0

(i = 0, ..., 15, i �= 14). Secondly, we find a 512-bit message pair (X,X ′) such
that the message quadruple (X‖W1, X‖W2, X

′‖W ′
1, X

′‖W ′
2) satisfy the following

conditions:

1. (a) Let RR27 and RR′
27 denote the 27-th step output of Line1 operation

in the second block of Line1(X‖W1) and Line1(X ′‖W ′
1) respectively.

ΔRR27 satisfies the target input difference of step 28 in Table 5 and
RR27 satisfies the corresponding 6 conditions in Table 6.

(b) The output of Line1 operation of the message quadruple satisfies the equa-
tion Line1(X‖W2)− Line1(X‖W1) = Line1(X ′‖W ′

2)− Line1(X ′‖W ′
1).

2. (a) Let RRR22 and RRR′
22 denote the 22-nd step output of Line2 operation

in the second block of Line2(X‖W1) and Line2(X ′‖W ′
1) respectively.

ΔRRR22 satisfies the target input difference of step 23 in Table 7 and
RR22 satisfies the corresponding 5 conditions in Table 8.

(b) The output of Line2 operation of the message quadruple satisfies the equa-
tion Line2(X‖W2)− Line2(X‖W1) = Line2(X ′‖W ′

2)− Line2(X ′‖W ′
1).

If the above conditions 1 and 2 are satisfied, we call the message pair (X,X ′) as a
RIPEMD256-collision. For a random 512-bit message pair (X,X ′), the condition
1(a) above holds with probability 2−128 × 2−6 = 2−134. The condition 2(a)
holds with probability 2−128 × 2−5 = 2−133. If the LPMAC is based on 58-step
RIPEMD-256, the condition 1(b) can be satisfied when the two message pairs
(X‖W1, X

′‖W ′
1) and (X‖W2, X

′‖W ′
2) both follow the differential path from step

28 to 64 of Line1 operation in Table 5, and the probability is 2−12×2−12 = 2−24.
Similarly, the condition 2(b) can be satisfied with probability 2−15×2−15 = 2−30.
Therefore, the message pair (X,X ′) is a RIPEMD256-collision with probability
2−134 × 2−133 × 2−24 × 2−30 = 2−321. The distinguishing attack algorithm for
the LPMAC based on 58-step RIPEMD-256 is as follows:

1. Randomly choose a set T which consists of 2161.5 one-block messages. For
every X ∈ T , query the MACs with X‖W1, X‖W ′

1, X‖W2 and X‖W ′
2 respec-

tively, and obtain the corresponding MACs.
2. Then perform the followings:

(a) For Line1 operation, compute two sets of differences: T 1
1 ={Line1(X‖W2)−

Line1(X‖W1)|X ∈ T }, T 1
2 = {Line1(X‖W ′

2)− Line1(X‖W ′
1)|X ∈ T }.

(b) For Line2 operation, compute two sets of differences: T 2
1 ={Line2(X‖W2)−

Line2(X‖W1)|X ∈ T }, T 2
2 = {Line2(X‖W ′

2)− Line2(X‖W ′
1)|X ∈ T }.

(c) Find all the pairs (X,X ′) such that the following two conditions hold,
and the set of all pairs is recorded as T3. Line1(X‖W2) − Line1(X‖W1) =
Line1(X ′‖W ′

2) − Line1(X ′‖W ′
1), Line2(X‖W2) − Line2(X‖W1) =

Line2(X ′‖W ′
2)− Line2(X ′‖W ′

1).
3. For each pair (X,X ′) ∈ T3: Compute Line1(X ′‖W ′

1) − Line1(X‖W1) and
denote it as δ1. Compute Line2(X ′‖W ′

1) − Line2(X‖W1) and denote it as
δ2. Denote Z = (z1,2, z1,5), W = (y0, y1, z1,2, y3, y4, z1,5, y6, ..., y13, y14, y15),
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and W ′ = (y0, y1, z1,2, y3, y4, z1,5, y6, ..., y13, y
′
14, y15). Randomly choose 228

different 32-bit messages Z such that (W,W ′) satisfy the target message
difference: Δm14 = 231, Δmi = 0 (i = 0, ..., 15, i �= 14). Query the MACs
of all the 228 message pairs (X ′‖W ′, X‖W ). Compute δ1 = Line1(X ′‖W ′)−
Line1(X‖W) and δ2 = Line2(X ′‖W ′)−Line2(X‖W). Check whether δ1 = δ1
and δ2 = δ2 hold simultaneously.

4. If a Z is found to match the differences δ1 and δ2, we claim the LPMAC is
based on 58-step RIPEMD-256. Otherwise, it is based on a random function.

Complexity Evaluation. Step 1 takes 2161.5 messages and 4× 2161.5 = 2163.5

MAC queries. We keep a table of 2161.5 entries and need about 2161.5 table
lookups in step 2. For the 2161.5 messages, it can produce about 2322 message
pairs, so the expected number of pairs in T3 is about 2322×2−256 = 266, in which
about 2322×2−321 = 2 pairs are RIPEMD256-collisions. In step 3, for each pair,
it needs 228 message pairs to verify whether it is a RIPEMD256-collision, so the
time complexity in step 3 is about 228 × 266 = 294. Therefore, the total data
and time complexities are dominant by step 1 and they’re about 2161.5 chosen
messages and 2163.5 MAC queries respectively.

Success Rate. The success rate of the attack can be divided into two parts:
If the LPMAC is based on 58-step RIPEMD-256, the attack succeeds when
there is at least one RIPEMD256-collision in step 2, and a collision in step
3 is detected. The probability that there is at least one RIPEMD256-collision
in step 2 is 1 − (1 − 1

2321 )2
322

= 1 − 1
e2 ≈ 0.86. If the RIPEMD256-collision

in step 2 is captured, a collision in step 3 can be detected with probability
1 − (1 − 1

212×215 )2
28

= 1 − 1
e2 ≈ 0.86. Therefore, if the LPMAC is based on 58-

step RIPEMD-256, the distinguishing attack successes with probability 0.86 ×
0.86 ≈ 0.72. If the LPMAC is based on a random function, the attack succeeds
when no RIPEMD256-collision can be found. The success probability is ((1 −

1
2256 )2

28
)2

67 ≈ 1. Hence, the success rate of the whole attack is about 1
2 × 0.72 +

1
2 ×1 = 0.87. The success probability can be improved by increasing the number
of selected messages and repeating the attack several times.

5 Distinguishing Attack against the LPMAC Based on
48-Step RIPEMD-320

In this section, we apply the distinguisher in [24] to give an adaptive chosen
message attack on the LPMAC based on 48-step RIPEMD-320. The Line1 and
Line2 operations differential paths of RIPEMD-256 are shown in Tables 9, 11
respectively. The pseudo-near-collision differential path in Table 9 can be divided
into two parts. The first part is from step-1 to step-12, and the second part is from
step-13 to step-48. We only consider the output difference of step-12 for the first
part. The output of step-12 serves as the input of the the second part, and the
pseudo-near-collision differential path of the second part holds with probability
2−16. Similarly, in Table 11, the pseudo-near-collision differential path can also be
divided into two parts. The first part is from step-1 to step-15, and the second
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part is from step-16 to step-48. The pseudo-near-collision differential path of
the second part holds with probability 2−7. We select the message difference
ΔM = M ′ −M = (Δm0, Δm1, ..., Δm15) as follows: ΔM = (0, ..., 0, 231, 0, 0).
Let RRi and RRRi denote the outputs after step i of Line1 operation and Line2
operation respectively.

It is noted that after round 1, the output differences are ΔRR16 = ([−7, 12], 0,
0, [31], [−25]) in Line1 operation, and ΔRRR16 = ([18], [−9], [2], [−29], [16]) in
Line2 operation respectively. After swap aa16 with aaa16, aa′16 with aaa′16 re-
spectively, the input differences of step 17 are ([18], 0, 0, [31], [−25]) in Line1
operation and ([−7, 12], [−9],[2], [−29], [16]) in Line2 operation respectively.

The Pseudo-near-collision Differential Path of 48-Step Line1 Opera-
tion. For the pseudo-near-collision differential path from step-13 to step-48 of
Table 9, the input chaining variable difference ΔRR12 = (Δaa12, Δbb12, Δcc12,
Δdd12, Δee12) is selected as ([−7,−9, 11,−14,−19,−23, 28,−30], [2,−29],
[11, 15, 21,−26], [7,−15,−21, 27], [−0, 2, 4, 8,−14, 20, 25, 29]), and the output dif-
ference of ΔRR48 is (0,±219, 0, 0, [14]).

According to the properties of the Boolean function f1, f2 and f3, it is easy
to derive the sufficient conditions that ensure the differential path in Table 9
hold. There are 32 conditions in RR12 and 16 conditions in RR13 ∼ RR48. The
sufficient conditions are shown in Table 10. Therefore, if the input difference
ΔRR12 = (−27 − 29 + 211 − 214 − 219 − 223 + 228 − 230, 22 − 229, 211 + 215 +
221 − 226, 27 − 215 − 221 + 227,−1 + 22 + 24 + 28 − 214 + 220 + 225 + 229) and
32 conditions in RR12 are fulfilled, the pseudo-near-collision differential path of
Line1 operation holds with probability 2−16.

The Pseudo-near-collision Differential Path of 48-Step Line2 Opera-
tion. For the pseudo-near-collision differential path from step-16 to step-48 of
Table 11, the input chaining variable difference ΔRRR15 = (Δaaa15, Δbbb15,
Δccc15, Δddd15, Δeee15) is selected as ([−2,−12], [2], [−19], [16], [18]), and the
output difference of ΔRRR48 is (0, 24, 0, 0, 0). According to the properties of the
Boolean function f3, f4 and f5, it is easy to derive the sufficient conditions that
ensure the differential path in Table 11 hold. There are 13 conditions in RRR15

and 7 conditions in RRR16 ∼ RRR48. The sufficient conditions are shown in Ta-
ble 12. Therefore, if the input difference ΔRRR15 = (−22−212, 22,−219, 216, 218)
and 13 conditions in RRR15 are fulfilled, the pseudo-near-collision differential
path of Line2 operation holds with probability 2−7.

We apply the technique presented in [24] to present a distinguishing attack on
the LPMAC based on 48-step RIPEMD-320 combined with the differential path
in Tables 9, 11. The distinguisher also contains a pair of two-block messages,
and it is used to detect an inner near-collision occurring in the second iteration.
The attack procedure is similarly to the descriptions in Section 4.2, we omit it
because the page limit. The data complexity of the attack is about 2208.5 chosen
messages, and the time complexity is about 2206.5 MAC queries. The success
rate of the attack is about 0.87.
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6 Conclusions

In this paper, we give the first distinguishing attack on the LPMAC based on
the full RIPEMD, 58-step reduced RIPEMD-256 and 48-step reduced RIPEMD-
320, and the attack is also applicable to the LPMAC based on extended MD4
which also belongs to the RIPEMD-family. The output difference of the dif-
ferential path is non-zero, so it can’t detect the target collision (R-collision,
RIPEMD256-collision and RIPEMD320-collision respectively) by the outer func-
tion of HMAC/NMAC, and our distinguishing attack on the LPMAC is not ap-
plicable for the HMAC/NMAC.

Acknowledgments. The author would like to thank the anonymous reviewers
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Appendix

Table 3. Pseudo-near-collision differential path for RIPEMD

Step mi Δmi Shift Chaining value The step difference

a0 0

d0 [17]

c0 0

b0 [23]

1 m0 11 a1 0

2 m1 14 d1 [31]

3 m2 15 c1 0

4 m3 12 b1 [3]

5 m4 5 a2 0

6 m5 231 8 d2 0

7 m6 7 c2 0

8 m7 9 b2 [12]

9 m8 11 a3 0

10 m9 13 d3 0

11 m10 14 c3 0

12 m11 15 b3 [27]

13 m12 6 a4 0

14 m13 7 d4 0

15 m14 9 c4 0

16 m15 8 b4 [3]

17 m7 7 a5 0

18 m4 6 d5 0

19 m13 8 c5 0

20 m1 13 b5 [16]

21 m10 11 a6 0

22 m6 9 d6 0

23 m15 7 c6 0

24 m3 15 b6 [31]

25 m12 7 a7 0

26 m0 12 d7 0

27 m9 15 c7 0

28 m5 231 9 b7 0

. . . . . . . . . . . . . . . . . .

47 m5 231 7 c12 [6]

48 m12 5 b12 ±211
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Table 4. Sufficient conditions for RIPEMD

Step Conditions

d0,17 = 0, c0,23 = d0,23, b0,17 = 1, b0,23 = 0

1-3 a1,23 = 0, a1,31 = b0,31, d1,23 = 1, d1,31 = 0, c1,3 = d1,3, c1,31 = 0

4-8 b1,3 = 0, b1,31 = 1, a2,3 = 0, d2,3 = 1, c2,12 = d2,12, b2,12 = 0

9-14 a3,12 = 0, d3,12 = 1, c3,27 = d3,27, b3,27 = 0, a4,27 = 0, d4,27 = 1

15-20 c4,3 = d4,3, b4,3 = 0, a5,3 = c4,3, d5,3 = a5,3, c5,16 = d5,16, b5,16 = 0

21-26 a6,16 = c5,16, d6,16 = a6,16, c6,31 = d6,31, b6,31 = 0, a7,31 = c6,31, d7,31 = a7,31

27-46 no conditions

47 c12,6 = 0

Table 5. Pseudo-near-collision differential path for Line1 in RIPEMD-256

Step mi Δmi Shift Δaai Δbbi Δcci Δddi

7 m6 7 − − − −
8 m7 9 − − − −

. . . . . . . . . . . . . . . . . . . . . . . .

27 m9 15 0 [18] [24, 31] 0

28 m5 9 0 0 [18] [24, 31]

29 m2 11 [24, 31] 0 0 [18]

30 m14 231 7 [18] [31] 0 0

31 m11 13 0 [31] [31] 0

32 m8 12 0 0 [31] [31]

33 m3 11 [31] 0 0 [31]

34 m10 13 [31] 0 0 0

35 m14 231 6 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

61 m14 231 8 0 [7] 0 0

62 m5 6 0 0 [7] 0

63 m6 5 0 0 0 [7]

64 m2 12 [7] 0 0 0

Table 6. Sufficient conditions for Line1 in RIPEMD-256

Step Conditions

cc27,18 = dd27,18(⇔ bb26,18 = bb25,18), cc27,24 = 0(⇔ bb26,24 = 0),
27 cc27,31 = 0(⇔ bb26,31 = 0), bb27,18 = 0, bb27,24 = 0, bb27,31 = 0

28 bb28,18 = 0, bb28,24 = 1, bb28,31 = 1

29-32 bb29,18 = 1, bb29,31 = 1, bb30,31 = 0, bb31,31 = 0, bb32,31 = 0

59-63 bb59,7 = 0, bb60,7 = 1, bb61,7 = 0, bb63,7 = bb62,7



Distinguishing Attacks on LPMAC Based on the Full RIPEMD 215

Table 7. Pseudo-near-collision differential path for Line2 in RIPEMD-256

Step mi Δmi Shift Δaai Δbbi Δcci Δddi

7 m11 15 − − − −
8 m4 5 − − − −

. . . . . . . . . . . . . . . . . . . . . . . .

22 m13 8 0 [2] [31] [31]

23 m5 9 [31] 0 [2] [31]

24 m10 11 [31] 0 0 [2]

25 m14 231 7 [2] [9] 0 0

26 m15 7 0 [9] [9] 0

27 m8 12 0 0 [9] [9]

28 m12 7 [9] 0 0 [9]

29 m4 6 [9] 0 0 0

30 m9 15 0 [24] 0 0

31 m1 13 0 0 [24] 0

32 m2 11 0 0 0 [24]

33 m15 9 [24] 0 0 0

34 m5 7 0 [31] 0 0

35 m1 15 0 0 [31] 0

36 m3 11 0 0 0 [31]

37 m7 8 [31] 0 0 0

38 m14 231 6 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

63 m10 15 0 0 0 0

64 m14 231 8 0 [7] 0 0

Table 8. Sufficient conditions for Line2 in RIPEMD-256

Step Conditions

ddd22,31 = 0(⇔ bbb20,31 = 0), ccc22,2 = 0(⇔ bbb21,2 = 0),
22 ccc22,31 = 0(⇔ bbb21,31 = 0), bbb22,2 = 0, bbb22,31 = 0

23-26 bbb23,2 = 1, bbb24,2 = 0, bbb24,9 = 0, bbb25,9 = 0, bbb26,9 = 0

27-30 bbb27,9 = 0, bbb29,24 = 0, bbb30,24 = 0

31-34 bbb31,24 = 1, bbb32,24 = 1, bbb33,31 = bbb32,31, bbb34,31 = 0

35-36 bbb35,31 = 0, bbb36,31 = 1

64 bbb64,7 = 0
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Table 9. Pseudo-near-collision differential path for Line1 in RIPEMD-320

Step mi Δmi Shift Δaai Δbbi Δcci Δddi Δeei

1 m0 11 − − − − −
2 m1 14 − − − − −

. . . . . . . . . . . . . . . . . . . . . . . . . . .

[−7,−9, 11,−14, [11, 15, [7,−15, [−0, 2, 4, 8,−14,
12 m11 15 −19,−23, 28,−30] [2,−29] 21,−26] −21, 27] 20, 25, 29]

[−0, 2, 4, 8,−14, [−4, 21, [7,−15,
13 m12 6 20, 25, 29] [−15] [2,−29] 25, 31] −21, 27]

[7,−15, [−4, 21,
14 m13 231 7 −21, 27] [21] [−15] [−7, 12] 25, 31]

[−4, 21,
15 m14 9 25, 31] 0 [21] [−25] [−7, 12]

16 m15 8 [−7, 12] 0 0 [31] [−25]

swap aa16 with aaa16

16 m15 8 [18] 0 0 [31] [−25]

17 m7 7 [−25] 0 0 0 [31]

18 m4 6 [31] 0 0 0 0

19 m13 231 8 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

45 m13 231 5 0 [4] 0 0 0

46 m11 12 0 0 [4] 0 0

47 m5 7 0 0 0 [14] 0

48 m12 5 0 ±219 0 0 [14]

Table 10. Sufficient conditions for Line1 in RIPEMD-320

Step Conditions

aa12,i = 0(i = 7, 11, 28), aa12,i = 1(i = 14, 19, 23, 30),
bb12,2 = 0, bb12,29 = 1, bb12,7 = cc12,7, bb12,27 = cc12,27 + 1, bb12,11 = dd12,11 + 1, bb12,26 = dd12,26 + 1,
bb12,15 = cc12,5 + 1(⇐⇒ cc13,15 = dd13,15 + 1),

12 cc12,i = 0(i = 11, 15, 21), cc12,26 = 1, cc12,2 = dd12,2 + 1, cc12,29 = dd12,29,
dd12,i = 0(i = 7, 27), dd12,i = 1(i = 15, 21),
ee12,i = 0(i = 2, 4, 8, 20, 25, 29), ee12,i = 1(i = 0, 14)

13 bb13,15 = 1, bb13,21 = cc13,21 + 1, bb13,25 = cc13,25 + 1, bb13,2 = dd13,2 + 1, bb13,29 = dd13,29

14 cc14,21 = dd14,21 + 1

14 bb14,21 = 0, bb14,7 = cc14,7, bb14,12 = cc14,12 + 1, bb14,15 = dd14,15

15 bb15,25 = cc15,25, bb15,21 = dd15,21 + 1

16 aa16,31 = 1

45 bb45,4 = 0, cc45,4 = 0

46 bb46,4 = 1
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Table 11. Pseudo-near-collision differential path for Line2 in RIPEMD-320

Step mi Δmi Shift Δaaai Δbbbi Δccci Δdddi Δeeei

1 m5 8 − − − − −
2 m14 9 − − − − −

. . . . . . . . . . . . . . . . . . . . . . . . . . .

15 m3 12 [−2,−12] [2] [−19] [16] [18]

16 m12 6 [18] [−9] [2] [−29] [16]

swap aa16 with aaa16

16 m12 6 [−7, 12] [−9] [2] [−29] [16]

17 m6 9 [16] [21] [−9] [12] [−29]

18 m11 13 [−29] 0 [21] [−19] [12]

19 m3 15 [12] 0 0 [31] [−19]

20 m7 7 [−19] 0 0 0 [31]

21 m0 12 [31] 0 0 0 0

22 m13 231 8 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

48 m13 231 5 0 24 0 0 0

Table 12. Sufficient conditions for Line2 in RIPEMD-320

Step Conditions

aaa15,2 = 1, aaa15,12 = 1,
bbb15,2 = 0, bbb15,11 = 0(⇔ ddd17,21 = 0), bbb15,31 = 1(⇔ ddd17,9 = 1),

15 ccc15,24 = 1(⇔ ddd16,2 = 1), ccc15,16 = 1, ccc15,19 = 1, ccc15,31 = 0(⇔ ddd16,9 = 0),
ddd15,2 = 0, ddd15,16 = 0, ddd15,19 = 0,
eee15,18 = 0

16 bbb16,9 = 1, bbb16,29 = ccc16,29

17 bbb17,21 = 0, bbb17,12 = ccc17,12

18 ddd18,21 = 1, bbb18,19 = ccc18,19

19 bbb19,31 = ccc19,31
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Abstract. Three-party password-based authenticated key exchange
(3-party PAKE) protocols are attractive due to their convenience in
many communication applications, and thus have been receiving much
interest in the cryptographic research community. But, until now, how
to build provably secure 4-round 3-party PAKE protocol in a formal
way is still an open problem. In this paper, we introduce a target driven
formal way to build a 4-round provably secure 3-Party PAKE protocol.
Aiming at the security target and the efficiency one, we firstly present a
new generic construction for 3PAKE protocols which enjoys perfect secu-
rity. Furthermore, for obtaining a 4-round communication, we carefully
simplify the above generic construction so as to get an improved ver-
sion holding the target security. Finally, using the improved construction
and some instantiation techniques, we present a provably secure 4-round
3-party PAKE protocol.

Keywords: password, authenticated key exchange, key distribution,
multi-party protocol.

1 Introduction

The convenience of password-based authentication is obvious when two entities
communicate on the Internet. Due to this advantage, password-based authen-
ticated key exchange (PAKE) protocols play an important role in the field of
secure communications. Recently, with the development of wireless communi-
cations for the Internet, the three-party password-based authenticated key ex-
change (3-party PAKE or 3PAKE) protocol has received growing attention in
the research community. Using 3PAKE protocols, two communicating entities
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in the Internet, who only share a weak (low entropy) password with a trusted
server, respectively, is able to authenticate each other with the help of the trusted
server and establish a strong session key for protecting their subsequent com-
munications over the public channel. In the circumstance of 3PAKE, the server,
who holds all the registered users’ passwords, plays a role of the authentication
agent. As a result, any communicating entity, who wants to build secure com-
munications with another registered entity, does not need to remember all the
other users’ passwords, but holds a password shared with the server.

Compared with those public-key based schemes which rely on the Public Key
Infrastructure (PKI), the password-based authenticated key exchange protocol
is vulnerable to so-called exhaustive dictionary attacks as a password, with about
10-letter length, always distributes over a small set. According to the form of at-
tacks, we can divide dictionary attacks into three classes [18]: off-line dictionary
attacks, undetectable on-line dictionary attacks and detectable on-line dictionary
attacks. In the first case, with the information captured in the channel, an at-
tacker is able to guess a password and verify it off-linely. In the second one, an
attacker is only able to guess and verify a password guess in an on-line way, and
a failed guess is not detectable. In the last one, the actions of an attacker are
still on-line, but any failed guess can be detected.

For a PAKE protocol, detectable on-line dictionary attacks are trivial and
unavoidable. Undetectable on-line dictionary attacks are sometimes troublesome,
but not serious, especially for the server, as it is able to be handled by additional
precautions such as the logging limitation. In password-based settings, off-line
dictionary attacks are fatal so that a secure password-based protocol must be
resistant to this type of attacks. Certainly, it is more ideal for a PAKE protocol
to resist both off-line attacks and the undetectable on-line ones.

Related work. Since Bellovin and Merrit [8] initiated research in the PAKE
direction, a great number of research [6, 7, 5, 9–11, 14–16, 18–21, 24, 13, 12,
17, 1] has settled on the design or security analysis of the PAKE protocols,
from heuristic arguments initially to formal treatments recently. So far, two-
party password-based authenticated key exchange (2-party PAKE or 2PAKE)
protocols have been fully studied in the random oracle/standard models. But
much fewer formal work dealt with 3-party PAKE protocols.

In 2005, Abdalla et al. [2] presented the first provably secure 3-party PAKE
protocol, which is actually a generic construction and built by using three crypto-
graphic primitives as building blocks: Diffie-Hellman key exchange, Message Au-
thentication code and 3-Party Key Distribution. Subsequently, to pursue higher
efficiencies in computations and in communications, Abdalla et al. [3] built a
4-round 3-party PAKE protocol, based on the 2-party protocol in [11, 19], and
proved its security by introducing a series of new non-standard variations of
the standard Diffie-Hellman assumptions. However, unfortunately, these new as-
sumptions were shortly broken by Michael Szydlo [22]. Although it is still possible
that the 4-round 3PAKE protocol enjoys desirable security properties, but the
search for a security proof becomes an open problem.
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Additionally, for defending the undetectable dictionary attacks in a three
party setting, Wang and Hu [23] also proposed a new generic construction for
3-party PAKE protocols and proved it secure under the model of Abdalla et
al. [2]. But the protocol does not make contribution for improving the protocol
efficiency.

Our contribution. In this paper, we focus on the design of 4-round provably
secure 3-Party PAKE protocols. To this end, we introduce a target driven formal
way in building the 4-round 3PAKE protocol as follows: Firstly, we make defi-
nite the security target and the efficiency one of the final protocol. Next, aiming
at these targets, we present a new generic construction for 3PAKE protocols,
called NWPAKE-1, which enjoys perfect securities. Furthermore, for obtaining
a 4-round communication, we carefully simplify the above generic construction
so as to get an improved version, called NWPAKE-2, which still holds the tar-
get security. Finally, using NWPAKE-2 and some instantiation techniques, we
present a secure 4-round 3-party PAKE protocol.

Actually, to clarify the efficiency and security targets is equal to achieve an
optimal tradeoff between them in the design of the protocol. In the 4 rounds
communication setting, it is unimaginable for 3-party PAKE protocols to achieve
the mutual authentication security between clients and the server. For instance,
the 4-round 3-party PAKE protocol of Abdalla et al. [3] does not provide any
unilateral authentication, not to mention the mutual one. The target security of
the protocol is only the semantic security of the session key. As shown in [23], it
is obvious that the above 4-round protocol suffers from the undetectable online
attacks on both the server and the client.

The 4-round 3-party PAKE protocol presented in this paper enjoys both the
semantic security and the unilateral authentication security from the server to
clients except the unilateral authentication security from clients to the server. As
a result, the protocol is resistant to the off-line attacks and undetectable on-line
attacks on the client, but still vulnerable to undetectable on-line attacks on the
server. The partiality for clients is reasonable since in general network circum-
stances the configurations of client are always lightweight, without any addi-
tional security precaution, on the contrary the servers are usually well equipped,
capable of detecting and defending various on-line attacks.

Different from the building block design methods in Abdalla et al. [2] and
Wang and Hu [23], with which the protocol designers mainly consider the security
aspects of 3PAKE protocols and finish their work by providing a provably secure
3PAKE scheme without much concern for the efficiency of 3PAKE protocols, the
target driven method requires that the designers always pay attention to both the
efficiency target and the security one in the block building stage as well as in the
instantiation stage. The reason we still resort to the block building technology
in building the 4-round protocol is to make the process of the security proof
simpler and more intuitive, and to avoid the dependency on some green security
assumptions as in [2].
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2 Security Model of 3-party PAKE Protocols

The model described in this section derives from the Real-Or-Random (ROR)
one introduced in [2], which is an extension of the work of [7, 5]. In the ROR
model the Reveal query is no longer accessible while the Test query can be
asked as many as the adversary wants. As a result, under the model we can take
a 2PAKE protocol as a black box to facilitate the proof of the 3PAKE scheme.

Furthermore, to address the security against on-line dictionary attacks, we
give the authentication security definition, which follows closely the one provided
in [11], as a supplement for the model of 3PAKE protocols.

2.1 Communication Model

Protocol participants. There are two sets of the participants: U , the set of
client users and S, the one of trusted servers. For simplicity, we assume that
S involves a single trusted server as in [2]. The set U can be divided into two
disjoint subsets: C, the set of honest clients and E , the one of malicious client
users, which correspond to the inside attackers in the 3-party setting.

Long-lived keys. Let pwU denote the password held by the user U ∈ U . The
trusted server S ∈ S stores a vector pwS = 〈pwS [U ]〉U∈U , where pwS [U ] is
identical to pwU itself or its transformation as defined in [5].

Protocol execution. In the model the adversaryA fully dominates the commu-
nication circumstance and interacts with the protocol via oracle queries, which
model its capabilities in a real attack. The oracle queries are as follows, where U i

(Sj , respectively) denotes the i-th (j-th, respectively) instance of a participant
U (S, respectively):

1. Execute(U i1
1 , Sj , U i2

2 ): This query models passive eavesdropping attacks, in
which the adversary obtains a transcript of all messages generated during
the honest execution of the protocol among the client instances U i1

1 and U i2
2

and the trusted server instance Sj .
2. SendClient(U i,m): This query models an active attack against clients, in

which the adversary sends a message m to the client instance U i and gets
the response from it.

3. SendServer(Sj ,m): This query models an active attack against a server, in
which the adversary sends a message m to the server instance Sj and gets
the response from it.

4. Reveal(U i): This query outputs the session key held by the instance U i,
which is used to model the misuse of session keys. If no session key is defined,
then return ⊥.

5. Test(U i): If the client instance U i has not accepted, then return ⊥. If its
intended partner is dishonest, then return the real session key. Otherwise,
the query replies the real session key held by U i if b = 1 or a random number
of the same size if b = 0, where b is the hidden bit selected randomly prior
to the first call.
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2.2 Security Definitions

Notation. We say an instance U i is opened if the query Reveal(U i) has been
asked by the adversary. An instance U i is said to be unopened if it is not opened.
Upon receiving its last expected message from the execution of the protocol, the
client instance U i is said to be accepted.
Partnering. Using the notion of session identifications (sid) introduced in [5],
we define that two instances U i

1 and U j
2 are partners if the following conditions

are satisfied: (1) Both U i
1 and U j

2 are accepted ; (2) The sid of U i
1 is equal to the

one of U j
2 ; (3) U i

1 and U j
2 are partner identifications each other; and (4)No client

instance except U i
1 and U j

2 accepts with a partner identification is U i
1 or U j

2 .
Freshness. A user instance U i is said to be fresh if both it and its partner are
unopened and honest, and it has been accepted.
Semantic security in the ROR model. During the execution of the proto-
col, the adversary A can ask multiple queries to the Execute, SendClient and
SendServer oracles. The Test oracle is allowed to query only one time for each
fresh instance of an honest client while the Reveal one is not available any more.
Let b′ be the output of the adversary, which is its guess for the bit b hidden in the
Test oracle. Let Pr[Succ] denote the probability of the event that the adversary
A successfully guess the hidden bit, that is, b′ = b. We define the advantage of A
in breaking the semantic security of the protocol P and the advantage function
of the protocol P , respectively, as follows:

Advror−ake
P,D (A) = 2 · Pr[Succ]− 1,

Advror−ake
P,D (t, R) = max

A
{Advror−ake

P,D (A)},

where passwords are drawn from a dictionary D, the maximum is taken over all
A with time-complexity at most t and employing resources at most R (including
the number of oracle queries).

A 3-party PAKE protocol P is said to be semantically secure if for every
polynomial time adversary A,

Advror−ake
P,D (t, R) <

k · n
|D| + negl(),

where n is number of active sessions and k is a constant and ideally equal to 1.
Authentication security. To measure the capability of a 3PAKE protocol to
resist undetectable on-line dictionary attacks, in this paper we consider the au-
thentication securities between clients and the server. Let Succ

auth(C→S)
P,D (A) (or

Succ
auth(S→C)
P,D (A)) denote the probability that an adversary A successfully im-

personates a client (or the server) instance during executing the protocol P with-
out being detected. Also let Succ

auth(C→S)
P,D (t, R) = max

A
{Succauth(C→S)

P,D (A)} (or

Succ
auth(S→C)
P,D (t, R) = max

A
{Succauth(S→C)

P,D (A)}) denote the maximum over all

A running in time at most t and using resources at most R. A 3-party PAKE
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protocol P is said to be client-to-server (or server-to-client) authentication secure
if Succauth(C→S)

P,D (t, R) (or Succ
auth(S→C)
P,D (t, R)) is at most O(k/|D|). Finally, we

define

Succ
auth(mutual)
P,D (t, R) = Succ

auth(C→S)
P,D (t, R) + Succ

auth(S→C)
P,D (t, R).

3 Security Primitives

In this section, we introduce serval cryptographic primitives which play the role
of the security foundation in our scheme. Let G be a cyclic group of prime order
q and let g be an arbitrary generator of G.

Decisional Diffie-Hellman assumption (DDH): Let us consider the follow-
ing two distributions:

Dddh−real
G

= {gx, gy, gxy|x, y ∈R Zq},
Dddh−rand

G
= {gx, gy, gz|x, y, z ∈R Zq}.

Let Γ be a probabilistic polynomial time (PPT) algorithm for these two cases: On
input a triple of G, outputting 0 or 1. And let the advantage function Advddh

G
(t)

be the maximum value, over all probabilistic polynomial algorithms Γ running
in time at most t, of:

|Pr[Γ (Dddh−real
G

) = 1]− Pr[Γ (Dddh−rand
G

) = 1)]|.

We say that the DDH assumption holds in G if Advddh
G

(t) is a negligible function
of t.

Generalized Decisional Diffie-Hellman assumption (GDDH) [4]: Gener-
alized Decisional Diffie-Hellman assumption can be taken regard as an extension
of the DDH assumption. Similarly, let us consider two distributions:

Dgddh−real
G

= {g1, g2..., gk, g1
r, g2

r..., gk
r|g1, ..., gk ∈R G, r ∈R Zq},

Dgddh−rand
G

= {g1, g2..., gk, u1, u2..., uk, |g1, ..., gk, u1, ..., uk ∈R G}.

Γ is assumed to be a probabilistic polynomial distinguisher for these two cases:
On input a k-tuple of G, outputting 0 or 1, so that the advantage function
Advgddh

G
(t) is defined as the maximum value, over all probabilistic polynomial

algorithms Γ running in time at most t, of:

|Pr[Γ (Dgddh−real
G

) = 1]− Pr[Γ (Dgddh−rand
G

) = 1)]|.

We say that the GDDH assumption holds in G if Advgddh
G

(t) is a negligible func-
tion of t.
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In the following, we consider the relationship between the DDH assumption
and the GDDH one with k = 3. For simplicity, we define GDDH2 and GDDH3

problems as the GDDH ones with k = 2 and k = 3, respectively. Let Γ be a
probabilistic polynomial distinguisher for the GDDHk. And let the advantage
function Advgddhk

G
(t) be the maximum value, over all probabilistic polynomial

algorithms Γ running in time at most t.

Lemma 1. The GDDH2 problem is equivalent to the GDDH3 one for any
prime order group G and any time complexity t, where

Proof. The main idea of proving this lemma is to show that the existence of
a PPT algorithm breaking GDDH2 will lead the generation of another PPT
algorithm to break GDDH3, and visa versa. For more details, one can refer
to [4]. ��

Lemma 2. The GDDH2 assumption is equivalent to or weaker than the DDH
assumption, that is,

Advgddh2
G

(t) ≤ Advddh
G (t)

Proof. Let us assume that Γgddh2 is a distinguisher of the GDHH2. We show
that a distinguisher Γddh against the DDH is able to be built by calling Γgddh2

as a subroutine. We denote the output of Γgddh2 as follows: If the input comes
from Dgddh−real

G
, it outputs 1 and 0 if the input tuple comes from Dgddh−rand

G
.

Therefore, we have

Pr[Γddh(gx, gy, gz) = 1|x, y ∈R G, z = xy]
= Pr[Γgddh2(g, gx, gy, gz) = 1|x, y,∈R G, z = xy]
= Pr[Γgddh2(g1, g2, u1, u2) = 1|g1, g2, u1, u2 ∈R G]

And

Pr[Γddh(gx, gy, gz) = 0|x, y, z ∈R G]
= Pr[Γgddh2(g, gx, gy, gz) = 0|x, y, z ∈R G]
= Pr[Γgddh2(g1, g2, g

r
1, g

r
2) = 0|g1, g2 ∈R G, r ∈ R].

��
As for the further discussion on the GDDH assumption, one can refer to [4] for
more details.

Message authentication codes (MAC). A message authentication code
MAC = (Tag; Ver) can be addressed by the following algorithms:

– A MAC generation algorithm Tag, possibly probabilistic, which outputs a
tag μ upon receiving a message m and a secret key sk.

– A MAC verification algorithm Ver, which takes a tag μ, a message m, and
a secret key sk as the parameters, and outputs 1 if μ is a valid tag for m
under sk or 0 otherwise.
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We say that a MAC scheme is existential unforgeability under chosen-message
attacks (euf -cma) [2] if the adversary is not able to produce a new valid message-
tag pair from existing valid message-tag pairs. More specifically, let l be a security
parameter and sk be a secret key selected uniformly at random from {0, 1}l. As-
sume an adversary A is allowed to access the MAC generation oracle Tag(sk; ·)
and the MAC verification oracle Ver(sk; ·, ·) and outputs a message-tag pair
(m;μ). Let Adveuf−cma(A) denote the probability of the event that A generates
a legal message-tag pair which was not outputted by the Tag(sk; ·) oracle on in-
put m. We define Adveuf−cma

MAC (t, qg, qv) as the maximal value of Adveuf−cma(A)
over all A with at most t in time and qg and qv queries to its MAC generation
and verification oracles, respectively.

4 General Construction of 3-party PAKE Protocols

In this section, we present a new generic construction ( referred to as NWPAKE-
1) for 3-party PAKE protocols, which is a form of compiler transforming any
secure 2-party PAKE protocol into a secure 3-party PAKE protocol. NWPAKE-
1 consists of two components: a 2-party password-based key exchange and a
3-party MAC-based key exchange protocol. As a generic construction, using the
secure building blocks aforementioned, it is able to enjoy the perfect securities:
the semantic security and the mutual authentication security. Compared with
the one provided by Abdalla et al. [2], the new construction does not have
advantages in the communication round and the computation. Moreover, it is
essentially an extension of the general construction proposed by Wang and Hu
[23]. However, the price of its existence is to benefit the latter simplification and
the design of a secure 4-round 3PAKE protocol.

4.1 Scheme Description

Let us assume that the participators are users A and B who in advance shares
a passwords pwA and pwB with a trusted server S, respectively, and attempt to
establish a secure session key with the help of the server. Roughly, NWPAKE-1
can be divided into two phases: the 2PAKE phase and the authenticated key
exchange phase. In the former phase, the users A and B build two secure high-
entropy session key skA and skB with the trusted server S, respectively, by
using any semantic secure 2-party PAKE protocol. In the latter phase, with the
session keys as the MAC key, A and B can concurrently authenticate and send
their respective temporary Diffie-Hellman public keys (i.e., session key seeds) to
the server S. Upon receiving and confirming the temporary public keys from the
clients A and B, the server S applies modular exponentiations on the temporary
public keys of A and B by using its own nonce s, respectively. Next, still using
the secure MAC scheme, the server authenticates and transfers the results to B
and A, respectively. In this manner, A and B finally finish establishing a session
key (its value is equal to gr1r2s ) in an authenticated way. The protocol is also
shown in Fig. 1 .
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A S B〈
2PAKE(skA)

〉 〈
2PAKE(skB)

〉
gr1 , MAC(skA, gr1 , A, B)−−−−−−−−−−−−−−−−−−−−−−−→ gr2 , MAC(skB, gr2 , A, B)←−−−−−−−−−−−−−−−−−−−−−−−

gr2s, gr1 , MAC(skA, gr2s, B, A)←−−−−−−−−−−−−−−−−−−−−−−−− gr1s, gr2 , MAC(skB , gr1s, A,B)−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 1. NWPAKE-1: A New generic construction for 3PAKE protocols

4.2 Security of Our Construction

We prove that NWPAKE-1 satisfies the semantic security and the mutual au-
thentication security as long as the Decisional Diffie-Hellman assumption holds
in G and the secure MAC tag exists.

Theorem 1. Let 2PAKE be a semantic secure 2-party PAKE protocol and MAC
be a secure MAC algorithm. Let qexe and qtest denote the numbers of queries to
Execute and Test oracles, and qA

send, qB
send, and qake be the numbers of queries to

the SendClient and SendServer oracles with respect to each of the two 2PAKE
protocols and the final two authenticated key exchange protocols. Then,

Advror−ake
NWPAKE−1,D(t, qexe, qtest, q

A
send, q

B
send, qake) ≤

4 ·Advror−ake
2PAKE,D(t, qexe, qexe + qA

send, q
A
send)

+ 4 · Advror−ake
2PAKE,D(t, qexe, qexe + qB

send, q
B
send)

+ 2 · qake ·Adveuf−cma
MAC (t, 2, 1)

+ 4 · Advddh
G (t + 10(qexe + qake)τG)

and

Succ
auth(mutual)
NWPAKE−1,D(t, qexe, qtest, q

A
send, q

B
send, qake) ≤

2Advror−ake
2PAKE,D(t, qexe, qexe + qA

send, q
A
send)

+ 2Advror−ake
2PAKE,D(t, qexe, qexe + qB

send, q
B
send)

+ qake · Adveuf−cma
MAC (t, 2, 1),

where τG denotes the exponentiation computational time in G.

Proof. In the following, we partly inherit the proof technique of the reference
[2]. For example, we still assume that the set of honest users involves only users
A and B, which can be easily extended to the multiple-party case. Also assume
that the adversary A attacks the protocol under the Real-Or-Random model.
Let t be the upper bound of the A’s running time-complexity, qexe be the upper
bound of the times of Execute queries, qtest be the one of Test query, qA

send
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be the one of queries to SendClient and SendServer oracles corresponding to
the 2PAKE protocol between A and the trusted server S, qB

send be the one of
queries to the oracles corresponding to the protocol between B and S, qAS

ake be
the one of queries to SendClient and SendServer oracles corresponding to the
authenticated key exchange (AKE) protocol between A and S, and qBS

ake be the
one of queries to the oracles corresponding to the protocol between B and S.
We incrementally define a sequence of games starting at the real game G0 and
ending up at the game G7 in which the advantage of the adversary is zero. Let
Succi denote the event that A succeeds in guessing the hidden bit b in game Gi.

Furthermore, we assume that when the game below aborts or stops with no
answer for b hidden in the Test oracles from A, we guess a random bit for b, in
which the success probability of the adversary is straightforwardly 1/2.

Game G0: This game corresponds to the real attack environment, in which all
communications are performed by oracle queries. By definition, we have

Advror−ake
NGPAKE,D(A) = 2 · Pr[Succ0]− 1. (1)

Game G1: In this game, we use a random string sk′A, instead of the real session
key skA, as the MAC key in the simulation of queries to the SendServer oracles.
As the following lemma shows, the difference between the current and previous
game is at most twice advantage of breaking the underlying 2PAKE protocol
between A and S.

Lemma 3. |Pr[Succ1]−Pr[Succ0]| < 2·Advror−ake
2PAKE,D(t, qexe, qexe+qA

send, q
A
send).

Proof. Below, we show the existence of a distinguisher A1 for the event Succ
in G0 and G1 will grant an adversary A2PAKE the power to break a provably
secure 2PAKE protocol.

– Initializing. A2PAKE initializes the simulation environment by choosing a
bit b randomly, generating passwords uniformly from D for all clients in
the system except the user A and providing A1 with passwords of all the
malicious users. And then, it starts A1, in reply to its oracle quries.

– Answering Queries. For the queries SendServer or SendClient not involving
the user A, A2PAKE does respondence by using its holding passwords. For
those queries corresponding to an instance of 2PAKE protocol between A
and S, A2PAKE can answer it by querying its own Send oracles. Once a Send
query triggers the acceptance of a fresh instance of client A or S, A2PAKE

sends a Test query to the corresponding instance and returns the result as
the session key shared between A and S. For the Test query by A1, A2PAKE

returns the real session key if b=1 or a random string, otherwise. As for the
Execute query, since it can be simulated by SendClient and SendServer,
we can easily deal with it as above.

– Output. Let b′ be the output of A1. A2PAKE outputs 1 if b′ = b, otherwise 0.

The above simulation indicates that the probability that A1 succeeds in G0 is
exactly the probability that A2PAKE outputs 1 when its Test oracles returns the
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real session key. Similarly, the probability of A1’s succeeding in G1 is exactly the
one that A2PAKE outputs 1 when the corresponding answer is a random string.
Hence, we have

Pr(Output(A2PAKE) = 1|Its T est oracle returns real session key)
= Pr(A1succeeds|skA works as MAC key)
= Pr(A1succeeds|in Game G0)
= Pr(Succ0)

and

Pr(Output(A2PAKE) = 1|Its T est oracle returns random string)
= Pr(A1succeeds|sk′A works as MAC key)
= Pr(A1succeeds|in Game G1)
= Pr(Succ1).

As a result, the lemma follows easily with the following inequation

Advror−ake
2PAKE,D(t, qexe, qexe + qA

send, q
A
send)

≥ |1
2
· Pr(Output(A2PAKE) = 1|Its T est oracle returns real session key)−

1
2
· Pr(Output(A2PAKE) = 1|Its T est oracle returns random string)|,

where A2PAKE runs at most time-complexity t and sends at most qexe + qA
send

queries to its Test oracle, at most qexe queries to its Execute oracle, and at most
qA
send queries to its Send oracle. ��

Game G2: Similarly, we modify this game by using a random string sk′B as
the MAC key in all of the sessions between B and S, instead of the real session
key skB between B and S. By the same arguments, we can prove the following
lemma.

Lemma 4. |Pr[Succ2]−Pr[Succ1]| < 2·Advror−ake
2PAKE,D(t, qexe, qexe+qB

send, q
B
send).

��
Game G3: In this game, once a query includes a legal message-tag occurs in
the authentication between A and S, which is not previously generated by the
simulated oracle, we set it be invalid and abort the game. Since the MAC scheme
adopted in the construction is secure, the following lemma shows that the differ-
ence of the success probabilities between in the current game and in the previous
is negligible.

Lemma 5. |Pr[Succ3]− Pr[Succ2]| ≤ qAS
ake · Adveuf−cma

MAC (t, 2, 1).

Proof. To prove the lemma, we employ the so-called ”hybrid arguments” tech-
nique, in which the total number of hybrids is qAS

ake. In each hybrid Ei ( 0 ≤
i ≤ qAS

ake), the Send queries in the first i authentications between A and S are
answered as in game G3 and the remaining ones are treated as in game G2.
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Let Ai
3 be a distinguisher for hybrids Ei and Ei−1. By using it, we can build

an adversary Ai
mac against the security of the MAC scheme. Let Fi be the event

that in the ith authentication process between A and S a legal message-tag
pair is not generated by the oracle, which leads the game termination in hybrid
Ei−1 but does not in hybrid Ei. With the time upper bound t, at most two
queries to the MAC generation and one queries to the verification oracle, the
probability that Ai

mac forges a message-tag pair is at most Adveuf−cma
MAC (t, 2, 1).

Since the success probabilities of Ai
3 in hybrids Ei and in Ei−1 are same if F

does not occur (i.e. Pr[SuccEi ∧¬F ] = Pr[SuccEi−1∧¬F ]), we can easily obtain
|Pr[SuccEi ] − Pr[SuccEi−1 ]| ≤ Adveuf−cma

MAC (t, 2, 1). The lemma follows with at
most qAS

ake hybrids. ��
Game G4: The modification of the SendClient or SendServer queries in the
authentications between B and S are similar as in the previous game. Hence, we
can get the following lemma.

Lemma 6. |Pr[Succ4]− Pr[Succ3]| ≤ qBS
ake · Adveuf−cma

MAC (t, 2, 1). ��
Notice that the proof on the authentication security in Theorem 1 is finished
by combining the previous lemmas.
Game G5: To simplify the following reduction from the protocol to DDH as-
sumption, we change the Send oracles by using a random DDH triple (X ;Y ;Z),
where X = gx, Y = gy, and Z = gxy.

For the SendClient(Ai, ∗) query during the authentication phase, our simu-
lator computes X0 = Xa0gx0 by choosing two random values x0 and a0 in Zp,
returns X0 and stores the quintuple (a0, x0, X0, Δ, id) in a list ΛA, where Δ, a
placeholder, says that the item is empty, and id is identifer used for distinguishing
each protocol instance, which is generated according to the MAC key. For the cor-
responding SendClient(Bj, ∗), it selects b0 and y0, computes Y0 and stores them
in a list ΛB in the same measure. When the following SendServer(SK , X0, ∗)
query from Ai arrives, the simulator validates its legitimacy and then seeks
for X0 in the list ΛA. If successful, our simulator checks the fourth item of
the quintuple whether assigned or not. If not, it randomly generates a value
s in Zp, and answers the query by returning (X0)s. As for the corresponding
SendServer(SK , Y0, ∗) query from Bj , our simulator similarly seeks Y0 in ΛA,
obtains the value s from the corresponding quintuple in ΛA and then returns
(Y0)s. Once the acceptation of a protocol instance was triggered by a Send query,
the simulator locates X0 and Y0 in the lists, ΛA and ΛB, respectively. If both
of them exist, it computes Z0 = (Za0b0 × Y x0b0 ×Xa0y0 × gx0y0)s for answering
the Test query. Otherwise, the instance halts without accepting. The remaining
simulations are same as the previous game.

Since MAC forgeries have been excluded in the previous game, the simulator
is always able to answer the Test query to a fresh instance by using the pre-
computed Z0. The difference between G4 and G5 exists in the choice way of
random variables. But the distributions of the random variables in the two games
are identical. As a result, this game is equivalent to the previous one and we have
Pr[Succ4] = Pr[Succ5].
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Game G6: We modify the game by replacing the DDH triple with a random
triple (gx; gy; gz) in the simulation of the authentication phase. As the following
lemma shows, the two games, G5 and G6, are indistinguishable if the DDH
assumption holds in G.

Lemma 7. |Pr[Succ6]− Pr[Succ5] ≤ Advddh
G

(t + 10(qexe + qake)τG).

Proof. This is a classic reduction from the DDH assumption to the gap between
before and after the two games. Let us assume A6 is a distinguisher for G5 and
G6. Using it, we are able to build an adversary Addh against the DDH problem
in G.

Firstly, with a triple (X ;Y ;Z) as the input, Addh randomly selects a bit b and
generates the passwords for all users in the system according to the distribution
of D, and then starts running A6. Next, by using the secrets generated randomly
and the input triple, Addh simulates the oracles of A6 to answer its SendClient,
SendServer, and Test queries. Finally, A6 outputs its guess bit b′ after a certain
number of the Test queries. If its guess is correct (i.e. b′ = b), then Addh returns
1 or 0, otherwise. Therefore, one can easily see that A just runs in game G5 if
the triple (X ;Y ;Z) is a DDH triple, but in game G6 if it is a random one. As a
result, Pr[Succ5] is the probability that Addh outputs 1 in G5, but Pr[Succ6] is
the one that Addh does in G6. The lemma follows from the fact that Addh has
time-complexity at most t + 10(qexe + qake)τG, where 10(qexe + qake)τG is the
additional time for the reducibility. ��

Game G7: In this game, we use three random numbers s1,s2 and s3, instead
of one value s, as the nonce of the server to accomplish the key exchange. In
other words, a set of random variables (X0, Y0, Z0, X

s
0 , Y

s
0 , Z

s
0) are substituted by

(X0, Y0, Z0, X
s1
0 , Y s2

0 , Zs3
0 ) to answer the oracle queries in G7. As the following

lemma shows, the game is indistinguishable from the previous game if the GDDH
assumption holds in G.

Lemma 8. |Pr[Succ7]− pr[Succ6] ≤ Advddh
G

(t + 10(qexe + qake)τG).

Proof. Similar as the proof in the game G6, let A7 be a distinguisher for G5 and
G6. By running it, the adversary Agddh3 breaks the GDDH3 problem in G.

On the input (g1, g2, g3, u1, u2, u3), the adversary Agddh3 selects a bit b at
random and initializes the simulation environment by producing the passwords
for all users. Next, it runs A7, answering Execute,SendClient, SendServer,
and Test queries from the distinguisher. Concretely, in the simulation of the
authentication phase of each protocol instance, g1, g2, u1, u2 and u3 are used as
X0, Y0, Xs

0 , Y s
0 and the session key, respectively. Finally, A7 outputs the guess

bit b′ after finishing the attacks. If its guess is correct (i.e. b′ = b), then Agddh3

returns 1, or 0 otherwise. Therefore, one can easily see that A just runs in game
G6 if the (g1, g2, g3, u1, u2, u3) is a GDDH3 tuple, but in game G7 if it is a
random one. As a result, Pr[Succ6] is the probability that Agddh3 outputs 1 in
G6, but Pr[Succ7] is the one that Agddh3 does in G7. Combining with the result
of the lemma 1 and 2 on the relation between DDH and GDDH3, we prove the
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lemma by the fact that Addh has time-complexity at most t+ 10(qexe + qake)τG,
where 10(qexe + qake)τG is the additional time for the reducibility. ��
So far, all knowledge captured by the adversary in the active manner or the
passive one have nothing with the final session key. This means that no infor-
mation on the hidden bit b is leaked to the adversary, i.e. Pr[Succ7] = 1/2.
Consequently, the result on the semantic security in Theorem 1 is proved by
joining with all the previous lemmas. ��

5 Simplification and Instantiation

The advantage of building protocols by using a generic construction method
is to simplify both the forming process and the security proof of the protocol.
According to the construction law, step by step, using specific 2-party PAKE
protocols and MAC schemes, one can easily get a provably secure 3-party PAKE
protocol. But the number of the communication rounds of the resulting protocol
is at least 8. Therefore, for building a 4-round provably secure 3-party PAKE
protocol, we simplify the generic construction NWPAKE-1 and utilize some in-
stantiation techniques to achieve a optimal trade-off between the efficiency and
the security.

Let us consider the message from clients to the server in the authentication key
exchange phase of NWPAKE-1. It consists of a session key seed (gr1 or gr2) of
the key exchange and a MAC tag which is used to authenticate the maker of the
seed. This structure of the message results in that the whole authentication key
exchange phase must begin after the two party session keys have been generated
by the 2PAKE protocol between each client and the server. To eliminate the
above limitation, we adopt an alternative way that in the authenticated key
exchange phase the session key seed is sent first and is authenticated later. The
modified generic construction, named NWPAKE-2, is shown in Fig. 2.

A S B〈
2PAKE(skA)

〉 〈
2PAKE(skB)

〉
gr1

−−−−−−−−−−−−−→ gr2

←−−−−−−−−−−−−−
gr2s, MAC(skA, gr1 , gr2s, B, A)←−−−−−−−−−−−−−−−−−−−−−−−− gr1s, MAC(skB , gr2 , gr1s, A,B)−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 2. NWPAKE-2: The modified generic construction for 3PAKE protocols

Using the improved generic construction NWPAKE-2, one is able to reduce
the communication rounds of the result protocol. It is since without the MAC
tag, the session key seeds provided by clients are random and independent of the
message produced in the 2PAKE phase so that they can be delivered together
with the message of 2PAKE, which causes that the communication rounds for
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transmitting session key seeds in the authenticated key exchange phase can be
removed. Certainly, there is no free lunch in this world. The result protocol will
lose the authentication security from clients to the server since the MAC tags
from clients to the server are omitted in the simplification. But the protocol still
holds the crucial securities of the 3-party setting: the semantic security and the
authentication security from the server to clients, which is presented in Theorem
2. Actually, if a server is able to operate stably in an open network circumstance,
additional security precautions are absolutely necessary, which protects it from
various on-line attacks, such as illegal access and excessive links. In this case,
the loss of the authentication from clients to server security is no big deal.

Theorem 2. Let 2PAKE be a semantic secure 2-party PAKE protocol and MAC
be a secure MAC algorithm. Let qexe and qtest denote the numbers of queries to
Execute and Test oracles, and qA

send, qB
send, and qake be the numbers of queries to

the SendClient and SendServer oracles with respect to each of the two 2PAKE
protocols and the final two authenticated key exchange protocols. Then,

Advror−ake
NWPAKE−2,D(t, qexe, qtest, q

A
send, q

B
send, qake) ≤

4 ·Advror−ake
2PAKE,D(t, qexe, qexe + qA

send, q
A
send)

+ 4 · Advror−ake
2PAKE,D(t, qexe, qexe + qB

send, q
B
send)

+ 2 · qake ·Adveuf−cma
MAC (t, 1, 1)

+ 4 · Advddh
G (t + 10(qexe + qake)τG),

and

Succ
auth(S→C)
NWPAKE−2,D(t, qexe, qtest, q

A
send, q

B
send, qake) ≤

2Advror−ake
2PAKE,D(t, qexe, qexe + qA

send, q
A
send)

+ 2Advror−ake
2PAKE,D(t, qexe, qexe + qB

send, q
B
send)

+ qake · Adveuf−cma
MAC (t, 1, 1),

where τG denotes the exponentiation computational time in G.

Proof. The proof of this theorem is very similar as the one of Theorem 1. The
only difference exists in the game G3 and G4, where simulator identify the session
key seeds from the clients by using the MAC tag answered by the server. As the
length limits, we do not repeatedly present the homologous specifications. ��
Additionally, the securities of both our generic constructions have no requirement
on the random oracle model. Both of them can be easily instantiated in the stan-
dard model. For instance, by using a semantically secure 2-party PAKE protocol
such as KOY protocol [16], it is easy to build a secure 3-party PAKE protocol
in the standard model. Also, one is able to use any 2-party PAKE scheme with
the semantic security in the random oracle model to get a secure 3PAKE pro-
tocol in the random oracle model. In the following, we present a secure 4-round
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Public information: G,g,q,G,H1
pwi ∈ D, PWi = G(pwi)

Client A Server S Client B

xi, ri ∈R Zp xj, rj ∈R Zp

Mi ← gri Mj ← grj

X∗
i = gxi · PWi X∗

i , Mi, A−−−−−−−→ X∗
j , Mj , B

←−−−−−−−
Mj = gxj · PWj

Xi ← X∗
i /PWi

Xj ← X∗
j /PWj

s ∈R Zp

y1, y2 ∈R Zp

Y1 ← gy1 ,Y2 ← gy2

KSA ← Xi
y1

KSB ← Xj
y2

M∗
i ← Mi

s

M∗
j ← Mj

s

V1 ← H1(Δ1||Mi||M∗
j )

V2 ← H1(Δ2||Mj ||M∗
i )

Y1, M∗
j , V1←−−−−−−−

Y2, M∗
i , V2−−−−−−−→

V1? = H1(Δ1||Mi||M∗
j ) V2? = H1(Δ2||Mj ||M∗

i )
if true, accept if true, accept

sk ← M∗
j

ri sk ← M∗
i

rj

Note: Δ1 = (B, A, KSA),Δ2 = (A, B, KSB)

Fig. 3. A provably secure 4-round 3PAKE protocol instantiated from the NWPAKE-2

3PAKE protocol, which is essentially an instantiation of NWPAKE-2 by using
the OMDHKE protocol [11] as the 2PAKE components.

According to the NWPAKE-2 structure, one puts the OMDHKE protocol on
each 2PAKE position and then put forward some measures to further simplify
the result 3PAKE scheme. As we all known, the random oracle assumption is
stronger than the existential unforgeability MAC one. Therefore, in the instan-
tiating process one substitutes the Hash functions (i.e, random oracles) for all
the MAC schemes, which keeps the result protocol as the same security as the
original scheme NWPAKE-2 in the random oracle model. Furthermore, to refine
the result protocol during the instantiation, one combines two hash functions
in the message from the server to each client into a single one (i.e., combine
two authenticators into a single one). Since the inputs of the two hash functions
are independent, this change do no harm to the security of the result protocol.
Finally, as shown in Fig. 3, one obtains a 4-round 3-party PAKE protocol which
is provably secure in the random oracle model as the security of the OMDHKE
protocol is proved in the same model.

6 Conclusion

In this paper, we present two generic constructions for the 3PAKE protocol, and
prove their securities in the standard model. By using the second construction
NWPAKE-2, we instantiate a provably secure 3-party PAKE protocol which
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only has 4 rounds in communications. If we apply other generic construction
such as GPAKE [2] or NGPAKE [23] to build a 3PAKE protocol, the result
protocol has at least 8 rounds in communication1. On the other hand, compared
with the efficient 3PAKE protocol presented by Abdalla et.al. [3], our result
protocol has the same number of rounds in communication, but has 6 more times
modular exponentiations, where 2 times modular exponentiations in clients can
be pre-computed. It is obvious that the above scheme of Abdalla et.al. enjoys
higher computation efficiency, but it is not provably secure since its security
assumption has been broken. In contrast, the securities of our 4-round 3PAKE
protocol directly inherits the ones of NWPAKE-2, and only relies on the standard
security primitives. To the best of our knowledge, our scheme is the only 4-round
3PAKE protocol holding the provable security.
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Abstract. Group key exchange (GKE) allows a group of n parties to
share a common secret key over insecure channels. Since key manage-
ment is important, NIST is now looking for a standard. The goal of this
paper is to redesign GKE using bilinear pairings, proposed by Desmedt
and Lange, from the point of view of arrangement of parties. The ar-
rangement of parties is called a party tree in this paper. Actually, we
are able to redesign the party tree, to reduce the computational and
communicational complexity compared with the previous scheme, when
GKE is executed among a small group of parties. We also redesign the
general party tree for a large number of parties, in which each party is
in a different environment such as having large or limited computational
resources, electrical power, etc.
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1 Introduction

A group key exchange protocol (GKE) allows a group of n parties to share a
common secret key over an insecure channel and, thus, parties in the group
can encrypt and decrypt messages among group members. Secure communica-
tion among many parties has become an integral part of many applications. For
example, ad hoc wireless networks are deployed in many areas such as homes,
schools, disaster areas, etc., where a network is susceptible to attacks ranging
from passive eavesdropping to active interference. Besides ad hoc networks, an-
other environment where ad hoc groups are popular is in the context of new
emerging social networks. The most well-known examples are Facebook and the
professional network LinkedIn. Note that, as pointed out by Katz-Yung [15] some
dynamic GKE protocols are slower than restarting from scratch with an efficient
GKE. So, we do not consider making our protocols dynamic.
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Some previous GKEs are based on the DH-key exchange protocol [7,8]. These
GKEs were defined over a finite field, however, it can also be naturally defined
over an elliptic curve for efficiency, denoted by GKE-ECDH. Some GKEs [10,12],
based on Joux’s tripartite key exchange protocols [14] using a bilinear pair-
ing, follow constructions by [7,8], which are denoted by GKE-BP. Other GKEs
[1,2,3] are not based on [7,8], which combine DH-key over an elliptic curve and
Joux’s tripartite key exchange. In this paper, we focus on GKE-BP proposed by
Desmedt and Lange [12].

Let us discuss the differences between GKE-ECDH and GKE-BP from the
point of view of arrangement of parties. A party-arrangement tree is called a
party tree in this paper. GKE-ECDH is based on a two-party GKE and, thus,
the generalization to an n-party GKE uses a binary tree. On the other hand,
GKE-BP is based on Joux’s [14] three-party GKE. In order to generalize the
three-party GKE-BP to an n-party GKE-BP, n parties are simply arranged in a
triplet tree. As a result, GKE-BP has the merit of reducing the height of the tree
which arranges parties. In addition to this fact, GKE-BP is fit for combination
with the short signature [6], since both GKE-BP and the short signature are
based on a bilinear pairing over elliptic curve, using similar technology. However,
there might be room for improvement in the arrangement of multiple triangles
from the point of view of communicational or computational complexity; and the
most efficient party tree might be different according to the number of parties.
Previous protocols [12] based on GKE-BP, denoted by BDI-BP and BDII-BP1

in this paper, do not focus on the party tree, and use a triplet tree to arrange
parties by connecting the triangles at the nodes. In fact, few generalizations were
developed to achieve an n-party version, although Joux’s 3-party GKE-BP is a
heavily cited paper.

In this paper, we explore the improvement of n-party versions of GKE-BP by
redesigning the party tree, and investigate what type of party tree is suitable for
given each condition: for example, the number of parties is decided according to
application, or in the case of a large number of parties, each party may be under a
different environment, such as having limited computational resources, electrical
power, etc. As a result, we succeed in constructing a new GKE based on bilinear
pairings which uses a new party tree and arranges parties by connecting the trian-
gles at the edges, which we call an edge-based GKE. Compared with our edge-based
GKE, BDII-BP is called a node-based GKE. We also analyze the performance of
our edge-based GKE, and, the node-based GKE carefully, and show that the most
efficient party arrangement is different, according to the number of parties, n. In
addition, each tree has various strengths and weaknesses. Edge-based scheme has
an advantage over node-based GKE in sent message complexity for parties with
low computational resources. On the other hand, node-based GKE has an advan-
tage over Edge-based scheme in received message complexity. Edge-based scheme
is suitable in the case of a small number of parties. From the point of view of com-
putational complexity, our edge-based GKE can work more efficiently than node-
based GKE for 4 ≤ n ≤ 9 and 16 ≤ n ≤ 21.

1 We focus on BDII-BP in this paper since BDII-BP is more efficient than BDI-BP.



238 Y. Desmedt and A. Miyaji

We also investigate GKE in the case of a large number of parties. In such a
case, each party may be in a different environment. For example, some parties
may have large computational resources, but others may have few resources;
and some parties may have almost unlimited electrical power, but others may
run on small batteries. In [12], a GKE among a group with two types of parties
is discussed. n1 parties have large computational resources and n2 parties have
few resources. In this paper, we give the general and systematic construction
of a GKE among a group by redesigning the party tree, in which n1, n2, · · · ,
nm parties have computational resources in descending order, which we call an
(n1, n2, · · · , nm)-GKE. From a practical point of view, the necessary features for
GKE depend on the application. By using our results, we can choose the optimal
party tree according to each application.

This paper is organized as follows. Section 2 summarizes computational as-
sumptions, security assumptions, and security definitions of GKE, together with
notations. Section 3 reviews the previous GKEs based on bilinear pairings. Sec-
tion 4 presents our new edge-based GKE using bilinear pairings, after making
clear the differences between edge-based and node-based GKE. Section 5 shows
how to construct (n1, n2, · · · , nm)-GKE, in which n1, n2, · · · , nm parties have
computational resources in descending order.

2 Preliminary

This section summarizes notations, assumptions, and the basic security notions
used in this paper.

2.1 The Bilinear Map, Its Related Assumptions, and Security
Model of GKE

Let G1 and G2 be two cyclic groups of prime order q. G1 (resp. G2) is represented
additively (resp. multiplicatively), where O (resp. 1) represents the zero element
(identity element) for addition (multiplication) in G1 (resp. G2). The following
bilinear map ê : G1 × G1 → G2 is defined over G1.

1. Bilinearity: ê(G0 + G1, G2) = ê(G0, G2) ∗ ê(G1, G2), ê(G0, G1 + G2) =
ê(G0, G1) ∗ ê(G0, G2) ∀G0, G1, G2 ∈ G1.

2. Non-degeneracy: ê(G,G) �= 1 for any G ∈ G1 \ {O}.
3. Computability: There is an efficient algorithm to compute ê(G0, G1) for any

G0, G1 ∈ G1.

Let k be a security parameter. A DBDH (Decision Bilinear Diffie Hellman) pa-
rameter generator IG is a probabilistic polynomial time (ppt) algorithm that on
input 1k, outputs a description of the above (G1,G2, ê). The DBDH problem with
respect to IG is: given random G, Y1, Y2, Y3 ∈ G1 and z ∈ G2 where Yi = αiG
(i = 1, · · · , 3) to decide whether z = ê(G,G)α1α2α3 or not. More precisely, we
say that IG satisfies the DBDH assumption if |p1 − p2| is negligible (in k) for
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all ppt algorithms A, where p1 = Pr[(G1,G2, ê) ← IG(1k);G, Y1 = α1G, Y2 =
α2G, Y3 = α3G ← G1 : A(G1,G2, ê, G, Y1, Y2, Y3, ê(G,G)α1α2α3) = 0] and p2 =
Pr[(G1,G2, ê) ← IG(1k);G, Y1 = α1G, Y2 = α2G, Y3 = α3G ← G1, z ← G2 :
A(G1,G2, ê, G, Y1, Y2, Y3, z) = 0]. This assumption is believed to hold if ê is a
Weil/Tate pairing on either a supersingular elliptic curve or an ordinary elliptic
curve [18].

Let Π be a GKE protocol with n parties, let k be a security parameter, and
let P = {P1, · · · , Pn} be a set of n parties, where n is bounded above by a
polynomial in k. We follow the security model described in [15]. Here we review
their definitions while focusing on models used in this paper.

We assume that parties do not deviate from the protocol and an adversary
A is an outsider, that is, never participates as a party in the protocol. The in-
teraction between A and parties occurs only via the following oracle queries,
where Πi

P denotes the i-th instance of party P ; ski
P denotes the session key after

execution of the protocol by Πi
P ; sidi

P denotes the session identity for instance
Πi

P ; and pidi
P denotes the partner identity for instance Πi

P .
Send(P, i,m): This sends message m to instance Πi

P , and outputs the reply gen-
erated by this instance. This query models an active attack.
Execute(P1, i1, · · · , Pn, in): This executes the protocol between the unused in-
stances {Πij

Pj
}1≤j≤n and outputs the transcript of the execution;

Reveal(P, i): This outputs a session key ski
P for a terminated instance Πi

P .
Corrupt(P ): This outputs the long-term secret key of a party P .
Test(P, i): This query is asked only once, at any time during the adversary’s ex-
ecution. A bit b ∈ {0, 1} is chosen uniformly at random. The adversary is given
ski

P if b = 1, and a random session key if b = 0.
A passive adversary is given access to the Execute, Reveal, Corrupt, and Test

oracles, while an active adversary is additionally given access to the Send oracle.
The adversary can query Send, Execute, Reveal, and Corrupt oracles several times,
but Test oracle is asked only once and on a fresh instance2.

Finally, the adversary outputs a guess bit b′. Then, Succ, the event in which A
wins the game for a protocol Π , occurs if b = b′ where b is the hidden bit used by
the Test oracle. The advantage of A is defined as AdvΠ(k) = |Prob[Succ]− 1/2|.
We say Π is a secure group key exchange protocol if, for any PPT passive
adversary A, AdvKEΠ is negligible (in k). We say Π is a secure group authenticated
key exchange protocol if, for any PPT active adversary A, AdvAKEΠ is negligible
(in k). The requirement of forward secrecy is already included in the above
definition, since A is allowed to access the Corrupt oracle in each case.

The Katz-Yung compiler [15], or a variant of [13], transforms any GKE which
is secure against a passive adversary with or without forward secrecy into one
that is secure against active adversaries with or without forward secrecy,
respectively. Let us briefly describe how the compiler transforms any passive-
adversary-secure GKE into active-adversary-secure GKE: to avoid replay

2 Πi
P is a fresh instance unless one of the following is true: (1) A, at some point,

queried Reveal (P, i) or Reveal (P ′, j) with P ′ ∈ pidi
P ; or (2) A queried Corrupt(P ′′)

with (P ′′ ∈ pidi
P ) before a query of Send(P, i, ∗) or Send(P ′, j, ∗) with (P ′ ∈ pidi

P ).
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attacks, the compiler introduces a fresh random nonce for each party for each
execution of the protocol, adds a message number for each party, and makes a
signature on message, the message number, and the nonce by using a strongly
unforgeable signature under adaptive chosen message attack. As for the detailed
construction, refer to [15,13]. This paper focuses on redesigning BDII-BP from
the graph-theory point of view, and investigates the optimal party tree for a given
condition, where BDII-BP is secure against a passive attack and does not have
a long-term secret key. Therefore, we focus solely on the passive case without
long-term secret key. Note that, our scheme will be shown to be secure against
passive adversaries, and, thus, both our scheme and BDII-BP are transformed
to become secure against active adversaries.

2.2 Assumptions Regarding Computational Complexity

We make some assumptions necessary to compute the computational complex-
ity. The GKE we will build consists of scalar multiplications on Gi (i = 1, 2),
multiplications on Gi, and pairings ê. We denote the computational complex-
ity of a single scalar multiplication on Gi, a single multiplication on Gi, and a
single pairing, by SMi, Mi, and e, respectively, where i = 1 or 2. Based on the
current security parameters, the size of G2 is 6 or more times larger than G1.
Using the conventional algorithm [16], the ratio of computational complexity of

M2 versus M1 can be set to M1 =
(

|G1|
|G2|

)2

M2. Similarly, the ratio of the com-

putational complexity of SMi versus Mi can be set to SMi = 3|Gi|
2 Mi for each

Gi. The computational complexity of these operations, in descending order, is
e > SM2 > SM1 > M2 > M1. In our evaluation, we focus primarily on the
computational complexity of e, SM1, and M2. Note that we do not use a scalar
multiplication on G2 in any GKE presented in this paper.

2.3 Notation and Assumptions Regarding GKE

This paper deals with each computational resources or electrical power slightly
precisely. For this purpose, we introduce notation, (n1, n2)-GKE, which means GKE
among n1 parties that have large computational resources and enough electrical
power, and n2 parties that have low computational resources or are running
on batteries. More generally, we explore (n1, n2, · · · , nm)-GKE among n1, n2,
· · · , nm parties, each with computational resources or electrical power levels in
descending order.

Let us first make some observations regarding GKE. In this paper, when we
evaluate the communicational complexity per party, it is from the point of view
of the party with the maximum sent and received data. We distinguish between
point-to-point and broadcast communication, while we do not distinguish be-
tween multicast and broadcast communication. We use pi (resp. bi) to denote a
message in Gi (i = 1, 2) sent/received through point-to-point (resp. broadcast)
communication.
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Another measure for comparing protocols is the computational complexity
per party. Keeping the discussion in Section 2.2 in mind, we focus on the com-
putational complexity of e, SM1, and M2.

We also introduce a concept, “auxiliary elements”. In some GKEs, some par-
ties can compute a shared key by themselves, that is, they can compute a shared
key using their own secret key and public data. Some parties, however, cannot
compute a shared key by themselves, that is, they need some additional data
computed and sent by others. Moreover, this data has to be received and stored
by the recipient. The maximum number of auxiliary elements a party receives is
denoted by MAE. MAE is also a good characteristic for evaluating each GKE.

To express these evaluations in detail we use the notation (n1-[#e,#SM1,#M2],
n2-[#e,#SM1,#M2], · · · , nm-[#e,#SM1,#M2]; #MAE)-GKE. For example,
(n1 -[3, 4, 5], n2 -[1, 1, 0]; 2)-GKE indicates that n1 parties compute 3e + 4SM1 +
5M2; n2 parties compute 1e + 1SM1; some parties need to receive 2 auxiliary ele-
ments for the shared key.

For the sake of completeness, we define a triplet tree. A triplet tree is a hyper-
graph [4] (V,E) in which each hyperedge is a 3-set, and the intersection of two
edges is a single vertex or empty. Note that some of our constructions are not
triplet trees (see Section 4). Our constructions can also be regarded as a hyper-
graph (V ,E ) in which each hyperedge is a 3-set, and which is vertex-connected.
When such a hyperedge involves the vertices a, b, c we often denote it as Δabc.
We also denote an edge which involves the vertices a, b as Eab . Although we use a
normal graph to represent this hypergraph, the hyperedge will be obvious.

3 Background

This section summarizes previous GKEs based on bilinear maps. The original
GKE, called BDI [7] and BDII [8], are constructed over a finite field or an
elliptic curve. They were adapted to work using pairings in [10,12]. BDI using
pairings was proposed by [10], but it is neither more efficient than [12] nor
adapted to the situation of parties with different computational resources since
it is fully contributory. We are interested in dealing with parties having different
computational resources each other and, thus, redesigning the asymmetric party
tree. This is why we focus on BDII based on pairings [12], which we call BDII-BP.

In BDII-BP, parties are arranged in a tree based on a triangle, in which each
node is connected to two other triangles (See Fig 1). We denote the parent, the
two left children, or the two right children of i by par(i), l.child.1(i) and
l.child.2(i), or r.child.1(i) and r.child.2(i), respectively, and the sibling
of i, who is in the same triangle, by sib(i) (See Fig 2). The concepts of child
and parent of i are defined by using the distance from a shaded triangle Δ123.
In these figures, one party is set to each node; black nodes correspond to parties
with large computational resources; white nodes correspond to parties with low
computational resources; and a shaded triangle corresponds to the exact triangle
of a shared key.
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Protocol 1 (BDII-BP[12])
1. Each Pi computes Zi = riG for a secretly chosen ri ∈ Z∗

q and sends it to 6
parties such as its 2 left children, 2 right children, the sibling, and the parent.

2. Each Pi computes both Xleft,i and Xright,i and multicasts these respectively
to its left and right descendants, where

Xleft,i =
ê(Zpar(i), Zsib(i))ri

ê(Zl.child.1(i), Zl.child.2(i))ri
=

ê(Zpar(i), riZsib(i))
ê(Zl.child.1(i), riZl.child.2(i))

= ê(riZpar(i), Zsib(i)) · ê(Zl.child.1(i),−riZl.child.2(i)),

Xright,i =
ê(Zpar(i), Zsib(i))ri

ê(Zr.child.1(i), Zr.child.2(i))ri
=

ê(Zpar(i), riZsib(i))
ê(Zr.child.1(i), riZr.child.2(i))

= ê(riZpar(i), Zsib(i))ê(Zr.child.1(i),−riZr.child.2(i)).

3. Each Pi computes a shared key K = ê(riZpar(i), Zsib(i))
∏

j∈ ancestor(i) Xj =
ê(G,G)r1r2r3 .

BDII-BP works3 in (n
4 − 3

4 ,
3n
4 + 3

4 )-GKE, where n
4 − 3

4 parties execute 3e+4SM1+
(log4 (n + 1))M2 at most by keeping and reusing ê(riZpar(i), Zsib(i)), and 3n

4 + 3
4

parties execute e + 2SM1 + (log4 (n + 1)− 1)M2 at most.

2

3

1

Fig. 1. BDII-BP using a bilinear map Fig. 2. Neighbors of Pi

4 Redesigning GKE Based on Bilinear Pairing

In this section, we present our basic new GKEs, which use a new arrangement of
parties by using triangles that overlap at edges. When viewing the triangles as
hyperedges, this formally corresponds with hyperedges at which an intersection
corresponds to two vertices. Any previous GKE based on bilinear pairings uses a
triplet tree, and so triangles were connected to each other at single nodes. Before
showing our new edge-based GKE, let us investigate the differences between
edge-based and node-based GKEs when using bilinear pairings.

3 From now on we will drop the notations (both � � and � �) when there is no confusion.
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4.1 Differences between Edge-Based and Node-Based GKE

We present three GKEs (Protocols 2, 3, and 4) between 7 parties, and investigate
the differences among them, where Figures 3, 4, and 5 show each arrangement of
parties, respectively. In these figures, arrows correspond to the flow to compute
the shared key and other descriptions such as nodes and a shaded triangles are
the same as in Section 3. Protocol 2 is a node-based GKE using bilinear pairings;
this protocol is easily derived from the previous GKE [12]. Protocols 3 and 4 are
edge-based GKEs, which are new arrangements introduced in this paper. Let us
compare Protocols 3 and 4 and, then, Protocols 2 and 4 after we describe these
protocols.

1

2 3

4

5

6

7

Fig. 3. Protocol 2

6

2 3

4

57

1 6

2 3

4

57

1
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Protocol 2 ((1 -[3, 4, 2], 4 -[1, 2, 1], 2 -[1, 2, 0]; 1)-GKE).

1. Each party Pi computes Zi = riG for a (private) randomly chosen ri ∈ Z∗
q

and sends it to its neighbors.
2. P1 computes two auxiliary elements X4,5 and X6,7 and sends them to (P4, P5)

and (P6, P7), respectively, where

X4,5 =
ê(Z2, Z3)r1

ê(Z4, Z5)r1
= ê(r1Z2, Z3)ê(Z4,−r1Z5) (reusing ê(r1Z2, Z3));

X6,7 =
ê(Z2, Z3)r1

ê(Z6, Z7)r1
= ê(r1Z2, Z3)ê(Z6,−r1Z7)

3. A shared key is given as K = ê(G,G)r1r2r3 . P1 computes this as K =
ê(r1Z2, Z3); P2 as K = ê(r2Z1, Z3); P3 as K = ê(r3Z1, Z2); P4 as K =
X4,5ê(r4Z1, Z5); P5 as K = X4,5ê(r5Z1, Z4); P6 as K = X6,7ê(r6Z1, Z7);
and P7 as K = X6,7ê(r7Z1, Z6) and this shared key is depicted in Figure 3
as computed from the shaded area.

Protocol 3 ((2 -[3, 3, 0], 1 -[1, 2, 2], 3 -[1, 2, 1], 1 -[1, 2, 0]; 2)-GKE).

1. Each party Pi computes Zi = riG for a (private) randomly chosen ri ∈ Z∗
q

and sends it to its neighbors.
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2. P1 and P2 compute 2 auxiliary elements (X4, X6) and (X5, X7) and send
them to (P4, P6) and (P5, P7), respectively, where

P1 : X4 =
ê(Z2, Z3)r1

ê(Z2, Z4)r1
= ê(r1Z2, (Z3 − Z4)) (reusing r1Z2);

X6 =
ê(Z3, Z2)r1

ê(Z3, Z6)r1
= ê(Z3, r1(Z2 − Z6));

P2 : X5 =
ê(Z3, Z1)r2

ê(Z3, Z5)r2
= ê(r2Z3, (Z1 − Z5)) (reusing r2Z3);

X7 =
ê(Z5, Z3)r2

ê(Z5, Z7)r2
= ê(Z5, r2(Z3 − Z7)).

3. A shared key is given as K = ê(G,G)r1r2r3 . P1 computes this as K =
ê(r1Z2, Z3); P2 as K = ê(Z1, r2Z3); P3 as K = ê(r3Z1, Z2); P4 as K =
X4ê(r4Z1, Z2); P5 as K = X5ê(r5Z2, Z3); P6 as K = X6ê(r6Z1, Z3); and P7

as K = X5X7ê(r7Z5, Z2).

Protocol 4 ((2 -[3, 2, 0], 4 -[1, 2, 1], 1 -[1, 2, 0]; 1)-GKE).

1. Each party Pi computes Zi = riG for a (private) randomly chosen ri ∈ Z∗
q

and sends it to its neighbors.
2. P1 and P2 compute two auxiliary elements (X4, X6) and (X5, X7) and send

them to (P4, P6) and (P5, P7), respectively, where

P1 : X4 =
ê(Z2, Z3)r1

ê(Z2, Z4)r1
= ê(r1Z2, Z3 − Z4) (reusing r1Z2);

X6 =
ê(Z3, Z2)r1

ê(Z3, Z6)r1
= ê(r1Z3, Z2 − Z6);

P2 : X5 =
ê(Z3, Z1)r2

ê(Z3, Z5)r2
= ê(r2Z3, Z1 − Z5) (reusing r2Z3);

X7 =
ê(Z3, Z1)r2

ê(Z3, Z7)r2
= ê(r2Z3, Z1 − Z7).

3. A shared key is given as K = ê(G,G)r1r2r3 . P1 computes this as K =
ê(r1Z2, Z3); P2 as K = ê(Z1, r2Z3); P3 as K = ê(r3Z1, Z2); P4 as K =
X4ê(r4Z1, Z2); P5 as K = X5ê(r5Z2, Z3); P6 as K = X6ê(r6Z1, Z3); and P7

as K = X7ê(r7Z2, Z3).

We now compare these protocols by focusing on how to compute auxiliary ele-
ments. The computational complexity of each of these 3 GKEs are summarized
in Table 1. Here we assume that parties with large computational resources com-
pute at least three pairings, and these with low computational resources compute
at most one.

In Protocol 2, Δ123, Δ154 and Δ167 share a node (not edge) with party P1 and,
thus, the computational complexity of one auxiliary element is 2e+2SM1 +M2.
To compute another auxiliary element, e + SM1 can be reused, and, thus the
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Table 1. Computational complexity of GKE among 7 parties

Party Type large computational resources low computational resources

#e #SM1 #M2 #e #SM1 #M2 #e #SM1 #M2

(node-based GKE) Protocol 2 3 4 2 1 2 1 1 2 0

(edge-based GKE) Protocol 3 3 3 0 1 2 2(1) 1 2 0

(edge-based GKE) Protocol 4 3 2 0 1 2 1 1 2 0

additional computational complexity is e + SM1 + M2. One auxiliary element
enables 2 parties to compute the shared key. P1 also can compute the shared
key itself during computation of the auxiliary element. Remark that MAE, the
maximum number of auxiliary elements, is 1. In Protocol 3, Δ123 shares one
edge E12 with Δ124 and another edge E13 with Δ136. Thus, the computational
complexity of one auxiliary element such as X4 or X6 is e+SM1. In this protocol,
computation of each auxiliary element is independent, and, thus, that of another
auxiliary element is e+SM1. However, SM1 can be reused to compute the shared
key, and, thus only additional computation of e is required for the computation
of the shared key. One auxiliary element enables 1 party to compute the shared
key. Remark that MAE is 2, and, thus, there exists a party which needs two
auxiliary elements. In Protocol 4, Δ123 shares one edge E12 with Δ124 and the
same edge E12 with Δ126. Thus, the computational complexity of one auxiliary
element is e+ SM1. To compute another auxiliary element, SM1 can be reused,
and, thus the additional computational complexity is e. Furthermore, SM1 can
be reused to compute the shared key, and, thus only additional computation of e
is required for the computation of the shared key. One auxiliary element enables
1 party to compute the shared key. Remark that MAE is 1.

Let us compare the two edge-based GKEs, Protocols 3 and 4. The differences
are:
1. In Protocol 4, no party needs to use two auxiliary elements to compute the
shared key. This is due to the “parallel” locations of P5 and P7, while in Pro-
tocol 3 these two parties are arranged “serially”. So, in Protocol 3, P7 needs 2
auxiliary elements to compute the shared key. (When using a graph (E,E′) as
used to explain the triplet tree in Section 2.3, then Δ257 is at distance 2 from
the shaded Δ123, while no triangle is at such a distance in Figure 5.)
2. In Protocol 4, computations of auxiliary elements are not independent. In
Protocol 3, computation of auxiliary elements is independent. This is due to the
“edge-sharing” of Δ124 and Δ126 in Protocol 4, while in Protocol 3 these two
triangles Δ124 and Δ136 do not share any edge. So, the computations of auxiliary
elements X4 and X6 in Protocol 3 are done independently.

Comparing the node-based GKE (Protocol 2) with the better edge-based GKE
(Protocol 4), the edge-based GKE can reduce the computational complexity of
parties with large computational resources by 2SM2. As for parties with low
computational resources, both the node-based GKE and the edge-based GKE need
e+2SM1. The concepts developed in Protocol 4 are applied to construct the edge-
based GKE among any group in order to reduce MAE and reuse computations.
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4.2 New Edge-Based GKE

We show the generalization of Protocol 4 as Protocol 5. All parties are arranged
in a graph which consists of triangles, seen in Figure 6. Figure 7 shows the party
tree which describes the relation between a parent and two children, where all
nodes except leaves have two children, and a parent node generates two auxiliary
elements for its two children to compute a shared key. The parties P1, P2, and
P3 are parents to each other, that is, P1(resp. P2, resp. P3) is the parent of
P3(rep. P1, resp. P2). In detail, Pi is arranged in a tree that starts with P1, P2,
or P3, where the tree is decided by the residue class of i in Z3, and nodes in
leaves correspond to parties with low computational resources or small batteries.
Figure 8 shows neighbors of a party Pi, which is a close-up of the structure of
Figure 6. Let a party Pi be an inner node in Figure 7. Then, neighbors of Pi

are described in Figure 8: Ppar(i) (resp. Ppar(par(i))) corresponds to the parent
of Pi (resp. Ppar(i)) and Pl.child(i) and Pr.child(i) correspond to left and right
children of Pi in Figure 7. Pi computes auxiliary elements for parties Pl.child(i)

and Pr.child(i). By using the residue class of i in Z3, i can be represented by
i = 3 · ji +ai for ai = 1, 2, 3 and ji ≥ 0. So, two children Pl.child(i) and Pr.child(i)

of Pi (i ≥ 1) are denoted by P3(2ji+1)+ai
and P3(2ji+2)+ai

, respectively.
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Fig. 8. Neighbors of Pi

Protocol 5 ((n−3
2 -[3, 2, log2(n

3 + 1)− 1], n+3
2 -[1, 2, log2(n

3 + 1)];
log2(n

3 + 1))-GKE).

1. Each party Pi computes Zi = riG using a (private) uniformly random chosen
ri ∈ Z∗

q and sends Zi to its parent, children, and grandchildren.
2. Let Pi be an inner-node party, where i = 3ji + ai (ai = 1, 2, 3). Then, Pi

computes two auxiliary elements, X3(2ji+b)+ai
(b ∈ {1, 2}), and multicasts

each to its left and right descendants, where
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X3(2ji+b)+ai
=

ê(Zpar(i), Zpar(par(i)))ri

ê(Zpar(i), Z3(2ji+b)+ai
)ri

= ê(riZpar(i), Zpar(par(i)) −

Z3(2ji+b)+ai
) (reusing riZpar(i)).

3. Let Pi (i = 1, · · · , n) be a party, represented by i = 3ji + ai (ai = 1, 2, 3);
and the sequence of ancestors of i be Ai = vi,1 · · · vi,	, where vi,1 = ai and
vi,	 = i. Then, Pi computes a shared key

K = ê(riZpar(i), Zpar(par(i))) ·
vi,1∏

t∈Ai,t=vi,�

Xt.

Remarks 1
1. Note that the numbering of the nodes may seem strange. A quick check of
Figure 7, however, will show that the computational (and communication) load
is balanced among the inner nodes. For this reason we call our protocol balanced.
2. Let us call nl the number of leaves in the tree of Figure 7 and nc the number
of non-leaves. A quick check shows that nl ≤ nc + 3. For this reason it is an
(n−3

2 , n+3
2 )-GKE.

3. Computing one auxiliary element costs e+SM1 and another auxiliary element
costs e by reusing SM1.

4.3 Comparison and Discussion

Table 2 summarizes the communicational complexity of Protocols 5 and BDII-
BP [12] for n ≥ 4 and Table 3 summarizes their computational complexity4. We
see that the sent message complexity of Protocol 5 is less than that of BDII-BP
for parties with low computational resources. On the other hand, that of BDII-
BP is less than that of Protocol 5 for parties with large computational resources.
The received message complexity of BDII-BP is less than that of Protocol 5.

Let us compare both Protocol 5 and BDII-BP from the point of view of com-
putational complexity. Both protocols execute the same number of times of ê for
parties with large and low computational complexity. To simplify the compari-
son, we focus on M2 and SM1 and remove e for formulae, where CompBDII−Large

and CompOur−Large are the computational complexity of BDII-BP and Proto-
col 5 for parties with large computational complexity; and CompBDII−Low and
CompOur−Low are for parties with low computational complexity,

CompBDII−Large = 2SM1 + �log4 (n + 1)�M2, CompOur−Large = (�log2 (
n

3
+ 1)� − 2)M2,

CompBDII−Low = (�log4 (n + 1)� − 1)M2, CompOur−Low = (�log2 (
n

3
+ 1)� − 1)M2.

The differences between CompBDII−Large and CompOur−Large (CompBDII−Low and
CompOur−Low) depend on the number of parties, and choice of G1 and G2. We

4 Protocols 5 and BDII-BP are coincident with Joux’s three-party GKE for n = 3.
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Table 2. Sent/received message complexity of several GKEs among n parties

sent message complexity received message complexity

Party Type large comp. low comp. large comp. low comp.

BDII-BP

( n
4
− 3

4
, 3n

4
+ 3

4
)-GKE 2b2 + 6p1 2p1 log4 (n + 1)b2 + 6p1 log4 (n + 1)b2 + 2p1

Protocol 5

( n−3
2

, n+3
2

)-GKE 2b2 + 7p1 p1 log2 ( n
3

+ 1)b2 + 4p1 log2 ( n
3

+ 1)b2 + 2p1

Table 3. Computational complexity of several GKEs among n parties

Party Type large computational resources low computational resources

#e #SM1 #M2 #e #SM1 #M2

BDII-BP

( n
4
− 3

4
, 3n

4
+ 3

4
)-GKE 3 4 �log4 (n + 1)� 1 2 �log4 (n + 1)� − 1

Protocol 5

( n−3
2

, n+3
2

)-GKE 3 2 �log2 ( n
3

+ 1)� − 2 1 2 �log2 ( n
3

+ 1)� − 1
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Fig. 9. Comparison of CompBDII−Large and CompOur−Large (Estimated by M1. |G1| = 160,

|G2|/|G1| = 6.)

investigate computational complexity when |G1| = 160 and |G2|/|G1| = 6. Fig-
ure 9 shows each computational complexity of CompBDII−Large and CompOur−Large

with the number of parties n ≤ 105, and Figure 10 shows each complexity of
CompBDII−Low and CompOur−Low with n ≤ 105. Formulae are measured by M1 and
conversion of both SM1 and M2 to M1 were shown in Section 2.2. We see that
Protocol 5 can always reduce computational complexity for parties with large
computational resources in BDII-BP under the above conditions. However, the
computational complexity for parties with low computational resources in Pro-
tocol 5 is equal to that for those in BDII-BP for 4 ≤ n ≤ 9 and 16 ≤ n ≤ 21,
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as we have seen in the case of n = 7 in Section 4.1. Protocol 5 is slightly worse
than BDII-BP for other n.

In summary, we have seen that the optimal party tree is different according
to the number of parties. In addition, each tree has various strengths and weak-
nesses. Protocol 5 has an advantage over BDII-BP in sent message complexity
for parties with low computational resources. On the other hand, BDII-BP has
an advantage over Protocol 5 in received message complexity. Protocol 5 has an
advantage over BDII-BP in computational complexity among a small number of
parties. On the other hand, BDII-BP has an advantage over Protocol 5 in com-
putational complexity among a large number of parties. From a practical point
of view, the necessary features for GKE depend on the application. By using our
results, we can choose the optimal party tree according to each application.

4.4 Security of Protocol 5

We show that a passive adversary that can break Protocol 5 can be used to solve
the DBDH Problem. The detailed proof will be shown in the final paper due to
the lack of space.

Theorem 1. Assuming the DBDH problem over G is hard, Protocol 5, denoted
simply by Π, is a secure group GKE protocol. Namely,

AdvKEΠ (t, qex) ≤ AdvDBDHG (t′),

where AdvKEΠ (t, qex) is an adversary to Π with qex Execute queries and in t time,
and AdvDBDH

G
(t′) is an adversary to DBDH in t′ = t + (n− 3)qex(e + 2SM1) time

for the number of parties n.

The Katz-Yung compiler [15] and a variant [13] turn Protocol 5 into an authen-
ticated GKE protocol which is secure against active attack, as we have reviewed
in Section 2.
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Corollary 1. The authenticated GKE Π ′ obtained from Protocol 5, denoted
simply by Π, by applying the compiler is secure against active adversary. Namely,
for the number of Send queries, qs, and the number of Execute queries, qex, we
obtain

AdvAKE−fs
Π′ (t, qex, qs) ≤ AdvKEΠ (t′, qex) +

qs

2
AdvKEΠ (t′, 1) + nSuccΣ(t′) +

q2
s + qexqs

2k
,

where AdvAKE−fs
Π′ (t, qex, qs) is an adversary to Π ′, t′ = t + (nqex + qs)tΠ′ , tΠ′ is

the time required for an execution of Π ′ by any party, and Succσ is the success
probability against the signature scheme used, Σ.

5 Construction of GKE among a Large Group

In this section, we will deal with a large group. In such a group, some parties may
have large computational resources and electrical power, while others do not, that
is, the resources may be different for each party. As we have seen in Section 4,
node-based GKEs are suitable for a large group. We will further redesign a party
tree of node-based GKEs from the point of view of different weight, to construct
GKEs suitable for a large group among parties with different resources.

5.1 Variants of Node-Based GKEs

In order to apply node-based GKEs to parties with different resources, we re-
design variants of Protocol 2, in such a way that one party has large computa-
tional resources and electrical power to compute all auxiliary elements.

Protocol 6 ( (1 -[n−3
2 + 1, n−3

2 + 2, n−3
2 ], (n− 3) -[1, 2, 1], 2 -[1, 2, 0]; 1)-GKE )

Figure 11 shows an arrangement of parties, which is a variant of (1, 6)-GKE
(Protocol 2) for the case in which 1 party constructs all auxiliary elements.

1. n− 3 parties are set under U1, which are denoted by U1,i (i = 1, · · · , n− 3).
2. Each party Ui (i = 1, 2, 3) computes Zi = riG for a (private) randomly

chosen ri ∈ Z∗
q and sends it to its neighbors. Only U1 broadcasts Z1 to all

parties. Each party U1,i (i = 1, · · · , n− 3) computes Z1,i = r1,iG and sends
it to its neighbors (including U1).

3. U1 computes 'n−3
2 ( auxiliary elements and sends them to the corresponding

parties {U1,2j−1, U1,2j} (j = 1, · · · , 'n−3
2 (),

Xj =
ê(Z2, Z3)r1

ê(Z1,2j−1, Z1,2j)r1
= ê(r1Z2, Z3)ê(−r1Z1,2j−1, Z1,2j) (reusing ê(r1Z2, Z3)).

(1)

4. A shared key is given as K = ê(G,G)r1r2r3 , where U1 computes K =
ê(r1Z2, Z3); U2 computes K = ê(r2Z1, Z3); U3 computes K = ê(r3Z1, Z2);
and U1,2j−1 and U1,2j (j = 1, · · · , 'n−3

2 () compute K = Xj ê(r1,2j−1Z1, Z1,2j)
and K = Xj ê(r1,2jZ1, Z1,2j−1), respectively.
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Remarks 2
1. As we have discussed in Protocol 2, computing (n−3)-party auxiliary elements
costs (n−3

2 +1)e+(n−3
2 +2)SM1+ n−3

2 M2 by reusing e+SM1 for every auxiliary
element. Note that the shared key itself is computed during this computation.
2. Protocol 6 can be executed as a (2, n − 2) or a (3, n − 3)-GKE by using the
computational resources and electrical power of 2 or 3 parties instead of 1 party.
It can also be generalized to (1, 1, 1, 2n1 + 2n2 + 2n3)-GKE for n1 ≥ n2 ≥ n3 as
seen in Figure 12.
3. Protocol 6 can be modified in such a way that n parties {Ui}n

i=1 have already
shared a key K; 2t parties {Ui,j}2t

j=1 are set under each Ui; each Ui computes
t auxiliary elements and sends each auxiliary element to the appropriate party,
{Ui,j}2t

j=1, and, thus, n + 2tn parties share the key K by changing Equation (1)
to Xi,j = Kê(−riZi,2j , Zi,2j+1). This achieves (n -[1, 2, 1], 2tn -[1, 2, 1]; 1)-GKE.

We show that a passive adversary that can break Protocol 6 can be used to solve
the DBDH Problem. The detailed proof will be shown in the final paper due to
the lack of space.
Theorem 2. Assuming the DBDH problem over G is hard, Protocol 6, denoted
simply by Π, is a secure group GKE protocol. Namely,

AdvKEΠ (t, qex) ≤ AdvDBDHG (t′),

where AdvKEΠ (t, qex) is an adversary to Π with qex Execute queries and in t time,
and AdvDBDH

G
(t′) is an adversary to DBDH in t′ = t+ n−3

2 qex(e+ 5SM1) time for
the number of parties n.

In the same way as Protocol 5, Protocol 6 can be turned into an authenticated
GKE protocol, as we have seen in Section 4.4. We avoid the repetition of the
same corollary here.

5.2 Construction of GKE in Different Environments

We investigate (n1, · · · , nk,m)-GKE from the following point of view: the compu-
tational resources or electrical power required by n1, · · · , nk parties are
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arranged according to the allowable number of computations of pairings5 with
d1 > · · · > dk ≥ 3; and m parties with the lowest computational resources or
electrical power can share the key by computing 1 pairing.

For the sake of simplicity, we will show the case of k = 1, i.e. (n,m)-GKE,
where n parties with large computational resources and electrical power compute
d pairings with d ≥ 3; and m parties with low computational resources or which
are using small batteries compute 1 pairing.

Protocol 7 ((n,m)-GKE)
Step 1. Check the conditions

If m > (d−1)h for the height h = 'log2(d−1) (n(2d−3)
3 + 1)(−1, then stop and

output “Computational resources are not sufficient”.
Step 2. Arrange parties according to the given environment of

(n,m)
Arrange a party tree in such a way that each node has (d− 1) triangles, that

is, 2(d− 1) children; then set n parties to inner nodes on the party tree; finally
set m parties to leaves on the party tree.
Step 3. Key exchange among n + m parties based on a variant of

Protocol 6

See Figures 12 and 13. First, Step 1 in Protocol 6 is executed; then, n parties
compute (d − 1) auxiliary elements and send them to their descendants; and
finally, K = ê(G,G)r1r2r3 is shared.

Protocol 7 realizes (n-[d, d + 1, h − 1], m-[1, 2, h]; h)-GKE for h =
'log2(d−1) (n(2d−3)

3 + 1)( − 1.

6 Concluding Remarks

Earlier schemes [10,12] developed to achieve an n-party GKE based on Joux’s
tripartite scheme, were based on combining several 3-party Joux based GKEs,
in which the 3 parties involved were represented by a triangle. Earlier schemes
did not focus on arrangement of parties, and, thus, simply, these triangles only
had at most one node in common.

We discovered that by just redesigning the arrangement in such a way that
these triangles overlap in two parties, we can reduce the communicational or
computational complexity according to the number of parties. To obtain this
advantage, we used an ingenuous trick by exploiting the mathematics of bilin-
ear pairings (i.e., a new method to compute auxiliary elements) and proposed
Protocol 5. By redesigning this arrangement, we can point out that the most
efficient party arrangement is different, according to the number of parties. In
fact, Protocol 5 can work more efficiently than BDII-BP for 4 ≤ n ≤ 9 and
16 ≤ n ≤ 21, from the point of view of computational complexity.

5 ni parties with large computational resources should be able to compute di ≥ 3
pairings. If di ≤ 2, those parties are assumed to be those with the least computational
resources.
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Although earlier schemes already discussed asymmetric computational re-
sources, they characterized all machines into two classes based on their resources.
Moreover, roughly half the nodes had large computational resources, while the
other half had few resources. We also simply generalized this by redesigning the
arrangement of parties, so that we can use more than two classes, and for some
of our schemes we do not require a 50-50 division into two classes.

This paper enables us to give the optimal party tree for given either commu-
nication or computation complexity. The following open problem still remains:
For given each upper bound on Pi’s available computation and communication
complexity, what is the optimal hyper-graph by using a bilinear-based group key
exchange?
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Abstract. A great deal of authenticated key exchange (AKE) protocols
have been proposed in recent years. Most of them were based on 1-factor
authentication. In order to increase the security for AKE protocols, var-
ious authentication means can be used together. In fact, the existing
multi-factor AKE protocols provide an authenticated key exchange only
between a client and a server. This paper presents a new multi-factor
AKE protocol in the three-party settings (3MFAKE), in which the au-
thentication means combine a password, a secure device, and biometric
authentications. We also prove the security of the protocol in the random
oracle model.

Keywords: Multi-factor, Three-party, Authenticated key exchange, Ran-
dom oracle model.

1 Introduction

Motivation. Multi-factor authentication key exchange (MFAKE) protocol uses
various authentication means. A MFAKE protocol is designed to remain secure
even if all but one of the factors has been compromised, so it can provide an
enhanced level of assurance in higher security scenarios such as online banking,
virtual private network access, and physical access. For example, there are se-
curity attacks of phishing and spyware on the Internet nowadays. They aim to
get a user’s username and password, then the adversary can use the personal
information to impersonate the user. The MFAKE protocol can resist to such at-
tacks, since the security doesn’t only rely on the password. In our security model,
the authentication is based on “something you know” (a password), “something
you have” (an unclonable secure device with a secret key), and “something you
are” (a biometric). Although two-party MFAKE protocols are quite useful for
client-server architectures, they are not suitable for large scale communication
environment. In two-party MFAKE protocols, if a client want to communicate
with other clients, he needs to know a large number of authentication means. Ap-
parently, it is very inconvenient for client-to-client communications. The three-
party MFAKE protocols can avoid this inconvenience. In a three-party MFAKE
protocol two clients A, B and a server S participate. A, B can authenticate
each other and establish a session key which is known to nobody but both of
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them with the help of the trusted server S. Each client only needs to share the
authentication means with the trusted server.

Contributions. In this paper, we design a three-party multi-factor authenti-
cated key exchange protocol based on MFAKE protocol [1] that was proposed
by David Pointcheval et al. in 2008. Pontcheval’s protocol is applied only in two
party settings, and our new protocol works in the three-party settings, called
3MFAKE protocol. We provide the formal security proof of 3MFAKE protocol
in the random oracle model. Even if two authentication means are corrupted,
the new session key still remain semantically secure. In other words, the protocol
is provably as secure as the strongest remaining factor: when the password is the
last factor not to be corrupted, dictionary attacks are the most efficient attacks;
when the biometric is the last one, the adversary’s probability to be accepted
is nearly equal to the false-acceptance probability; when the secret is the last
one, the adversary make the protocol insecure that means the adversary break
the Diffie-Hellman problem. Like many previous three-party protocols, we also
assume that the server is honest but curious. Under this assumption our protocol
can guarantee that the session key is private to the server.

Related Work. The literatures about 1-factor AKE protocol are rich of many
results [2][3][4][5], but the literatures don’t tell much on multi-factor authenti-
cation protocols. In 2006, an encoding for fingerprints is presented by Bhargav-
Spantzel et al. [6], which is thereafter included in the design of a two-factor
authentication protocol. In 2008, Pointcheval and Zimmer [1] proposed a multi-
factor authenticated key exchange protocol, which is quite secure, since it allows
a lot of information leakage for the adversary.

Due to the practical aspects, password authentication key exchange (PAKE)
protocols in the three-party model have become the subject of extensive work
in recent years. In 1978, Needhan and Schroeder [7] proposed the first three-
party PAKE protocol which inspired the Kerberos distributed system. In 2005,
a generic construction of three-party PAKE protocol was presented by Abdalla,
Fouque, and Pointcheval [8], and it is the first provably-secure PAKE protocol in
the three-party setting. Since then, there have been some published works aimed
to improve the model in the three-party setting [9][10][11][12]. To the best of our
knowledge, there is not multi-factor AKE protocol in three-party setting.

Outline. The rest of the paper is organized as follows. In section 2, we present
the formal secure model for three-party MFAKE protocols. In section 3, we
review some building blocks. In section 4, we propose the 3MFAKE protocol
and prove it’s security under the CDH assumption in the random oracle model.
We conclude in section 5.

2 The Formal Model

In this section, we describe the security model for three-party multi-factor au-
thenticated key exchange protocols, which in turn builds upon those of Bellare
and Rogaway [13][14] and that of Bellare, Pointcheval and Rogaway [15].
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2.1 Communication Model

Protocol participants. Each participant in a three-party MFAKE is either a
client U ∈ U or a trusted server S ∈ S. The set S is assumed to involve only a
single trusted server for the simplicity of the proof, which can be easily extended
to the case considering multiple servers. The set of clients U is made up of two
disjoint sets: C , the set of honest clients, and E , the set of malicious clients. The
malicious set E corresponds to the set of inside attackers, who exist only in the
3-party setting.

Long-Lived Keys. Each client U ∈ U owns a tuple tU = (DU , skU , pwdU ),
where DU is a probability distribution for his biometric, while skU and pwdU

are a high-entropy private key and a low-entropy password respectively. The
server holds a list of tuples tS =< tS [U ] >, where tS [U ] is a transformed-tuple
of tU .

Biometric Templates. For each client U , DU defines the probability distribu-
tion of his biometric. We use the encoding and the Hamming distance to deal
with the matching process. There are two kinds of the matching decision:

– the distance between two templates WU and W
′
U of the same biometric is

low with great probability. More concretely, there is a threshold m, such that
for any U , Pr[WU ← DU ,W

′
U ← DU : dH(WU ,W

′
U ) ≤ m] ≥ 1 − εfr , where

the subscript fr stands for ”false rejection”.
– for any pair of distinct clients U �= U

′
, the distance between WU and W

′
U is

high with great probability. More precisely, there exist a threshold M≥ m,
such that for any U �= U

′
, Pr[WU ← DU ,W

U ′ ← DU ′ : dH(WU ,WU ′ ) >
M] ≥ 1− εfa, where the subscript fa stands for ”false acceptance”.

Liveness Assumption. Because recovering a fingerprint from the object some-
one has just touched is an easy task, we assume the biometric to possibly be
public. How do we prevent an adversary from impersonating an honest user? We
use the liveness assumption to guarantee the biometrics really from the living
human being under control. The liveness assumption means that the biometric
is fresh, comes from a real living person, and that the computations are made
from this biometric honestly.

We define a computation oracle Compute(U i,W
′
, sk, pwd) to model this as-

sumption: according to the state of the client instance U i, from the secrets sk,
pwd and a random value of W

′
, it computes honestly the message which would

have been generated by U with these inputs, following the protocol.
With the liveness assumption for the client U , we consider that all the mes-

sages involving the biometric, claimed to be sent by U , have been previously
generated by the computation oracle.

Execution of the protocol.The interaction between an adversary A and the
participants occurs only by making various queries, which model adversary capa-
bilities in a real attack. During the execution, the adversary may create several
concurrent instances of a participant.
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– Execute(U i1
1 , Sj , U i2

2 ): This query models passive attacks, where the attacker
eavesdrops on honest executions among client instances U i1

1 and U i2
2 and the

server instance Sj. The output of this query consists of the messages that
were exchanged during the honest execution of the protocol.

– SendClient(U i,m): This query models an active attack against clients. This
query allows the adversary to play with the client instance U i, by intercept-
ing, forwarding, modifying or creating messages. The output of this query
is the message that the client instance U i would generate upon receipt of
message m. As stated above, if the liveness assumption still holds for the
client U , and if the computation of m involves the biometric, then m has to
have been previously generated through a Compute(U j ,W

′
, sk, pwd) query.

– SendServer(Sj ,m):This query models an active attack against the server,
in which the adversary sends a message to server instance Sj. It outputs the
message that server instance Sj would generate upon receipt of message m.

– Reveal(U i):This query models the misuse of session keys by instance U i. It
returns to the adversary the session key of client instance U i, if the latter is
defined.

– Corrupt(U, a):This query models corruption capabilities of the adversary.
The adversary can get one or several authentication factors of clients.
• If a=1, the query outputs the password pwdU of U .
• If a=2, the query outputs the secret key skU of U .
• If a=3, the query outputs the message involving the biometry. It models

the adversary against the liveness assumption.
We don’t allow the corruption be performed during a session, but before a
new session starts.

– Test(U i):This query is used to measure the semantic security of the session
key of instance U i , if the latter is defined. If the key isn’t defined, it returns
⊥. Otherwise, it returns either the session key held by instance U i if b = 0
or a random key of the same size if b = 1. The query can be asked at most
once by the adversary.

2.2 Security Notions

Partnering. The definition of partnering uses session identifications and partner
identifications. More specifically, the session identification of a client instance is a
function of the partial transcript of the conversation between the clients and the
server before the acceptance. Let the partner identification of a client instance be
the instance with which a common secret key is to be established. Two instances
U i

1 and U j
2 are said to be partners if the following conditions are satisfied:

1. Both U i
1 and U j

2 accepted.
2. Both U i

1 and U j
2 share the same session identification.

3. The partner identification for U i
1 is U j

2 and vice-versa.
4. No instance other than U i

1 and U j
2 accepts with a partner identification equal

to U i
1 and U j

2 .
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Freshness. We say an instance U i is fresh if all of the following hold: it has
been accepted; no Reveal query has been made to it or its partner and less than
3 Corruptkey queries has been asked since the beginning of the game.

AKE semantic security. The security notions take place in the context of exe-
cuting P in the presence of the adversaryA. When playing the game Gameake(A,
P ), the goal of the adversary is to guess the bit b involved in the Test-query by
outputting this guess b

′
.

We denote the AKE advantage as the probability that A correctly guesses
the value of b. More precisely, we define Advake

P = 2 Pr[b = b
′
]− 1. Furthermore,

Advake
p (t, Q) = max{Advake

p (A)} is defined as the maximum over all A running
in time at most t and using resources at most R. The protocol P is said to be
AKE-secure if A’s advantage is negligible in the security parameter.

3 Buliding Blocks

3.1 Message Authentication Codes (MAC)

A message authentication code MAC = (Tag, V er) is defined by the follow-
ing two algorithms: (1) A MAC generation algorithm Tag, possibly probabilis-
tic, which given a message m and a secret key sk ∈ {0, 1}l, produces a tag
μ = MACsk(m); (2) A MAC verification algorithm V er, which given a tag μ, a
message m, and a secret key sk, outputs 1 if μ is a valid tag and 0, otherwise. The
security notion that we need for the MAC scheme is strong existential unforge-
ability under chosen-message attacks. In this notion, the adversary should be
unable to create a new valid message-tag pair, even after seeing many such valid
pairs. The security of MAC is modeled by the security game Gameeuf−cma

Amac
(k) be-

tween a challenger and an adversaryAmac. It runs as follows: First, the adversary
Amac outputs a message-tag pair (m,μ). Second, the challenger verify whether
V (μ,m, sk) = 1 or not. If V (μ,m, sk) = 1 the output of Gameeuf−cma

Amac
(k) is set

to 1 and otherwise set to 0.
We denote the advantage of such an adversary Amac:

Adveuf−cma
MAC (A) = Pr[Gameeuf−cma

Amac
(k) = 1]

Adveuf−cma
MAC (Tmac, qt, qv, k) = MaxAmac{Adveuf−cma

Amac
(k)}

where maximum is over all Amac with time-complexity at most Tmac and asking
at most qt and qv queries to its MAC generation and verification oracles.

A MAC scheme is said to be existential unforgeability if the advantage of any
polynomial time adversary is a negligible function in time Tmac.

3.2 Computational Diffie-Hellman Assumption

Let G = 〈g〉 be a finite cyclic group of order an l-bit prime number q, where the
operation is denoted multiplicatively. A (t, ε)− CDH attacker in G is a proba-
bilistic machine Δ running in time t such that its success probability Succcdh

g,G(Δ),
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given random elements gx and gy to output gxy, is greater than ε.

Succcdh
g,G(Δ) = Pr

x,y
[Δ(gx, gy) = gxy] ≥ ε

We denote by Succcdh
g,G(t) the maximal success probability over all adversaries

running within time t.

4 Three-Party MFAKE Protocol

In this section, we describe our 3MFAKE protocol, and prove its security in the
random oracle model.

4.1 Description of the Scheme

The arithmetic is in a finite G = 〈g〉 of order q, where g is an element in Z∗
p.

Then, u and v are random elements in G. Define hash functions H ,H1 : {0, 1}∗ →
{0, 1}k. Let A, B be the identifications of the clients and S be the identification
of the server. The client A and the server S share the password pwdA. A has
the secret key skA = xA, and S stores the public key hA = gxA . A owns the
biometric template WA = (W

Ai
)i≤M , where WAi is the i-th bit of WA and M is

the length of the public key hA, and S stores a tuple of pairs (grAi , hrAigWAi )i

which is an ELGamal encryption of the reference biometric template WA. The
status between B and S is same with the status between A and S as above.

The protocol proceeds as follows (see Fig.1).

1. Client A randomly chooses a private number x1 ∈R Zq, computes X1 = gx1

and X∗
1 = X1 · vpwdA . Finally A sends (A,S,B,X∗

1 ).
2. Client B randomly chooses a private number y1 ∈R Zq, computes Y1 = gy1

and Y ∗
1 = Y1 · vpwdB . Finally B sends (B,S,A, Y ∗

1 ).
3. For 1 ≤ i ≤ M , the server randomly chooses r

′
Ai

and r
′
Bi

, computes gSAi ,
gSBi , hSAi and hSBi . Then the server randomly chooses private number
x2 ∈R Zq and y2 ∈R Zq, computes X∗

2 and Y ∗
2 respectively. Following the

protocol S computes ZSA = ( X∗
1

vpwdA
)x2 , ZSB = ( Y ∗

1
vpwdB

)y2 , Zi
SA = hSAi ·gWAi

and Zi
SB = hSBi · gWBi , then S computes H(A||S||(gSAi )i||X∗

1 ||X∗
2 ||Y ∗

1 ||Y ∗
2 ||

ZSA||Zi
SA||pwdA||i) = αAi

||βAi
||kAi

and H(B||S||(gSBi )i||Y ∗
1 ||Y ∗

2 ||X∗
1 ||X∗

2 ||
ZSB||Zi

SB||pwdB ||i) = αBi
||βBi

||kBi
. Then, S sends (S,A,B, (gSAi )i, (αAi)i,

X∗
2 , Y

∗
1 , Y ∗

2 ) to A and (S,B,A, (gSBi )i, (αBi)i, Y
∗
2 , X∗

1 , X
∗
2 ) to B respectively.

4. For 1 ≤ i ≤M , A computers ZA and Zi
A using the messages from S. Then, A

computes H(A||S||(gSAi )i||X∗
1 ||X∗

2 ||Y ∗
1 ||Y ∗

2 ||ZA||Zi
A||pwdA||i) = α

′
Ai
||β′

Ai
||

k
′
Ai

. A checks αAi and α
′
Ai

, if the number of the incorrect authenticators is
less than m, A computes K

′
A. Then, the client randomly chooses a private

number x ∈R Zq, and computes EA1 = gx||MACK
′
A

(gx). Finally, A sends

(A,S,B, (β
′
Ai

)i, EA1).
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ClientA ServerS ClientB
x1 ∈R Zq, X1 = gx1 y1 ∈R Zq, Y1 = gy1

X∗
1 = X1 · vpwdA Y ∗

1 = Y1 · vpwdB

A, S, B, X∗
1−−−−−−−−−−−−−→ B, S, A, Y ∗

1←−−−−−−−−−−−−
For 1 ≤ i ≤ M

r
′
Ai

∈R Zq, r
′
Bi

∈R Zq

g
SAi = g

r
′
Ai · g

rAi

h
SAi · g

WAi = h
r
′
Ai · h

rAi · g
WAi

g
SBi = g

r
′
Bi · g

rBi

h
SBi · g

WBi = h
r
′
Bi · h

rBi · g
WBi

choose x2 ∈R Zq

X2 = gx2 , X∗
2 = X2 · upwdA

choose y2 ∈R Zq

Y2 = gy2 , Y ∗
2 = Y2 · upwdB

ZSA = (
X∗

1
vpwdA

)x2 , Zi
SA = h

SAi · g
WAi

H(A||S||(gSAi )i||X∗
1 ||X∗

2 ||Y ∗
1 ||Y ∗

2 ||ZSA||Zi
SA||pwdA||i)

= αAi
||βAi

||kAi

ZSB = (
Y ∗
1

vpwdB
)y2 , Zi

SB = h
SBi · g

WBi

H(B||S||(gSBi )i||Y ∗
1 ||Y ∗

2 ||X∗
1 ||X∗

2 ||ZSB ||Zi
SB||pwdB||i)

= αBi
||βBi

||kBi

S, A, B, (g
SAi )i, S, B, A, (g

SBi )i,
(αAi

)i, X∗
2 , Y ∗

1 , Y ∗
2←−−−−−−−−−−−−−−−−−

(αBi
)i, Y ∗

2 , X∗
1 , X∗

2−−−−−−−−−−−−−−−→
For 1 ≤ i ≤ M For 1 ≤ i ≤ M

ZA = (
X∗

2
upwdA

)x1 ZB = (
Y ∗
2

upwdB
)y1

Zi
A = (g

SAi )xA · g
W

′
Ai Zi

B = (g
SBi )xB · g

W
′
Bi

H(A||S||(gSAi )i||X∗
1 ||X∗

2 || H(B||S||(gSBi )i||Y ∗
1 ||Y ∗

2 ||
Y ∗
1 ||Y ∗

2 ||ZA||Zi
A||pwdA||i) X∗

1 ||X∗
2 ||ZB ||Zi

B||pwdB||i)
= α

′
Ai

||β′
Ai

||k′
Ai

= α
′
Bi

||β′
Bi

||k′
Bi

If #{i : αAi
�= α

′
Ai

} ≤ m If #{i : αBi
�= α

′
Bi

} ≤ m

K
′
A = lsbk(||

i:αAi
=α

′
Ai

k
′
Ai

) K
′
B = lsbk(||

i:αBi
=α

′
Bi

k
′
Bi

)

x ∈R Zq y ∈R Zq

EA1 = gx||MAC
K

′
A

(gx) EB1 = gy||MAC
K

′
B

(gy)

A, S, B, (β
′
Ai

)i, EA1
−−−−−−−−−−−−−−−−−→

B, S, A, (β
′
Bi

)i, EB1
←−−−−−−−−−−−−−−−−−

For 1 ≤ i ≤ M

If #{i : βAi
�= β

′
Ai

} ≤ m

KA = lsbk(||
i:βAi

=β
′
Ai

kAi
)

If #{i : βBi
�= β

′
Bi

} ≤ m

KB = lsbk(||
i:βBi

=β
′
Bi

kBi
)

Check EA1 and EB1
EA2 = gy ||MACKA

(gy)
EB2 = gx||MACKB

(gx)
S, A, B, EA2←−−−−−−−−−−−−−−− S, B, A, EB2−−−−−−−−−−−−−−−→

Check the value of EA2 Check the value of EB2
if failed then reject, else if failed then reject, else

sk = H1(g
xy , A, B, S, X∗

1 , X∗
2 , Y ∗

1 , Y ∗
2 ) sk = H1(gxy, A, B, S, X∗

1 , X∗
2 , Y ∗

1 , Y ∗
2 )

Fig. 1. Our 3MFAKE protocol
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5. For 1 ≤ i ≤ M , B computes ZB and Zi
B using the messages from S.

Then, B computes H(B||S||(gSBi )i||Y ∗
1 ||Y ∗

2 ||X∗
1 ||X∗

2 ||ZB||Zi
B||pwdB ||i) =

α
′
Bi
||β′

Bi
||k′

Bi
. B checks αBi and α

′
Bi

, if the numbers of the incorrect au-
thenticators is less than m, B computes K

′
B. Then, the client randomly

chooses a private number y ∈R Zq, and computes EB1 = gy||MACK
′
B

(gy).

Finally, B sends (B,S,A, (β
′
Bi

)i, EB1).
6. For 1 ≤ i ≤M , the server S checks βAi , β

′
Ai

and βBi , β
′
Bi

, if the numbers of
the incorrect authenticators are more than m, S rejects. Otherwise, S check
EA1 and EB1, if both are correct, computes EA2 and EB2. Finally, S sends
(S,A,B,EA2) to A and (S,B,A,EB2) to B, respectively.

7. Upon receiving the messages from the server, A and B check EA2 and EB2

respectively, if failed then abort, else each client computers Diffie-Hellman
key sk = H1(gxy, A,B, S,X∗

1 , X
∗
2 , Y

∗
1 , Y ∗

2 ).

4.2 Security of the Protocol

Theorem 1. Let us consider the protocol, where passwords is a finite dictionary
of size N equipped with the uniform distribution. For any adversary A within a
time bound t, with less than qS (i.e. qsendclient + qsendserver) active interaction
with the parties and qP passive eavesdroppings, and asking qh queries to the
random oracle. Then we have

AdvAKE(A) ≤ (qS+qP )2

(q−1) + q2
h

2l + 2 qS

N + 4 qh

q + 2qS
Mm(2l−1)m

2lM (m−1)!
+ 2(2q2

h + qp) ·
Succcdh

g (T + 4Te) + 2(qS + qP )Advcma
Amac

(Tmac) + 2qsendserver

(
εfa +

( M
M−m

)
2l(M−m)

)
where Te denotes the computational time for one exponentiation.

Proof. The security proof for the protocol defines a sequence of games, start-
ing with the real attack and ending in a game in which the adversary has no
advantage.

For each game Game Gn, we define the event Sn.

– Sn (for semantic security), which occurs if the adversaryA correctly guesses
the bit b chosen at the beginning of the game.

Game G0. This is the real protocol. By definition, we have

Advake(A) = 2 Pr[S0]− 1

Game G1. In this game, we simulate the hash oracles H and H1, but also
an additional function H

′
, which will be using later. We also simulate all the

instances, as the real players would do, for the Send-queries and for the Execute,
Reveal and Test-queries. From this simulation, we easily see that the experiment
is perfectly indistinguishable from the real attack. So we have, Pr[S1] = Pr[S0]

Game G2. For an easier analysis in the following, we cancel games in which
some collisions appear: collisions on the transcripts and collisions on the outputs
of hash oracles.
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The probability is bounded by the birthday paradox:

|Pr[S2]− Pr[S1]| ≤ (qS + qP )2

2(q − 1)
+

q2
h

2l+1

Game G3. In this game, we modify the Execute oracle so that the session key
sk of the instance is selected uniformly at random. Concretely, the session key
sk is set equal to a random number selected from {0, 1}k, rather than the output
of the random oracle H1.

In game G2, the session key sk is the output of the random oracle H1 on the
input (gxy, A,B, S,X∗

1 , X
∗
2 , Y

∗
1 , Y ∗

2 ). If the adversary doesn’t know gxy, he can’t
distinguish the output of H1 from a random number uniformly selected from
{0, 1}k. Hence, the games G3 and G2 are indistinguishable unless the adversary
can solve the CDH-problem. It shows that modifying the Execute oracle in this
way affects the advantage of the adversary by a negligible value.

|Pr[S3]− Pr[S2]| ≤ qp × Succcdh
g (T )

Game G4. Now, we consider the MAC message via the Execute query. We
replace the MACKB/K

A
′ (gx) and MACKA/K

B
′ (gy) instead of random numbers

selected from {0, 1}k.
Because the secret keys of MAC scheme aren’t known by the adversary, the

games G4 and G3 are indistinguishable unless the adversary can break the MAC
scheme. So we have

|Pr[S4]− Pr[S3]| ≤ qp ×Advcma
Amac

(Tmac)

Game G5. In this game, we continue considering attacks generated via Exe-
cute query. In such a case, we replace the generation of the authenticators with
a private oracle H

′
instead of H : H

′
(A||S||(gSAi )i||X∗

1 ||X∗
2 ||Y ∗

1 ||Y ∗
2 ||gWAi ||i),

H
′
(B||S||(gSBi )i||Y ∗

1 ||Y ∗
2 ||X∗

1 ||X∗
2 ||gWBi ||i).

We note that we don’t use X1, X2, Y1 and Y2 anymore, therefore we can
change the computations of X∗

1 , X∗
2 , Y ∗

1 and Y ∗
2 : x∗

1, x
∗
2, y

∗
1 , y

∗
2 ∈R Zq, X∗

1 = gx∗
1 ,

X∗
2 = gx∗

2 , Y ∗
1 = gy∗

1 and Y ∗
2 = gy∗

2 . Since we don’t use neither the password nor
the secret key, we can choose them at the last moment.

The games G5 and G4 are indistinguishable unless the following event occurs:
the adversaryA queries the hash functions H on A||S||(gSAi )i||X∗

1 ||X∗
2 ||Y ∗

1 ||Y ∗
2 ||

ZA/SA||Zi
A/SA||pwdA||i or B||S||(gSBi )i||Y ∗

1 ||Y ∗
2 ||X∗

1 ||X∗
2 ||ZB/SB||Zi

B/SB||pwdB

||i . We denote the event by AskH5.
Then we have |Pr[S5]− Pr[S4]| ≤ Pr[AskH5].
If event AskH5 occurs, this means that A can distinguish whether the sim-

ulator has used the private oracle or the public one. In other words, the Diffie-
Hellman key lie in the hash list ΛH , which means that A can break the CDH-
problem.

To show that, we introduce a random CDH instance (X, Y) to the execu-
tions of the protocol. We set u = X and v = Y . Assume that there is a tuple
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(X∗
1 , X

∗
2 , D = CDH(X∗

1/u
pwdA , X∗

2/v
pwdA)) such that A||S||(gSAi )i||X∗

1 ||X∗
2 ||

Y ∗
1 ||Y ∗

2 ||ZA/SA||Zi
A/SA||pwdA||i or (Y ∗

1 , Y ∗
2 , D = CDH(Y ∗

1 /vpwdA , Y ∗
2 /upwdB))

such that B||S||(gSBi )i||Y ∗
1 ||Y ∗

2 ||X∗
1 ||X∗

2 ||ZB/SB||Zi
B/SB||pwdB ||i is in ΛH . Now

we assume the former happens.
Because the corresponding transcript ((A,S,B,X∗

1 ), (S,A,B, (gSAi )i, X
∗
2 , Y

∗
1

, Y ∗
2 )) comes from an execution, we know both X∗

1 and X∗
2 have been simulated.

In other words, we know the discrete logarithms x∗
1 and x∗

2 , and CDHg(X∗
1/u

pwdA

, X∗
2/v

pwdA) = gx∗
1x∗

2 (vx∗
1 ux∗

2 )pwdA

CDHg(v,u)pwd2 .
Since pwdA is non-zero in Zq, it can be inverted modulo q, then we obtain

CDHg(X,Y ) = ( gx∗
1x∗

2 (vx∗
1 ux∗

2 )pwdA

CDHg(X∗
1 /upwdA ,X∗

2 /vpwdA )
)1/pwd2

A :

Pr[AskH5] ≤ qh × Succcdh
g (T + 4Te)

Finally, we have |Pr[S5]− Pr[S4]| ≤ qh × Succcdh
g (T + 4Te).

We know that the Execute oracle queries are not of too much help to the ad-
versary. Now we go no showing that that send oracle calls only provide negligible
advantage to the adversary.

Game G6. In this game, we abort the game if the MAC message EA1/A2 or
EB1/B2 is not generated by the simulator.

The games G6 and G5 are indistinguishable unless the adversary break the
MAC scheme since the adversary don’t get the secret key of the MAC scheme.

|Pr[S6]− Pr[S5]| ≤ qS ×Advcma
Amac

(Tmac)

Game G7. In this game, we consider a client instance Ai1 (orBi2) that receives
an adversarially-generated message (S,A,B, (gSAi )i, (αAi)i, X

∗
2 , Y

∗
1 , Y ∗

2 )
(or(S, (gSBi )i, (αBi)i, Y

∗
2 , X∗

1 , X
∗
2 ). In this case, if Ai1(Bi2 ) accepts, then the

game is halted and we say the adversary have succeeded. If this happens, we
split the event in two sub-cases:

1. CBad1: The hash query hasn’t been asked, but the authenticator αAi/Bi
is

valid.
2. CBad2: the adversary manages to build a valid authenticator by asking the

hash oracle.

We have |Pr[S7]− Pr[S6]| ≤ Pr[CBad1] + Pr[CBad2].
In the first case, the adversary tries to guess the αAi/Bi

at random, since
|αAi/Bi

| = l, then we can easily see that the probability is upper-bounded by:

qsendclient
1

2Ml

m∑
k=0

(2l − 1)k ≤ qsendclient
Mm(2l − 1)m

2lM (m− 1)!

Then we have

Pr[CBad1] ≤ qsendclient
1

2Ml

m∑
k=0

(2l − 1)k
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≤ qsendclient
Mm(2l−1)m

2lM (m−1)!

Now we deal with the second case. Note that if the adversary correctly guesses
the secret key xc and the password of the user, then it is trivial for him to
generate a valid authenticator. Otherwise, we can solve the CDH-problem with
the help of the adversary.

Then we can get:

Pr[CBad2] ≤ qh

q
+

qsendclient

N
+ q2

h · Succcdh
g (T + 3Te)

So we have: |Pr[S7]− Pr[S6]| ≤ qsendclient
Mm(2l−1)m

2lM (m−1)!
+ qh

q + qsendclient

N

+q2
h · Succcdh

g (T + 3Te)

Game G8. In this game, we change the simulation of the oracle so that the
authenticator (β

′
Ai/Bi

)i which is generated by the adversary will be rejected.
The games G8 and G7 are indistinguishable unless a valid authenticator has

been rejected. We split the event in three sub-cases:

1. SBad1: the hash query hasn’t been asked, but the authenticator (β
′
Ai/Bi

)i is
valid.

2. SBad2: the adversary manages to build a valid authenticator by asking the
hash oracle.

3. SBad3: the adversary uses the compute-oracle, the authenticator is generated
through a trusted computation oracle.

We have |Pr[S8]− Pr[S7]| ≤ Pr[SBad1] + Pr[SBad2] + Pr[SBad3].
In this game, the (αi)i, the (βi)i and the key are computed from a private

random oracle. Therefore, whatever the bit b involved in the Test-query, the
answer is random, and independent for all the sessions.

So we have Pr[S8] = 1
2 .

In the first case, the analysis is similar with the case CBad1, so we can easily
see that:

Pr[SBad1] ≤ qsendserver
1

2Ml

m∑
k=0

(2l − 1)k

≤ qsendserver
Mm(2l−1)m

2lM (m−1)!

As to the second case, because the server accepted a non-Compute-oracle-
generated, it means that the biometric corrupt query has been made for the
corresponding client A/B. Thereafter, the same analysis, according to the secret
key and the password, as the case CBad2 can be done.

With a similar argument to Game G7, we can get:

Pr[SBad2] ≤ qh

q
+

qsendserver

N
+ q2

h · Succcdh
g (T + 3Te)

In the third case, sice the adversary uses the computer-oracle by her own
biometric W

′
, which is, with high probability, quite different from the client

biometric, her probability to succeed is equal to the false-acceptance probability.
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It is easy to see that our protocol increase the false-acceptance probability
but it doesn’t increase the false-rejection probability. The increasing is upper-
bounded by

Pr[#{i : α
′
Ai
�= αAi

} ≤ m|dH(W
′
A,WA) >M] ≤

( M
M−m

)
2l(M−m)

Pr[#{i : α
′
Bi
�= αBi

} ≤ m|dH(W
′
B ,WB) >M] ≤

( M
M−m

)
2l(M−m)

So we have

Pr[SBad3] ≤ qsendserver

(
εfa +

( M
M−m

)
2l(M−m)

)

Finally, we have |Pr[S8]−Pr[S7]| ≤ qsendserver
Mm(2l−1)m

2lM (m−1)!
+ qh

q + qsendserver

N +

q2
h · Succcdh

g (T + 3Te) + qsendserver

(
εfa +

( M
M−m

)
2l(M−m)

)
.

Combining all the above equations one get the announced result.

Key Privacy with Respect to the Server. We consider the key privacy for
the server, the idea that the session key shared between two instances should only
be known to these two instances and nobody else, including the trusted server.
The goal is to limit the amount of trust put into the server. That is, although we
rely on the server to help clients establish session keys between themselves, we
still want to guarantee the server can’t compute these session keys. In fact, this is
the main difference between a key distribution protocol (in which the session key
is known to the server) and a three-party key exchange protocol (for which the
session key remains unknown to the server). In our protocol, the server knows
gx and gy but he doesn’t compute gxy. In other words, the server can’t compute
the session key unless he can break the CDH assumption.

5 Conclusion

In this paper, we present a new three-party MFAKE protocol with the assistance
of the trusted server, called 3MFAKE protocol, which combines a password, a
secure device, and biometric authentications. To the best of our knowledge, it is
the first try to give a MFAKE protocol in the three-party settings. Our 3MFAKE
protocol is more secure and efficient because the adversary would have to break
the three protections in order to win. We also provide a formal security proof of
3MFAKE protocol under the CDH assumption and the random oracle model.
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Abstract. The constrained resources of sensors restrict the design of a
key management scheme for wireless sensor networks (WSNs). In this
work, we first formalize the security model of ALwEN, which is a gossip-
based wireless medical sensor network (WMSN) for ambient assisted
living. Our security model considers the node capture, the gossip-based
network and the revocation problems, which should be valuable for
ALwEN-like applications. Based on Shamir’s secret sharing technique,
we then propose two key management schemes for ALwEN, namely the
KALwEN+ schemes, which are proven with the security properties de-
fined in the security model. The KALwEN+ schemes not only fit AL-
wEN, but also can be tailored to other scalable wireless sensor networks
based on gossiping.

Keywords: Wireless medical sensor network, Gossiping, Key
management.

1 Introduction

Following the improvement of wireless technologies and embedded systems, the
potential of wireless sensor networks (WSNs) for various applications has been
drawing a great deal of attention from the academia and the industry. For WSNs,
one of the promising applications is healthcare. A wireless medical sensor net-
work (WMSN, sometimes also called body sensor network) [19], which can be
developed from a WSN, is a developing technology for long term monitoring of
biological events or any abnormal condition of patients for realizing Ambient As-
sisted Living (AAL) [1]. In general, a WMSN is a moderate-scale wireless network
of low-cost sensors. The purpose of WMSN is to monitor the user’s physiological
parameters and the related information in environment, e.g., ECG, EMG, EEG,
SpO2 and blood pressure. The collected data will be sent to doctors or nurses
for daily diagnosis. A typical scenario of WMSN is illustrated in Figure 1.

X. Lai, M. Yung, and D. Lin (Eds.): Inscrypt 2010, LNCS 6584, pp. 268–283, 2011.
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Fig. 1. A Scenario of Wireless Medical Sensor Network

In practice, sensors used in WMSNs also have limited computational abili-
ties and small memories, typically with a low-end CPU and RAM in KBytes
level. These factors are important not only in the implantable but also in the
external sensor settings because they determine how “hidden” and “pervasive”
the sensors are. A gossip protocol is a style of computer-to-computer commu-
nication protocol inspired by the form of gossip seen in social networks. Since
gossip-based network protocol is proven to be energy-efficient, it would be a low-
cost candidate for realizing a WMSN via gossiping [10]. Recently, the ALwEN
project [2] built a gossip-based wireless sensor network with 1000 nodes. The es-
timated lifetime of the network can be 1-2 years, which is a promising property
in practice.

Although gossip-based WSN is energy-efficient, designing a appropriate key
management scheme for WMSN is a challenging task. In the gossip mode, each
node will send out messages to 1-hop neighbor nodes with a well-chosen proba-
bility. Thus the security model should consider the situations that all nodes can
receive the message, and the message might be dropped during multi-hops. More-
over, the security and privacy problems related to healthcare systems are critical
[3]. As a recent study has demonstrated, medical devices that do not support any
confidentiality and authentication function are prone to eavesdropping and at-
tacks [11]. Basically, solving these problems requires a key management scheme,
which handles the cryptographic keys in a right manner, to provide data con-
fidentiality and authenticity. In the literature, many key management schemes
have been proposed for broadcast/gossip WSNs [8,13,16]. However, a WMSN-
oriented key management must consider the following differences. Firstly, in
WMSN applications, nodes might be added or removed frequently. For the ease
of a user, the initialization or revocation of such nodes should be designed as agile
as possible. Since we suppose the added/removed nodes might be tampered, the
resilience of compromise becomes serious in WMSN key management. Secondly,
a typical WMSN is a moderate-scale WSN, so probabilistic key sharing schemes
that are designed for large-scale WSNs are not suitable [6,7,12]. For practical
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applications, a good WMSN key management scheme must consider the above
differences carefully, whilst balancing the applicability and the security.

Recently, Law et al. propose a novel WMSN key management scheme, which
is called KALwEN [14]. But KALwEN relies on a smart Faraday cage and uni-
cast communication channels, which might be impractical in some cases. In this
work, our main contribution are two new key management schemes, namely the
KALwEN+ schemes, which are secure against active and aggressive adversaries
respectively. Compared to KALwEN, KALwEN+ does not require a Faraday
cage, and the communication can be fully broadcast for satisfying gossip-based
networks. Based on Shamir’s secret sharing technique, KALwEN+ schemes sup-
port an efficient way to add/remove nodes. Using formal analysis, we prove that
the KALwEN+ schemes are secure in our formalized security model. Based on
their theoretical performances, the KALwEN+ schemes not only fit ALwEN, but
also can be tailored to other scalable wireless sensor networks based on gossiping.

The rest of this paper is organized as follows. In Section 2, we first describe
the system environment, then define the security model for KALwEN+. In Sec-
tion 3, we describe the KALwEN+ scheme secure against active adversaries and
prove its security in our security model. In Section 4, we describe the KALwEN+
scheme secure against aggressive adversaries and prove its security in our secu-
rity model. In Section 5, we present the performance analysis for KALwEN+
schemes. In Section 6, we conclude the paper.

2 Key Distribution Schemes for Gossip-Based WMSN

In this section we first describe the system environment, then formulate the
security properties of key distribution schemes which are specifically tailored
to gossip-based WMSN. The security formulations follow that of Bellare and
Rogaway [4].

2.1 Environment of Gossip-Based WMSN

Due to the special setting of gossip-based WMSN as shown in Figure 2, at the
beginning of the key distribution, a node denoted as the sink node is connected to
trusted device Dev (e.g., a home-based computer) and key distribution messages
will be broadcast by the sink node as an initiator. Then, the sink node and other
nodes will engage in a key management scheme. The resultant session keys will
be used to protect the data collection and the gossip communications.

2.2 Description of Key Distribution Schemes

We consider an environment which can consist of maximal N sensor nodes, say
nodei (1 ≤ i ≤ N), and a trusted device Dev, such as a PC or a programmer
or any other trusted infrastructure, which serves as a fully trusted third party
(TTP). All nodes are honest and follow the pre-configured instructions, unless
they are compromised by an adversary. In addition, we note that the trusted
device Dev typically does not have the ability to connect to any node through
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Fig. 2. Environment of Gossip-based WMSN

Dev

Reliable Link

Data Collection Link

Gossiping Link

Sink Node

dkj
dki

i
jkij

Fig. 3. Key Distribution of WMSN

wireless communication. To facilitate the establishment of our security model,
we assume that a key distribution scheme for gossip-based WMSN consists of
the following three phases.

1. System setup. In this phase, the trusted device Dev generates the long-term
credentials. In the symmetric-key setting, a global key kG is generated, while
in the public-key setting a public/private key pair (PKG, SKG) is generated.
In addition, the trusted device Dev generates some public system parameters
params.

2. Node setup. In this phase, every node nodei is initialized by the trusted device
Dev. In the symmetric-key setting, the global key kG is stored in the node.
In the public-key setting, the trusted device Dev generates a public/private
key pair (PKi, SKi) and stores (PKG, Certi, PKi, SKi, params) in nodei,
where Certi is a certificate of PKi generated with PKG.



272 Z. Gong et al.

Note that the above two steps can be executed outside the key distribution
scheme. The manufacturer can generate the certificates and the global key,
and then distribute them to the trusted device and the nodes beforehand.

3. Key distribution. In this phase, the following two types of session keys will
be distributed to a group of nodes, say nodei (1 ≤ i ≤ N ′) and N ′ ≤ N .
– The first type is data collection keys used for data collection. For node

nodei, the data collection key is denoted as dki. This key is used for end-
to-end communication between nodei and the data collection gateway
(namely, the sink node).

– The second type is pairwise keys used for nodes to securely communicate
with each other. For a pair of nodes nodei and nodej , the the pairwise
key is denoted as ki,j .

In addition, we assume that the trusted device Dev keeps a counter ctr
to count all the key distribution sessions. Identified by the counter ctr, we
denote an invocation of the key distribution protocol as a session.

2.3 Security Properties and Their Formulations

In our security model, we only consider attacks from adversaries, whose main
focus is to obtain information about the session keys, including cluster keys and
pairwise keys, in a certain session. We make the following assumptions:

1. No adversary is present in the system setup and node setup phases, so that
no information about the long-term credentials will be leaked in both phases.

2. An adversary may mount a denial of service (DoS) attack against the key
distribution process. How to make a key distribution scheme secure in this
case is beyond the scope of our model.

With respect to the secrecy of the data collection keys and pairwise keys, we
consider the following types of adversaries.

– Passive Adversary (A−). This type of adversary can only passively eavesdrop
on the wireless communications in the network.

– Active Adversary (A). This type of adversary can not only eavesdrop on, but
also manipulate the wireless communications in the network. The possible
manipulation of communication includes delaying, deleting, inserting, and
replacing messages.

It is worth noting that both types of adversaries are outsiders since we assume
all nodes are honest. In addition, since active adversaries are more powerful than
the passive ones, a scheme secure against the former will also be secure against
the latter.

Following the work by Bellare and Rogaway [4], the security of a key distribu-
tion scheme for gossip-based WMSN is evaluated by the attack game between a
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1. Setup: the challenger generates the parameters for the trusted device Dev and
publishes the public parameters.

2. Phase 1: Besides delivering messages for all sessions, the adversary is allowed to
issue the following types of queries.

(a) Invoke(set, nodei): The trusted device Dev initiates a new session to distribute
cluster keys and pairwise keys to the nodes in the set set which is a subset of
{nodej |1 ≤ j ≤ N}. The node nodei belongs to the set set and acts as the
sink node.

(b) Corruptk(ctr, nodej): If the session identified by ctr has successfully ended and
nodej has been involved in the session, the challenger sends the data collection
key and pairwise keys of nodej to the adversary. Otherwise, the challenger
returns nothing.

At some point, the adversary chooses a counter value ctr∗ and a user index j, such
that, in the session identified by ctr∗, nodej has successfully ended with dk∗

j , pk∗
j,t

for all t such that nodet is also involved in the session. This is subject to the
restriction that there has been no Corruptk(ctr

∗, nodet) query for any t.
3. Challenge: Select b ∈R {0, 1}. If b = 0, send dk∗

j , pk∗
j,t for all t such that nodet is

also involved in the session, otherwise send a replacement to the adversary, where
the keys are replaced by a set of random values.

4. Phase 2: The adversary is allowed to issue the same types of queries as in Phase
1, and is subject to the same restriction. At some point, the adversary terminates
by outputting a guess bit b′.

Fig. 4. The Attack Game

challenger and an adversary, as shown in Fig. 4, where the adversary’s advantage
is defined to be |Pr[b = b′]− 1

2 |. It is worth noting that the challenger faithfully
simulates all these activities of the trusted device Dev and all the nodes.

Definition 1. A key distribution scheme for gossip-based WMSN is secure
against (passive and) active adversaries, if any polynomial-time adversary has
only negligible advantage in the attack game defined in Fig. 4.

It is worth stressing that in the attack game defined in Fig. 4, the adversary
is allowed to obtain all data collection keys and pairwise keys in all sessions
except ctr∗. As a result, a secure scheme under this definition achieves known-
key security [15].

Compared with other settings, in gossip-based WMSN, it is reasonable to as-
sume that it is very difficult for an adversary to physically capture the nodes
since they will be locked indoor or worn by patients. In other words, key distri-
bution schemes secure against passive and active adversaries provide adequate
security guarantees in most application scenarios. However, in some scenarios,
higher security level may be required in the presence of an aggressive adversary
A+. Besides eavesdropping on and manipulating wireless communications, this
type of adversary is also capable of physically compromising some wireless nodes
in the network even before the key management.
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1. Setup: the challenger generates the parameters for the trusted device Dev and
publishes the public parameters.

2. Phase 1: Besides delivering messages for all sessions, the adversary is allowed to
issue the following types of queries.

(a) Invoke(set, nodei): The trusted device Dev initiates a new session to distribute
cluster keys and pairwise keys to the nodes in the set set which is a subset of
{nodej |1 ≤ j ≤ N}. The node nodei belongs to the set set and acts as the
sink node.

(b) Corruptk(ctr, nodej): If the session identified by ctr has successfully ended and
nodej has been involved in the session, the challenger sends the data collection
key and pairwise keys of nodej to the adversary. Otherwise, the challenger
returns nothing.

(c) Corruptl(index): The challenger returns the long-term public/private keys of
nodeindex to the adversary.

At some point, the adversary chooses a counter value ctr∗ and a user index j, such
that, in the session identified by ctr∗, nodej has successfully ended with dk∗

j , pk∗
j,t

for all t which satisfies that nodet is also involved in the session. This is subjected
to the following restrictions.

(a) Suppose the node nodei is the sink node in the session identified by ctr∗. There
has been no Corruptl(i) and Corruptk(ctr

∗, nodei) queries. The requirement also
applies to nodej . Note that the adversary may choose j = i in the challenge.

(b) Suppose set∗ is the set of nodes in the session identified by ctr∗ satisfying
that if nodej ∈ set∗ then there has been no Corruptk(ctr

∗, nodej) query and
no Corruptl(j) query. The size of set∗ is at least 2.

(c) In the session identified by ctr∗, at most t−1 nodes have been issued a Corruptk
query.

3. Challenge: Select b ∈R {0, 1}. If b = 0, send dk∗
j , pk∗

j,t for all t which satisfies that
nodet is also involved in the session and there has been no Corruptk(ctr

∗, nodet)
query and and no Corruptl(t) query, otherwise send a replacement to the adversary,
where the keys are replaced by a set of random values.

4. Phase 2: The adversary is allowed to issue the same types of queries as in Phase
1, with the following restriction.

(a) There has been no Corruptk(ctr
∗, nodeh) query for any h satisfying that there

has been no Corruptk(ctr
∗, nodeh) query in Phase 1.

At some point, the adversary terminates by outputting a guess bit b′.

Fig. 5. The Enhanced Attack Game

The security against an aggressive adversary is evaluated by the attack game
between a challenger and an adversary, as shown in Fig. 5, where the adversary’s
advantage is defined to be |Pr[b = b′]− 1

2 |.
Definition 2. A key distribution scheme for WMSN is secure against an aggres-
sive adversary, if any polynomial-time adversary has only negligible advantage
in the attack game defined in Fig. 5.
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It is worth stressing that in the attack game defined in Fig. 5, the adversary is
allowed to obtain all data collection keys and pairwise keys in all sessions except
ctr∗, and it is also allowed to obtain all long-term private keys of all nodes in
Phase 2. As a result, a secure scheme under this definition achieves known-key
security and perfect forward security [15].

3 Scheme Secure against Active Adversaries

In this section, we propose a key distribution scheme which is secure against
active adversaries. In this scheme we use symmetric key cryptographic primitives,
including message authentication code (MAC) algorithms [15] and symmetric
key encryption schemes. We make use of Shamir’s secret sharing scheme [17]
to deal with the issues such as adding nodes and key recovery in emergency
situations.

3.1 Preliminaries

A MAC algorithm is a family of functions {MACk}, parameterised by a secret
key k, with the following properties:

1. Ease of computation: for a known function MACk, given a value k and an
input x, MACk(x) is easy to compute. This result is called the MAC-value
or MAC.

2. Compression: MACk maps an input x of arbitrary finite bit-length to an
output MACk(x) of fixed bit-length.

Definition 3. A MAC algorithm is said to be secure against existential forgery
if, for any fixed key k (not known to the attacker), and given any number of
MAC queries MACk(x), where the values of x may be chosen by the adversary
after observing the results of previous queries, a adversary can only succeed with
a negligible probability in finding a pair (x∗,MACk(x∗)) where x∗ (which could
be chosen by the attacker) was not in the set of MAC queries.

Shamir’s secret sharing scheme [17] is based on the polynomial interpolation:
given k points (x1, y1), (x2, y2), · · · , (xk, yk), where all elements are from a finite
field F and xi (1 ≤ i ≤ k) are distinct, there is one and only one polynomial
f(x) of degree k − 1 such that f(x) = yi for all is. To hide a secret d, first pick
a random k − 1 degree polynomial f(x) = d + a1x + · · · + ak−1x

k−1 and sets
dj = f(j) for 1 ≤ j ≤ n where n ≥ k. It is straightforward to verify that, given
any subset of k tuples of the set {(i, di)|1 ≤ i ≤ n}, we can find the coefficients
of f(x) by interpolation and then obtain d = f(0). Given just k − 1 of these
values, d is indistinguishable from a random element from F.

Let F : K×D → R be a function family, where K = {0, 1}x, D = {0, 1}y, R =
{0, 1}z for some integers x, y, z. F is said to be a pseudorandom function family
if, given the input-output behaviors, an adversary can only distinguish F(k, ·)
from Ran with a negligible probability, where k is randomly chosen from {0, 1}x

and Ran : D → R is a random function [9].
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3.2 Description of the Scheme

In the system setup phase, the trusted device Dev selects a symmetric encryption
algorithm (ENC,DEC), an MAC algorithm MAC, and a symmetric key kG =
(k1, k2). It also choose a finite field F for Shamir’s secret sharing.

In the node setup phase, (kG,F) is stored in the node. For simplicity, we
assume all nodes have been programmed to perform all the operations in the
key distribution scheme. The key distribution scheme is as follows.

1. A node nodei, which is connected to the trusted device Dev, becomes a
sink node, broadcasts a bootstrap message to the network. The bootstrap
message is defined as follows

nodei + Dev → ∗ : ctr, ENCk1(ks), MACk2(1||ctr||ENCk1(ks)), (1)

where ks is a randomly-chosen ephemeral key for MAC.
2. After receiving the message, if the value of ctr is smaller than the local

counter value, nodej terminates by broadcasting a failure message. Other-
wise, it sets the local counter value to be ctr, decrypts ENCk1(ks), and checks

MACk2(1||ctr||ENCk1(ks)).

If the MAC code is correct, it sends (nj ,MACH(1||ks)(2||ctr||IDj ||nj) to the
sink node, where nj is a nonce.

nodej → nodei : nj,MACH(1||ks)(2||ctr||IDj ||nj). (2)

3. After receiving the message from nodej , the sink node first checks the MAC
code MACH(1||ks)(2||ctr||IDj ||nj). If the check fails, it terminates by broad-
casting a failure message. Otherwise, it continues. At a certain point, the sink
node learns that session keys need to be distributed to a group of nodes, say
nodej (1 ≤ j ≤ N ′) and N ′ ≤ N . The sink node computes an ephemeral key
pool Γ = {ek1, ek2, · · · , ekN ′ , ek′1, ek

′
2, · · · , ek′N ′}, where 1 ≤ j ≤ N ′, j �= i

(a) Using Shamir’s (t,N)-threshold secret sharing technique, generate N
shares {(j, shj)|1 ≤ i ≤ N} to hide a secret r ∈R F.

(b) Send the following message to the node nodej

nodei → nodej : ENCH(2||IDj ||ks)(j||shj ||skj ||Tj),
MACk2(IDj ||nj ||ctr||ENCH(2||IDj||ks)(j||shj ||skj ||Tj)), (3)

where skj = H(3||ctr||IDj ||r) and Tj is a concatenation of pkt,j for all t
such that ekt ∈ Γ and t �= j. pkt,j is set to be H(4||ctr||IDt||IDj ||r) if
t < j, and H(4||ctr||IDj ||IDt||r) otherwise. Consequently, pkt,j = pkj,t

holds.

(c) The sink nodes stores r and the shares {(j, shj)|N ′ + 1 ≤ i ≤ N} at the
trusted device Dev.
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4. After receiving the message, nodej first checks the MAC code. If the check
fails, it terminates by broadcasting a failure message. Otherwise, it decrypts
ENCH(2||IDj ||ks)(j||shj ||skj ||Tj) to obtain the data collection key skj , pair-
wise keys Tj, and the share (j, shj). It also updates ctr to be ctr + 1.

Lemma 1. The proposed scheme is secure under Definition 1 given that the
MAC algorithm is secure against existential forgery, the encryption algorithm is
a pseudorandom function, and H is a random oracle.

Proof sketch. Suppose that an adversary has the advantage ε the attack game
shown in Fig. 4. We first have the following observation, which implies the in-
tegrity of messages received by all nodes (the adversary is not able to manipulate
the messages without being detected by some users).

Observation. During the attack game, in the session identified by ctr∗

(and in any other sessions), nodej, for any j such that nodej is involved
in the session, is supposed to receive the following values:

ctr∗, ENCk1(ks), MACk2(1||ctr∗||ENCk1(ks)),

ENCH(2||ks)(j||shj ||skj ||Tj),

MACk2(IDj ||nj ||ctr∗||ENCH(2||ks)(j||shj ||skj ||Tj)),

If nodej accepts the values, the probability that these values are not gener-
ated (or, simulated) by the challenger is negligible. Intuitively, the reason
is that, in the proposed scheme, only sink nodes will generate messages
in these format, and based on the existential forgeability of the MAC
algorithm an adversary can only forge such messages with a negligible
probability. The proof is straightforward so that we skip it here.

The rest of the security proof is done through a sequence of games [18].
Game0: In this game, the challenger faithfully simulates the protocol execution

and answers the oracle queries from A. Let δ0 = Pr[b′ = b], as we assumed at
the beginning, |δ0 − 1

2 | = ε.
Game1: The challenger performs faithfully as in Game0, except that the chal-

lenger stops if the values described in the above observation are not generated
by the challenger (referred to as the event Ent1). Let δ1 = Pr[b′ = b] at the end
of this game. From the Difference Lemma in [18], we have |δ1 − δ0| ≤ Pr[Ent1]
which is negligible.

Game2: The challenger performs faithfully as in Game1, except that, in the
session identified by ctr∗, in step 3 of the scheme the messages sent to nodej , for
any j such that nodej is involved in the session, are replaced with the following,
where Ranj is random function.

Ranj(j||shj ||skj ||Tj),

MACk2(IDj ||nj ||ctr||Ranj(j||shj ||skj ||Tj)),
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Since H is a random oracle and the encryption algorithm is a pseudorandom
function, Game2 is identical to Game1 unless the adversary queries H with ∗||ks||∗
(referred to as the event Ent2), where ∗ can be any string. Furthermore, since
the encryption algorithm is a pseudorandom function, Pr[Ent2] is negligible. Let
δ2 = Pr[b′ = b] at the end of this game. From the Difference Lemma in [18], we
have |δ2 − δ1| ≤ Pr[Ent2] which is negligible.

In Game2, since the encryption of the session keys and shares is provided by
random functions, the probability δ2 = 1

2 . As a result, we have

ε = |δ0 − 1
2
|

≤ |δ1 − δ0|+ |δ2 − δ1|+ |δ2 − 1
2
|

≤ Pr[Ent1] + Pr[Ent2]

Since Pr[Ent1] and Pr[Ent2] are negligible, the lemma now follows. ��

3.3 Further Remarks

If a key distribution execution has been carried out for nodej (1 ≤ j ≤ N ′),
later on nodev for any N ′ + 1 ≥ v ≥ N may need to join the communications.
With respect to the key distribution scheme, there are two possibilities to add
a new node into a group. Note the fact that nodev should have been initialized
and share the key KG with the trusted device Dev.

In the first case, if Dev is available, then it can just generate the corresponding
data collection key and pairwise keys for nodev based on the secret value r and
sends these keys and a share (v, shv) to nodev through a secure channel provided
by the shared long-term key KG.

In the second case, if Dev is unavailable, then the secret r can be recovered
by nodej (1 ≤ j ≤ N ′) using their shares (j, shj) (1 ≤ j ≤ N ′). Then the
corresponding data collection key and pairwise keys for nodev can be generated
and transmitted to nodev in the same way as the above case.

4 Scheme Secure against Aggressive Adversaries

In this section, we propose a key distribution scheme which is secure against
aggressive adversaries. Compared with the previous scheme, we use public key
cryptographic techniques, including digital signature schemes and Diffie-Hellman
key exchange, in order to deter the effect of compromised nodes by aggressive
adversaries. Nonetheless, both key distribution schemes make use of the secret
sharing technique, therefore, the remarks in Section 3.3 apply to this scheme and
we skip it here 1.

1 The only difference is that a secure channel between Dev and a new node can be pro-
vided using a symmetric key resulted from a standard Diffie-hellman key exchange.
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4.1 Preliminaries

Digital signature schemes provide a means by which an entity can bind its iden-
tity (or public key) to a piece of information (usually referred to as a message).
A digital signature scheme is made up of the following algorithms [15]:

1. KeyGen: which takes a security parameter � as input, and outputs a public
(verification) key pk and a private (signing) key sk.

2. Sign: which takes as input a message m and a private key sk and produces
a signature σ for the message m.

3. Verify: which takes as input a message m, a public key pk and a signature
σ, and outputs either accept (denoted by 1) or reject (denoted by 0).

The existential unforgeability of a digital signature scheme is defined as follows:

Definition 4. A digital signature scheme is existentially unforgeable under an
adaptive chosen message attack if the probability of success of any polynomially
bounded attacker in the following game is negligible. The attack game is carried
out between an attacker A and the hypothetical challenger C.

1. Initialisation: C runs KeyGen(�) to generate a public key pk and a private
key sk.

2. Challenge: The attacker runs A on the input pk and terminates by outputting
a pair m∗, σ∗. During its execution, A can query the Sign oracle with any
input m (m �= m∗).

The attacker wins the game if Verify(m∗, pk, σ∗) = 1, and, the attacker’s ad-
vantage is defined to be Pr[Verify(m∗, pk, σ∗) = 1].

Given a group G of order p, the computational Diffie-Hellman assumption holds
if, given gx and gy where x, y are randomly chosen from Zp, an adversary can
compute gxy only with a negligible probability.

4.2 Description of the Proposed Scheme

In the system setup phase, the trusted device Dev selects a digital signature
algorithm (KeyGen, Sign,Verify) and a public/private key pair (PKG, SKG). It
also chooses a group G for Diffie-Hellman key exchange [5] and a finite field F

for Shamir’s secret sharing.
In the node setup phase, every node nodei is initialized by the trusted de-

vice Dev: a public/private key pair (PKi, SKi) is generated and the parameters
(PKG, Certi, PKi, SKi,G,F) are stored in the node, where Certi is a signature
of PKi||IDi signed with SKG. For simplicity, we assume all nodes have been
programmed to perform all the operations in the key distribution scheme. The
key distribution scheme is as follows.

1. A node nodei, which is connected to the trusted device Dev, becomes a
sink node, broadcasts a bootstrap message to the network. The bootstrap
message is defined as follows.

nodei + Dev → ∗ : ctr, gri , SignSKG
(ctr||gri). (4)
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2. After receiving the bootstrap message, every node nodej verifies the signa-
ture. If the signature is not valid or the value of ctr is smaller than the local
counter value, nodej terminates by broadcasting a failure message. Other-
wise, it sets its local counter value to be ctr, and sends the following message
to the sink node.

nodej → nodei : grj , SignSKj
(ctr||gri ||grj ). (5)

The node nodej computes two ephemeral keys ekj and ek′j , where

ekj = H(1||grirj ||ctr||IDi||IDj), ek′j = H(2||grirj ||ctr||IDi||IDj).

3. After receiving the message from nodej , the sink node first checks the counter
value and the signature. If the check fails, it terminates by broadcasting a
failure message. Otherwise, it continues. At a certain point, the sink node
learns that session keys need to be distributed to a group of nodes, say nodej

(1 ≤ j ≤ N ′) and N ′ ≤ N . The sink node computes an ephemeral key pool
Γ = {ek1, ek2, · · · , ekN ′ , ek′1, ek

′
2, · · · , ek′N ′}, where for 1 ≤ j ≤ N ′, j �= i

ekj = H(1||grirj ||ctr||IDi||IDj), ek′j = H(2||grirj ||ctr||IDi||IDj).

The sink node then does the following.
(a) Using Shamir’s (t,N)-threshold secret sharing technique, generate N

shares {(j, shj)|1 ≤ j ≤ N} to hide a secret r ∈R F.
(b) Send the following message to the node nodej

nodei → nodej : ENCekj (ctr||j||shj ||skj ||Tj),
MACek′

j
(ctr||ENCekj (ctr||skj ||Tj)), (6)

where skj = H(3||ctr||IDj ||r) and Tj is a concatenation of pkt,j for all
ekt ∈ Γ and t �= i. The value pkt,j is set to be H(4||ctr||IDt||IDj ||r) if
t < j, and H(4||ctr||IDj ||IDt||r) otherwise. Consequently, pkt,j = pkj,t

holds.
4. After receiving the message, nodej first checks the MAC code. If the check

fails, it terminates by broadcasting a failure message. Otherwise, it decrypts
ENCekj (j||shj ||skj ||Tj) to obtain the data collection key skj , pairwise keys
Tj , and the share (j, shj). It also update ctr to be ctr + 1.

Lemma 2. The proposed scheme is secure under Definition 2 based on the com-
putational Diffie-Hellman (CDH) assumption, given that the digital signature
scheme is existentially unforgeable, the encryption algorithm is a pseudorandom
function, and H is a random oracle.

Proof sketch. Suppose that an adversary has the advantage ε the attack game
shown in Fig. 5. We first have the following observation.
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Observation. During the attack game, in the session identified by ctr∗,
nodej, for any j such that nodej is involved in the session, is supposed
to receive the following value:

ctr∗, gri , SignSKG
(ctr∗||gri),

ENCekj (ctr∗||j||shj ||skj ||Tj), MACek′
j
(ctr∗||ENCekj (ctr∗||skj ||Tj)).

Based on the existential unforgeability of the signature scheme, the prob-
ability that the first message is not generated (or, simulated) by the chal-
lenger is negligible. Based on the CDH assumption and the existential
unforgeability of the MAC algorithm, the probability that an adversary
can forge the second message is negligible given that H is a random ora-
cle. Therefore, these values are generated by the challenger, and the proof
is straightforward so that we skip it here.

The rest of the security proof is done through a sequence of games [18].
Game0: In this game, the challenger faithfully simulates the protocol execution

and answers the oracle queries from A. Let δ0 = Pr[b′ = b], as we assumed at
the beginning, |δ0 − 1

2 | = ε.
Game1: The challenger performs faithfully as in Game0, except that the chal-

lenger stops if the values described in the above observation are not generated
by the challenger (referred to as the event Ent1). Let δ1 = Pr[b′ = b] at the end
of this game. From the Difference Lemma in [18], we have |δ1 − δ0| ≤ Pr[Ent1]
which is negligible.

Game2: The challenger performs faithfully as in Game1, except that, in the
session identified by ctr∗, in step 3 of the scheme the messages sent to nodej , for
any j such that nodej is involved in the session and nodej has not been issued
any Corruptl query, are replaced with the following, where Ranj is a random
function.

Ranj(j||shj ||skj ||Tj),
MACek′

j
(IDj ||ctr∗||Ranj(j||shj ||skj ||Tj)),

Since H is a random oracle and the encryption algorithm is a pseudorandom
function, Game2 is identical to Game1 unless the event Ent2 occurs: the adversary
has queried H with ∗||r||∗ or ∗||grirj ||∗ for any j such that nodej has not been
issued any Corruptl query. Based on the CDH assumption and the security of the
Shamir secret sharing scheme, Pr[Ent2] is negligible. Let δ2 = Pr[b′ = b] at the
end of this game. From the Difference Lemma in [18], we have |δ2−δ1| ≤ Pr[Ent2]
which is negligible.

In Game2, since the encryption is provided by random functions, the proba-
bility δ2 = 1

2 . As a result, we have

ε = |δ0 − 1
2
|

≤ |δ1 − δ0|+ |δ2 − δ1|+ |δ2 − 1
2
|

≤ Pr[Ent1] + Pr[Ent2]

Since Pr[Ent1] and Pr[Ent2] are negligible, the lemma now follows. ��
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5 Performance Analysis

Based on the theoretical results, here we give a performance analysis of
KALwEN+. Let Te be the time for a symmetric key encryption, and Tm be
the time for computing a MAC value. Let Tp be time for one exponentiation
computation. Ts denotes the time for the (t,N)-threshold secret sharing algo-
rithm which is used in KALwEN+. Let Tsig and Tver be the time costs for
generating and verifying a signature, respectively. For a gossip sensor network
with n nodes, the performance of KALwEN+ is estimated as follows.

Table 1. The Performance Estimation of KALwEN+

KALwEN+ Against Active Adversary Against Aggressive Adversary

Sink node costs (n+1)Te+(n+1)Tm+1Ts 1Tsig+(n+1)Tp+nTe+nTm+1Ts

Member node costs 2Tm+2Te 1Tver+1Tsig+1Tp+1Te+1Tm

Communication rounds 3-Rounds 3-Rounds
Storage costs O(n) O(n)

For the estimated performance, the potential bottleneck of the scheme will be
the sink node. Especially in a large network, a typical sensor node can hardly
afford the computational costs of (t,N)-threshold secret sharing by itself. Since
the sink node can be connected to a trusted device, the computational costs
would possibly be shared by the device while the scalability of network is large.

6 Conclusion

By simply using the Shamir’s secret sharing techniques and the Diffie-Hellman
algorithm, a family of novel key management schemes that named KALwEN+
has been proposed for wireless medical sensor network. The KALwEN+ schemes
can be fully based on broadcast communication, and does not require special
equipment like some existing schemes do. The secret sharing technique used in
KALwEN+ not only supports efficient node addition/removal, but also elegantly
ensures security against key-exposure. For applications with highly-constrained
resources, the KALwEN+ scheme that fully based on symmetric cryptographic
primitives is a reasonable choice. For future work, we will investigate the practical
performance and the interoperability of KALwEN+ in a multi-user scenario.
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Abstract. In INSCRYPT 2008, Ruj and Roy proposed deterministic
key predistribution schemes using codes. Particularly, they used Reed
Solomon codes to present key predistribution schemes. They calculate
the connectiviey and resiliency of the network when the schemes are
based on Reed Solomon codes. However, the connectivity and resiliency
of the network for the schemes using other codes haven’t been calcu-
lated so far. In the present paper, we will determine the key parameters
of predistribution schemes via linear codes in wireless sensor networks.
We calculate the connective probability, the probability fail(1) and the
upper bound of the fraction of links broken when s nodes are compro-
mised. We use the theory of matroid. We find that it is very surprising
that these parameters can be calculated by making use of the chromatic
polynomial of the matroid associated to the codes used in the resulting
schemes.

Keywords: Key predistribution scheme, Combinatorial design, Linear
code, Matroid, Sensor network.

1 Introduction

Sensor nodes are typically low-cost, battery powered, and highly resource con-
strained. In a distributed sensor network (DSN), the sensor nodes are distributed
in a random way, hence the network topology is unknown before the deployment.
A sensor node can communicate with other nodes within its neighborhood, which
is the radio coverage area formed as a circle of fixed radius centering that node.
Once the nodes are deployed, they scan their neighborhoods in order to find out
their neighbors.

In this paper, secure communication of DSN is studied. To establish pair-
wise keys between sensor nodes is essential in enabling them to communicate
securely with each other using cryptographic techniques. One method is to use
the public-key infrastructure. However, the asymmetric cryptographic primitives
are associated with expensive computational cost and demanding huge storage
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consumption. Therefore, a key predistribution scheme (KPS) is preferred, where
a set of secret keys is installed in each node before the sensor nodes are deployed.

A KPS consists of three phases: key predistribution, shared-key discovery, and
path-key establishment. A sensor node is initially loaded with a fixed number of
keys. Each key is assigned a unique identifier. After the deployment of the DSN,
the shared-key discovery phase takes place, where any two nodes in wireless
communication range exchange their list of key identifiers to each other, and
look for their common keys. If they share one or more common keys, they can
pick one of them as their secret key for cryptographic communication. The path-
key establishment phase takes place if there is no common key between a pair
of nodes. A sequence of nodes is called a path. To establish a secure path with
node j, a node i needs to find a path between itself and the node j such that any
two adjacent nodes (in the radio coverage range) in the path have a common
key. Thus messages from the node i can reach the node j securely.

Probabilistic key predistribution is proposed by Eschenauer and Gliger [11].
The main idea is to let each sensor node pick randomly a set of keys from a
key pool before deployment so any two sensor nodes have a certain probability
of sharing at least one common key. Extensions and variations of this approach
can be found in [11,7,10,16].

To construct deterministic KPS for DSN using combinatorial design is another
strategy, proposed by Çamtepe and Yener [5]. Further study in this context can
be found in [2,6,8,9,15,14,17,21,22,23]. A combinatorial design is a pair of sets
(X,B), where X is a finite set of points, B is a finite set of subsets of X , called
blocks. Let X = {xi|1 ≤ i ≤ v} and B = {Bj|1 ≤ j ≤ b} where each block Bj

has n points of X . Any combinatorial design can be used to establish a KPS for
a DSN. Assume the DSN has b sensor nodes denoted by N1, . . . , Nb. In such a
scheme, the points in X are mapped to a set of v keys, where each key Ki, for
1 ≤ i ≤ v, is chosen randomly from some special key space. Each Bj is assigned
to a sensor node Nj and is used to specify which keys are given to the node, i.e.
the sensor node Nj receives the set of n keys corresponding to the points in Bj .
Deterministic designs have the advantage of efficient shared key discovery and
path key establishment, which was pointed out by Lee and Stinson [13] and Ruj
and Roy [20].

Recently, Ruj and Roy [19] proposed a class of deterministic KPSs using codes.
According to their technique, codewords are mapped to the sensor nodes and (x, i)
is mapped to the keys, where x is the i-th symbol of a codeword. In particular they
construct deterministic KPSs by making use of the Reed Solomon codes of length
n = q−1 over a finite field Fq. They consider the problem of node compromise and
calculate the resiliency of the network as the fraction of links broken and nodes
disconnected, and present experimental results for these parameters and support
them by calculating the upper bounds when the schemes are based on the Reed
Solomon codes of length n = q − 1 over a finite field Fq. The most important
advantage of their scheme is that the network can be made scalable. This means
more nodes can be introduced if need arises. However the keys in the already ex-
isting nodes need not be changed or redistributed. Moreover their scheme resist
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the selective node capture attack and some measures of resiliency to random node
capture attack are presented in [19].

However, they didn’t calculate the connectivity and resiliency of the network
for the KPSs using other codes. In this paper, we will determine these parameters
for the KPSs based on general linear codes. We first construct the combinato-
rial designs based on general linear codes, and then construct KPSs based on
the resulting combinatorial designs. The main contributions of this paper are
summarized as follows.

1) We construct the combinatorial designs based on general linear codes, and
propose a technique that can be used to calculate the number of blocks in B
which exactly contain some given u-subset of X for 1 ≤ u ≤ n by making use of
matroid theory.

2) We determining the key parameters of KPS via general linear codes. We
extend the Ruj and Roy’s approaches [19] to calculate the connective probability
and the upper bound of the fraction of links broken when s nodes are compro-
mised, combining with matroid theory. Moreover, we calculate the probability
fail(1) by using the technique presented in [9].
The rest of this paper is arranged as follows. In Section 2, as the preliminaries,
we introduce some knowledge about matroids and some connections between
codes and matroids. In Section 3, we construct the combinatorial designs based
on general linear codes, and propose a technique that can be used to calculate
the number of blocks in B which exactly contain some given u-subset of X for
1 ≤ u ≤ n. In Section 4, we determine the key parameters of KPS via general
linear codes. We calculate the connective probability and the upper bound of the
fraction of links broken when s nodes are compromised of the resulting schemes.
Moreover, we compute the probability fail(1) of the resulting schemes by means
of the properties of the corresponding combinatorial designs. In Section 5, we
give some examples of KPSs based on codes. We construct KPSs using MDS
codes and the codes of d⊥ ≥ #n/2$, and analyze their parameters.

2 Preliminaries

In this section we review some background on matroids, and discuss some con-
nections between codes and matroids. A matroid is an axiomatic abstraction of
linear independence. There are several equivalent axiomatic systems to describe
matroids: by independent sets, by bases, by the rank function, or, as done here,
by circuits. For more background on matroid theory the reader is referred to
[24,18].

Definition 1. A matroid M is an ordered pare (S,F ) consisting of a finite set
S and a collection F of subset of S (called independent sets) such that (1)-(3)
are satisfied.

(1) Ø ∈ F ;
(2) If X ∈ F and Y ⊆ X then Y ∈ F ;
(3) If U, V are members of F with |U | = |V | + 1 there exists x ∈ U\V such

that V ∪ {x} ∈ F .
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If M is the matroid (S,F ) then M is called a matroid on S. A subset of S
not belonging to F is called dependent.

Example 1. Let V be a finite vectors space and let F be the collection of linearly
independent subsets of vectors of V . then (V,F ) is a matroid.

Following the analogy with vector spaces we make the following definitions.
A base of M is a maximal independent subset of S, the collection of bases is

denoted by B or B(M).

Definition 2. The rank function of a matroid is a function ρ : 2S → Z defined
by

ρ(A) = max{|X ||X ⊆ A ⊆ S, X ∈ F}.
The rank of the matroid M sometimes denoted by ρ(M), is the rank of the set S.

Definition 3. A matroid M on S is representable over a field F if there is a
vector space V over F and a map φ : S → V which preserves rank.

As usual, a code C of length n, dimension k, and minimum distance d (resp., at
least d) is called an [n, k, d]-code (resp., [n, k,≥ d]-code) which is a k-dimensional
subspace of Fn

q . We sometimes write d(C) to mean the minimum distance of the
code C. Moreover, let d⊥ denotes the minimum distance of the dual code C⊥

for a code C.
In general, the matrix G is a generator matrix of a [n, k, d]-linear code C over

Fq. The columns of G define a Fq-representable matroid MC = (S,F ), where S
denotes the set of columns of the matrix G and F denotes the collection of the
linearly independent sets of columns of G. This matroid depends only on the
code C, that is, it does not depend on the choice of the generator matrix G. In
this situation, we say that MC is the matroid associated to the code C and also
that the code C is a Fq-representation of the matroid MC . Observe that different
codes can represent the same matroid. Important properties about the weight
distribution of a linear code can be studied from its associated matroid. Several
results on this relation between matroids and codes are given in [1,3,4,12] and
other works.

Definition 4. If {Bi : i ∈ I} is the set of bases of a matroid M on S then
{S \Bi : i ∈ I} is the set of bases of a matroid M∗ on S. We call M∗ the dual
matroid of M .

Obviously the relation between M and M∗ is symmetrical, that is (M∗)∗ = M .
The different notions of duality that are defined for codes and for matroids are
closely related. The matroid M associated to the dual code C⊥ is the dual
matroid of the matroid MG corresponding to C.

Definition 5. For any matroid M on a set S we define the chromatic polyno-
mial of M , P (M ; z) by
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P (M ; z) =
∑

A⊆S

(−1)|A|zρ(S)−ρ(A),

the (Whitney) rank generating function of M , R(M ;x, y) by

R(M ;x, y) =
∑

A⊆S

xρ(S)−ρ(A)yρ∗(S)−ρ∗(S\A),

and the Tutte polynomial of M , T (M ;x, y) by

T (M ;x, y) = R(M ;x− 1, y − 1),

where ρ, ρ∗ as usual are the rank function of M , M∗ respectively.

Note that

P (M ; z) = (−1)ρ(S)R(M ;−z,−1) = (−1)ρ(S)T (M ; 1− z, 0).

Example 2. An [n, k, d]-code is said to be maximum distance separable (MDS)
if d = n− k + 1.

If C is an [n, k, d] MDS code, then for the matroid MC , the collection F of
independent sets is

F =
{
I ⊆ {1, . . . , n} : |I| ≤ k

}
.

Such a matroid is called a uniform matroid, denoted by Uk,n. Its chromatic
polynomial is that

P (Uk,n; z) =
k−1∑
i=0

(
n
i

)
(−1)i(zk−i − 1).

3 Combinatorial Design from Linear Codes

In this section, we will construct the combinatorial designs based on general
linear codes, and propose a technique that can be used to calculate the number
of blocks in B which exactly contain some given u-subset of X for 1 ≤ u ≤ n
by making use of matroid theory.

Let C be an [n, k, d]-code over Fq. Set Ḡ be the qk × n matrix, whose rows
are the codewords of the code C.

The matrix Ḡ can be used to construct combinatorial designs. Regard symbols
in different columns as different points in X , hence X has v = nq elements; and
take each row of Ḡ as block, so that each block has n elements. Therefore, we
get a combinatorial design C(X,B), where b = |B| = qk.

Hereinafter, suppose the first k rows of Ḡ is the generator matrix G of the
code C. Then the columns of G define a Fq-representable matroid MG.

Let S′ denote the set consist of the whole columns of Ḡ. For any A′ ∈ S′,
ḠA′ denotes the qk × |A′| matrix consist of all columns of the set A′. In the
combinatorial design C(X,B), any u-subset P appearing in some block B of B
must be corresponding a row vector of ḠA′ , where |A′| = u, u = 1, . . . , n. Hence
if we can determine the number of occurrences of any row vector in ḠA′ for any
A′ ∈ S′, then we can determine the number of occurrences of any u-subset P in
all blocks of B.

From now on, let S denote the set consist of the whole columns of G. we can
prove the following Lemma (we provide the proof in Appendix):
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Lemma 1. For any A′ ∈ S′, all columns of ḠA′ are linearly dependent over Fq

if and only if all columns of GA are linearly dependent over Fq, where A ∈ S
and every column of A is consist of the first k elements in the correspond column
of A′.

Of course, from this Lemma, we can conclude that for any A′ ∈ S′, all columns
of ḠA′ are linearly independent over Fq if and only if all columns of GA are
linearly independent over Fq, where A ∈ S and every column of A is consist of
the first k elements in the correspond column of A′.

Lemma 2. Let S denote the set consist of the columns of G. For any A′ ∈ S′,
any row of ḠA′ is corresponding to some |A′|-subset of X, which appears in
qk−ρ(A) blocks in the combinatorial design C(X,B), where A ∈ S and every
column of A consist of the first k elements in the correspond column of A′.

The proof of Lemma 2 is provided in Appendix.
In the design C(X,B), given a block B ∈ B, there are

(
n
u

)
u-subsets in B for

u = 1, . . . , n. Let Puv denote the u-subset in B where v = 1, . . . ,
(
n
u

)
. Let λPuv

denote the number of occurrences of the set Puv in all blocks of B. Then there
exists a subset A′

uv
of S′, which is corresponding to the set Puv and whose i-th

column is corresponding to the i-th element of Puv . Let Auv ∈ S where every
column vector of Auv is consist of the first k elements in the correspond column
of A′

uv
. From Lemma 2, we can conclude that the following corollary.

Corollary 1. λPuv
= qk−ρ(Auv ).

4 KPS from Linear Codes

The KPS from linear codes in wireless sensor networks can be constructed by
making use of the design C(X,B). Each Bj of B is assigned to a sensor node
Nj and is used to specify which keys are given to the node, i.e. the sensor node
Nj receives the set of n keys corresponding to the points in Bj where j =
1, . . . , qk. We will determine some key parameters such as connective probability
and resiliency, which have not been calculated so far.

4.1 Connective Probability

The number of common keys between any two nodes equals the number of com-
mon points between the corresponding two codewords. The number of common
keys between any two nodes may be any one from [0, 1, . . . , n]. If two nodes
share one or more common keys, they can pick one of them as their secret key
for cryptographic communication.

The connective probability p is defined by the probability that any pair of
sensor nodes shares a link, i.e., the nodes of a pair have at least one common
key. Suppose B ∈ B is a block, it is easy to see that the connective probability p,
which is independent of the specified block B by the symmetry of combinatorial
designs. Each sensor node can communicate with nodes only within its neigh-
borhood. Suppose that two nodes Ni and Nj are in each other’s neighborhood.
The connective probability that Ni and Nj share at least one key is
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p = #{B′∈B|B′∩B �=∅}
b−1 .

This probability is expected to be as large as possible, since it measures the
effectiveness of the sensor network.

Now let μB = #{B′ ∈ B|B′ ∩B �= ∅}.
Lemma 3. μB =

∑
A⊆S

0�=ρ(A)<k

(−1)(|A|−1)(qk−ρ(A) − 1).

Proof. Given the node B, let λPuv
denote the number of occurrences of the set

Puv in B. Then there exists a subset A′
uv

of S′ which is corresponding to the
set Puv . Let Auv ∈ S where every column vector of Auv is consist of the first k
elements in the correspond column of A′

uv
.

Since the number of blocks in B which intersects with B at all u-set is that∑(n
u)

v=1

(
λPuv

− 1
)

=
∑(n

u)
v=1

(
qk−ρ(Auv ) − 1

)
,

it follows that

μB =
n∑

u=1
(−1)u+1

(∑(n
u)

v=1

(
λPuv

− 1
))

=
n∑

u=1
(−1)u+1

(∑(n
u)

v=1

(
qk−ρ(Auv ) − 1

))
=

∑
A⊆S

0�=ρ(A)<k

(−1)(|A|−1)(qk−ρ(A) − 1).

�

Lemma 4. P (M ; z) =
∑

A⊆S
ρ(A)�=k

(−1)|A|(zk−ρ(A) − 1).

Proof. P (M ; z) =
∑

A⊆S

(−1)|A|zρ(S)−ρ(A)

=
∑

A⊆S
ρ(A)�=k

(−1)|A|zk−ρ(A)+
∑

A⊆S
ρ(A)=k

(−1)|A|

=
∑

A⊆S
ρ(A)�=k

(−1)|A|zk−ρ(A) − ∑
A⊆S

ρ(A)�=k

(−1)|A| +
∑

A⊆S

(−1)|A|.

Since
∑

A⊆S(−1)|A| = 0, it follows that

P (M ; z) =
∑

A⊆S
ρ(A)�=k

(−1)|A|(zk−ρ(A) − 1).

�

Theorem 1. p = 1− P (M ;q)
qk−1 .

Proof. Since

P (M ; q) =
∑

A⊆S
ρ(A)�=k

(−1)|A|(qk−ρ(A) − 1)
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= qk − 1 +
∑

A⊆S
0�=ρ(A)<k

(−1)|A|(qk−ρ(A) − 1)

= qk − 1− ∑
A⊆S

0�=ρ(A)<k

(−1)(|A|−1)(qk−ρ(A) − 1)

= qk − 1− μB,

it follows that

μB = qk − 1− P (M ; q).

Hence

p = 1− P (M ;q)
qk−1

.

�

4.2 Resiliency

4.2.1 Analysis of fail(1)
If a sensor node is detected as being compromised, then all the keys it possesses
should no longer be used by any node in the sensor network. Suppose the sensor
nodes Ni and Nj have at least one common key (which means that there is a
link between the pair of Ni and Nj ). If all the common keys of the pair of
Ni and Nj are contained in the compromised sensor node, then Ni and Nj no
longer communicate directly, i.e., the link between Ni and Nj is lost. And the
probability of links being affected is defined as

fail(1) = the lost connectivities when one nodes are compromised
the original connectivities .

Generally, we expect fail(1) to be as small as possible, since it measures the
resilience of the sensor network, when a random sensor node is compromised.

Suppose that C(X ; B) is a combinatorial design constructed by a linear code.
Suppose B ∈ B is a block, and Puv ∈ B denote some u-set in B where u =
1, . . . , n and v = 1, . . . ,

(
n
u

)
. Let u′ = u, u + 1, . . . , n, Pu′

v′ = Puv ∪ P where P ⊆
B \Puv and |P | = u′−u. There are

(
n−u
v′−u

)
Pu′

v′ in B. Now let v′ = 1, . . . ,
(

n−u
v′−u

)
.

Let μB(Puv ) = #{B′ ∈ B|B′ ∩B = Puv}.
It is easy to see that the following recursion relation holds for u = 1, . . . , n

and v = 1, . . . ,
(
n
u

)
:

μB(Puv ) =
n∑

u′=u

(
(−1)u′−u

(∑( n−u
u′−u)

v′=1

(
λPu′

v′
− 1

)))
,

from which we can calculate the number μB(Puv ) for all u = 1, . . . , n and v =
1, . . . ,

(
n
u

)
. Then we can calculate the probability fail(1) as the following:

fail(1) =

n∑
u=1

∑(n
u)

v=1 λPuv
μB(Puv )

bμB
=

n∑
u=1

∑(n
u)

v=1 qk−ρ(Auv )μB(Puv )

qk(qk−1−P (M ;q))
.

(We follow the notation used in [14]).
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4.2.2 Analysis of E(s)
E(s) is defined to be the fraction of links broken when s nodes are compromised.
Mathematically, E(s) is given by

E(s) = Number of links disconnected when s nodes are compromised
Number of links before compromise .

Ruj and Roy [19] calculated the upper bound for E(s) when the KPS is based
on the Reed Solomon code of length n = q − 1. We will calculate the upper
bound for E(s) when the KPSs is based on general linear codes in this section.

Upper bound for E(s). The value of E(s) depends on which s nodes are
compromised. Accordingly some keys are exposed. When nodes are compromised
randomly it is difficult to predict which set of s nodes are compromised. But it
is clear that the maximum number of links will be broken when keys exposed
are all distinct.

Theorem 2. E(s) ≤ 1− qk−1−( q−s
q )kP (M ; q2

q−s )+( q−s
q )kP (M ; q

q−s )

qk−1−P (M ;q) .

Proof. Suppose s nodes are compromised. Let the compromised nodes be de-
noted by N1, N2, . . . , Ns. Let the exposed keys be denoted by x11, x12, . . . , x1n,
x21, x22, . . . , x2n, . . . , xs1, xs2, . . . , xsn. It is clear that maximum nodes will
be broken when all the exposed keys are distinct. So while calculating the up-
per bound of E(s), we consider the number of links disconnected when all the
exposed keys are distinct.

the total number of links before compromise is given by
n∑

u=1
(−1)u−1

(∑(n
u)

v=1 q
ρ(Auv )

(
qk−ρ(Auv )

2

))
.

The number of links connected after s nodes are compromised is
n∑

u=1
(−1)u−1

(∑(n
u)

v=1(q − s)ρ(Auv )
(
qk−ρ(Auv )

2

))
.

Hence

E(s) ≤ 1−
n∑

u=1
(−1)u−1

(∑(n
u)

v=1(q−s)ρ(Auv )(q
k−ρ(Auv )

2 )
)

n∑
u=1

(−1)u−1

(∑(n
u)

v=1 qρ(Auv )(q
k−ρ(Auv )

2 )
) .

We know that
n∑

u=1
(−1)u−1

(∑(n
u)

v=1 q
ρ(Auv )

(
qk−ρ(Auv )

2

))
= 1

2

n∑
u=1

(−1)u−1
(∑(n

u)
v=1 q

ρ(Auv )qk−ρ(Auv )(qk−ρ(Auv ) − 1)
)

= 1
2 qk

n∑
u=1

(−1)u−1
(∑(n

u)
v=1(qk−ρ(Auv ) − 1)

)
= 1

2 qk
∑

A⊆S
0�=ρ(A)<k

(−1)(|A|−1)(qk−ρ(A) − 1)

= 1
2q

kμB
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= 1
2q

k
(
qk − 1− P (M ; q)

)
,

and
n∑

u=1
(−1)u−1

(∑(n
u)

v=1(q − s)ρ(Auv )
(
qk−ρ(Auv )

2

))
= 1

2

n∑
u=1

(−1)u−1
(∑(n

u)
v=1(q − s)ρ(Auv )qk−ρ(Auv )(qk−ρ(Auv ) − 1)

)
= 1

2 qk
n∑

u=1
(−1)u−1

(∑(n
u)

v=1
(q−s)ρ(Auv )

qρ(Auv ) (qk−ρ(Auv ) − 1)
)

= 1
2 qk

n∑
u=1

(−1)u−1
(∑(n

u)
v=1(1− s

q )ρ(Auv )(qk−ρ(Auv ) − 1)
)

= 1
2 qk

∑
A⊆S

0�=ρ(A)<k

(−1)(|A|−1)(1− s
q )ρ(A)(qk−ρ(A) − 1).

Hence

E(s) ≤ 1−

∑
A⊆S

0�=ρ(A)<k

(−1)(|A|−1)(1− s
q )ρ(A)(qk−ρ(A)−1)

qk−1−P (M ;q) .

Now let P (M ; z1, z2) =
∑

A⊆S(−1)|A|zk−ρ(A)
1 z

ρ(A)
2 . Then

P (M ; z1, z2) =
∑

A⊆S
ρ(A)<k

(−1)|A|zk−ρ(A)
1 z

ρ(A)
2 +

∑
A⊆S

ρ(A)=k

(−1)|A|zk
2

=
∑

A⊆S
ρ(A)<k

(−1)|A|(zk−ρ(A)
1 − 1)zρ(A)

2 +
∑

A⊆S
ρ(A)<k

(−1)|A|zρ(A)
2 +

∑
A⊆S

ρ(A)=k

(−1)|A|zk
2

=
∑

A⊆S
ρ(A)<k

(−1)|A|(zk−ρ(A)
1 − 1)zρ(A)

2 +
∑

A⊆S

(−1)|A|zρ(A)
2 .

In addition, if z2 �= 0, then∑
A⊆S

(−1)|A|zρ(A)
2 = zk

2

∑
A⊆S

(−1)|A|zρ(A)−k
2 = zk

2P (M ; 1
z2

).

Hence if z2 �= 0, then

P (M ; z1, z2) =
∑

A⊆S
ρ(A)<k

(−1)|A|(zk−ρ(A)
1 − 1)zρ(A)

2 + zk
2P (M ; 1

z2
).

Additionally, when z2 �= 0,

P (M ; z1, z2) = zk
2

∑
A⊆S

(−1)|A|zk−ρ(A)
1 z

ρ(A)−k
2

= zk
2

∑
A⊆S

(−1)|A|( z1
z2

)k−ρ(A)

= zk
2P (M ; z1

z2
).

Hence ∑
A⊆S

ρ(A)<k

(−1)|A|(zk−ρ(A)
1 − 1)zρ(A)

2

= P (M ; z1, z2)− zk
2P (M ; 1

z2
)

= zk
2P (M ; z1

z2
)− zk

2P (M ; 1
z2

).
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Since ∑
A⊆S

ρ(A)<k

(−1)|A|(zk−ρ(A)
1 − 1)zρ(A)

2

= zk
1 − 1 +

∑
A⊆S

0�=ρ(A)<k

(−1)|A|(zk−ρ(A)
1 − 1)zρ(A)

2

= zk
1 − 1− ∑

A⊆S
0�=ρ(A)<k

(−1)(|A|−1)(zk−ρ(A)
1 − 1)zρ(A)

2 ,

it follows that∑
A⊆S

0�=ρ(A)<k

(−1)(|A|−1)(zk−ρ(A)
1 − 1)zρ(A)

2 = zk
1 − 1− zk

2P (M ; z1
z2

) + zk
2P (M ; 1

z2
).

Hence ∑
A⊆S

0�=ρ(A)<k

(−1)(|A|−1)(1− s
q )ρ(A)(qk−ρ(A) − 1)

= qk − 1− ( q−s
q )kP (M ; q2

q−s ) + ( q−s
q )kP (M ; q

q−s ).

From this the result follows. �

5 Examples of KPS from Codes

5.1 KPS from MDS Codes

Suppose a KPS based on an [n, k, d] MDS code, then since the matroid MC is
uniform matroid Uk,n. Its chromatic polynomial is that

P (Uk,n; z) =
k−1∑
i=0

(
n
i

)
(−1)i(zk−i − 1),

it follows that

p = 1− 1
qk−1

k−1∑
i=0

(
n
i

)
(−1)i(qk−i − 1)

= 1
qk−1

k−1∑
i=1

(
n
i

)
(−1)i−1(qk−i − 1)

and

E(s) ≤ 1− qk−1−( q−s
q )kP (Uk,n; q2

q−s )+( q−s
q )kP (Uk,n; q

q−s )

qk−1−P (Uk,n;q)
.

Additionally, for any u-set P in B, λ(P ) = qk−u for u < k and λ(P ) = 1 for
k ≤ u < n. Hence

μB(Puv ) =
n∑

u′=u

(
(−1)u′−u

(∑( n−u
u′−u)

v′=1

(
λPu′

v′
− 1

)))
=

k−1∑
u′=u

(
(−1)u′−u

(
n−u
u′−u

)(
qk−u′ − 1

))



Determining Parameters of Key Predistribution Schemes 295

for any v = 1, . . . ,
(
n
u

)
. Then

fail(1) =

k−1∑
u=1

(n
u)qk−u

(
k−1∑

u′=u

(
(−1)u′−u( n−u

u′−u)
(
qk−u′−1

)))
qk(qk−1−P (M ;q))

=

k−1∑
u=1

k−1∑
u′=u

(−1)u′−u(n
u)( n−u

u′−u)qk−u(qk−u′−1)

qk
k−1∑
i=1

(n
i)(−1)i−1(qk−i−1)

.

A class of transversal design TD(n;N), where N is a prime and n < N , was
constructed in [14]. In the resulting scheme, every two sensor nodes share at
most one common key, the number of nodes b = N2, the connective probability
p = n/(N + 1) and Fail(1) = (N − 2)/(N2 − 2). It was pointed out that the
KPS using Reed Solomon code in [19] and the KPS based on orthogonal Arrays
in [9] are better than Lee and Stinson’s [14] using Transversal Designs.

By using the Reed Solomon codes of length n = q− 1 over Fq, we can get the
KPS constructed by Ruj and Roy [19]. Dong, et al. [9] constructed KPSs based on
orthogonal Arrays. The orthogonal Arrays used by Dong, et al. are corresponding
to a class MDS codes of length n = q+1 over Fq, so their constructions are special
cases of our constructions based on MDS codes. Moreover, suppose q is a prime,
by using the [n, 2, d] MDS codes over Fq, we can get the KPSs of connective
probability p = n/(q + 1), which have the same parameters with the KPSs sing
Transversal Designs.

Suppose per node has the same number n of keys, then in the schemes of
Dong, et al., b = (n− 1)k and in Ruj and Roy’s [19] schemes, b = (n+ 1)k. Since
there exist MDS codes of length n over Fq where q > n + 1 and 1 ≤ k ≤ n, we
can construct KPSs for larger size of DSN based on MDS codes.

5.2 KPS from Codes of d⊥ ≥ �n/2�
Generally, it is difficult to calculate the the chromatic polynomial P (M ; z). Let
d⊥ denotes the minimum distance of the dual code C⊥ for an [n, k, d]-code C.
The following Corollary give the bounds of P (M ; z) for z ≥ 1.

Corollary 2. If d⊥ ≥ #n/2$, then for z ≥ 1, the following holds

(1)
d⊥−1∑
i=0

(
n
i

)
(−1)i(zk−i − 1) ≤ P (M ; z) ≤

d⊥−2∑
i=0

(
n
i

)
(−1)i(zk−i − 1), if d⊥ is

even,

(2)
d⊥−2∑
i=0

(
n
i

)
(−1)i(zk−i − 1) ≤ P (M ; z) ≤

d⊥−1∑
i=0

(
n
i

)
(−1)i(zk−i − 1), if d⊥ is

odd.

Proof. There are
(
n
u

)
u-subsets in B for u = 1, . . . , n. If d⊥ ≥ #n/2$, then(

n
i

) ≥ (
n

i+1

)
for d⊥ ≤ i ≤ n. Hence∑

A⊆S,|A|=i
ρ(A)�=k

(zk−ρ(A) − 1) ≥ ∑
A⊆S,|A|=i+1

ρ(A)�=k

(zk−ρ(A) − 1)
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for d⊥ ≤ i ≤ n. Since

P (M ; z) =
∑

A⊆S
ρ(A)�=k

(−1)|A|(zk−ρ(A) − 1)

=
∑

A⊆S

|A|≤d⊥−1

(−1)|A|(zk−ρ(A) − 1) +
∑

A⊆S,|A|≥d⊥
ρ(A)�=k

(−1)|A|(zk−ρ(A) − 1)

=
d⊥−1∑
i=0

(
n
i

)
(−1)i(zk−i − 1) +

∑
A⊆S,|A|≥d⊥

ρ(A)�=k

(−1)|A|(zk−ρ(A) − 1),

the result follow. �

This Corollary can be applied to give the bounds of the connective probability
p and E(s) for KPSs using codes of d⊥ ≥ #n/2$.

6 Conclusions

In this paper, we calculated the connective probability p, the probability fail(1),
and the upper bound of E(s) for KPSs via general linear codes. We found there
exist some connections between these parameters and the chromatic polynomial
of the matroid associated the linear code used in the construction of the resulting
KPS. These parameters can be calculated as long as the chromatic polynomial of
the matroid associated the linear code can be determined. We think that other
codes can be used to construct better KPS, and it is interesting to find which
codes are best to construct KPSs for WSN.
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A Proofs of Lemma 1 and 2

A.1 Proofs of Lemma 1

Proof. Let

ḠA′ =

⎛⎜⎜⎜⎜⎜⎜⎝

a1i1 a1i2 . . . a1i|a′|
...

...
...

...
aki1 aki2 . . . aki|a′ |

...
...

...
...

aqki1 aqki2 . . . aqki|a′|

⎞⎟⎟⎟⎟⎟⎟⎠.

Suppose all columns of ḠA′ are linearly dependent over Fq, then there exist
|A′| elements, which are not all zero, b1, b2, . . . , b|A′| ∈ Fq such that

b1

⎛⎜⎜⎜⎜⎜⎜⎝

a1i1
...

aki1
...

aqki1

⎞⎟⎟⎟⎟⎟⎟⎠ + b2

⎛⎜⎜⎜⎜⎜⎜⎝

a1i2
...

aki2
...

aqki2

⎞⎟⎟⎟⎟⎟⎟⎠ + · · ·+ b|A′|

⎛⎜⎜⎜⎜⎜⎜⎝

a1i|a′|
...

aki|a′ |
...

aqki|a′|

⎞⎟⎟⎟⎟⎟⎟⎠ = 0.

Hence for all j = 1, 2, . . . , qk, we have

b1aji1 + b2aji2 + · · ·+ b|A′|aji|A′| = 0.

Therefore

b1

⎛⎜⎝ a1i1
...

aki1

⎞⎟⎠ + b2

⎛⎜⎝ a1i2
...

aki2

⎞⎟⎠ + · · ·+ b|A′|

⎛⎜⎝ a1i|a′|
...

aki|a′ |

⎞⎟⎠ = 0.

Hence all columns of GA are linearly dependent over Fq.

Suppose all columns of GA are linearly dependent over Fq. Since any row of
G′ can be denoted by ξG where

ξ=(ξ1, ξ2, . . . , ξk) ∈ Fk
q ,

any row of ḠA′ can also be denoted by ξGA. Since

ξGA = (ξ1, ξ2, . . . , ξk)GA

=ξ1(a1i1 , a1i2 , . . . , a1i|A′|) + ξ2(a2i1 , a2i2 , . . . , a2i|A′|) + · · ·
+ξk(aki1 , aki2 , . . . , aki|A′ |)

=
( k∑

j=1

ξjaji1 ,
k∑

j=1

ξjaji2 , . . . ,
k∑

j=1

ξjaji|A′ |

)
,

and
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b1
k∑

j=1

ξjaji1 + b2
k∑

j=1

ξjaji2 + · · ·+ b|A′|
k∑

j=1

ξjaji|A′ |

=ξ1
|A′|∑
j=1

bja1ij + ξ2
|A′|∑
j=1

bja2ij + · · ·+ ξk

|A′|∑
j=1

bjakij

= 0,

it follows that all columns of ḠA′ are also linearly dependent over Fq. �

A.2 Proofs of Lemma 2

Proof. At first, we give the technique that computing the number of occurrences
of any row vector of ḠA′ in ḠA′ for any A′ ∈ S′.

Let z denote any row of A′. The number of times that a |A′|-tuple z appears
as a row in ḠA′ is equal to the number of ξ such that

ξGA=z

where ξ∈ Fk
q . Since GA has rank ρ(A), this number is qk−ρ(A) for all z. There,

according to the constructing method of C(X,B), we can get the conclusion. �
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Abstract. Sanitizable signatures have been introduced recently to pro-
vide a means for the signer to authorize a censor to modify some parts
of the signed message without the help of the original signer. This paper
presents the following three contributions. (1) We point out the weak-
nesses of Brzuska et al.’s (PKC 2009) and Canard et al.’s (CT-RSA 2010)
constructions respectively. Namely we show that their constructions are
not signer-accountable. (2) We point out the weakness of Brzuska et
al.’s security model (PKC 2009) for sanitizable signatures by showing
some potential attacks neglected in their original model. (3) We present
a stronger security model based on Brzuska et al.’s model and a fully-
secure construction based on both Brzuska et al.’s and Canard et al.’s
constructions. We must note that our proposed construction is much
more practical than prior ones. In detail, the computation costs of sign-
ing, sanitizing and verification algorithm are constant and the signature
size is constant as well.

Keywords: sanitizable signatures, chameleon hashes, provable security.

1 Introduction

Background. Digital signatures are designed to guarantee the integrity of
the released messages. Unforgeability of digital signatures prevents the released
messages from being tampered with. After being introduced, digital signatures
have been studied widely and play an important role in many fields.

However, in certain scenarios, one may wish to legitimately modify a message
signed in advance by another entity without disturbing the original signer for
various purposes. Ateniese et al. [2] have shown us a number of examples in the
real world. For instance, the database administrator may wish to personalize
the commercials signed beforehand by the sponsors in order to guard against
annoying spam at a relatively low cost; a set of signed medical records may
be released for research purposes after some necessary modifications so as to
safeguard the sensitive personal information. For more examples in practice and
more detailed explanations, refer to Ateniese et al.’s original paper [2].

Obviously, plain digital signatures do not work well in such a type of scenarios
since any modification of a signed message (such as personalizing the commercial
� Corresponding author.

X. Lai, M. Yung, and D. Lin (Eds.): Inscrypt 2010, LNCS 6584, pp. 300–317, 2011.
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and de-identifying the medical records) is regarded as a malicious behavior.
Therefore, sanitizable signatures are introduced and designed to provide integrity
as well as flexibility, where the signer is capable of authorizing a censor to sanitize
some admissible parts of the signed message without the knowledge of the private
signing key. Then, after producing the signature by using sanitizable signature
schemes, the signer does not need to engage in any further modification of this
released message. Moreover such a modification is controllable, that is both the
censor and its sanitizing rights are pre-determined by the original signer at the
signing stage. Due to these attractive characteristics, sanitizable signatures are
applicable to those aforementioned scenarios.

Prior Work. At ESORICS 2005, Ateniese et al. [2] are the first to give the
notion of sanitizable signatures with such desirable property. They defined the el-
ementary algorithms of a sanitizable signature scheme and listed five elementary
security requirements, i.e., unforgeability, immutability, privacy, transparency
and accountability. In this paper, a sanitizable signature scheme is said to be
fully secure if it satisfies all these five requirements simultaneously. As a mat-
ter of fact, they only formalized unforgeability in a game-based style. Besides
that, they also proposed the first construction for sanitizable signatures by us-
ing chameleon hashes [24]. However their construction has been shown insecure
definitely by Canard et al. [9] recently.

Nevertheless, so far we know, most subsequent constructions (including ours)
still follow their paradigm. For instance, Klonowski et al. [23] suggested several
extensions of plain sanitizable signatures in [2] to provide a number of addi-
tional desirable features, such as limiting the range of some block, achieving
strong transparency, etc. Afterwards Canard et al. [10] introduced the notion
of trapdoor sanitizable signatures and formalized the security requirements at
ACNS 2008. In addition, they also proposed a generic construction for trapdoor
sanitizable signatures by using identity-based chameleon hashes [3]. Note that
the signer can delegate the rights of sanitizing some message to more than one
entity at any time in their model.

At PKC 2009, Brzuska et al. [6] first introduced another two algorithms, i.e.,
proof and judge algorithm, to give a complete definition of sanitizable signa-
tures, then formalized all the security requirements proposed by Ateniese et al.
[2] and also revealed the relationship between them, that is, transparency im-
plies privacy, accountability implies unforgeability. Also, a generic construction
derived from Ateniese et al.’s [2] was given, which was claimed to be secure in
their proposed formal security model. Especially, they introduced tags that is
either produced by the signer using pseudorandom functions and pseudorandom
generators or chosen randomly by the censor in order to provide accountability.

Recently, at CT-RSA 2010, Canard et al. [9] first analyzed the weakness of
Ateniese et al.’s construction [2] and put forward another construction by in-
troducing an additional sanitizable block as [10] to reach higher efficiency. They
principally extended Brzuska et al.’s security model for plain sanitizable signa-
tures [6] to capture several additional features (most of which were suggested
by Klonowski et al. [23]), pointed out the weaknesses of two constructions of
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Klonowski et al. [23] and proposed three extended sanitizable signature schemes
that are claimed to be secure in their extended security model.

Very recently, at PKC 2010, Brzuska et al. [8] introduced a new security re-
quirement, i.e., unlinkability, and presented a new generic construction based on
group signatures [4,5,12,13,14,15,22], which satisfies this new requirement as well
as five aforementioned elementary requirements. Though their novel construc-
tion reveals a new paradigm for sanitizable signatures, their construction is less
efficient due to the relatively lower efficiency of the underlying group signature
schemes.

Other Related Work. In fact, there are many other definitions, security
models and constructions for sanitizable signatures so far, such as those shown
in [11,17,19,20,21,25,26,27,28,29,31]. In 2008, Yuen et al. [31] summarized and
classified these definitions, models and constructions carefully by state controlla-
bility, sanitized message, designated sanitizer and transparency respectively. For
more details, refer to Yuen et al.’s original paper (see Section 3.4 and Section
5.2 in [31]). During the last two years, a few new definitions, security models
and constructions have been put forward continuously after Yuen et al.’s work
[31], such as [18,1,7]. However these sanitizable signature schemes do not follow
the definition or security requirements of Ateniese et al. [2] and are out of the
scope of our discussion. Hence, in the rest of paper, terminology sanitizable sig-
nature only indicates the sanitizable signature scheme that follows Ateniese et
al.’s definition and security requirements [2] for simplicity.

Our Contributions. To the best of our knowledge, Brzuska et al.’s security
model [6] is the only formal model for sanitizable signatures so far. 1 And the
constructions of Brzuska et al. [6] and Canard et al. [9] are the only two schemes
that are based on chameleon hashes and claimed to be secure in Brzuska et al.’s
formal model. We revisit both this formal security model and these constructions,
and present the following three contributions:

1. Point out the weaknesses of the existing constructions. Compared
with Ateniese et al.’s construction [2], both Brzuska et al.’s [6] and Canard
et al.’s [9] constructions provide more effective accountability. However, we
must point out that, in fact, these two constructions have not reached the
signer-accountability formalized by Brzuska et al. [6] yet. We show an attack
on Brzuska et al.’s construction [6] and another similar attack on Canard
et al.’s [9]. Through these two attacks, we can see that both these two con-
structions allow the adversary to re-use the witnesses generated for other
messages or by other signers to mislead the judge about the origin of the
current controversial message. Hence we name such a type of attacks witness
re-use attack here.

1 As mentioned earlier, Brzuska et al. [8] reinforced the security model in [6] by intro-
ducing a new requirement but the definitions of other five elementary requirements
remain unchanged. Hence we consider that the security model in [6] is the only
formal model for elementary requirements.
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2. Point out the weakness of the existing security model. Brzuska et
al.’s security model [6] offers the designers a powerful formal tool to analyze
the security of sanitizable signature schemes and provides a means to com-
prehend the relationship of these security requirements. Unfortunately, we
realize that their security model is not complete yet. In particular, they do
not take the description ADM (see Section 2) into account and thus their se-
curity model fails to capture the corresponding potential attacks, i.e., rights
forge attack.

3. Provide a stronger model and a provably secure construction. Hav-
ing shown the flaws in the existing constructions and the weakness of the
existing security model, we first expand Brzuska et al.’s security model [6]
to overcome its weakness. Second, we draw lessons from Brzuska et al.’s [6]
and Canard et al.’s [9] constructions and combine them together to conclude
our secure construction. Besides higher security level, our construction also
achieves higher efficiency (including both space and time efficiency). In de-
tail, the computational costs of involved algorithms (signing, sanitizing and
verification algorithm) are constant and the signature size is also constant.
The constant computational costs of algorithms provide not only high re-
sponse speed but also low response jitter, meanwhile the constant signature
size helps to save bandwidth and storage resources and simplifies the imple-
mentation of the scheme as well. Hence our proposed construction is much
more practical than prior ones.

Organization. In the rest of this paper, we first review the definition of san-
itizable signatures as well as some necessary building blocks in Section 2. In
Section 3, we review the security model due to Brzuska et al. [6] and analyze the
constructions of Brzuska et al. [6] and Canard et al. [9] respectively. In Section
4, we present the weakness of Brzuska et al.’s security model. In Section 5, we
provide our stronger security model and an efficient and secure construction with
formal proof. Finally, we conclude the entire paper in Section 6.

2 Preliminaries

We first recall the definition of sanitizable signatures given by Brzuska et al.
[6] and then review the definitions and security notions of digital signatures,
chameleon hashes with tags, pseudorandom functions and pseudorandom gener-
ators respectively.

2.1 Definition of Sanitizable Signatures

Brzuska et al.’s definition [6] involves two important descriptions, i.e., sanitizing
rights ADM and sanitizing instruction MOD. The description ADM consists of the
block length followed by a series of indexes of sanitizable blocks, namely ADM ∈
N × 2N. For simplicity, we abuse the notation i ∈ ADM to denote the fact that
message block mi is sanitizable. Thus the sanitizing instruction is defined as
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follows: MOD = {(i,m′[i]) : ∀i ∈ ADM} where m′[i] is the new content of the i-
th message block. For brevity, let MOD(m) denote the updated message derived
from the original one m according to sanitizing instruction MOD, which is used
to denote the general message modification in [6].

Definition 1 (Sanitizable Signature Scheme). A sanitizable signature
scheme SS is composed of the following seven p.p.t. algorithms:

– Key generation algorithm for signer SigKeyGen takes as input the se-
curity parameter λ and outputs the key pair (ssk, spk) for the signer, that is
(ssk, spk) ← SS.SigKeyGen(1λ).

– Key generation algorithm for censor SanKeyGen takes as input the
security parameter λ and outputs the key pair (csk, cpk) for the censor, that
is (csk, cpk) ← SS.SanKeyGen(1λ).

– Signing algorithm Sign takes as input the message m, the public key cpk
of the censor, the description ADM and the private key ssk of the signer and
outputs a signature σ on this message, that is σ ← SS.Sign(ssk,m, cpk, ADM).

– Sanitizing algorithm Sanitize takes as input the message-signature pair
(m,σ), the public key spk of the original signer, the sanitizing instruction
MOD and the private key csk of the censor and outputs an updated message-
signature pair (m′, σ′), that is (m′, σ′) ← SS.Sanitize(csk,m, σ, spk, MOD).

– Verification algorithm Verify takes as input the message-signature pair
(m,σ), the public key spk of the original signer and the public key cpk of the
censor and outputs a binary bit d ∈ {Valid, Invalid} to indicate whether
(m,σ) is valid or not, that is d← SS.Verify(m,σ, spk, cpk).

– Proof algorithm Prove takes as input the message-signature pair (m,σ),
the public key cpk of the censor, the private key ssk of the original signer
and an internal database DB and outputs a witness π for (m,σ), that is
π ← SS.Prove(ssk,m, σ, cpk,DB).

– Judge algorithm Judge takes as input the message-signature pair (m,σ),
the public key spk of the original signer, the public key cpk of the cen-
sor and the witness π and outputs a binary bit d ∈ {Sig, San} to indi-
cate the actual originator of the given message-signature pair, that is d ←
SS.Judge(m,σ, π, spk, cpk). Note that if π = ⊥, then the judge outputs d =
Sig.

A meaningful sanitizable signature scheme should meet three correctness
requirements: signing correctness means that any well-established message-
signature pair output by SS.Sign should be accepted by SS.Verify; sanitiz-
ing correctness means that any well-established message-signature pair output
by SS.Sanitize should also be accepted by SS.Verify; and proof correctness
means that any well-established witness for any sanitized message should let the
judge accuse the sanitizer. For more precise definitions, refer to [6].

2.2 Building Blocks

Digital Signatures. We recall the definition of digital signatures in Definition
2. Here we follow the security notion of Goldwasser, Micali and Rivest [16],
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i.e., existentially unforgeability against adaptively chosen message attacks (EU-
CMA) and review its notion in Definition 3.

Definition 2 (Digital Signature). A digital signature scheme DS consists of
three p.p.t. algorithms:

– Key generation algorithm KeyGen takes as input the security parameter
λ and outputs the signing key and verification key (sk, vk), which is denoted
by (sk, vk) ← DS.KeyGen(1λ).

– Signing algorithm Sign takes as input the message m and the signing key
sk of the signer and outputs a signature σ on this message, which is denoted
by σ ← DS.Sign(sk,m).

– Verification algorithm Verify takes as input the message-signature pair
(m,σ), the verification key vk of the signer and outputs a binary bit d ∈
{Valid, Invalid} to indicate whether (m,σ) is valid or not, which is denoted
by d← DS.Verify(vk,m, σ).

Definition 3 (EU-CMA). A digital signature scheme DS is said to be (qs, t, ε)-
existentially unforgeable against adaptively chosen message attacks (EU-CMA)
if Pr[ExpEU−CMA(A) = True] ≤ ε for any adversary A after at most qs signing
queries and at most t steps, where ExpEU−CMA is defined as follows.

Experiment ExpEU−CMA(A):

(sk∗, vk∗) ← DS.KeyGen(1λ).

(m∗, σ∗) ← AOSig (1λ, vk∗) where ∀ i ∈ [1, qs], σi ← OSig(mi).

ExpEU−CMA(A) = True iff DS.Verify(vk∗, m∗, σ∗) = Valid and ∀ i ∈ [1, qs], m∗ �= mi.

Chameleon Hashes with Tags. We recall the concept of chameleon hashes
with tags in Definition 4. Here we follow the security notion proposed by Brzuska
et al. [6], that is collision-resistance under random tagging attacks (CR-RTA)
and recall this security notion in Definition 5.

Definition 4 (Chameleon Hashes with Tags). A chameleon hash scheme
CH consists of three p.p.t. algorithms:

– Key generation algorithm KeyGen takes as input the security parameter
λ and outputs the adaptation key and hashing key (ak, hk), which is denoted
by (ak, hk) ← CH.KeyGen(1λ).

– Hashing algorithm Hash takes as input the message m, tag t, randomness
r and the hashing key hk and outputs a hash value h on this message, which
is denoted by h← CH.Hash(hk,m, t; r).

– Adaptation algorithm Adapt takes as input the old message m, the old tag
t, the old randomness r, the new message m, the new tag t and the adaptation
key ak and outputs a new randomness r′ such that CH.Hash(hk,m, t; r) =
CH.Hash(hk,m′, t′; r′), which is denoted by r′ ← CH.Adapt(ak,m, t, r,m′, t′).
Furthermore, it is required that the distribution of r′ is identical to that of r.

Definition 5 (CR-RTA). A chameleon hash scheme CH is said to be (qa, t, ε)-
collision-resistant under random tagging attacks (CR-RTA) if Pr[ExpCR−RTA(A) =
True] ≤ ε for any adversary A after at most qa adaptation queries and at most
t steps, where ExpCR−RTA is defined as follows.
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Experiment ExpCR−RTA(A):

(ak∗, hk∗) ← CH.KeyGen(1λ).

(m, t, r, m′, t′, r′) ← AOAdapt (1λ, hk∗) where

∀ i ∈ [1, qa], (t′i, r′
i) ← OAdapt(mi, ti, ri, m′

i) where

t′i
R← {0, 1}2λ and r′

i ← CH.Adapt(ak∗, mi, ti, ri, m′
i, t′i).

ExpCR−RTA(A) = True iff CH.Hash(hk∗, m, t; r) = CH.Hash(hk∗, m′, t′; r′) and

(t, m) �= (t′, m′) and ∀ i ∈ [1, qa], {(t, m), (t′, m′)} �= {(ti, mi), (t
′
i, m′

i)} and

∀ i, j ∈ [1, qa], {(t, m), (t′, m′)} �= {(t′i, m′
i), (t

′
j , m′

j)}.

Pseudorandom Functions and Pseudorandom Generators. In our con-
struction, we also employ a pseudorandom function PRF : {0, 1}λ × {0, 1}λ →
{0, 1}λ and a pseudorandom generator PRG : {0, 1}λ → {0, 1}2λ as in [6]. We
require that both PRF and PRG are pseudorandom.

Definition 6. Assume that function TRF : {0, 1}λ×{0, 1}λ → {0, 1}λ is a truly
random function. A function PRF is said to be (t, ε)-pseudorandom if∣∣Pr[ATRF = 1]− Pr[APRF = 1]

∣∣ ≤ ε

for any p.p.t. adversary A after at most t steps.

Definition 7. Let U1 be a uniform distribution over {0, 1}λ and U2 be a uniform
distribution over {0, 1}2λ. A function PRG is said to be (t, ε)-pseudorandom if

|Pr[A(PRG(U1)) = 1]− Pr[A(U2) = 1]| ≤ ε

for any p.p.t. adversary A after at most t steps.

3 Cryptanalysis on Previous Constructions

Though both Brzuska et al. [6] and Canard et al. [9] claimed that their construc-
tions are secure in Brzuska et al.’s model [6]. However, we show that it is not
the case. In this section, we first review the security model due to Brzuska et
al. [6]. Then we recall these two constructions and present the attacks on them
respectively.

3.1 Review of Brzuska et al.’s Security Model

When introducing the notion of sanitizable signatures, Ateniese et al. [2] listed
the following five elementary requirements:

– Unforgeability: Any outsider is not able to forge any signature in the name
of either the signer or the censor.

– Immutability: An authorized censor is allowed to sanitize only admissible
blocks pre-determined by the original signer.

– Privacy: No one except the signer and the censor is able to recover the
sanitized message blocks.

– Transparency: No one except the signer and the censor is able to tell whether
the message has been sanitized.
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– Accountability: Any judge is able to reveal the actual originator of the con-
troversial message correctly.

Brzuska et al. [6] formalized these five security requirements in a game-based
style and revealed the relationship of them. Note that they consider two flavors
of accountability. Hence their security model for sanitizable signatures consists
of six definitions corresponding to unforgeability, immutability, privacy, trans-
parency, signer-accountability as well as sanitizer-accountability respectively. In
this paper, a sanitizable signature scheme is said to be fully secure if it meets
all the above requirements. Since transparency implies privacy and the follow-
ing discussion about this security model does not involve this requirement, we
omit the corresponding experiment and definition here. The experiments and
definitions corresponding to other requirements are shown as follows.

Experiment ExpUnf(A):

(ssk∗, spk∗) ← SS.SigKeyGen(1λ), (csk∗, cpk∗) ← SS.SanKeyGen(1λ).

(m∗, σ∗) ← AOSig,OSan,OP rf (1λ, spk∗, cpk∗) where

∀ i ∈ [1, qs], σi ← OSig(mi, cpki, ADMi), ∀ j ∈ [1, qc], (m′
j, σ′

j) ← OSan(mj , σj , spkj , MODj).

ExpUnf(A) = True iff SS.Verify(m∗, σ∗, spk∗, cpk∗) = Valid and

∀ i ∈ [1, qs], (cpk∗, m∗) �= (cpki, mi) and ∀ j ∈ [1, qc], (spk∗, m∗) �= (spkj , m′
j).

Experiment ExpImm(A):

(ssk∗, spk∗) ← SS.SigKeyGen(1λ).

(cpk∗, m∗, σ∗) ← AOSig,OP rf (1λ, spk∗) where ∀ i ∈ [1, qs], σi ← OSig(mi, cpki, ADMi).

ExpImm(A) = True iff SS.Verify(m∗, σ∗, spk∗, cpk∗) = Valid and

∀ i ∈ [1, qs], cpk∗ �= cpki or m∗[ji] �= mi[ji] for some ji /∈ ADMi.

Experiment ExpTrans(A):

(ssk∗, spk∗) ← SS.SigKeyGen(1λ), (csk∗, cpk∗) ← SS.SanKeyGen(1λ), b ← {Sig, San}.
b′ ← AOSig,OSan,OP rf ,OSoS (1λ, spk∗, cpk∗) where

∀ i ∈ [1, qo], (m′
i, σ′

i) ← OSoS(mi, ADMi, MODi) where

m′
i = MOD(mi) and σ′

i = SS.Sign(ssk∗, m′
i, cpk∗, ADMi) if b = Sig, or

σ′
i = SS.Sanitize(csk∗, mi, SS.Sign(ssk∗, mi, cpk∗, ADMi), spk∗, MODi).

ExpTrans(A) = True iff b = b′.

Experiment ExpSanAcc(A):

(ssk∗, spk∗) ← SS.SigKeyGen(1λ).

(cpk∗, m∗, σ∗) ← AOSig,OP rf (1λ, spk∗) where ∀ i ∈ [1, qs], σi ← OSig(mi, cpki, ADMi).

π∗ ← SS.Prove(ssk∗, m∗, σ∗, cpk∗, {(mi, σi)}i∈[1,qs]).

ExpSanAcc(A) = True iff SS.Verify(m∗, σ∗, spk∗, cpk∗) = Valid and

SS.Judge(m∗, σ∗, π∗, spk∗, cpk∗) = Sig and ∀ i ∈ [1, qs], (m∗, cpk∗) �= (mi, cpki).

Experiment ExpSigAcc(A):

(csk∗, cpk∗) ← SS.SanKeyGen(1λ).

(spk∗, m∗, σ∗, π∗) ← AOSan (1λ, cpk∗) where ∀ i ∈ [1, qc], (m′
i, σ′

i) ← OSan(mi, σi, spki, MODi).

ExpSigAcc(A) = True iff SS.Verify(m∗, σ∗, spk∗, cpk∗) = Valid and

SS.Judge(m∗, σ∗, π∗, spk∗, cpk∗) = San and ∀ i ∈ [1, qc], (m∗, spk∗) �= (m′
i, spki).

Definition 8 (Unforgeability). A sanitizable signature scheme SS is said to
be (qs, qc, qp, t, ε)-unforgeable if Pr[ExpUnf(A) = True] ≤ ε for any adversary A
after at most qs signing queries, qc sanitizing queries and qp proof queries and t
steps.
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Definition 9 (Immutability). A sanitizable signature scheme SS is said to be
(qs, qp, t, ε)-immutable if Pr[ExpImm(A) = True] ≤ ε for any adversary A after at
most qs signing queries and qp proof queries and t steps.

Definition 10 (Transparency). A sanitizable signature scheme SS is said to
be (qs, qc, qp, qo, t, ε)-transparent if |Pr[ExpTrans(A) = True] − 1/2| ≤ ε for any
adversary A after at most qs signing queries, qc sanitizing queries, qp proof
queries and qo sig-or-san queries and t steps.

Definition 11 (Sanitizer-Accountability). A sanitizable signature scheme
SS is said to be (qs, qp, t, ε)-sanitizer-accountable if Pr[ExpSanAcc(A) = True] ≤ ε
for any adversary A after at most qs signing queries and qp proof queries and t
steps.

Definition 12 (Signer-Accountability). A sanitizable signature scheme SS
is said to be (qc, t, ε)-signer-accountable if Pr[ExpSigAcc(A) = True] ≤ ε for any
adversary A after at most qc sanitizing queries and t steps.

3.2 Flaw in Brzuska et al.’s Construction

Brief Review of Brzuska et al.’s Construction [6]. We call their con-
struction BFFL from now on and briefly review its as follow:

– BFFL.SigKeyGen acquires a key pair (sk, vk) by running DS.KeyGen and
chooses a random key κ ← {0, 1}λ for pseudorandom function. It outputs
key pair (ssk, spk) = ((sk, κ), vk).

– BFFL.SanKeyGen acquires a key pair (ak, hk) by running CH.KeyGen and out-
puts (csk, cpk) = (ak, hk).

– BFFL.Sign first selects nonce n← {0, 1}λ and computes tag t = PRG(x) where
x = PRF(κ, n). For each i ∈ ADM, it sets h[i]←CH.Hash(hk, (i,m[i], spk), t; r[i])
where r[i] ← {0, 1}λ. For each i /∈ ADM, it sets h[i] ← m[i]. Then it constructs
h by concatenating all h[i] and sets σ = (σ̂, t, n, ADM, {r[i]}) where σ̂ ←
DS(sk, (h, cpk, ADM)).

– BFFL.Sanitize first selects new nonce n′ ← {0, 1}λ and new tag t′ ←
{0, 1}2λ. Then it replaces each r[i] with

r′[i] ← CH.Adapt(ak, (i,m[i], spk), t, r[i], (i,m′[i], spk), t′)

and outputs the updated message and signature.
– BFFL.Verify recovers h and outputs d = DS.Verify(vk, (h, cpk, ADM), σ̂).
– BFFL.Prove searches for tuple (tj , (i,mj [i], spk), rj [i]) in the internal database

DB such that

CH.Hash(hk, t, (i,m[i], spk); r[i]) = CH.Hash(hk, tj , (i,mj [i], spk); rj [i]).

The witness π consists of this tuple and xj ← PRF(κ, nj).
– BFFL.Judge checks whether the witness indicates a non-trivial collision and

tj = PRG(xj). If not, it outputs d← Sig; otherwise it outputs d← San.
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Witness Re-use Attack on Brzuska et al.’s Construction. Here we show
that the adversary can always win the experiment ExpSigAcc (see Definition 12)
by re-using the witness. In this attack, the adversary A acts as a signer holding
a key pair (ssk∗, spk∗) chosen by itself and does as follows:

1. construct a message-signature pair (m,σ) under spk∗ such that only the i-th
block is sanitizable,

2. make a sanitizing query (m,σ, spk∗, MOD) where MOD = {(i,m′[i])} and get
an updated message-signature pair (m′, σ′),

3. produce a valid witness π = (t, (i,m[i], spk∗), r[i], x) for this updated pair
(m′, σ′) using ssk∗ and keep track of t′ and r′[i] in σ′,

4. create a new message m∗ �= m′ but m∗[i] = m′[i] and i ∈ ADM∗, and sign this
message using t′ and r′[i] to obtain new signature σ∗,

5. output (spk∗,m∗, σ∗, π) to the challenger.

First, it is obvious that the message-signature pair (m∗, σ∗) is valid since the
signature is produced by using correct signing key ssk∗. Then we can see that
the simulator who acts as a censor has never created the signature on message
m∗ due to the fourth step. Thirdly, the witness is acceptable since the tuples
(t, (i,m[i], spk∗), r[i]) and (t′, (i,m′[i], spk∗), r′[i]) still form a valid collision in
the current setting and x remains unchanged. Hence the adversary always wins
the experiment ExpSigAcc. This witness re-use attack means that the signer can
release any message containing block m′[i] without being responsible for it once
the censor has replaced m[i] with m′[i] using its private key.

3.3 Flaw in Canard et al.’s Construction

Review of Canard et al.’s construction [9]. We call their construction
CJ from now on and briefly review it as follow. Note that they use chameleon
hashing without tags here.

– CJ.SigKeyGen and CJ.SanKeyGen work as BFFL.SigKeyGen and
BFFL.SanKeyGen respectively.

– CJ.Sign first selects nonce n ← {0, 1}λ and computes tag t = PRG(x) where
x = PRF(κ, n). For each i ∈ ADM, it sets h[i] ← CH.Hash(hk, i||m[i]; r[i])
where r[i] ← {0, 1}λ. For each i /∈ ADM, it sets h[i] ← i||m[i]. Then it sets
hc ← CH.Hash(hk,m||t; rc) where rc ← {0, 1}λ. Next it constructs h by
concatenating all h[i] as well as hc, and sets σ = (σ̂, t, n, ADM, {r[i]}, rc) where
σ̂ ← DS(sk, h||cpk).

– CJ.Sanitize first selects new nonce n′ ← {0, 1}λ and new tag t′ ← {0, 1}2λ.
Then replace r[i] with r′[i] ← CH.Adapt(ak, i||m[i], r[i], i||m′[i]) for all i ∈ ADM
and m[i] �= m′[i], and substitute rc for r′c ← CH.Adapt(ak,m||t,m′||t′, rc). It
outputs the updated message and signature.

– CJ.Verify recovers h and outputs d = DS.Verify(vk, h||cpk).
– CJ.Prove searches for (ti||mi, rc,i) in the internal database DB such that

CH.Hash(hk, t||m; rc) = CH.Hash(hk, ti||mi; rc,i). The witness π consists of
(spk, ti,mi, rc,i) and xi ← PRF(κ, ni).

– CJ.Judge checks whether the witness indicates a legal collision and ti ←
PRG(xi). If not, it outputs d← Sig; otherwise it outputs d← San.
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Witness Re-use Attack on Canard et al.’s Construction. Similarly, we
show that the adversary can always win the experiment ExpSigAcc (see Definition
12) by re-using the witness. On this occasion, adversaryA acts as a signer holding
two distinct key pairs (ssk, spk) and (ssk∗, spk∗) chosen by itself. Then it does
as follows:

1. construct a message-signature pair (m,σ) under the public key spk,
2. make a sanitizing query (m,σ, spk, MOD) and get an updated message-

signature pair (m′, σ′),
3. produce a valid witness π for this updated pair (m′, σ′) using ssk,
4. replace σ̂′ in σ′ with the signature on h||cpk∗ under another public key spk∗

to obtain a new signature σ∗,
5. replace spk in π with spk∗ to produce π∗ and output (spk∗,m′, σ∗, π∗) to

the challenger.

First, it is obvious that the message-signature pair (m∗, σ∗) is valid since the
signature is produced by using correct signing key ssk∗. Then we can see that the
simulator who acts as a censor has never sanitized the the message signed under
spk∗. Thirdly, the witness is acceptable since the tuples (t||m, rc) and (t′||m′, r′c)
still form a valid collision in the current setting and x remains unchanged. Hence
the adversary always wins the experiment ExpSigAcc. This witness re-use attack
means that the signer can release message m′ without being responsible for it
once the censor has released the same message signed by another signer and
corresponding witness is available.

3.4 Lesson and Countermeasure

We have shown the attacks on BFFL and CJ respectively. In both attacks, the
re-use of the witness results from the re-use of the collision found by the censor
in the sanitizing stage. It is because that the collision is actually independent
of the entire message (in the attack on BFFL) or the identity of the signer (in
the attack on CJ). It is easy to overcome this flaw by hashing both the entire
message and also the signer’s identity (e.g., signer’s public key) when producing
each hi for i ∈ ADM in BFFL or computing hc in CJ. Note that this modification
can also be applied to the extensions of CJ in [9] directly.

4 Weakness of Brzuska et al.’s Security Model

Brzuska et al. [6] proposed the first and sole formal security model for saniti-
zable signatures. However their security model neglects the importance of the
description ADM that indicates the sanitizing rights of the authorized censor. In
this section, we present a type of potential attacks and explain its harmfulness.

4.1 Potential Attacks: Rights Forge Attacks

We first consider as an example the experiment ExpUnf (see Definition 8). The
adversary wins the experiment if it produces a correct pair (m∗, σ∗) and it holds
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that (cpk∗,m∗) �= (cpki,mi) for all i and (spk∗,m∗) �= (spkj ,m
′
j) for all j.

Assume there exists an adversary who outputs another valid pair such that
(cpk∗,m∗) = (cpki,mi) for some i but ADM∗ �= AMDi or (spk∗,m∗) = (spkj ,m

′
j)

for some j but ADM∗ �= AMDj . Obviously, this adversary fails in this experiment
according to the definition, but it may actually have benefited from this attack.
Similar attacks also exist in the formal model for immutability as well as two
flavors of accountability. In a word, this model does not consider the attack
that the description of sanitizing rights is modified maliciously by the adversary.
Here we call this type of attacks rights forge attack in terms of unforgeability
(immutability, signer-accountability or sanitizer-accountability).

4.2 Rights Forge Attacks Are Harmful

In Ateniese et al.’s work [2], they actually mentioned two flavors of transparency,
i.e., weak and strong transparency. To be precise, these are two different levels
of transparency.

A sanitizable signature scheme with strong transparency does not reveal
the sanitizing rights of the censor (i.e., the description ADM) to the verifier.
For instance, one of Klonowski et al.’s extensions [23] achieves strong trans-
parency. In addition, Agrawal et al. [1] gave two constructions with strong trans-
parency based on Waters signature scheme [30] recently. Generally speaking,
transparency always means weak one, which allows the sanitizing rights of the
censor to be revealed to the verifiers. Ateniese et al.’s [2], Brzuska et al.’s [6] and
Canard et al.’s [9] constructions are all weak transparent. Of course, Brzuska et
al.’s security model is also for weak transparency.

Due to its visibility, the description ADM should also be considered as an in-
dispensable element of the information released by the signer in such a case. In
[6], Brzuska et al. said that a sanitized message block may be less valuable if
the outsider knows the fact that this block has been sanitized, which is one of
the reasons why transparency is necessary. Similarly, the fact that some block is
sanitizable may also make this message block less valuable. It is clear that ADM
that has been tampered with can color the outsider’s judgement on the use value
of certain message block. Hence any modification of ADM should also be regarded
as a malicious behavior and captured by the security model.

In terms of signer-accountability, both Brzuska et al.’s [6] and Canard et
al.’s [9] constructions actually suffer from rights forge attacks. The attacks are
similar with witness re-use attacks shown before except that the adversary will
not change the message itself and signer’s public key in this case. On the other
hand, they can resist rights forge attacks in terms of other experiments, since
they always signs ADM. However we must note that the conceptual weakness of
formal model may lead to a provably secure construction that is actually not.

5 Expanded Security Model and Improved Construction

Having shown the flaws in the existing constructions [6,9] and the weakness of
the existing security model [6], we first expand Brzuska et al.’s security model to
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overcome the weakness of the original model and then present an efficient con-
struction based on Brzuska et al.’s [6] and Canard et al.’s [9], which is provably
secure in our expanded security model.

5.1 Expanded Security Model for Sanitizable Signatures

To expand Brzuska et al.’s model, we still follow the style of the original security
model and only refine the criteria of adversary’s success in experiment ExpUnf,
ExpImm, ExpSanAcc and ExpSigAcc respectively as follows.

ExpUnf(A) = True iff SS.Verify(m∗, σ∗, spk∗, cpk∗) = Valid and

∀ i ∈ [1, qs], (cpk∗, m∗, ADM
∗

) �= (cpki, mi, ADMi ) and

∀ j ∈ [1, qc], (spk∗, m∗, ADM
∗ ) �= (spkj , m′

j , ADMj ).

ExpImm(A) = True iff SS.Verify(m∗, σ∗, spk∗, cpk∗) = Valid and

∀ i ∈ [1, qs], (cpk∗, m∗[ji], ADM
∗ ) �= (cpki, mi[ji], ADMi ) for some ji /∈ ADMi.

ExpSanAcc(A) = True iff SS.Verify(m∗, σ∗, spk∗, cpk∗) = Valid and

SS.Judge(m∗, σ∗, π∗, spk∗, cpk∗) = Sig and ∀ i ∈ [1, qs], (m∗, cpk∗, ADM
∗

) �= (mi, cpki, ADMi ).

ExpSigAcc(A) = True iff SS.Verify(m∗, σ∗, spk∗, cpk∗) = Valid and

SS.Judge(m∗, σ∗, π∗, spk∗, cpk∗) = San and ∀ i ∈ [1, qc], (m∗, spk∗, ADM
∗ ) �= (m′

i, spki, ADMi ).

Here we use box to indicate the new criteria added to Brzuska et al.’s original
model [6]. Obviously, our expanded security model captures rights forge attacks
successfully, since any illegal ADM∗ will also lead to the success of A.

According to this expanded model, the relationship of these five elementary
security requirements still follow the results of Brzuska et al. [6], that is trans-
parency implies privacy, and signer- and sanitizer-accountability implies unforge-
ability. The formal proofs of these results are much the same as those for the
original model. In addition, it is also easy to see that our expanded model implies
the original one [6].

5.2 Our Improved Construction: SS+

Our construction SS+ is a modification of BFFL [6] and CJ [9]. Besides the im-
provement shown in Section 3.4, we now no longer hash each message block sepa-
rately so as to provide higher efficiency. In this regard, our strategy is similar with
those in [7,8]. However the former employs plain digital signature scheme and
the latter adopts group signature scheme, while our construction uses chameleon
hashes.

Let ”||” denote the concatenation of two bit strings. Here we require that any
string formed by concatenating two or more sub-strings is recoverable, that is
one can recover all the original sub-strings exactly. In addition, for each message
m = m[1]||m[2]|| · · · ||m[l], we define m̄ ← i1||m[i1]|| · · · ||iμ||m[iμ] for all ik ∈
ADM, where 1 ≤ k ≤ μ, and m̃ ← j1||m[j1]|| · · · ||jν ||m[jν ] for all jk /∈ ADM,
where 1 ≤ k ≤ ν. Note that μ + ν = l. We describe our construction SS+ as
follows.
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– SS+.SigKeyGen takes as input the security parameter λ and does as follows:
1. (sk, vk) ← DS.KeyGen(1λ);
2. choose κ←R {0, 1}λ;

and outputs the key pair (ssk, spk) = ((sk, κ), vk).
– SS+.SanKeyGen takes as input the security parameter λ and does as follows:

(ak, hk) ← CH.KeyGen(1λ) and outputs the key pair (csk, cpk) = (ak, hk).
– SS+.Sign takes as input the message m, the public key cpk = hk, description

ADM and the private key ssk = (sk, κ) and does as follows:
1. choose n←R {0, 1}λ and r ←R {0, 1}λ, and compute x← PRF(κ, n) and

t← PRG(x);
2. set h← CH.Hash(hk, spk||m̃||m̄, t; r);
3. σ̂ ← DS.Sign(sk, cpk||m̃||h);

and outputs signature σ = (σ̂, ADM, n, t, r). Finally, it inserts this pair (m,σ)
into the internal database DB.

– SS+.Sanitize takes as input the message-signature pair (m,σ) where σ =
(σ̂, ADM, n, t, r), the public key spk, the sanitizing instruction MOD and the
private key csk = ak and does as follows:
1. check whether SS+.Verify(m,σ, spk, cpk) = Valid, if not abort;
2. choose n′ ←R {0, 1}λ and t′ ←R {0, 1}2λ;
3. let m′ = MOD(m) and construct m̄′ = i1||m′[i1]|| · · · ||iμ||m′[iμ];
4. r′ ← CH.Adapt(ak, spk||m̃||m̄, t, r, spk||m̃||m̄′, t′);

and outputs the new pair (m′, σ′) = (MOD(m), (σ̂, ADM, n′, t′, r′)).
– SS+.Verify takes as input the pair (m,σ) where σ = (σ̂, ADM, n, t, r), the

public key spk = vk and the public key cpk = hk, and reconstruct m̄, m̃ and
h as SS+.Sign does and outputs d = DS.Verify(cpk||m̃||h, σ̂, vk).

– SS+.Prove takes as input the pair (m,σ), the public key cpk = hk, the
private key ssk = (sk, κ) and the internal database DB = {(mi, σi)} and
does as follows:
1. for (m,σ) where σ = (σ̂, ADM, n, t, r), reconstruct m̄ and m̃;
2. for (mi, σi) ∈ DB where σi = (σ̂i, ADMi, ni, ti, ri), reconstruct m̄i and

m̃i;
3. search for a message-signature pair (mπ, σπ) with tπ, rπ , nπ, m̄π and m̃π

such that tπ = PRG(xπ) where xπ = PRF(κ, nπ) and

CH.Hash(hk, spk||m̃||m̄, t; r) = CH.Hash(hk, spk||m̃π||m̄π, tπ; rπ); (1)

and outputs witness π = (spk||m̃π||m̄π, tπ, rπ, xπ) or ⊥ if the search fails.
– SS+.Jdg takes as input the pair (m,σ), the public key spk, the public key

cpk = hk and the witness π = (spk||m̃π||m̄π, tπ, rπ , xπ) and does as follows:
1. if π = ⊥, output d← Sig;
2. reconstruct m̄ and m̃ for m, and check whether Eq. (1) holds and tπ =

PRG(xπ). If so, output d← San, if not, still return d← Sig.

It is trivial to demonstrate that the following construction meets all the cor-
rectness requirements recalled in Section 2.1. We must note that both m̃ and
m̄ actually include ADM since they contain the indexes of all admissible or all
inadmissible blocks and operation ”||” is recoverable.
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5.3 Security Analysis

Now we show that our construction SS+ is immutable (Theorem 1), transparent
(Theorem 2), sanitizer-accountable (Theorem 3) and signer-accountable (The-
orem 4) and thus unforgeable and private according to the relationship of ele-
mentary requirements [6]. Hence our proposed construction is fully secure in our
expanded security model. Due to the lack of space, we omit the formal proofs of
these theorems. Indeed, the core idea is the same as [6].

Theorem 1. Assume that DS is (qs, t, ε)-existentially unforgeable against chosen
message attacks, SS+ is (q′s, qp, t

′, ε′)-immutable where qs = q′s, t = t′+O(q′s+qp)
and ε = ε′.

Theorem 2. Assume that PRF is (t1, ε1)-pseudorandom and PRG is (t2, ε2)-
pseudorandom, SS+ is (qs, qc, qp, qo, t, ε)-transparent where t1 = t +O(qs + qc +
qp + qo), t2 = t +O(qs + qc + qp + qo) and ε ≤ ε1 + ε2.

Theorem 3. Assume that DS is (qs, t, ε)-existentially unforgeable against chosen
message attacks, SS+ is (q′s, qp, t

′, ε′)-sanitizer-accountable where qs = q′s, t =
t′ +O(q′s + qp) and ε = ε′.

Theorem 4. Assume that CH is (qa, t, ε)-collision-resistant under random tag-
ging attacks, SS+ is (qc, t

′, ε′)-signer-accountable where qa = qc, t = t′ + O(qc)
and ε = ε′ − qc2−λ.

5.4 Efficiency Analysis

Now we compare our improved construction SS+ with BFFL [6] and CJ [9] in terms
of both space and time efficiency, all of which follow the paradigm of Ateniese et
al. [2] and are based on chameleon hashes. Brzuska et al.’s group signature-based
construction in [8] achieves additional security property (i.e., unlinkability), but
sacrifices its efficiency (due to relatively low efficiency of the underlying group
signatures [4,13,14,15,22]). Hence we do not consider this group signature-based
construction in the following discussion on efficiency.

We assume that the message to be signed consists of l blocks, ls = |ADM|
blocks are sanitizable and lm blocks are actually sanitized (i.e. all block i such
that m[i] �= m′[i]). When it comes to the space efficiency, we focus on the number
of random values in the resulting signatures since other portions of the signa-
tures are identical. When we talk about the time efficiency, we only consider the
number of hashing operations involved in algorithm Sign and Verify and the
number of adaptation operations involved in algorithm Sanitize because other
corresponding computational costs of these three constructions are identical. The
comparison is shown in Table 1.

Space efficiency. It is obvious that the signature size of SS+ is much shorter.
The most important point is that the signature sizes of both BFFL and CJ depend
on ls, while that of SS+ is constant. As mentioned above, the decisive factor is
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Table 1. Comparison between our proposal and the related schemes

Schemes Number of Number of Hashing or Adaptation
Random Values Sig(Hashing) San(Adaptation) Vfy(Hashing)

BFFL [6] ls ls ls ls
CJ [9] ls + 1 ls + 1 lm + 1 ls + 1
SS+ 1 1 1 1

the number of random values. Especially, each signature of BFFL has ls random
values, that of CJ has ls+1 random values and SS+ produces signatures with only
one random value. Short and constant signature size not only saves bandwidth
and storage resources but also simplifies the implementation of our construction.
Hence our construction is applicable to some bandwidth-restricted or storage-
restricted scenarios such as wireless network.

Time efficiency. It is also clear that the algorithms of SS+ are much faster
either. Namely the costs of the signing, sanitizing and verification algorithms
of SS+ are constant. By contrast, the costs of these algorithms of BFFL and CJ
are dependent on ls or lm respectively. To our best knowledge, both the hashing
and the adaptation algorithm of chameleon hashes (with tags) schemes are still
expensive, which is non-negligible in general. Hence our construction provides
very high response speed. On the other hand, constant computational cost also
provides low response jitter. Therefore our construction is applicable to batch
processing such as de-identifying thousands of medical records or other real-time
system such as personalizing commercials in a multimedia database.

6 Conclusion

In this paper, we have pointed out the flaws in Brzuska et al.’s and Canard
et al.’s construction as well as the weakness of Brzuska et al.’s security model.
Furthermore, we expand Brzuska et al.’s security model to capture potential at-
tacks and thus overcome the weakness of the original model. Meanwhile, we also
provide an improved construction for sanitizable signatures based on previous
techniques, which not only fulfills all the security requirements defined in our
expanded model but also achieves higher space and time efficiency.
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Abstract. In this paper, we point out that previous security models for
the Designated Verifier Signature (DVS) are not sufficient because some
serious problems may be caused such that the verifier cannot confirm
the validity of the signature even if a scheme satisfies previous security
models. Hence, our aim is to clarify rigorous security requirements for
the DVS. We use the universal composability (UC) framework. First, we
define an ideal DVS functionality within the UC framework. Next, we
propose a new security model for the DVS and show that it is necessary
and sufficient by proving the equivalence between the DVS functionality
and the proposed model. By our reconsideration, it emerges that the DVS
requires stronger unforgeability than previous definitions but privacy of
signer’s identity considered in previous definitions is unnecessary. Finally,
we revisit the security of previous DVS schemes according to our rigorous
security model. Then, we justify the DVS functionality in feasibility by
showing some DVS schemes can satisfy the proposed model.

Keywords: designated verifier signature, strong unforgeability, univer-
sally composable security.

1 Introduction

Background. Digital signature schemes provide the authentication of a signer
by the public verification of the signature and are widely used in many kinds
of cryptographic protocols. On the other hand, in some application, it may be
preferable that the signature cannot be verified publicly. According to this mo-
tivation, the Designated Verifier Signature (DVS) was introduced in 1996 by
Jakobsson, Sako and Impagliazzo [1]. In DVS schemes, a signer designates a ver-
ifier and only the designated verifier is able to verify the validity of signatures.
The DVS is useful for fair e-businesses where a signer expects that the validity of
the signature is confirmed by only a specific person but cannot be confirmed by
others. Specifically, we consider the situation that a company A offers a service
to a client X for a price with the signature of the content of the offer. A does
not hope that the validity of the signature is confirmed by a person except A,
much less is confirmed by a competitor B. If B can verify the signature, X may
� Presently with FUJITSU LABORATORIES LTD.

X. Lai, M. Yung, and D. Lin (Eds.): Inscrypt 2010, LNCS 6584, pp. 318–335, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Rigorous Security Requirements for Designated Verifier Signatures 319

leak A’s offer in order to obtain better price of an offer from B. By using the
DVS, A is able to prevent the leak of A’s offer because B cannot confirm the
validity of the signature.

The DVS is classified into two types. One is called the ordinary DVS [1,2, 3,
4, 5, 6, 7, 8, 9, 10]. In the ordinary DVS, a person except the designated verifier
cannot confirm that a signature is exactly generated by the signer, but third
parties can know that either the signer or the designated verifier generates the
signature (i.e., the signature is related to secret keys of either the signer or the
designated verifier). This property is defined as non-transferability or deniabil-
ity. By allowing the designated verifier to generate a dummy signature which is
indistinguishable with an original signature generated by the signer for the same
message, any third party cannot distinguish whether a signature is generated by
the signer or the designated verifier even if the designated verifier reveals his
secret key. The other is called the strong DVS [11, 12, 13, 14, 15, 16, 17]. In the
strong DVS, anyone except the designated verifier cannot know any information
about the signer from the signature. That is, third parties cannot even narrow
the candidate of the signer to two entities. Thus, the strong DVS can guarantee
stronger privacy of the validity of the signature than the ordinary DVS. The for-
mal difference between the ordinary DVS and the strong DVS will be described
in Section 2.

Motivating Problem. In previous works, various security models of the DVS
were proposed and it seems that there is no exact consensus. Since the DVS is a
kind of digital signature schemes, unforgeability is indispensable property and all
of known DVS schemes are proved (or claimed) to satisfy unforgeability. Most of
previous works defined unforgeability based on existential unforgeability against
chosen message attacks (EUF-CMA) studied in the context of digital signature.
In EUF-CMA, the forger is allowed to pose signing queries for chosen messages,
but the forger is prohibited to output a valid signature as the forged signature
for a message previously posed by any signing query. For the context of digital
signature, this definition has no problem practically. However, is this definition
also appropriate for the context of the DVS?

Unfortunately, our answer is negative. We can show that only EUF-CMA for
the DVS cannot prevent some serious problems as follows:

Case of the ordinary DVS. EUF-CMA cannot guarantee strong existential
unforgeability (i.e., the forger cannot forge a valid signature of a message
(m∗, σ∗) even when the forger obtains the other valid signature of this mes-
sage (m∗, σ)) [18]. Thus, the forger may play strong forgery attack, that
is, generating (m∗, σ∗) from (m∗, σ). On the other hand, in order to guar-
antee non-transferability, a designated verifier needs to be able to output
a dummy signature which is indistinguishable from an original signature
for the same message. We consider a situation that the designated verifier
outputs a dummy signature of a message (m,σD) and the forger outputs
forged signatures of this message (m,σ∗) by strong forgery attack using
the dummy signature. After that, even if the signer generates an original
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signature of this message, the designated verifier cannot confirm that the
signer exactly generates a signature for m because the designated verifier
cannot decide whether the original signature is contained in the valid signa-
tures or not. Thus, completeness of the DVS may be lost.1

Case of the strong DVS. The strong DVS does not necessarily allow the
designated verifier to generate dummy signatures because anonymity of the
signer has to be guaranteed without dummy signatures. Thus, the problem in
the above case of the ordinary DVS may not occur as long as the designated
verifier does not generate dummy signatures. But, we can show that EUF-
CMA is also insufficient for the strong DVS because of another problem of
non-repudiation. Non-repudiation is essential property of signature schemes,
that is, the verifier of a correctly generated signature of a message can hold
the signer responsible to the contents of the message. In the strong DVS,
the signer should be responsible to the contents of a message for a specific
designated verifier, but the signer does not need to have responsibility to the
contents of this message for other people. However, since EUF-CMA does
not guarantee unforgeability for multiple verifiers (i.e., the forger cannot
forge a valid signature of a message (m,σ∗) for a designated verifier V ∗ even
where the forger obtains the other valid signature of this message (m,σ) for
another designated verifier V ), the forger may generate valid signatures of
the same message m for multiple verifiers (V ∗ and V ). Then, though the
signer hopes that he is responsible to m for only V , the signer is plunged
into responsible to m for also V ∗ because there is a valid signature of m for
V ∗. Thus, non-repudiation of the DVS may be lost.

Therefore, EUF-CMA is insufficient for both the ordinary DVS and the strong
DVS, and at least strong existential unforgeability for multiple verifiers is re-
quired for the DVS.

Our Contribution. Our first contribution is to show the defect of (most of)
previous security models clearly as in the above motivating problem. By this
result, we can see that DVS schemes have to satisfy strong existential unforge-
ability. Then, our next question is what are necessary and sufficient security
requirements for the DVS. Thus, in this paper, we will clarify such rigorous
security requirements for the DVS as follows:

1. We define an ideal DVS functionality within the universal composability
(UC) framework [19]. The UC framework enables to guarantee that the com-
posed protocol is secure in the sense of the framework if each building block
is modularized and all modules satisfy UC security respectively. We say a
scheme is UC secure if the scheme is indistinguishable from the ideal world

1 One may think that the designated verifier should ignore any other signature on a
message which he has created a dummy signature on the same message. However,
in this case, the designated verifier cannot generate dummy signatures on messages
which the signer may generate an original signature. For such an important message,
non-transferability is not guaranteed. Thus, the problem cannot be solved by this
counter.
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containing the ideal functionality. Since the ideal functionality is defined
to represent essential function and security of the protocol, we can capture
the essence of security requirements of the DVS naturally. We define DVS
functionalities for both the ordinary DVS and the strong DVS respectively
because of the difference between functions of them. As far as we know, our
functionalities are first ideal DVS functionalities.

2. Based on the proposed DVS functionalities, we propose a new security model
for the DVS. The proposed model is designed to be equivalent with the DVS
functionalities. Thus, we also have to consider different models for both
the ordinary DVS and the strong DVS respectively. We prove the equiv-
alence between the proposed model and the DVS functionality. As a result,
we clarify that the ordinary DVS has to satisfy strong unforgeability, non-
transferability and non-coincidental property, and the strong DVS has to sat-
isfy strong unforgeability, non-transferability and private decidability. That
is, previous models are lacking in unforgeability but are surplus to privacy of
signer’s identity because private decidability is exactly weaker than privacy
of signer’s identity.

3. Regardless of the equivalence, if there was no scheme realizing the proposed
functionalities, the functionalities would be meaningless. Hence, we show
that there are some previous schemes realizing the proposed functionalities in
order to justify the formulation of them. Specifically, we show that the ordi-
nary DVS scheme by Lipmaa et al. [3] satisfies the proposed model for the or-
dinary DVS and the strong DVS scheme by Laguillaumie and Vergnaud [12]
satisfies the proposed model for the strong DVS. By the equivalence, these
schemes can realize the proposed functionalities and so our functionalities
are reasonable.

Related Works. Security requirements of the DVS have been studied in many
literatures.

Laguillaumie and Vergnaud [12] firstly defined the notion of privacy of signer’s
identity for the strong DVS. Privacy of signer’s identity requires that for any
distinguisher and a chosen message m a signature σ0 signed by a signing key SK0

of m to a designated verifier V er cannot be distinguishable from a signature σ1

signed by another signing key SK1 of m to V er. Thus, the anonymity property of
the strong DVS can be guaranteed by privacy of signer’s identity. In this paper,
we will show that private decidability which is weaker than privacy of signer’s
identity is enough to guarantee the anonymity property of the strong DVS.

Lipmaa et al. [3] introduced the notion of non-delegatability. Non-delegatability
requires that the signer cannot delegate his signing ability with respect to a des-
ignated verifier to a third party, without revealing his secret key or making it pos-
sible for the third party to sign with respect to other designated verifiers. This
property is useful for many applications of the DVS. However, it is not crucial for
the DVS because there is a case that delegatability is useful, e.g., using the DVS
with a proxy. The aim of this paper is to clarify (crucially) necessary and sufficient
requirements for the DVS. Thus, we deal with non-delegatability as outside the
scope of this work.
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2 Preliminaries

In this section, we recall the model of the DVS. Due to space limitations, we
cannot explain the UC framework. Please see [19].

In the DVS, a signature has to be regarded as to be valid if the designated
verifier convinces that the signature is correctly generated by the signer. Unlike
basic digital signatures, the verification procedure may not complete only if the
signature is accepted by the verification algorithm, especially in the ordinary
DVS. Thus, we can generally model the verification of a signature by dividing
two procedures: Decision and Distinction. By Decision, the signature is checked
whether it is accepted by a decision procedure2. By Distinction, the accepted
signature is checked whether it is exactly generated by the signer. In this paper,
we call a signature which is accepted by Decision an acceptable signature, and
a signature which is acceptable and generated by the signer a valid signature.
The verification of a signature completes if the signature is valid by performing
Decision and Distinction.

In the ordinary DVS, to guarantee non-transferability the verifier can also
generate an acceptable signature for any message. We call such an acceptable
signature a dummy signature, while we call an acceptable signature generated by
a signer an original signature. Only the original signature must be confirmed as
the valid signature. Any third party should be unable to distinguish the original
signature from dummy signatures. Even if a third party knows that a signature
is acceptable by Decision, he is unable to confirm whether the signature is the
original signature or a dummy signature. Thus, the third party is unable to verify
the validity of the signature, while the verifier can decide whether the signature
is the original signature by using his own list of dummy signatures generated
by himself. Also, the verifier cannot convince a third party the validity of any
signature because the signature may be generated by the verifier even if the
verifier leaks his secret key. Hence, non-transferability is guaranteed.

In several DVS schemes [1,2,3,5,10], anyone can perform the decision proce-
dure. Thus, anyone can know that an acceptable signature is generated by the
signer or the designated verifier. But, any third party cannot confirm the validity
of a signature because he cannot perform Distinction. We call such DVS schemes
the ordinary DVS. On the other hand, the strong DVS [11,12,14] allows only the
verifier to perform the decision procedure. In the strong DVS, any third party
cannot know even that a signature is generated by the signer or the designated
verifier. In this paper, we call this property private decidability. Owing to private
decidability, the verifier need not be able to generate dummy signatures, that is,
Distinction finishes when Decision finishes.

Definition 1 (Model of Ordinary DVS). An ordinary DVS scheme consists
of following seven algorithms.

Common parameter generation (SetUp) : A probabilistic algorithm, on input k,
which outputs the public parameters params.

2 This procedure corresponds to the verification process whether the signature is gen-
erated with correct secret key of the signer in the basic digital signature.
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Signer’s key generation (SKeyGen) : A probabilistic algorithm, on input params,
which outputs the signer’s public and secret key PKs and SKs.

Verifier’s key generation (VKeyGen) : A probabilistic algorithm, on input
params, which outputs the verifier’s public and secret key PKv and SKv.

Designated signing (DSign) : An algorithm, on input params, a message m, the
signer’s secret key SKs and the verifier’s public key PKv, which outputs an
original signature σ.

Transcript simulation (TSim) : An algorithm, on input params, a message m,
the signer’s public key PKs and the verifier’s secret key SKv, which outputs
a dummy signature σ′.

Decision (Decision) : A deterministic algorithm, on input params, a message
m, a signature σ, and public keys PKs and PKv, which outputs accept or
reject.

Distinction (Dist) : A deterministic algorithm, on input a pair of the message
and the acceptable signature (m,σ), which outputs valid or invalid.

Definition 2 (Model of Strong DVS). A strong DVS scheme consists of
following seven algorithms. SetUp, SKeyGen, VKeyGen, DSign, TSim, Dist are
the same as the ordinary DVS.

Decision (Decision) : A deterministic algorithm, on input params, a message
m, a signature σ, public keys PKs and PKv, and the verifier’s secret key
SKv, which outputs accept or reject.

3 Designated Verifier Signature Functionality

In this section, we define an ideal DVS functionality within the UC framework.

3.1 Basic Idea

First, we show the basic idea of defining the DVS functionality.

KeyGen. When the functionality receives a Signer’s Key Generation request
from some party Pi, it issues a signer’s public key pki for Pi and records
the fact that Pi is a signer and Pi’s public key is pki. For a Verifier’s Key
Generation, the DVS functionality proceeds as above except that it records
that the party is a verifier.

Signing. Upon receiving a signing request on a message m, the functionality
issues a signature σ. The functionality receives signing request from not only
the signer but also the verifier. Then, the functionality records the fact that
σ is surely issued on m in the “Signature List” with which the signer or the
verifier the functionality outputs (m,σ) to.

Verification. Upon receiving a verification request, the functionality outputs
the results of the verification by using the Signature List. In the DVS, there
are two kinds of verification requests: Decision and Dist. For a Decision re-
quest, the functionality outputs accept if (m,σ) is recorded in the Signature



324 K. Yoneyama, M. Ushida, and K. Ohta

List, otherwise outputs reject. For a Dist request, the functionality outputs
valid for only (m,σ) which is recorded in the Signature List and is issued to
the signer. In order to designate the verifier, the functionality outputs such
a verification result to only the verifier.
There are two kinds of the DVS: the ordinary DVS and the strong DVS. In
the ordinary DVS, for Dist requests the functionality outputs the verification
result to only the verifier, but for Decision requests the functionality outputs
the verification result for any party. Else, in the strong DVS, for both Decision
and Dist requests, the functionality outputs the verification result to only the
verifier.

Corrupt and Reveal. The DVS functionality allows two types of corruption
of parties to the simulator. The simulator S (adversary in the ideal model)
can corrupt any party, and request to the signer and the verifier to reveal the
secret key through the environment Z. We say that “a party is corrupted”
if the party reports all current states and the value of his secret key (if he
has a secret key). We say that “a party reveals” if the party reveals only the
value of his secret key.

3.2 Fault of Basic Idea and Remedy

Unfortunately, the functionality in the basic idea is too weak, that is, there
exists an insecure DVS scheme which realizes the functionality. There exists an
environment Z ′ which can distinguish whether it is interacting with the real life
model or with the ideal process for the DVS functionality as follows.
Z ′ poses Signing requests to both the signer and the verifier for a fixed message

m. Though, in the real model, contents of outputted signatures depend on each
DVS scheme, in the ideal model, the functionality may output the same signature
σ for the signer and the verifier. If Z ′ receives the same signature σ, Z ′ poses
the Verification request for (m,σ) to the verifier.

The verifier ought to think that σ is generated by himself because he re-
members that he previously generated σ for m. Thus, the verifier should output
invalid in the secure DVS. However, in the ideal model, the functionality returns
valid because (m,σ) is listed on the signer’s Signature List. Hence, even if the
DVS scheme is insecure (i.e., the verifier outputs valid for such a situation), the
scheme can realize the functionality.

In order to avoid such a fault, we can add a following function (1) or (2) to
the DVS functionality.

(1). restrict the signer and the verifier to issue coincidental signatures for same
messages.

(2). restrict the verifier to issue dummy signatures.

In the ordinary DVS, in order to guarantee non-transferability, the verifier needs
to be able to issue a dummy signature. Hence, we define the ordinary DVS
functionality by combining basic idea and the function (1) as Ford

DVS. Also, we
define the strong DVS functionality by combining basic idea and the function
(2) as Fstr

DVS.
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3.3 Ideal Functionality of DVS

First, we present the ideal functionality Ford
DVS for the ordinary DVS.

FunctionalityFord
DVS

Signer’s Key Generation: On input (SKeyGen, sid) from some party Sig,
hand (SKeyGen, sid) to the simulator. Upon receiving (SKeys,sid,ski,pki)
from the simulator, output (SVerKey, sid, pki) to Sig and record the tuple
(Sig, ski, pki, sid) in the Signer List.

Verifier’s Key Generation: On input (VKeyGen, sid) from some party V er,
hand (VKeyGen,sid) to the simulator. Upon receiving (VKeys,sid,skj ,pkj)
from the simulator, output (VVerKey, sid, pkj) to V er and record the tuple
(V er, skj , pkj , sid) in the Verifier List.

Designated signing: On input (DSign, sid, m, pk′i, pk
′
j) from Sig, verify that

there exists (Sig, ski, pki, sid) in the Signer List and pk′i = pki. If not,
then ignore the request. Else, send (DSign, sid,m, pk′i, pk

′
j) to the simulator.

Upon receiving (Signature, sid, m, σ, pk′i, pk
′
j) from the simulator, verify

that there exists the entry (m,σ, pk′i, pk
′
j , ∗, 0). If it does, then output an error

message to Sig and halt. Else, search (V er′, sk′j , pk
′
j , sid) in the Verifier List

and check that (m,σ, pk′i, pk
′
j , V er′, 1) is recorded. If it does, then output an

error message to Sig and halt. Else, output (OriginalSignature, sid, m,
σ) to Sig and record the entry (m,σ, pk′i, pk

′
j , Sig, 1).

Transcript simulation: On input (TSim, sid,m, pk′i, pk
′
j) from V er, verify

that there exists (V er, skj , pkj , sid) in the Verifier List and pk′j = pkj .
If not, then ignore the request. Else, send (TSim, sid,m, pk′i, pk

′
j) to the

simulator. Upon receiving (Signature, sid,m, σ, pk′i, pk
′
j) from the simula-

tor, verify that there exists the entry (m,σ, pk′i, pk
′
j , ∗, 0). If it does, then

output an error message to V er and halt. Else, search (Sig′, sk′i, pk
′
i, sid) in

the Signer List and check (m, σ, pk′i, pk
′
j , Sig

′, 1) is recorded. If it does, then
output an error message to V er and halt. Else, output (DummySignature,
sid, m, σ) to V er, and record the entry (m,σ, pk′i, pk

′
j , V er, 1).

Decision: On input (Decide, sid, m, σ, pk′i, pk
′
j) from some party P , hand

(Decide, sid, m, σ, pk′i, pk
′
j) to the simulator. Upon receiving (Decided,

sid, m, φ, φ′) from the simulator, do:
1. If the entry (m,σ, pk′i, pk

′
j, ∗, b) is recorded, then set f = b.

2. Else, if (∗, ∗, pk′i, sid) is recorded in the Signer List, (∗, ∗, pk′j, sid) is
recorded in the Verifier List, no entry (m,σ, pk′i, pk

′
j, ∗, b) is recorded,

and
– the signer and the verifier are uncorrupted and do not reveal, then

set f = 0 and record the entry (m, σ, pk′i, pk
′
j , V er, 0).

– only the signer is corrupted or reveals, then set f = φ and record
the entry (m, σ, pk′i, pk

′
j , Sig, φ).

– only the verifier is corrupted or reveals, then set f = φ and record
the entry (m, σ, pk′i, pk

′
j , V er, φ).
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– the signer and the verifier are corrupted or reveal, then set f = φ
and record the entry (m, σ, pk′i, pk

′
j , φ

′, φ).
3. Otherwise, let f = φ and record the entry (m,σ, pk′i, pk

′
j , φ

′, φ).
Output (Decided, sid,m, f) to P .

Distinction: On input (Distinct, sid, m, σ, pk′i, pk
′
j) from some party P , if

there does not exist (P, sk′j , pk
′
j , sid) in the Verifier List, then output the

error message and halt. Else, hand (Distinct, sid, m, σ, pk′i, pk
′
j) to the

simulator. Upon receiving (Distincted, sid, m, φ′) from the simulator, do:
1. If (∗, ∗, pk′i, sid) is not recorded in the Signer List or (P, ∗, pk′j , sid) is not

recorded in the Verifier List, then output the error message and halt.
2. Else, if there is no entry (m,σ, pk′i, pk

′
j , ∗, 1), then set f ′ = φ′.

3. Else, if the entry (m,σ, pk′i, pk
′
j, Sig, 1) is recorded, then set f ′ = 1.

4. Else, if the entry (m,σ, pk′i, pk
′
j, V er, 1) is recorded, then set f ′ = 0.

Output (Distincted, sid,m, f ′) to P .

Next, we present the ideal functionality Fstr
DVS for the strong DVS.

FunctionalityFstr
DVS

Signer’s Key Generation,Verifier’s Key Generation, Distinction: the
same as Ford

DVS.

Designated signing: On input (DSign, sid,m, pk′i, pk
′
j) from Sig, verify that

there exists (Sig, ski, pki, sid) in the Signer List and pk′i = pki. If not,
then ignore the request. Else, send (DSign, sid, m, pk′i, pk

′
j) to the sim-

ulator. Upon receiving (Signature, sid,m, σ, pk′i, pk
′
j) from the simulator,

verify that the entry (m,σ, pk′i, pk
′
j , ∗, 0). If it does, then output an error

message to Sig and halt. Else, output (OriginalSignature, sid,m, σ) to
Sig, and record the entry (m,σ, pk′i, pk

′
j, Sig, 1).

Transcript simulation: On input (TSim, sid,m, pk′i, pk
′
j) from V er, verify

that there exists (V er, skj , pkj , sid) in the Verifier List and pk′j = pkj .
If not, then ignore the request. Else, if the V er does not only reveals, then
ignore the request. Else, send (TSim, sid,m, pk′i, pk

′
j) to the simulator. Upon

receiving (Signature, sid,m, σ, pk′i, pk
′
j) from the simulator, verify that the

entry (m,σ, pk′i, pk
′
j, V er, 0) is recorded. If it does, then output an error mes-

sage to V er and halt. Else, output (DummySignature, sid, m, σ) to V er,
and record the entry (m,σ, pk′i, pk

′
j , V er, 1).

Decision: On input (Decide, sid,m, σ, pk′i, pk
′
j) from P , if there does not ex-

ist (P, sk′j , pk
′
j , sid) in the Verifier List, then output the error message and

halt. Else, hand (Decide, sid,m, σ, pk′i, pk
′
j) to the simulator. Upon receiving

(Decided, sid,m, φ, φ′) from the simulator, perform the procedure which is
the same as Decision of Ford

DVS.
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4 Rigorous Security Definition

In this section, we clarify the rigorous security definition for the secure DVS
which realizes the proposed DVS functionality in Section 3.

4.1 Security Requirements for Secure DVS

In this section, we define the security requirements for the DVS.

Correctness. We say that the DVS satisfies correctness if an original signature
and a dummy signature are surely judged “accepted” by the decision procedure.

Definition 3 (Correctness). 3 A DVS scheme is said to satisfy correctness,
if for any m,

Pr[accept← Decision(params,m, σ, PKs, PKv)|
params← SetUp(k);
(SKs, PKs) ← SKeyGen(params);
(SKv, PKv) ← VKeyGen(params);
(σ ← DSign(m,SKs, PKv)) ∨ (σ ← TSim(m,PKs, SKv))]

≥ 1− ε

Consistency. We say that DVS satisfies consistency if for any message and
signature pair (m,σ), outputs of Decision for (m,σ) are always the same.

Definition 4 (Consistency). 3 A DVS scheme is said to satisfy consistency,
if for any m,

Pr[b1 �= b2|
b1 ← Decision(params,m, σ, PKs, PKv)
b2 ← Decision(params,m, σ, PKs, PKv)

≤ ε

Strong Unforgeability. In basic digital signatures, the security notion of
strong unforgeability is proposed by [18]. We define strong unforgeability for
multiple signers and verifiers.

Definition 5 (Strong Unforgeability). 3 Let A be a strong-forgery for multi-
ple signers and verifiers under chosen message attack (sEUF-CMA)-adversary,
ΣS(SKs,·)(·) be the original signing oracle, ΣT (·,SKv)(·) be the dummy signing or-
acle and Υ(·,SKv)(·) be the verification oracle4. Let {(m1, σ1), · · · , (mqS , σqS )}
3 This definition is for the ordinary DVS. In the strong DVS case,

Decision(params,m, σ, PKs, PKv) changes to Decision(params,m, σ, PKs, SKv).
4 For the ordinary DVS, the verification oracle need not be considered.
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be a set of message and signature pair which is given to A by oracle ΣS(SKs,·)(·),
and {(m′

1, σ
′
1), · · · , (m′

qT
, σ′

qT
)} be a set of message and signature pair which

is given to A by oracle ΣT (·,SKv)(·). Let k be a security parameter. We consider
the following random experiment:

Experiment Expseuf−cma
DVS ,A (k)

params
R← Setup(k)

(PKs, SKs) R← SKeyGen(params)

(PKv, SKv) R← VKeyGen(params)
(m∗, σ∗) ← AΣS(SKs,·)(·),ΣT(·,SKv)(·),Υ(·,SKv)(·)(params, PKs, PKv)
s.t. (m∗, σ∗) �∈ {(m1, σ1), · · · , (mqS , σqS )} ∪ {(m′

1, σ
′
1), · · · , (m′

qT
, σ′

qT
)}

Return 1 iff Decision(params,m∗, σ∗, PKs, PKv) = accept

We define the success probability of the adversary A by

Succseuf−cma
DVS ,A (k) = Pr[Expseuf−cma

DVS ,A (k) = 1].

A DVS scheme is said to be (k, τ, ε)-sEUF-CMA secure, if no adversary A run-
ning in time τ has Succseuf−cma

DVS ,A (k) ≥ ε.

Non-transferability. A property of non-transferability guarantees that even if
a third party who has signer’s and verifier’s secret keys cannot distinguish the
original signature from the dummy signature, and that only the verifier (and the
signer) can perform Distinction procedure.

Definition 6 (Non-transferability). Let A be an arbitrary non-transferability
adversary against the DVS. Let k be a security parameter. We consider the
following random experiment:

Experiment Expnt
DVS ,A(k)

params
R← Setup(k)

(PKs, SKs) R← SKeyGen(params)

(PKv, SKv) R← VKeyGen(params)
m∗ ← A(params, PKs, PKv, SKs, SKv)
r ←R {0, 1}
if r = 1 : σ∗ ← DSign(params,m∗, SKs, PKv)
otherwise : σ∗ ← TSim(params,m∗, PKs, SKv)
r′ ← A(params,m∗, σ∗, PKs, PKv, SKs, SKv)
Return 1 iff r′ = r
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We define the advantage of the adversary A by

Advnt
DVS ,A(k) = |Pr[Expnt

DVS ,A(k) = 1]− 1
2 |.

A DVS scheme is said to satisfy (k, τ, ε)-non-transferability, if no adversary A
running time τ has Advnt

DVS ,A(k) ≥ ε.

Private Decidability. Private decidability guarantees that a third party who
has only public information cannot decide that any message and signature pair
is acceptable or not. This property is considered in only the strong DVS, and
ordinary DVS schemes never satisfy private decidability due to the definition.

Definition 7 (Private Decidability). Let A be a private decidability adver-
sary against the DVS, ΣS(SKs,·)(·) be the original signing oracle, ΣT (·,SKv)(·) be
the dummy signing oracle and Υ(·,SKv)(·) be the verification oracle. Let k be a
security parameter. We consider the following experiment.

Experiment Exppd−i
DVS ,A(k)

params
R← Setup(k)

(PKs, SKs) R← SKeyGen(params)

(PKv, SKv) R← VKeyGen(params)
m∗ ← AΣS(SKs,·)(·),ΣT(·,SKv)(·),Υ(·,SKv)(·)(params, PKs, PKv)
σi ← DSign(params,m∗, SKs, PKv)
σī ←R Σ = {σ; Decision(m,σ) = 0}
Return i′ ← AΣS(SKs,·)(·),ΣT(·,SKv)(·),Υ(·,SKv)(·)(params,m∗, σi, σī, PKs, PKv)

We define the advantage of the adversary A by

Advpd
DVS ,A(k) = |Pr[Exppd−1

DVS ,A(k) = 1]− Pr[Exppd−0
DVS ,A(k) = 1]|.

A DVS scheme is said to satisfy (k, τ, ε)-private decidability, if no adversary A
running in time τ has Advpd

DVS ,A(k) ≥ ε.

Non-Coincidental Property. For a message m, if the probability that
σDSign = σTSim such that σDSign from DSign and σTSim from TSim is non-
negligible, the verifier cannot confirm the validity of the signature because he
cannot distinguish (m,σDSign) from the dummy signature (m,σTSim) he is-
sued before. Hence, the DVS must satisfy the property that the probability that
the original signature for a message is identical with the dummy signature for
the message is negligible. In this paper, we call this property non-coincidental
property.

Definition 8 (Non-coincidental Property). A DVS scheme is said to have
(k, ε)-non-coincidental property, if for any m,
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Pr[σDSign = σTSim|params← SetUp(k);
(SKs, PKs) ← SKeyGen(params);
(SKv, PKv) ← VKeyGen(params);
σDSign ← DSign(m,SKs, PKv);
σTSim ← TSim(m,PKs, SKv)]

≤ ε.

4.2 Security Definition

We define the rigorous definition for secure DVS schemes.

Notations. We use following notations in order to describe our main theorem.
Σ is a DVS scheme. Cor : {Σ} → {0, 1} is a Boolean function which out-

puts 1 if Σ satisfies correctness, otherwise outputs 0. In the same way, Con,
sEUF, NT, PD and NCP are Boolean functions which output 1 if Σ satisfies
consistency, strong unforgeability, non-transferability, private decidability and
non-coincidental property, respectively. Let NTSim : {DV S player} → {0, 1} is
a Boolean function which outputs 1 if the verifier does not generate any dummy
signature, otherwise outputs 0.

Intuition of Definition. If a DVS scheme does not satisfy sEUF-CMA (i.e.,
sEUF=0), there is an acceptable signature which is not either an original signa-
ture or a dummy signature. In this case, the verifier cannot decide the validity
of signature by Dist because it is impossible for the verifier to decide that a
signature which is not in the list of dummy signatures is the original signature.
Thus, the DVS must satisfy sEUF=1.

If a DVS scheme does not satisfy non-transferability (i.e., NT=0), a third
party who is given signer’s and verifier’s secret keys is able to distinguish the
original signature from the dummy signature. In this case, a third party can
confirm the validity of the signature using these keys. Thus, the DVS scheme
must satisfy NT=1.

If a DVS scheme does not satisfy non-coincidental property (i.e., NCP=0), the
following situation occurs: The verifier issues a dummy signature (m,σTSim).
After that, the signer generates an original signature (m,σDSign). If Coll=0,
σDSing = σTSim holds with non-negligible probability. Then, the verifier mis-
understands that (m,σDSign) is the dummy signature and so invalid. Thus, the
DVS scheme must satisfy NCP=1.

Even if NCP=0, the verifier is able to confirm the validity of the signature when
he never issues dummy signatures for any message (i.e., NTSim=1). However,
in the DVS, the verifier’s ability to generate a dummy signature prevents a
third party from confirming the validity of the signature. If a third party could
know that the verifier never issues dummy signatures and confirm the validity
of the signature, it would be impossible to satisfy non-transferability. Hence, if
NTSim=1, the DVS must satisfy private decidability (i.e., PD=1). If the DVS
scheme satisfies private decidability, any third party cannot know any signer of
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the signature even if the verifier never generates dummy signatures. Thus, if
NTSim=1, the DVS must also satisfy the PD=1. This case corresponds to the
strong DVS.

Definition 9 (Secure DVS). We say a DVS scheme is secure if the following
condition holds: Cor∧Con∧sEUF∧NT∧(NCP∨(PD∧NTSim)) = 1. The condition
Cor∧Con∧sEUF∧NT∧NCP = 1 is for the ordinary DVS and Cor∧Con∧sEUF∧
NT ∧ PD ∧ NTSim = 1 is for the strong DVS.

5 Equivalence

We show that the proposed DVS functionalities Ford
DVS and Fstr

DVS are equivalent
with the proposed security definition in Section 4.

5.1 Translation to Protocol

First, we describe how to translate an ordinary DVS scheme and a strong DVS
scheme into protocols respectively.

Translation for the Ordinary DVS. We describe how to translate a ordinary
DVS scheme ΣordDV S = (SetUp, SKeyGen,VKeyGen, DSign,TSim,Decision,Dist)
into a protocol πΣordDV S

.

– First, the public parameter is generated as params← SetUp(1k).
– When a party Sig receives an input (SKeyGen, sid), it runs (SKs, PKs) ←

SKeyGen(params), keeps the secret key SKs and outputs (SVerKey, sid,
PKs).

– When a party V er receives an input (VKeyGen, sid), it runs (SKv, PKv) ←
VKeyGen(params), keeps the secret key SKv and outputs (VVerKey, sid,
PKv).

– When Sig receives an input (DSign, sid,m, pk′i, pk
′
j) for Sig who has a secret

key SKs and pk′i = PKs, Sig sets σ ← DSign(params,m, SKs, pk
′
j), and

outputs (OriginalSignature, sid,m, σ).
– When V er receives an input (TSim, sid,m, pk′i, pk

′
j) for V er who has a

secret key SKv and pk′j = Pkv, V er sets σ ← TSim(params,m, pk′i, SKv),
and outputs (DummySignature, sid,m, σ).

– When P receives an input (Decide, sid,m, σ, pk′i, pk
′
j), P runs f ← Decision

(params, m, σ, pk′i, pk
′
j), and outputs (Decided, sid,m, f).

– When V er receives an input (Distnct, sid,m, σ, pk′i, pk
′
j) for V er. If pk′j =

PKv, V er runs f ← Decision(params, m, σ, pk′i, PKv). If f = 1 and (m,σ)
is not issued as (DummySignature, sid, m, σ) for pk′i before, let f ′ = 1.
Else f ′ = 0. It outputs (Distincted, sid,m, f ′). Else ignore the request.

Translation for the Strong DVS. We describe how to translate a strong
DVS scheme ΣstrDV S = (SetUp, SKeyGen,VKeyGen, DSign,TSim,Decision,Dist)
into a protocol πΣstrDV S .
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– First, the public parameter is generated as params← SetUp(1k).
– When a party Sig receives an input (SKeyGen, sid), it runs (SKs, PKs) ←

SKeyGen(params), keeps the secret key SKs and outputs (SVerKey, sid,
PKs).

– When a party V er receives an input (VKeyGen, sid), it runs (SKv, PKv) ←
VKeyGen(params), keeps the secret key SKv and outputs (VVerKey, sid,
PKv).

– When Sig receives an input (DSign, sid,m, pk′i, pk
′
j) for Sig who has the

secret key SKs and pk′i = PKs, Sig sets σ ← DSign(params,m, SKs, pk
′
j),

and outputs (OriginalSignature, sid,m, σ).
– When V er receives an input (TSim, sid,m, pk′i, pk

′
j) for V er who has pk′j =

PKv, if V er does not only reveals then ignores the request. Else, it sets σ ←
TSim(params,m, pk′i, SKv), and outputs (DummySignature, sid,m, σ).

– When V er receives an input (Decide, sid,m, σ, pk′i, pk
′
j), if pk′j = PKv, V er

runs f←Decision(params, m, σ, pk′i, SKv) and outputs (Decided, ID,m, f).
Otherwise V er ignores the request.

– When V er receives an input (Dist, sid,m, σ, pk′i, pk
′
j) for V er who has a

secret key SKv. If pk′j = PKv, it runs f ← Decision(params,m, σ, pk′i, SKv).
If f = 1 and (m,σ) is not issued as (DummySignature, sid, m, σ) for pk′i,
let f ′ = 1. Else f ′ = 0. V er outputs (Distinction, sid,m, f ′). Else ignore
the request.

5.2 Main Theorems

Theorem 1 (Equivalence between Secure Ordinary DVS and Ford
DVS). Let

ΣordDV S = (SKeyGen, VKeyGen, DSign, TSim, Decision, Dist) be an ordinary
DVS. Then πΣordDV S

securely realize Ford
DVS if and only if ΣordDV S is a secure

ordinary DVS which satisfies Cor ∧ Con ∧ sEUF ∧ NT ∧ NCP = 1.

Theorem 2 (Equivalence between Secure Strong DVS and Fstr
DVS). Let

ΣstrDV S = (SKeyGen, VKeyGen, DSign, TSim, Decision, Dist) be a strong DVS.
Then πΣstrDV S securely realize Fstr

DVS if and only if ΣstrDV S is a secure strong
DVS which satisfies Cor ∧ Con ∧ sEUF ∧NT ∧ NTSim ∧ PD = 1.

Due to space limitations, we will show the proof of Theorem 1 and 2 in the
full version of this paper.

5.3 Difference from Previous Requirements

Unforgeability. In the previous unforgeability definitions for the DVS, the
adversary is not prevented to output a forged signature of a message for a ver-
ifier where the adversary posed the message to the signing oracle for another
verifier. Thus, the serious problems described in Section 1 may occur. In the
proposed sEUF-CMA, the adversary cannot forge any signature of messages for
the target verifier even where the adversary posed the messages to the signing
oracle for another verifier. Hence, such problems do not occur if the DVS scheme
satisfies our sEUF-CMA. That is, the previous unforgeability definitions are not
sufficient.
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Privacy of Signer’s Identity and Private Decidability. The proposed pri-
vate decidability is exactly weaker than the notion of privacy of signer’s identity
which is considered as necessary requirement in previous works.

Theorem 3. If a DVS scheme satisfies privacy of signer’s identity, then the
scheme satisfies private decidability.

Proof. We construct the adversary APSI who breaks privacy of signer’s identity
by assuming the successful adversary APD against private decidability. First,
APSI receives (PKs0, PKs1, PKv), chooses b′ ← {0, 1} randomly, set PKs =
PKsb′ , and inputs (PKs, PKv) to APD. When APD outputs m∗, APSI outputs
m∗ as his challenge. The challenger chooses b ← {0, 1} randomly, computes
σ∗ ← DSign(SKsb, PKv,m

∗) and returns σ∗ to APSI . APSI sets σb′′ = σ∗.
Also, APSI poses m∗ to the original signing oracle for sb̄′, obtains the signature
and sets it as σb̄′′ . APSI returns σb′′ , σb̄′′ to APD. When APD outputs b

′′∗, APSI

outputs b
′′∗. If b = b′, APD outputs b

′′∗ = b′′ with probability non-negligibly
larger than 1/2. Thus, APSI also succeeds with probability non-negligibly larger
than 1/2. ��
However, we show that private decidability is sufficient for secure DVSs. That
is, privacy of signer’s identity is unnecessarily strong.

6 Security of Previous Schemes

In this section, we show some previous DVS schemes satisfy our proposed security
model. From a point of view, this fact justifies the proposed DVS functionality
because there exist DVS schemes realize it. Specifically, we show that the Lipmaa
et al.’s ordinary DVS [3] (LWB DVS) and the Laguillaumie-Vergnaud strong
DVS [12] (LV DVS) are secure in the sense of Definition 9. From Theorem 1 and
2, these schemes realize the proposed DVS functionality.

LWB DVS. First, we show the security of the LWB DVS. The protocol of the
LWB DVS is described below.

SetUp. For input a security parameter k, set the public parameter params =
(p, q, g,H) shared between the users: p is a large prime s.t. 2k < p < 2k+1, q
is a prime factor of p− 1, (g1, g2) ∈ Z∗2

q are two elements such that nobody
knows the mutual discrete logarithm of g1 and g2. H : {0, 1}∗ → Zq is a
one-way hash function.

SKeyGen. For input params, pick xs ∈ Zq, let xs be the signer’s secret key
SKs and compute ys1 = gxs

1 and ys2 = gxs
2 . Let the signer’s public key

PKs = (ys1, ys2).
VKeyGen. For input params, pick xv ∈ Zq, let xv be the verifier’s secret key

SKv and compute yv1 = gxv
1 and yv2 = gxv

2 . Let the verifier’s public key
PKv = (yv1, yv2).
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DSign. For input params, a message m, SKs and PKv, select three random
values r, ω, t ∈ Zq, set a1 = gr

1 mod p, a2 = gr
2 mod p, c = gω

1 y
t
v1 mod p

and h = H(PKs, PKv, a1, a2, c,m), and compute z = r + (h+ω)xs mod q.
Let (ω, t, h, z) be the signature σ of the message m.

Decision. For input params, a message m, signature σ = (ω, t, h, z), PKs and
PKv, check whether h=H(PKs, PKv, g

z
1y

−(h+ω)
s1 mod p, gz

2y
−(h+ω)
s2 mod p,

gw
1 yt

v1 mod p, m).
TSim. For input params, a message m, SKv and PKs, select three random

values z, α, β ∈ Zq, set a1 = gz
1y

−β
s1 mod p, a2 = gz

2y
−β
s2 mod p and h =

H(PKs, PKv, a1, a2, g
α
1 mod p,m), and compute ω = β − h mod q and

t = (α− ω)x−1
v mod q. Let (ω, t, h, z) be the signature σ of the message m.

Theorem 4. The LWB DVS is secure in the sense of Definition 9 in the random
oracle model if the Decisional Diffie-Hellman (DDH) problem is hard.

Due to space limitations, we will show the proof of Theorem 4 in the full version
of this paper.

LV DVS. Next, we show the security of the LV DVS. The protocol of the LV
DVS is described below.

SetUp. For input a security parameter k, set the public parameter params =
(q,G,GT , g,H,H ′) shared between the users: q is a large prime, G is a pairing
group and e : G×G → GT is an admissible bilinear map. Let H : {0, 1}∗ →
{0, 1}k and H ′ : {0, 1}∗ → G be hash functions.

SKeyGen. Let xs ∈ Zq be the signer’s secret key SKs and ys = gxs be the
signer’s public key PKs.

VKeyGen. Let xv ∈ Zq be the verifier’s secret key SKv and yv = gxv be the
verifier’s public key PKv.

DSign. For input a message m, SKs and PKv, select a random string r of length
k, and compute s = H(e(yv, H

′(m, r)xs)). Let (s, r) be the signature σ of
the message m.

Decision. For input a message m, a signature σ = (s, r), PKs and SKv, check
whether s = H(e(ys, H

′(m, r)xv )).

Theorem 5. The LV DVS is secure in the sense of Definition 9 in the random
oracle model if the Gap-Bilinear Diffie-Hellman (GBDH) problem is hard.

Due to space limitations, we will show the proof of Theorem 5 in the full version
of this paper.
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Abstract. Courtois-Finiasz-Sendrier (CFS) digital signatures critically
depend on the ability to efficiently find a decodable syndrome by random
sampling the syndrome space, previously restricting the class of codes
upon which they could be instantiated to generic binary Goppa codes. In
this paper we show how to construct t-error correcting quasi-dyadic codes
where the density of decodable syndromes is high, while also allowing for
a reduction by a factor up to t in the key size.
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1 Introduction

Digital signatures are among the most useful and pervasive cryptographic prim-
itives, either per se or as part of more elaborate, derived protocols. Yet the
overwhelming majority of actually deployed signature schemes seem to rely on
the hardness of certain computational problems that are efficiently solvable by
quantum computers [19]. Should quantum computers become a technological
reality, the task of ensuring that suitable quantum-resistant signatures are avail-
able for deployment becomes critical.

The signature algorithm proposed by Courtois, Finiasz and Sendrier, or CFS
for short [4], is one of the few and most promising schemes known based on the
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difficulty of decoding linear error-correcting codes. However, it has the drawback
that public keys tend to be exceedingly large [9], all the more so due to an attack
due to Bleichenbacher (unpublished, but described in [9]).

Part of the difficulty resides in obtaining codes with high density of decod-
able syndromes, since the CFS signing mechanism involves sampling random
syndromes until a decodable one is found. Essentially the only family of suitable
codes for this purpose is that of binary Goppa codes, for which one can actually
correct all t design errors, leading to a signing complexity of O(t!). In compari-
son, for other classes of codes, no decoding method is known that is capable of
efficiently correcting more than about half as many errors; since one has then to
design the error correcting capacity twice as high, the CFS signing complexity
becomes O((2t)!) ≈ O((t!)2 · 4t/

√
t), far too much for any secure parameter set.

Quasi-dyadic (QD) codes [14], which constitute a proper subfamily of Goppa
codes, have been proposed to address the problem of key reduction in the re-
lated McEliece and Niederreiter cryptosystems [13,15]. However, the original QD
construction only yields codes with a fairly low density of decodable syndromes,
comparable to generic alternant codes rather than to other Goppa codes.

Our contribution: In this paper we modify the construction algorithm for
t-error correcting quasi-dyadic codes [14], where the density of decodable syn-
dromes is high, while also allowing for a reduction by a factor up to t in the key
size. This yields dense binary Goppa codes as needed for practical instantiation
of CFS signatures.

Recently, in an independent unpublished work Kobara [12] proposed another
construction (dubbed flexible quasi-dyadic, or FQD for short) for the same prob-
lem, based on selecting distinct linear combinations from the rows of a certain
nonsingular matrix, with the associated computational effort of this kind of oper-
ation1. In contrast, our proposed algorithm is more accurately seen as a natural
extension of the original quasi-dyadic construction, whereby a stringent condi-
tion on the length of private codes is dropped and replaced by a straightforward
consistency validation for the resulting parity-check matrix. It is also compu-
tationally simpler, since no linear combinations of rows from the parity-check
matrix have to be generated and compared. Besides, contrary to [12] we pro-
vide a security assessment of binary QD codes against certain recent structural
attacks [7,20] against this and other families of error-correcting codes. In partic-
ular, we argue that, in spite of those attacks being successful against non-binary
QD codes (and quasi-cyclic codes as well), binary QD codes remain unscathed
and are hence suitable for cryptographic applications.

The remainder of this paper is organized as follows. Section 2 introduces some
basic concepts of coding theory. We proceed by describing the CFS signature
scheme and its security in Section 3. In Section 4 we review the class of quasi-
dyadic codes and propose a modification of the generation algorithm, enlarging
that class with codes where the density of decodable syndromes increases by
1 We note en passant that, although [12] claims that the FQD construction further

reduces key sizes, this does not hold since that method does not produce any code
that is not defined by [14, Theorem 2].
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an exponential factor in the number of errors. We discuss security issues of the
resulting quasi-dyadic CFS scheme in Section 5. We conclude in Section 6.

2 Preliminaries

In what follows all vector and matrix indices are numbered from zero onwards.

Definition 1. Given a ring R and a vector h = (h0, . . . , hn−1) ∈ Rn, the dyadic
matrix Δ(h) ∈ Rn×n is the symmetric matrix with components Δij = hi⊕j,
where ⊕ stands for bitwise exclusive-or on the binary representations of the in-
dices. The sequence h is called its signature. The set of dyadic n × n matrices
over R is denoted Δ(Rn). Given t > 0, Δ(t, h) denotes Δ(h) truncated to its
first t rows.

One can recursively characterize a dyadic matrix when n is a power of 2: any
1× 1 matrix is dyadic, and for k > 0 any 2k × 2k dyadic matrix M has the form

M =
[
A B
B A

]
,

where A and B are 2k−1 × 2k−1 dyadic matrices. It is not hard to see that the
signature of a dyadic matrix coincides with its first row. Dyadic matrices form a
commutative subring ofRn×n as long as R is commutative [11]. We will consider
here only the case where R = Fq, the finite field with q (a power of 2) elements.

Definition 2. A dyadic permutation is a dyadic matrix Πi ∈ Δ({0, 1}n) whose
signature is the i-th row of the identity matrix.

Definition 3. A quasi-dyadic matrix is a (possibly non-dyadic) block matrix
whose component blocks are dyadic submatrices. A quasi-dyadic (QD) code is a
linear error-correcting code that admits a quasi-dyadic parity-check matrix.

Definition 4. Given two disjoint sequences z = (z0, . . . , zt−1) ∈ Ft
q and L =

(L0, . . . , Ln−1) ∈ Fn
q of distinct elements, the Cauchy matrix C(z, L) is the t×n

matrix with elements Cij = 1/(zi − Lj), i.e.

C(z, L) =

⎡⎢⎢⎢⎢⎣
1

z0 − L0
. . .

1
z0 − Ln−1

...
. . .

...
1

zt−1 − L0
. . .

1
zt−1 − Ln−1

⎤⎥⎥⎥⎥⎦ .

Cauchy matrices have the property that all of their submatrices are nonsingu-
lar [18]. Notice that, in general, Cauchy matrices are not dyadic and vice-versa,
although the intersection of these two classes is non-empty in characteristic 2.

Definition 5. Given t > 0 and a sequence L = (L0, . . . , Ln−1) ∈ Fn
q , the Van-

dermonde matrix vdm(t, L) is the t× n matrix with elements Vij = Li
j.
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Definition 6. Given a sequence L = (L0, . . . , Ln−1) ∈ Fn
q of distinct elements

and a sequence D = (D0, . . . , Dn−1) ∈ Fn
q of nonzero elements, the General-

ized Reed-Solomon code GRSt(L,D) is the [n, k, t] linear error-correcting code
defined by the parity-check matrix

H = vdm(t− 1, L) · diag(D).

An alternant code is a subfield subcode of a Generalized Reed-Solomon code.

Let p be a prime power, let q = pd for some d, and let Fq = Fp[x]/b(x) for
some irreducible polynomial b(x) ∈ Fp[x] of degree d. Given a code specified
by a parity-check matrix H ∈ Ft×n

q , the trace construction derives from it an
Fp-subfield subcode by fixing a basis of Fq over Fp, writing the Fp-coefficients of
each Fq-component of H onto d successive rows of a parity-check matrix Td(H) ∈
Fdt×n

p for the subcode. The related co-trace parity-check matrix T ′
d(H) ∈ Fdt×n

p ,
equivalent to Td(H) by a left permutation, is obtained from H by writing the
Fp-coefficients of terms of equal degree from all components from a column of
H onto successive rows of T ′

d(H).
Thus, given Fq elements ui(x) = ui,0 + · · · + ui,d−1x

d−1, the (co-
)trace construction maps a column (u0, . . . , ut−1)T from H to the column
(u0,0, . . . , u0,d−1; . . . ;ut−1,0, . . . , ut−1,d−1)T on the trace matrix Td(H), and to
the column (u0,0, . . . , ut−1,0; . . . ;u0,d−1, . . . , ut−1,d−1)T on the co-trace matrix
T ′

d(H).

Definition 7. Given a prime power p, q = pd for some d, a sequence L =
(L0, . . . , Ln−1) ∈ Fn

q of distinct elements, and a polynomial g(x) ∈ Fq[x]
of degree t such that g(Li) �= 0 for 0 � i < n, the Goppa code Γ (L, g)
over Fp is the alternant code over Fp corresponding to GRSt(L,D), where
D = (g(L0)−1, . . . , g(Ln−1)−1).

A binary Goppa code can correct up to t errors, sometimes slightly more [17,2],
regardless of whether the generator g(x) is irreducible or not. For all other cases,
no method is generally known to correct more than about t/2 errors.

Consider a t-error correcting Fp-alternant code of length n derived from a
code over Fpm . The syndrome space has size pmt. However, the decodable syn-
dromes are only those that correspond to error vectors of weight not exceeding t.
In other words, only

∑t
w=1

(
n
w

)
(p− 1)w nonzero syndromes are decodable, and

hence their density is

δ =
1

pmt

t∑
w=1

(
n

w

)
(p− 1)w.

If the code length is a fraction 1/pc for some c 	 0 of the full length, i.e.
n = pm−c, the density can be approximated as

δ ≈ (nt/t!)(p− 1)t/pmt = (pm−c)t(p− 1)t/(pmtt!) = (p− 1)t/(pctt!).

A particularly good case is therefore δ � 1/t!, which occurs when (pc/(p−1))t �
1, i.e. c � logp(p− 1), or n 	 pm/(p− 1). Unfortunately this also means that for
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binary codes the highest densities are attained only by full or nearly full length
codes, otherwise the density is reduced by a factor 2ct. For full length binary
codes (p = 2, n = 2m) the density simplifies to

δ ≈ 1
2mt

nt

t!
=

1
t!
.

3 CFS Signature Scheme

Courtois, Finiasz and Sendrier proposed in [4] the first practical signature scheme
based on coding theory. The Full Domain Hash (FDH) approach assumes that
all the hash values can be inverted by decryption.

3.1 Description

The CFS signature scheme is based on the Niederreiter cryptosystem: signing a
document requires hashing it to a syndrome and then decoding it to an error
vector of a certain weight t. Since not all syndromes are decodable, a counter is
hashed with the message, and the signer tries successive counter values until a
decodable syndrome is found. The signature consists of both the error pattern
of weight t corresponding to the syndrome, and the counter value yielding this
syndrome.

Let H : {0, 1}∗×N → Fk
q be a random oracle for a given vector space Fk

q over
a finite field Fq. Formally, the CFS signature scheme consists of the following
algorithms:

– Keygen: For the desired security level expressed by suitable integers q, n, k,
t, choose a linear t-error correcting [n, k]-code over Fq defined by a public
parity-check matrix H with a private decoding trapdoor T . The private-
public key pair is (T , H).

– Sign: Let m ∈ {0, 1}∗ be the message to sign. Find c ∈ N (either sequentially
or by random sampling) such that s ← H(m, c) is a decodable syndrome.
Using the decoding trapdoor T , find e ∈ Fn

q of weight wt(e) � t such that
HeT = sT. The signature is the pair (e, c).

– Verify: Let (e, c) be a purported signature for message m. Compute s ←
H(m, c), and accept iff wt(e) � t and HeT = sT.

The original description of the CFS scheme [4] suggests using a binary Goppa
code and scanning over the c values sequentially. Random counter sampling
(limited to r bits, i.e. from the set {0 . . .2r − 1}) was proposed in [5] to obtain
a security proof in the random oracle model, assuming the intractability of the
following problems:

Definition 8 (Goppa Parametrized Bounded Decoding (GPBD)).
Given a matrix H ∈ Fr×n

2 and a syndrome s ∈ Fr
2, is there a word e ∈ Fn

2

of weight wt(e) � r/ lgn such that HeT = sT?
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Definition 9 (Goppa Code Distinguishing (GD)). Given m, t, n ∈ N and
a matrix H ∈ Fmt×n

2 , is H the parity-check matrix of a binary t-error correcting
[n, n−mt] Goppa code?

The main drawback of the CFS scheme is the key size. For the 80-bit security
level, the authors of [4] suggest taking m = 16 and t = 9, leading to 1152 KiB
keys. In the next section, we propose a construction that allows for smaller keys
(and faster arithmetic), by using quasi-dyadic Goppa codes.

4 Quasi-Dyadic Codes

We recap the original construction of binary QD Goppa codes [14]. These are
characterized by Theorem 1, which in turn suggests Algorithm 1, taken from the
same reference.
Theorem 1 ([14]). Let H ∈ Fn×n

q with n > 1 be simultaneously a dyadic matrix
H = Δ(h) for some h ∈ Fn

q and a Cauchy matrix H = C(z, L) for two disjoint
sequences z ∈ Fn

q and L ∈ Fn
q of distinct elements. Then Fq is a binary field, h

satisfies
1

hi⊕j
=

1
hi

+
1
hj

+
1
h0

, (1)

and zi = 1/hi + ω, Lj = 1/hj + 1/h0 + ω for some ω ∈ Fq.

4.1 Quasi-Dyadic Codes for CFS Signatures

Because the sequences z and L must be disjoint and consist of distinct elements,
the length of the codes Algorithm 1 produces are upper bounded by n � 2m−1,
and hence the syndrome density is bound by 1/(2tt!). Clearly, if z and L were not
disjoint at least one element Hij = 1/(zi − Lj) of matrix H would be undefined
due to division by zero.

However, the CFS signature scheme only needs a very small t (say, t 
 m),
meaning that most elements of the sequence z, and hence the corresponding rows
of the largest possible matrix Δ(h), are left unused anyway when defining the
actual code. It is therefore possible to allow matrix Δ(h) to contain undefined
entries, as long as the rows and columns containing those entries are removed af-
terwards, and that Δ(t, h) itself contains only well-defined entries. This means the
code length can be naturally extended all the way up to 2m−t, corresponding to an
exact partition of the field elements from F2m into two disjoint sequences z and L.

In principle, this strategy can fail, i.e. the first t rows could contain an unde-
fined element. This can be handled by either choosing a different code, or else
by carefully rearranging the dyadic signature h into some h′ in order to permute
the rows of Δ(h) and eliminate undefined elements from Δ(t, h′). As it turns out,
the probability that an improper element will appear on the first t rows of Δ(h)
is extremely low. As a consequence, the simpler strategy of just trying another
code, if this is ever necessary in practice, is much simpler to implement without
any measurable impact on either security or efficiency.
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Algorithm 1. Constructing a purely dyadic binary Goppa code
Input: q (a power of 2), n � q/2, t.
Output: Support L, generator polynomial g, dyadic parity-check matrix H for a

Goppa code Γ (L, g) of length n and design distance 2t + 1 over Fq.
1: U ← Fq \ {0}
� Choose the dyadic signature (h0, . . . , hn−1). N.B. Whenever hj with j > 0 is taken

from U , so is 1/(1/hj + 1/h0) to prevent a potential spurious intersection between
z and L.

2: h0
$←U, U ← U \ {h0}

3: for s ← 0 to �lg n� − 1 do
4: i ← 2s

5: hi
$←U, U ← U \ {hi, 1/(1/hi + 1/h0)}

6: for j ← 1 to i − 1 do
7: hi+j ← 1/(1/hi + 1/hj + 1/h0)
8: U ← U \ {hi+j , 1/(1/hi+j + 1/h0)}
9: end for

10: end for
11: ω

$←Fq

� Assemble the Goppa generator polynomial:
12: for i ← 0 to t − 1 do
13: zi ← 1/hi + ω
14: end for
15: g(x) ← ∏t−1

i=0 (x − zi)
� Compute the support:

16: for j ← 0 to n − 1 do
17: Lj ← 1/hj + 1/h0 + ω
18: end for
19: h ← (h0, . . . , hn−1)
20: H ← Δ(t, h)
21: return L, g, H

This idea is captured in Algorithm 2, which in practice is as simple to imple-
ment and as efficient as Algorithm 1. In a sense it is actually somewhat simpler,
since less field elements have to be computed and discarded from the remaining
allowed set U . Notice that improper array elements, whose evaluation would
cause division by zero, are represented by a zero value, since this cannot ever
occur on a proper array entry.

Algorithm 2 produces a code that is amenable to the same treatment as
a generic Goppa code when instantiating the CFS signature scheme, namely,
apply the trace construction of a binary alternant code from the code over F2m ,
permute the columns of the corresponding parity-check matrix, and put the
result in systematic form to get a CFS public key. However, this simple technique
does not benefit from a possible reduction in key size since it destroys the quasi-
dyadic structure. Algorithm 2 is designed to preserve that structure by removing
the entire t× t block where one (or more) improper column lies.
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Algorithm 2. Constructing a purely dyadic, CFS-friendly code
Input: m, n, t.
Output: A dyadic signature h from which a CFS-friendly t-error correcting binary

Goppa code of length n can be constructed from a code over F2m , and the sequence
b of all consistent blocks of columns (i.e. those that can be used to define the code
support).

1: q ← 2m

2: repeat
3: U ← Fq \ {0}
4: h0

$←U, U ← U \ {h0}
5: for s ← 0 to m − 1 do
6: i ← 2s

7: hi
$←U, U ← U \ {hi}

8: for j ← 1 to i − 1 do
9: if hi �= 0 and hj �= 0 and 1/hi + 1/hj + 1/h0 �= 0 then

10: hi+j ← 1/(1/hi + 1/hj + 1/h0)
11: else
12: hi+j ← 0 � undefined entry
13: end if
14: U ← U \ {hi+j}
15: end for
16: end for
17: c ← 0 � also: U ← Fq

18: if 0 �∈ {h0, . . . , ht−1} then � consistent root set
19: b0 ← 0, c ← 1 � also: U ← U \ {1/hi, 1/hi + 1/h0 | i = 0, . . . , t − 1}
20: for j ← 1 to �q/t� − 1 do
21: if 0 �∈ {hjt, . . . , h(j+1)t−1} then � consistent support block
22: bc ← j, c ← c+1 � also: U ← U\{1/hi +1/h0 | i = jt, . . . , (j+1)t−1}
23: end if
24: end for
25: end if
26: until ct 	 n � consistent roots and support
27: h ← (h0, . . . , hq−1), b ← (b0, . . . , hc−1) � also: ω

$←U
28: return h, b � also: ω

The strategy to get shorter keys is then to permute the blocks (or a large
subset thereof) among themselves, dyadic-permute each block individually, and
apply the co-trace construction to get a binary quasi-dyadic alternant code. This
has to be done carefully so as to fully hide the code structure. The obvious ap-
proach is to delete more blocks and/or to replace them (and also the blocks that
contain improper columns) by random dyadic blocks (the latter case corresponds
to Wieschebrink’s technique). One has to be careful here as well, since if only a
fraction 1/2c of the columns remain, the syndrome density effectively decreases
by a factor 2ct as seen above. A sensible choice, which we will usually adopt, is
to take a fraction 2−1/t of full code length (i.e. c = 1/t), since this only increases
the average signing time by a factor of 2.
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Table 1. Suggested parameters for practical security levels

level m t n = �2m−1/t� k = n − mt key size (KiB)
80 15 12 30924 30744 169
100 20 12 989724 989484 7248
120 25 12 31671168 31670868 289956

Typical parameter combinations are put forward on Table 1. We will later
examine some possible parameter choices in the context of, and as a result of,
the security discussion in Section 5.

5 Security

Most of the time, the most threatening attacks are based on decoding algorithms
for generic linear codes. There are two main families of generic algorithms, (Gen-
eralized) Birthday Algorithm (GBA) and Information Set Decoding (ISD). How-
ever, due to the peculiar nature of QD codes one has to take care of structural
attacks as well. We provide an overview of these attacks and their impact on the
choice of parameters for a quasi-dyadic CFS instantiation.

5.1 (Generalized) Birthday Attacks

An attack due to Daniel Bleichenbacher against the CFS scheme is described
in [9]. We can shortly describe this attack as follows:

– build 3 lists L0, L1, and L2 of XORs of respectively t0, t1 and t2 columns of
H (with t = t0 + t1 + t2).

– merge the two lists L0 and L1 into a list L′
0 of XORs of t0 + t1 columns of

H, keeping only those starting with λ zeros.
– repeat the following steps:

• choose a counter and compute the corresponding document hash,
• XOR this hash with all elements of L2 matching on the first λ bits,
• look up each of these XORs in L′

0: any complete match gives a valid
signature.

Due to this attack, the values of m and t proposed in the original CFS scheme
are not enough to ensure a proper security level. Therefore, instead of m = 16
and t = 9, the authors of [9] propose m = 21 and t = 10, or m = 19 and t = 11,
or m = 15 and t = 12, as new parameters for a security of more than 280 binary
operations.

5.2 Decoding Attacks

The authors of [9] derive lower bounds on the work factor of idealized versions
of the ISD and of the GBA. Table 2 shows the cost of these two attacks against
various parameter sets, calculated according to [9]. Table 3 lists for each t the
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Table 2. Time complexity (given as lg) for the ISD / GBA attack against the CFS
scheme using binary codes with various parameter sets

�
��t
n

215 216 217 218 219 220 221

9 66.4/60.3 72.2/63.3 78.1/66.4 83.9/69.5 89.8/72.5 95.6/75.6 101.5/78.7
10 72.8/63.1 79.5/66.2 86.2/69.3 93.0/72.4 99.8/75.4 106.5/78.5 113.3/81.5
11 79.0/67.2 86.6/71.3 94.3/75.4 102.0/79.5 109.6/83.6 117.4/87.6 125.1/91.7
12 85.2/81.5 93.7/85.6 102.2/89.7 110.8/93.7 119.4/97.8 128.1/101.9 136.7/105.9

Table 3. Minimum m to yield time complexity of at least 280, expected number of
signing attempts, and key sizes

(t, m) (8, 25) (9, 22) (10, 21) (11, 19) (12, 15) (13, 14) (14, 14) (15, 13) (16, 13)

sec level 281.7 281.7 281.5 283.6 281.5 280.7 284.1 280.7 284.6

avg sign atts 216.3 219.5 222.8 226.3 229.8 233.5 237.3 241.3 245.3

key size (KiB) 93902 93862 25080 12560 169 346 187 187 13

minimum m such that the security level is about 280 or larger, taking both ISD
and GBA into account, and the resulting key sizes.

For simplicity, on Table 2 we assume full-length codes with n = 2m. In practice
we would adopt slightly shorter punctured codes, taking e.g. n = 2m−1/t since
this keeps the signing time within a factor of 2 from the corresponding time for
full-length codes; this choice is adopted in Table 3. While the key size may be
too large for smaller t, and conversely the signing complexity may be too large
for larger t, intermediate combinations like m = 15, t = 12 may be just right in
practice for this security level.

5.3 Structural Attacks

Structural attacks attempt to benefit from the symmetries existent in the public
and private information. As an example of the potential of such attacks, the
technique described in [16] successfully extracts the private key from the quasi-
cyclic codes proposed in [10]. That scheme takes a binary quasi-cyclic subcode
of a BCH code of length n as the secret code. The structure is hidden by a
heavily constrained permutation in order to produce a quasi-cyclic public code.
This implies that the permutation transformation is completely described with
n2

0 binary entries where n0 ) n is the quasi-cyclic index. The attack takes
advantage of the fact that the secret is a subcode of completely known BCH
code. The idea is to construct a system of linear equations by exploiting the
public generator matrix and a known parity-check matrix of the BCH code, so
as to get an overdefined (and easily solvable) system satisfied by the unknown
permutation matrix.

We show how to adapt this attack to our variant. Let H0 be a private parity-
check matrix of the underlying [n, k, 2t + 1] Goppa code, for which a decoding
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trapdoor is known to exist (or at least revealing that trapdoor, as is the case
for the purely dyadic parity-check matrix Δ(t, h) constructed in Section 4.1).
Consider matrix G = [GP | O] where GP is a generator matrix of the code
defined by the public parity-check matrix H , and O is the zero matrix with
N − n columns. Clearly, there exists an N ×N matrix X such that:

H0XGT = O. (2)

Writing N = N0t, X is an N0 × N0 block matrix whose blocks are either the
t× t zero matrix or a t× t dyadic permutation (the actual permutation varying
from block to block). Let n0 < N0 be the number of nonzero blocks in X (all of
them on the n0 leftmost columns of X , , without loss of generality because of the
structure of G). There are therefore

(
N0
n0

)
n0!tn0 possibilities for X . The situation

is almost the same as for quasi-cyclic alternant codes [1]. The main difference is
that, rather than having small powers of a fixed value whose successive powers
are on the diagonal, here we have one single element whose position assumes one
out of t possibilities (and this is not fixed). Therefore solving the system given
by Equation (2) reveals all the private information.

The first obstacle, however, is obtaining H0. The attack against quasi-cyclic
codes simply guesses the private parity-check matrix since there are only O(2m)
possibilities. In the QD case, on the other hand, guessing H0 would already incur
a superpolynomial cost O(2m2

). To makes things worse, for each guess of H0,
the attacker would have to mount and solve a linear system over the ring of
dyadic t × t matrices, containing n0 × N0 unknowns, or alternatively a system
over F2 directly, increasing the number of unknowns by a factor t2. In either
case the total amount of work is prohibitively high. The attacker might try to
guess X instead, or at least the positions of its nonzero dyadic blocks, but this
incurs an extra cost factor

(
N0
n0

)
n0!, which is too high for practical parameters. A

further difficulty is that the systems are highly underdefined (typically containing
hundreds of thousands of equations in tens of millions of unknowns).

None of the above ideas seems to lead to any promising strategy for a struc-
tural attack based on systems of linear equations. We next examine the pos-
sibility of using systems of quadratic equations to reduce the overall attack
complexity.

5.4 Attacks Based on Multivariate Quadratic Equations

The structural attacks outlined above are based on solving certain systems of
linear equations after guessing part of the unknown information, a task that, the
attacker hopes, is made easier by the structure of the underlying codes, but as
we saw the chances of these ideas ever succeeding are meagre at best. Recently,
Faugère et al. [7] proposed to reduce the decoding problem for quasi-dyadic
codes (and others) to the problem of solving systems of multivariate quadratic
equations (MQE) instead. The overall idea is to find an alternant decoder for the
public code directly, i.e. to write the public parity-check matrix as H = V D for
an unknown Vandermonde matrix V and an unknown diagonal matrix D defined
over the public field F2d , where d | m. The unknown components of V and D in
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the defining equation H = VD give rise to an instance of the MQE problem. By
making careful use of the structure of H , the authors of [7] are able to reduce the
complexity of such instances, since many component equations become linear,
and the truly quadratic part involves a reduced number of variables. This way
they are able to break all parameters proposed in [1] and [14] over extension
fields.

Apart from the fact that the attack complexity increases steeply as the codes
are defined over ever smaller extension fields, to the effect that no actual attack
was described against any of the published binary parameters, we argue that this
strategy, at least as it is presented, cannot yield an attack against binary QD
codes, even if it succeeds (at an impractically high cost but still faster than other
methods) against e.g. quasi-cyclic codes. The reason is that the attack principle
is to construct an alternant trapdoor directly from the public code defined by
H , which is not a Goppa code except with overwhelmingly low probability.
This trapdoor can be used to correct about t/2 errors at most, where t is the
design number of errors. For all alternant codes except binary Goppa codes this
is exactly the same as the number of errors that can be introduced and then
successfully corrected using the private trapdoor, which explains why the attack
is successful as long as the associated MQE instance can be solved in practice.

This is the case for codes over extension fields, as demonstrated in [7] (see
also [20]). Whether or not this is also the case for non-Goppa binary codes is at
best unclear for the time being as we pointed out. However, for the specific case
of binary Goppa codes, including binary QD codes, this attack can only correct
half as many errors as can be introduced and then corrected using the private
Goppa trapdoor.

If the underlying QD code were used for encryption, the attacker would have
to guess the remaining t/2 errors before using the obtained alternant trapdoor.
This would mean repeating the attempted decoding

(
n

t/2

)
/
(

t
t/2

)
times, which is

clearly infeasible for properly chosen practical parameters. For CFS signatures
no guessing is possible, since the messages to be signed are hashed directly onto
syndromes, not onto words with errors. Thus the attacker faces the difficulty of
finding a syndrome that decodes into a t/2-error vector. Such syndromes only
occur with exceedingly low density.

We conclude that existing attacks based on solving instances of the MQE
problem fail against properly chosen, yet still practical, binary QD codes.

Remark 1. A recent paper by Faugère et al. [8] analyzes the problem of distin-
guishing binary Goppa codes from random codes. The authors show that, under
certain conditions (essentially for the parameters used for signatures), this prob-
lem is no longer hard (for binary Goppa codes and binary quasi-dyadic Goppa
codes).

6 Conclusion

In this paper, we have presented a new way to instantiate CFS-like signature
schemes. The adoption of binary quasi-dyadic (QD) codes allows for a reduction
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of key sizes by a factor of 4 in practice. Although the number of signing attempts
increases by a factor of 2, a proper implementation of the more efficient arith-
metic enabled by QD codes is likely to make the actual signing time comparable
to plain CFS, possibly faster.

The resulting QD-CFS scheme can be adapted to schemes derived from CFS
signatures like [3], [21], or [6]. Binary QD codes can also be applied to other
code-based primitives like FSB (hash function), Stern (identification and signa-
ture scheme) or SYND (stream cipher). We leave these possibilities for further
research.
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Abstract. Fast signature verification is desirable in many applications,
especially when signature recipients need to make response quickly. In
this paper, we present an efficient online/offline verification of short sig-
nature (OVS) scheme without random oracles. Besides message signing,
signature verification can be also separated into offline phase and online
phase. Only one multi-exponentiation is required for the verifier in the
online phase. In addition, our signature is short which gives about 480
bits for 80-bit security. Our scheme indeed improves the efficiency of sig-
nature verification since no pairing operation is required in the online
phase. We also give a generic construction of OVS schemes using the
idea of double trapdoor chameleon hash.

Keywords: Online/Offline Verification, Chameleon Hash, Short
Signatures.

1 Introduction

Online/offline signatures were first introduced by Even, Goldreich and Micali
[15]. The idea is to split signing algorithm into two phases. The first phase is
performed in the offline phase before the message to be signed is presented, and
the second phase is performed in the online phase after the message is given. Most
of costly computations are accomplished in the offline phase, and the signer can
generate a signature quickly in the online phase with the aid of offline tokens.
In 2001, Shamir and Tauman [14] improved online/offline signature schemes
utilizing the idea of chameleon hash. The online phase is very fast with modular
multiplications only. Since the seminal work due to Shamir and Tauman, many
subsequent works are proposed [12,7,17,18,4,9,8]. Recently, in CT-RSA 2009,
Gao et al. [8] introduced the notion of divisible online/offline signature, where
the signer can send partial signatures to the verifier in the offline phase. We
note that online/offline signatures are proposed to speed up message signing.
Signature verification is still slow for these online/offline signature schemes.
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Many devices such as smart cards are low powerful devices and cannot perform
heavy computations quickly. The well-known pairing-based signature schemes
(e.g., [3,2,6,16,10]) capture some good properties but at the cost of heavy verifi-
cation which requires expensive pairing operations. It is therefore very inefficient
for these devices to perform signature verification for pairing-based signatures.
Note that batch verification [1,5] can speed up signature verification, but it can-
not be applied to verify one signature.

Our Contributions. In this paper, we borrow the notion of “online/offline” and
propose an efficient online/offline verification of short signature (OVS) scheme
without random oracles. This signature scheme can be seemed as an extension
of divisible online/offline signatures [8], and the construction is a modification
of Boneh-Boyen short signature scheme [2]. In our signature scheme, not only
the signer can send partial signatures to the verifier but also the verifier can
verify them in the offline phase. In the online phase, the computation cost for
signer and verifier are modular multiplications and one multi-exponentiation
respectively. In particular, no pairing computation is required for the verifier in
the online phase. Our signature is short with 480 bits for 80-bit security and the
security is based on the q-SDH assumption. We also give a generic construction
of OVS scheme that can be constructed from traditional signatures using double
trapdoor chameleon hash [4].

The organization of the paper is as follows. In Section 2, we provide related
definitions, including the definition of our OVS scheme, bilinear pairing and the
q-SDH assumption. We present our concrete OVS scheme in Section 3 and a
generic construction in Section 4. Section 5 is our conclusion.

2 Definitions

2.1 Definition of OVS

Our OVS scheme is composed of the following five algorithms.

KeyGen: On input a security parameter 1λ, the key generation algorithm re-
turns a random verification (public) key V K and a private (signing) key SK.

OffSign: On input SK, the offline signing algorithm returns an offline signature
token Σoff and the state information St.

OffVer: On input V K and the offline signature Σoff , the verification algorithms
returns accept if Σoff is valid; otherwise outputs reject.

OnSign: On input SK, the state information St and a message m, the online
signing algorithm returns an online signature token Σon.

OnVer: On input V K, a message m, the online signature Σon and the offline
signature token Σoff , the verification algorithms returns accept if Σon is valid;
otherwise output reject. The signature of m is defined as σ = (Σoff , Σon).
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2.2 Security Model

The security of an OVS scheme should be existential unforgeable under chosen-
message attacks (EU-CMA), where a game between a challenger C and an ad-
versary A are described as follows:

Setup: The challenger C runs algorithm KeyGen to obtain a pair of a verification
key and a private key (V K, SK). V K is given to the adversary A.

OffSign Queries: A makes a query for the ith offline signature token. C re-
sponds to the query by computing (Σoff

i , Sti). Σ
off
i is sent to A while Sti is

stored by C. Let A make q1 queries at most in this phase.

OnSign Queries:Amakes a query for the ith online signature token on message
mi. We assume that the adversary must make queries for offline signature
tokens before making queries for online signature tokens. C computes the
online token Σon

i using Sti, and Σon
i is returned to A. Let A make q2 queries

at most in this phase.

Forgery: A outputs a signature pair (m∗, σ∗) and wins the game if

(1) A did not make a query for the online signature token on m∗;

(2) σ∗ is a valid signature on m∗ signed with SK.

Definition 1. An OVS scheme is (t, q1, q2, ε)-secure against EU-CMA attack if
no adversary A who runs in time t, makes at most q1 queries for offline signature
token and q2 queries for online signature tokens can win the above game with
probability ε at least.

2.3 Bilinear Pairing

Let G and GT be two cyclic groups of prime order p. A map e : G×G → GT is
called a bilinear map if this map satisfies the following properties:

– Bilinear: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab;
– Non-degeneracy: e(g, g) �= 1. In other words, if g be a generator of G, then

e(g, g) is a generator of GT ;
– Computability: It is efficient to compute e(u, v) for all u, v ∈ G.

2.4 Complexity Assumption

Let G be a cyclic group of prime order p, and g be a generator of G. The q-
SDH problem [2] in G is to compute any pair (c, g1/(a+c)) for some c ∈ Zp given
g, ga, g(a2), · · · , g(aq) as input. We say that the q-SDH problem is (t, ε)-hard if
for any t-time adversary A, we have

Pr
[
A(g, ga, g(a2), · · · , g(aq)) = (c, g

1
a+c ), c ∈ Zp

]
< ε

where ε is negligible.

Definition 2. We say that the q-SDH assumption holds with (t, ε) in G if no
t-time algorithm has advantage at least ε in solving the q-SDH problem in G.
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2.5 Double Trapdoor Chameleon Hash

Let G be the group of prime order p, g ∈ G be a generator and y, z be two
random values from Z∗

p. Set the element g2 = gy, g3 = gx. The verification key is
(g, g2, g3) and the private key is (y, z). The input elements of chameleon hash is a
triple (m, r, w) from Zp and the output is an element of G, where the chameleon
hash is defined as

H(m, r, w) = gm · gr
2 · gw

3 .

Given a new m′ �= m and (y, z), firstly choose a random r′(or w′), and compute
w′ =

(
(m−m′) + (r − r′)y + wz

)
z−1 (or r′ =

(
(m−m′) + (w−w′)z + ry

)
y−1)

such that H(m′, r′, w′) = H(m, r, w). However, when the triple (m, r, w) is given
and the private key is unknown, no adversary can find a new triple (m′, r′, w′)
in polynomial time such that both m′ �= m and H(m′, r′, w′) = H(m, r, w) hold.
The security proof of double chameleon hash functions was given in [4].

3 Online/Offline Verification of Short Signatures

3.1 Construction

Let e : G×G → GT be the bilinear map, where G and GT be two cyclic groups
of prime order p, and g be the corresponding generator in G. The proposed
OVS scheme consists of five algorithms (KeyGen, OffSign, OffVer, OnSign,
OnVer), and they are described as follows.

KeyGen: Randomly choose three integers x, y, z ∈ Z∗
p and two generators g, u ∈

G. Set g1 = gx, g2 = gy , g3 = gz, and v = e(u, g) ∈ GT . The verification key
and private key are respectively as follows:

V K = (u, g, g1, g2, g3, v,G,GT ), SK = (x, y, z).

OffSign: Given the private key SK = (x, y, z), the signer randomly chooses
an integer ρ ∈ Zp\{−x}, and computes σ = u

1
x+ρ , where 1

x+ρ is the inverse
of (x+ ρ) in Z∗

p. Then, computes η = g1g
ρ, and output (Σoff , St) defined as

(Σoff , St) =
(

(σ, η), ρ
)
.

OffVer: Given the verification key V K = (u, g, g1, g2, g3, v,G,GT ) and an
offline signature token Σoff = (σ, η), verify that

e(σ, η) = v.

Correctness:

e(σ, η) = e(u1/x+ρ, g1g
ρ)

= e(u1/x+ρ, gx+ρ)
= e(u, g)
= v.
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OnSign: Given the message m to be signed, retrieving the state information
St = ρ from the memory, the signer randomly picks r ∈ Zp, and computes
s ∈ Zp, such that

m + ry + sz = ρ mod p.

Output the online signature token Σon = (r, s).

OnVer: Given the verification key V K, Σoff and a signed message (r, s), verify
that

η = g1 · gm · gr
2 · gs

3.

If the equality holds, store (σ, η, r, s) as the signature on m; otherwise invalid.

Correctness:

η = g1 · gρ

= g1 · gm+ry+sz

= g1 · gm · gr
2 · gs

3.

3.2 Efficiency

We give a concrete computation cost of our OVS scheme. Let E denote one
exponentiation, P denote one pairing computation, M denote one modular mul-
tiplication, and EM denote one multi-exponentiation of three exponentiations.
We have the result of our OVS scheme in the following table.

Table 1. Computation Cost of Our OVS Scheme

Offline Computation Online Computation

Signer 2E 1 M

Verifier 1P 1 EM

Note that the pairing-based signature scheme [2] requires one pairing and
one multi-exponentiation (two exponentiations) for the verifier. Since the of-
fline phase can be carried out and pre-done before knowing messages, we have
successfully reduced the pairing computation for the verifier in the online phase.

Our signature is composed of the four elements (σ, η, r, s). It is easy to verify
that it can be reduced to (σ, r, s) if the signature is valid. Given the signature
(σ, r, s), any other parties can verify it by checking

e
(
σ, g1 · gm · gr

2 · gs
3

)
= v.

We can also use the asymmetric pairing described in [3,2] for shorter signature
length. For 80-bit security, we have that each element represents 160 bits and
therefore our signature is 480 bits in length.
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3.3 Security

We now show the security of our scheme without random oracles with the aid
of proofs in [8,2].

Theorem 1. Let q = q1+1. Then our OVS scheme is (t, q1, q2, ε)-secure against
EU-CMA assuming the q-SDH assumption holds with complexity (t′, ε′).

ε′ ≥ ε

3
− qs

p
, t′ = t + O(q2

s te)

Where te is the maximum time for an exponentiation in G.

Proof. Suppose A is the adversary that (t, q1, qs, ε)-breaks our signature scheme,
we construct an algorithm B that solves the q-SDH problem in time t′ with
advantage ε′. Algorithm B is given an instance g, ga, g(a2), · · · , g(aq) of the q-
SDH problem for some unknown a ∈ Zp, and its goal is to produce a pair
(ρ, g1/(a+ρ)) for some ρ ∈ Zp. Let f(x) =

∏ qs

i=1(x+ci) be a qs-degree polynomial
function, where c1, · · · , cqs ∈ Zp are randomly chosen. Set u = gf(a), δ = ga and
v = e(u, g). The attack from A falls into the following three types:

Type-1: gm∗
gr∗
2 gs∗

3 �= gmigri
2 gsi

3 for all i = 1, . . . , qs.
Type-2: gm∗

gr∗
2 gs∗

3 = gmigri
2 gsi

3 for some i = 1, . . . , qs, but r∗ �= ri.
Type-3: gm∗

gr∗
2 gs∗

3 = gmigri
2 gsi

3 for some i = 1, . . . , qs, but r∗ = ri and s∗ �= si.

[Type–1.]

KeyGen: Algorithm B randomly chooses two values y, z ∈ Z∗
p and sets SK =

(a, y, z). B gives the verification key V K = (u, g, g1, g2, g3, v,G,GT ) to A,
where g1 is set to δ, g2 is set to gy, and g3 is set to gz.

Offline Queries: A makes a query for the ith offline token, where 1 ≤ i ≤ q1.
B responds to the query by computing Σoff

i = (σi, ηi) = (u1/a+ci , δgci).
Σoff

i is sent to A while ci is stored by B. (σi, ηi) is a valid offline signature
token for VK since

e(σi, ηi) = e(u1/a+ci , gagci) = e(u, g) = v.

Online Queries:A makes a query for the ith online token on message mi, where
1 ≤ i ≤ qs. B randomly chooses ri ∈ Z∗

p, and sets si = (ci −mi − yri)z−1

mod p. The online signature token (ri, si) is returned to A. (, ri, si) is a
valid online signature token on the message mi for V K since

ηi = ga · gci = g1 · gmi+riy+siz = g1 · gmi · gri
2 · gsi

3 .

Forgery: Finally, A returns a valid forgery (m∗, σ∗, η∗, r∗, s∗) satisfying the con-
dition in Type 1. We have c∗ = m∗+yr∗+zs∗ �= ci. B outputs (c∗, g1/(a+c∗))
as the solution to the q-SDH assumption. Therefore Type 1 occurs with
probability ε/3, and B can successfully solve the q-SDH problem with prob-
ability at least ε/3.
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[Type–2.]

KeyGen: Algorithm B randomly chooses two values x, z ∈ Z∗
p and sets SK =

(x, a, z). B gives the verification key V K = (u, g, g1, g2, g3, v,G,GT ) to A,
where g1 is set to gx, g2 is set to δ, and g3 is set to gz.

Offline Queries: A makes a query for the ith offline token, where 1 ≤ i ≤ q1.
B randomly chooses ri ∈ Z∗

p, and returns Σoff
i = (σi, ηi) = (u1/(a+ci))

1
ri as

the i-th offline signature token while (ri, ci) is stored by B. This (σi, ηi) is
a valid offline signature token for V K since

e(σi, ηi) = e((u1/(a+ci))
1
ri , griagrici) = e(u1/a+ci , gagci) = e(u, g) = v.

Online Queries:A makes a query for the ith online token on message mi, where
1 ≤ i ≤ qs. B sets si = (ciri − x − mi)z−1 mod p. The online signature
token (ri, si) is returned to A. (σi, ηi, ri, si) is a valid online signature token
on the message mi for V K since

ηi = δri · grici = gri
2 · gmi+x+siz = gri

2 · gmi · g1 · gsi
3 .

Forgery: From above description, we know that Type 2 occurs with probability
at least ε/3, and r∗ = ri occurs with probability at most qs/p. If A returns
a value forgery (m∗, σ∗, η∗, r∗, w∗) satisfying the condition in Type 2, which
for some i, gm∗

gr∗
2 gs∗

3 = gmigri
2 gsi

3 and r∗ �= ri hold, then B will not abort. B
can compute a = y =

(
(si−s∗)z+(mi−m∗)

)
(r∗−ri)−1 mod p. Therefore B

can succeed with probability at least ε/3−qs/p to solve the q-SDH problem.

[Type–3.]

KeyGen: Algorithm B randomly chooses two values x, y ∈ Z∗
p and sets SK =

(x, y, a). B gives the verification key V K = (u, g, g1, g2, g3, v,G,GT ) to A,
where g1 is set to gx, g2 is set to gy, and g3 is set to δ.

Offline Queries: A makes a query for the ith offline token, where 1 ≤ i ≤ q1. B
chooses a random si ∈ Z∗

p, and returns (σi, ηi) = ((u1/(a+ci))
1
si as the i-th

offline signature token, while (ri, ci) is stored by B. This (σi, ηi) is a valid
offline signature token for V K since

e(σi, ηi) = e((u1/(a+ci))
1
si , gsiagsici) = e(u1/a+ci , gagci) = e(u, g) = v.

Online Queries: A makes a query for the ith online token on message
mi, where 1 ≤ i ≤ qs. B sets ri = (cisi − x −mi)y−1 mod p. The online
signature token (ri, si) is returned to A. (σi, ηi, ri, si) is a valid signature
on the message mi for V K since

ηi = δsigsici = gsi
3 · gmi+x+riy = gsi

3 · gmi · g1 · gri
2 .

Forgery: The proof of Type 3 is similar to that of Type 2. Likewise, B can
compute a = z = (mi −m∗)(s∗ − si)−1 mod p for some i with probability
at least ε/3− qs/p to solve the q-SDH problem, where (m∗, σ∗, η∗, r∗, s∗) is
a valid signature forged by A satisfying Type 3.
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Since three Types are independent with uniform distribution, there exists
an algorithm B, which can solve the q-SDH problem with probability at least
ε/3− qs/p in polynomial time. This completes the full proof.

4 Generic Construction

Using the double trapdoor chameleon hash, we show how to achieve the generic
construction of OVS scheme from any secure signature scheme. Let (G,S,V) be
a provably secure signature scheme, which denotes key generation, signing and
verification, respectively. The generic OVS signature can be described as the
following five algorithms (KeyGen, OffSign, OffVer,OnSign,OnVer).

KeyGen: Let (vk, sk) be a pair of verification/private key from G, randomly
choose two values y, z ∈ Zp and set g2 = gy, g3 = gz. The final verifica-
tion/private key of (V K, SK) is V K = (vk, g2, g3), SK = (sk, y, z).

OffSign: Randomly choose three integers m, r, w ∈ Zp, and compute Hch =
gmgr

2g
w
3 . Store the state information St = (m, r, w). Let σsk be a signature

on Hch. The offline signature tokens is Σoff = (σsk, Hch)

OffVer: On input the verification key V K and Σoff = (σsk, Hch), the verifica-
tion algorithms outputs accept if σsk is a valid signature on Hch signed with
sk; otherwise outputs reject.

OnSign: Given the message m′ ∈ Zp to be signed, firstly choose a random
r′ ∈ Zp, and compute w′ =

(
(m − m′) + (r − r′)y + w

)
z−1. The online

signature token on m′ is Σon = (r′, w′).

OnVer: Given the online signature token (r′, w′), verification key V K and a
message m′ ∈ Zp, check that Hch = gm′

gr′
2 gw′

3 . The verifier outputs accept if
it is correct, otherwise output reject. The final signature on m′ is (σsk, r

′, w′).

The security proof of our generic construction is similar to the Theorem 1, and
we omit it here.

5 Conclusion

In this paper, we proposed an efficient online/offline verification of short sig-
natures without random oracles. In our scheme, both signer and verifier can
separate their computations into offline phase and online phase. In particular,
only one multi-exponentiation is required for the verifier in the online phase and
no pairing computation is required. Our signature is short with 480 bits for 80-
bit security. We also gave a generic construction of OVS scheme from double
trapdoor chameleon hash.
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Abstract. A primary functionality of public key encryption schemes is
data privacy, while in many cases key privacy (aka. anonymity of public
keys) may also be important. Traditionally, one has to separately de-
sign/prove them, because data privacy and key privacy were shown to be
independent from each other [5,40]. Existing constructions of anonymous
public key encryption usually take either of the following two approaches:

1. Directly construct it from certain number theoretic assumptions.
2. Find a suitable anonymous encryption scheme with key privacy yet

withoutchosenciphertextsecurity,thenusesomededicatedtransforms
to upgrade it to one with key privacy and chosen ciphertext security.

While the first approach is intricate and a bit mysterious, the second
approach is unnecessarily a real solution to the problem, namely, how
to acquire key privacy. In this paper, we show how to build anonymous
encryption schemes from a class of key encapsulation mechanisms with
only weak data privacy, in the random oracle model. Instantiating our
generic construction, we obtain many interesting anonymous public key
encryption schemes. We note that some underlying schemes are based on
gap assumptions or with bilinear pairings, which were previously well-
known not anonymous.

Keywords: public key encryption, key privacy, data privacy, anonymity.

1 Introduction

Key privacy, also called anonymity, is an interesting property for public key en-
cryption, which was first formulated in [5]. Key privacy concerns the anonymity
of the receiver, namely, the identity of the receiver should not be easily inferred
from a ciphertext to him, even with some non-trivial interactions between the
adversary and the receiver. Informally speaking, anonymity of public keys is
related to the so-called public verifiability in the multi-user setting, where any-
one without the decryption key, can verify the validity of a ciphertext under
a certain user’s public key. Anonymous encryption has many applications, e.g.,
anonymous BCC email, anonymous credential system, e-auction, etc.. We refer
to [5] and the references therein for further descriptions for the applications.

On the other hand, unlike data privacy [23,31,35,19,7], key privacy is com-
paratively not well-understood. Some research has investigated relations between
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c© Springer-Verlag Berlin Heidelberg 2011



360 R. Zhang

anonymity and data privacy for public key encryption schemes [5,27,40], showing
that key privacy and data privacy are independent, namely, a very secure data
private encryption scheme may be not anonymous at all, and vice versa. This
result forces that the anonymity of each encryption scheme should be studied
independently. Known constructions for key privacy start either from certain
number theoretic assumptions [5,26], or from some schemes with weak anonymity
[27,40,33], namely, anonymity without chosen ciphertext security (CCA).

The former method is intricate, since everything has to be designed from
scratch, while the latter seems a bit tricky: the difficult problem of construct-
ing an anonymous encryption scheme has actually been changed to how to
upgrade an encryption scheme with key privacy without CCA security to one
with CCA security. This somehow seems easier, thanks to the rich literature:
[31,20,36,18,15,34] in the standard model and [9,7,22,32] in the random oracle
model. But it actually does not solve the problem how to acquire anonymity.

It becomes natural to ask the following questions: First, can one have a more
intelligent way to build key privacy? Second, since data privacy is the essential
functionality of a public key encryption scheme, can we build key privacy based
on data privacy? In this paper, we give an affirmative answer to both questions.
We propose a generic construction for anonymity from very weak data privacy.
Contrary to previous constructions [27,40,33], we don’t pose any requirement on
the anonymity of the underlying schemes. Alternatively, we assume the under-
lying encryption admits weak data privacy security as well as a special property
called reproducibility which is explained below. To remark, a reproducible KEM
can be not anonymous at all. In Section 5.2, we give a few concrete examples.

Our main tool is key encapsulation mechanism (KEM) [39] with reproducibil-
ity [6,4]. In such a system, a ciphertext c = (ψ, τ) is produced by two sub-
algorithms KEM.enc1 and KEM.enc2. Here KEM.enc1 takes a system parameter
sp that is shared by all the users, produce a partial ciphertext ψ and an in-
ternal state ω. KEM.enc2 takes a public key pk and ω, and produces the other
part of the ciphertext τ and the session key dk. Informally, the reproducibil-
ity property is that with input (sp, ψ), a receiver, with knowledge of the secret
key sk, can reconstruct τ using an additional algorithm KEM.rp, denoted as
τ ← KEM.rp(sp, sk, ψ).

With the above description, it is easy to see that if a sender erases τ from
the ciphertext encapsulating the same dk, because of reproducibility, a receiver
can still recover τ , thus decrypt. We then claim this new key encapsulation
mechanism scheme with shortened ciphertext ψ is actually anonymous. The
intuition is that ψ only depends on sp, which is shared system-wide, thus will
not leak information of the receiver’s public key. But a problem arises that we
don’t know how to demonstrate a meaningful security reduction, if we only
assume the underlying KEM is secure.

To solve this problem, we modify the key derivation algorithm, such that
the final session key is forced to depend on both (ψ, τ) and encapsulated key
dk of the underlying KEM scheme. A simple idea is to let the session key be
H(pk, c, dk), where H is a key derivation function, which is regarded as a random
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oracle in security analysis. In this way, we only require weak data privacy for
the underlying reproducible KEM scheme, namely one-wayness against session
key checking attack [3]. We remark that the resulting PKE scheme achieves not
only key privacy, but strong data privacy as well, which we will briefly discuss
in Section 4.

We remark that the above construction relies on random oracles, while a
proof in the random oracle model says nothing about its security if the random
oracles are instantiated with practical hash functions [14]. However, a proof
in the random oracle at least shows the scheme has no inherent defect in its
design, and is definitely better than no proof at all. We hope this will help
to motivate more ideas in constructing efficient anonymous encryption in the
standard model.

1.1 Related Work

A classical security notion for encryption schemes is data privacy, which is de-
fined in terms of indistinguishability against chosen ciphertext attack (IND-CCA)
[23,35,19,7]. An independent security notion, key privacy or anonymity, was for-
malized by Bellare, Boldyreva, Desai and Pointcheval [5], and was further studied
in [5,26,24,27,40,21].

Recently, Naccache, Steinwandt and Yung formulate the notion reverse public
key encryption (RPKE) [30], which is a weaker form of key privacy. In such a
model, an adversary is not allowed to choose which message to encrypt in its
target ciphertext. But this was shown to be already enough for secure message
transmission (though of bad bandwidth usually): The the real message is encoded
by possible choices of public keys.

Key encapsulation mechanism (KEM) was first formulated by Shoup [39].
While the initial motivation of KEM was to construct efficient hybrid encryp-
tion schemes, it turned out that this has many other applications. E.g., Baek,
Zhou and Bao introduced KEM with reproducibility [4], which can be used to
build stateful encryption schemes [8].1 We note that reproducibility was first
introduced in [6], whose intension was to build multi-recipient encryption. We
note that known multi-recipient encryption and stateful encryption may not be
anonymous, even they satisfy reproducibility.

2 Preliminary

In this section, we review some useful notations and definitions.

Notations. If x is a string, let |x| denotes its length, while if S is a set then
|S| denotes its size. If S is a set then s← S denotes the operation of picking an
element s of S uniformly at random. We write z ← A(x, y, . . .) to indicate that
A is an algorithm with inputs (x, y, . . .) and an output z. If k ∈ N, a function
f(k) is negligible if ∃ k0 ∈ N, ∀ k > k0, f(k) < 1/kc, where c > 0 is a constant.
1 In particular, reproducibility was crucial for the proof of their scheme in the known

secret key model [8,4].
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2.1 Public Key Encryption

Syntax. A public key encryption scheme PKE = (PKE.setup,PKE.kg,PKE.enc,
PKE.dec) consists of 4 algorithms.

– PKE.setup: taking a security parameter k as input, the randomized algo-
rithm generates the system parameter sp (including k), denoted as sp ←
PKE.setup(k).

– PKE.kg: taking a system parameter sp as input, the randomized algorithm
generates a public/secret key pair (pk, sk), denoted as (pk, sk)←PKE.kg(sp).

– PKE.enc: taking a system parameter sp, a public key pk, a plaintext m as
input, the possibly randomized algorithm computes a ciphertext c, denoted
as c← PKE.enc(sp, pk,m).

– PKE.dec: taking a system parameter sp, a secret key sk, a ciphertext c as in-
put, the deterministic algorithm outputs a plaintext m, or a specially symbol
“⊥” (indicating “invalid ciphertext”), denoted as m/⊥ ← PKE.dec(sp, sk, c).

We require the correctness condition, namely, ∀ sp← PKE.setup(k) and (pk, sk)
← PKE.kg(sp), we have m = PKE.dec(sp, sk,PKE.enc(sp, pk,m)).

Definition 1 (ANON-CCA security for PKE). We say an encryption scheme
is (ε, t)-ANON-CCA secure, if for any adversary A with running time at most
t, has advantage ε in the following experiment. The interaction between A and
a decryption oracle DO is shown in Fig. 1. In particular, A is not allowed to
query (c∗, j) (j �= 0, 1) to the decryption oracle. We say the encryption scheme
is ANON-CCA secure, if for any probabilistic polynomial Turing-machine (PPT)
A, ε is negligible.

Advanon-cca
A (k) = |Pr[sp← PKE.setup(k); (pk0, sk0) ← PKE.kg(sp);

(pk1, sk1) ← PKE.kg(sp); (m, st) ← ADO(pk0, pk1, sp); b← {0, 1};
c∗ ← PKE.enc(sp, pkb,m); b′ ← ADO(c∗, st) : b = b′]− 1/2|

The above experiment considers only the 2-user case, but we note it is possible
to extend the definition to the n-user case, as long as n is polynomially bounded.

2.2 Key Encapsulation Mechanism (KEM)

We review an important tool, reproducible key encapsulation mechanism [4]. A
reproducible key encapsulation mechanism KEM = (KEM.setup,KEM.kg,
KEM.enc1,KEM.enc2,KEM.dec,KEM.rp) consists of 6 algorithms.

Oracle Query Action Taken Response

DO(c, j), j ∈ {0, 1} m ← PKE.dec(sp, skj , c) m

Fig. 1. Decryption Oracle in ANON-CCA Game for PKE.
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– KEM.setup: taking a security parameter k as input, the randomized algo-
rithm generates the system parameter sp (including k), denoted as sp ←
KEM.setup(k).

– KEM.kg: taking a system parameter sp as input, the randomized algorithm
generates a public/secret key pair (pk, sk), denoted as (pk, sk)←KEM.kg(sp).

– KEM.enc1: taking a system parameter sp as input, with internal coin-flipping,
output a partial ciphertext ψ and internal state ω, denoted as (ψ, ω) ←
KEM.enc1(sp).

– KEM.enc2: taking sp, a public key pk and ω as input, outputs a partial cipher-
text τ and the encapsulated key dk, denoted as (τ, dk)←KEM.enc2(sp, pk, ω).

– KEM.dec: taking a system parameter sp, a secret key sk, a ciphertext c as in-
put, the deterministic algorithm outputs a session key dk, or a special symbol
“⊥” (indicating “invalid ciphertext”), denoted as dk/⊥←KEM.dec(sp, sk, c).

– KEM.rp: Denote (pk, sk) ← KEM.kg(sp) as a pair of public/secret keys.
Let (ψ, ω) ← KEM.enc1(sp) as defined above. KEM.rp takes sk and ψ as
input, outputs (τ, dk), denoted as (τ, dk) ← KEM.rp(sp, sk, ψ). We say a
KEM scheme is reproducible, if KEM.rp always outputs the valid remain-
ing partial ciphertext τ1 and the valid session key dk, namely Pr[(τ, dk) =
KEM.enc2(sp, pk, ω)] = 1.

We require the standard correctness, namely, ∀ sp ← KEM.setup(k) and ∀
(pk, sk) ← KEM.kg(sp), we have dk = KEM.dec(sp, sk, c), where c = (ψ, τ)
is produced by (ψ, ω) ← KEM.enc1(sp) and (τ, dk) ← KEM.enc2(sp, pk, ω).

Remark 1. Our definition of the reproducibility is weaker (thus more general)
than that given in [4]. In particular, we don’t insist the input for KEM.rp involves
multiple key pairs, since this is already enough for our purpose. Most of the
known DH-based KEM schemes, in the random oracle [2,12,37,17], or in the
standard model [18,29,16,25], meet these two properties.

We consider a very weak security notion for data privacy, namely one-wayness
against key checking attack (OW-KCA) [3], which is formally defined below.

Definition 2 (OW-KCA security for KEM). We say a KEM scheme is (ε, t)-
OW-KCA secure, if for any adversary A with running time at most t, has ad-
vantage ε in the following experiment. The interaction between A and a key
checking oracle KCO is shown in Fig. 2. In particular, we say a reproducible
KEM is OW-KCA secure if for any PPT A, ε is negligible.

Advow-kca
A (k) = Pr[sp← KEM.setup(k); (pk, sk) ← KEM.kg(sp);

(ψ,w) ← KEM.enc1(sp, pk); (τ, dk) ← KEM.enc2(sp, pk, w);

c∗ ← (ψ, τ); dk′ ← AKCO(pk, c∗) : dk = dk′]
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Oracle Query Action Taken Response

KCO(pkj , c, dk), j ∈ {0, 1} If dk = KEM.dec(sp, skj , c) 1
If dk �= KEM.dec(sp, skj , c) 0

Fig. 2. Plaintext Checking Oracle in the OW-KCA Game for KEM

Oracle Query Action Taken Response

EO(m) e ← SE.enc(dkb, m) e
DO(c) m ← SE.dec(dkb, c) m

Fig. 3. Oracles in the IND-CCA Game for SE

2.3 Symmetric Encryption

A symmetric key encryption scheme SE = (SE.enc, SE.dec) consists of 2 algo-
rithms associated with a key space K:

– SE.enc: taking a key dk ∈ K and a plaintext m as input, the encryption
algorithm outputs a ciphertext e, denoted as e← SE.enc(dk,m).

– SE.dec: taking a key dk ∈ K, and a ciphertext e as input, the decryption algo-
rithm outputs a plaintext m, or a specially symbol “⊥” (indicating “invalid
ciphertext”), denoted as m/⊥ ← SE.dec(dk, e).

Unlike public key encryption, the anonymity of symmetric key schemes are
quite related to its data privacy. We note if all the users share the same sys-
tem parameters thus the same key space, the symmetric key scheme is already
anonymous. We review the definition of data privacy (indistinghushability) and
anonymity of symmetric key encryption.

Definition 3 (IND-ANON-CCA security for SE). Consider the advantage of
an adversary A in the following experiment, where A can either query SE.enc
with (m0,m1) or query SE.dec with (e0, e1). The limitation of A when querying
the oracles are: it cannot query an oracle with an output it obtained previously
from the other oracle. The interactions between A and the oracles are shown Fig.
3. We say SE is IND-ANON-CCA secure, if for any probabilistic polynomial time
(PPT) A, ε is negligible.

Advind-anon-cca
A (k) = |[dk0 ← K; dk1 ← K; b← {0, 1};

b′ ← AEO,DO(k,K) : b′ = b]− 1/2|

3 A Generic Construction for Key Privacy

In this section, we present a generic transform that turns any reproducible KEM
with one-wayness against key checking attack (OW-PCA) into a PKE scheme with
anonymous against chosen ciphertext attack (ANON-CCA). To remark, this trans-
form also enhances data privacy of the underlying KEM, namely, the resulting
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KEM is IND-CCA secure. For completeness, a brief discussion is given in Section 4.
Here we focus on the detailed description of our scheme and prove its anonymity.

3.1 Our Construction

Denote KEM = (KEM.setup,KEM.kg,KEM.enc1,KEM.enc2,KEM.dec,KEM.rp)
as a reproducible KEM scheme. Denote H as a hash function (modeled as a ran-
dom oracle in security analysis) with compatible range and domain. Our generic
construction is shown in Fig 4. Here H : {0, 1}∗ → K is a secure key deriva-
tion function (KDF), and K is the key space of a secure symmetric encryption
SE = (SE.enc, SE.dec).

PKE.setup(k)
sp ← KEM.setup(k);
Return sp;

PKE.kg(sp)
(pk1, sk1) ← KEM.kg(sp);
Pick a key derivation function H ;
pk ← (pk1, H);
sk ← sk1

Return (pk, sk);

PKE.enc(sp, pk, m)
Parse pk = (pk,H);
(ψ, ω) ← KEM.enc1(sp);
(τ, dk) ← KEM.enc2(sp, pk, ω);
dk′ ← H(pk, τ, dk);
e ← SE.enc(dk′, m);
c ← (ψ, e);
Return c;

PKE.dec(sp, sk, c)
Parse c = (ψ, e);
τ ← KEM.rp(sp, sk, ψ);
dk ← KEM.dec(sp, sk, (ψ, τ ));
abort if dk = ⊥;
dk′ ← H(pk, τ, dk);
Return SE.dec(dk′, c);

Fig. 4. Generic Construction of ANON-CCA PKE from Reproducible KEM

The correctness of the construction can be verified from the description of
algorithms. We focus on the ANON-CCA security. The following theorem guar-
antees its anonymity.

Theorem 1. The PKE scheme (Fig. 4) is (ε1 + ε2, t1 + t2 +O(kq))-ANON-CCA
secure, assuming the KEM is (ε1, t1)-OW-KCA secure, and the SE is (ε2, t2)-
ANON-CCA secure, where k is the security parameter, q is the total number of
queries A makes in the game.

Proof Idea. We introduce the proof strategy before give the details. Since
τ doesn’t appear explicitly in the challenge ciphertext, the simulator can fake
the session key for the challenge by a randomly chosen one. Later, to have the
knowledge of b, the real τ and dk must appear in the adversary’s the random
oracle query, thus the simulator can extract dk. The only thing left is how to
answer the decryption queries. For decryption queries on valid ciphertexts, if
it has appeared in the previous hash queries, then the simulator can extract
the correct session key for the hash list, then decrypt. For invalid queries, note
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that the simulator knows every session key, it will reject. More exactly, even if it
encounters a new ciphertext whose session key it does not know, it can randomly
sample a new one. Later when τ and dk are queried by the adversary, it can fill
up the early unfinished record. Thus for every type of query, the simulator makes
perfect simulation. We elaborate the details below.
Proof. We build a simulator B that utilizes an ANON-CCA adversary A to break
the underlying reproducible KEM. B controls the random oracle H , and simu-
lates the challenger in the ANON-CCA game as follows.
Hash Query: B maintains a hash list with 6-entry (pk, ψ, τ, dk, dk′, β) (β ∈
{0, 1} is a boolean value), initially empty. When there is a hash query of the
form (pkj , ψ, τ, dk), where (j ∈ {0, 1} is the index of the public key), B searches
the hash list for an entry of the form (pkj , ψ, τ, dk, dk

′, ?), where “?” means
“don’t care”. If there is such a record, it returns corresponding dk′ as reply.

If there is not such a record, B queries its own session key checking oracle
KCO with (pkj , ψ, τ, dk). If KCO’s answer is “valid”, B further searches for
a record of the form (pkj , ψ, ·, ·, dk′, 1), where “·” means “empty”. If there is
such a record, B fills τ and dk in and completes the record, otherwise B chooses
randomly dk′ ← K and adds a new record (pki, ψ, τ, dk, dk

′, 1) to the list. If
KCO’s answer is “invalid”, B then chooses randomly dk′ ← K, returns dk′ as
the output and adds a new record (pki, ψ, τ, dk, dk

′, 0) to the hash list.
Decryption Query: On a decryption query (pkj , ψ, e), B first searches the
hash list for a record of the form (pkj , ψ, ?, ?, dk′, 1). If there is such an record,
B returns m ← SE.dec(dk′, c) as the answer. If there is not such an record, B
chooses dk′ ← K, adds (pkj , ψ, ·, ·, dk′, 1) to the hash list, and returns m ←
SE.dec(dk′, c) as the answer.
Encryption Query: On query m∗ submitted by A, B flips a fair coin b to
produce the challenge (ψ∗, τ∗) under public key pkb. Moreover, B sets e ←
SE.enc(dk′∗,m∗), where dk′∗ ← K. B then gives c∗ = (ψ∗, e) to A. Especially, B
adds (pkb, ψ

∗, τ∗, ·, dk′∗, 1) to the hash list.
When A terminates and outputs its guess a bit b′, B searches the hash list

for (pkb′ , ψ
∗, τ∗, dk∗, dk′∗, 1). If there is such an entry, B recovers dk∗, i.e., B

has broken the OW-KCA security of the underlying KEM. If there is no such an
entry, B aborts. This completes the description of B.

Now we calculate B’s success probability. Notice the decryption query is an-
swered perfectly, since B always is able to tell all invalid ciphertexts. Because
of the random oracle, B is always able to compute the correct dk′ for valid
ciphertexts. The encryption query is also perfectly answered.

Note that if dk∗ was not queried during the game, due to the assumption on
the symmetric key encryption, A’s advantage is bounded by ε2. Otherwise, B
can find dk∗ with probability 1. We have

AdvB(k) = ε1 = Pr[AdvA ∧ dk∗ ∈ H-list]− Pr[AdvA ∧ dk∗ /∈ H-list]
≥ ε− ε2

We have ε ≤ ε1 + ε2, which proves our statement. The claimed time bound can
be verified from the description of B.
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Relation to a scheme from [4] In the context of building efficient stateful
encryption schemes [8], Baek, Zhou and Bao proposed a transform in the random
oracle model [4], which is somehow similar to our transform. We remark that
instead of hiding τ in the key derivation function as we did, they require τ to be
transmitted as a part of the ciphertext. Thus the bandwidth of their scheme is
worse than ours. Instead, a receiver doesn’t need to compute τ himself. On the
other hand, because τ depends on the receiver’s public key, their scheme cannot
be anonymous in general. Note that their original goal was not key privacy.

4 Data Privacy of the Proposed Scheme

The proposed construction actually provides IND-CCA security assuming the
reproducible KEM is OW-KCA secure. Here we only give the definition of IND-
CCA and sketch the proof, since majority of the proof overlaps the one given in
Section 3.

Definition 4 (IND-CCA security for PKE). We say an encryption scheme
is (ε, t)-IND-CCA secure, if for any adversary A with running time at most t,
has advantage ε in the following experiment. The interaction between A and a
decryption oracle DO is shown in Fig. 5. In particular, A is not allowed to query
c∗ to the decryption oracle. We say the encryption scheme is IND-CCA secure,
if for any polynomially bounded t, ε is negligible.

Advind-cca
A (k) = |Pr[sp← PKE.setup(k); (pk, sk) ← PKE.kg(sp);

(m0,m1, st) ← ADO(pk, sp); b← {0, 1}; c∗ ← PKE.enc(sp, pk,mb);

b′ ← ADO(c∗, st) : b = b′]− 1/2|

Oracle Query Action Taken Response

DO(c) m ← PKE.dec(sp, sk, c) m or ⊥

Fig. 5. Decryption Oracle in the IND-CCA Game for PKE

We have the following statements on data privacy of the scheme:

Theorem 2. The PKE scheme (Fig. 4) is (ε1 + ε2, t1 + t2 +O(kq))-ANON-CCA
secure, assuming the KEM is (ε1, t1)-OW-KCA secure, and the SE is (ε2, t2)-IND-
CCA secure, where k is the security parameter, q is the total number of queries
A makes in the game.

The proof is almost the same as the one shown in Sect. 3. We only sketch the
difference. For key generation, a simulator B will only generates one key pair B.
Hash query and decryption query will be answered exactly as before. For encryp-
tion query, B flips a fair coin b and chooses a random session key dk′∗ ← K, sets
e ← SE.enc(dk′∗,mb) and gives (ψ∗, e∗) as the challenge ciphertext for A. Recall
that (ψ∗, τ∗) is B’s own challenge. B also adds (pk, ψ∗, τ, ·, dk′, 1) to the hash list.
When A successfully guesses b, B can then extract dk∗ from the hash list.
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It is not hard to verify that B’s simulation is perfect. With a similar discussion
on B’s success probability, we obtain the bounds in Thm. 2. The claimed time
bounds can be easily verified also.

5 Extensions and Instantiations

We discuss some further extensions of our results.

5.1 Extensions

Anonymous Key Encapsulation Mechanism. Our construction is designed
for anonymous public key encryption, however, it is easy to derive the corre-
sponding key encapsulation mechanism (KEM) scheme. E.g., in Fig. 4, instead
of letting the encryption algorithm calling SE.enc, we output dk′ as the en-
capsulated key as the session key. The decapsulation algorithm then outputs
dk′ without calling SE.dec. We can prove the anonymity of this resulting KEM
scheme similarly as Thm. 1.

Anonymous Identity Based Encryption. The discussion here is mainly for
public key encryption, and it is easy to generate all the above discussions to the iden-
tity based encryption (IBE) [38,12,1]. An anonymous IBE has applications such as
public key encryption with keyword search (PEKS) [11]. We omit the details here
and only claim it is not so much different: plug anonymous ID-based KEMs into
our generic construction, one will get anonymous IBE/IBKEM schemes.

A Benchmark for Our Transform. Since OW-KCA security is implied by
chosen ciphertext security (IND-CCA) in most interesting cases, we have the
following useful corollary.

Corollary 1. If the generic construction given in Fig. 4 is applied to an IND-
CCA secure reproducible KEM, the resulting scheme is also ANON-CCA secure.

This corollary is very useful, since it gives a “benchmark” of the usability of our
generic construction. There are many schemes known to have IND-CCA security.
We can then quickly judge whether a scheme can be used for our purpose or not,
by just “looking” at the encryption algorithms. On the other hand, IND-CCA is
redundant for our purpose, and most of the occasions, we can make weaker
assumptions, since we are already in the random oracle world. However, we note
that the transformed schemes always achieves tight security reduction, thanks
to the key checking oracle!

5.2 Practical Instantiations

We give some instantiations for our generic construction, which result in some
new anonymous public key encryption schemes. For the sake of space, we only
focus on the schemes built on gap groups, or pairings. In such schemes, the
validity of ciphertexts can be publicly verified, thus there is no anonymity. Using
our transform, we can build anonymous public key encryption schemes with
anonymity and improved bandwidth efficiency. We remark some of them can be
further optimized, and here we focus on the effectiveness of our transform.



Acquiring Key Privacy from Data Privacy 369

DH KEM [2,39]. A classical reproducible KEM is DH KEM, which is based
on Diffie-Hellman key exchange. The algorithms of DH KEM is reviewed below:

– DH.setup(k): Choose a cyclic group G =< g > of prime order q. Return
sp = (G, q, g).

– DH.kg(sp): Choose x ← Zq, and compute y ← gx. Choose a key derivation
function H : G → K, where K is the key space for the associated symmetric
key encryption. Return pk = (y,H) and sk = (x,H).

– DH.enc1(sp): Pick r ← Zq, compute ψ = gr. return (ψ, r)
– DH.enc2(sp, pk, ψ||r): Compute dk ← H(yr). Note that τ is equal to an

empty string. Output (τ, dk).
– DH.dec(sp, sk, ψ): Output dk ← H(ψx), if ψ is an element of G.
– DH.rp(sp, sk, ψ): Always output an empty string.

Sine τ is simply an empty string, it is trivially reproducible. Previous results
[5,40] have shown that the PKE version of DH KEM is ANON-CPA secure with-
out random oracles under the decisional Diffie-Hellman assumption (DDH) is
hard. From our result, we know it is actually ANON-CCA secure under the gap
Diffie-Hellman assumption (GDH). Interestingly, this coincides with data privacy
of DH KEM [39].

BMW KEM [13]. Boyen, Mei and Waters proposed an efficient KEM based
on bilinear pairings from the BB1 IBE [10]. The algorithms are reviewed below.

– BMW.setup(k): Generate bilinear map e : G1 × G2 → GT . G1, G2 and
GT | are of prime order q. g and h are generators for G1 and G2, respec-
tively. Picks a collision resistant hash function H : G1 → Zq. sp is set as
(k, q, e,G1,GT , g, h,H).

– BMW.kg(sp): Choose α ← Zq and � ← hα. Compute Z ← e(g, �), u ← gx

and v ← gy, where x, y ← Zq. Return pk = (Z, u, v) and sk = (pk, �, x, y).
– BMW.enc1(sp): r ← Zq, ψ ← gr. Return (r, ψ).
– BMW.enc2(sp, pk, st): Parse st = (r, ψ). w ← H(ψ), τ ← urvrw, and dk ←

Zr. Return (τ, dk).
– BMW.dec(sp, sk, c): Parse c = (ψ, τ). w ← H(ψ), w′ ← x + yw. If ψw′

= τ ,
return dk ← e(ψ, �). Otherwise, return ⊥.

– BMW.rp(sp, sk, ψ):

It has been shown in [4] that the BMW KEM has separability and reproducibility.
It was also shown in [13] that it has IND-CCA security. Then it also has OW-KCA
security according to Corollary 1.

It is easily verifiable that the original BMW KEM is not anonymous. Using our
transform we can build a variant of the BMW KEM which is anonymous under
the computational bilinear Diffie-Hellman assumption (CBDH) in the random
oracle model. We next show some concrete examples.

Kiltz KEM [28]. Kiltz proposed another efficient KEM based on the so-called
gap hashed Diffie-Hellman assumption, which is an interactive assumption. The
algorithms are reviewed below.
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– K.setup(k): Pick a cyclic group G prime order q. g is a generator for G. Picks
a target collision resistant hash function H : G → Zq and a key derivation
function G : G → K, where K is the key space for symmetric key encryption.
sp is set as (k, q,G, g,H,G).

– K.kg(sp): Choose x, y ← Zq and set u← gx and v ← gy. Return pk = (u, v)
and sk = (x, y).

– K.enc1(sp): r ← Zq, ψ ← gω. Let ω ← c1||r. Return (ψ, ω).
– K.enc2(sp, pk, ω): Parse ω = ψ||r. τ ← (uH(ψ)v)r , and dk ← G(ur). Return

(τ, dk).
– K.dec(sp, sk, c): Parse c = (ψ, τ). t ← H(ψ). If τ = ψxt+y, let dk ← G(ψx).

Otherwise, return ⊥.
– K.rp(sp, sk, ψ): Parse sk = (x, y). For t← H(ψ), output ψxt+y.

Under gap hashed Diffie-Hellman assumption (HGDH), the above scheme is IND-
CCA secure. Furthermore, it is briefly mentioned in [28] that under gap Diffie-
Hellman assumption (GDH) the scheme is OW-CCA [28]. Then it is easily veri-
fied that the scheme also satisfies OW-KCA under the same assumption, namely,
gap Diffie-Hellman assumption (GDH). Instantiating this scheme, we havd an
anonymous variant of it whose ANON-CCA security can be proved either under
the HGDH assumption or the GDH assumption, both with random oracles. We re-
mark that the resulting scheme is not as efficient as the DH-KEM, however, it may
help to provide a different way in understanding the key privacy of Kiltz KEM.

6 Conclusion

In this paper, we propose a simple and efficient method to obtain strong key pri-
vacy from weak data privacy, as well as upgrading data privacy of the underly-
ing KEM scheme for a class of public key encryption schemes in the random ora-
cle model. We also provide some interesting instantiations where the underlying
KEMs may be not anonymous. It is worth mentioning that it is still open whether
efficient transforms achieving the same goal can exist without random oracles.
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Abstract. During ISC’2008 Yanjiang Yang, Xuhua Ding, Robert H.
Deng, and Feng Bao presented a construction for holding an encrypted
database in a cloud so that the access pattern remains hidden. The
scheme is designed for the case when a user holds a trusted hardware
unit, which serves as an interface between the owner of the database and
the untrusted environment where the encrypted database is stored. The
scheme is relatively efficient and has some provable privacy properties.

In this paper we analyze an idealized version of the above protocol
and prove rigorously strong privacy conditions in a model with a pow-
erful adversary observing all operations occurring in the cloud. On the
other hand, we show that the full version of the protocol (with some im-
plementation details), as proposed at ISC’2008, leaks some information
about the access pattern of the user. This shows that the protocol does
not fulfil the property of ideally private information retrieval. While this
is not a general full scale attack, at some specific situations information
leakage presented might have practical value for an adversary.

Keywords: private information retrieval, cloud computing, database,
probability distribution.

1 Introduction

1.1 Problem Statement

Nowadays, quite often databases are kept in environments that are not under
sole control of the data owners. Such a situation is a standard one in business
applications: information is stored and processed in service centers on servers
that guarantee high reliability (protection against hardware crushes, round the
clock availability, access control, guaranteed response time and so on). It is also
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increasingly popular to keep databases in a cloud, without any control who and
how actually keeps it. In such a case it might be critical to protect information
stored in the database as well as information about database usage. In fact, it
seems to be one of central problems for cloud computing paradigm. Without a
satisfactory solution keeping a database in a cloud may remain limited to a very
small range of applications.

Obviously, one can keep the entries of the database in an encrypted form. In
this case the party holding the database has no access to information stored in
the records of the database. The encryption scheme used should guarantee that
the observer cannot detect repetitions of the same value stored in the database at
different positions. One of possible solutions is to use a probabilistic encryption
scheme.

However, even the best encryption does not hide all information concerning
the database. For instance, in the database there might be more and less popu-
lar entries. If the positions of the entries stored are not changed, then frequency
of access requests to particular positions of the encrypted database reveal some
information about their contents. This is especially important, if an observer
has some prior knowledge about the database. Access pattern characteristics
can also be treated as a fingerprint of the database contents enabling the adver-
sary to categorize encrypted databases. Potential privacy violations of this kind
might prohibit migration of the database to an external environment. Keeping
the database in a sole physical control of the user would remain the only rea-
sonable solution, increasing substantially the running costs and decreasing ease
of keeping the database.

The problem mentioned has been in focus of private information retrieval
(PIR) research in the recent years, initiated by [1]. There is a rich literature
on this topic (for some starting points see a survey [8]). There are many clever
solutions that are concentrated on reduction of communication complexity: the
trivial solution is to fetch the whole database, but to decrypt only the entry the
user is interested in. In case of large databases this solution is useless, despite
the fact that no information is leaked which entry is read by the user.

In practice, the owner of the database is not only formulating the queries to
the database. We may assume that she or he uses a terminal that is under his
sole control, and the terminal has certain computational and storage capacity.
This terminal can be regarded as kind of a protected cache memory of the
database. Moreover, the interface between the local system and the database
can be implemented in a trusted hardware unit [4,5,9].

The main issue for solutions based on trusted hardware unit is to reduce the
communication cost. For instance, [9] assumes frequent rewriting of the whole
database, which is quite impractical. The paper [10] reduces significantly the
amount of this work without loosing privacy properties (to some extent, as we
shall see).

Our contribution. The main goal of this paper is to inspect the privacy guar-
antees given by the scheme from paper [10]. We prove that the ideal version of the
protocol guarantees substantially higher privacy level than previously claimed.
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We prove that knowledge about the access pattern (location of read and write
operations) does not bring any knowledge in information-theoretic sense about
the ordering of touched records in the memory.

On the other hand, we show that there are some information leakages in the
full scheme that takes into account all implementation details. They do not seem
to lead directly to large scale practical attacks at the moment, but also show
that we cannot claim that the scheme provides full privacy guarantees. At least,
further investigations are required to exclude possibility of practical attacks.

Following paper [10], we concern the following model. The user runs all
database operations through a trusted hardware unit. The unit performs all
crypto operations as well as governs the locations of individual records, keep-
ing track of all information that need to be stored locally. The hardware unit
is assumed to be secure – no information is leaked to an outside observer. On
the other hand, it is assumed pessimistically that the adversary may observe
which encrypted database entries are fetched by the hardware unit and which
are overwritten.

1.2 The Solution of Yang et al.

In this subsection we sketch the idea of the solution presented in [10]. An overview
seems to be necessary, since the original description and pseudo-code is rather
hard to follow for the reader and there are a few bugs in the pseudo-code. In fact,
we present a simplified version that in our opinion is equivalent to the original
one from the point of view of the adversary.

We assume that a database D consists of records d1, . . . , dn of the same size.
The trusted hardware unit T is capable of storing k records; we assume that
k ) n. So T can be regarded as a kind of cache memory.

At database initialization, all entries are stored in an encrypted form, but the
trusted hardware unit T knows a function σ translating the keys into locations in
the encrypted database D0, i.e. an entry with key i is stored at location σ(i) in D0.

Running the database accesses is divided into epochs. During an epoch data
are loaded into the cache of T , no write operation are performed into the
database. The epoch terminates, when the cache memory is full. Then all records
from the memory are written into the database. Additionally, the database be-
comes reorganized in the way described below.

The central idea of the construction is the notion of white and black records.
A record is white, if it has never been read since the system initialization (from
time to time the system is re-initialized – so we count the time from the last
initialization). A record that has been fetched at least once becomes black.

When a user wants to fetch a record from the database and the record is not
in the cache, then there are two cases:

the record requested is black: in this case T fetches the requested black
record and a white record chosen at random,

the record requested is white: in this case T fetches the requested white
record and one black record – namely a record chosen at random from the
set of the black records that have not been read yet in the current epoch.
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In both cases the observer sees that T fetches

– one white record,
– one black record from those that have not been touched yet in the current

epoch.

Let us remark that the white record fetched becomes automatically black. So
within an epoch, the protocol execution is in some sense oblivious: there is no ob-
vious behavior feature that depends on the number of requests for black records.
The epoch lasts k/2 steps, as the cache has place for k entries in total.

The key part of the protocol is the procedure executed at the end of an epoch.
The contents of the cache is flushed and at the same time the black records are
permuted at random. Consequently, the adversary should not be aware of the
new positions of the records read during the current epoch.

Permuting black records – security challenges. Mixing the old black
records and the records from the cache is necessary, since otherwise the ad-
versary could see that, for instance, in the next epoch the user is not asking
for the records that he has fetched during the last epoch. Or vice versa: that
the same records are fetched. Leaking such data – even if this is not exactly the
access pattern of the user – is unacceptable and would mean failure of very basic
privacy requirements.

Permuting the black records at random is not as trivial as one can think at
first. We must be aware that, in the assumed model, the adversary can trace
all operations executed in the database. The adversary cannot say which data
are written at a given place, but he is aware of time and location of any write
and read operation in the database. Of course, T can perform any operation
in the cache and this remains hidden from the adversary. However, the size
of the cache is small compared to the number of black records and T cannot
fetch all of them at once. The assumption that makes this problem hard are
efficiency requirements: the number of read/write operations should be linear in
the number of black records. The ultimate goal would be to touch each black
position exactly once during permutation procedure (going below that is impos-
sible, since the adversary would know that some blacks are not used). As we
shall see in Proposition 1, if we have a small cache and each database position
is read and overwritten exactly once, then the adversary gets a lot of knowledge
about permutation performed. Namely, most permutations are impossible for a
given pattern of read/write operations. At this point the reader may doubt, if
the sketched scheme is plausible at all, as it is impossible to permute the black
elements at random without revealing some information to the adversary.

According to paper [10] a partial shuffle procedure at the end of the epoch s is
performed according to a random permutation πs+1 which will lead the database
to the epoch s+1. The hardware unit T updates the black positions sequentially
via quite perplexed algorithm that uses composition of π−1

s+1, and πs from the
previous epoch. As a result the previous black positions and new white positions
from the cache are randomly mixed. However, these records are not mixed at
random from the adversary’s point of view, as he may observe the operations
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performed in the database. That is because the cache size is limited and the
shuffling algorithm at each iteration reads and writes exactly one elements for
re-encryption. To illustrate how this can improve adversary’s knowledge about
the permutation consider the following example. Consider the ith element read in
by T . One of the main features of the algorithm from [10] is that at the moment
of reading already i−1 elements have been written to destination places. So the
permutation of black records is not purely random from the adversary’s point of
view: the ith element is not stored in the first i−1 places. In particular, the last
element read can be placed at k + 1 places only. The fraction of permutations
that fulfill these properties is very small.

Simplified scheme. To set up attention, and to make the analysis more read-
able we provide below a concise variant of original shuffling procedure from [10].
Since some properties of permutation over all black elements are revealed to the
adversary we should not rely on it. Instead, in our simplified approach we sug-
gest that the one thing the adversary cannot deduce are the destination places
of elements read in to the cache during the retrieval phase. In this variant the
trusted hardware does not have to hold a random permutation over the whole
set of black records in the cache. Instead, it uses a random injective function
with the domain of the cache cardinality to define new position for cache items
in the next epoch database. Thus it is easier to narrow the analysis to the cases
where, from adversary’s point of view, items from the cache are put somewhere
among the untouched black records of the currently finished epoch. Now, despite
this modification that potentially advantages adversary’s reasoning, the shuffling
achieves the same level of security as the original scheme.

Assume that there are together m plus k black records – m black records that
have not been fetched to the cache during the current epoch and k black records in
the cache. k records residing in the cache at the beginning of this procedure will be
called cache records, the other black records will be called untouched. T uses some
canonical ordering of the locations of these records, but for ease of presentation
we assume that the locations of the untouched black records come first.

The procedure is the following:

1. T chooses at random destinations for all cache records. That is, T chooses
an injective function φ : {1, . . . , k} → {1, . . . ,m + k} at random.

2. m steps are executed. At step j (for j ≤ m):
– the untouched black record from position j is read,
– if there is no i such that φ(i) = j, then the untouched black record

read from the database at this step is re-encrypted and written back to
position j,

– if φ(i) = j, then the ith cached record is re-encrypted and written into
position j; the untouched black record read into the cache is retained in
the cache.

3. After reading all m positions, the contents of the cache is flushed into the
k remaining places of black records. k steps are executed, numbered m + 1
through m + k. At step j:
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– if φ(i) = j, then the ith cache record is re-encrypted and stored in
position j,

– if there is no i such that φ(i) = j, then one of the untouched black records
left in the cache is written to position j. Namely, this is the untouched
black record that is in the cache for the longest time.

Essentially, the procedure could be slightly different. Really important features
for the proof are that:

– the positions for cache black records are chosen at random (by the choice of
φ),

– and that the remaining black records are written in the way that is uniquely
determined by φ (even if φ does not explicitly define the positions for records
other than cache records).

This determinism requirement is counterintuitive, but it is really necessary to
prove privacy properties.

1.3 Basic Scheme and Privacy Issues

For the so called Basic Scheme, the authors of [10] assume that T can keep
information concerning black records, so that it knows all positions of black
records in the database (and so all positions of white elements), and the position
of each single black element.

Of course, in certain situations this assumption is unrealistic – in order to
keep a database in a cloud T has to store a database of about the same number
of records internally! On the other hand, if the number of records is relatively
low but the records are long, this might be feasible. The mechanism used to work
in the general case will be described in Sect. 3.

In [10], it has been proved that an observer looses control over location of a
single black record. Namely, they show:

Lemma 1 (Uniform Shuffle), page 70 : probability that a given black po-
sition contains a given black record is 1/b, where b is the current number of
the black records.

Lemma 2 (Uniform Access), page 70: given the past access pattern, and
two positions: x of a black record and y of the white record, then the proba-
bility that x and y are chosen at the current step conditioned on the current
query, is the same for each query.

Privacy challenges. At a first look it may seem that Lemma 1 from [10]
shows that the black records are permuted uniformly at random. However, this
is not the case: the difference is in fact dramatic. To see it assume that the
shuffling scheme has the property that at each step a circular shift is performed,
with the new item appended immediately after the last item appended so far.
For such a procedure, if the circular shifts are chosen uniformly at random, the
position of a given item is uniformly distributed. On the other hand, if two items
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are next to each other they remain to be neighbors. Hence in particular, if an
adversary learns a position of a single item, he will learn positions of all items.
On the other hand, the adversary can always provoke the user to fetch some
known black record. Therefore, the whole allocation of the black records would
be revealed. This is true despite that Lemma 1 holds for such permuting method.

Fortunately, the procedure of handling the black records does not even re-
motely resemble the example with circular shifts. However, there might be seri-
ous doubts about quality of shuffling due to the following fact:

Proposition 1. Consider a shuffling procedure that starts with k elements and
m black records in the database, and such that:

– each black position is read exactly once,
– the black positions are read in some fixed predefined order,
– after reading a black record, some black record (may be the same) is imme-

diately written into the same position.

The number of permutations on the set of m+k positions that can be generated by
this procedure is not higher than km · k! . Hence, the ratio of these permutations
to the number of all permutations on m + k positions is at most

km · k!
(m + k)!

≤ km · kk+0.5 · e−k+1/12k

(m + k)m+k+0.5 · e−m−k+1/(12(m+k)+1)
≈ (

k

m + k
)m+k+0.5 · em .

In particular, if 5k < m, then the above fraction is lower than 2−m.

Proposition 1 shows how difficult it is to permute at random a set of elements if
the permutation must be performed in place, apart from a small cache memory.
In particular, if the procedure must work in a single pass through data, then
only an exponentially small fraction of permutations can be obtained.

Due to Proposition 1, one cannot claim that rewriting of black records at
the end of epoch is a random permutation of the black records. It is not even
remotely related to a uniform one. Therefore, it is fully justified to ask the the
following question:

Problem 1. What is the probability distribution of the allocation of black records
conditioned by the information available for the external observer seeing all read
and write operations performed by T .

Our main result in the next section will be that this probability distribution is
uniform in a model with a powerful adversary, despite all problems observed.

2 Privacy for the Basic Scheme

When we consider the probability distribution of the black records we condition
it on the following information that we call access pattern. For each step, the
access pattern specifies

– the positions from which the black records has been fetched to the cache,
– the values of these black records.
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Access pattern contains all information that potentially can be available for
an attacker in the most pessimistic situation. In particular, an adversary can
somehow know all queries asked by the database owner until the current moment.
However, we assume that an observer can neither corrupt the device T nor break
ciphertexts produced by T .

Below we use the following notation:

– let the black records read up to the end of epoch t be denoted by dr(t,1), . . . ,

dr(t,z) for z = k + (t− 1) · k
2 , where r(t, j) < r(t, j + 1) for each j < z,

– let at the end of epoch t the (black) positions of the black records in the
database will be denoted by p1, . . . , pz, where pj < pj+1 for each j < z
according to some fixed ordering of positions in the database.

– let πt indicate the allocation of the black records to the black positions, that
is, immediately after epoch t let dr(t,i) be stored in pπt(i).

For an observer aware of an access pattern A up to the end of epoch t, the
permutation πt is a random variable. We are interested in probability distribution
of this random variable in the set of all permutations over {1, 2, . . . , k+(t−1)· k2}.
We prove the following theorem that says that we achieve perfect shuffling of all
black records:

Theorem 1. Probability distribution of πt conditioned on the access pattern A
observed up to the end of epoch t is uniform in the set of all permutations over
{1, 2, . . . , k + (t− 1) · k

2}.

Before we start the proof, let us emphasize that Theorem 1 does not say that
there are no correlations between the permutations πt−1 and πt. In fact, there
are very strong correlations due to the fact that shuffling at the end of epoch
t is quite restricted by the small size of the cache memory used. So in fact
Theorem 1 shows that the initial randomness of allocation of the records is
maintained despite all information revealed and seemingly imperfect shuffling at
the end of each epoch.

Proof. The proof is by induction on t. For t = 1, the claim of the theorem is
obvious, since T permutes at random all black records (as they are stored in the
cache).

Now let us consider the essential case of t > 1. Let σ denote the injection
chosen by T for execution at the end of epoch t. Note that σ determines some of
the values of πt. Namely, if dr,i1 , . . . , dr,ik

are all cache records at epoch t, then
πt(ij) = σ(j) for j ≤ k. Let πt \ σ denote πt restricted to the arguments, for
which the value is not defined by σ.

Since σ is chosen uniformly at random, it suffices to show that given a real-
ization of the random variable σ, each realization of πt \ σ is equally probable.
So let us consider a fixed mapping ζ that can be a value of πt \ σ. We have to
show that Pr(πt \ σ = ζ) does not depend on ζ.

Let us recall the procedure of flushing the cache and rewriting the black
records in the database at the end of an epoch. The following claim follows
directly from the construction:
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Claim. Given σ, ζ and the positions of the elements from which the cache records
have been read during epoch t, there is exactly one allocation of black records
to black positions at the end of epoch t− 1.

Indeed, the procedure is deterministic in the sense that once we have σ, for each
black record at the end of epoch t we can indicate its position at the end of
epoch t− 1. If we have also ζ, then we can explicitly show the contents of each
black position at the end of epoch t− 1.

Now we have to use the inductive hypothesis for epoch t− 1. It says that the
allocation of black records is done according to uniform distribution over the set
of permutations on {1, 2, . . . , k + (t− 2) · k

2}, conditioned on the access pattern
restricted to epochs 1 through t − 1. In epoch t the observer learns positions
some of the black records – namely those k/2 black records that are read into
the cache. But still, the probability distribution of the remaining untouched
black records is according to uniform distribution over the set of mappings to
the remaining positions. So each such a mapping is achieved with some fixed
probability q.

As we have seen above, each realization ζ of the random variable πt \ σ cor-
responds in a 1-1 fashion to a configuration of untouched black elements (from
epoch t) at the beginning of the epoch t. Therefore each ζ has the same prob-
ability q. This terminates the proof of the claim that Pr(πt \ σ = ζ) does not
depend on ζ. This terminates also the proof of the inductive step. ��
Let us finally remark that that there is a fine issue related to our model. If we
consider πt and the access pattern for more than t epochs, then it is no longer true
that πt is uniformly distributed. Indeed, an observer may learn some positions
of black records by persuading the user to fetch some concrete black records.
Nevertheless, this does not change the knowledge of the observer concerning the
remaining black records. In this sense the algorithm of Yang et al. with our
modification is very clever: if the observer forces the user to fetch some records,
he does not learn anything about the other records, while on the other hand all
information about the position of the records fetched is lost at the end of the
epoch, when the cache is flushed.

3 General Scheme

The main problem with implementing Basic Scheme is that T needs to know,
for each incoming query from the user, if it concerns a black or a white record.
The problem is that the number of black records grows and quickly becomes
much higher than the size of the cache. Of course, in some cases it is possible
to keep this information – e.g. in form of Bloom filters. However, the authors
of [10] make an effort to provide an efficient implementation that would work
for any size of the database and of the records. In the solution proposed the
information about black records is kept in a tree outside T , in the same area as
the encrypted database.

Let us recall some details of the construction. Let Ds be the database after
executing epoch s, let b = k + (s− 1) · k

2 be the number of black records at this
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moment. The black records are represented by b pairs of tuples 〈x, y〉, where x is
a position in D0 and y is the corresponding position in Ds. T generates a sorted
array L of half-encrypted pairs, i.e.

L = [(fu(x1), y1), (fu(x2), y2), . . . , (fu(xb), yb)] ,

where y1 < . . . < yb, fu(x) = H(eu(x)), H is a hash function and eu is deter-
ministic symmetric encryption with a secret key u.

T also builds a labeled binary search tree Γ , where the tuples in L are the
leaves in Γ , each leaf labeled by its value fu(x). From the left to the right, the
leaves are sorted in order of fu(x) values. The label of an inner node is an integer
randomly chosen in the interval determined by the labels of its children.

At the beginning of each session, T chooses key u at random and generates L
and Γ . Then they are stored by the system H responsible for holding database
records in the cloud. Each time T needs to check if a record is black or white it
communicates with H , asking for a leaf from tree Γ . Of course, T wants to hide
the need for retrieving a black element, therefore this communication always
takes place, but sometimes it involves picking a leaf from Γ at random. The
search in tree Γ is performed via asking for the labels of the intermediate nodes.
After receiving the label of a current node T says to H whether to go to the left
son or to the right son of the current node.

Assuming that a record with index x is to be retrieved, the following situation
needs to be considered:

the record is already in cache – T is aware of this fact and he chooses a leaf
from Γ uniformly at random by coin toss at each of inner nodes of Γ .

the record is black but not in the cache – in this case the searched record
is represented by some leaf in tree Γ (but T might be unaware of this).
T runs a binary search for fu(σ(x)) in Γ , the search terminates at a leaf
〈fu(σ(x)), y〉, where y is the position in Ds of the requested item. T recog-
nizes that the leaf corresponds to the item with index x by finding the value
fu(x) in the leaf.

the record is white – this means that there is no representation of the record
with index x in tree Γ . As in the previous case T runs a binary search for
fu(σ(x)) in Γ , the search terminates at a leaf 〈fu(x′), y〉, where x′ �= σ(x).
As the searched item is not in Γ , the element with index y is chosen as the
random black element to be fetched. Then the search continues in the set of
white elements.

After determining a black element to be fetched to T , a white element is chosen.
This is facilitated by the fact that the white elements are not relocated since
the initial placement. However, it is necessary to keep track which positions are
already occupied by black records. This is done by an appropriate data structure.

From the H ’s perspective determining a black record to be fetched is per-
formed by a walk on tree Γ from the root to one of its leafs, according to the
instructions obtained from T .
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3.1 Information Leakage

The construction adapted for the general case is quite clever, but still causes
some problems. We start with relatively simple issues and end up with the most
complicated problem of non-uniformity of the interval lengths.

Number of collisions. The first source of information leakage is occurrence
of collisions when searching black records. By a collision we mean here choosing
the same leaf in Γ as before in the same epoch. To understand what is the
mechanism of collisions consider two situations:

case 1: the user makes no repetitions – always asks about the records he has
not seen since initialization,

case 2: the user is repeatedly asking for the same k/2 records.

In the first case the elements sought are never represented in Γ – so the search
in Γ always fails and each time a random black record is fetched. The procedure
can therefore be described by a process of throwing balls into bins. Of course,
as long as the number of bins is not high compared to the number of balls it
may happen with a fairly high probability that one bin obtains more than one
ball. Such collisions become rare, if the number of bins is at least quadratic in
the number of balls. If the number of balls and bins are not far from each other,
then there are not only collisions, but also some bins with relatively many balls.

In the second case, when search is performed in the tree of black records, it
is always successful and never a hit occurs at the same leaf of the tree as before
in the same epoch. The point is that such an access pattern to the leaves of the
tree of black records has quite low probability, if the first case occurs. So we see
that an observer can derive some information about the behavior of the user.

Of course, one can apply diverse countermeasures, like starting with some
dummy operations so that the number of black records reaches some minimal
value. Still this is a heuristic approach without firm analytic guarantees.

Repeated hit. Now consider again a situation when during an epoch the same
leaf of the tree of black elements is reached. Let x be the black record corre-
sponding to this leaf. This situation shows that the user is either asking for a
white element (and the repetition is due to the process of random search of a leaf
in the tree), or the user is asking for a black element already in the cache (again,
the procedure will choose a random leaf in the tree of black records). However,
it is impossible that the user is asking for a black record not seen during this
epoch.

3.2 Uniformity of leafs in Γ

Since the hash function H should behave like a random function, the black
records are represented in leaf of Γ in an order that seem to be chosen uniformly
at random. So searching for a black record looks like choosing a leaf at random.
As we shall see below, this is not true when the searched record with index x is
white.
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Let us simplify consideration and treatH as a random assignment with a range
[0, 1], where each value is determined by choosing a point in [0, 1] uniformly
at random. A similar simplification was used for investigation of Chord P2P
network [6,2].

Let X1, . . . Xn be random variables representing independent uniformly dis-
tributed (over the interval [0, 1]) values fu(xj) = H(eu(x)). Leafs of Γ are or-
dered according to the order statistics

X(1) < X(2) < . . . < X(|B|) .

The set {X(1), . . . , X(n)} induces a partition of [0, 1] into n + 1 subintervals,
whose lengths will be denoted by x1, . . . , xn+1.

It is obvious that the expected value of the length of uniformly chosen interval
equals to 1

n+1 . This is why, the authors of [10] suggest that the probability
of stopping at particular leaf of Γ tree while searching for a white record is

1
n+1 . However, this may not be true in particular situations. In fact, with a
high probability significant differences may appear between the interval of the
minimal length mn+1 = min{x1, . . . , xn+1}, the interval with the maximal length
Mn+1 = max{x1, . . . , xn+1}, and the average length of the random interval. To
be more precise, it has been shown that

E[mn+1] =
1

(n + 1)2
,

while
E[Mn+1] =

lnn + 1 + γ

n + 1
+ o(

1
n + 1

) .

As noticed in [11] for every δ1 ≥ 0, . . . , δn+1 ≥ 0 the following formula holds

Pr[x1 > δ1, . . . , xn+1 > δn+1] = (1 − (δ1 + . . . + δn+1))n.

From this formula, we get

Pr[mn+1 > δ] = (1− (n + 1)δ)n.

When we set δ = E[mn+1] = 1
(n+1)2 we immediately deduce that

Pr
[
mn+1 >

1
(n + 1)2

]
=

(
1− 1

n + 1

)n

.

This means, that the probability that there is a interval of length smaller or
equal to 1

(n+1)2 is, already for relatively small n, close to 1− 1
e ≈ 0.632121. Since

the number of epochs can be quite high, the probability that such an event (a
significantly shorter interval corresponding to a leaf of Γ ) occurs at all is even
higher.

Notice that if the search procedure in Γ terminates in a leaf corresponding to
a small interval, then the observer may tend to assume that the search was for
a black element and not for a white one.
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Of course, the analysis presented so far does not exactly concern the situation
of the intervals in the tree Γ – there are subtle mathematical issues related to
the choice of labels of internal nodes. However, the problem still exists: the fake
search of a black element chooses the leaves of Γ uniformly at random, while
behavior of the search performed for white records depends very much on the
size of intervals corresponding to the leaves of Γ . This difference is hard to hide,
even if the number of black records is already high.

One method of alleviating the problems mentioned above is to modify the
search in Γ : instead of terminating the search in a leaf of Γ , one can stop the
search one level above the leaves and return both leaves below the current node.
The idea is that the lengths of the intervals corresponding to nodes at level 1 are
much more uniform than the lengths of the intervals corresponding to the leaves.
To understand this phenomenon consider again the random variables X1, . . . Xn

representing independent uniformly distributed (over the interval [0, 1]) values
fu(xj) = H(eu(x)). The length of intervals corresponding to the nodes at level
1 are related to the values xi + xi+1, in the sense that if none of these sums
is small, then also none of the intervals corresponding to the nodes at level 1
should be small. Let us recall a result from [3, Theorem 3] which says that the
expected number of i’s such that

xi + xi+1 ≤
√

2
n1.5

converges to 1 with n→∞ and converges to zero for

xi + xi+1 ≤
√

2
n1.5+c

and c > 0. So we see that the shortest interval has the length of order 1/n1.5

instead of 1/n2.
The downside of stopping at level 1 is that we retrieve 2 black elements instead

of 1. This makes flushing the cache more frequent.

4 Open Problems and Conclusions

As proved before, the smart way of retrieving elements and mixing them up
preserves the user’s privacy defined in [10]. However, when considering the sug-
gested implementation of those ideas one have to be careful. Namely, we know
the situations in which the adversary with probability significantly higher than
1/2 can distinguish whether the user is interested in black or white element. This
of course violates the twin retrieval policy, and therefore leads to a violation of
PIR security definition from [10].

Even if we have seen that the general scheme proposed in [10] leaks some in-
formation, it does not mean that it has been broken. We only show that further
investigations are necessary for estimating difference between probability distri-
butions for the access patterns in the basic case and the probability distribution
for access patterns conditioned by the information seen by an observer for the
full implementation. This difference should be stated in terms of such privacy
measures as variation distance between probability distributions.
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The main problem is determining whether a record asked by the user is black
or not. So the problem would be solved, if we could find a data structure to be
used in the cloud that would enable testing if a given record is black without
revealing any information to the observer. As we have seen in Sect. 3.2, some
countermeasures providing partial solutions are possible; their effectiveness in
the practical setting should be investigated.
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Abstract. Algebraic cryptanalysis is a general tool which permits one
to assess the security of a wide range of cryptographic schemes. Alge-
braic techniques have been successfully applied against a number of mul-
tivariate schemes and stream ciphers. Yet, their feasibility against block
ciphers remains the source of much speculation. In this context, alge-
braic techniques have mainly been deployed in order to solve a system
of equations arising from the cipher, so far with limited success. In this
work we propose a different approach: to use Gröbner basis techniques
to compute structural features of block ciphers, which may then be used
to improve “classical” differential and integral attacks. We illustrate our
techniques against the block ciphers Present and Ktantan32.

1 Introduction

Algebraic cryptanalysis is a general tool which permits one to assess the security
of a wide range of cryptographic schemes [21,20,19,17,18,23,24,22]. As pointed
out in the report [13], “the recent proposal and development of algebraic crypt-
analysis is now widely considered an important breakthrough in the analysis of
cryptographic primitives”. The basic principle of algebraic cryptanalysis is to
model a cryptographic primitive by a set of algebraic equations. The system
of equations is constructed in such a way as to have a correspondence between
its solutions and some secret information of the cryptographic primitive (for
instance, the secret key of a block cipher). The secret can thus be derived by
solving the equation system.

Such algebraic techniques have been successfully applied against a number
of multivariate schemes and in stream cipher cryptanalysis. On the other hand,
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their feasibility against block ciphers remains the source of much speculation
[15,14,19]. One of the reasons is that the sizes of the resulting equation sys-
tems are usually beyond the capabilities of current solving algorithms. Further-
more, the complexity estimates are complicated as the algebraic systems are
highly structured; a situation where known complexity bounds are no longer
valid [4,2,3].

While it is currently infeasible to cryptanalyse a block cipher by algebraic
means alone, these techniques nonetheless have practical applications for block
cipher cryptanalysis. For instance, Albrecht and Cid proposed in [1] to com-
bine differential cryptanalysis with algebraic attacks and demonstrated the fea-
sibility of their techniques against reduced-round versions of the block cipher
Present [7]. In this approach, the key recovery was approached by solving (or
showing lack of solutions in) equation systems that were much simpler than the
one arising from the full cipher.

In this paper, we further shift the focus away from attempting to solve the full
system of equations. Instead, we use Gröbner basis techniques to compute struc-
tural features of block ciphers. It turns out that significant information can be
gained without solving the equation system in the classical sense. This informa-
tion, computed via algebraic means, can in turn be potentially used to improve
other, “non-algebraic” cryptanalytic methods. We illustrate our techniques by
considering the differential cryptanalysis of reduced-round variants of Present

and Ktantan32 [11], as well bit-pattern based integral attacks against Present

[31].
The paper is organised as follows. In Section 2 we briefly recall some of the

cryptanalytic concepts of relevance to this paper. In Section 3 we provide a
high-level description of the main idea behind this work, and briefly describe
the ciphers that we use to demonstrate our ideas. These ideas are then ap-
plied to improve differential cryptanalysis (Section 4) and integral cryptanalysis
(Section 5); experimental results are also presented in both sections.

2 Block Cipher Cryptanalysis

Differential cryptanalysis was formally introduced by Biham and Shamir in [6],
and has since been successfully used to attack a wide range of block ciphers. By
considering the distribution of output differences for the non-linear components
of the cipher (e.g. the S-Box), the attacker may be able to construct differential
characteristics P

′ ⊕ P
′′

= ΔP → ΔC = C
′ ⊕ C

′′
for a number of rounds N that

are valid with non-negligible probability p. A plaintext pair (P
′
, P

′′
) for which

the characteristic holds is called a right pair, and this behaviour may be used
to distinguish the cipher from a random permutation. By modifying the attack,
one may use it to potentially recover key information: instead of characteristics
for the full N -round cipher, the attacker considers characteristics valid for r
rounds only (r = N − R, with R > 0). The attacker can partially decrypt the
known ciphertexts and verify if the result matches the one predicted by the
characteristic. Candidate (last round) keys are counted, and as random noise
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is expected for wrong key guesses, eventually a peak may be observed in the
candidate key counters, pointing to the correct round key.

The chances of success and data requirements of differential attacks are typi-
cally estimated based on the idea of signal to noise ratio. Assume such a differ-
ential attack, making use of m plaintext pairs. If the attacker is attempting to
recover k subkey bits, it can count the number of occurrences of the possible key
values in 2k counters. If β is the ratio of discarded pairs, based on some criteria
to filter wrong pairs (e.g. ciphertext difference), and α is the average number
of k-bit subkeys suggested by each pair, we expect the counters to contain on
average (m · α · β)/2k counts. The right subkey value is counted m · p times due
to right pairs, plus the random counts for all the possible subkeys. The signal to
noise ratio is therefore:

S/N =
m · p

m · α · β/2k
=

2k · p
α · β .

Albrecht and Cid considered in [1] several ideas on how to use algebraic tech-
niques to improve “classical” differential cryptanalysis. In the most promising
method, named in [1] Attack-C, Gröbner basis computations (applied to the al-
gebraic system arising from the outer rounds in differential cryptanalysis) are
used to distinguish right pairs. These Gröbner basis computations could how-
ever only be performed during the online phase of the attack. This limitation
prevented them from applying their techniques to Present-80 with more than
16 rounds, since computation time would exceed exhaustive key search. In this
work, we extend the idea but take a different approach: we only perform Gröbner
basis computations in a precomputation (or offline) phase. We show that these
computations can also be used to improve the success of differential attacks
(for instance, one can increase the signal to noise ratio S/N by using algebraic
techniques).

Integral attacks were originally proposed for byte-oriented ciphers such as the
AES, and can be viewed as a special form of higher-order differential attacks [27].
In such an attack, one uses sets of plaintexts that satisfy a particular structure
(e.g. take on all possible values in one byte and a fixed arbitrary value in all other
plaintext bytes). For some ciphers this leads to a predictable feature relating the
ciphertexts after a few rounds, which in turn may be used to attack the cipher.
In [31] Reza Z’Aba et al. extend the notion of integral attacks to bit-oriented
ciphers, considering the block ciphers Present, Noekeon and Serpent.

The first work combining algebraic and higher-order differential attacks is [25]
by Faugère and Perret. The authors used higher-order differentials to explain the
improved runtime of their Gröbner basis algorithms against the Curry and Flurry
families of block ciphers [10]. In this work, we also use algebraic techniques to
improve integral cryptanalysis: we focus on recovering symbolic representations
for relations that must hold on the output after a few rounds, illustrated on an
attack against reduced-round variants of Present.
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3 Symbolic Precomputation in Block Ciphers

The main idea explored in this paper involves shifting the emphasis of previous
algebraic attacks away from attempting to solve an equation system towards
using ideal membership as implication. In others words, instead of trying to
solve an equation system arising from the cipher to recover secret key informa-
tion, we use Gröbner basis methods to compute what a particular input pattern
implies.

We use a small example to illustrate the main idea. Consider the block cipher
Present [7]. Its 4-bit S-Box can be completely described by a set of polynomials
that express each output bit in terms of the input bits. Let Xi,j and Yi,j denote
the jth input and output bits of the ith S-Box, respectively. In differential crypt-
analysis, one considers a pair of inputs X ′

i,0, . . . , X
′
i,3 and X ′′

i,0, . . . , X
′′
i,3 and the

corresponding output bits Y ′
i,0, . . . , Y

′
i,3 and Y ′′

i,0, . . . , Y
′′
i,3. Since the output bits

are described as polynomials in the input bits, it is easy to build a set of polyno-
mials describing the parallel application of the S-Box to the pair of input bits.
For example, assume the fixed input difference of (0, 0, 0, 1) holds for this S-Box.
This can be described algebraically by adding the equations X ′

i,3 + X ′′
i,3 = 1,

X ′
i,j +X ′′

i,j = 0 for 0 ≤ j < 3 to the set. As usual, we add to this system (as well
as in all calculations performed in this work) the field equations X2

i,j + Xi,j = 0
and Y 2

i,j + Yi,j = 0.
The set of equations now forms a description of the parallel application of

the S-Box to two inputs with a fixed input difference. The ideal I spanned
by these polynomials contains all polynomials that are implied by the set. If
all polynomials in the generating set of the ideal evaluate to zero, it is clear
that any element of I will also evaluate to zero. In particular any polynomial
in the ideal will vanish if it is assigned values corresponding to the applica-
tion of the S-Box with a pair of inputs with the above-mentioned input differ-
ence.

From a cryptographic point of view, it may be desirable to understand what
relations between output bits will hold for a particular input difference. This
can be done by considering the polynomials in the output bits only that are
contained in I. Algebraically, we are trying to find elements in the ideal IY =
I
⋂

F2[Y ′
i,0, . . . , Y

′
i,3, Y

′′
i,0, . . . , Y

′′
i,3], where I is the ideal spanned by our original

equations.
A deglex Gröbner basis GY of this ideal can be computed using standard

elimination techniques.1 For this, we can for example set up a block or product
ordering where all output variables are lexicographically smaller than any other
variable in the system. In addition, we fix the deglex ordering among the output
variables. Computing the Gröbner basis with respect to such an ordering gives
us the Gröbner basis GY of IY . We note that GY will contain the relations
of lowest degree of IY due to the choice of term ordering. In our example we
have:

1 We refer the reader unfamiliar with Gröbner bases theory and techniques to [5] for
the algebraic geometry concepts relevant to the remaining of this section.
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GY = [Y ′
i,3 + Y ′′

i,3 + 1,

Y ′
i,0 + Y ′

i,2 + Y ′′
i,0 + Y ′′

i,2 + 1,

Y ′′
i,0Y

′′
i,2 + Y ′

i,2 + Y ′′
i,0 + Y ′′

i,1 + Y ′′
i,3,

Y ′′
i,0Y

′′
i,1 + Y ′′

i,0Y
′′
i,3 + Y ′′

i,1Y
′′

i,2 + Y ′′
i,2Y

′′
i,3 + Y ′

i,1 + Y ′′
i,0 + Y ′′

i,1,

Y ′
i,2Y

′′
i,2 + Y ′′

i,1Y
′′
i,2 + Y ′′

i,2Y
′′

i,3,

Y ′
i,2Y

′′
i,0 + Y ′′

i,1Y
′′
i,2 + Y ′′

i,2Y
′′

i,3 + Y ′
i,1 + Y ′

i,2 + Y ′′
i,0 + Y ′′

i,3,

Y ′
i,1Y

′′
i,2 + Y ′

i,2Y
′′
i,1 + Y ′

i,2Y
′′

i,3 + Y ′′
i,1Y

′′
i,2 + Y ′

i,1 + Y ′
i,2 + Y ′′

i,1,

Y ′
i,1Y

′′
i,1 + Y ′

i,1Y
′′
i,3 + Y ′′

i,1Y
′′

i,2 + Y ′′
i,1Y

′′
i,3 + Y ′′

i,2Y
′′

i,3 + Y ′′
i,1,

Y ′
i,1Y

′′
i,0 + Y ′

i,2Y
′′
i,1 + Y ′

i,2Y
′′

i,3 + Y ′′
i,0Y

′′
i,3 + Y ′′

i,1Y
′′

i,2 + Y ′′
i,2Y

′′
i,3 + Y ′

i,1 + Y ′′
i,3,

Y ′
i,1Y

′
i,2 + Y ′

i,2Y
′′
i,3 + Y ′′

i,1Y
′′

i,2 + Y ′′
i,2Y

′′
i,3 + Y ′

i,2].

There is no other linear or quadratic polynomial p ∈ IY which is not a sim-
ple algebraic combination of the polynomials in GY . In other words, all simple
relations involving only the output bits can be derived in a straightforward way
from the set GY .

In order to formalise this idea, consider a function E (for example a block
cipher), and assume E can be expressed as a set of algebraic equations F over a
finite field F. We can consider d parallel applications of E , with inputs and out-
puts P0, . . . , Pd−1 and C0, . . . , Cd−1, respectively, and denote the corresponding
polynomial systems by Fi. Now assume some property Λ holds on P0, . . . , Pd−1,
and can be expressed by a set of algebraic equations FΛ. A natural question to
ask is: how do properties on the input set P0, . . . , Pd−1 affect properties on the
output set C0, . . . , Cd−1 ?

We can simply combine the equation systems into the set F = FΛ∪ (
⋃d−1

i=0 Fi)
and consider the ideal I = 〈F 〉. As discussed above, the unique reduced Gröbner
basis GC of the ideal IC = I∩F[C0, . . . , Cd−1] contains all “relevant” polynomials
in C0, . . . , Cd−1, where “relevant” is determined by the term ordering. As soon as
we compute the Gröbner basis GC for the d parallel applications of the function
E , we only need to collect the right polynomials from GC to obtain the properties
on the output set C0, . . . , Cd−1 which are implied by Λ.

We note however that for many functions E , computing GC may be infeasible
using current Gröbner basis techniques, implementations and computing power.
Thus in practice, we may need to relax some conditions hoping that we still can
recover useful information using a similar technique. We provide below a few
heuristics and techniques that may still allow recovering some relevant equations.

Early Abort. To recover some properties we might not need to compute the
complete Gröbner basis; instead we may opt to stop the computation at
some degree D.

Replacing Symbols by Constants. It is possible to replace the symbols P0,
. . . , Pd−1 by some constants (values) satisfying the constraint Λ which fur-
ther simplifies the computation. Of course any polynomial recovered from
such a computation would have to be checked against other values to verify
whether it actually holds in general or with high probability.
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Choosing a Different Term Ordering. Instead of computing with respect
to an elimination ordering, which is usually more expensive than a degree
compatible ordering, we may choose to perform our computations with re-
spect to a more efficient ordering such as degrevlex. Used together with
Early Abort, we have no assurances about the completeness of the re-
covered system; yet we might still be able to recover some useful informa-
tion.

3.1 Block Ciphers

We briefly introduce the block ciphers used to demonstrate our techniques.
Present [7] was proposed at CHES 2007 as an ultra-lightweight block cipher,

enabling a very compact implementation in hardware, and therefore particularly
suitable for RFIDs and similar devices. There are two variants of Present: one
for 80-bit keys and one for 128-bit keys, denoted as Present-80 and Present-
128 respectively.

Present is an SP-network with a blocksize of 64 bits and both versions have
31 rounds. Each round of the cipher has three layers of operations: keyAddLayer,
sBoxLayer and pLayer. The operation keyAddLayer is a simple subkey addition
to the current state, while the sBoxLayer operation consists of 16 parallel appli-
cations of a 4-bit S-Box. The operation pLayer is a permutation of wires. In this
work we consider round-reduced variants of Present denoted Present-Ks-Nr
where Ks ∈ {80, 128} and the number of rounds is 0 < Nr ≤ 31.

The designers of Present give a security analysis of their cipher by showing
resistance against well-known attacks such as differential and linear cryptanalysis
[7]. The best published differential attacks are for 16 rounds of Present-80 [30]
and 17 (and possibly up to 19) rounds [1] for Present-128. Results on linear
cryptanalysis for up to 26 rounds are available in [12,26]. Bit-pattern based
integral attacks [31] are successful up to seven rounds of Present. A new type
of attack, called statistical saturation attack, was proposed in [16] and expected
to be applicable to up to 24 rounds of Present.

KTANTAN32 was proposed at CHES 2009 and is the smallest cipher in a
family of block ciphers proposed in [11]. It allows a very compact implementation
in hardware. It has a blocksize of 32 bits and accepts an 80-bit key. The input
is loaded into two registers L2 and L1 of 19 and 13 bit length respectively. A
round transformation is then applied to these registers 254 times. This round
function updates two bits using a quadratic function and performs rotations
on the registers. After 254 rounds the content of L2 and L1 is output as the
ciphertext.

The designers of KTANTAN consider a wide range of attacks in their security
argument and show evidence that the cipher is secure against differential, linear,
impossible differential, algebraic attacks, as well as some combined attacks. How-
ever strong cryptanalytic results against the cipher have recently been proposed
in [8].
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4 Algebraic Precomputation in Differential Cryptanalysis

In this section we show how to use the techniques discussed previously to improve
the differential cryptanalysis of some block ciphers. More specifically, we attempt
to increase the chances of success of such an attack by increasing the signal
to noise ratio S/N ; we illustrate the method against reduce-round versions of
Present and Ktantan32.

4.1 Reducing the Noise

We briefly recall the basic principles of the main attack proposed in [1]. The
proposed technique (referred to as Attack-C ) was used to discard wrong pairs
during a differential attack. The attacker would consider the equation systems
modelling only the rounds > r (the R outer rounds in the differential attack
based on a characteristic valid for r rounds) for each plaintext–ciphertext pair.
We denote these equation systems arising from the encryption of P ′ to C′ and
P ′′ to C′′, by F ′

R and F ′′
R respectively. The algebraic part of Attack-C of [1]

consists of a Gröbner basis computation on the polynomial system

F = F ′
R ∪ F ′′

R ∪ {X ′
r+1,i + X ′′

r+1,i + δXr+1,i},

where the last set refers to the (linear) polynomials arising from the output
difference δXr+1,i predicted by the characteristic. Whenever the Gröbner basis
of the ideal 〈F 〉 is equivalent to {1}, we know that the system has no solution,
and the pair (P

′
, P

′′
) cannot be a right pair (it can thus be discarded). We

note however that no strong assurances are given in [1] as to how many pairs are
actually discarded by this technique (we refer the reader to [1] for a more detailed
description of the proposed algebraic techniques in differential cryptanalysis).

In the present work, we consider the same system of equations as in Attack-C
but replace the values of C′ and C′′ by symbols (i.e. variables). By computing a
Gröbner basis for the right elimination ordering (cf. Section 3), we can recover
relations in the variables C′ and C′′ that must evaluate to zero whenever the
input difference for round r+1 holds. We note that this computation can be done
offline, as the actual values for the plaintexts and ciphertexts are not required.
These equations may be used to improve the quality of the algebraic filter used to
discard wrong pairs (in other words, to decrease the value of β in the expression
of S/N). An estimate about the quality of this filter can calculated by computing
the probability that the polynomials obtained evaluate to zero for random values
of C′ and C′′.

4.2 Case Study: PRESENT

We consider the differential from [30] and construct filters for Present reduced
to 14 +R rounds. The same filter also applies to 10 +R, 6 +R and 2 +R rounds
since the characteristic is iterative with a period of four rounds. The explicit
polynomials in this section do not differ for Present-80 and Present-128.
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PRESENT 2R. We consider the polynomial ring

P = F2[ K0,0, . . . ,K0,79, K1,0, . . . ,K1,63,
Y ′

1,0, . . . , Y
′
1,63, Y ′′

1,0, . . . , Y
′′
1,63, X ′

1,0, . . . , X
′
1,63, X ′′

1,0, . . . , X
′′
1,63,

. . . , K15,0, . . . ,K15,3,
Y ′

15,0, . . . , Y
′
15,63, Y

′′
15,0, . . . , Y

′′
15,63, X

′
15,0, . . . , X

′
15,63, X

′′
15,0, . . . , X

′′
15,63,

Y ′
16,0, . . . , Y

′
16,63, Y

′′
16,0, . . . , Y

′′
16,63, X

′
16,0, . . . , X

′
16,63, X

′′
16,0, . . . , X

′′
16,63,

C′
0, . . . , C

′
63, C′′

0 , . . . , C
′′
63]

and use the following block ordering:

K0,0, . . . , X
′′
16,63︸ ︷︷ ︸

degrevlex

, C′
0, . . . , C

′
63, C

′′
0 , . . . , C

′′
63︸ ︷︷ ︸

degrevlex

.

We set up an equation system as in [1], except that the ciphertext bits are
symbols (C′

i and C′′
i ). Then, we compute the Gröbner basis up to degree D = 3

using PolyBoRi 0.6.3 [9,29] with the option deg bound=3 and filter out any
polynomial that contains non-ciphertext variables.

This computation returns 64 polynomials, 46 of which are linear. Forty linear
polynomials are of the form C′

i + C′′
i and encode the information that the last

round output difference of 10 S-Boxes must be zero (cf. [30]). The remaining
24 polynomials are split into two sets F0, F2 of 12 polynomials in 24 variables
each; furthermore the sets Fj do not share any variables with each other or
the first 40 linear polynomials. The systems Fj are listed in Figure 2 in the
Appendix. The probability that all polynomials evaluate to zero for a random
point is ≈ 2−50.669. We recall that Wang’s filter from [30] passes with probability
2−40 · (5/16)6 ≈ 2−50.07. Thus, our filter improves upon Wang’s by a factor of
20.59 ≈ 1.51.

In order to estimate how close to optimal our filter is, we construct random
pairs C′, C′′ which pass our polynomial filter and notice that for Attack-C from
[1] mounted using a SAT-solver, roughly every second such pair for Present-80
and 317 out of 512 for Present-128 will pass. Thus, the most precise filter that
can be constructed only using the ciphtertext bits and the output difference of
round r will accept a pair with probability ≈ 2−51.669 for Present-80 and with
probability ≈ 2−51.361 for Present-128.

PRESENT 3R. We extend the ring and the block ordering in the obvious way
and compute a Gröbner basis with degree bound 3. The computation returns
28 polynomials, 16 of which are linear. The linear polynomials have the form
C′

i + C′′
i for

i ∈ {3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63}.
The remaining 12 polynomials are quadratic and cubic (cf. Figure 3 in the

Appendix). The probability that all polynomials evaluate to zero on a random
point is ≈ 2−18.296. In order to estimate how close to optimal this filter is, we
construct random pairs C′, C′′ which pass this polynomial filter. Attack-C using
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a SAT-solver will accept roughly 6 in 1024 pairs for Present-80 and 9 out of
1024 pairs for Present-128. Thus, we expect an optimal filter – based on the
output difference of round r and the ciphertext bits – to pass with probability
≈ 2−25.711 for Present-80 and 2−25.126 for Present-128. That is, there is a
factor of 27.4 ≈ 168 between our filter and this optimal filter.

PRESENT 4R. We again extend the ring and the block ordering in the obvious
way and compute a Gröbner basis with degree bound 3, to we recover

(C′
32+j + C′′

32+j + 1)(C′
j + C′′

j + 1)(C′
16+j + C′

48+j + C′′
16+j + C′′

48+j)

for 0 ≤ j < 16. The probability that all polynomials evaluate to zero on a
random point is ≈ 2−3.082.

We verified experimentally that this bound is optimal by using the SAT solver
CryptoMiniSat [28] on Attack-C systems in a 4R attack against Present-80-
14. The solver returned an assignment which satisfies the equation system with
probability ≈ 2−3. Thus, we conclude that our filter is optimal among the filters
which only consider only the output difference of round r and the ciphertext
bits.

4.3 Case Study: KTANTAN

In Table 1 we give our results against Ktantan32. We used the best characteris-
tic for 42 rounds as provided by the designers and extended it to 71 rounds. The
characteristic is valid with probability 2−31. We present results for computation
with degree bound D = 4 and 5. For each D we give the number of polynomials
of degree 1 to 5 found (denoted as d = ∗). In the last column of each experiment
we give the approximate probability that all the equations we found evaluate to
zero for random values (denoted log2 p).

4.4 Increasing the Signal

In this section, we consider the problem of increasing the amount of correct data
that has to agree with and is always suggested by a right pair. Increasing this
value usually has considerable costs attached to it. First, more data needs to be
managed and thus usually the counter tables become larger. On average, we can
expect each additional bit considered to double the size of these tables. Second,
in order to generate more data, more partial decryptions must be performed
which in turn increases the computation time. Additionally, the number of key
bits that can be trial decrypted may be limited by the number of rounds R we
can consider because of the quality of the filter.

In this work we use (non-linear) relations available from the first few rounds
instead of the last R rounds. Assume that we have an SP-network, a differential
characteristic Δ = (ΔP,ΔY1, . . . , ΔYr) valid for r rounds with probability p,
and (P ′, P ′′) a right pair for Δ (so that ΔP = P ′ ⊕ P ′′ and ΔYr holds for the
output of round r). For simplicity, let us assume that only one S-Box is active
in round 1, and by abuse of notation, that X ′

1, X ′′
1 and K0 denote the S-Box
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Table 1. Decreasing the noise for Ktantan32

degree bound = 4 degree bound = 5

N d = 1 d = 2 d = 3 d = 4 d = 5 log2 p d = 1 d = 2 d = 3 d = 4 d = 5 log2 p

72 32 0 0 0 0 −32.0 32 0 0 0 0 −32.0
74 32 0 0 0 0 −32.0 32 0 0 0 0 −32.0
76 32 0 0 0 0 −32.0 32 0 0 0 0 −32.0
78 31 3 0 0 0 −32.0 31 3 0 0 0 −32.0
80 28 11 0 0 0 −31.4 28 11 0 0 0 −31.4
82 25 23 0 0 0 −31.0 25 23 0 0 0 −31.0
84 20 32 4 8 0 −29.0 20 32 4 32 0 −29.0
86 16 44 19 8 0 −25.7 16 46 23 75 106 < −24
88 12 39 54 96 0 −24.0 12 51 103 371 745 < −23
90 8 41 129 287 0 −23.0 8 42 133 612 1762 < −22
92 4 28 113 285 0 −20.0 4 33 133 743 2646 −20.4
94 1 20 94 244 0 −16.3 1 25 124 662 2345 −18.5
96 0 8 38 96 0 −12.8 0 8 52 287 1264 −14.3
98 0 3 8 29 0 −7.0 0 3 10 46 156 −9.1
100 0 1 3 13 0 −3.7 0 1 3 18 47 −4.6
102 0 0 0 2 0 −0.8 0 0 0 4 9 −0.9
103 0 0 0 1 0 −0.4 0 0 0 2 4 −0.4
104 0 0 0 0 0 0.0 N/A N/A N/A N/A N/A N/A

input vectors corresponding to the plaintext vectors P ′
1, P ′′

1 (also restricted to
the S-Box) and initial key whitening, respectively. Thus we have the relations

S(P ′
1 ⊕K0) = S(X ′

1) = Y ′
1 and S(P ′′

1 ⊕K0) = S(X ′′
1 ) = Y ′′

1 .

The S-Box operation S can be described by a (vectorial) Boolean function, ex-
pressing each bit of the output Y ′

1 as a polynomial function (over F2) on the
input bits of X ′

1 and K0. If (P ′, P ′′) is a right pair, then the polynomial equa-
tions arising from the relation ΔY1 = Y ′

1 ⊕ Y ′′
1 = S(P ′

1 ⊕ K0) ⊕ S(P ′′
1 ⊕ K0)

give us a very simple equation system to solve, with only the key variables K0,j

as unknowns (and which do not vanish identically because we are considering
nonzero differences). Consequently, right pairs suggest additional information
about the key from the first round difference. In particular, if ΔY1 holds with
probability 2−b then we can recover b bits of information about the key, as soon
as we have a right pair.

There is no a priori reason to restrict this argument (which was considered
in [1]) to the first round only. Let Δ, r, P ′, P ′′ be as before. We set up two
equation systems F ′ and F ′′ involving P ′, C′ and P ′′, C′′ respectively and discard
any polynomials from the rounds > s, where s is small (the discussion above
refers to the case s = 1). We can then add linear equations as suggested by
the characteristic up to s rounds and use this system to potentially recover
information about the key from the first s rounds.

In order to avoid the potentially costly Gröbner basis computation for every
candidate pair, we replace the vectors of constants P ′ and P ′′ by vectors of
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symbols. Using the idea from Section 3 we can compute polynomials involving
only key variables and the newly introduced plaintext variables P ′ and P ′′. As-
sume that we can indeed compute the Gröbner basis, with P ′ and P ′′ as symbols,
for the first s rounds combined with the linear equations arising from the char-
acteristic. Assume further that the characteristic restricted to s rounds holds
with a probability 2−b and that we computed ms polynomials in the variables
K0, P ′ and P ′′. This means that we can recover b bits of information when we
evaluate all ms polynomials, by replacing the variables in P ′ and P ′′ by their
actual values.

This means that we have b bits of extra information and thus can write S/N =
2k+b·p

α·β without the overhead of performing any partial decryptions. However, we
have to perform ms polynomial evaluations (where we replace P ′ and P ′′ by
their actual values) of relatively small low degree polynomials.

Case Study: PRESENT. We consider the first two encryption rounds and the
characteristic from [30]. We set up a polynomial ring with two blocks such that
the variables Pi and Ki are lexicographically smaller than any other variable.
Within the blocks we chose a degree lexicographical term ordering. We set up an
equation system covering the first two encryption rounds and added the linear
equations suggested by the characteristic. Then, we eliminated all linear leading
terms which are not in the variables Pi and Ki and computed a Gröbner basis up
to degree five. This computation returned 22 linear and quadratic polynomials
(we give the Gröbner basis for these polynomials in Figure 4). This system
gives 8 bits of information about the key. Note that the first two rounds of the
characteristic is valid with probability 2−8.

Case Study: KTANTAN32. We consider the first 24 rounds of KTANTAN32
and compute the full Gröbner basis. This computation recovers 39 polynomials.
We list an excerpt in Figure 1 in the Appendix. As expected we observe that the
characteristic also imposes restrictions on the plaintext. These eight equations
allow us to recover up to four bits (depending on the value of P ′

19) of information
about the key.

5 Algebraic Precomputation in Integral Cryptanalysis

In [31] bit-pattern based integral attacks against up to 7 rounds of Present

were proposed. These attacks are based on a 3.5 round distinguisher. The at-
tacker prepares 16 chosen plaintexts which agree in all bit values except the
bits at the positions 51, 55, 59, 63. These four bits take all possible values
(0, 0, 0, 0), (0, 0, 0, 1), . . . , (1, 1, 1, 1). The authors of [31] show that the input bits
to the 4th round are then balanced. That is, the sum of all bits at the same bit
position across all 16 encryptions is zero. If Xi,j,k denotes the k-th input bit of the
j-th round of the i-th encryption, we have that 0 =

∑15
i=0 Xi,4,k for 0 ≤ k < 64.

We show below that more algebraic structure can be found. For this purpose
we set up an equation system for Present-80-4 for 16 plaintexts of the form
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given above. We also added all information about relations between encryp-
tions from [31] to the system in algebraic form. These relations are of the form∑

i∈I Xi,j,k for I ⊂ {0 . . . , 15}. These relations would be found by the Gröbner
basis algorithm eventually, but adding them directly can speed up the computa-
tion. Then we computed a Gröbner basis up to degree 2 only using PolyBoRi.
This computation takes about 5 minutes and returns more than 500 linear poly-
nomials in the input variables to the fourth round. All these polynomials relate
bits from different encryptions, that is they contain Xi,j,k and Xi′,j′,k′ with
i �= i′. In Figure 5 of the Appendix we provide a selection in order to illustrate
the form of these polynomials.

The exact number of subkey bits we can recover using these polynomials
varies with the values of the ciphertext bits. On average we can recover 50
subkey bits from the last round key of Present-80-4 using 24 chosen plaintexts
by performing trial decryptions and comparing the relations between the inputs
of the 4th round with the expected relations2.

The same strategy for finding algebraic relations can be applied to Present-
80-5 where we look for polynomials which relate the input variables for the 5th
round. Using PolyBoRi with the same options as above, we found 26 linear
polynomials. We can represent 12 of them as

Xi,5,k + Xi+1,5,k + X6,5,k + X7,5,k + X8,5,k + X9,5,k + X14,5,k + X15,5,k,

with i ∈ {0, 2, 4} and k ∈ {51, 55, 59, 63}.
Another 12 polynomials are of the form

Xi,5,k + Xi,5,k+32 + Xi+1,5,k + Xi+1,5,k+32 + Xi+8,5,k + Xi+8,5,k+32+
Xi+9,5,k + Xi+9,5,k+32 + X6,5,k + X6,5,k+32 + X7,5,k + X7,5,k+32+
X14,5,k + X14,5,k+32 + X15,5,k + X15,5,k+32.

for i ∈ {0, 2, 4} and k ∈ {3, 7, 11, 15}.
The remaining two polynomials can be represented by

X4,5,k + X4,5,k+32 + X4,5,k+48 + X5,5,k + X5,5,k+32 + X5,5,k+48+
X6,5,k + X6,5,k+32 + X6,5,k+48 + X7,5,k + X7,5,k+32 + X7,5,k+48+
X12,5,k + X12,5,k+32 + X12,5,k+48 + X13,5,k + X13,5,k+32 + X13,5,k+48+
X14,5,k + X14,5,k+32 + X14,5,k+48 + X15,5,k + X15,5,k+32 + X15,5,k+48

for k ∈ {3, 7}.
Using the 26 polynomials listed above we expect to recover the round-key

for the last round of Present-80-5 using 3 · 24 chosen plaintexts. For each S-
box we have to guess the four subkey bits which separate the S-box output
2 We note that considering the full equation system for all rounds instead of only

the equations of the 4th round we can recover the full encryption key using 24

chosen plaintext by performing a classical algebraic attack. The overall Gröbner
basis computation for this task takes only a few minutes but the running time varies
between instances.
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from the ciphertext. For each of the S-Boxes 12, 13, 14 and 15, we have 3 linear
equations to filter out wrong guesses on four bits. For each pair of S-boxes (0, 8),
(1, 9), (2, 10) and (3, 11) we have again three linear equations to filter out wrong
guesses, however this time we are filtering on eight bits. Thus, we need 2 · 24

chosen plaintexts to recover 16 bits and 3·24 chosen plaintext to recover 64 subkey
bits. In [31], one required 5 ·24 chosen plaintexts. We mention that we can reduce
the number of required texts further to 24 if we consider the polynomials from
Present-80-4 and Present-80-5 together.

We were unable to obtain any polynomials for the input variables of the sixth
round. However, just as in [31] we can extend our attack on Present-80-5 to an
attack on Present-80-6 by guessing bits in the first round. Our improvements
for Present-80-5 translate directly into an improvement for Present-80-6,
dropping the data complexity from 222.4 to 221 chosen plaintexts (or 220 if we
consider the relations arising for the 4th round as well). Similarly, this additional
information can be exploited for the Present-128-7 attack from [31].

6 Conclusion

In this work, we have introduced a novel application for algebraic cryptanalysis of
block ciphers. We propose a method which can improve “classical” differential
and integral cryptanalysis, by applying algebraic tools in a pre-computation
phase. As such, we shift the focus from attempting to solve large systems of
polynomial equations to recovering symbolic information about the underlying
cipher. We note that the use of algebraic techniques in general, and Gröbner
basis methods in particular, in block cipher cryptanalysis has received some
criticism within the cryptographic community, as it has been often the case that
“simpler” techniques can perform favourably in many situations. However in
this paper we showed that the rich algebraic structure of Gröbner basis can offer
many advantages and may give one a more subtle insight of the cipher structure.
This can in turn be used in the cryptanalysis of the cipher. We note that in
principle our techniques can recover an optimal amount of information and that
in most cases considered in this work we were (almost) able to accomplish this.
We expect that this approach is applicable to other cryptanalytical techniques
and consider applying it as an area of future work.
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5. Becker, T., Weispfenning, V.: Gröbner Bases - A Computational Approach to Com-
mutative Algebra. Springer, Heidelberg (1991)

6. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

7. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Rob-
shaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block
cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
450–466. Springer, Heidelberg (2007), http://www.crypto.rub.de/imperia/md/

content/texte/publications/conferences/present_ches2007.pdf
8. Bogdanov, A., Rechberger, C.: Generalizing meet-in-the-middle attacks: Crypt-

analysis of the lightweight block cipher ktantan. In: Proceedings of Selected Areas
in Cryptography 2010 (2010)

9. Brickenstein, M., Dreyer, A.: PolyBoRi: A framework for Gröbner basis computa-
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basis attacks. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 313–
331. Springer, Heidelberg (2006)

11. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

12. Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. Cryptology ePrint
Archive, Report 2009/397 (2009), http://eprint.iacr.org/2009/397

13. Cid, C.: D.STVL.7 algebraic cryptanalysis of symmetric primitives (2008), http://
www.ecrypt.eu.org/ecrypt1/documents/D.STVL.7.pdf

14. Cid, C., Leurent, G.: An analysis of the XSL algorithm. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 333–352. Springer, Heidelberg (2005)

15. Cid, C., Murphy, S., Robshaw, M.J.B.: Small scale variants of the AES. In: Gilbert,
H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 145–162. Springer, Hei-
delberg (2005), http://www.isg.rhul.ac.uk/~sean/smallAES-fse05.pdf

16. Collard, B., Standaert, F.-X.: A statistical saturation attack against the block
cipher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 195–
210. Springer, Heidelberg (2009)

17. Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear feedback. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg
(2003)

http://www.inria.fr/rrrt/rr-5049.html
http://www.crypto.rub.de/imperia/md/content/texte/publications/conferences/present_ches2007.pdf
http://www.crypto.rub.de/imperia/md/content/texte/publications/conferences/present_ches2007.pdf
http://www.ricam.oeaw.ac.at/mega2007/electronic/26.pdf
http://eprint.iacr.org/2009/397
http://www.ecrypt.eu.org/ecrypt1/documents/D.STVL.7.pdf
http://www.ecrypt.eu.org/ecrypt1/documents/D.STVL.7.pdf
http://www.isg.rhul.ac.uk/~sean/smallAES-fse05.pdf


Algebraic Precomputations in Differential and Integral Cryptanalysis 401

18. Courtois, N.T.: Higher order correlation attacks,XL algorithm and cryptanalysis
of toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp.
182–199. Springer, Heidelberg (2003)

19. Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the data encryption stan-
dard. In: Galbraith, S.D. (ed.) CC 2007. LNCS, vol. 4887, pp. 152–169. Springer,
Heidelberg (2007), pre-print available at http://eprint.iacr.org/2006/402

20. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

21. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

22. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of minRank. In: Wag-
ner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg
(2008)

23. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE)
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A Explicit Polynomials
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Fig. 1. Polynomials for the first two rounds of Ktantan32
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Fig. 4. Polynomials for the first two rounds of Present

X14,4,0 + X14,4,32 + X14,4,56 + X14,4,62 + X15,4,0 + X15,4,32 + X15,4,56 + X15,4,62 + 1,

X14,4,1 + X14,4,33 + X14,4,49 + X15,4,1 + X15,4,33 + X15,4,49 ,

X14,4,2 + X14,4,34 + X14,4,58 + X14,4,62 + X15,4,2 + X15,4,34 + X15,4,58 + X15,4,62 ,

X14,4,3 + X14,4,35 + X14,4,51 + X15,4,3 + X15,4,35 + X15,4,51 ,

X14,4,4 + X14,4,36 + X14,4,52 + X15,4,4 + X15,4,36 + X15,4,52 ,

X14,4,5 + X14,4,37 + X14,4,53 + X15,4,5 + X15,4,37 + X15,4,53 ,

X14,4,6 + X14,4,38 + X14,4,54 + X15,4,6 + X15,4,38 + X15,4,54 ,

X14,4,7 + X14,4,39 + X14,4,55 + X15,4,7 + X15,4,39 + X15,4,55 ,

X14,4,8 + X14,4,40 + X14,4,56 + X15,4,8 + X15,4,40 + X15,4,56 ,

X14,4,9 + X14,4,41 + X14,4,57 + X15,4,9 + X15,4,41 + X15,4,57 ,

X14,4,10 + X14,4,42 + X14,4,58 + X15,4,10 + X15,4,42 + X15,4,58,

X14,4,11 + X14,4,43 + X14,4,59 + X15,4,11 + X15,4,43 + X15,4,59,

X14,4,12 + X14,4,44 + X14,4,62 + X15,4,12 + X15,4,44 + X15,4,62 + 1,

X14,4,13 + X14,4,45 + X14,4,61 + X15,4,13 + X15,4,45 + X15,4,61,

X14,4,14 + X14,4,46 + X14,4,62 + X15,4,14 + X15,4,46 + X15,4,62,

X14,4,15 + X14,4,47 + X14,4,63 + X15,4,15 + X15,4,47 + X15,4,63,

X14,4,48 + X14,4,56 + X14,4,62 + X15,4,48 + X15,4,56 + X15,4,62 + 1,

X14,4,49 + X14,4,57 + X14,4,61 + X15,4,49 + X15,4,57 + X15,4,61,

X14,4,50 + X14,4,58 + X14,4,62 + X15,4,50 + X15,4,58 + X15,4,62,

X14,4,51 + X14,4,59 + X15,4,51 + X15,4,59 + 1,

X14,4,60 + X14,4,62 + X15,4,60 + X15,4,62 + 1,

X14,4,63 + X15,4,63 + 1.

Fig. 5. Polynomials for four round integral attack against Present
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1 Introduction

To resist many kinds of attacks, Boolean functions used in stream ciphers should
have good cryptographic properties: balancedness, high algebraic immunity, high
algebraic degree, high nonlinearity and good immunity to fast algebraic attacks.
Up to now, many classes of Boolean functions achieving optimum algebraic im-
munity have been introduced [1, 2, 3, 4, 5, 6, 7, 8, 32]. In [7], Carlet and Feng
proposed an infinite class of balanced functions with optimum algebraic degree,
optimum algebraic immunity and a much better nonlinearity than all the previ-
ously known infinite classes of functions. However, the lower bound they deduced
is not enough to assert resistance to fast correlation attacks [21, 22]. In [8], Tu
and Deng introduced another class of balanced functions with optimum alge-
braic degree, optimum algebraic immunity and a provable good nonlinearity
provided that a certain conjecture is true. Some researchers have done work on
this conjecture [28, 29]. However, the Tu-Deng functions are also weak against
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fast algebraic attacks. Carlet found this weakness and also tried to repair it [9].
The repair of this weakness should give an infinite class of balanced functions
having optimum algebraic degree, optimum algebraic immunity, good nonlinear-
ity and a good behavior against fast algebraic attacks. Then it will be the best
construction of an infinite class of Boolean functions in cryptographic literature.

The higher order nonlinearity is an important cryptographic criterion [10,11,
12,13], and many bounds on it have been deduced [14,15,16,17,18,19]. However,
no bound between fast algebraic immunity and higher order nonlinearity was
previously given. In fact, given a class of Boolean functions, it may be hard to
compute the fast algebraic immunity of them. Therefore, it may be a good choice
if we can assess it by its higher order nonlinearities, and in fact, it is sometimes
easy to prove bad higher order nonlinearity.

In this note, we deduce a bound between fast algebraic immunity and higher
order nonlinearity, and find that a Boolean function should have high r-order
nonlinearity to resist fast algebraic attacks. As a corollary, we find that no mat-
ter how much effort we make, the Tu-Deng functions cannot be repaired in a
standard way to behave well against fast algebraic attacks. Therefore, we should
give up repairing this classes of Boolean functions and try to find other class of
functions with good cryptographic properties or to prove that the Carlet-Feng
function behaves well.

The note is organized as follows. In Section 2, the necessary background is
established. We then deduce a bound between fast algebraic immunity and higher
order nonlinearity in Section 3. In Section 4, we then show that the Tu-Deng
functions cannot be repaired in a standard way such that they behave well
against fast algebraic attacks. We end in Section 5 with a few conclusions.

2 Preliminaries

Let Fn
2 be the n-dimensional vector space over the finite field F2. A Boolean

function of n variables is a function from Fn
2 into F2. We denote by Bn the set

of all n-variable Boolean functions.
Any f ∈ Bn can be uniquely represented as a multivariate polynomial in

F2[x1, · · · , xn],
f(x1, ..., xn) =

∑
K⊆{1,2,...,n}

aK

∏
k∈K

xk,

which is called its algebraic normal form (ANF). The algebraic degree of f ,
denoted by deg(f), is the number of variables in the highest order term with
nonzero coefficient.

A Boolean function is affine if there exists no term of degree strictly greater
than 1 in the ANF and the set of all affine functions is denoted by An.

Let
1f = {x ∈ Fn

2 |f(x) = 1}, 0f = {x ∈ Fn
2 |f(x) = 0}.

The cardinality of 1f , denoted by wt(f), is called the Hamming weight of f .
The Hamming distance between two functions f and g, denoted by d(f, g), is
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the Hamming weight of f + g. We say that an n-variable Boolean function f is
balanced if wt(f) = 2n−1.

Let f ∈ Bn. The nonlinearity of f is its distance from the set of all n-variable
affine functions, i.e.,

nl(f) = min
g∈An

d(f, g).

The r-order nonlinearity, denoted by nlr(f), is its distance from the set of all
n-variable functions of degree at most r.

The nonlinearity of an n-variable Boolean function is upper bounded by 2n−1−
2n/2−1, and a function is said to be bent if it can achieve this bound. Clearly,
bent functions exist only for even n and it is known that the algebraic degree of
a bent function is upper bounded by n

2 [24].
For any f ∈ Bn, a nonzero function g ∈ Bn is called an annihilator of f if

fg = 0, and the algebraic immunity of f , denoted by AI(f), is the minimum
value of d such that f or f + 1 admits an annihilator of degree d. It is known
that the algebraic immunity of an n-variable Boolean function is upper bounded
by 'n

2 ( [25].
To resist algebraic attacks, a Boolean function f used in stream ciphers should

have a high algebraic immunity, which implies that the nonlinearity of f is also
not very low since [30]

nl(f) ≥ 2
AI(f)−2∑

i=0

(
n− 1

i

)
.

A typical filter generator uses an m-sequence s = s0, s1, s2, . . . and a filter
function f ∈ Bn. Denote the output of the filter generator by c0, c1, c2, . . .. Any
term st of the m-sequence s is uniquely determined by a linear function of the
initial state (s0, s1, . . . , sN−1), where N is the length of the register. Let

f(L′(st, st+1, . . . , st+N−1)) = ct, t = 0, 1, 2, . . . ,

where L′ is linear from FN
2 to Fn

2 . Then we have

f(L′(Lt(s0, s1, . . . , sN−1))) = ct, t = 0, 1, 2, . . . ,

where Lt are vectorial Boolean functions from FN
2 into FN

2 and all components
are linear functions. An algebraic attack is an approach to solve this system of
equations efficiently. To resist algebraic attacks, f should have high algebraic
immunity. Otherwise, there exists a g ∈ Bn of low degree such that fg = 0.
Then

f(L′(Lt(s0, s1, . . . , sN−1)))g(L′(Lt(s0, s1, . . . , sN−1)))
= ctg(L′(Lt(s0, s1, . . . , sN−1))) = 0.

Therefore, each time ct = 1, we have g(L′(Lt(s0, s1, . . . , sN−1))) = 0, and many
equations of low degree are derived. They can be solved more efficiently than
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the initial system. The complexity of the standard algebraic attack is roughly
O(D3) in time and O(D) in data, where D =

∑AI(f)
i=0

(
N
i

)
.

To resist fast algebraic attacks, a high algebraic immunity is not sufficient.
Assume that we can find g of low degree and h of reasonable degree such that
fg = h. Then

h(L′(Lt(s0, s1, . . . , sN−1))) = ctg(L′(Lt(s0, s1, . . . , sN−1))), t = 0, 1, 2, . . . .

Then there exists a linear combination of the first
∑deg(h)

i=0

(
N
i

)
equations that

sum the left hand side to 0. We find this by using the Berlekamp-Massey al-
gorithm or through an explicit algebraic calculation [23]. After summing up we
arrive at one equation of degree at most deg(g). The fast algebraic attack has a
pre-computation step of complexity O(D log3 D+Dn log2 n) and an online com-
plexity of O(2DE logD+E3) [23], where D =

∑deg(h)
i=0

(
N
i

)
and E =

∑deg(g)
i=0

(
N
i

)
.

Let F2n denote a finite field with 2n elements. It can be viewed as an n-
dimensional vector space over its subfield F2. Every function f : F2n → F2n can
be uniquely represented as a polynomial

∑2n−1
i=0 aix

i, where ai ∈ F2n , and f is a
Boolean function if and only if

∑2n−1
i=0 aix

i ∈ F2 for any x ∈ F2n . Given a basis
(β1, β2, · · · , βn), we can identify any element x =

∑n
i=1 xiβi ∈ F2n with the

n-tuple of its coordinates (x1, x2, · · · , xn) ∈ Fn
2 , and f can then be represented

as an n-variable polynomial over F2.

3 A Bound between Fast Algebraic Immunity and Higher
Order Nonlinearity

Let f be any Boolean function. If there are functions g of low degree and h of
reasonable degree such that fg = h, then f is considered to be weak against fast
algebraic attacks. Moreover, if g is a nonzero low degree annihilator, then the
algebraic attack using g is more efficient and it is a particular case of the fast
algebraic attack. Therefore, the notion of fast algebraic immunity was introduced
by [26] to assess the resistance of f to fast algebraic attacks as follows:

Definition 1. The fast algebraic immunity of an n-variable Boolean function
f , denoted by FAI(f), is defined as

FAI(f) = min
g∈Bn

{2AI(f), deg g + deg(fg)},

where 1 ≤ deg g < AI(f).

It is known that FAI(f) ≤ n [26,27]. To resist fast algebraic attacks, the Boolean
function f should have high FAI and the optimum case is FAI(f) = n. In [7],
an f ∈ B9 with FAI(f) = 9 was observed, and the authors believed that the
class of functions they introduced had good fast algebraic immunity. Given a
class of functions f , it may be hard to compute FAI(f). However, we show that
we can assess it by higher order nonlinearities, and in fact, it is sometimes easy
to prove bad higher order nonlinearity.
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Theorem 1. Let f ∈ Bn and d be a positive integer. If nlr(f) <
∑d

i=0

(
n
i

)
, then

FAI(f) ≤ r + 2d. In other words,

nlr(f) ≥
�FAI(f)−r

2 �∑
i=0

(
n

i

)
.

Proof. Let f1 be a function of degree at most r such that nlr(f) = wt(f + f1).
Since wt(f + f1) <

∑d
i=0

(
n
i

)
, there exists g of degree at most d such that

(f + f1)g = 0. In fact, let

g(x1, ..., xn) =
∑

K⊆{1,2,...,n}
|K|≤d

aK

∏
k∈K

xk.

Clearly, (f + f1)g = 0 if and only if (f + f1)(x) = 1 implies g(x) = 0. Hence the
coefficients of g satisfy the system of homogeneous linear equations. Since we
have

∑d
i=0

(
n
i

)
number of variables and wt(f + f1) number of equations, there

exists at least one nonzero solution. Therefore, fg = f1g and deg g + deg(fg) ≤
r + 2d. ��
From the theorem, we can find that the r-order nonlinearity of the Boolean
function f should be high to resist fast algebraic attacks, at least for reasonable r.

Remark 1: In particular, if nlr(f) <
∑�n−r

2 �−1
i=0

(
n
i

)
, then

FAI(f) ≤
{
n− 1 if n− r odd
n− 2 if n− r even.

Therefore, to achieve the optimum fast algebraic immunity, it is necessary for f
to satisfy

nlr(f) ≥
�n−r

2 �−1∑
i=0

(
n

i

)
.

When the order is low, the best known lower bound on the r-order nonlinearity
of n-variable Boolean functions with optimum algebraic immunity is [19]:

�n
2 �−r−1∑

i=0

(
n

i

)
+

�n
2 �−r−1∑

i=�n
2 �−2r

(
n− r

i

)
.

When r is large, the best known bound is maxr′≤n(min(λr′ , μr′)) [14], where

λr′ = 2 max(
r′−1∑
i=0

(
n

i

)
,

�n
2 �−r−1∑

i=0

(
n− r

i

)
) if r′ ≤ 'n

2
( − r − 1,

= 2
�n

2 �−r−1∑
i=0

(
n

i

)
if r′ > 'n

2
( − r − 1,

μr′ =
�n

2 �−r−1∑
i=0

(
n− r

i

)
+

�n
2 �−r′∑
i=0

(
n− r′ + 1

i

)
.
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Clearly, for r > 2, these bounds are much less than
∑�n−r

2 �−1
i=0

(
n
i

)
, especially for

r close to 'n
2 (.

Remark 2: It is known that the highest possible algebraic degree of a 2k-
variable bent function is k. Therefore, to achieve a good fast algebraic immunity,
a Boolean function f should have large distance to bent functions. Otherwise,
there exists a small d such that nlk(f) <

∑d
i=0

(
2k
i

)
, and then FAI(f) ≤ k+2d.

To resist fast correlation attacks, a Boolean function should have high nonlinear-
ity. However, bent functions have the maximum nonlinearity and many functions
with high nonlinearities may have small distances to bent functions and there-
fore have bad fast algebraic immunities. It may be hard to construct a class
of functions which have high nonlinearity and can also behave well against fast
algebraic attacks. It is interesting to investigate the relation between nl(f) and
FAI(f), which we leave as an open problem.

Example 1: Braeken introduced a 16-variable symmetric Boolean function f
with optimum algebraic immunity 8 in her PhD thesis,

f(x) = σ
(16)
1 + σ

(16)
2 + σ

(16)
3 + σ

(16)
4 + σ

(16)
5 + σ

(16)
6 + σ

(16)
7 + σ

(16)
16 ,

where σ
(16)
i denotes the 16-variable homogeneous symmetric Boolean function

which contains all terms of degree i. It is known that deg(f) = 16 and nl(f) =
26333 [20], which is much better than the worst nonlinearity 19898 of a 16-
variable function with optimum algebraic immunity 8 [30]. However, nl7(f) =
1 <

∑1
i=0

(
16
i

)
, and hence its fast algebraic immunity is not good. In fact,

f(x)(x1 + 1) = (σ(16)
1 + σ

(16)
2 + σ

(16)
3 + σ

(16)
4 + σ

(16)
5 + σ

(16)
6 + σ

(16)
7 )(x1 + 1),

and FAI(f) ≤ 9. This is the worst case for the resistance to fast algebraic
attacks of a 16-variable function with algebraic immunity 8.

4 On Repairing the Tu-Deng Functions

The Tu-Deng function t ∈ B2k is constructed as follows [8].
Let α be a primitive element of the field F2k and g : F2k → F2 satisfy

1g = {αs, αs+1, ..., αs+2k−1−1},

where 0 ≤ s < 2k − 1. The Tu-Deng function t : F2k × F2k → F2 is defined as

t(x, y) =

⎧⎨⎩
g(x

y ), if xy �= 0,
1, if x = 0, y ∈ Δ,
0, otherwise,

where Δ = {αi|i = 2k−1 − 1, 2k−1, ..., 2k − 2}.
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The Tu-Deng function t has optimum algebraic degree, optimum algebraic
immunity and a very good nonlinearity. However, it is vulnerable to fast algebraic
attacks [9]. In fact, let

b(x, y) =
{
g(x

y ), if xy �= 0,
0, otherwise.

It is a bent function and belongs to the PSap Dillon’s class of hyperbent functions
(see [9, 33]). It has algebraic degree exactly k (see [8]). Clearly, t differs from b
only when x = 0. Therefore, for any linear Boolean function l over F2k , we
have l(x)t(x, y) = l(x)b(x, y), which has algebraic degree at most k + 1. This is
almost the worst case for the resistance to fast algebraic attacks of a 2k-variable
function with algebraic immunity k. Carlet found this weakness and gave a repair
as follows [9].

Define
c(x, y) = b(x, y) + 1E(x, y),

where 1E is the indicator function of the set

E = {(0, uφ)} ∪ {(αiui, ui) : i /∈ {s, ..., s + 2k−1 − 1}},
spanning the whole vector space F2

2k and such that, for every vector e, the set
e + E spans F2

2k as well, where uφ ∈ F2k and 0 �= ui ∈ F2k are chosen suitably.
The function c(x, y) ∈ B2k (if it exists) is balanced and has optimum alge-

braic immunity. The nonlinearity of c satisfies nl(c) ≥ 22k−1 − 2k and perhaps
even better for clever choices of E. Since c(x, y) differs from b(x, y) on any
affine hyperplane of F2

2k , there exists no linear function l over F2k such that
l(x)c(x, y) = l(x)b(x, y), which is better than the Tu-Deng function t(x, y). Car-
let mentioned in [9] that they were making investigations to check if c(x, y) can
have an optimum algebraic degree and behave well against fast algebraic attacks.

In fact, c(x, y) ∈ B2k may not exist for some k, something that is explained
in Remark 3. For a suitably large k, since there are many choices of E, it may
be easy to find a function c(x, y) of optimum algebraic degree. However, no
matter how much effort we use, we cannot find a function c(x, y) such that it
behaves well against fast algebraic attacks, which can be seen from the following
arguments.
Lemma 1.

(
2k
k/4

)
> 2k−1, where k ≥ 20 and 4|k.

Proof. we will prove this by induction. Clearly,
(
40
5

)
= 658008 > 524288 = 219.

Now assume that for some m we have
(

2m
m/4

)
> 2m−1, where m ≥ 20 and 4|m.

Then (
2(m + 4)
(m + 4)/4

)
=

(
2m
m/4

)
8

7∏
i=1

2m + i
7
4m + i

≥
(

2m
m/4

)
8

7∏
i=1

40 + i

35 + i

> 16
(

2m
m/4

)
> 2m+4−1.
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Hence the result follows by induction. ��

Lemma 2.
(
2k
0

)
+

(
2k
1

)
+ ... +

(
2k

�k/4�
)
> 2k−1, where k ≥ 1.

Proof. For k ≥ 20, similar to the proof of Lemma 1, we have
(

2k
�k/4�

)
> 2k−1. For

1 ≤ k < 20, we can verify the inequality by computer, and the result follows. ��

Theorem 2. Let c′(x, y) = b′(x, y)+1E′(x, y), where b′(x, y) ∈ B2k, deg(b′(x, y))
≤ k and 1E′ is the indicator function of a set with 2k−1 elements. Then FAI(c′

(x, y)) ≤ k + 2'k/4(.

Proof. We have nlk(c′) ≤ wt(c′ + b′) = 2k−1. By Theorem 1 and Lemma 2, we
deduce the result. ��

Remark 3: Taking b′(x, y) = b(x, y) and E′ = E, we deduce that the fast alge-
braic immunity of the repaired function c(x, y) is at most k + 2'k/4(, which is
not a good case for the resistance to fast algebraic attacks. In fact, there exists
an h(x, y) of degree at most 'k/4( such that c(x, y)h(x, y) has degree at most
k + 'k/4(. By using

∏k+�k/4�
wt(j)=�k/4�+1(x+αj) bits of keystream, we can cancel the

terms with degree more than 'k/4( of c(x, y)h(x, y), and an equation of degree
at most 'k/4( is obtained (see [31]). Then, if the function is used in a filter
generator, we can recover the initial state by solving equations of degree at most
'k/4(. For example, when k = 4, c(x, y) ∈ B8 (if it exists) and there is a function
h(x, y) of degree 1 such that c(x, y)h(x, y) is of degree at most 5. This is almost
the worst case for the resistance to fast algebraic attacks of a 8-variable function
with algebraic immunity 4. In fact, in this case, we cannot find a set E spanning
the whole vector space F2

2k and such that, for every vector e, the set e+E spans
F2

2k as well. That is, for any choice of E, we can find a linear function h such that
1E ∗ h = 0 and there exists no c(x, y) ∈ B8. Assume that a filter generator con-
sists of a length N linear feedback shift register and the Boolean function c(x, y)
that taps bits from 2k < N positions in the register. Then the fast algebraic
attack has a pre-computation step of complexity O(E1 log3 E1) and an online
complexity of O(D3

1 + 2D1E1 logE1), where D1 =
∑deg(h)

i=0

(
N
i

) ≤ ∑�k/4�
i=0

(
N
i

)
and E1 =

∑deg(c∗h)
i=0

(
N
i

) ≤ ∑k+�k/4�
i=0

(
N
i

)
. As a comparison, the time complex-

ity of the standard algebraic attack is roughly O(D3
2), where D2 =

∑k
i=0

(
N
i

)
.

Clearly, the fast algebraic attack on c(x, y) is more efficient than the standard
one. Therefore, the fast algebraic immunity of c(x, y) is not good, though it is bet-
ter than t(x, y) in most cases. In fact, for a 2k-variable function f with optimum
algebraic immunity k, we have k+1 ≤ FAI(f) ≤ 2k. FAI(c(x, y)) ≤ k+2'k/4(
and it is much less than the highest possible fast algebraic immunity 2k.

Remark 4: t(x, y) and c(x, y) have high nonlinearities since they have small
distances to bent functions which also leads to their bad fast algebraic immuni-
ties. We may try to repair t(x, y) by other means. However, to assure its high
nonlinearity, we might change t(x, y) only on a few points. Then it is still close
to bent functions and cannot behave well against fast algebraic attacks.
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5 Conclusion

This note deduced a bound between fast algebraic immunity and higher order
nonlinearity. We found that no matter how much effort we make, the Tu-Deng
functions cannot be repaired to behave well against fast algebraic attacks. There-
fore, we should give up repairing this class of Boolean functions and try to find
other classes of functions with good cryptographic properties or to prove that
the Carlet-Feng function behaves well.

Moreover, it may be hard to construct an infinite class of functions that have
high nonlinearity and can also behave well against fast algebraic attacks. It is
interesting to investigate the upper bound between nl(f) and FAI(f), which
we leave as an open problem.
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Abstract. Chameleon signatures simultaneously provide the properties
of non-repudiation and non-transferability for the signed message. How-
ever, the initial constructions of chameleon signatures suffer from the
key exposure problem of chameleon hashing. This creates a strong dis-
incentive for the recipient to forge signatures, partially undermining the
concept of non-transferability. Recently, some specific constructions of
key-exposure free chameleon hashing based on various assumptions are
presented.

In this paper, we present some security flaws of the key-exposure free
chameleon hash scheme based on factoring [10]. Besides, we propose an
improved chameleon hash scheme without key exposure based on factor-
ing which enjoys all the desired security notions of chameleon hashing.
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1 Introduction

Chameleon signatures, introduced by Krawczyk and Rabin [13], are based on
well established hash-and-sign paradigm, where a chameleon hash function is
used to compute the cryptographic message digest. A chameleon hash func-
tion is a trapdoor one-way hash function, which prevents everyone except the
holder of the trapdoor information from computing the collisions for a randomly
given input. Chameleon signatures simultaneously provide non-repudiation and
non-transferability for the signed message as undeniable signatures [4] do, but
the former allows for simpler and more efficient realization than the latter. In
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particular, chameleon signatures are non-interactive and less complicated. Be-
sides, since the chameleon signatures are based on well established hash-and-sign
paradigm, it provides more generic and flexible constructions.

One limitation of the original chameleon signature scheme is that signature
forgery results in the signer recovering the recipient’s trapdoor information, i.e.,
the private key. The signer then can use this information to deny other signatures
given to the recipient. Ateniese and de Mederious [1] firstly addressed the key ex-
posure problem of chameleon hashing and introduced the idea of identity-based
chameleon hashing to solve this problem. Due to the distinguishing property
of identity-based system, the signer can sign a message to an intended recip-
ient, without having to first retrieve the recipient’s certificate. Moreover, the
signer uses a different public key (corresponding a different private key) for each
transaction with a recipient, so that signature forgery only results in the signer
recovering the trapdoor information associated to a single transaction. There-
fore, the signer will not be capable of denying signatures on any message in
other transactions. We argue that this idea only provides a partial solution for
the problem of key exposure since the recipient’s public key is changed for each
transaction.

Chen et al. [6] proposed the first full construction of a key-exposure free
chameleon hash function in the gap Diffie-Hellman (GDH) groups with bilinear
pairings. Ateniese and de Mederious [2] then presented three key-exposure free
chameleon hash schemes, two based on the RSA assumption, as well as a new
construction based on pairings. Recently, Gao et al. [11] claimed to present a
key-exposure free chameleon hash scheme based on the Schnorr signature. How-
ever, it requires an interactive protocol between the signer and the recipient and
thus violates the basic definition of chameleon hashing and signatures. Chen et
al. [7] proposed the first discrete-logarithm-based key-exposure free chameleon
hashing without using the GDH groups. Besides, Gao, Wang and Xie [10] pro-
posed a factoring-based chameleon hash scheme without key exposure, which we
call Gao-Wang-Xie’s chameleon hash scheme. Independently, Kurosawa et al.
[12] proposed a double-trapdoor commitment scheme based on factoring. Since
any commitment scheme with a non-interactive commitment phase induces a
chameleon hash function and vice versa, these two schemes are actually equiv-
alent to each other. Also, we argue that they are both closely related to the
presentation problem of factoring [9].

It seems that the single-trapdoor commitment schemes are not sufficient for
the construction of key-exposure free chameleon hashing. All of the existing key-
exposure free chameleon hash schemes [2,6,10] are based on the double-trapdoor
mechanism, where a master trapdoor can be used to compute an ephemeral
trapdoor for each specific transaction. On the other hand, as pointed out by
Ateniese and de Medeiros [2], the double-trapdoor mechanism can be used to
construct either an identity-based chameleon hash scheme or a key-exposure
free one, but not both. Very recently, Chen et al. [8] firstly proposed an identity-
based chameleon hash scheme without key exposure based on the three-trapdoor
mechanism.
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Our Contribution. In this paper, we give a comment on Gao-Wang-Xie’s
chameleon hash scheme and point out some security flaws of the scheme. We also
propose an improved chameleon hash scheme based on factoring which achieves
all the desired security notions of chameleon hashing.

Organization. The rest of the paper is organized as follows: Some preliminaries
are given in Section 2. Gao-Wang-Xie’s chameleon hash scheme is introduced in
Section 3. The comment on Gao-Wang-Xie’s chameleon hash scheme is given in
Section 4. The improved key-exposure free chameleon hashing based on factoring
is proposed in Section 5. Finally, conclusions will be made in Section 6.

2 Preliminaries

In this section, we first introduce the formal definitions and security requirements
of chameleon hash schemes [1,2], and then introduce a variant Rabin signature
scheme [10].

2.1 Chameleon Hashing

A chameleon hash function is a trapdoor collision-resistant hash function, which
is associated with a trapdoor/hash key pair (TK,HK). Anyone who knows the
public key HK can efficiently compute the hash value for each input. However,
there exists no efficient algorithm for anyone except the holder of the secret key
TK, to find collisions for every given input. In the following, we present a formal
definition of a chameleon hash scheme.

Definition 1. A chameleon hash scheme consists of four efficient algorithms
(GenKey,Hash,UForge, IForge):

– GenKey: A probabilistic polynomial-time algorithm that, on input a security
parameter k, outputs a trapdoor/hash key pair (TK,HK).

– Hash: A probabilistic polynomial-time algorithm that, on input the hash key
HK, a label L, a message m, and a random string r, outputs the hashed
value h = Hash(HK,L,m, r). Note that h does not depend on TK.

– UForge: (universal forge) A deterministic polynomial-time algorithm F
that, on input the trapdoor key TK, a label L, a message m, a random
string r, and another message m′ �= m, outputs a string r′ that satisfies

Hash(HK,L,m′, r′) = Hash(HK,L,m, r).

Moreover, if r is uniformly distributed in a finite space R, then the distribu-
tion of r′ is computationally indistinguishable from uniform in R.

– IForge: (instance forge) A deterministic polynomial-time algorithm that,
on input a tuple (HK,L,m, r,m′, r′) such that h = Hash(HK,L,m′, r′) =
Hash(HK,L,m, r), outputs a new collision (m′′, r′′) that also satisfies h =
Hash(HK,L,m′′, r′′).
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A secure chameleon hashing scheme satisfies the following properties:

– Collision resistance: Without the knowledge of trapdoor key TK, there ex-
ists no efficient algorithm that, on input a message m, a random string r, and
another message m′, outputs a string r′ that satisfy Hash(HK,L,m′, r′) =
Hash(HK,L,m, r), with non-negligible probability.

– Semantic security: For all pairs of messages m and m′, the probability dis-
tributions of the random values Hash(HK,L,m′, r) and Hash(HK,L,m, r)
are computationally indistinguishable. In formal terms, let H [X ] denote the
entropy of a random variable X , and H [X |Y ] the entropy of the variable X
given the value of a random function Y of X . Semantic security is the state-
ment that the conditional entropy H [m|h] of the message given its chameleon
hash value h equals the total entropy H [m] of the message space.

– Message hiding: Given a collision (m′, r′) and (m, r) of the chameleon
hash scheme, i.e., h = Hash(HK,L,m′, r′) = Hash(HK,L,m, r). Then the
sender can successfully contest this invalid claim by releasing a third pair
(m′′, r′′) such that h = Hash(HK,L,m′′, r′′), without having to reveal the
original signed message m.

– Key exposure freeness: If a recipient has never computed a collision under
a label L, then there is no efficient algorithm for an adversary to find a
collision for a given chameleon hash value Hash(HK,L,m, r). This must
remain true even if the adversary has oracle access to F and is allowed
polynomially many queries on triples (Lj,mj , rj) of his choice, except that
Lj is not allowed to equal the challenge L.

2.2 A Variant of Rabin Signature Scheme

Let N = pq is a Blum integer, where p, q are two random primes such that
p = q = 3 mod 4. Denote by QRN the set of all quadratic residue modulo N ,
we know that either m ∈ QRN or −m ∈ QRN if the Jacobi symbol (m

N ) =
+1. Note that the Jacobi symbol can be calculated without knowledge of the
factorization of N . Also, for a Blum integer, squaring is a permutation on the
group of quadratic residues QRN . Trivially, it can be extended to 2l-th power
for any positive integer l.

Define a cryptographic hash function H : {0, 1}∗ → Z∗
N [+1], where Z∗

N [+1] =
{a|a ∈ Z∗

N , (m
N ) = +1} is the set of elements of Z∗

N with Jacobi symbol is +1.
Constructions of the hash function H can be found in [5,10]. A variant Rabin
signature scheme based on factoring assumption is given as follows:

– Sign: Given a message m, compute the signature σ = |H(m)| 12 mod N ,
where |H(m)| = H(m) if H(m) ∈ QRN ; |H(m)| = −H(m) otherwise.

– Verify: Given a pair (m,σ), if either σ2 = H(m) mod N or σ2 = −H(m)
mod N holds, then σ is a valid signature for message m.
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3 Gao-Wang-Xie’s Chameleon Hashing

In this section, we introduce Gao-Wang-Xie’s chameleon hash scheme without
key exposure based on factoring [10], which consists of the following efficient
algorithms.

– GenKey: Given a security parameter k, let N = pq where p, q are two
distinct odd primes with the same length such that p = q = 3 mod 4. Define
a cryptographic hash function H : {0, 1}∗ → Z∗

N [+1]. The public key is N
and the secret key is (p, q). Additionally, we restrict the considered message
space of the chameleon hash is {0, 1}f(k) where f(k) is super-logarithmic
in k, i.e., 0 ≤ m ≤ 2f(k) − 1. Trivially, the case of the message space of
{0, 1}∗ can be easily extended by using a collision-resistant hash function
from {0, 1}∗ to {0, 1}f(k).

– Hash: Given the public key N , a label L, and a message m ∈ {0, 1}f(k),
firstly choose a random string r ∈ ZN and compute the hash value

h = Hash(N,L,m, r) = bJmr2f(k)
mod N,

where J = H(L), b ∈ {+1,−1}.
– Uforge: Given the secret key p, q, the original input (m, r), another message

m′ �= m, first compute the ephemeral trapdoor B = |H(L)| 1
2f(k) mod N

for the label L, here |H(L)| = H(L) if H(L) ∈ QRN ; |H(L)| = −H(L)
otherwise. Then compute the corresponding random string r′ = rBm−m′

mod N . Note that

Hash(N,L,m′, r′) = ±H(L)m′
r′2

f(k)

= ±H(L)m′
(rBm−m′

)2
f(k)

= ±H(L)m′ |H(L)|m−m′
r2f(k)

= ±H(L)mr2f(k)

= ±Hash(N,L,m, r)

Since the only difference between Hash(N,L,m, r) and Hash(N,L,m′, r′) is
±, (m, r) and (m′, r′) are viewed as a valid collision of the chameleon hash
function.

– IForge: Given a valid collision (m,r) and (m′,r′), we have Hash(N,L,m, r)=
±Hash(N,L,m′, r′) mod N , i.e., |H(L)|m−m′

= (r′/r)2
f(k)

mod N . Simi-
lar to the technique in [9], we can compute a square root θ of J ′ = |H(L)|
as follows:
Let 2s = gcd(m −m′, 2f(k)), where 0 ≤ s < f(k). Compute u, v ∈ Z such
that u(m−m′) + v2f(k) = 2s and then compute

J ′2s

= J ′u(m−m′)+v2f(k)

= (J ′m−m′
)u(J ′v)2

f(k)

= ((r′/r)uJ ′v)2
f(k)

mod N
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Let θ = ((r′/r)uJ ′v)2
f(k)−s−1

, we have J ′2s

= (θ2)2
s

. Since J ′, θ ∈ QRN and
square is a permutation of the group QRN , we have J ′ = θ2 mod N .
Now if m′ ≥ 2f(k)−1, let m′′ = m′ − 2f(k)−1 and r′′ = r′θ mod N ; if m′ <
2f(k)−1, let m′′ = m′ + 2f(k)−1 and r′′ = r′/θ mod N . We can verify that
Hash(N,L,m′′, r′′) = ±Hash(N,L,m′, r′) mod N .

Theorem 1. [10] The above chameleon hash scheme enjoys the properties of
collision resistance, message hiding, semantic security, and key-exposure free-
ness.

Proof. – Collision Resistance: Exposing a collision allows anybody to compute
a variant Rabin signature |H(L)| 12 on message L. Since the variant Rabin
signature is existentially unforgeable under the factoring assumption, the
proposed chameleon hash function is collision resistance.

– Message Hiding: Given a collision (m, r) and (m′, r′), we can use the algo-
rithm IForge to compute another pair (m′′, r′′).

– Semantic Security: For each message m, the hash value h = Hash(N,L,m, r)
is uniquely determined by the value r2f(k)

with ignoring±, and vice versa. So,
the conditional probability taken over the message space μ(m|h)=μ(m|r2f(k)

).
Also, μ(m|r2f(k)

) = μ(m) since m and r are independent variables. So,
μ(m|h) = μ(m), i.e., the chameleon hash value h discloses no information
about m.

– Key-exposure Freeness: If an attacker A1 against the above chameleon hash
scheme can be successful with respect to the property of key-exposure free-
ness, then we can use it to construct an attacker A2 of type uf-ecma against
the above variant Rabin signature as follows: First A2 is given the public
parameters (N,H, f(k)) of the variant Rabin signature, and A2 passes them
to A1. Then when A1 makes a query (Li,mi, ri) to the oracle UForge, A2

can get the ephemeral trapdoor |H(L)| 1
2f(k) mod N from its own oracle ac-

cess and further compute a collision (m′
i, r

′
i) as in UForge and return it. At

last, A1 returns a collision (m, r) and (m′, r′) and a never queried label L

such that Hash(N,L,m′, r′) = Hash(N,L,m, r), A2 can compute |H(L)| 12
mod N as in IForge, which is the variant Rabin signature for message L.

4 Comments on Gao-Wang-Xie’s Chameleon Hashing

In this section, we present some disadvantages of Gao-Wang-Xie’s chameleon
hash scheme. More precisely, there are mainly three security flaws in their hash
scheme.

1. The definition of the chameleon hashing

Firstly, we point out that the definition of Gao-Wang-Xie’s chameleon hash-
ing is not rigorous. For a given input, the hash value h is a random variable
dependent on the random bit b. This is considered to be a main trick to de-
sign key-exposure free chameleon hashing based on factoring. For more details,



Comments and Improvements on Key-Exposure Free Chameleon Hashing 421

please refer to the remark 2 of [10]. Also, (m, r) and (m′, r′) is a valid collision if
Hash(N,L,m′, r′) = ±Hash(N,L,m, r) holds. This strongly violates the original
definition of chameleon hashing and the collisions. The reason for this paradoxi-
cal definition is that anyone without the information of p, q can not know whether
H(L) is a quadratic residue. We present a solution to this problem as follows:

Define the chameleon hash function h = Hash(N,L,m, r) = H(L)mr2f(k)

mod N. We consider the following situations:

– If H(L) ∈ QRN , the receiver with the trapdoor H(L)1/2f(k)
to compute a

pair (m′, r′) such that h = H(L)m′
r′2

f(k)

.
– If H(L) /∈ QRN , then −H(L) ∈ QRN .

• If m is an even, then h = H(L)mr2f(k)
= (−H(L))mr2f(k)

mod N ,
the receiver can use the trapdoor (−H(L))1/2f(k)

to compute a collision
(m′, r′) where m′ is also an even.

• If m is an odd, then h = H(L)mr2f(k)
= −(−H(L))mr2f(k)

mod N ,
the receiver can use the trapdoor (−H(L))1/2f(k)

to compute a collision
(m′, r′) where m′ is also an odd.

Therefore, we can always define h = Hash(N,L,m, r) = H(L)mr2f(k)
mod N.

This makes the chameleon hash scheme very simple and easily to be understand.
In the section 5, we present another solution which still uses the random bit b
to fix this problem.

2. The proof of key-exposure freeness

The second security flaw is the proof for key-exposure freeness. When A1

makes queries (Li,mi, ri) to Uforge, can A2 always know the information
|H(Li)|1/2f(k)

? Note that A2 cannot know the master trapdoor (p, q).
Let us consider IForge more carefully: Given a collision (m, r) and (m′, r′)

for L, we have |H(L)|m−m′
= (r′/r)2

f(k)
. Define gcd(m −m′, 2f(k)) = 2s, here

0 ≤ s < f(k) (note that the message space of the chameleon hash is 0 ≤
m ≤ 2f(k) − 1). Compute (u, v) such that u(m−m′) + v2f(k) = 2s, so we have
((r′/r)u|H(L)|v)2

k

= |H(L)|2s

.
Trivially, θ = ((r′/r)u|H(L)|v)2

f(k)−s−1
= |H(L)| 12 mod N (this is the result

of [10]). On the other hand, if we define θ′ = (r′/r)u|H(L)|v, then we have
θ′ = |H(L)| 1

2f(k)−s mod N . Of course, if we know θ′, we can compute θ easily.
However, for any integer s > 0, it is difficult to compute |H(L)| 1

2f(k) .
In the proof for key-exposure freeness of Gao-Wang-Xie’s chameleon hash

scheme, the attacker A2 can always obtain the ephemeral trapdoor key
|H(L)| 1

2f(k) mod N from its own oracle access. This requires that the variant
Rabin signature is still existentially unforgeable against the so-called uf-ecma
attacker under the factoring assumption. The uf-ecma attacker is more powerful
than the traditional adaptively chosen message attacker because uf-ecma at-
tacker can always access to an oracle to obtain |H(L)| 1

2f(k) mod N . This seems
to be a much stronger assumption to prove the security of the variant Rabin
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signature, i.e., it is much more difficult to prove the unforgeability of the variant
Rabin signature. The authors [10] do not provide the complete proof. Actually,
observe that |H(L)| 1

2l is f(k) consecutive trapdoors, where 1 ≤ l ≤ f(k). A
higher trapdoor |H(L)| 1

2l can be used to compute a lower trapdoor |H(L)| 1
2l−1 .

In the random oracle model, we argue that it is enough to compute a collision
of the chameleon hash scheme with the trapdoor |H(L)| 12 . Therefore, it only
requires that the variant Rabin signature is existentially unforgeable against the
traditional adaptively chosen message attacker, which can be easily proven based
on the technique [3]. We will present the details in the section 5.

3. The collision computation in IForge

Finally, the collision (m′′, r′′) is a fixed pair in IForge of Gao-Wang-Xie’s
chameleon hash scheme. Actually, we can provide plenty of other collisions since
the real ephemeral trapdoor is not H(L)

1
2 , but |H(L)| 1

2f(k)−s as discussed above.
Therefore, for any message m′′ such that 2s|m′ −m′′, we can compute the cor-
responding r′′ as a collision. Only when s = f(k)−1, the pair (m′′, r′′) is unique
determined. For more details, please refer to section 5.

5 Improved Chameleon Hashing Based on Factoring

In this section, we present an improved chameleon hashing without key exposure
based on factoring. Our chameleon hash scheme is defined as

h = Hash(N,L,m, r, b) = bJmr2f(k)
mod N,

where J = H(L), b ∈ {+1,−1}.
Though we also use a random bit b, it is viewed as a part of the input of the

chameleon hash scheme. This modification makes the chameleon hash value h is
a constant for a given input. Also, (m, r, b) and (m′, r′, b′) is a valid collision if
Hash(N,L,m′, r′, b′) = Hash(N,L,m, r, b) holds. This consists with the original
definition of the collisions since we avoid the notation “± ”.

The improved chameleon hash scheme based on factoring consists of the fol-
lowing efficient algorithms:

– GenKey: The system parameters are the same as that of Gao-Wang-Xie’s
chameleon hash scheme.

– Hash: Given the public key N , a label L, and a message m ∈ {0, 1}f(k),
firstly choose a random string r ∈ ZN and a random bit b ∈ {+1,−1},
compute the hash value

h = Hash(N,L,m, r, b) = bJmr2f(k)
mod N,

where J = H(L).
– Uforge: Given the secret key (p, q), the original input (m, r, b), another mes-

sage m′ �= m, first compute the trapdoor B = |H(L)| 1
2f(k) mod N for the
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label L, here |H(L)| = H(L) if H(L) ∈ QRN ; |H(L)| = −H(L) otherwise.
Then the corresponding collision (r′, b′) can be given as follows:

r′ = rBm−m′
mod N,

b′ =
{
b, if H(L) ∈ QRN

b(−1)m−m′
, Otherwise

Note that

Hash(N,L,m′, r′, b′) = b′Jm′
r′2

f(k)

= b′H(L)m′
(rBm−m′

)2
f(k)

= b′H(L)m′ |H(L)|m−m′
r2f(k)

= bH(L)mr2f(k)

= Hash(N,L,m, r, b)

Therefore, the forgery is successful. Moreover, if (r,b) is uniformly distributed,
then the distribution of (r′, b′) is computationally indistinguishable from
uniform.

– IForge: Given a collision (m, r, b) and (m′, r′, b′), we have Hash(N,L,m, r, b)
= Hash(N,L,m′, r′, b′) mod N , i.e., |H(L)|m−m′

= (r′/r)2
f(k)

mod N . Let
2s = gcd(m −m′, 2f(k)), where 0 ≤ s < f(k). Compute u, v ∈ Z such that
u(m −m′) + v2f(k) = 2s. Similarly, we can compute θ = (r′/r)u|H(L)|v =
|H(L)| 1

2f(k)−s mod N . Trivially, we can compute |H(L)| 12 mod N . More-
over, if θ2f(k)−s

= H(L), then H(L) ∈ QRN ; else, −H(L) ∈ QRN . That is,
it is efficient to check whether H(L) is a quadratic residue modulo N .

For any message m′′ such that 0 ≤ m′′ ≤ 2f(k) − 1 and 2s|m′ − m′′, the
corresponding collision (r′′, b′′) can be given as follows:

r′′ = r′θ2−s(m′−m′′) mod N,

b′′ =
{
b′, if H(L) ∈ QRN

b′(−1)m′−m′′
, Otherwise

Actually, note that

Hash(N,L,m′′, r′′, b′′) = b′′Jm′′
r′′2

f(k)

= b′′H(L)m′′
(r′θ2−s(m′−m′′))2

f(k)

= b′′H(L)m′′
θ2(f(k)−s)(m′−m′′)

r′2
f(k)

= b′′H(L)m′′ |H(L)|m′−m′′
r′2

f(k)

= b′H(L)m′
r′2

f(k)

= Hash(N,L,m′, r′, b′)

Thus, the instance forgery is successful.
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Theorem 2. The proposed chameleon hash scheme enjoys the properties of col-
lision resistance, message hiding, semantic security, and key-exposure freeness.

Proof. We prove that the proposed chameleon hash scheme satisfies all the de-
sired security properties.

– Collision Resistance: Given two pairs (m, r) and (m′, r′) with the label L
such that Hash(N,L,m′, r′, b′) = Hash(N,L,m, r, b), then as in IForge the
trapdoor |H(L)| 1

2f(k)−s mod N is revealed, which allows anybody to com-
pute a variant Rabin signature |H(L)| 12 on message L. Since the variant
Rabin signature is existentially unforgeable under the factoring assumption,
the proposed chameleon hash function is collision resistance.

– Message Hiding: Given a collision (m, r) and (m′, r′), we can use IForge to
compute another pair (m′′, r′′).

– Semantic Security: For each message m, the chameleon hash value h =
Hash(N,L,m, r, b) is uniquely determined by the value (r2f(k)

, b), and vice
versa. Therefore, the conditional probability μ(m|h) equals to μ(m|(r2f(k)

, b)).
Also, μ(m|(r2f(k)

,b)) = μ(m) since m and (r, b) are independent variables. So,
μ(m|h) = μ(m). Then, we can prove that the conditional entropy H [m|H]
equals the entropy H [m] as follows:

H [m|h] = −
∑
m

∑
h

μ(m,h) log(μ(m|h)) = −
∑
m

∑
h

μ(m,h) log(μ(m))

= −
∑
m

μ(m) log(μ(m)) = H [m].

Therefore, the chameleon hash value h discloses no information about m.
– Key-exposure Freeness: If an attacker A1 against the above chameleon hash

scheme can be successful with respect to the property of key-exposure free-
ness, then we can use it to construct an adaptive chosen message attacker
A2 against the above variant Rabin signature.

Suppose A2 is given the public parameters (N,H, f(k)) of the variant
Rabin signature, andA2 is allowed to makes queries to the H oracle and Sign
oracle of the variant Rabin signature scheme. A2 passes (N,Hash(), H, f(k))
to A1, where Hash() is the proposed chameleon hash scheme. Similar to [10],
the security analysis will view H as a random oracle. When A1 makes a
query (Li,mi, ri, bi) to the oracle UForge, A2 firstly makes a query Li to
the H oracle and Sign oracle to get a pair (H(Li), σi = |H(Li)| 12 mod N),
and then uses the trapdoor σi to compute a collision (m′

i, r
′
i, b

′
i) as follows:

Let s = f(k) − 1 in IForge, we have mi −m′
i = ±2f(k)−1. Therefore, if

mi ≥ 2f(k)−1, then the collision is (mi − 2f(k)−1, riσi, bi); if mi < 2f(k)−1,
then the collision is (mi + 2f(k)−1, ri/σi, bi). A2 sends H(Li) and the colli-
sion (m′

i, r
′
i, b

′
i) to A1. At the end of the game, the output of A1 is a col-

lision (m, r, b) and (m′, r′, b′) for a never queried label L �= Li such that
Hash(N,L,m′, r′, b′) = Hash(N,L,m, r, b). Then A2 can compute |H(L)| 12
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mod N as in IForge, which is the variant Rabin signature for message L.
Since the variant Rabin signature is existentially unforgeable against the
adaptively chosen message attacker in the random oracle model, the pro-
posed chameleon hash scheme is key-exposure free. So, it is unnecessary
to prove that the variant Rabin signature is still existentially unforgeable
against the so-called uf-ecma attacker in the random oracle model (even the
claim is true).

6 Conclusions

Chameleon signatures simultaneously provide the properties of non-repudiation
and non-transferability for the signed message. However, the initial constructions
of chameleon signatures suffer from the problem of key exposure. This creates
a strong disincentive for the recipient to forge signatures, partially undermining
the concept of non-transferability. Recently, some constructions of chameleon
hashing and signatures without key exposure are presented based on different
mathematical assumptions.

In this paper, we present some security flaws and disadvantages of the key-
exposure free chameleon hash scheme based on factoring [10]. Moreover, we
propose an improved chameleon hash scheme without key exposure based on
factoring which enjoys all the desired security notions of chameleon hashing.
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Abstract. In 2010, Yeh, Lo and Winata [1] proposed a process-oriented
ultralightweight RFID authentication protocol. This protocol is claimed
to provide strong security and robust privacy protection, while at the
same time the usage of resources on tags is optimized. Nevertheless, in
this paper we show how the protocol does not achieve any of its intended
security objectives; the main result is that the most valuable information
stored on the tag, that is, the static identifier ID, is easily recovered even
by a completely passive attacker in a number of ways. More precisely, we
start by presenting a traceability attack on the protocol that allows tags
to be traced. This essentially exploits the fact that the protocol messages
leak out at least one bit of the static identifier. We then present a pas-
sive attack (named Norwegian attack) that discloses �log2 L� bits of the
ID, after observing roughly O(L) authentication sessions. Although this
attack may seem less feasible in retrieving the full 96-bits of the ID due
to the large number of eavesdropped sessions involved, it is already pow-
erful enough to serve as a basis for a very effective traceability attack.
Finally, our last attack represents a step forward in the use of a recent
cryptanalysis technique (called Tango attack [2]), which allows for an
extremely efficient full disclosure attack, capable of revealing the value
of the whole ID after eavesdropping only a very small number of sessions.

Keywords: RFID, Cryptanalysis, Ultralightweight, Authentication.

1 Introduction

In the RFID context, some researchers have dealt with the stimulating challenge
of designing secure RFID protocols based only on simple bitwise logical or arith-
metic operations such as bitwise XOR, OR, AND and modular addition. This
type of RFID protocols are categorized as ultralightweight protocols, and are
intended for very low-cost tags. In 2006, the UMAP family of protocols [3,4,5]
was introduced and attracted certain attention of the research community. After
some rounds of cryptanalysis of these schemes, many (if not all) of its security
objectives were circumvented, e.g. with active attacks [7,8] and later with passive
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attacks [9,10]. They served, however, as interesting thought-provoking proposals
that influenced later ultralightweight RFID designs. In 2007, Chien proposed the
SASI protocol [11], which aims to provide a better security margin and requires
only a tiny footprint. The main contribution was the addition of the bitwise
rotations to the set of operations supported on tag. Despite this twist in the
design of the protocol, some attacks were subsequently published [6,12,13,14].
In 2008, Peris-Lopez et al. introduced a new protocol, named Gossamer inspired
by both the UMAP family and SASI. The operations on tags are limited in this
case to bitwise XOR, addition and left rotation. A key factor in the design of
Gossamer is the inclusion of the MixBits function. This is a very lightweight
function with highly non-linear relations between inputs and outputs (see the
original paper for details [15]). A desynchronization attack [16] conducted by an
active attacker is, to the best of our knowledge, the only attack to date proposed
against Gossamer. As an alternative to Gossamer, Yeh, Lo and Winata recently
presented a new ultralightweight authentication protocol [1]. The protocol is
claimed to provide strong security, and to optimize the use of the tag memory
in comparison with Gossamer.

This paper presents various cryptanalytic results on the Yeh-Lo-Winata pro-
tocol. All the attacks can be mounted by passive adversaries, and thus are highly
feasible. The organization of the paper is as follows. In Section 2, the protocol
is briefly introduced. Then in subsequent sections, three passive attacks are pre-
sented, the last two being able to disclose the static identifier ID, thus breaking
tag privacy (i.e. information and location). The reader should note that it is
commonly assumed that ultralightweight RFID protocols should be resistant
against passive attacks, but not necessarily to active ones. Section 3 presents a
traceability attack that shows how the protocol messages leak at least one bit
of information on the static identifier ID. In Section 4 we present a Norwegian
attack [6] that allows to disclose #log2 L$ bits of the ID, after observing roughly
O(L) authentication sessions. While the number of sessions that the adversary
has to eavesdrop may be large, nevertheless the attack is quite effective when
only the knowledge of some bits is needed to guarantee a successful attack, e.g.
in a traceability attack. In Section 5, a much more powerful and efficient full dis-
closure attack (the Tango attack [2]) is introduced and discussed. More precisely,
the adversary listens to a small number of legitimate sessions and the protected
ID is almost fully disclosed. Finally, we draw some conclusions and end with
some recommendations on the design of future ultralightweight protocols.

2 Yeh et al. Protocol

Yeh et al. proposed a process-oriented (flag = 0 or flag = 1) ultralightweight
RFID authentication protocol for very low-cost RFID tags. Simple bitwise op-
erations such as AND, OR, XOR, addition mod 2m and circular shift rotations1

1 We confirmed by personal communication with one of the authors that the most
common definition of rotation is used. That is, Rot(X,Y ) = X << (Y mod m),
where m is the bit length of the variables.
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are the set of operations assumed to be supported on-chip by tags. The authors
assume that m is the bit length of all the variables in the scheme2. Both back-
ward and forward channels are exposed to passive attacks. On the other hand,
the communication channel between the reader and the back-end database is
assumed to be secure.

In the initialization process, three values are stored in the tag’s memory: 1) an
authentication key Kt; 2) index-pseudonym IDSt; and 3) an unique static iden-
tifier IDt. Correspondingly, the back-end database maintains four values: 1) an
authentication key Ktr; 2-3) two index pseudonyms to avoid desynchronization
attacks {IDStrold

, IDStrnew}; 4) a static identifier IDtr.
The protocol considers two different situations depending on the success/fail

of completion of the previous protocol session (flag = 0 / flag = 1). The
protocol works as follows:

Reader → Tag : Hello The reader sends to the tag a request message.
Tag → Reader : IDSt The tag replies to the reader with its index-pseudonym.
Reader → Tag : A||B||C||flag The reader uses the received IDSt as a search

index to allocate all the information linked to an specific tag. The authen-
tication key of the current session is set depending on the succesful/failed
completion of the previous session:{

if (IDS = IDStrnew) K = Ktr and flag = 0
if (IDS = IDStrold

) K = IDtr and flag = 1 (1)

The reader generates two nonces {n1, n2}, computes messages {A,B,C} and
sends this tuple to the tag. Messages {A,B,C} are defined by:

Compute: A = (IDS ⊕K)⊕ n1 (2)
B = (IDS ∨K)⊕ n2 (3)
C = (K ⊕ n1) + n2 (4)
K = Rot(K ⊕ n2, n1) (5)

Tag → Reader : D Upon receiving the tuple {A||B||C||flag}, the tag sets the
value D depending on the flag. It extracts the nonces {n1, n2} from A and
B. Then, the correctness of C is checked:{

if (flag = 0) K = Kt

if (flag = 1) K = IDt
(6)

Compute: K = Rot(K ⊕ n2, n1) (7)
C = (K ⊕ n1) + n2 (8)

Verify: C = C (9)
2 In our experimentation, we assume that the bit length of the variables used in the

protocol is 96 (m = 96). If fact this is one of the most common bit length values for
the static identifier ID of a tag (e.g GID-96, SGTIN-96, GIAI-96, etc. [17]).
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If the reader is authenticated (C = C), the tag computes the values {K ′, D}
and sends message D to the reader.

K ′ = Rot(K ⊕ n1, n2) (10)
D = (K ′ ⊕ n2) + n1 (11)

Reader Updating. On receiving D, the reader checks its correctness. If so, the
tag is authenticated and the reader updates its internal values:

Compute: K ′ = Rot(K ⊕ n1, n2) (12)
D = (K ′ ⊕ n2) + n1 (13)

Verify: D = D (14)
Updating phase:

If D = D, compute: IDStrold
= IDS (15)

IDStrnew = (IDS + (ID ⊕K ′))⊕
n1 ⊕ n2 (16)

Ktr = K (17)
Otherwise, the protocol is aborted.

Finally, the reader sends an Update command to the tag.
Tag Updating. Upon receiving the Update command, the update phase of the

internal values is executed:

Compute: IDS = (IDS + (ID ⊕K ′))⊕ n1 ⊕ n2 (18)
Kt = K (19)

3 Traceability Attack

Within the untraceability (UNT) model [14], tags (T ) and readers (R) interact
in protocol sessions, while the adversary (A) is assumed to control the commu-
nications between all parties. In order to model A’s capabilities, the following
oracle queries are defined:

– Execute(R, T , i) query. This models a passive attacker. A eavesdrops on the
channel, and gets read access to the exchanged messages between R and T
in session i of a genuine protocol execution.

– Test(i, T0, T1) query. This is defined to simplify the modelling of the untrace-
ability notion. When this query is invoked for test session i, a random bit
is generated b ∈ {0, 1}. Then, a pseudonym IDSi corresponding to either of
{IDT0 , IDT1} depending on the bit b is given to A.

The untraceability (UNT) notion is then defined as a game G comprising three
phases:
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Phase 1 (Learning): A can make any number of Execute queries, which model
the eavesdropping of exchanged messages, i.e. a passive attack, over the
insecure radio channel.

Phase 2 (Challenge): A chooses two fresh tags whose associated identifiers
are IDT0 and IDT1 . Then he sends a Test(i, T0, T1) query. As result, A is
given a pseudonym IDSi corresponding to either of {IDT0, IDT1} depending
on a randomly chosen bit b ∈ {0, 1}.

Phase 3 (Guessing): A ends the game and outputs a bit b̃ ∈ {0, 1} as its guess
of the value of b.

A’s success in winning G is equivalent to the success of breaking the untraceabil-
ity property offered by the protocol. Thus the advantage of A in distinguishing
whether the pseudonym corresponds to T0 or T1 is defined below, where t is a
security parameter (i.e. the bit length of the key shared between the tag and the
reader) and r is the number of times A runs an Execute query.

AdvUNT
A (t, r) = |Pr[b̃ = b]− 1

2
| (20)

So, an RFID protocol offers resistance against traceability if AdvUNT
A (t, r) <

ε(t, r), where ε(·, ·) symbolizes some negligible function.
We now show that the RFID authentication protocol by Yeh et al. does not

achieve untraceability (UNT). The adversary mounts the attack as follows:

Phase 1 (Learning): A issues an Execute(R, T0, i) query, thereby obtaining
〈IDSi, Ai, Bi, Ci, f lagi, Di〉.

Phase 2 (Challenge): A chooses two fresh tags whose associated identifiers
are IDT0 and IDT1 , where lsb(IDT1) = ¬lsb(IDT0), lsb(·) denotes the least
significant bit and ¬x symbolizes the bitwise NOT of x. Then he sends a
Test(i + 1, T0, T1) query. As result, A is given a new pseudonym IDSi+1

corresponding to either of {IDT0, IDT1} depending on a chosen random bit
b ∈ {0, 1}.

Phase 3 (Guessing): A computes d = lsb(IDSi+1⊕ IDSi⊕Di). It sets b̃ = 0
if d = lsb(IDT0); else b̃ = 1. Then A ends G and outputs a bit b̃ as its guess
of the value b.

We now analyze the success probability of the adversary in winning the game.
The adversary computes a bit d which is the least significant bit (lsb) of the
value

IDSi+1⊕IDSi⊕Di = ((IDSi +(ID⊕K ′i))⊕ni
1⊕ni

2)⊕IDSi⊕(K ′i⊕ni
2 +ni

1)
(21)

Since we are dealing only with the lsb, thus XOR equals addition (+), so equation
(21) becomes

lsb(IDSi+1 ⊕ IDSi ⊕Di) = lsb(((IDSi ⊕ ID ⊕K ′i)⊕ ni
1 ⊕ ni

2)⊕
IDSi ⊕ (K ′i ⊕ ni

2 ⊕ ni
1))

= lsb(ID), (22)
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and thus we have
d = lsb(ID), (23)

where ID is the static identifier which is either of {IDT0 , IDT1} depending on
the bit b. So the adversary just checks the lsb(IDSi+1⊕IDSi⊕Di) to determine
if it is IDT0 or IDT1 , thus it wins the game with probability 1.

Hence we have

AdvUNT
A (t, 1) = |Pr[b̃ = b]− 1

2
| = 1− 1

2
=

1
2
> ε. (24)

4 Full Disclosure Norwegian Attack

RFID tags have a static identifier ID that facilitates the unequivocally identifica-
tion of labeled items. RFID protocols should transmit this value in a secure way
(e.g. after an unilateral or mutual authentication protocol) to avoid traceability
attacks. In this section, we present a passive attack able of recovering #log2 L$
bits of the ID after eavesdropping O(L) legitimate authentication sessions.

In Yeh et al.’s protocol, the authors use two random numbers {n1, n2} to
guarantee the freshness of each session – among other security objectives. Never-
theless, the proposed protocol slightly abuses the usage it makes of these nonces,
and misuses how these are computed. We can analyze what happens to the pro-
tocol when these two nonces happen to have the same value module L, i.e.:

n1 mod L = n2 mod L (25)

Here L should be a power of two. However, we will later show that all these
equations probabilistically hold for any positive integer. (We shall provide some
guidelines regarding how to choose L later on this section.) Under the assump-
tion that equation 25 holds, we can probabilistically greatly simplify the index-
pseudonym updating equation (Equation 16). More precisely, the least significant
bits of the last two terms are canceled out (n1 ⊕ n2 mod L = 0):

IDStrnew mod L = (IDS + (ID ⊕K ′))⊕ n1 ⊕ n2 mod L (26)
= (IDS + (ID ⊕K ′)) mod L

If, on the other hand, the public message D is examined and we approximate
addition by XOR:

D mod L = (K ′ ⊕ n2) + n1 mod L (27)
+ K ′ ⊕ n2 ⊕ n1 mod L = K ′ mod L

Combining Equations 26 and 27, and working out the value of ID, we get an
approximation where only public messages transmitted on the insecure radio
channel are involved:

ID mod L = (IDStrnew − IDS)⊕D mod L (28)
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The only remaining question is how to recognize when the condition n1 mod L =
n2 mod L holds, since {n1, n2} are secret values. From Equations 5 and 10, it is
relatively straightforward to deduce that the above mentioned condition implies
K mod L = K ′ mod L. The next step is the correlation of this condition with
some values or test on the public exchanged messages transmitted over the chan-
nel. Specifically, we can use the approximation of the sum by the XOR operation
in messages C and D, and finally compare these values:

C mod L = (K ⊕ n1) + n2 mod L + K ⊕ n1 ⊕ n2 mod L (29)
+ K mod L

D mod L = (K ′ ⊕ n1) + n2 mod L + K ′ ⊕ n1 ⊕ n2 mod L

+ K ′ mod L (30)

So, by comparing the values of public messages C and D (mod L), we are able
to probabilistically detect the condition that opens the door to the disclosure
of the static identifier of the tag by passively eavesdropping on the channel.
However, our testing condition C mod L = D mod L may hold just by pure
chance while n1 mod L �= n2 mod L does not. As a consequence of this, we
have to filter and analyze the results to obtain the pursued value of ID mod L.
Basically, we repeat this process many times to obtain different candidates for
the ID mod L value, we count the number of times each of these values is
observed and pick the maximum as our guess of the static identifier. We sketch
the steps of the Norwegian attack below:

1. For i = 0 to L
2. Observations[i] = 0
3. Repeat a sufficiently high number of times N the following steps:
4. Observe an authentication session and get IDS, A, B, C and D
5. Check if for these values it holds that C mod L = D mod L
6. If this is not the case, go to step 4.
7. Perform the following tasks:
8. Wait for the authentication session to finish.
9. Send to the tag a “Hello” message to obtain IDStrnew .

10. Compute IDestimated mod L = (IDStrnew − IDS)⊕D mod L
11. Increment Observations[IDestimated]
12. Filter: find IDconjecture, the maximum of the values in Observations[i].
13. Guess that IDconjecture = ID mod L.

To further clarify the Norwegian attack, in Appendix A (Figure 2) we display
an example of the Observations vector obtained for L = 128 and N = 218.

Finally, in Appendix B (Figure 3) we can observe, for several values of L,
the adversary’s success probability depending on the number of eavesdropped
sessions. Although the attack just presented can be run independently for any
value of L, it is highly recommended to select one which is a power of 2 (the
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probabilistic equations presented before hold with greater probabilities) in order
to have a higher success probability and to minimize the number of snooped
sessions. An interesting point of the Norwegian attack is its success regardless
of the rotation definition used. In other words, the attack is feasible even if the
Hamming weight based rotation3 is used.

The main drawback of the proposed attack in that the number of eaves-
dropped sessions needed to recover the whole value of the ID may be excessive.
Nevertheless, the knowledge of some bits of the static identifier is informative
enough to conduct a successful traceability attack. In fact, only one bit is re-
quired in the formal privacy model introduced in [14]. In case that we need to
recover the whole ID, the attack described in the following Section 5 is much
more convenient.

5 Full Disclosure Tango Attack

In [2], a new technique reminiscent of Linear Cryptanalysis, named Tango attack,
is introduced. In this section, we present a very efficient passive attack against
Yeh et al.’s scheme, based on Tango cryptanalysis principles. We emphasize
here that despite of residing in the same bases, we need an extra twist in the
aforementioned technique to success in our attack. More precisely, we use a non-
linear approach instead of the completely linear approach used in [2].

The proposed attack reveals the most valuable information stored on the tags
memory, the static identifier ID, which is the information the protocol was
built to protect. The main singularity of the Tango attack compared with the
Norwegian attack presented in the previous section is its much higher efficiency
and devastating consequences – from a security point of view – for Yeh et al.’s
protocol. The eavesdropping of a very small number of authentication sessions
in this case is enough to reveal the complete ID.

Before presenting the inner details of our attack, we first sketch its general
approach. Variables can be represented in a m-dimensional space instead of
considering them as numerical values. Recall that m is the bit length of variables
used in the protocol. More precisely, if a variable z is represented in binary
format, the coefficients ai are the values of the vector Z in each dimension:

z =
m−1∑
i=0

ai · 2i, ai ∈ {0, 1} (31)

Z = [a0 a1 · · · am−1]

The attacker follows some simple steps. Firstly, she eavesdrops an authentication
session, computes an approximation of the static identifier as a function of the
observed messages, and stores this vector:

IDapprox = f(IDS(k), A,B,C,D, IDS(k + 1)) (32)

3 Rot(X,Y ) = X << wt(Y ), where wt(Y ) stands for the Hamming weight of vector Y .
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The above step is repeated during N eavesdropped sessions. Then, the attacker
combines (in our proposal, he simply adds up) all the vectors obtained in this
way, and an average value of this resulting vector becomes the conjectured static
identifier IDconjecture. We provide a numerical example for clarification pur-
poses. For simplicity, we set m = 8 in the example.

– Session k:
Eavesdropping of vectors {IDS(k), A,B, C, D, IDS(k + 1)}
Computing of an approximation: i.e. IDapprox(1) = [0 1 0 1 1 1 1 1]

– Session k + 1:
Eavesdropping of vectors {IDS(k + 1), A′, B′, C′, D′, IDS(k + 2)}
Computing of an approximation: i.e. IDapprox(2) = [0 1 0 1 0 1 0 0]

– Session k + 2:
Eavesdropping of vectors {IDS(k + 2), A′′, B′′, C′′, D′′, IDS(k + 3)}
Computing of an approximation: i.e. IDapprox(3) = [0 1 1 0 0 1 0 1]

– Conjecture ID:

Sum of the vectors: [0 1 0 1 1 1 1 1]
[0 1 0 1 0 1 0 0]
[0 1 1 0 0 1 0 1]

+
IDapprox = [0 3 1 2 1 3 1 2]

Average value:

{
if (idapprox

i ≥ γ) idconjecture
i = 1

if (idapprox
i < γ) idconjecture

i = 0

i.e. If γ = 1.5 IDconjecture = [0 1 0 1 0 1 0 1]

Conjecture: IDconjecture(base10) = 85

Of course, much more complex combinations of the different approximations,
and more elaborate filters are possible, but for the protocol at hand this approach
works exceedingly well so we do not feel justified to introduce any additional
complexity into the attack.

Now, we provide the details of the Tango based attack. We start with the
search of good approximations to the static identifier ID. Basically, the attacker
captures all the public messages exchanged over the insecure radio channel and
combines these values to compute approximations for ID. Of course, not all
combinations produce good results. Only those that are closer (on average) to
the static identifier are useful. The Hamming weight can be used as an effective
(but not the only) metric to evaluate the quality of an approximation. More
precisely, if the average Hamming weight between an approximation X and the
target value ID is below m

2 , X is a good approximation:⎧⎨⎩
if 〈wt(X, ID)〉 < m/2 X is a good approximation
if 〈wt(¬X, ID)〉 < m/2 ¬X is a good approximation
Otherwise X is ruled out

where 〈·〉 denotes the average value and ¬x symbolizes the bitwise NOT of x.
In Appendix C (Table 1) we summarize the results obtained by all possible
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combinations of the public exchanged messages as approximations of the ID.
Unfortunately, none of these approximations – contrary to what happens in
[2] – constitutes a good approximation of the static identifier. In all cases, the
Hamming weight obtained is so close to the optimal value (i.e. m/2 = 48) that
the alternate hypothesis (the approximation under scrutiny does not leak any
useful information about the ID) cannot be rejected. This seems to be quite
a powerful result in showing that the protocol is well though-off and not easy
to crack by any linear approximation. One can easily be tempted to believe
that there is no information leakage in the public messages as Yeh et al. claim
themselves. Nevertheless, an additional twist can shed more light on this issue.
We have to carefully analyze the updating equation for the index-pseudonym:

IDStrnew = (IDS + (ID ⊕K ′))⊕ n1 ⊕ n2 (33)

This is the only message in which the ID takes part. We can work out this
variable from the above equation,

ID = ((IDStrnew ⊕ n1 ⊕ n2)− IDS)⊕K ′ (34)

In a slightly more elaborate approach to the problem, we can try to approx-
imate individually the different unknown components of the above equation,
instead of doing all globally in a single step. IDS and IDStrnew are the cur-
rent index-pseudonym and the potential new index-pseudonym. If the adversary
eavesdrops two consecutive legitimate sessions, these values are thus known since
they are transmitted in the clear on the channel. So, the adversary has to find
good approximations for n1 ⊕ n2 and K ′. By combining messages A and B a
good approximation of the XOR between the nonces n1 and n2 can be obtained
as shown below. K ′ can be approximated by using the above equation and the
public message D = (K ′ ⊕ n2) + n1.

n1⊕ n2 + A⊕B 〈wt(A ⊕B, n1⊕ n2)〉 = 23.9411± 4.2505
K ′ + ¬(D + (A⊕B)) 〈wt(¬(D + (A⊕B)),K ′)〉 = 40.4185± 5.2096

From all the above, we have an approximation for the ID value which only
involves public values:

IDapprox = ((IDStrnew ⊕A⊕B)− IDS)⊕ (¬(D + (A⊕B))) (35)

This is enough to mount a powerful Tango attack. From here on, the attacker
simply eavesdrops a session and the new index-pseudonym of the new session,
computes an approximation of IDapprox(i) using Equation 35 and finally stores
this vector. Once the adversary has eavesdropped N sessions, the sum of all the
approximations is computed:

IDapprox =
N∑

i=1

IDapprox(i) (36)

The only remaining question is to obtain the average value of the above vector
(i.e. IDconjecture = g(IDapprox)). We propose using the following g function
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which is simple but entirely effective. The components of the input and output
vector in each axis are denoted by idapprox

i and idconjecture
i , respectively. The

parameter γ is set to N
2 .

For i = 0,m− 1
{

if (idapprox
i ≥ γ) idconjecture

i = 1
if (idapprox

i < γ) idconjecture
i = 0

(37)

Finally, the attacker concludes IDconjecture =
∑m−1

i=0 idconjecture
i · 2i as its

conjecture of the static identifier ID.

To evaluate the effectiveness of our Tango attack, we have ran several simu-
lations. First, we randomly initialize the secret values {K, ID, IDSold, IDSnew}
stored in the tag and the back-end database. Then, we simulate N sessions of
the protocol and follow the algorithm just described. To measure the adversary’s
success, we compare the conjecture value IDconjecture with the real value of the
target ID. For each value of N , we repeat the experiment 10, 000 times4.

Fig. 1. Adversary success in recovering ID

In Figure 1, we display the mean and standard deviation of the number of
bits successfully recovered for various values of eavesdropped sessions. The attack
is quite effective and only a low number of eavesdropped sessions are required
to disclosure a significant part of the static identifier. More precisely, if the at-
tacker eavesdrops {2, 15, 50, 100} sessions, {50, 75, 90, 95}% of the 96-bits ID are

4 The code of this attack can be downloaded from:
http://www.lightweightcryptography.com/research/ywl/ywl.html

http://www.lightweightcryptography.com/research/ywl/ywl.html
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disclosed. The threshold of our attack is the recovery of 94 bits of the static iden-
tifier. The two least significant bits of the static identifer are not obtained by the
adversary, even for very high values of eavesdropped sessions. Nevertheless, the
attacker has reduced the search of the static identifier from 296 to 22 candidates.
Additionally, we can use the Norwegian attack in parallel as described before in
this same article for recovering these two bits very efficiently (in less than 100
sessions).

6 Conclusions

At the start of 2010, Yeh, Lo and Winata proposed a new ultralightweight au-
thentication protocol. The security analysis carried out by the designers was
mainly based on evaluating the randomness of the messages exchanged over the
insecure radio channel. Basically, once the internal secret values of the tag (and
back-end database) are randomly initialized, the execution of the protocol is sim-
ulated for a large number of sessions. The generated messages {IDS,A,B,C,D}
during each session are stored in a file. Finally, this file is exposed to a battery of
statistical tests (i.e. NIST test suite). Yeh et al. concluded that messages looked
sufficiently random since the file passed all the test at hand. This randomness
based study is certainly an interesting analysis, but unfortunately randomness
of the exchanged messages is neither a sufficient nor necessary condition for
protocol security.

In this paper we explicitly show that a good degree of randomness in the
public messages does not guarantee by itself the security of the protocol. In fact,
we show how even a passive attacker is able to disclose the full static identifier
of the tag by simply combining wisely some public messages – passed over the
insecure radio channel – and using both the Norwegian and the Tango attack.

Apart from the cryptanalytic results on the Yeh et al. protocol, we believe
that the Tango attack can be very useful for the analysis and design of new ultra
lightweight protocols, as we have shown it is quite powerful and efficient. The
only almost negligible limitation of not being able to retrieve the full ID but
only 94 out of 96 bits instead can easily be solved by its combined utilization
together with the Norwegian attack (i.e. with L = 4), thus becoming nicely
complementary attacks.

If we had to point out the design mistakes that led the Yeh et al. protocol
to this full disclosure attack we should say that, as already shown in the lit-
erature [6], Hamming weight based rotations seem to generally provide more
secure proposals. So choosing circular shift rotations instead, while not being a
major mistake can certainly be considered suboptimal. Nevertheless, the Tango
attack introduced in this paper is independent of the definition of rotation used
(e.g. hamming weight or circular shift rotations). Additionally, the key K is too
exposed in messages A and B, which have a striking similitude that almost com-
pletely leaks out the value of n1 ⊕ n2. The value of K ′ should probably depend
on that of K ′ (not of K only) to increase its strength. And again, while being
aesthetically pleasing the construction of messages D and C are so symmetric
that, as we have shown, they leak too much information.
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As future work, we will continue to analyze new proposals in the light of these
cryptanalysis techniques, and use them to motivate new design criteria.
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Appendix

A Algorithm – Norwegian Attack

In Figure 2, we display an example of the Observations vector obtained for
L = 128 and N = 218. By simply inspection of the above figure, we can easily
detect a pick and correctly conjecture this value is the target value – in the
example ID mod L = IDconjecture mod L = 21. It is interesting to observe
that half of the times the Observations vector has a zero value, and that most
of the other peaks occur at values that share the least significant bits with the
real value (i.e. 21 + 64 = 85, 21 + 64 + 32 = 117).
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B Adversary Success’s Probability – Norwegian Attack

Fig. 3. Adversary success probability for various values of L (L = {4, 8, 64, 128})
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C Approximations to the ID – 10.000 Experiments

X wt(X ⊕ ID)
A 47.9473 ± 4.9481
B 48.0286 ± 4.9290
C 47.9155 ± 4.9111
D 47.8964 ± 4.8949

IDStrold
48.0107 ± 4.9459

IDStrnew 48.0115 ± 4.9452
A ⊕ B 47.9671 ± 4.8567
A ⊕ C 48.0044 ± 4.9504
A ⊕ D 48.0557 ± 4.8726

A ⊕ IDStrold
47.9872 ± 4.9812

A ⊕ IDStrnew 48.0166 ± 4.9565
B ⊕ C 47.9951 ± 4.8832
B ⊕ D 48.0074 ± 4.9196

B ⊕ IDStrold
48.0009 ± 4.8799

B ⊕ IDStrnew 47.9677 ± 4.9498
C ⊕ D 47.9513 ± 4.9492

C ⊕ IDStrold
47.9710 ± 4.8698

C ⊕ IDStrnew 47.9370 ± 4.8724
D ⊕ IDStrold

47.9303 ± 4.9247

D ⊕ IDStrnew 48.0183 ± 4.8454
IDStrold

⊕ IDStrnew 47.9936 ± 4.9573
A ⊕ B ⊕ C 48.0768 ± 4.8960
A ⊕ B ⊕ D 48.0815 ± 4.9432

A ⊕ B ⊕ IDStrold
47.9438 ± 4.8561

A ⊕ B ⊕ IDStrnew 48.0544 ± 4.9069
A ⊕ C ⊕ D 48.0350 ± 4.9326

A ⊕ C ⊕ IDStrold
47.9515 ± 4.9163

A ⊕ C ⊕ IDStrnew 47.9745 ± 4.8637
A ⊕ D ⊕ IDStrold

47.9592 ± 4.8990

A ⊕ D ⊕ IDStrnew 48.0550 ± 4.9093
A ⊕ IDStrold

⊕ IDStrnew 47.9939 ± 4.9177
B ⊕ C ⊕ D 47.9697 ± 4.8648

X wt(X ⊕ ID)
B ⊕ C ⊕ IDStrold

47.9726 ± 4.8819
B ⊕ C ⊕ IDStrnew 47.9550 ± 4.9445
B ⊕ D ⊕ IDStrold

48.0133 ± 4.9098

B ⊕ D ⊕ IDStrnew 47.9009 ± 4.8951
B ⊕ IDStrold

⊕ IDStrnew 48.0706 ± 4.9132
C ⊕ D ⊕ IDStrold

48.0520 ± 4.9140

C ⊕ D ⊕ IDStrnew 47.9936 ± 4.9111
C ⊕ IDStrold

⊕ IDStrnew 47.9995 ± 4.8690
D ⊕ IDStrold

⊕ IDStrnew 47.2532 ± 6.2162

A ⊕ B ⊕ C ⊕ D 48.0122 ± 4.8277
A ⊕ B ⊕ C ⊕ IDStrold

47.9755 ± 4.9338
A ⊕ B ⊕ C ⊕ IDStrnew 47.9941 ± 4.8607
A ⊕ B ⊕ D ⊕ IDStrold

47.9482 ± 4.9107

A ⊕ B ⊕ D ⊕ IDStrnew 48.0028 ± 4.8607
A ⊕ B ⊕ IDStrold

⊕ IDStrnew 48.0869 ± 4.8411

A ⊕ C ⊕ D ⊕ IDStrold
48.0133 ± 4.8971

A ⊕ C ⊕ D ⊕ IDStrnew 47.9855 ± 4.9035
A ⊕ D ⊕ IDStrold

⊕ IDStrnew 48.0503 ± 4.9134

B ⊕ C ⊕ D ⊕ IDStrold
48.0292 ± 4.8694

B ⊕ C ⊕ D ⊕ IDStrnew 48.0808 ± 4.8879
B ⊕ C ⊕ IDStrold

⊕ IDStrnew 47.9523 ± 4.8812

B ⊕ D ⊕ IDStrold
⊕ IDStrnew 48.0086 ± 4.9228

C ⊕ D ⊕ IDStrold
⊕ IDStrnew 48.0069 ± 4.8666

A ⊕ D ⊕ IDStrold
⊕ IDStrnew 48.0170 ± 4.9237

A ⊕ B ⊕ C ⊕ D ⊕ IDStrold
48.0317 ± 4.9723

A ⊕ B ⊕ C ⊕ D ⊕ IDStrnew 47.9339 ± 4.9490
A ⊕ B ⊕ C ⊕ IDStrold

⊕ IDStrnew 48.0242 ± 4.8784

A ⊕ B ⊕ D ⊕ IDStrold
⊕ IDStrnew 48.0149 ± 4.8631

A ⊕ C ⊕ D ⊕ IDStrold
⊕ IDStrnew 47.9792 ± 4.9179

B ⊕ C ⊕ D ⊕ IDStrold
⊕ IDStrnew 48.0441 ± 4.9483

A ⊕ B ⊕ C ⊕ D ⊕ IDStrold
⊕ IDStrnew 48.0488 ± 4.9018
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Abstract. A zap is a two-round public coin witness indistinguishable
proof system, where the first round is a random string from the verifier
to the prover. This notion is proposed by Dwork and Naor. They con-
structed a zap for NP from any non-interactive zero-knowledge (NIZK)
proof which has many applications in the literature. In this note, we start
with a more explicit proof of their soundness through enumeration. Based
on this proof view point, we further show that if NIZK used in their zap
has an adaptive soundness, then the zap soundness error can be reduced
by a factor of 2|x|, where |x| is the length of the NP-statement and is
fixed before the protocol starts (but x itself can be chosen adaptively).
Our improved bound is optimal in the sense that for any NP-language
L, there exists a NIZK that asymptotically achieves this bound. Finally,
we investigate their deniable authentication protocol from this zap. We
show that this protocol in fact can be simplified without a zap.

1 Introduction

A zap is a two-round public coin witness-indistinguishable protocol, in which
the first round message is a random string from the verifier to the prover. It
has been initiated by Dwork and Naor [4,5], where they constructed a zap,
based on any non-interactive zero-knowledge (NIZK) protocol. Dwork and Naor
also showed that zaps can be used to construct adaptive non-interactive zero-
knowledge protocol, where the prover can choose the theorem to prove after the
common random string is fixed. Zaps are also used by them to construct ver-
ifiable pseudorandom generators, oblivious transfer, concurrent zero-knowledge
and deniable authentication. Dwork-Naor ZAP has a very important impact to
other research topics. Specifically, [2] used this protocol to construct efficient
ring signatures; Barak et al. [1] used it to show the existence of resettably-sound
proof that is resettable witness indistinguishable; Pass [10] used it to prove the
existence of two round interactive argument with certain properties.

1.1 Contribution

In this paper, we start with a more explicit proof for the soundness of Dwork-
Naor zap by enumerating bad randomness. Based on this proof view point, we

X. Lai, M. Yung, and D. Lin (Eds.): Inscrypt 2010, LNCS 6584, pp. 443–454, 2011.
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further show that if NIZK in their zap has an adaptive soundness, then the
probability bound for soundness error can be reduced by a factor of 2|x|, where
|x| is the length of the theorem to be proven. We show that the reduced bound
is optimal in the sense that for any 0 < ε < 1, there exists NIZK with adaptive
soundness error ε such that the zap from it has a soundness error asymptotically
achieving this bound. One might wish to use NIZK with perfect soundness (i.e.,
ε = 0) in this protocol. However, we show that such NIZK in the common random
string model (as required in their zap) does not exist for a language outside BPP.
We stress that this impossibility result does not contradict the existence of NIZK
in the common reference string model in the literature, where the random string
model requires that the shared string is a uniformly random string while the
common reference string is not necessarily random. Finally, we investigate their
application of zap to deniable authentication. We find that their protocol can be
significantly improved without a zap. A sender in our protocol only has a cost
of one encryption, one timed-commitment and one adaptive sound NIZK proof
while a receiver only has a cost of one decryption and one verification of adaptive
sound NIZK proof. Zhao [12] also considered an improvement on Dwor-Naor’s
authentication protocol. His main contribution is to remove the dependency of
the first round message on the message to be authenticated. Compared with the
original protocol, their protocol still needs two zaps, two encryptions and two
timed commitments and hence is less efficient than ours.

Notations. For a set S, x ← S samples x from S randomly; A ◦ B means A
concatenating with B. We use negl : N → R to denote a negligible function: for
any polynomial p(x), limn→∞ negl(n)p(n) = 0. Algorithm A (e.g., encryption or
commitment) with input m and randomness r is written as A(m; r). When r is
unspecified, simply write it as A(m). x ← A(m) denotes the random output of
A with input m and unspecified randomness.

2 Definitions

zap is a special two-round public coin witness-indistinguishable proof system and
is formally defined as follows. The following definition follows from [5].

Definition 1. A zap is a 2-round protocol for proving membership of x ∈ L,
where L is a NP language. The first round message ρ is from the verifier to
the prover and the second round message π is from the prover to the verifier,
satisfying the following.

- Public Coins. ρ has a length of a fixed polynomial k(|x|), where |x| is fixed
before the protocol starts but x itself can be chosen by prover after receiving
ρ. The verifier’s final decision is deterministic in x, ρ and π.

- Completeness. Given ρ, x and its witness w, the prover, following the
protocol, can generate a proof π that will always be accepted by the verifier.
This is called perfect completeness and can be relaxed by allowing a negligible
probability of failure.
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- Soundness. Over the distribution of ρ, the probability of the existence of
(x′, π) such that x′ �∈ L and that the verifier accepts (x′, ρ, π), is negligible.

- Indistinguishability. Let w and w′ be two witnesses for x ∈ L. Then,
given ρ, the distribution (ρ, x, π) when the prover has input (x,w) and the
distribution (ρ, x, π) when the prover has input (x,w′), are indistinguishable
even if the distinguisher are given w′ and w.

The following is the definition of non-interactive zero-knowledge protocol in the
common random string model, where the public string shared between the prover
and the verifier are uniformly random. We follows from [5]. This is the single-
theorem version of NIZK and it suffices for our purpose in this work. One can
consult [6] for the multi-theorem case. Common random string model is different
from the common reference string model [7]. Especially, Groth [7] that showed
NIZK with perfect soundness exists in the latter setting while we show that
it does not exist in the common random string model. In this paper, without a
special mention, by NIZK, we always mean that it is in the common random string
model.

Definition 2. A pair of probabilistic polynomial time machines (P, V ) with a
common random string σ is a non-interactive zero-knowledge (NIZK) proof system
for an NP-language L if the following holds.

- Completeness. For any x ∈ L with witness w, P , with input (x,w, σ),
produces a proof π that will be accepted by V except for a negligible probability,
where the probability is over the choices of σ and coins of P .

- Soundness. For any x �∈ L, the probability that there exists π ∈ {0, 1}∗
such that V accepts (σ, x, π) is negligible, where the probability is over the
choices of σ.

- Zero-knowledge. For any x ∈ L with witness w, there exists a probabilistic
polynomial time machine Sim (called simulator) that takes x as input and
produces (σ, π) such that (σ, π) is indistinguishable from that produced in the
real execution between (P, V ). Here the distinguisher is given (σ, π, x, w) and
probability is over the choices of σ and the coins of Sim and P.

For the soundness, if we allow the instance x to be chosen after σ is fixed,
NIZK is said to have adaptive soundness. In other words, NIZK is adaptive
sound if over the choices of σ, the probability of the existence of (π, x) such that
the verifier accepts (σ, x, π), is negligible.

Adaptive Zero Knowledge. Adaptive zero knowledge requires that the fol-
lowing two adversary views are indistinguishable, where A is any non-uniform
probabilistic polynomial time adversary.

• Take common random string σ ← {0, 1}	; (x,w) ← A(σ) s.t. w is a witness
for x ∈ L; compute proof π from (x,w, σ). Adversary view is (σ, π, r), where
r is the random tape of A.

• Simulator SIM simulates a common random string σ with a trapdoor τ ;
then, A(σ) outputs x; SIM simulates a proof π from x and trapdoor τ . The
adversary view is (σ, π, r), where r is again the random tape of A.
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Our adaptive zero knowledge definition follows from Sahai [11] with a slight
but equivalent change. In his definition, the adversary consists of two parts: A1

and A2, corresponding to A and distinguisher in the above definition. He lets
A1 forward a state information to A2 (instead of random tape r and σ in our
definition). These two definitions are equivalent since τ is determined by (r, σ)
and also one can define τ = (r, σ). We prefer this change since it seems more
convenient for our security proof later.

The following is the definition of language BPP and can be found in almost
every complexity book. It essentially means that a language can be decided by
a probabilistic polynomial time machine with a good probability.

Definition 3. A language L is in BPP if there exists a probabilistic polynomial
time Turing machine D satisfying the following two conditions.

- For any x ∈ L, Pr[D(x) = “accept”] > 2/3;
- For any x �∈ L, Pr[D(x) = “accept”] < 1/3.

It is known that NIZK proof system exists with some adaptive soundness error
δ < 1. For arbitrarily small ε, one can use parallel repetitions of this NIZK to
obtain a new proof which has a soundness error no more than ε, where it should
be noted that in each repetition the common random string σi must be taken
independently. This is clear by a hybrid argument.

Fact 1. For any ε > 0, there exists an NIZK with adaptive soundness error ε.
However, we show that the perfect sound NIZK for a non-trivial language does
not exist, where the soundness of this NIZK may or may not be adaptive.

Lemma 1. If there exists a NIZK proof system in the common random string
model with (adaptive) perfect soundness for a language L, then L ∈ BPP.

Proof. It suffices to consider the non-adaptive case only. Assume 〈P, V 〉 is a
NIZK proof system for L. Then, for any x ∈ L, there exists a simulator SIM
outputting a string (x, σ, π) that is indistinguishable from the real transcript
(note the definition allows the distinguisher to get the witness of x and the
indistinguishability holds of course when the witness is not given). Now a decider
D for L is as follows. Upon x, D runs SIM to obtain (x, σ, π). It accepts if it
is accepted by the algorithm V ; reject otherwise. If x ∈ L, by zero knowledge
property, algorithm V will reject the simulated (x, σ, π) with probability at most
εc + negl(n), where εc is the completeness error probability and is negligible. If
x �∈ L, then V will reject; otherwise, a cheating prover P ∗ with positive soundness
error can be designed as follows. Given x and common random string σ, P ∗ runs
SIM(x) to generate a transcript (x, σ′, π′) and sends (x, σ, π′) to V . If σ = σ′,
then by assumption, V will accept with probability ε > 0. Since SIM(x) is
independent of σ, Pr[σ = σ′] = 2−|σ|. Hence, P ∗ convinces V for x �∈ L with
probability ε · 2−|σ| > 0, contradicting the perfect soundness of NIZK. Hence,
when x �∈ L, D always rejects x. �
Remark. In this paper, NIZK is defined in the common random string model,
instead of common reference string model. In the latter case, the proof in the
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above lemma does not work since it is possible that Pr[σ = σ′] = 0. I.e., SIM
never generates a valid reference string. Hence, (x, σ, π′) sent by P ∗ for x �∈ L
could never be accepted. So we can not reach the contradiction to the perfect
soundness of NIZK. In fact, Groth [7] constructed a NIZK with perfect soundness
in the common reference string model.

Timed Commitment. Timed commitment essentially is a special commit-
ment whose security holds only within a fixed period of time and beyond that,
one might be able to open it using a moderate hard work. Boneh and Naor [3]
proposed this notion and provided an efficient construction. Formally, (T, t, ε)-
timed commitment consists of three phases, where S is the committer and R is
the receiver.

Commit phase: To commit to a string w ∈ {0, 1}n, S and R execute a protocol
and the final output of R is a commitment α for w.

Open phase: In the open phase, S sends the string w to R. They then execute
a protocol, at the end of which R obtains a proof that w is the committed value.

Forced open phase: If S refuses to execute the open phase, there exists an al-
gorithm F-Open that takes α and outputs w, where w is the commitment in α.
The runtime of F-Open is bounded by T.

Definition 4. A timed commitment is secure with parameters (T, t, ε) if it
satisfies:
Completeness: When R accepts in the commitment phase, then α is a com-
mitment for some w ∈ {0, 1}n and F-Open(α) will result in the same w.
Binding: In the open phase, S can not convince R that α is a commitment of
w′ �= w. This holds even if S has an infinite power.
Soundness: In the forced open phase, F-Open(α) outputs w in time T .
Privacy: For any adversary A of time t < T , the following holds:

|Pr[A(tr, w) = 1]− Pr[A(tr, w′) = 1]| ≤ ε, (1)

where the probability is over coins of S and R in the commitment phase and tr
is the transcript in that phase.

Deniable Authentication. Deniable authentication essentially means that one
can authentically send a message to a receiver while on the other hand he can
later deny the fact of communication. The public-key deniable authentication
considers the setting where the sender has a public key and private key pair
while the receiver does not have a secret key. Following the formulation in [5]
(seemingly weaker than [8]), it should satisfy the following.

Completeness. For any message m, if both a sender S and a receiver R follow
the protocol specification without an attacker involved in, then R accepts.

Soundness. It is unforgeable against a concurrent chosen-message attack: an
adversary A plays the role of a receiver adaptively and concurrently schedules
S to authenticate a sequence of messages m1,m2, · · ·. A is successful if he can
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authenticate a new message m �= mi to a receiver R. The soundness requires
that any probabilistic polynomial time adversary A can succeed with at most
negligible probability only.

Deniability. This property essentially means that the sender’s action can be
simulated without his private key. More formally, for any adversarial receiver A,
there exists a simulator that, given the public key, simulates the authentication
transcript that is indistinguishable from the real one.

3 Dwork-Naor ZAP from NIZK

In this section, we review Dwork-Naor’s NIZK-based ZAP. Let x ∈ L be an
NP-statement to be proved to the verifier. |x| is fixed before the protocol starts
but x can be chosen adaptively by the prover. Let w be the witness of x. Use
π ← D(x,w, σ) to denote the distribution of the NIZK proof with input x,
auxiliary input w and the common random string σ. Assume σ has a length
�(n, |x|), where n is a security parameter. The ZAP protocol is as follows.

First Round: P ←− V : Verifier V takes Bi ← {0, 1}	, i = 1, · · · ,m and
sends them to P.

Second Round: P −→ V : Prover P takes C ← {0, 1}	 and computes
σj = Bj ⊕ C (i.e., bit-wise exclusive-OR). Then, he computes πj ← D(x,w, σj)
for j = 1, · · · ,m and sends x,C, {πj}m

j=1 to V.

Final Check: V : For j = 1, · · · ,m, V computes σj = Bj ⊕ C and checks
whether (πj , x, σj) is accepted by a verifier in NIZK. If all are valid, accept the
zap; otherwise, reject.

4 Soundness

In [5], the above protocol is proven to be sound and witness-indistinguishable
and hence it is a secure zap. We show that if NIZK used here has an adap-
tive soundness, then their soundness error bound can be significantly improved.
Toward this, we first provide a more explicit proof of their original soundness
(i.e., when NIZK is not necessarily adaptively sound). Our new proof uses the
enumeration of bad common random strings for NIZKs and seems more clear
to verify and follow than the original one, where the latter studied some proba-
bilistic independence between different NIZK instances. Based on our proof view
point, we improve the soundness bound for the adaptive sound NIZK case, by a
factor of 2|x|. We also show that this improved bound is optimal.

Theorem 1. If NIZK has a soundness error ε, then the Dwork-Naor zap has a
soundness error 2	+|x|εm.

Proof. NIZK has a soundness error ε. Let Ax be the set of common random
string σ in NIZK such that there exists π such that (σ, x, π) convinces V . Then,
|Ax| · 2−	 ≤ ε, since σ has a uniform distribution over {0, 1}	. Use Cρ to denote
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C taken by the prover of the zap when the first message is ρ = B1 · · ·Bm.
In the zap, the verifier accepts if and only if all πj are consistent. Hence, to
construct a consistent proof for some x �∈ L ∩ {0, 1}|x| (a prover can choose
this ‘some x’ after receiving ρ), it must hold that Bj ⊕ Cρ ∈ Ax for all j. We
now count the number of such ρ (called bad ρ). Fix x first. For fixed B1, there
are |Ax| possible choices for C such that B1 ⊕ C ∈ Ax. For each fixed such C
and i > 1, there are |Ax| possible Bi such that Bi ⊕ C ∈ Ax. So in total there
are at most 2	 · |Ax| · |Ax|m−1 = 2	 · |Ax|m possible choices of bad ρ for fixed
x. Hence, the soundness error can occur to this x with probability bounded by
2−m	

∑
bad ρ 1 = 2	 · εm. There are total 2|x| choices of x. The soundness error

for zap is thus bounded by 2	+|x|εm. �
In the above proof, we saw that the adaptive soundness of zap is obtained by
adding together the soundness error of every x ∈ L. Conceivably, if NIZK has
adaptive soundness, this addition is not necessary since it is handled by the adap-
tive soundness of NIZK. In the following, we carefully implement this intuition
and show that the factor 2|x| can be dropped.

Theorem 2. If NIZK has an adaptive soundness error ε, then Dwork-Naor
zap has a soundness error at most 2	εm. This bound is optimal in the sense that
there exists a NIZK with soundness error ε such that the zap has a soundness
error at least 2	εm − o(2	εm). In addition, if 2	εm < 1, there must exist a ρ∗ =
B∗

1 · · ·B∗
m ∈ {0, 1}m	 for the first round message such that the zap has perfect

soundness.

Proof. For σ ∈ {0, 1}	, let Sσ be the set of x �∈ L such that, when the common
random string in NIZK is σ, ∃π s.t. (x, σ, π) convinces the verifier. Let A = {σ |
Sσ �= ∅}. Therefore, when σ �∈ A, the soundness error will never occur; when
σ ∈ A, a cheating prover can search for x �∈ L and proof π such that (σ, x, π)
convinces the verifier. Hence, the adaptive soundness of NIZK is |A| · 2−	. Now
we consider the soundness of zap. When the first message is B1, · · · , Bm and the
prover takes C, there exists x′ �∈ L and (π1, · · · , πm) that convinces the verifier
only if SB1⊕C ∩ · · · ∩ SBm⊕C �= ∅ (to guarantee all proofs use a common ‘bad’
x). Therefore, the soundness of zap is

|
{

(B1, · · · , Bm) | ∃ C s.t. ∩m
i=1 SBi⊕C �= ∅

}
| · 2−m	

≤ |
{

(B1, · · · , Bm) | ∃ C s.t. SBi⊕C �= ∅, i = 1, · · · ,m
}
| · 2−m	

= |
{

(B1, · · · , Bm) | ∃ C s.t. Bi ⊕ C ∈ A, i = 1, · · · ,m
}
| · 2−m	

= 2	 · |A|m · 2−m	

≤ 2	 · εm.

This completes the bound proof.
To construct a protocol approximately achieving this bound, we first construct

a NIZK Γ1 for L from a known NIZK Γ2 where the latter has a small (to be
specified later) exact soundness error ε2. Let ε = ε2 + N/2	 + δ′/2	 for some
N ∈ N and 0 ≤ δ′ < 1. Γ1 only modifies the verifier as follows. When the
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common random string σ < N , then the verifier directly accepts; otherwise, it
proceeds as in Γ2 normally. As before, define S′

σ in Γ2 to be the set of x �∈ L
that has a convincing proof. In Γ1, we have that Sσ = {0, 1}|x|\L for σ < N and
Sσ = S′

σ for σ ≥ N . Hence, as long as L ∩ {0, 1}|x| �= {0, 1}|x|, Γ1 has an exact
soundness error ε1 = N/2	 + δ for some δ ≤ ε2. Hence, ε1 ≤ ε. Applying Γ1 into
the zap, we have

|
{

(B1, · · · , Bm) | ∃ C s.t. ∩m
i=1 SBi⊕C �= ∅

}
| · 2−m	

≥ |
{

(B1, · · · , Bm) | ∃ C s.t. Bi ⊕ C < N, i = 1, · · · ,m
}
| · 2−m	

= 2	 ·Nm · 2−m	

= 2	(ε− ε∗2)m, where ε∗2 = ε2 + δ′/2	

≥ 2	εm − 2	εm−1ε∗2, since
(
m
i

)
εm−iε∗2

i ≥ (
m

i+1

)
εm−i−1ε∗2

i+1 for all i if ε ≥ mε∗2,

which is 2	εm − o(2	εm) as long as ε2 = o(ε), which can be satisfied since NIZK
with arbitrary small soundness error exists by Lemma 1.

The soundness error of zap is the number of bad tuples (B1, · · · , Bm) (i.e.,
tuples for which a cheating prover can find x �∈ L with a consistent proof π),
divided by 2−m	. As the soundness error is bounded by 2	εm. So if 2	εm < 1,
there must exist (B∗

1 , · · · , B∗
m) such that for all x there is no soundness error.

That is, it admits perfect soundness. �
Note in the above proof, we construct Γ1 from Γ2 with small soundness error ε2.
As seen in Lemma 1, we can not hope to construct Γ1 using a perfect sound Γ2

since a perfect sound NIZK does not exist for L outside BPP.

5 Improving Dwork-Naor’s ZAP-Based Timed Deniable
Authentication

Based on ZAP, Dwork and Naor present a timed deniable authentication proto-
col. Their idea is to let a receiver encrypt a random number r together with a
message m, compute two timed commitments on two random numbers ρ1, ρ2 and
attach a zap proving that one of two timed commitments is valid. The sender
replies with an encryption η of r and an encryption δ of a random number s,
together with a zap proving that either η is an encryption of r or δ is an en-
cryption of s = ρ1 or ρ2. The authentication is guaranteed since normally the
sender does not know ρ1, ρ2 and has to be able to compute η by first decrypting
r. This protocol invokes each of CCA2 encryptions, timed commitment and zap
proof for two times and hence not efficient. In the following, we show that this
protocol can be naturally improved using only one encryption and one timed
commitment and one adaptive NIZK. Our construction does not require the
common reference string for NIZK to be random. It is very simple and intuitive.

Let E be a public key of an encryption scheme with private key D and ρ be a
common random string for a non-interactive zero knowledge protocol P . (E, ρ) is
set as the public key. T is a timed commitment scheme. Let m be the message that
the sender S wish to authenticate to the receiver R. Our idea is to let R encrypt
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a random number r together with m, compute a timed commitment of r and
generate a NIZK proof that the encryption and commitment are done properly.
The sender S will reply with r decrypted using his private key. R will accept r
only if it is received within a reasonable period of time φ1 (e.g., 1 minute) from his
sending out the previous message. Intuitively, the authentication is guaranteed
since no one can decrypt the encryption without a private key or can decommit
r in time φ1 (T will have this assumption); the protocol is also deniable since
any one can obtain r using a forced-decommitment in some moderate longer
time T (e.g., 1 days). The decryption and decommitment are consistent by the
soundness of NIZK. This protocol is formally described as follows, which we
denote by t-Auth.

– R takes r ← {0, 1}	 and s1, s2 ← {0, 1}∗. He computes α = E(m ◦ r; s1)
and β = T(r; s2) and uses ρ as common random string to compute a non-
interactive zero-knowledge proof π = P(ρ,m, α, β; r, s1, s2) that α and β
have the said format. R sends (α, β,m, π) to S.

– Receiving (α, β,m, π), S computes m′ ◦ r′ = D(α), and checks if m′ = m
and π is valid. If yes, send r′ to R. Otherwise, reject.

– Receiving r′, R checks if it is within a timely fashion (see below) and if
r′ = r. If yes, accept; reject otherwise.

Time Constraint. S’s second round message r′ must arrive at R within time
φ1 from the time the latter sends out the first round message to S. Let φ2

be the upper bound on the time to compute α and π. φ1 is defined such that
φ1 + φ2 < t, where t is the time bound below which the timed commitment
is secure.

Remark. Although a time constraint is used in the protocol (in the same way
as in Dwork-Naor protocol), this time constraint only requires the sender to send
back r as soon as possible (i.e., within time φ1). Hence, it does not artificially
cause a communication delay. But we have to set φ1 properly. If it is too small,
a normal network delay might unexpectedly cause the receiver to reject.

In the following, we show that the t-Auth protocol is a deniable authentication
protocol.

Theorem 3. P is an adaptive non-interactive zero-knowledge proof with negli-
gible soundness error and perfect completeness. (E,D) is a CCA2 secure public
key encryption and T is a secure timed commitment (as in Definition 4). Then,
t-Auth is a deniable authentication protocol.

Proof. Completeness. When S and R follows the protocol without an at-
tacker, S will accept R’s first round message, due to the perfect completeness of
NIZK. In addition, r′ produced by S equals r taken by R, due to the complete-
ness of (E,D). The completeness for t-Auth follows.

Soundness. We need to show that any probabilistic polynomial time ad-
versary A, after interacting with the sender S to receive authenticated messages
m1,m2, · · · , can not authenticate a new message m �= mi to a receiver R. A
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can concurrently schedule the message events to both S and R. We use the se-
quence of game strategy. Denote the success of A in authenticating such m by
Succ and assume it has a probability ps. Denote the real game with A against
it, by Γ0. We modify Γ0 to Γ1 with the only change: ρ is simulated and π∗

in the session of receiving m by R is simulated too (using a trapdoor τ of ρ).
By reducing to the adaptive zero knowledge property of NIZK, we have that
Pr[Succ(A, Γ1)] > ps− ε4 (since adversary view between Γ1 and Γ0 has a gap at
most ε4 and Succ is implied in adversary view), where ε4 is the distinguishing
gap for the simulated zero knowledge proof. Then, we modify Γ1 to Γ2 with
the only change: in the session to receive m, R generates α = E(m ◦ r′) for
r′ ← {0, 1}	 (instead of r committed in β). By reducing to the CCA2 security of
E, we will show that Pr[Succ(A, Γ2)] ≥ ps − ε4 − ε3, where ε3 is the advantage
to break E (note for simplicity we do not mention the attack time but it can be
easily calculated from the reduction below). Given E, an attacker D generates
ρ together with its trapdoor τ and then simulates S and R normally, except
(1) when R (simulated by D) is asked to receive an ‘authenticated’ m which S
never sent, he computes r0, r1 ← {0, 1}	 and uses (m◦ r0,m◦ r1) as his plaintext
challenge pair. He will receive α∗ = E(m ◦ rb) for some b ← {0, 1}. He then
computes β∗ = T(r0) and simulates π∗ using τ.
(2) whenever S (simulated by D) is authenticating mi and needs to decrypt α
using D, D asks his decryption oracle to compute it unless α = α∗. In this case,
he directly rejects (this decision is correct as by assumption S never authenticates
m encrypted in α∗).

Finally, when A replies r∗ = rb′ in the session of authenticating m, D out-
puts b′ directly; otherwise, output b′ = 1. Note when b = 0, the simulated
game is Γ1; when b = 1, the simulated game is Γ2. Hence, ε3 ≥ |Pr[D(E(m ◦
r0)) = 0] − Pr[D(E(m ◦ r1)) = 0]| = |Pr[Succ∗(A, Γ1)] − Pr[Succ∗(A, Γ2)]|,
where Pr[Succ∗(A, Γ )] is the probability that A successfully outputs r0 com-
mitted in β∗. Note that in Γ1, r encoded in β∗ and α∗ is identical (it is r0
in the reduction). Therefore, Succ(A, Γ1) = Succ∗(A, Γ1). Next, we show that
Pr[Succ∗(A, Γ2)]| ≤ ε2, where ε2 is the success probability for an adversary of
time t to break T (see Definition 4). This is done by reducing to the privacy of
T. To see this, notice that the time for R to receive the second round message
r∗ = r0 must be within α from the time of R’s sending the first round message
and that the time to prepare α∗ and π∗ is at most γ, where α + γ < t. Hence,
we have that ps − ε4 − ε3 ≤ ε2. That is, ps ≤ ε4 + ε3 + ε2.

Deniability. In order to prove that the protocol is deniable, we need to
construct a simulator SIM that simulates the protocol execution with A with-
out using D such that the view of A is indistinguishable from that in the real
world. Initially, SIM and A receive (E, ρ). Then, to authenticate any message
m, SIM can simulate S with A as follows.
� When S receives (α, β, π), it verifies if π is consistent with (m,α, β). If not,
reject; otherwise, he pauses A and computes r in β using F-Open, after which
he frees A and sends out r.
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Review the above code, the view of A in the simulation is different from
the real execution only when (α, β) is not consistent with m, r but π is verified
successfully. However, this occurs only if the soundness of NIZK is broken, which
has a probability of at most ε2. �

Remark. Our protocol requires that an adversary should not be able to con-
struct (α, β) with inconsistent r. This is guaranteed by the adaptive soundness
of NIZK. A careful reader might notice that in our authentication proof, Γ2

computes (α∗, β∗) with an inconsistent r but a simulated proof π∗ in the chal-
lenge session. This requires that given such information, an adversary should not
be able to construct a (α, β) with an inconsistent r but a consistent proof. It
seems only one-time simulation sound NIZK [9] can guarantee this. However, in
our protocol, such a strong condition is not used. We only use a NIZK with an
adaptive soundness. The idea is that the real game (and Γ1) does not allow an
adversary to construct such a consistent proof of a false statement, simply due
to the soundness of NIZK. Γ2 and Γ1 have a negligible gap on such events, due
to a reduction to CCA2 security of (E,D).
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Abstract. An online/offline signature scheme allows separation of its
signing algorithm into offline phase and online phase. There have been
many constructions in the literature, and they are provably secure un-
der chosen-message attacks. However, it has recently been shown that
this security notion is insufficient due to side-channel attacks, where an
adversary can exploit leakage of information from the implementation
of the signing algorithm. Regarding the implementation of online/offline
signatures, we found that the online phase is much more critical than
the offline phase. In this paper, we propose two efficient online/offline
signature schemes. Our online phase is secure with unbounded leakage
resilience as long as the assumption that only computation leaks infor-
mation holds. Our constructions offer a very short signature length and
they are efficient in the online phase with modular additions only.

Keywords: Online/Offline Signatures, Computational Leakage
Resilience.

1 Introduction

The notion of online/offline signatures was first introduced by Even, Goldre-
ich and Micali [9]. The signing process of an online/offline signature scheme is
separated into two phases, online and offline. In the offline phase, all costly
computations are conducted in absence of messages. In the online phase, the
message to be signed is provided and the computation is typically very efficient.
Online/offline signatures offer many useful applications. One of them is smart
card application, assuming the computational power of a smart card is very
weak. We can assume that all heavy computations are accomplished in the of-
fline phase with the aid of a powerful device, while only a light computation is
required on a smart card in the online phase.

There have been many online/offline signature schemes (e.g., [9,23,7,13]),
which are provably unforgeable against chosen-message attacks [12]. This stan-
dard security notion captures many computational attacks, but it is usually in-
sufficient when side-channel attacks are considered. In practice, an adversary
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is allowed to launch side-channel attacks on the implementation of the signing
algorithm. The examples of these attacks include timing analysis [16], power
consumption [17], electromagnetic radiation [22] and fault detection [4]. Side-
channel attacks are powerful attacks. An adversary can exploit leakage informa-
tion (e.g., signing key) from a side-channel attack. Unfortunately, the standard
security notion does not capture information leakage from side-channel attacks.

Due to insufficiency of standard security model, a notion of leakage resilience
was recently proposed [8] to model side-channel attacks. In this new security
model, an adversary is allowed to make queries on signatures and leakages. The
leakage queries are associated with a serial of leakage functions fi : {0, 1}∗ →
{0, 1}λi specified by the adversary. Many new constructions [20,8,21,15,10] are
provably leakage-resilient but different in terms of the restrictions placed on
these leakage functions. We refer the reader to [15,10] for concrete restrictions.

In presence of side-channel attacks, online/offline signatures should be also
leakage-resilient, especially in the online phase. The signing algorithm of on-
line/offline signature scheme is divided into two phases. Both of them could
suffer from side-channel attacks. However, we demonstrate that in some applica-
tions, the online phase is much more critical than the offline phase. Smart card
applications can be considered as an example that falls into this situation. The
offline phase can be accomplished during the production of smart cards in a safe
place. On the other hand, the online phase is conducted within a smart card,
where it requires a smart card reader, which might not be trusted. Side-channel
attacks could be lunched when a smart card is used in practice.

Our Contributions
In this paper, we construct two efficient online/offline signature schemes, such
that the online phase is leakage-resilient. It is actually not hard to realize leak-
age resilience in the online phase without considering its efficiency. Note that
online/offline signatures with leakage resilience in the online phase can be re-
alized [9] using leakage-resilient one-time signatures [15,10], a modification of
Lamport’ scheme [18], and the Merkle’s scheme [19]. However, these one-time
signatures have a large signature size and therefore are not practical. We shall
not utilize one-time signatures with a long signature length in our scheme.

Two online/offline signature schemes are proposed in this paper. Our generic
construction is based on Shamir-Tauman signature scheme [23] and a specific
construction is modified from Hofheinz-Kiltz short signature scheme [14]. We
prove that our online/offline signature schemes are secure with computational
leakage resilience in the online phase. The leakage function f we use is the same
as in [10]. Precisely, the leakage function can be arbitrary with unbounded infor-
mation leakage as long as the input to this leakage function are those accessed
secret states in computation. Further discussion of this restriction on the leakage
function f can be found in [20,8].

Our schemes offer a very short signature length and an efficient computation
in the online phase. Our generic construction has the same signature size as the
original scheme, which can be 320 bits for 80-bit security. The signature of our
specific construction requires 390 bits, but it can be shortened to 230 bits. Both
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of schemes require modular additions only in the online phase. Under the same
restrictions on leakage functions, we found that two previous schemes [9,13] are
naturally resilient to computational leakage in the online phase. However, they
do not offer a good efficiency due to a large signature size. We give a comparison
in Section 5 to show that our schemes outperform these schemes in terms of
signature size.

Roadmap
The rest of this paper is organized as follows. In Section 2, we present definitions
and preliminaries. We present our two online/offline signature schemes in Section
3 and Section 4, respectively. In Section 5, we compare the efficiency of schemes
with other schemes. In Section 6, we conclude this paper.

2 Definitions

In this section, we present the preliminaries of our work, and define the security
model for online/offline signatures with computational leakage resilience in the
online phase.

2.1 Online/Offline Signature

An online/offline signature scheme is composed of the following four algorithms.

KGen: On input a security parameter 1k, the algorithm returns a public key pk
and a signing key sk.

Sign: The algorithm is divided into two phases.

– Offline Phase: On input the signing key sk, the algorithm OffSign returns an
offline parameter Pa, which is stored for online computation.

– Online Phase: On input the message m, the parameter Pa and the signing
key sk, the algorithm OnSign returns the signature Σsk[m].

Vrfy: On input the message-signature (m,Σsk[m]) and the public key pk, the
algorithm returns accept or reject.

2.2 Security Model

We first revisit the standard security notion. The standard security notion of
online/offline signature schemes is the same as digital signature schemes. It says
that signatures should be existentially unforgeable under (adaptively) chosen-
message attacks (CMA) [12]. We slightly change the description of security no-
tion for online/offline signatures. The security notion is defined using a game
between a challenger and an adversary as follows.

Setup: The challenger runs the algorithm KGen to obtain a pair of public key
and signing key (pk, sk). The public key pk is forwarded to the adversary.
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Queries: Before the query phase, the challenger uses the algorithm OffSign to
compute offline parameters Pa1,Pa2, · · · ,Paq. The adversary makes the ith sig-
nature query on mi. Upon receiving the query, the challenger responds by using
Pai and the algorithm OnSign to compute the signature Σsk[mi] and sending it
to the adversary.

Forgery: A outputs a forged message-signature (m∗, Σsk[m∗]) and wins the game
if A did not make a signature query on m∗ and Σsk[m∗] is a valid signature on
m∗ signed with sk.

In the query phase, we separate the signing algorithm into OffSign and On-
Sign. Before the query phase, all offline parameters Pa1,Pa2, · · · ,Paq have been
generated. Upon receiving the ith signature query on mi, the challenger uses
Pai instead of the signing key sk to compute the signature Σsk[mi]. However,
in the proof for simulation, the challenger might use the signing key to respond
the signature query. That is, upon receiving a signature query, the challenger
first generates Pai and then uses it to compute the signature Σsk[mi]. This is
indistinguishable if the adversary receives the signature only. We emphasize this
difference to introduce the simulation for the leakage-resilient model simpler.

Definition 1. An online/offline signature scheme is (t, q, ε)-secure against
CMA if no adversary (t, q, ε)-breaks it in t time at most, making q queries at
most and winning the game with advantage ε at least.

We now introduce our security model with leakage resilience in the online phase.
In this model, an adversary is allowed to specify leakage functions fi : {0, 1}∗ →
{0, 1}λi and makes leakage queries to the challenger. Being the same as [10],
we assume that only a computation leaks information, and use the notion Pa+

i

to denote the part of the internal secret state that has been accessed during
computing a signature on mi using Pai. Hence, the adversary can only make a
leakage query after it made a signature query. Since we require the online phase
to be secure with unbounded leakage resilience, we can directly treat that the
output of the leakage function is the secret state Pa+

i . Here, we assume that
the algorithm OnSign is a deterministic algorithm without sampling random
coins [10].

The new security model requires the signature scheme to be existentially un-
forgeable under chosen-message attacks and computational-leakage attacks (on-
line phase only), denoted by CMA&CLA for short. The security notion is defined
as follows.

Setup: The same as the standard security notion.

Queries: Before the query phase, the challenger uses the algorithm OffSign to
compute offline parameters Pa1,Pa2, · · · ,Paq.

– The adversary makes the ith signature query on mi. Upon receiving the
query, the challenger responds by using Pai and the algorithm OnSign to
compute the signature Σsk[mi] and sending it to the adversary.
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– The adversary makes the ith leakage query. Upon receiving the query, if
the adversary never made the ith signature query, the challenger rejects any
output; otherwise, it responds by sending Pa+

i to the adversary.

Forgery: The same as the standard security notion.

Definition 2. An online/offline signature scheme is (t, q, ε)-secure against
CMA &CLA if no adversary (t, q, ε)-breaks it in t time at most, making q sig-
nature queries at most and winning the game with advantage ε at least.

2.3 Bilinear Pairing

Let PG = (G,GT , g, p, e) be a symmetric pairing. More precisely, G,GT are two
groups with prime order p and g is a generator of G. e : G × G → GT is the
bilinear map and it satisfies the following properties.

– For all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab;
– If g be a generator of G, then e(g, g) is a generator of GT .

Similarly, an asymmetric pairing is defined as PG = (G1,G2,GT , g1, g2, p, e).
Here, G1,G2,GT are groups with prime order p, g1 is a generator of G1, g2 is
a generator of G2. e : G1 × G2 → GT is the bilinear map and it satisfies the
following properties.

– For all u ∈ G1, v ∈ G2 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
– If g1 generates G1 and g2 generates G2, then e(g, g) generates GT .

An asymmetric pairing is used to construct shortest possible signatures. As
noted in [5,3], when the bilinear pairing is selected from some special curves,
elements of G1 have shorter representations than those elements of G2. For ex-
ample, the group size of G1 can be 160 bits only for 80-bit security. Many schemes
[3,24,11] have successfully utilized this property to build short signatures. In this
paper, we simply use the symmetric pairing to describe our constructions. There
is no doubt that they can be replaced with an asymmetric pairing for a shorter
signature length.

2.4 Complexity

The Shamir-Tauman scheme [23] depends on the security of traditional signature
scheme and the hardness of discrete log problem. The Hofheinz-Kiltz scheme [14]
is based on the hardness of q-SDH problem [3]. We revisit these assumptions
associated with the original schemes.

Definition 3 (DL Problem). Given an instance g, ga, gb ∈ G for over random
choice of g ∈ G and a ∈ Zp, the DL problem is to compute gab ∈ G.

Definition 4 (q-SDH Problem). Given an instance g, ga, ga2
, · · · , gaq ∈ G

for over random choice of g ∈ G and a ∈ Zp, the q-SDH problem is to compute
any pair (c, g1/(a+c)) ∈ Zp ×G for a freely chosen c ∈ Zp/{−a}.
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Definition 5 (DL Assumption). The DL problem stated in the group G is
a (t, ε)-hard assumption if there exists no adversary who can solve it in t-
polynomial time with non-negligible probability ε.

Definition 6 (q-SDH Assumption). The q-SDH problem stated in the group
G is a (t, ε)-hard assumption if there exists no adversary who can solve it in
t-polynomial time with non-negligible probability ε.

3 Generic Construction

Shamir and Tauman [23] proposed a generic construction of online/offline sig-
nature scheme using hash-sign-switch paradigm. Their constructions are very
efficient with modular multiplications only in the online phase. We first revisit
their scheme and then improve their construction with computational leakage
resilience in the online phase by changing their signing algorithm.

3.1 Shamir-Tauman Signature Scheme

Let (G,S, V ) be a secure signature scheme, where G,S, V denote the algorithm
of key generation, message signing and signature verification respectively. Let
(KGen†, Sign†,Vrfy†) be the original scheme proposed by Shamir and Tauman.
The online/offline signature scheme using our notion is described as follows.

KGen†: Use the algorithm G to generate a key pair (pk′, sk′). Let g be an element
of the pairing group G. Choose α at random from Zp and compute h = gα ∈ G.
The public/signing key of online/offline signature scheme is

pk = (pk′,G, p, g, h), sk = (sk′, α).

Sign†: The signing algorithm is divided into the following two phases.

– Offline Phase: Randomly choose x ∈ Zp and compute σ = Σsk′ [gx] using the
algorithm S and sk′. Store the offline parameter Pa = (σ, x).

– Online Phase: On input a message m ∈ Zp to be signed, compute

r = x− αm (mod p).

The signature Σsk[m] on m is (σ, r).

Vrfy†: On input a message-signature (m,Σsk[m]), let Σsk[m] be (σ, r). Compute
hmgr, and verify that σ is a correct signature on hmgr using the algorithm V
and pk′.

Theorem 1 ([23]). The online/offline signature scheme is secure against CMA
assuming that the traditional signature scheme is secure against CMA and the
discrete log assumption holds.
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The security proof for Theorem 1 is completed in the assumption that no
additional information except signatures are learnt by the adversary. In the on-
line phase, the signer is to compute r = x− αm (mod p), and this computation
could leak α in presence of side-channel attacks. It is easy to verify that the
scheme is no longer secure when the adversary knows α. Therefore, the secu-
rity of Shamir-Tauman signature scheme is insufficient when an adversary can
exploit leakage.

3.2 Our Scheme

Based on the Shamir-Tauman signature scheme, we now propose our online/
offline signature scheme that is resilient to the leakage of computing x − αm
(mod p). Let (G,S, V ) be the secure signature scheme. The message in our
scheme is represented with n-bit string for some n such that 2n < p < 2n+1.
Here p is the order of the group G. The message space can be naturally extended
into an arbitrary string using a collision-resistant hash function H : {0, 1}∗ →
{0, 1}n. A generic construction of online/offline signature scheme secure against
CMA&CLA is described as follows.

KGen: Use the algorithm G to generate a public key pk′ and its signing key sk′.
Let g be an element of G. Randomly choose α ∈ Zp and set h = gα ∈ G. The
public/signing key of online/offline signature scheme is

pk = (pk′,G, p, g, h), sk = (sk′, α).

Sign: The signing algorithm is divided into the following two phases.

– Offline Phase:
• Randomly choose x, y1, y2, · · · , yn-1 ∈ Zp and let yn be

yn = −(y1 + y2 + · · ·+ yn-1) (mod p).

• Compute σ = Σsk′ [gx] using the algorithm S and sk′, and generate the
matrix Z

Z =
(
z0,1 z0,2 · · · z0,n

z1,1 z1,2 · · · z1,n

)
,

where zj,i for all j = 0, 1, i = 1, 2, · · · , n are computed as

zj,i =
x

n
− j · α · 2n−i + yi (mod p).

• Store the offline parameter Pa = (σ, Z).

– Online Phase: On input a message m ∈ {0, 1}n to be signed, let m[i] be the ith
bit for the message m = m[1]m[2] · · ·m[n]. Access zm[i],i for all i = 1, 2, · · · , n
and compute

r = zm[1],1 + zm[2],2 + · · ·+ zm[n],n (mod p).

The signature Σsk[m] on m is (σ, r).
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Vrfy: On input a message-signature (m,Σsk[m]) and let Σsk[m] be (σ, r). Com-
pute hmgr, and verify that σ is a correct signature on hmgr using the algorithm
V and pk′.

The verification is correct since we have

m = m[1]m[2]m[3] · · ·m[n]

=
n∑

i=1

m[i] · 2n−i

mα + r = mα + zm[1],1 + zm[2],2 + · · ·+ zm[n],n

= mα +
n∑

i=1

(
x

n
−m[i] · α · 2n−i + yi)

= mα + x− α

n∑
i=1

(m[i]2n−i) +
n∑

i=1

yi

= mα + x− α ·m
= x

hmgr = gαm+r = gx.

3.3 Main Features

We describe our generic construction using the pairing group G. Actually, it
can be any cyclic group in realization [23]. However, the schemes in [5,3] show
that we can construct short signatures if the signature scheme is defined in the
asymmetric pairing group G1. In particular, the size of the traditional signature
Σsk′ [gx] can be as short as 160 bits for 80-bit security. More discussions can be
found in [23,5,3].

The main difference of our construction compared to the original scheme [23]
is the signing algorithm. The algorithms KGen and Vrfy are identical. The com-
putation cost in the offline phase is mainly dominated by the exponentiation gx

and the signature generation Σsk′ [gx], the same as [23]. In the online phase, com-
puting the value r requires only n modular additions and is faster than modular
multiplications for n-bit strings in [23].

Our construction requires a large storage, compared to the original scheme.
Suppose 80-bit security is required in applications, we have |p| = 160 and n =
160. The storage in the offline phase is mainly dominated by the matrix Z, which
has about 2n · |zj,i| ≈ 6.4KB (Kilobyte). Therefore, if a device has a storage
capacity of 10MB (Megabyte), we can use it to store about 1,500 different offline
parameters Pa to generate the same number of signatures.

3.4 Security

Theorem 2. Our online/offline signature scheme is (t, q, ε)-secure against CMA
&CLA assuming that the original signature scheme is (t′, q, ε)-secure against
CMA for t′ ≈ t.
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Proof. Suppose there exists an adversary A who can (t, q, ε)-break our scheme
in the CMA&CLA model. We construct an algorithm B that breaks the Shamir-
Tauman signature scheme in the CMA model. The algorithm B is given a public
key pk of the Shamir-Tauman signature scheme (KGen†, Sign†, Vrfy†) , and the
target is to forge a valid signature with the aid of A’s forged signature. The
interaction between the adversary A and the algorithm B is defined as follows.

Setup: B sets pk as its public key and sends it to the adversary A.

Queries:

– The adversary makes the ith signature query on mi. Upon receiving the
query, the algorithm B makes the signature query on mi to Sign†. Let the
response from Sign† be Σsk[mi] = (σi, ri) = (Σsk′ [gxi ], xi −miα), B sends
Σsk[mi] to the adversary. Note that our signature format is identical to the
Shamir-Tauman signature, and therefore B performs a perfect simulation.

– The adversary makes the ith leakage query. Upon receiving the query, if
the adversary never made the ith signature query, the challenger rejects any
output; otherwise, let mi = m[1]m[2] · · ·m[n] and Σsk[mi] = (σi, ri), the
algorithm B randomly chooses y′1, y

′
2, · · · , y′n-1 ∈ Zp and sets

zm[i],i = y′i for i = 1, 2, · · · , n− 1

zm[n],n = ri −
n−1∑
i=1

y′i.

We have that Pa+
i = (σi, zm[1],1, zm[2],2, · · · , zm[n],n) is known to B, and B

forwards Pa+
i to the adversary. The simulation on Pa+

i is perfect because
there exists universally random and independent y1, y2, · · · , yn-1 ∈ Zp and
yn = −∑n−1

i=1 yi such that

zm[i],i = y′i =
xi

n
−m[i] · α · 2n−i + yi, for all i = 1, 2, · · · , n− 1

zm[n],n = ri −
n−1∑
i=1

y′i = xi −miα−
n−1∑
i=1

y′i

= xi − α

n∑
i=1

(m[i]2n−i)−
n−1∑
i=1

y′i

=
xi

n
−m[n] · α · 20 + yn.

Forgery: A outputs a forged message-signature (m∗, Σsk[m∗]) and B also outputs
(m∗, Σsk[m∗]) as the solution to breaking the security of (KGen†, Sign†,Vrfy†).

This completes our simulation. The time cost in simulation is one modular
computation of zm[n],n. As the modular computation is negligible compared to
other signing cost, the simulation time is nearly the same as the simulation time
of the original scheme. The number of signature query to Sign† is the same as the
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query number from the adversary. The algorithm B can always use the forged
signature from the adversary to break (KGen†, Sign†,Vrfy†). Therefore, we yield
the Theorem 2 and this completes our proof. 

4 The Second Construction

In this section, we present our online/offline signature scheme based on Hofheinz-
Kiltz short signature scheme [14]. We build our construction based on their work
since their signature is 230 bits only for 80-bit security and is provably secure
without random oracles [2,6]. Although our signature size for communication is
larger than 230 bits, it can be reduced to 230 bits for storage.

4.1 Our Scheme

The message space of our scheme is {0, 1}n. It can be extended to an arbitrary
length using a collision-resistant hash function H : {0, 1}∗ → {0, 1}n. Our on-
line/offline signature scheme secure against CMA&CLA is described as follows.

KGen: Select a bilinear pairing PG = (G,GT , g, p, e). Randomly choose n + 2
elements α0, α1, · · · , αn, β from Zp, and set gi = gαi , h = gβ ∈ G for all i =
0, 1, · · · , n. The public/signing key of online/offline signature scheme is

pk = (PG, g0, g1, · · · , gn, h), sk = (α0, α1, · · · , αn, β).

Sign: The signing algorithm is divided into the following two phases.

– Offline Phase:
• Randomly choose s ∈ {0, 1}η and x, y1, y2, · · · , yn-1 ∈ Zp. Here, η is a

parameter will be defined later. Let yn be

yn = −(y1 + y2 + · · ·+ yn) (mod p).

• Compute σ = g
x

β+s ∈ G and the matrix Z

Z =
(
z0,1 z0,2 · · · z0,n

z1,1 z1,2 · · · z1,n

)
,

where zj,i for all j = 0, 1, i = 1, 2, · · · , n are computed as

zj,i =
j · αi + yi + α0

n

x
(mod p).

• Store the offline parameter Pa = (s, σ, Z).

– Online Phase: On input a message m ∈ {0, 1}n to be signed. Let m[i] be
the ith bit for the message m = m[1]m[2] · · ·m[n]. Access zm[i],i for all
i = 1, 2, · · · , n and compute

r = zm[1],1 + zm[2],2 + · · ·+ zm[n],n (mod p).

The signature Σsk[m] on m is (s, σ, r).
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Vrfy: On input a message-signature (m,Σsk[m]), let Σsk[m] be (s, σ, r). Compute
σr, and check that s is a η-bit string and that

e
(
σr, hgs

)
= e

(
g0

n∏
i=1

g
m[i]
i , g

)
.

The verification is correct since we have

r = zm[1],1 + zm[2],2 + · · ·+ zm[n],n

=
n∑

i=1

m[i] · αi + yi + α0
n

x

=
α0 + m[1]α1 + · · ·+ m[n]αn +

∑n
i=1 yi

x

=
α0 + m[1]α1 + · · ·+ m[n]αn

x

σr = (g
x

β+s )
α0+m[1]α1+···+m[n]αn

x

= (gαo+m[1]α1+···+m[n]αn)
1

β+s

=
(
g0

n∏
i=1

g
m[i]
i

) 1
β+s

.

4.2 Main Features

The features of efficiency and storage is similar to our first construction. Con-
sidering the length of signature, the signature recipient can store (s, σr) as the
signature on m instead of (s, σ, r). According to the original scheme ([14], Ap-
pendix), we can choose |η| = 70 for 80-bit security. An asymmetric pairing will
further shorten the size σr to 160 bits. Therefore, we obtain that the signature
is 390 bits and the signature (s, σr) stored by the recipient is 230 bits in length.

We observe that batch verification [1] can be utilized. When all signatures
are signed by a single signer, we show that only two pairings are required for
verifying l different signatures. Our batch verification utilizes small exponent,
which was first introduced in [1]. Let Bvrfy be the algorithm of bath verification,
it can be described as follows.

Bvrfy: On input l pairs of message-signatures (mi, Σsk[mi]) for all i = 1, 2, · · · , l.
Let the ith message and signature be

mi = mi[1]mi[2] · · ·mi[n], Σsk[mi] = (si, σi, ri).

The signature recipients does the following.

– Choose at random ω-bit strings t1, t2, · · · , tl ∈ {0, 1}ω;
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– Compute B1, B2, B3 defined as

B1 =
l∑

i=1

(σi)ri·ti , B2 =
l∑

i=1

(σi)siri·ti , B3 = gl
0

n∏
j=1

g
∑ l

i=1 mi[j]ti

j ;

– Check that e(B1, h) = e(B2/B3, g).

The computational cost are three multi-exponentiations and two pairings.
This is definitely smaller than verifying l signatures one by one. We can choose
|ω| = 40 so that the probability of accepting invalid signatures is 1/240 only. We
give the proof of its correctness as follows.

Theorem 3. The probability of accepting invalid signature(s) is 1/2ω.

Proof. Let (s, σ, r) be a valid signature on m, an invalid/fake signature on m
can be denoted by (

s, σ · g d
r , r

)
for some unknown d ∈ Zp/{0}. On input l pairs of message-signatures
(mi, Σ

′
sk[mi]) for all i = 1, 2, · · · , l. Let the ith message and signature be

mi = mi[1]mi[2] · · ·mi[n]

Σ′
sk[mi] =

(
si, σi · g

di
ri , ri

)
.

Suppose one of them is invalid, without loss of generality, let d1 �= 0. We
obtain s1 �= β; otherwise, the signature scheme is not secure. When they are
passed though the bath verification, we deduce from the pairing equation that

e
(
gt1d1+t2d2+···+tndn , h

)
= e

(
gs1t1d1+s2t2d2+···+sntndn , g

)
and that

t1 =
∑n

i=2 tidi(si − β)
d1(β − s1)

.

That is, invalid signature(s) will be rejected except that the above equation
holds. However, t1 is universally random and independent chosen from {0, 1}ω,
such that t1 happens to be

∑n
i=2 tidi(si−β)

d1(β−s1)
with probability 1/2ω only. This com-

pletes our proof. 

4.3 Security

Theorem 4. Our online/offline signature scheme is (t, q, ε)-secure against CMA
&CLA assuming that the original signature scheme is (t′, q, ε) secure against
CMA for t′ ≈ t.
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Proof. The proof is similar to Theorem 2. We only give an intuitive description.
To respond a signature query on mi from the adversary, B queries and receives
Σsk[mi] = (si, σi) from Sign†. It then randomly chooses r′i ∈ Zp and responds
the signature query with (si, σ

1/r′
i

i , r′i). It is not hard to verify that B performs
a perfect signature simulation. To respond the ith leakage query, B randomly
chooses y′1, y

′
2, · · · , y′n−1 ∈ Zp and sets

Pa+
i =

(
si, σ

1/r′
i

i , y′1, y
′
2, · · · , y′n-1, r

′
i −

n−1∑
i=1

y′i
)
.

The simulation on Pa+
i is also perfect with the same analysis as Theorem 2. 

5 Comparisons

In our leakage-resilient model, we assume that only computation leaks infor-
mation. The input to leakage functions are restricted in those accessed secret
states for computation in the online phase. Our constructions are secure with
unbounded leakage resilience since all accessed states (i.e., Pa+

i ) can be publicly
known to the adversary. There are two existing online/offline signature schemes
[9,13] that are naturally resilient to computational leakage in the online phase.

When Even, Goldreich and Micali [9] first proposed the notion of online/offline
signatures, they also proposed a generic construction from one-time signatures.
In particular, the generic construction can be realized using Lamport’s one-time
signature scheme [18] or its improvement by Merkle [19]. This generic construc-
tion is naturally resilient to computational leakage in the online phase since no
secret computation is required. However, generic constructions based on these
one-time signatures have a large signature size. For 80-bit security, the con-
struction based on Merkle’s one-time signature [19] roughly requires 6.7 KB for
storing offline parameters and 5 KB for each signature. The size is larger when
the scheme is based on the Lamport’s one-time signature scheme.

The second online/offline signature scheme with the same computational leak-
age resilience as our construction is proposed in [13]. The basic idea of their
construction is similar to the Lamport’s work. Whereas their signature can be
shortened to 40 bytes by the signature recipient, the signature for communica-
tion is still as large as 3.2 KB. We note that their signature can be reduced to 40
bytes by the signer before transmission. However, the online computation will
have to add n group multiplications. This will definitely slow down the signing
operation in the online phase.

We provide some comparisons in the following table. The comparison is un-
der the same security parameter of 80-bit security and we assume that the mes-
sage space is {0, 1}n. Each element in a signature is 20 bytes in length. We use
SignatureC to denote the signature size for communication and SignatureS to de-
note the signature size for storage. The comparison shows that our construction
is shorter in signature length.
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Table 1. Comparisons with the same security level of 80-bit security. We use Ours 1
to denote our generic construction and Ours 2 to denote our second construction.

Scheme Offline Storage Online Computation SignatureC SignatureS

[18] 12.8KB Nil 9.6KB 9.6KB
[19] 6.7KB Nil 5KB 5KB
[13] 6.4KB Nil 3.2KB 40B

Ours 1 6.4KB Modular Additions 40B 40B
Ours 2 6.4KB Modular Additions 49B 29B

6 Conclusion

The traditional security proof for online/offline signature schemes is insufficient
due to side-channel attacks. Whereas there exist some online/offline signature
schemes with leakage resilience in the online phase, they are impractical due to a
long signature length. We proposed two efficient online/offline signature schemes.
The online phase is provably secure with unbounded leakage resilience as long as
only computation leaks information. Our schemes offer a short signature length
and a very efficient computation in the online phase.

Acknowledgement. The authors would like to thank the anonymous re-
viewers for their insightful comments to improve this work.
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Hofheinz-Kiltz Signature Scheme

Let (KGen†, Sign†,Vrfy†) be the original scheme proposed by Hofheinz and Kiltz
[14]. The short signature scheme using our notion is described as follows.

KGen†: Select a bilinear pairing PG = (G,GT , g, p, e). Randomly choose β ∈
Zp, g0, g1 · · · , gn ∈ G and set h = gβ . The public/signing key of the original
scheme is

pk = (PG, g0, g1, · · · , gn, h), sk = β.

Sign†: On input a message m ∈ {0, 1}n to be signed, let m[i] be the ith bit for
the message m = m[1]m[2] · · ·m[n]. Randomly choose a η-bit string s ∈ {0, 1}η

and compute

σ =
(
g0

n∑
i=1

g
m[i]
i

) 1
β+s

.

The signature Σsk[m] on m is (s, σ).

Vrfy†: On input a message-signature (m,σsk[m]), let Σsk[m] be (s, σ). Check
that s is a η-bit string and that

e
(
σ, hgs

)
= e

(
g0

n∏
i=1

g
m[i]
i , g

)
.

Theorem 5 ([14]). The signature scheme is secure against CMA assuming as-
suming that the q-SDH assumption holds in G.
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Abstract. In this article, we propose a new approach to characterize the
EM leakage of electronic devices by identifying and focusing on the sig-
nals’ frequencies leaking the most information. We introduce a set of tests
based on cryptanalysis methods that will help vendors and users of sensi-
tive devices to estimate the security risks due to leakage through electro-
magnetic emanations. We propose two approaches: an empirical one and
another based on information theory. Both provide a characterization of
the leakage i.e. the frequencies and the bandwidths where information is
contained. These techniques are low cost, automatic, and fast as they can
be performed with an oscilloscope and some softwares for the character-
ization. Such evaluation could also be carried out with TEMPEST. But
TEMPEST evaluations require dedicated apparatus and time consum-
ing step work that consists in scanning all the spectrum frequencies. Our
approach does not substitute to regulatory TEMPEST evaluation, but
nonetheless can identify the leakage with high confidence. To illustrate
the relevance of our approach, we show that an online software filtering
at some identified frequencies allows us to recover a key stroked in one
measurement at the distance of 5 meters from the keyboard.

Keywords: Side Channel Analysis (SCA), TEMPEST, Mutual Infor-
mation Analysis (MIA), Correlation Power Analysis (CPA), Principal
Component Analysis (PCA), software demodulation, hardware demod-
ulation, Differential Frequency Analysis (DFA).

1 Introduction

Electronic devices radiate an electromagnetic (EM) field that can compromise
sensitive information handled internally. For instance, since the 60’s, TEMPEST
(Telecommunications Electronic Material Protected from Emanating Spurious
Transmissions) tests are used by government agencies in order to measure the
amount of compromising EM signals. With the declassification in the 90’s of a
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portion of the US TEMPEST standards, the civilian and academic researchers
began to explore this topic. Van Eck published in [6] the first unclassified tech-
nical analysis of the security risks of emanations from computer monitors. Later
Kuhn brought new elements into this area in [14], with eavesdropping experi-
ments on CRT screens. In [13], he shows how to create a covert channel conveyed
by a crafted TV program. Academic research teams have applied those methods
to intercept keystroke signals [21]. They are able to reconstruct the signal data
at a distance up to 20 meters even through walls. Concretely they find out the
password that has been entered on a PS/2 keyboard with a bi-conical antenna,
by tunning the receiver at the frequency carrying the most information. Be-
cause of the complexity of EM compromising signals, their evaluation requires
expensive test equipments, advanced skills and time.

EM radiations arise as a consequence of current flowing through diverse parts
of the device. Each component affects the other components’ emanations due to
coupling. This coupling highly depends on the device geometry. Therefore it is
sometimes easier to extract information from signals unintentionally modulated
at high frequencies, which are not necessarily related to the clock frequency, than
baseband signals also referred to as direct emanations.

The characterization of the frequencies that modulate the leakage is a sci-
entific challenge, since as of today no relevant tool allows to distinguish which
frequency actually contains the sensitive information. For this reason, we propose
a methodology based on an empirical approach, that we contrast with another
one based on information theory. Our methodology enable attacks that can be
lead without an expensive TEMPEST receiver. Electronic device constructors
are legally required to conduct genuine TEMPEST evaluations. For them, our
evaluation can give a first idea of the robustness of their devices. Also it can be
seen as a preliminary to a TEMPEST evaluation, which is time consuming and
expensive.

The rest of the paper is organised as follows: in section 2 we start by describing
our test bench and the signal leaking on the EM channel. In section 3 we propose
three distinguisher derived from state of the art side channel analysis, that allow to
identify leaking frequencies. These methods are based on the CPA [3], the mutual
information [9], and the principal components analysis [2]. Then, in section 4, we
validate each of the three techniques by checking the demodulated signals at the
predicted frequencies with a TEMPEST receiver. In the same section we devise a
band-pass filtering method that is able to recover the shape of the compromising
signal, using a single EM interception. The conclusion is in section 5.

2 Experimental Setup

To illustrate our experiments we consider a keyboard operating the PS/2
protocol.

2.1 The PS/2 Protocol

The PS/2 protocol is a bidirectional serial communication based on four wires
(data, clock, ground, power supply). The data and clock lines are open-collectors
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and have two possible states: low and high states. If no data are transmitted the
data and clock lines are in the high state. We say the bus is “Idle”; the keyboard
is allowed to begin transmitting data. The PS/2 protocol transmits data in a
frame, consisting of 11 bits. These bits are

– 1 start bit, always at 0,
– 8 data bits, least significant bit first, (di, i ∈ [0, 7]),
– 1 optional parity bit (odd parity, equal to

⊕7
i=0 di),

– 1 stop bit, always at 1.

Data sent from the keyboard to the computer is read on the falling edge of the
clock signal as shown in Fig. 1. When a frame is sent, the clock is activated at a
frequency specific to each keyboard, typically between 10 kHz and 16.7 kHz. The

Clock

0 0 1 0 1 1 1 1 Odd Bit Stop BitStart Bit

LowLow Falling Rising High High High RisingFalling

State

Data

Rising

Fig. 1. PS/2 protocol, involved in the keyboard to computer communication

state of sensitive data can be reconstructed thanks to the falling edge of both
clock and data. Indeed because these signals are open-collectors, their low state
consumes much more power than their high state. This property has already been
noticed by Kuhn in [7]. The combination of the falling edge of the clock and the
falling edge of the data helps the attacker in guessing the data. In fact a falling
edge of the clock is always synchronized with the data start bit, contrarily to the
data’s falling edges whose positions depend of the keystroke. The eavesdropper
can first of all build a dictionary with the positions of data’s falling edges as a
function of the key stroked.

2.2 Test Bench

Usually in a TEMPEST secure system the “Red/Black” separation principle
must be followed, as explained by Kuhn in [14]. The “Red” equipment, which
handles sensitive data, has to be isolated from the “Black” equipment that trans-
mits ciphered data. For a TEMPEST protected equipment, the black signal shall
not reveal any sensitive information. However in our case we use a commercial
keyboard without any countermeasure. As shown in Fig 2 we place a bi-conical
antenna at 10 meters from a keyboard connected to a laptop by a PS/2 cable
as in [21]. In our case, we name the data signal the red signal and the signal
intercepted from the antenna, the black signal. To be sure that the radiated
emission are produced only by the keyboard, the experimental test bench is
placed in Faraday cage. The attack consists in recovering the red signal from



474 O. Meynard et al.
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Figure 10

Figure 8

Fig. 2. Setup used for the keyboard eavesdropping

one interception of the black signal. Ideally an efficient attack can be led if the
eavesdropper is able to use an antenna adapted to the frequency of the signal
on which the receiver is set.

2.3 Hardware vs. Software Setup

To speed up the attack, the attacker needs an essential information concerning
the signal: the carrier frequency and the bandwidth of the signal. The carrier
frequency is introduced as the crosstalk effect is equivalent to a modulation with
close or strong signals like the clock. Indeed this phenomenon introduces a few
carrier frequencies as modeled by Li et al in [16].

To provide these elements, we propose two possibilities.
On the one hand we can implement the state of the art methodology as used

in [1]. It is based on the use of the spectrum analyser/TEMPEST receiver like
during a TEMPEST evaluation. Hardware frequency scanning takes advantage
of the receiver’s dynamic which is often far better than the Analog to Digital
converter involved in an oscilloscope. Moreover these receivers offer a large panel
of configurations. For example the range of frequencies is [0, 20] GHz and the
maximum bandwidth can reach 500 MHz. They are equipped with pre-amplifiers
that enhance the dynamic range with a low noise figure. To conduct a TEM-
PEST evaluation, the evaluator must scan the whole range of frequencies with a
spectrum analyser and meanwhile check visually the demodulated signal in order
to find sensitive information. The TEMPEST receiver can be tunned continu-
ously between 100 Hz and 10 GHz, with a variable bandwidth. This work is time
consuming and irksome, and depends on the evaluator’s acuity and background.

On the other hand, we propose to use exclusively a digital oscilloscope, instead
of a TEMPEST receiver or more largely a receiver/spectral analyser. By accu-
mulating measurements, we improve the traces accuracy. This helps to achieve
an accuracy comparable to that of the receiver. A large number of traces of
the signal radiated from the PS/2 cable are recorded. This black signal is di-
vided into parts corresponding to the state level of the red signal. Those parts
are Fourier transformed. They highlight consequently different frequency ranges
where the compromising signal is potentially present. This methodology can pro-
duce the first coarse elements of a TEMPEST evaluation, and allows to avoid the
time consuming phase of scanning the whole range of frequencies. We introduce
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software methods to analyse and characterize the compromising signal. For this
paper we used a digital oscilloscope sampling at 1 GigaSample per second. A
receiver as in [14] can be used to check our results.

3 Frequency Distinguisher

The phenomena of compromising signal has different origins such as radiation
emitted by the clock, crosstalk or coupling. Traditionally, we differentiate the
direct emanations and the indirect or unintentional emanations. The first ones
can be considered at a very short distance and requires the use of special fil-
ters to minimize interference with baseband noise. The direct emanations come
from short bursts of current and are observable over a wide frequency band.
On contrary, indirect emanations are present in high frequencies. According to
Agrawal [1] these emanations are caused by electromagnetic and electrical cou-
pling between components in close proximity. Often ignored by circuits designers,
these emanations are produced by a modulation. The source of the modulation
carrier can be the clock signal or other sources, including communication related
signals. Li et al provides in [16] a model to explain such kind of modulation.

In [21], authors use standard techniques, such as Short Time Fourier Trans-
form (STFT) and compute spectrum to detect compromising emanations. The
STFT provides a 3D signal with time frequency and amplitude. Another ap-
proach is traditionally done by using a spectral analyser to detect signal carriers.
Thus the whole frequency range of the receiver is scanned and at each potential
frequency of interest the signal is demodulated by the evaluator and manually
checked for a presence of red signal.

We lack a lot of information about the TEMPEST tests, which remain clas-
sified. Nevertheless, Fig. 3 lets us think that the tools employed for this kind
of evaluation are not only based on the spectrum analysers commonly used in
standard electromagnetic compatibility (EMC) and radio frequency interference
(RFI) testing. As shown in figure 3, the signal in the frequency domain becomes
exploitable beyond 15.0 MHz, which is coherent with our equipements’ specifica-
tions. The bi-conical antenna is amplified with low-noise amplifier of 60.0 dB and

Fig. 3. Spectrum of the black signal
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has an approximative bandwidth of 30.0 MHz to 300.0 MHz. Consequently we
cannot observe the low frequencies of the signal data, but we observe a high peak
at 28.0 MHz. This peak could correspond to some odd harmonic of the internal
keyboard microcontroller, for instance the seventh (7.0× 4.0 MHz) for a micro-
controller inside the keyboard running at a frequency of 4.0 MHz, depending on
the device constructor, as described in [10, 11].

Hence the indirect emanations are also caused in our case by the cross-talk
and the coupling among the internal frequency clock of the keyboard’s microcon-
troller, the data and the clock frequency signal of the PS/2 line. Besides the FFT
applied on the whole black signal does not provide us every leaking frequencies.

Therefore we propose in the sequel an approach based on the correlation
between the red signal measured directly from the target system and the black
signal, noisy and distorted, received from antenna proposed. We can distinguish
the keystroke by the position of the falling edges of the data signal. We propose
to gather a large number of measurements with the same keystroke. Each pair is
composed of a red signal related to the data and a black signal from the antenna
as shown in Fig. 4. Then after acquisition the black signal is cut according to
the data, represented by the red signal.

Fig. 4. Red/Black signals

The parts of the black signal correspond respectively to the low state, high
state, falling edge and rising edge of the red signal, and an additional part
corresponding to the ambient noise. When no data are transmitted by the PS/2
link, the bus line is in the “Idle” state (see Section 2.1). This technique is also
used in [18]. After this windowing phase we perform a FFT for each part of the
measure. Each section of the signal is equal in term of number of samples. Then
we calculate an average spectrum and the variance for each part of the signal. It
is noticeable that the results do not change with the size of the window. Firstly
we introduce a technique inspired from the Correlation Power Analysis.

An approach based on the correlation between the red signal measured directly
from the target system and the black signal, noisy and distorted, received from
antenna is appropriate. As we will see in the next section, we can attribute to
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each part of the signal a specific spectral signature. We propose in Section 3.1
an empirical approach.

3.1 First Approach Based on the CPA

We use an approach derived from CPA, introduced in [3]. However we process
the signal in frequency domain, as already shown in these papers [8, 18]. They
introduced the DFA, i.e. the Differential Fourier Analysis. In this technique, the
FFT (Fast Fourier Transform) is used to avoid synchronization problems. In [17],
the FFT is used to mitigate randomization countermeasures like shuffling. Here
the FFT is used in order to select the frequencies which are carrying sensitive
information and their bandwidth for characterizing the EM side channel. It is
a profiling stage in the frequency domain that allows to learn details about
the frequencies that depend of the red signal state. Therefore we compute the
difference between

– the mean of the spectrum related to a specific state and
– the mean of the noise spectrum (i.e. when nothing occurs on the PS/2 link).

Then we divide this difference by the variance of the noise. It is suggested in [15]
that in some cases the normalization factor induces a high noise level in CPA
signal; to avoid this artifact, it is recommended to add a small positive constant
ε to the denominator.

Thus we obtained four vectors in frequency domain by computing:

ρ(f, State) =
E(f, State)− E(f,N)

σ(f,N) + ε
,

where E(f, State) and E(f,N) represent the averaged spectrum curve obtained
respectively for one state and for the noise. σ(f,N) stands for the variance
of the noise for every frequency f . State is a state from the StateSet set, de-
fined as the set containing all the possible configurations of the red signal:
StateSet = {High, Low, Falling,Rising}. The four frequency vectors corre-
sponding to each state are plotted in Fig. 5. From these curves, we can deduce
the range of frequencies that characterize each state.

The “correlation” level in ρ(f, Falling) is higher and contains a lot of fre-
quency peaks compared to the other frequency domains traces. We notice three
ranges of relevant frequencies:

– between 14.0 and 20.0 MHz,
– between 24.0 and 32.0 MHz,
– between 40.0 and 49.0 MHz.

3.2 Approach Based on Mutual Information Analysis

In Sec. 3.1, we highlighted a range of frequencies that can possibly carry infor-
mation about the red signal. Now we adopt an information theory viewpoint. In
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ρ(f, LowState) ρ(f,HighState)

ρ(f, FallingEdge) ρ(f,RisingEdge)

Fig. 5. Results of the Correlation for every state

previous work [20], Tanaka used the calculation of the channel capacity (using in-
formation theory) for evaluating the success rate of spied images reconstruction.
The author calculates the amount of information per pixel in the reconstructed
image and estimates a threshold from which it is effective. In our case, it is also
interesting to adopt a method based on the information theory, in order to re-
trieve the relevant frequencies and to bring evidence that the information is not
necessarily carried by the clock frequency and its harmonics such as specified by
Carlier et al. in [4, 5].

In 2008, Gierlichs introduced in [9] the Mutual Information Analysis. This
tool is traditionally used to predict the dependence between a leakage model and
observations (or Measurements). Therefore we can use it as a metric that gives
an indicator on carriers frequencies. To do so, we compute for each frequency
the Mutual Information (MI) I(Of ;State) between Observations Of and State
that corresponds to the state of the red signal. Thereby, if I(Of ;State) is close to
zero for one frequency, we can say that this frequency does not carry significant
information. On the contrary, if I(Of ;State) is high, the sensitive data and the
frequency are bound. If we filter the black signal around this frequency, we can
retrieve a significant part of the red signal. The MI is computed as:

I(Of ;State) = H(Of )−H(Of |State) , (1)

where H(Of ) and H(Of |State) are the entropies respectively of all the obser-
vations and of the observations in frequency domain knowing the State. Both
these entropies can be obtained according to:
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H(Of ) = −
∫ +∞

−∞
Pr(Of )(x) log2 Pr(Of )(x) dx ,

H(Of |State) =
∑

s∈State

Pr(s)H(Of |s) .

with

H(Of |s) = −
∫ +∞

−∞
Pr((Of )(x)|s) log2 Pr((Of )(x)|s) dx ,

where Pr(Of ) denotes the probability law of observations at frequency f . The
random variable Of takes its values x on R, and Pr(Of )(x) dx is the probability
that Of belongs to [x, x+ dx]. Besides we consider that the states configuration
are equi-probable events therefore ∀s ∈ State, Pr(s) = 1

4 . And the distribution
is assumed to be normal ∼ N(μ, σ2) of mean μ and variance σ2, given by:

Pr(Of )(x) =
1√

2πσ2
exp

(
− (x− μ)2

2σ2

)
,

we call a parametric model. We approximate this model by a parametric esti-
mation, and we use the differential entropy defined for a 1-dimensional normal
random variable Of of mean μ and standard deviation σ as the analytical expres-
sion: H(Of ) = log2(σ

√
2πe). From this value, the Mutual Information defined

in Eqn. (1) can be derived, by combining for each state the differential entropy:

I(Of ;State)=H(Of )−1
4

(H(f |High)+H(f |Low)+H(f |Rising)+H(f |Falling)) ,

that can be simplified as:

I(Of ;State) =
1
4

log2

σ4
Of

σOf ,High × σOf ,Low × σOf ,Rising × σOf ,Falling
. (2)

The figure 6 represents the result of Eqn. (2).
The result of the MIA are similar to that of ρ(f, FallingEdge): we obtain

the same ranges of relevant frequencies. In this respect, we confirm that some
frequencies radiate more information than the others. As this method provides
a result with a quantity expressed in bit, the leakage frequencies are easy to
interpret. Consequently we are now able to fairly compare the level of compro-
mising signal emanated by different keyboards or electronic devices. Such MI
metric also allow to quantify the level of protection against TEMPEST attacks.
In addition to the CPA approach, it is worthwhile to underline that MI considers
the non linear dependencies; this metric is able to capture any coupling, such as
cross-talk, that occurs when keys are pressed on a PS/2 keyboard.

3.3 Frequency Distinguisher in Principal Subspaces

The identification of relevant frequencies can also benefit from the PCA (Prin-
cipal Component Analysis). The PCA has been applied to side-channel analysis
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Fig. 6. Result of Mutual Information Metric I(f ; State)

by Archambeau et al. in [2] and Standaert et al. in [19] in the case of template
attacks. In order to investigate the benefit of PCA, we have adapted it to our
topic. In this approach, we use the same partitioning as defined previously in
section 3. The observations of black signal in frequency domain are classified
according to the state of the data signal, in order to build the covariance matrix.
We denote by μj(f) the average of the observations corresponding to a state j,
and by μ(f) the average of all the observations: μ(f) =

∑
j∈StateSet μj(f). The

attacker also computes the covariance matrix Σo, as:

Σo =
1
4

∑
j∈StateSet

(μj(f)− μ(f))(μj(f)− μ(f))T . (3)

The PCA gives us four main components, which are linear combinations of the
four per state black signals averages in frequency domain. These components
form a basis, which characterizes four modalities of compromise. The main leak-
age modality is given by PCA as the eigenvector corresponding to the largest
eigenvalue. The four eigenvectors are plotted in Fig. 7.

On the first eigenvector, the three frequencies ranges identified by CPA and
MI are visible. Nonetheless, the ranges [24.0, 32.0] MHz and [40.0, 49.0] MHz
have a small amplitude and are noisy. Additionally, one narrow peak appears
at f = 27 MHz, that can be bound to the frequency of the keyboards’ micro-
controller. The second eigenvector is very similar to the first one. Anyway the
ratio between the largest eigenvalue and the second one is greater than five or-
ders of magnitude. This means that the first direction contains an overwhelming
quantity of information. The fourth eigenvalue is theoritically null, but because
the covariance matrix is badly conditioned the numerical computation yields
value 2 × 107 this indicates that the eigenvector corresponding to small eigen-
value are very approximative, thus untrustworthy. Therefore the two last ones
carry mostly noise information. However the PCA does not consider the non-
linear dependencies.
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First eigenvector value=7.2× 1014 Second eigenvector value=2.3× 109

Third eigenvector value=3.5× 107 Fourth eigenvector value=2.0× 107

Fig. 7. The four eigenvectors obtained by PCA

Table 1. Drawbacks and advantages of the three analyzed distinguishers

Distinguisher Advantages Drawbacks

CPA � Easiest method. � Empirical methods.
� Four curves results.
� Hard to compare two implementations.
� Only linear dependencies considered.

MIA � Based on information theory.
� Single curve result.
� Commensurable results (Mutual Information
values are expressed in bits).
� Non-linear dependencies considered.

PCA � Hard to compare two implementations.
� Results are not only on first eigenvector.
� Spurious peaks appear.
� Only linear dependencies considered.

To summarize, in Tab. 1 we establish a comparison between the different
methods.

To check the results obtained with the three previous methods, two ways can
be followed. The first one consists in using a hardware receiver, as described by
Agrawal in [1] and Kuhn in [7]. The second one consists in software demodulation
thanks to an appropriate filtering.

4 Extraction of the Compromising Signal.

4.1 Confirmation of the Results with a Hardware Receiver.

Different types of hardware receivers exist. We can cite receivers such as de-
scribed by Agrawal in [1] or Kuhn in [7]. Typically, Kuhn presents in his PhD
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thesis the R-1250 produced by Dynamics Sciences. Those receivers are super-
heterodyne and wide-band. They offer a large panel of configurations. For exam-
ple, they can be tuned continuously between 100 Hz and 1 GHz and they offers
the selection of 21 intermediate frequency bandwidths from 50 Hz to 200 MHz.
They switch automatically between different pre selection filters and mixers de-
pending on the selected tuning frequency. Therefore those devices are quite ex-
pensive and uncommon. These devices are usually used to receive an Amplitude
Modulated narrow-band signal:

s(t) = A · cos (2πfct) · [1 + m · v(t)] ,

where fc is the carrier frequency, v(t) is the broadcast signal, A is the carrier’s
amplitude and m is the modulator’s amplitude.

With such a device, we successfully demodulate the black signal at various
frequencies, as shown in Fig. 8. We focus on a range of frequencies between 0.0
and 50.0 MHz, and demodulate at the frequencies exhibited by the previous
methods (PCA, MIA and PCA), at 17.0 MHz, 27.0 MHz and 41.0 MHz with
a bandwidth of 1 MHz. Each time, the demodulated signal shows a peculiarity
that allows to distinguish clearly the state of the red signal. More precisely, the
falling edge of the red signal is indicated by a clear peak. This concurs with the
observation about the “falling edge transition technique” explained by Vuagnoux
in [21]. Also, it is consistent with observations from Section 2.1.

Moreover the data are read on the falling edge of the clock. Consequently
the falling edge of the clock occurs just after the falling edge of the data, as
already shown in Fig. 1. We see on the demodulated signal that the energy at
dates corresponding to the clock falling edges is not constant. Empirically, clock
peaks have more energy when the state of data signal is high, and are doubled
by falling transitions of the signal data. This is another leakage that can be used
to recover the red signal.

During these experiments we noticed an other kind of compromising signal
not based on the “Falling edge Transition Technique”. As shown in Fig. 8, at
the frequency 36.0 MHz, only the signal related to data (falling edge) appears,
whereas the peaks bound to the clock completely disappear. This compromising
signal is not very obvious to characterize, and requires some care to find the ade-
quate frequency of demodulation. In this case, the TEMPEST receiver definitely
provides us the setup to pinpoint this compromising frequency.

4.2 Software Filtering

To estimate the part of the sensitive signal contained in our measurements, and
also to find the compromising signal, we devise a software band-pass filter by
using MATLAB. We perform bandpass filtering within the range frequencies
identified during the leaking frequencies characterization stage.

We propose to realize a filter based on the zero padding technique in frequency
domain: its frequency response is sketched in Fig. 9. The complete software
demodulation consists of:
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Red signal Demodulation at 17.0 MHz.

Demodulation at 27.0 MHz. Demodulation at 41.0 MHz.

Demodulation at 36.0 MHz.

Fig. 8. Results of demodulation (red signal, and black signal demodulated at 17.0 MHz,
27.0 MHz,41.0 MHz and 36.0 MHz)

– converting the black signal from the time to the frequency domain thanks
to an FFT,

– multiplying this signal with our pass-band filter,
– converting back the signal from the frequency to the time domain thanks to

an IFFT.

This process allows to obtain the approximative shape of the demodulated signal,
from which we are hopefully able to extract the key that was pressed.

The figure 10 shows the result of a single black curve demodulated by this
software approach. We can distinguish the compromising signal, i.e. the falling
edge of the data line. Furthermore, the levels of the compromising signal related
to PS/2 clock do not have the same amplitude: it is directly linked to that of
the red signal’s state.

Those observations do match those obtained with the hardware demodulator.
Thus the software filtering process offers the possibility to have a coarse idea of
the compromising signal shape.
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Magnitude

F1 F2

1

0 Frequency

Fig. 9. Design of bandpass filter

Bandpass filtering 21.0− 27.0 MHz (No Signal) Bandpass filtering 14.0− 20.0 MHz

Bandpass filtering 24.0− 32.0 MHz Bandpass filtering 40.0− 49.0 MHz

Bandpass filtering 35.5− 36.5 MHz (No Signal)

Fig. 10. Results of software demodulation

Nevertheless with this tool we do not have the advantage of hardware demod-
ulation:

– the bandwidth of the software filter is larger: it cannot be set that narrow
as the 1 MHz of the hardware receivers;

– the compromising signal at 36 MHz spotted by the hardware receiver is not
visible with the software filtering: no compromising signal is visible.
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5 Conclusion

We introduce a new set of techniques to extract the leakage frequencies of the
black signal providing information about the red signal. They have successfully
been tested on the electromagnetic emissions of a PS/2 keyboard intercepted at
a distance of 5 meters. By the help of side channel analysis methods applied in
frequency domain, we are able to distinguish the frequencies that are more leak-
ing sensitive information and their bandwidth. Thanks to these tools (inspired
from CPA, MIA and PCA), we demonstrate that we are in position to give quick
diagnostics about EM leakage.

Our experiments show that the leakage is carried by some frequencies that
are not necessarily the harmonics of the clock frequency. This confirms the ob-
servations previously done in the work of M. Hutter et al. [12]. We also notice
that our three methods retrieve the same compromising spectrum shape, and
consequently the same leakage frequencies. CPA and MIA yield clearly the most
accurate results. Some frequencies that leak more sensitive information than
others might result from intermodulation. We show that the red signal can be
recovered from the demodulation of the black signal, either with a hardware
receiver or by a software band-pass filtering technique, which consists merely
in selecting frequencies of interest from the FFT of the black signal. Despite
its simplicity, this filter enables an identification of the leakage in time domain.
We could successfully characterize the leaking frequencies from our black signal
using our methods. This allows us to recover the secret information which is the
red signal in this case. However, these generic methods could also be applied in
different contexts, for instance RSA recovering key problematics. Indeed in asym-
metric cryptography, the sequence of operations are secret dependant. Someone
able to find out square and multiply operation sequences occurring during an
RSA encryption is able to recover the private exponent. A possible extension to
this work could consist in applying our methodology to a confidential sequence
of operations.
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Abstract. In recent years, theoretical cryptography community has fo-
cused on a fascinating research line of obfuscating programs (circuits).
Loosely speaking, obfuscating a program P is to construct a new pro-
gram which can preserve P ’s functionality, but its code is fully “un-
intelligent”. No adversary can understand the obfuscated program or
reverse-engineering it.

In TCC’10, Goyal et al. showed how to obfuscate any circuit (pro-
gram) with tamer-proof (stateless) hardware. In their construction, the
hardware executes most computation and the software executes a few,
and the software needs to interact with the hardware Θ(z) times if the
original circuit is of size z. Thus if a user wants to gain the outputs of the
obfuscated circuit on different inputs, he cannot fast the computation by
running multiple instances of the obfuscated circuit concurrently well.

In this paper we propose an alternative construction of obfuscating
circuits (programs) with tamper-proof hardware. The notable characters
of our construction are that the required hardware is still universal in
obfuscating circuits and that for a specific circuit the computation on the
instantiated hardware is independent of the size of the circuit. When a
user runs multiple instances of the obfuscated circuit with different inputs
concurrently, the software and hardware have reasonable computation
load and thus the entire computation can run almost in parallel and
thus be fasten.

Keywords: Obfuscation, Tamper-proof Hardware.

1 Introduction

In recent years, theoretical cryptography community has focused on a fascinating
research line of obfuscating programs (circuits). Loosely speaking, obfuscating
a program P is to construct a new program which can preserve the functional-
ity of P , but its code is fully “unintelligent”. Any adversary can only use the
functionality of P and cannot learn anything more than this, i.e. cannot reverse-
engineering nor understand it. In other words, an obfuscated program should not
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reveal anything useful beyond executing it. This highlights a way of designing
reverse-engineering resistent software or cryptographic hardware (chips) which
can resist against white-box (grey-box) cryptanalysis, e.g. physical attacks and
side channel attacks, in a provable manner.

Barak et al. [5] formalized the definition of obfuscation through a simulation-
based definition called the virtual black-box property, which says that every
adversary has a corresponding simulator that emulates the output of the adver-
sary given oracle (i.e., black-box) access to the same functionality being obfus-
cated. Following [5], many works focused on how to obfuscate different crypto-
graphic functionalities. Among them, there are some negative results, e.g. [5,18].
[5] showed there doesn’t exist any general obfuscation method for all programs.
[18] showed many natural cryptographic functionalities cannot be obfuscated.
On the other hand, there exist some positive results, e.g. [8,12,10,22,23,27,24].
Among these positive results, [22,24] demonstrated how to securely obfuscate
the two complicated functionalities in cryptography, i.e. re-encryption and en-
crypted signature, while others focused on a very basic and simple primitive,
i.e. (multiple-bit) point functions, traditionally used in some password based
identification systems.

Though we have achieved a few positive results on obfuscation, these positive
results are insufficient to provide solutions for many interesting problems in cryp-
tography. On the other hand, a number of works (e.g. [31,14,30,17,25,9,29,13,19])
have investigated using tamper-proof hardware tokens as tools to achieve a va-
riety of cryptographic goals, including obfuscation. In this research line, Gold-
wasser et al. [19] proposed using a simple hardware to construct one-time pro-
grams which can only be run once and what an adversary can learn from the
description of a program as well as a pair of input-output is also computable
from oracle access to the program once. Recently, Goyal et al. [21] showed how
to construct an obfuscation for any program/circuit based on some stateless
hardware. By stateless, we mean the hardware doesn’t keep any state after fin-
ishing one computation. (Contrary to this, stateful hardware can store the state
in one computation and may use it in the next computation. It can be seen
the tamper-proof stateful assumption is stronger than the tamper-proof state-
less assumption for hardware. In this paper hardware always refers to stateless
hardware.)

Goyal et al.’s construction [21] assumed that the hardware token can execute a
non-malleable symmetric encryption scheme and a MAC scheme and a pseudoran-
dom function in a black-box way. For a circuit C, its obfuscated version consists
of a software part and a hardware token, in which the software part contains ci-
phertexts of all bits of C (represented as a string) and ciphertexts of all gates and
all output wires of C. When a user needs to run the obfuscated circuit on input x,
he needs to first compute ciphertexts of all bits of x and then compute values of
all internal wires gate by gate. During this computing, all encryption/decryption
and MAC operations are performed by the hardware token, while the software
part only executes a few computation. Further, if C is of size z, then the software
part needs to interact with the hardware token Θ(z) times.
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Consider such a scenario, in which the user wants to execute the obfuscated
program/circuit on different inputs. To fast the computation, he is willing to
run multiple instances of the obfuscated circuit concurrently on these inputs.
Since the software part of the obfuscated circuit can be copied and executed in
an arbitrary manner, the user can invoke the multiple instances of the software
part on different inputs. But since there is only one hardware token, these in-
stances need to interact with this unique hardware token concurrently. If most
computation are performed by the hardware token, the possible situation will
be that the hardware token is over-loaded while the instances of the software
part are usually idle. Thus the user cannot fast the computation by adopting
the concurrent executions.

Thus a problem arises whether or not we can transfer much computation from
the hardware token to the software part. That is, can we propose an alterna-
tive approach of obfuscating circuits with tamper-proof hardware in which the
software part performs most computation while the hardware token performs a
few. If we can, then when the user runs multiple instances of the software part
to interact with the hardware token, these instances can run concurrently and
interact with the unique hardware token. So, in the concurrent computation all
parties have reasonable computation load and thus the entire computation can
run almost in parallel and thus be fasten. In this paper, we are interested in this
problem and attempt to provide a solution to it.

1.1 Our Result

We present an alternative construction of obfuscating polynomial-size circuits.
In this construction the software part admits most computation load while the
hardware token admits a few and its running-time is a fixed polynomial no matter
how large the size of C is (but related to the number of C’s output wires). Thus
when multiple instances of the software part are invoked to interact with the only
hardware token, all parties have balance load and the bad situation mentioned
previously will not occur. Thus the concurrent executions can fast the entire
computation.

The required hardware token in this construction is universal, like the one in
[21], in obfuscating circuits. This means we don’t need to design different hard-
ware for different circuits. Our construction requires the tamper-proof hardware
token can execute encryption and decryption of a fully homomorphic encryption
scheme (without running Evaluate) (e.g. the one in [15]) and a MAC scheme etc.
In an execution of the obfuscated circuit, the software part and the hardware to-
ken only need constant-round interaction, and the computation on the hardware
is independent of the size of the circuit.

Our Technique. Our technique can be briefly sketched as follows. First of
all, our basic idea is to use a fully homomorphic encryption scheme as a main
ingredient, as shown in [16] (Sect 1.8) which mentioned some applications of fully
homomorphic encryption by using this basic idea, to construct the obfuscation
in which most computation can be transferred from the hardware token to the
software part. Very briefly, the software part contains a ciphertext of the circuit
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C. When the user needs to compute C(x), the software part first sends x to the
hardware token and obtains a ciphertext of x and then runs algorithm Evaluate
to generate the ciphertext of U(x, C) where U is the universal circuit satisfying
U(x, C) = C(x). Lastly, he sends this ciphertext to the hardware token to obtain
the plaintext, which is C(x). Moreover, we adopt the idea in constructing the
universal argument in [4] (based on [26]) which employs a PCP system and a
random-access hashing scheme (i.e. tree hashing) in the construction, which can
further make the hardware universal, i.e. the hardware can handle any circuit.
Further we adopt a MAC scheme, as shown in [21], to prevent adversaries to
send fake messages to stateless hardware. Combining these techniques, we can
achieve all the desired goals.

1.2 Organizations

The rest of the paper is arranged as follows. Section 2 presents preliminaries this
paper needs. Section 3 presents our construction of obfuscating circuits. Section
4 concludes this paper.

2 Preliminaries

This section contains some basic notations and definitions of random-access
hashing, obfuscation, MAC, fully homomorphic encryption, probabilistically
checkable proofs (PCP) and universal arguments.

2.1 Basic Notions

A function μ(·), where μ : N → [0, 1] is called negligible if μ(n) = n−ω(1) (i.e.,
μ(n) < 1

p(n) for all polynomial p(·) and large enough n’s). We will sometimes
use neg to denote an unspecified negligible function.

In this paper “PPT” machines always refer to non-uniform probabilistic
polynomial-time machines unless explicitly stated. We say that two probabil-
ity ensembles {Xn}n∈N and {Yn}n∈N are computationally indistinguishable if
for every PPT distinguisher D it holds that |Pr[D(Xn) = 1]−Pr[D(Yn) = 1]| =
neg(n). We will sometimes abuse notation and say that the two random vari-
ables Xn and Yn are computationally indistinguishable when each of them is a
part of a probability ensemble such that these ensembles {Xn}n∈N and {Yn}n∈N

are computationally indistinguishable. We will also sometimes drop the index n
from a random variable if it can be inferred from the context. In most of these
cases, the index n will be the security parameter.

2.2 Hashing and Tree Hashing

Definition 1. An efficiently computable function ensemble {hα}α∈{0,1}∗, where
hα : {0, 1}∗ → {0, 1}|α| is called collision resistent hash functions if for every
PPT A, Prα←R{0,1}n [A(α) = 〈x, y〉 s.t. x �= y and hα(x) = hα(y)] < neg(n)
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Definition 2. A random-access hash scheme is an ensemble {〈hα, certα〉}α∈{0,1}∗

of a pairs of efficiently computable functions, where hα : {0, 1}∗ → {0, 1}|α| and
certα takes two inputs x, i, where x ∈ {0, 1}∗ and |i| = log|x|, and a polynomial-
time algorithm V that satisfy the following properties:
Efficiency: |certα(x, i)| = poly(|α|, log|x|)
Completeness: For every α, x, Vα,hα(x)(i, xi, certα(x, i)) = 1.
Binding (Soundness): For every polynomial-sized circuit family {Cn}n∈N,
Prα←R{0,1}n [Cn(α) = 〈y, i, σ0, σ1〉 s.t. Vα,y(i, 0, σ0) = 1 and Vα,y(i, 1, σ1) =
1] < neg(n)

Constructing a random-access hashing scheme using hash trees. There
is a well known construction due to Merkle of a random-access hash scheme
based on any collision-resistent hash function ensemble [28].

2.3 Obfuscation

We adopt the following definition of obfuscation with respect to circuits explic-
itly, which strengthes the virtual black-box property presented in [8,7,32]. In
[8,7,32], the virtual black-box property only requires for each D, p there exists a
S such that |Pr[D(O(f)) = 1] − Pr[D(Sf(·)) = 1]| < 1/p(n), while we require a
universal S satisfying for each D, |Pr[D(O(f)) = 1]−Pr[D(Sf(·)) = 1]| = neg(n).
We adopt this stronger definition since our construction can satisfy it.

Definition 3. Let Fn be a family of polynomial-size circuits in which each is
of size z(n) and n input wires and l(n) output wires. Let O be a uniform PPT
algorithm which maps (description of) each circuit f ∈ Fn to a circuit O(f).
We say that O is an obfuscator iff the following holds:

Functionality: for all n ∈ N, all f ∈ Fn, and all O = O(f), we have that O
computes the same function as f . That is, for every x ∈ {0, 1}n, O(x) = f(x).

Virtual black-box property: There is a uniform PPT simulator S such that for
each PPT D and each f ∈ Fn |Pr[D(O(f)) = 1]− Pr[D(Sf(·)(z(n), l(n), 1n)) =
1]| = neg(n).

2.4 Message Authentication Codes

We use the following standard definition of message authentication codes.

Definition 4. A message authentication code (MAC) MAC = (G; Sig; Ver) con-
sists of the three uniform PPT algorithms with the following semantics:
1. The key generation algorithm G samples a key k.
2. The signature algorithm Sig signs a message M ∈ {0, 1}∗ and produces a MAC
σ. We write σ ← Sig(k; M).
3. The verification algorithm Ver verifies a MAC σ for a message M . We write
ver ← Ver(k; σ; M), where ver ∈ {0, 1}.

We require perfect correctness, i.e., Ver(k; Sig(k; M); M) = 1 for all M and
all possible k.



492 N. Ding and D. Gu

Security of MAC. In this paper, we demand that MACs possess the security
of strong unforgeability under chosen message attack (SUF-CMA) in the sense
defined in [6]. That is, the forged message does not have to be new as long as
the MAC was not previously attached to this message by the legitimate parties.

2.5 Fully Homomorphic Encryption

We introduce the following definition of fully homomorphic encryption schemes
(FHES) presented in [15].

Definition 5. The scheme FHES = (Gen; Enc; Dec; Evaluate) consists of the four
uniform PPT algorithms with the following semantics:
1. (Gen; Enc; Dec) constitutes an ordinary public-key encryption scheme.
2. For a given t-input circuit C, for any m1, · · · , mt, and any ciphertexts c1, · · · ,
ct with ci ← Enc(pk; mi), it is the case that Dec(sk; Evaluate(pk; C; c1, · · · , ct)) =
C(m1, · · · , mt).
3. There exists a fixed polynomial f such that, for every value of the security
parameter n, the decryption algorithm can be expressed as a circuit of size at
most f(n). (It is required that the number of C’s output wires is fixed in advance,
say 1 output wire. Then this condition means ciphertext size and decryption time
to be upper bounded independently of C. If C is of many output wires, let Evaluate
compute a ciphertext for each output and then all the ciphertexts are viewed as
the ciphertext of C’s whole output.)

Security of FHES. We demand FHES possesses the security of IND-CPA as
shown in [15].

2.6 PCP and Universal Arguments

PCP systems are probabilistic proof systems for deciding languages in Ntime(t)
where t can be a super polynomial. A PCP system for a language L ∈ Ntime(t)
refers to a pair of machines, denoted (PPCP, VPCP), where for a public input
x ∈ L PPCP generates a proof π from the witness for x and VPCP on oracle
access to the proof π accepts or rejects the input x. The notable character of
PCP systems is that the verifier VPCP can be a uniform PPT machine.

The standard definition of the PCP refers to two recourses of the verifier,
i.e. the numbers of coin tosses and positions in π VPCP needs to access. Since
our paper will not refer to the two recourses explicitly, we omit presenting the
rigorous definition of the PCP, which can be found in [1,2]. Further, in this
paper we always require perfect completeness and negligible soundness error
probability for PCP systems.

[26] showed how to use the PCP system for any language L ∈ NEXP, e.g. [3],
together with a random-access hashing scheme (tree hashing) to construct an
argument in which the communication complexity can be dramatically decreased
and the verifier runs in a fixed polynomial-time. In this construction, verifier first
sends a random hash function to prover. Then prover sends the root of the hash
tree of the PCP proof π using the tree hashing scheme. Third, verifier chooses a
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random challenge. Lastly, prover sends the values of the positions in π decided
by the challenge as well as the certificates and verifier verifies if the certificates
are valid and then runs VPCP to verify if the values are correct and accepts the
public input iff VPCP accepts.

[4] called this argument the universal argument and showed a weak proof
of knowledge property, i.e. if prover can convince verifier that x ∈ L where
L ∈ Ntime(t) with non-negligible probability, then there exists a polynomial-
time extractor which on oracle access to this prover, can output an implicit
witness for x with non-negligible probability and then runs the implicit witness
within tO(1) steps to obtain an explicit witness.

3 Our Result

In this section we present our construction of obfuscation for polynomial-size
circuits (polynomial-time programs). In Section 3.1 we present our obfuscation
as well as illustrating some obvious properties, e.g., the universal property of the
hardware token, and lastly present a theorem that claims that our construction
is indeed an obfuscation for circuits. In Section 3.2 we present the proof of the
theorem and thus finish the description of our result.

3.1 The Construction

Assume the circuit we need to obfuscate is C of size z(n) and n input wires
and l(n) output wires where z(n) and l(n) are publicly known. (If we need to
obfuscate a program P with running-time T , we can first construct a circuit
ensemble in which the nth one is equivalent to P ’s computation on all n-bit
inputs.) Let {Un}n∈N be a universal circuit ensemble in which Un on two inputs
Input ∈ {0, 1}n, Circuit ∈ {0, 1}z(n) where Circuit is the description of a circuit
of n input wires and l(n) output wires, outputs Circuit(Input) (note that for
different z(n) and l(n), {Un}n∈N is different).

Assume FHES = (Gen; Enc; Dec; Evaluate) is a fully homomorphic encryption
scheme with security of IND-CPA, and MAC = (G; Sig; Ver) is a SUF-CMA
MAC scheme. Note that in FHES, the algorithms Gen, Enc, Dec run in fixed
polynomial-time, while the running-time of Evaluate is mainly decided by the
second parameter, i.e. the description of a circuit (refer to Definition 5). Thus
the running-time of Evaluate cannot be bounded by any fixed polynomial since
the circuit can be arbitrarily large.

Define an Ntime(nlog log n) language Λ in which each instance can be parsed as
(c, H, V ) and possesses a witness (EncInput, EncCircuit, pk, Un, h, r) such that c =
Evaluater(pk; Un; EncInput, EncCircuit) and H = h(EncCircuit) and V = h(Un),
where h is a hash function of a tree hashing scheme, and EncInput and EncCircuit
are promised being two ciphertexts (EncInput and EncCircuit will be ciphertexts
of Input and Circuit in our construction). We assume the collision resistance of
the hash functions holds for all nO(log log n)-time (non-uniform) machines.
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We comment that if we only need to design the hardware for obfuscating C, we
can define Λ as an NP language. But since we want to make the hardware univer-
sal for obfuscating any polynomial-size circuit which size cannot be bounded in
advance. So we relax Λ to be a language in Ntime(nlog log n). Let (PPCP, VPCP)
be a PCP system for Λ with negligible soundness error, e.g. the one in [3], in
which PPCP is relatively efficiently, i.e., its running-time is a polynomial in the
time of verifying Λ, and it has a weak proof of knowledge property (refer to [4]).

Requirements on hardware. We require that the tamper-proof hardware
token can execute Enc and Dec of FHES (without running Evaluate) and MAC etc.

Construction. We now turn to describe the obfuscation of C. We first describe
the idea underlying the construction. Denote by sender the party who prepares the
obfuscated circuit and by receiver the party who uses the circuit. The obfuscated
circuit consists of a software part and a hardware token. Our goal is to reduce the
computation on the hardware token and reduce the interaction times to constant.

Briefly, the sender first generates the following information, i.e. the public key
and secret key of FHES, the key of MAC and the random hash function. Then
encrypt C (represented as a string) and hash the ciphertext. Lastly, choose the
appropriate universal circuit Un and hash it. Thus, the public key, the ciphertext
of C, Un, the hash function and the hashing values represent the software part
of the obfuscated circuit. Then the sender constructs the hardware token which
can execute FHES (without executing Evaluate) and MAC. When obtaining the
obfuscated circuit and starting to execute the circuit with an input x, the receiver
first obtains a ciphertext of x by access to the hardware token. Then he runs
Evaluate of FHES to compute a ciphertext of Un(x; C) (note that he possesses
the ciphertexts of x and C). Lastly, he queries the hardware token for decrypting
this ciphertext to obtain the plaintext, which is Un(x, C) = C(x).

From the above description, we can see the computation on the hardware
token is independent of the size of C, while the heavy computation (i.e., running
Evaluate and PPCP of the PCP system) is performed by the software part. In
the following we present the strategies of the sender and receiver in detail.

The sender. The sender runs Gen of FHES to gain (pk, sk) and G of MAC to
obtain the key s and chooses randomly a hash function h on security parameter
n. Then compute a ciphertext c0 ← Enc(pk; C) and H ← h(c0) and V ← h(Un).
(pk, h, c0, H, V, Un) represents the software part of the obfuscated circuit. Then
the sender constructs the hardware token T which possesses (sk, pk, s, h, H, V ).
Notice that (sk, pk, s, h, H, V ) is independent of the size of C. The software part
and T constitute the obfuscated circuit, denoted OBC.

The receiver. On obtaining the obfuscated circuit OBC, the receiver runs the
software part and T of OBC on an input x ∈ {0, 1}n as follows:

1. Software. The software part sends x with query type 1 to the token T .

2. Hardware. On receiving the query x of type 1, T computes c1 ← Enc(pk; x)
and MAC1 ← Sig(s; c1). Output (x, c1, MAC1). (If the query is not of the
required form, respond ⊥. Similarly for queries of types 2, 3 and 4.)
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3. Software. On receiving (x, c1, MAC1), the software part computes c2 ←
Evaluate(pk; Un; c1; c0). Then employ PPCP’s strategy of the PCP system
to compute the PCP proof π from the witness for (c2, H, V ) ∈ Λ. Send
(c1, MAC1, c2) with query type 2 to T .

4. Hardware. On receiving the query (c1, MAC1, c2) of type 2, T verifies if
MAC1 is a MAC of c1, output ⊥ if not. Else, T randomly chooses a hash func-
tion h∗ of the tree hashing scheme, and computes c3 ← Enc(pk; h∗||c1||c2)
and MAC3 ← Sig(s; c3), where “||” denotes concatenation operation. Output
(h∗, c3, MAC3).

5. Software. On receiving (h∗, c3, MAC3), the software part uses h∗ to compute
the root value of π according to the tree hash scheme, i.e. root ← h∗(π), and
sends (c3, MAC3, root) with query type 3 to T . (Note that we don’t need
to make the PCP proof zero-knowledge or satisfy some other security since
T is always honest and that using the PCP system together with the tree
hashing scheme aims to make T universal in obfuscating any C.)

6. Hardware. On receiving the query (c3, MAC3, root) of type 3, T verifies
if MAC3 is a MAC of c3, output ⊥ if not. Else, choose a poly-bit random
challenge ch and compute c4 ← Enc(pk; ch||root||c3) and MAC4 ← Sig(s; c4).
Output (ch, c4, MAC4).

7. Software. On receiving the response (ch, c4, MAC4), the software part gath-
ers those values of the desired positions in π determined by ch as well as
the certificates in tree hashing using h∗, denoted v. Send (v, c4, MAC4) with
query type 4 to T .

8. Hardware. On receiving the query (v, c4, MAC4) of type 4, T verifies the
following conditions and if any one is not satisfied, output ⊥:

(a) Verify if MAC4 is a MAC of c4.

(b) Decrypt c4 to obtain (ch, root, c3) and decrypt c3 to obtain (c1, c2, h
∗).

(c) Verify if v is consistent with ch, h∗, root and adopt VPCP’s strategy to
verify if the values of the desired positions determined by ch in v is valid
for (c2, H, V ) in Λ.

If all these conditions are satisfied, decrypt c2 and output the plaintext.
(It can be seen that if we are oblivious of MAC, the usage of the PCP sys-
tem together with the tree hashing scheme in this obfuscation is essentially
the same as that in the universal argument in [4]. Thus if a malicious soft-
ware part can convince the hardware that (c2, H, V ) ∈ Λ with non-negligible
probability, then there is an extractor which on oracle access to the software
part, can output the original witness within nO(log log n) time.)

9. Software. The software part outputs this plaintext as the final output.

So far we have completed the description of OBC. Obviously, the software
part and T are polynomial-time strategies for polynomial-size C and only in-
teract constant times in a honest execution. It can be seen that T is univer-
sal since its strategy is independent of C and even if input/instantiated with
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(sk, pk, s, h, H, V ), its computation is still independent of the size of C (it is
related to l(n)), while the software part admits the heavy computation, i.e. run-
ning Evaluate and PPCP. Thus all that is left is to show OBC is indeed an
obfuscation of C, as the following theorem states.

Theorem 1. OBC is an obfuscation of C.

In the next subsection we will present the proof of this theorem.

3.2 Proof of the Theorem

In this subsection we prove Theorem 1. To this end, we need to show the function-
ality and virtual black-box properties can be satisfied, as Definition 3 requires.

Functionality. Since the plaintexts of c1, c0 are x and C respectively and c2 =
Evaluate(pk; Un; c1; c0), we have c2’s plaintext is Un(x, C) = C(x). Thus when
honestly running OBC, OBC(x) = C(x) for each x ∈ {0, 1}n.

Virtual black-box property. To show this, we need to prove there is a uni-
form PPT simulator Sim, such that for any distinguisher D, D cannot distin-
guish OBC from SimC(·)(z(n), l(n), 1n). In the following we first present the
construction of Sim and then show the indistinguishability.

Construction of Sim. Sim first prepares the following fake information: It in-
dependently runs Gen of FHES to obtain (pk′, sk′) and G of MAC to obtain s′ and
chooses a dummy circuit C′ of size z(n) and n input wires and l(n) output wires,
and a random hash function h′. Then compute a ciphertext c′0 ← Enc(pk′; C′)
and H ′ ← h′(c′0) and V ′ ← h′(Un). (pk′, h′, c′0, H

′, V ′, Un) represents the soft-
ware part of the fake obfuscated circuit, denoted OBC′. (Actually, Sim only
generates the software part and emulates the hardware token with the fake pa-
rameters in answering queries). Then Sim puts the software part of the fake
obfuscated circuit as input to D and runs S (a part of Sim) with the fake
parameters to emulate T to answer D’s oracle queries. In answering queries, S
basically follows T ’s strategies described previously except that S records all D’s
queries and the responses and organizes them in trees as the following shows:

1. When it receives a query of type 1 (if the query is not of the required form,
respond ⊥. Similarly for queries of types 2, 3 and 4), denoted q1, S thinks this
is a new execution of the obfuscated circuit and creates a new tree for this
execution, even if there already exist some queries of type 1 which has the
same content with q1. Follow T ’s strategy to output the response, denoted
res1. Let (q1, res1) be the root of this tree.

2. When it receives a query of type 2, which can be parsed as (c1, MAC1, c2), S
traces roots (i.e. level 1) of all trees and checks if there exists a root in which
the response contains (c1, MAC1). If not, respond ⊥. Else, w.l.o.g. denote
this root by (q1, res1). (If there are more than one trees satisfying the search
requirement, choose an arbitrary one, e.g. the first one, and proceed.) Denote
this query (c1, MAC1, c2) by q1k. Then S follows T ’s strategy to generate and
output the response, denoted res1k. Insert (q1k, res1k) to the tree as the kth
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son of (q1, res1), where assume there already exist k − 1 sons of (q1, res1)
(note that D can re-compute or replay a query to the stateless T ).

3. When it receives a query of type 3, which can be parsed as (c3, MAC3, root),
S traces all trees and checks if there exists a node in level 2 in some tree
in which the response contains (c3, MAC3). If not, respond ⊥. Else, w.l.o.g.
denote this node by (q1k, res1k). (If there are more than one nodes in all
trees satisfying the search requirement, choose an arbitrary one and proceed.)
Then follow T ’s strategy to generate the response. W.l.o.g. denote this query
(c3, MAC3, root) by q1kt and its response by res1kt. Insert (q1kt, res1kt) to the
tree as the tth son of (q1k, res1k), where assume there already exist t−1 sons
of (q1k, res1k).

4. When it receives a query of type 4, which can be parsed as (v, c4, MAC4), S
traces all trees and checks if there exists a node in level 3 in some tree in which
the response contains (c4, MAC4). If not, respond ⊥. Else, w.l.o.g. denote this
node by (q1kt, res1kt). (If there are more than one nodes in all trees satisfying
the search requirement, choose an arbitrary one and proceed.) Then follow
T ’s strategy to verify the 3 conditions. If verification fails, respond ⊥. Else,
S retrieves the input x from the root in the tree this node belongs to. Send
this input to the oracle C(·) and lastly respond what C outputs. W.l.o.g.
denote this query (v, c4, MAC4) by q1ktj and its response by res1ktj . Insert
(q1ktj , res1ktj) to the tree as the jth son of (q1kt, res1kt), where assume
there already exist j−1 sons of (q1kt, res1kt). Note that the node containing
(q1ktj , res1ktj) is also a leaf of the tree.

Now we adopt a game-based technique to show for each PPT distinguisher D,
|Pr[D(OBC) = 1] − Pr[D(SimC(·)(z(n), l(n), 1n)) = 1]| = neg(n).

Game 0. Let Game 0 denote the computation of D(OBC) (note that D can
only access T in the oracle manner). Let out0 denote D’s output.

Game 1. Game 1 is identical to Game 0 except that T is emulated by S1 with all
the true information (i.e. (sk, pk, s, h, H, V ), in this proof the true information
doesn’t contain the description of C), where S1 is identical to S except that in
answering each query of type 4, S1 doesn’t retrieve x from the root in the tree
this query belongs to. Instead, it decrypts c2 and outputs c2’s plaintext. Let out1
denote D’s output. We now show that |Pr[out0 = 1] − Pr[out1 = 1]| = neg(n).

Let bad denote the event that in the two games D sends a query of type i
(1 < i ≤ 4) satisfying that the pair of ciphertext-MAC contained in this query
can pass T ’s or S1’s verification but it was not output by T or S1. It can be seen
that on the occurrence of ¬bad, Game 0 and Game 1 proceed identically, i.e.
Pr[out0 = 1|¬bad] = Pr[out1 = 1|¬bad]. We show Pr[bad] = neg(n). In fact, the
occurrence of bad means D can forge a MAC. By the unforgeability of MAC, we
have Pr[bad] = neg(n). Thus, combining Pr[out0 = 1|¬bad] = Pr[out1 = 1|¬bad]
with Pr[¬bad] = 1 − neg(n), we have |Pr[out0 = 1] − Pr[out1 = 1]| = neg(n).
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Game 2. Game 2 is identical to Game 1 except that S1 is replaced by S (with
the true information and oracle access to C(·)). Let out2 denote D’s output. We
now show |Pr[out1 = 1] − Pr[out2 = 1]| = neg(n).

It can be seen that Game 2 differs from Game 1 in S’s strategy after verifi-
cation passes in answering queries of type 4. Let bad1 denote the event that in
the two games there exists a query of type 4 which can pass the verification but
in answering this query c2’s plaintext is not equal to C(x) where x is the query
content in the root of the tree this query belongs to. It can be seen that on the
occurrence of ¬bad1, Game 1 and Game 2 proceed identically. Thus to show the
two games are indistinguishable, we only need to show Pr[bad1] = neg(n).

Suppose, on the contrary, Pr[bad1] is non-negligible. Then at least in one of
the two games, this bad event occurs with non-negligible probability. W.l.o.g.
assume in Game 1, there exists a query of type 4 which can pass the verification
but c2’s plaintext is not equal to C(x) with non-negligible probability. Thus we
can show the collision resistance of h would not hold. Details follows.

Since S1 at most creates polynomial trees in the execution of Game 1, we have
there exists a number j1 satisfying with non-negligible probability, the j1th tree
(ordered in an arbitrary way) contains a leaf such that the query of type 4 in
this leaf can pass the verification but in answering it c2’s plaintext is not equal
to C(x). We now construct a PPT D1 which only sends out the queries of the
execution of the j1th tree. D1 runs as follows: it has D hardwired and adopts
the sender’s strategy to generate the true information. Then run D internally
and adopt S1’s strategy with the true information to answer D’s queries except
for the queries of the j1th tree. For the execution of the j1th tree, D1 sends out
D’s queries of this tree to S1 and transmits S1’s responses to D and proceeds.
Thus from the view of outside, D1 only takes part in the execution of one tree.
By our assumption, in the interaction between D1 and S1, D1 can generate
a c2 and convince S1 that (c2, H, V ) ∈ Λ and c2’s plaintext is not C(x) with
non-negligible probability.

Since there are at most polynomial paths (from the root to a leaf) in this tree
(i.e. the j1th tree), we have there exists a number j2 satisfying D1 can generate
a c2 and convince S1 that (c2, H, V ) ∈ Λ and c2’s plaintext is not C(x) in the
j2th path (ordered in an arbitrary way) with non-negligible probability. Denote
this probability by ε. Then we construct a PPT D2 which only sends out the
queries of the j2th path and proceeds consecutively. D2 runs as follows: it has
D1 hardwired and runs D1 to obtain the required true information and adopts
S1’s strategy to answer D1’s queries except for the j2th path. For the execution
of the j2th path, if D1 has sent out a query of type i, 1 ≤ i ≤ 4, D2 adopts
S1’s strategy to respond all later D1’s queries of type i. Otherwise, D2 sends
out this query to S1 and transmits S1’s response to D1 and proceeds. Thus from
the view of outside, D2 only takes part in one path and proceeds consecutively
in the interaction. Thus we have D2 can generate a c2 and convince S1 that
(c2, H, V ) ∈ Λ and c2’s plaintext is not C(x) with probability ε.

Thus for at least ε
2 fraction of the true information and the coin tosses of

the joint computation of D2 and S1 prior to S1’s answering the query of type
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2, D2 can convince S1 that (c2, H, V ) ∈ Λ and c2’s plaintext is not C(x) with
probability at least ε

2 . Thus fixing any choice of the true information and the
coins in this ε

2 fraction (c2 and thus the public input to the PCP system are
fixed), D2 can convince S1 that (c2, H, V ) ∈ Λ and c2’s plaintext is not C(x)
with probability at least ε

2 .
By the soundness of the PCP system as well as the tree hashing scheme,

we have except negligible probability, for this (c2, H, V ) there exists a witness
(c1, c0, pk, Un, h, r) such that c2 = Evaluater(pk; Un; c1, c0) and h(c0) = H and
h(Un) = V . Since D2 can convince S1 that (c2, H, V ) ∈ Λ with probability ε

2 ,
by the weak proof of knowledge property of the PCP system, we can adopt the
strategy of the knowledge extractor of the PCP system on oracle access to D2 to
output a witness for (c2, H, V ) ∈ Λ within nO(log log n) time with non-negligible
probability. Thus if the c0 and Un in this extracted witness are identical to their
counterpoints in the software part, we have c2’s plaintext is C(x). However, by
our assumption, it is the case that at least one of c0 and Un in the witness
is not identical to its counterpoint in the software part. Thus this one and its
counterpoint constitute a collision of h with non-negligible probability. This is a
contradiction.

Thus Pr[bad1] = neg(n), and |Pr[out1 = 1] − Pr[out2 = 1]| = neg(n).

Game 3. Game 3 is identical to Game 2 except that S is replaced by a new
S2, which is identical to S except that S2 doesn’t have the oracle C(·) to access
and the true information for it doesn’t contain the secret key sk, but it has
the description of C hardwired. When answering each query of type 4, denoted
(v, c4, MAC4), S2 first verifies condition (a) and then goes to condition (b). At
this time S2 doesn’t decrypt c4, c3 to obtain (ch, root, c1, c2, h

∗) in condition (b)
(since it doesn’t know sk). Instead, it retrieves (ch, root, c1, c2, h

∗) along the path
from the node this query belongs to to the root in the corresponding tree and
then verifies condition (c). If the verification passes, S2 retrieves x from the root
of the tree and runs C(x) and responds to D what C outputs.

Let out3 denote D’s output. It can be seen by S2’s strategy, the information
(ch, root, c1, c2, h

∗) S2 retrieves from that path is identical to that from the de-
cryption S2 would perform in condition (b) if it knew sk. Thus Pr[out2 = 1] =
Pr[out3 = 1].

Game 4. Game 4 is identical to Game 3 except that c0 in the obfuscated circuit
is now changed into a ciphertext of the dummy circuit Sim chooses instead of
a ciphertext of C (thus H is the hashing value of this c0). Let out4 denote D’s
output. We show |Pr[out3 = 1] − Pr[out4 = 1]| = neg(n).

It can be seen Game 4 differs from Game 3 only in c0 which is either a
ciphertext of C or a ciphertext of the dummy circuit. Thus if D can distinguish
Game 3 from Game 4, we can construct a PPT algorithm B which can distinguish
the two ciphertexts of C and the dummy circuit. We sketch B’s construction: B
on input c0, a ciphertext either of C or of the dummy circuit, and the public key
pk of FHES, adopts the sender’s strategy to generate the remainder parameters
(s, h, H, V, Un). Then it invokes D and S2 with the required inputs (note that D
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and S2 don’t have sk as input) and lastly outputs what D outputs. Note that
here B knows the description of C since S2 has it hardwired.

Notice that for encryption, IND-CPA means for every two plaintexts of same
length any (non-uniform) PPT algorithm cannot distinguish their ciphertexts
even the algorithm knows the plaintexts. Thus by the security of IND-CPA of
FHES, we conclude that B, though it knows the description C, cannot distinguish
the two ciphertexts of C and the dummy circuit. Thus |Pr[out3 = 1]−Pr[out4 =
1]| = neg(n).

Game 5. Game 5 is identical to Game 4 except that we first run Sim to generate
all fake information, and then replace all required true parameters in Game 4
by the corresponding fake parameters (the true information doesn’t include the
description of C. Namely, S2 still has the description of C hardwired in this
game). Let out5 denote D’s output. Since all the fake information is identically
distributed to the true information, Pr[out4 = 1] = Pr[out5 = 1].

Game 6. Game 6 is identical to Game 5 except that we resume S to substitute
S2, where S doesn’t have the description of C hardwired but can access oracle
C(·) and its input contains a more parameter sk′. Let out6 denote D’s output,
which is indeed D(SimC(·)(z(n), l(n), 1n)). Using the same analysis presented in
Game 3, we conclude Pr[out5 = 1] = Pr[out6 = 1].

Taking all the results above, we conclude that |Pr[out0 = 1]−Pr[out6 = 1]| =
neg(n). Thus the theorem follows.

4 Conclusions

In this paper we investigate an important issue of theoretical cryptography, i.e.,
how to obfuscate any circuit/program with tamper-proof hardware. The previous
work by Goyal et al. [21] has provided a solution to this issue. However, we think
their construction cannot fast concurrent executions of multiple instances of the
obfuscated circuits well. Thus we present an alternative obfuscation in which the
software part admits most computation and the hardware admits a few. Thus
when a user invokes multiple instances of the software part to interact with the
unique hardware token, although the software part admits most computation,
these instances of the software part can run almost in parallel and thus the entire
computation can be fasten.
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Abstract. It is important for malware analysis that comparing unknown files to 
previously-known malicious samples to quickly characterize the type of beha-
vior and generate signatures. Malware writers often use obfuscation, such as 
packing, junk-insertion and other means of techniques to thwart traditional si-
milarity comparison methods. In this paper, we introduce DepSim, a novel 
technique for finding dependency similarities between malicious binary pro-
grams. DepSim constructs dependency graphs of control flow and data flow of 
the program by taint analysis, and then conducts similarity analysis using a new 
graph isomorphism technique. In order to promote the accuracy and anti-
interference capability, we reduce redundant loops and remove junk actions at 
the dependency graph pre-processing phase, which can also greatly improve the 
performance of our comparison algorithm. We implemented a prototype of 
DepSim and evaluated it to malware in the wild. Our prototype system success-
fully identified some semantic similarities between malware and revealed their 
inner similarity in program logic and behavior. The results demonstrate that our 
technique is accurate. 

Keywords: Malware Analysis; Similarity Analysis; Dynamic Taint Analysis. 

1   Introduction 

Malware, software with malicious intent, such as viruses, worms, Trojans, and back-
doors has emerged as a widely-spread thread to system security. According to a Micro-
soft report [3], in the first half of 2009, as many as 39,328,515 computers around the 
world have been infected by malware. It is difficult to detect and stop malware spread-
ing reliably because new and polymorphic malware programs appear rapidly. For ex-
ample, AgoBot [10] has more than 580 variants since it first come into view in 2002. 
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One of the main factors driving this explosion of variety is that malware authors usual-
ly reuse their old programs because of the cost of developing a new malware [18]. To 
address this dilemma and fast analyze malicious code, researchers would like to re-use 
stale behavior profile information from a prior malware sample by using similarity 
comparison to identify and analyze the malicious code variants. The problem of find-
ing similarities in programs has been a central problem in malware analysis.  

Previous efforts to automatically analyze and compare malware focused primarily 
on two types of comparisons，comparison of program structure and comparison of 
program behavior. Several program structure comparison methods have been pro-
posed [1] [2] [7] [9] [13] [20]. For all these structural comparison approaches, suc-
cessfully disassembling of malware is a pre-condition; malware writers usually use 
obfuscations to hinder traditional malware similarity comparison system, such as 
packing, encryption and instruction permutation, as these transformations can ob-
viously change the content-based signatures of code. Without the precondition of 
successfully disassembling of malware, it is hard to deal with obfuscated malware 
with structural comparison. Previous behavioral comparison methods [8] [10] [11] 
[12] [15] mainly depend on behavior sequences, which could be changed easily by 
function-reordering, junk-insertion and other means of techniques. In addition, both 
two types of comparison methods use text distance or weighted text distance to meas-
ure the difference. These ways ignore the logical relations among system calls and 
focused primarily on sequence-based signatures that could be obfuscated easily and 
significantly. In summary, malware writers use various obfuscation techniques to 
transform their malware to make it hard to analyze. The means for traditional analysis 
are not sufficient to alleviate a threat posed by so many obfuscated malware variants.  

To address the limitations of existing binary similarity comparison tools, we pro-
posed and evaluated a novel technique, called DepSim, to find behavioral similarity. 
Unlike existing systems [11] [12], DepSim’s similarity comparison algorithm does 
not operate directly on system call sequences. We have implemented a proof-of-
concept system of DepSim based on Wookon [29], our dynamic analysis system that 
monitors the execution of a malware in a controlled environment. DepSim first uses 
taint analysis and backtracking techniques to construct extended control dependency 
graphs and extended data dependency graphs. Then, at dependency graphs pre-
processing phrase, we remove junk calls, reduce loops and take other normalization 
measures to convert them to a normalized form. At last, a customized graph isomor-
phism algorithm is used to find the best matches between dependency graphs. 

In order to evaluate our system, we have implemented our prototype system and 
conducted experiments on collected wild malware. The experimental results demon-
strate that our malware analysis techniques and semantic similarity comparison algo-
rithms are more accurate than previous techniques used in binary similarity analysis, 
especially in dealing with obfuscated malware. Summarizing, this paper makes the 
following contributions:  

 We present a novel, precise approach to describe malware behaviors and re-
lations between them by extending CDG (Control Dependency Graph) and 
DDG (Data Dependency Graph) with Virtual Vertex and behavior profile.  

 We propose a new semantic similarity comparison algorithm. The isomor-
phism algorithm depends on extended dependency graphs and is more accu-
rate than previous techniques.  
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 We evaluate our system on amount of real-world malware and their variants. 
Our experimental results demonstrate that our technique has obvious advan-
tages in accuracy comparing to previous methods of similarity comparison. 

 
This paper is organized as follows: Section 2 describes the problem of semantic simi-
larity analysis and the architecture of our system. We present our dynamic taint analy-
sis method and dependency graph construction method in Section 3, pre-processing 
algorithm and dependency graph isomorphism in Section 4. Our detailed evaluation is 
shown in Section 5. We present performance and overhead in Section 6, related work 
in Section 7. Limitations and future directions are discussed in Section 8. 

2   Overview of Our Approach 

There are two types of similarity between two malware, syntactic and semantic. Syn-
tactic similarity refers to same instructions, same basic blocks and same system calls, 
whereas semantic similarity refers to similarity between system call sequences and 
their relations. The target of our work is to find the semantic matching between func-
tions from the two binary files.  

At most time, it is possible that a syntactic difference is not semantic. Syntactic can 
be easily changed without changing the program behavior and semantic while losing 
textual, lexical and structural similarities comparing to the original. We show original  
 

 

(a) Original code segment                       (b) Obfuscated code segment 

Fig. 1. Original and obfuscated code segment of SDBot 

 

malware source code and obfuscated code of a variant of SDBot in Fig. 1. The code 
fragment in Fig. 1 prepares to download a file from a defined IP address or website 
into local Windows file system. After applying junk-insertion and instruction-
reordering to codes in Fig. 1.(a), malware writer could obtain the code in Fig. 1.(b). 
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The result of the obfuscation is that syntactic signatures such as basic blocks and 
behavior sequences changed greatly. Under such circumstances, previous efforts to 
compare their similarity will no longer get the right match and thus the malware writ-
ers make the analysis more complex and time-consuming. 

We noticed that while the syntactic signatures of malware changing rapidly, the de-
pendency, namely relationship between behaviors, remains stable. And the set of 
dependency graphs of the program is an “interpretation” for the semantics, making it 
an attractive feature for finding semantic similarities. To achieve this target, we pro-
posed DepSim to find the semantic similarities between two malware based on de-
pendency graphs. 

Fig. 2 shows the overall system architecture. As is shown in Fig. 2, DepSim con-
sists of four components. The binary files are first executed in a front-end system 
emulator with taint analysis engine, which outputs an execution trace and taint propa-
gation traces. These data are then used to dependence analysis, where the output is 
extended dependency graphs. Next, the extended dependency graphs are normalized 
by our pre-processing algorithm. At the same time, extensive profile data is collected 
for each extended dependency graph. In the last step, extended graphs and behavior 
profiles of two binary files are passed to our graph isomorphism engine to find se-
mantic matches between them. 

 

Fig. 2. System overview 

The output of our similarity comparison system is the similarity degree of samples. 
We represent similarity degree in terms of the percentage of similar behaviors and 
dependency relations compared to average behaviors and relations. We briefly intro-
duce these four components as below: 

• Dynamic Taint Analysis 
In order to construct dependency graphs, we developed DepSim, based on QEMU 
[6], a whole-system emulator for PCs and the Intel x86 architecture, to actually ex-
ecute samples in a controlled environment and observe their persistent actions to 
specify the relationship between behaviors. We monitor the behavior of the sample 
and analyze its information accessing and processing behavior with respect to the 
taint data with our pre-defined taint analysis rules. 

• Constructing Dependency Graphs 
We build extended control dependency graph (ECDG) and extended data depen-
dency graph (EDDG) to represent the functionality of malware. We do this during 
the dynamic taint analysis phrase. We follow the taint propagation procedure to  
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Fig. 3. Pre-processing procedure 

4.2   Dependency Graph Comparison 

Similarity measurement between dependency graphs can be achieved by identifying 
the maximum common subgraph. We discuss the algorithmic details of the key steps 
in our comparison algorithm in the following paragraphs.  

We compare ECDGs before EDDGs. The comparison starts from the entry points 
of the two graphs. The factor that our dependency graphs are made from a certain 
taint source determines two similar graphs should have equal entry points. Therefore, 
the precondition of comparing adjacent vertices connected to entry points is whether 
the entry vertices of the candidate graphs are the same, otherwise, we have to select 
another ECDG to compare. Sometimes, we may encounter the situation that there are 
multi-taint sources. If so, we try to compare each pair of entry points made by the 
taint sources, to make sure that the entry points could be matched. After comparing 
entry points, we follow the edges connected to current vertex to compare related ver-
tices in recursive order. Vertices stand for system calls, which may have a variety of 
parameters. At most time, it is time-consuming to compare all the parameters and 
usually we are interested in only a small part of them. So, we defined rules for each 
system call to compare the fields we are interested in. For example, to compare Crea-
teFile, we have to compare its FileName and OpenType, other fields such as dwSha-
reMode or dwFlagsAndAttributes will be ignored unless they contain taint data. Edges 
stand for control dependency relations between behaviors. For edge E1 directs  
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Fig. 4. Control dependency graph comparison algorithm 

  

Fig. 5. Data dependency graph comparison algorithm 
 

from V2 to V1, and E2 directs from V2’ to V1’, if V1 matches V1’ and V2 matches V2’, E1  
and E2 will be considered as matched and denoted as E1≡E2. What makes the com-
parison of ECDGs special is that they contain virtual vertices, which have to be con-
sidered and compared as data sets. When the comparison procedure reaches virtual 
vertices, we first compare their inner vertices because they stand for swappable sys-
tem calls without considering their order. For example, virtual vertex V1 has Create-
File and RegCreateKey while V2 has RegCreateKey and CreateFile. We will consider 
V1 and V2 as matched. Otherwise, we will record the matched function count and  
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unmatched function count. Then, we compare adjacent vertices and edges connected 
to current matched virtual vertices. The adjacent vertices and connected edges are 
compared by using the same method as comparing normal vertices and edges. We 
mark each compared vertex and edge as visited, and the recursive algorithm will con-
tinue until all vertices and edges are visited. At last, we record the equal vertex count 
and equal edge count with corresponding counters.  

After comparing ECDGs, we will compare EDDGs. We compare EDDGs using 
comparison method similar to that was mentioned above. Since there are no virtual 
vertices, it is easier to compare EDDGs than to compare ECDGs. We compare 
EDDGs in a recursive manner from entry point. We track the edges connected to 
current compared vertex to follow the data dependency relations between system 
calls. Vertices are compared by their behavior information, whereas edges are com-
pared by their connected vertices and direction. Once each round  of comparison 
finished, we mark each vertex and edge as visited. The stop condition of our algo-
rithm is one of the two graphs has no unvisited vertices or edges. Finally, when the 
whole comparison is done, we increase the counter of equal vertices and equal edges.  

The target of our comparison method is to find semantic behavior differences be-
tween two malware binary files. We choose a sample as the baseline and compare left 
sample with it. After comparing ECDGs and EDDGs, we will get matched vertex 
count and matched edge count. First we compute the average vertex count and edge 
count of the two matched graphs. Then, we measure the similarity as the ratio of 
matched vertex count and edge count comparing to the average count computed  
before. 

4.3   Customized to Promote Efficiency 

Since graph isomorphism is a NP-complete problem, we need to propose an efficient 
and practical optimal algorithm when dealing with real problems. As the isomorphism 
algorithm needs to enumerate all possible matches, its efficiency highly depends on 
the sequence in which graphs are compared with each other. Our target can be 
achieved by comparing high matching probability graphs with high priority. It is 
achieved by taking following measures. 

First, we try to compare dispatch functions. Identifying dispatch function is one of 
the quick methods to get a clue of our comparison. We compare dispatch functions 
first from their entry points. The entry point is compared only by its type, that is, such 
as a network function used to receive data from a remote server, we will not consider 
its remote address and port. The reason is that the semantic of received data is deter-
mined by subsequent functions that operate on the data rather than the function rece-
ives the data. We assume that the control protocol is text-based and it is accessed by 
string operation functions since this type of Trojans and botnets are widespread. The 
string operation functions are compared with function name, destination string and 
return value. That is, for two functions, if their destination strings and return value are 
equal, we will mark them as matched.  

Secondly, we use behavior profile of graphs to promote the efficiency of our algo-
rithm. Profile consists of system call types and quantity of each type in the graph. By 
quickly comparing the profiles to tell whether two graphs present the same action, we  
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arrange the comparison order of graphs by their function type and count, so we can 
promote the efficiency. There are two factors to determine the priority of comparison. 
One is the difference of function type, while the other is the difference of function 
count. The priority of graphs to be compared is in descending order and is decided 
first by function type difference from large to small. That is, the priority of function 
type is higher than that of function count. Only if two graphs have the same function 
type, we will arrange their comparison order by their function count difference in the 
order large-to-small. 

Finally, we use the known knowledge of the previously compared graphs to guide 
our subsequent comparison. We consider graphs that have corresponding vertices to 
already matched graphs as higher priority to compare. Corresponding vertices is 
judged by their addresses. We compare vertices that have the same function address 
corresponding to previously matched graphs before other vertices. In our algorithm, 
we use ECDG comparison results as clue to guide EDDG comparison. For example, if 
G1 and G2 are matched graphs, and functions F1∈G1, F2∈G2, and F1≡ F2. When 
selecting candidate graphs, we consider graphs G’ and G’’ which have F1’ and F2’ 
correspondingly, as high priority to be compared. 

5   Evaluation 

To verify the effectiveness of our approach, we implemented a system with the above 
mentioned components and techniques, and used our system to analyze malware sam-
ples in the wild. Our collection of malware samples used for comparison was obtained 
from VXHeavens [16]. We describe the details on the experimental evaluation of our 
prototype system in this section. Our evaluation consisted of three parts. First, we 
took Bagle worm variants as samples to monitor their behaviors and compare their 
similarity. Secondly, we chose backdoor NetSky to discover the similarities between 
them. At last, we measure DepSim’s performance by monitoring its analyzing time 
and comparing it with other similarity comparison methods. In all our experiments, 
we ran the DepSim prototype system on a Linux machine with a 3.2 GHz dual-core 
Pentium 4 CPU, 160 GB hard disk and 2 GB RAM. We install Windows XP SP2 
Professional as guest operation system on top of DepSim.  

Bagle and NetSky are real world samples. As mentioned before, it is hard to get 
source code of malware, so they are analyzed without any addition information except 
for binary files and we manually analyze these samples to prove the correctness of 
analysis results of DepSim. In order to compare DepSim with other methods in terms 
of accuracy and efficiency, we also implemented the structure-based similarity com-
parison and behavior-based similarity comparison methods. The details of our expe-
riments are described below. 

5.1   Bagle 

Bagle is a mass-mailing and self-encrypting computer worm written in pure assembly 
and infects all versions of Microsoft Windows. It contains a homemade SMTP engine 
to mass-mail itself as an attachment to mail addresses gathered from the victim  
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computer. Since the first sample of Bagle was captured in 2004, in less than a year, 
there are over 80 variants had appeared in the wild. We use Bagle as first sample in 
our experiment to test our algorithm in real world condition. 

Table 2. Analysis result of Bagle 

Name Packer Record 
Size 

CDG 
count 

DDG 
count 

Junk Call Count Running 
Time 

Bagle.a* None 87MB 28 29 0 7m31s 
Bagle.b UPX 99MB 51 29 25 6m20s 
Bagle.e* PeX 130MB 16 2 8 7m11s 
Bagle.f PeX 160MB 16 2 8 6m22s 
Bagle.g PeX 137MB 13 2 2 5m49s 

 
We show experiment details of Bagle in Table 2. In this table, all the samples 

marked with * are selected as baseline, and other samples are compared with it. We 
noticed that the samples, except for Bagle.a, are all packed and obfuscated. This fac-
tor made the traditional comparison techniques hard to analyze these samples. In our 
experiment, the longest analysis time of Bagle samples is 7 minutes and 31 seconds. 
The largest size of record file is 160 MB, it is acceptable considering nowadays hard 
disk volume. See the matter from our results, Bagle.a is similar to Bagle.b, whereas 
Bagle.e, Bagle.f and Bagle.g are grouped as a family. The similarity between  
these two groups is not obvious. We proved this by hand analyzing experiment  
records of these samples and find that Bagle.e did more operations than  
Bagle.a. For example, Bagle.e creates C:\WINDOWS\system32\godo.exe and 
C:\WINDOWS\system32\ii455nj4.exe in our system, while Bagle.a only creates 
bbeagle.exe. The results also show that the structure of Balge.e is not similar to that of  
 

  

Fig. 6. Result of similarity comparison on Bagle samples 
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Bagle.f. We check these samples manually and find that their basic blocks and in-
structions are different indeed because they are changed largely at variant transforma-
tion phrase. 

When analyzing Bagle samples, we find that Bagle implements some system calls 
by hand. It uses mapping files into memory instead of using traditional CreateFile 
approach, and writes functions by hand to replace system calls such as strcmp, strcpy. 
As showed in the experiment result, this type of confusion doesn’t make big trouble to 
our algorithm. If malware writers rewrite most of system calls by hand, it can disturb 
our system call match method. And it is our future work to research the comparison 
method in instruction level semantics. 

5.2   NetSky 

NetSky is a prolific family of backdoors that can infect all versions of Windows. The 
first variant appeared on Monday, February 16, 2004 [25]. It can spread by email or 
net shares. We chose NetSky.ad as baseline because it is not packed or obfuscated. 
We noticed that the record size of NetSky.aa and NetSky.t is larger than other  
samples’. The reason is that both these two samples use loop to copy themselves to 
system directory, this procedure brought us much superfluous data. For example, 
NetSky.aa copied itself to system directory as Jammer2nd.exe through 973 times 
Read/Write operations, while NetSky.t copied itself to a file named base64.tmp as 
4229 adjacent blocks. Since NetSky is more complex than Bagle, the analysis time is 
longer and record file size is much bigger than those of Bagle.  

Table 3. Analysis result of NetSky 

Name Packer Record 
Size 

CDG 
count 

DDG 
count 

Junk Call 
Count 

Running 
Time 

NetSky.ad* None 291MB 20 16 0 9m53s 
NetSky.aa UPX 1071MB 17 11 0 10m7s 
NetSky.c Petite 727MB 23 16 3 8m3s 
NetSky.f PE-Pack 222MB 15 16 4 7m36s 
NetSky.r Petite 253MB 17 10 0 7m52s 
NetSky.t UPX 1319MB 18 5 0 10m20s 

 
Then we evaluated the accuracy of our system, we use each group of samples to 

compare with each other, and their similarity degrees are all zero. We also compare 
these samples with some normal applications such as iexplore.exe, calc.exe, win-
help32.exe and explore.exe. The highest level of similarity degree is 12.35%. It is 
because malware is usually written for certain purpose while normal programs  
are designed for common functionality which can be shared with each other. The 
results demonstrate that the general level of false positive rate of our algorithm is  
very low. 
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Fig. 7. Result of similarity comparison on NetSky samples 

6   Performance Overhead 

In our experiment, running time of Bagle samples in real world is less than 2  
seconds, while average running time of all samples is more than 6 minutes and 30 
seconds. It is 200 times of the running time in real computer. And compared to other 
analysis method, the time complexity of our algorithm is higher. The comparison 
method based on system call sequences and code structure cost range from 20 percent 
to half of running time. Because our system is mainly used to analyze malware  
 

 

Fig. 8. Time Overhead 
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samples off-line, there is no restrict time limitation, and we also noticed that, as is 
shown in Fig. 9, most of DepSim’ runtime is consumed at the phrase of executing 
malware in controlled environment, not in our analysis engine. It gives us a clue that 
we can improve DepSim by updating its hardware and optimizing efficiency of our 
algorithm. In addition, our technique has the highest accuracy and it is an automated 
analysis system. Based on the reasons mentioned above, our system and similarity 
finding algorithm are practical. 

  

Fig. 9. Time complexity comparison 

7   Related Work 

There are two types of malicious code similarity comparison method, one is structural 
comparison, and the other is behavioral comparison. structural comparison treats 
malware as basic blocks, and requires an accurate disassembler to convert binary code 
into instruction lines to constructs control flow graphs (CFGs) for each function and  
call graphs (CGs) for the entire binary file. Most of this research base on basic block 
as the smallest comparison unit and use a customized graph isomorphism algorithm to 
find the best matches between functions and basic blocks, such as [7] [9] [13]. Z. 
Wang [2] proposed a binary file comparison method by treating the entire file as call 
graphs and control flow graphs to compare code and data in the binary file. D. Song 
proposed BinHunt [1], a binary file semantic difference finder by using symbolic 
execution and theorem proving to promote the accuracy of matching basic blocks. 
There are many disadvantages of static comparison. First, to construct control flow 
graph requires an accurate disassembly procedure, which was easy to be obstructed by 
using obfuscation techniques to hide the realistic code and behavior of the malware. 
Second, there are many cases that are hard to determine whether two basic blocks are 
similar, because of the confusion of semantic made by obfuscation. Therefore, simi-
larity comparison of the structural approach is easy to achieve but hard to get good 
result and has great limitations susceptible to interference from a variety of code pro-
tection technology.  

Behavioral comparison is another way to get malware similarity information. It is 
able to analysis polymorphic and metamorphic malware as a result of it has the  
advantage of not affected by obfuscated code. The comparison requires behavior 
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information generated by analysis system. To get behavior information, many dynam-
ic analysis tools have been proposed such as CWSandBox [22], Norman SandBox 
[24], ANUBIS [23] and Panorama [5]. Previous behavioral comparison techniques, 
such as [8] [9] [10] [11] [15], focused primarily on sequence-based system calls 
fragments, called behavior sequences, generated that aim to support a comparison in 
syntactic. Since behavior sequence is easy to transform by reordering functions, in-
serting junk-calls and other means of obfuscations, it is hard to accurately find 
matches when dealing with obfuscated malware. Bayer [12] presented a scalable 
cluster algorithm, they use taint analysis and symbolic execution to trace code rela-
tionship and compare the relations between system calls. Their way promoted the 
efficiency and accuracy by comparing behaviors at an abstract level. But, if the mal-
ware insert junk calls, that using the tainted data without changing system status in the 
taint propagation path, it is hard to get accurate result that without the help of norma-
lization operations. 

8   Conclusions and Limitations 

In this paper, we introduced a novel similarity comparison technique, DepSim, based 
on control dependency and data dependency analysis. We compared DepSim with 
previous techniques; the result shows that DepSim is able to accurately find the se-
mantic similarities even deal with packed or obfuscated malware.  

Essentially, each vertex in our dependency graph is a user mode system call; if 
malware (such as rootkits) that doesn’t operate in user mode, our taint analysis will 
not work properly. We will solve this problem by analyzing and describing behaviors 
at kernel level upon system objects. Since the DepSim use dynamic taint analysis, our 
system shares common weaknesses associated with dynamic analysis. It can only 
analyze one path at a time. In future works, we will try to use symbolic execution and 
concept proving to explore more paths. 
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