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Preface

This book and its companion volume, LNCS vols. 6728 and 6729, constitute
the proceedings of the Second International Conference on Swarm Intelligence
(ICSI 2011) held during June 12–15, 2011 in Chongqing, well known as the
Mountain City, the southwestern commercial capital of China. ICSI 2011 was
the second gathering in the world for researchers working on all aspects of swarm
intelligence, following the successful and fruitful Beijing ICSI event in 2010,
which provided a high-level international academic forum for the participants to
disseminate their new research findings and discuss emerging areas of research.
It also created a stimulating environment for the participants to interact and
exchange information on future challenges and opportunities in the field of swarm
intelligence research.

ICSI 2011 received 298 submissions from about 602 authors in 38 countries
and regions (Algeria, American Samoa, Argentina, Australia, Austria, Belize,
Bhutan, Brazil, Canada, Chile, China, Germany, Hong Kong, Hungary, India,
Islamic Republic of Iran, Japan, Republic of Korea, Kuwait, Macau, Madagas-
car, Malaysia, Mexico, New Zealand, Pakistan, Romania, Saudi Arabia, Singa-
pore, South Africa, Spain, Sweden, Chinese Taiwan, Thailand, Tunisia, Ukraine,
UK, USA, Vietnam) across six continents (Asia, Europe, North America, South
America, Africa, and Oceania). Each submission was reviewed by at least 2
reviewers, and on average 2.8 reviewers. Based on rigorous reviews by the Pro-
gram Committee members and reviewers, 143 high-quality papers were selected
for publication in the proceedings with an acceptance rate of 47.9%. The pa-
pers are organized in 23 cohesive sections covering all major topics of swarm
intelligence research and development.

In addition to the contributed papers, the ICSI 2011 technical program in-
cluded four plenary speeches by Russell C. Eberhart (Indiana University Pur-
due University Indianapolis (IUPUI), USA), K. C. Tan (National University of
Singapore, Singapore, the Editor-in-Chief of IEEE Computational Intelligence
Magazine (CIM)), Juan Luis Fernandez Martnez (University of Oviedo, Spain),
Fernando Buarque (University of Pernambuco, Brazil). Besides the regular oral
sessions, ICSI 2011 had two special sessions on ‘Data Fusion and Swarm Intelli-
gence’ and ‘Fish School Search Foundations and Application’ as well as several
poster sessions focusing on wide areas.

As organizers of ICSI 2011, we would like to express sincere thanks to
Chongqing University, Peking University, Chongqing University of Posts and
Telecommunications, and Xi’an Jiaotong-Liverpool University for their spon-
sorship, to the IEEE Computational Intelligence Society, World Federation on
Soft Computing, International Neural Network Society, and Chinese Association
for Artificial Intelligence for their technical co-sponsorship. We appreciate the
Natural Science Foundation of China for its financial and logistic supports.
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We would also like to thank the members of the Advisory Committee for their
guidance, the members of the International Program Committee and additional
reviewers for reviewing the papers, and members of the Publications Committee
for checking the accepted papers in a short period of time. Particularly, we are
grateful to the proceedings publisher Springer for publishing the proceedings in
the prestigious series of Lecture Notes in Computer Science. Moreover, we wish
to express our heartfelt appreciation to the plenary speakers, session chairs,
and student helpers. There are still many more colleagues, associates, friends,
and supporters who helped us in immeasurable ways; we express our sincere
gratitude to them all. Last but not the least, we would like to thank all the
speakers and authors and participants for their great contributions that made
ICSI 2011 successful and all the hard work worthwhile.

June 2011 Ying Tan
Yuhui Shi

Yi Chai
Guoyin Wang



Organization

General Chairs

Russell C. Eberhart Indiana University - Purdue University, USA
Dan Yang Chongqing University, China
Ying Tan Peking University, China

Advisory Committee Chairs

Xingui He Peking University, China
Qidi Wu Tongji University, China
Gary G. Yen Oklahoma State University, USA

Program Committee Chairs

Yuhui Shi Xi’an Jiaotong-Liverpool University, China
Guoyin Wang Chongqing University of Posts and

Telecommunications, China

Technical Committee Chairs

Yi Chai Chongqing University, China
Andries Engelbrecht University of Pretoria, South Africa
Nikola Kasabov Auckland University of Technology, New Zealand
Kay Chen Tan National University of Singapore, Singapore
Peng-yeng Yin National Chi Nan University, Taiwan, China
Martin Middendorf University of Leipzig, Germany

Plenary Sessions Chairs

Xiaohui Cui Oak Ridge National Laboratory, USA
James Tin-Yau Kwok The Hong Kong University of Science and

Technology, China

Special Sessions Chairs

Majid Ahmadi University of Windsor, Canada
Hongwei Mo Harbin Engineering University, China
Yi Zhang Sichuan University, China



VIII Organization

Publications Chairs

Rajkumar Roy Cranfield University, UK
Radu-Emil Precup Politehnica University of Timisoara, Romania
Yue Sun Chongqing University, China

Publicity Chairs

Xiaodong Li RMIT Unversity, Australia
Haibo He University of Rhode Island Kingston, USA
Lei Wang Tongji University, China
Weiren Shi Chongqing University, China
Jin Wang Chongqing University of Posts and

Telecommunications, China

Finance Chairs

Chao Deng Peking University, China
Andreas Janecek University of Vienna, Austria

Local Arrangements Chairs

Dihua Sun Chongqing University, China
Qun Liu Chongqing University of Posts and Telecommu-

nications, China

Program Committee Members

Payman Arabshahi University of Washington, USA
Carmelo Bastos University of Pernambuco, Brazil
Christian Blum Universitat Politecnica de Catalunya, Spain
Leandro Leandro dos

Santos Coelho Pontif́ıcia Universidade Católica do Parana,
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PSOslope: A Stand-Alone Windows Application for Graphical Analysis
of Slope Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Walter Chen and Powen Chen

A Review of the Application of Swarm Intelligence Algorithms to 2D
Cutting and Packing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Yanxin Xu, Gen Ke Yang, Jie Bai, and Changchun Pan

Particle Swarm Optimization

Inertia Weight Adaption in Particle Swarm Optimization Algorithm . . . . 71
Zheng Zhou and Yuhui Shi

Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle
Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Wudai Liao, Junyan Wang, and Jiangfeng Wang



XIV Table of Contents – Part I

An Adaptive Tribe-Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . 86
Yong Duan Song, Lu Zhang, and Peng Han

A Novel Hybrid Binary PSO Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Muhammd Ilyas Menhas, MinRui Fei, Ling Wang, and Xiping Fu

PSO Algorithm with Chaos and Gene Density Mutation for Solving
Nonlinear Zero-One Integer Programming Problems . . . . . . . . . . . . . . . . . . 101

Yuelin Gao, Fanfan Lei, Huirong Li, and Jimin Li

A New Binary PSO with Velocity Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
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Abstract. Inverse problems are ill-posed: the error function has its min-
imum in a flat elongated valley or surrounded by many local minima.
Local optimization methods give unpredictable results if no prior in-
formation is available. Traditionally this has generated mistrust for the
use of inverse methods. Stochastic approaches to inverse problems con-
sists in shift attention to the probability of existence of certain kinds
of models (called equivalent) instead of “looking for the true model”.
Also, inverse problems are ill-conditioned and often the observed data
are noisy. Global optimization methods have become a good alternative
to sample the model space efficiently. These methods are very robust
since they solve the inverse problem as a sampling problem, but they are
hampered by dimensionality issues and high computational costs needed
to solve the forward problem (predictions). In this paper we show how
our research over the last three years on particle swarm optimizers can
be used to solve and evaluate inverse problems efficiently. Although PSO
is a stochastic algorithm, it can be physically interpreted as a stochastic
damped mass-spring system. This analogy allowed us to introduce the
PSO continuous model, to deduce a whole family of PSO algorithms,
and to provide some results of its convergence based on the stochastic
stability of the particle trajectories. This makes PSO a particularly inter-
esting algorithm, different from other global algorithms which are purely
heuristic.

We include the results of an application of our PSO algorithm to the
prediction of phosphorylation sites in proteins, an important mechanism
for regulation of biological function. Our PSO optimization methods
have enabled us to predict phosphorylation sites with higher accuracy
and with better generalization, than other reports on similar studies in
literature. Our preliminary studies on 984 protein sequences show that
our algorithm can predict phosphorylation sites with a training accuracy
of 92.5% and a testing accuracy 91.4%, when combined with a neural
network based algorithm called Extreme Learning Machine.

Keywords: Particle Swarm Optimization, Stochastic Stability
Analysis, Inverse Problems.
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2 J.L. Fernández-Martínez et al.

1 Global Optimization Methods and Sampling

Most inverse problems can be written in discrete form as d = F (m) where
d ∈ Rs is the observed data, m ∈ Rn is the vector containing the model pa-
rameters, and F : Rn → Rs is the physical model, that typically involves the
solution of a set of partial differential equations, integral equations or algebraic
systems. Given a particular observed data set d, the inverse problem is then
solved as an optimization problem, that is, finding the model that minimizes the
data prediction error expressed as a certain norm ‖d− F (m)‖p .

The above optimization problem turns out to be ill-posed for three reasons:
(a) the forward model F is a simplification of reality (hypothesis and numerical
approximations included); (b) data are noisy and only partially sample the do-
main of interest; and (c) most applications of inverse modeling do not include
sufficient prior knowledge to constrain the inversion. These three points cause
an inverse problem to be quite different from any other kind of optimization
problem since both physics and data are involved on the cost function. In addi-
tion, the prediction error landscape usually corresponds to functions having the
global minimum located in a very flat and elongated valley or surrounded by
many local minima, such as the Rosenbrock and Griewank functions. The type
of the numerical difficulty found depends mainly on the forward functional F,
that is, the problem physics. The effect of data noise is to increase the presence
of local minima and/or the size of the valley topography. Combinations of both
pathologies can also occur in real problems.

Local optimization methods are not able to discriminate among the multiple
choices consistent with the end criteria and may land quite unpredictably at
any point in that area. These pathologies are treated through regularization
techniques and the use of “good” prior information and/or initial guesses. Global
optimization methods, such as genetic algorithms, simulated annealing, particle
swarm, differential evolution, etc., are especially interesting because instead of
solving the inverse problem as an optimization problem, they are able to sample
the region of the model space containing the models that fit the observed data
within a given tolerance, that is, they are able to provide information about the
posterior distribution of the inverse model parameters. To perform this task they
do not need in principle any prior model parameters to stabilize the inversion
and are able to avoid the strong dependence of the solution upon noisy data.

Particle swarm optimization and its variants are interesting global methods
since although they have not been designed to perform importance sampling,
they are nonetheless able to provide a proxy for the distribution of the model
parameters [5,7,8]. Also, PSO has its main advantage in being a very fast sampler
and shows a good balance between exploration and convergence depending on
the tuning of the PSO parameters.

2 Generalized PSO (GPSO) and PSO Family

The particle swarm algorithm [10] applied to optimization problems is very sim-
ple: individuals, or particles, are represented by vectors whose length is the
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number of degrees of freedom of the optimization problem. First, a population
of particles is initialized with random positions (x0

i ) and velocities (v0
i ). An

objective function is used to compute the objective value for each particle. As
time advances, the position and velocity of each particle is updated taking into
account its objective function value and the objective function values of its neigh-
bors. At time-step k + 1, the algorithm updates positions

(
xk+1

i

)
and velocities(

vk+1
i

)
of the individuals as follows:

vk+1
i = ωvk

i + φ1(gk − xk
i ) + φ2(lki − xk

i ),
xk+1

i = xk
i + vk+1

i ,

with
φ1 = r1ag, φ2 = r2al, r1, r2 ∈ U(0, 1) ω, al, ag ∈ R,

where lki is the i−th particle’s best position, gk the global best position within the
whole swarm, φ1, φ2 are the random global and local accelerations, and ω is a real
constant called inertia weight. Finally, r1 and r2 are random numbers uniformly
distributed in (0, 1) to weight the global and local acceleration constants,ag and al.

PSO can be seen as the particular case for Δt = 1 of the generalized PSO
(GPSO) algorithm [2]:

v(t + Δt) = (1− (1− ω)Δt) v (t) + φ1Δt (g (t)− x (t)) + φ2Δt (l (t)− x (t)) ,
x(t + Δt) = x(t) + v(t + Δt)Δt.

This algorithm can be written only in terms of position using three points (t+Δt,
t and t−Δt) difference equation:

x(t + Δt) + Ax(t) + Bx(t−Δt) = (φ1g(t) + φ2l(t))Δt2 (1)

with
A = Δt(1− w)Δt − 2 + Δt2φ B = 1− (1 − w)Δt

This model was derived using a mechanical analogy: a damped mass-spring
system with unit mass, damping factor, 1 − ω, and total stiffness constant,
φ = φ1 + φ2, the so-called PSO continuous model:⎧⎨

⎩
x′′(t) + (1− ω)x′(t) + φx(t) = φ1g (t− t0) + φ2l (t− t0) , t ∈ R,
x(0) = x0,
x′(0) = v0.

In this case x(t) stands for the coordinate trajectory of any particle in the swarm.
The interaction with other particles in the swarm take place through the local
and global attractors, l (t) , g (t). In this model, mean particle trajectories oscil-
late around the point:

o (t) =
agg (t− t0) + all (t− t0)

ag + al
.

and the attractors might be delayed a time t0 with respect to the particle
trajectories [3].
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Beginning with the mechanical analogy and the PSO continuous model, a
family of PSO members having different properties with regard to their ex-
ploitation/exploration balance are derived. We can have progressive, centered
and regressive discretizations for both acceleration and velocity. The result can
be a three point difference equation as in PSO (1), CC-PSO, CP-PSO , RR-PSO
and PP-PSO [4]; or a four point difference equation as in RC-PSO, RP-PSO,
PR-PSO and PC-PSO [4].

The consistency of the different PSO family members has been related to the
stability of their first and second order trajectories [3,6]. The type of mean tra-
jectories depends on the character of the eigenvalues of the first order difference
equation. Basically there are four kinds of trajectories: damped oscillatory in the
complex eigenvalue region, symmetrically and asymmetrically zigzagging in the
regions of negative real eigenvalues and nearlymonotonous decreasing character
in the region of positive real eigenvalues. Maximum exploration in reached in the
complex region. The second order trajectories show a similar kind of behavior.
The second order spectral radius controls the rate of attenuation of the second
order moments of the particle trajectories (variance and temporal covariance
between x(t) and x(t + Δt)) . These results have been confirmed by numeri-
cal experiments with different benchmark functions in several dimensions. For
GPSO, CC-PSO and CP-PSO the best parameter sets (ω, ag, al) are located on
the first order complex region, close to the upper border of the second order
stability region where the attraction from the particle oscillation center is lost,
i.e. the variance becomes unbounded; and around the intersection to the me-
dian lines of the first stability regions where the temporal covariance between
trajectories is close to zero. For PP-PSO, the good parameter sets are in the
complex region close to the limit of second order stability and near φ = 0. The
good parameters sets for RR-PSO are concentrated around the line defined by
the equation φ = 3

(
ω − 3

2

)
, mainly for inertia values greater than two. This line

is located in a zone of medium attenuation and high frequency of trajectories.

3 Selection of the PSO Version

PSO can be viewed not as a unique algorithm, but as a set of algorithms that
can be used for exploitation (looking for a unique global minimum) and/or ex-
ploration (sampling the misfit region in the model space) purposes. The design
of the PSO version (explorative or exploitative) depends mainly on two factors:

1. The first factor is the (ω, al, ag) point that has been selected. The greatest
explorative behavior is achieved when (ω, al, ag) is close to or even below
the second-order upper limit stability. Also, for same total mean acceleration
φ = (ag+al)/2, choosing al > ag causes the algorithm to be more explorative.

2. The second factor is the �t parameter, which is a numerical constriction
factor to achieve stability. It is possible to show analytically that the first
and second order stability regions increase their sizes and tend towards the
stability region of the PSO continuous model,

{
ω < 1, φ > 0

}
, when �t

goes to zero. In this case the exploration is increased around the global best
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solution. Conversely, when �t is greater than one, the first and second order
stability regions shrink in size and the exploration is increased over the whole
search space. This feature may help to avoid entrapment in local minima.

Particle swarm optimization and its variants are able to approximate the poste-
rior distribution of the model parameters faster than Markov Chain Monte Carlo
methods. To correctly perform this task a good balance between exploration and
exploitation is needed, and the CP-PSO version seems to be a good option [5].
Conversely when only a good model (the candidate for a global minimum) is
needed and no uncertainty analysis is performed, the RR-PSO and GPSO ver-
sions have better convergence rates to locate such a solution. Also, for example
the RC-GPSO version has worse convergence for some functions but shows the
best results for the Rastrigin function, thus it can be an interesting option to
try instead of PSO in case of multimodal error landscapes. These facts can be
taken into account to select the most appropriate PSO version when facing real
problems.

4 How to Input Prior Information

It is well established in optimization theory that different norms and penalties
defined in the cost function lead to different kinds of solutions with different
regularity. For instance, the l1-norm allows searching for sparse and “blocky”
solutions. Conversely, soft solutions can be found using the l2-norm, introducing
as a penalty for some regularity requirements in the model.

In the PSO case, soft solutions are found in a simple way by smoothing the
global best, providing to the algorithm an attractor with the prescribed smooth-
ness [7]. Reference models can be input very easily into the PSO algorithms in
at least three different ways. One way is as a particle that is introduced occa-
sionally into the swarm. If the reference model is compatible with the data, the
reference model might influence the oscillation center. A second way is through
the misfit functional, including a regularization term:

c (m) = w1 ‖d− F (m)‖+ w2 ‖m− (mref )‖p′ ,

where w1 and w2 are real weights. Finally, the model can be introduced as an
attractor into the force team:

v(t +�t) = (1− (1− ω)Δt) v (t) + φ1�t (g (t)− x (t))
+φ2�t (l (t)− x (t)) + φ3�t (mref − x (t)) ,

x (t +�t) = x (t) +�t v (t +�t) .

φ3�t (mref − x (t))mightalso replace theglobalbestattractorφ1�t (g (t)− x (t))
and the end of the algorithm execution. In all cases, the reference model mref has
the same dimensions as the other particles in the swarm.
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5 Phosphorylation Site Prediction Using PSO

Phosphorylation is a post-translational modification added to proteins to con-
trol and regulate their activities. It is an important mechanism for regulation
of biological functions. Phosphorylated sites are known to be present often in
intrinsically disordered regions of proteins that lack unique tertiary structures,
and thus have less information available about the structures of the phospho-
rylated sites. It is not always possible to detect these sites experimentally. It
will be useful to have computational methods to efficiently predict these sites. It
is an important challenge to predict phosphorylation sites in protein sequences
obtained from high-throughput sequencing of genomes. Phosphorylation sites
may aid in the determination of the functions of a protein or even differentiating
mechanisms of protein functions in healthy and diseased states. Our PSO algo-
rithm is combined with neural networks to model and predict experimentally
determined phosphorylation sites in protein sequences.

5.1 Methods and Data Generation

A neural network-based Extreme Learning Machine (ELM) is used for for pre-
dicting phosphorylation sites. The parameters of the ELM are tuned by our PSO
algorithm.

Extreme Learning Machine: ELM is a modified version of Single Layer Feed-
forward Network (SLFN) where the input weights are chosen randomly and the
output weights are calculated analytically. Activation functions such as sigmoidal
and Gaussian functions can be used for the hidden neuron layer, while a linear
activation function is used for the output neurons. ELM is a fast and simple
algorithm compared to traditional Neural Networks and is capable of finding the
best results using smaller resources. If the parameters of SLFN (input weights
and the bias of the hidden layer) are randomly chosen, SLFNs become a linear
system in which the output weights can be determined analytically through a
Moore-Penrose generalized pseudo-inverse operation of the hidden layer output
matrices. This improved algorithm is called the Extreme Learning Machine.
A comprehensive overview of ELM was given by Huang et al., in [9,11]. The
parameters of ELM are optimized using our PSO algorithm.

Data generation for phosphorylation prediction: 13604 sequences were ob-
tained from the Phospho. ELM database [1], where experimental phosphorylation
data found in the literature has been stored for public use. In these sequences, a
single residue is marked as a phosphorylated residue while all others are unphos-
phorylated. If there are multiple phosphorylation sites, then they are given as two
separate sequences. The phosphorylated sites are usually one of three residues,
namely, serine, threonine or tyrosine, but for our preliminary study we are con-
sidering only two classes where a residue is either phosphorylated or not, i.e., we
do not consider the actual type of residue that is phosphorylated.

The sequences in the data are coded using a twenty digit binary code with the
letter of interest being a 1 and the remaining letters denoted as a zero. A sliding
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window of 9 residues are used to represent the data. This data is then used for de-
terminingwhether a residue is phosphorylated or not. Since only one residue in each
sequence ismarkedasphosphorylated, therewere13604 residueswithpositive class
for phosphorylationbutmanymore residueswhichwere in the negative class for un-
phosphorylated residues. To maintain a balance, the same number of residues were
selected from each group for the classification using ELM and PSO.

5.2 Results and Discussion

1968 residues are used for each classification of which 984 residues are phos-
phorylated and 984 are not phosphorylated. Similarly, the test set also has 985
residues in each class. Our PSO optimization methods have enabled us to pre-
dict phosphorylation sites with a training accuracy of 92.5%, a testing accuracy
91.4% and Mathews correlation coefficient of 0.84. In the testing results, the sen-
sitivity for class-1 (non-phosphorylated) is 85.6% and specificity is 99.5% , with
accuracy of 99.6%. For class-2 (phosphorylated) residues, sensitivity is 85.6% and
specificity is 85.6% , but the accuracy was lower at 83.3%. So, the results for the
negative class are higher than the results for the positive class (phosphorylated),
although there were the same numbers of each class in our trials.

6 Conclusions

Particle swarm optimization (PSO) is an evolutionary computational technique
used for optimization motivated by the social behavior of individuals in large
groups in nature. Different approaches have been used to understand how this
algorithm works and trying to improve its convergence properties for different
kind of problems. These approaches go from heuristic to mathematical analysis,
passing through numerical experimentation. Although the scientific community
has been able to solve a wide variety of engineering problems, the tuning of
the PSO parameters has still remained one of its major drawbacks. By avoiding
heuristics, it can be proved that PSO can be physically interpreted as a par-
ticular discretization of a stochastic damped mass-spring system. Knowledge of
this analogy has been crucial in deriving the PSO continuous model and to de-
duce a family of PSO members having different properties with regard to their
exploitation/exploration balance. Their convergence is related to their first and
second order stability regions. Numerical experiments with different benchmark
functions have shown that better performing points are close to the upper limit
of second order stability. In the context of inverse problems, we address the ques-
tion of how to select the appropriate PSO version: the CP-PSO is intrinsically
the most exploratory version and should be selected when we want to perform
sampling of the posterior distribution of the inverse model parameters. Con-
versely, RR-PSO, CC-PSO and GPSO provide faster convergence . Four point
algorithms seem also to be very promising. Finally we show the application of
PSO to optimize the parameters of a neural network (ELM) to classify phospho-
rylated and non-phosphorylated data with quite high accuracy. We believe that
our algorithm will have many applications in biological studies.
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Abstract. A computational method that automatically builds dynami-
cal models of swarming systems from positional data is introduced. As an
initial test for the approach, the classical Vicsek model is used to make
samples for the computer algorithm and retrieve a model. Time depen-
dent separation measures are introduced in order to characterize the
dynamics of a system and then compare the behaviors of the source and
retrieved model. Cases of low and high density interactions are consid-
ered to verify the generality of the models. The results show the retrieved
models are capable of emulating the collective behavior well, especially
when the interaction structure resembles the one of the source model.

Keywords: mathematical modeling, swarming, computer simulations,
system identification.

1 Introduction

A new area of scientific research emerging is the study of the collective behav-
ior exhibited by a group of interacting individuals, referred as swarming when
applied to animal movement. The ability to obtain accurate positional data of
birds from GPS and cameras has opened the door to more advanced analyses
of bird flocking [1, 2]. Most approaches of mathematically modeling collective
behavior using dynamical systems have involved building a model using physical
laws to generate data that resembles the phenomena in question. The opposite
approach is to use positional time series data from measurements to build a
model that fits it as best as possible, especially using computers to automate
the process. This methodology, sometimes referred as system identification, is
extensively used in other areas, especially control theory and econometrics. Due
to the complexity observed in collective behavior, we suggest taking this auto-
mated approach, and take advantage of computing power to automatically build
nonlinear dynamical models based on the real system. In this paper, we shall
consider the basic task of building models from simulated noisy data, which can
be considered an initial step towards the automated modeling of real collective
systems from experimental data.

Mathematical models, in particular dynamical models, have been used by
biologists, physicists, and mathematicians, to illustrate animal movement or

Y. Tan et al. (Eds.): ICSI 2011, Part I, LNCS 6728, pp. 9–18, 2011.
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interaction. Early efforts involved models with physical laws and diffusion equa-
tions [5]. Discrete time generic models of collective systems, can be used to sim-
ulate swarming with complex behavior using simple mathematical rules [3, 4].

The automatic modeling of dynamical systems has been applied in many
fields. Some new techniques use data from real systems to identify nonlinear
ODE models [7, 8, 9], while others focus on inferring the natural laws of physical
systems [6]. Other approaches have considered generic discrete-time nonlinear
models to characterize chaotic dynamics [10, 11, 12].

2 Target System: The Vicsek Model

The Vicsek model [3], is probably the simplest nonlinear model capable of ex-
hibiting several behaviors common to swarming. The model consists of a discrete
time system composed initially of several particles in a square of linear size L,
each with 2D positions that are updated according to:

xi(t + 1) = xi(t) + vi(t) (1)

The velocities consist of a constant magnitude v and its direction defined by an
angle θ:

vi(t + 1) = v

(
cos(θi(t + 1))
sin(θi(t + 1))

)
(2)

The directions of the particles are updated by averaging the components of their
nearest neighbors:

θi(t + 1) = arctan
〈sin(θi(t))〉r
〈cos(θi(t))〉r + Δθ (3)

In equation 3, 〈.〉r denotes average of all particles within a fixed radius r of
particle i (including itself) and Δθ is a uniformly distributed random number in
the interval [−η/2, η/2], symbolizing the noise of the system. The original model
uses periodic boundary conditions but in order to have more realistic data, for
our simulations the boundaries of the square cell were removed so that the full
data can be continuous. From the different initial conditions shown in [3], we are
interested in the cases of high and low density (with low noise) since they show
behaviors analogous to swarming, in small and large groups respectively.

3 Radial Basis Models

It is important to clarify that any effective nonlinear modeling method such as
[7, 8, 9] could be used to fit the Vicsek data to a dynamical model. We selected
the discrete-time radial basis approach originally presented in [10, 11, 12] as the
tool to build our models due to its proven capability of modeling a wide variety
of nonlinear and chaotic behavior.
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3.1 General Form

From an input scalar time series y(t), the method essentially consists in building
the best model of the form:

y(t + 1) = f(z(t)) + ε(t) (4)

where z(t) = [y(t), y(t−1), ..., y(t−d)] is the embedding of the system and ε(t) is
the model prediction error. The former can be easily interpreted as the past val-
ues from the time series data y(t) that the model will consider for calculating the
prediction for t+1. The samples used for optimization of the model are built from
time series y(t) using the embedding z(t). The function form essentially consists
of a linear term equivalent to commonly used autoregressive models (AR), and a
nonlinear term consisting of a sum of nonlinear radial basis functions. Both the
structure of the function and the algorithm that builds and optimizes the model,
are described in detail in [10, 11]. All this optimization is done by minimizing
the Minimum Description Length (MDL) [13] to prevent overfitting of the data.

3.2 Modeling and Embedding for Swarming

For the particular case of swarm modeling, we want to use the same model for
each particle just like in the Vicsek model. Since we are working with positions
in 2D space, the position of a particle depends on two components, which means
we require two different functions for a single model. Therefore the single model
that all particles follow can be defined as:

f[z(t)] =
(

f1(z(t))
f2(z(t))

)
(5)

To simplify the model, instead of trying to predict the absolute position xi at
t + 1, we can substitute equation 4 by predicting the relative change in position
Δxi(t + 1) = xi(t + 1)− xi(t).

Δxi(t + 1) = f[zi(t)] + ei(t) (6)

where e(t) is an array with the model prediction errors for each coordinate.
The embedding z(t) of a particle i should consider enough information from the
nearest neighbors, since they have a direct influence in its motion. To define
our embedding zi(t), we can consider the average change in position Δxi(t)
of i and its neighbors, since it gives enough information about the magnitude
and direction of velocity vi(t), which actually is enough to model the Vicsek
data (see equations 1-3). Using an embedding which considers neighbor data
instead of values of past time intervals (as in equation 4) does not affect the
computer algorithm, since what it does is fit output samples to their respective
instances of the embedding vector (inputs to the function). With all this in
mind, the embedding is different for each particle, since each has different nearest
neighbors:
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zi(t) = 〈Δxi(t)〉M,i (7)

Of importance here, is that the neighborhood of the average in equation 8 (M )
has been modified from the one in equation 3 (r). This topological average
denotes averaging over particle i and a fixed number of M nearest neighbors.
This significant difference in the collective interaction has been studied recently
[2], and it will be considered for our models in order to provide a scenario where
the structure of the source system is unknown, and it is hypothesized to use
topological interaction. Practically speaking, this is not a far fetched assumption,
since from several simulations of the low and high density cases (with low noise)
of the Vicsek model, we have verified that the steady state number of neighbors
of particles is loosely constant, especially for the low density case.

4 Measuring Swarms

When considering models for swarming, it is useful to have a measure that
can characterize and illustrate the dynamical system behavior. Traditional ap-
proaches [5] have used velocity correlation functions to calculate the variance of
each individual from the centroid of the population, which should be constant
for a steady state swarm. In order to have a generic measure to characterize
the model data, we define the average separation of individuals from the mean
position of the whole population (N ) at a time interval t as:

δg(t) =
1
N

N∑
i=1

‖xi(t)− 〈x(t)〉N‖ (8)

It could also important to measure the average separation in local neighborhoods
instead of the whole population. This could be particularly useful in cases where
swarming occurs in small groups. A slight modification to equation 9 gives us the
average separation of individuals from the centroid of their local neighborhood
of neighbors:

δl(t) =
1
N

N∑
i=1

‖xi(t)− 〈xi(t)〉M,i‖ (9)

For some cases, a qualitative comparison between the δ’s of source and model
data could be more significant than a quantitative verification (e.g. shape of
curves against absolute error) for emulation of collective behavior. They can
also be used to observe transient and steady state properties of the system, in a
way that is reminiscent of analyses commonly done in control theory.

5 Methodology

The process followed to generate a model will now be described. A single simula-
tion of the low density with low noise case of the Vicsek model (L = 25, η = 0.1,
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see [3]) is used to generate the input data x(t), which is a time series matrix con-
taining the positions of both coordinates for each particle at each time interval.
The method follows:

Do for each positional coordinate j (2 in total):

1. Build samples for the function fj using as output Δx
(j)
i (t + 1) with

embeddings (equation 8) from all particles i
2. Run the modeling algorithm
3. Set the retrieved model as fj

Due to the randomness involved in the radial basis functions used to build the
model [10, 11], it is perhaps appropriate to run the algorithm several times to
retrieve several models and keep the best one. To discriminate between these
retrieved models, we decided to give preference to the global behavior for this
model selection, and thus we average δg over K simulations each with T time
intervals: δg = 〈δg(t)〉K,T . Using this measure, the model with least absolute

error |δ(data)

g − δ
(model)

g | is selected as the best model.

6 Results

After obtaining the best model following the procedure from the previous section,
a set of ten simulations of both the Vicsek and the retrieved model using low
density initial conditions, were used to average and calculate the δg(t) and δl(t)
statistics. The number of nearest neighbors (M ) considered in the retrieved
model structure and for calculating δl(t) was selected by averaging a rough steady
state number of neighbors from Vicsek simulations, and found to be M ≈ 4. After
that, the whole verification process was repeated for ten high density with low
noise simulations (L = 5, η = 0.1, see [3]) and M = 30. This verification of using
high density data for a model built from low density data was considered as
extrapolation to check the generality of the model.

6.1 Case 1: Regular Vicsek Model

Figure 1(a) shows that the global separation is followed very well by the model,
with a sharp increase that symbolizes movement away from the centroid. The lo-
cal separation measure in figure 1(b) illustrates a convergence of individuals which
later settles into a steady state. For the simulations of the source Vicsek model,
a pseudo-steady state is observed with the slight increase coming at t > 250. In
Figure 2, we can see snapshots of a simulation of both the source and the retrieved
model. It shows that in the Vicsek simulation there are a few stranded particles
moving away in groups of less than five, and this is why its δl measure in figure 1(b),
which considers neighborhoods of five, has the slight increase at t = 250 but no
such effect on the retrieved model. This can be reasoned with the fact that in the
Vicsek model, the radius nearest neighbor interaction causes far away particles
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Fig. 1. Global (a) and local (b) separation measures for the low density case of the
Vicsek model

Fig. 2. Simulation snapshots of the Vicsek model and the retrieved model, for a low
density case with the same initial conditions

to stay isolated, at a contrast with the structure of the retrieved model. Never-
theless, the global behavior of several groups of particles moving away in random
directions, is clearly emulated by the model.

When testing the extrapolating simulations of high density initial conditions,
Figure 3(a) shows how the global separation has a notable deviation. As can be
observed in figure 3(b), again the local interactions settle into a steady state, with
a very slight increase in the Vicsek model caused by the noise, while the retrieved
model is stable. Figure 4 shows a simulation where the global deviation can be
seen: the source data divides into two major swarms with a few stranded particles
in the middle, while the model performs a globally stable unified movement of the
whole population. This has to do with the fact that the steady state neighbors of
the Vicsek model in the high density case is less constant, which can be reasoned
from the fact that a higher concentration of particles within a noisy environment
obviously cause more variation within a radius of interaction.
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Fig. 3. Global (a) and local (b) separation measures for the high density case of the
Vicsek model

Fig. 4. Simulation snapshots of the Vicsek model and the retrieved model, for a high
density case with the same initial conditions

6.2 Case 2: Modified Vicsek Model

The previous subsection showed how even with a difference in model structure,
the global behavior of the low density data can be emulated adequately by the
retrieved model. Nevertheless, the high density case proved to be more difficult
due to the higher variation of interaction in the radius neighborhood of the
Vicsek model. In this subsection, the Vicsek model will be slightly modified to
consider a fixed number of neighbors in order to have equal interaction type
between source and retrieved model. In formal terms, equation 3 is modified to:

θi(t + 1) = arctan
〈sin(θi(t))〉M,i

〈cos(θi(t))〉M,i
+ Δθ (10)

where 〈.〉M denotes average over the M neighbors (and itself) as explained before.
The same procedure as in the previous subsection is followed to first retrieve the
best model from data of the modified model and later perform simulations. In
order to maintain similar global behavior to the original model, the values for
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Fig. 5. Global (a) and local (b) separation measures for the low density case of the
modified Vicsek model

M in the modified model were set to 4 and 30 for the low and high density
cases respectively, which causes the interaction structure to be equal with the
retrieved model.

For the low density simulations, Figure 5 shows how the behavior is followed
qualitatively both globally and locally, just with a slight deviation. The align-
ment noise in the source model likely causes the separation from the data to
be slightly higher than in the purely deterministic retrieved model, since this
provokes small variations in the steady state orientation of the particles. Figure
6 shows how a simulation of low density initial conditions of the retrieved model
follows qualitatively the behavior of the same initial conditions on the modifed
Vicsek model. The behavior of the simulations are comparable with the ones
obtained for the regular Vicsek model (small groups moving away), which con-
firms that for low densities the number of nearest neighbors within the radius of
a particle is roughly constant.

The advantage of modeling this modified model can be observed with the
high density data in Figure 7. The global behavior is followed much better now,

Fig. 6. Simulation snapshots of the modified Vicsek model and the retrieved model,
for a low density case with the same initial conditions
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Fig. 7. Global (a) and local (b) separation measures for the high density case of the
modified Vicsek model

and both local interactions qualitatively arrive at a steady state with a very low
deviation. Figure 8 shows an example of how the separation of a population into
two swarms is emulated very well qualitatively in a simulation.

Fig. 8. Simulation snapshots of the modified Vicsek model and the retrieved model,
for a high density case with the same initial conditions

7 Conclusions

The results show that automated mathematical modeling from time series data
using radial basis functions can produce discrete time models capable of emulat-
ing to a certain extent the collective behavior of the classical Vicsek model. The
introduced global and local separation measures over time, δg(t) and δl(t), were
observed to be a very adequate representation of the behavior of the systems.
From the results, we can state that for qualitative generalization of a swarming
model built from data, the structure of the collective interaction in the model
should resemble as much as possible the actual interaction followed in the data.
This should be taken into account when taking the next step of working with real
systems, in the sense that an adequate interactivity structure will be essential
to retrieve good models.
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Abstract. Swarm intelligent, cooperative object recognition forms part of  
cooperative construction research. A simulation model was designed and  
utilised to assess the suitability of a swarm of agents to identify and collect  
different objects, termed the Simplified Hexagonal Model. An agent in this  
system cannot assess different object types alone. Key to the efficiency of the 
system is avoiding stagnation whilst maintaining robustness. This paper  
examines the energy efficiency of the system when the probability of an agent 
moving away from an object it is trying to identify is varied. The probability of 
an agent moving away from an unidentified object per time-step was varied 
from 1:12 to 1:400. Both low and high probabilities increased the energy  
required to complete the task. This was more pronounced when using fewer 
agents. The reduced chance that the required number of agents were  
surrounding the same objects at the same time caused the increase. 

Keywords: Swarm intelligence, cooperative object recognition, stagnation. 

1   Introduction 

Due to their robustness and scalability using multiple simple robotic agents for  
construction is a widely accepted concept [1,2,3,4,5]. The behaviours used are often 
inspired by those in social insect nest building [6,7,8]. Research in autonomous coop-
erative construction frequently involves the use of homogeneous blocks. These blocks 
can be attached to each other in any order to complete the construction. It is suggest in 
[3] that these blocks could represent prefabricated pods, containing living quarters, 
research areas or kitchens. More often the blocks are considered the most basic con-
struction component. Blocks that alternate in colour but are otherwise identical are 
used to form walls in [2]. There are also smart blocks which act as other agents and 
hold information about the overall structure [5]. Perhaps another way to construct 
would be to use component pieces. These would take less space to transport than 
prefabricated pods but are more task specific than simple blocks. In this situation the 
component pieces would need identifying, matching and moving together. These 
tasks could all be completed through swarm intelligent control. This paper forms part 
of the research that focuses on the identification of different object shapes. 
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In [9][10] and [11] each robot or agent in the swarm could individually assess and 
identify any object that required moving cooperatively. What if an individual agent 
cannot identify the object alone, due to similarities in different components? There 
would then be a need for cooperative sensing, where agents share partial knowledge 
of the components. A cooperative sensing task is discussed in [12]. This scenario used 
agents with different sensing capabilities deviating from the homogeneous swarm 
robot model, something that is important in keeping the system robust where failures 
may occur. In [13] given the position of the homogeneous agents and their mounted 
cameras they are able to construct a spatial section and assess the object type.  

The authors’ research aims to understand how agents, with limited sensing capa-
bilities and no long term memory are capable of identifying different types of objects 
that an individual cannot assess alone. To do this the agents react to their local sur-
roundings by changing their state behaviour and display colours. This paper focuses 
specifically on the issue of avoiding stagnation when a swarm is identifying different 
objects where only a certain type is required to be collected to complete the task. 
Although this is an over simplification of real world cooperative construction tasks 
the model will provide useful data and control strategies that will aid the development 
of cooperative object recognition for cooperative construction in the future. 

2   Simplified Hexagonal Model 

The simplified hexagonal model (SHM) was developed in Processing [14] an open 
source graphical programming platform. It was constructed from a two-dimensional 
hexagonal grid. Each active hexagonal cell can contain, part of a larger object, an 
hBot agent, a boundary region or nothing. The SHM provides a quick and simple 
method of testing early ideas in swarm intelligence control. Information, data and 
control techniques gained from the model can then be transferred to more complex 
simulations and hardware platforms.  

Agents used in the SHM are hBots, hexagonal robots. An hBot occupies one cell 
on the hexagonal grid and when not in contact with an object performs a random 
walk. Each hBot has a limited sensor range. It is aware of the condition of each of its 
six surrounding cells and the twelve that surround those. The hBots behave based on 
their state which is determined by their surrounding conditions. In the simulation they 
communicate their current state by changing display colour, as it is clearer to observe. 

Objects are approximations of triangles or hexagons built from bound neighbour-
ing cells. Objects can be moved if enough hBots are pushing or pulling it. The orien-
tation and the position of the hBots around the objects do not affect their ability to 
move it. All the hBots that are trying to move the object move with it as a group. 
However, any hBots that are in the way and have not identified the object stop its and 
the other hBots’ movement. An hBot in contact with an object will have a number of 
edges touching it. In figure 1 the numbers of edge contacts for each surrounding cell 
are shown for both triangular objects and hexagonal objects. Table 1 shows the  
different patterns of edge contact that three neighbouring cells make for both objects. 
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Fig. 1. Objects with surrounding cells showing number of sides in contact with object 

Table 1. Patterns of sides in contact with objects with three hBots in contact with each other 

Triangle: 3 hBot combinations Hexagon: 3 hBot combinations 
Left Centre Right Left Centre Right 

1 (1) 2 - - - 
1 (2) 1 1 (2) 1 
1 (2) 2 1 (2) 2 
2 (1) 1 - - - 
- - - 2 (1) 2 
2 (2) 2 2 (2) 2 

 
The patterns that only occur when three hBot agents surround a triangle or hexagon 

but not the other in table 1 are as follows:  

• Patterns 1(1)2 and 2(1)1 only occur with a triangular object. 
• Pattern 2(1)2 only occurs with a hexagonal object. 

With this information it was possible to produce a system where groups of hBots can 
identify an object as hexagonal or triangular, when there are three adjacent hBots at a 
corner of a shape. Table 2 explains how the hBots current state, behaviours and dis-
play colours change based on their current state and surrounding parameters. 

Table 2. The state, sensed condition and behaviours that control the hBot 

State Sensed Condition Behaviour (per time-step) Colour 
0 Searching for object or in contact with 

the edge of arena or collection zone. 
Perform random walk avoiding 
collisions 

Grey 

1 In contact with object on one side only. Green 
2 In contact with object on two sides. 

A probability to perform random 
walk avoiding collisions. Blue 

3 (a) In state 1 with two neighbouring 
hBots, one in state 1 the other state 2. 
(b) In (state 1 or state 2) and in contact 
with a state 3 hBot. 

Red 

4 (a) In state 1 with two neighbouring 
hBots, both in state 2. 
(b) In (state 1 or state 2) and in contact 
with a state 4 hBot. 

Attempt to push or pull object 
one cell towards goal. Goal for 
valid objects is the collection 
zone. Goal for invalid objects is 
outside the search area. Purple 
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An example of a group assessing a triangular object, the assessment of a hexagonal 
object is very similar, can be seen in figure 2 which shows:  

a) Three hBots in contact with object in states 1 for single side contact and state 
2 for dual object side contact, three hBots in state 0 are approaching object. 

b) A group of three hBots form at a corner of the triangle with states 1(1)2. 
c) The centre hBot of the first group of three changes to state 3 (state 3 condi-

tion a), the second group of three hBots is in contact with the object. 
d) The two outer hBots change to state 3 (state 3 condition b), the second group 

remain in states 1(2)2 as this is common to both objects types. 

 

Fig. 2. Example of hBots using state behaviour to identify a triangular object. hBots in state 3 
are aware they are in contact with a triangular object. 

The overall program, figure 3, has three essential parts, the hBots, the objects and 
the arena. The arena maintains a record of what is happening in each of its cells, a 
hBot in a certain state, part of an object or nothing at all, then displays the information 
on the screen. The hBots each sense their surroundings based on the data retained in 
the cells around them, then use this data to select their state behaviour and display 
 

 

Fig. 3. The flow of the main program, broken down into the three main component parts, the 
updating and displaying the cells of the arena, the hBots sensing state and movement control 
and the objects movement and deletion 

 Display/Arena hBots Objects 

Update colour of arena cells hBots sense surroundings

hBots update state based on 
surroundings 

Update colour of arena cells 

Display cells 

Objects outside of 
arena are deleted 

Objects with enough hBots 
pushing are moved 

hBots in contact with a moved 
object also move 

hBots sense surroundings

Count hBots trying to 
move object 

hBots move as allowed
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colour, which affects how they can move. Finally the objects react when enough 
hBots of the correct state are trying to move them and nothing is in their path and 
move accordingly. Any objects pushed out of the arena or into the collection zone are 
deleted. The decision tree, figure 4, expands on the section regarding how the hBots 
select their current state based on their sensed surroundings.  

 

Fig. 4. A decision tree explaining how the current states of the hBots are determined based on 
their sensed surroundings 

3   Results 

An arena was constructed in a hexagonal arrangement measuring 41 cells diagonally 
from corner to corner. The hexagonal collection zone was placed in the exact centre 
measuring 11 cells diagonally from corner to corner. In figure 5 three valid 7 cell 
hexagon objects and three invalid 6 cell triangles are shown spaced evenly at equal 
distances away from the collection zone. The hBots need to collect the three valid 
objects from the arena to complete the task. Any invalid objects are possibly removed 
from the arena by the agents if they are identified. 
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Fig. 5. Screen grab of SHM Arena at time-step 0 

In order to reduce the chance of stagnation in the system any hBots that are in con-
tact with an object but have not identified it (states 1 or 2) have a probabilistic chance 
each time-step to move away from the object. If this were not the case there could be 
situations where the hBots are spread amongst the objects without the required three 
in a row to identify the object.  This variable is considered to be the ‘stickiness’ of the 
agent. For each time-step every hBot in states 1 or 2 has a 1 in ‘stickiness’ chance of 
moving. The probability of the hBot moving away decreases with larger values of the 
variable. This paper measured the affect on the energy cost of different populations of 
hBots when their ‘stickiness’ was varied from 12 to 400. The total energy cost is 
found by multiplying the number of hBots by the number of time-steps as in equation 
1. This provides a more accurate evaluation of the systems efficiency than measuring 
time-steps alone. In the SHM the energy supply is currently modelled as infinite as it 
provides valuable information on the overall efficiency of the system as variables are 
adjusted rather than a fully realistic simulation of robotic agents in the field.  

 

time-steps × number of hBots = energy cost . (1) 

 
The simulations for each value of ‘stickiness’ were run with a varying hBot popula-
tions. For each number of hBots, from 10-30 at increments of 5, the experiment was 
run 50 times. To complete the task, three of the hexagonal objects needed to be 
moved by the hBots to the collection zone. The unwanted triangular objects, once 
identified, could be moved out of the search arena to avoid re-assessment. It required 
four hBots working together to move an object. This emphasised the difference in the 
two tasks, identifying and movement. The amount of time-steps it took to complete 
the tasks was recorded and the energy cost calculated. 
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Varying Probability of Moving Aw ay from an Unidentif ied Object 
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Fig. 6. The total energy cost to complete the task decreases as the hBot population increases 

As in previous experiments [15] increasing the agent population in an arena of this 
size decreases the amount of energy used by the agents. The results presented in fig-
ure 6 show for all values of ‘stickiness’ there is an initial rapid decrease in the amount 
of energy consumed which starts to level off as the population is increased. There is a 
more pronounced affect when the values are at the extremities. The low probability of 
movement 1:12 and the high probabilities 1:200 and 1:400 have the highest energy 
costs. The energy cost for 1:50 and 1:100 are almost exactly the same. Overall as the 
number of hBot agents increases the energy cost for completing the task tend towards 
similar values across the board. 

The variation in energy cost against the increasing stickiness is more clearly visible 
in figure 7. For every number of hBots used in the simulation the same pattern is seen. 
Similar to a ‘tick’ shape, the energy cost starts high when there is a 1:12 probability of 
moving, drops rapidly. This drop ranges from approximately 30-50% depending on 
the number of hBots. Between probabilities 1:50 and 1:100 the energy cost remains 
approximately level, variations between 1-15%. There is then a steady increase in 
energy consumed to complete the task from the 1:50 probability to 1:400. The varia-
tion in the energy consumed decreases as the number of hBots increases. This is be-
cause with a limited number of objects to find and identify the hBots are more likely 
to cluster together in the required groups of three to identify an object.  
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Varying number of  hBot Agents used to Collect 3 Valid Objects (Removing Invalid Objects) 
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Fig. 7. The energy cost drops suddenly and rises gradually as the probability of moving away 
from an unidentified object per time-step decreases from 1:12 to 1:400  

In one simulation (15 hBots, stickiness of 200) the task was not completed due to 
complete stagnation. One of the hexagonal items was collected on the 5767th time-
step leaving two hexagonal and three triangular objects. The 15 hBots spread evenly 
and identified the five remaining objects. As the experiment requires four hBots  
pushing/pulling an object to move it, the task stagnated. 

4   Conclusion 

The ability for multiple agents to identify different objects cooperatively is an impor-
tant aspect of autonomous cooperative construction. The aim of this paper was to gain 
an understanding of this issue, specifically where a single agent could not identify 
different object shapes alone. The SHM has proven to be a valuable tool for gathering 
a large amount of data quickly to aid in the planning for future research. It is clear that 
this model could not only be used for other cooperative identification research, but for 
other types of early swarm intelligence and swarm robotic research. 

The focus of this paper was the balance between robustness and stagnation. A vari-
able was set in the system which gave each agent a given probability to remain next to 
an object that it was attempting to identify. Increasing the ‘stickiness’ value reduces 
the probability of it moving away. For low values of this variable there were high 
energy costs. This represents a less robust system with a low probability of total or 
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temporary stagnation. However, increasing the variable too high also required a high 
energy cost as temporary stagnation was far more common.  The situation where true 
stagnation occurred would not have necessarily been avoided by a different ‘sticki-
ness’ value. In this specific case there were five objects in the system and three hBots 
on each object which had, as a group, identified the objects. In these experiments it 
required four hBots who are all aware of the object type in order to move it. This 
could be avoided by adding a second variable for the situations where agents have 
identified an object. Giving them a chance to move away and perhaps help another 
group move an object as required. 

Further research using the SHM is needed to understand the limitations and capa-
bilities of simplistic agents to cooperate to identify objects. The research will provide 
insight of the relevant strategies required for implementation with physical robots. 
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Abstract. Particle Swarm Optimization (PSO), proposed by Professor Kennedy 
and Eberhart in 1995, attracts many attentions to solve for a lot of optimization 
problems nowadays. Due to its simplicity of setting-parameters and  
computational efficiency, it becomes one of the most popular algorithms in op-
timizations. However, the discrepancy of PSO is the low dimensionality of the 
problem can be solved. Once the optimized function becomes complicated, the 
efficiency gained in PSO degradates rapidly. More complex algorithms on PSO 
required. Therefore, different algorithms will be applied to different problems 
with difficulties. Three different algorithms are suggested to solve different 
problems accordinately. In summary, proposed PSO algorithms apply well to 
problems with different difficulties in the final simulations. 

Keywords: Optimization, Optimization Benchmark, Particle Swarm  
Optimization, Genetic Algorithm, Mutation. 

1   Introduction 

Since 1955, Professor Kennedy and Eberhart introduced the bright new optimization 
algorithm called Particle Swarm Optimization (PSO); optimization algorithms are 
more advanced and efficient than that before [1-7, 9]. Take an example, Genetic Al-
gorithm (GA) is another optimization one based on evolution principle with high 
computational burden [8].  

Adjustments on parameters of PSO are under studying by many researchers all 
around the world. As mentioned in [9], many improved PSOs have been promoted to 
enhance the capability of original PSO, but fail to find the optimal solution when the 
dimensionality of the problem is high. In [9], arithmetic mutation borrowed from GA 
with low mutation rate can improve the problems with many variables. The algorithm 
is therefore called Improved PSO (IPSO) later. Furthermore, with enforced one-
variable mutation besides GA mutation, the dimensionality can increase from 200 to 
2000 for easy problems. As for the tough problem, the dimension of variables can 
modify from 16 to 28 with good success rate [9, 10]. This is the contribution of this 
paper. 
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2   PSO Introduction 

The formulas recommended by [1] are listed in equation (1) and (2). 
 V k 1 ω V k c φ P pbest P k  c φ P gbest P k                      .                      (1) 
                                                                 P k 1 randxx P k V k 1   .                                (2) 
 

Where V stands for velocity, P stands for particle/position, pbest is the best parameter 
in the i-th generation, and gbest is the best solution variable array from beginning to 
the present generation so far. φ1 andφ2 are two uniform random numbers. i is the gen-
eration number. In [9, 10], the best settings of parameters in PSO with GA mutation 
rate of 0.0035 are 

In the original PSO, c1=c2=2, ω=1, randxx=1, but in the modified PSO, parameters 
are changed. Simulation results for benchmark problems with modified PSO can be 
found in [3, 4, 9, 10]. 

3   Enforced Mutation in PSO (EMPSO) Algorithm 

From the original PSO viewpoint, the adjusting number of parameters is quite few (e.g. 
c1, c2, ω, randxx). It is okay to most problems with low dimensions. In [9], GA muta-
tion of rate 0.0035 is appended behind the original PSO algorithm. This is IPSO in [9, 
10]. It is shown that the dimension for those problems can be increased further. When 
the dimension is going higher and higher, IPSO also showed the incapability to find the 
true optimum in the search. A momentum is still needed to let PSO solutions jumping 
out to the final global optimum from local optimum. This momentum goes to the idea 
that after GA mutation process, an enforced mutation mechanism is included in certain 
specified time interval in the whole generations. Without this enforced mutation, at the 
end of generation run, the best solution maybe is the global one as desired or trapped in 
the local optimum. The idea for creating EMPSO is that part of particles (solutions) are 
replaced by the global optimum sets and one variable in every set are forced to modify 
to a new allowable value by single mutation. Therefore, in the algorithm executing 
process, randomly select one variable to do the other single arithmetic mutation where 
other variables are adhered to the global optimal record so far (gbest). The modified 
generalized algorithm (EMPSO) has steps in sequences and explained as 

 
(1) Perform the regular PSO update process as usual. Proper parameter settings in 

PSO for each sample problem are shown later. Equations are the same as Eq-
uation (1) and (2).  

(2) GA mutation with rate of 0.0035 for sample problems with index of difficulty 
of 1 or 2 (defined later), but rate is increasing with running generation from 
0.0035 to 0.01 for problems with index of difficulty of 3. As the rate of 
0.0035, if there are 200 particles (population) in each update step, 3.5% of 
200 or 7 particles (in average) are selected for mutation. 7 particles are  
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randomly picked up in the process. If the dimension of each particle is 200, 
then 7 variables out of 200 ones are under mutation process. Mutation is a 
kind of arithmetic mutation, that is, randomly selected a legal value between 
upper bound and lower bound of each selected variable to replace the original 
value. This is a true GA mutation usually used in GA process. 

(3) After completing the step (2), the gbest may locate at the true optimal values, 
while other time the gbest solution is trapped in the local optimal locus. There 
are no any progresses in the solution search to the final. In order to overcome 
the trapping problem, enforced mutation is executed 3 times in the proper  
located intervals. In the whole generations, 3 short intervals are arranged to 
do the enforced mutation as shown in Fig. 5. In Fig. 5, only two enforced  
mutation processes are executed and shown accordingly because after  
completing the second enforced mutation, the true optimal solution is already 
found shortly later and the next generation process is stopped. Population of 
one-variable enforced mutation is one tenth of total population (called 
EM_population). gbest is copied to each randomly selected particle in 
EM_population. One variable is randomly selected again for each randomly 
selected particle. This variable is forced to obtain a new legal value in the  
selected bounds (All other variable values are not changed as gbest assigned). 
The main function of one variable mutation is to gain the ability of particles 
trapped in the local optimal region to jump out of the trapped region. Without 
this mechanism, one can not use high dimension of variables for each sample 
problems. 

In summary, in EMPSO, the first step is to apply eq.(1) and (2) to update particle and 
velocity. Parameters are set on the condition of index of difficulty. GA mutation is 
executed with low mutation rate such as 0.0035 or from 0.0035 to 0.01. This is the 
second step. In the last step, enforced one-variable mutation is inserted in the genera-
tion interval (3 times in the generation run). It is shown that in the following tables 
that with this enforced mutation used, the dimension of variables of each sample 
problems can be increased mildly. 

4   Sample Examples 

In this section four benchmark optimization problems are tested under proposed 
EMPSO algorithm with enforced mutation mechanism included. Three difficulty 
indices (1, 2, and 3) are used to classify these four problems with small number (such 
as 1) to represent a relatively easy problem, while larger number (such as 3) to 
represent tougher one. 

4.1   Example 1: Sphere Function with Difficulty Index of 1 

                                                 
(3)

 

where , n is the dimensionality or number of va-

riables to be optimized. The objective is to find the minimum of f1 function and the 
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related variable locations. Fig.1 shows the surface plot of the sphere function in 2 
variables. There is a unique minimum point in the figure with location [0, 0]. Popula-
tion size is 600. Parameters for PSO and enhanced mechanism (EMPSO) for this 
simple problem are (Algorithm #1) 
 

(1). c1=c2=1.9, ω=0.763, randxx=-10-4. 
(2). GA mutation rate is set to 0.0035. 
(3). One-variable enforced mutation is used. 
 

 

Fig. 1. Surface plot of the sphere function in n=2 variables 

Table 1. Optimization results of sphere function 

Number of 
variables 
(dimension) 

Success  
rate 

Generations 
to complete 
(average) 

Mutate 
rate 

2 50/50 13 0.0035 
10 50/50 28 0.0035 
25 50/50 36 0.0035 
50 50/50 41 0.0035 

200 50/50 46 0.0035 
500 50/50 48 0.0035 

1000 50/50 49 0.0035 
2000 50/50 51 0.0035 

 
From Table 1, the EMPSO shows its great capability to find the optimal solution with 
so few generations for the high dimension sphere functions with full success rates. In 
[9], the largest dimension is restricted to 200. 
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4.2   Example 2: Rastrigin Function with n Variables and Difficulty Index of 1 

 .                             (4) 

Where , n is the dimensionality or number of va-

riables to be optimized. The objective is to find the minimum of f2 function and the 
related variable locations. Fig. 2 shows the surface plot of the function in 2 variables. 
There is a unique minimum point with value of zero in the figure with location (0, 0). 
Population size is 600. Parameters for PSO and enhanced mechanism (EMPSO) are  

 

Fig. 2. Surface plot of the Rastrigin function in n=2 variables 

Table 2. Optimization results of Rastrigin function 

Number of 
variables 
(dimension) 

Success  
rate 

Generations 
to complete  

(average) 

Mutate 
rate 

2 50/ 50 18 0.0035 
5 50/ 50 60 0.0035 

10 49/ 50 238 0.0035 
15 47/ 50 41 0.0035 
20 45/ 50 228 0.0035 
25 45/ 50 50 0.0035 
30 46/ 50 130 0.0035 
35 47/ 50 78 0.0035 
40 48/ 50 50 0.0035 
50 47/ 50 51 0.0035 

200 50/ 50 56 0.0035 
500 50/ 50 58 0.0035 

1000 48/ 50 59 0.0035 
2000 50/ 50 60 0.0035 
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(Algorithm #1) 

(1). c1=c2=1.9, ω=0.763, randxx=-10-4. 
(2). GA mutation rate is 0.0035. 
(3). One-variable enforced mutation is used. 
 

From Table 2, the EMPSO shows its good capability to find the optimal solution with 
so less generations for the high dimension Rastrigin functions with high success rates. 
From Fig. 2 there are a lot of local peaks and valleys for this Rastrigin function, this 
problem is a little bit difficult than sphere function. However, EMPSO can solve the 
problem as well with few failures. In [9], the largest dimension is restricted to 200. 

4.3   Example 3: Rosenbrock Function with n Variables and Difficulty Index of 2 

                                  
(5)

 

Where , n is the dimensionality or number of va-

riables to be optimized. The objective is to find the minimum of f3 function and the 
related variable locations. Fig. 3 shows the surface plot of the function in 2 variables.  

 

Fig. 3. Surface plot of the Rosenbrock function in n=2 variables 

There is a unique minimum point with value of zero in the figure with location (1, 1). 
Population size is 600. Parameters for PSO and enhanced mechanism (EMPSO) are 
 
(Algorithm #2) 

(1). c1=c2=1.9, ω=1, randxx=0.5 from the beginning. 
(2). After one third of total generations, reset the parameters to new values such as 

ω=0.5, randxx=0.99999. 
(3). GA mutation rate is always fixed to 0.0035. 
(4). One-variable enforced mutation is used. 
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From Table 3, the EMPSO shows its great capability to find the optimal solution with 
many generations for the high dimension Rosenbrock functions with almost full 
success rates. Because of the tight relation among all variables and sticked to 1, this 
problem will cost a lot of time as well as generations to finish finding the optimal 
solution. Dimension is up to 200 with many generations, so over 200, the generation 
number is expected exponentially increasing. Therefore, there still is progress to be 
studied in the future for dimension over 200. At present, the dimension is increased 
from 100 [9] to 200.  

Table 3. Optimization results of Rosenbrock function 

Number of 
variables 
(dimension) 

Success  
rate 

Generations 
to complete 
(average) 

Mutate 
rate 

2 50/50 47 0.0035 
10 50/50 7749 0.0035 
25 48/50 16879 0.0035 
50 50/50 24641 0.0035 

100 50/50 46217 0.0035 
200 50/50 73333 0.0035 

4.4   Example 4: Schafer Function with n Variables. Eq. (6) Shows n=2, (x, y) 
Only. The Difficulty Index is 3. 

 

                                     (6) 

Where , n is the dimensionality or number of va-
riables to be optimized. The objective is to find the maximum of f4 function and the 
related variable locations. Fig. 4 shows the surface plot of the function in 2 variables. 
There is a unique maximum point with value of one in the figure with location (0, 0). 
Population size is 600. Parameters for PSO and enhanced mechanism (EMPSO) are  
 
(Algorithm #3) 

(1). c1 is decreasing with generations from 2 to 1.5, c2=3.8-c1, ω=0.763, 
  randxx=0.99999. 

(2). GA mutation rate is increasing from 0.0035 to 0.01 with generation count. 
(3). One-variable enforced mutation is used. 
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Fig. 4. Surface plot of the Schaffer function in n=2 variables 

 

Fig. 5. One simulation result for Example 4.4 

From Table 4, the EMPSO shows its great capability to find the optimal solution with 
many generations for the high dimension Schaffer functions with almost full success 
rates. From Fig. 4, if the algorithm is not efficient, then gebst is absorbed in the local 
traps region. It is relatively difficult to jump out of those traps in general. For 
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example, IMPSO, IPSO are used to overcome the trapping problem in low 
dimensionality problems. Furthermore the capability of jumping out of traps is 
increased by incorporating the one-variable enfored mutation mechanism and high 
GA mutation rate into EMPSO. Fig. 5 shows that after one-variable mutation’s 
disturbance (blue regions in the lower part), global minimum (gbest) can move down 
gradually further. It takes minimization to do the whole performances in the PSO 
algorithm, so -1 is the true minimum or +1 is the true maximum in Fig. 5. Nearby 
information provided by the local maximum as shown in Fig. 4 is wrong, therefore, 
further modifications on particle/velocity is really difficult if original PSO algorithm 
(see eq.(1), (2)) is used. Therefore this Schaffer function has an index of difficulty of 
3. The dimension in [9] is limited to 16 only, but 28 used in EMPSO. 

Table 4. Optimization results of finding solutions of Schaffer functions 

Number of 
variables 
(dimension) 

Success  
rate 

Generations 
to complete 
(average) 

Mutate 
rate 

Calling 
oneVar 
times 

2 50/50    56 0.0035 to 0.01 3 

4 50/50 128 0.0035 to 0.01 3 
6 50/50 1745 0.0035 to 0.01 3 
8 50/50 11427 0.0035 to 0.01 3 

10 50/50 30528 0.0035 to 0.01 3 
12 50/50 49195 0.0035 to 0.01 3 
14 49/50 92415 0.0035 to 0.01 3 
16 50/50 116328 0.0035 to 0.01 3 
18 50/50 138385 0.0035 to 0.01 3 
20 50/50 168559 0.0035 to 0.01 3 
22 48/50 200465 0.0035 to 0.01 3 
24 46/50 189222 0.0035 to 0.01 3 
26 36/50 209565 0.0035 to 0.01 3 
28 41/50 269290 0.0035 to 0.01 3 

5   Conclusions 

In this paper, an improved PSO with enforced mutation (EMPSO) has been proposed 
for handling four different problems with different difficulty indices. From the discus-
sions above, one can find that the easy problems such as Sphere and Rastrigin func-
tions with n-dimension can be easily overcome by adjusting PSO parameters in one 
step. For the intermediate difficulty of problems such as Rosenbrock, two steps of 
parameter setting are required in the PSO besides GA mutation. Lastly to the toughest 
problem such as Schaffer, the success to reach the final global optimum is relied high-
ly on the enforced mutation mechanism when dimensionality of parameters is high. It 
is apparent from Fig. 5 that after the disturbing of one-variable enforced mutation, the 
final optimal solution can be reached by jumping out of the trap developed by local 
optimal locus. 
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The conclusion is that with optimization problems with different difficulty indices, 
firstly, the proposed EMPSO incorporates enforced mutation mechanism to the clas-
sical or standard PSO besides formal GA mutation; secondly, different settings of 
control parameters are required to set according to the relevant index of difficulty of 
the problem. The chances to find global solutions are increasing using this EMPSO 
algorithm to different problems. The dimension can be traced as high as 2000 in the 
first and the second examples. For the most difficult problem, the dimension is im-
proved further from 16 to 28. With EMPSO, the possibility to find a global optimum 
is increased although the success rate is not 100% as shown in Table 4. 

 
Acknowledgments. A financial support of DaYeh University for this study is highly 
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Abstract. Particle swarm optimization (PSO) algorithm can be viewed
as a series of iterative matrix computation and its population diversity
can be considered as an observation of the distribution of matrix ele-
ments. In this paper, PSO algorithm is first represented in the matrix
format, then the PSO normalized population diversities are defined and
discussed based on matrix analysis. Based on the analysis of the rela-
tionship between pairs of vectors in PSO solution matrix, different pop-
ulation diversities are defined for separable and non-separable problems,
respectively. Experiments on benchmark functions are conducted and
simulation results illustrate the effectiveness and usefulness of the pro-
posed normalized population diversities.

Keywords: Particle swarm optimization, diversity, normalized
population diversity, matrix analysis, vector norm, matrix norm, matrix
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1 Introduction

Particle Swarm Optimization (PSO), which was introduced by Russ Eberhart
and James Kennedy in 1995 [1,2], is a population-based evolutionary computa-
tion technique. It models the social behaviors observed in flocking birds. Each
particle, which represents a potential solution, flies through the solution (search)
space with a velocity that is dynamically adjusted according to its own and its
companion’s historical behaviors. The particles have a tendency to fly toward
better search areas over the course of a search process [3].

Diversity has been defined to measure the search process of an evolutionary
algorithm. Generally, it is not to measure whether the algorithm find a “good
enough” solution or not, but to measure the distribution of individuals in the
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population (current solutions). Shi and Eberhart introduced three different defi-
nitions on population diversity to measure the PSO search process [4]. Olorunda
and Engelbrecht utilized swarm diversity to measure the state of exploration or
exploitation during particles searching [5]. Because different problems have dif-
ferent dynamic ranges, the dynamic ranges of these defined diversities generally
will be different. As a consequence, the diversity observation on one problem
will be different from that on another problem. Therefore it is necessary to have
normalized diversity definitions.

In this paper, the basic PSO algorithm, fundamental concepts of matrix com-
putation, and the importance of diversity are reviewed in Section 2. In Section
3, definitions of position diversity, velocity diversity, and cognitive diversity are
given for separable problem and non-separable problem, respectively. In Sec-
tion 4, experiments on measuring population diversity are tested on benchmark
functions and simulation results are discussed to illustrate the effectiveness and
usefulness of the proposed normalized diversity definitions. Finally, conclusions
are given in Section 5 together with some remarks and future research directions.

2 Preliminaries

2.1 Particle Swarm Optimization

The original PSO algorithm is simple in concept and easy in implementation.
The basic equations are usually given as follow [6]:

vij = wvij + c1rand()(pij − xij) + c2Rand()(pnj − xij) (1)
xij = xij + vij (2)

where xij represents a particle, i represents the number of particle which is from
1 to m, and j is for dimension from 1 to n.

The equations above can also be written in matrix form as follow:

V = wV + c1RAnd()(P −X) + c2RAND()(N−X) (3)
X = X + V (4)

where RAnd() and RAND() are different for each matrix element, and

X =

⎡
⎢⎢⎢⎣

x1

x2

...
xm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1n

x21 x22 · · · x2n

... xij

...
xm1 xm2 · · · xmn

⎤
⎥⎥⎥⎦ V =

⎡
⎢⎢⎢⎣

v1

v2

...
vm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

v11 v12 · · · v1n

v21 v22 · · · v2n

... vij

...
vm1 vm2 · · · vmn

⎤
⎥⎥⎥⎦

P =

⎡
⎢⎢⎣

p1

p2

· · ·
pm

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

p11 p12 · · · p1n

p21 p22 · · · p2n

... pij

...
pm1 pm2 · · · pmn

⎤
⎥⎥⎥⎦ N =

⎡
⎢⎢⎣

p∗1
p∗2
· · ·
p∗m

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

p∗11 p∗12 · · · p∗1n

p∗21 p∗22 · · · p∗2n
... p∗ij

...
p∗m1 p∗m2 · · · p∗mn

⎤
⎥⎥⎥⎦
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The above four matrix are termed as position matrix X, velocity matrix V,
cognitive (personal best) matrix P, and social (neighboring best) matrix N,
which is a simplified personal matrix with only one particle’s best position which
is either the global best position in global star structure or a particle’s personal
best in this neighborhood in other structures, e.g., local ring.

Shi and Eberhart gave three definitions on population diversity, which are
position diversity, velocity diversity and cognitive diversity [7]. According to the
PSO matrix representation, diversity is a measurement of variance of different
elements in each dimension or in whole matrix. Position diversity is used to mea-
sure the distribution of particles’ current positions, that is, it concerns elements
in matrix X. Velocity diversity is used to measure the distribution of swarm’s
current velocity, that is, it concerns elements in matrix V. Cognitive diversity
measures the distribution of best positions for each particles find so far, that is,
it concerns elements in matrix P. Which diversity definition to be utilized to
measure the diversity of swarm is determined by the property of particle swarm
algorithms and the problems to be solved.

Each vector xi, where xi = [xi1, · · · , xin] in position matrix X, is a solution of
problem. An optimization problem can be a separable problem or a non-separable
problem. For a separable problem, it is independent to evaluate the contribution
of each xij to the fitness value of xi; while for non-separable problem, it is not
independent. Therefore, for separable problems, it is preferred to use dimension-
wise diversity measurement, while for non-separable problems it is preferred
to use element-wise diversity measurement. This conclusion can be observed in
Figure 1, which shows simulation results of different PSO population diversities
for one separable problem (Fig. a) and one non-separable problem (Fig. b). The
dimension-wise diversity measurement is better for separable function as shown
in Fig. a, on the contrary, element-wise measurement is better for non-separable
function as shown in Fig. b.
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Fig. 1. Different definition of PSO population diversity. Global star structure: (a) Sep-
arable Ackley’s function: f3 position, (b) Non-separable generalized Rosenbrock’s func-
tion: f4 position.
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2.2 Vector Norm and Matrix Norm

A vector norm is a map function f : R
n → R. All norms on R

n are equivalent,
i.e., if ‖ · ‖α and ‖ · ‖β are norms on R

n, there exist positive constants, c1 and c2

such that c1‖x‖α ≤ ‖x‖β · · · ≤ c2‖x‖α, Vector norm have the property that:

‖x‖1 ≥ ‖x‖2 · · · ≥ ‖x‖∞ (5)

Also, a matrix norm is a map function f : R
m×n → R. The matrix norm have

the properties that: ‖A‖1 = max1≤j≤n

m∑
i=1

|aij |, and ‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |.
By applying matrix norms in PSO, the meaning of matrix norm is as follows:

for each dimension, calculating the sum of absolute position value for every par-
ticle, the maximum is the matrix norm L1 for position matrix; for every particle,
finding the sum of absolute position value in each dimension, the maximum is
the matrix norm L∞ for position matrix.

The distinction between matrix L1 norm and matrix L∞ norm is the perspec-
tives taken on the position matrix. Matrix L1 norm measures the largest value
on dimension, while matrix L∞ norm measures the largest value on particles.

Considered the property whether vectors are dependent on each other or
not, vector norms are preferred to be applied to normalize population diver-
sity for separable problems and matrix L∞ norms are preferred to be used for
non-separable problems.

3 Normalized Population Diversity

Vector norms are applied to normalize population diversity on separable prob-
lem, while matrix norms are applied to non-separable problem for the property
that each dimension is not independent in non-separable problems. The matrix
elements (position, velocity, personal best position) are normalized at first, and
the definitions of PSO population diversities based on vector L1 norm, which
introduced by Cheng and Shi [8], are given as follow:

3.1 Position Diversity

Position diversity measures distribution of particles’ current position. The swarm
is going to diverge into wider search space or converge in a small area can be
obtained from this measurement. Position diversity concerns the elements in
position matrix.

Separable Problem. For separable problem, each vector in position matrix
are independent. Vector norms are preferred to normalize the position, and three
methods are as follow. These normalizations are based on the vector L1 norm, or
L∞ norm, or maximum value of position: xnor

ij = xij/‖x‖1 = xij/
∑n

j=1 |xij |,or
xnor

ij = xij/‖x‖∞ = xij/ max |xij |,or xnor
ij = xij/Xmax. Considered the inequal-

ity (5), normalized position based on other vector norms is always larger than
position based on L1 norm and smaller than position based on L∞ norm.
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Normalized position diversities for separable problems are calculated as follow:
x̄nor = 1

m

∑m
i=1 xnor

ij , and Dp = 1
m

∑m
i=1 |xnor

ij − x̄nor
j |, and Dp = 1

n

∑n
j=1 Dp

j .
where Dp = [Dp

1 , · · · , Dp
n] are the diversities on each dimension, and Dp is the

normalized position diversity for particles.

Non-separable Problem. For non-separable problem, a vector in position ma-
trix is relative to other vector or vectors. This connection should be considered
in diversity measurement. Three methods are preferred to normalize the position
of each particle max |xij | in matrix X, matrix L∞ norm for X, or the maximum
value of position. Normalized position is as follows: xnor

ij = xij/ max |xij |, or
xnor

ij = xij/‖X‖∞ = xij/ max1≤i≤m

∑n
j=1 |xij |, or xnor

ij = xij/Xmax.
After normalized the position, normalized position diversity for non-separable

problems is calculated as follows: x̄nor = 1
m×n

∑m
i=1

∑n
j=1 xnor

ij , and Dp =
1

m×n

∑m
i=1

∑n
j=1 |xnor

ij − x̄nor|. where Dp is the normalized position diversity
for particles at this running step.

3.2 Velocity Diversity

Velocity diversity, which gives the tendency information of particles, measures the
distribution of particles’ current velocity. In other words, velocity diversity mea-
sures the “activity” information of particles. Based on the measurement of velocity
diversity, particle’s tendency of expansion or convergence could be obtained.

Separable Problem. Vector in velocity matrix is independent for separable
problem. Vector norm L1, or L∞, or maximum value of velocity is applied to
normalize velocity: vnor

ij = vij/‖v‖1 = vij/
∑n

j=1 |vij |, or vnor
ij = vij/‖v‖∞ =

vij/ max |vij |, or vnor
ij = vij/Vmax.

Normalized velocity diversities for separable problems are calculated as follow:
v̄nor = 1

m

∑m
i=1 vnor

ij , and Dv = 1
m

∑m
i=1 |vnor

ij − v̄nor
j |, and Dv = 1

n

∑n
j=1 Dv

j .
where Dv = [Dv

1 , · · · , Dv
n] are the diversities on each dimension, and Dv is the

normalized velocity diversity for particles.

Non-separable Problem. For non-separable problem, vectors is not indepen-
dent in velocity matrix. Three operators: max |vij | in velocity matrix, or matrix
L∞ norm of V, or maximum value of velocity is applied to normalize the veloc-
ity. vnor

ij = vij/ max |vij |, or vnor
ij = vij/‖V‖∞ = vij/ max1≤i≤m

∑n
j=1 |vij |, or

vnor
ij = vij/Vmax.
Normalized velocity diversity for non-separable problems is calculated as fol-

lows: v̄nor = 1
m×n

∑m
i=1

∑n
j=1 vnor

ij , and Dv = 1
m×n

∑m
i=1

∑n
j=1 |vnor

ij − v̄nor|.
where Dv is the normalized velocity diversity for particles at this running step.

3.3 Cognitive Diversity

Cognitivediversityrepresents thetargetdistributionofallparticles foundcurrently.
Themeasurement of cognitive diversity is as same as positiondiversity except using
eachparticle’s currentpersonal bestposition insteadof currentposition.Therefore,
the analysis for position diversity is also effective for cognitive diversity.
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Separable Problem. The normalized cognitive positions are as follow: pnor
ij =

pij/‖p‖1 = pij/
∑n

j=1 |pij |, or pnor
ij = pij/‖p‖∞ = pij/ max |pij |, or pnor

ij =
pij/Xmax.

Normalized cognitive diversities for separable problems are calculated as fol-
low: p̄nor = 1

m

∑m
i=1 vnor

ij , and Dc = 1
m

∑m
i=1 |vnor

ij −v̄nor
j |, and Dc = 1

n

∑n
j=1 Dv

j .
where Dc = [Dc

1, · · · , Dc
n] are the diversities on each dimension, and Dc is the

normalized cognitive diversity for particles.

Non-separable Problem. Like the definition of position diversity, the normal-
ized personal best positions are as follow: pnor

ij = pij/ maxi,j |pij |, or pnor
ij =

pij/‖P‖∞ = pij/ max1≤i≤m

∑n
j=1 |pij |, or pnor

ij = pij/Xmax

Normalized cognitive diversity for non-separable problems is calculated as
follows: p̄nor = 1

m×n

∑m
i=1

∑n
j=1 pnor

ij , and Dc = 1
m×n

∑m
i=1

∑n
j=1 |pnor

ij − p̄nor|.
where Dc is the normalized cognitive diversity for particles at this iterative step.

4 Experimental Studies

The experiments have been conducted to test more than 10 benchmark functions;
some of them are given in the Table 1. All functions are tested for 50 times, and
random shift of the location of optimum is utilized in dimensions each time.
For the reason of generalization, whether each benchmark function is either a
unimodal or a multimodal function as well as a separable or a non-separable
function is known.

Figure 2 gives a diversity measurement for separable problems, which (a)
is velocity diversity of unimodal function f1 and (b) is position diversity of
multimodal function f3. Fig. a and b showed that diversity based on L1 norm
nearly have the same curve as diversity based on the maximum value of the
position matrix.

Figure 3 gives a diversity measurement for non-separable problems, which
(a) is velocity diversity of unimodal function f2 and (b) is position diversity of
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Fig. 2. Normalized PSO population diversity for separable problem. Local ring struc-
ture: (a) unimodal function f1 velocity diversity; Global star structure: (b) multimodal
function f3 position diversity.
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Fig. 3. Normalized PSO population diversity for non-separable problem. Local ring
structure: (a) unimodal function f2 velocity diversity; Global star structure: (b) mul-
timodal function f4 position diversity.

Table 1. Representative functions used in our experimental study, where n is the
dimension of the function, z = (x − o), oi is an randomly generated number in each
function’s search space S, global optimum x∗ = o, fmin is the minimum value of the
function, and S ⊆ Rn

Function name Test function n S fmin

Quadric Noise f1(x) =
∑n

i=1 iz4
i + random[0, 1) 100 [−1.28, 1.28]n bias[4]

Schwefel’s p1.2 f2(x) =
∑n

i=1(
∑i

k=1 zk)2 100 [−100, 100]n bias[2]

Ackley
f3(x) = −20e−0.2

√
1
n

∑n
i=1 z2

i

100 [−32, 32]n bias[9]−e
1
n

∑n
i=1 cos(2πzi) + 20 + e

Generalized
f4(x) =

∑n
i=1[100(zi+1 − z2

i )2 + (zi − 1)2] 100 [−10, 10]n bias[5]
Rosenbrock

multimodal function f4. Fig.a and b showed that diversity based on max xij

nearly have the same curve as diversity based on the maximum value of the
position matrix.

As Figures shown, this definition of normalized diversity measurement gives
some useful information during particles search process. Position diversity and
Velocity diversity always have a continuous vibrate, this proved that particles
“fly” from one side of optimum to another side on each dimension continually.

5 Conclusion

This paper proposed an analysis of population diversity based on the category of
separable and non-separable problems. If vectors are not independent in position
matrix; diversity observation should consider the correlation among dependent
vectors. Considered the property whether vectors are dependent on each other
or not, vector norms are preferred to normalize population diversity for sepa-
rable problems and matrix L∞ norm is preferred to be used for non-separable
problems.
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Particles on the state of “expansion” or “converge” can be determined by this
diversity measurement. After obtained this information, performance of opti-
mization algorithm can be improved by adjusting population diversity dynami-
cally during PSO search process. Particles with different topology structure also
have different vector dependence in position or velocity matrix. Seeking the influ-
ence of topology structure and vector partial dependence analysis is the research
need to be explored further.

The idea of normalized population diversity measuring can also be applied to
other evolutionary algorithms, e.g., genetic algorithm, differential evolution for
evolutionary algorithms have the same concepts of current population solutions
and search step. The performance of evolutionary algorithms can be improved on
this measurement of population diversity. Dynamically adjusting the population
diversity controls the algorithm’s ability of exploration or exploitation, hence,
algorithm has large possibility to reach optimum.
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Abstract. This paper introduces an enhancement to the particle swarm
optimization algorithms that models a characteristic of social groups:
the disagreements between individuals. After a short introduction, we
describe the new concept theoretically and define a special type of par-
ticle swarm optimization with disagreements: the 6σ-PSOD. Based on
it, we conduct some tests proving that it can perform better, having
strengthened neighborhood focus using partial disagreements and en-
hanced exploration capabilities through extreme disagreements.

Keywords: disagreements, partial, extreme, 6σ-PSOD, particle swarm
optimization, standard deviation.

1 Introduction

The particle swarm optimization (PSO) is a population based optimization al-
gorithm, initially described by Eberhart and Kennedy in [1]. It implements the
social mind metaphor, simulating the social behavior of different groups from
the animal kingdom, such as birds or fish.

One of the main advantages of PSO over other optimization techniques is the
ability to operate without the need of gradient information. It successfully solves
nonlinear and multi-objective problems from various fields of human activity and
at the time of this writing, it is a top competitor among optimization algorithms.

Briefly, PSO is better described as a swarm of particles flying iteratively
through the hyperspace of solutions until a termination condition is met. Every
particle has a velocity and a position, knows his neighborhood’s best position
and its personal one; it can check whether a better position is found by using a
fitness function. Each iteration, a particle updates its velocity and position based
on its own experience — the cognitive component of the algorithm’s updating
principle, and based on its neighborhood experience — the social component.

Important improvements to the original algorithm consist in ameliorating con-
vergence and increasing diversity inside the swarm, as stated in [2]. While im-
proving convergence gets the job done by discovering faster the solution, in-
creasing the diversity helps not getting trapped into local minima. Finding a
way that can accommodate both of these objectives is hard, because they are
somehow opposite, therefore compromises must be made. We approached this

Y. Tan et al. (Eds.): ICSI 2011, Part I, LNCS 6728, pp. 46–55, 2011.
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problem by completing the social background of PSO with a new behavior: the
disagreements.

We thought that a particle in PSO can oppose its group’s way by having a
modified opinion, therefore a particle can follow mildly or extremely different
paths from the regular one, with a given probability.

After testing and comparing our results with popular PSO variants (using a
comprehensive evolutionary framework — Java EvA2 [3]), we concluded that
our new approach has good results. It improves convergence by having a bet-
ter focus inside the neighborhood through partial disagreements, and increases
the diversity when extreme disagreements are generated, making it suitable for
solving plateau and/or multi-modal functions.

2 Standard Particle Swarm Optimization

Following Berg’s notation in [2], PSO can be described as follows: let n be the
dimension of the solution hyperspace Hn, let s be the number of particles from
the swarm, and let i be the index of a particle, such that i ∈ 1 . . . s. Each
particle i has the following variables: xi — the current position, vi — the current
velocity, yi — the current best position, ŷ — neighborhood’s best. We consider
the function f to be minimized. The PSO consists of three phases: initialization,
iterations, termination.

Initially, the particles’ positions are set uniformly in the search space. Then,
best positions are updated using (3) and (4).

In the iterations’ phase, both velocities and positions are updated using (1)
and (2):

vij(t + 1) = wvij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷj(t)− xij(t)] , (1)

where c1 is the personal coefficient, c2 is the social coefficient, c1, c2 ∈ (0, 2].
r1 and r2 are random vectors, such that: r1, r2 ∼ U(0, 1). The first term of (1)
is the previous velocity influenced by an inertial weight w. The second term is
the personal component that makes the particle move toward its best personal
position so far, and the third term makes the particle to turn to neighborhood’s
best position found so far:

xi(t + 1) = xi(t) + vi(t + 1) . (2)

At each iteration, yi and ŷ are updated using the formulae:

yi(t + 1) =
{

yi(t) if f(xi(t + 1)) ≥ f(yi(t))
xi(t + 1) if f(xi(t + 1)) < f(yi(t))

. (3)

ŷ(t) ∈ {y0(t), y1(t), . . . , ys(t)|f(ŷ(t))} =
min {f(y0(t)), f(y1(t)), . . . , f(ys(t))} . (4)

Termination occurs when a given criterion is met (a number of fitness calls or
iterations, stagnation, etc.).
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3 Preliminary Studies

In the original PSO updating principle (1), the inertial weight w did not exist.
Shi and Eberhart introduced w in [4] and it was one of the first improvements
towards a good convergence of PSO. The issue that it tried to solve was the
”swarm explosion” phenomenon and the lack of convergence. Another classical
improvement towards increasing convergence was the introduction of the con-
striction coefficient by Clerc and Kennedy in [5]. They showed that the particles
have an oscillatory movement and they elaborated a constriction-based PSO
with the standard configuration: χ = 0.729 and c1 = c2 = 2.05. We can also
mention here Bergh’s guaranteed convergence PSO (GCPSO) as in [2].

The other main direction in enhancements consisted in improving diversity,
to not get trapped in local minima, thus avoiding premature convergence. In
this regard, first came the introduction of the local neighborhoods — the lbest
variant of PSO with topologies. Recent approaches include a dissipative version
of PSO as in [6].

One of the variants that try to solve both the problem of convergence and that
of diversity is Chen and Li’s PSO in [7], [8] and [9] with guaranteed convergence
and controllable random exploration velocity (PSO-CREV). The idea presented
in this paper has the same aim.

4 Disagreements

Disagreements are a social phenomenon that leads to diversity and heightened
awareness of current problems. Therefore, they can be applied in any social
algorithm like PSO to increase the diversity of solutions and to strengthen the
search focus in local neighborhood, resulting in better convergence. Replacing
the first term in (1) with a generic Cv(t), denoting the velocity component,
the second term in (3) with Cc(t, xi, yi) denoting the cognitive component, the
third term with Cs(t, xi, ŷ) and making the substitution in (2) where we also
change the position component with a generic one, Cx, we obtain the generalized
updating equation:

xi(t + 1) = Cx(t, xi) + Cv(t) + Cc(t, xi, yi) + Cs(t, xi, ŷ) + ζ ,

Cc(t, xi, yi)→ yi, Cs(t, xi, ŷ)→ ŷ . (5)

Cc(t, xi, yi) → yi should be read as ”the result of Cc tends to yi” and
Cs(t, xi, ŷ) → ŷ should be read as ”the result of Cs tends to ŷ”. ζ is usually
0 and can accommodate any other more elaborate variant of PSO that may
consist of other components too.

A disagreement is defined as a function that takes values in the hyperspace
of the results of the social component Cs, which is Hn. One can define the
disagreements as the family of D functions for which the following property
holds true:

FD = {D : Hn → Hn|D(z) �= z} , ∀z ∈ Hn . (6)
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Let Pall be the set of all types of PSO that contain the social component Cs

in the updating principle,

Pall = {PSO|PSO has Cs in its updating principle} , (7)

and let Δv be a subset from all possible subsets, Δall:

Δv ⊂ {∅D, FD} , Δv ∈ Δall , (8)

where ∅D is a no-op (no disagreement). We define the ”disagreement injector”
on any social PSO as:

ΨPSO : {Pall, Δall, ρall} → Pall, ΨPSO(Pi, Δv, ρ) = PiD, Pi, PiD ∈ Pall , (9)

where Pi is one of the many PSO variants with social component, and PiD is
the resulting particle swarm optimization with disagreements. ρ is a decision
function called ”disagreement selector” that takes a set of disagreements (Δv)
as argument at iteration t (from all iterations tall) for a particle i and decides
which disagreement is invoked:

ρ : {Δall × tall × s} → Δall, ρ(Δv, t, i) = Di, Di ∈ Δv . (10)

After we apply the injection operator ΨPSO, the updating principle of the
newly obtained PSO, now called PSOD (particle swarm optimization with dis-
agreements) is transformed from (5) to:

xi(t + 1) = Cx(t, xi) + Cv(t) + Cc(t, xi, yi) + Di(Cs(t, xi, ŷ)) + ζ ,

Cc(t, xi, yi)→ yi, Cs(t, xi, ŷ)→ Di(ŷ) . (11)

In this way we introduced the concept of disagreements as a special operator
that can be applied to any social PSO without modifying the internals of the
algorithm. The social component can vary in implementation from algorithm to
algorithm, but the injection operator can be applied in any case.

Disagreement operators should not be confused with mutation of any kind. A
disagreement operator can affect only the social component of the PSO and, as
described above, it has a more elaborate structure and function.

In the following section we will define a practical approach to disagreements
in PSO: a PSO disagreement operator called ”the 6σ-PSOD operator”.

5 6σ-PSOD Operator

The 6σ-PSOD operator, Ψ6σ−PSOD, is defined in terms of (9) as:

Ψ6σ−PSOD(Pi) = ΨPSO(Pi, Δ6σ, ρ6σ) . (12)

In this case, the subset of disagreements (the Δv that contains the disagree-
ments, D6σi) is defined as:

Δ6σ = {∅D, D6σa, D6σb} . (13)



50 A. Lihu and Ş. Holban

The first type of disagreement employed here is D6σa, which is a partial dis-
agreement because it is a function that multiplies member-wise (a Hadamard
product) the social component Cs by a vector r, which has its components uni-
formly distributed in the interval [−1, +1].

D6σa(z) = rp ⊗ z, rp ∼ U(−1, +1), z ∈ Hn, p ∈ 1 . . . |r| . (14)

The second type of disagreement is the extreme disagreement D6σb, which
multiplies member-wise the social component by a vector r containing random
uniformly distributed values in the intervals [−2,−1] and [+1, +2]:

D6σb(z) = re ⊗ z, re = rp + sgn(rp), rp ∼ U(−1, +1),

z ∈ Hn, p ∈ 1 . . . |r| . (15)

A rudimentary visualization of these concepts can be seen in Fig. 1:

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

partial disagreements

extreme disagreements

Fig. 1. Distribution of disagreement types in concentric circles. Two areas are shown
here: for partial disagreements — rp values fall inside the the inner circle, while for
extreme disagreements — re values fall inbetween the inner and the outer circle.

At each iteration t, for each particle i, we generate θ(t, i) ∼ N (μ6σ, σ2
6σ) and

θ1(t, i) ∼ N (μ6σ, σ2
1), σ6σ ≥ σ1. We define the following Gaussian regions for θ:

1. The first region accounts for approx. 68.2% of the bell curve (first 2 σs) and
it is defined as:

R1,2σ = (μ6σ − σ6σ) ∪ (μ6σ + σ6σ) . (16)

2. The second region accounts for approx. 27.2 % of the bell curve (next 2 σs)
and it is defined as:

R3,4σ = (μ6σ − 2 σ6σ, μ6σ − σ6σ] ∪ [μ6σ + σ6σ, μ6σ + 2 σ6σ) . (17)
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3. The third region accounts for approx. 4.6 % of the bell curve (next 2 σs and
the rest of what remains under the graphic of the Gaussian function) and it
is defined as:

R5,6σ = (−∞, μ6σ − 2 σ6σ ] ∪ [ μ6σ + 2 σ6σ), +∞) . (18)

Based on (13), (14), (15) and the above defined Gaussian regions, the selector
function is defined as:

ρ6σ(Δ6σ, t, i) =

⎧⎨
⎩
∅D if θ1(t, i) ∈ R1,2σ

D6σa if θ1(t, i) ∈ R3,4σ

D6σb if θ1(t, i) ∈ R5,6σ

. (19)

The updating principle from (11) is transformed into:

xi(t + 1) = Cx(t, xi) + Cv(t) + Cc(t, xi, yi) + D6σi(Cs(t, xi, ŷ)) + ζ ,

Cc(t, xi, yi)→ yi, Cs(t, xi, ŷ)→ D6σi(ŷ) . (20)

6 Experimental Setup

In order to test the effect of the 6σ-PSOD operator on the PSO performance,
we have chosen a standard PSO with constriction as in [5], called SPSO, with
the following configuration: χ = 0.729 and c1 = c2 = 2.05. The second chosen
algorithm was Pedersen’s PSO-VG from [10], a social-only inertial PSO lacking
the cognitive component, with the following configuration: w = 0.729 and c2 =
1.494.

We transformed these two algorithms into their disagreement-enabled coun-
terparts: Ψ6σ−PSOD(SPSO) = SPSOD6σ and Ψ6σ−PSOD(PSO−V G) = PSO−
V GD6σ, with σ6σ = 1, σ1 = 0.7 and μ6σ = 0.

Both algorithms used the grid topology. For each, we measured the mean
fitness value and its standard deviation across 25 runs, for 25 and 50 particles in
swarm, on 4 popular benchmark problems. We repeated this for a hyperspace of
10 and 30 dimensions. Algorithms terminated after 50 000 fitness evaluations.

The test problems we used were: Generalized Rosenbrock (F2), Shifted Ras-
tringin (F14), Shifted Schwefel (F21) and Griewank (F5).

1. We started with Generalized Rosenbrock to see how PSODs behave on
plateau functions:

F2(X) =
n−1∑
i=1

(100(xi+1 − x2
i )

2 + (1 − xi)2), X ∈ IRn . (21)

2. Then, we used Shifted Rastringin to check for behavior of convergence:

F14(X) =
n∑

i=1

(z2
i − 10 cos(2πzi) + 10), X ∈ [−5, +5]n, Z = X − o . (22)
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3. With Shifted Schwefel we tested for robustness:

F21(X) =
n∑

i=1

⎛
⎝ i∑

j=1

zj

⎞
⎠2

, X ∈ [−100, +100]n, Z = X − o . (23)

4. Finally, with Griewank we checked if the new behavior helps escaping local
minima:

F5(X) =
n∑

i=1

x2
i

4000
−

n∏
i=1

cos
(

xi√
i

)
+ 1, X ∈ [−600, 600]n . (24)

Java EvA2 ([3]) was used to test the algorithms and implement the above de-
scribed PSODs, because we considered it the most advanced tool for evolutionary
research at the moment. The 6σ-PSOD operator corresponds to the ’SixSigma’
variant of the PSODs we have developed in our modified Java EvA2 library.
Sources are currently available at https://github.com/andrei-lihu/Eva2-AL.

7 Results

Tables 1–4 show the results of our experiments:

Table 1. Benchmark results for n = 10 dimensions (F2 and F14)

F2 F14

Algorithm s Mean Std. dev. Mean Std. dev.

SPSO
25 1.394 1.838 8.789 5.310
50 4.142 13.959 4.815 2.543

SPSOD6σ
25 1.020 1.560 8.198 5.311
50 1.150 0.776 5.651 3.053

PSO-VG
25 0.326 1.081 26.317 14.601
50 0.488 1.299 17.838 14.685

PSO − VGD6σ
25 0.638 1.461 24.035 13.630
50 0.168 0.780 14.685 8.316

The convergence graph from Fig. 2 shows how the 6σ-PSOD operator improves
convergence by having a stronger neighborhood focus and how escapes local
minima in a highly multi-modal and disturbed environment.

Fig. 3 illustrates how PSODs tackle plateau functions better than their PSOD
counterparts. The possibility to extremely disagree helps them make the switch
to better fitness values, as it can be noticed in the median part of the graphic.

All results show without any doubt that there is either a marginal improve-
ment or a major one. Through partial disagreements the exploitation is increased
and through extreme disagreements exploration gets a new twist. This proves
empirically that adding disagreements can do no harm to any PSO, yet it can
only improve it.

https://github.com/andrei-lihu/Eva2-AL
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Table 2. Benchmark results for n = 10 dimensions (F21 and F5)

F21 F5

Algorithm s Mean Std. dev. Mean Std. dev.

SPSO
25 5.654 x 10−29 9.823 x 10−29 8.475 x 10−42 1.758 x 10−41

50 3.858 x 10−22 8.718 x 10−22 4.025 x 10−22 1.043 x 10−21

SPSOD6σ
25 6.462 x 10−29 9.634 x 10−29 8.784 x 10−41 2.070 x 10−40

50 2.348 x 10−22 4.057 x 10−22 2.929 x 10−22 7.038 x 10−22

PSO-VG
25 2.322 x 10−28 2.019 x 10−28 2.542 x 10−73 1.248 x 10−72

50 3.811 x 10−29 7.854 x 10−29 5.756 x 10−29 1.662 x 10−28

PSO − VGD6σ
25 1.777 x 10−28 1.696 x 10−28 1.733 x 10−73 7.563 x 10−73

50 2.894 x 10−29 1.211 x 10−29 1.104 x 10−28 2.775 x 10−28

Table 3. Benchmark results for n = 30 dimensions (F2 and F14)

F2 F14

Algorithm s Mean Std. dev. Mean Std. dev.

SPSO
25 34.883 26.412 78.644 19.384
50 48.664 35.162 61.737 13.837

SPSOD6σ
25 35.597 47.031 76.053 21.463
50 42.036 29.311 58.556 17.989

PSO-VG
25 39.156 25.735 146.764 51.717
50 46.586 38.982 101.563 22.511

PSO − VGD6σ
25 36.424 25.265 146.289 36.213
50 43.097 27.72 100.086 23.657

Table 4. Benchmark results for n = 30 dimensions (F21 and F5)

F21 F5

Algorithm s Mean Std. dev. Mean Std. dev.

SPSO
25 1012.220 3371.174 258.254 697.851
50 426.382 1166.260 125.508 436.200

SPSOD6σ
25 291.037 1102.573 174.206 581.953
50 369.314 902.364 121.468 418.583

PSO-VG
25 6391.002 5902.578 2052.589 2171.947
50 6090.143 6295.384 2838.752 2483.361

PSO − VGD6σ
25 5774.600 5308.191 2029.044 1656.979
50 3820.831 4855.517 1891.053 2478.797
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Fig. 2. Convergence graph for F21 (30 dimensions; s = 25). Comparing in pairs, it is
obvious that PSOD variants have better convergence than their original PSO counter-
parts.

Fig. 3. Multi-run convergence graph for F2 (10 dimensions; s = 50). In the median
part of the graph PSODs make a good turn toward a better convergence and a better
final solution.

8 Conclusion

We introduced a new metaphor in PSO that models disagreements between
social groups, and starting from it we implemented and tested a disagreement
operator that is based on the normal distribution: the 6σ-PSOD operator.

Our tests have shown that Particle Swarm Optimization with Disagreements,
under the considered form of the 6σ-PSOD operator, is a beneficial enhancement
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to any PSO because it can improve results when solving multi-modal and/or
difficult plateau functions.

This paper only introduces the new idea with preliminary results. Further
work is required to develop, analyze and test new PSOD operators.
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Abstract. Landslide is an increasing problem and a cause for concern in 
densely populated areas. In addition to field studies and laboratory experiments, 
engineers also embrace computer technology to find better solutions and to 
achieve better landslide analysis. Traditionally, the main analysis framework is 
the limit equilibrium analysis, in which the state of limit equilibrium in the tar-
get slope is assumed to be reached along the entire sliding surface at the same 
time of failure. However, the assumption of circular sliding surfaces would pre-
vent the search of non-circular sliding surfaces with lower factors of safety. To 
address this problem, particle swarm optimization (PSO) is implemented in this 
study using a computer program written in C# to automatically discover the op-
timal results in the target function. The results show that the PSO-based  
approach offers many interesting outcomes.  

Keywords: Slope stability, sliding surfaces, landslides. 

1   Introduction 

Landslide is a naturally occurring disaster that occurs in all part of the world. In re-
mote locations, landslide is a part of natural geological process causing little or no 
damage to human beings. However, when landslide takes place in populated areas, it 
can affect neighborhoods, communities, and cities causing large casualties and dam-
age to infrastructures. With the world’s rapid population growth and the current opti-
mistic economic development trend, people are migrating to cities in search of a bet-
ter life. Landslide is therefore an increasing problem and a cause for concern in 
densely populated areas near mountains such as the Taipei basin in Taiwan, where the 
Taipei city is located.  

EM-DAT, the international disaster database was created by the WHO Collaborat-
ing Centre for Research on the Epidemiology of Disasters (CRED) and the Belgian 
Government in 1988 tracking major disasters in the world from 1900 to present [1]. 
There are 12 disaster types and more than 30 sub-types in the database, and landslides 
are classified under the “mass movement dry” or the “mass movement wet” catego-
ries.  As an example of the seriousness of the landslide problem, Table 1 shows the 
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top 10 most important mass movement wet disasters for the period 1900 to 2011 
sorted by the numbers of persons killed at the country level. It is worth noting that 
two of the top 10 most deadly landslides happened in the last five years and both of 
them took place in Asia. 

Table 1. Top 10 most deadly landslide disasters (mass movement wet) from 1900 to 2011. 
Landslide disasters classified under the category of mass movement dry are not included in this 
table. 

Country Date No Killed 
Soviet Union, Landslide 1949 12000 
Peru, Landslide 12/1941 5000 
Honduras, Landslide 20/09/1973 2800 
Italy, Landslide 9/10/1963 1917 
China P Rep, Landslide 7/08/2010 1765 
Philippines, Landslide 17/02/2006 1126 
India, Landslide 1/10/1968 1000 
Colombia, Landslide 27/09/1987 640 
Peru, Landslide 18/03/1971 600 
China P Rep, Landslide 23/03/1934 500 

Created on: Jan-2-2011. - Data version: v12.07 
Source: "EM-DAT: The OFDA/CRED International Disaster Database 
www.em-dat.net - Université Catholique de Louvain - Brussels - Belgium" 

2   Slope Stability Analysis 

In order to combat the threat of landslides in landside-prone areas, efforts are being 
made to understand the mechanism of earth movement and more recently the role 
plants play in preventing shallow landslides and surface erosions [2]. In addition to 
field studies and laboratory experiments, engineers also embrace computer technol-
ogy to find better solutions and to achieve better landslide analysis. Traditionally, the 
main analysis framework is the limit equilibrium analysis, in which the state of limit 
equilibrium in the target slope is assumed to be reached along the entire sliding sur-
face at the same time of failure. More often than not, the sliding surface is further 
assumed to be circular for homogeneous and isotropic soils. Given the sliding bound-
ary and the soil properties, both the driving forces (from gravity) and the resistance 
forces (from soil cohesion and friction) can be calculated, and the factor of safety (FS) 
of the given slope is defined as:  

FS=
Resistance Force

Driving Force  (1) 

The FS is the de facto criteria used in assessing the stability of a slope. To remain 
stable, the FS of a slope has to be greater than one and is normally in the range of  
1.1-1.5 to account for the uncertainty in the analysis and the rise of groundwater table 
or the possible additional earthquake force. To complete the analysis, the only thing 
left is to randomly or systematically select many circular arcs that pass through the 
slope and to locate the one with the lowest factor of safety (FS). The resulting sliding 
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surface of the lowest FS is the critical sliding surface and is considered to be the  
location where the failure takes place. However, the assumption of circular sliding 
surfaces would prevent the search of non-circular sliding surfaces with even lower FS. 
To address this problem, particle swarm optimization (PSO), an artificial intelligence 
technique for automatically discovering the optimal result in the target function, is 
implemented in this study using a computer program written in C# as discussed in the 
following sections.  

3   PSO Formulation and Application Development 

Particle Swarm Optimization (PSO) is an artificial intelligence method used to simu-
late the social behaviors of a group of animals such as birds and fishes and was pro-
posed by Eberhart and Kennedy [3-4]. The basic idea is to consider a group of birds 
(agents or particles as referred to in this study) searching for the food (target or the 
minimum value of the optimization function as referred to in this study) in a 2-D 
space. Each bird (particle) remembers the closest point to the food (minimum value of 
the optimization function) that it has experienced before (called pbest) as well as the 
closest point to the food that any bird has experienced before (called gbest). Because 
the agents in the group exchange information continuously in order to achieve the 
common goal, the wisdom of crowds soon leads the group to converge on the target 
using the simple equation below: 

v = v + 2 * r1 * (pbest - x) + 2 * r2 * (gbest – x) (2) 

where v and x are the velocity and the position of the individual agent respectively, 
and r1 and r2 are random numbers. In this study, PSO is used to solve the optimiza-
tion problem in 2-D slopes. The goal is to determine the location of the sliding surface 
(arc or line segments) that has the lowest value of FS. To implement a solution using 
computer programs, a Windows stand-alone application is developed using Microsoft 
Visual C# in this study as shown in Figure 1, and the application is named PSOslope. 
When PSOslope is executed, a graphical user interface (GUI) will appear which can 
be roughly divided into two parts: the upper part shows the X and Y coordinates and a 
graphical representation of the slope profile, whereas the lower part provides input 
boxes to control the various parameters of the application. The input boxes can be 
further divided into five groups based on their intended functions. The first group 
from the left controls the definition of the slope profile. Four points (with X and Y 
coordinates) are allowed to define a given slope from left to right. Each time a differ-
ent number is entered to the input boxes, the slope profile in the upper part of the 
window will be refreshed and redrawn immediately. 

The second group of input boxes provides the initial values of the PSO search algo-
rithm. For slope stability analysis, it simply defines the initial sliding surface using a 
circular arc, and all of the particles are located along this arc. The circular arc is a part 
of a circle whose center lies above the slope. The numbers to be filled into the input 
boxes are the X and Y coordinates of the center and the radius of the circle. If the user 
finds the circular sliding surface to be too restrictive, there is also a check box in this 
group to enable the random selection of the initial sliding surface when it is checked. 
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Fig. 1. PSOslope is a stand-alone program for slope stability analysis using the PSO technique. 
Launching the program will display a GUI window with five groups of input boxes on the 
lower part of the window to control the parameters of the application: slope profile, initial trial, 
soil properties, swarms, and PSO algorithm. The drawing on the upper part of the window 
represents the slope and will be refreshed and redrawn continuously during the program’s  
execution. 

The third group of input boxes presented to the user is the soil properties group. 
The soil that forms the slope is considered to be homogeneous and its shear strength 
parameters (cohesion and friction angle) and unit weight are entered here. Note that 
the metric units are used in this program. Using the ordinary method of slices, the 
final equation of the FS of the slope can be derived [5] from equation (1) and  
becomes equation (3): 

∑
∑ +

=
ii

iiii
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FS

α
φα

sin
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 (3)

where c = cohesion, ϕ = friction angle, l = the length of the slice base, α = the angle of 
the slice base, and W = the soil weight of the slice. 

The fourth group of input boxes is used to specify parameters related to swarms or 
particles. The start and end boxes denote the left-most and the right-most positions, 
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respectively. Within this range, the slope is divided into some number of equal-width 
slices. The number is controlled by the input box labeled “slices.” The user can also 
specify the number of lines (i.e., the number of agents) and the number of iterations 
used in searching of the optimal solution (i.e., the minimum value of FS). 

Finally, the last group of input boxes is used to specify the initial velocity, the 
momentum, and the coefficients of pbest and gbest used in the PSO equations. Press-
ing the start button will initiate the computation, and the screen will be refreshed and 
redrawn continuously. The user will notice many colored lines (representing the slid-
ing surfaces) moving up and down in the slope until the optimal solution is found or 
the maximum number of iterations is reached. This interactive display of the search-
ing process gives the user a very good visual cue and impression of the underlying 
activities of computation, which also sets this program apart from other programs. 

4   Verification Assessment 

The PSOslope program is checked to ensure the computational implementation is 
correct, and it can be applied to the analysis of real slopes. A spreadsheet program 
(Figure 2) is written to verify the computational results of PSOslope. The correctness 
of the spreadsheet program is in turn verified by a textbook example. The necessary 
two-step process is due to the fact that the PSOslope program only seeks out the criti-
cal sliding surface. It does not compute the FS of a pre-defined sliding plane. There-
fore, the correctness of the PSOslope program to perform slope stability analysis and 
to compute the FS has to be checked indirectly. In this study, the authors wrote a 
spreadsheet program using equation (3) to compute the FS of the example 17-5 in 
reference [5], and found the results to be identical. Then, the PSOslope program was 
used to analyze a different slope. After the minimum FS was found by PSOslope, the 
coordinates of the critical sliding surface were outputted to a text file, and the text file 
was imported into the previous spreadsheet program to compute the corresponding 
FS. Both the PSOslope and the spreadsheet produced the same results. 

 

Fig. 2. A spreadsheet program is written to verify the computational results of PSOslope. The 
correctness of the spreadsheet program is in turn verified by a textbook example. 
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5   Computational Findings and Discussion 

After the computational implementation of PSOslope was verified, it was then possi-
ble to explore the answers obtained by the program. For comparison purposes, the 
target slope (Figure 1) was first analyzed by the STABL program developed by Pur-
due University to obtain a reference FS of 1.957. Recall from previous sections that 
the PSO algorithm no longer restricts the sliding surfaces to be circular. As a result, 
PSOslope was able to converge to solutions with unexpected shapes as shown in Fig-
ures 3, 4, and 5 (FS = 1.680 to 1.871) in addition to the usual circular shape as shown 
in Figure 1. In fact, because of the complexity of the object function (equation 3), 
there seems to be many local minimum solutions that can be discovered by the PSO 
algorithm, and Figures 3, 4, and 5 are not isolated cases. Rather, each of them repre-
sents a group of solutions with similar shapes. What's more, sometimes the entire 
minimal FS searching process could fall apart under unfavorable conditions (unlucky 
random numbers) as illustrated in Figure 6, and the computation simply failed to con-
verge to a stationary value and produced a large negative FS. As the slope under con-
sideration is sloping to the left, the solutions with negative FS values are easy to be 
ruled out because they would represent the calculated stability values if the slope were 
sliding (or pushed) to the right. In contrast, the solutions characterized by Figures 3, 
4, and 5 seem possible at first glance. Does it imply that every slope like this one may 
contain many possible local optimal solutions that haven’t been carefully examined? 
Are these solutions not “kinematically admissible” as suggested by some researchers 
[6]? What if the sliding surfaces in Figures 3, 4, and 5 are further smoothed to remove 
the sharp corners (points) where derivatives do not exist? To answer these questions 
and to determine whether a slope movement is kinematically admissible seems to 
require more investigations of the different types of sliding surfaces. Since there is yet 
to be a rigorous proof of the “kinematically admissible” assertion, it is probably better 
to avoid drawing any conclusions based on intuition alone and defer judgment until 
more study results become available. 

 

  

Fig. 3. Possible type of sliding surface #1 Fig. 4. Possible type of sliding surface #2 
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Fig. 5. Possible type of sliding surface #3 Fig. 6. Computation fails to converge to a 
stationary value 

6   Summary and Conclusions 

Around the world and in Taiwan, there are so many landslide disasters occurring 
every year that the thorough understanding of the landslide mechanism is considered 
as one of the most actively researched upon subjects in geotechnical engineering. 
With so many researches and case studies, the ability to integrate the research find-
ings and explore novel options may be the most critical determinant of what can be 
achieved working together in this particular research field. In this paper, the authors 
investigated the possibility of using PSO to better determine the location of sliding 
surfaces. A computational solution based on the PSO algorithm under the analysis 
framework of limit equilibrium was implemented using C#, and a stand-alone Win-
dows application (PSOslope) was developed for the graphical analysis of slope stabil-
ity (calculation of FS). In addition, a spreadsheet program was written and a textbook 
example was used to verify this study’s computational results. The authors further 
compared the answers obtained by PSOslope with those obtained by Purdue Univer-
sity’s STABL program. The results indicated that the PSO-based approach offered 
many surprising outcomes and interesting issues to be further studied. For example, of 
particular significance in the light of this study are the choice of parameters and the 
sensitivity of results in the PSO model. It is believed that the interactive display of 
PSOslope will provide users immediate feedback on their analysis (not available in 
the past), and therefore will become a valuable tool in the future analysis of slope 
stability problems. 
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Abstract. Cutting and packing (C & P) problem is to allocate a set of items to 
larger rectangular standardized units by minimizing the waste. Bin packing, 
strip packing and cutting stock problem is well-known classical C & P problem. 
An overview is provided of several meta-heuristics algorithms of swarm intelli-
gence from the literature for the 2D C & P problem. The objective of this paper 
is to present and categorize the solution approaches in the literature for 2D 
regular and irregular C & P problem. The focus is hereby on the analysis of the 
methods and application of swarm intelligence algorithms. 

Keywords: cutting and packing problem, swarm intelligence, ACO, PSO. 

1   Introduction 

Cutting and packing (C & P) problems are optimization problems concerned with 
finding a good arrangement of multiple items in larger containing regions. There are 
many classic cutting and packing problems, including the cutting stock problem, the 
bin packing problem, the strip packing problem etc. This type of problem arises in a 
wide variety of industries, such as garment manufacturing, sheet metal cutting, furni-
ture making and shoe manufacturing. Figure 1 provides an example of a layout from 
the garment manufacturing industry. High material utilization is of particular interest 
to mass production industries since small improvements of the layout can result in 
large saving of material and considerably reduce production cost. The objective of the 
packing process is to maximize the utilization of material. The manual generation of 
layouts is costly in terms of man-power hence methods for the automation of packing 
are being sought.  

In this paper, we focus our attention on meta-heuristic methods to solve the 2D C 
& P problem. Particular emphasis is put on solutions involving swarm intelligence, 
which is increasingly be utilized in combinational optimization problems. In the last 
two decades, the computational researchers have been increasingly interested to the 
natural sciences, and especially biology, as source of modeling paradigms. Many 
research areas are massively influenced by the behavior of various biological entities 
and phenomena. It gave birth to most of population-based Meta-heuristics such as Ant 
Colony Optimization (ACO), Particle Swarm Optimization (PSO) etc. They modeled 
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the insect social behaviors such as ant, fish, bird, bee etc. They could be regarded as 
belonging to the category of intelligent optimization tools used to solve a computa-
tional and complex problem in different areas [1]. 

 

Fig. 1. An example layout from garment manufacturing 

The 2D C & P problem has been shown to be NP-hard and is therefore intrinsically 
difficult to solve (Garey and Johnson 1979 [2]). Therefore, many solution methods 
have been proposed for the problem, but so far an algorithm that would yield the 
optimum solution might not exist; thus, general methods are intended to find an ac-
ceptable approximate solution in short time. Many approaches have been proposed in 
the literature. A recent survey of the regular shapes packing problems were given by 
Lodi, Martello, and Monaci (2002) [3], the more complete revision has been pre-
sented in Hopper 2000 [4]. However� in the last ten years the interest in this subject 
has increased, especially in swarm intelligence aspect, as well as the number of papers 
presenting new approaches and improvements to existing strategies. We review here 
the most recent results in this research area. 

This paper is organized as follows: in the next section, we give an introduction of 
the 2D C & P problem. In section three, we review the methods based on meta-
heuristics, especially the swarm intelligence on 2D C & P problem. Section four is 
related to discussion about analysis and comparatives on the introduced methods. 
Finally, section five presents the conclusion and future trends in this research area. 

2   Two-Dimensional Cutting and Packing Problem 

C & P problem include cutting and packing problem respectively. In the case of pack-
ing problems the large objects are defined as empty and need to be filled with small 
items. Cutting problems are characterized by large objects that need to be cut up into 
small items. Dyckhoff (1990) [5] emphasizes the strong relationship between cutting 
and packing problems. In this sense cutting stock problems can be translated into 
packing problem. Therefore, we focus on packing problem in the following sections.  

C & P problem can be classified according to different characteristics of objects, 
such as the shape, the number, and their orientation. Dyckhoff proposed a useful clas-
sification of C & P problems, which was revised recently by W¨ascher et al [6]. Their 
classification partitioned the problems by dimensionality, objective of the assignment, 
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large objects and small items. The new typology provides a useful progression to-
wards a consistent nomenclature for cutting and packing problems [7].  

Concerning the geometry of objects and items, two types of problems can be dis-
tinguished: regular (rectangles, circles) and irregular (asymmetries and concavities) C 
& P problem. Furthermore, two main types of packing problem, strip packing and bin 
packing, can be distinguished depending on the type of large object. In the paper and 
textile industry the raw material is available in the form of rolls. Hence the packing 
process aims at reducing the height of the layout. Bin packing refers to packing of 
multiple bins and can be found where the stock material is available in the form of 
sheets. The objective usually is to find the set of bins to accommodate all parts of the 
order list under minimization of the total material used.  

The model of the 2D rectangular strip packing problem can be formulated as  
follows: 

                                   ,, IiWwx
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(1)

                                   ,, IiHhy ii  (2)

                                   ,,,, orxwxorxwx ijjjii  (3)

                                  ,,,,,, jiIjiyhyoryhy ijjjii  (4)
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Where, H is the Height of the strip, which is minimized, W is a fixed width of the 
strip. Each object i has dimensions hi (height) and wi (width), i=1,……n. The Carte-
sian coordinates of (xi,yi) is the location of the bottom left corner. A feasible solution 
must fulfill the following constraints: the object must be within the rectangular area, 
and must not overlap with any other object [8].  

The solution method of C & P problem can be classified into complete and ap-
proximation approaches. The complete approaches include mathematical program-
ming, such as linear programming, dynamic programming, column generation and 
branch and bound etc. The approximation approaches are mainly heuristics, which are 
some heuristic packing rules, and meta-heuristics such as ACO and PSO etc. Since 
search space of C & P problem is increasingly larger and larger, in order to search for 
their global optimal solutions, complete approaches take too much computational time 
to solve the problem. Various meta-heuristic algorithms, especially swarm intelligence 
algorithms, have been adopted as optimization tools to find good solutions fast. In 
recent years, it has become evident that the skilled combination of a meta-heuristic 
with other optimization techniques, a so called hybrid meta-heuristic, can provide a 
more efficient behavior and a higher flexibility when dealing with real-world and 
large-scale problems [9]. Some of the hybrid meta-heuristics approach will be intro-
duced in the following section. 
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3   Applications of Swarm Intelligence Algorithms in 2D Cutting 
and Packing Problem 

The 2D C & P problem is NP hard due to the combinatorial explosion encountered as 
the problem size increases. As a result, published solution approaches focus on heu-
ristic and meta-heuristics methodologies. Meta-heuristics are general frameworks for 
heuristics in solving combinatorial optimization problems. Although there are many 
different solution approaches presented in the literature, there appear to be two key 
strategies for representing and searching the solution space. The first approach is to 
represent the solution as an ordered list of pieces and apply a placement rule to con-
struct the solution. The second approach represents the solution as a physical layout 
on the stock sheet and moves pieces within the layout [10]. This paper focuses on the 
former strategy. 

The former strategy is dependent on two critical characteristics of the algorithm; 
the placement rule and the placement order of the pieces. It’s proved that better solu-
tions are obtained by performing local search over the permutation and repeatedly 
constructing solutions. The majority of these literature meta-heuristics concentrates 
on hybrid algorithms, where a meta-heuristics is combined with a heuristic placement 
routine. The sequence of the item to be packed is usually constructed as a sequence 
chromosome, which is decoded via a packing heuristic for generating a packing plan 
to be evaluated against the objective function to obtain the quality of the solution. The 
main meta-heuristics utilized in the first approach are EA, TS, SA, ACO, and PSO 
etc. The applications of these meta-heuristics are introduced respectively as followed. 

3.1   Applications of Ant Colony Algorithms 

ACO is one of the most recent techniques for approximate optimization. The devel-
opment of these algorithms was inspired by the observation of ant colonies. The inspi-
ration for ACO is the ants’ foraging behavior, and in particular, how ants can find 
shortest paths between food sources and their nest. The key to this ability lies in the 
fact that ants leave a pheromone trail behind while walking. The pheromone trails will 
guide other ants to the food source. This characteristic of real ant colonies is exploited 
in ACO algorithms in order to solve, for example, discrete optimization problems 
[11]. It is widely applied in integer linear programming, continuous optimization 
problem and clustering problem etc.    

Ducatelle and Levine 2002 [12] adopted ACO to solve bin packing and employed 
artificial ants to build solutions stochastically, with heuristic information obtained by 
First Fit Decreasing (FFD) and an artificial pheromone trail, which is encoded by the 
favorability of having two items in the same bin. This approach may get steady 
performance and a good solution even not finding the optimum. However, its 
computing time is longer than others. As a result, Levine and Ducatelle 2004 [13] 
improve the performance by combing ACO and an iterated local search approach, 
since a local search algorithm can greatly improve the performance of an ACO 
approach. The hybrid approach they proposed to the bin packing is quite generic, and 
could be capable of being adapted to solve similar grouping problems.  
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Thiruvady[14] employed a hybrid approach by combining ACO and Bottom-Left-
Fill (BLF) to solve rectangular strip packing problem. The ordering and orientations 
of items are generated by ACO and the items are allocated one by one with BLF 
heuristic according to the ordering and orientations given by ACO. They compared 
and analyzed four combinations between ordering and orientation. The results showed 
that packing items with learning ordering and orientations obtained by ACO 
outperformed the other combinations.  

Yi-Chun Xu. et.al [15] proposes a constructive heuristic to pack weighted items in 
a circular container. They use an ant-based algorithm and optimize the packing order 
with the base of this heuristic. In their ant algorithm, encode of pheromone matrix 
considers the favorability of choosing an item and the product of the size and the 
weight of the next packed item. By doing so, large and heavy items have higher prior-
ity and this is beneficial for the packing performance. They also compared two ver-
sions of the ant-based algorithm, AS and Min-Max AS, with existing approaches, 
such as the genetic algorithm, and the hybrid PSO. However, since their research only 
focus on the regular objects (circle and rectangle), it’s a problem for them whether 
their approach can obtain good performance for irregular shaped objects. 

3.2   Applications of Particle Swarm Optimization 

PSO is firstly introduced by Kennedy and Eberhart in 1995, which was originated 
from the simulation of behavior of bird flocks. In PSO a number of simple entities—
the particles—are placed in the search space of some problem or function, and each 
evaluates the objective function at its current location. Each particle then determines 
its movement through the search space by combining some aspect of the history of its 
own current and best locations with those of one or more members of the swarm, with 
some random perturbations. The next iteration takes place after all particles have been 
moved. Eventually the swarm as a whole, like a flock of birds collectively foraging 
for food, is likely to move close to an optimum of the fitness function [16]. It is 
widely applied in continuous optimization, combinational optimization problem and 
clustering problem etc.  

The applications of PSO are considerably less in 2D C & P problem. D. S. Liu et al 
2006 [17] presented a two-objective mathematical model with multiple constraints for 
two dimensional bin packing problem and solve the problem with a hybrid multi-
objective PSO algorithm. They choose BLF heuristics as the decoding heuristic since 
it has the ability to fill in the gaps in the partial layout. They created variable length 
data structure and specialized mutation operator to make hybrid multi-objective PSO 
algorithm as a robust search optimization algorithm. Liu et al 2008 [18] made some 
improvements on the basis of Liu et al 2006 and proposed a multi-objective model 
and a PSO-based algorithm which incorporates EA concepts such as the use of muta-
tion operator as a source of diversity. With the use of hybrid approach combining 
evolutionary PSO and BLF heuristic, they solve bin packing problem effectively and 
efficiently. The performance shows their method outperforms the one in Liu et al 
2006 and is also applicable to single-objective bin packing problem.  
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4   Discussion 

Since a couple of researches have adopted meta-heuristic algorithms such as EA, GA, 
SA, TS and ANN to solve C & P problems, swarm intelligence algorithms are rela-
tively less utilized to this field. However, swarm intelligence algorithms are beginning 
to attract more and more interest of researchers for their characteristics. The goal of 
swarm intelligence is the design of intelligent multi-agent systems by taking inspira-
tion from the collective behavior of social insects such as ants, termites, bees, wasps, 
and other animal societies such as flocks of birds or fish schools.  

ACO has been applied in almost all kinds of C & P problems including strip pack-
ing, bin packing and irregular packing problems. The principle of ACO is positive 
feedback mechanism and ant colony can be regarded as a reinforcement learning 
system. Its character of positive feedback and synergy bring ACO good performance 
in distributed system.  

PSO is only applied in bin packing problem so far. Although PSO is still lack of 
rigorous mathematical foundation in mathematical analysis, especially in convergence 
analysis, the characteristics of fast convergence and parallel computing make PSO 
widely applied in engineering applications.  

Although ACO and PSO get relatively less attention for their date births, they are 
still widely applied in many respects of optimization problems for their advantages 
introduced above. However ACO and PSO also have some shortcomings in some 
respects. Almost all the articles introduce above make a comparison between ACO or 
PSO and EA, EP or GA, the other meta-heuristics. From the results of comparisons, 
we can find that swarm intelligence and other meta-heuristics have their own advan-
tages respectively. Swarm intelligence algorithms outperform other meta-heuristics 
such as EA, GA, EP etc in some cases and vice versa. They may also get similar per-
formance in some cases. It’s easy to understand that the use of any algorithm has its 
conditions and background. Therefore, it’s a trend to combine different algorithm to 
give full play to their advantage and make up the deficiency. Thus the hybrid algo-
rithm, such as hybrid algorithm with ACO and GA, is able to get better performance 
than any single algorithm, which get proof from the articles introduced above.  

5   Conclusion 

This paper presents an overview of the recent advances of swarm intelligence algo-
rithms in solving the two-dimensional cutting and packing problem. Some articles 
about C & P problems which adopted ACO and PSO are introduced in this paper. The 
preliminary discussion about swarm intelligence and other meta-heuristics algorithms 
is also proposed. It is not the aim of this review to try and cover all the various ele-
ments discussed in the literature relevant to cutting and packing problem. The aim of 
this review is to concentrate on the elements in the literature that are relevant to 
swarm intelligence algorithms.  

We are interested in Meta-heuristics, including swarm intelligence methods. In or-
der to increase the e1ectiveness of the meta-heuristics approaches, especially those 
based on swarm intelligence we can then conclude for our further researches will both 
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focus on designing and utilizing more swarm intelligence meta-heuristics and  
improve the performance of existed ones to solve cutting and packing problems. 
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Abstract. In Particle Swarm Optimization (PSO), setting the inertia weight w is 
one of the most important topics. The inertia weight was introduced into PSO to 
balance between its global and local search abilities. In this paper, first, we pro-
pose a method to adaptively adjust the inertia weight based on particle’s veloci-
ty information. Second, we utilize both position and velocity information to 
adaptively adjust the inertia weight. The proposed methods are then tested on 
benchmark functions. The simulation results illustrate the effectiveness and  
efficiency of the proposed algorithm by comparing it with other existing PSOs. 

Keywords: PSO, inertia weight, velocity information, adaption. 

1   Introduction 

Particle Swarm Optimization (PSO) was first introduced by Kennedy and Eberhart in 
1995[1][2]. PSO uses a simple mechanism that simulates swarm behavior in birds 
flocking to search for globally optimal solution. PSO has been rapidly developed in 
recent years due to its simplicity in concept and easiness in implementation. 

In PSO, a population of particles represents a group of candidate solutions to the 
problem to be solved. Each particle is associated with two vectors, the position 
tor  , , … ,  and the velocity vector , , … , , where D means 
that the solution space is a D-dimensional space. The basic equations are usually 
given as follows: [1] [2]: 

       
(1) 

                                                         
(2) 

In equation (1), w is known as inertia weight [3]; c1, c2 are acceleration coefficients; 
r1d and r2d are two random values in the range[0, 1]. 
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The inertia weight w was first introduced to linearly decrease [3] over generations 
as shown in equation (3). 

                               
(3) 

where gen is the current generation number and GENERATION is the maximum 
number of generations. The range of inertia weight w is [0.4, 0.9] which can adjust the 
local and global search ability [3] [4]. 

Another improvement is the introduction of constriction factor to PSO by M. Clerc 
[5]. The constriction factor replaces the equation (1) with equation (4) and (5). 

         
(4) 

                 

(5) 

Where K is set to 0.729 and c1,c2are both 2.05. 
Adaptive PSO (APSO) was proposed by Z. Zhan and J. Zhang in 2009 [6]. In AP-

SO, the inertia weight, acceleration coefficients is controlled automatically. Further-
more, an elitist learning strategy (ELS) is applied in convergence state to avoid being 
stuck into local optimal. The APSO utilized only the particles’ position information. 
As we knew, PSO is different from other evolutionary algorithms in that each indi-
vidual (particle) is also associated with a velocity in addition to the position.  There-
fore, it is natural to believe that an adaptive PSO, which utilize both position and 
velocity information, maybe can improve PSO’ performance further.  

In this paper, first, we will introduce a method which borrows the idea in APSO 
except that the inertia weight will be adaptively adjusted based on velocity informa-
tion instead of position information in APSO. The purpose of doing so is to verify 
whether velocity information alone can also be utilized to improve PSO’s perfor-
mance. Then we will utilize both position and velocity information to adaptively ad-
just PSO’s inertia weight.  The remaining paper is organized as follows, methods to 
adaptively control the inertia weight will be proposed in Section 2. In Section3, the 
PSO proposed will be tested and compared with other representative PSOs. Finally, 
conclusions are summarized in Section 4. 

2   Adaptive Control of Inertia Weight 

2.1   Methods in APSO 

As we borrowed the idea from APSO, we first present the process of APSO as fol-
lows [6]: 

Step 1: Initialize the particles’ position and velocity as in traditional PSOs. 
Step 2: For each particle i, calculate the mean distance to all the other particles by the 

equation (6) as below: 

GENERATION

gen
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(6) 

Where N is the number of particles and D is the number of dimension. 

Step 3: Set the global best particle’s mean distance to all the other particles as dg. 
Compare all di’s, find the maximum and minimum distances dmax and dmin. 
Then determine an “evolutionary factor” f as: 

                                                          (7) 

Step 4: Classify the value of f into four sets which represent the states of exploration, 
exploitation, convergence and jumping out.  

Step 5: Adjust the inertia weight by the equation (8), and adjust acceleration Coeffi-
cients in different state by the rules in table1. 

                                         (8) 

Step 6: In the Convergence state, ELS approach is applied. 

Table 1. Strategies for control c1 and c2 

State C1 C2 
Exploration Increase Decrease 
Exploitation Increase slightly Decrease slightly 
Convergence Increase slightly Increase slightly 
Jumping-out Decrease Increase 

The APSO is proved to enhance the performance of PSO in convergence speed and 
global optimality [6]. In APSO, the inertia weight is adjusted based on the position 
information. In the following section, a velocity-based adaptive inertia weight will be 
introduced to verify the usefulness of velocity information. 

2.2   Adaption of Inertia Weight Based on Velocity 

The new method uses velocity information instead of the position information used in 
APSO. The mean velocity difference between each particle and all other particles can 
be calculated as in equation (9) which is similar to equation (6) in APSO. 

                                        

(9) 

Where N is the population size and D is the number of dimension. 
Then define a velocity-based evolutionary factor and inertia weight adaption by the 

equation (7) (8) used in APSO. For convenience, they are given as follows: 
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                                                  (10) 

 

In this paper, the w is kept in the range [0.4, 0.9] during the PSO process. 

2.3   Adaptive Inertia Weight Based on Both Position and Velocity Information 

As mentioned above, we expect that by using both position and velocity information 
to adjust the inertia weight can make the PSO perform better. A method implements 
this goal is described as follows: 

Firstly, denote the position-based evolution factor in equation (8) and the velocity-
based evolution factor in equation (10) as fp and fv, respectively. 

Then define a new hybrid evolutionary factor by set two weights wp  and wv to fp  

and fv  as in the following equation (11): 

                                               f = wp* fp+ wv* fv                                                                                  (11) 

Adjust the inertia weight by the same equation as (8) as below: 

 

The wp and wv can be set with different values. In our test, the wp and wv are both set to 
be 0.5, which means that the position and velocity information have the same influ-
ence on the inertia weight. 

3   Experiments and Comparison 

3.1   Benchmark Functions and Variants of PSOs 

Six benchmark functions are used for the test, which are listed in Table2. These func-
tions are widely used to test the evolutionary functions [7]. Among these functions, f1, 
f2, f3 are unimodal functions and f4, f5, f6 are multimodal functions. 

For comparison, variants of PSOs are used in this paper. The GPSO is the one with 
linearly decreasing inertia weight from 0.9 to 0.4 proposed in [3]. The CFPSO is a 
PSO with constriction factor = 0.729 proposed in [5]. The APSO is proposed by Z. 
Zhan which was reviewed in Section 2 [6]. The last two PSOs are the adaptive inertia 
weight based on velocity information alone and based on both position & velocity 
information introduced in this paper, referred to as AIPSO (Adaptive velocity Inertia 
weight PSO) and AHPSO (Adaptive hybrid Inertia Weight PSO) respectively. 

For fairness of the test, the PSOs are with the population size of 20, dimensions of 
30 and the same number of 2 10  FEs is used for the test functions. In order to 
reduce statistical errors, each function will be tested for 30 times under each PSO 
algorithm, and the mean results will be used for the purpose of comparisons. 
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Table 2.Test Functions used in this paper 

 

3.2   Comparison and Discussion 

The solutions obtained by each PSO for different test functions are listed in  
Table 3.The boldface indicates the best results among the algorithms. The experiment 
results show that among GPSO, CFPSO, APSO and AIPSO, AIPSO can obtain the 
best solution on unimodal function f1,f2,f3, but on multimodal functions f4, f5, f6, 
AIPSO does not perform the best. 

Table 3. Search result comparison for variants PSOs 

Function GPSO CFPSO APSO AIPSO AHPSO 
f1 Mean 1.20e-53 4.47e-140 1.45e-150 1.16e-159 2.67e-159 
f2 Mean 7.93e-34 7.15e-30 5.13e-84 7.07e-89 2.19e-86 
f3 Mean 4.13e-2 3.85e-10 1.61e-10 4.45e-11 9.67e-11 
f4 Mean 34.61 .  3.49 11.64 9.14 
f5 Mean -9719.71 -7038.52 -12596.5 -7326.27 -7348.93 
f6 Mean 1.56e-2 5.81e-2 1.66e-2 1.56e-2 1.21e-2 

The results on uninodal functions indicate that the method proposed in this paper 
can improve the performance of PSO. In particular, the AIPSO perform best on un-
imodal functions f1,f2,f3, and the standard deviation of the solutions is the lowest while 
AHPSO outperforms the APSO but lose to AIPSO by a small difference. For multi-
modal functions, the AHPSO can obtain the best solution on f6but both AHPSO and 
AIPSO drop into local optimal on f4 and f5. 

For the comparison of the algorithms’ search speed, Table 4 lists the mean number 
of FEs (function evaluations) to obtain an acceptable solution. The CPU runtime is 
utilized to measure the computational process, because the PSOs used in this paper 
are different and some of them have extra calculations to increase the runtime. 

It can be seen that AHPSO cost the least runtime onunimodal functionsf1, f2and 
AHPSO is the fastest. On multimodal functionsf4,f5,f6, APSO cost the least CPU run-
time and AHPSO ranked second on f4andf6. It should be noticed that the AIPSO and 
AHPSO did not reach the acceptable solution on f5and fall into local optimal. 

 

Test functions Search Space fmin Acceptance Function name 
  [-100,100]D 0 0.01 Sphere 

  [-10,10]D 0 0.01 Schwefel’s 
P2.22 

  [-100,100]D 0 100 Quadric 
  

  
[-10.10]D 0 100 Rosenbrock 

  [-500,500]D -12569.5 -10000 Schwefel 

  
        

[-600,600]D 0 0.01 
 

Griewank 
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Table 4. Number of FEs and mean run time needed to reach acceptable solution 

 Function GPSO CFPSO APSO AIPSO AHPSO 
f1 Mean FEs 106191 199998 7099 7063 6937 

time(sec) 0.97 0.12 0.11 0.11 0.09 
f2 Mean FEs 103225 199981 7925 7921 7343 

time(sec) 1.02 0.22 0.17 0.13 0.11 
f3 Mean FEs 135797 199909 21164 22172 22061 

time(sec) 2.02 2.32 0.98 0.99 0.99 
f4 Mean FEs 101533 199995 5334 8150 5360 

time(sec) 0.91 0.99 0.09 0.11 0.09 
f5 Mean FEs 90548 --- 5159 --- --- 

time(sec) 1.81 --- 0.12 --- --- 
f6 Mean FEs 116235 11432 7568 8081 7938 

time(sec) 1.39 0.23 0.16 0.17 0.13 

The comparison of FEs is much more interesting than CPU runtime. For instance, 
test on f1 tell us that the mean number of FEs of 106191, 199998, 7099, 7063,6937 are 
needed by GPSO, CFPSO, APSO , AIPSO and AHPSO to reach an acceptable solu-
tion, respectively. Among these data, AHPSO only uses 6937 FEs and CPU runtime 
of 0.09 seconds, which is the best performance among all the PSOs. 

In the above experiments, the results of GPSO, CFPSO, APSO, AIPSO and AHP-
SO are compared, we can see that the proposed adaptive inertia weight methods are 
efficient for PSO. The new PSOs outperform the other PSOs with a faster conver-
gence speed and obtain better optimization results in most unimodal test functions but 
not the multimodal functions. 

The comparison among APSO, AIPSO and AHPSO should be specially focused. 
In general, AISPO and AHPSO perform much better on unimodal functions and AP-
SO perform better on multimodal functions. As APSO has adaptive inertia weight, 
adaptive acceleration coefficients and a complex ELS approach to help to jump out of 
local optima, while AIPSO and AHPSO only uses an adaptive inertia weight, we can 
say that the result of AISPO and AHSPO is acceptable and the proposed method 
which uses velocity information or both position and velocity information to replace 
position information to adjust inertia weight in PSOs is promising. 

3.3   PSOs with Elitist Learning Strategy (ELS) 

As the AISPO and AHPSO do not perform well on multimodal functions, we consider 
using Elitist Learning Strategy (ELS) as in APSO to helps PSO to jump out of local 
optimal in AIPSO and AHPSO. The details are given in the following. 

The APSO [6] has an ingenious method named Elitist Learning Strategy (ELS) to 
help the particle swarm to jump out of local optimal. The ELS gives a random veloci-
ty generated from Gaussian distribution to the global best particle to push it to run for 
a potentially better region in the convergence state. 

If the global best particle finds a better region, it will move there and all other par-
ticles will follow, otherwise the global best particle does not find a better place, it will 
not move and the global worst particle will move to this position.  
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The merits of ELS have been studied by its introducers. After using this strategy, 
the proposed algorithms’ performances are improved on most multimodal functions, 
but the performance on unimodal functions will be slightly worse than the ones with-
out ELS because the ELS actually add noise to the particle swarm.  

In the following experiment, we will implement ELS on AIPSO and AHPSO to see 
whether the algorithm can be enhanced. For simplicity, the ELS will work as follows: 

   While (f<= 0.05 in 3 continuous generations)  

If (f<= 0.05in the next generation) 

The ELS will be applied. 

The new algorithms are run on f1, f2,f4, f5 for 30 trials. The mean solution gained by 
each algorithm and the mean FEs (function evaluations) to reach an acceptable solu-
tion are shown in Table 5. For comparison, the AIPSO and AHPSO’s testing result 
without ELS are also listed. So we can see that the uses of ELS and compare APSO, 
AIPSO and AHPSO in a relatively equitable situation.  

Table 5. Result of the algorithms with&without elitist learning strategy  

  Function 
 

APSO 
(has ELS) 

AIPSO  
(no ELS) 

AIPSO  
(with ELS ) 

AHPSO  
(no ELS) 

AHPSO 
(with ELS) 

f1 Mean 1.45e-150 1.16e-159 1.46e-150 2.67e-159 1.15e-150 
FEs 7099 7063 8544 6937 7332 

f2 Mean 5.13e-84 7.07e-89 7.56e-84 2.19e-86 2.31e-84 

FEs 7925 7921 8162 7343 7911 
f4 Mean 3.49 11.64 5.17 9.14 3.08 

FEs 5334 8150 5488 5360 5396 
f5 Mean -12596.5 -7326.27 -11261.7 -7348.93 -12596.5 

FEs 7568 --- 10653 --- 6911 

After utilizing the ELS approach to AIPSO and AHPSO, their performance on 
multimodal function f4 and f5 are obviously enhanced but brought down on unimodal 
function because ELS adds noise to the particles. Especially on f5, without ELS, the 
AIPSO and AHPSO cannot find an acceptable solution, but with ELS,AISPO perform 
much better than before and the AHPSO can find the global best solution. By compar-
ing the search speed, we can find that the AIPSO and AHSPO with ELS cost much 
less FEs than before and become faster than APSO. 

In summary, with ELS, the AIPSO and AHPSO can outperform the APSO, which 
means that the velocity-based inertia weight and hybrid position & velocity inertia 
weight can enhance the PSO, the performance of AIPSO and AHPSO are better than 
APSO on most problems. These results meet our expectation that by utilizing velocity 
information, the PSO can be improved. 

3.4   Monitoring of the Inertia Weight 

To monitor the behavior of the new inertia weight, we run AHPSO on Quadric func-
tion, and draw the time-varying f and inertia weight in figure 1. 
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Fig. 1.The time-varyinginertia weighton Quadric function 

It can be seen from Figure.1 that during 1000 evolutionary generations, the w is 
large at the early stage, then decreases rapidly, after that PSO is seen to jump out, 
which lead to a large value of w, after that w drops until another convergence state. 
The behavior of the inertia weight suggests that the PSO with this inertia weight can 
find a potential optimal solution because the value of w reflects the evolutionary state 
and the PSO has the potential to jump out of local optimum, that is, the inertia weight 
has an abrupt rise after the convergence. 

5   Conclusion 

In this paper, we proposed two methods to adaptively adjust the inertia weight by 
using velocity information. Borrowed the idea from APSO, first the velocity informa-
tion is utilized instead of the position information in APSO. Another method utilized 
both the position and velocity information to adjust the inertia weight.  Experimental 
tests on seven benchmark functions were conducted to compare the proposed AIPSO 
and AHPSO with several existing PSOs including APSO. The experimental results 
show that the proposed methods exceed the other PSOs on unimodal functions. For 
multimodal functions, AIPSO and AHPSO with elitist learning strategy (ELS) in 
general has better performance than APSO, which is reasonable because the APSO 
utilizes position information which reflects the potential solutions themselves directly 
while the AIPSO (AHPSO) utilizes the velocity information which reflects the chang-
ing tendency of the potential solutions but not (only) the solutions themselves. More 
importantly, the simulation results illustrate that the use of velocity information can 
effectively improve the PSO’s performance, which is the purpose of this paper. In our 
future work, we are considering to utilize position, velocity, and cognitive diversity 
for inertia weight adaptation.   
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Abstract. A nonlinear inertia weight variation for dynamic adaptation
in particle swarm optimization (NDWPSO) was presented to solve the
problem that it easily stuck at a local minimum point and its convergence
speed is slow, when the linear decreasing inertia weight PSO (LDWPSO)
adapt to the complex nonlinear optimization process. The rate of par-
ticle evolution changing was introduced in this new algorithm and the
inertia weight was formulated as a function of this factor according to its
impact on the search performance of the swarm. In each iteration pro-
cess, the weight was changed dynamically based on the current rate of
evolutionary changing value, which provides the algorithm with effective
dynamic adaptability. The algorithm of LDWPSO and NDWPSO were
tested with three benchmark functions. The experiments show that the
convergence speed of NDWPSO is significantly superior to LDWPSO,
and the convergence accuracy is improved.

Keywords: Particle Swarm Optimization (PSO), Inertia weight, Rate
of particle evolution changing, Adaptability.

1 Introduction

Particle Swarm Optimization (referred to as PSO) algorithm is a global search
strategy based on population evolution of computing technology, first proposed
by James Kennedy and Russell Eberhart in 1995 (see Ref[1,2]). It is through
group cooperation and competition in the particles produced by the guidance
of swarm intelligence optimization search, while taking advantage of its unique
track memory function so that it can dynamically adjust the current search con-
ditions to search strategy. PSO algorithm has fast convergence, set few parame-
ters and simple operation,very suitable for optimization problems (see Ref[3,4]).
But its drawback is that the process of PSO algorithm in the optimization and
prone to premature and poor performance of global convergence.

Based on the PSO algorithm’s insufficiency, this article has proposed NDW-
PSO, it is by changing the existing algorithms inertia weight update formula,
adjusted to achieve the convergence speed and jump out of local minima. Sim-
ulation results show that the modified particle swarm algorithm stability and
convergence than the existing PSO significantly improved.

Y. Tan et al. (Eds.): ICSI 2011, Part I, LNCS 6728, pp. 80–85, 2011.
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2 Particle Swarm Optimization Algorithm

In the basic particle swarm algorithm, each individual is regarded as in the opti-
mization space not to have the quality, not to have the volume particle, particle
position represents the potential solution space for optimization. Each iteration,
the velocity of the particles by the historical movement of individuals and groups
influence state information, and to individuals and groups best position to adjust
current direction and the velocity of movement of particles.

In continuous space coordinates, the mathematical description of PSO is as
follows: Supposes the population size is N , the particle i in the N-dimensional
space coordinates can be expressed as Xi = (xi1, xi2, · · · , xiD), Its speed is Vi =
(vi1, vi2, · · · , viD), i = 1, 2, · · · , M .Records the optimal location which the particle
i searches is Pi = (pi1, pi2, · · · , piD), also known as pbest. Search the optimal
location of particles is Pg = (pg1, pg2, · · · , pgD), also known as gbest. Thus, the
particle i according to the formula (1) and formula (2) adjusting the speed and
position of the individual.

vid(t + 1) = wvid(t) + c1r1(pid − xid(t)) + c2r2(pgd − xid(t)) (1)

xid(t + 1) = xid(t) + vid(t + 1) (2)

Where, w non-negative constant, called the inertia factor; c1 and c2 are called
learning factors, usually c1 = c2 = 2.0; r1 and r2 are two random numbers
between 0 and 1 values; t for the current iteration.

3 NDW-PSO

Inertia weight w on the performance of particle swarm optimization has a great
influence(see Ref[5]), is used to control the preceding generation of speed to the
current generation of speed influence, the larger w can strengthen the global PSO
search ability, the smaller w enhance the local search capacity. The experiment
was later found that the dynamic weight value can be better than the result of
optimization, therefore Y. Shi and R. Eberhart proposed the LDWPSO algo-
rithm, so that the value of w increased gradually with the number of iterations
is linear reduced. The linear expression is

w = wfinal +
Itermax − Iter

Itermax
× (winitial − wfinal) (3)

winitial expresses the initial weight, wfinal expresses the final weight, winitial and
wfinal recommended to take 0.9 and 0.4, respectively.The change of w associated
only with the number of iterations, not more better adapt to changes in charac-
teristics of those with complex nonlinear optimization problem. To overcome the
shortcomings above algorithm, the paper introduces a nonlinear inertia weight
variation for dynamic adaptation in particle swarm optimization (NDW-PSO).

Below we give the concept of the rate of particle evolution changing.
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Definition 1. The current rate of particle evolution changing is defined as for-
mula (4):

k =
Pgbest(T − 1)− Pgbest(T )

Pgbest(T − 1)
(4)

We introduced the rate of particle evolution changing to make the improvement
to the formula (3), such as formula (5) shows:

w = wfinal +
Itermax − Iter

Itermax
× (winitial − wfinal)× k (5)

In the particle swarm algorithm, global optimum value is determined by the
optimal value of the individual, and in the iteration process the value of the
current global optimum is always better than or at least equal to the previous
iteration of the global optimal value. In view of the fact, this has introduced
the rate of particle evolution changing. Pgbest(T − 1) and Pgbest(T ) show the
preceding time iterates global optimum value and the current global optimum
value respectively.

The rate of particle evolution changing had considered the particle beforehand
running status, responded the reaction speed of the particle group in the degree
of evolution. When the fast evolution of large, the algorithm can continue in a
larger search space, when is small may reduce w causes the particle to search
in the small scope, thus more quickly find the optimal value. k value of early
large, fast speed of evolution, and vice versa. When after several iterations, show
that the algorithm is stagnant or has found the optimal value. Can be drawn, w
decreases as k decreases.

The above analysis shows that the introduction of the rate of particle evolution
changing, making the particle swarm algorithm to modify its inertia factor, not
only to consider the role of the number of iterations, and the group best position
to consider the impact, so as to better balance the global search ability of particle
swarm and local search capabilities to avoid falling into local optimum, to speed
up the convergence speed.

4 Simulation Results

To test the validity of the new method, this paper carries on the simulation
with the LDWPSO and NDWPSO algorithm to the three classical Benchmark
functions. All of the following functions have the same global minimum value 0.
Where function 1 is a single peak function, the other for the Multi-peak function.

Function 1 Rosenbrock function:

f1(x) =
n−1∑
i=1

((100xi+1 − x2
i )

2
+ (xi − 1)2),−50 < xi < 50

Function 2 Rastrigrin function:

f2(x) =
n∑

i=1

(x2
i − 10cos(2πxi) + 10),−50 < xi < 50
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Function 3 Griewank function:

f3(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos(
xi√

i
) + 1,−600 < xi < 600

Parameter settings: Size of the swarm is 20; Maximum number of iterations is
1000; Dimension of the problem is 10; winitial = 0.9; wfinal = 0.4; c1 = c2 = 2.0
The target value of function set to 1.0e-5.

Figure 1 - Figure 3 shows that the use of LDWPSO and NDWPSO algorithms
to simulate these functions results.

Fig. 1. Rosenbrock function iterative process

Fig. 2. Rastrigrin function iterative process
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Fig. 3. Griewank function iterative process

Figure 1 - Figure 3 show that NDWPSO algorithm than LDWPSO algorithm
has significantly improved in the search ability and convergence speed of the
optimal values.

5 Concluding Remarks

In this paper, based on the linear decreasing inertia weightPSO (LDWPSO) analy-
sis and found LDWPSO adapt to the complex nonlinear optimization in the search
process, there are problems like it easily stuck at a localminimum point and its con-
vergence speed is slow, inorder toovercomethis, anonlinear inertiaweightvariation
for dynamic adaptation in particle swarm optimization (NDWPSO) has been pro-
vided.Throughintroductiontherateofparticleevolutionchangingconcept,change
inertia factor renewal formula, the algorithm achieved global and local search per-
formance of the balance, and improved LDWPSO algorithm easily stuck at a lo-
cal minimum point. To show effectiveness of this method, the simulations of three
benchmark examples are carried out by the proposed method, as a result, NDW-
PSO algorithm in the stability and convergence better than LDWPSO algorithm,
and the algorithm is easy to combine with other algorithms.
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Abstract. This paper talks about the problems in particle swarm optimization 
(PSO), including local optimum and difficulty in improving solution accuracy 
by fine tuning. We presents a new variation of Adaptive Tribe-PSO model 
where nonlinear updating of inertia weight and a particle’s fitness with Tribe-
PSO model are combined to improve the speed of convergence as well as fine 
tune the search in the multidimensional space. The method proved to be a  
powerful global optimization algorithm.  

Keywords: adaptive weight, tribe particle swarm optimization, local optimum, 
accuracy. 

1   Introduction 

Particle swarm optimization (PSO) algorithm is a new intelligent optimization algo-
rithm [1]. Basic PSO can easily get trapped in the local optima when solving multi-
modal problems [2]. Accelerating convergence speed and avoiding the local optima 
have become the two most appealing goals in PSO research [3].  

Tribe-PSO in [4] has shown some encouragement. It focuses on avoiding the local 
optima, but brings in a slower convergence as a result. One of the reasons is the com-
putational burden of breeding and subpopulation [5]. Another is the fixed inertia 
weight. Proper coordination between global and local search is critical for algorithm 
finally converging to global optimal solution [6]. The time-varying controlling strate-
gies proposed for the PSO parameters so far are according to either linear [7], [8] or 
nonlinear rules. Some use a self-adaptive method by optimizing parameters together 
with the position during run time [9], [10]. Some strategies use a fuzzy system with 
fitness feedback to adjust the parameters [11]. But they are under the risk of inappro-
priately adjusting the parameters without information that reflects evolutionary state 
utilized. An adaptive inertia weight developed in [12] has been proved to reflect the 
population and fitness diversity well. In this paper, we present a new variation of 
Adaptive Tribe-PSO model where nonlinear updating of inertia weight and a parti-
cle’s fitness with a Tribe-PSO model are combined to improve the speed of conver-
gence as well as fine tune the search. Benchmarking tests indicate that the proposed 
method is able to achieve satisfactory results. 
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2   Basic PSO Algorithm 

In Particle swarm optimization (PSO), particles find the optimal solution by updating 
the velocity and position with the following equations: 

( ) ( )1
, , 1 1 , , 2 2 ,
t t t t t t

i d i d i d i d d i dV wV c rand pBest x c rand gBest x+ = + − + −
                    (2.1) 

1 1
, , ,

t t t
i d i d i dx x V+ += +                                                       (2.2)

 

where c1 and c2 are the learning factor set to 2 to give the two stochastic factors 

( )1 , ,
t t
i d i drand pbest x−  and ( )2 ,

t t
d i drand gbest x−  a mean of 1, so that agents would “over-

fly” the target about half the time. Here rand1 and rand2 are in the range of [0, 1]. ,
t

i dV  

and ,
t
i dx  are the velocity and position of ith particle in dth dimension till tth iteration, 

respectively. t
dgbest  and ,

t
i dpbest

 
are the global best and the personal best, respec-

tively. As all particles are affected by the same social optimum, they will all approach 

to it. The swarm lost particles diversity and even leads to premature.  

3   Tribe-PSO 

The two-layered structure of Tribe-PSO is depicted in Fig. 1. Tribe-PSO divides  
particles into two layers and procedure of optimization is divided into three phases. 

L particles

m particles m particles

tBest

gBest

tBest

gBest

Top layer

Bottom layer

Swarm 1 Swarm L

1,2p 1,mp
1,1p

,1Lp ,2Lp
,L mp

 

Fig. 1.  The structure of Tribe-PSO 

Assume that there are l×m particles. They are firstly divided into l tribes with each 
tribe m particles. The convergence procedure of Tribe-PSO consists of three phases:  

1) Isolated phase  
In the first phase, the tribes work as l independent basic PSO models. Every tribe 
produces a best particle tBest. The velocity function is defined as followed: 

( ) ( )1
, , 1 1 , , 2 2 ,
t t t t t t

i d i d i d i d d i dV wV c rand pBest x c rand tBest x+ = + − + −
                   (3.1)
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2) Communing phase 
In the second phase, Tribe-PSO works in the standard two-layered model: all tribes 
form the basic layer and all tBests form the upper layer. For Tribe members, the  
velocity function is the same as they have in the first phase: 

( ) ( )1
, , 1 1 , , 2 2 ,
t t t t t t

i d i d i d i d d i dV wV c rand pBest x c rand tBest x+ = + − + −
                    (3.2)

 

For tBest and gBest particles, the velocity function is defined as followed:  

( ) ( )1
, , 1 1 , , 2 2 ,
t t t t t t

i d i d i d i d d i dV wV c rand pBest x c rand gBest x+ = + − + −
                     (3.3)

 

3) United phase  
In the last phase, all the tribes are united into one group. The velocity function for all 
the particles becomes the original one in the basic PSO. 

( ) ( )1
, , 1 1 , , 2 2 ,
t t t t t t

i d i d i d i d d i dV wV c rand pbest x c rand gbest x+ = + − + −
                     (3.4)

 

4   Adaptive Tribe-Particle Swarm Optimization 

4.1   Adaptive Inertia Weight 

Here we compute an “evolutionary factor” s based on the evolutionary state as de-
fined by 

[ ]min

min

0,1
avg

f f
s

f f

−
= ∈

−
                                                          (4.1)

 

f denotes the particle’s fitness at present and favg the average fitness, fmin the minimum 
fitness. The dynamics of s has been shown in figure 2.  

 

Fig. 2. s from time-varying Griewank function f2 
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Based on the dynamics of s, we can allow w to follow the evolutionary states using 
a mapping ( ) :sω + +ℜ ℜ : 

( ) ( )min max min

max

w w w s
w s

w

⎧ + − ∗
= ⎨
⎩

  
avg

avg

f f

f f

<
≥

 ( ) [ ]0.4,0.9w s ∈  [ ]0,1s∀ ∈               (4.2) 

It can be seen that w is monotonic with s. Thus w will adapt to the search environment 
characterized by s.  

f > favg: The largest w makes it fly to the optimum and accelerates convergence speed. 
f < favg: The small w helps to protect excellent particles and limits their research area.  
f = favg: The largest w to jump out of local optimum or enlarge search area and keep 
the diversity of particles. 

4.2   Adaptive Tribe-PSO 

Based on the previous analysis and discussion, we can establish adaptive Tribe-PSO 
as described by the following flow chart: 
 

 

Fig. 3. The Flow Chart of the proposed Adaptive Tribe-PSO 
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The proposed Adaptive Tribe-PSO mainly constitutes the following steps.  

 Step 1 Initialization.ïSet parameters. Initialize particle position and velocity. 
 Step 2 Calculate fitness. Based on the fitness, choose tBest, gBest or pBest. 
 Step 3 Update. Update velocity and position using formula (3.1)—(3.4), (2.2).  
 Step 4 Output optimum. In the first two phases, algorithm goes to next phase 

with the best values. If that is in the third phase, output the optimum. 

5   Experimental Setup and Simulation 

5.1   Benchmark Functions 

Simulation tests are conducted on two benchmark functions: Spherical and Griewank.  
f1: Spherical function: 

( ) 2
1

1

n

i
i

f x x
=

=∑  100 100ix− ≤ ≤  (5.1) 

f2: Griewank function: 

( ) ( )23
1 1

1001
100 cos 1

4000

nn
i

i
i i

x
f x x

i= =

−⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

∑ ∏  100 100ix− ≤ ≤  (5.2) 

5.2   Parameter Settings 

Firstly, strict benchmarking tests are carried out for PSO, Tribe-PSO and Adaptive 
Tribe-PSO. All the tests start from the same random initiation: the dimension number 
is set to 10; number of particles is set to 200; number of iterations is set to 150; w is 
initialized to 0.7, and c1 and c2 to 2.0. wmax and wmin is set to 0.9 and 0.6, respectively. 
The particles are divided to 20 tribes with each tribe 10 particles. The partition of 
phases is set to 0.2, 0.3 and 0.5, respectively. Secondly, for Adaptive Tribe-PSO, the 
partition of phases and ratios of tribe numbers to tribe size are initialized differently.  

5.3   Results 

During the isolated phase, basic PSO has the smallest optimal value. In communing 
phase, two modified PSOs have better optimized value. And Adaptive Tribe-PSO 
converges earlier than Tribe-PSO. Two modified PSOs get better results than basic 
PSO at last. In Tribe-PSO the attraction from the best particle has been limited by the 
two-layered structure. In Adaptive Tribe-PSO, this problem is resolved well. Particles 
can adjust velocity intelligently and smash the restriction of two-layered structure.  

In Fig. 5 (a), T1-T6 represent the trajectory with partitions of phases (0.02, 0.3, 
0.68), (0.3, 0.02, 0.68), (0.3, 0.68, 0.02), (0.5, 0.3, 0.2), (0.2, 0.3, 0.5) and (0.3, 0.5, 
0.2), respectively. T1, T2, T5 get more accurate optimum where the third phase occu-
pies more. When the first phase occupies too much portion, it has worse convergence 
result. In Fig. 5 (b), it indicates that the upper layer with more tribes results in better 
convergence as long as each tribe has enough particle members. 
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                                              (a)                                                  (b) 

Fig. 4. Average convergence curves of Spherical’s function (a) and Griewank’s function (b) 

 

                                                (a)                                                   (b) 

Fig. 5. (a) Average convergence curves of Griewank’s function with different partition of 
phases (b) Average convergence curves of Griewank’s function with different number of tribes 

6   Conclusion 

In this paper, the problem of premature and local optimum in PSO is investigated and 
Tribe-PSO has been extended to Adaptive Tribe-PSO by introducing dynamically and 
adaptively weights updating. As shown in the tests, the proposed approach can 
achieve better accuracy. Both the partition of phases and number of tribes can be 
adjusted according to the practical problem. Further more, the adaptive weight updat-
ing employed in the algorithm can effectively prevent local optimum. 
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Abstract. The continuous PSO algorithm has been widely researched and also 
applied as an intelligent computational technique to solve problems requiring 
iterative solutions based on some predefined objective function. However, the 
research on binary version of PSO (DBPSO) is still underway. The major re-
search concerns are to accelerate the convergence speed retaining the search 
ability and reliability of the algorithm. To achieve this, a novel hybrid binary 
particle swarm optimization (HBPSO) algorithm is proposed in this paper. It 
combines the PSO’s concept and GA. In the existing standard binary PSO 
(DBPSO) two new operators such as crossover and mutation are incorporated to 
accelerate the convergence speed and to avoid possible stuck in local optimum 
thereby maintaining population diversity. The proposed HBPSO algorithm has 
been studied on 6 bench mark optimization problems. The experimental results 
such as minimum fitness, mean fitness, and variance of fitness over 50 consecu-
tive trials on each objective function indicate that the HBPSO algorithm consis-
tently outperforms the DBPSO and its variants in terms of convergence speed 
and search accuracy on a bulk of bench mark problems. 

Keywords: Particle swarm optimization, discrete binary PSO, optimization. 

1   Introduction 

Particle swarm optimization algorithm (PSO) is a population based stochastic search 
algorithm developed by Kennedy and Eberhart [1] in 1995. It mimics swarms behav-
ior in performing their tasks like bird flocks and fishes to discover an optimal solution 
based on an objective function. In contrast to the traditional optimization methods 
based on pure mathematics, the PSO employs a probabilistic search procedure and 
iteratively determines solutions to an optimization problem. The PSO comprises two 
main variants namely the continuous PSO [1] and the binary PSO (DBPSO) [2] algo-
rithms. The continuous PSO mainly focuses on problems requiring real numbers 
while the binary PSO deals with problems that need binary encoding like knapsack 
and similar decision oriented problems. 

The (DBPSO) [2] preserves the fundamental concept of the PSO algorithm except 
that here a population of candidate solutions consists of binary strings each represent-
ing a particle’s position vector. The initial bit streams for the whole population are 
randomly generated subject to arbitrary velocities. The fitness of each individual of 
the population in minimizing or maximizing a predefined objective function F(x) is 
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evaluated and remembered. The individuals are sorted according to their fitness val-
ues. An individual with the best fitness value is identified as a local best from the 
current population of candidate solutions. Then, an iterative process begins to alter the 
bit streams with some probability to facilitate further movements in the search space. 
Now, updating of bits is accomplished with renew of the pseudo probability Vij as 
follows: 

1

1 1 2 2 1. . .( ) . .( )
K K K K K K

ij ijij ij ij jV w V r c p x r c g x
+
= + − + −  (1) 

where
K

ijV is the pseudo probability; ijx is a bit of candidate solution; i is the index of 

the candidate solution and j is the index of dimension; 1 2,c c are two acceleration coef-

ficients; 1 2,r r are two random numbers; w is the inertia weight;
K

ijp is the personal best 

history at iteration K; 1

K

jg is the current local best at iteration K. The pseudo probabil-

ity
K

ijV is constrained in the actual probability interval {0,1}ijS ∈ using a sigmoid map-

ping function as below: 
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Now, a random number {0,1}ijr ∈ is generated and compared with {0,1}ijS ∈ to deter-

mine actual bit as 
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 (3) 

The procedure of generating new candidate solutions, fitness evaluation, renew of 
personal best, and local best, is continued until the global best solution is ascertained 
or a predefined termination criterion is reached. 

In fact, both PSO methods were developed for diverse work domains using the 
same underlying principles but the binary PSO has extensive applications as the se-
quence of binary bits can be transformed according to the requirements of any prob-
lem space. Also the binary coded PSO can overcome the problems such as trapping 
into local optima’s because of the inherited advantage of bit flip mechanism however 
the algorithm might be computationally expensive due to extra computations involved 
in the process of number conversion and scaling. 

As the binary PSO is suitable for a wide range of applications of diverse nature and 
comprises simple mathematics, it has attracted many researchers for its further  
development. Shen [3] proposed a modified version of binary PSO (MBPSO) by 
suggesting some modifications to the original version of the binary PSO. Though the 
modifications proposed by Shen have improved performance of the algorithm in 
terms of its convergence speed but the MBPSO algorithm traps in local optimum and 
possesses a high fitness variance that restricts the applications requiring consistency. 
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Ling Wang [4] further extended the MBPSO by introducing two new operators called 
mutation and dissipation, concepts of natural evolutionary theory, and developed a 
mutation-dissipation based binary PSO (MDBPSO). Alireza [5] proposed a Boolean 
PSO algorithm by introducing the concepts of boolean algebra in binary PSO algo-
rithm and designed a dual-band dual-polarized planar antenna using the proposed 
method. Khansesar [6] proposed a novel binary PSO by redefining the concept of 
velocity vector in binary PSO. Arezoo Moiri [7] developed a modified binary PSO 
algorithm by adapting a new velocity calculation strategy to improve the accuracy and 
the convergence speed. Jeong [8] used a hybridized approach to combine the concept 
of quantum computing and binary PSO and developed a quantum-inspired binary 
PSO (QBPSO). Further, essential binary PSO (EBPSO) and probability based binary 
PSO (PBPSO) have also been proposed [9-10]. 

With the ongoing progress in research, the binary PSO has been successfully ap-
plied in a wide range of optimization problems such as in process control, structural 
topology optimization, chaotic map feature selection, optimal placement of PMU’s in 
power network, knapsack problem, management, scheduling, parameter  identifica-
tion, wireless sensor networks, resource allocation, neural network training and face 
recognition problem. The application results witness the significance of binary PSO’s; 
nevertheless there is still room to improve the method to achieve better results. 

2   The Hybrid Binary PSO (HBPSO) Algorithm 

Despite the standard binary PSO (DBPSO) has been applied in many real world opti-
mization problems but its performance is not satisfactory. Firstly, the algorithm is 
computationally expensive due to slow convergence. Moreover, the core concept of 
the PSO algorithm which governs the movements of particles to their historical best 
positions and toward the best particle in the group is not completely present in binary 
PSO. Although, it employs the PSO parameters such as the acceleration factors and 
the inertia weight in the course of updating the pseudo probability, but later it is only 
a probability constrained by a sigmoid mapping function in the real probability inter-
val to determine a bit’s state. It cannot aid algorithm to avoid unnecessary march in 
the search space and in attaining convergence, consequently, it increases the required 
number of iterations for the algorithm to converge to an optimum solution. 

Many applications cannot afford large number of fitness evaluations, because it 
may take long time to evaluate a candidate solution due to the complexity of objective 
function and other constraints. In order to establish speedy convergence, reduce wan-
dering, and avoid possible trap in local optimum a hybrid approach is proposed. It 
combines concepts of the PSO and GA [11]. The proposed hybrid strategy comprises 
a crossover and a mutation operator. An intelligent stochastic crossover operation is 
performed to wholly realize the cognitive and social concepts of the PSO and then a 
mutation operator is added as a remedy against possible stuck in local optimum as 
well as to maintain population diversity. The hybridization has significantly improved 
performance of the proposed HBPSO in terms of convergence speed, consistency, and 
accuracy of the solution. 
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2.1   Crossover and Mutation 

Mutation and crossover are fundamental concepts employed in genetic algorithm 
(GA) derived from natural evolution theory. These operators mimic the biological 
evolutionary process. 

(1) Crossover 
In the GA, a crossover operation is performed to generate new candidate solutions for 
next generation from an existing population of solutions by performing recombina-
tion. There are numerous ways to establish the crossover operation. Like GA, in 
HBPSO an intelligent stochastic crossover operation is introduced to indemnify the 
essence of the particle swarm optimization in binary domain. Here, a random num-
ber {0,1}ijr ∈ is generated to determine the actual state of each bit of every candidate 

solution from the population of current solutions as in eq.4. 
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ij ij

ij ij ij
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g r
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⎪
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⎪ < ≤⎩

 (4)

In eq.4, α represents a predefined percentage ratio of crossover probability. 
In HBPSO, 33.33%α = i.e. for each bit, xij of a candidate solution, the possibility 

to remain in its state as it was determined by equation (3) is 33.33% and 66.67% 
chances to be replaced by a bit from its previous best history and the current best 
particle at any iteration. Earlier, a similar approach has been applied in the MBPSO 
algorithm [3].However; the MBPSO is quite different from the proposed HBPSO 
algorithm. Because there an initial population of candidate solutions is created with a 
static probability and then a random number {0,1}ijr ∈ is generated to realize an iden-

tical approach called update strategy but in fact it results in a very rapid convergence 
to a local optimum, and in many cases very far from real optimum solution, without 
exploring search space well. To investigate search space well again, it is necessary to 
push particles ahead to discover new points with some reasonable velocity.  In con-
trast, the proposed HBPSO preserves the DBPSO’s strategy of generating candidate 
solutions with a dynamic probability during all iterations as in equation (3) and then 
performs a stochastic operation analogous to the uniform crossover in GA as in  
equation (4) to accelerate convergence. The HBPSO has less chances of premature 
convergence as particles will consistently move further to find new points.  

(2) Mutation 
Mutation is another commonly used operator in genetic algorithm (GA) to maintain 
population diversity. In HBPSO, the mutation operator is added to achieve two goals. 
Firstly, it can maintain diversity of the swarm; in addition, it can facilitate escape 
when algorithm has converged to any local optimum. A random number {0,1}ijr ∈ is 

generated and compared with a predefined mutation probability m to perform muta-
tion operation as in eq.5. 
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In the case of problems other than binary, a mutation operation on a most significant 
bit (MSB) of any candidate solution will facilitate exploration (global search) while 
mutation of a least significant bit (LSB) will aid exploitation (local search).The over-
all procedure of the proposed HBPSO algorithm is illustrated with the help of a flow 
chart as in Fig.1. 

 

Fig. 1. Flowchart of the HBPSO algorithm 

3   Experiments and Numerical Optimization Results 

Experiments were performed using Matlab, Intel® Pentium® Dual-CPU T2370 
@1.73GHz and 2GB of RAM. To evaluate the performance of the proposed HBPSO 
algorithm 6 bench mark problems were considered. The characteristics of bench mark 
problems are given in Table 1. 
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Table 1. Characteristics of Benchmark Functions 

 Name Dimension Optimum Type 
F1 Sphere 2 0.0(min) unimodal 
F2 Step 2 0.0 (min) unimodal 
F3 Rosenbrock’s 2 0.0(min) unimodal 
F4 Griewangk’s Function 2 0.0(min) unimodal 
F5 Glankwahmdee’s 2 0.0(min) unimodal 
F6 Rastrigin 2 80.70658(max) multimodal 

Table 2. Parameter settings of DBPSO, MBPSO, MDBPSO, and HBPSO algorithm 

DBPSO 

C1=C2=2, Vmin=-Vmax=5 
Inertia weight (w)=0.8 
Swarm size=30 
No. of binary bits=24 
Total number of iterations=500

MDBPSO

Static probability=0.5 
Mutation probability=0.005 
Dissipation probability=0.01 
Swarm size=30 
No. of binary bits=24 
Total number of iterations=500 

MBPSO 

Static probability=0.5 
Swarm size=30 
No. of binary bits=24 
Total number of iterations=500

HBPSO 

 
C1=C2=2, Vmin=-Vmax=5 
Inertia weight (w)=0.8 
Mutation probability=0.005 
Cross over probability=66.67% 
Swarm size=30 
No. of binary bits=24 
Total number of iterations=500 

Table 3. Numerical Simulation results of DBPSO, MBPSO, MDPSO, HBPSO algorithm 

F FV DBPSO MBPSO MDBPSO HBPSO F FV DBPSOMBPSO MDBPSO HBPSO

F1

BFV 1.78e-9 5.72e-6 7.11e-11 7.11e-11

F4

BFV 8.37e-7 6.59e-5 9.59e-10 9.59e-10

MFV 1.15e-5 1.2808 7.11e-11 7.67e-11 MFV 0.0323 4.9513 0.0797 0.0401

VF 4.16e-10 40.881 2.73e-51 1.62e-21 VF 0.0052 200.0113 0.0127 0.0065

HF 9.76e-5 44.1662 7.11e-11 3.55e-10 HF 0.2037 77.5925 0.4465 0.2004

F2

BFV 1.05e-7 1.82e-4 2.44e-7 3.34e-10

F5

BFV 8.48e-8 7.02e-5 5.54e-11 7.50e-12

MFV 0.2406 1.2560 0.2282 0.2250 MFV 0.0035 0.9918 0.1926 0.0043

VF 0.0359 28.0818 0.0334 0.0312 VF 8.97e-5 6.6664 0.4603 1.24e-4

HF 0.5040 37.4719 0.5000 0.5000 HF 0.0459 15.0266 4.5524 0.0481

F3

BFV 5.12e-9 6.70e-6 1.57e-8 4.84e-13

F6

BFV 80.7066 80.71 80.7066 80.7066

MFV 2.64e-4 0.1677 0.0668 3.36e-4 MFV 80.7066 80.5547 80.7057 80.7062

VF 9.72e-8 0.2024 0.0389 7.40e-7 VF 2.26e-21 0.0866 2.25e-6 1.31e-6

HF 8.16e-4 2.9528 1.0000 0.0060 HF 80.7066 79.8825 80.7066 80.7031

* BFV=Best Fitness Value, MFV=Mean Fitness Value, VF=Variance of Fitness, HF=Highest Fitness  
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The proposed HBPSO algorithm was compared with three former versions of bi-
nary PSO like DBPSO, MBPSO and MDBPSO algorithm. Due to sensitivity of algo-
rithmic parameters, the parameters were chosen after extensive experimentations with 
different parameter combinations and also considering previously reported values in 
the literature. The parameters combinations were set for each algorithm as listed in 
Table 2. Experiments were repeated 50 times under identical conditions with each 
algorithm on each objective function. The experimental results like minimum fitness, 
mean fitness, variance of fitness, and maximum fitness values for each algorithm on 
each objective function over 50 consecutive trials were computed to measure per-
formance index of each algorithm. The statistical data obtained from experiments is 
presented in Table 3.The convergence curves associated with the best results among 
20 independent consecutive trials of each algorithm on each objective function are 
shown in the following figures (Fig.2). 

 

 

Fig. 2. Convergence curves of various algorithms on different benchmark functions 

4   Conclusions and Discussion on Results  

In this paper a novel HBPSO algorithm is developed by integrating concepts of PSO 
and GA to arrive at fast convergence and avoid excessive wander. From Table 3 it is 
evident that the proposed HBPSO shows the best performance index in terms of 
minimum fitness, mean fitness, variance of fitness in comparison to DBPSO, MBPSO 
and MDBPSO algorithms. The HBPSO consistently outperformed and converged 
closer to the optimum solution. The results should be compared in terms of mean, 
minimum and highest fitness because any algorithm repeatedly trapping into a local 
optimum also exhibits a low variance. The convergence curves (Fig.2) show that the 
HBPSO can reach an acceptable solution within lesser number of fitness evaluations 
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in most cases. Also the curves indicate that the HBPSO frequently avoids local opti-
mum and perform search in the area of potential solutions. 
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Abstract. By the penalty function methodwe transform zero-one non-
linear programming problems into unconstrained zero-one integer opti-
mization problems. A particle swarm optimization algorithm with chaos
and gene density mutation is given to solve unconstrained the zero-one
nonlinear program problems. We use chaos to initialize populations and
use the 0-1 integer operation in updating positions to produce 0-1 in-
teger points. We use the fitness variance and gene density strategy to
determine whether the population premature phenomenon or not. If it
appears that we use the gene density mutation to increase the popu-
lation diversity or restart and reset the population by chaos technique.
Numerical simulations show that the proposed algorithm for most test
functions is feasible, effective and has high precision.

Keywords: nonlinear zero-one integer programming; penalty function
method; particle swarm optimization; gene density mutation.

1 Introduction

In this paper, we consider zero-one nonlinear programming problems as follows:⎧⎪⎪⎨
⎪⎪⎩

min f(x),
s.t. gi(x) ≤ 0, i = 1, 2, · · · , m,

hj(x) = 0, j = 1, 2, · · · , l,
xk = 0 or xk = 1, k = 1, 2, · · · , n.

(1)

where x = (x1, x2, · · · , xn) , gi(x) is inequality constraints, hk(x) is equality
constraints. Generally, those constraints are nonlinear, so it is difficult to solve
them.

The zero-one nonlinear programming problems come from many real-world,
such as assignment problems, knapsack problems, portfolio, capital budget, trav-
eling salesman problems [1 − 3] and so on. At present, the zero-one nonlinear
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programming problems are solved by the two methods, one is deterministic meth-
ods, such as branch and bound algorithm, cutting plane algorithm, filled function
method, steepest descent method [2, 4] and so on. The other is the stochastic
methods, such as genetic algorithm, simulated annealing algorithm, ant colony
algorithm, differential evolution algorithm[5− 7], etc. This kind of methods can
solve the complicated nonlinear optimization problems, but its convergence is
very difficult to prove.

We transform zero-one nonlinear programming problems into unconstrained
zero-one integer optimization problems by penalty function method [8], i.e.

min F (x, δt) = f(x) + δtp(x), (2)

where

p(x) =
m∑

i=1

(max(0, gi(x)))p +
l∑

j=1

|hj(x)|p (3)

Clearly, p(x) ≥ 0 is the sum of constraint violations, δt is penalty factor, p is a
positive integer, in this paper given p = 2 and δt → ∞. Then we give a PSO
algorithm with chaos and gene density mutation to solve the zero-one nonlinear
program problems(PSO-CSGDM). In this algorithm, we use chaos to initialize
populations and the 0-1 integer operation in updating the positions to produce
0-1 integer particles as well as the fitness variance and gene density strategy
to determine whether the population premature phenomenon or not. Numerical
simulations show that the proposed algorithm is feasible, effective and is a high
precision global optimization algorithm.

2 PSO Algorithm with Chaos and Gene Density
Mutation

2.1 Basic PSO

Particle swarm optimization (PSO) was proposed by Eberhart and Kennedy in
1995, it is a kind of swarm intelligence-based computational method [9 − 10],
which comes from the study of birds foraging behavior. Suppose that the search
space is D-dimension, and then the particle ith of swarm can be represented by
a D-dimensional vector xi = (xi1, xi2, · · · , xiD) . The velocity of this particle
can be represented by another D-dimensional vector vi = (vi1, vi2, · · · , viD) .
The fitness of each particle can be evaluated according to the objective function
of optimization problem. The best previously visited position of the particle ith

is noted as its individual best position pi = (pi1, pi2, · · · , piD) . The position of
best individual of the whole swarm is noted as the global best position pg =
(pg1, pg2, · · · , pgD) . At each step, the velocity of particle and its new position
will be assigned according to the following two equations:

vid(t + 1) = wvid(t) + c1r1(pid(t)− xid(t)) + c2r2(pgd(t)− xid(t)), (4)

xid(t + 1) = xid(t) + vid(t + 1). (5)
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where 1 ≤ d ≤ D , 1 ≤ i ≤ N , the superscript t denotes the tth iteration; c1 and
c2 are positive constants , called the cognitive and social parameter respectively,
r1 and r2 are random numbers uniformly distributed in the range (0, 1) ; let
the upper limit of the rate of the velocity be vmax , when |vid| > vmax , then
|vid| = vmax , and ω is called inertia weight which has the ability of balancing
global search and local search. The experiments indicate that ω will impact on
global search ability and local search ability, when ω is higher , the global search
ability is strong , but the local search ability is low; whereas the local search
ability is strong , but global search ability is low . This paper gives ω from 0.95
linearly decreasing to 0.4 .

2.2 The Equation on the Position of the Particles

a) Initializing population by chaos technique
Firstly, we generate a D-dimensional vector z1 = (z11, z12, · · · , z1D) and the value
of each component is between 0 and 1 , then according to the typical chaotic sys-
tems [11] Logistic equation zi+1j = μzij(1−zij), j = 1, 2, · · · , D, i = 1, 2, · · · , N ,
where μ is the control parameter, then we get N vectors z1, z2, · · · , zN , then
we convert each component of the chaotic variables zi to decision variables and
integer ,i.e.:

xij = xl
j + [zij ∗ (xu

j − xl
j)]. (6)

where xl and xu are respectively corresponding decision variables of the lower
and upper bound, [�] is rounding integer method.

b)Updating the positions of the particles
In this paper, the position of PSO update formula with rounding integer method,
i.e.

xid(t + 1) = [xid(t) + vid(t + 1)], (7)

where xid(t + 1) is the updated position, [�] is rounding integer method.

2.3 The Strategy of Overcoming Premature Phenomena

In order to predict the premature convergence of the algorithm, we will use the
following two concepts: population fitness variance and gene density.

Definition 1. Let the particle’s number be N , fi is the fitness of ith particle’s,
fave is current average fitness of swarm, the swarm fitness variance δ2 [12]is
defined as:

δ2 =
1
N

N∑
i=1

(
fi − fave

f
)2. (8)

where fave = 1
N

∑N
i=1 fi, f is a factor of returning, it can limit δ2 , and the

value of f is defined as:f = max{1, max|fave − fi|}, i = 1, 2, · · · , N .
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Form the definition, the swarm fitness δ2 shows that all particles convergence
degree. The smaller δ2, the swarm diversity is small, the nearer the particles
will rapidly cluster together so that particle swarm cannot be further improved.
Therefore,we consider that it has been in premature convergence when δ2 < C(C
is a given constant).

Definition 2. (Gene Density)In {0, 1}D,let

X =

⎛
⎜⎝ x11 · · · x1D

...
. . .

...
xN1 · · · xND

⎞
⎟⎠

where N is the size of this population, D is the dimension of search space,we
take each column of X as gene fragment, ρj is the gene density of the jth gene
fragment in X ,then gene density ρj is defined as:

ρj =
1
N

N∑
i=1

x(i, j). (9)

Form the definition, the gene density ρj shows that all particles convergence de-
gree. The smaller or larger ρj , the genes of the gene fragment in X are very similar,
so that the genetic fragment genes lose diversity. At this time, either most of the
particles having the same fitness value or most of the gathering in a few specific
locations particles of the particles would be premature, namely, the swarm fitness
variance is tend to 0 or gene density is approach to 0 or 1. Thereforewe adopt gene
density mutation or the strategy of the population re-initialization in order to in-
crease the diversity of population and pseudo-code in table 1. In δ2 < C premise,

(i) If ρj > β,it shows that the genes of jth gene fragment are most to 1, we
transform many 1 to 0 at a certain probability r, and make sure α<ρj<β.
Mutation probability r is ranged from 1 − βρjto1 − αρj by calculation.
Namely, if xij = 1 and 1− βρj<rand<1−αρj ,then xij = 0, where rand is
a random in (0, 1).

(ii) If ρj<α, it shows that the genes of jthgene fragment are most to 0, we
transform many 0 to1 at a certain probability r, and make sure α<ρj<β.
Mutation probability r is ranged from 1− β

1−ρj
to 1− α

1−ρj
by calculation.

Namely, if xij = 1 and 1− β
1−ρj

<rand<1− α
1−ρj

,then xij = 0, where rand

is a random in (0, 1).
(iii) Then reset re-initialization population by chaos technique.

2.4 The Description of the New PSO Algorithm

Now, we describe the proposed algorithm for solving unconstraint problems (2),
this algorithm is denoted as PSO-CSGDM.
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Table 1. Pseudo-code of overcoming premature phenomena strategy

if δ2 < C
for j=1:D

if ρj > β
for i=1:N

if x(i, j) = 1 and 1 − βρj<r<1 − αρj

x(i,j)=0;
end

end
end
if ρj < α

for i=1:N

if x(i, j) = 0 and 1 − β
1−ρj

<r<1 − α
1−ρj

x(i,j)=1;
end

end
end

end
else

Reinitialization population
end

step 1. (Initialization)The size of population N the search space dimension
D , acceleration factor c1, c2 , the maximum iteration time Tmax ,the
threshold C, α, β, penalty factor δ1 , set t = 1 .

step 2. According to section 3.2.1, we get the initial population.

step 3. Evaluating the fitness fi of the particle ith, i = 1, 2, · · · , N , set the
initial position of each particle pi,i.e. pi = xi, the global optimal
position pg = argmin(f).

step 4. Perform operation of all the particles as follows:

step 4.1. Update the velocity and position according to Eqs.(4)and (7), and
put them in a certain extent;

step 4.2. Evaluating the fitness fi of the particle ith , i = 1, 2, · · · , N , according
to Eqs.(2).

step 5. Update the individual optimal position p and the global optimal po-
sition pg ;

step 6. Evaluating the swarm fitness variance by Eqs. (8) and gene density
according to Eqs. (9). The particles in premature convergence are
mutated by section 3.2.. Then update the individual optimal position
p and the global optimal position pg ;

step 7. If a stopping criterion is met, then output pg and its value; Otherwise
let t = t + 1, go back to step 4.
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3 Numerical Experiments

3.1 Test Function

Example 1[4]: Let us consider the following zero-one programming problem:⎧⎪⎪⎨
⎪⎪⎩

min 20x1 − 10x2 + 6x3,
s.t. x1 + 2x2 − x3 ≥ 2,

2x1 + x2 + x3 ≤ 6,
x1, x2, x3 ∈ {0, 1}.

Example 2[4]: Let us consider the following zero-one programming problem:⎧⎪⎪⎨
⎪⎪⎩

min −2x1 + x2 − 5x3 + 3x4 − 4x5,
s.t. 3x1 − 2x2 + 7x3 − 5x4 + 4x5 ≤ 6,

x1 − x2 + 2x3 − 4x4 + 2x5 ≤ 0,
x1, x2, x3, x4, x5 ∈ {0, 1}.

Example 3[4]: Let us consider the following zero-one programming problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min −6x1 + 5x2 + x1x3,
s.t. x2 = x2

1,
−x1 + x2 − 2x3 ≤ 5,
3x1 + 5x2 − 7x3 ≤ −5,
x1, x2, x3 ∈ {0, 1}.

Example 4: Let us consider the following zero-one quadratic programming
problem, its global optimal value is −27.

min
1
2
xT Qx, x ∈ {0, 1}5.

Where

Q =

⎛
⎜⎜⎜⎜⎝

15 −4 1 0 2
−4 −17 2 1 1
1 2 −25 −8 1
0 1 −8 30 −5
2 1 1 −5 −20

⎞
⎟⎟⎟⎟⎠

Example 5[2]: Let us consider the following nonlinear class of zero-one knapsack
problem:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
∏m

i=1(
∑Ni

j=1 cjxj + di),
s.t.

∑N
j ajxj ≥ b,

xj ∈ {0, 1}, aj, cj , b, di ≥ 0, j = 1, 2, · · · , N, i = 1, 2, · · · , m,

b ≤∑N
j=1 aj ,⋃m

i=1 Ni = N.

Example 6: Let us consider the following zero-one programming problem:⎧⎨
⎩

min f(x) = 1
2xT Qx + dT x,

s.t. 1
2

∑n
j=1 amjx

2
j + dT

mx ≤ tm, m = 1, 2, · · · , M,

xi ∈ {0, 1}, i = 1, 2, · · · , n.
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3.2 Parameter Settings

The procedure of the proposed algorithm is compiled with Matlab 7.0. In the
procedure, we let the maximum iteration time Tmax = 50, acceleration factor
c1 = c2 = 1.8, the threshold C = 0.382, α = 0.25, β = 0.75, the inertia weigh ω
from 0.95 linearly decreasing to 0.4.

3.3 Experimental Results and Analysis

In this paper, test process is divided into two steps as following:

(1) The feasibility of PSO-CSGDM
In this section, in order to explain the feasibility of PSO-CSGDM, we will give
some computational results of the proposed algorithm through four examples
from Reference[4] , each experiment runs 30 times independently, the experi-
mental results were obtained by using PSO-CSGDM algorithm with the above
experimental settings. The optimal solution, optimal value, success ratio and
CPU for each problem for 30 independently running are summarized in Table 2.

Table 2. Comparison of new algorithm (PSO-CSGDM) and reference [4]

Examples Optimal solution Optimal value Success ratio (%) CPU(s)

PSO-CSGDM (0, 1, 0) -10 100 0.0469Example 1

Ref[4] (0, 1, 0) -10 - -
PSO-CSGDM (0, 0, 1, 1, 1) -6 100 0.0781Example 2

Ref[4] (1, 1, 0, 1, 1) -2 - -
PSO-CSGDM (0, 0, 1) 0 100 0.0156Example 3

Ref[4] (0, 0, 1) 0 - -
Example 4 PSO-CSGDM (0, 1, 1, 0, 1) -27 100 0.0625

Form Table 2, it can be seen that the new algorithm quickly search the opti-
mal solution for the low-dimension (3˜5 dimension), at the same time, there is
no need initial point of the problem. In particular, comparing with reference [4],
the optimal solution of the example 2 is x∗ = (1, 1, 0, 1, 1), optimal f(x∗) = −2,
but using the new algorithm can get the optimal solution every experiment, op-
timal value is f(x∗) = −6. It shows that the new algorithm is effective.

(2) The validity of PSO-CSGDM
For this example, we generate some random problems to test the proposed algo-
rithm. All elements of a(j)1×N and c(j)1×N are randomly generated in regions
[1, 50] and [1, 20], b = α

∑N
j=1 aj ,where α is randomly generated in regions (0, 1),

di =
∑

j∈Ni
(20 − cj),

⋃m
i=1 Ni = N , i = 1, 2, · · · , m . We transform example 5

into the following formula in order to prevent the solution overflowing.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∏m

i=1

∑Ni
j=1 cjxj+di

σ ,

s.t.
∑N

j ajxj ≥ b,

xj ∈ {0, 1}, aj, cj , b, di ≥ 0, j = 1, 2, · · · , N, i = 1, 2, · · · , m,

b ≤∑N
j=1 aj ,⋃m

i=1 Ni = N,

σ = max1≤i≤,m(
∑Nicj

j=1 +di).

(10)

These problems vary (N, m) in size from (80, 2) to (10000, 20), the experimen-
tal results were obtained by using PSO CSGDM algorithm with the above ex-
perimental settings. The minimal optimal value, mean optimal value, standard
deviation (Std.) of optimal value and mean CPU for each problem for 30 inde-
pendently running are summarized in Table 3.

As example 5 belongs to stochastic optimization problem, the initial coeffi-
cients are different at each time, but it can be seen from the table 3, under the
same conditions, it can be found the optimal solution in less time than refer-
ence [2] for different (N, m) by using the new algorithm. Therefore it can be
shown that the new algorithm is valid. For this example, we generate some ran-
dom problems to test the proposed algorithm. These problems vary(N, M)in size
from (10, 5) to (1000, 200) .All elements of (Q0)n×n,(d0)n×1 and (dm)n×1 are ran-
domly generate in regions [−1, 0],[−3,−2] and [1, 5],respectively, ami and tm are
generated in [0, 10] and [400, 500], where j = 1, 2, · · · , n, m = 1, 2, · · · , M .The
experimental results were obtained by using PSO-CSGDM algorithm with the
above experimental settings. The minimal optimal value, mean optimal value,

Table 3. The result of the formula (10)

(N,m) Min Mean Std. CPU(s)
(80, 2) 0.3648 0.4108 0.0277 0.0187
(80, 5) 0.0254 0.0508 0.0155 0.0203
(80, 10) 3.5488e-004 5.9041e-004 2.2784e-004 0.0214
(80, 20) 7.6440e-008 9.0777e-008 7.8526e-008 0.0255
(200, 2) 0.3708 0.4125 0.0173 0.0354
(200, 5) 0.0159 0.0565 0.1032 0.0339
(200, 10) 0.0012 0.0038 0.0019 0.0432
(200, 20) 7.5926e-007 2.7067e-006 2.3232e-006 0.0422
(800, 2) 0.4858 0.5000 0.0080 0.1063
(800, 5) 0.1175 0.1405 0.0110 0.1083
(800, 10) 0.0081 0.0176 0.0035 0.1203
(800, 20) 2.9368e-005 3.1434e-004 1.9001e-004 0.1146
(1000, 10) 0.0164 0.0244 0.0045 0.1401
(1000, 20) 5.7645e-005 2.1210e-004 1.0975e-004 0.1427
(5000, 10) 0.0262 0.0321 0.0033 0.9505
(5000, 20) 3.7183e-004 7.9916e-004 2.1539e-004 0.9411
(10000,10) 0.0297 0.0358 0.0021 2.1432
(10000,20) 7.1415e-004 0.0010 1.8410e-004 2.1182
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Table 4. The result of the example 6

(N,M) Min Mean Std. CPU(s)

(10, 5) -50.0167 -42.3417 4.1484 0.0073
(20, 10) -117.4873 -96.5805 7.3489 0.0531
(50, 25) -161.1217 -119.4951 18.3410 0.2516
(100, 30) -598.7031 -500.0089 59.1474 0.3896
(120, 40) -820.2338 -720.8680 75.6152 0.5578
(200, 50) -2.4063e+003 -2.0462e+003 129.5430 1.2401
(400, 60) -9.3295e+003 -8.4206e+003 485.8764 13.4203
(600, 100) -2.0892e+004 -1.9447e+004 838.4629 46.1719
(800, 80) -3.7420e+004 -3.4856e+004 1.4292e+003 63.2005
(1000, 200) -5.9212e+004 -5.6006e+004 1.8257e+003 249.0297

standard deviation (Std.) of optimal value and mean CPU for each problem for
30 independently running are summarized in Table 4.

As can be seen from Table 4,our algorithm on randomly generated the same
nonlinear programming problem get the optimal solution with increasing scale
of problem and the more constrained conditions in a very short time. It shows
that the new algorithm is valid.

4 Conclusion

In this paper, we transform zero-one nonlinear programming problems into un-
constrained zero-one integer optimization problems by using penalty function.
A particle swarm optimization algorithm with chaos and gene density mutation
is given to solve unconstrained zero-one nonlinear program problems. We use
chaos to initialize populations and use the 0-1 integer operation in updating po-
sitions to produce 0-1 integer points. We use the fitness variance and gene density
strategy to determine whether the population premature phenomenon or not.
If it appears that we use the gene density mutation to increase the population
diversity or reset population. Numerical simulations show that PSO-CSGDM
algorithm for most test functions is feasible, effective and has high precision.
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Abstract. Particle Swarm Optimization (PSO) is a metaheuristic that
is highly used to solve mono- and multi-objective optimization problems.
Two well-differentiated PSO versions have been defined – one that op-
erates in a continuous solution space and one for binary spaces. In this
paper, a new version of the Binary PSO algorithm is presented. This
version improves its operation by a suitable positioning of the velocity
vector. To achieve this, a new modified version of the continuous gBest
PSO algorithm is used. The method proposed has been compared with
two alternative methods to solve four known test functions. The results
obtained have been satisfactory.

Keywords: Swarm Intelligence, PSO, Binary PSO, Velocity Control.

1 Introduction

Particle Swarm Optimization (PSO) is a metaheuristic proposed by Kennedy and
Eberhart [1]. Its operation is based on the simulation of simple social models,
and it has been successfully used in function optimization, as well as in neural
network training [2].

There are different versions that were developed from the original idea, most
of them related to the variation of various algorithm parameters or to the com-
bination and variation of various topologies, sizes, and number of populations
[3][4][5][6]. Variations of the algorithm with changes in the way particle velocity
is updated have also been proposed, aimed at achieving diversity and avoiding
stagnation in the search process [7] [8] [9].

In [10], Kennedy and Eberhart introduced a discrete binary version of PSO for
discrete optimization problems. With binary PSO, each particle is represented
as a string of zeros and ones. Unlike the continuous version, the discrete version
uses the velocity vector as a probability function that allows deciding the value
that should take each binary digit that determines the position of the individual.

This paper is organizedas follows: In Section 2, the basic components of the PSO
algorithm, both in its continuous and binary versions, are described. In Section 3,
the method proposed is described, as well as the differences with its original ver-
sion. In Section 4, the results obtained when comparing the performance of the new
algorithm with other binary versions are presented. Finally, Section 5 includes a
summary of this paper highlighting the most relevant aspects.
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2 Particle Swarm Optimization

2.1 Continuous Particle Swarm Optimization

In PSO, each individual represents a possible solution to the problem and adapts
following three factors: its knowledge of the environment (its fitness value), its
previous experiences (its memory), and the previous experiences of the indi-
viduals in its neighborhood [1]. In this type of technique, each individual is in
continuous movement within the search space and never dies.

Each particle is composed by three vectors and two fitness values:

– Vector xi = (xi1, xi2, . . . , xin) stores the current position of the particle
– Vector pBesti = (pi1, pi2, . . . , pin) stores the best solution found for the

particle
– Velocity vector vi = (vi1, vi2, . . . , vin) stores the gradient (direction) based

on which the particle will move.
– The fitness value fitness xi stores the suitability value of the current

solution.
– The fitness value fitness pBesti stores the suitability value of the best local

solution found so far (vector pBesti)

The position of a particle is updated as follows:

xi(t + 1) = xi(t) + vi(t + 1) (1)

As explained above, the velocity vector is modified taking into account its expe-
rience and environment. The expression is:

vi(t + 1) = w.vi(t) + ϕ1.rand1.(pi–xi(t)) + ϕ2.rand2.(gi–xi(t)) (2)

where w represents the inertia factor [12], ϕ1 and ϕ2 are acceleration constants,
rand1 and rand2 are random values belonging to the (0,1) interval, and gi repre-
sents the position of the particle with the best pBest fitness in the environment of
xi (lBest or localbest) or the entire swarm (gBest or globalbest). The values of w,
ϕ1 and ϕ2 are important to ensure the convergence of the algorithm. For detailed
information regarding the selection of these values, please see [13] and [14].

2.2 Binary Particle Swarm Optimization

PSO was originally developed for a space of continuous values and it therefore
poses several problems for spaces of discrete values where the variable domain
is finite. Kennedy and Eberhart [10] presented a discrete binary version of PSO
for these discrete optimization problems.

In binary PSO, each particle uses binary values to represent its current posi-
tion and the position of the best solution found. The velocity vector is updated
as in the continuous version, but determining the probability that each bit of the
position vector becomes 1. Since this is a probability, the velocity vector should
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be mapped in such a way that it only contains values within the [0,1] range. To
this end, the sigmoid function indicated in (3) is applied to each of its values.

v′ij(t) = sig(vij(t)) =
1

1 + e−vij(t)
(3)

Then, the particle position vector is updated as follows

xij(t + 1) =
{

1 if randij < sig(vij(t + 1))
0 if not

(4)

where randij is a number ramdomly generated by an uniform pdf in [0,1].
It should be mentioned that the incorporation of the sigmoid function radically

changes the way in which the velocity vector is used to update the position of the
particle. In continuous PSO, the velocity vector takes on higher values first to
facilitate the exploration of the solution space, and then reduces them to allow
the particle to stabilize. In binary PSO, the opposite procedure is applied. Each
particle increases its exploratory ability as the velocity vector reduces its value;
that is, when vij tends to zero, lim

t→∞ sig(vij(t)) = 0.5, thus allowing each binary
digit to take a value of 1 with a probability of 0.5. This means that it could
take on either value. On the contrary, when the velocity vector value increases,
lim

t→∞ sig(vij(t)) = 1, and therefore all bits will change to 1, whereas when the

velocity vector value decreases, taking negative values, lim
t→∞ sig(vij(t)) = 0 and

all bits will change to 0. It should be noted that, by limiting the velocity vector
values between −3 and 3, sig(vij) ∈ [0.0474, 0.9526], whereas for values above 5,
sig(vij) � 1 and for values below −5, sig(vij) � 0.

3 Binary PSO with Velocity Control. Method Proposed.

Based on the observations of the behavior of the velocity vector in the binary
PSO algorithm defined in [10], and on the importance of correctly calculating
the probabilities that allow changing each binary digit, a modified version of the
original PSO algorithm to modify the velocity vector is proposed.

Under this new scheme, each particle will have two velocity vectors, v1 and
v2. The first one is updated according to (5).

v1i(t + 1) = w.v1i(t) + ϕ1.rand1.(2 ∗ pi − 1) + ϕ2.rand2.(2 ∗ gi − 1) (5)

where the variables rand1, rand2, ϕ1 and ϕ2 operate in the same way as in (3).
The values pi and gi correspond to the ith binary digit of the pBesti and gBest
vectors, respectively.

The most significant difference between (3) and (5) is that in the latter, the shift
ofvectorv1 in thedirections corresponding to thebest solution foundbytheparticle
and the best global solution does not depend on the current position of the particle.
Then, each element of the velocity vector v1 is controlled by applying (6)

v1ij(t) =

⎧⎨
⎩

δ1j if v1ij(t) > δ1j

−δ1j if v1ij(t) ≤ −δ1j

v1ij(t) if not
(6)
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where

δ1j =
limit1upperj − limit1lowerj

2
(7)

That is, velocity vector v1 is calculated with (5) and controlled with (6). Its
value is used to update velocity vector v2, as shown in (8).

v2(t + 1) = v2(t) + v1(t + 1) (8)

Vector v2 is also controlled as vector v1 by changing limit1upperj and limit1lowerj

by limit2upperj and limit2lowerj , respectively. This will yield δ2j , which will be
used as in (6) to limit the values of v2. Then, the new position of the particle is
calculated with (4) using the values of v2 as arguments of the sigmoid function.

4 Results Obtained

In this section, the performance of the proposed binary PSO variation will be
compared to the performance of the method proposed by Kennedy and Eberhart
in [10] and the binary PSO defined in [11]. A known set of N-dimensional test
functions was minimized.

Forty independent runs were performed for each of the methods using 2,000
iterations. N=3, 5,10 and 20 variables were used. Population size was always 20
particles. The values of limit1 and limit2 are the same for all variables; [0; 1] and
[0; 6], respectively. Thus, probabilities within the interval [0.0474, 0.9526] can be
obtained. The values for ϕ1 and ϕ2 were set at 0.25 in all cases. As regards [10]
and [11] methods, velicty limits were set within [−3, 3] in order to keep the same
range of probabilities.

The test functions used were Sphere, Rosenbrock, Griewangk, and Rastrigin,
which were assigned numbers 1 to 4, respectively.

In table 1, the fitness value for the best solution found by each method is
shown, as well as the average best fitness value for all 40 runs.

As it can be observed, the method proposed finds the best solutions and has
the lowest average fitness values.

Table 2 indicates whether the results obtained are significant. The symbol �
was used to represent that p − value < 0.05, indicating that the null hypothe-
sis must be rejected. The test carried out is of the lower tail type, whose null
hypothesis states that the mean of the method indicated on the corresponding
row is not lower than the mean of the method indicated on the corresponding
column. The symbol � indicates that the null hypothesis is not rejected.

Figure 1 shows the plot box diagrams calculated with the best results obtained
in each of the 40 runs. Each column corresponds to a different function. Diagrams
on the same row correspond to the same number of variables. From top to
bottom, rows 1, 2, 3 and 4 correspond to the results obtained when assessing the
functions with 3, 5, 10 and 20 variables, respectively. In each figure, methods
are numbered from 1 to 3 and correspond to: the method proposed, Binary PSO
from [10], and Binary PSO from [11], respectively. As it can be seen, the method
proposed offers better solutions than the other two PSO alternatives.
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Table 1. Results obtained

Proposed method Binary PSO [10] Binary PSO [11]

Nro. Nro. Best Average Best Average Best Average

Var Funct Fitness best Fitness Fitness best Fitness Fitness best Fitness

3 1 0 0 0 1,2e-09 1,8e-08 6,3e-07

3 2 7,0e-04 2,8 1,1e-05 3,0 2,0e-03 5,6

3 3 2,1e-09 3,3e-03 2,1e-09 6,8e-03 4,2e-06 8,8e-03

3 4 5,4e-08 5,4e-08 5,4e-08 5,4e-08 8,9e-06 7,6e-04

5 1 0,0 3,1e-09 1,4e-07 1,3e-05 1,7e-04 1,2e-03

5 2 2,2 28,7 2,1 111,5 7,2 278,3

5 3 2,6e-09 8,2e-03 1,6e-03 2,0e-02 1,9e-02 6,6e-02

5 4 9,0e-08 1,3e-07 2,3e-04 5,1e-01 5,0e-01 3,7

10 1 8,2e-05 9,8e-04 1,3e-02 7,1e-02 9,7e-02 6,2e-01

10 2 7,3 141,0 334,0 2812,8 92013,0 613510,0

10 3 1,3e-02 7,6e-02 7,7e-02 1,9e-01 5,2e-01 7,3e-01

10 4 0,8 4,3 7,5 15,3 13,7 44,0

20 1 3,3e-01 8,1e-01 1,7e+00 3,9e+00 1,2e+01 1,9e+01

20 2 1865,9 10105 2,8e+05 1,2e+07 1,2e+08 5,0e+08

20 3 1,4e-01 2,7e-01 9,3e-01 1,0e+00 1,3e+00 1,4e+00

20 4 27,7 43,0 52,7 88,9 169,8 215,2

Table 2. Results of hypothesis tests

nro Método Proposed Binary PSO Binary PSO

Var. Binary PSO [10] [11]

3 Proposed binary PSO � � � � � � � �
3 Binary PSO [10] � � � � � � � �
3 Binary PSO [11] � � � � � � � �
5 Proposed binary PSO � � � � � � � �
5 Binary PSO [10] � � � � � � � �
5 Binary PSO[11] � � � � � � � �
10 Proposed binary PSO � � � � � � � �
10 Binary PSO [10] � � � � � � � �
10 Binary PSO [11] � � � � � � � �
20 Proposed binary PSO � � � � � � � �
20 Binary PSO [10] � � � � � � � �
20 Binary PSO [11] � � � � � � � �
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Fig. 1. Boxplots corresponding to the best solutions obtained in each of the 40 in-
dependent runs. The method is indicated on the x-axis: 1 = Method proposed, 2 =
Binary PSO from [10] and 3 = Binary PSO from [11]. Each row indicates the results
obtained with 3, 5, 10 and 20 variables.

Figure 2 is organized in a similar fashion. It shows the boxplots corresponding
to the average fitness of each of the 40 runs performed for each function and for
each number of variables considered. The populational diversity of each method
can be observed there. In general, based on box heights, it can be said that,
even though the method from [11] presents the greater inter-quartile ranges, its
solutions are the worst. As for the method proposed and the Binary PSO from
[10], ranges are equivalent.
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Fig. 2. Boxplots corresponding to the average fitness of each of the 40 independent
runs. The method is indicated on the x-axis: 1 = Method proposed, 2 = Binary PSO
from [10] and 3 = Binary PSO from [11]. Each row indicates the results obtained with
3, 5, 10 and 20 variables.

5 Conclusions

A variation of the binary PSO method originally proposed in [10] that controls
velocity vector changes by using a variation of the continuous PSO method has
been presented.

The results obtained by minimizing a set of test functions are better than those
obtained with the methods defined in [10] and [11] for all the cases assessed.

Table 2 shows that, as the number of variables used increases, the difference
in means becomes more significant.
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Figure 1 shows that, in most of the runs, the results obtained with the method
proposed have been better than those obtained with the other two methods.

Similarly, Figure 2 shows that the method proposed generates the best popula-
tion average fitness results, at least for the test functions assessed. If we consider
the average fitness inter-quartile range (height of the boxplots in Figure 2), it
can be stated that the method proposed in this paper and the Binary PSO from
[10] are equivalent, the best solutions being offered by the former.

Currently, our research is focused on measuring the performance of the al-
gorithm proposed with an increasing number of dimensions in the problem, in
order to apply the algorithm to real-world problem resolution.

It would also be interesting to analyze its performance using variable-size PSO
[6]. This would allow adapting the swarm size based on the complexity of the
problem to solve.
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Abstract. Many real world optimization problems are dynamic in which global 
optimum and local optimum change over time. Particle swarm optimization has 
performed well to find and track optimum in dynamic environments. In this pa-
per, we propose a new particle swarm optimization algorithm for dynamic envi-
ronments. The proposed algorithm utilizes FCM to adapt exclusion radios and 
utilize a local search on best swarm to accelerate progress of algorithm and ad-
just inertia weight adaptively. To improve the search performance, when the 
search areas of two swarms are overlapped, the worse swarms will be removed. 
Moreover, in order to track quickly the changes in the environment, all particles 
in the swarm convert to quantum particles when a change in the environment is 
detected. Experimental results on different dynamic environments modeled by 
moving peaks benchmark show that the proposed algorithm outperforms other 
PSO algorithms, for all evaluated environments.    

Keywords: MPB, Dynamic Environment, PSO, Moving Peaks. 

1   Introduction 

PSO is relatively a new heuristic search method, this algorithm has successfully been 
utilized in variety of applications such as pattern recognition, image processing, ma-
chine learning, etc.  PSO is an optimized algorithm which is inspired from social and 
group life of animals like birds in order to get the optimum solution.  In PSO a group 
of particles are located in search area. Giving that each particle presents a candidate 
solution of the optimization problem. Location of each particle is driven from the best 
location which has ever met (in terms of self-experience) and location of the best 
neighborhood particles (in terms of neighborhood experience). 

The applications in which the evolutionary algorithms are applied are divided in to 
two parts: Static and Dynamic. Majority of the real world problems have dynamic 
nature and are subjected to change over the time. For example, the new tasks that are 
received continuously and must be scheduled. Parameters which effect the dynamic 
environment, the frequency of the change, severity of the change, predictability of the 
change, Cycle length and cycle accuracy. Dynamic environments are divided in to 
four sections based on defined settings: constant (identical change in each cycle), 
periodical, homogeneous and alternating [6]. 
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Drawbacks of The PSO in dynamic environments are: old memory and diversity 
loss which are explained in next paragraphs as bellow: 

In the case of any change in environment, the particle’s memory is not true any-
more and can have a very bad effect on search process. This problem can be solved by 
two methods: either re-evaluating the memory or forgetting the memory. In re-
evaluating, the memory of each particle is verified in each stage. And in forgetting the 
memory the current location of each particle is replaced with its memory and overall 
optimization is updated accordingly. Diversity loss occurs when the swarm converges 
on a few peaks in the landscape and loses its ability to find new peaks, which is re-
quired after the environment changes. There are two approaches to deal with diversity 
losing problem. In the first approach, a diversity maintenance mechanism runs period-
ically (or when a change is detected) and re-distributes the particles if the diversity 
falls below a threshold. In the second approach, diversity is always monitored and as 
soon as it falls below a threshold, the swarm will be re-diversified.   

The rest of the paper is organized as follows. In Section 2, related works on dy-
namic environments are reviewed, in section 3, the proposed algorithm is presented. 
In Section 4, presents the experimental results of the proposed algorithm along with 
comparison with alternative approaches from the literature. Finally section 5 includes 
the conclusion of the present paper. 

2   Related Works 

MPSO is suggested by Blackwell and Branke [4.5]. The particles in MPSO are di-
vided to M independent groups. Each group contains a fixed number of particles. 
Information sharing in each group is done in global manner. This mechanism keeps 
the diversity in two levels: group is divided into sub-groups which penetrate in differ-
ent sections of search area (diversity between the groups). And each sub-group con-
tains some quantum particles which provide diversity inside the group. In [10], the 
effectiveness of this algorithm is analyzed and demonstrated that the quantum articles 
used in this algorithm are only useful when the environment is subject to change and 
doesn’t have much efficiency in other cases. In [11] because of less efficiency of 
quantum particles, two types of strategies are utilized: in the first strategy, in the time 
of detecting any change in environment, the particles are divided to three parts: the 
first part remains without change, the second part like quantum particles in a cloud are 
assigned by value of centrality of the best particle and radius of “r”, and the third part 
are distributed in whole of the environment. In second strategy useless swarms are 
detected using fuzzy logic and stopped in order not to waste the system’s resources. In 
[12] a Cauchy Mutation is utilized for detecting the changes in environment, instead 
of quantum particles. Also the small neighborhoods are used inside the groups. In this 
work, some of the particles are kept away from center when the group is going to be 
convergent in order to keep the diversity. 

SPSO [5] distributes the particles dynamically between the types. SPSO is ex-
tended based on the theory of the types. The limitation of the types depends on para-
meter rs which represents the measured radiuses in Euclidean distance from the center 
of types to its borders. The center of a type so called the “type’s core”, usually is a 
particle with the best fitness. All of the particles within the rs radius from the core are 
categorized as a similar type. 
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In FMSO [7], two search algorithm, one in parent group and another in child group 
are utilized. The global search function is utilized in parent group in order to keep the 
diversity and finding the probable areas in search environment. Meanwhile hand the 
child groups are used as local explorer. FMSO starts with a parent group which does 
the search function in environment In each level if the best founded location in par-
ent’s group is improved a child group in centrality of the founded location and radius 
of rs from this location is created. Kamosi improved this procedure in [9]. 

Hashemi and Meybodi introduced cellular PSO, a hybrid model of cellular automa-
ta and PSO[3]. In cellular PSO, a cellular automaton partitions the search space into 
cells. At any time, in some cells of the cellular automaton a group of particles search 
for a local optimum using their best personal experiences and the best solution found 
in their neighborhood cells. To prevent losing the diversity, a limit on the number of 
particles in each cell is imposed.  

In KPSO [1], in order to divide the problem into sub-problems consecutive repeti-
tion, all particles in problem domain are clustered and each cluster performs the 
search process independently. At first in this mechanism, the grouping process is 
performed and stays unchanged for several repetitions. So, there will be enough time 
for algorithm to do the search.  Also because of utilization of the clustering, spatial 
location of the particles in various groups are considered. Drawback of this approach 
is defining the suitable number of clusters. In [8], Lee and Yong cluster the particles 
using fuzzy clustering and grouped the particles using the result of the clustering then 
according to the progress of the algorithm compound the clusters. If the particles of 
two clusters are a few, and near to each other, these two clusters are compound. Also 
in order to solve the problem of two steps forward and two steps back in PSO, when 
the best particles are updating, the dimensions of that particles are updated one by 
one. In [13] Lee and Yong, at first all of the particles are distributed in the environ-
ment and in each repetition the neighboring particles make one group. This process 
continues until there is no single particle group in the environment. If two groups are 
closer than a threshold, then they compound together. And if the number of particles 
in one group is so many then the worse particles are deleted. If any changes have been 
made in the environment, again a series of the particles are produced in order to keep 
the diversity of the particles.  

3   Proposed Method 

In our proposed model, the inertia weight has been adjusted adaptively. If the particles 
of swarm have been improved in previous iteration, it shows that the previous move-
ment of the particles is good and they should continue their pervious movement. So 
the inertia weight must be high. 

If the particles of swarm have been failed, it shows that their previous movement 
isn’t good enough and it is better that these particles don’t continue the previous 
movement so the inertia weight must be decreased. But if all swarms utilize only this 
method, they may fall in local optimum. To prevent this, we must not let algorithm 
reduce all swarms inertias weight more than enough. 

The groups that have better fitness may be closer to global optimum. So these 
groups have to have low inertial weight to do local search for groups that have worst 
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fitness may be far from global optimum and therefore may fall in local optimum. In 
order to avoid from local optimum and find the global optimum, they should have 
bigger inertial weight to do global search. In this way, the group descending sorted 
and ordered with number at first to last. First group has the order of one and the last 
group has the maximum order. The rank of each group is divided to the number of 
groups and selected as the minimum of group inertial weight. So this way, inertial 
weight of each group is calculated according to (1), (2):     

 (1)

 (2)

At first the groups are generated randomly, and start the search. Each group is  
composed with some PSO particles. Since small neighborhoods causes reduction of 
convergence’s speed, and increase in diversity, performs well in complex environ-
ments, this algorithm utilize the small neighborhoods. The less the  number of par-
ticles for the fixed number of groups, the less the number of evaluations which is 
leading to keep the environment unchanged for more iterations and effective search 
will be performed in environment. The groups are categorized to two categories:  
Converged and Free. If the numbers of free groups in the environment are less than a 
threshold, one group will be added to the existing groups, and if this number be more 
than a threshold, the worst group deleted from search domain. At each iteration, ve-
locity and position of a particle i in each swarm is updated using its best personal 
position (pbesti) and the best position found by the swarm (gbest) according to(5) and 
(6), respectively. If the fitness of the new position of particle i is better than its best 
personal position (pbesti ), pbesti will be updated to the new position. Likewise, the 
best position found in the swarm (gbest) will be updated. 

Since searching an area with more than one swarm is not very useful, at the end of 
each iteration every two swarms are checked whether they are searching in the same 
area or not. Two swarms will be searching in the same area or they are colliding, if 
the Euclidian distance between their attractors is less than a specified threshold rexcl.  
If a collision between two swarms is detected, the swarm whose attractor is worse 
than the others will be destroyed.  

In the proposed algorithm, when an environment change is detected, particles in 
the swarm re-evaluate their best personal position (pbest) and the particles in the 
swarms change their behaviors in the following iteration after a change is detected in 
the environment. They will set their new positions to a random location in a hyper 
sphere with radius rq centered at their swarm’s attractor. Then they will update their 
best personal positions (pbest) and update the swarm’s attractor. 

In previous works exclusion distance adjusted without considering environment 
situation. In purposed algorithm this value is adjusted with considering environment 
conditions and particles density. Current particles are clustered and then mean of 
minimum distance between each cluster with other clusters are calculated and used as 
the rexcel according to (3) and (4). For clustering we use FCM and number of clusters 
equal to the swarm size.  

mindisti =min(dist(centeri ,centerj)),where 1<I,j<n,i<>j. (3) 
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. (4) 

Vi(t+1)=wvi(t)+c1r1(pbesti-pi)+c2r2(gbesti-pi). (5) 

Pi(t+1)=Pi(t)+vi(t+1). (6) 

Procedure Proposed Algorithm 
 begin 
  Initialization swarms 
  Repeat  
   adopt swarms number according to free swarms 
   for each swarm do 
    if a change is detected in the environment then 
     evaluate all pbests then regenerate particles  
randomly in a hyper sphere with radius r centered at 
gbest and update pbests 
      update gbest 
    else 
     if swarm is the best swarm 
      do local search around gbest in hyper sphere with 
radius r and update only gbest 
     end if 
     For each particle in swarm do 
      update particle position according to eq.1 and eq.2 
and eq.5 and sq.6 
      update pbest and gbest 
     end-for 
    end-if 
   test for converge 
  end-for 
   rexcl=fcmdist 
  for each pair of swarms m and n, m<>n do 
   test for conflict if there is delete worse swarm 
  end-for 
  until a maximum number of fitness evaluations is  
reached    
end. 

Fig. 1. Pseudocode of the proposed algorithm 

 

Function distfcm 
  for all particle do 
    datai=position particlei 
  end. 
  center=fcm(data,swarmsize) 
  for each center 
    disti=calculate distance with nearest center 
  end 
  calculate rexce using eq2 
end. 

Fig. 2. Pseudo code of the FCM distance 
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4   Experimental Studying 

In this section, we first describe moving peaks benchmark [2] on which the proposed 
algorithms is evaluated. Then, experimental settings are described. Finally, experi-
mental results of the proposed algorithm are presented and compared with alternative 
approaches from the literature. 

  

Fig. 3. Moving peaks benchmark 

Table 1. Default settings of moving peaks benchmark 

Parameter Value 
number of peaks m 10 

frequency of change f every 5000 FEs 
height severity 7.0 
width severity 1.0 

peak shape cone 
shift length s 1.0 

number of dimensions D 5 
cone height range H [30.0, 70.0] 
cone width range W [1, 12] 

cone standard height I 50.0 
search space range A [0, 100] 

4.1   Moving Peaks Benchmark 

Moving peaks benchmark (Fig. 3) [2] is widely used in the literature to evaluate the 
performance of optimization algorithms in dynamic environments [14]. In this 
benchmark, there are some peaks in a multi-dimensional space, where the height, 
width, and position of each peak alter when the environment changes. Unless stated 
otherwise, the parameters of the moving peaks benchmark are set to the values pre-
sented in Table 1. 

In order to measure the efficiency of the algorithms, offline error that is the average 
fitness of the best position found by the swarm at every point in time (7), is used [15]. ∑  .                             (7) 

where T is the maximum iteration, and swarmbest(t) is best position solution by the 
swarm at iteration t.  

4.2   Experimental Settings 

For the proposed algorithms the total of acceleration coefficients c1 and c2 are set to 
1.496180 and the inertial weight w is set to [0, 0.802828]. The number of particles in 
the swarm is set to 3 particles. The radius of quantum particles (rq) is set to 0.5. The 
proposed algorithm is compared with mQSO[5] and FMSO [7], and cellular PSO [3], 
and kamosi[9]. For mQSO we adapted a configuration 10(5+5q) which creates 10 
swarms with 5 neutral (standard) particles and 5 quantum particles with rcloud=0.5 and 
rexcl= rconv =31.5, as suggested in [5]. For FMSO, there are at most 10 child swarms 
each has a radius of 25.0. The size of the parent and the child swarms are set to 100 
and 10 particles, respectively[7]. For cellular PSO, a 5-Dimensional cellular automa-
ton with 105 cells and Moore neighborhood with radius of two cells is embedded into 
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the search space. The maximum velocity of particles is set to the neighborhood radius 
of the cellular automaton and the radius for the random local search (r) is set to 0.5 
for all experiments. The cell capacity θ is set to 10 particles for every cell. Moreover, 
all particles perform a local search in the iteration after a change in the environment is 
detected [3]. For the Kamosi algorithms the acceleration coefficients c1 and c2 are set 
to 1.496180 and the inertial weight w is set to 0.729844. The number of particles in 
the parent swarm and the child swarms (π) are set to 5 and 10 particles, respectively. 
The radius of the child swarms (r), the minimum allowed distance between two child 
swarm (rexcl) and the radius of quantum particles (rq) are set to 30.0, 30.0, and 0.5, 
respectively[9]. 
 

 

Fig. 4. Comparison on FCM_Distance and 
previous method in environment with 10 
peaks and frequency=500 

 

Fig. 5. Comparison on FCM_Distance and 
previous method in environment with 10 
peaks and frequency=5000 

4.3   Experimental Results 

For all algorithms we reported the average offline error and 95% confidence interval 
for 100 runs. Offline error of the proposed algorithm, mQSO10(5+5q) [5], FMSO [7], 
cellular PSO[3], and kamosi[9] for different dynamic environment is presented in 
table 2 to table 6. For each environment, result of the best performing algorithm(s) 
with 95% confidence is printed in bold. As depicted in the table 2 to table 6, the pro-
posed algorithm outperforms other tested PSO algorithms, including FMSO, for all 
environments. Moreover, the difference between offline error of the proposed algo-
rithm and the next best algorithm decreases as the environment changes less frequent-
ly from f=500 (table 2) to f=10000 (table 6). This is because the proposed algorithm 
uses less number of particles and so it doesn’t waste fitness evaluation and also be-
cause the adaptation inertia weight using purposed method , swarm converge very 
quickly to optimum  hence quickly finds better solutions than other algorithms after a 
change occurs in the environment, especially at the early iterations.  

Furthermore, in the proposed algorithm the number of swarms converges to the 
number of peaks in the environment.  This will help the proposed algorithm to track 
the changes more effectively since there will be a   swarm on each peak. For adjusting 
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exclusion distance adaptively, algorithm can adjust exclusion distance corresponding 
to the environment and if peaks are near to each other doesn’t delete swarm that con-
verged to those peaks. 

Table 2. Offline error ±Standard Error for f =500 

M Proposed 
algorithm 

Kamosi mQSO10(5+5q) FMSO Cellular PSO 

1 4.81±0.14 5.46±0.30 33.67±3.42 27.58±0.94 13.46±0.7 
5 4.95±0.11 5.48±0.19 11.91±0.76 19.45±0.45 9.63±0.49 

10 5.16±0.11 5.95±0.09 9.62±0.34 18.26±0.32 9.42±0.21 
20 5.81±0.08 6.45±0.16 9.07±0.25 17.34±0.30 8.84±0.28 
30 6.03±0.07 6.60±0.14 8.80±0.21 16.39±0.48 8.81±0.24 
40 6.10±0.08 6.85±0.13 8.55±0.21 15.34±0.45 8.94±0.24 
50 5.95±0.06 7.04±0.10 8.72±0.20 15.54±0.26 8.62±0.23 

100 6.08±0.06 7.39±0.13 8.54±0.16 12.87±0.60 8.54±0.21 
200 6.20±0.04 7.52±0.12 8.19±0.17 11.52±0.61 8.28±0.18 

Table 3. Offline error ±Standard Error for f =1000 

M Proposed 
algorithm 

Kamosi mQSO10(5+5q) FMSO Cellular PSO 

1 2.72±0.04 2.90±0.18 18.60±1.63 14.42±0.48 6.77±0.38 
5 2.99±0.09 3.35±0.18 6.56±0.38 10.59±0.24 5.30±0.32 

10 3.87±0.08 3.94±0.08 5.71±0.22 10.40±0.17 5.15±0.13 
20 4.13±0.06 4.33±0.12 5.85±0.15 10.33±0.13 5.23±0.18 
30 4.12±0.04 4.41±0.11 5.81±0.15 10.06±0.14 5.33±0.16 
40 4.15±0.04 4.52±0.09 5.70±0.14 9.85±0.11 5.61±0.16 
50 4.11±0.03 4.57±0.08 5.87±0.13 9.54±0.11 5.55±0.14 

100 4.26±0.04 4.77±0.08 5.83±0.13 8.77±0.09 5.57±0.12 
200 4.21±0.02 4.76±0.07 5.54±0.11 8.06±0.07 5.50±0.12 

 

Table 4. Offline error ±Standard Error for f =2500 

M Proposed 
algorithm 

Kamosi mQSO10(5+5q) FMSO Cellular PSO 

1 1.06±0.03 1.10±0.06 7.64±0.64 6.29±0.20 4.15±0.25 
5 1.55±0.05 1.68±0.16 3.26±0.21 5.03±0.12 2.85±0.24 

10 2.17±0.07 2.33±0.06 3.12±0.14 5.09±0.09 2.80±0.10 
20 2.51±0.05 2.79±0.10 3.58±0.13 5.32±0.08 3.41±0.14 
30 2.61±0.02 2.88±0.09 3.63±0.10 5.22±0.08 3.62±0.12 
40 2.59±0.03 2.86±0.07 3.55±0.10 5.09±0.06 3.84±0.12 
50 2.66±0.02 2.97±0.06 3.63±0.10 4.99±0.06 3.86±0.10 

100 2.62±0.02 3.00±0.05 3.58±0.08 4.60±0.05 4.10±0.11 
200 2.64±0.01 2.99±0.04 3.30±0.06 4.34±0.04 3.97±0.10 
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Table 5. Offline error ±Standard Error for f =5000 

M Proposed 
algorithm 

Kamosi mQSO10(5+5q) FMSO Cellular PSO 

1 0.53±0.01 0.56±0.04 3.82±0.35 3.44±0.11 2.55±0.12 
5 1.05±0.06 1.06±0.06 1.90±0.08 2.94±0.07 1.68±0.11 

10 1.31±0.03 1.51±0.04 1.91±0.08 3.11±0.06 1.78±0.05 
20 1.69±0.05 1.89±0.04 2.56±0.10 3.36±0.06 2.61±0.07 
30 1.78±0.02 2.03±0.06 2.68±0.10 3.28±0.05 2.93±0.08 
40 1.86±0.02 2.04±0.06 2.65±0.08 3.26±0.04 3.14±0.08 
50 1.95±0.02 2.08±0.02 2.63±0.08 3.22±0.05 3.26±0.08 

100 1.95±0.01 2.14±0.02 2.52±0.06 3.06±0.04 3.41±0.07 
200 1.90±0.01 2.11±0.03 2.36±0.05 2.84±0.03 3.40±0.06 

Table 6. Offline error ±Standard Error for f =10000 

M Proposed 
algorithm 

Kamosi mQSO10(5+5q) FMSO Cellular PSO 

1 0.25±0.006 0.27±0.02 1.90±0.18 1.90±0.06 1.53±0.12 
5 0.57±0.03 0.70±0.10 1.03±0.06 1.75±0.06 0.92±0.10 

10 0.82±0.02 0.97±0.04 1.10±0.07 1.91±0.04 1.19±0.07 
20 1.23±0.02 1.34±0.08 1.84±0.08 2.16±0.04 2.20±0.10 
30 1.39±0.02 1.43±0.05 2.00±0.09 2.18±0.04 2.60±0.13 
40 1.37±0.01 1.47±0.06 1.99±0.07 2.21±0.03 2.73±0.11 
50 1.46±0.01 1.47±0.04 1.99±0.07 2.60±0.08 2.84±0.12 

100 1.38±0.01 1.50±0.03 1.85±0.05 2.20±0.03 2.93±0.09 
200 1.36±0.01 1.48±0.02 1.71±0.04 2.00±0.02 2.88±0.07 

5   Conclusion 

In this paper, we proposed a new multi-swarm PSO algorithm for dynamic 
environments. The proposed PSO adjust exclusion distance considering 
environmental conditions. In order to do this all of the present particles are clustered 
and then distances between centers of clusters are used to adjust exclusion distance. In 
order to improve efficiency of algorithm we used a local search around best particle 
of best swarm and also inertia weight adjusted according to the swarm progress so 
convergence of algorithm is accelerated. And adjusting exclusion radius using 
clustering particle causes algorithm don’t delete swarms that converged to the peaks 
when peaks are near of each other. To prevent redundant search in the same area if 
two swarms collide the one with the worse fitness will be removed. In addition, to 
track the local optima after detecting a change in the environment, particles in each 
swarm temporarily change their behavior to quantum particles and perform a random 
search around the swarm’s attractor. Results of the experiments show that for all 
tested environments the proposed algorithm outperforms all tested PSO algorithms, 
the previously presented multi-swarm algorithm with the similar approach. 
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An Improved Particle Swarm Optimization with  
an Adaptive Updating Mechanism  
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Abstract. Premature convergence when solving multimodal problems is still the 
main limitation which affects the performance of the PSO. To avoid of prema-
ture, an improved PSO algorithm with an adaptive updating mechanism (IPSO) 
is proposed in this paper. When the algorithm converges to a local optimum, the 
updating mechanism begins to work so that the stagnated algorithm obtains en-
ergy for optimization. That is, the updating mechanism refreshes the swarm and 
expands the range for exploration. In this way, the algorithm can achieve a good 
balance between global exploration and local exploitation by the combination of 
the basic PSO evolution and updating mechanism. The proposed method is tested 
with a set of 10 standard optimization benchmark problems and the results are 
compared with those obtained through other 4 existing PSO algorithms. The 
simulation results elucidate that the proposed method produces the near global 
optimal solution, especially for those complex multimodal functions whose so-
lution is difficult to be found by the other 4 algorithms. It is also observed from 
the comparison the IPSO is capable of producing a quality of optimal solution 
with faster rate.  

Keywords: particle swarm optimization, updating mechanism, benchmark 
function, swarm intelligence. 

1   Introduction 

Since particle swarm optimization (PSO) was introduced by Kennedy and Eberhart [1], 
due to its effectiveness and simplicity in implementation, many successful applications 
have been seen in solving real world optimization problems [2-4]. As the original PSO 
may easily get trapped in the local optima when solving complex multimodal problems, 
many variants have been proposed to improve the performance [5-8]. The main varia-
tions in the algorithm are summarized: (1)Parameters adjustment. There are linearly [6] 
or nonlinearly [9] decreasing inertia weight, time-varying acceleration coefficients 
(TVAC), the strategy to adjust the parameters with fuzzy methods using feedback 
information from evolutionary state [8] and the self-adaptive method by encoding the 
parameters into the particles and optimizing them together with the position during run 
time [10]. (2) Neighborhood topology. Improving PSO’s performance by designing 
different types of topologies has been an active research direction. Swarm topology can 
change the algorithm’s convergence properties by influencing the information transfer 
mode among particles [5]. Low connected topologies result in more exploratory  
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behavior than highly connected ones. The main static topologies not vary over a run 
include gbest, lbest, pyramid, star, von Neumann, random topology, and so on [11]. 
Recent research suggests that time-varying and self-adaptive topologies can be com-
petitive to static ones [5, 7]. (3) Restart mechanism. Through re-initializing particles’ 
velocities or positions or perturbation of the current best particle, restart mechanism is 
introduced into the algorithm to prevent the algorithm from stagnation. In the 
self-organized hierarchical PSO with time-varying acceleration coefficients 
(HPSOTVAC) [6], a dimension of a particle’s velocity is reinitialized as it is very close 
to zero. In [8], elitist learning strategy was used in which one dimension of the globally 
best particle is choose randomly and is reinitialized within the feasible space. In [12], a 
restart method is realized by relocating the particles when they are too close to each 
other. (4) Hybrid particle swarm. Some researchers investigated hybridization by 
combining PSO with other search techniques [5]. 

In this paper, we propose an improved PSO algorithm embedded an adaptive up-
dating mechanism (IPSO) which can be included in the variation (3): Restart mecha-
nism. However, the key to obtain an effective algorithm is to determine when to start 
the mechanism and how to develop a good mechanism. We present a new view of 
system and energy to consider the algorithm. The original PSO can be seen as a system 
with kinetic and potential energy. After initialization, the energy is decreasing as the 
algorithm converging. From the view of system and energy, the energy has been con-
sumed since it has been converted to the search campaign in the solution space. If the 
algorithm converges prematurely to a local optimum, the energy trends to zero so that 
the algorithm stagnates. To address this case, an update mechanism is introduced to the 
algorithm. When the algorithm converges to a certain extent, i.e., the energy is below a 
critical value, the updating mechanism is triggered and new energy is injected into 
swarm so that the algorithm regain momentum and PSO evolution runs again. The 
IPSO is easy to implement and only an embedded updating mechanism is required. We 
testify the performance of the proposed algorithm on a 10 benchmark functions and 
provide comparisons with 4 classical PSO variants. The simulation results demonstrate 
that the IPSO has comparable or better performance of global optimization to avoid the 
local optima compared with other PSO variants experimented in this paper. 

The paper is organized as follows. In section 2, the basic PSO is briefly introduced 
and the IPSO is described in detail. Section 3 gives experimental results of the IPSO 
and other 4 PSO variants to solve 10 benchmark functions. Finally, conclusions are 
drawn in section 4. 

2   The Improved Particle Swarm Optimization Embedded an 
Adaptive Updating Mechanism  

PSO is a population based optimization technique, where a swarm of particles 
{1,..., ,..., }I i N=  is randomly initialized and the algorithm searches for optima by 

updating generations. In PSO, each particle i is associated with four vectors: position 

vector { }idx  representing a potential solution; velocity vector { }idv  measuring the 

direction and distance of one step move; historical best position vector (pbests) { }idpb  

recording the best position particle i ever visited; and the neighbor best position vector 
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(gbests) { }idpg  denoting the best position in the neighborhood, where d=1,…,D is 

the dimensions of the solution space.  
During the iteration process, the velocity and position of particle i on dimension d 

are updated as [5]  

1 1 2 2( ) ( )id id id id id idv v c rand pb x c rand pg x= + − + − . (1) 

id id idx x v= + . (2) 

where c1 and c2 are the acceleration coefficients, and rand1 and rand2 are two uniformly 
distributed random numbers independently generated within [0, 1]. 

The swarm in the original PSO to search the solutions space can be seen as the dy-
namic evolution of a dissipative system. In this system, particles’ velocity is regarded 
as kinetic energy and the distance between the particles produces the potential energy. 
The algorithm converts the energy to the search behavior in solution space. After ini-
tialization of particles’ position and velocity, the swarm’s kinetic and potential energy 
have been identified. As the system’s evolution, the algorithm converges and the sys-
tem’s energy decreases. The convergence is an important condition for an algorithm to 
work, but for complex problem, the algorithm could be trapped into a local optimum, 
i.e., prematurity, which prevent the algorithm from finding better solution. As thus, 
some heuristic algorithm, such as simulated annealing, adopts a strategy to slow down 
the convergence. However, in this paper, we introduce an updating mechanism to 
interrupt the premature convergence of the PSO. When the algorithm converges and the 
energy is blow a threshold, updating mechanism is triggered to stop the convergence. In 
this way, the IPSO achieves a kind of intermittent convergence.   

The IPSO has four main extensions based on the standard PSO: 

1. Define a variable E to measure the energy of the swarm. 
2. Design an updating mechanism to restart the stagnated algorithm. 
3. Set a threshold ET of energy E. The threshold can be adapted according to the  

dynamic information obtained from the evolution of the algorithm. 
4. Implement intermittent convergence of the algorithm by a switch between the 

converged PSO evolution and the updating mechanism.  

1) The measurement of the potential energy  
The swarm’s energy is determined by its potential energy and kinetic energy. The 
potential energy is dependent on the historical best position (pbest) of each particle 
because the velocity is produced by the distance between a particle’s current position 
and pbest’s position (global best position-gbest is one of the pbest positions too). And 
the kinetic energy is captured by its velocities. Therefore, we define the energy of the 
swarm as follows: 

2 2

1 1 1 1

1 1
( )

N D N D

id md idi d i d
E pb x v

N N= = = =
= − +∑ ∑ ∑ ∑  

(3) 

Where 
1

1 N

md idi
x pb

D =
= ∑  is the dth coordinate of the pbests’ centre. The first term 

denotes the potential energy by the average square distances between each pbest’s and 
the pbests’ centre. The second term is the average square velocities of particles repre-
senting the kinetic energy. As the E decreasing, the searching energy is reduced, so the 
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system requires external energy to be injected. Thus, an updating mechanism is adopted 
to increase the system energy. 

2) Updating mechanism 
Since the potential energy is dependent on the pbests, the pbests are renewed in 
updating mechanism. The updating rule is: firstly, one dimension denoted by k of 
pbest i is chosen randomly, and then a uniform distributed velocity is added to this 

chosen dimension. Specifically, the velocity added to pbest i denoted by ikv is  

ikv V rand= Δ . (4) 

Where Δ  conforms to Bernouli distribution which takes the values 1±  with prob-
ability 1/2, rand is a random number conforming to the [0,1] uniform distribution, and 
V  is linearly decreasing from Xmax to 0.1Xmax, where [-Xmax, Xmax] is defined to the 
feasible bound of solution. The updating rule of the pbests are 

ik ik ikpb pb v= + , i=1,…,n. (5) 

This updating mechanism only changes one dimension to update, so other dimensions’ 
information of pbests is saved. In this way, both updated information and good 
memories are used to direct the particles behavior, which increases the efficiency of 
optimization.    

3) The velocity formula of the improved PSO 
In the original PSO, the inertia velocity term keep the particle move in the former 
direction which partly prevents the algorithm from prematurity. Since the updating 
mechanism in the new proposed algorithm plays the role of avoiding trapped into the 
local optimum, the inertia item is eliminated in order to speed up convergence. So we 
use the velocity formula 

1 1 2 2( ( ) ( ))id id id d idv c rand pg x c rand pg xγ= − + − . (6) 

Where γ  is constriction factor which can prevent the algorithm from divergence[5]. 

4) Adaptive threshold 
It is important to set the value of threshold ET because ET decides when to run PSO 
evolution and when to run updating mechanism. The algorithm begins with E>ET 
and performs PSO evolution according to equ. (6). During the iterations, the 
algorithm converges accompanied by the decrease in energy. When E≤ET, the 
algorithm starts the updating mechanism followed by an increase of E. When 
E>ET, the algorithm returns to the PSO evolution.  

ET is dynamically adjusted according to the changes of fitness. When the im-
provement of fitness f is less than a small number ε  within Ps iterations, i.e., 

s s Ps

s

f f
f

f
ε+−Δ = < . 

(7) 

the threshold is adjusted to the current value of energy i.e., let ET = E. In this case, 
the algorithm runs in a high energy state and allows a large scale search by up-
dating the pbests. During the evolution of the algorithm, the threshold ET is de-
creasing by ΔET per iteration. 

min( - ) / ( - )T T TE E E Maxstep sΔ = . (8) 
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Where s is the current iteration number and Maxstep denotes the max iteration number. 
Equ. (8) can guarantee the algorithm ends at ETmin which is a desired energy 
threshold when the algorithm terminates. The switch process between PSO evolu-
tion and updating is described as Fig. 1. We define an upper bound upET for E to 
avoid the algorithm from divergence due to continued update.  

Start

Initialization and let s=0, 
Calculate E

s>Maxstep

E<upET

N

PSO evolution
Calculate E

s%Ps==0
&&s>0
Δf<ε

Y

Y

N

N

ET=E

s=s+1;
ET =ET-ΔET

Update 
mechanism

Finish

E>ET

N

Y

Y

 

Fig. 1. Switch process between PSO evolution and updating mechanism 

3   Numerical Experiments and Results 

In order to demonstrate the performance of the proposed PSO, we use 10 benchmark 
functions defined in literature [13] for the experimental tests. Since the biased ini-
tialization can test the algorithm global explore ability to expand its search beyond its 
initial limits. Therefore, we define the initialization range for all the 10 functions are 
[Xmax/2, Xmax]. This setting increases the difficulty of searching the optimum. The 
numerical experiments show that biased initialization has the most impact for function 
f8 whose landscape declines steeply around the global optimum (the center of the 
feasible space) and while declines flatly in the region far away from the global opti-
mum. So it is quite possible for algorithms to be trapped in local optima In order to 
compare the difference of the symmetry and the biased initialization, let f8 denote the 
initialization range [-Xmax, Xmax] and f8’ denote the initialization range [Xmax/2, Xmax] in 
which the function value declines very flatly and there are a lot of local optima. The 
experiment results of the two initialization range are listed in table 1.  

We compare other 4 PSO variants (gbest, lbest, FIPS and HPSOTVAC) with the 
proposed IPSO. Note that all the PSO algorithms use the same population size of 30, 
the same number of 300000 fitness evaluations (FEs) and the same maximum velocity 
Vmax = Xmax (half of the feasible space) in experiments. Gbest, lbest optimization 
mechanism use the constricted PSO’s updating rules. In FIPS, the von Neumann to-
pology structure is applied and the parameter ϕ  is set to 4.1. HPSOTVAC uses the 

parameters value defined in the literature [6].The parameters of IPSO are set as follows: 
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c1=2.05, c2=2.05, 0.72984γ = , 4 2
max10TE X−= , 2

maxTupE X= and Ps=200. The ex-

perimental results, in terms of the mean and standard deviation of the fitness value 
obtained from 20 independent trials, are displayed in table 1. 

The best results obtained by the 5 PSO algorithms are shown in bold. The results in-
dicate that the IPSO achieves the best results on most complex multimodal functions f6, 
f7, f8’, f9, f10, especially on f8’ where all other PSOs experimented in this paper fail to 
jump out of the local optima far away from the global optimum. And for complex func-
tion f6 and f7, the IPSO also performs much better when comparing with other PSOs. 

Table 1. Search results comparisons among different algorithms 

function gbest lbest FIPS HPSOT-
VAC 

IPSO 

Sphere Mean 1.5E-180 7.1E-90 1.27E-32 2.3E-51 1.3E-28 
f1 Dev 0 0 3.2E-32 4.4E-52 2.2E-25 

Quadric  Mean 1.3E-2 0.204 0.176 1.2E-3 6.1E-7 
f2 Dev 2.0E-2 0.14 0.128 3.6E-3 6.5E-6 

Schwefel2.22 Mean 1.4E-61 9.4E-53 1.32E-62 2.2E-20 3.2E-48 
f3 Dev 6.1E-61 2.5E-52 6.23E-63 9.0E-21 4.6E-48 

Rosenbrock Mean 4.58 11.6 24.53 0.248 2.68 
f4 Dev 5.53 13.2 12.33 0.578 1.95 

Griewank Mean 0.032 0.017 8.91E-6 5.9E-3 0.014 
f5 Dev 0.026 0.015 3.27E-3 9.4E-3 0.027 

Rastrigin1 Mean 109.4 93.4 30.2 3.7E-3 3.0E-7 
f6 Dev 26.4 20.2 8.8 5.4E-2 7.3E-6 

Rastrigin2 Mean 90.45 97.6 110.00 0.61 1.1E-14 
f7 Dev 20.95 25.1 30.82 0.68 2.8E-13 

Ackley Mean 1.69 3.1E-3 7.9E-15 3.5E-7 9.3E-14 
f8 Dev 1.10 0.17 8.3E-15 9.7E-8 7.5E-14 

Ackley 
f8’ 

Mean 
Dev 

19.11 
5.32 

18.6 
8.01 

18.92 
7.45 

17.91 
5.09 

3.1E-3 
2.4E-3 

Penalized P8  Mean 0.364 6.9E-15 9.9E-29 1.8E-14 9.9E-32 
f9 Dev 0.453 5.7E-14 6.2E-29 7.4E-13 3.1E-31 

Penalized 16 Mean 0.049 1.6E-3 5.3E-12 4E-14 3.3E-28 
f10 Dev 0.141 4.0E-3 7.64E-13 1.9E-14 5.3E-27 

 
There is a cost for tuning the IPSO to obtain ability to jump out of the local optima, 

and the cost is the slow convergence on unimodal problems. Even so, IPSO has already 
obtained good results which is good enough to be applied in practice. 

The fitness descent characteristics of the evolution processes are shown in Fig. 2 (f4, 
f6, f7 and f8’ selected for illustration). It is also observed from Fig. 2 the IPSO is ca-
pable of producing a quality of optimal solution with faster rate, while other PSOs such 
as gbest, lbest and FIPS stop optimizing in early stage of iterations. This is due to the 
updating mechanism which restarts optimization, so that the fitness will continue to be 
improvement.  

In summary, the IPSO can exploit the solution space by PSO evolution and explore 
the space by updating mechanism. Fig. 2 also reveals that the IPSO generally offers a 
high speed of convergence, especially for the functions f6, f7 and f8’ whose global 
optimum is difficult to be found. 
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Fig. 2. Algorit5hm convergence for selected functions f4, f6, f7 and f8’ 

4   Conclusion 

In this paper, we propose an improved PSO algorithm embedded an adaptive updating 
mechanism. As the PSO algorithm converges, the swarm’s energy E decreases. When E 
≤ ET (ET is dynamic adjusted during the iterations according to the variations of fitness), 
the updating mechanism begins to work which injects new energy into the swarm so as 
to increase E. When E > ET, optimization via PSO evolution is resumed. By the switch 
between the PSO without inertia term which plays the role of local search and updating 
mechanism which can expand the explore range, the algorithm achieves a good balance 
between global exploration and local exploitation. In addition, the IPSO is easy to be 
implemented because only a little change is required based on the original PSO. 
Compared with gbest, lbest, FIPS and HPSOTVAC on benchmark functions, our ap-
proach has demonstrated good performance in terms of global search ability to jump 
out the local optima. In general, the IPSO offers the best accuracy on functions f2, f6, 
f7, f8’, f9 and f10, especially for function f8’ whose initialization range does not con-
tain the global optimum, the solution found by the IPSO is much better than that found 
by the other 4 PSO algorithms.  
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Abstract. Born and death is the nature of lives, but most swarm in-
telligence algorithm did not reflect this important property. Based on
Particle Swarm Optimization, the concept of life span is introduced to
control the activity generation of particles. Furthermore, the differen-
tial operator is applied to enhance the convergence and precision. The
performance of propose algorithm, along with PSO and DE, is tested
on benchmark functions. Results show that life span and differential op-
erator greatly improved PSO and with well-balanced exploration and
exploitation characteristic.
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1 Introduction

A branch of artificial intelligence which deals with the collective behaviour of
swarms through complex interaction of individuals without supervision, is re-
ferred to as swarm intelligence [1]. During past decades, many swarm-based op-
timization algorithms have been developed and put into dealing with real world
problems. Ant Colony Optimization (ACO) [2,3]mimics the foraging behavior of
ant colonies, which uses the pheromone to deliver the landscape information of
target problem between ants. Particle Swarm Optimization (PSO) [4] imitates
the social behavior of flock of birds or school of fishes, and the particles share
their experiences through a component of velocity update formula. Artificial
Bees Colony (ABC) [5] utilizes the divided labor of bees to explore and exploit
the nectar resources, and the message about food source is represented by the
dances of employee bees. The Differential Evolution (DE) [6], even not simu-
late any real-world system, is still considered as a swarm intelligence algorithm
because of the interaction among individuals.

As an important part of swarm intelligence algorithms, PSO was broadly
studied and applied to many engineering problems such as controller design
[7,8], task assignment problem [9], scheduling [10], etc. Many variants of PSO
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are designed as well, such as PSO with inertia weight[11], PSO with linearly
decreasing Vmax[12], PSO with collision-avoiding mechanism [13] etc..

Though PSO claims to be an algorithm that imitates the behavior of birds
or fishes, the behavior of particles is more like a bunch of robots than living
biomes. Except the initial phase, the particles never born or die. In other words,
the particles are immortal. To the author’s knowledge, few literatures mentioned
the life span of particles, not along the effect the living particles will bring.

Recently, the differential operator, as a high-efficient heuristic, is increasingly
introduced into various algorithms. For example, in Shuffled frog-leaping al-
gorithm (SFLA)[14], the new solutions are generated based on the difference
between current solution and the best solution of the memeplex. In the latest
version of ABC [15], a differential operation is also used. The appropriate uti-
lization of differential operator balances the exploration and exploitation of a
search process. For PSO, there is no doubt that the introduction of differential
operator will accelerate convergence and improve accuracy.

In our study, we introduce the concept of life span into the PSO scheme
(mortal particles). To further improve the algorithm performance, the differential
operator is used to generate candidate solutions out of the memory of individual
particles. The performance of proposed algorithm, called Mortal Differential PSO
(MDPSO), is compare with the original algorithms (immortal particles).

The rest of this paper is organized as follow. Section two briefly introduces
the PSO algorithm. In section three, we propose the Mortal PSO scheme. The
experiment results are presented in section four. Section five gives discussion and
conclusion.

2 Particle Swarm Optimization

Since first introduced by Kennedy and Eberhart [4] in 1995, PSO has developed
numerous variants. A detailed description of these variants of PSO can be found
at [16]. Our study is focused on original PSO.

A D-dimension unconstrained minimization problem is defined as follow.

minf(x), x = [x1, · · · , xD] (1)

where D is the dimension of the problem or the number of parameters to be
optimized, x is a solution of the problem, ximin ≤ xi ≤ ximax.

In Particle Swarm Optimization, the position of a particle represents a solu-
tion. And the motion of particle Pi is driven by velocity Vi. Through updating
the velocity and the position of particles, the feasible space is searched. The
updating formula of velocity and position are as follow.

Vi(t + 1) = Vi(t) + c1rand1(pbesti − Pi) + c2rand2(gbest− Pi) (2)
Pi(t + 1) = Pi(t) + Vi(t + 1) (3)

where pbesti is the best position previously discovered by particle Pi, gbest is the
best position discovered by the entire population. rand1 and rand2 are uniformly
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distributed random number in region [0,1]. c1 and c2 are accelerating constants
that reflect the weighting of stochastic acceleration term that pull particles to
pbest and gbest position[16]. The range of Pi and Vi is limited in [Xmin, Xmax] and
[Vmin, Vmax]. When parameter exceeds the upper or lower bounds, we simply set
parameter as the value of bounds. Some researcher use different random numbers
in every dimension, as defined in (4)-(5).

V d
i (t + 1) = V d

i (t) + c1randd
1(pbestdi − P d

i ) + cd
2randd

2(gbestd − P d
i ) (4)

P d
i (t + 1) = P d

i (t) + V d
i (t + 1) (5)

where superscript d is the dimension index. According to (4), every component
of velocity Vi needs newly generated random numbers weighting the portion
of individual and global terms. The difference between (2)-(3) and (4)-(5) is
reported in [17]. For clear discussion, we use (2)-(3) in our study.

3 Mortal Particle Swarm Optimization

3.1 Mortal Particles

Death, as one kind of updating mechanisms in biomes, is an indispensible part
of evolution. To sustain the population with limited resources, the old and weak
individuals have to make room for the young and fitter ones. In the context
of swarm intelligence, the elimination of old solutions plays the same role with
death in the real world. However, most swarm intelligence algorithms did not
take the life span of solutions into account. From the beginning to the end of a
search process, a solution is only changed, not been replaced. If the change stops,
i.e., the solution trapped in local extreme, then the premature convergence is
unavoidable unless some other operations are introduced.

Consider (2), when a solution is trapped, it means gbest and pbesti are re-
main unchanged. This solution can easily replicate itself and occupy the whole
population. Because the gbest and pbesti will attract the rest particles to them,
and eventually to gbest[16]. Since all the particles are immortal, the algorithm
will end up with a population that has same individuals. To help the solution
escape local, we use ’life span’ to control the number of activity generations of
a particle. For problem (1), the life span of a particle is decided by following
formula.

lifei = exp

(
minN

i=1(fi)− fi∑N
i=1(fi −minN

i=1(fi))/N

)
(6)

where fi is the evaluation of object function, N is the number of particles.
The life span of each particle is within (0,1]. The life of a particle will reduce Δ

with every position update. When lifei ≤ 0, the pbesti particle will be eliminated
and reinitialized within the search space. The pbesti is reinitialized as well to
erase the memory of the particle, otherwise the new particle will be attracted to
pbesti again.
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In some cases, the evaluation of some particle are far bigger than the rests,
thus leads to a large denominator in (6), and eventually shorten the life span of
all particles. In that case, the following formula can be used instead.

lifei = exp
(

minN
i=1(fi)− fi

median(fi −minN
i=1(fi))/N

)
(7)

where median(fi −minN
i=1(fi)) is median number.

3.2 Differential Operator

With mortal particle, the algorithm can escape local now. But the convergence
speed is still a problem. If the algorithm reinitializes the solutions again and
again to explore wider region, it becomes random search. In addition, the life
span did not necessarily speed up the convergence. In this context, we introduce
differential operator to improve the convergence.

Pnd
i =

{
pbestdi + (pbestdr1 − pbestdr2), if rand < p

pbestdi , else (8)

r1, r2 ∈ [1, · · · , N ]
r1 �= r2 (9)

where Pnd
i is the dth variable of ith new particle, p is the mutation probability,

r1 and r2 are random integers. From our observation, p = 0.15 to 0.25 is suitable
for most problems.

The Pi and pbesti is updated according to following.

fobj(Pni(t)) < fobj(pbesti) −→ Pi(t + 1) = Pni(t), pbesti = Pni(t) (10)

where fobj(·) is the object function.
The pseudo code of MDPSO see Algorithm 1. Where FE and FEmax denote

the number of function evaluation and the maximum of it.

4 Validation Experiments

4.1 Parameter Setting

To verify the proposed algorithm, numerical experiments are conducted. The
performance of MDPSO is compared with PSO and DE. The DE parameters
are set according to [18]. The rest parameters are set as follow. Accelerating
constants c1 = c2 = 2, population size N = 20, mutation probability p = 0.15,
maximum number of function evaluation FEmax=2e5, velocity Vi is limited by
(11).

Vmax = (Xmax −Xmin)/10
Vmin = −(Xmax −Xmin)/10 (11)
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Algorithm 1. Mortal Differential PSO
Object function f(x), x = (x1, · · · , xD)D

Generate N particles Pi(i = 2, 3, · · ·N), evaluate particles, record pbesti and gbest
Compute life value of particles by (7)
while FE < FEmax do

for each particle Pi do
Update Vi and Pi by (2)-(3), FE = FE + 1, evaluate Pi : fi = fobj(Pi)
if fi < fobj(pbesti) then

pbesti = Pi

else
lifei = lifei − Δ

end if
if lifei < 0 then

Reinitialize Pi and evaluate it, FE = FE + 1
end if

end for
Generate new particles by (8)-(9) and evaluate them, FE = FE + N
Update Pi and pbesti according to (10)
Update particle life by (7) and record gbest

end while
Post process results and visualization

4.2 Benchmark Functions

The benchmark functions are usually used as standard test bed for optimization
algorithms. To avoid the unintentional attraction of zeros, the benchmark func-
tions are shifted with a displacement d = (d1, d2, · · ·dD)D according to following
formula.

z = x− d
f = fobj(z) (12)

For example, the Non-continuous Rastrigin function has numerous local minima,
which located at small flat local regions. The flat region has no differential infor-
mation and the function is un-derivable within its search space, which makes this
function very difficult for most search algorithms. The function’s shifted version
landscape is shown at Fig. 1. The benchmark functions used in our experiment
are listed at Table 1. To test the overall performance of proposed algorithm, we
try to cover all kinds of test functions. As the characteristic showed at Table 1,
four functions are unimodal and four are multimodal. At the same time, four
functions are separable and four are non-separable.

4.3 Simulation Results

The initial and final locations of 20 particles of 2-D Non-continuous Rastri-
gin function in MDPSO are shown at Fig. 2. The final locations are around
the optimal solution [1.28,1.28], but distances between particles are still fairly
large. This explains why MDPSO can escape local. To further demonstrate the
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Fig. 1. The 3-D landscape of Shifted Non-continuous Rastrigin function

Table 1. Benchmark Functions. D: Dimension, F: Feasible Bounds, C: Characteristic,
U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable, R: Regular, I: Irregular.

Name Equation D F C d

Sphere fi =
∑D

i=1 x2
i 30 [-100, 100] USR 25D

Schwefel 2.21 f2 = maxD
i=1|xi| 30 [-100, 100] USI 25D

Rosenbrock f3 =
∑D

i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
30 [-30, 30] UNR 0D

Schwefel 2.22 f4 =
∑D

i=1 |xi| + ∏D
i=1 |xi| 30 [-10, 10] UNI 2.5D

Rastrigin f5 =
∑D

i=1

[
xD

i − 10 cos(2πxi) + 10
]

30 [-5.12, 5.12] MSR 1.28D

Non-
continuous
Rastrigin

f6 =
∑D

i=1

[
yD

i − 10 cos(2πyi) + 10
]

yi =

{
xi |xi| < 1

2
round(2xi)

2
|xi| ≥ 1

2

30 [-5.12, 5.12] MSI 1.28D

Griewank f7 = 1
4000

∑D
i=1 xD

i − ∏D
i=1 cos( xi√

i
) + 1 30 [-600, 600] MNR 150D

Ackley
f8 = −20exp

(
−0.2

√
1
D

∑D
i=1 x2

i

)
−exp

(
1
D

∑D
i=1 cos(2πxi)

)
+ 20 + e

30 [-32.768,
32,768]

MNR 8.192D

effectiveness of proposed algorithm, 50 runs are conducted for each algorithm,
and the results are summarized at Table 2. For each benchmark function, the
best, median, worst, mean, standard deviate (Std) and success (Scr) rate of 50
runs are listed. The success rate is determined by (13)-(14).

Scr = Nsuccess/Maxrun× 100% (13)
|fbest − f∗| < ε (14)
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Fig. 2. Initial and final 2-D locations of 20 particles in MDPSO

where Nsuccess is the number of success runs. If fbest satisfy (14), a success run is
recorded. In our experiment, the tolerance is truncated at 1.00e-8, which means
all values that less than 1.00e-8 are treated as zero. From Table 2 we can conclude
that MDPOS outperforms PSO for all eight test functions and outperforms
DE for three multimodal functions (Rastrigin, non-continuous Rastrigin and
Griewank) and one unimodal function (Schwefel 2.21). DE outperforms MDPSO
for two unimodal non-separable functions (Rosenbrock and Schwefel 2.22). Both
MDPSO and DE have same performance for Sphere and Ackley function.

Table 2. Comparison of Three Algorithms

Function f1 f2 f3 f4 f6 f6 f7 f8

ε 1.00e-8 0.5 25.0 1e-8 1e-8 1e-8 1e-8 1e-8

PSO

Best 0.07 0.78 29.04 0.16 33.91 38.00 0.22 0.10
Median 0.19 1.41 74.15 0.27 63.73 69.00 0.40 0.22
Worst 0.38 3.29 368.86 0.46 94.62 126.00 0.64 1.71
Mean 0.19 1.60 87.93 0.27 63.88 71.88 0.41 0.53
Std 0.07 0.57 70.88 0.07 14.61 16.96 0.09 0.50
Scr 0% 0% 0% 0% 0% 0% 0% 0%

DE

Best 0.00 0.06 0.04 0.00 15.69 32.67 0.0 0.0
Median 0.00 2.24 17.40 0.00 83.48 81.43 0.0 0.0
Worst 0.00 20.66 69.43 0.00 133.97 118.62 7.40e-3 0.0
Mean 0.00 3.44 26.12 0.00 84.25 81.25 1.48e-4 0.0
Std 0.00 4.02 21.63 0.00 27.56 22.97 0.001 0.0
Scr 100% 16% 78% 100% 0% 0% 98% 100%

MDPSO

Best 0.00 0.17 4.80e-3 0.00 0.00 0.00 0.00 0.00
Median 0.00 0.28 20.78 0.00 0.00 0.00 0.00 0.00
Worst 0.00 0.41 81.90 12.50 5.59e-7 0.00 0.00 0.00
Mean 0.00 0.29 33.19 0.25 1.16e-8 0.00 0.00 0.00
Std 0.00 0.05 27.92 1.75 7.82e-8 0.00 0.00 0.00
Scr 100% 100% 72% 98% 96% 100% 100% 100%
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Clearly MDPSO performed well when deals with multimodal functions. Espe-
cially for Rastrigin and non-continuous Rastrigin function, MDPSO is far more
superior. On the other hand, the advantage of DE is not obvious. In general, the
proposed algorithm is more efficient than PSO and DE.

5 Discussion and Conclusion

From the experiment results we can conclude that the life span and differential
operator significantly improved the performance of PSO and showed great po-
tential on dealing with multimodal problems. With life span, some old particles
are eliminated, so is its memory, pbest. With the elimination of old particles, the
population diversity is increased. Technically the population will not converge
to a same local extreme (like the original PSO always do), hence the algorithm
will not trap. Theoretically, as long as the algorithm keeps running, it will find
the global minima eventually.

Though the algorithm will not trap in local, it is not practical if it takes long
time to converge. A differential operator can speed up convergence and increase
the accuracy. In the early stage of searching process, the pbest records only the
information of scattered local regions, and the average distance of particles is
large. The new generated particle can search broader region. In the later stage,
with the decreasing distance of particles, the differential factor becomes smaller.
This drives the algorithm to higher precision. The process is self-adaptive, the
exploration and exploitation are well balanced.

The implementation of life span and differential operator dose not depend
on algorithms, which means the proposed improvement can be applied to other
algorithms as well. PSO is just an example, how to improve other algorithms by
these heuristics is still an open issue.
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Abstract. In this paper, we propose a particle swarm optimization (PSO) based 
hybrid testing technique named as “pseudo dynamic testing” to generate test  
data for C programs by fulfilling one of the most demanding test adequacy cri-
teria: the all-path testing criterion using an interpreter. The proposed methodol-
ogy attempts to solve many of the structural testing problems such as dynamic 
variables, input dependent array index, abstract function calls, infeasible paths 
and loop handling. The key algorithms and heuristics are given which are easy 
enough to implement, scalable and effective. The technique is employed on real 
world programs to show the robustness of this technique. The set of test inputs 
generated are not redundant as each leads to a different program path. 

Keywords: Pseudo dynamicSoftware Testing, Symbolic Testing, Dynamic 
Testing, Particle Swarm Optimization (PSO). 

1   Introduction 

The manual selection of test inputs to the program under test is both labor-intensive, 
and erroneous [1]. Automated test data generation can reduce the test cost and time 
significantly. Although automation in testing is less intelligent but it helps in avoiding 
biases in test process. For automatic test data generation in structural testing, there are 
two ways through which the program can be analyzed. The dynamic analysis ap-
proach can handle dynamic arrays, pointers, internal variables, input dependent array 
index, function calls and other dynamic constructs more accurately than static analy-
sis approach such as symbolic testing but it may also be more expensive, since the 
program under test is executed repeatedly for searching the input data. This problem 
becomes worse, when the tester fails to apply any highly effective search algorithm 
for generation of values of the inputs to execute the desired path [10]. Another prob-
lem with dynamic testing is its uncontrolled execution behavior, where any infinite 
loop execution or an infeasible target path (a path selected for testing and no input 
combination exists to execute it) can make testing extremely slow. Therefore, the 
dynamic execution method is very costly and time consuming, making it inappro-
priate and impractical for nontrivial programs. On the other side, second method 
namely the symbolic testing provides a controlled environment for testing because, 
here, the tester can specify in advance the execution path. Some of the infeasible 
paths can be avoided by excluding them in the list of test paths by following some 
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identification processes such as identical or complement decisions, mutually-
exclusive decisions prescribed by [7] and [11]. For other difficult-to-identify infeasi-
ble paths, the tester can monitor the search progress of test data generation process 
and if he/she feels that search is not making any progress from the last several itera-
tions then the path can be declared infeasible or difficult to be covered for test case 
generation purpose. This also can be achieved automatically [2]. Although symbolic 
testing provides partial solution to the problem of infeasible paths but it miserably 
fails to generate test data for such programs where state of any variable is only deter-
mined at run time [3].  

A careful study of both techniques can reveal that although both of the testing 
techniques have their own inherent incapability in solving testing issues if used in 
isolation but these complement each other. While symbolic testing is not able to han-
dle dynamic variables, dynamic execution based method can efficiently test programs 
involving these types of variables. On the other side, while dynamic execution testing 
is not able to solve the problem of path explosion due to presence of loops in path 
traversal, symbolic execution provides the facility of restricted execution by virtue of 
its execution style. If these complement each other, a question may arise; why not to 
create a hybrid testing approach which imitates the behavior of both of the testing 
types? This paper presents a novel hybrid approach for automatic test data generation 
named as pseudo dynamic execution (PDE) testing to address most of the problems of 
structural testing techniques. The Pseudo dynamic testing is a well-accepted concept 
in civil and mechanical engineering where actual construction or product is not tested 
but a simulation test is conducted which simulates the actual environment of the 
product. In the proposed approach, we have exploited the same concept, where pro-
gram’s statements are executed concretely using an interpreter as done in dynamic 
approach but in a controlled way as done in the symbolic technique. This is the very 
reason to name this testing technique as pseudo dynamic technique. A soft computing 
based search algorithm particle swarm optimization (PSO) is also used to search for 
test data to achieve the all-path testing criterion. The hybrid approach can be used in 
test data generation for all type of real programs with/without loops and procedures.  

The rest of the paper is organized as follows: Section 2 explains proposed metho-
dology. Section 3 describes the key algorithms used in PSO based PDE method of test 
case generation. Section 4 provides an experimental evaluation of our technique on 
real-world programs. Section 5 compares the proposed methodology with existing 
similar methods. Section 5 isfollowed by the conclusion.  

2   The Pseudo Dynamic Execution (PDE) Method 

In the symbolic execution method, for each path, a path constraint is maintained to-
gether with a table which contains the expression of each variable referenced. When 
an assignment is encountered, the variables in the assignment statement are substi-
tuted by their current expressions maintained in the table and the resulting assignment 
expression replaces the expression representing the target variable. When a predicate 
is encountered, each variable in the predicate is substituted by its current expression 
and it is integrated with the path constraint. Once the symbolic execution of the path 
is complete, the path constraint is evaluated for its satisfaction by replacing symbols 
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representing variables by the concrete values derived from a constraint solver.  
The values of input variables, which satisfythe path-constraint, become a test datum. 
This method has one problem; if variables maintained in the table are of dynamic 
nature, whose expression can’t be determined statically and depends on the concrete 
values then variables expression can’t be substituted conclusively for predicate  
evaluation.  

Table 1. Fitness function of a branch predicate 

We have tried to solve this problem by executing the statement of programs on the 
path for which test data is to be generated, one by one by using concrete values of 
input variables with the help of an interpreter, thus, removing the urgency of main-
taining a table. Each variable is maintained in the program memory space by interpre-
ter itself then updated accordingly as the execution of the statements progresses. If 
any predicate statement is encountered during the path execution progress then it is 
evaluated for its truthfulness based on the current program variable values and subse-
quently, a penalty value replaces corresponding predicate in the path constraint which 
is built by concatenating all the branch nodes predicates. This penalty value is calcu-
lated using the well-established branch distance rules concept [17] as shown in  
table 1. After completing the processing of the whole path using the above concept, 
each ‘and’ operator in path constraint is replaced with ‘+’ operator, each ‘or’ operator 
is replaced with ‘,’ operator and each ‘(’ operator with ‘min(’ operator in path con-
straint string.  Finally, a single penalty value is calculated by evaluating the whole 
path constraint string. If the penalty value is zero then the path constraint is satisfied 
and it implies that the concrete values of the inputs are able to execute the target path 
and this becomes the test data for the path. If the penalty value comes out to be more 
than zero then it means that the concrete values set for input variables fails to execute 
the target path fully and these can’t form the valid test data, however, in a population 
based search algorithm such as PSO, these can provide direction for evolving such 
values which can execute the target path and generate the valid test data. An algo-
rithm explaining the above concept is given in figure 1. Thus this methodology is an 
amalgamation of symbolic and concrete execution and is a dynamic modeling of 
program execution in a controlled environment just like as it is done in pseudo  
dynamic testing in other engineering domains.   

Violated predicate  Penalty to be imposed in case predicate is not satisfied 

A < B  A – B + ζ 
A <= B A – B  
A > B  B – A + ζ 
A >= B B – A  
A = B Abs(A – B) 
A ≠ B ζ – abs(A – B) 

A and B are operands and ζ is a smallest constant of operands’ universal domains used for 
incremental penalty in case of inequality violated predicate when both operands have 
equal value. For integer it is 1 and in case of real values it can be 0.1 or 0.01 depending on 
the accuracy we need in solution. 
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Fig. 1. Pseudo dynamic testing using PSO algorithm 

3   PSO Based Test Data Generator 

In the proposed methodology, test data is generated in two steps; first the program 
under test is instrumented to extract control flow graph (CFG) and node statements 

For each feasible path  
 For each particle in PSO search algorithm population 
  Assign input variables values from PSO particle 
  For each node in target path of CFG 
   If node is non-branch node 
    Then concretely execute all the statements related to that node using Ch  
     interpreter; 
   Else 
    Find the predicate of branch node from node expression array. 
    Find the traversal link to next node in target path from CFG matrix.  
    If traversal link is for false execution of branch predicate 
     Then simplify predicate for negation. 
    End If 
    If simplified predicate is evaluated true using Ch interpreter  
     Then continue without any penalty to individual solution 
    Else 
     Extract distinct predicates from combined branch predicate. 
     For each distinct predicate 
      If distinct predicate is evaluated true by individual  
       Then assign zero penalty corresponding to that distinct predicate 
      Else 
       Determine Penalty for violated distinct predicate by following the   
        concept for branch distance function  
      End If 
     End For 
     Replace each distinct predicate with its corresponding penalty in    
      composite predicate. 
    End If 
    Replace each ‘&&’ symbol with plus (+) sign and ‘||’ symbol with comma (,) 
    sign and each bracket ‘(‘ with min([ in branch predicate to determine fitness  
                    related to the combined node predicate.  
   End If 
   Add fitness of each branch node predicate to determine the fitness for individual 
    related to whole path. 
  End For 
  If fitness for the path is zero  
   Then record the individual as a test data for the particular path and exit inner  
    loop. 
  End If 
 End For 
End For 
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array. All paths of the program are automatically generated from the CFG and some 
of the infeasible paths are deleted manually by identifying mutually-exclusive-
decision on node predicates. Other infeasible paths, which are hard to be identified 
can be later resolved by considering the search progress of search algorithm[2].  Feas-
ible paths and node expression are fed into the PSO search algorithm to generate test 
cases as shown in figure 2. The PSO search algorithm is implemented in ‘Ch’ inter-
preter environment [18] which is helpful in executing individual statements with the 
help of ‘streval’ command. This command is also used to evaluate predicates which 
are further used to evaluate the whole path constraints which subsequently determine 
the fitness of an individual or a particle in PSO algorithm. 

 

Fig. 2. PSO based Test data generator 

The PSO search algorithm has the goal of covering all the paths in CFG of the pro-
gram under test. The PSO generates tests (candidate solutions) and executes them as 
input for the program under test.  A testis formed by a vector of given values (y1, y2, . . 
. ,yn) generated by the PSOfor the input variables (z1, z2, . . . , zn) of the program under 
test. The general PSO algorithm appears in Fig 3. The PSO generates test inputs based 
on the test that is the current solution (CS). Initially, the CS is a random test, but, 
inside the loop, the PSO modifies it based on the cognition and social learning it has 
acquired from the previous solutions. When a test is generated, the PSO evaluates its 
fitness based on the extent of test criterion it is able to satisfy.  
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1. Initialize the particle population (Candidate Solution) by randomly assigning locations (X-
vector for each particle) from input space of the program and velocities (V-vector with 
random or zero velocities- in our case it is initialized with zero vector)  

2. Evaluate the fitness of the individual particle and record the best fitness Pbest for each 
particle and update P-vector related to each Pbest.  

3. Also find out the individuals’ highest fitness Gbest and record corresponding position Pg.  
4. Modify velocities based on Pbest and Gbest position using following equations 
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where 
• � is a particle. 
• 
 is dimension of the particle. 
• �	
�	� is random number generator. 
• �

�
 and 	�

�
		are  are learning rates governing the cognition and social 

components. 
• � represents the index of particle with best p-fitness. 
• � � � signifies next generation. 
• � is the inertia factor that dynamically adjust the velocities of particles 

gradually focusing the PSO into a local search.  
5. Update the particles position using above equation.
6. Terminate if the condition is met  
7. Go to Step 2  

Fig. 3. PSO Algorithm 

3   Experiments and Results 

Ch integrated development environment (ChIDE) is used for implementing algo-
rithms for experiment purpose. It is an interpreter and can execute ANSI standard C 
programs. Ten attempts are made for each path in a CFG of program under test for the 
purpose of averaging results. In each attempt, the PSO is iterated for 100 generations. 
The population size is 30. If a solution is not found within all attempts then, it is as-
sumed that either the path is infeasible or the path constraint is too difficult to be 
solved. We have measured average percentage coverage (APC) of feasible paths, 
which measures the effectiveness of test data generator and is calculated as fraction of 
paths covered. The high value of APC is desirable. The starting values of inertia 
weight�, Cognition learning rate ��

  and Social learning rate ��are taken as 0.8, 2.8 
and 1.3 respectively as suggested in [19]. For experiment, ten ‘C’ programs have been 
selected (henceforth called testing objects). Although, test objects are not very com-
plex but they exhibit every characteristics for which we want to generate test cases. 
Except the first, each program contains loops. A2F & BS are the programs in which 
there are array indexes which depend on concrete values and can be solved only using 
dynamic analysis. Further there is a program linked list (LL1) which contains pointer 
variable and all feasible paths are covered for this object. A second version of link list 
(LL2) is also experimented where several abstract functions are taken and we are able 
to get result for the higher level function by implicitly and dynamically executing 
lower function.    
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The main attributes of these are objects and corresponding APC are shown in the 
table 2. From the results it can be concluded that this hybrid approach is effective on 
almost all programs. The APC for BS test object is just 58%. This is due to its re-
quirement of a sorted array as input which destroy the search guidance for the PSO in 
every iteration and thus it becomes difficult to generate test cases especially where 
boundary cases are to be satisfied. Thus, it is a problem of search function not of the 
proposed testing technique. 

Table 2. Test objects, their attributes and experimental result 

Test Object Li-
neof 
Co-
de 

Deci-
sion 
Nod-

es 

Nesting 
Level 

Loop 
exists 

Poin-
ter 

struct-
ure 

Abst-
ract-

Funct-
ion 

Total 
Paths 

in 
CFG 

Feasib-
le 

Paths 

AP
C 
% 

TC 35 06 05 No No No 07 07 100 
A2F 48 14 07 Yes No No 910 568 100 
BS 23 04 03 Yes No No 124 62 58 

REM 35 8 04 Yes No No 22 22 100 
BUB 21 03 03 Yes No No 121 31 100 

QUAD 24 05 03 Yes No No 06 06 100 
MINMAX 27 03 03 Yes No No 121 121 100 
ISPRIME 16 02 02 Yes No No 10 08 100 

LL1 116 12 06 Yes Yes No 673 35 100 
LL2 57 5 02 Yes Yes Yes 32 32 100 

4   Related Work 

Recently, researchers have started exploring the use of hybrid techniques for solving 
several issues of symbolic execution such as the use of dynamically allocated data and 
scalability. Godefroid used both types of testing strategies; concrete as well as symbolic 
(called concolic testing) in Directed Automated Random Testing (DART) [5] and Sys-
tematic Modular Automated Random Testing (SMART) [6] algorithms for test case 
generation of C programs.Sen et al [14] suggested a concolic unit test generation 
framework “CUTE” which is similar to the DART but it uses a logical input mapping 
table for handling pointer variables also. Majumdar and Sen [9] enhanced the coverage 
capability of CUTE by including random testing with concolic testing. Khurshid et al 
[8] proposed a new technique called generalized symbolic execution for automated test 
case generation for programs containing dynamic allocated data. Visser et al [15] com-
bined model checking with symbolic execution to generate test inputs in Java programs. 
Deng et al [4] proposed KUnit, a unit test data generation framework for sequential, 
heap-manipulating Java applications. Pasareanu et al [12] used the symbolic execution 
extension to the Java Path Finder model checker to generate test cases for complex, 
safety-critical software.Saxena et al [13] introduced loop-extended symbolic execution 
(LESE) by including symbolic variables for the number of times each loop executes. 
Visvanathan and Gupta [16] generated test inputs for functions that requires pointer as 
input. All these techniques addressed testing requirements partially and were specific in 
their approaches and thus failed to address problems on larger scale. 
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Table 3. Comparison of different hybrid techniques 

Criterion DART CUTE PDE 

Primary testing 
technique 

Symbolic Symbolic Dynamic 

Secondary 
technique 

Concrete Concrete Not Required 

Type of search 
algorithm 

Random Random PSO based 

Criterion for 
testing 

Systematic Path testing Systematic Path testing All Path testing 

Type of 
constraint solver 

Linear Programming 
(LP) 

LP with backtracking PSO 

Identification of 
feasible paths 

Automatic with limited 
iteration based 

criterion 

Automatic with limited 
iteration based criterion 

Fully automatic 
with search 

progress criterion 

Handling of 
abstract function 

No No Yes 

Handling of 
pointers 

No 
Pointer approximation 

only 
Yes 

non-linear 
constraints 

No No Yes 

memory mapping Required Required Not Required 
 

The proposed PDE based approach is most closely related to DART and CUTE. The 
DART starts with a random (concrete) input and collects symbolic path constraints 
(conditions) during its execution and then uses these to attempt direct execution down 
an unexplored path on the next execution by negating a predicate in the path condition. 
Thus a new path condition is solved, generating the new set of test inputs. When execu-
tion reaches a branching statement the underlying decision procedure cannot decide, the 
symbolic condition is replaced by its concrete value. Randomization is also used when 
automated reasoning is not possible. The DART handles constraints only on integer 
types, but does not handle constraints on the programs with pointers or complex data 
structures. For these cases, it only uses randomly generated data. The DART is also 
being extended into the SMART to perform inter-procedural static analysis for dynamic 
test generation at component level and defined test results as function summaries using 
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input pre-conditions and output post-conditions for reusing these for testing higher-level 
functions. The SMART algorithm takes a top-down, demand-driven approach to com-
pute summaries in order to avoid explosion of paths in a large program but, it does not 
have any extenuating effects on the inherent limitations of symbolic execution. It fails to 
generate test cases in three circumstances; when in any program, call flow graph (inter 
procedural graph) is cyclic (as in the case of recursive calls of a function), second where 
any function for which pre-conditions summaries cannot be determined in advance (e.g. 
in functions where loop execution determine the behavior of specific summary of a 
function and its execution bound can't be determined statically) and lastly whenever a 
constraint on some inputs cannot be expressed within given theory of constraints (e.g if 
about a method it is not possible to reason completely  by using information in the call-
ing context to constrain the input values). The CUTE is similar to the DART with  
the additional capability of addressing pointer variables by explicit memory mapping. 
Table 3 compares the proposed method with CUTE and DART andbased upon the 
literature survey, theoretically, it can be said that the proposed approach (i.e. PDE) is 
expected to outperform the other two. 

5   Conclusion 

This paper presented a hybrid approach which generates test cases dynamically but in 
a controlled environment as is the case with symbolic testing. Since the approach 
applied PSO based search algorithms its effectiveness is much better than that 
achieved by any algorithm based on random search. We validate our methodology 
using ten real world test objects. The results were found highly encouraging. We 
observed that the proposed approach was able to achieve 100% test coverage in nine 
out of the ten objects. Even in the case of 10th object it was observed that lower per-
formance was not the outcome of any shortcoming on the part of approach but was 
due to the inherent characteristics of object itself. 
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Abstract. The optimization of reactive power compensation plays an important 
role in power system planning and designing. A mathematical model in the 
10kV distribution network is established in this paper. Its objective function is 
the cost of investment in equipment of reactive power compensation and active 
power loss of the system should be the least. The node voltages beyond limited 
and the generator reactive power output beyond limited will be expressed in the 
way of penalty function. In this paper, particle swarm optimization will be used. 
Using PSO’s characteristic of high convergence efficiency, the speed of reac-
tive power optimization will be improved. Using the binary PSO, the algorithm 
can better adapt to solve the problem. 

Keywords: 10kV distribution system, reactive power optimization, PSO. 

1   Introduction 

Voltage is an important indicator to measure the security and economy of the power 
system, while the reactive power is an important factor in affecting the voltage level. 
A reasonable distribution of reactive power is a basic condition to ensure the voltage 
quality [1]. The rational flow of reactive power is able to maintain reactive power 
balance, not only ensure the voltage quality, improve the system’s security and stabil-
ity, but also reduce the power loss, access to economic benefits [2]. 

As an important part of power system’s planning, reactive power optimization can 
utilize voltage to control power system, improve grid stability, reduce network loss 
and ensure a wider operating margin through reactive power compensation [3,4].  

10 kV distribution network has many branches and many customers, distribution 
transformers have no people on duty. Currently, compensation devices which can 
switch automatically are few and high cost, most of them have a fixed put-in form  
and can not be changed when the load changes [5]. In order to achieve the best  
                                                           
* Corresponding author. 
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compensation effect and not to send reactive power back to the main network, how to 
choose the node of reactive power compensation and reactive compensation capacity 
is very important [6]. 

In order to deal with these problems, there appeared linear programming, nonlinear 
programming, integer programming, graph theory method, sensitivity analysis, interior 
point method and network flow method and the simulated annealing algorithm, genetic 
algorithms, particle swarm optimization which are proposed in recent years [7-9].  

Particle swarm optimization is a random optimization algorithm based on swarm 
intelligence algorithm which is merging in recent years. The algorithm is fast in the 
initial convergence, but in the latter part, it may be trapped in local optimum. This is 
the major shortcomings of PSO [10,11].  

In this paper, an improved PSO has been presented. The method of dynamic ad-
justment of the inertia weighted has been added into the traditional PSO algorithm, 
which the global search capability is far superior to the traditional PSO. Finally, it is 
applied to reactive power optimization of a 10 kV distribution network system with 
17 nodes. And its simulation result shows that this method is effective. 

2   The Mathematical Model of Reactive Power Optimization 

The purpose of reactive power optimization is to minimize the loss of the entire network 
and improve voltage quality, to save the cost of system operation, to make the system 
operated stably and safely. The mathematical model has 3 parts, includes the objective 
function, the power constraint equations and the variable constraint equations. 

2.1   The Objective Function 

The objective function of reactive power optimization is varied, including both tech-
nical performance indicators and economic indicators. The operation of power system 
should meet the security and economy. Reactive power optimization regulates genera-
tor terminal voltage, adjusts the voltage transformation ratio of voltage transformer 
and compensation capacitor switching and other control variables in order to take full 
advantage of the system reactive power, to ensure the voltage quality of the users, to 
achieve the minimum active power loss of the whole network. The objective function 
can be expressed as the minimum active power loss:  

                
2 2( 2 cos )loss ij i j i j ij

i t
j N

P G V V VV δ
∈
∈

= + −∑                              (1) 

The state variables (node voltages beyond limited and the generator reactive power 
output beyond limited) can be expressed in the way of penalty function: 
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where the first section of right-hand side is the active power loss; the second section is 
to punish the node voltages when beyond limited; the third section is to punish  
generator reactive power output when beyond limited. Vjλ and Giλ are penalty factors of 
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node voltages other than the node of PT and generator reactive power output when 
beyond limited.； vco is the collection of subscript of node voltage of load which is 
out of range; Gco  is the collection of subscript of generator reactive power output of 

load which is out of range. limjV and limGiQ can be expressed as: 

max max
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2.2   The Power Constraint Equations 

Node power balance equation is the equality constraint: 

1
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where 
iP ,

iQ are the active and reactive power which is injected by node i ; 
iV , 

jV  are 

the voltage amplitudes of node i and node j ; 
ijG ， ijB ， ijδ  are conductance, sus-

ceptance, angle difference between voltage phase between node i and node j ; N  

indicates the nodes which are connected with node i  directly. 

2.3   The Variable Constraint Equations 

Variable constraints are inequality constraints: 

min max

min max

min max

min max

min max

Gi Gi Gi

Gi Gi Gi

k k k

Ci Ci Ci

i i i

V V V

Q Q Q

T T T

Q Q Q

V V V

≤ ≤⎧
⎪ ≤ ≤⎪⎪ ≤ ≤⎨
⎪ ≤ ≤⎪
⎪ ≤ ≤⎩

                                                  (7) 

where 
GiV  is the generator terminal voltage; 

minGiV  ,
maxGiV  are the upon limit and lower 

limit of the generator terminal voltage; 
GiQ  is the generator reactive power output; 

minGiQ ,
maxGiQ are the upon limit and lower limit of the generator reactive power output;  

kT  is the position of the adjustable transformer tap; 
minkT  ,

maxkT  are the upon limit and 
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lower limit of the adjust ratio of the transformer; 
CiQ  is the capacitive reactive com-

pensation capacity; 
minCiQ ,

maxCiQ  are the upon limit and lower limit of the compensa-

tion capacity in node i ; 
iV  is the voltage of node i ; 

miniV ,
maxiV are the upon limit and 

lower limit of the voltage amplitude of node i . 

3   Particle Swarm Optimization 

PSO (Particle Swarm Optimization）is a new evolutionary algorithm which is devel-
oped in recent years. It was originally developed by Dr. Kennedy and Dr. Eberhart in 
1995 which is inspired by the research of artificial life. It is an evolutionary computa-
tion technique based on swarm intelligence which is proposed when simulating birds’ 
behavior of migration and the cluster during foraging.  

In PSO, the solution of each optimization problem is a bird in the search space. We 
call it “particle”. Each particle has a fitness value which is determined by the function 
to be optimized and a speed to determine their flying direction and distance. Then 
particles will search in the solution space search, following the current best particle. 
However, due to the defects in the basic PSO (as in theory, absolute convergence has 
not be proved, it has the danger of falling into local optimal) and actual use (such as 
requirements of the computing speed) and other reasons, we have to do some im-
provements to the basic PSO, so that PSO can be adapted to the reactive power  
optimization. 

3.1   The Introduction of Inertia Factor 

In PSO, each particle is the optimization solution in the feasible region. First, it 
initializes a group of particles randomly. Then, these particles adjust their direction 
and location to search for the optimal solution by learning two "extreme" in the 
iteration process. These two "extreme", one is individual extreme value, which is its 
own optimal value of the current; the other is the global extreme value, the optimal 
solution of all particles currently. In the searching process, the particles adjust their 
speed

idV and location 
idX  according to these two values. 

To speed up the convergence rate of PSO, with the inertia factor, the formula of 
particles’ velocity and displacement is: 

  1
1 2()( ) ()( )k k k k k k

id id id id id idV V C rand pBest X C rand gBest Xω+ = + − + −                  (8) 

1 1k k k
id id idX X V+ += +                                                     (9) 

where ω  is called the inertia factor; 
idX  is the particle’s position; 

idV  means the 

particle’s speed; 
1C ,

2C are acceleration factors； ()rand  is a random number between 0 

and 1;
idpBest 、 idgBest  are the best particle position and the best position of the 

global. 
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ω  is a scale factor which is related with the previous speed, it controls how the 
next iteration’s velocity is impacted of the previous iteration’s speed value. A larger 
ω  can strengthen the global search capability in PSO; a smaller ω  can enhance 
the local search capability. So if using a same value of ω  in the whole process of 
PSO iterations, the algorithm can not be easily suitable for global search and local 
search. In this paper, ω  will decrease linearly from 0.9 to 0.4 in the whole iteration 
process: 

max

0.9 0.4
0.9 n

N
ω −= − ×                                                  (10) 

where 
maxN  is the total number of iterations; n  is the current number of iterations. 

3.2   The Construction of Particles in Reactive Power Optimization 

In PSO, each particle is instead of each solution in the reactive power optimization. 
Using the objective function, the fitness of each particle can be determined: the higher 
fitness, the more superiority of the particles. Each particle searches for the optimal 
solution according to its own and other particles’ flying experience in the solution 
space. 

When using PSO to determine compensation point, each node only has two states: 
a compensation point or not. So binary coding is suitable for PSO: each particle repre-
sents a combination of compensation state. Using binary coding, 0 means this node 
has no compensation, the node 1 means that it has compensation. 

3.3   Initialization of PSO 

For the binary coded PSO, the initial of the particles’ position is randomly selected 
certain nodes as the initial compensation nodes. Because of the actual situation of the 
distribution network, the compensation nodes should not be too many; otherwise the 
economy will be poor. According to the experience, 3-5 nodes will be appropriate. 

The velocity of particles in the distribution network reconfiguration problem has 
no actual physical meaning. It represents the different between the current states of 
the switching portfolio with the best combination states. The speed will be faster if the 
difference is greater. In the binary coded PSO, the particle velocity is on behalf of a 
dimensional coordinates of the probability of this state or another state. In this paper, 
Sigmoid function will be used to update the particles’ velocity: 

1
( )

1 idid VSigmoid V
e−

=
+

                                            (11) 

4   System Examples  

Take a distribution network of 17 nodes and assume the voltage of the first outlet end 
of the root node is a constant value 10.5kV. 
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Fig. 1. A 17-node System 

All raw data of the system is as follow: 

Table 1. Raw Data 

Start 
Node 

Last 
node Resistance(Ω ) Reactance(Ω ) 

1 2 0.033117 0.035511  

2 3 0.026563 0.028484  

2 10 0.028350 0.023184  

3 4 0.015593 0.012751  

3 11 0.008366 0.008971  

4 5 0.014459 0.011824  

5 6 0.021263 0.017388  

6 7 0.014459 0.011824  

7 8 0.021263 0.017388  

7 9 0.017483 0.014297  

11 12 0.012062 0.012933  

11 17 0.023814 0.010293  

12 13 0.011852 0.012709  

13 14 0.011155 0.011962  

14 15 0.011504 0.012335  

15 16 0.009691 0.010392  
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Table 2. Node voltage before and after the compensation 

node before after 

1 10.500 10.500 

2 10.324 10.329 

3 10.220 10.228 

4 10.214 10.218 

5 10.210 10.211 

6 10.199 10.208 

7 10.192 10.207 

8 10.184 10.199 

9 10.190 10.212 

10 10.301 10.306 

11 10.188 10.202 

12 10.157 10.175 

13 10.127 10.148 

14 10.100 10.125 

15 10.083 10.112 

16 10.082 10.110 

17 10.164 10.180 

Table 2 shows the voltage of each node has been improved in varying degrees after 
the compensation. In which the lower voltage before compensation will be improved 
the larger, such as node 15, 16; the higher voltage before compensation will be im-
proved the smaller, such as Node 2. 

Table 3. Reactive power compensation added 

Node 2 3 7 11 
Capacity added 

( kVar ) 
5.25 3.93 19.98 8.40 

Table 3 shows that the reactive power compensation capacity added of each node 
by the end is: node 2, 5.25 kVar; node 3, 3.93 kVar; node 7, 19.98 kVar; node 11, 
8.40 kVar. 

The above analysis shows that after adding reactive power compensation, the sys-
tem voltage level has been markedly improved. Therefore, the calculated compensa-
tion plan is reasonable. 

Through comparative analysis of before and after the compensation, we can see 
voltage level and the net loss of the grid has been greatly improved, the equipment 
investing cost of the reactive power compensation has been saved, while the reactive 
power has been well improved. The reactive power optimization can reduce the whole 
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Net Loss, improve the system voltage level, and thereby raise the level of economic, 
security of grid operation. 

5   Conclusion 

In this paper, mathematical model in the 10kV distribution network has been estab-
lished. Its objective function is the cost of investment in equipment of reactive power 
compensation and active power loss of the system should be the least. The node volt-
ages beyond limited and the generator reactive power output beyond limited can be 
expressed in the way of penalty function. The convergence speed and convergence 
precision has increased effectively, the system voltage security been improved by 
using improved PSO to select the optimal compensation node. The improved PSO 
makes PSO more suitable for reactive power optimization in the distribution network, 
has theoretical and practical significance. 

References 

1. MakSioe, T.: Propagation of Transientsina Distribution Network. IEEE Transaction on 
Power Delivery 8(1), 337–343 (1993) 

2. Mantawy, A.H., AI-Ghamdi, M.S.: A New ReactivePower Optimization Algorithm. In: 
2003 IEEE Bologna PowerTech Conference, Bologna, Italy (2003) 

3. Durairaj, S., Fox, B.: Evolutionary computation based reactive power optimization. In: 
IET-UK International Conference on Information and Communication Technology in 
Electrical Sciences (ICTES 2007), pp. 120–125. Dr.M.G.R.University, Chennai (2007) 

4. Yoshida, H., Kawata, K., Fukuyama, Y., et al.: A particle swarmoptimization for reactive 
power and voltage control securityassessment. IEEE Trans. on Power Systems 15(4), 
1232–1239 (2000) 

5. Yu, X., Li, Y., Xiong, X.: Optimal shunt capacitorplacement using particle swarm optimi-
zation algorithm withharmonic distorts ion consideration. Proceedings of the CSEE 23(2), 
26–30 (2003) 

6. Zhou, S., Zhu, L., Guo-jiu, et al.: The power systemvoltage stability and control. China 
ElectricPower Press, Beijing (2004) 

7. Guo, Y., Wen, J.: A new power system reactive poweroptimization algorithm. Electric 
Power Survey and Design 12(1), 66–70 (2005) 

8. Tan, T.-l., Zhang, Y.: Reactive power optimizationbased on genetic/ tabu search hybrid al-
gorithm. PowerSystem Technology 28(11), 57–61 (2003) 

9. Eberhart, R.C., Shi, Y.: Comparing inertia weights and const riction factors in particle 
swarm optimization. In: Proc.of the IEEE Conf. on Evolutionary Computation, pp. 84–88. 
IEEE Service Center, California (2000) 

10. Naka, S., Genji, T.: A hybrid particle swarm optimization for distribution state estimation. 
IEEE Trans. on Power Systems 18, 60–68 (2003) 

11. Zhang, W.-J., Xie, X.-F.: DEPSO Hybrid Particle swarms with differential evolution op-
erator. In: Proceedings of IEEE International Conference on Systems, Man and Cybernet-
ics, vol. 4, pp. 3816–3821 (2003) 



 

Y. Tan et al. (Eds.): ICSI 2011, Part I, LNCS 6728, pp. 165–171, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Clustering-Based Particle Swarm Optimization for 
Electrical Impedance Imaging 

Gang Hu, Min-you Chen, Wei He, and Jin-qian Zhai 

State Key Laboratory of Power Transmission Equipment & System Security and  
New Technology, Chongqing University, Chongqing 400044, China 

Abstract. An attempt has been made in this paper to solve the non-linear and 
ill-posed Electrical Impedance Tomography (EIT) inverse problem using clus-
tering-based particle swam optimization (PSO). To enhance optimal search ca-
pability in such an ultra high dimension space and improve the quality of the 
reconstructed image, an adaptive PSO algorithm combined with a modified 
Newton–Raphson algorithm and a conductivity-based clustering algorithm was 
proposed. The modifications are performed on the reduction of dimension by 
dividing all mesh into clusters and initializing particles using the result of the 
modified Newton–Raphson type algorithm. Numerical simulation results indi-
cated that the proposed method has a faster convergence to optimal solution and 
higher spatial resolution on a reconstructed image. 

Keywords: Particle Swarm Optimization, Clustering, Reconstruction  
Algorithm, Electrical Impedance Tomography. 

1   Introduction  

The electrical impedance tomography (EIT) problem is an inverse problem that the 
internal conductivity of an inaccessible region can be estimated through currents in-
jected into the region and the corresponding voltages measured on the surface. EIT is 
very suitable for early detection, diagnosis, prediction and evaluation after healing for 
nerve diseases and malignant tumors [1]. Essentially, the EIT problem is a non-linear 
inverse problem and is severely ill-posed. The use of a Newton–Raphson type solu-

tion is widespread in EIT, the Newton's One-Step Error Reconstructor (NOSER) 
algorithm being a well known example [2]. However, the linearized solution will only 
be accurate when the true conductivity is close to the initial estimate and the process is 
likely to be trapped in a local minimum. 

Recently, some global optimizing evolutionary algorithms, such as GA [3], [4] and 
DE [5], were put forward to solve the inverse problem. Although these algorithms are 
relatively expensive in terms of computing time and resources, the spatial resolution of 
the reconstructed images could be improved. In the years since the introduction of PSO 
as a new method for global optimization [6], the PSO algorithm has been found to be 
successful in a wide variety of optimization tasks, including neural network training [7] 
and function minimization [8]. In this paper, a clustering-based PSO reconstruction 
method for EIT was proposed, which used the result of NOSER as prior knowledge to 
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initialize the population and reduce the dimension of problem space by clustering the 
meshes with a similarity factor. The convergence of the PSO was accelerated and the 
quality of imaging was improved. 

2   The EIT Problem 

The principle of operation of EIT is shown in Fig. 1, where low frequency current is 
injected through a pair of electrodes and voltages are captured on others. After sixteen 
injecting and measuring, the conductivity distribution would be evaluated. The poten-
tial distribution function ϕ and conductivity distribution function σ in the region Ω are 
governed by the Laplace equation (1) subject to the boundary condition (2). 

0)],(),([ =∇⋅∇ yxyx ϕσ   Ω∈),( yx  (1)
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),( yxj
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yx
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∂
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where j is the current density applied on the boundary, ∂Ω is the boundaries of Ω and n 
is the unit outward normal vector to the boundary surface. 

This inverse problem of EIT also can be presented as minimizing the objective 
function E(σ) with respect to σ, 
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where Vij are the measured boundary voltages and Uij are the calculated boundary 
voltages. This suggest the viability of employing PSO for the solution of the EIT 
problem. 

 

Fig. 1. Principle of Operation of EIT 

3   Clustering-Based PSO for Image Reconstruction in EIT 

There are many modified versions of PSO by improving convergence property to a 
certain problem. While, the modified PSO algorithm suggested in [9] was used to solve 



 Clustering-Based Particle Swarm Optimization for Electrical Impedance Imaging 167 

 

the EIT inverse problem in this paper. In the simple implementation of PSO in EIT, a 
swarm (particles) of tentative solutions (EIT images) is generated, usually at random. 
Each particle’s position vector consists in m-tuple of conductivity values (m is the 
number of elements discretizing the imaging region), i.e., the EIT particle’s position 
vector is a sequence of m conductivities. A fitness value is computed for each indi-
vidual. In the present case, the fitness function is equation (3). In EIT imaging, it 
normally requires a large number of elements in the FE model (e.g. m=864 in our FE 
model shown in Fig.2) to obtain satisfactory resolution in the imaging region. In such a 
high-dimensional space, the PSO algorithm is often failed in searching the global op-
timal solution. 

 

Fig. 2. The FE model used in computer simulation 

In fact, the existence of biological tissue is always classified and similar tissues have 
similar electrical properties. This enlighten us that if all the elements can be reasonably 
assigned into several subsets under certain similarity measures without losing key 
information, it will reduce the dimension of the problem space significantly and im-
prove the convergence of the PSO algorithm. Furthermore, after the one-step iteration 
of the NOSER algorithm, absolute conductivity values of meshes cannot be determined 
but some useful information on the objective images can be obtained which can be used 
as prior information of the optimization problem. 

To increase the feasibility of the pre-clustering in EIT reconstruction, a similarity 
factor was proposed to control the clustering, which includes two distance measures, 
the one is concerned with the conductivity value and the other is concerned with the 
adjacency of space location of elements. These two distance measures represented by 
VD and SD were defined as follows: 

cjeiVD σσ −= ; 22 )()( cjeicjei yyxxSD −+−= , (4)

where σei is the conductivity of the ith element, σcj stands for the conductivity of the jth 
cluster, xei and yei are the coordinates of the ith element, xcj and ycj stand for the coor-
dinates of the jth cluster. The conductivity of a cluster is defined as follows: 

jicj G/∑= σσ , (5)

where σi is the conductivity value of an element belonging to cluster j, and Gj is the 
number of elements in cluster j. The coordinates of a cluster are defined as follows: 

jicj Gxx /∑= ; jicj Gyy /∑= , (6)
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where xi and yi are the coordinates of an element belonging to cluster j and Gj is the 
number of elements in cluster j. 

Using the distance measures VD and SD, a self-organizing network based clustering 
algorithm [10] is used to establish the clusters. With different thresholds for VD and 
SD, different number of clusters will be divided. By the pre-clustering, the dimension 
of the PSO algorithm’s searching space was greatly reduced from m to N, where N is 
the number of clusters which is much smaller than the number of elements m. Thus, the 
position vector of ith individual in the population was represented as xi=[ xi1,…, xij,…, 
xiN]=[σi1,…, σij,…, σiN], where σij denotes the conductivity of jth cluster. Instead of 
initializing all particle’s position vector randomly, one individual’s position vector was 
initialized by the conductivity distribution [σ1,…, σj,…, σN], which was calculated 
through equation (5) with the result of the NOSER algorithm and self-organizing 
network based clustering algorithm. 

 

Fig. 3. The convergent performance of different threshold for VD and SD 

To preliminarily estimate the effect of the pre-clustering on the convergence of the 
PSO, a simulation experiment for EIT image reconstruction was conducted. Eight 
evenly spaced electrodes array put on the top boundary of a rectangle region and the 
864 elements, 463 nodes FE Model was used to discretize it. The conductivity of the 
black region 3 or B shown in Fig.2 was set to 5 S/m and the others were set to 1 S/m. 
Two different thresholds of VD and SD were taken into consideration and these two 
cases were compared with the non-clustering case. The convergence performance of 
the PSO algorithm with different clustering results was shown in Fig.3. It can be seen 
that the PSO with pre-clustering process (the lines with dot markers and diamond 
markers) converged faster than the PSO algorithm without clustering (the line with 
triangle markers). But without sufficient clusters, it is easy for the algorithm to be 
premature (see the line with diamond markers for iterations > 6). So the values for VD 
and SD should to be optimized for different imaging situation. 

In this paper, the actual implementation in EIT (clustering based PSO in the fol-
lowing) consists of a two-stage PSO. In the first stage, particles not only search the 
optimal conductivity values but also the optimal VD and SD values. So individual’s 
position vector includes N conductivity values, the VD value and the SD value, i.e., 
xi=[xi1, xi2, …, xiN, xi(N+1) , xi(N+2)] =[σi1, σi2,…, σiN, VDi, SDi]. For different VD and SD 
values the N is different, so the dimension of the position vector is different for each 
particle and even for each iteration of the same particle. In this stage, the two important 
values, individual-best and global-best for conductivity-position need a special process. 
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In this paper, at every iteration, the individual-best and global-best are first mapped into 
non-clustered space and then set these two values of each new cluster by the average 
values of all the elements belonging to the cluster. The two best values of a cluster are 
defined as follows: 

jbestibestj Gpp /∑= ; jbestibestj Ggg /∑= , (7) 

where pbesti is the individual-best value of an element belonging to cluster j, gbesti is the 
global-best value of an element belonging to cluster j, and Gj is the number of elements 
belonging to cluster j. 

The second PSO finally solves the EIT problem by searching for the conductivity 
distribution without clustering. In this stage, one population was initialized by the 
conductivities computed in the first stage and others generated randomly. 

The first stage PSO procedure can be described as following steps: 

Step1. Initialisation 

a) Set population number and iteration number. 

b) Randomly set the threshold of VD and SD for each particle. 

c) Use a self-organizing network to generate element clusters using the given VD, 

SD values based on the conductivity values calculated by NOSER. 

d) Initialize the first particle position using the conductivity values calculated 

through the NOSER algorithm and the others position and velocity of the par-

ticles within the pre-defined decision variable range. Set the maximum allow-

able velocity. Set individual-best and global-best position. 

Step2. Evaluation 

Evaluate each particle in the current population using Pareto-based fitness  

assignment strategy. Update individual-best and global-best. 

Step3. New particles generation 

a) Calculate individual-best and global-best according to clusters. 

b) Calculate the new velocity and new position. 

c) According to new VD and SD value re-cluster elements to clusters. 

d) Calculate the objective function values for all the new particles. Combine all 

position and new position (2N particles) together and store them in a temporary 

list. 

Step4. Non-dominated Sorting. 

Step5. Select particles for next iteration. 
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Step6. If satisfied the control condition, execute mutation operation, otherwise go to 

Step7. 

Step7. If satisfied the control condition, go to Step2. 

Step8. Store the non-dominated solutions from the final population. 

The proposed method was tested with simulation experiment shown in Fig.2. The 
background conductivity was set to 1 S/m and the target conductivity was chosen to 5 
S/m. To study the spatial resolution in the X direction parallel to the electrode arrays, 
four locations A~D shown in Fig.2 were tested. To study the spatial resolution in the Y 
direction, the depths of positions 1 to 4 shown in Fig.2 were tested. 

 

Fig. 4. The reconstruction images using NOSER and clustering-based PSO 

The images reconstructed by NOSER (the upper images) and clustering-based PSO 
(the bottom images) were shown in Fig.4. In these figures, the conductivity value was 
represented by brightness, i.e. the objective with higher conductivity corresponds to 
brighter region. Fig.4 shows that the clustering-based PSO can locate the target more 
accurately and reconstruct images more clear than NOSER. 

For each location, the image reconstruction was run 10 times independently with 
random initial conditions and adding randomly distributed noise (the maximum sig-
nal-to-noise ratio was 30DB) to the calculated voltages. It is clearly shown that the 
clustering-based PSO can improve the reconstruction image on the accuracy of solution 
remarkably.ï

4   Conclusions and Further Developments 

PSO appear to be a promising tool for the solution of the EIT problem. Although PSO is 
presently unsuitable for real-time tomographic applications, the exploitation of prior 
knowledge has the potential to produce better reconstructions. The proposed cluster-
ing-based PSO-EIT method is able to finding optimal solution of reconstruction that 
can improve imaging resolution.  

Further research should be done to improve the stability of the proposed method. 
The successful cases should be studied to obtain some experiential knowledge to op-
timize VD and SD. 
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Abstract. A robust optimization approach is proposed to solve the problem of 
supply chain collaboration under a demand uncertain environment. The proposed 
approach is universal and able to adapt to various demand models. First, the 
uncertain demand is described by a set of sampling sequences, and the total cost 
of supply chain is calculated based on these sequences to evaluate a collaboration 
scheme. Then a particle swarm optimization (PSO) is employed to find the op-
timal collaboration scheme which leads to a minimum total cost of supply chain. 
Numerical experiments show that the proposed approach can produce a robust 
solution that is insensible to the effect of demand uncertainty. 

Keywords: Supply chain collaboration, Robust optimization, Particle swarm 
optimization. 

1   Introduction 

In recent years, inter-enterprise collaborative decision-making has become an impor-
tant research direction in the field of supply chain management. The operational  
efficiency of supply chain is improved and its costs are reduced through the collabo-
ration decision between members in supply chain. Some researchers show great interest 
in supply chain collaboration. Fung et al[1], Li et al[2] made a review on the mecha-
nism of supply chain coordination respectively. Barbarosoglu et al [3]，Ozdamar et 
al[4] considered the large-scaled collaborative problem, solved those complicated 
problems effectively and got a near-optimal solution. 

Most of the literatures consider minimizing the total cost of the supply chain as the 
collaborative decision-making target. However, calculating the total cost of supply 
chain is difficult due to the demand uncertainty, and sometimes the total cost function is 
hard to express. Researchers have made various assumptions and limitations to deal 
with the demand uncertainty. Some suppose the demand is determined, so the calcula-
tion of total costs can be simplified. Darwish et al[5] studied the case of one supplier 
and multiply retailers, each retailer’s demand rate is supposed to be determined and 
distribution from the supplier to all the retailers must occur at the same time. The de-
mand was also assumed to be determined in [6] and the inventory and distribution 
decision was made based on this assumption. In addition, some assume that the demand 
follows certain probability distribution. Kang et al[7] studied the collaborative problem 
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of one supplier and one retailer. The number of customers arriving at the retailer (in a 
unit time) follows a Poisson distribution with a known mean value, and the mean and 
variance of demand quantities of customers are also known. The goal is to minimize the 
expected long-run average cost. Amanda et al[8] studied the case that the demand of 
retailer is stochastic and gave a closed-form approximate solution. 

For a supply chain with uncertain demand, only a suboptimal collaborative decision 
can be obtained if the demand is assumed to be determined. Assuming the demand  
follows a probability distribution will reduce the universality of total cost calculation. 
Moreover, the probability distribution of uncertain demand is actually difficult to  
estimate.  

In this paper, a PSO based robust optimization approach is proposed to solve the 
problem of supply chain collaboration. The approach can produce a collaboration 
decision scheme that is insensible to demand uncertain. First, some demand instances 
are generated randomly, and the total cost of supply chain are calculated by these in-
stance to evaluate a collaboration decision scheme. Then a PSO is used to optimize the 
decision schemes to obtain an optimal robust decision scheme. Experimental results 
show that the proposed approach can obtain a more stable decision scheme, which is 
robust to the demand uncertainty of supply chain. 

2   Problem Description 

We consider a supply chain that contains a supplier and a retailer, and the customer 
demand is uncertain, as shown in Fig. 1. The retailer holds an inventory to satisfy the 
demand of the customer, and unsatisfied demand will result in an unfulfilled penalty 
cost. The retailer has a reorder point r and an order quantity q. When the inventory level 
is lower than r, the retailer orders quantity q goods from the supplier, the order takes a 
lead time to arrive. The supplier also has a reorder point R and an order quantity Q. 
When the inventory level is lower than R, the supplier orders quantity Q goods from the 
upstream supplier, the order also takes a lead time to arrive. Fig. 2 shows inventory 
level changes for the retailer and the supplier. The retailer and the supplier must  
disburse the inventory holding cost, the order cost and the unfulfilled penalty cost, 
respectively. The total cost of the supply chain is sum of the cost of retailer and sup-
plier. The collaboration decision purpose is to minimize the total cost of supply chain. 

 

Fig. 1. Structure of the supply chain 
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For the retailer, the part which customer’s demand cannot be satisfied is considered 
to be the unfulfilled quantity; but for the supplier, as long as the inventory level is lower 
than the retailer’s order quantity, it will be out of stock. The supplier does not deliver 
goods to the retailer, and the unfulfilled quantity is always the retailer’s order quantity. 
This is because supplier’s fixed scale batches of distributions may save the cost. Hence 
the supplier's best order quantity should be an integral multiple of the retail’s order 
quantity. It is easy to explain with the reduction to absurdity: if the supplier’s order 
quantity Q is not the integral multiple of q, then let Q = nq + k (0<k<q). It is obviously 
to know Q = nq has the same supply capacity, but Q = nq takes up fewer inventories. 
Since supplier's inventory is reduced by q units each time, therefore the best reorder 
point R is also an integral multiple of q. Therefore, supplier's actual decision variables 
are not Q, R, but are the multiple of q, denoted by nq and nr, respectively. 

 

Fig. 2. Schematic of inventory level 

3   The Cost Calculation 

As mentioned above, {nq, nr, q, r} is the set of decision variables. Since the demand is 
uncertain, it is difficult to calculate the total cost directly. In this paper, a set of demand 
sampling sequences is produced randomly to reflect the demand uncertainty, and used 
to calculate the total cost of supply chain to evaluate a set of decision variables. 
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3.1   Calculating the Total Cost 

The notations used in the cost calculations are as follows. 

T  length of time horizon (days) 
Nord  number of order during the T days 
Nunf  number of out-of-stock times during the T days 
I k  retailer’s inventory level in the kth day (k = 1, 2, …, T) 
Uk  retailer’s kth unfulfilled quantity ( k = 1, 2, …, Nunf) 
Dk  demand of the customers in the kth day(k = 1, 2, …, T) 
hOf  unit order fixed cost of the retailer 
hOv  unit order variable cost of the retailer 
hU  unit unfulfilled penalty cost of the retailer 
hI  unit inventory holding cost of the retailer per day 
LR  lead time of the retailer 
 

The total cost of the retailer is calculated as follows. 

Step 1 Input T, hOf, hOv, hU, hI and LR. 
Step 2 Produce a sample sequence (D1, D2, ..., DT) randomly according to some 

probability distribution. Each element in the sequence represents the demand 
for a day. 

Step 3 Let the initial inventory level of the retailer to be q. 
Step 4 Inventory level of the retailer is decreased by Dk (k = 1, 2, …, T) everyday. 

When the inventory level is lower than r, an order is placed by the retailer and 
the goods will arrive in a lead time LR. If the on-hand inventory of the retailer 
is not sufficient to satisfy customers’ demands, the unfulfilled part is the 
quantity of shortage. 

Step 5 The inventory holding cost for one day is calculated by multiply the unit in-
ventory cost and inventory level of the day. Hence, in the kth day, the inven-
tory holding cost C_Ik is 

C_Ik = Ik *hI (1) 

Hence the total inventory holding cost C_I is 

= =

= =∑ ∑
1 1

_ _
T T

k k
k k

C I C I hI I  
(2) 

Step 6 The order cost is composed of two parts: the fixed part of each order and the 
variant part which changes linearly with the order quantity. Hence the total 
order cost C_O is 

C_O = Nord (hOf + q*hOv) (3) 

 Here, hOf + q*hOv is the order cost each time. 
Step 7 It is difficult to estimate the loss when inventory is out of stock, so we use an 

unfulfilled penalty cost here, which is proportional with the unfulfilled quan-
tity. If the kth shortage occurs in the mth day then 
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Uk = Dm - Im (4)

Hence the total unfulfilled penalty cost C_U is 

1

_
unfN

k
k

C U hU U
=

= ∑  (5)

Step 8 Denote the total cost of the retailer is TCR 

_ _ _RTC C I C O C U= + +
1 1

( * )
unfNT

k ord k
k k

hI I N hOf q hOv hU U
= =

= + + +∑ ∑  (6)

The pseudo codes for this approach is given in Fig. 3 

 

Fig. 3. Calculation method for the total cost of the retailer 



 A PSO- Based Robust Optimization Approach for Supply Chain Collaboration 177 

 

The cost calculation method of the supplier is similar to that of the retailer and the 
total cost of the supplier denoted as TCS is also obtained. Hence the total cost of supply 
chain TC is 

TC = TCR + TCS (7)

3.2   Evaluation of the Decision Variables 

In order to evaluate the decision variables, we generate N sampling sequences ran-
domly which follow some probability distribution. Each sampling sequence will be 
used to obtain a total cost denoted as TCk (k = 1, 2, …, N) according to the approach 
given in part 1.1. 

The average value of TCk denoted by TC is 

1

1 N

k
k

TC TC
N =

= ∑  

The flow chart is given in Fig. 4. 

 

Fig. 4. The flow chart of the evaluation method 
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4   Optimize the Decision Variables by the PSO 

4.1   Description of the Standard PSO 

For a standard PSO, there are M particles in n-dimensional space and the position of 
each particle represents a potential solution. The following notations are used in the 
PSO: 

 Xi = (xi1, xi2, …, xin)  current position of the ith particle 
 Vi = (vi1, vi2, …, vin)  current speed of the ith particle 
 Pi = (pi1, pi2, …, pin) the best position that the ith particle passed 
 Pg = (pg1, pg2, …, pgn) the best position that all the particles passed 

In the tth generation, the evolution equation for the jth dimension of the ith Particle is 

vij(t+1) = ωvij(t) + c1rand()(pij(t) - xij(t)) + c2rand()(pg(t) - xij(t)) (8) 

xij(t+1) = xij(t) + vij(t+1) (9) 

Here, ω is the inertia weight, c1and c2 are the acceleration constants. The rand() is a 
function used to generate random numbers in the range of [0, 1]. 

4.2   Algorithm Steps 

In this paper, a decision variable set {nq, nr, q, r} is represented by a 4-dimensional 
particle in the PSO. The steps of the PSO are as follows.  

Step 1 Initialize position and speed. Generate M 4-dimensional particles, whose ini-
tial position and speed are produced randomly. 

Step 2 Calculate the fitness value. For each particle, calculate its total cost by the 
approach proposed in part 3. Fitness of the particle is the reciprocal of the total 
cost. 

Step 3 For each particle, compare its current position and its historical best position, if 
the former is better, then let the historical best position equal to be the current 
position. 

Step 4 For each particle, compare its current position and the global best position, if 
the former is better, then let the global best position equal to be the current 
position. 

Step 5 Update position and speed of each particle according to the evolution equa-
tions (8) and (9). 

Step 6 If the termination condition is not satisfied, then return to Step 2; otherwise, 
the algorithm stops. 

5   Numerical Experiments 

In our experiment, the time horizon T = 180 and other supply chain parameters are 
listed in Table 1. 
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Table 1. Parameters of the supply chain 

 hOf hOv hI hU Lead Time(day) 
The retailer 10 0.05 0.01 10 2 
The supplier 30 0.02 0.005 30 5 

 
In the PSO, number of the particles pt_num = 100, ω= 0.1, c1= c2 = 2 and the gen-

erations of evolution max_gen = 300.  
The larger number of sampling sequence is, the better result will be obtained, but the 

time cost will increase too. So we choose N = 30 here to make a balance between the 
solution accuracy and time cost. 

The uncertain demand is supposed to follow a normal distribution N(80, 16). In 
order to describe the uncertainty of demand, two different approaches are employed. 
One is robust optimization approach which use the random sampling sequences fol-
lowing the normal distribution N(80, 16) as the customers’ demand to calculate the 
total cost of supply chain; the other is traditional optimization approach which use the 
mean of the normal distribution 80 to calculate the total cost. Both PSO-based ap-
proaches run 20 times and the obtained decision variables are given in Table 2 and 
Table 3 respectively.  

In order to evaluate the solutions, each solution is tested by 5000 sampling sequences 
which follow the normal distribution N(80, 16) and each sequence corresponds to a total 
cost. Then we calculate the mean and the standard deviation of these 5000 total costs 
which are denoted as TCexp, TCstd, respectively. They are also listed in the tables. The 
number of evaluations required to converge denoted as Ne is also given in the last column. 

Table 2. Experimental results obtained by the PSO based robust optimization approach 

No. nr nq q r TCexp TCstd Ne 
1 3 0 493 245 2502.78 40.35 204000 
2 15 8 246 246 5113.31 67.64 96000 
3 9 7 246 246 4325.20 67.60 264000 
4 2 0 495 246 2427.32 32.59 126000 
5 6 5 247 247 3631.87 51.71 147000 
6 4 1 251 249 2625.21 27.76 210000 
7 4 1 251 248 2625.82 28.39 129000 
8 12 6 246 246 4367.39 69.20 153000 
9 9 2 248 248 3176.79 41.65 318000 

10 2 0 494 246 2425.80 35.13 165000 
11 7 5 246 246 3718.02 66.46 288000 
12 2 0 494 247 2425.60 33.67 156000 
13 2 0 494 245 2428.15 38.76 285000 
14 3 0 495 244 2508.76 39.14 201000 
15 6 1 250 248 2704.21 36.63 129000 
16 9 3 246 246 3383.15 67.62 123000 
17 8 1 248 248 2884.40 40.69 141000 
18 2 0 494 247 2425.89 33.81 171000 
19 4 1 250 248 2629.71 36.53 171000 
20 2 0 493 247 2426.02 36.37 207000 

average     3037.77 44.59 184200 
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Table 3. Experimental results obtained by the PSO based traditional optimization approach 

No. nr nq q r TCexp TCstd Ne 
1 14 1 240 225 4378.55 459.54 6200 
2 2 0 480 230 3121.26 407.09 10800 
3 4 1 240 227 3569.22 456.66 7600 
4 2 0 480 238 2675.86 218.66 4600 
5 2 0 480 228 3210.11 425.42 5300 
6 10 5 240 230 4804.67 458.98 4700 
7 13 7 240 225 5517.37 455.57 8100 
8 2 0 480 234 2875.54 318.36 4400 
9 11 6 240 230 5137.75 458.09 5200 

10 8 1 240 238 3774.40 461.95 5300 
11 3 2 240 231 3829.19 464.24 4900 
12 9 3 240 237 4311.66 466.97 5900 
13 10 4 240 218 4622.90 454.65 17100 
14 14 1 240 231 4380.37 459.63 21700 
15 10 1 240 191 4376.62 489.52 11300 
16 12 1 240 237 4138.68 467.87 8600 
17 2 0 480 199 3509.27 445.63 6600 
18 9 3 240 226 4309.87 458.38 7700 
19 11 4 240 240 4644.05 461.49 5500 
20 9 3 240 237 4306.66 470.19 4900 

average     4074.70 437.94 7820 

 
From Table2 and Table 3, we can find that the mean of TCexp, TCstd obtained by 

traditional optimization approach are larger than that obtained by robust optimization 
approach. It shows that the proposed robust optimization approach can produce a col-
laboration decision scheme that is robust to the effect of demand uncertainty, but more 
evaluations are required by the robust approach to converge. 

6   Concluding Remarks 

In this paper, a PSO based robust optimization approach is proposed for the problem of 
supply chain collaboration with uncertain demand. The approach can obtain a robust 
collaboration decision scheme, which is insensible to the demand uncertainty that 
follows various probability distributions. The proposed approach requires more com-
putation time than the traditional method. The more demand sampling sequences are 
used, the better result can be obtained, but more time will be spent. Therefore, we need 
to set a balance of accuracy and time cost according to the practical requirements. 

The standard PSO is employed in the robust optimization algorithm and its effec-
tiveness has been proved by numerical experiments. However, the standard PSO has 
the shortage of easily sticking at local optimum. Many studies have been made to im-
prove its performances. Our future work is to develop the improved PSO to further 
enhance the accuracy of the solution, reduce the time complexity and compare with 
other optimization algorithms. 
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Abstract. An optimal evacuation route plan has to be established to overcome 
the problem of poor coordination and uneven distribution of vehicles before or 
during disaster. This article introduces the evacuation vehicle routing problem 
(EVRP) as a new variant to the vehicle routing problem (VRP). EVRP is a 
process of moving vehicles from a vehicle location to the potentially flooded 
area (PFA), and from PFA to relief center using a number of capacitated vehi-
cles. This paper examines the application of a multi-valued discrete particle 
swarm optimization (DPSO) for routing of vehicles from vehicle location to 
PFA. A solution representation is adopted and modified from the solution of the 
shortest path problem (SPP) to accommodate this problem. Experimental results 
were tested based on the objective function of finding a minimum total travel-
ling time using datasets from a flash flood evacuation operation. DPSO was 
found to yield better results than a genetic algorithm (GA).  

Keywords: Keywords-discrete particle swarm optimization; evacuation route 
plan; evacuation vehicle routing problem; potentially flooded area; vehicle  
routing problem. 

1   Introduction 

During flood evacuation, the determination of the optimal evacuation route for mov-
ing people to safety is made more difficult by the unavailability of information re-
quired by the agencies responding to the floods. This inadequacy in flood response 
triggered the National Security Council of Malaysia to formulate sustainable emer-
gency procedures for management of evacuees and properties. Nevertheless, these 
guidelines on disaster management have limited advantages (M. Omar, personal 
communication, November, 2007). They merely serve as a very generic manual  
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guiding response to disaster. In all circumstances of evacuation planning, immediate 
response is crucial as time is the decisive factor. Therefore, immediately after warning 
has been issued an emergency evacuation route plan should be generated considering 
the safe routes for evacuees and allocation of vehicles. An optimization algorithm is 
required to help in producing an optimal emergency evacuation plan to help local 
authorities and related agencies making prompt and informed decisions. A few opti-
mization algorithms have been developed in other countries for evacuation planning 
in several types of natural disaster, namely Capacity Constrained Route Planning [1-
3], A* [3], Flip High Flip Edge [4], greedy heuristic [5-6], Bottleneck  Relief Heuris-
tic [5-6], BEST [7], SP-TAG [7], and multi-ant colony system [8]. Some of them have 
demonstrated good performance in optimizing evacuation planning, but they do not 
focus on the capacity of vehicles during routing. Thus, this paper introduces the 
evacuation vehicle routing problem (EVRP) as a new variant to the vehicle routing 
problem (VRP) since it has same core process as VRP. EVRP considers the routing of 
vehicles that have been assigned for a particular number of people. Prior to solving 
the EVRP, a list of assigned vehicles with their capacities is generated using DPSO-
VAP [9]. It should be noted that in finding solutions to EVRP, it is unnecessary to 
find separately the solution of the shortest path problem (SPP) since SPP is a basic 
process of a VRP.  

In this paper, we consider the static routing of capacitated vehicles from vehicle lo-
cation to PFA to find a minimum total travelling time using multi-valued discrete 
particle swarm optimization (DPSO). PSO has shown significant results for solving 
SPP and outperformed genetic algorithm (GA) [10]. A range of random discrete prior-
ity values (PVs) that represents all of the nodes in a network graph offers a 95%  
optimal solution for PSO in this research. A further reason for using DPSO is its suc-
cessful performance in the variant of VRP that is similar to EVRP. It has been ob-
served that EVRP is closely related to the capacitated vehicle routing problem 
(CVRP), primarily in its handling capacity constraints [11-14]. In particular, EVRP 
deals with routing of a number of capacitated vehicles to PFA, whereas CVRP deals 
with the delivery of goods to customers. Like EVRP, CVRP assumes that each cus-
tomer is served by exactly one vehicle without exceeding the capacity constraints of 
each vehicle.   

Several optimization algorithms have been employed [11-14] for solving CVRP. 
For example, GA with local search is applied in [11] and DPSO with binary position 
and a hybrid of DPSO-SA in [12]. In general, they obtained an effective result in 
terms of processing time with no assurance for optimal results. In addition, with the 
embedment of the two solution representations for CVRP in PSO, namely SR-1 and 
SR-2, it has been shown that the PSO gives a good quality solution [15]. These repre-
sentations use a real value for the particle position representation comprising cus-
tomer priority and vehicle priority. SR-1 finds a sequence of routes for each vehicle 
which routes the vehicle to the customer, based on the Euclidean distance between 
customer and vehicle reference point, where as SR-2 incorporates the coverage of 
radius based on vehicle orientation point for vehicle routing. Local improvements 
were added to change the customer route direction to directly improve the routing 
cost. Although this solution has seemed possible for a search on optimal EVRP re-
sults, there are still some limitation of information to generate PFA's priority and 
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vehicle's priority value. Consequently, the EVRP solution is based on the problem 
formulation and a discrete particle representation in Section 3. 

This paper is organized as follows. Section 2 reviews the PSO algorithm. Section 3 
presents the problem formulation and solution representation. The DPSO algorithm is 
discussed in Section 4, and Section 5 explains the computational results and discus-
sion. Finally, Section 6 concludes the paper and addresses some future work. 

2   Particle Swarm Optimization 

PSO was introduced by Kennedy and Eberhart in the mid-1990s [16]. A population-
based stochastic approach grouped under swarm intelligence [17], it is used to solve 
continuous and discrete problems. PSO indicates the velocity and position of particles 
in a multi-dimensional space. By updating both velocity and position, a feasible solu-
tion is achieved. The fitness values comprise Gbest and  Pbest , which derive from the 
simulated behaviour of a group of particles [18]. PSO is able to explore regions of the 
search space and exploit the search to refine a feasible solution. These search strate-
gies are influenced by the parameters acceleration constant and inertia weight [19-20]. 
Equation 1 and equation 2 present the velocity and position formulas for the canonical 
PSO, respectively.  

        Vid(new)=W x Vid(old) + C1 x r x(Pbest - Xid(old) +  C2 x r x(Gbest-Xid(old))                   (1) 

                                        Xid(new)=Xid(old) + Vid(new)                                                   (2)   

where Vid(new)  and Vid(old) are the new and old velocities of particle i, respectively; 
Xid(old) and Xid(new) are the old and new particle positions respectively; and W is the 
inertia weight. C1 and C2 are the acceleration constant parameters, r is the random 
function in the range of [0,1], Pbest is the personal best of the ith particle, and Gbest is 
the best position derived from all particles in the swarm. 

PSO has been shown to be useful to solve such types of problems as the travelling 
salesman problem [20-21] and vehicle routing [12]. PSO is easy to implement and is 
computationally efficient [22-23]. Modification of PSO have been developed to the 
performance of PSO for various types of problems [24-25] and across standard 
benchmark datasets [21][24][26]. For example, the canonical PSO applies inertia 
weight in updating velocity to simulate the social behavior of birds. After two years of 
PSO development, the research on a discrete problem had concentrated on discrete 
binary PSO begun by Kennedy and Eberhart [27]. Kennedy and Eberhart proposed a 
new way of updating the position of particles to accommodate a binary representation. 
This solution was then improved in several studies based on a benchmark [28-29] and 
a real-world situation [30-31] using DPSO algorithm. When compared to other opti-
mization methods, the performance of DPSO has been found to be competitive with a 
genetic algorithm [30], demonstrating the promise of DPSO, with its global search 
capability and local exploitation. 
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3   Problem Formulation and Solution Representation 

This paper focuses on the EVRP that involves routing of a number of vehicles from a 
vehicle location to a single destination (i.e., only one PFA). EVRP addresses the ob-
jective function to find a minimum total traveling time for all the capacitated vehicles 
from the vehicle location to the PFA. This problem is mathematically formulated 
based on with terminology used in previous research on VRP [13][32]. The problem 
can be formally defined as follows: Let G = (N, E) be a weighted directed graph. 
Define N = {N0, N2, N3, ... Nn}. N0 represents a vehicle location and Nn is a destination 
node (PFA). E is the set of edges. Cij are matrices representing travelling cost of trav-
ersing from i to j. For each edge (i, j)  ∈ E,  a distance dij≥0 and travel time tij≥ 0, is a 
non negative integers. Vij  is the set of all vehicles that are able to move from node i 
and j, where V = {V1, V2, ...., Vk}. The capacity of vehicle, c ∈ V is denoted as VC. The 
decision variable Xijk is a binary variable which has the value of 1 if vehicle k travels 
from node i to node j, otherwise 0. The objective function is to find a minimum total 
travelling time for all vehicles from N0 to Nn. The EVRP is mathematically formulated 
as shown below:   

                                     Min XC ijkKk Nji ij∑ ∑∈ ∈),(                                         (3)                         

subject to 

     
1=∑ ∑ ∑∈ ∈ ∈Kk Ni Nj ijkX                                          (4)                  

                                      ∑ ∈Nj ijkX  - ∑ ∈Nj jikX = 0                                     (5)     

                                             ∈X ijk
  {0,1}                                                          (6)   

Constraints (4) and (5) ensure that all vehicles travelled. Constraint (6) is the set of 
bound decision variables. The solution representation for EVRP is adopted from the 
work of Mohemmed et al [10] because of its good performance in SPP. To accommo-
date the EVRP, we enhance this representation taking into account a number of ca-
pacitated vehicles. However, the use of PV that represents each node is maintained. 
As shown in Fig. 1, the representation of a particle consists of an array of PVs that is 
assigned to each of the capacitated vehicles. In other words, each particle comprises a 
matrix of PVn x Vm, that is, the matrix of a particle would depend on the total number 
of nodes and the number of generated vehicles.  

 
PV0 PV 1 PV 2 PV 3 ... PV n-1 PV n  V1 

PV 0 PV 1 PV 2 PV 3 ... PV n-1 PV n  V2 

... ... ... ... ... ... ... 
 . 

. 

PV PV 1 PV 2 PV 3 ... PV n-1 PV n  Vm 

 

Fig. 1. A particle comprises a matrix of PVn x Vm 
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Each vehicle traverses from its vehicle location (N0), trying to find a valid path to 
the PFA (Nn). If a path, for example from N0 to N1, is a valid path, then, the travelling 
time for the vehicle is calculated. The travelling time depends on the distance for the 
valid path and the standard travelling speed of the vehicle, as calculated using the 
following equation. 

                                       tv
 =

tsv

d                                       (7) 

where tv is travelling time for each vehicle for the valid path travelled, d is a distance 
between two nodes (edge), and tsv is a standard travelling speed for each vehicle. The 
total travelling time for each of vehicle travelled through valid path is then calculated 
using Equation 8. 

                         ttv
 = ∑m

vt1
                       (8)       

where ttv is the total travelling time for all vehicles travelling through all valid paths. 
Total travelling time for all vehicles is based on the number of vehicles travelling on 
the valid path, as calculated using Equation 9. 

 

                               ttvs
=  ∑m

vtt1
                                   (9) 

ttvs is presented as the Pbest calculated for each population of particle. The total trav-
elling time might be different because the number of vehicles travelling depends on 
the vehicles generated using myDPSO-VAP [9] and their standard travelling speed. 
The next section explains the solution representation that is adopted into the DPSO 
algorithm. 

4   Discrete Particle Swarm Optimization 

The solution representation described in Section 3 is implemented in the DPSO as 
shown in Fig. 2. This algorithm is similar to that found in Mohemmed et al [10]. The 
number of vehicles traversing from the starting node N0 (vehicle location) to Nn (PFA) 
is also considered. The algorithm starts with the normal process of PSO. Steps 2 and 3 
initialize the number of populations and the coefficient values C1 and C2, respectively. 
Step 4 performs the initialization of PVs and velocities. Step 5 retrieves vehicle's 
information which includes the vehicle id, vehicle capacity, and its standard travelling 
speed. Steps 6 through 11 follow the same step as described in Mohemmed et al [10]. 
Then, Pbest  and Gbest are calculated. In summary, steps 2 through 12 yield an initial 
solution, which is followed by an iteration process that begins at step 13 until 27 until 
the final iteration is achieved with all vehicles arriving at the destination. 

Each particle is updated with a new velocity and position value (PV) using Equa-
tion 1 and Equation 2 at step 14 until 17. The new velocity and new position value are 
in the form of a multi discrete value (positive integer). Step 18 executes path valida-
tion for each of the vehicles. Step 19 will take place in the event of a vehicle arriving 
at destination. If one vehicle arrives at the destination, other vehicles can use the PV 
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that was used by the vehicle that has arrived, ensuring that all vehicles would be able 
to arrive at their respective destinations. This condition can be seen as the probability 
of achieving an optimal or sub-optimal result for an iteration of a particle, if the vehi-
cle travelled for the minimum total travelling time. DPSO’s random population of 
particles and its ability to exploit and explore enhance the possibility of obtaining the 
optimal result. Finally, steps 20 to 26 calculate Pbest(new), Gbest(new) and the condition for 
the selection of the best current fitness for each iteration. 

1: Begin
2:   Initialize number of  particle's population
3: Declare  C1 and C2

4: Initialize PVs, Vmin and Vmax for all particles in random
5: Retrieve vehicle's information from [9]
6: For each vehicles 
7:     Construct a path
8:        If it is a valid path 
9:           Calculate tv

10: else 
11:       Return fitness value as 0
12: Calculate Pbest(old) and Gbest(old)

13: Do
14:   For each particle 
15:      Calculate V(new) using equation (1)
16:       Calculate PV(new)  using equation (2)
17:       Update PVs 
18:       Perform step 6 until 11
19:          If  there is a vehicle arrive at destination, other vehicles applies the PV used by this vehicle
20: Calculate Pbest (new)

21: Calculate Gbest (new)

22:     If (Gbest (new) > Gbest(old))
23:        Assign Gbest(old) as the best current fitness
24: If (Gbest (new) =< Gbest(old))
25:       Gbest(old))= Gbest (new)

26:      Assign Gbest(new) as the best current fitness
27: While (maximum iteration is achieved or all vehicles arrived at destination)
28: End

 

Fig. 2. DPSO algorithm 

5   Computational Result and Discussion 

This section presents the computational results to allow evaluation of the performance 
of the DPSO algorithm in the application of a multi discrete particle position in 
EVRP. The DPSO algorithm was implemented in JAVA and run on a PC with an 
Intel Core 2 CPU (3.0 GHz) and 2GB memory. To verify the proposed algorithm, a 
GA with the application of the same solution representation as DPSO is used. In this 
case, the GA with one point crossover and the same number of population was com-
pared to DPSO. The following subsections introduce the experimental setup and the 
datasets, and present and discuss the results using DPSO and GA. 

5.1   Experimental Setup 

Table 1 is the list of parameters for the computational experiments. 



188 M. Yusoff, J. Ariffin, and A. Mohamed 

Table 1. List of parameters 

Parameter Value Parameter Value 

PVmax -100  [10] Initial Vmin -10     [10] 
PVmin 100    [10] Initial Vmax 10      [10] 
C1 2.05   [19] Inertia Weight, w 0.12  [20] 
C2 2.05   [19] Stopping condition Until all vehicles are 

arrived destination or 
certain 200 iterations 

The stopping condition is based on all vehicles are arrived destination or 200 itera-
tions. Datasets were taken from data generated in dealing with a flash flood in Malay-
sia’s Kota Tinggi district in December 2006 and 2007. The assigned vehicles were 
generated using algorithm in [9], which involves the information of vehicles; vehicle 
id, destination node for each vehicle, number of people assigned to the particular 
vehicle, and travelling speed for each vehicle. Routes from vehicle location to PFA 
are indicated by source nodes (original vehicle location), nodes, edges, and destina-
tion node (PFA). All of the routes are transformed into graph abstraction. The graph is 
then transferred into an adjacency matrix for easy transformation into the algorithm. 
Table 2 shows the datasets for routing comprising the number of nodes, the total 
number of people that need to be evacuated and the number of vehicles generated.  

Table 2. List of datasets from flash flood evacuation in 2006 and 2007 for a single PFA 

Datasets Number of nodes Number people Number of  the generated vehicles 
VR1_06 12 5853 600 
VR2_06 35 26 3 
VR3_06 12 1215 154 
VR4_06 21 448 52 
VR5_06 25 524 59 
VR6_06 36 1429 224 
VR1_07 12 1620 253 
VR2_07 21 620 94 

5.2   Comparison of Solutions Using DPSO and GA  

The performance of DPSO and GA are analyzed based on the objective function to 
find a minimum total traveling time for all the capacitated vehicles from the vehicle 
location to the PFA. The comparisons involve two aspects: total travelling time for all 
vehicles from vehicle location to PFA and processing time. Table 3 compares the 
results of VR1_06 based on the fitness value (in hours) and processing time (in sec-
onds) for DPSO and GA. The total travelling time (ttvs) is obtained from the total of 
600 vehicles which successfully arrived at the PFA. As can be seen in Table 3, with 
10 populations, the fitness value of GA is about 0.039 seconds less than that of 
DPSO, but GA requires a longer processing time than does DPSO. In terms of num-
ber of iterations used for this population, GA performs only one iteration while DPSO 
performs 23 iterations. However, most interestingly, DPSO outperformed GA for 30 
populations in terms of processing time with about 0.296 seconds while GA requires 
0.319 seconds. DPSO for 50 populations in terms of total travelling time of about 
8.797 hours using only one iteration while GA requires 9.136. 
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Contrary to expectations, neither DPSO nor GA produced any result after 200 it-
erations for VR2_06, VR4_06, VR5_06, and VR6_06. This failure may be ac-
counted for by the fact that the multi-valued PVs assigned to each node were unable 
to determine valid paths. These datasets used a greater number of nodes than that of 
VR1_06. This shows that the particles utilize more search space compared to 
VR1_06. The next comparison highlights the results of the VR3_06. As can be seen 
in Table 3, both DPSO and GA performance obtained the same fitness for 50 popu-
lations using this dataset. However, DPSO took 0.002 second longer than GA. As 
can be seen in the table, GA gives less quality solution. GA requires 0.072 seconds 
of processing time using 50 populations while DPSO requires 0.070 seconds using 
10 populations. In particular, DPSO demonstrates better performance than GA, 
when using less than 40 populations. The result indicates that the use of multi-
valued PVs in DPSO and GA provides a minimum total travelling time to destina-
tion for this dataset.  

Table 3. Performance of DPSO and GA using VR1_06 and VR3_06 

 Dataset VR1_06 Dataset VR3_06 

DPSO GA DPSO GA  
 

P  
ttvs 

 
PT (s) iter 

 
ttvs 

 
PT (s) Iter 

 
ttvs 

 
PT (s) iter 

 
ttvs 

 
PT (s) Iter 

10 9.165 0.343 23 9.136 0.415 1 6.459 0.070 2 - - 200 

20 9.136 0.328 2 9.136 0.313 1 6.459 0.072 7 6.459 0.140 1 

30 9.136 0.296 2 9.136 0.319 1 6.459 0.070 23 - - 200 

40 9.136 0.390 1 9.136 0.313 1 6.459 0.080 6 6.459 0.095 1 

50 8.797 0.452 1 9.136 0.378 1 6.459 0.074 12 6.459 0.072 2 

                    * P - number of population, PT - processing time, iter - number of iteration 

Table 4 and 5 shows the results of the datasets of a single PFA concentration on 30 
populations of particles, 30 experiments and based on the iteration up to 200 or until 
all vehicles arrived at the PFA. The selection of 30 populations is based on the sug-
gestion from Mohammed et al [10]. The average of the total travelling time and proc-
essing time is based on 30 experiments. As shown in Table 4, it is apparent that 
DPSO outperformed GA of about 0.51% lesser in its average of fitness value. How-
ever, the average of processing time of DPSO is shown competitive to GA. In con-
trast, no results found for GA, using dataset VR3_06. The DPSO provides a consis-
tent of 6.459 hours of its total travelling time, with less than one second of processing 
time. In addition, DPSO confirm gives a better fitness value to EVRP. The evident is 
shown in Table 5 showing that DPSO outperformed the GA for both dataset VR1_07 
and VR2_07. Overall, DPSO and GA consume in average less than one second of 
processing time. 
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Table 4. Comparison measure of DPSO and GA using VR1_06 and VR3_06 based on average, 
min, max, and standard deviation 

 Dataset  VR1_06 Dataset VR3_06 

DPSO GA DPSO GA 
 

ttvs PT (s) Iter ttvs PT (s) iter ttvs PT (s) iter ttvs PT (s) iter 

Avg 9.129 0.468 2 9.176 0.460 1 6.459 0.253 2 - - 200 

Min 8.797 0.312 1 8.797 0.328 1 6.459 0.129 1 - - 200 

Max 9.880 0.843 15 9.880 0.671 2 6.459 0.365 32 - - 200 

Std Dev 0.176 0.136 2.609 0.200 0.107 0.498 0.000 0.043 5.721 - - - 

                     * P - number of population, PT - processing time, iter - number of iteration 

Table 5. Comparison measure of DPSO and GA using VR1_07 and VR2_07 based on average, 
min, max, and standard deviation 

 Dataset  VR1_07 Dataset VR2_07 

DPSO GA DPSO GA 
 

ttvs PT (s) Iter ttvs PT (s) iter ttvs PT (s) iter ttvs PT (s) iter 

Avg 3.839 0.199 8 3.844 0.196 2 2.046 3.146 14 - - 200 

Min 3.704 0.140 1 3.704 0.140 1 1.990 3.093 4 - - 200 

Max 4.160 0.327 101 4.160 0.280 2 2.369 3.296 91 - - 200 

Std 
Dev 

0.078 0.051 20.287 0.074 0.041 0.498 0.114 0.045 24.103 - - 0 

                     * P - number of population, PT - processing time, iter - number of iteration 
 
This study produced results, which corroborate the findings of Mohemmed et al 

[10] for SPP as it was offered good solution. The findings confirmed that DPSO 
proved better than GA in getting a minimum total travelling time. The use of multi-
valued discrete particle position is observed to have successfully achieved optimal 
results for a small number of datasets. In addition, the processing time of less than one 
second is acceptable, especially for the VR1_06 dataset, where 600 vehicles are trav-
ersed through all nodes to their destinations. Based on the interesting findings pro-
vided by DPSO, it can be illustrated that several valid paths were able to determine 
using 30 populations of particles, grants a higher possibility of using less travelling 
time for the vehicles travelled from vehicle location to a single PFA. With the high 
possibility of getting valid node, the best solution would become faster and lead to the 
fast convergence due to the less search space. This is confirmed by was mentioned in 
the literature review that the DPSO has a capability of finding better solution and fast 
convergence compared to the GA. 

6   Conclusion and Recommendation 

A solution representation for EVRP has been presented using both DPSO and GA. 
DPSO was found to achieve better solution quality in terms of total travelling time 
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and processing time compared to GA. The random multi-value of PVs and the formu-
lation of updating velocity and PVs used in DPSO support this solution. In future 
investigations, it might be possible to find mean of limiting the movement of parti-
cles, most probably with the decomposition of graph. This is to ensure at least one 
vehicle can traverse from vehicle location until destination using a valid path. In addi-
tion, more experiments are required with the consideration of different parameter 
values and different size of routing dataset. 
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Abstract. Process parameter window selection in semiconductor manufacturing 
field is usually the problem to find out the ranges of input parameters that meet 
production requirements, which requires allocating optima of a multimodal 
function efficiently. To achieve good results under the conditions of multimodal 
model and process control requirement, a NichePSO algorithm based method 
for parameter window selection is presented in this paper. Both simulation 
results and production validation data indicate it is an effective method for 
process parameter window selection. 

Keywords: NichePSO, Process Optimization, Parameter Window Selection. 

1   Introduction 

Statistical Process Control (SPC) has been widely applied to semiconductor 
manufacturing field to monitor process parameters and detect process abnormality. 
The data points of a stable and capable process vary randomly between Upper Control 
Limit (UCL) and Lower Control Limit (LCL), and it will be recommended to be 
adjusted once any data point violates the SPC control rule. To secure a wide enough 
range for each process parameter, the Upper Specification Limit (USL) and Lower 
Specification Limit (LSL) of the parameter must be wider than UCL and LCL. 
Normally process control in semiconductor production requires sigma level to be 3 or 
6, and process capability index Cpk should be equal to or greater than 1.67[5]. Control 
chart example in figure 1 presents the relations between the indicators: 
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Fig. 1. Control chart example  
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LSL and USL of each parameter are defined during process development stage 
according to (3), so the width of the process window W should be wide enough: 

σσσ 02.10367.1367.1 =×+×≥−≥ LSLUSLW  .   (4) 

In some of real cases, output parameter Q is a 
multimodal function of multiple input 
parameters Pi, and it must meet the process 
requirement of Q>R, or Q<R or R1<Q<R2. This 
paper takes the scenario of Q>R, then: 

 
.  (5) 

 
Each input parameter window must satisfy 

(4) and (5) and be as wide as possible, which is 
equivalent to find out all common points of Q 
and R, and figure out the widest portion that 
meets the both equations, such as the portion between c and d in figure 2. Usually, the 
function of Q is unknown and engineer has to define input parameter window based 
on experience and experiment data, which makes the problem more complex, so an 
effective method to select parameter window will be very helpful. 

Particle Swarm Optimization (PSO) has been successfully applied to solve 
unimodal optimization problem and has been proven as an effective algorithm, but it 
can find one optimum only and may not converge if there are multiple optima with 
equal or similar values. Niching Particle Swarm Optimizer (NichePSO) algorithm that 
developed by R. Brits can find out all optima including both global optimum and local 
optima, which is an effective tool to solve multimodal optimization problem. 
NichePSO algorithm is introduced and a parameter window selection method based 
on it is presented in this paper. Section 2 gives a brief overview of PSO and 
NichePSO algorithms, and section 3 provides a NichePSO algorithm based method 
for parameter window selection. Simulation results and production validation data of 
the method are summarized in section 4 and 5. 

2   Niching Particle Swarm Optimizer 

2.1   Particle Swarm Optimization 

Particle swarm optimization (PSO) algorithm was developed by J, Kennedy and R. 
Eberhart in 1995 when it was used to study the food searching behaviors of bird 
flocks[1],[3]. Each particle in PSO algorithm is regarded as a point with zero size and 
mass, and it updates its position based on its current velocity V, the best position 
found by itself (pbest) and the best position that found by whole group (gbest):  

))()(())()(()()1( 2211 txtgrctxtprctVtV ikbestkikbestikikik −+−+=+ ω  .     (6) 
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Velocity update equation (6) will be simplified as (8) if consider the velocity and 
the best position found by each individual particle only:  

))()(()()1( 11 txtprctVtV ikbestikikik −+=+ ω  .   (8) 

Where ω is inertia weight; c1 and c2 are acceleration constants; r1 and r2 are random 
numbers between 0 and 1; index i indicates the ith particle; k (1≤ k ≤ D) stands for the 
kth dimension of particle velocity vector and position vector. In the process of 
position update, particles cannot move out of the border and the velocity cannot 
exceed the limits i.e. Vik(t+1)∈[-Vmax, Vmax] and xik(t+1) ∈[-xmax, xmax]. If any 
particle flies out of border, it will be redistributed in the area near the border:   
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where β∈ (0, 0.5); r ( ) is random number between 0 and 1.  
In order to make the particles search for optimum in a large range at beginning 

stage of iteration and converge quickly near the end of iteration, typically inertia 
weight ω decreases linearly from 0.9 to 0.4: 
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where Imax is the maximum number of iterations. 

2.2   The Guaranteed Convergence Particle Swarm Optimizer (GCPSO) 

If follow standard PSO algorithm, a particle will stop nearby the current global best 
position if its velocity is near to zero, which implies all particles will stop there 
eventually if there is no new global best position is found. To correct this unwanted 
property, Van den Bergh introduced GCPSO algorithm and redefined the particle 
velocity and position update equations as below[3], [4]: 
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  (11)
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where τ is the index of the current global best particle; rand () is random number 
between 0 and 1. The value of ρ(t) is adapted after each step according to (13): 
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where #successes and #failures are the number of consecutive successes and failures 
respectively. The position update is defined as success if new position of a particle is 
different from that in last step; otherwise it will be defined as failure. This algorithm 
can achieve acceptable result when sc=15，fc=5 and ρ (0) =1.  
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2.3   Niching Particle Swarm Optimizer 

R. Brits et al introduced niching particle swarm optimization (NichePSO) algorithm 
to multiple optima detecting problem [2]. In NichePSO algorithm, if fitness change of 
a particle is less than δ over a certain consecutive number of iterations, then a 
subswarm is randomly created in the space around the particle with a radius of the 
Euclidean distance from the particle to its neighbor; subswarms are merged when they 
overlap or their Euclidean distance is less than µ . In the position update process, 
particles will be absorbed into a subswarm if they fly into a swarm. Normally δ and µ 
are small positive numbers. With NichePSO algorithm, both global optimum and 
local optima of multimodal functions can be detected. The flow and major steps of the 
NichePSO algorithm are as below [2]: 

1. Initialize main particle swarm including particle quantity, particle position and 
particle velocity. 

2. Train particles in main swarm per equation (7) and (8). 
3. Update the fitness of particles in the main swarm and create subswarm if meet 

criteria. 
4. For each subswarm: 

a. Train subswarm particles using one iteration of the GCPSO 
algorithm. 

b. Update each particle’s fitness. 
c. Update swarm radius. 

5. Merge subswarms if they meet merge criteria. 
6. Allow subswarm to absorb those particles from the main swarm if they move into 

it. 
7. Search in main particle swarm; create a new subswarm if any particle is found 

meeting partitioning criteria.  
8. Repeat from 2 until stopping criteria are met. 

3   NichePSO Algorithm Based Method for Process Window 
Selection  

A proper fitness function is required for NichePSO algorithm. Fitness function below 
is constructed for parameters window selection problem: 

|| RQObj −=  .    (14) 

Apparently, Obj is small if R is close to Q, and it equals to 0 for the common points 
of Q and R. With NichePSO algorithm and (14), we developed a parameter window 
selection method, its flow and major steps for one dimensional problem is as below:   

1. Search for common points of Q and R using NichePSO algorithm and fitness 
function (14). If none, return the information of no common point and exit 
program. 

2. Sort border points together with the common points that found in step 1 in 
increasing order, pick a point xj between each two neighbor points xi and xi+1; keep 
the portion [xi , xi+1] if Q(xj)>R. 
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3. Calculate the width Wi= xi+1-xi of each kept portion, tag the portion as candidate 
interval if Wi>10.02σ. If no candidate interval, return related information and exit 
program. 

4. Output endpoints and the width of each candidate interval, and recommend the 
widest interval as the portion that parameter window should be selected on.  

Two dimensional problems are more complex due to the solutions of Q=R are 
curves when they intersect each other, which contain infinite common points. The 
flow and major steps for the two dimensional problems are as below: 

1. Search for common points of Q and R using NichePSO algorithm and fitness 
function (14). If none, return information of no common point and exit program. 

2. Calculate Euclidean distance between the common points that found in step 1. If 
the distance between a particle and its neighbor is less than ε, then search for 
common points again using NichePSO algorithm in the space around the particle 
with a radius of the Euclidean distance from it to its neighbor. Repeat this step until 
the distance between each particle and its neighbor is less than ε.  

3. Link all common points that found in step 2 by following the rectangle grid model 
based algorithm for contour drawing [6]. 

4. Pick a point (xi, yj) in each area that separated by the close curves obtained in step 
3, keep the area if Q (xi, yj)>R.  

5. Calculate the widths of each kept area in both in x and y direction. If Wx>10.02σx 
and Wy>10.02σy, tag the area as candidate area; if no candidate area, return related 
information and exit program. 

6. Output the border lines and the widths Wx and Wy of each candidate area. 

With geometric shape and widths of each candidate area, engineer can easily make 
judgment where the process parameter window should be selected from.   

4   Simulation Results  

R.Brits et al have ever used below standard multimodal functions to test NichePSO 
algorithm due to their typical properties of multimodal function [2], see figure 10. We 
also use the 5 functions to test the NichePSO algorithm based process parameter 
window selection method.  
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With main swarm particle quantity 30, R＝0.2 and σ=0.008, we tested the method and 
got the results in table 1 and table 2. Table 1 shows all main particles converged at or  
close to the common points of R and each function, and all the common points in F1 to  
F4 were found during  
each test. Table 2 provides 
the recommended intervals 
which the parameters 
window can be selected on. 
Figure 3 to 6 record particle 
trace during iterations.  

F5 is a 3D curved 
surface with 4 maxima, 
which can be used to test 
two dimensional problems. 
Set main swarm particles 
as 300, with R=150, σx=σy 
=0.1 and ε=0.3, the test 
results on F5 are shown in 
table 3 and figure 9. Figure 8 is the image of F5 and R=150, and figure 7 records 
particles’ original position, iteration-in-process position and final position 
respectively. Apparently, the particles’ final positions in figure 7 match with the 
intersection curves of F5 and R=150 in figure 8. In most of real cases, the summary in 
table 3 and areas in figure 9 are good enough for engineer to define input parameter 
window.  
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Fig. 6. Particle trace on F4 

Function R σ ε Imax Test Times
Fitness 
Mean

Fitness 
Deviation

%Common 
Points Found 

F1 0.2 0.008 -- 100 30 1.39E-05 5.31E-05 100%

F2 0.2 0.008 -- 100 30 8.96E-07 2.47E-06 100%

F3 0.2 0.008 -- 100 30 1.49E-04 4.72E-04 100%

F4 0.2 0.008 -- 100 30 3.77E-04 1.34E-03 100%

F5 150 0.1, 0.1 0.3 500 30 8.01E-07 4.22E-06 --

Table 1. Test summary   

Function
Recommended 

Inerval 

F1
0.0554,
0.1446

0.2554,
0.3446

0.4554,
0.5446

0.6554,
0.7446

0.8554,
0.9446

0.0892 0.0892 0.0892 0.0892 0.0892 1,2,3,4,5

F2
0.0555,
0.1445

0.2561,
0.3429

0.089 0.0868 1

F3
0.2057,
0.2894

0.4026,
0.5000

0.6280,
0.7359

0.8759,
0.9928

0.0837 0.0974 0.1079 0.1169 4

F4
0.2060,
0.2884

0.4054,
0.4950

0.6381,
0.7213

0.0824 0.0896 0.0832 2

Endpoints of Candidate Interval Width of Candidate Interval

Table 2. Test output (F1—F4) 
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Fig. 10. Images of F1, F2, F3, F4 and F5 

5   DOE Analysis and Production Validation 

The distribution of output voltage Vout of a power management product is related to 
input voltage Vin and test temperature Temp. To achieve higher Cpk of Vout during test 
mass production, an experiment to define the ranges of Vin and Temp was conducted. 
Table 4 gives the matrix of the Design of Experiment (DOE) and results, where Vout 
mean and Vout stdev are average and standard deviation of Vout of 18 units tested in 

Table 3. Test output (F5) 

 Area Wx Wy

1 2.0091 2.3907

2 2.8521 2.4034

3 3.2886 6.5977
Fig. 9. Areas meeting 
requirements (F5) 

Fig. 8. F5 and R=150 
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Lot 1 2 3 4 5 6 7 8 9 10

Cpk 1.98028 1.957399 1.98967 1.949872 2.01362 1.99061 1.99364 1.96887 2.01008 1.90897

Table 5. Production validation data  

same leg. Given the ideal target of Vout is 
0.9V and preliminary specification limits are 
0.888V and 0.912V, Cpk in table 4 can be 
easily computed. The test head and resource 
channel of testing machine can provide 
stable Vin and Temp with standard deviations 
at σvin=0.003V and σTemp=0.6oC. 

Set main particle quantity as 300 and take 
R=1.333, 1.5, 1.667 and 1.883, and then 
study the relation between Vout Cpk and 
input parameters Vin and Temp by using the 
method presented in section 3, then get the 
curves in figure 11. Engineer can easily  
 

   
 

select the area in rectangle as the 
process windows of Vin and Temp 
based on figure 11, i.e. Vin ∈

[2.8V,5.2V] and Temp ∈  [0oC, 
60oC], which can make Vout achieve 
higher Cpk. Set Vin=4.0V and Temp=30oC as test mass production settings, then 
randomly pick 10 lots and record their Vout Cpk in table 5, here the distribution of Vout 
is much better than that we got during DOE, which shows the method presented in 
this paper is effective for process parameter window selection.  

6   Conclusion 

This paper introduces a NichePSO algorithm based method for parameter window 
selection. For one dimensional problem, it can directly give the portion where input 
parameter window can be selected on; and it can provide the contours of output 
parameter and the width of each contour in both x and y direction for two dimensional 
problem. The production validation data and simulation results on standard 
multimodal functions reveal it is an effective method for parameter window selection.  
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Leg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Temp /deg C -40 -40 -40 0 0 0 25 25 25 85 85 85 125 125 125

Vin /V 3.6 2.3 5.5 3.6 2.3 5.5 3.6 2.3 5.5 3.6 2.3 5.5 3.6 2.3 5.5
Vout mean 0.89687 0.89688 0.89735 0.89876 0.89863 0.89923 0.89984 0.89956 0.90022 0.90055 0.90033 0.90145 0.90091 0.90043 0.90263
Vout stdev 0.00215 0.00217 0.00213 0.00199 0.00204 0.00198 0.002 0.00206 0.00198 0.00229 0.00237 0.00226 0.00261 0.00267 0.00261

Cpk 1.37847 1.36639 1.46676 1.80229 1.73727 1.89182 1.97496 1.87046 1.98523 1.66581 1.64371 1.55381 1.41683 1.44379 1.19414

Table 4. DOE matrix and data 

Fig. 11. DOE analysis result 
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Abstract. Location based services are rapidly gaining popularity in various 
mobile applications. Such services rely particularly on the capability to 
accurately determine the location of the user. Several techniques are already 
available to provide localization for static or mobile applications, GPS being the 
most popular. However, due to some limitations of GPS such as low accuracy, 
unavailability in indoor environments and lower signal quality in urban areas 
with high rise buildings, complementary solutions are essential to offer 
satisfactory service at all places all the time. This paper demonstrates the use of 
a widely available WiFi networking infrastructure for accurate and low-cost 
indoor localization. Most existing WiFi-based localization approaches employ 
radio signal strength indicator (RSSI) fingerprinting technique, which requires a 
great deal of pre-deployment effort. Our swarm-inspired optimization algorithm 
applies a simpler and efficient technique based on the radio propagation model 
of the wireless signal. The proposed technique is evaluated in simulation and is 
demonstrated to achieve excellent average localization error of about 4 meters 
in an area of 50 x 50 square meters, under noisy RSSI measurements. 

Keywords: indoor localization, RSSI modeling, RSSI fingerprinting, particle 
swarm optimization. 

1   Introduction 

The recent advances in mobile Internet technology and the proliferation of a wide 
range of services are further accelerating the research and development effort for 
improved as well as new applications. Modern location based services (LBS) have 
evolved as a result of the technology integration of mobile Internet, smart phones, and 
Geospatial information. Knowledge of the user’s location as well as locations of 
interest points in a given area are at the core of LBS and related services.  

The problem of localization has been a core focus of research by many researchers 
in various fields, including mobile robotics, wireless sensor networks, mobile 
communication and internet technology. In general, different techniques may be 
utilized for outdoor and indoor localization. The focus of our study in this paper is 
indoor localization. Simplicity, cost, and accuracy of localization are common criteria 
for comparing different localization strategies. Ideally, it is desirable to have a 
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technique that could be easily deployable without requiring initial setup, training or 
environmental adaptation. It is also necessary that the technique provides sufficient 
accuracy for the class of applications it is intended for. Obviously, a low cost solution 
is desirable to make the technology affordable for widespread applications.  

Several techniques such as LANDMARC [1], Cricket [2], and Active Badge [3] 
are already available for indoor localization. However, these techniques deploy and 
rely on specialized infrastructure based on RFID, sonar, IR, or radio signals for the 
purpose of the localization thus adding to the deployment cost. Although the initial 
setup adds up to the cost of localization, these techniques often provide excellent 
accuracies. For example, Cricket - a triangulation based positioning technique using 
active ultrasound beacons, achieves an overall localization accuracy within 10 cm of 
the actual position.  Such high levels of accuracies could be attractive for 
applications such as mobile robot navigation and object manipulation tasks.  

On the other hand, several indoor and outdoor applications may not necessarily 
require such high levels of sub-meter accuracies. For example, when a person is 
navigating in an unknown indoor office environment or outdoors it might be 
sufficient to be able to localize within a few meters to aid find nearest interest points. 
For such applications where the accuracy requirement is relatively relaxed simpler 
and lower-cost localization techniques will be more attractive.  

Two related radio frequency (RF) based localization techniques attract great 
interest mostly due to the fact that existing wireless communication infrastructure is 
exploited without incurring additional deployment cost. These methods rely on RF 
signals either from cellular towers or WiFi access points (APs). The localization 
solution based on reference information from cellular towers can be utilized anywhere 
cellular signals from at least 3 towers are available. For example, as part of the 
Federal Communications Commission (FCC) E911 rules wireless carriers in the US 
are required by law to provide a 911 caller’s location to within 50 to 300 meters 
depending on the technology used [4]. Despite the limited accuracy of this technique 
it applies both indoors and outdoors providing global localization in extended 
geographical areas.  

Our proposed solution is based on RF signals from WiFi access points. It assumes 
knowledge of the locations and transmit-powers of at least three access points. To 
minimize the effect of RSSI measurement uncertainties in the localization accuracy 
we employ a particle swarm based optimization algorithm that is found to result in 
robust performance in noisy environments. The main contribution of this paper is that 
we demonstrate an efficient and sufficiently accurate localization scheme for indoor 
localization using existing infrastructure with little initial setup or training. 

The rest of this paper is organized as follows. Section II presents related work on 
RF based localization. Section III presents the wireless signal propagation model that 
is used in our localization solution. Section IV gives a short introduction to the PSO 
algorithm and describes the mapping of the localization problem to the PSO model. 
Section V presents the experiment and results. And finally the paper provides 
discussion and concluding remarks in sections VI and VII.  
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2   Related Work  

In general, the localization techniques that use RF signals on existing networks 
employ a radio signal fingerprinting approach, model based techniques, or a 
combination with other localization methods [5]. In the radio signal fingerprinting 
method the RSSI measurements from all the radio transmitters in the region is 
mapped at each location of the environment. To localize a given device its RSSI 
readings are matched against the values stored in the map. RADAR [6] is an example 
of this technique which uses extensive offline data collection before real-time 
localization starts. There have been several improvements on this approach through 
the years as well as commercialization of the technology [7].  

In a similar approach to RF signal fingerprinting but at a global scale a company 
called Skyhook [8] developed a WiFi positioning system (WPS). It collects and 
maintains a massive worldwide database of WiFi access points in major populated 
areas. Using the data and applying intelligent search techniques the company provides 
subscribers real-time access to location information. The company claims an accuracy 
of 10 to 20 meters by its core engine. 

Alternative to the signal-fingerprinting and map-based approaches is a model-
based technique that relies on the radio propagation property of the WiFi signal. In 
this case, the RF propagation model is used to predict the RSSI at various points in an 
environment. This method eliminates the cost of initial deployment, maintenance and 
the issue of scalability associated with the signal fingerprinting technique. But its 
localization accuracy may be slightly lower [9]. Previously proposed solutions using 
this approach include Chintalapudi et al. [5], Lim et al. [10], Madigan et al. [11]. Most 
of these techniques except [5] assume knowledge of the locations and transmit power 
of the APs, and/or rely on WiFi sniffers at known locations to provide anchor points 
for the localization algorithms. Chintalapudi et al. on the other hand assume access to 
GPS data at some locations in the environment. The GPS data provides known 
location fixes for the environment modeling created by a server. The system is 
configured in client-server model so mobile nodes query the server for their location 
information by sending requests wirelessly.  

Like many of the existing techniques, our proposed method assumes knowledge of 
the locations and transmit characteristics of at least three access points in the 
operating environment. We modeled the localization problem as an optimization 
problem with the goal of minimizing the computed location error. Then an intelligent 
nature inspired problem solving strategy is applied to the optimal solutions for the 
localization problem. In this paper we employed the Particle Swarm Optimization 
(PSO) algorithm. The main reason for choosing PSO over other competing 
optimization techniques is due to its simplicity and proven performance to deal with 
noisy optimization problems. For example, on a similar problem of emission source 
localization in noisy environments we demonstrated the superior performance of PSO 
over Differential evolution (DE) and Matlab’s non-linear least squares (LSQ) 
optimization tool [12].  
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3   Wireless Signal Propagation Model  

In our studies we assume an environment with IEEE 802.11 wireless communication 
at 2.4 GHz band. There are several experimental and theoretical studies of radio 
signal propagation in indoor environments [13]. In this paper the log-distance path 
loss (LDPL) model is used to predict RF signal attenuation as a function of distance 
between an AP and a WiFi receiver. This model is given by Equation (1) below: 

.)log(100 RdPpd +⋅⋅−= α  (1) 

where pd is the received power in dBm at distance d (in meters) from the transmitter. 
P0 is the signal strength 1 meter from the transmitter, α is known as the path loss 
exponent, and R represents a random variable for capturing the variations in the RSSI 
readings due to multi-path effects, physical barriers in signal path and other 
imperfections in the model. The parameter α is dependent on the environment, i.e. 
type of construction material, architecture, location, temperature, humidity, etc. 
Empirical measurements of α in the literature report values in the range 1.8 to 5 
depending on the level of obstruction [11]. Lower value of α correspond to lower 
signal path loss. For example, for free space propagation a value of 2.0 is used and for 
office environment with wall partitions, furniture and people a value of 2.5 would be 
a reasonable choice.  

4   Particle Swarm Based Localization Algorithm  

Particle Swarm Optimization (PSO) was inspired by the social swarming behavior of 
bird flocks, fish schools, and bee swarms. It was first developed in 1995 by Kennedy 
and Eberhart [14]. Individual particles in a particle swarm represent candidate 
solutions for the optimization problem. Initially, at the start of the optimization 
algorithm the PSO particles are assigned random initial positions in the search space. 
The particles are then moved around in the parameter space by using systematic rules 
to adjust their velocities and positions, in response to the swarm’s experience in 
locating quality solutions.  

The social interaction of the particles in the swarm shapes the dynamics the 
optimization algorithm. Thus, the performance of the individual particles in the 
swarm is influenced by a combination of their personal and social best experiences. In 
effect, the particles tend to be attracted to the best solution they have individually 
found and the best solution that any particle in their neighborhood has found.  

Different PSO models have been proposed over the years to target different classes 
of problems. Two of the most widely known models are the constriction-factor and 
inertia-weight forms of the PSO algorithm, both of which have been demonstrated to 
be effective for general optimization tasks. The governing equations for the 
constriction-factor form of the PSO algorithm are given by Equations (2) and (3): 

( )))(())(()()1( 2211 txprtxprtvtv ijgjijijijij −⋅⋅+−⋅⋅+⋅=+ ϕϕχ . (2) 

)1()()1( ++=+ tvtxtx ijijij
. (3) 
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The quantity χ is called constriction-factor. The quantity   is the personal best 
position of particle   and   is the global best position in the entire swarm.   and   
represent the learning rates that control the degree of influence of the cognitive and 
social components.   and   are independently generated random numbers in (0,1). 
They contribute to the stochastic behavior of the algorithm to allow random 
exploration of the search space in the surroundings of the personal and neighborhood 
best positions. The performance of each particle is measured using a problem specific 
pre-defined fitness function. 

In our proposed solution strategy for the problem of localization we assume the 
presence of at least three reference APs with known locations and transmit powers. 
When we want to compute the (x, y) location of a point in space within the operating 
environment, we will first collect RSSI readings from the three APs. Then we apply 
the swarm inspired optimization method on the LDPL model to reach at an optimal 
localization with minimum estimation error. The fitness function for the optimization 
problem is derived with the goal of minimizing the sum of the squares of the errors 
between the actual RSSI readings from all the APs at the unknown location (x, y) and 
the theoretical values that would be obtained from the LDPL model, computed over 
all the reference APs. 

( ) .)log(10 2
0∑

∀

⋅⋅+−=
APs

iii dPpf α     (4) 

where, pi is the RSSI reading at the unknown location from the ith access point. P0i is 
the RSSI reading at 1 meter radius from the ith AP. di is the distance in meters of the 
unknown node location from the ith AP. In equation (4) di is the unknown quantity 
that will be solved as part of finding the solution for the unknown location (x, y). 

The PSO algorithm initially starts by assigning the particles in the swarm random 
positions in the search space. By evaluating the fitness function for each particle the 
algorithm determines how close they are to the actual position. Particles that are 
located far away from the desired location (x, y), whose position is being computed, 
result in larger values of f corresponding to higher estimation errors than particles 
closer to the actual node location. Then, in successive iterations the algorithm tries to 
update the particles’ velocities and positions using the PSO equations so as to 
improve their fitness values. 

5   Experiment and Results  

For our simulation experiment we considered the following environmental layout, 
shown in Fig. 1. Three different dimensions of the same environmental layout were 
considered to study the effect of the size of the working areas on the estimation 
accuracy. Experiments were conducted on the following three sizes of the 
environment: 

a) 25 x 25 square meters 
b) 50 x 50 square meters 
c) 100 x 100 square meters 
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In each case three APs were placed far apart from each other in a triangular 
formation. Then randomly generated points were distributed all over the environment. 
The PSO based localization algorithm computes the locations of these points based on 
their RSSI measurements. 

  

Fig. 1. Layout of the test environment with randomly placed test points (the triangles are APs, 
the dots are points whose localization is to be computed) 

The only information the optimization algorithm has at the its start is the set of 
RSSI measurements at the unknown position from the three WiFi access points. The 
locations and transmit powers of the access points is assumed known, and also the 
path loss model of the radio signal in the operating environment. 

To study the impact of the measurement uncertainties in the RSSI values due to 
environmental effects, zero mean Gaussian distributed random noise was introduced 
in the emulated readings of the radio signals. The standard deviation of the noise was 
varied from 0 to 5, to see how it impacts the localization accuracy.  

To minimize the impact of noise the localization algorithm takes 30 samples of the 
RSSI readings at each unknown location and takes the average value. Using the RSSI 
readings and knowledge of information about the three reference access points the 
PSO algorithm computes the localization of each point. For the LDPL model in the 
problem formulation we used a value of α = 2.5 which was assumed to work fine for a 
single floor office building with some partitioning walls and corridors.  

The PSO parameters used in the simulation are swarm size of N = 50, constriction 
factor, χ = 0.729, learning rates,   =  = 2.05. 

The performance of the localization algorithm is evaluated by calculating the 
localization error which is computed as the Euclidean distance between the estimated 
location (x’, y’) of the point from the algorithm and its actual location (x, y). 

Fig. 2, 3 and 4 present the way the localization algorithm performs over the three 
environmental dimensions.  
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Fig. 2. Localization accuracy on 25 x 25 sq. meters. The horizontal axis shows st. dev. of the 
Gaussian noise in the RSSI measurement error. 
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Fig. 3. Localization accuracy on 50 x 50 sq. meters. The horizontal axis shows st. dev. of the 
Gaussian noise in the RSSI measurement. 
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Fig. 4. Localization accuracy on 100 x 100 sq. meters. The horizontal axis shows st. dev. of the 
Gaussian noise in the RSSI measurement. 
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6   Discussion 

From Fig. 2, we see that for the smallest size operating environment (25 x 25 sq. 
meters), the average maximum localization error is limited to about 2 meters for the 
maximum setting of the noise level. From Fig. 3, for the 50 x 50 sq. meters operating 
environment, the average maximum error is shown to be limited to about 4 meters for 
the maximum noise level. And from Fig. 4, for the 100 x 100 sq. meters operating 
environment, the average maximum error is shown to be about 8.5 meters at the 
maximum noise level. From these results we observe that the localization error 
follows more like a linear pattern as a function of the dimension of the operating 
environment.  

To compare the performance of our algorithm to that of RSSI fingerprinting 
techniques, consider the problem dimension 50 x 50 square meters which is close to 
the size of the environment reported in RADAR [6]. The 50 percentile (median) error 
of our algorithm at the maximum level of Gaussian noise is about 3.4 meters. This 
result is only slightly worse than the best 2 to 3 meter achieved by RADAR which 
relies on cumbersome offline data collection.  

A resolution of 3 to 5 meters for medium size environments could be quite good 
enough for common indoor applications. Our goal is to deploy such localization tools 
on autonomous mobile robots that could benefit from the WiFi based global 
localization for navigational tasks, while improvements on the accuracy can be 
achieved using additional sensors for local perception. For example, if vision or other 
sensors are available on board the mobile robot, information obtained from visual 
landmarks could be used to aid in improving the localization accuracy. 

When examining the execution performance of our proposed algorithm, we find 
that compared to other model based methods the PSO-based solution is found to be 
efficient and converges fast in less than one second on a Dell Latitude E5400 laptop. 
In contrast, the result reported in [8] takes extra long off-line training times (16 to 65 
minutes on a Lenovo T61p laptop) for building the RF model using Genetic 
Algorithm based technique. 

7   Conclusion 

The significance of our PSO based localization technique using existing WiFi 
infrastructure is that it requires little initial setup. It can be easily deployed for use by 
humans or mobile robots as long as WiFi access from at least three APs can be 
obtained. Unlike other techniques, such as [5] and [8], there is no offline training 
required. These are important properties especially in scenarios when there is no prior 
information about the environment or when there is no time to gather fingerprinting 
data that would be needed for some of the other methods.  

The proposed technique is evaluated in simulation and is demonstrated to achieve 
average localization error of about 4 meters in an area of 50 x 50 square meters, under 
noisy RSSI measurements. This is reasonably sufficient accuracy for the class of 
target applications the technique is meant for. In future work we will implement and 
carry out experiments in real physical environments and evaluate its performance. 
Methods of automatically determining the parameters of the APs will also be 
examined. 
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Abstract. An improved method for embedding a secret message into a cover 
image with least significant bit (LSB) substitution in discrete cosine 
transformation (DCT) domain was proposed. The secret message was first split 
into partitions, while the cover image was divided into blocks of size 2x2, and 
DCT was used to convert the blocks from spatial domain to frequency domain. 
Then, Particle Swarm Optimization (PSO) algorithm was applied to search for 
an optimal substitution matrix T to transform the split partitions for an optimal 
embedding. Next, the transformed part of secret message was embedded into 
the AC coefficients of the transformed image blocks by LSB substitution. 
Experimental results show the proposed method can keep the quality of the 
stego-image better, while the security of the hidden secret message is increased 
by use of the substitution matrix T. 

Keywords: Steganography, PSO, LSB, DCT. 

1   Introduction 

Internet is the world on top of our fingers and it is anything but secure.  Information 
can be sent from the half part of the globe to the other half in just seconds.  However, 
sharing data over public networks such as the Internet is unsafe. Ways to insure data 
confidentiality is then needed. In contrast with cryptography, steganography is the art 
and science of hiding a message in a cover signal for transmission where the 
concealed message will not be apparent to anyone except for the targeted receiver to 
be able to extract its content with help of pre-defined way or key.  

The most well-known steganographic technique in the data hiding field is LSBs 
substitution [1]. Image hiding methods can generally be categorized into spatial and 
frequency domain [2]. In 2007, a JPEG steganographic method was presented by Li 
and Wang [2]; they have modified the quantization table used in JQTM (Jpeg and 
quantization table modification) for embedding larger secret message into the DC-to-
middle frequency components for each block and developed a PSO algorithm to 
approach optimal LSB substitution, which proposed a higher security level and a 
better quality of the stego image. Recently, a method proposed in [3] imbedded data 
at the LSBs of 2x2 transformed blocks of the cover image in frequency domain.  
Based on LSB embedding in frequency domain, using PSO and a key transformation 
                                                           
* Corresponding author. 
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for embedding a data and recovering the hidden data is presented in this paper. 
Implementations and experiments show good PSNR values.  

The rest of this paper is organized as follows: Related works are introduced in 
Section 2. The proposed schemes are presented in section 3. Experimental results are 
illustrated in section 4 and section 5 is for comments and conclusion. 

2   Related Works 

2.1   DCTIASMTT 

DCTIASMTT [3] presents a method for embedding secret data into gray scale  image 
file which is split into blocks of 2x2 transformed in frequency domain using DCT and 
then embedded in  its LSB pixel values (excluding the first pixel). Inverse DCT is 
then used to get the image back to spatial domain.   

Presented below an illustrative figure which shows the encoding scheme of the 
DCTIASMTT and the decoding is done using reverse procedure. 

 

Fig. 1. Encoding scheme using DCTIASMTT 

2.2   Particle Swarm Optimization Algorithm 

Particle Swarm Optimization (PSO) is a technique used to explore the search space of 
a given problem to find the settings or parameters required to maximize a particular 
objective [4]. This technique, first described by James Kennedy and Russell C. 
Eberhart in 1995 [5], originates from two separate concepts: the idea of Swarm 
intelligence based on the observation of swarming habits by certain kinds of animals 
and the field of evolutionary computation. A PSO algorithm works by simultaneously 
maintaining several candidate solutions in the search space. During each iteration of 
the algorithm, each candidate solution is evaluated by the objective function being 
optimized, determining the fitness of that solution. Each candidate solution can be 
thought of as a particle “flying” through the fitness landscape finding the maximum or 
minimum of the objective function [4]. It is the objective function which is used to 
evaluate candidate solutions and operates on the resultant fitness values of the PSO 
algorithm.  

2.3   A Steganographic Method Based Upon JPEG and Particle Swarm 
Optimization Algorithm 

Published in 2007, Xiao Li and J. Wang [2] presented a steganographic method based 
on JPEG compression and PSO. PSO was used for finding an optimal substitution 
matrix for transforming the secret message before its embedding in the DC-to-middle 
frequency components of the quantized DCT coefficients of the cover-image during 
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the jpeg compression phase. This resulted of a higher security level of the stego image 
compared to JPEG and Quantization Table Modification (JQTM) [6]. 

3   Proposed Schemes 

3.1   Three Different Schemes 

Here, we present 3 different schemes for improving the method proposed in 
DCTIASMTT. All based on the use of table matrix transformation selected by PSO 
before embedding, the size of the table matrix, the processing time and the quality of 
the stego image resulting from the use of each of them are different. For our work we 
use gray scale image of size (MxN). The technique inserts a secret message of 
maximum-size (M/2xN/2x3)-16bits. DCT is used to transform the image from spatial 
domain to frequency domain. The secret data gets imbedded in the frequency domain 
of the cover image. 

 
Scheme 1: Using a unique table transformation to transform the whole block of the 
secret data. 

Encoding process is as follows: 

1. Load the source image and secret data. 
2. Convert the secret data into stream of bit stream. 
3. Convert the cover image into blocks. 
4. By use of DCT, transform each block of the cover image into its discrete cosine 

transform values. 
5. Retrieve the k-LSBs of each of the cover image block  
6. Search for Optimal table transformation matrix T by use of PSO 
 

a. Get a table transformation matrix T* by use of PSO 
b. Convert the binary number of the secret message part to decimal 

and transform the secret data using T* before getting it back to 
binary values 

c. Calculate the PSNR for each substitution of the secret data with the 
retrieved k-LSBs of the cover image 

d. Select the one having the highest PSNR as an optimal 
transformation of the secret data and the table transformation used 
as best transformation matrix T.  

 

7. Embedding followed by inverse discrete cosine transform 
8. Save table transformation T and stego image 

Using this system, only one transformation matrix is used to map each block of k bits 
of the secret data into new block of k bits. The size of T is kept 2k 

Scheme 2: Using a unique table transformation to transform each block of the secret 
data and save all used tables to compose T. 
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Fig. 2. Encoding flowchart by use of PSO, transformation domain and LSB substitution, 
scheme 1. Decoding requires the possession of T. 

Figures 3 and 4 below show the encoding and decoding scheme of the proposed 
method: 

 

Fig. 3. Encoding flowchart using PSO, transformation domain and LSB substitution, scheme 2 

Decoding requires the possession of all tabular matrices previously used to 
transform each block of the secret data presented as T in figure 4. 
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To reconstruct the secret message, inverse transformations of the encoding in the 
opposite order is used with the saved table transformation T and stego image as 
inputs.: 

 

Fig. 4. Decoding flowchart, scheme 2 

Scheme 3:  it is only different from scheme two for the setting of PSO`s objective 
function which we will describe in the next section. 

3.2   PSO Settings 

The information is stored in the frequency domain, DCT coefficients of the cover 
image. We assume the cover image is split into 2x2 blocks and that every block 
encodes 3 bits. We build the PSO algorithm to select an optimal table transformation 
matrix T as in [2] section 2.2 where in our case k is equal to 3.  

Objective functions:  

─ Scheme 1:  The objective function minimizes the error on the stego image. We 
measure the cost of transformation between original discrete cosine transform 
value of the cover image and the transformed value of the secret message. This 
will now be referred to PSO1 

─ Scheme 2: using PSO 2 set as to minimize the error on the stego image. The 
average intensity distortion between the cover image 2x2 blocks and the 2x2 
Stego blocks produced is used as objective function.  

─ Scheme 3: uses PSO 3 and the average intensity distortion between the original 
secret data and the recovered secret data is the objective function. It is defined to 
minimize the error on the hidden data. 

Every member of the population is an 8 dimensional vector. And sorting this vector 
is the transformation of the member. Each particle represents a transformation. The 
best particle attracts the others and the best one of the last generation gets returned as 
the solution to the problem. 

Each block to be embedded from the cover image will be converted from spatial 
domain to frequency domain using DCT. We replace each bit of the DC transform 
value for all blocks where the value is not equal to the considered bit of the 
transformed secret message. For any of the modified discrete cosine transform values 
that have changed, apply inverse discrete cosine transform to get back the image 
block in spatial domain. 
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4   Experimental Results and Discussions 

To evaluate the performance of the proposed methods, we implemented the scheme 
described in “Discrete Cosine Transformation Based Image Authentication and Secret 
Message Transmission scheme” and our proposed schemes. We develop 3 PSO 
algorithms which differ for the calculation of the cost of transformation: PSO1, PSO2 
and PSO3 as presented in 3.2.  

All these programs were coded in Matlab 7.10 and run on a PC with Intel Core i5 
CPU M460 2.53GHz; with 4GB RAM under Windows 7-64 operating system. And as 
we focus on the stego image quality with the maximum size of the hidden data limited 
to (M/2xN/2x3) -16bits, our criteria for evaluations are PSNR and MSE.  

We use the 8-bit gray-level images “Baboon”, “Boat”, “Lena” and “Peppers” as 
cover-images, and for all our experiments “Plane” will be our hidden data. 

 

Fig. 5. Our cover images (Baboon, Boat, Lena and Peppers) and the secret data (Plane of size 
75x75) 

The following tables relate the results of our experiments: 

Table 1. Comparing PSNR values between Source image and stego image, presented on this 
table are the results from DCTIASMTT, PSO1 (our proposed method scheme 1), PSO2 (our 
proposed method scheme 2 where objective function focuses on minimizing the error on the 
stego image)  and PSO3 (our proposed method scheme 3 and objective function gives focus on 
minimizing the error on the secret message) 

  PSNR value in DB 

  Method 
Images Image Size DCTIASMTT PSO1 PSO2 PSO3 

Baboon 512*512 51.1496 51.2214 57.1888 51.1798 

Lena 256*256 46.5180 46.5446 51.4310 46.5400 

Boat 256*256 46.2311 46.2034 51.4408 46.2157 

Boat 512*512 52.6235 52.6488 57.4641 52.6235 

Peppers 256*256 46.4566 46.4839 51.4452 46.4709 
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Fig. 6. shows “Plane.bmp” (75x75) images used as secret data in all our experiments. From “B” 
to “H” were all extracted from Baboon after all the different methods of imbedding that are 
listed below. Image “A” is the original secret data. 

Table 2. Secret data resulting from all our proposed schemes 

 Image Method used for embedding Image block 

 A Plane  (our secret data)  

 B DCTIASMTT 2x2 
 C Our proposed method PSO1 2x2 
 D Our proposed method PSO2 2x2 
 E Our proposed method PSO3 2x2 
 F Our proposed method PSO1 4x4 
 G Our proposed method PSO2 4x4 
 H Our proposed method PSO3 4x4 

During our experiments, we have also implemented the same proposed scheme 2 
and scheme 3 in difference of the block Image size of 2x2 to be 4x4  

Table 3. Experimental results of the proposed method scheme 2 and 3, in the difference of the 
2x2 image block replaced to be 4x4.  

PSNR(dB)
Images Image Size PSO2 PSO3

Baboon 512x512 53.3389 51.0174 
Lena 256x256 48.2312 46.3531
Boat 256x256 47.9865 46.0007 
Boat 512x512 54.2615 52.5407 
Peppers 256x256 48.1262 46.2300
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Table 4. Processing time of DCTIASMTT and the proposed methods for 2*2 image block size  

  Processing Time in Seconds 

  Method 

Images Image Size DCTIASMTT PSO1 PSO2 PSO3 

Baboon 512*512 31.665 299.792 355.264 467.540 
Lena 256*256 14.181 276.310 364.444 469.060 
Boat 256*256 14.195 284.677 364.343 461.239 
Boat 512*512 31.628 307.950 367.709 467.221 

Peppers 256*256 14.198 272.339 363.911 465.707 

5   Conclusion 

This paper proposed a method for concealing information with LSB substitution in 
frequency domain while using PSO to optimize the embedding procedure.  

Compared with DCTIASMTT in [3], by use of PSO for finding an optimal 
transformation matrix T, the proposed method results a minute increase in efficiency, 
while increasing the security level. 

And compared with the method in [2], the proposed method is much simpler, since 
it only uses DCT, not the whole procedure for JPEG compression. For scheme 2 and 
3, the table transformation for each block can be searched using PSO although that's 
not optimal at all in the setting using 2x2 blocks from the source image. The best 
transformation is the one where the part of the secret message gets mapped to the 
exact bit representation of the considered bits of the source image. And the stego-
image will be exactly the same as the source image as no bit needs to be altered. As 
for 2x2, exact calculation can generate the best transformation. We implemented 4by4 
to execute the true potential of PSO.  Here, schemes 2 and 3 offer a highly improved 
stego image quality with cumulated tables to form T needed for the re-transformation. 
And scheme 1 provides a higher security of the stego image compared to 
DCTIASMTT with an acceptable PSNR value and smaller T size.  
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Abstract. In this paper, a novel numerical integration method based on
Particle Swarm Optimization (PSO) was presented. PSO is a technique
based on the cooperation between particles. The exchange of informa-
tion between these particles allows to resolve difficult problems. This
approach is carefully handled and tested with some numerical examples.

Keywords: Numerical integration, Particle Swarm optimization,
trapezoidal rule.

1 Introduction

Solving numerical integration is an important question in scientific calculations
and engineering. As is well known, that for a partition X1 of [a, b] and a function
f : x ∈ [a, b] −→ R bounded on the interval [a, b], is integrable, if and only
if, ∀ε > 0, ∃X (partition) over [a, b] s.t.

∑N
i=0(Li − li)(xi − xi−1) < ε, where

Li = sup[xi−1xi]f(x) and li = inf[xi−1xi]f(x). Therefore, the purpose of this
problem is to find a partition X of [a, b] that returns (in a certain manner)
the quantity

∑N
i=0(Li − li)(xi − xi−1) the smallest possible. The quality of the

result depend on the choice of X . How to choose the best partition? To do
this, conceptually, we would like to select the partition using particle swarm
optimization.

This paper is organized as follows. In Section 2, a formulation adapted to the
strategy of particle swarm optimization and the construction of an algorithm to
generate the different agents in a swarm. The Section 3 exposes some essential
examples to show how the PSO algorithm can lead to a satisfactory result for
numerical integration. The comments and conclusion are made in Section 4.

1 A partition X is a finite set of points : a = x0 < x1 < · · · < xN−1 < xN = b.

Y. Tan et al. (Eds.): ICSI 2011, Part I, LNCS 6728, pp. 221–226, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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2 Overall Description Strategy of Particle Swarm
Optimization

Recently, a new stochastic algorithm has appeared, namely ’particle swarm op-
timization’ PSO. The term ’particle’ means any natural agent that describes the
‘swarm’ behavior. The PSO model is a particle simulation concept, and was first
proposed by Eberhart and Kennedy [2]. Based upon a mathematical description
of the social behavior of swarms, it has been shown that this algorithm can be
efficiently generated to find good solutions to a certain number of complicated
situations such as, for instance, the static optimization problems, the topologi-
cal optimization and others [3]-[4]-[6]-[7]. Since then, several variants of the PSO
have been developed [8]-[9]-[10]-[11]-[12]-[13]-[14]. It has been shown that the
question of convergence of the PSO algorithm is implicitly guaranteed if the pa-
rameters are adequately selected [15]-[16]-[4]. Several kinds of problems solving
start with computer simulations in order to find and analyse the solutions which
do not exist analytically or specifically have been proven to be theoretically
intractable.

The particle swarm treatment supposes a population of individuals designed
as real valued vectors - particles, and some iterative sequences of their domain
of adaptation must be established. It is assumed that these individuals have a
social behavior, which implies that the ability of social conditions, for instance,
the interaction with the neighbourhood, is an important process in successfully
finding good solutions to a given problem.

The strategy of the PSO algorithm is summarized as follows: We assume that
each agent (particle) i can be represented in a N dimension space by its current
position Xi = (xi1, xi2, · · · , xiN ) and its corresponding velocity. Also a memory
of its personal (previous) best position is represented by, Pi = (pi1, pi2, · · · , piN )
called (pbest), the subscript i range from 1 to s, where s indicates the size of the
swarm. Commonly, each particle localizes its best value so far (pbest) and its
position and consequently identifies its best value in the group (swarm), called
also (sbest) among the set of values (pbest).

The velocity and position are updated as.

vk+1
ij = wijv

k
ij + c1r

k
1 [(pbest)k

ij − xk
ij ] + c2r

k
2 [(sbest)k

ij − xk
ij ] . (1)

xk+1
ij = vk+1

ij + xk
ij . (2)

where xk+1
i , vk+1

i are the position and the velocity vector of particle i respectively
at iteration k+1, c1 and c2 are acceleration coefficients for each term exclusively
situated in the range of 2–4, wj is the inertia weight with its value that ranges
from 0.9 to 1.2, where as r1, r2 are uniform random numbers between zero and
one. For more details, the double subscript in the relations (1) and (2) means
that the first subscript is for the particle i and the second one is for the dimension
j. The role of a suitable choice of the inertia weight wj is important in the success
of the PSO. In the general case, it can be initially set equal to its maximum value,
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and progressively we decrease it if the better solution is not reached. Too often,
in the relation (1), vij is replaced by vij/σ where σ denotes the constriction
factor that controls the velocity of the particles. This algorithm is successively
accomplished with the following steps [17]-[18]-[19]:

1. Set the values of the dimension space N and the size s of the swarm (s can
be taken randomly).

2. Initialize the iteration number k (in the general case is set equal to zero).
3. Place every agent between a and b; arrange them in ascending sequence

respectively. There are N +2 nodal points and N +1 segments, then calculate
the fitness values at the N + 1 segments. The fitness is defined as:

f(i) =
N+1∑
j=1

(Lij − lij)(xij − xij−1) . (3)

If the termination condition is met, then stop (The termination condition is
defined as: choose an ε which is very close to 0, if the minimum fitness value
is less than εthen stop), choose the optimum solution X∗(a = x∗0 < x∗1 <
· · · < x∗N < x∗N+1 = b) and then

∫ b

a

f(x)dx �
N+1∑
j=1

f(xj)(x∗j − x∗j−1) . (4)

Otherwise, continue.
4. Each agent must be updated by applying its velocity vector and its previous

position using (2).
5. Repeat the above step (3, 4 and 5) until convergence criterion is reached.

The PSO algorithm is applied, with parameter setting (Table 1).

Table 1. Parameters Setting to generate the PSO Algorithm for this study

Example1 Example2

Population Size 21 21
Number of Iterations 500 600
Acceleration Coefficients: c1 and c2 0.5 0.5
Inertial Weight 1.2 to 0.4 1.2 to 0.4
Desired Accuracy 10−5 10−7

To validate the feasibility and validity of the algorithm for numerical integra-
tion, here are some simulation examples.
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3 Examples

These examples can be viewed as typical cases which provide a good illustration.
We note that, the accuracy of results depends manifestly to success of particles
in the swarm to locate the best points. For easy interpretation, the numerical
results evaluated by PSO algorithm, and those obtained by the trapezoidal rule
have been compared. The best partition generated by PSO are displayed in
Tables (Table 2) in the cases N = 5 for

∫ 5

−5
dx

1+x2 and (Table 3) N = 7 for∫ 4

0
400x(1− x)e−xdx.

3.1 Example 1

The exact numerical value of the integral
∫ 5

−5
dx

1+x2 is 2.7468. Here using PSO,

let N=5, Xi = (−5 = xi0,

pso︷ ︸︸ ︷
xi1, xi2, xi3, xi4, xi5, xi6 = 5), we find the error 1.6420 ·

10−7, as seen in Table (Table 2).

Table 2. A partition X∗ describing the best partition X generated by PSO algorithm
for the example 1

i X∗ f(X∗) |x∗j − x∗j−1|
0 -5
1 -3.1000 0.094251 1.9000
2 -1.5000 0.307690 1.6000
3 0.0000 1.000000 1.5000
4 2.0000 0.200000 2.0000
5 3.2500 0.086486 1.2500
6 5.0000 0.038462 1.7500

∫ 5

−5
dx

1+x2 �
∑6

j=1 f(xj)(x∗j −x∗j−1) = 0.094251 ·1.9000+0.307690 ·1.6000+
1.0000 · 1.5000+ 0.20000 · 2.0000+ 0.086486 · 1.2500+ 0.038462 · 1.7500 = 2.7468
The error using the trapezoidal rule for N = 5 is 0.26988

3.2 Example 2

The exact numerical value of the integral
∫ 4

0 400x(1− x)e−xdx is 1.0735. Here

using PSO, let, N = 7 Xi = (0 = xi0,

pso︷ ︸︸ ︷
xi1, xi2, xi3, xi4, xi5, xi6, xi7, xi8 = 4), we

find the error 4.1683 · 10−7, as seen in Table (Table 3 ),∫ 4

0 400x(1− x)e−xdx � ∑8
j=1 f(xj)(x∗j−x∗j−1) = 45.2940·0.34652+30.0970·

0.23900−9.8074 ·0.64908−14.653 ·0.76540−2.1595 ·1.79000−2.0152 ·0.05000−
1.6922 · 0.12486 − 1.6102 · 0.035140 = 1.0731. The error using the trapezoidal
rule for N=80 is 8.2775 · 10−2(incomparable!).
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Table 3. A partition X∗ describing the best partition X generated by PSO algorithm
for the example 2

i X∗ f(X∗) |x∗j − x∗j−1|
0 0.00000
1 0.34650 45.2940 0.34652
2 0.58552 30.0970 0.23900
3 1.23460 -9.8074 0.64908
4 2.00000 -14.653 0.76540
5 3.79000 -2.1595 1.79000
6 3.84000 -2.0152 0.05000
7 3.96490 -1.6922 0.12486
8 4.00000 -1.6102 0.03514

4 Conclusion

The particle swarm optimization is used to investigate the best integrating
points. Some good results are obtained by using the specific PSO approach.
It is now known that the PSO scheme is powerful, and easier to apply specially
for this type of problems. Also, the PSO method can be used directly and in a
straightforward manner.
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Abstract. A VSD system, which consists of an inverter & an induction motor, 
is now widely used in all kinds of application. But from the view point of an 
end user, neither the motor parameters in the mathematics model nor the vector 
controller structure are known. In this paper a PSO algorithm is programmed 
with IEC61131-3 language to estimate the parameters for the VSD system, 
based on the hardware of a vector controlled inverter, in order to reach the simi-
lar dynamic performance as a DC motor system. The PSO algorithm could be a 
kind of alternative approach of present parameter identification functions, for its 
requirements on the speed of CPU and volume of memory are low, while it 
converges quickly. It’s especially helpful for the adjustment of complicated 
control system, when the technical requirements are clear & measurable. 

Keywords: PSO, VSD, Induction Motor, Parameter Identification. 

1   Introduction 

In recent years, instead of DC motor, induction motor became more popular in a high 
precise and high performance transmission system, because of its simple, reliable, and 
robust structure. In order to get the similar performance as a DC system, for field ori-
ented vector control, a precise motor model & vector control structure model are the 
prerequisite for high performance. But in an actual AC VSD system, these two models 
are just like black box to the user, which limits the actual performance of the system. 

There are lots of suppliers, which produce vector-controlled inverter with the latest 
CPU & DSP technology. About the control structure, it is really difficult for someone 
else, except the designer himself, to use existing mathematical methods to make an 
accurate description, because it is not only vector control method, but also a combina-
tion of feed-forward, feed-back, interpolation, compensation and other engineering 
methods. Being a user, it is impossible to know the actual control algorithm. So in 
most cases, the internal mathematical model and the control algorithm of the inverter 
are complete “Black Box”, which input can be changed, which output can be ob-
served, but the internal is invisible.  

There are differences between the parameters in the nameplate and the real motor 
parameters too. Because most induction motors are originally designed for open-loop 
applications. So there is no concern on the characteristics, and in the nameplate only 
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rated frequency and synchronous speed are marked, instead of the rated speed (or 
rated slip). In the same time, there are lots of specially designed motors without de-
tailed motor parameters to prevent a copy from the competitors. Because of the mate-
rial differences in the manufacturing process, there could be a deviation between the 
real motor parameter and the designed value; 

Before this study work, several kinds of motor parameter identification methods 
have been discussed already. Most scholars finished their identification of the motor 
mathematical model in a pure simulation environment, compared recognition results 
with the "precision motor parameters", and compared a variety of different identifica-
tion methods on identification value, error, identification rate, to prove the validity of 
the algorithm [1]. Or first put different forms of voltage and current signals on a mo-
tor, and detected the motor voltage & current, then established the motor mathemati-
cal model, put the same forms of voltage and current signals to the model, and meas-
ured the output response, which should be similar to the measured value for the tested 
motor if the motor parameters were right. The recognition results were similar to the 
induction motor parameters obtained from the standard way, which is to perform a 
locked rotor and a no-load test [2]. All these studies only focused on the motor itself 
without considering the function of frequency inverter. For end users, the combination 
of motor and frequency inverter is significantly to be treated as a black box together. 

Based on the existing hardware and software, a particle swarm optimization algo-
rithm is introduced in this paper to make iterative searching for the correct parameters 
for the VSD system, by comparing the performance to a DC motor system. This 
method is doubtless to be a rare substitute of the original inverter functions. 

2   Particle Swarm Optimization Algorithm [3][4] 

Particle Swarm Optimization (PSO) is a population based stochastic optimization 
technique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social 
behavior of bird flocking. In PSO, all of particles have fitness values which are evalu-
ated by the fitness function to be optimized, and have velocities which direct the fly-
ing of the particles. The particles fly through the problem space by following the 
current optimum particles. 

PSO is initialized with a group of random particles (solutions) and then searches 
for optima by updating generations. After each time of iteration, every particle is 
updated by following two "best" values. The first one is the best solution (fitness) it 
has achieved so far. (The fitness value is also stored.) This value is called pbest. An-
other "best" value, which is tracked by the particle swarm optimizer, is the best value, 
obtained so far by any particle in the population. This best value is a global best and 
called gbest. After finding the two best values, the particle updates its velocity and 
position with following equation (1) and (2):  

))()(())()(()()1( 2211 txtgrandctxtprandctVtV ikkbestikbestikikik −⋅+−⋅+⋅=+ ω  . (1) 

)1()()1( ++=+ tVtxtx ikikik  .                                        (2) 

Vik(t+1)is the particle’s velocity, xik(t+1)is the current particle’s position. pikbest(t) 
and gkbest(t) are defined as stated before. ω is weighting factor，c1，c2 are learning 
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factors, rand1&rand2 are two random number between (0,1). Vik(t+1)∈[-Vmax,Vmax], 
Particles' velocities on each dimension are clamped to a maximum velocity Vmax. If 
the sum of accelerations would cause the velocity on that dimension to exceed Vmax, 
then the velocity on that dimension is limited to Vmax. xik(t+1)∈[-xmax, xmax], Particles' 
positions should be in a certain range, which might be fit to their physic value. 

3   Inverter Parameters and Motor Nameplate Parameters [5] [6] 

An inverter 09.F5.A1D-2BDA from company KEB is used in this research. In the 
application manual, a standard vector control algorithm is described. Its performance 
has been proved in lots of application in last decade. But the internal control algo-
rithm is really magical, for only stator resistor Rs and leakage inductance LΣ are 
needed for the motor equivalent model. In closed loop control mode, even these two 
parameters are not so sensible. In order to reach an excellent performance, the right 
motor nameplate data is needed. 

Table 1. Nameplate parameters of an induction motor in this research 

Urated（V） Irated（A） frated（Hz） nrated（rpm） cos(phi) Prated（kw） 
220 0.87 50 3000 0.84 0.18 

Normally this kind of nameplate is not enough for a VSD system. We can only 
treat the following three parameters Prated, Irated, frated as precise value. Obviously the 
listed value 3000rpm is only a synchronous speed at rated frequency. The list value 
220V is only the voltage of net. Cos(phi) will influence the magnetizing current. And 
the inverter parameter, Field weakening factor F2, will influence the performance of 
VSD system in field weakening zone. All these 4 parameters are very sensitive for the 
performance of a VSD system. There are unknown relationships between them. An 
auto-identification of these 4 parameters will be valuable in engineering level. 

Table 2. VSD system parameters to be identified 

No. Parameter Physical range Identified range 
1 nrated 1… 64000 rpm 2500…2999 
2 Urated 120…830v 120…300 
3 cos(phi)  0.50…1.00 50…100 

4 F2 0.01…3.00 1…300 

4   Objective Functions 

We know that any power electric drive systems are subject to the basic equation of 
motion:  

tn

J
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ω=−
 .                                                     (3) 
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Only with a complete decoupling control, one induction motor can achieve the com-
parable performance as DC motor. Therefore the speed characteristics of a DC motor 
can be used to measure the fitness value of present motor parameters. We keep the same 
ramp time for accelerating and decelerating, if the following conditions can be fitted to a 
certain level, we can say that the system model is almost fully decoupled. 

Condition 1: the speed deviation at accelerating & decelerating should be as small 
as possible.  
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 .                                          (4) 

Condition 2: the actual motor torque should be constant with the constant acceler-
ating rate up to field weakening range. And the ripple of actual torque should be as 
small as possible.  
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Condition 3: The sum of accelerating torque and decelerating torque should be two 
times of the friction torque. This can be set manually to improve the precision of the 
identification.  

f
decacc

Mf M
MM

F /−+=
2  .                                       (6) 

Combining these 3 conditions, we get following objective function. 

),,( MfMn FFFFF =
 .                                          (7) 

 

Fig. 1. Optimized running curve.(A: torque, B: current, C: set-speed, D: actual speed) 
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In Fig.1 we can find a running curve of an AC VSD system, which is comparable 
with a DC motor system. In this case, the objective function value will be very low.  

5   Test System&Algorithm 

The test system consists of an induction motor, a vector-control inverter, a motion con-
troller, and a desktop PC. The PSO algorithm is programmed in a motion controller with 
IEC61131-3. After each flying, the new motor parameters are sent from the motion 
controller to inverter, and an auto-tuning of the control structure is activated according 
to these motor data. Then the motion controller sends out commands to the inverter to 
control the motor to follow a designed speed profile, accelerating, running constant and 
 

Start

maximum 
iterations 

or minimum error criteria 
is attained

Initialize particle

Download parameter to inverter
Activate motor model
Run the speed profile

Read out speed, torque & current
Calculate the fitness

 If the fitness value is better than pBest            
then set current value as the new pBest

i>popsize?

i:=i+1;

Calculate particle velocity according equation (1)
        Update particle position according equation (2)

  Choose the particle with the best 
fitness value of all as the gBest

N

Y

End

Y

N

i:=1;

Save in PC

 

Fig. 2. Procedure of PSO  
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decelerating to zero speed. The actual values are sent back to motion controller to calcu-
late the fitness value. The PC reads out and records the data of each particle after each 
flying through MODBUS TCP with100BASE-TX. The position, velocity, fitness value, 
pbest of each particle and gbest are included.Procedure of PSO based control algorithm 
is listed in Fig.2. 

6   Identification and Results 

We tried PSO algorithm to identify the following 4 parameters of this motor: nrated, 

Urated, cos(phi) and field weakening factor F2. 17 particles were used. After 11 times 
of iteration, the objective value was acceptable with gbest [2543,206,85,20].  

Table 3. Nameplate parameter & identified value 

Parameter nrated(rpm) Urated(V) cos(phi) F2 

Nameplate 3000 220 0.84 1.2(Default) 

Identified 2543 206 0.85 0.2 

When we put the identified parameter value into the inverter, and run the VSD sys-
tem to follow the defined speed profile, the dynamical performance can meet the 
defined conditions of objective functions. It’s closed to the performance of a DC 
system. We optimized the objective functions and PSO algorithm during the identifi-
cation, and the motor became hot. So these values are fit for a hot motor. This is what 
we need for a real application. The definition of objective functions and the PSO 
algorithm were proved. 
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Fig.3 to Fig.6 shows the 4 dimensions of the positions of 17 particles&gbest parti-
cle after each time of iteration.During the optimization, we found that the perform-
ances with several pbest solutions were quite closed to final solution. They could be 
accepted by most application too.  

7   Summary 

In this paper, PSO algorithm is used to identify the VSD system parameters. The 
motor and inverter both are treated as a black box. By comparing the dynamic per-
formance with DC motor characteristics in following a given speed profile, the fitness 
of motor nameplate parameters and system parameter F2 are calculated. PSO algo-
rithm is verified. It could be a new optimization method for parameter-identificationin 
an unknown system. 
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Abstract. The Emergency Evacuation Simulation (EES) has been increasingly 
becoming a hotspot in the field of transportation. PSO-based EES is a good 
choice as its low computation complexity compared with some other 
algorithms, especially in an emergency. The selection of fitness function of 
each particle in PSO is a key problem for EES. This paper will introduce some 
fitness functions for EES and present a new fitness function called Triple-
Distance Safe Degree (TDSD). Through theoretical analysis and experimental 
validation, the TDSD is proved to be much better than other fitness functions 
introduced in this paper. 

Keywords: PSO; Emergency Evacuation Simulation; Triple-Distance Safe 
Degree. 

1   Introduction 

Emergency evacuation simulation (EES) has been increasingly becoming a hotspot 
[1] [2] [3] in the field of transportation, especially recent ten years, with occurrences 
of more and more emergency incidents, such as September 11 Attacks [4], Wenchuan 
Earthquake [5], Hurricane Katrina [6] and so on. PSO is originally proposed by 
Kennedy, Eberhart and Shi [7] [8] [9]. The PSO is a kind of optimization method by 
iteratively improving candidate solutions according to given fitness function. On the 
other hand, the PSO could be used as a simulation method to simulate a social or 
natural procedure in real life. There have been some researches on PSO based EES at 
recent years. Yang et al. [10] [11] proposed a new emergency evacuation model based 
on Multi-Agent framework and Linear Weight Decreasing PSO to simulate human 
behavior during emergency evacuation in continuous indoor small space. Yusoff et al. 
[12] utilized a discrete PSO to simulate evacuation. Izquierdo et al. [13] established a 
model for evacuation time estimation and behavioral patterns assessment. Actually, it 

                                                           
* Corresponding author. 



 PSO-Based Emergency Evacuation Simulation 235 

 

is a simulation and assessment system. Although the previous works have 
investigated some problems on PSO based EES, neither of them studied the fitness 
function systematically. On the basis of the former studies of the predecessors, this 
paper will briefly introduce a kind of PSO-based EES method and concentrate on the 
fitness selection problem of PSO based EES. After analyzing two sorts of fitness 
function, this paper presents a novel fitness function called TDSD. The structure of 
this paper is as follows. 

This paper starts with introducing the situation of PSO-based EES researches and 
the main focus of this paper. And then, it introduces the PSO-based EES method 
employed in this paper. In the third part, it focuses on the fitness selection problem 
and proposes a completely new fitness function called TDSD. At last, the TDSD is 
tested through experiments and the conclusion is drawn out. 

2   The Abstractions and Representations 

2.1   The Scenario 

A stadium scenario is selected as the scenario for this study. The stadium is abstracted 
as an undirected graph. The edges of the graph represent the roads inside and outside 
the stadium. The vertexes of the graph represent the intersections of the roads. Fig.1 
shows the stadium scenario. 

 

Fig. 1. The scenario of a stadium. The blue lines represent the roads inside and outside the 
stadium. The black dots represent the intersections of the roads. The green dots represent the 
exits. There are 8 exits in this scenario. The red dots represent the danger points. 

2.2   The Representation of Evacuation Solution 

The evacuation solution is represented as a matrix shown as equation 1. The jth 
column of the matrix represents the jth person’s route. The ith row represents the ith 
time step. The vij represents the position of the jth person on the ith time step. The Rj 

represents the jth person’s route. The m is the number of time steps of the last person 
evacuated from the stadium. The n is the total number of people. 
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2.3   The PSO Based Emergency Evacuation Simulation 

Each person is seen as a particle in PSO. The fitness of a particle represents the safe 
degree of a person. The main procedure of the PSO for evacuation simulation is as 
follows: 

1. Generate the danger points randomly. 
2. Set the exits of the stadium. 
3. Set the study factor and inertia weight of PSO. 
4. Initialize each particle’s position randomly. 
5. Initialize the real speed of each person randomly. The real speed refers to the real 

running speed in evacuation here. 
6. Initialize the velocity of each particle randomly. 
7. Do the following loop, till all the particles arrive at the exits. 

Function PSO_EES() 

For t=1:M %M is the maximum number of time steps 

For i=1:N %N is the number of particles 

        If RemainingDistance(i)>MinRemainingDistance 

Keep current velocity unchanged; 

Keep current position unchanged; 

RemainingDistance(i)=RemainingDistance(i)－ 
RealSpeed(i); 

RealSpeed(i)=CalculateRealSpeed(); 

Else  

    Change velocity according to PSO iteration 
formulas; 

Change Position according to PSO iteration 
formulas; 

RemainingDistance(i)=RemainingDistance(i)-
RealSpeed(i); 

RemainingDistance(i)=RemainingDistance(i)+ 

Distance(current_position,next_position); 

RealSpeed(i)= CalculateRealSpeed(); 

End 
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If Fitness(Position(i))>  
Fitness(Local_Best_Position(i)) 

     Local_Best_Position(i)=Position(i); 

End 

     End 

     For i=1:N 

          If Fitness(Local_Best_Position(i))> 
Fitness(Global_Best_Position) 

              Global_Best_Position= Local_Best_Position(i); 

          End 

End 

For i=1:N 

         Position_Record(t,i)=Position(i); 

     End 

 

For i=1:NV % NV is the number of vertexes 

    NPV(i)=0; 

End 

     QuitFlag=1; 

     For i=1:N 

         If Position(i) is not one of Exits 

            NPV(Position(i))=NPV(Position(i))+1; 

            ExitFlag=0; 

         End 

     End  

     If QuitFlag==0 

        Quit(); 

     End 

 End 

End 

8. Record the generated evacuation solution. 

3   The Fitness Functions of PSO for EES 

The selection of fitness function for EES is the key problem which affects the validity 
of the results of the simulation. In other words, the results of simulation how close to 
the reality is largely depended on the fitness function. 
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3.1   The Distance to the Danger Point (DDP) 

The Distance to the Danger Point refers to the distance between the person and the 
nearest danger point to the person. The definition of the DDP [14] is as equation 2. 

( ) ( )( )
1

min
i i

NDP

p D P D
i

DDP X X Y Y
=

= − + −

                                    

(2) 

                                    
( )0.8

300

DDP
Fitness =                                                  (3) 

The NDP means the Number of Danger Points. Xp and Yp are the horizontal and 
vertical coordinate of position of the person. XDi and YDi are the horizontal and 
vertical coordinate of the ith danger point. Obviously, the lower the DDP, the lower 
the fitness is. But, the lower the DDP, the more dangerous the person is? 

As shown in Fig.2, hypothesize that there is only one exit Exit4 and one danger 
point Intersection369 in the stadium. Although the Intersection272 is farther than  
the Intersection371 away from the danger point, the Intersection371 is safer than the 
Intersection272. That is because that the Intersection371 is nearer than the 
Intersection272 to the Exit4. Obviously, it is not suitable to measure the safe degree 
just employing the DDP here. 

 

Fig. 2. An example to validate the reliability of DDP 

3.2   The Distance to the Exit (DE) 

The Distance to the Exit means the distance between the person and the nearest exit to 
the person. The DE [13] is defined as equation 4. 

( ) ( )( )
1

min
i i

NE

p E P E
i

DE X X Y Y
=

= − + −                                    (4) 

                     1 ,
DE

Fitness C is a constant larger than DE
C

= −

 

                      (5) 
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The NE means the Number of Exits. Xp and Yp are the horizontal and vertical 
coordinate of position of the person. XEi and YEi are the horizontal and vertical 
coordinate of the ith danger point. Obviously, the smaller the DE, the higher the 
fitness is. But, the smaller the DE, the safer the person is? 

As shown in Figure 3, there are two exits (Exit4 and Exit8) and only one danger 
point (the Intersection370). Assume that the distance between Exit4 and 
Intersection371 is the same as the distance between Exit8 and Intersection403. But, 
the Intersection371 is closer to the danger point than Intersection403. Thus, the 
Intersection371 is more dangerous than Intersection403. Clearly, it is not sensible 
merely to use DE to evaluate the safe degree in this example. 

 

Fig. 3. An example to validate the reliability of DE 

3.3   The Triple-Distance Safe Degree (TDSD) 

Considering the distance relations between the exits, the danger points, the center 
point of the building and the person, the TDSD is defined as equation 6. 
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⎪
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C is a constant larger than DCi, DEi and DDPi. DCi is the distance between the ith 
person and the center point of the building. DEi is the minimum distance between the 
ith person and the exits. DDPi is the minimum distance between the ith person and the 
danger points. Xpi is the horizontal coordinate of the ith person. Ypi is the vertical 
coordinate of the ith person. XEj is the horizontal coordinate of the jth exit. YEj is the 
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vertical coordinate of the jth exit. XDk is the horizontal coordinate of the kth Danger 
Point. YDk is the vertical coordinate of the kth Danger Point. Xc is the horizontal 
coordinate of the center point. Yc is the vertical coordinate of the center point. NP is 
the number of the people. NE is the number of the exits. NDP is the number of the 
danger points. Fitnessi is the fitness of the ith person.  

The TDSD is composed of three parts. The first part is about the distance to the 
center point (DC) of the building. The second part is an arc cotangent function which 
means the safe degree relative to the DE. With the increase of DE, the safe degree 
goes down. The third part is an arc tangent function which means the safe degree 
relative to the DDP. With the increase of DDP, the safe degree goes up. The fitness of 
the ith person is the product of the three parts. The name TDSD originates from the 
combination of the DC, the DE and DDP. 

4   Experiment and Analysis 

As shown in Fig.1, there are 8 exits (Exit1 to Exit8) and 3 danger points 
(Intersection161, Intersection205 and Intersection367). As shown in Fig.4 (the left), 
through comparing the safe degree of 476 intersections generated by DE, DDP and 
TDSD with the real safe degree, it is proved that the TDSD curve could best match 
the real curve. As shown in Fig.4 (the right), the safe degree calculated by TDSD 
possess the smallest average deviation with the real value just 0.0080, much less than 
DDP (0.0517) and DE (0.1606). Obviously, TDSD is the best fitness function among 
the three types. The TDSD reveals the fact that the safe degree is not just relative with 
the center point, the danger points or the exits, but both of them. 

 

Fig. 4. The left chart is the safe degree and the right chart is the deviation between the safe 
degree and the real value 

5   Conclusion and Future Works 

This paper introduces a kind of PSO-based EES method and presents a completely 
new fitness function for EES. Through the comparison with other two kinds of fitness 
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functions in the scenario of a stadium, the TDSD is proved to meet the physical 
reality best in three type fitness functions. As the limitation of space, the correctness 
and feasibility of the TDSD in more scenarios is not discussed and tested. That will 
become the future direction of this study. 
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Abstract. Meta-heuristic algorithms inspired by nature have been used
in a wide range of optimization problems. These types of algorithms
have gained popularity in the field of artificial neural networks (ANN).
On the other hand, spiking neural networks are a new type of ANN
that simulates the behaviour of a biological neural network in a more
realistic manner. Furthermore, these neural models have been applied to
solve some pattern recognition problems. In this paper, it is proposed
the use of the particle swarm optimization (PSO) algorithm to adjust
the synaptic weights of a spiking neuron when it is applied to solve
a pattern classification task. Given a set of input patterns belonging
to K classes, each input pattern is transformed into an input signal.
Then, the spiking neuron is stimulated during T ms and the firing rate
is computed. After adjusting the synaptic weights of the neural model
using the PSO algorithm, input patterns belonging to the same class will
generate similar firing rates. On the contrary, input patterns belonging
to other classes will generate firing rates different enough to discriminate
among the classes. At last, a comparison between the PSO algorithm and
a differential evolution algorithm is presented when the spiking neural
model is applied to solve non-linear and real object recognition problems.

1 Introduction

James Kennedy and Russell C. Eberhart proposed the particle swarm optimiza-
tion (PSO) algorithm in 1995 [11]. This algorithm is a method for combinatorial
or numerical optimization problems. Several versions of this algorithm have been
proposed in the last years; however, the principal characteristic of this algorithm
is that it can optimize over non-linear and non-continuous search spaces. In addi-
tion, this PSO algorithm is based on the collective behavior of the bird flocking,
fish schooling. This behavior consists on moving to another better place for eat-
ing or getting a better life.

The PSO algorithm has been applied in a wide range of problems, including
those related to the field of artificial neural networks (ANN). These types of algo-
rithms are non-gradient approaches; this characteristic makes them a promising

Y. Tan et al. (Eds.): ICSI 2011, Part I, LNCS 6728, pp. 242–249, 2011.
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learning strategy for the training (adjusting the synaptic weights) of an ANN
[12], [13] and [14]. Furthermore, the PSO algorithm has been applied to design
automatically feed-forward neural networks; this includes the design of the best
topology, the transfer function of each neuron and the synaptic weights [1].

One of the most common applications of an ANN is a pattern classification
task. However, though these models have been applied to solve several pattern
recognition problems, they have some constrains that limits their applicability
in real-life problems, particularly during the design of the ANN. For that reason,
it is mandatory to explore new ways of implementing ANN.

Recently, a new type of neural model, called spiking neuron models, emerged.
These models have been called the 3rd generation of artificial neural networks [2].
The spiking neuron models increase the level of realism in a neural simulation
and incorporate the concept of time. They also have been applied in a wide
range of areas from the field of computational neurosciences such as: brain region
modeling, auditory processing [3], visual processing [4], robotics [5] and so on.
Nonetheless, their application for solving pattern recognition problems is gaining
popularity in the field of artificial intelligence.

In [17], the authors described how a genetic algorithm can be used during
the learning process of a spiking neural network; however, the model was not
applied to perform a pattern recognition problem. In [16], the authors show how
a spiking neural network can be trained by a quantum PSO and then applied
to a string pattern recognition problem. In [18] the authors trained a spiking
neural network using a PSO algorithm, and then it is applied in three pattern
recognition problems; however, in each problem, the authors had to design the
topology of the network. In [10,15,19], the authors shown how only one spik-
ing neuron such as Leaky-Integrate-and-Fire and Izhikevich models [6,7] can be
applied to solve different linear and non-linear pattern recognition problems.

In this paper is shown how it is possible to apply a spiking neuron, trained
with a PSO algorithm, in different linear and non-linear pattern recognition prob-
lems. Given a set of input patterns belonging to K classes, each input pattern
is transformed into an input signal. After that, the spiking neuron is stimulated
during T ms and the firing rate is computed. Once the synaptic weights of the
neuron model were adjusted by the PSO algorithm, we expect that the input
patterns which belong to the same class generate similar firing rate. On the con-
trary, patterns belonging to other classes generate firing rates different enough
to discriminate among the classes. Finally, the proposed method is compared
against the method described in [19] when the spiking neuron is applied to solve
pattern recognition problems.

2 Spiking Neuron Model

A typical spiking neuron can be divided into three functionally distinct parts,
called dendrites, soma, and axon. The dendrites play the role of the input de-
vice that collects signals from other neurons and transmits them to the soma.
The soma is the central processing unit that performs an important non-linear



244 R.A. Vázquez and B.A. Garro

processing step: if the total input exceeds a certain threshold, then an output
signal is generated. The output signal is taken over by the output device, the
axon, which delivers the signal (spike train) to other neurons.

Since all spikes of a given neuron look alike, the form of the action potential
does not carry any information. Rather, it is the number and the timing of spikes,
which matter.

In this paper we adopt the Izhikevich model

Cv̇ = k (v − vr) (v − vt)− u + I ifv ≥ vpeakthen
u̇ = a {b (v − vr)− u} v ← c, u← u + d

(1)

which has only 9 dimensionless parameters. Depending on the values of a and b, it
can be an integrator or a resonator. The parameters c and d take into account the
action of high-threshold voltage-gated currents activated during the spike, and
affect only the after-spike transient behavior. v is the membrane potential, u is
the recovery current, C is the membrane capacitance, vr is the resting membrane
potential, and vt is the instantaneous threshold potential. The parameters k and
b can be found when one knows the neuron’s rheobase and input resistance. The
sign of b determines whether u is an amplifying (b < 0) or a resonant (b > 0)
variable. The recovery time constant is a. The spike cutoff value is vpeak , and the
voltage reset value is c. The parameter d describes the total amount of outward
minus inward currents activated during the spike and affecting the after-spike
behavior. A detail description of the model can be found in [6,7].

3 Proposed Method

It is important to point out that when the input current signal changes the
response of the spiking neuron also changes, generating different firing rates.
The firing rate is computed as the number of spikes generated in an interval of
duration T divided by T . The neuron is stimulated during T ms with an input
signal and fires when its membrane potential reaches a specific value generating
an action potential (spike) or a train of spikes.

The proposed method is inspired in the method described in [19]. We expect
that patterns which belong to the same class generate similar firing rates and
patterns, which belong to other classes generate firing rates different enough to
discriminate among the classes.

Let D=
{
xi, k

}p

i=1
be a set of p input patterns where k = 1, . . . , K is the class

to which xi ∈ IRn belongs. First of all, each input pattern is transformed into
an input signal I. The spiking neuron model is not directly stimulated with the
input pattern xi ∈ IRn, but with an injection current I. Since synaptic weights
of the model are directly connected to the input pattern xi ∈ IRn, the injection
current generated with this input pattern can be computed as

I = γ · x ·w (2)

where wi ∈ IRn is the set of synaptic weights of the neuron model and γ = 100
is a gaining factor which guarantees that the neuron will fire.
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After that, the spiking neuron is stimulated using I during T ms and then the
firing rate of the neuron is computed. With this information, the average firing
rate AFR ∈ IRK of each class is computed.

At last, the class of an input pattern x̃ is determined by means of the firing
rates as follows:

cl = arg
K

min
k=1

(|AFRk − fr|) (3)

where fr is the firing rate generated by the neuron model stimulated with the
input pattern x̃.

The synaptic weights of the model, which are directly connected to the input
pattern, determines the firing rate of the neurons. This means that our learn-
ing phases consist in generating the desired behavior by adjusting the synaptic
weights of the neuron. The learning phase will be done by the particle swarm
optimization algorithm.

4 Adjusting Synapses of the Neuron Model

Synapses of the neuron model w are adjusted by means of the PSO algorithm.
As we already said, the PSO algorithm is a powerful and an efficient technique
for optimizing non-linear and non-differentiable continuous space functions. This
algorithm works with a population of particles xi that represent solutions (po-
sitions). Each particle changes its position with the time t. They are guided by
the knowledge of the best particle from whole population and also by its own
knowledge as so to search the optimums value. In this case, each one is guided by
a velocity function that evolves a social component pg (the best particle of all)
and a cognitive component pi (the best position of each particle). The velocity
function limited to the range [vmin, vmax] help to find the best positions in the
search space. This function is shown in the next equation:

vi (t + 1) = ωvi (t) + c1r1 (pi (t)− xi (t)) + c2r2 (pg (t)− xi (t)) (4)

where ω is the inertia weight [1, 0) that changes each iteration, c1 and c2 are
acceleration coefficients; r1 ∼ U (0, 1) and r2 ∼ U (0, 1) are uniformly distributed
random numbers called the craziness After that, each particle i has to update
its new position computing by the next equation:

xi (t + 1) = xi (t) + vi (t + 1) (5)

Moreover, each possible solution is measured by means of fitness function in
order to know its aptitude. It is desired that this solution be the optimums or
the nearest to it.

Finally, the PSO algorithm for the real version could be performed as follows:
Given a population of xi ∈ IRD, i = 1, . . . , M individuals

1. Initialize the population at random.

2. Until a stop criteria is reached:

(a) For each individual xi evaluate their fitness
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(b) For each individual i, update its best position pi.

(c) From all individual i, update the best individual pg.

(d) For each individual i, compute the velocity update equation vi (t + 1)
and then compute the current position xi (t + 1).

To find the synaptic weights that maximize the accuracy of the spiking neural
model during a pattern recognition task, the next fitness function was proposed:

f(w, D) = 1− performance(w, D) (6)

where w are the synapses of the model, D is the set of input patterns and
performance(w, D) is a function which follows the steps described in above
section and computes the classification rate given by the number of patterns
correctly classified divided by the number of tested patterns.

5 Experimental Results

Several experiments were performed in order to evaluate the accuracy of the pro-
posed method. Five of them were taken from the UCI machine learning repos-
itory [8]: iris plant, glass, diabetes, liver-bupa and wine datasets. In addition,
another dataset was generated from a real object recognition problem [9].

The parameters for the Izhikevich neuron were defined as C = 100, vr = −60,
vt = −40, vpeak = 35, k = 0.7, a = 0.03, b = −2, c = −50, and d = 100.
The Euler method was used to solve the differential equation of the model with
dt = 1. The parameter to compute input current I from the input pattern
was set to θ = 100 with a duration of T = 1000. For the case of the particle
swarm optimization algorithm, NP = 40, MAXGEN = 1000, V MAX = 4,
V MIN = −4, c1 = 2, c2 = 2, XMAX = 10, XMIN = −10 and ω was varied
in the range [0.95− 0.4] throught the generations.

The accuracy (classification rate) achieved with the proposed method was
computed as the number of input patterns correctly classified divided by the
total number of tested patterns. To validate the accuracy of the method 10
experiments over each dataset were performed. Something important to notice is

Table 1. Average accuracy provided by the methods using different databases

Dataset Method using DE [19] Proposed method using PSO

Tr. cr. Te. cr. Tr. cr. Te. cr.
Wine 0.9796 0.8744 0.9782 0.8879

Iris plant 0.9933 0.9833 0.9933 0.97
Glass 0.8158 0.7411 0.8178 0.7457

Diabetes 0.8038 0.7371 0.7990 0.7619
Liver 0.7620 0.6870 0.7591 0.6754

Object rec. 1 0.9850 1 0.9950

Tr. cr = Training classification rate, Te. cr. = Testing classification rate.
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Fig. 1. Two of the experimental results obtained with the wine dataset. Notice that 3
different firing rates which correspond to 3 classes can be observed.
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Fig. 2. Two of the experimental results obtained with the glass dataset. Notice that 2
different firing rates which correspond to 2 classes can be observed.
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Fig. 3. Two of the experimental results obtained with the object recognition dataset.
Notice that 5 different firing rates which correspond to 5 classes can be observed.
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that in each experiment the datasets were randomly split into two new partitions:
50% of the patterns for training and the remain for testing.

Due to space only some of the experimental results achieved with the proposed
method are shown in Fig 1 - Fig 3. As can be appreciated from these figures, the
set of synaptic weights found with the PSO algorithm provokes that the spiking
neuron generates almost the same firing rate when it is stimulated with input
patterns from the same class. On the contrary, the spiking neuron generates
firing rates different enough to discriminate among the different classes when it
is stimulated with input patterns which belong to different classes.

The average classification rate computed from all experimental results is
shown in Table 1. These preliminary results suggest that spiking neurons trained
with a PSO algorithm can be considered as an alternative way to perform dif-
ferent pattern recognition tasks. As the reader can appreciate, only one spiking
neuron was enough to solve a pattern recognition problem with a high accept-
able accuracy. In general, the accuary of the proposed method was comparable
to the method described in [19]. Both methods provide similar results; however,
in some problems the proposed method was slightly better than the other, and
vice verse.

We can also conjecture that if only one neuron is capable of solving pat-
tern recognition problems, perhaps several spiking neurons working together
can improve the experimental results obtained in this research. However, that is
something that should be proven.

6 Conclusions

In this paper a new method to apply a spiking neuron in a pattern recognition
task was proposed. This method is based on the firing rates produced with a
spiking neuron when is stimulated. The training phase of the neuron model was
done by means of a particle swarm optimization algorithm. After training, we
observed that input patterns, which belong to the same class, generate almost the
same firing rates and input patterns, which belong to different classes, generate
firing rates different enough to be discriminate among the different classes.

Through several experiments, we can conclude that spiking neurons can be
considered as an alternative tool to solve pattern recognition problems. Con-
cerning to the strategy adopted to adjust the synaptic weights, we could observe
that the results achieved with the particle swarm optimization algorithm are
comparable to those provided by the differential evolution algorithm.

Nowadays, we are developing a methodology to calculate the maximum num-
ber of categories that the spiking neuron can classify. Furthermore, we are re-
searching different alternatives of combining several types of spiking neurons in
one network to improve the results obtained in this research and then apply it
in more complex pattern recognition problems such as face, voice and 3D object
recognition.
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Abstract. In this paper, we propose a hybridization between an ant-
based clustering algorithm: CAC (Communicating Ants for Clustering)
algorithm [5] and a clustering aggregation algorithm: the Furthest
algorithm [6]. The CAC algorithm takes inspiration from the sound com-
munication properties of real ants. In this algorithm, artificial ants com-
municate directly with each other in order to achieve the clustering task.
The Furthest algorithm takes as inputs m clusterings given by m different
runs of the CAC algorithm, and tries to find a clustering that matches,
as possible, all the clusterings given as inputs. This hybridization shows
an improvement of the obtained results.

1 Introduction

Clustering is one of the important tasks in data mining. It has many application
areas; including machine learning, biology, medicine, and statistics. The cluster-
ing problem is defined as partitioning a data set into groups (clusters) such that
the data objects, in the same cluster, share a high degree of similarity while data
objects, in different clusters, are much dissimilar in a remarkable way.

Referring to the literature, there are several families of methods proposed
to resolve the clustering problem [7], [9], citing hierarchical, partitional, graph-
based, grid-based, density-based, and model-based techniques. Hierarchical meth-
ods divide a data set into a sequence of nested partitions, while partitional al-
gorithms divide a data set into a single partition. The graph-based clustering
algorithms construct firstly a graph from the similarity matrix between the data
items and then, apply a clustering algorithm to partition the constructed graph.
The grid-based approaches are popular for mining clusters in a large multidimen-
sional space wherein clusters are regarded as denser regions than their surround-
ings. The density-based clustering approach is a methodology that is capable of
finding arbitrarily shaped clusters, where clusters are defined as dense regions
separated by low-density regions. In the model-based clustering, it is assumed

Y. Tan et al. (Eds.): ICSI 2011, Part I, LNCS 6728, pp. 250–259, 2011.
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that the data are generated by a mixture of underlying probability distributions
in which each component represents a different group or cluster.

Another family of methods based on biological and natural phenomena is
proposed in literature, and it’s called bio-inspired methods. Bio-inspired clus-
tering algorithms can be classified into two categories: those that start from an
initial solution (or a set of solutions) and try to improve it iteratively (genetic
algorithms [12], tabu search [3], simulated annealing [13] and Particle Swarm
Optimization [2]) and those that use a population of artificial agents that evolve
in the clustering environment to achieve the clustering task and generate a par-
tition as a solution (Ant-based clustering algorithms [4], [11]).

We have proposed in [5] a new ant-based clustering algorithm: CAC algorithm
(Communicating Ants for Clustering). The CAC algorithm takes inspiration
from the acoustic communication phenomenon observed among real ants [8]. It
has shown good results when it was applied on real and synthetic data sets [5].
The CAC algorithm shows also a good robustness of the obtained results despite
its stochastic nature. To further improve the results, we choose to hybridize the
CAC algorithm with a clustering aggregation algorithm [6] which is the Furthest
algorithm, which from a given set of clusterings finds a single clustering that
agrees as much as possible with the input clusterings.

This paper is organized as the following: in section 2, we describe the CAC
(Communication Ants for Clustering) algorithm [5]. Section 3 is devoted to pre-
senting the Furthest algorithm. In section 4, we introduce the main idea of this
paper which is the hybridization of the CAC and the Furthest algorithm. In
section 5 we explain the experimental evaluation. Section 6 concludes the paper
and points out some avenues for a possible future work.

2 The CAC Algorithm

The CAC algorithm [5] is based mainly on the acoustic communication phe-
nomenon observed in real ants [8]. In our algorithm, a set of ant-agents move
on a two-dimensional, squared and toroidal grid G where the data objects are
initially scattered at random. G includes L = �√N� cells per side where N is the
number of objects. In our approach, several objects can be placed on one cell,
which form a heap of objects. In this case, a class corresponds to a heap and a
partition is given by all heaps on the grid. Figure 1 illustrates this configuration.

The number of ants is automatically determined by the number of data. If
L represents the side of the grid, then the number of ants F = L2

9 . The idea is
that an ant is responsible for the cell where it is located and the eight nearby
cells. Thus, with this formula we guarantee that the number of ants is neither
very large nor very small compared to the number of cells on the grid. At the
initialization, the F ants (f1, ..., fF ) are positioned randomly on the grid by
checking, as for the distribution of objects, that a cell can’t contain at the same
time two ants or two objects. At each iteration, each ant fi moves randomly on
the grid. Thus, an ant can move to one of the eight cells of its neighborhood.

After the initialization, the ants try to find on the grid similar groups of objects
in order to merge them. Each ant that reaches a cell containing an object or a
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Fig. 1. CAC allows the construction of heaps of objects on the grid

heap of objects, sends a recruitment signal to other ants that hold objects or
heaps of objects. This signal contains information on the characteristics of the
object or the heap it holds as well as the coordinates of the cell where it is
positioned on the grid. Then, each ant among those that received the signal
will evaluate the similarity between its heap and the heap of the ant issuing the
signal. If the similarity is over a certain threshold, it will pick up its object or its
heap and drop it on the cell where the ant that sent the signal is, returns back
to its initial position and continues moving by choosing, randomly, a destination
among the eight neighbor cells. In this way, larger and larger clusters will be
formed. After it has completed all its communication, the ant that issued the
signal will move to a nearby cell seeking for other objects or heaps. Ants are
considered in turn and the process is reiterated until the number of iteration
TMax is reached.

The similarity between two heaps of objects H1 and H2 is evaluated as the
maximum distance between H1 and H2:

Dmax(H1, H2) = max
xi∈H1,xj∈H2

{d(xi, xj)} (1)

where d is a distance measure.
Two heaps H1 and H2 are aggregated if the maximum distance between them

Dmax(H1, H2) is less or equal to the aggregation threshold t. This threshold is
not constant, we start with a very low threshold equal to the minimum distance
between all objects dmin(O), and we add at each iteration a constant ε.

dmin(O) = min
(i,j)∈{1,...,N}2,i	=j

{d(xi, xj)} (2)

ε =
d(O)
Tmax

(3)

where d(O) is the average distance between all objects of the set O and Tmax

is the maximum number of iterations.

d(O) =
2

N(N − 1)

∑
(i,j)∈{1,...,N}2,i<j

d(xi, xj) (4)
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Algorithm 1 presents the steps of the CAC algorithm.

Algorithm 1. CAC (Communicating Ants for Clustering)
Initialization: Randomly place the data objects and the ants on the grid, by check-
ing that two objects or two ants can not be on the same cell.
for t = 1 to TMax do

for every ant ak, k ∈< 1, K > do
if the ant ak has an object [heap] then

for every ant ai, i ∈< 1, K >, i �= k do
Calculate the distance between his object [heap] and the object [heap] of
the ant ak.
if this distance is accepted then

move its object [heap] to the cell where the main ant ak is located.
ai moves to one of the eight neighbors cells.

end if
end for

end if
ak moves to one of the eight neighbors cells.

end for
end for

3 The Furthest Algorithm for Clustering Aggregation

The clustering aggregation problem [6] is defined as an optimization problem
where, given a set of m clusterings, we want to find the clustering that minimizes
the total number of disagreements with the m clusterings.

Considering a set of n objects V = {v1, ..., vn}. A clustering C of V is a
partition of V into k clusters C1, ..., Ck. For each v ∈ V , we use C(v) to denote
the label of the cluster to which the object v belongs, that is, C(v) = j if and
only if v ∈ Cj . Considering also m clusterings: we use Ci to denote the ith

clustering, and ki for the number of clusters of Ci.
A disagreement between two clustering C1 and C2 is a pair of object (u, v)

such that C1 places them in the same cluster, while C2 places them in different
clusters or vice versa :

du,v(C1, C2) =

⎧⎪⎪⎨
⎪⎪⎩

1 if ((C1(u) = C1(v) andC2(u) �= C2(v))
or (C1(u) �= C1(v) andC2(u) = C2(v)))

0 otherwise

(5)

dV (C1, C2) denotes the number of disagreements between C1 and C2

dV (C1, C2) =
∑

(u,v)∈V ×V

du,v(C1, C2). (6)
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The clustering aggregation problem is formulated as follows: given a set of
objects V and m clusterings C1, ..., Cm on V , compute a new clustering C that
minimizes the total number of disagreements with all the given clusterings :

D(C) =
m∑

i=1

d(Ci, C) (7)

In [6], the authors present many algorithms for resolving the clustering aggre-
gation problem. The Furthest algorithm has low complexity and it shows better
performances in comparison to the other studied algorithms in [6].

In [6], the clustering aggregation problem is formulated as a graph where the
weight Xuv of the edge (u, v) is the fraction of clusterings that place u and v in
different clusters. The Furthest algorithm starts by placing all the nodes into a
single cluster. Then, it finds the pair of nodes that are furthest apart and places
them into different clusters. These two nodes become the centers of the clusters.
The remaining nodes are assigned to the center that incurs the least cost. This
procedure is repeated iteratively: at each step, a new center is generated that
is the furthest from the existing centers, and the nodes are assigned to the
center that incurs the least cost. At the end of each step, the cost of the new
solution is computed. If it is lower than that of the previous step, then the
algorithm continues. Otherwise, the algorithm outputs the solution computed in
the previous step.

4 Hybridization of the CAC Algorithm and the Furthest
Algorithm

The CAC algorithm is an ant-based clustering algorithm inspired by the acoustic
communication phenomenon observed in real ants. The algorithm was tested and
evaluated on several real data sets.

The CAC algorithm generated good results, it showed a superiority over the
k-means and other ant-based clustering algorithms on several well known bench-
mark databases. The CAC algorithm is a stochastic algorithm. In fact, objects
and ants are initially randomly scattered on the grid. Moreover, ants move ran-
domly in their neighborhood throughout the algorithm. Despite this stochastic
nature the CAC algorithm showed a good robustness. If we run the CAC algo-
rithm several times we have, in average, good results and the standard deviation
of all the evaluation measures is very low. But when comparing two different
runs, we can find disagreements between the generated partitions. These dis-
agreements are caused by the stochastic steps of the algorithm. That’s why we
thought to hybridize the CAC algorithm with the Furthest algorithm to have a
final clustering that matches as possible with the clusterings in result of the CAC
algorithm. The hybridization consists on running the CAC algorithm m times
and the Furthest algorithm takes the resulted m clusterings as inputs. Then,
it generates a clustering that agrees as much as possible with the clusterings
generated by the ants.
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5 Experimental Evaluation

5.1 Data Sets

To achieve our experimental evaluation, we have used real data sets issued from
the machine learning repository [1] and synthetic data sets (table 1). These data
sets are supervised (we know the class of each object) in order to assess the
quality of the partitioning we get. We present for each data set the dimension
of objects space (M), the number of classes (K) and the total number of ob-
jects (N).

Table 1. Data sets used for the experimental evaluation

Data sets M K N

Iris 4 3 150

Wine 12 3 178

Glass 9 7 214

Thyroid 5 3 215

Breast cancer wisconsin 10 2 699

Yeast 8 10 1484

Synth1 2 4 2000

5.2 Evaluation Measures

F-measure: The F-measure is based on the idea of comparing a resulting parti-
tion with a real or a reference partition. It uses the recall and precision measures
which are defined as follows:

recall(i, j) =
nij

Ni
(8)

precision(i, j) =
nij

Nj
(9)

where nij is the number of objects or individuals present in the reference class Ci

and in the resulting class Cj . Ni and Nj represent respectively the total number
of objects in the class Ci and Cj .

Or recall(i, j) and precision(i, j) are relative only for one case, that of the
adequacy of reference class Ci with the result class Cj . To evaluate the entire
class Ci, we just choose the maximum of the recall and precision values obtained
within Ci:

recall(i) = max
j

[recall(i, j)] (10)

precision(i) = max
j

[precision(i, j)] (11)

The global values of the recall and precision for all classes will be finally
determined as follows:
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recall =
∑

i

pi × recall(i) (12)

precision =
∑

i

pi × precision(i) (13)

where pi is the weight of the class Ci. It is given by the following formula:

pi =
Ni∑
k Nk

(14)

The global value of the F-measure will be given by the following formula:

F =
2× precision× recall

precision + recall
(15)

Note that high values of recall, precision and F-measure matches to a best
clustering.

Impurity index: If a clustering contains k clusters with sizes s1, ..., sk, and the
sizes of the majority class in each cluster are m1, ..., mk, respectively, then the
impurity index measure is defined as:

I =
k∑

i=1

(
si −mi

si
) (16)

If a clustering has I value equal to 0, it means that it contains only pure clusters.

Rand index: Given a set of n objects O = {o1, o2, ..., on} and two partition
P = {C1, C2, ..., Ck} and P ′ = {C′

1, C
′
2, ..., C

′
k′}, respectively containing k and

k′ clusters. We define the following measures:

– a, the number of pairs of elements in O, that are in the same cluster in P
and in the same cluster in P ′.

– b, the number of pairs of elements in O, that are in different clusters in P
and in different clusters in P ′.

– c, the number of pairs of elements in O, that are in the same cluster in P
and in different clusters in P ′.

– d, the number of pairs of elements in O, that are in different clusters in P
and in the same cluster in P ′.

The Rand index is calculated as follow:

R =
a + b

a + b + c + d
=

a + b

(n
2 )

(17)

A best clustering is the one that maximizes the Rand index value.
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5.3 Experimentations

In our experimentation study, we ran the CAC algorithm 5 times and we have
provided the resulting 5 clusterings to the Furthest algorithm.

The Synth1 data set is the type of data most frequently used within ant-
based clustering algorithms. It is two-dimensional and consists of four clusters.
They are generated by four different Normal Distributions and each has a size
of 500. Figure 2 shows the partitions generated by 5 runs of the CAC algorithm
and that is generated by the Furthest algorithm after having as inputs the 5
clusterings C1, ..., C5. Figure 2 shows that the Furthest algorithm succeed to
correct misclassifications generated by the ants in each clustering.
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Fig. 2. Results on Synth1 data set

We present in the following tables the results on the different data sets. For
each clustering within the m input clusterings and the final clustering, we present
the number of resulted clusters (#clu), the recall (R), the precision (P ), the
Fmeasure (F ), the impurity index (I) and the rand index (Rand). The average
of all the evaluation measures is represented by the Avg(C1−5) row.

Table 2 shows that the clustering obtained by the hybridization of the CAC
algorithm and the Furthest algorithm for the iris and wine data sets is better
than the average of the five clusterings.

Table 3 shows that for the glass data set, the clustering C has recorded a slight
superiority for the different evaluation measures, except the recall measure. This
exception can be justified by the number of the obtained clusters which is larger
than the average number of clusters of the 5 input clusterings. For the thyroid
data set, the Furthest algorithm showed an improvement of the final clustering
among all the evaluation measures.

Table 4 presents the results for the Breast cancer wisconsin and the Yeast
data sets. For the Breast cancer wisconsin, the aggregation of the five cluster-
ings has recorded better results compared to the average of all the evaluation
measures, while the clustering C4 performs better than the clustering C. For the
Yeast data set the Furthest algorithm generates a larger number of clusters (14)
compared to the real number of clusters (10), but when looking at the precision
value, we notice that the clusters generated by the Furthest algorithm are more
homogeneous than those generated by the five clusterings given as inputs.

We have presented in tables 2, 3 and 4 the evaluation measures values of
the clustering obtained by the Furthest algorithm after having as inputs five
clusterings generated by five runs of the CAC algorithm. The Furthest algorithm
always generates a clustering with a better precision than the inputs clusterings.
It succeeds to correct the misclassifications committed by the ants.
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Table 2. Results on the Iris and Wine data sets

Iris Wine
Clustering #clu R P F I Rand #clu R P F I Rand

C1 3 0.96 0.96 0.96 0.04 0.94 4 0.83 0.95 0.89 0.14 0.81

C2 4 0.80 0.98 0.88 0.04 0.90 4 0.81 0.89 0.85 0.14 0.82

C3 3 0.96 0.96 0.96 0.03 0.95 4 0.88 0.96 0.92 0.07 0.87

C4 4 0.73 1.00 0.84 0.10 0.85 3 0.79 0.68 0.73 0.37 0.68

C5 3 0.95 0.95 0.95 0.04 0.94 4 0.88 0.97 0.92 0.08 0.87

Avg(C1−5) 3.4 0.88 0.97 0.91 0.05 0.91 3.8 0.83 0.89 0.86 0.16 0.81

C 3 0.96 0.96 0.96 0.04 0.95 4 0.90 0.97 0.93 0.06 0.89

Table 3. Results on the Glass and Thyroid data sets

Glass Thyroid
Clustering #clu R P F I Rand #clu R P F I Rand

C1 6 0.88 0.51 0.64 0.52 0.61 6 0.83 0.91 0.87 0.10 0.82

C2 7 0.75 0.71 0.73 0.50 0.63 6 0.83 0.91 0.87 0.09 0.82

C3 8 0.75 0.72 0.73 0.50 0.63 6 0.83 0.91 0.87 0.09 0.83

C4 6 0.83 0.70 0.76 0.52 0.61 6 0.65 0.94 0.77 0.13 0.68

C5 7 0.77 0.56 0.65 0.51 0.59 7 0.80 0.96 0.88 0.07 0.86

Avg(C1−5) 6.8 0.80 0.64 0.70 0.51 0.62 6.2 0.78 0.92 0.85 0.096 0.80

C 8 0.75 0.72 0.74 0.50 0.63 6 0.83 0.92 0.87 0.09 0.83

Table 4. Results on the Breast cancer wisconsin and Yeast data sets

Breast cancer wisconsin Yeast
Clustering #clu R P F I Rand #clu R P F I Rand

C1 2 0.90 0.91 0.91 0.09 0.83 11 0.61 0.70 0.65 0.59 0.64

C2 2 0.89 0.90 0.89 0.10 0.81 11 0.49 0.71 0.58 0.58 0.62

C3 2 0.85 0.88 0.86 0.14 0.75 10 0.74 0.77 0.75 0.59 0.58

C4 2 0.91 0.92 0.92 0.08 0.84 10 0.76 0.69 0.72 0.61 0.54

C5 2 0.90 0.91 0.90 0.09 0.82 11 0.50 0.80 0.61 0.59 0.62

Avg(C1−5) 2 0.89 0.90 0.89 0.10 0.81 10.6 0.62 0.73 0.66 0.59 0.60

C 2 0.90 0.91 0.91 0.09 0.83 14 0.46 0.85 0.60 0.58 0.65

6 Conclusion

In this paper, we have presented a hybridization of the CAC algorithm with the
Furthest algorithm. This hybridization shows an improvement of the obtained
results. As prospects, we attempt to adapt the principles developed in CAC and
its hybridization with the Furthest algorithm to handling large data sets.
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Abstract. This paper presents a multi-cellular-ant algorithm for large
scale capacitated vehicle routing problem with restrictive vehicle ca-
pability. The problem is divided into corresponding smaller ones by a
decomposition methodology. Relative relationship between subsystems
will be solved through cooperative performance among cellular ants to
avoid trivial solutions. The empirical results composed with adaptive ant
colony algorithm and traditional collaboration show more efficiency and
availability.

Keywords: multi-cellular-ant algorithm, cooperation, decomposition,
capacitated vehicle routing problem.

1 Introduction

Vehicle route problem (VRP) is designing delivery routes to meet some require-
ments and obtain minimal total cost synchronously. capacitated vehicle routing
problem (CVRP) is an extension of VRP where vehicle capability is restrained.
Researches on CVRP focus on two positions. On the one hand, average distance
minimization is to diminish distribution cost. Ellipse rule approach made high
decline by about 44% (Santos L et al, 2009). Heuristic algorithms played signa-
ture performances on CVRP under certain problem sizes, such as evolutionary
algorithm(Borgulya I, 2008), genetic algorithm (Chung−Ho Wang et al, 2010)
and particle swarm optimization (Ai TJ et al, 2009). (Istvan Borgulya, 2008)
proposed a multi-objective algorithm based on extended virtual loser for CVRP
as similar as other evolutionary algorithm.

(Jens Lysgaard et al, 2004) presented a new branch-and-cut algorithm in-
cluding several separation methods to solve the three instances and find out
their upper bounds and then (Ricardo Fukasawa et al, 2006) improved it into
Branch-and-Cut-and-Price method to gain lower bounds. On the other hand,
CVRP scale caught some attention. (Jari Kytojokia et al, 2007) scattered cus-
tomer services location with known demands geographically to breakdown large
scale problem. Furthermore, (David Mestera et al, 2007) enhanced the guided
local search and evolution strategies meta-heuristics. A deoxyribonucleic acid
computing and modified Adleman − Lipton model accelerates the search on
large nodes CVRP in a decentralized model (Y uvraj, 2009).

Y. Tan et al. (Eds.): ICSI 2011, Part I, LNCS 6728, pp. 260–266, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Multi-cellular-ant Algorithm 261

Subsystems coupling is ignored generally in a decentralized model. Multi-ant
algorithm is proposed in a distributed model where iteration between subsystems
is taken into account. Large scale CVRP is decomposed into a set of smaller ones
with connection based on Tree Cut-Set algorithm given in the paper. Moreover,
additional reward function punishes suboptimal strategies at each state. (Carlos
Bermudez et al,2010) had proposed recombination operator for genetic search
and provided solution for CVRP based on cellular model where cellular ants
played well. Consequently, complex and abundant macroscopic phenomenon in
the parallel evolutionary is described as cellular automata (CA) as a discrete
grid dynamics model both in timespace and state vector.

The paper is organized as follows: Section 2 will introduce decomposition of
large scale CVRP using tree cut-set. Section 3 describes multi-cellular-ant algo-
rithm in a distributed model established in Session 2 based on reward shaping.
The distributed multi-cellular-ant in a grid net of subsystems updates informa-
tion by local rules following same action regulations synchronously with finite
discrete states. Simultaneously, the procedure of cooperation between subsys-
tems is gotten. Simulations are executed among three algorithms in Section 4.
Finally, discussion and conclusions are in Section 5.

2 Decomposition for Large Scale CVRP

Large scale CVRP is deemed as a weighted incomplete undirected graph di-
vided into subsystems by Tree Cut-Set (TCS). For the complexity, undirected
graph with unsteady capacity constraints is transformed into Tree Description
(Chen Y ulin et al, 2002) firstly using network ripping (Li Y an et al, 2004).
Then, the semantic representation of CVRP could be replaced by subsystems.
The amount of subsystems is related with the carrying capability of vehicles,
demands and association of customers.

We will explain t− sepset couple based on d− sepset(Ng.A et al, 1999).

Definition 1. In a tree, a tree-node i has and only has two different parents,
has and only has one child node j, at the same time, node j has and only has
two different children. Then, (i, j) is called as a t-sepset couple nodes.

Formed tree is searching by order under Greedy policy and ripping by t-sepset
couple nodes of customers with stochastic demands. As what Bayesian Theory
[11] says, demands are weighted by wi. A random variable must fix some precon-
ditions: w > 0 and

∑2
i=1 wi = 1. Summation of demands ta in subsystems must

be lower than b limited vehicle capability. Error e = ta − b declines as lower as
possible. Our procedure stops till the value of e is lower than a by constant p.
Otherwise, TCS will continue.

3 Multi-cellular-ant Algorithm

A subsystem is described as a five-tuple discount value MDP model M =
{S, A, T, R, fv} where S = {s} is a set of states, A = {a} is a set of actions,
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T = {p(·|s, a), s ∈ S, a ∈ A} are the transition probability distribution of next-
state. p(· | s, a) represents the probability of action a. R(s, a, s,) describes reward
function and fv defines additional reward function. π(s) is policy function in the
state space.

R,(s, a, s,) = R(s, a, s,) + Φ(s,) − Φ(s) is for any policy π(s) and V ∗(s) =
π(s) − Φ(s) [12] by assumption that potential function Φ(s) exists. If reward
function R of model M exchanges into new reward function R, of model M ,,
reward shaping incurs optimal policies of model M being as well as optimal
policies of model M ,. fv(s, a, s,) carries ant colony information, thus R, is defined
as follows :

R,(s, a, s,) = R(s, a, s,) + fv(s, a, s,) (1)

3.1 Cellular Ants

Cellular automata (CA) depicts a discrete model with a finite number of states.
Lattice cells work in communication, computation, construction, growth, re-
production and evolution. Simultaneously, CA masters at ordering, turbulence,
chaos, symmetry-breaking and fractals in the dynamic system. Cell state at next
time is dominated by current state and neighbors’ current states.

CAs structure consists of four parts: cellular-ant space, grid dynamics net,
local principles and transition function. Cellular Space in subsystems has two-
dimensional uncertainty states. Updated function with cellular ants information
at time t under extended Moore neighbor model is as: f : si

t+1 = f(si
t, s

N
t ).

The key part of CAs is to establish corresponding-neighbors policies under
extended Moore neighbor model where last-state performances are compared
with neighbors’. Thus reward function of distributed multi-cellular-ant algorithm
is written as f = f(si

t(a),
∑N

j=0 sj
t (a)) and fv(s, a, s,) = F (si

t+1):

R,(s, a, s,) = R(s, a, s,) +
2r∑

r=0

f(si+r
t (a),

N∑
j=0

sj
t(a)) (2)

3.2 Distributed Multi-cellular-ant Algorithm

Dynamic learning in Back Propagation (Xiao − Hu Y u et al, 1995) accelerates
the learning rate that represented by ϕt(i)(the value of ant i at time t). ϕt(i) value
reduces to zero gradually in the limited search procedure. Let ϕt(i) > 0 be a series

of constants for every ant at time t and fit the equation: lim
T−→∞

T∑
t+1

ϕt(i) =∞.

The influence of perturbation from unstable situations can be amended by
Performance Potential (CaoXi − enetal, 1997). Such as, vehicle diversity may
impact on the efficiency and the weather will delay the arriving time of trans-
portation. The last-step state is chosen for performance potential for current-
step state. Let X = {Xt, t = 1, 2 . . . } picture the decision progress. According
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to reward function, while s is the last-step state, the description of performance
potential under state s, is defined as:

gs, = lim
T−→∞

{E[ρN
N−1∑
s=0

R,(s, a, s,)|X0 = s]

−(N − 1)gs} (3)

Reward shaping integrates with ant colony algorithm based on Q-learning
(Bagnell, J.etal, 2006; Dietterichetal, 2000):

π∗
k(i, j) = argminmax{fv(s, a, s,)

∑
a∈A

πa(i, j) ∗Q�} (4)

Q� = maxa	=kQ(i, j, k)−Q(i, j, s) (5)

Q(i, j, k) = ϕt(i) ·Q(1− rk/Rk)− δ · gs,

+rk/Rk · V � (6)

V � = R,(i, k, j) + γV ∗(s,) (7)

Where α is discounted factor. While the amount of cellular ants arriving at
city i is Rk, the amount of cellular ants chosen city j as the next city is rk.

4 Experimental Result

The dataset for simulation is from a GIS software, ”ArcView”, transforming
geographic location in the original city map to network one. Information in
ArcView compose latitude and longitude vector. The amount of cellular ants is
31. Parameter α is trail evaporation coefficient. The revisited probability will
increase if α is high. Parameter β also takes heuristic information where best
regions are 0.1 ≤ α ≤ 0.3 and 3 ≤ β ≤ 6 (JIANG Ling− yan et al, 2007). Then
parameters in Q-learning are set as: α = 0.6, β = 4, γ = 0.8, Q = 2 and ρ = 0.7.

4.1 Solution Superiority

The number of places in the city is 500. Time consumes ordered by adaptive
ant colonycooperation without decomposition and cooperation with decomposi-
tion are 1.7514e+003 | 202.8906 | 179.5156. The shortest distances by the same
orders are 1.4263e+004 | 1.4164e+003 | 1.3541e+003. For larger scale problem,
multi-cellular-ant cooperation with decomposition displays quicker astringency
than cooperation without decomposition. Moreover, solutions through multi-
cellular-ant algorithm are better (illustrated by the right one in Fig 1). Without
decomposition, the cooperation is easy to trap into local solution (illustrated by
the left one in Fig 1).
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Fig. 1. Shortest distances comparison

4.2 Efficiency for System Coupling

For the large scale problem, interactions between subsystems drive signature
impacts on operations. Interaction and coordination are special characters of
multi-cellular-ant algorithm with corresponding coupling. With various scales of
CVRP, performance contrasts are analyzed during experiments.

From first two graphs in Fig 2, best solutions and average solutions under
multi-cellular-ant algorithm and multi-ant algorithm without decomposition are
shown clearly. While problem is simple, accomplishments between those two
methods differentiate infirmly. The later method leads to suboptimal operations
rapidly with incremental problem scopes.

Because of restrained vehicle capacity, cellular ants keep contact with each
others through relative reinforcement learning. Therefore, more complex manip-
ulations of multi-cellular-ant algorithm takes more time for smaller problem.
However, under fewer iterations, it costs less time to find out optimal solutions
as higher scale of CVRP (illustrated by the third graph in Fig 2).
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Fig. 2. Results comparisons

Performance Potential(Pp) is helpful for filtering system noises. The purpose
of importing Pp into multi-cellular-ant algorithm is to reduce impression from
uncertainties and accelerate actions. Its performances is determined by param-
eter δ. Simulations are executed by several δ values (illustrated in Fig 3). It
is obvious in the bottom curve that technique with smaller δ value takes more
iteration to gain best solution under noise.
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The conclusion that high δ value means filter process strengthened is proven
in Fig 3. Prior solutions are obtained as higher δ value.
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Fig. 3. Pp executions

5 Discussion and Conclusions

Decomposition is to scale down large scale CVRP into subsystems using
hybrid algorithms. Cooperation and interaction is considered and solved by
multi-cellular-ant algorithm in a distributed model. Potential function filters
the disturbance from circumstance whose efficiency is verified from simulations.
Moreover, other problem are still be improved by multi-cellular-ant algorithm,
for instance, a Pork Traceability System.
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Ant Colony Optimization for Global White Matter Fiber 
Tracking 
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Abstract. In this paper, we propose a fast and novel probabilistic fiber tracking 
method for Diffusion tensor imaging (DTI) data using the ant colony tracking 
technique, which considers both the local fiber orientation distribution and the 
global fiber path in collaborative manner. We first construct a global 
optimization model that captures both global fiber path and the uncertainties in 
local fiber orientation. Then, a global fiber tracking algorithm is presented using 
a novel learning strategy where the probability associated with a fiber is 
iteratively maximized. Finally, the proposed algorithm is validated and 
compared to alternative methods using both synthetic and real data.  

Keywords: Diffusion tensor imaging, ant colony optimization, tractography, 
probabilistic fiber tracking. 

1   Introduction 

Diffusion tensor imaging (DTI) is a technique that allows measurement of white 
matter fiber orientation in the human brain in vivo. White matter fiber tracking or 
“tractography” can estimate likely fiber paths by tracing the principal diffusion 
directions of the local tensor orientations. These fiber paths can subsequently be used, 
for example, to chart the complex network of neural fiber tracts in the human brain, 
and to investigate connectivity in healthy and pathological populations. 

One of the challenges facing conventional tractography methods is the problem of 
uncertainty in the tracking procedure. Noise, splitting and crossing fibers, head 
motion and image artifacts are all examples of factors that cause variability in the 
estimated fibers. As a result, stochastic tractography methods have been developed in 
order to quantify and visualize the uncertainty associated with the estimated fibers. 
Stochastic approaches model the uncertainty in DTI measurements at each voxel 
using a probability density function (PDF) for orientation distribution, and then trace 
the direction randomly sampled from the PDF [1~4]. However, these methods require 
the number of samples to be exponential to properly explore the state space, which is 
computationally burdensome. 

Recently, global tractography techniques based on an iterative optimization 
algorithm have received considerable interest [5~8]. In the graph framework, they 
define a cost function to estimate the degree of a fiber trajectory belonging to the true 
fiber pathway running form the seed point to target point. Then optimization 
algorithms, such as Dijkstra algorithms [5,6,7], are used to find the maximum 
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probability fiber. These methods admit a relatively large amount of discretization 
error in orientation at the voxel level because they only sample the PDFs from the 
neighbors’ directions (generally 26 directions). 

In this paper, we extend a fast and novel probabilistic fiber tracking method for 
quantifying white matter connectivity inspired from ant colony optimization. It 
provides a model optimization framework for tracking the fiber directions which can 
capture both the local fiber orientation distribution and the global optimal maximum a 
posteriori fiber. In our tracking algorithm, the particles propagate the consistent 
orientations in a collaborative manner, which yields inherent path regularization. It 
provides a more accurate estimation of fiber orientations with acceptable particle 
numbers and reasonable computation cost. 

The paper is organized as follows. In section 2, we develop the global fiber 
tracking optimization model between the seed point and the target region. The ant 
colony fiber tracking algorithm is proposed in Section 3. In Section 4, we evaluate the 
performance of the algorithm on synthetic data and real-world diffusion MRI data. 
Section 5 concludes the paper and discusses directions for future research. 

2   Global Fiber Tracking 

Global fiber tracking is aim to extract the most likely fiber pathway from a predefined 
seed point. Our formulation of extracting the most likely fiber pathway is based on 
computing a path of maximum probability between seed point and target region of 

interest. Given a fiber path 
  
c : [x

0
, x

n
]→Ω , where Ω ⊂ R3 is a compact image 

domain, we define the global cost function cf of c  as  

   
f

c
(c(x

0
→ x

n
)) = P(T (t),c(t)) dt

x0

xn∫                                        (1) 

where 
  
T (t) = ′c (t) ′c (t) is the unit tangent vector of c . The total cost is defined as 

the integral of a local cost function, P(v, x) , and gives the cost of moving in the unit 

sphere direction v  from the point x ∈Ω . 
In practice, a white matter fiber path can be modeled as a trajectory of discrete 

points in the image space, i.e. { }1: 0 1, , ,n nP x x x= . We assume that all vectors have 

the same step size, i.e. 
 
α

i
= α , 1, ,i n= . Hence, the growth of a path in discrete 

time can be described as 

           1 , 0,1, , 1i i ix x v i nα+ = + = −                                             (2) 

where 0x is the seed point, iv  is the fiber direction at position ix . Then the cost of (1) 

is approximated as  

       
f (c(x

0
→ x

n
)) = α P(v

i
, x

i
)

i−1

n

∑
                                       

    (3) 
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Here, we define the local cost function, P(v
i
, x

i
) , as the probability of selecting the 

direction iv at point ix . In deterministic tractography, such as streamline method, iv  

is the largest eigenvector of the tensor D  at ix , i.e. v
i
= D

xi
, and the recursion in (4) 

is deterministic because 1ix +  is given by x
i
+αv

i
with probability         

  
P(x

i+1
= x

i
+αv

i
) = 1                                                  (4) 

Due to both noise and ambiguities for voxels where multiple fibers cross or branch, 
the local orientations measured by DTI are not completely reliable. Let Φ be the set 
of observations of a 3D diffusion weighted imaging volume. The method of 
probabilistic fiber tracking models this uncertainty using a probability density 
function (PDF) for the fiber orientations. Thus, (4) is rewritten as the stochastic 
recursion 

      
P(x

i+1
= x

i
+αv

i
) = p(v

i
| v

i−1
,Φ)                                          (5) 

where
  
p(v

i
| v

i−1
,Φ) is the conditional prior density under the measured diffusion 

tensor. We assume that the vector iv  only depends on the previous state 1iv − , so that 

      
p(v

i
| v

0:i−1
,Φ) = p(v

i
| v

i−1
,Φ)

                                            (6) 

This means the new state is conditioned directly only on the immediately preceding 
states, and is independent of the past. Let A be a start region of interest, and B  be a 
target region of interest. The total cost of a fiber path from A  to B is 

      
f (c(x

0
∈A→ x

n
∈B)) = α p(v

i
| v

i−1
,Φ)

i=0

n

∑
                             

  (7) 

However, this measure increases strongly with the path length. A uniform 
distribution over a range of reasonable lengths is used to describe the prior 
information about the expected path between A  and B . In fact, the priori 
information about the fiber length is not easy predefined. Iturria et al. [5] define the 
minimum probability of 

  
p(v

i
| v

i−1
,Φ) as the measure. Here, we define a new measure 

af as the average weight of the fiber, i.e. 

      
f a (c(x

0
∈A→ x

n
∈B)) = α

n +1
p(v

i
| v

i−1
,Φ)

i=0

n

∑                            (8) 

We recast the problem of tracking the expected fiber path going from 
  
x

0
∈A  to 

B as that of approximating the maximum of the probability of (8), 

    0

*
0 1

( , , ) 0

( ( )) arg max ( | , )
1n

n

i i
x x B i

f c x B p v v
n

α
−

∀ ∈ =

⎛ ⎞→ = Φ⎜ ⎟+⎝ ⎠
∑                         (9) 
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More formally, we define the stochastic fiber tracking problem as follow. Given a 
seed point 

  
x

0
∈A , a region B , a step length α , P(v

i
, x

i
) at voxel ix , and termination 

criteria: compute either a most likely path c* (x
0
→ B)  or a set of M likely paths 

  
C(x

0
→ B) = {cn (x

0
→ B)}

n=1
M

 supported by the DT-MRI data. It can be mapped on a 

maximum optimization problem   (S , f ,Ω) that can be characterized by the following,  

1) A finite set of discrete decision variables iX , 1, ,i n=  is defined as the voxels 

over the compact image domain and a set Ω  of constraints include fiber 
curvature, FA value, et al. 

2) A finite set { }1, , , , iDj
i i i iv v v v=  of states of variable X

i
, defined on a unit 

sphere.  
3) A feasible solution  s ∈S , which satisfies all the constraints in the set Ω . 

4) A nonempty set   s
* ∈S  of optimal solutions, with f (s* ) ≥ f (s) ∀s ∈S . 

where S  is the set of (candidate) solutions, f is the objective function, which assigns 

to each candidate solution  s ∈S  an objective function (cost) value f (s) , and Ω  is a 

set of constraints, which defines the set of feasible candidate solutions. 

3   Ant Colony Fiber Tracking 

Ant Colony Optimization (ACO) was introduced as a novel nature-inspired method 
for the solution of hard stochastic optimization problem. Here, we introduce ACO 
into global fiber tracking. 

3.1   Probability Density Function of Fiber Orientation 

Before going into in-depth description of our algorithm, we must discuss the fiber 
orientation PDFs, and select the one that we will use. In our method, we introduce an 
approximate observation density model by multiplying the error Gaussian distribution 
over all gradient directions of the diffusion weighted image, with the motivated that 
the noise between the observed intensity φ

i
 and the true signal s

i
over direction 

 
v

i
conforms closely to a normal distribution [3], i.e. 

      

p(φ
i
| v

i
) =

μ
j

2πσ 2
j=1

M

∏ e
−
μ j

2

2σ 2
(log

s j

μ j

)2

                                     

(10) 

Here, jμ is the observation intensity of gradient direction 1, ,j M= , and js  is the 

true signal over the gradient direction 1, ,j M= , given by the constrained tensor 

model, 

       
s

j
= s

0
e
−γ bj e

−βbj (g j
T v )2

                                               
(11) 
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where the gradient directions jg  and b-value jb  are the scanner parameters for data 

acquisition,  v is the principal tensor direction, and 0s is the intensity with no diffusion 

gradients applied. Parameters γ and β  are determined by the eigenvalues 

 
λ

1
≥ λ

2
≥ λ

3
of D  with 

 
γ = 1

2
(λ

2
+ λ

3
) , β = λ

1
− γ . 

3.2   Pheromone Representation and Diffusion 

In ACO, the pheromone is represented as certain value associated with solution 
component, and it is stored as a table. At each iteration, when choosing a solution 
component, an ant uses some of the value from the table as a discrete probability 
distribution. In case of tractography, the choice an ant makes is the direction on a unit 
sphere which is not restricted to a finite set. It is impossible to represent the 
pheromone in the form of table. Here, we adopt a model of pheromone based on the 
von Mises-Fisher (vMF) distribution over a unit sphere. In fiber tracking, the particles 
propagate fiber paths stochastically, and the particle deposits a certain amount of 
pheromone trail along the fiber path. Specifically, at each step ix , 0,1, ,i n= , a 

pheromone trail ig  is assigned to fiber component along orientation 
 
v

i
j which is 

defined as a 3-dimentiaonal vMF function 

           

  

g
i
(x;μ,κ ) = κ 1/2

(2π )3/2 I
1/2

(κ )
eκμ

T x                                          (12) 

where 
 
κ ≥ 0, μ = 1 , and 

  
I

1/2
(⋅) is the modified Bessel function with order

1

2
. The 

vMF function g
i
(x;μ,κ ) is parameterized with two vectors of parameters: the means 

vector 
 
v

i
= v

i
j  is the selected fiber direction, and κ  is the given vector of 

concentration parameters. 
Assume that there are m  fiber paths traced by ants at each iteration. For each fiber 

path if , 1, ,i m= , with it steps, we store the value of voxel coordinates and 

objective function 
  
E( f

i
) . The fibers are ordered in K  paths pass through voxel ix , 

the pheromone diffusion process is defined as a weighted sum of these K g
i
functions, 

which is denoted as 
  
G

i
(x) : 

      G
i
(x) = ω

k
g

i
k

k=1

K

∑ = ω
k

κ 1/2

(2π )3/2 I
1/2

(κ )
eκμi

T x

k=1

K

∑                                   (13) 

where 
 
ω

k
 is the vector of weights associated with the individual Gaussian functions 

which is created in the following way. In our method, we keep track of a number of 
fibers in a fiber archive 1 2[ , , , ]nF f f f= . For each fiber kf  with kt steps, we store 

in F the value of its fiber step orientations and the value of the objective function 
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E( f

k
) . Each fiber is evaluated and ranked according to E( f

k
) , i.e., fiber kf  has rank 

k . The weight ω
k

 of the fiber kf  is calculated as  

      
  
ω

k
= 1

δK 2π
e
−

(k−1)2

2δ 2K 2
                                               (14) 

which essentially defines the weight to be a value of the Gaussian function with 
argument k , mean 1.0, and standard deviation δK , where δ  is a parameter of the 
algorithm. When δ  is small, the best-ranked fibers are strongly preferred, and when it 
is large, the probability becomes more uniform. 

3.3   Ant Colony Fiber Tracking Algorithm 

In this section, we outline the ant colony fiber tracking algorithm. 

Ant Fiber Propagation. Consider m particles at the starting point of a path which 
propagate as time progresses. The traveling of each ant in discrete time can be 
described by equation (2) with step size α . At step t , an ant chooses a fiber direction 
according to the pheromone model. As mentioned earlier, the pheromone is a mixture 
vMF directional model. The number of vMF functions used is equal to the size K of 
the fiber archive T . Sampling from a mixture vMF function is difficult. We 
decompose into two stages. In the first stage, we choose one of the vMF functions that 
compose the pheromone. The probability p

j
of choosing the thj  vMF function is 

given by: 

  
p

j
= ω

j
ω

k
k=1

K

∑                                                      (15) 

where 
 
ω

k
is the weight of fiber kf which has been defined in equation (14). Note that 

the choice of thj vMF function is done only once per ant, per iteration. 

The second stage consists of sampling the chosen vMF function. The vMF 
distribution can be efficiently sampled from using the algorithm developed by 
Sungkyu1 based on works of Wood [10].  

Pheromone Update. The pheromone is composed of a number of vMF functions 
which stored as a fiber archive. This implies that the pheromone update procedure has 
to perform some form of update on this archive instead of pheromone evaporation.  

The fiber archive T  is initialized generating K fibers by sampling from (12). 
Then, pheromone update is conducted by adding the set of newly generated fiber to 
the fiber archive T  and then removing the same number of worst fibers, so that the 
total size of the archive dose not change. This process ensures that only the best fibers 
are kept in the archive, so that they effectively guide the following ants toward to 
more likely fiber region in the search process. 

To summarize, the propagating steps at each iteration are as follows. 

                                                           
1 http://www.unc.edu/~sungkyu/MiscPage.html 
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1. Given step length α , seed points 0x , ants number m  etc. 

2. Compute the weights kω  according to (14). 

3. Repeat 1, 2,k =  

4. For 1:i m=  

   while (Termination Criteria is not satisfied) do 
5.     Estimate tensor model for current point. 

6.     Calculate Posterior Distribution according to (10) 

7.       if 1k =  

8.          Draw a random direction sampling from (10) 
9.       else 

10.        Select the j  fiber from the archive. 

11.        Draw a rand direction with vMF along the fiber j . 

12.        Compute the cost function according to (13) 
13.      end 
14.   End while 
15.   Update fiber archive 
16. End  

4   Experiments and Results 

In this section, we evaluate the performance of the method by experiments with both 
synthetic and real DTI data. 
 

 

4.1   Synthetic Data 

The synthetic data used in this section was created with the following parameters: 

 120 ×120 × 28 voxels,   1×1×1mm , b = 800s / mm2 , 6 gradient directions. We 

generate the observed log-signal intensities according to the constrained tensor model 
[3] with

 
λ

1
/ λ

2
= 3 ,

 
λ

2
= λ

3
. Similar to [4], we generate synthetic additive 

independent zero mean Gaussian noise with variance σ
r
2 , where σ

r
= r% ⋅ (μ

k
− μ

l
)  

relates to the minimum and maximum image scalar values, μ
l

and μ
k

, at noise  

level %r . 
Fig. 1, panel (a)-(d) shows the results of the first experiment with synthetic two-

dimensional data with complex tract configurations at noise level 25%. Panel (a) 
shows the data tensor field corrupted by noised. The tracking result of Friman’s 
method with 1000 particles is shown in panel (b). Most of the fibers stop near the seed 
point. Panel (c) and (d) is the tracking result of our method with 50 particles after 3 
and 6 iterations. Note that most of the particles can reach the target region after 6 
iterations.  

The second experiment is performed on fiber crossing synthetic data at noise level 
25% shown in Fig.1, panel (e). As expected, the principal tensor eigenvectors in the 
intersection are noisy. Panel (f) shows the particle paths of a set of 1000 particles 
from the seed point in the left part of the horizontal fiber using Friman’s Bayesian 
approach [3]. Panel (g) and (h) is the tracking result of our method with 50 particles 
after 3 and 6 iterations.  



274 Y. Feng  and Z. Wang 

4.2   Brain Diffusion MRI 

The diffusion weighted data was acquired from a real human brain using a 3-T GE 
system and a double echo planar imaging (EPI) sequence, with TR=17000ms, 
TE=78ms. The images cover a field of view of 24cm using a 144 ×144 grid. 85 axial 
slices parallel to the AC-PC line were acquired, with a slice thickness of 1.7mm. 

Acquisitions have 51 gradient directions with b = 900s / mm2  and 8 baseline scans 
with   b = 0 . The tensor parameters were estimated using weighted least squares. 
Spatial filtering of the tensor field was not performed. 

     

(a) (e)

     

(b) (f) 

(c) (g) 

     

(h)(d) 

 

Fig. 1. (a) Synthetic data at noise level 25%. (b) Friman’s method [3]. (c) our method after 3 
iterations and (d) after 6 iterations. (e) Synthetic data with fiber crossing at noise level 25%. (f) 
Friman’s method [3]. (g) Our method after 3 iterations and (h) after 6 iterations. 

Fig.2 shows the experimental results with the background of a coronal slice. Fig. 2 
(a), (b) and (c) show 1000 paths of Friman’s method seeded separately the point in 
Corpus callosum and Corticopontine tract. 

Fig.2 (d), (e) and (f) are the results of our method with 50 particles and 6 iterations. 
The figure shows that the sampled paths from Friman’s method are more dispersed, 
with a number of paths which have low probabilities. However, our method can locate 
the maximum probabilities region with few particles. The result reveals how our 
probabilistic algorithm can address the fiber crossing and noise because of the global 
optimization model and the swarm collaboration. 
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(a) (b) (c)

(d) (e) (f)

 

Fig. 2. (a) 1000 paths trace from a seed point in Corpus callosum using Friman’s method[3](the 
same of (b) and (c)). (d) 50 particles 4 iterations trace from a seed point in Corpus callosum, (b) 
1000 paths trace from a seed point in the right Corticopontine tract. (e) 50 particles 4 iterations 
trace from the same point as in (b). (c) 1000 paths trace from a seed point in the left 
Corticopontine tract. (f) 50 particles 6 iterations trace from the same point as in (c). 

5   Conclusions 

Earlier stochastic tractography algorithms use a large number of particles, many of 
which can deviate from the correct trajectory and terminate near the seed points. In 
this work, we proposed an iterative optimization approach based on a swarm tracking 
technique. We formulate the probability of fiber tracking as a global optimization 
problem. The particles are guided by both the local fiber orientation and the global 
direction in a collaborative manner.  

From the experimental results, we can see that the advantages of the proposed 
algorithm are several. First, the algorithm only needs a small number of particles to 
rapidly locate the global optimal fiber. Second, our method can reconstruct the true 
fiber paths more accurately in uncertainty due to noise and fiber crossings.  

The local fiber orientation distribution is based on the single tensor model which 
can not capture the complex fiber configurations. In future work, we will reformulate 
our method for the multi-tensor model of diffusion. 
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Abstract. To obtain the best food source, bees communicate their forage 
information by waggle dance, which indicates direction, distance, and quality of 
the food source they found. In this paper we propose a multi-function routing 
algorithm (BMFR) inspired by bees' foraging behaviors for network-on-chip 
(NoC). We utilize a bee agent model to exchange the states among nodes. 
According to these states we establish a probability model to choose the output 
direction. We analyze the performance of BMFR on uniform traffic pattern. 
Finally, we compare BMFR with XY routing algorithm on uniform and tornado 
traffic patterns. 

Keywords: Bee agent model, Load-balance, Fault-tolerance, QoS, NoC. 

1   Introduction 

Swarm Intelligence has been an active area of research in the past years. In the field 
of communication network, Swarm Intelligence has evolved as an effective mean to 
solve routing problems. Many related work have already been done. 

AntNet, an adaptive, distributed, mobile-agents-based multi-path routing algorithm 
was proposed in [1]. Encouraged by AntNet and genetic algorithm, Horst etc. 
proposed a multi-path routing algorithm with random decision, BeeHive [2], which is 
based on stochastic process and works without the necessary to save global 
information. Saleem etc. proposed a bee-inspired power aware routing protocol, 
BeeSensor [3], which requires little processing and network resources with a bee 
agent model. To provide guaranteed bandwidth performance for NoC, Peibo, X etc. 
proposed a bee-inspired QoS routing algorithm [4], in which virtual circuits and 
spatial division multi-plexing are employed to maintain available paths for different 
traffic patterns. Al Maghayreh etc. proposed a novel routing algorithm which 
combines Ant colony and BeeHive, called Bees-Ants [5]. 

Routing is a key factor that determines how much of the ideal performance could 
be realized. So, an appropriate routing algorithm is essential for communication 
networks. A large number of routing algorithms for NoC have been proposed in the 
past. The three types of routing algorithm are load-balance, fault-tolerance and QoS.  

Arjun, S etc. proposed a load-balanced adaptive routing algorithm GOAL [6] 
which achieves global load balance by choosing the direction in each dimension 
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randomly. Fukushima, Y etc. proposed an effective fault-tolerance routing algorithm 
without virtual channels [7]. Kun, W etc. proposed a family of QoS routing algorithm 
with local information [8]. Each of these algorithms only considers one of the three 
aspects, and couldn’t guarantee the performance in the others.   

In this paper we propose a bee behavior-based multi-function routing algorithm, 
which achieves load-balance, fault-tolerance and QoS. The rest of the paper is 
organized as follows. Section 2 describes the bee agent model which is applied to 
exchange information. Section 3 describes the routing algorithm in detail. The 
performance of BMFR is given in section 4. In section 5, we conclude the paper. 

2   The Bee Agent Model  

Bee is a social insect that shows very complex behavior composed of individuals, 
although behavior of individual is extremely simple. Generally speaking, the model of 
bee colony intelligence consists of three basic elements: food source, employed 
foragers and unemployed foragers. The two of most basic models of behavior are 
recruiting bee for certain food source and abandoning the certain food source. To 
choose the best food source, bees exchange their information about food source by 
dancing in cellular. 

The organizational principles of honey bee are helpful to solve routing problems in 
NoC. We borrow the concept from bees’ communication principles to design the bee 
agent model, which exchanges information between neighbor nodes. The information 
is used to estimate the probability which determines the routing direction.  

 

Fig. 1. (a) The 8×8 torus topology, the edge nodes transmit bee agents through these long 
links. (b) The fault region we assumed (the dashed line is the fault ring). 

There are three types of bee agents in this model: forward-bee, backward-bee and 
reference-bee. The forward-bee and backward-bee work as follows. 

Firstly, two forward-bees (play the role of forager, the solid line in Fig.1.(a)), with 
the number of free buffer at each port (just like the information of food source), are 
launched by each node to the neighbor nodes in the positive direction (x+ and y+) 
through the control network periodicity. Afterwards, the neighbor nodes read the 
information carried by the forward-bees (as bees dance in cellular). Then, the 
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neighbor nodes rewrite their own free buffer number to the forward-bees to construct 
the backward-bees (the dashed line in Fig.1.(a)), and send them back to the previous 
nodes in the negative direction (x- and y-) through the control network. Finally, the 
previous nodes get the information from backward-bees. Then, the backward-bee is 
killed. Thus each node obtains free buffer number of the four neighbor nodes. 

The reference-bee is applied to transmit the coordinate of reference nodes to these 
nodes on the fault ring, which is defined in 3.2. After dancing in cellular, all of the 
reference-bees are killed.  

With the three bee agents, every node in the network could get the information of 
its neighbor nodes or some special nodes through the control network.  

3   Multi-function Routing Algorithm 

A detailed description about the multi-function routing algorithm we proposed is 
given in this section. This routing algorithm combines bee agent model, improved 
GOAL and fault-tolerance routing algorithm. Besides, we also apply different types of 
packets to provide better QoS. 

3.1   Load Balance and QoS 

A good routing algorithm should provide low latency, high throughput and balanced 
load on adversarial traffic patterns. In BMFR, the concept quadrant inspired by 
GOAL is applied to provide global load balance and the probability based minimal 
routing is applied to provide local load balance in the selected quadrant. Besides, we 
add priorities for different types of packets to provide better QoS.  

 

Fig. 2. (a) Source and destination nodes in different row and column. (b) Source and destination 
nodes in the same row or column. For simplicity, we use mesh instead of torus.  

Based on the distance between source and destination nodes, a direction is chosen 
in each dimension. Thus, the quadrant in which a packet will be transmitted was 
determined after the packet was generated in the source node. How to determine the 
direction and quadrant are described as follows. 
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a): As is shown in Fig.2.(a), source and destination nodes in different row and 
column, equation (1)-(4) are applied to determine the quadrant. 
 

b): As is shown in Fig.2.(b), source and destination nodes in the same row or column. 
In the same row, equation (2), else equation (3) is applied to determine the direction.  
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    1q x yP P P+ += ×  , 2q x yP P P− += ×  , 3q x yP P P+ −= ×  , 4q x yP P P− −= ×  . (4)

Where D stands for the coordinate of the source node, S for the destination node. 

xP − stands for the probability that choose the longer path in x-coordinate, xP + for the 

shorter one. qiP stands for the probability that choose quadrant i .  

In order to provide lower latency for special information, we assume that all the 
packets are divided into four categories. The packets with most stringent requirement 
of latency, such as video traffic, have the highest priority. For these packets, quadrant 
1 is always the choice. The others follow the probabilities which get from equation (4) 
to determine the quadrant. Thus, we can provide better global load balance and lower 
latency for these packets need to be transmitted as soon as possible.  

          0x yf f+ ≠     x
x

x y

f
P

f f
=

+
 ,     y
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x y
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P

f f
=

+
 . (5)

          0x yf f+ =     0xP =  ,          0yP =  . (6)

xP stands for the probability that choose direction in x-coordinate, xP for y-coordinate. 

In the selected quadrant, the probability based minimal routing algorithm is applied 
to provide local load balance and lower latency. For each node, there are two 
available directions (x or y) to transmit the packet in the shortest path. We choose one 
according to the probabilities which estimated through free buffer number transmitted 
by the bee agents and the priority of the packet. The probabilities are estimated by 
equation (5) and (6), where f stands for free buffer number of the corresponding input 

port of the neighbor node. We define 0f = , in the case that neighbor node is a faulty 

one. When competition emerges, the direction with higher probability is chosen for 
the packet with higher priority. Thus, because of the decreasing of the latency for 
these packets with high priority, we can get better performance. 
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3.2   Fault Tolerance 

As device shrinks toward the nanometer scale, on-chip circuits are becoming 
vulnerable to errors. So, a fault-tolerance routing algorithm is essential to provide 
reliable communication on unreliable physical interconnects. In BMFR, we propose a 
protocol to transmit packets bypass the fault region with minimal hops. To reduce the 
number of disabled nodes, we adopt the node deactivation algorithm proposed in [7] 
to form the fault region. For torus, all of the nodes are equal in the network, the fault 
region is shown in Fig.1.(b).  

In order to bypass the fault ring with minimal hops, we define the northeast corner 
node of the faulty ring as N-reference node, the southwest one as S-reference node. 
The reference-bee is applied to transmit the coordinate of the reference nodes to these 
nodes on the fault ring. It’s clear that a packet encounters the fault region only when 
the current and the destination nodes in the same row or column. The fault-tolerance 
routing algorithm is described as follow.  

 
a): Current node on the left (right) of the fault ring.  
Clockwise (counter-clockwise) is the choice when N-reference node is closer than S-
reference node in y-coordinate, otherwise counter-clockwise (clockwise). 
 
b): Current node on the top (bottom) of the fault ring.  
Clockwise (counter-clockwise) is the choice when N-reference node is closer than S-
reference node in x-coordinate, otherwise counter-clockwise (clockwise). 

In BMFR, deadlock could not be avoided. To solve this problem, a timer is 
applied. The timer starts to work when a packet arrives at the router. In the case that 
the packet transmitted unsuccessfully before timeout, we assume deadlock 
emergence. Then the packet will be sent to the local IP core. After a random time, the 
packet will be retransmitted by the router.  

3.3   Pseudo Code  

The following pseudo code describes the proposed routing algorithm in detail. 

/*S is source, D is destination, C is current node */  
/*choose quadrant or direction*/  
if(priority is 1) 

   if(Source and destination in different row and column)  
      choose quadrant 1; 
   else 
      choose direction with higher probability; 
else 
 choose quadrant/direction according to probabilities; 

/*probability-based minimal routing*/  
if(C is destination D) 
   send P to local IP core; 
else if(C and D in the same row or column) 
   if(C on the fault ring) 
      fault-tolerance routing; 
   else 
      normal routing;      
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else  
   normal routing;  
/*normal routing*/ 
if(priority is 1) 
   send P to the direction with higher probability; 
else 
   send P according to probabilities; 
/*fault-tolerance routing*/ 
if(C on the left (right) of the ring) 
   if(N-reference closer in y-coordinate) 
      clockwise(counter-clockwise); 
   else 
      counter-clockwise(clockwise); 
else if(C on the top (bottom) of the ring) 
   if(N-reference closer in x-coordinate) 
      clockwise(counter-clockwise); 
   else 
      counter-clockwise(clockwise); 

4   Performance Evaluation 

In order to analyze the performance of BMFR, we simulate the results on the 8×8 

torus topology. Each node operates asynchronously and generates packets at time 
interval chosen from a negative exponential distribution. The simulation is completed 
with the network simulator-OPNET. Wormhole switching is chosen as the switching 
mechanism. We analyze the performance of the network with 6% faulty nodes in 
terms of latency and throughput on uniform traffic pattern. We also compare BMFR 
with XY routing algorithm on uniform and tornado traffic patterns in the case that all 
nodes are working well.  
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Fig. 3. (a) Latency of BMFR on uniform traffic. (b) Throughput of BMFR on uniform traffic. 

The performance of BMFR with 6% faulty nodes on uniform traffic pattern is shown 
in Fig.3. It shows that BMFR has good performance when offered load is low. In 
Fig.3.(a), we can see that the latency keeps small and stable until offered load reaches 
0.10. Then, the latency rises sharply with the growth of offered load. In Fig.3.(b),  
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we can see that the network reaches saturation point when the offered load is 0.22. But 
the latency is really a large one at the saturation point.  

Fig.4.(a) and (b) show the performance of BMFR and XY routing algorithm on 
uniform traffic, (c) and (d) on tornado traffic pattern without faulty nodes. A good 
routing algorithm should provide stability on adversarial traffic patterns. It’s clear that 
BMFR is more stable than XY routing algorithm on different traffic patterns. It means 
that BMFR has adaptability benefit of XY routing algorithm. 
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Fig. 4. (a) Latency of BMFR and XY routing algorithm on uniform traffic. (b) Throughput of 
BMFR and XY routing algorithm on uniform traffic. (c) Latency of BMFR and XY routing 
algorithm on tornado traffic. (d) Throughput of BMFR and XY routing algorithm on tornado 
traffic. 

5   Conclusions 

In this paper we proposed BMFR for NoC. Bee agent model is applied to exchange 
information among nodes. Based on quadrant and probability based minimal routing 
we get better load balance. The priority of packets is applied to achieve lower latency 
for these packets with high requirement on latency. The fault-tolerance routing 
algorithm provides reliable communication on unreliable physical interconnects. For 
general purpose, BMFR contains all of the three main aspects of a routing algorithm. 
We analyzed the performance of BMFR with OPNET simulator. Simulation results 
show the latency and throughput under different offered loads and distribution 
probabilities. In the future, we will consider the case that more than one fault ring 
emerge and online fault detection. 
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Abstract. A new mapping algorithm is proposed based on Artificial Bee 
Colony (ABC) model to solve the problem of energy aware mapping 
optimization in Network-on-Chip (NoC) design. The optimal mapping result 
can be achieved by transmission of the information among various individuals. 
The comparison of the proposed algorithm with Genetic Algorithm (GA) and 
Max-Min Ant System (MMAS) based mapping algorithm shows that the new 
algorithm has lower energy consumption and faster convergence rate. 
Simulations are carried out and the results show the ABC based method could 
save energy by 15.5% in MMS, 5.1% in MPEG-4 decoder and 12.9% in VOPD 
compared to MMAS, respectively.  

Keywords: Network-on-Chip(NoC), mapping optimization, energy 
consumption. 

1   Introduction 

With the development of semiconductor technology, the number of Intellectual 
Property (IP) cores integrated on a single chip is increasing dramatically. It is possible 
for a single chip to integrate a system. Finally, System-on-Chip (SoC) appears. 

However, with the further progress in system integration, the existing shared bus 
structure faces enormous challenges in performance, such as delay, throughput, power 
consumption, synchronization, scalability and so on. Fortunately, an emerging 
research field, Network-on-Chip (NoC), endeavors to solve these issues above. As 
soon as it is proposed, NoC has been attracted more attentions for some new 
mechanisms introduced. For example, it uses wormhole switching as basic switching 
mechanism, and Global Asynchronous Local Synchronous (GALS) as clock 
mechanism which can solve the single global clock synchronization challenge. 

Application specific mapping from IP core to architecture is a key step in NoC 
design, which significantly affects the system performance, such as energy, latency 
and load balance. However, the mapping optimization is a NP-complete problem and 
difficult to obtain optimal solution by traditional methods due to the complexity of 
time and space. Therefore, many scholars settle this problem by using heuristic 
algorithm, such as Branch and Bound(BB)[1], Ant Colony Algorithm(ACA) 
[2], Genetic Algorithm(GA)[3], and Particle Swarm Optimization(PSO)[4] algorithm 
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et al. However, those methods show low convergence speed and the optimal solution 
is always affected by local solution. On the contrary, Artificial Bee Colony(ABC) 
algorithm performs lower complexity and better performance, for example, it not only 
converges with a rapid speed, but is hardly affected by local optimal solution [5][6]. 

In this paper, we address energy aware mapping from IP core to NoC platform. 
First of all, the energy model associated to 2D mesh topology and mapping problem is 
formulated. Then, an efficient colony algorithm is proposed to map IP cores to nodes 
of NoC, such that the total energy consumption is minimized. This method shows a 
better performance and also can be applied to the other topologies. 

2   Related Work 

Hu et al. [1] proposed a Communication Weighted Model (CWM) by constructing the 
graph of IP core as vertex and communication volume as weight. They adopted 
Branch-and-Bound (BB) algorithm to solve optimization model in the target of energy 
such that bandwidth constraint. According to simulation results, the proposed method 
had advantages over random mapping and decreased 60% of communication energy. 
Zhou et al. [2] used improved ant colony algorithm to solve optimization model with 
objective of power consumption. Due to the development in the convergence of Max-
Min Ant System (MMAS) [7] algorithm, this method could achieve better 
performance. Experimental results showed that 25% to 70% of power consumption 
was reduced depending on different applications. Tang et al. [3] suggested a two-step 
Generic Algorithm (GA) based approach to map from the parameterized task graph to 
NoC architecture with 2D mesh topology. They believed that the method could be 
able to handle large task graph and provide near optimal mapping in a few minutes. 
Wang et al. [4] proposed a heuristic two step strategy to map tasks to tiles on NoC 
platform in the target of energy consumption and delay. They tried to assign the tasks 
to IP cores firstly, and then mapped from IP core to tile on architecture by chaotic 
Discrete Particle Swarm Optimization (DPSO) method. They said that the solution 
obtained by DPSO was 6.852% better than what was obtained by GA.  

3   Problem Formulation 

Definition 1. Given a communication core graph(CCG), where 
vertex it T∈ represents a IP core in the application specific communication, a directed 

arc ,i jc C∈ represent communication between the IP core it  and jt , and the weight of 

edge ,i jv V∈ represents communication volumes from the IP core it  to jt . 

Definition 2. Given a topology architecture graph (TAG) ( , , )G N P E , where vertex 

in N∈ represents a tile in the architecture, a directed edge ,i jp P∈ represents routing 

path from the tile in  to tile jn , and ,i je E∈  in the architecture represents average 

energy consumption of sending one bit of data from the source tile in  to destination 

tile jn . 
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3.1   Energy Model 

We use the model for energy consumption proposed in [8]. The energy ( bitE ) 

consumed when one bit of data is transported from a tile to its neighbor is defined as  

bitbit .
bit bit bitS B W LE E E E E= + + +  (1)

where bitSE , bitBE , bitWE and bitLE represent the energy consumed by the switch, 

buffering, interconnection wires inside switching fabric and links, respectively. 
Since the length of a link is typically in the order of millimeters on chip, the energy 

consumed by buffering( bitBE ) and internal wires( bitWE ) is negligible compared to 

bitLE
[9]. So equation (1) can be defined approximately as  

bitbit .
bitS LE E E= +  (2)

Then average energy consumption per bit data from tile in  to jn is 

, ( 1) .i j

bit bit

n n

bit S LE H E H E= × + + ×  (3)

where H  represents hops of bit traversing from tile in  to jn . Generally speaking, the 

H  in regular topology could be Manhattan distance instead. 

3.2   Optimization Model 

With the model mentioned in 3.1, the optimal mapping problem of minimizing 
communication energy consumption can be described as  

,

( ), ( )

,min{ }.i j

i j

map t map t

i j bitc
Energy v E

∀
= ×∑  (4)

. .s t  

, ( ) .i it T map t N∀ ∈ ∈  (5)

, ( ) ( ) .i j i jt t T map t map t N∀ ≠ ∈ ≠ ∈  (6)

where ( )imap t  represents the mapping result of IP core it  and ( ), ( )i jmap t map t

bitE is the 

average energy consumption per bit. Conditions (5) and (6) mean that each IP core 
should be mapped to one tile and no tile can host more than one IP core.  

4   ABC Based Mapping 

As is known to all, a colony of honey bee is composed of a queen, some drones and 
thousands of workers. The mission of the queen is to lay eggs as many as possible and 
make new colonies. The drones’ most important work is to mate with queen in order 
to help queen produce more offspring. The smallest but most individual in a colony is 
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worker bee. The worker bees are responsible for building honeycomb, taking caring 
of the young, feeding the queen and drones, collecting foods and so on.  

The ABC algorithm derives from the process of worker bees searching food for 
the individuals’ cooperation. It was firstly presented by Seely in 1995 and then 
improved by D. Karaboga in 2005 [10]. Generally speaking, three kinds of worker 
bees, leader bees, scout bees and follower bees, are in charge of the food and 
information collection. In other words, the optimal solution can be achieved by the 
following behavior in search space via the Artificial Bee Colony (ABC) algorithm [6]. 

4.1   The Behavior of Leader Bee 

The responsibility of leader bees is leading the followers to certain food source. So, 
one food source has a leader bee at least and all the leaders should know the situation 
of their food. Also, the leader bees should tell the followers necessary information 
about quality and scale of the food they known. According to the experience, the 
proportion of leader bees in the colony is 50% in this method we used. 

4.2   The Behavior of Scout Bee 

The Scouts fly around and search for food randomly. Once find, the scout bee will fly 
back to report the information of the food by dancing as soon as possible. In ABC 
algorithm, the scout bee must finish the activities including searching solution 
randomly and reporting necessary information. In this paper, we choose 10% 
individuals of the colony as the scout bees. 

4.3   The Behavior of Follower Bee 

The Followers must decide which food source to go to when they get the information 
from the leader bee. Most individuals do select the best food source finally and few of 
them do not for some uncertain factors. In order to simulate the behavior of follower 
bee, the artificial follower bees must be responsible for the selection of solution 
according to the current information, and few of them also need to go to the non-best 
location with roulette simultaneously. The ratio of follower bees is 40%. 

4.4   The Pseudo Code 

The following pseudo code is to describe the proposed algorithm in detail: 

ABC based mapping 
const  colony_size = 100;// size of colony 
        max_iter = 1000;// max iterations 
        limit = 50;// max number without changed 
        mut_prob = 0.1;// mutation probability 
generate initial colony;   
begin 
  iter := 1; 
  repeat 
    sort all individuals in ascending order of cost; 
    //cost relates to energy consumption 
    leader bee behavior(); 
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    scout bee behavior(); 
    follower bee behavior(); 
    if number of individual k without changed  > limit  
      individual k := generate new individual randomly;  
    endif. 
    for individual i 
     //mutate all colony with a probability of 0.1 
      if random number > mut_prob 
        individual i:= generate new individual randomly; 
      endif. 
    endfor. 
    record best individual in all colony; 
    iter := iter + 1; 
  until iter = max_iter 
end.  

5   Experiments and Results 

5.1   Experimental Descriptions 

In order to show the performance of the proposed mapping algorithm, we use Genetic 
algorithm(GA) [3], MAX-MIN Ant System(MMAS) [2] and Artificial Bee Colony 
(ABC) based mapping to different benchmarks, respectively. The simulations are 
done with MATLAB in windows XP OS on a computer with Pentium(R) Dual-Core 
CPU E6500 @2.93GHz 2.93GHz, 1.96GB RAM. In this paper, the Bit energy 
consumption for link and switch are 0.7066(nJ) and 0.9334(nJ) at technology of 
1GHz and 0.18µm, respectively [11].  

 

 

Fig. 1. The benchmark of application specific traffic: (a) MMS communication core graph 
(Mb/s); (b) MPEG-4 decoder communication core graph (Mb/s); (c) VOPD communication 
core graph (Mb/s) 
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As is shown in Fig. 1, they are three application specific communication core 
graphs used in most of simulations in application specific NoC design[1][2][8][9][12]. 
Fig. 1(a) is a Multi Media System (MMS) communication graph and the system tasks 
are partitioned into 40 tasks that are assigned onto the 18 IP cores [13]. In this paper, 
we will map from MMS with 18 cores onto 3×6 2D mesh topology architecture. The 
MPEG-4 decoder has been used for testing purposes in the past [14] and the 
application core graph with 12 IPs is shown in Fig. 1(b) [15]. It will be mapped onto 
3×4 2D mesh topology. The Video Objective Plane Decoder (VOPD) core graph with 
16 IPs [15] will be mapped onto 4×4 2D mesh topology is shown in Fig. 1(c).  

5.2   Experimental Results 

Different optimization algorithms lead to different performances and runtimes in the 
process of getting optimal solution. Fig. 2 shows the optimal solution converged by 
GA, MMAS and ABC based mapping during iteration process in different 
benchmarks respectively. It is easy to conclude that the ABC based mapping shows a  
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Fig. 2. The performance of different methods during iteration process: (a) the energy 
consumption in MMS; (b) the energy consumption in MPEG-4 decoder; (c) the energy 
consumption in VOPD; (d) the normalized energy consumption of the final results. 
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faster convergence speed than GA and MMAS. Perhaps, GA based mapping could 
have got a global optimal solution if it could maintain the convergence rate. 
Unfortunately, it always falls into the local optimization and does not get a better 
solution. The convergence of MMAS based mapping is so slow that it needs much 
time to run in order to get better mapping performance. Moreover, it is sensitive to the 
local optimal solution.  

Fig. 2(a) shows a significant reduction of energy consumption with runtime by 
using the ABC based mapping compared to GA and MMAS. The mapping result of 
ABC is 20329.28mJ in MMS, but the GA is 22500.49mJ and MMAS is 24049.83mJ. 
The results of three mapping methods in MPEG-4 decoder are shown in Fig. 2(b). 
Precisely, the energy consumption of ABC, MMAS and GA based mapping methods 
are 8471.16mJ, 8919.26mJ and 8669.6mJ respectively. In VOPD, it is conclude that 
the energy consumption of the ABC based mapping saves more than GA and MMAS 
based mapping. As is shown in Fig. 2(c), the energy consumption is 9470.21mJ with 
the ABC, 1087.4mJ with MMAS and 10803.52mJ with GA based mapping finally. 
Fig. 2(d) shows the normalized energy consumption of the final results with different 
mapping methods, the energy consumption of MMAS method is unitary in this figure. 
According to the calculation analysis, the energy consumption of AFSA saves 15.5% 
in MMS, 5.1% in MPEG-4 decoder and 12.9% in VOPD compared with MMAS 
based mapping.  

6   Conclusions and Future Works 

In this paper, an artificial bee colony (ABC) based mapping method is presented in 
application specific NoC design. According to the simulation results of different 
benchmark applications, the proposed mapping method shows a better performance 
than GA and MMAS, such as lower energy consumption and faster convergence rate. 
The energy of ABC based mapping can save 15.5% in MMS, 5.1% in MPEG-4 
decoder and 12.9% in VOPD compared to MMAS, respectively. In the future, more 
work needs to be done in order to improve global search capability. 
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Abstract. Resource constrained project scheduling (RCPSP) is one of the most 
crucial problems in project problem. The aim of RCPSP, which is NP-hard, is to 
minimize the project duration. Sometimes the activity durations are not known 
in advance and are random variables. These problems are called stochastic 
resource constrained project scheduling problems or stochastic RCPSP. Various 
algorithms such as genetic algorithm and GRASP have been applied on 
stochastic RCPSP. Bee algorithm is a metaheuristic based on the intelligent 
behavior of honey bee swarms. The goal of this study is adopting the artificial 
bee colony (ABC) algorithm to solve stochastic RCPSP and investigating its 
performance on the stochastic RCPSP. Simulation results show that proposed 
algorithm is an effective method for solving the stochastic resource constrained 
project scheduling problem. With regard to the problems with high distribution 
variability, the ABC algorithm is more effective than the other algorithms in the 
literature. 

Keywords: Artificial Bee Colony, stochastic RCPSP, Serial-SGS, Stochastic 
Serial-SGS. 

1   Introduction 

Resource constrained project scheduling problem is one of the major problems in 
project management. It has been shown that this problem is the NP-hard [ 4]. During 
the project execution, each activity requires many resources. Since the capacity of each 
resource is limited, the proper use of resources will reduce the makespan of the project. 
These projects, which focus on the minimization of project duration subject to resource 
and precedence constraints, have 2 activities and m renewable resources. In all 
scheduling problems, activity durations are not deterministic because during the project 
implementation there may be a series of random factors affecting the duration of 
activities. These uncertainties are derived from several factors such as an increase or 
decrease in the originally estimated time, unavailability of resources, late material 
arrivals, the absence of workers, network-structure changes and the bad weather 
delays. In this article, a case in which durations are not known beforehand has been 
considered. The durations are random variables. The objective of stochastic RCPSP is 
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to minimize the expected makespan. Now there exists an important question: What is 
the feasible solution to the stochastic RCPSP when a deterministic problem becomes a 
stochastic problem. Necessarily a deterministic scheduling does not provide us with 
sufficient information about creating a feasible solution. Unlike the events that occur 
during the project, the represented solution should express the appropriate behavior. 
Such solutions are called “Policy” [ 9]. Several classes of the policies were examined 
by Stork [ 14]; the classes of the so-called activity-based policies were utilized for large 
instances. Also, this policy is used in this paper. Here, the stochastic serial-SGS is 
applied in order to find a feasible solution to the stochastic RCPSP [ 2]. 

There are a few heuristic algorithms for the stochastic RCPSP. Research into 
stochastic RCPSP, however, has remained limited to date, with few computational 
publications addressing this problem: Igelmund and Radermacher [ 9] and stork [ 14] 
reported on experiments using branch-and-bound algorithms, while Golenko-Ginzburg 
and Gonik [ 6] and Tsai and Gemmill [ 15] developed greedy and local search 
heuristics. Time/resource trade-offs with stochastic activity durations, in which the 
resource allocation influences the mean and/or the variance of the durations, have been 
investigated by Gerchak [ 5] Gutjahr [ 7] and Wolmer [ 17]. This work aims at 
presenting a heuristic algorithm for the stochastic RCPSP. In this paper, the artificial 
bee colony (ABC) algorithm is used and a method for finding a solution to a stochastic 
RCPSP is investigated. To minimize the expected makespan of a stochastic RCPSP, 
meta-heuristics inspired from the collective behavior of honey bees. 

The remainder of this paper is organized as follows: in Section 2, the definition of 
the problem and the formulation of the stochastic RCPSP are presented; in section 3, 
the artificial bee colony algorithm is explained. Next, Section 4 explains the 
application of ABC algorithm for stochastic RCPSP. Then, the computational results 
of the expected makespan objective are reported in the section 5; Finally, Section 6 
concludes this work. 

2   Definition of Stochastic RCPSP 

Before the stochastic RCPSP is examined, it is necessary to be familiar with the 
resource constrained project scheduling problem. RCPSP has 2 activities and  
renewable resources. The set of activities is denoted by 1,2, … , 2 . The 
activities 1 and 2 are called dummy activities representing the start and end 
activities, respectively. The duration of the activity  is . There are different types 
of renewable resources, and each resource has a limited quantity. The availability of 
each resource of Type  is  units, 1, 2, … ,  (  is the number of different 
resources); the activity i requires  units of the resource k. It is assumed that A is an 
order relation on  such that , ∈ , if and only if the activity  cannot start 
before the activity i has finished;  is called a precedence relation. A feasible 
schedule for the project is represented by , , … ,  where  is the 
starting time of the activity . The completion of the project is  (Subsequently 
referred to as ). RCPSP is modeled as follows: 
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           Minimize              C  

           subject to                                                                                                     1   S S d                     i, j ∈ A 

      ∑ r R   ∈ ,         k ∈ R, t ∈ 0, S  

where ,  represents the set of activities in process at time  [16]. 
Stochastic RCPSP is a stochastic variant of RCPSP in which the activity durations 

will be random variables with a specific probability distribution. The random vector , , … ,  shows the activity durations. For the start and end activities we 
have P D 0 1, and For the ith activity ∈ 2, 3, … , 1  it is assumed that P D 0 0, where  represents the probability of event .  

For the stochastic RCPSP the objective is to minimize the expected makespan. The 
expected makespan of a priority list λ is computed using the following equation, E λ, nscen ∑ C Sλ d ,                                       2∈   

where  is the number of different scenarios,   is a sample of  
independent scenarios of d, and , … ,  is the schedule  that 
will be obtained by applying the stochastic Serial-SGS on the priority list  under the 
scenario . Finally   is equal to . 

3   Artificial Bee Colony (ABC) Algorithm 

In the past decade, metaheuristics have been successfully applied on the NP-hard 
optimization problems. Due to NP-hardness of stochastic RCPSP, the metaheuristics 
such as GA and GRASP have been used by authors to solve it.  In this paper, the 
artificial bee colony is used to solve this problem. The ABC algorithm is one of the 
newest and most successful metaheuristics presented to solve optimization problems. 
The behavior of honey bees has been studied extensively by natural scientists and 
formulated with the model of bee′s behavior. The ABC algorithm has been inspired by 
the intelligent behavior of real honey bees [ 10], [ 11].        

One of the examples of bee colony behavior is the waggle dance of bees during the 
food procuring. When a worker honey bee  has visited a food resource, she returns to 
her hive, and she performs a waggle dance on the vertical face of the honey comb to 
inform the other bees in the hive about the location of the food source. This behavior 
can cause additional workers to move to the location, thus enabling the colony to 
exploit the food source effectively. 

In this paper, the artificial bee colony consists of three groups of bees: Employed, 
onlooker and scout bees. The first half of the colony consists of the employed artificial 
bees and the second half constitutes the onlooker bees. For every food source there is 
only one employed bee. The employed bee whose food source has been exhausted 
becomes a scout. 

In a robust search, the exploration process and the exploitation process must be 
carried out simultaneously. In the ABC, while the onlooker bees and employed bees 
carry out the exploitation process in the search space, the scout controls the exploration 
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process. These three steps are repeated until the termination criteria are satisfied [ 10]. 
The search carried out by the artificial bees can be summarized as follows: 

Such employed bee determines a food source in the neighborhood of the food 
source in her memory. Employed bees share their information with the onlooker bees 
waiting in the hive and then the onlooker bees select one of the food sources advertized 
by the employed bees. An onlooker bee moves toward the chosen food source in the 
previous step and selects a new food source in the neighborhood of the current 
position. A bee whose food source has been abandoned becomes a scout and starts to 
search a new food source randomly. The primary food sources are determined 
randomly. At the update stage, an employed bee will choose a feasible solution (food 
source) in the neighborhood of its current position, randomly and moves toward a new 
position. If the new food source has better nectar, the employed bee will change its 
position. The employed bees in the neighborhood of the current situation move 
according to the following motion equation: x x x x                                              3 , 
in this equation,  is a position in the neighborhood of the employed bee i and 
selected randomly. The vector   shows the bee's previous status. The vector  
is a random vector so that each component of this vector will be located between -1 
and 1. After the employed bees have explored the new areas of food sources, they will 
come into the hive and share the information with the onlooker bees. Now an onlooker 
bee needs a process to select an employed bee as her guide. For this purpose, the 
probability for the employed bee i will be calculated as follows, P ∑                                                                4 , 

where  for the maximization problems is equal to  and for the 
minimization problems is calculated according to the following equation, f                                                               5 , 

where  is the objective function value for the employed bee i. After 
calculating the probabilities, each onlooker bee employs the roulette wheel to choose 
an employed bee based on its probability. After selecting a guide, the onlooker bee 
updates its position using the following equation: x x x x                                        6 , 

where  is the position of the employed bee that has been selected as a guide. Should 
the newly obtained position be better than the old one, the new position will replace the 
previous position. Now the food sources with poor qualities are abandoned and their 
associated bees become scouts. In the next section the way of solving a stochastic 
RCPSP by means of the ABC algorithm is presented. 

4   Application of ABC Algorithm for Stochastic RCPSP 

The details about the ABC algorithm to solve the stochastic RCPSP are expressed in 
this section. Figure 1 presents the proposed ABC algorithm to solve the stochastic 
RCPSP in pseudo code. 
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ABC Algorithm (Population size, Num_scouts, Max-Numerator, D) 
 

Calculate the average project. 
Calculate nscen independent scenarios from d. 
Initialization step 
     Define SN = Population size/ 2 
     For i = 1 to SN 
            Initialize Position  randomly 
            Numerator = 0 
     End For 
Evaluation step 
     For i = 1 to SN 
           EvaluationFunction(Position ) 
      End For 
      population λ ,λ , … ,λ } 
Updating step 
While termination criteria not met do 
   (Send Employed Bees) 
       For i = 1 to SN 
             Select Neighborhood position randomly 
             Calculat position  by use of equation 3 
             EvaluationFunction(position ) 
             If  ( Fitness λ  λ ) 
               population population λ λ   
             Else  
                 Numerator Numerator 1 
       End For 
   (Send Onlooker bees) 
       Calculate probabilities for each food source 

using equation 4 
       For i = 1 to SN 
            Select Neighborhood k from food sources 

based on roulette wheel 
            Calculat position  by use of equation 6 
            EvaluationFunction(position ) 
            If  ( Fitness λ Fitness λ ) 
               population population λ λ  
            Else 
                Numerator Numerator 1 
       End For 
   (Send Scout Bees) 
       For i = 1 to SN 
             If  Numerator Max_Numerator          
                  Initialize food source i randomly 

Fig. 1. Pseudo code of the ABC algorithm for stochastic RCPSP 
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                  Numerator  0 
             End If 
       End For 
End while 
Termination step 
Return best priority list.  

Fig. 1. (Continued) 

In the ABC algorithm (see Fig.1), to provide a priority list for a stochastic project 
and its corresponding food source, the function EvaluationFunction is used. This 
function is presented in the figure 2. 

 

EvaluationFunction(Position )   

      Evaluate priority list δ  (for average project) 
      Evaluate food source for average project             

using serial-SGS 
      Evaluate priority list λ  using LFT rule on the 

average project (for stochastic project) 
      Evaluate food source for stochastic projects 

using stochastic serial-SGS                                                  
       λ E λ , nscen . 

Fig. 2. Pseudo code of the EvaluationFunction for  

At first, the function EvaluationFunction evaluates the priority list δ  for an 
average project according to the position of the bee ; the average project is a 
deterministic project obtained from the stochastic project, where the duration of each 
activity is the mean of its duration distribution. Then, the serial schedule generation 
scheme (serial-SGS) is used to build a scheduling from the priority list δ  [12]. The 
serial-SGS takes the activities one at a time from the priority list and schedules them at 
the earliest feasible precedence and resources. Next, a priority list  is made using 
the LFT rule on the average project. To evaluate the food source  for the stochastic 
project, another type of policy is needed. In this paper, the stochastic serial-SGS is 
used to generate a feasible schedule. For a given sampled, the stochastic serial-SGS 
takes the activities one by one from the list and schedules them at the earliest possible 
time, but without overtaking the activities already scheduled. Finally, according to the 
equation 4 the fitness of the priority list  is calculated. 

The ABC algorithm consists of a set of different kinds of bees that find the priority list 
with the minimum expected makespan. The method used by a bee to find the food source 
specifies its type. A bee which finds a new food source simply according to her past 
position is called an employed bee. A bee that remains in the hive to detect a new food 
source by use of information from the employed bees is named as onlooker bee, and the 
bee which moves in the search space randomly is called a scout. The ABC algorithm uses 
the following steps to find a priority list with the minimum expected makespan: 
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(Initialization step) the ABC algorithm receives the following parameters as 
inputs: population size (Population size), the number of scouts (Num_Scouts), 
Max_Numerator, and . Parameter  is the sample of nscen independent scenarios 
of d. Max_Numerator is the parameter utilized to denote the food sources that must to 
be abandoned. 

At this step, the population is divided into two equal subsets that consist of the 
employed and onlooker bees. The number of employed bees (SN) will be set to half of 
the population size.   is the parameter that be increased when a food 
source is not developed in two continuous cycles. At last, the average project is 
created. 

(Evaluation step). The initial population for the ABC algorithm is produced at the 
evaluation step. The function EvaluationFunction generates every member of the 
initial population and evaluates its corresponding food sources. The preliminary 
population is consists of all the priority lists obtained for the stochastic project.                              

(Updating Step). After the initial position of each bee has been identified, the 
employed bee  chooses a new position as its own neighborhood and moves according 
to the equation 3. According to the new position of the employed bee  
( ), by using the function EvaluationFunction, a new priority list is made 
and the new food source of this bee for the stochastic project is obtained. After the 
employed bees have found new food sources and updated their current positions, they 
will return to the hive and share information about their food sources with the onlooker 
bees. By using the roulette wheel, each onlooker bee selects an employed bee  based 
on its probability (the equations 4 and 5). According to the information related to the 
employed bee food source, the onlooker bee updates its position using the equation 6. 
By using the function EvaluationFunction, a new priority list is generated and the new 
priority list is calculated. Should the newly discovered food source propose a priority 
list with a smaller expected makespan, the onlooker bee leaves her food source and 
goes to the new food source.  

At each cycle of the ABC algorithm, the situations are assessed and should a food 
source not be able to be optimized after the Max_Numerator iteration, the 
corresponding food source is abandoned. The food source is replaced with the new one 
found by the scouts.  In this paper the Max_Numerator is set to 10.  

(Termination step). By the termination of the ABC algorithm, the priority list with the 
minimum expected makespan obtained by the population is returned as the output. 

5   Computational Results 

In this section, the results of our computational experiments to investigate the 
performance of the ABC algorithm and the other algorithms on the stochastic RCPSP 
are represented. All experiments were performed on a personal computer with 2.6 GHz 
CPU and 2.00 GB RAM. The coding was performed in C++. Our tests are performed 
on the instances from the benchmark library PSPLIB, which were generated by the 
problem generator ProGen [ 13]. 

Each instance consists of 122 activities and 4 different resources. The duration of 
activity  (2 121) is located between 1 and 10 (i.e. 2 121). The number 
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of instances are 600. The deterministic processing time  of each activity is taken as 
expectation of distribution. The uniform and exponential distributions are examined in 
order to choose the probability distributions. Three distributions were used: first of all, 
a continuous uniform distribution with support  ,  ('U1'); 
secondly, another continuous Uniform distribution with support 0 , 2  ('U2'); 
finally, one exponential distribution with expectation d  ('Exp'). The variance of these 
distributions are , 3⁄  and , respectively.  

The quality of the algorithm is investigated by the bottom equation, pde ∑ λ, 100,                         7   

where CPL is the critical-path length of the average project;  is the average of the 
percentage distance of  E λ, nscen  from the critical-path length of the average project.    

In order to compare the algorithms used on the stochastic RCPSP more effectively, 
many limitations are considered. Limiting the number of schedules for the average 
project is one of these limitations. In this article, there are both 5000 and 25000 
restrictions on the number of schedules.  

Many scenarios for obtaining suitable approximation for the expected makespan are 
used. With a fixed number of schedules and the changing of the number of scenarios, 
the effect of this parameter on the quality of solution is investigated. The following 
experiments to test whether reducing the number of scenarios improves the quality of 
the solutions have been implemented. We have run ABC+S (ABC algorithm + Serial-
SGS) with nscen being 5, 10, 20, 50, and 100 scenarios. Table 1contains the results of 
ABC+S with respect to the different number of scenarios for distributions 1, 2 
and , respectively.  

As anticipated, a direct interface exists between the variability of the distribution 
and the fitness of the stochastic project; however, even with a very big variability, such 
as in , a definite improvement can be attained. The improvement is dependent on 
the number of schedules generated for the average project. 

Table 1. Changing the number of scenarios in ABC+S for 1, 2 and  (Percentage 
distance of E λ, nscen  from the critical-path length of the average project) 

Distribution 
# 

schedules 

 
 

5000         25000

,
 

5000        25000 

 
 

5000         25000 

5 54.28        51.85 74.86        71.48 100.75        94.37 

10 54.23         51.92 74.60         71.41 100.39        95.74 

20 54.46         51.77 74.58         71.19 100.56        95.12 

50 54.44         51.90 74.81         71.42 100.87       96.23 

100 54.39        51.81 74.77        71.26 100.61        95.60 

According to the above-mentioned table, there is no number of scenarios for which 
the best results for all tests are obtained. For U1, 10 for 5000 and 20 for 25000 are the 
best choices; and for 2, 20 works best. For , 10 is the best choice for 5000 and 5 
works best for 25000. 



 Using Artificial Bee Colony 301 

Now we can compare the ABC algorithm with the other stochastic RCPSP-
algorithms from the literature. The genetic algorithm (GA) and the GRASP algorithm 
are considered [ 2], [ 3], where the same data set and schedule restriction are used, with 
the distributions 1, 2 and . The ABC algorithm performance is compared 
with the other algorithms for the problems with the distributions U1, U2 and Exp. 
The computation results are given in the table 2. 

Table 2. Compare the ABC algorithm with the GA and GRASP for 1, 2 and . 

 
BEST 

 

 
 

  5000       25000

,
 

  5000      25000 

 
 

5000     25000 

GA+S 52.14%      49.63% 78.65 %      75.38% 120.22 %    116.83% 

GA+P 51.94%     50.16% 78.50%      76.33% 120.91%   118.56% 

GRASP 46.84%     45.21% 72.58 %     70.95% 114.42 %    112.37% 

ABC+S 54.23%      51.77% 74.58%      71.19% 100.39%     95.12% 

As can be seen from the results, the GA and GRASP have better performance 
compared to ABC algorithm for the stochastic projects with the distribution 1 while 
for the stochastic projects with the distributions 2 and  the ABC algorithm has 
better performance than the genetic algorithm. The ABC algorithm shows better 
efficiency than GRASP when the variability is very large (  (table 2).  

6   Conclusions 

In this paper, the ABC algorithm to solve the stochastic resource constrained project 
scheduling problem was used. The ABC algorithm begins with the initial priority lists 
and attempts to reduce the expected makespan through searching the feasible solutions 
space. The computational experiment showed that this algorithm produces good 
quality solutions. By comparing the numerical results, we can say that the ABC 
algorithm provides an efficient way to solve the stochastic RCPSP. 

When the availability of distribution is large, the efficiency of the ABC algorithm is 
better than the other stochastic-algorithms in the literature. For example, in the 
stochastic problems with the exponential distribution, the pde of the proposed ABC 
algorithm over the test problems with 5000 schedules is 100.39 whereas for the 
GRASP and GA, the s are 114.42 and 120.22, respectively. Similarly, the s 
for ABC, GRASP and GA over test problems with 25000 schedules are 95.12, 112.37 
and 116.83, respectively. Due to the ability of ABC algorithm in providing better 
diversity throughout the execution of the algorithm, the qualities of solutions are 
improved. Providing appropriate level of diversity helps the algorithm to alleviate the 
deficiencies of meta-heuristic algorithm such as stagnation and premature convergence 
and accordingly provide the ability to explore further regions of the search space to 
find better solutions.    

Table 1shows that should the number of schedules to be generated for the average 
project is increased; the quality of the solution to the stochastic project will increase too.  
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Abstract. Human being is the most intelligent animal in this world.  Intuitively, 
optimization algorithm inspired by human being creative problem solving 
process should be superior to the optimization algorithms inspired by collective 
behavior of insects like ants, bee, etc. In this paper, we introduce a novel brain 
storm optimization algorithm, which was inspired by the human brainstorming 
process.  Two benchmark functions were tested to validate the effectiveness and 
usefulness of the proposed algorithm.  

Keywords:  Optimization, Brainstorming Process, Brain Storm Optimization. 

1   Introduction 

Population-based optimization algorithms have been widely accepted and successfully 
applied to solve a lot of optimization problems. Unlike traditional single-point based 
algorithms such as hill-climbing algorithms, a population-based optimization algorithm 
consists of a set of points (population) which solve the problem through information 
sharing to cooperate and/or compete among themselves. So far, there are a lot of 
population-based algorithms existed. The very first population-based algorithms are 
evolutionary algorithms including evolutionary programming, genetic algorithm, 
evolution strategy, and genetic programming [EBERHART2007], which were inspired by 
biological evolution. Recently, there occurred more population-based algorithms which 
are usually called nature-inspired optimization algorithms instead of evolution-inspired 
algorithms. Many of nature-inspired optimization algorithms are categorized as swarm 
intelligence algorithms. In a swarm intelligence algorithm, each individual in the 
population represents a simple object such as ant, bird, fish, etc. There exist a lot of 
different swarm intelligence algorithms, among which are particle swarm optimization 
(PSO) [SHI1998], ant colony optimization algorithm(ACO) [DORIGO1996], bacterial 
forging optimization algorithm(BFO) [PASSINO2010], firefly optimization algorithm 
[YANG2008], artificial immune system [CASTRO1999], and etc. 

In a swarm intelligence algorithm, it is the collective behavior of all individuals that 
makes the algorithm to be effective in problem optimization. All individuals cooperate 
and collectively move toward the better and better areas in the solution search space. 
These individuals represent only simple objects such as birds in PSO, ants in ACO, 
bacteria in BFO, etc. Human beings are social animals and are the most intelligent 
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animals in the world.  Therefore, it is natural to expect that an optimization algorithm 
inspired by human creative problem solving process will be a good optimization 
algorithm.  In this paper, we will introduce a novel optimization algorithm inspired by 
the human idea generation process – brainstorming process.  

The remaining paper is organized as follows.  In Section 2, the human brainstorming 
process is reviewed. In Section 3, the novel optimization algorithm inspired by human 
brainstorming process is introduced and described in detail, followed by experimental 
simulation and result discussion on two benchmark functions in Section 4. Finally, 
conclusions are given in Section 5. 

2   Brainstorming Process 

As we all may have experienced that when we face a difficult problem which every 
single person can’t solve, a group of persons, especially with different background, get 
together to brain storm, the problem can usually be solved with high probability.  Great 
and un-expectable intelligence can occur from interactive collaboration of human 
beings.  One way to help human beings to interactively collaborate to generate great 
ideas is to get together a group of people to brainstorm. A brainstorming process 
generally follows the steps listed in Table 1. 

Table 1. Steps in a Brainstorming Process 

Step 1. Get together a brainstorming group of people with as diverse background as possible; 
Step 2. Generate many ideas according to the rules in Table 2; 
Step 3. Have several, say 3 or 5, clients act as the owners of the problem to pick up several, 

say one from each owner, ideas as better ideas for solving the problem; 
Step 4. Use the ideas picked up in the Step 3 with higher probability than other ideas as clues, 

and generate more ideas according to the rules in Table 2; 
Step 5. Have the owners to pick up several better ideas generated as did in Step 3; 
Step 6. Randomly pick an object and use the functions and appearance of the object as clues,  

generate more ideas according to the rules in Table 2; 
Step 7. Have the owners to pick up several better ideas; 
Step 8. Hopefully a good enough solution can be obtained by considering and/or merging the 

ideas generated. 
 
In a brainstorming process, usually there are a facilitator, a brainstorming group of 

people, and several owners of the problem to be solved.  The role of the facilitator is to 
facilitate the idea generation (brainstorming) process by enforcing the brainstorming 
group to obey the Osborn’s original four rules of idea generation in a brainstorming 
process [SMITH2002]. The four rules are listed in Table 2 below. The facilitator should 
not be involved in generating ideas itself, but facilitating the brainstorming process 
only. The guideline for selecting facilitator is to have a facilitator to have facilitation 
experience but have less expertise on the background knowledge related to the problem 
to be solved as possible. The purpose of this is to have generated ideas to have less, if 
not none, biases from the facilitator.  
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Table 2. Osborn’s Original Rules for Idea Generation in a Brainstorming Process 

Rule 1. Suspend Judgment Rule 2. Anything Goes 
Rule 3. Cross-fertilize (Piggyback) Rule 4. Go for Quantity 

 

In Table 2, the Rule 1 says that there is no idea as bad idea. All ideas are good ideas. 
It is unwise to judge whether a proposed idea is a good or bad idea.  Any judgment or 
criticism must be held back until at least the end of the brainstorming process. The Rule 
2 says that anything coming to your mind during the brainstorming process is an idea 
worth to be shared and recorded.  Don’t let any idea or thought ignored. The Rule 3 says 
that lot of ideas can and should be based on ideas already generated. Any generated idea 
can and should serve as a clue to generate more ideas. The Rule 4 says that it is 
necessary to generate as many ideas as possible. We first go for quantity of generated 
ideas.  The quality will come from quantity naturally. Without generating large quantity 
of ideas, it is difficult, if not impossible, to come out ideas with good quality. 

The purpose to generate ideas according to rules in Table 2 is to generate ideas as 
diverse as possible so that the people in the brainstorming group will be open-minded 
as much as possible. The operation of picking up an object in Step 6 serves for the same 
purpose as generating diverse and different ideas. It can help brainstorming group to 
diverge from previously generated ideas therefore to avoid being trapped by the 
previously generated ideas. As a consequence, the brainstorming group will be more 
open-minded and generate more diverse ideas. The problem owners serve for one 
different purpose.  Picking up several good ideas from ideas generated so far is to cause 
the brainstorming group to pay more attention to the better ideas which the 
brainstorming group believes to be.  The ideas picked-up work like point-attractors for 
the idea generation process.   

3   Brain Storm Optimization Algorithm 

The brainstorming process has been successfully applied to generate ideas to solve very 
difficult and challenging problems.  Intuitively, an optimization algorithm designed 
based on the human being idea generation process should be superior to optimization 
algorithms inspired by collective behaviors of animals because human beings are the 
most intelligent animals in the world. The novel optimization algorithm inspired by 
brainstorming process is given in Table 3. 

In the procedure of the Brain Storm Optimization (BSO) algorithm shown in the 
Table 3, the Step 1 is the initialization step as that in other population-based algorithms; 
the Step 2, 3, and 4 in Table 3 serves the purpose of Step 3, 5, and 7 in Table 1 to pick 
up several better ideas; the Step 5 in Table 3 simulates the operation of Step 6 in Table 
1 to make the population to cover unexplored areas; the Step 6 in Table 3 simulates the 
idea generation in Step 2, 4, and 6 of Table 1; the Step 6.b simulates generating new 
idea inspired by one single existing idea while the Step 6.c simulates generating new 
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Table 3. Procedure of Brain Storm Optimization Algorithm 

1. Randomly generate n potential solutions (individuals); 
2. Cluster n individuals into m clusters; 
3. Evaluate the n individuals; 
4. Rank individuals in each cluster and record the best individual as cluster center in 

each cluster; 
5. Randomly generate a value between 0 and 1; 

a) If the value is smaller than a pre-determined probability p5a,  
i. Randomly select a cluster center; 

ii. Randomly generate an individual to replace the selected cluster center; 
6. Generate new individuals 

a) Randomly generate a value between 0 and 1; 
b) If the value is less than a probability p6b,  

i. Randomly select a cluster with a probability p6bi; 
ii. Generate a random value between 0 and 1; 

iii. If the value is smaller than a pre-determined probability p6biii,  
1) Select the cluster center and add random values to it to generate 

new individual. 
iv. Otherwise randomly select an individual from this cluster and add 

random value to the individual to generate new individual. 
c) Otherwise randomly select two clusters to generate new individual 

i. Generate a random value; 
ii. If it is less than a pre-determined probability p6c, the two cluster centers 

are combined and then added with random values to generate new 
individual; 

iii. Otherwise, two individuals from each selected cluster are randomly 
selected to be combined and added with random values to generate new 
individual. 

d) The newly generated individual is compared with the existing individual with 
the same individual index, the better one is kept and recorded as the new 
individual; 

7. If n new individuals have been generated, go to step 8; otherwise go to step 6; 
8. Terminate if pre-determined maximum number of iterations has been reached; 

otherwise go to step 2. 
 

idea inspired by two existing ideas from two different idea clusters, respectively; the 
cluster center has more chances to be used to generate new ideas than other ideas in 
each cluster; certainly a new idea can also be inspired by more than two existing ideas, 
but it is not simulated in the BSO algorithm for keeping the algorithm simple; the 
number of clusters in Table 3 serves as the role of problem owners in Table 1; the 
cluster center in each cluster serves the purpose of better ideas picked up by problem 
owners. The Step 6.d serves the purpose of keeping better ideas generated.  The 
population size n simulates the number of ideas generated in each round of idea 
generation in the brainstorming process.  For the simplicity of the algorithm, the 
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population size usually is set to be a constant number for all iterations in the BSO 
algorithm.   

4   Experiments and Discussions 

The BSO procedure can be implemented in various ways by setting up BSO 
algorithm’s parameters differently.  In Step 6.b.i of the BSO procedure shown in Table 
3, a cluster is selected with probability p6bi, which is proportional to the number of 
individuals in the cluster.  This is, the more individuals a cluster contains, the more 
likely it will be selected. The Gaussian random values will be used as random values 
which are added to generate new individuals.  The new individual generation in Step 6 
can be represented as 

Xnew
d = Xselected

d  +ξ * n(μ, σ)                                         (1)  

whereXselected
d is the dth dimension of the individual selected to generate new individual; 

Xnew
d is the dth dimension of the individual newly generated; n(μ, σ) is the Gaussian 

random function with mean μ and variance σ; the ξ is a coefficient that weights the 
contribution of the Gaussian random value.  For the simplicity and for the purpose 
offine tuning, the ξ can be calculated as 

ξ = logsig((0.5 *max_iternation – current_iteration)/k) * rand()                (2) 

where logsig() is a logarithmic sigmoid transfer function, max_iteration is the 
maximum number of iterations, and current_iteration is the current iteration number, k 
is for changing logsig() function’s slope, and rand() is a random value within (0,1). 

For the purpose of validating the effectiveness and usefulness of the proposed BSO 
algorithm, in this paper, a set of parameters are set intuitively for the procedure of BSO 
given in Table 3 for both testing functions below. The set of parameters are listed in 
Table 4 below.   

Table 4. Set of Parameters for BSO Algorithm 

n m p5a p6b p6biii p6c k Max_ iteration μ σ 
100 5 0.2 0.8 0.4 0.5 20 2000 0 1 

 

The BSO algorithm is then tested on two benchmark functions listed in Table 5. We 
use k-mean cluster algorithm to cluster n individuals into m clusters. For each 
benchmark function, the BSO will be run 50 times to obtain reasonable statistical 
results.  

The first benchmark function is the Sphere function, which is an unimodal function.  
The simulation results of testing BSO on the Sphere function with dimensions 10, 20, 
and 30, respectively, are given in Table 6.  
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Table 5. Benchmark Functions Tested in This Paper 

Index Function name Function expression 
1 Sphere ∑ =

= D

i ixxf
1

2
1 )(  

2 Rastrigin ∑ =
+−= D

i ii xxf
1

2
2 )10)2cos(10( π  

Table 6. Simulation Results of BSO Algorithm 

function dimension mean best worst variance 
10 3.82E-44 1.50775E-44 7.12557E-44 1.57592E-88 
20 3.1E-43 1.61402E-43 4.56276E-43 4.0471E-87 

Sphere 

30 1.15E-42 8.07001E-43 1.69603E-42 4.69513E-86 
10 3.820643 1.989918 6.964713 1.954026 
20 18.06844 8.954632 26.86387 19.65172 

Rastrigin 

30 32.91322 17.90926 58.70249 82.82522 

 

The results given in the Table 6 are mean, best, worst minimum values and their 
variance of the final iteration over 50 runs. From the Table 6, it can be observed that 
very good results can be obtained by the implemented BSO algorithm.  

The second is the Rastrigin function, which is a multimodal function.  The 
simulation results of testing BSO on the Rastrigin function with dimensions 10, 20, and 
30, respectively, are given in Table 6. From Table 6, we can observe that good results 
can also be obtained by this very version of BSO algorithm.   

5   Conclusions 

In this paper, we introduced a novel brain storm optimization algorithm which was 
inspired by the human brainstorming process.  Human beings are the most intelligent 
animals in the world, therefore, it is natural to believe that the optimization algorithm 
inspired by collective behavior of human beings should be superior to the optimization 
algorithms inspired by collective behavior of injects such as ants, birds, etc. The 
proposed BSO algorithm was implemented and tested on two benchmark functions.  
Even though the simulation results are very preliminary, the results DID validate the 
effectiveness and usefulness of the proposed BSO algorithm which is the purpose of 
this paper.  More detailed analysis and experimental tests are our next step research 
work, e.g. using different clustering algorithm, using different random functions for 
generating new individuals, etc. 
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Abstract. Human Group Optimization (HGO) algorithm, derived from the 
previously proposed seeker optimization algorithm (SOA), is a novel swarm 
intelligence algorithm by simulating human behaviors, especially human 
searching/foraging behaviors. In this paper, a canonical HGO with local search 
(L-HGO) is proposed. Based on the benchmark functions provided by CEC2005, 
the proposed algorithm is compared with several versions of differential evolution 
(DE) algorithms, particle swarm optimization (PSO) algorithms and covariance 
matrix adaptation evolution strategy (CMA-ES). The simulation results show that 
the proposed HGO is competitive or, even, superior to the considered other 
algorithms for some employed functions. 

Keywords: Human group optimizer, human searching/foraging behaviors, 
seeker optimization algorithm, swarm intelligence. 

1   Introduction 

During the past over two decades, swarm intelligence (SI) [1-3], illumined by the 
social behavior of gregarious insects and other animals, has been attracting more and 
more attention of researchers. In the existing SI algorithms, researchers have focused 
mainly on the social behaviors of non-human animals [4], yet few have taken into 
account human social behaviors, especially human group searching/foraging 
behaviors. However, interacting groups of people also create emergent self-organizing 
behaviors that are not intended by any person [5], and swarm intelligence is known as 
an ever-present potential in humans [4]. As we all know, optimization tasks are often 
encountered in many areas of human life, and the search for a solution to a problem is 
one of the basic behaviors to all mankind [6]. In addition, in the search process, 
human brain can effectively manage the trade-off between exploitation and 
exploration [7]. Hence, it is an interesting choice to simulate human behaviors, 
especially human group searching/foraging behaviors, for solving optimization 
problems. The seeker optimization algorithm (SOA) [8] proposed by the authors of 
this paper is just such a paradigm. The SOA has been applied to function optimization 
[6], proton exchange membrane fuel cell model optimization [9], optimization 
problems in power systems [10-14], optimal assembly tolerance design [15], digital 
IIR filter design [16], and training neural networks [17], etc. According to these 
applications, it is preliminarily proved that the SOA is a promising and competitive 
candidate of heuristic search algorithms. Recently, because the term, seeker 
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optimization algorithm, could not reflect the essential nature of the novel algorithm of 
simulating human behaviors, it was renamed as Human Group Optimization 
algorithm or Human Group Optimizer (HGO) in Ref. [18]. At the same time, in Ref. 
[18], we proposed a canonical version of HGO. In this paper, to improve its local 
search ability, the Quasi-Newton method is combined, and the HGO with local search 
(L-HGO) is proposed. Furthermore, the performance of L-HGO on several 
benchmark functions provided by CEC2005 is reported. 

The rest of this paper is organized as follows. In Section 2, we detail the HGO and 
L-HGO. Then, the L-HGO is compared with other algorithms by use of benchmark 
function optimization in Section 3. Finally, the conclusion is presented in Section 4. 

2   Human Group Optimizer with Local Search 

Human group optimization (HGO) algorithm operates on a set of solutions called 
search population, and the individual of this population is called seeker (i.e., a 
person). Assume that the optimization problems to be solved are minimization 
problems. 

2.1   Implementation of Human Group Optimization 

In HGO, a search direction )(tdij and a step length )(tijα  are computed separately for 

each seeker i on each dimension j for each time step t, where )(tijα ≥0 and ∈)(tdij  
{-1,0,1}. For each seeker i (1≤i≤s, s is the population size), the position update on 
each dimension j (1≤j≤D) is given by (1): 

)()()()1( tdttxtx ijijijij α+=+ . (1)

where ],,,[)( 21 iDiii xxxtx =  is the D-dimensional position vector of the i-th seeker 

at time step t. The pseudocode of HGO is shown as Fig. 1. 
 

Generating s positions randomly, t←0; 
repeat 

Evaluating each seeker i; 
Selecting the neighbors for each seeker i; 

Computing )(tdi  and )(tiα  for each seeker i; 

Updating each seeker’s position using (1); 
t←t+1; 

until the stopping condition is satisfied. 

Fig. 1. The pseudocode of the HGO 

2.2   Search Direction 

In HGO, each seeker i selects his search direction synthetically based on several 
empirical gradients (EGs) by evaluating the current or historical positions of himself 
or his neighbors. Generally, the EGs involve egotistic behavior, altruistic behavior 
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and pro-activeness behavior to yield an egotistic direction, two altruistic directions 
and a pro-activeness direction, respectively [11, 16]. 

))()((sign)( best,ego, txtptd iii −= . (2)

1

best best
,alt

best

sign( ( ) ( )) if  is better than 
( )

sign( ( ) ( )) else
i i

i
i

g t x t g x
d t

x t g t

−⎧
= ⎨ −⎩

 (3)

2

best best
,alt

best

sign( ( ) ( )) if  is better than  
( )

sign( ( ) ( )) else
i i

i

i

l t x t l x
d t

x t l t

⎧ −⎪= ⎨ −⎪⎩
 (4)

))()((sign)( 21pro, txtxtd iii −=  (5)

where )(best, tpi  and )(best tg  are the i-th seeker’s and neighbors’ historical best 

positions respectively, )(best tl is the neighbors’ current best position, the )(sign ⋅  is a 

signum function on each dimension of the input vector, and )( 1txi and )( 2txi are the 

best and the worst one from the set { }( ), ( 1), ( 2) ,i i ix t x t x t− − respectively. 

According to human rational judgment, the actual search direction of the i-th 

seeker, )(tdi , is based on a compromise among the aforementioned four empirical 

directions applying the following proportional selection rule for each dimension j: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤<+
+≤<+

≤
=

+

+

1 if1-

 if1

 if0

)1()0(

)1()0()0(

)0(

jjj

jjjj

jj

ij

rpp

pprp

pr

d . (6)

where jr is a uniformly random number in [0,1], )(m
jp })1,1,0{( −+∈m  is the percent 

of the number of “m” on each dimension j of the four empirical directions. 

2.3   Step Length 

In this algorithm, human focusing search is introduced and described by a simple 
Fuzzy control rule as “If {fitness value is small} (i.e., the conditional part), Then 
{step length is short}(i.e., the action part)”. Hence, Fuzzy reasoning is used to 
determine step length of each seeker. 

To design a Fuzzy system to be applicable to a wide range of optimization 
problems, the fitness values of all the seekers are descendingly sorted and turned into 
the sequence numbers from 1 to s as the inputs of Fuzzy reasoning. The linear 
membership function is used in the conditional part since the universe of discourse is 
a given set of numbers, i.e., s,,2,1 . The expression is presented as (7). 

)(
1 minmaxmax μμμμ −
−
−

−=
s

Is i
i . (7)
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where Ii is the sequence number of )(txi after sorting the fitness values, μmax and μmin 

are the maximum and minimum membership degree value. At the same time, the Bell 

membership function 
22 2/)( δμ xex −= is used in the action part. The parameter,δ , of 

the Bell membership function is determined by (8). 

)(abs randbest xx −⋅= ωδ . (8)

where )(abs ⋅  returns an output vector such that each element of the vector is the 

absolute value of the corresponding element of the input vector. The parameter ω is 
used to decrease the step length with time step increasing so as to gradually improve 
the search precision. The bestx and randx  are the best seeker and a randomly selected 

neighbor from the population, respectively. 
To introduce the randomicity on each dimension and improve local search 

capability, Eq. (9) is used to change iμ  in (7) into a vector iμ . The action part of the 

Fuzzy reasoning gives every dimension j of step length by (10) where jδ  is the j-th 

dimension of the vectorδ in (8). 

)1,( iij RAND μμ = . (9)

)ln( ijjij μδα −=  (10)

2.4   The Neighbors of Every Seeker 

Before calculating the two altruistic directions in (3) and (4), each seeker needs to 
first give his neighborhood. Note: the seeker excludes himself from his neighborhood. 
In this work, a random topology introduced in [19, 20] is used, namely, each seeker 
randomly select other seekers as his neighbors with a selection probability: 

K

s
p )

1
1(1 −−= . (11)

where K is an integer less than s.  

2.5   Local Search Schedule 

To our knowledge, unlike particle swarm optimization (PSO) who implements an 
aggregating search around the personal and neighbors’ historical best positions, HGO 
utilizes a focusing search around the personal current positions. So, compared with 
PSO, HGO may more effectively keep the population diversity. However, we also 
found that the HGO sometimes lacks a sufficient local search ability to achieve a 
better search precision [18] although it can not only efficiently balance exploration 
and exploitation but also perfectly switch between a “nearer is better” assumption and 
a “nearer is worse” one [11, 16]. To give a better local search precision, a local search 
schedule introduced by Ref. [21] is added into HGO: every L (200 in this study) 
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generations, sort the population according to their fitness values and refine 5% 
individuals including the best individual and the randomly selected individuals out of 
the best 50% individuals in the current population using the Quasi-Newton method. 

3   Simulation Results 

In this section, the modified HGO is evaluated by using the first 14 functions of the 
test suite on real optimization of CEC 2005 [22]. Experiments are conducted on all 
the 10-dimension problems. The detailed evaluation criterion description can be 
referred to Ref. [22]. In this study, the parameters of the L-HGO are assigned as: 

)210int( Ds ⋅+= , K=3, μmax=0.95, μmax=0.0111, and ω linearly decreased from 0.8 

to 0.2 with time step increasing. 
The proposed method is compared with self-adaptive differential evolution 

algorithm with local search (L-SaDE) [23], differential evolution with self-adapting 
control parameters (SACP-DE)[24], the restart version of the (μW,λ)-CMA-ES (LR-
CMA-ES) [25], dynamic multi-swarm particle swarm optimizer with local search 
(DMS-L-PSO) [21], comprehensive learning particle swarm optimizer (CLPSO)[26] 
and Standard PSO 2007 (SPSO-07) [20]. The following results of L-SaDE, LR-
CMA-ES, DMS-L-PSO and HGO are cited from the corresponding references. 

For each problem, function error values achieved when FEs=1e+5 are tabulated in 
Table 1, successful FEs and success performance are presented in Table 2. Those 
successful FEs and Success Performance for functions 8, 13 and 14 are not shown 
because all the algorithms failed.  

According to the simulation results in Table 1 and 2, the analysis on the 
comparisons between L-HGO and other algorithms is presented as follows. Except 
function 3 among the first five unimodal functions, L-HGO can successfully solve the 
other four functions and has the smallest or equal values of the best, worst, and mean 
function errors with 100% success rates. At the same time, L-HGO has comparable 
successful FEs and success performance from Table of Table 2 although it is not the 
best ones. Hence, L-HGO has good local search ability and rapid convergence rate. 
For function 3, L-HGO has a relatively bad performance.  

For the multimodal functions from function 6 to function 12, L-HGO also presents 
good global search ability. L-HGO achieves 100% success rate for function 6 and 
72% for function 7. For function 8, L-HGO along with all the other algorithms fails 
in all 25 runs. L-HGO can find the global optimum and achieves 52% success rate for 
function 9. Although L-HGO is not that good for function 10 owing to the rotation 
and only achieves 16% success rate, it can still find the precise global optimum. For 
function 11, the results of L-HGO are superior to all other algorithms with success 
rate of 36%, and L-HGO achieves 44% success rate for function 12. Functions 13 and 
14 are extended functions and all the algorithms including L-HGO fail in all 25 runs 
for them. But, L-HGO has the comparable performance for function 13 and better 
function error values for function 14 than all the other algorithms. 
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Table 1. Function errors of various algorithms when FEs=1e+5 

Funcs. L-SaDE SACP-DE LR-CMA-ES DMS-L-PSO CLPSO SPSO-2007 HGO L-HGO 

F1 

1st 
7th 

13th 
19th 
25th 

Mean 
Std 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

1.84e-9 
3.75e-9 
5.65e-9 
6.42e-9 
9.34e-9 
5.20e-9 
1.94e-9 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

F2 

1st 
7th 

13th 
19th 
25th 

Mean 
Std 

0 
0 
0 
0 

2.5580e-12 
1.0459e-13 
5.1124e-13 

4.0168e-7 
1.0935e-6 
1.5977e-6 
2.7079e-6 
5.3480e-6 
1.9829e-6 
1.4144e-6 

2.21e-9 
3.27e-9 
4.53e-9 
5.71e-9 
7.67e-9 
4.70e-9 
1.56e-9 

0 
5.6843e-14 
5.6843e-14 
1.1369e-13 
7.3896e-13 
1.2960e-13 
1.5612e-13 

0 
5.6843e-14
5.6843e-14
1.1369e-13
1.7053e-13
7.9581e-14
3.6692e-14

5.6843e-14 
1.1369e-13 
1.7053e-13 
2.2737e-13 
4.5475e-13 
1.9554e-13 
1.0126e-13 

0 
0 
0 
0 

5.6843e-14 
2.2737e-15 
1.1369e-14 

0 
0 
0 
0 

5.6843e-14 
1.1369e-14 
2.3206e-14 

F3 

1st 
7th 

13th 
19th 
25th 

Mean 
Std 

0 
0 
0 

9.9142e-6 
1.0309e-4 
1.6720e-5 
3.1196e-5 

5.3347e+2 
1.5730e+3 
2.3763e+3 
3.3918e+3 
9.4322e+3 
2.8819e+3 
2.2021e+3 

2.21e-9 
4.61e-9 
5.51e-9 
6.58e-9 
9.66e-9 
5.60e-9 
1.93e-9 

1.5364e-9 
5.5371e-9 
7.3142e-9 
8.9301e-9 
1.1275e-8 
7.0064e-9 
2.6589e-9 

4.7806e+3 
2.9139e+4 
5.5009e+4 
2.3547e+5 
1.4237e+6 
2.2900e+5 
3.5814e+5 

3.3457e+3 
1.3958e+4 
3.0878e+4 
4.1905e+4 
1.0958e+5 
3.3535e+4 
2.5853e+4 

8.1456e+3 
3.3641e+4 
5.6796e+4 
8.3709e+4 
2.3856e+5 
6.8079e+4 
5.2735e+4 

1.2008e+2 
3.1296e+3 
1.2461e+4 
2.1470e+4 
1.0250e+5 
1.8221e+4 
2.3743e+4 

F4 

1st 
7th 

13th 
19th 
25th 

Mean 
Std 

0 
0 
0 
0 

3.5456e-4 
1.4182e-5 
7.0912e-5 

5.7618e-6 
1.6068e-5 
2.0628e-5 
4.0977e-5 
1.0043e-4 
3.1071e-5 
2.3115e-5 

1.71e-9 
3.85e-9 
4.78e-9 
6.46e-9 
7.80e-9 
5.02e-9 
1.71e-9 

2.0784e-4 
6.6984e-4 
1.1399e-3 
2.5429e-3 
8.7836e-3 
1.8851e-3 
1.8932e-3 

5.6843e-14
1.1369e-13
4.5475e-13
1.5348e-12
9.0031e-9 
4.0073e-10
1.8025e-9 

2.1542e+0 
8.0694e+1 
2.4601e+2 
5.4506e+2 
2.7671e+3 
5.3680e+2 
7.8221e+2 

0 
0 
0 
0 

5.6843e-14 
9.0949e-15 
2.1269e-14 

0 
0 
0 
0 

1.1369e-13 
2.9559e-14 
3.7130e-14 

F5 

1st 
7th 

13th 
19th 
25th 

Mean 
Std 

1.1133e-6 
0.0028 
0.0073 
0.0168 
0.0626 
0.0123 
0.0146 

0 
0 
0 
0 
0 
0 
0 

2.46e-9 
5.02e-9 
6.33e-9 
8.60e-9 
9.84e-9 
6.58e-9 
2.17e-9 

1.1267e-8 
1.7025e-7 
4.9662e-7 
9.4387e-7 
1.0268e-5 
1.1383e-6 
2.1828e-6 

6.6833e+2 
8.4984e+2 
9.5814e+2 
1.0897e+3 
1.9917e+3 
1.0049e+3 
2.6176e+2 

0 
0 
0 

3.6380e-12 
7.8776e+2 
3.1557e+1 
1.5754e+2 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

F6 

1st 
7th 

13th 
19th 
25th 

Mean 
Std 

0 
4.3190e-9 
5.1631e-9 
9.1734e-9 
8.0479e-8 
1.1987e-8 
1.9282e-8 

4.1410e-4 
2.4519e-1 
3.1617e-1 
5.0135e-1 
9.6508e-1 
3.6579e-1 
2.2060e-1 

1.44e-9 
3.81e-9 
4.69e-9 
5.67e-9 
8.13e-9 
4.87e-9 
1.66e-9 

6.0652e-11 
1.3616e-9 
3.0839e-9 
6.1451e-9 
1.6000e-6 
6.8925e-8 
3.1904e-7 

9.2686e-5 
5.5107e-4 
4.0885e-2 
2.8477e+0 
7.6620e+0 
1.2911e+0 
2.1051e+0 

4.4241e-3 
6.2559e-3 
1.5176e-2 
3.9973e+0 
8.9261e+2 
9.5349e+1 
2.4543e+2 

7.6930e-2 
2.6544e+0 
2.9959e+0 
3.6026e+0 
4.4916e+0 
2.9116e+0 
1.1309e+0 

1.4704e-9 
4.9131e-9 
8.9166e-9 
2.1826e-7 
6.2924e-6 
7.1820e-7 
1.5252e-6 

F7 

1st 
7th 

13th 
19th 
25th 

Mean 
Std 

4.6700e-10 
1.48e-2 
1.97e-2 
2.71e-2 
3.69e-2 
1.99e-2 
1.07e-2 

2.7195e+3 
2.9486e+3 
3.2102e+3 
3.4067e+3 
3.6533e+3 
3.1651e+3 
2.7187e+2 

6.22e-10 
1.65e-9 
2.84e-9 
5.46e-9 
7.77e-9 
3.31e-9 
2.02e-9 

4.8879e-9 
2.2151e-2 
4.4283e-2 
6.6493e-2 
1.2799e-1 
4.5189e-2 
3.2611e-2 

3.1108e+3 
3.3696e+3 
3.5769e+3 
3.9102e+3 
4.6988e+3 
3.6983e+3 
4.2224e+2 

5.6648e-2 
1.3050e-1 
2.0438e-1 
3.6189e-1 
7.4597e-1 
2.4563e-1 
1.6324e-1 

2.8422e-14 
7.3960e-3 
9.8974e-3 
1.7274e-2 
5.4719e-2 
1.4193e-2 
1.3503e-2 

0 
3.9790e-13 
7.3960e-3 
1.2316e-2 
3.2013e-2 
9.1745e-3 
1.0578e-2 

F8 

1st 
7th 

13th 
19th 
25th 

Mean 
Std 

20.0000 
20.0000 
20.0000 
20.0000 
20.0000 
20.0000 

5.3901e-8 

2.0156e+1 
2.0281e+1 
2.0330e+1 
2.0371e+1 
2.0463e+1 
2.0326e+1 
7.4168e-2 

2.00e+1 
2.00e+1 
2.00e+1 
2.00e+1 
2.00e+1 
2.00e+1 
3.89e-3 

2.0000e+1 
2.0000e+1 
2.0000e+1 
2.0000e+1 
2.0000e+1 
2.0000e+1 
5.5382e-9 

2.0083e+1 
2.0137e+1 
2.0167e+1 
2.0268e+1 
2.0474e+1 
2.0199e+1 
9.1104e-2 

2.0099e+1 
2.0211e+1 
2.0272e+1 
2.0306e+1 
2.0423e+1 
2.0261e+1 
7.6041e-2 

2.0126e+1 
2.0278e+1 
2.0362e+1 
2.0403e+1 
2.0465e+1 
2.0331e+1 
9.5430e-2 

2.0000e+1 
2.0000e+1 
2.0000e+1 
2.0000e+1 
2.0001e+1 
2.0000e+1 
2.5382e-4 
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Table 1. (Continued) 

Funcs. L-SaDE SACP-DE LR-CMA-ES DMS-L-PSO CLPSO SPSO-2007 HGO L-HGO 

F9 

1st 
7th 

13th 
19th 
25th 

Mean 
Std 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

1.52e-10 
3.46e-10 
6.14e-10 
3.50e-9 
9.95e-1 
2.39e-1 
4.34e-1 

0 
0 
0 
0 
0 
0 
0 

1.9899e+0 
3.9798e+0 
4.9748e+0 
5.9698e+0 
7.9597e+0 
4.8554e+0 
1.5815e+0 

5.9697e+0 
9.9496e+0 
1.0945e+1 
1.4924e+1 
2.2884e+1 
1.2594e+1 
4.3063e+0 

0 
0 

9.9496e-1 
9.9496e-1 
2.9849e+0 
7.5617e-1 
7.7496e-1 

0 
0 

5.6843e-14 
9.9496e-1 
1.9899e+0 
5.9698e-1 
7.0354e-1 

F10 

1st 
7th 

13th 
19th 
25th 

Mean 
Std 

1.9899 
3.9798 
4.9748 
5.9698 
9.9496 
4.9685 
1.6918 

1.3243e+1 
1.5268e+1 
1.6779e+1 
1.9010e+1 
2.4500e+1 
1.7185e+1 
3.0103e+0 

1.50e-10 
3.34e-10 
5.64e-10 
1.08e-9 
9.95e-1 
7.96e-2 
2.75e-1 

1.9899e+0 
2.9849e+0 
3.9798e+0 
3.9798e+0 
4.9748e+0 
3.6217e+0 
8.5590e-1 

7.9597e+0 
1.1939e+1 
1.5919e+1 
2.1889e+1 
4.0793e+1 
1.7471e+1 
8.1546e+0 

3.9798e+0 
7.9597e+0 
1.3928e+1 
1.7507e+1 
2.3879e+1 
1.3444e+1 
5.8035e+0 

2.0582e-3 
9.9574e-1 
1.9899e+0 
2.9885e+0 
5.0115e+0 
1.9615e+0 
1.4263e+0 

0 
9.9496e-1 
9.9496e-1 
2.9849e+0 
3.9798e+0 
1.7511e+0 
1.3250e+0 

F11 

1st 
7th 

13th 
19th 
25th 

Mean 
Std 

3.2352 
4.5129 
4.7649 
5.3823 
5.9546 
4.8909 
0.6619 

5.7828e+0 
6.7190e+0 
7.0276e+0 
7.3644e+0 
8.2542e+0 
6.9982e+0 
6.3794e-1 

5.27e-10 
3.48e-2 
6.34e-1 
1.64e+0 
3.19e+0 
9.34e-1 
9.00e-1 

2.7590e+0 
4.4767e+0 
4.6570e+0 
5.0608e+0 
5.2394e+0 
4.6229e+0 
5.8400e-1 

1.9484e-1 
2.5144e+0 
3.3422e+0 
4.4543e+0 
7.6678e+0 
3.4362e+0 
1.7027e+0 

5.0886e-1 
2.1478e+0 
2.5552e+0 
3.1957e+0 
3.7362e+0 
2.4719e+0 
9.0019e-1 

1.7635e-5 
1.5000e-2 
7.5498e-2 
6.5254e-1 
1.2664e+0 
3.7918e-1 
4.4355e-1 

6.0004e-5 
2.8510e-3 
7.1042e-2 
2.7160e-1 
1.6480e+0 
2.9052e-1 
4.7407e-1 

F12 

1st 
7th 

13th 
19th 
25th 

Mean 
Std 

1.4120e-10 
1.7250e-8 
8.1600e-8 
3.8878e-7 
3.3794e-6 
4.5011e-7 
8.5062e-7 

1.7072e+3 
2.2332e+3 
2.5057e+3 
3.0837e+3 
4.1731e+3 
2.6605e+3 
6.9549e+2 

1.08e-9 
2.81e-9 
3.89e-9 
5.94e-9 
7.12e+2 
2.93e+1 
1.42e+2 

3.3481e-11 
3.0343e-10 
7.2993e-10 
1.4545e-5 
1.0003e+1 
2.4007e+0 
4.3602e+0 

6.3715e-6 
1.4485e-1 
1.0003e+1 
1.8835e+1 
1.6936e+3 
2.1071e+2 
4.9578e+2 

2.1138e+3 
7.6271e+3 
1.0146e+4 
1.7040e+4 
2.8260e+4 
1.2214e+4 
6.6159e+3 

9.8920e+3 
1.5639e+4 
2.0941e+4 
2.5132e+4 
3.7099e+4 
2.1366e+4 
7.5338e+3 

1.0158e-6 
1.1241e-3 
5.2651e-2 
1.3474e+3 
1.6936e+3 
4.7516e+2 
7.2324e+2 

F13 

1st 
7th 

13th 
19th 
25th 

Mean 
Std 

0.1201 
0.1957 
0.2170 
0.2508 
0.3117 
0.2202 
0.0411 

6.5789e-1 
7.5483e-1 
8.3828e-1 
8.6047e-1 
9.7245e-1 
8.1645e-1 
8.0547e-2 

4.07e-1 
6.44e-1 
6.82e-1 
7.61e-1 
1.05e+0 
6.96e-1 
1.50e-1 

2.5403e-1 
3.2064e-1 
3.6085e-1 
4.0121e-1 
4.7266e-1 
3.6865e-1 
5.6411e-2 

1.1902e-1 
4.6867e-1 
5.9665e-1 
8.1384e-1 
1.2010e+0 
6.5480e-1 
2.7688e-1 

3.7861e-1 
6.6312e-1 
7.4046e-1 
9.9497e-1 
1.8375e+0 
8.3801e-1 
3.1776e-1 

3.9113e-1 
5.4520e-1 
5.7953e-1 
7.2001e-1 
9.9512e-1 
6.2690e-1 
1.3407e-1 

2.4856e-1 
3.7844e-1 
4.0864e-1 
4.7261e-1 
7.2356e-1 
4.3591e-1 
1.1888e-1 

F14 

1st 
7th 

13th 
19th 
25th 

Mean 
Std 

2.5765 
2.7576 
2.8923 
3.0258 
3.3373 
2.9153 
0.2063 

3.1192e+0 
3.4501e+0 
3.5640e+0 
3.6549e+0 
3.7318e+0 
3.5240e+0 
1.6791e-1 

2.08e+0 
2.75e+0 
3.00e+0 
3.28e+0 
3.51e+0 
3.01e+0 
3.49e-1 

1.4838e+0 
2.1160e+0 
2.3522e+0 
2.6055e+0 
2.8906e+0 
2.3601e+0 
3.3750e-1 

1.8246e+0 
2.8009e+0 
3.0708e+0 
3.1780e+0 
4.0127e+0 
3.0099e+0 
4.7116e-1 

1.8263e+0 
2.3163e+0 
2.6537e+0 
3.0165e+0 
3.5063e+0 
2.6226e+0 
4.5624e-1 

5.6454e-1 
1.3294e+0 
1.6906e+0 
2.0670e+0 
3.0726e+0 
1.7193e+0 
6.6719e-1 

5.6628e-1 
1.4408e+0 
1.8625e+0 
2.1318e+0 
2.6985e+0 
1.7736e+0 
5.3521e-1 

 
 
 

After combined with local search, the performance of HGO is significantly 
improved especially for functions 6-9 and 12, and its success rate is raised from 0% to 
100% for function 6, from 52% to 72% for function 7, from 40% to 52% for function 
9, from 0% to 44% for function 12. Of course, the impact of the used local search 
schedule is not always positive; for example, its performance is deteriorated for 
functions 2, 4 and 14. 
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Table 2. Successful FEs and success performance of various algorithms 

Funcs Algorithms 1st 13th 25th Mean Std 
Success 
Rate 

Success 
Performance 

L-SaDE 10126 10126 10126 10126 0 100% 1.0126e+4 
SACP-DE 27347 28694 29944 2.8701e+4 6.7244e+2 100% 2.8701e+4 
LR-CMA-ES 1.44e+3 1.63e+3 1.71e+3 1.61e+3 6.14e+1 100% 1.61e+3 
DMS-L-PSO 1.1843e+4 1.1915e+4 1.1946e+4 1.1912e+4 2.5786 +1 100% 1.1912e+4 
CLPSO 19028 20678 22370 2.0702e+4 7.0589e+2 100% 2.0702e+4 
SPSO-2007 2541 2767 2995 2.7666e+3 1.1149e+2 100% 2.7666e+3 
HGO 6.5320e+3 7.2900e+3 8.4440e+3 7.3048e+3 4.4876e+2 100% 7.3048e+3 

F1 

L-HGO 3249 3249 3249 3249 0 100% 3249 
L-SaDE 10227 10241 10244 10237 7.2920 100% 1.0237e+4 
SACP-DE 94577 - - - - 24% 4.0555e+5 
LR-CMA-ES 2.20e+3 2.35e+3 2.60e+3 2.38e+3 1.06e+2 100% 2.38e+3 
DMS-L-PSO 1.1843e+4 1.2046e+4 1.2340e+4 1.2052e+4 1.1488e+2 100% 1.2052e+4 
CLPSO 26966 28900 30721 2.8683e+4 1.0814e+3 100% 2.8683e+4 
SPSO-2007 6109 7723 9504 7.9303e+3 8.9394e+2 100% 7.9303e+3 
HGO 2.2121e+4 2.5232e+4 2.6734e+4 2.4951e+4 1.2441e+3 100% 2.4951e+4 

F2 

L-HGO 6.8340e+3 1.3652e+4 2.0448e+4 1.4835e+4 3.2041e+3 100% 1.4835e+4 
L-SaDE 28357 36644 - - - 64% 5.2306e+4 
SACP-DE - - - - - 0% - 
LR-CMA-ES 5.84e+3 6.51e+3 7.20e+3 6.50e+3 2.92e+2 100% 6.50e+3 
DMS-L-PSO 1.2165e+4 1.2519e+4 1.2649e+4 1.2480e+4 1.2440e+2 100% 1.2480e+4 
CLPSO - - - - - 0% - 
SPSO-2007 - - - - - 0% - 
HGO - - - - - 0% - 

F3 

L-HGO - - - - - 0% - 
L-SaDE 31040 39110 - - - 96% 4.5601e+4 
SACP-DE - - - - - 0% - 
LR-CMA-ES 2.52e+3 2.88e+3 3.22e+3 2.90e+3 1.68e+2 100% 2.90e+3 
DMS-L-PSO - - - - - 0% - 
CLPSO 28562 31977 35436 3.1827e+4 1.7093e+3 100% 3.1827e+4 
SPSO-2007 - - - - - 0% - 
HGO 2.7185e+4 2.9522e+4 3.1375e+4 2.9288e+4 1.2098e+3 100% 2.9288e+4 

F4 

L-HGO 2.6605e+4 2.9317e+4 3.1809e+4 2.9202e+4 1.4748e+3 100% 2.9202e+4 
L-SaDE - - - - - 0% - 
SACP-DE 47405 49409 52414 4.9656e+4 1.4919e+6 100% 4.9656e+4 
LR-CMA-ES 5.36e+3 5.83e+3 6.72e+3 5.85e+3 2.89e+2 100% 5.85e+3 
DMS-L-PSO 7.7125e+4 8.9185e+4 - - - 80% 1.1336e+5 
CLPSO - - - - - 0% - 
SPSO-2007 3859 4875 - - - 88% 1.0912e+4 
HGO 7.3970e+3 9.2620e+3 1.0783e+4 9.3535e+3 7.6755e+2 100% 9.3535e+3 

F5 

L-HGO 7.9050e+3 1.0651e+4 1.2340e+4 1.0312e+4 1.1795e+3 100% 1.0312e+4 
L-SaDE 31546 52756 63382 48777 10240 100% 4.8777e+4 
SACP-DE 83171 - - - - 8% 1.0918e+6 
LR-CMA-ES 5.67e+3 8.55e+3 2.26e+4 1.08e+4 5.00e+3 100% 1.08e+4 
DMS-L-PSO 2.5912e+4 5.2022e+4 7.8003e+4 5.4677e+4 1.2942e+4 100% 5.4677e+4 
CLPSO 63447 - - - - 48% 1.5553e+5 
SPSO-2007 86051 - - - - 36% 2.4532e+5 
HGO - - - - - 0% - 

F6 

L-HGO 4.4816e+4 4.8016e+4 6.0727e+4 4.8268e+4 4.0065e+3 100% 4.8268e+4 
L-SaDE 10257 - - - - 24% 1.7197e+5 
SACP-DE - - - - - 0% - 
LR-CMA-ES 1.49e+3 5.83e+3 1.33e+4 4.67e+3 2.83e+3 100% 4.67e+3 
DMS-L-PSO 4.9529e+4 - - - - 16% 5.8672e+5 
CLPSO - - - - - 0% - 
SPSO-2007 - - - - - 0% - 
HGO 1.5700e+4 4.9381e+4 - - - 52% 6.5136e+4 

F7 

L-HGO 6.8340e+3 2.7288e+4 - - - 72% 3.1849e+4 
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Table 2. (Continued) 

Funcs Algorithms 1st 13th 25th Mean Std 
Success 
Rate 

Success 
Performance 

L-SaDE 14540 17217 20103 17048 1340.9 100% 1.7048e+4 
SACP-DE 46532 52241 58120 5.2126e+4 3.0352e+3 100% 5.2126e+4 
LR-CMA-ES 2.33e+4 7.85e+4 - - - 76% 7.57e+4 
DMS-L-PSO 2.4651e+4 3.6919e+4 4.9663e+4 3.4612e+4 8.8073e+3 100% 3.4612e+4 
CLPSO - - - - - 0% - 
SPSO-2007 - - - - - 0% - 
HGO 3.8625e+4 - - - - 40% 1.1130e+5 

F9 

L-HGO 4.3002e+4 6.6480e+4 - - - 52% 1.0691e+5 
L-SaDE - - - - - 0% - 
SACP-DE - - - - - 0% - 
LR-CMA-ES 2.68e+4 5.15e+4 - - - 92% 6.50e+4 
DMS-L-PSO - - - - - 0% - 
CLPSO - - - - - 0% - 
SPSO-2007 - - - - - 0% - 
HGO 6.8971e+4 - - - - 12% 6.0441e+5 

F10 

L-HGO 5.3240e+4 - - - - 16% 4.2706e+5 
L-SaDE - - - - - 0% - 
SACP-DE - - - - - 0% - 
LR-CMA-ES 3.05e+4 - - - - 24% 2.63e+5 
DMS-L-PSO - - - - - 0% - 
CLPSO - - - - - 0% - 
SPSO-2007 - - - - - 0% - 
HGO 2.3123e+4 - - - - 24% 1.2489e+5 

F11 

L-HGO 2.6401e+4 - - - - 36% 9.4848e+4 
L-SaDE 10302 31493 52733 31933 12789 100% 3.1933e+4 
SACP-DE - - - - - 0% - 
LR-CMA-ES 2.37e+3 3.10e+4 - - - 88% 3.27e+4 
DMS-L-PSO 1.2482e+4 2.5687e+4 - - - 76% 5.4443e+4 
CLPSO 46864 - - - - 16% 4.2168e+5 
SPSO-2007 - - - - - 0% - 
HGO - - - - - 0% - 

F12 

L-HGO 1.0243e+4 - - - - 44% 7.7500e+4 

4   Conclusions 

The HGO is a novel swarm intelligence algorithm by simulating human behaviors, 
especially human searching/foraging behaviors. In order to improve the local search 
ability, the canonical HGO is combined with the Quasi-Newton method. The studies 
on the comparisons between L-HGO and other algorithms are also conducted on 
several functions provided by CEC05. The simulation results document that the 
proposed algorithm is a competitive and promising candidate of search algorithms. In 
the future research, we will further conduct in-depth study on human social behaviors, 
especially human searching/foraging behaviors, for solving optimization problems. 
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Abstract. For improving the convergence of Cat Swarm Optimization (CSO), 
we propose a new algorithm of CSO namely, Average-Inertia Weighted CSO 
(AICSO). For achieving this, we added a new parameter to the position update 
equation as an inertia weight and used a new form of the velocity update 
equation in the tracing mode of algorithm. Experimental results using 
Griewank, Rastrigin and Ackley functions demonstrate that the proposed 
algorithm has much better convergence than pure CSO. 

Keywords: Cat Swarm Optimization, Average-Inertia Weighted Cat Swarm 
Optimization, Swarm Intelligence. 

1   Introduction 

Optimization and functions minimization are very important problems. So there are 
many algorithms to solve these problems.Some of these optimization algorithms were 
developed based on swarm intelligence bysimulating the intelligent behavior of 
animals, like Ant Colony Optimization (ACO) [1-6] which imitates the behavior of 
ants, Particle Swarm Optimization (PSO) [2] which imitates thebehavior of birds, Bee 
Colony Optimization (BCO)[3] which imitates the behavior of bees and the recent 
finding, Cat SwarmOptimization (CSO) [4] which imitates the behavior of cats. 

In order to solve the optimization problems, CSO models the behavior of cats into 
two sub-models namely seeking mode and tracing mode. 

In the cases of functions optimization, CSO is one of the best algorithms to find the 
best global solution. In comparison with other heuristic algorithms such as PSO and 
PSO with weighting factor [7], CSO usually achieves better result. But sometimes in 
some cases pure CSO takes a long time to find an acceptable solution. So it affects on 
performance and convergence of the algorithm.Therefore high speed processor is 
needed for getting reasonable result. 

In this article, our aim is to introduce a new version of CSO in order to improve the 
performance and achieve better convergence in less iteration. First we add a new 
                                                           
*Corresponding author. 
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parameter to the position equation as an inertia weight that will be chosen randomly 
(ICSO). Then by making a new form of the velocity equation composing two terms, 
we introduce Average-Inertia Weighted CSO (AICSO). 

Experimental results indicate that the proposed algorithm rather than pureCSO can 
improve performance on finding the best global solution and achieves better accuracy 
level of convergence. 

2   Cat Swarm Optimization 

Chu et al. [4] divided CSO algorithm into two sub-models based on two of the major 
behavioral traits of cats.These are termed”seeking mode” and ”tracing mode”.In CSO, 
we first decide how many cats we would like to usein the iteration, then we apply the 
cats into CSO to solve the problems. Every cat has its own position composed of 
Ddimensions, velocities for each dimension, a fitness value, which represents the 
accommodation of the cat to the fitness function, and a flag to identify whether the cat 
is in seeking mode or tracing mode. The final solution would be the best position of 
one of the cats. The CSO keeps the best solution until it reaches the end of the 
iterations [5]. 

 
A. Seeking Mode 
This sub model is used to model the cat during a period of resting but being alert- 
looking around its environment for its next move. 

Seeking mode has four essential factors, which are designed as follows: seeking 
memory pool (SMP), seeking range of the selected dimension (SRD), counts of 
dimension to change (CDC) and self position consideration (SPC). 

Seeking mode is described below. 

Step 1:  Make j copies of the present position of catk , where j = SMP. If the value of 
SPC is true, let j = (SMP-1), then retain the present position as one of the candidates. 

Step 2:For each copy, according to CDC, randomly plus or minus SRD percent the 
present values and replace the old ones. 

Step 3:  Calculate the fitness values (FS) of all candidate points. 

Step 4: If all FS are not exactly equal, calculate the selecting probability of each 
candidate point by equation (1), otherwise set all the selecting probability of each 
candidate point be 1. 

Step 5:  Randomly pick the point to move to from the candidate points, and replace 
the position of catk. 

 P |SSE SSE |SSE SSE  , 0 i j                                      1  

 
If the goal of the fitness function is to find the minimum solution,FSb= FSmax , 

otherwiseFSb = FSmin 
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B.  Tracing Mode 
Tracing mode is the sub-model for modeling the case of the cat in tracing targets. The 
action of tracing mode can be described as follows: 

 

Step 1:  Update the velocities for every dimension (vk,d) according to equation (2). 

Step 2:  Check if the velocities are in the range of maximum velocity. In case the new 
velocity is over-range, it is set equal to the limit.  v , v , r c  x , x ,                                              2  

Step 3:   Update the position of cat k according to (3)  , , ,                                                             

C.  Core Description of CSO 
In order to combine these two modes into the algorithm, we define a mixture ratio 
(MR) which dictates the joining of seeking mode with tracing mode. The MR decides 
how many cats will be moved by seeking mode process. For example,if the 
population size is 50 and the MR is equal to 0.7, there should be50*0.7=35 cats 
moveto seeking mode and 15 cats move to tracing mode in this iteration. So the 
process of CSO is summarized below: 

First we create N cats and initialize the position, velocities and the flag of every 
cat. (*) According to the fitness function, evaluate the fitness value of the each cat and 
keep the best cat into memory. In next step, according to cat’s flag, apply cat to the 
seeking mode or tracing mode process. After finishing the related process, re-pick the 
number of cats and set them into seeking mode or tracing mode according to MR. In 
the final step check the termination condition, if satisfied, terminate the program, 
otherwise go to (*). 

3   AICSO Algorithm 

In the pure CSO, we should have a condition on the velocity equation in order to 
control the velocities of the cats for every dimension and check whether the velocities 
are in the range of maximum or not. 

For modifying this part, we use a parameter as an inertia weight to handle this 
problem.Here we choose the value of inertia weight (w) randomly and experimental 
results indicate that it is better to choose w in the range of [0.4,0.9].So we select the 
largest value for w in the first iteration (w = 0.9) and then it will be reduced to 0.4 in 
thenext iterations.CSO with inertia weight can converge under certain conditions even 
without using vmax. For w>1, velocities increase over time, causing cats to diverge 
eventually beyond the boundaries of the search space.Forw<1,velocities decrease over 
time,eventually reaching 0,resulting in convergence behavior.So the new position 
update equation can be written as v , wv , r c x , x ,                                            4  

Where c1is acceleration coefficient and usually is equal to 2.05 and r1is a random 
value uniformly generated in the range of [0,1] and w is inertia weight(ICSO). 
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Next step, we use a new form of the position update equation composingtwo terms. 
In the first term, the average information of current and previous position and in the 
second, the average of current and previous velocity information will be 
used(AICSO). So new position equation is described below x  x x2  v v2                                                    5  

4   Experimental Results 

In this paper, simulation experiments are conducted in GCC compiler on an Intel Core 
2 Duo at 2.53GHz with 4G real memory.Our test is about finding the global minima 
of three test functions: Rastrigrin, Griewank and Ackley. In table1 we determine the 
parameter values of the algorithm and the limitations range of three test functions are 
mentioned in table2. 

Table 1. Parameters settings(1) 

Parameter Value or range

SMP 5 

SRD 20% 

CDC 80% 
MR 2% 
c1 

r1 

       w 

2.05 
[0,1] 

[0.4,0.9] 

Table 2. Parameters settings(2) 

Function Limitation Range Object 
Rastrigrin [2.56,5.12] Minimize

Griewank [300,600] Minimize
Ackley [-32.768,32.768] Minimize

Rastrigin’s function is based on the function of DeJong with the addition of cosine 
modulation in order to produce frequent local minima. Thus, the test function is 
highly multimodal. Function has the following definition 

                                                  10  2 10                                 6  

Where -5.12<x<5.12, its global minimum is equal to 0. 
As shown in Fig.1, AICSO in the 900th iteration achieves the best solution and its 

fitness value is so close to the answer of Rastrigin’s function. So in comparison with pure 
CSO and ICSO, AICSO has so much better solution and takes less iteration to converge.  
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Fig. 1. The experimental result of Rastrigin function 

 

Fig. 2. The experimental result of Griewank function 

Griewangk’s function has many   minima regularly distributed. Where -600<x<600, its 
global minimum is equal to 0. Function has the following definition 

                                                  14000 √ 1                                       7  

As demonstrated in Fig.2, Pure CSO and ICSO have the same fitness value 
approximately but ICSO can find the better solution and its final solution is 4.57. 

 



326 M. Orouskhani, M. Mansouri, and M. Teshnehlab 

 

Fig. 3. The experimental result of Ackley function 

Ackley’s function is a widely used multimodal test function and Where32.68<x<32.68, 
its global minimum is equal to 0. It has the following definition 

     20. exp 0.2 1 exp 1 cos 2 20 exp 1   8  

As shown in Fig.3 AICSO rather than Pure CSO can find the better solution and 
the best fitness value is 0.000192 in the last iteration.  

With comparisons of the average fitness value, numbers of iteration and the best 
global solution for CSO, ICSO and AICSO which are mentioned in Table3, table4 
and table5,results indicate that AICSO has better performance and usually takes less 
iteration to converge rather than pure CSO and ICSO. For example, global results of 
Griewank function are shown in table4. The best fitness values of CSO, ICSO and 
AICSO are 12.08, 10.01, 4.57 respectively. So it is clear that AICSO has much better 
result and its solution is more acceptable than CSO and ICSO. 

 

Table 3. Global Results of Rastrig in Function 

 Algorithm Average Solution          Iteration              Best Solution 

 CSO 26.64208  2000 1.161127 
 

 ICSO 22.45198 1100     0.000000 
 

 AICSO     21.718749                     950                    0.000000 
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Table 4. Global Results of Griewank Function 

 Algorithm Average Solution         Iteration             Best Solution 

 CSO 16.34888     2000 12.081966 
 

 ICSO 1485353      2000    10.017866 
 

 AICSO     9.937433                      2000                  4.572061 
 

   

Table 5. Global Results of Ackley Function 

 Algorithm Average Solution          Iteration         Best Solution 

 CSO 0.38096   3500    0.004589 
 

 AICSO 0.370672 3500          0.000192 
 

   

5   Conclusions 

Function minimization is a very important problem in the optimization theory. Cat 
Swarm Optimization is one of the useful algorithms to solve these problems. But pure 
CSO in some cases takes a long time to converge and in some problems cannot find 
the best global solution correctly. So we modified the tracing mode of the algorithm. 
To do this, we added an inertia weightto the velocity update equation (ICSO) and then 
we changed the position update equation to a new form using average of current and 
previous position/ velocity information (AICSO). Experimental results for three 
benchmarks indicated that the proposed algorithm in comparison with pure CSO and 
ICSO improves the performance on finding the best global solution and achieves the 
better accuracy level of convergence in the less iteration. 
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Abstract. Under the given system weight constraint, we consider the
problem of maximizing the system lifetime and minimizing the system
cost. The lifetimes of components in the system are characterized by
type-2 fuzzy variables. The numbers of redundant elements of each com-
ponents are the decision variables. We use the reduction methods to
reduce the type-2 fuzzy lifetimes. Then, we propose a goal programming
model for this system. We suggest an approximation approach (AA)
to the reliability and design an AA-based particle swarm optimization
(PSO) algorithm to solve the fuzzy model.

Keywords: Standby redundancy optimization, Type-2 fuzzy variables,
Generalized credibility, Approximation approach, Particle swarm
optimization.

1 Introduction

In various kinds of systems, reliability engineering is especially important. The
primary goal of reliability engineering is to improve the reliability of a system.
The redundancy allocation is a direct way of enhancing the binary-state system
reliability. There exist two basic ways to provide some components redundancy:
parallel redundancy and standby redundancy. In the first way, all redundant
elements are operating while in the second way, one of the redundant elements
begins to work only when the active element has failed.

Based on the assumption that the elements’ lifetimes are random variables,
many lots of researches have been done. Coit and Smith [1] have studied redun-
dancy allocation to maximize a lower percentile of the system time-to-failure
distribution. Zhao and Liu [2] have considered both parallel redundant systems
and standby redundant systems, three types of system performance are intro-
duced. Reliability has become a greater concern in recent years, Kuo and Wan
[3] provides a broad overview of recent research on reliability optimization prob-
lems and their solution methodologies. To enhance the reliability of the systems
in which the lifetimes are imprecise or vague, some researchers used the fuzzy
set theory to study fuzzy reliability optimization problems [4,5,6]. Mahapatra
and Roy [7] discussed a fuzzy multi-objective optimization method for a multi-
objective system reliability problem. With different optimization criteria, Zhao

Y. Tan et al. (Eds.): ICSI 2011, Part I, LNCS 6728, pp. 329–337, 2011.
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and Liu [8] built three kinds of standby redundancy optimization models for a
standby redundancy system with fuzzy lifetimes.

Since the membership function is difficult to be determined, Zadeh [9] intro-
duced the concept of a type-2 fuzzy set as an extension of an ordinary fuzzy
set. A type-2 fuzzy set is characterized by a fuzzy membership function. Liu
and Liu [10] presented fuzzy possibility theory. In fuzzy possibility theory, a
variable-based approach is adopted to deal with type-2 fuzziness. To character-
ize the properties of type-2 fuzzy variables in some aspects, Chen and Wang
[11] presented a scalar representative value operator for type-2 fuzzy variable.
To defuzzify type-2 fuzzy variables, Qin et al. [12,13] gave the mean reduction
methods and the critical value reduction methods for the type-2 fuzzy variable.

This paper models the redundancy optimization based on fuzzy possibility
theory, the lifetimes of components are characterized by type-2 fuzzy variables
with known secondary possibility distributions.

The paper is organized as follows. Section 2 recalls some basic concepts and
results in fuzzy possibility theory. In Section 3, we formulate a multi-objective
redundancy optimization model with type-2 fuzzy lifetimes. Then we use the
reduction methods to reduce the type-2 fuzzy lifetimes and propose a goal pro-
gramming model. Section 4 employs the AA to evaluate the system reliability
and designs an approximation-based PSO algorithm to solve the proposed goal
programming model. One numerical example is provided in Section 5. Finally,
Section 6 summarizes the main work in this paper.

2 Preliminaries

Let ξ be a general fuzzy variable with the distribution μ. The generalized credi-
bility measure [13], denoted by C̃r, of the event {ξ ≥ r} is defined by

C̃r{ξ ≥ r} = 1
2

(
supx∈
 μ(x) + supx≥r μ(x) − supx<r μ(x)

)
, r ∈ �.

The general fuzzy variables ξ1, ξ2, . . . , ξn are said to be mutually independent [13]
if

C̃r{ξi ∈ Bi, i = 1, 2, . . . , n} = min
1≤i≤n

C̃r{ξi ∈ Bi}

for any subsets Bi, i = 1, 2, . . . , n of �.
To reduce the type-2 fuzziness, one way is to give a reasonable representa-

tion for the secondary possibility distribution [10]. For this purpose, Qin et al.
[13] have used the expectations [14] of secondary possibility distribution as the
representing values and given the mean reduction methods for the type-2 fuzzy
variable.

With E reduction method, the reduction η of type-2 normal fuzzy variable
η̃ = ñ(μ, σ2; θl, θr) has the following distribution [13]

μη(x)=

⎧⎪⎨
⎪⎩

(4+θr−θl) exp(− (x−μ)2

2σ2 )

4 , if x ≤ μ− σ
√

2ln2 or x ≥ μ + σ
√

2ln2

(4−θr+θl) exp(− (x−μ)2

2σ2 )+θr−θl

4 , if μ− σ
√

2ln2 < x < μ + σ
√

2ln2.
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With E reduction method, the reduction ξ of type-2 triangular fuzzy variable
ξ̃ = (r̃1, r̃2, r̃3; θl, θr) has the following distribution [13]

μξ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(4+θr−θl)(x−r1)
4(r2−r1)

, if x ∈ [r1,
r1+r2

2 ]
(4−θr+θl)x+(θr−θl)r2−4r1

4(r2−r1)
, if x ∈ ( r1+r2

2 , r2]
(−4+θr−θl)x+4r3−(θr−θl)r2

4(r3−r2)
, if x ∈ (r2,

r2+r3
2 ]

(4+θr−θl)(r3−x)
4(r3−r2)

, if x ∈ ( r2+r3
2 , r3].

3 Fuzzy Standby Redundancy Optimization Problem

This paper considers a standby redundant system containing five components
which is showed in Fig. 1. Assume that the ith component consists of xi re-
dundant elements, i = 1, 2, . . . , 5, respectively. Firstly, we give the following
assumptions: 1) The system, components, and elements, at any time, are binary-
state (good or failed). 2) There is no element (or system) repair or preventive
maintenance. 3) The failures of the elements are mutually-independent. 4) The
switching device of the standby system is perfect. 5) The elements of the same
type have independent and identically distributed lifetimes, the lifetimes of each
components are independent.

Fig. 1. A standby redundant system

Sometimes, we can only obtain limited information about the lifetimes such
as the distributions. In this section, we assume that we can only obtain the
type-2 distributions of the lifetimes, i.e., the lifetimes are characterized by type-2
fuzzy variables. We use type-2 fuzzy vector ξ̃ = (ξ̃1,1, . . . , ξ̃1,x1 , . . . , ξ̃5,1, . . . , ξ̃5,x5)
where ξ̃i,j is the type-2 fuzzy lifetime of the jth element in component i for all
i = 1, 2, . . . , n, j = 1, 2, . . . , xi, to characterize the lifetimes of the components.
The system lifetime at allocation x = (x1, . . . , x5) can be expressed as

T (x, ξ̃)
= max{(ξ̃1,1 + · · ·+ ξ̃1,x1) ∧ (ξ̃3,1 + · · ·+ ξ̃3,x3) ∧ (ξ̃4,1 + · · ·+ ξ̃4,x4),

(ξ̃1,1 + · · ·+ ξ̃1,x1) ∧ (ξ̃3,1 + · · ·+ ξ̃3,x3) ∧ (ξ̃5,1 + · · ·+ ξ̃5,x5),
(ξ̃2,1 + · · ·+ ξ̃2,x2) ∧ (ξ̃3,1 + · · ·+ ξ̃3,x3) ∧ (ξ̃4,1 + · · ·+ ξ̃4,x4),
(ξ̃2,1 + · · ·+ ξ̃2,x2) ∧ (ξ̃3,1 + · · ·+ ξ̃3,x3) ∧ (ξ̃5,1 + · · ·+ ξ̃5,x5)}.

(1)
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Our problem is to find the optimal redundancy allocations to this system so as
to maximize the system lifetime and minimize the system cost. Based on those
two different objectives, we can formulate the standby redundancy optimization
model as ⎧⎪⎪⎨

⎪⎪⎩
max T (x, ξ̃)
min

∑5
i=1 cixi +

∑5
i=1 ci exp(hixi)

subject to
∑5

i=1 wixi +
∑5

i=1 wi exp(mixi) ≤ w0

x ≥ 1, integer vector

(2)

where 1 = (1, 1, 1, 1, 1), xi is the decision variable which denotes the number of
elements in the ith component, w0 denotes the maximal weight the system can
burden, wi denotes the weight of element in the ith component, ci denotes the
cost of element in the ith component, wi exp(mixi) and ci exp(hixi) denote the
additional weight and cost due to the interconnection between elements in the
ith component, respectively, hi, mi represent the corresponding parameters.

The problem (2) is not well-defined because the meaning of the first objective
is not clear. In this sense, solving such a programming is meaningless. In order
to obtain a meaningful mathematical model, we can use the mean reduction
methods to reduce the type-2 fuzzy lifetimes. We expect to maximize the system
lifetime and minimize the system cost. Let T0 be the threshold duration of the
system lifetime, and C̃r{T (x, ξ) ≥ T0} the system reliability. If we regard system
reliability as the first priority, then we obtain the following goal programming
model ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

lexmin {d−1 , d+
2 }

subject to C̃r{T (x, ξ) ≥ T0}+ d−1 − d+
1 = α0∑5

i=1 cixi +
∑5

i=1 ci exp(hixi) + d−2 − d+
2 = c0∑5

i=1 wixi +
∑5

i=1 wi exp(mixi) ≤ w0

x ≥ 1, integer vector
d−i , d+

i ≥ 0, i = 1, 2

(3)

where ξ = (ξ1,1, . . . , ξ1,x1 , . . . , ξ5,1, . . . , ξ5,x5) and ξi,j is the reduced fuzzy vari-
able of ξ̃i,j according to the mean reduction methods, C̃r is the generalized
credibility measure, α0 is the given level the system reliability should achieve,
c0 is the given level of the system cost should achieve.

4 Solution Method

To solve the fuzzy goal programming model (3), it is required to evaluate the
generalized credibility function C̃r{T (x, ξ) ≥ T0}. For any feasible decision
x, we evaluate C̃r{T (x, ξ) ≥ T0} by using the AA [15]. Then we suggest an
approximation-based PSO algorithm to solve the model (3).

4.1 An Approximation Scheme

For simplicity, we rewrite ξ = (ξ1, ξ2, . . . , ξm) where m = x1 + · · ·+ x5. Suppose
that ξ is an essentially bounded fuzzy vector, and the possibility distributions νi
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of ξi, i = 1, 2, . . . , m, are continuous on �. Let μ be the possibility distribution
of ξ, and defined as

μ(u1, u2, . . . , um) = min
1≤i≤m

νi(ui) (4)

for every (u1, u2, . . . , um) ∈ �m.
Denote Ξ =

∏m
i=1[ai, bi] as the support of ξ with [ai, bi] the supports of ξi,

i = 1, 2, . . . , m, respectively.
For any given integer n, the discrete fuzzy vector ζn = (ζn,1, ζn,2, . . . , ζn,m) is

defined as
ζn = hn(ξ) = (hn,1(ξ1), hn,2(ξ2), . . . , hn,m(ξm)) (5)

where the fuzzy variables ζn,i = hn,i(ξi), i = 1, 2, . . . , m, with

hn,i(ui) = sup
{

ki

n | ki ∈ Z, ki

n ≤ ui

}
(6)

for ui ∈ [ai, bi], and Z the set of all integers.
Moreover, for each i, 1 ≤ i ≤ m, by the definition of ζn,i, as ξi takes its

values in [ai, bi], the fuzzy variable ζn,i takes its values in the set {ki

n | ki =
[nai], [nai] + 1, . . . , Ki}, where [r] is the maximal integer such that [r] ≤ r, and
Ki = nbi − 1 or [nbi] according as nbi is an integer or not an integer. Therefore,
the possibility distribution νn,i of ζn,i is

νn,i

(
ki

n

)
= Pos

{
γ | ki

n ≤ ξi(γ) < ki+1
n

}
(7)

for ki = [nai], [nai]+1, . . . , Ki. As a consequence, the possibility distribution μn

of ζn = (ζn,1, . . . , ζn,m) is

μn

(
k1
n , k2

n , . . . , km

n

)
= min

1≤i≤m
νn,i

(
ki

n

)
(8)

for i = 1, 2, . . . , m, and ki = [nai], [nai] + 1, . . . , Ki.
The sequence {ζn}, which converges uniformly to the continuous fuzzy vector

ξ [15], is referred to as the discretization of the continuous fuzzy vector ξ.

4.2 Computing the Generalized Credibility

Let C̃r{T (x, ξ) ≥ T0} is denoted as C̃r{g(ξ) ≥ T0}. We now discuss the compu-
tation of C̃r{g(ξ) ≥ T0} according to the following two cases.

Case 1. Suppose ξ = (ξ1, ξ2, . . . , ξm) has the possibility distribution

ξ ∼
(

ξ̂1 ξ̂2 . . . ξ̂K

ν1 ν2 . . . νK

)
(9)

with νk = Pos{ξ = ξ̂k} > 0, ξ̂k = (ξ̂k,1, ξ̂k,2, . . . , ξ̂k,m) ∈ �m, and maxK
k=1 νk =

supx∈Ξ μ(x). The generalized credibility

C̃r{g(ξ) ≥ T0}
= 1

2 (supx∈Ξ μ(x) + max{νk | g(ξ̂k) ≥ T0} −max{νk | g(ξ̂k) < T0})

where Ξ =
{
ξ̂1, ξ̂2, . . . , ξ̂K

}
⊂ �m.
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Case 2. Suppose the support Ξ of ξ is continuous. We utilize the following
approach to compute L = C̃r{g(ξ) ≥ T0}.

Let {ζn} be the discretization of the fuzzy vector ξ. For each fixed n, the
fuzzy vector ζn takes on K values ζ̂k

n = (ζ̂k
n,1, ζ̂

k
n,2, . . . , ζ̂

k
n,m), k = 1, 2, . . . , K,

with K = K1K2 · · ·Km. Write νk = νn,1(ζ̂k
n,1) ∧ νn,2(ζ̂k

n,2) ∧ · · · ∧ νn,m(ζ̂k
n,m) for

k = 1, 2, . . . , K, where νn,i defined by Eq. (7) are the possibility distributions of
the fuzzy variables ζn,i, i = 1, 2, . . . , m, respectively. Then C̃r{g(ζn) ≥ T0} can
be computed by the formula

1
2

(
sup
x∈Ξ

μ(x) + max{νk | g(ζ̂k
n) ≥ T0} −max{νk | g(ζ̂k

n) < T0}
)

. (10)

Liu [15] shows that C̃r{g(ζn) ≥ T0} converges to C̃r{g(ξ) ≥ T0} as n→∞, which
implies that C̃r{g(ξ) ≥ T0} can be estimated by the formula (10) provided n is
sufficiently large. The process to estimate the generalized credibility C̃r{g(ξ) ≥
T0} (i.e., AA) is summarized as

Step 1. Generate K points ζ̂k
n = (ζ̂k

n,1, ζ̂
k
n,2, . . . , ζ̂

k
n,m), k = 1, 2, . . . , K, which

form the support of ζn.
Step 2. Calculate g(ζ̂k

n) for k = 1, 2, . . . , K.

Step 3. Set νk = νn,1(ζ̂k
n,1) ∧ νn,2(ζ̂k

n,2) ∧ · · · ∧ νn,m(ζ̂k
n,m) for k = 1, 2, . . . , K.

Step 4. Return L via the estimation formula (10).

4.3 Hybrid Particle Swarm Optimization

PSO algorithm, originally developed in [16], is based on pop size particles, each
of which indicates a possible solution of the problem space. Each particle has its
own best position (pbest) which represents the personal smallest objective value
so far at time t. The global best particle (gbest) represents the best particle found
so far at time t in the colony. The new velocity of the ith particle is updated by
the following formula

Vi(t + 1) = ωVi(t) + c1r1 (Pi(t)−Xi(t)) + c2r2 (Pg(t)−Xi(t)) (11)

for i = 1, 2, . . . , pop size, where ω is called the inertia coefficient, c1 and c2 are
the learning rates and usually c1 = c2 = 2, and r1, r2 are two independent
random numbers generated from the unit interval [0,1]. Let X = (x1, . . . , x5)
be denoted as a particle to represent the decision vector. Since model (3) is an
integer programming, the new position of the ith particle is renewed by

Xi(t + 1) = Xi(t) + IVi(t + 1) (12)

where

IVi(t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

1, if Vi(t + 1) > 0

−1, if Vi(t + 1) < 0

0, if Vi(t + 1) = 0.

The solution process of PSO combined AA is summarized as follows.
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Step 1. Initialize pop size feasible particles with random positions and veloci-
ties, then compute their objective values by AA.

Step 2. Set pbest of each particle and its objective value equal to its current
position and objective value, and set gbest and its objective value equal to
the position and objective value of the best initial particle;

Step 3. Renew the velocity and position of each particle according to formulas
(11) and (12), respectively.

Step 4. Calculate the objective values for all particles by AA.
Step 5. For each particle, compare the current objective value with that of its

pbest. If the current objective value is smaller than that of pbest, then renew
pbest and its objective value with the current position and objective value.

Step 6. Find the best particle of the current swarm with the smallest objective
value. If the objective value is smaller than that of gbest, then renew gbest
and its objective value with the position and objective value of the current
best particle.

Step 7. Repeat the third to six steps for a given number of cycles.
Step 8. Return the gbest and its objective value as the optimal solution and

the optimal value.

5 A Numerical Example

We consider a standby redundant system containing five components which is
showed in Fig. 1. Assume that the ith component consists of xi redundant ele-
ments, i = 1, 2, . . . , 5, respectively. For the ith component, the lifetime of each
element is characterized by type-2 fuzzy variable ξ̃i, which is shown in Table 1,
ξ̃i, i = 1, 2, . . . , 5 are mutually independent type-2 fuzzy variables [10]. Let ξi

(i = 1, 2, . . . , 5) be the reduced fuzzy variable of ξ̃i according to the E reduc-
tion method, and the support of ξ3 be [0, 15]. Furthermore, we suppose that the
threshold duration of the system lifetime is T0 = 5, the prescribed confidence
level of the system reliability is α0 = 0.9, the given cost level of the system should
achieve is c0 = 150, the maximal weight the system can burden is w0 = 220, the
parameters hi = mi = 0.3, i = 1, . . . , 5. The other parameters are also shown in
Table 1. Then we build the following goal programming model⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

lexmin {d−1 , d+
2 }

subject to C̃r{T (x, ξ) ≥ 5}+ d−1 − d+
1 = 0.9∑5

i=1 cixi +
∑5

i=1 ci exp(0.3xi) + d−2 − d+
2 = 150∑5

i=1 wixi +
∑5

i=1 wi exp(0.3xi) ≤ 220
x ≥ 1, integer vector
d−i , d+

i ≥ 0, i = 1, 2.

(13)

For simplicity, we assume that θl = θi
l , θr = θi

r, i = 1, 2, . . . , 5. For some values
of (θl, θr), the AA-based PSO algorithm (1000 generations in PSO) shows the
optimal solutions of model (13) which are provided in Table 1.
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Table 1. Parameters and solutions

i ξ̃i ci wi

1 (3̃, 6̃, 8̃; θ1
l , θ1

r) 10 5
2 (4̃, 6̃, 7̃; θ2

l , θ2
r) 12 6

3 ñ(5, 2; θ3
l , θ3

r) 13 8
4 (3̃, 4̃, 8̃; θ4

l , θ4
r) 9 5

5 (4̃, 6̃, 7̃; θ5
l , θ5

r) 10 6

(θl, θr) optimal solution x d−
1 d+

2

(0.6, 0.5) (3, 1, 3, 1, 2) 0 46.7643
(0.4, 0.8) (2, 1, 3, 1, 2) 0 46.7643
(0.8, 0.5) (2, 1, 3, 1, 2) 0 46.7643
(0.4, 0.7) (4, 1, 4, 2, 1) 0 104.4587

(0, 0) (2, 1, 2, 1, 2) 0.0098 25.4770

6 Conclusions

The paper’s innovation contents include the following three aspects:

(a) Based on fuzzy possibility theory, we model the standby redundancy opti-
mization problem and use the mean reduction methods to reduce the type-2
fuzzy lifetimes with known secondary possibility distributions. Then based
on generalized credibility measure, we give a goal programming model;

(b) When the lifetimes of components are characterized by mutually indepen-
dent type-2 fuzzy variables, we employ the AA to estimate the system relia-
bility. Then we design an approximation-based PSO algorithm to solve the
proposed goal programming model;

(c) For the proposed model, we provide one numerical example to illustrate the
modeling idea and the efficiency of the proposed algorithm.
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Abstract. A population-based algorithm, oriented search algorithm (OSA), is 
proposed to optimize functions in this paper. In OSA, the search-individual 
imitates human random search behavior, and the search-object simulates an 
intelligent agent that can transmit oriented information to search-individuals. OSA 
is tested on thirteen complex benchmark functions. The results are compared with 
those of particle swarm optimization with inertia weight (PSO-w), particle swarm 
optimization with constriction factor (PSO-cf) and comprehensive learning 
particle swarm optimizer (CLPSO). The results show that OSA is superior in 
convergence efficiency, search precision, convergence property and has the strong 
ability to escape from the local sub-optima.  

Keywords: swarm intelligence, oriented search algorithm, human random 
search behavior, function optimization. 

1   Introduction 

As a novel computational intelligence technology, swarm intelligence [1-4] has 
become more and more researchers’ focus. Swarm intelligence [3-5] means that 
simple individuals show the character of intelligent behavior through co-operation 
between individuals. Swarm intelligence behavior is the self-organizing act which is 
not controlled by central controller, meaning that the collective behavior emerges 
from simple individuals interacting locally with one another and with their 
environment [6-7]. Recently, the algorithms based on swarm intelligence mainly 
include ant colony algorithm [8-9], particle swarm optimization [10-18] etc. Shi Y. 
and Eberhart R. [19] proposed particle swarm optimization with inertia weight (PSO-
w) which can balance between local optima and global optima. Nevertheless, the 
inertial weight linearly decreased with run time increasing affects the global search 
capability. Clerc M. and Kennedy J. [20] presented particle swarm optimization with 
constriction factor (PSO-cf), which improves the search ability of particle swarm 
optimization. Liang J.J. and Qin A.K. [21] introduced comprehensive learning 
particle swarm optimizer (CLPSO), which advances the ability of escaping from local 
optima. However, it has shortcomings in unimodal functions optimization.  

The authors have proposed a novel algorithm based on population, oriented search 
algorithm (OSA), to optimize reactive power dispatch in power system [22-23]. In 
order to verify the performance of OSA, function optimization based on OSA is 
presented in this paper. Trough testing thirteen benchmark functions based on OSA, 
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the results identify that OSA has high convergence efficiency, search precision, 
convergence property and the strong ability to escape from the local sub-optima. 

2   Oriented Search Algorithm 

In OSA [22-23], the search-individual simulates human random search behavior, and 
the search-object (i.e., the optimal solution of the objective functions) works like an 
intelligent agent that can transmit oriented information to search-individuals. The 
oriented information transmitted by the current-search-object makes the search-
individual search towards better direction. At the same time, the search-object 
continuously adjusts its position so that search-individuals can receive the variable 
oriented information to search the optimal object as soon as possible. In a word, OSA 
simulates the search behavior of human searching intelligent agent to model the 
communication between search-object and search-individuals.  

2.1   Search-Individual  

Search-individual simulates human random search behavior. The search-individual 
moves discretely in multidimensional space. During the search process, each search-
individual takes exploration walks and every walk includes the search step and the 
search direction. A number of steps determine the search period. The initial position 
of the search-individual can be defined as follows: 

0 min max min( )* (0,1)ji i i ix X X X random= + − . (1)

Where (0,1)random  denotes a random value between 0 and 1. min iX and max iX denote 

the bounds of search space. i=1，…，n，n denotes the dimension of search space, i 
denotes the ith dimension. j=1，…，m, m denotes the population size, j denotes the 
jth search-individual. 

2.2   Search-Object 

In each walk, all the search-individuals obtain one current-search-object, the current 
optimal solution of the objective function. The current-search-object adjusts its 
position ( tglobalx ) adaptively for transmitting the oriented information to search-

individuals. At the same time, the oriented information acts as the oriented-neighbor-
space of the next walk for search-individuals.  

Search-object sends oriented information to search-individuals in order to reduce 
the search range of the individual blindly searching. According to the variable 
oriented information, search-individuals continuously generate stochastic search steps 
and search directions to update their positions. 

2.3   Oriented-Neighbor-Space 

Oriented-neighbor-space is a random neighbor-space built by the position of the 
current-search-object. In each walk, the current-search-object adjusts its position 
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adaptively, at the same time to send the information of its position, called oriented 
information, to search-individuals. In same walk, each search-individual receives 
different oriented information. Therefore, oriented-neighbor-space is formed for each 
search-individual. Moreover, in different walk, oriented information is changeable. As 
a result, oriented-neighbor-space is variable as well. For the whole exploration 
process, the range of the oriented-neighbor-space is reduced gradually with search-
individuals approaching to the search-object, and becomes one certain position until 
search-individuals achieve the search-object. It means that search-individuals, 
receiving the oriented information transmitted by the current-search-object in every 
current walk, are getting concentrative and inclined to the search-object step by step, 
and find the search-object until the certain position information of the search-object 
was accepted. Oriented-neighbor-space is defined as follows: 

*(1 * (0,1))tglobalx w randn+ . (2)

Where (0,1)randn denotes a random number with normal distributed between 0 and 

1. w denotes a variable parameter to regulate the random changing trend of oriented-
neighbor-space. The minimal w is zero, which denotes search-individuals achieve the 
optimal position of search-object when optimization process is ended. w is defined as 
follows: 

max max min*( ) /w w t w w G= − − . (3)

Where t  is the current generation number, G  is the maximal generation number. 

2.4   Search-Neighbor-Space, Updating Strategy of Search Direction and Search 
Step 

The search-neighbor-space of every search-individual is related closely with the 
oriented-neighbor-space. According to the oriented-neighbor-space, search-
individuals set search-neighbor-space, and generate stochastic search steps and search 
directions. In search-neighbor-space, different search-individual generates different 
search direction which points to its own current-search-object. Also, the search step is 
stochastic distance between the current position of the search-individual and the 
position of its own current-search-object. The updating strategy of search direction 
and search step is described as follows: 

( * (1 * (0,1)) ) * (0,1)tji tglobal tjix x w randn x randomΔ = + − . (4)

2.5   Evaluation and Decision 

Throughout each exploration, every search-individual achieves a solution of the 
objective function which is evaluated by evaluation function. Then, the result of the 
evaluation for each solution of the objective function marks the quality of the 
solution. If the quality of the solution is better, the current position of the search-
individual is better. Furthermore, the decision function is applied to determine 
whether updating the current search walk or not. If the current position of search-
individual is better than that of last walk, it will be updated. After each walk, the 
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current-search-object is updated through selecting the best quality of the solution 
among the solutions of the objective function. The search process continues until the 
termination criterion is met.  

Explore new position of the current search-individual ( 1)t jix + : 

( 1)t ji tji tjix x x+ = + Δ . (5)

Evaluate the quality of the objective function solution: 

( )tj tjif f x= . (6)

Decide whether generating search behavior: 

( 1) ( 1)

( 1)

, ( : )
, ( : )

t ji t j tj
tji

tji t j tj

x if f f
x x if f f

+ +

+

≤⎧= ⎨ >⎩
. (7)

2.6   OSA Architecture 

The structure of OSA mainly includes three parts: initialization, exploration and 
termination. The algorithm architecture is presented in Fig.1 as a flow chart.  

Initialization

Start

Termination
No

Yes

Oriented Search {
Initialization{

initialize    , ,n,m,G;
initialize the position of search individuals       ;
generate an initial solution of the objective
function for each search individual ;
generate an initial optimal solution of the 
objective function for population ;
initialize w}//end initialization

do{ // exploration
generate the strategy of updating        ;
explore new position of the current search 
individual         ;
evaluate the quality of the objective function
solution ;
decide  whether generating search behavior

;

update the current position of the objective function 
optimal solution           ;

} while                                           //termination
output the result} 

// end Oriented Search

min i
X

max i
X

0 jix

0( )jif x

0min( ( ))jif x

tjixΔ

( 1)t jix +

tjf

( 1) ( 1)

( 1)

, ( : )

, ( : )
t ji t j tj

tji
tji t j tj

x if f f
x

x if f f

+ +

+

≤⎧⎪= ⎨ >⎪⎩

tglobalx

min(( ) || ( ))optf f g G≤ ≥

Exploration

Draw the result

End

Yes

 

Fig. 1. Algorithm architecture 

3   Simulation and Analysis 

OSA is tested on thirteen complex benchmark functions and the results are compared 
with those obtained by particle swarm optimization with inertia weight (PSO-w), 
particle swarm optimization with constriction factor (PSO-cf) and comprehensive 
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learning particle swarm optimizer (CLPSO). The parameters settings are list as 
follows. The parameters of PSO-w are set as: learning rate is 1 2 2c c= = , inertia 

weight w  is linearly decreased from 0.9 to 0.4 with implementation time increasing, 
the maximum velocity maxv  is set at 20% of the dynamic range of the variable on each 

dimension; the parameters of PSO-cf are set as: learning rate is 1 2 2.01c c= = , 
constriction factor is 0.729844=χ ; the parameters of CLPSO are set as: 1.49445c = , 

inertia weight w  is linearly decreased from 0.9 to 0.4 with implementation time 
increasing; the parameter of OSA is set as: inertia weight w  is linearly decreased 
from 0.9 to 0 with implementation time increasing. Experiments are implemented in 
MATLAB 7.0 with Lenovo PC of Pentium(R) 4 CPU 2.94GHz, 512MB of RAM. 

Table 1 lists thirteen functions, where n  is the dimension of variable, S  is the 
bound of variable and minf  is optimal solution of objective function in theory. Table 2, 

3 and table 4 list the optimal results of unimodal functions, multimodal functions with  
 

Table 1. Thirteen benchmark functions 

Function n S fmin 

∑= =
n
i ixxf 1

2
1 )(  30 [ ]n12.5,12.5− 0  

{ }2 ( ) m ax ,1= ≤ ≤i
i

f x x i n  30 [ ]n100,100− 0  

1 2 2 2
3 11
( ) (100( ) ( 1) )

−
+=

= − + −∑ n

i i ii
f x x x x  30 [ ]n30,30−  0  

4
4 1
( ) [0,1)

=
= +∑ n

ii
f x ix rand  30 [ ]n28.1,28.1− 0  

5 1
( ) ( sin( ))

=
= −∑ n

i ii
f x x x  30 [ ]n500,500− 12569.5−

2
6 1
( ) ( 10 cos(2 ) 10)

=
= − π +∑ n

i ii
f x x x  30 [ ]n12.5,12.5− 0  

2
7

1 1

1 1
( ) 20 exp( 0.2 ) exp( cos(2 ))

= =

= − − − π∑ ∑
n n

i i
i i

f x x x
n n

e++20  

30 [ ]n32,32−  0  

2
8 1 1

1
( ) co s( ) 1

4 0 0 0 = =
= − +∑ ∏ nn i

ii i

x
f x x

i
 30 [ ]n600,600− 0  

12 2 2
9 1 11
( ) {10 sin ( ) ( 1) [1 10 sin ( )]

−
+=

π= π + − + π∑ n

i ii
f x y y y

n
             ∑+−+ =

n
i in xuy 1

2 )4,100,10,(})1(  
30 [ ]n50,50−  0  

12 2 2
10 1 11

( ) 0.1{sin (3 ) ( 1) [1 sin (3 )]
−

+=
= π + − + π∑ n

i ii
f x x x x

       ∑++−+ =
n
i inn xuxx 1

22 )4,100,5,()]}2(sin1[)1( π  
30 [ ]n50,50−  0  

24 6

11 1 1
( ) exp[ ( ) ]

= =
= − − −∑ ∑i ij j iji j

f x c a x p  6 [ ]0,1
n

 3.32−  

7 1
12 1

( ) [( )( ) ]−
=

= − − − +∑ T
i i ii

f x x a x a c  4 [ ]n10,0  10.4029−  

10 1
13 1

( ) [( )( ) ]−
=

= − − − +∑ T
i i ii

f x x a x a c  4 [ ]n10,0  10.5364−  
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many local minima and multimodal functions with only a few local minima, 
respectively. The same population size is 100 and a total of 50 runs are made in all 
simulations. The maximal generation (G), the best value (Best), the mean value 
(Mean), the standard deviation (Std. Dev.) and CPU implementation time (Time 
(Second)) are illustrated, respectively. 

Table 2 shows that OSA has better ability of searching Best, Mean and Std. Dev. 
for unimodal functions than other algorithms but the Best of function 3f .  

Table 3 shows that OSA has better capability of exploring Best, Mean and Std. 
Dev. for multimodal functions with many local minima than other algorithms but the 
Best of functions 9f  and 10f .  

Table 4 shows that OSA has better facility of finding the Best of function 11f  and 

the Mean of function 12f and 13f  for multimodal functions with only a few local 

minima than other algorithms but the Std. Dev.. 
From the index of CPU implementation time, we can see that PSO-w has slightly 

better than other algorithms. 
From the integrated performance of OSA, OSA is better in the convergence 

efficiency, search precision, convergence property and strong ability to escape from 
the local sub-optima. 

Table 2. The performance comparison of algorithms for unimodal functions 

Function Algorithm Best Mean Std. Dev. Time(second) 

PSO-w 
1.7864e-

015 
1.6568e-

013 
4.5931e-

013 
18.180 

PSO-cf 
4.5023e-

045 
2.2848e-

041 
4.5442e-

041 
19.817 

CLPSO 
3.2147e-

013 
2.7272e-

012 
1.684e-012

24.450 
f1 

(G=1500) 

OSA 9.1166e-
124 

1.5372e-
120 

2.6619e-
120 

27.088 

PSO-w 0.011794 0.07022 0.046572 63.410 

PSO-cf 
1.4824e-

016 
7.1273e-

013 
2.1876e-

012 
73.237 

CLPSO 0.00068793 0.002049 0.0012533 83.920 
f2 

(G =5000) 

OSA 4.7762e-
101 

4.2001e-
092 

2.8823e-
091 

101.960 

PSO-w 0.010498 1821.6 12727 251.490 

PSO-cf 1.8661e-
012 

7323.6 24636 
271.720 

CLPSO 0.16786 36.256 31.223 349.100 

f3 
(G =20000) 

OSA 23.299 25.786 1.2625 502.920 
PSO-w 0.0029905 0.0062767 0.0021719 42.960 
PSO-cf 0.00098644 0.0024501 0.0013784 51.558 
CLPSO 0.0010339 0.0029838 0.00097204 57.380 

f4 
(G =3000) 

OSA 3.7417e-
005 

0.00013706
6.2126e-

005 
78.754 
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Table 3. The performance comparison of algorithms for multimodal functions with many local 
minima 

Function Algorithm Best Mean Std. Dev. Time(second) 
PSO-w -10495 -9363.3 445.34 126.650 
PSO-cf -10398 -9026.1 656.9 150.250 
CLPSO -12569 -12271 177.84 158.870 

f5 
(G =9000) 

OSA -7528 -6386.4 621.12 241.220 
PSO-w 7.9597 21.036 8.0054 66.950 
PSO-cf 26.864 61.714 18.406 71.912 

CLPSO 
2.8525e-

010 
1.3387e-

009 
8.5715e-

010 
87.740 

f6 
(G =5000) 

OSA 0 0 0 112.68 

PSO-w 
1.3927e-

007 
1.6594e-

006 
2.6584e-

006 
20.970 

PSO-cf 
2.6645e-

015 
0.55865 0.72955 

22.528 

CLPSO 
3.3065e-

006 
6.812e-006

1.9421e-
006 

27.090 
f7 

(G =1500) 

OSA -8.8818e-
016 

7.4607e-
016 

1.7886e-
015 

39.001 

PSO-w 0 0.015917 0.021873 28.520 
PSO-cf 0 0.01112 0.012484 30.884 

CLPSO 
1.6431e-

014 
0.00029587 0.001464

36.660 
f8 

(G =2000) 

OSA 0 0 0 54.004 

PSO-w 
8.8539e-

015 
2.2084 5.523 28.990 

PSO-cf 1.5705e-
032 

16.62 18.099 
31.940 

CLPSO 
8.7972e-

012 4.802e-011
3.9566e-

011 
35.160 

f9 
(G =1500) 

OSA 0.014073 0.058148 0.032146 39.950 

PSO-w 
8.2301e-

007 
572.42 357.41 

36.978 

PSO-cf 1.3498e-
032 

239.83 240.31 33.646 

CLPSO 
1.1773e-

010 
6.4202e-

010 
4.4627e-

010 
38.618 

f10 
(G =1500) 

OSA 0.5063 0.9541 0.23547 39.897 
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Table 4. The performance comparison of algorithms for multimodal functions with only a few 
local minima 

Function Algorithm Best Mean Std. Dev. Time(second) 
PSO-w -3.322 -3.2561 0.065727 2.831 
PSO-cf -3.322 -3.2767 0.058388 2.755 
CLPSO -3.322 -3.2744 0.058837 3.537 

f11 
(G =200) 

OSA -3.321 -3.2582 0.059905 4.848 
PSO-w -4.6069 -2.1373 0.83394 1.250 
PSO-cf -10.403 -6.4735 3.5574 1.410 
CLPSO -10.339 -9.4026 1.1175 1.910 

f12 
(G =100) 

OSA -10.398 -9.7249 0.98188 2.814 
PSO-w -6.6324 -2.2004 1.0073 1.350 
PSO-cf -10.536 -8.1124 3.4669 1.506 
CLPSO -10.457 -9.4725 1.2532 2.010 

f13 
(G =100) 

OSA -10.372 -9.6482 1.4202 3.024 

4   Conclusion   

Oriented search algorithm simulates the search behavior of human searching 
intelligent agent, which is different from other swarm intelligent algorithms. In OSA, 
there is one parameter w  to be adjusted except population size, maximal generation. 
And it is easier to implement than other algorithms. Through testing on thirteen 
benchmark functions, the results demonstrate that the OSA has advantages in the 
convergence efficiency, search precision, convergence property and the strong ability 
to escape from the local sub-optima. 
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Abstract. Indirect reciprocity is a key mechanism for the evolution of human 
cooperation. There are normally two choices in the standard model of indirect 
reciprocity which works through reputation. Here we introduced the role of 
costly punishment into the model. The players could have the third choice 
besides cooperation and defection. The dynamics of cooperation in indirect 
reciprocity is analyzed under the social norms which depend on the action of 
the donor and the reputation of the recipient. It is found that those strategies 
using costly punishment which allow the evolutionary stability of cooperation 
typically reduce the average payoff of the population and there is only a small 
parameter region where costly punishment is evolutionary stable and more 
efficient. The computer simulations based on agent in finite populations are 
performed and the result is agreement with our theoretical predictions.  

Keywords: costly punishment, indirect reciprocity, dynamics, evolutionary 
stable strategy, social norm. 

1   Introduction 

Human societies are organized around cooperative interactions. But why would 
natural selection equip selfish individuals with altruistic tendencies? This question has 
fascinated evolutionary biologists for decades. One answer is given in terms of direct 
reciprocity [1–2]. There are repeated encounters between the same two individuals: I 
help you, and you help me. More recently, indirect reciprocity has emerged as a more 
general model: I help you, and somebody helps me. Indirect reciprocity is based on 
reputation. People monitor the social interactions within their group. Helping others 
establishes the reputation of being a helpful individual. Natural selection can favor 
strategies that help those who have helped others [3–4].Direct reciprocity is like an 
economy based on the exchange of goods, whereas indirect reciprocity resembles the 
invention of money. In direct reciprocity, one’s strategy depends on what his 
opponent has done to him, but in indirect reciprocity, one’s strategy depends not only 
on what his opponent has done to him but also on others. Direct and indirect 
reciprocity are two key mechanisms for the evolution of cooperation in human 
populations.  

But in reality, when a person was defected by his opponent, the defector sometimes 
would be punished by others or his opponent who would not expect benefits from the 
punishment action and the punisher would pays a cost for exercising punishment. 
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Axelrod suggested that costly punishment can stabilize social norms[5] and Fehr 
suggested that costly punishment is an alternative mechanism independent of direct or 
indirect reciprocity[6]. But the study of the effect of costly punishment on human 
behavior shows it is not a separate mechanism for the evolution of cooperation but a 
form of direct or indirect reciprocity. If I punish you because you have defected with 
me, then I use direct reciprocity. If I punish you because you have defected with 
others, then indirect reciprocity is at work. In the setting of direct reciprocity, 
punishment is a form of retaliation [7]. For indirect reciprocity, punishment works 
through reputation and includes third-party actions, which means that observers of an 
interaction are willing to punish defectors at a cost to themselves. Therefore, any 
discussion of the evolution of costly punishment brings us immediately into the 
framework of direct or indirect reciprocity.  

There are many models discussing the direct reciprocity or indirect reciprocity. The 
repeated Prisoner’s dilemma is the most popular form of direct reciprocity. Indirect 
reciprocity could be described by the variant of TFT[8]. Nowak [9] developed a 
simple model by image scoring to analyze the dynamics of indirect reciprocity. Here 
we analyze the dynamics of cooperation in the model based on social norm where the 
evolutionary programming method is used. 

2   Model Summary 

Consider a large enough population. At each small time interval, a fraction of players 
are randomly chosen from the population to form pairs in order to play a game. In 
each pair, one player acts as a donor and the other player as a recipient. The recipient 
has a binary reputation, which is either ‘good’ or ‘bad’. The donor has three 
behavioral choices: cooperation (C), defection (D), and punishment (P). Cooperation 
involves a cost, c, for the donor and a benefit, b, for the recipient. Defection has no 
cost and yields no benefit. Punishment has cost α for the donor and cost β for the 
recipient. The donor’s choice depends on the recipient’s reputation and his action is 
observed by other members of the population, who update the donor’s reputation 
according to a social norm, which is shared by all.  

After each interaction, the reputation of the donor is updated by the social norms of 
the population, while the recipient’s reputation remains the same. Then the participant 
goes back to the population with probabilityω or leave for ever with probability 
(1-ω ), which makes sure that the total population size remains constant. As a Moran 
process, the new individual is added in exchange for the lost individual and assigned 
with good or bad reputation according to the proportion of good and bad players in 
the current population. 

For the social norms, we study them by the second-order assessment[10,11] which 
depends on the action of the donor and the reputation of the recipient: for example ,it 
could be deemed as ‘good’ to cooperate with a good recipient but ‘bad’ to cooperate 
with a bad recipient. There are therefore six combinations and 26 =64 social norms 
and 32=9 action rules (Fig.1). The action rule specifies the action of the donor when 
he meets one recipient. For example, CC means that donor will cooperate without 
considering the recipient’s reputation whereas CD means donor would cooperate with 
a good recipient and defection with a bad one. In contrast with CC and CD, CP action 
rule prescribes cooperation with good recipients and punishment of bad recipients.  
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Fig. 1. Social norms and action rules 

In the model, there would be errors in updating the reputation after the interaction 
and it is denoted by μ .With probability (1-μ ), the correct reputation is assigned .All 

individuals share the same conclusions with no private list of reputation. 
For notational convenience, the action rule and social norms are defined as S(*) 

and norm n(*,*). For example, S(G)=C describes an action rule which means when I 
meet a good recipient , I will take the cooperation. A social norm n(G,D)=B  is a 
mapping from the product of {C, D, P} (the donor’s action) and {G, B} (the 
recipient’s reputation) to {G, B} (the donor’s new reputation). It suggests that if a 
donor defect a good recipient, his future reputation will be updated as bad. So under 
the 64 social norms, we will search for the combination of an action rule S(*) and a 
social norm n(*,*) ,(S,n), that satisfies the two criteria[14]: 

(1)  more than 1- μ of all game interactions are cooperative 

(2)  under social norm n, the action rule S is evolutionarily stable  

The dynamic programming equation (Bellman equation) is used to study the 
evolutionary stability of the action rule S. It is assumed that all players except the 
focal player adopt action rule S under the given social norm n(*).If the best-response 
action rule Sopt exists uniquely and matches S, then S is evolutionarily stable. 

If the strategy is the best response to itself, it would get the maximum payoff when 
interacting with others.  

, ,(1 )(1 ) ( , ) ( , ),(1 ), ,

1 1
max [ { [ ]+ } + {  [ ( )]  }]       

2 2I J I G Bn J X n J X G BX C D P
W X W s I W μ μμ μ μ μξ ω η ω − +− + − +=

= − +              (1) 

Where WIJ describes the expected maximum payoff that a player, currently having 
reputation I(=G or B) ,can gain from the game  with his opponent with reputation 
J(=G or B) from  nowadays to future. [ ]Xξ and [ ]Xη is respectively the cost and 
benefit function of action X.  

It is obviously that the WIJ is recurrence and we have to make some mathematical 
skills for solving the equation. The equation (1) could be rewritten as equation (2) 
because of WIJ  independents  of I : 

(1 ) ( , ) ( , ) ,(1 ), ,
( ) arg max { [ ]}

n J X n J X G BX C D P
Sopt J W Xμ μ μ μω ξ− + − +=

= +    (2) 
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where [ ] 1
G

Gφ = , [ ] 0
G

Bφ = and 1 2q μ= − .The 1 2q μ= −  is also called ‘social 

resolution’ which defines the ability to distinguish between good and bad and is a key 
parameter in indirect reciprocity. 

With the item (1 ) ,(1 )
2

B G G BW μ μ μ μ

ω
+ +− − being constant, so it is could be ignored in the 

calculation. The first term, [ ]Xξ− , represents the immediate cost of action X. The 

second term [ ( , )]
G

q n J Xω λφ  represents the future benefit through becoming a good 

player via action X, which is [ ( , )]
G

n J Xλφ  multiplied by the discounting factor ω and 

the social resolution q  . Hence we are able to derive s*(G) and s*(B). By using the 

method described above, we get the four kind of combination as showed in figure 2.. 
In the first combination, where the cost of punishment is smaller than cost of 
cooperation ( c α> ), the CD action rule is ESS under the condition (2 )qb cω ω> −  

and the average payoff is 1
[(1 ) ]

2 1

b cμ
ω
−−
−

.  
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Fig. 2. Social norms of cooperation 

3   Simulation Results and Analysis 

To confirm the analytic predictions, we have run agent-based computer simulations 
where the size of population is a fixed number, N = 100. In the beginning, each new 
player receives an initial reputation, which is either good or bad with equal 
probability. Each player adopts one of 9 possible action rules. All players share the 
same social norm that is fixed in the population. In each step of updating, every 
individual has exactly 10 interactions with other randomly chosen individuals. 
Individuals play donor and recipient on average 5 times at each interaction. Then the 
reputation of the donor is updated according to the social norm, but a wrong 
reputation is assigned with probability µ = 0.02. In this case, every player agrees on 
the wrong reputation of this particular player. No private lists of reputation are 
considered. In the latter, we will release the limit. After all interactions have taken 
place, an individual is chosen for reproduction with a probability proportional to Pi-
Pmin, where Pi is the total payoff of the individual and Pmin is the minimum payoff in 
the population. The offspring inherits the action rule of the parent and replaces 
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another random player. However, the offspring sometimes will randomly choose one 
of the 9 action rules as his own strategy with probability ε = 0.01. It could be 
understood in another way that error rate in assigning reputation of offspring is ε. 
After reproduction, the payoffs of all players are reset to zero. Thus, older players do 
not accumulate their payoffs. The total generations of the simulations are 1000.  

In the simulation, there are two classic norms for demonstration: stern-judging, and 
shunning [12]. First, we do the simulations with no error(represented as eact) in 
executing intended action and error(represented as erep) in recalling recipient’s 
reputation.  
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Fig. 3. Simulation results for b> c in stern-judging 
b=9, c=3, a=1, β =4, µ=0.02,ε = 0.01 , eact =0 and erep= 0 

In figure 3, the parameter values are: b = 9, c = 3, α = 1, β = 4, μ = 0.02, eact =0 
and erep= 0 and ε = 0.01. The initial frequency of the CD action rule is 0.8. The initial 
frequencies of the other 8 action rules are randomly chosen .We find that the 
CD(green) action rule is stable against invasion attempts by CC (blue) and CP (red). 
The average payoff of the population per round fluctuates with its maximum being 
2.94, which agrees with our analytic prediction, (1 − μ)(b − c)/2 = 2.94. 

In figure 4, the initial frequency of CP is 0.8. CP is stable against other action 
rules. The average payoff per round fluctuates with its maximum being 2.89, which 
also agrees with our analytic prediction, {(1 − μ)(b − c) − μ(α+ β)}/2 = 2.89. 
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Fig. 4. Simulation results for b> c in shunning 
b=9, c=3, a=1, β =4, µ=0.02,ε = 0.01 , eact =0 and erep= 0 
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In figure 5,when b<c in stern-judging, the CD(green) action rule, whose initial 
frequency is 0.8, is immediately invaded by DD. In this parameter region, the CD rule 
is not evolutionarily stable .The average payoff is around 0. So DD would be a more 
profitable action rule for the group when b<c. 
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Fig. 5. Simulation results for b< c in stern-judging 
b=2, c=3, a=1, β =4, µ=0.02,ε = 0.01 , eact =0 and erep= 0  

In figure 6, the CP action rule is robust against invasion by the other 8 action 
rules because of the large effect of punishment (β = 4) although cooperation is non-
productive because b < c. The average payoff is negative and is about -0.54. Hence 
the group does not benefit from the cooperation that is enforced by costly punishment. 
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Fig. 6. Simulation results for b< c in shunning 
b=2, c=3, a=1, β =4, µ=0.02,ε = 0.01 , eact =0 and erep= 0 

 
Here, we take computer simulation to analyze the impact of the initial frequency 

and error (µ) in assigning reputation on the cooperation. In the following table, there 
is the necessary round number for stability in different norm. For example, in stern-
judging norm, if initial frequency of CD is 0.1, µ=0.02, the necessary round number 
for the population to maintain cooperation is 120. 

The round number needed in shunning norm is less than Stern-judging norm. 
Probably the reason is that the ESS condition of CD is more rigorous than CD. When 
the error µ is less than 0.3, the most population will take the choice of cooperation if 
the communication round number is more than 400.But if the error µ is bigger, the 
population finally will be selfish no matter how big the communication round 
number.  
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Table 1. Round number of communication in Stern-judging 

CD round  
µ=0.01 

round  
µ=0.03 

round  
µ=0.05 

round  
µ=0.07 

round 
µ=0.1 

round  
µ=0.2 

0.1 110 120 380 350 500 >500 
0.3 100 160 240 350 480 >500 
0.5 100 160 220 350 490 >500 
0.7 90 170 220 340 460 >500 

Table 2. Round number of communication in shunning 

CP round  
µ=0.01 

round  
µ=0.03 

round  
µ=0.05 

round  
µ=0.07 

round 
µ=0.1 

round  
µ=0.2 

0.1 50 50 150 170 210 >500 
0.3 50 80 110 130 210 >500 
0.5 50 50 90 150 230 >500 
0.7 60 50 110 130 210 >500 

 
If we extend the mechanism to group communication that a group of people 

interact with each other to exchange their message, the result may be better. 
Furthermore, if the group is the whole population, then there is no private list and no 
error in assigning reputation. To get cooperation, the round number has to increase as 
the total size of the population increases.  

4   Conclusion  

We have studied the dynamics of indirect reciprocity in an explicit model and 
analyzed all social norms that use binary reputation and second-order assessment. We 
find that both CD and CP action rules can stabilize cooperation. These rules reward 
good recipients with cooperation and ‘punish’ bad ones with either defection (CD) or 
costly punishment (CP). If both CD and CP action rules are evolutionarily stable, the 
use of costly punishment leads to a lower equilibrium payoff and is therefore 
inefficient. It is even possible that costly punishment yields a lower payoff than all 
defection (DD). Costly punishment maximizes the group average payoff for only a 
very limited parameter region. This narrow margin of efficiency requires fine-tuning 
of the key parameters. If the social resolution exceeds the cost to benefit ratio (q>c/b), 
which is the same as Hamilton rule in non-relatives, CD rules are always more 
efficient than CP rules.  

If the reputation system lost or weaken, the cooperation would be at low-level. 
However, there are some phenomena which show the tradition virtue is threatened. In 
Chongqing, china, a pupil helps an old lady up, but he was charged with pushing the 
lady down. If people all are afraid of being in trouble with helping others, how will 
the society be? Now our country is in the process of Social Transformation, the 
society needs harmonious and stable socio-economic environment. The government 
should do their best to induct people to keep the traditional virtue.  
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Furthermore, in this paper, it is assumed that there is only one best response 
strategy under the social norm, but the simulation results reveal that two strategies 
could coexist. So it might be worthwhile to analyze the dynamics in the population on 
the assumption that there are two best response strategies. Maybe there would be 
some much more interesting findings. 
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Abstract. A collaborative optimization algorithm under a control framework is 
developed for the asymmetric traveling salesman problem (ATSP). The 
collaborative approach is not just a simple combination of two methods, but a 
deep collaboration in a manner like the feedback control. A notable feature of 
the approach is to make use of the collaboration to reduce the search space 
while maintaining the optimality. Compared with the previous work of the 
reduction procedure by Carpaneto, Dell'Amico et al. (1995) we designed a 
tighter and more generalized reduction procedure to make the collaborative 
method more powerful. Computational experiments on benchmark problems are 
given to exemplify the approach.  

Keywords: ATSP, Collaborative optimization, Control framework, Ant colony 
optimization, Branch and Bound.  

1   Introduction 

ATSP is one of the most well-known combinatorial optimization problems due both 
to its practical relevance and to its considerable difficulty. ATSP and its variations are 
commonly used models to formulate many practical applications, such as the 
scheduling of chemical process[3], the scheduling of steel production[17][18], and 
printed circuit board punching sequence problem [15], and so on. The problem is 
concerned with finding the shortest Hamiltonian cycle or tour in a weighted directed 
graph without loops and multiple arcs. Although simple to state, ATSP is very 
difficult to attack and much effort has been, and will continue to be, devoted to the 
design of good optimization algorithms. Roughly speaking, methods of solving ATSP 
problems can fall into three categories, i.e., rigorous, heuristic and hybridized. 
Rigorous method can guarantee the optimality of the solution obtained. Many 
algorithms have been developed for the exact solution of ATSP. The representative 
ones are the Branch-and-Bound (B&B) based on Assignment Problem (AP) 
relaxation[2][16]. Recently, Turkensteen, Ghosh et al.[19] reported a new branching 
rule in B&B algorithm which utilizes tolerances to indicate which arcs are preferred 
to save in the optimal ATSP tour. The Branch-and-Cut (B&C) algorithm is also 
explored by [8]. Since solving the ATSP optimally is NP-hard, especially in many 
real industrial problems, exact optimization algorithms require overlong execution 
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time and huge memory. In most of cases they can’t produce an acceptable or even 
feasible solution given limit time. Hence, heuristics were dominating later even 
though they can’t provide any guarantee on the solution quality. Karp [13] presented 
the so-called Patching Algorithm (PA)-a convincible heuristic method, and showed 
that the heuristic solution asymptotically converges to the optimal solution as the size 
of ATSP tends to infinity. Glover, Gutin et al. [9] introduced several construction 
heuristics, and conducted a large number of computational experiments for several 
families of ATSP instances. In more recent years, metaheuristics are booming, such 
as genetic algorithms (GA) [3][10], simulated annealing (SA) [14], tabu search (TS) 
[7], ant colony optimization (ACO)[1][6][15], and so on. Rigorous and heuristic 
approaches have ever-conflicting advantages and disadvantages in terms of 
computational load and solution quality. Hence, growing attentions have been given 
to hybridized methods.  

The rest of the paper is organized as follows. In the next section, the mathematical 
formulation of the ATSP is presented. In section 3, the collaborative optimization 
framework is described. The key components that constitute the framework are 
illustrated in detail. Furthermore, theoretical analysis with respect to the performance 
is also presented briefly. In section 4, a large number of computational experiments 
are given. Finally, concluding remarks are included in section 5. 

2   Problem Description  

The ATSP can be formulated as an Integer Linear Programming 
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where ( , ) 1i jx = ( ),i j ∈ A , if the arc is selected in the optimal solution; 

and ( , ) 0i jx = otherwise. Apparently, equations (1)(2)(3) and (5) define the AP 

problem and constraints (4) forbid subtours. The number of constraints described in 
constraints (4) will be exponentially explosive as the size of the problem increases. 
This reason cause the computational difficult in solving large-scale ATSP. 
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3   The Collaborative Optimization  

3.1   The Overall Scheme 

Commonly, the ATSP solution space D  can be described by  

( , )( , ) i ji j ∈
=∏ A

D D . ( , ) {0,1}i j =D

                                             

(6) 

Once some particular arc ( ),i j  is indentified definitely not belonging to optimal 

solutions which means we can fix ( ), 0i jx = , the entire search space D  would shrink 

by 50%. Based on the result, we propose a parallel optimization architecture in which 
the exact solver and meta-heuristic solver are launched concurrently (see Fig1 ).  

A

 

Fig. 1. A generalized parallel optimization architecture for ATSP where The dominated arc set 
in this paper is referred to as those arcs that not belong to optimal solutions or those ones if 
included in a solution that can’t generate better solution than the best-known one so far 

Fig.1 mainly consists of three components: 

 Exact solver: the exact solver works through iteratively solving simplified 
subproblems and thus it can provide a lower bound (LB) (a minimum problem).  

 Metaheuristic Solver: the metaheuristic solver usually works by generating 
feasible solutions and then conducting improvement. The objective of the best 
solution can be adopted as an upper bound (UB). 

 Reduction Procedure: the reduction procedure takes useful information from 
both exact and metaheuristic solver to reduce the global search space and hence 
speed up the rate of convergence to optimality.  

3.2   The Implementation 

A more concrete optimization scheme is constructed in which B&B method and ACO 
are used respectively (see Fig. 2). PATCH is referred to as the Patch Algorithm (PA) 
proposed by [13] which is employed as another upper bounding strategy. As shown in 
the diagram, B&B, Reduction Procedure, Patching Algorithm and ACO are 4 key 
components that compose the framework. The details will be specified in the 
following sections. 
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zpatch

zACO

 

Fig. 2. A concrete implementation for ATSP. zpatch  and zACO are the objective value 

produced by PA and ACO respectively. 

A. B&B method  
With B&B method we use the breadth-first search instead of the lowest-first in [2]. 
The advantage is that the low bound obtained would be better and better as the 
approach progresses since our intention is to provide a high quality solution with the 
guaranteed degree of accuracy. 
 
B. Reduction procedure 
According to the dual theory of LP, the dual problem of AP is defined as follows 
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n n
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i j

v u v
= =
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∑ ∑AP  

Subject to: 

( , )i j i ju v c+ ≤  

Carpaneto, Dell'Amico et al. [2] based on the dual rpoblem presented a reduction 
procedure as lemma 1 shows 

Lemma 1. If a feasible solution (ATSP) with objective value z (UB) is known, then 
each ( ),i j ∈ A  with  

                   
( ) ( )

( , ) ( , )i j i j
c z v or c v z≥ − + ≥AP AP                                    (7) 

can be discarded from further considerations.  
The above result is further strengthened by the theorem 1 

Theorem 1. if arc ( ),i j  satisfies the following property 

( ) ( )( , ) [ ], [ ]i jv c d j i z• •+ + ≥AP col row
                                    

(8) 

The arc ( ),i j  can be ignored in the further optimization procure.  

where •col and •row  are the optimal solution to the initial AP corresponding to the 
row and column respectively (row and column are commonly used notations in the 
context of AP and [ ]k j•= col  means row k  is assigned to column j  which indicates 

that arc ( ),k j  is belong to some certain subtour in the context of ATSP.; 
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( )[ ], [ ]d j i• •col row  is called as the shortest path cost on the newly defined bipartite 

digraph ( ),= ∪ ∪G U V D R  whose definition is given in the proof procedure.  

Proof. The definition of the bipartite digraph, i.e., G  is first constructed. Then ,U V  

are the row and column node sets, { }1,2, ,nU = V .Denote [ ], ,k j k j•= ∈ ∈col U V  

and [ ], ,l i i l•= ∈ ∈row U V  as the best assignment node for node j  and i  respectively. 
Then the optimal solution X  can be represented as the following form: 

( ){ }, | [ ] [ ], ,i j j i or i j i j• •= = = ∈ ∈X row col U V
 

the arc set ∪D R  is defined as below:  
D  is the direct arcs  

( ) ( ){ }, | , , , \g h g h g h= ∈ ∈ ∈D U V A X  

( , ) ( , )g h g h g hc c u v= − − ， ( ),g h ∈D  

R  is the reverse arcs 

( ) ( ) ( ) ( ){ }{ }, | , , , , ,h g h ,g g h k j i l= ∈ ∈ ∈R V U X \  

( ), 0, ,h gc h g= ∈R
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Fig. 3. A graphical illustration for computing a lower-bound on the cost of ATSP including 

( ),i j   

Fig 3 depicts a illustration for computing a lower-bound on the cost of ATSP solution 
including arc ( ),i j . If ( ),i j  is definitely required in the AP solution, then the 

matching pairs ( ),k j  and ( ),i l  in the X  have to be broken, such that the node k∈U  

is a unassigned row node, and l∈V  is a unassigned column node. In order to get a 
new feasible optimal solution ′X , one must find the shortest alternating path from 
node k  to node l  in G [5]. It is obvious that any dipath of G starting from a node of 
U  and terminated with a node of V  contains, alternatively, an arc in D  and an arc in 
R . Such that cost of the new optimal match ′X  is exactly : 
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( )v =X' ( ) ( ) ( ) ( )( , ) ( , ), ,i j i jv c d k l v c d k l+ + = + +APX                            (9) 

Eq.(9) provides a tighter lower bound on the cost of ATSP that ( ),i j  is required. 

So, if (8) is satisfied, it means that no ATSP solutions with the inclusion of arc ( ),i j  

is better than z .  
Theorem 1 tells the effective way to filter out dominated arcs while for the 

remaining arcs we have the following theorem which actually is a generalization of 
lemma 1. 

Theorem 2. Given a known objective value z , any feasible solution that contains the 
following K arcs can’t be better than z  if the following inequality holds 
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{ }
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1, ,
k ki j

k K

c v z
=

+ ≥∑ AP                                              (10) 

Proof. This result is an immediate result inspired by inequality (7).  
Theorem 2 is very useful for guiding ACO. In the construction phase of the 

algorithm, an ant incrementally constructs a complete tour by adding nodes to a 

partial path, say ps , constructed so far. Hence, Theorem 2 provides a good way to 

assess the possible obtained tour starting with the partial path ps . This is done by 

calculating the accumulated reduced cost of ps and check whether it excess the gap 

between ( )v AP and z . If it is the case by which we mean any tour containing ps  is 

worse than the obtained solution with the objective value z , such that the ant will 
terminate the search and return to the starting point. This mechanism will increase the 
efficiency of ACO. 

Moreover, based on theorem 2 the transition probability can be redesigned as 
follows: 

Denote Φ  as the set of cities that should be priced out 

                   { },| ( ), \ p
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The reduction procedure inevitably requires additional computing cost. The 
question is whether the reduction in the search space is sufficiently large to 
compensate for the additional computing cost. Computational experiments show that 
it really works for most of benchmark problems.  
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4   Computational Experiments 

The computational experiments are executed on a 1.79GHz personal computer and 
totally 19 benchmark problems are tested. The proposed algorithm is coded in C++.  
Although many well-crafted algorithms have been designed for ATSP, we don’t 
intend giving extensive comparisons among all those algorithms. Since the proposed 
optimization framework is to exhibit the power of collaboration between exact 
methods and metaheuristics. So, the comparisons will be among our method, ACO[6] 
and CDT[2]. This is to give a direct evidence to verify that the proposed method 
outperforms the methods that works individually.  
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Fig. 4. The performance comparison of two ACO algorithms for instance ‘kro124’ 

The parameters of ACO are set to the same values as the literature [6] did. In the 
implementation, the local search, e.g. 2-opt or 3-opt, is not used in ACO in order to 
illustrate directly the efficacy of collaborations between methods. Fig.4 presents 
comparative convergent curves for the two kinds of ACO algorithms. The proposed 
algorithm has faster convergent rate and higher solution quality. Table 1 summarizes  
 

Table 1. Comparison results of several existing algorithms 

Time for hitting the best known（sec.） Instance Known Best 
ACO alone CDT Our method 

br17 39 0.001 0.001 0.001 
ft53 6905 24 -- 20 
ft70 38673 9 67 2 
ftv33 1286 10 1 2 
ftv35 1473 8 4 3 
ftv38 1530 8 3 5 
ftv44 1613 5 7 3 
ftv47 1776 16 10 5 
ftv55 1608 17 7 3 
ftv64 1839 12 4 6 
ftv70 1950 25 127 23 
ftv170 2755 105 -- 53 
kro124 36230 150 -- 89 
p43 5620 35 -- 47 
ry48p 14422 23 12379 13 
rbg323 1326 37.43 0.001 0.001 
rbg358 1163 105.32 0.001 0.001 
rgb403 2465 24.39 0.001 0.001 
rgb443 2720 65.63 0.001 0.001 

Note that all the experiments are starting with the solution obtained by PA. ”--“means the best 
known solution is not found in 10 hours by CDT algorithm and the number marked in bold 
style indicates the best behavior in terms of running time. 
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the results among the algorithms. See that for 80% instances the proposed algorithm 
is better than the other two. 

5   Conclusion 

A novel collaboration optimization framework is proposed to solve the ATSP. The 
advantage mainly lies in the synergistic utilization of interior information which 
improves the overall searching efficacy. The idea behind is that the proposed 
algorithm is powerful in dealing with ATSP because it is equipped with the capacity 
to exploit the interior information concerning the characteristics of instances they are 
solving. The design of collaborative algorithms combing rigorous method and 
metaheuristics will continue to be one of the most promising research areas in discrete 
optimization. 
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Abstract. Dynamic composition and reconfiguration of service-oriented
Internetware systems are of paramount importance as we can not pre-
define everything during the design time of a software system. Recent
biology studies show that the slime mold Physarum polycephalum – a
single-cell organism – can form a veined network that explores the avail-
able space and connects food sources in the absence of central control
mechanisms. Inspired by the formation and behavior of such biologi-
cal adaptive networks, a new bionic approach is proposed for dynamic
service composition and reconfiguration of Internetware systems. Simu-
lation experiments were conducted. The experimental results show that
the proposed approach is effective and efficient. It is hoped that this pa-
per will shed new light in Internetware system design and construction.

Keywords: Internetware, Physarum polycephalum, Service Composi-
tion, Reconfiguration.

1 Introduction

Any service-oriented software system running in an open and dynamic environ-
ment like the Internet can be called an Internetware system. To meet the func-
tional and quality requirements, the dynamic composition and reconfiguration
capabilities are required for such systems. With the dynamic composition and
reconfiguration capabilities, the Internetware systems can improve and optimize
their configurations when the network environment changes. An Internetware
system provides comprehensive services by combining various service compo-
nents. It is evident that we cannot pre-define everything for such a software
system, and some unknown emergent behaviours may occur when it is running
under a changing network environment. A service component failure or network
congestion may result in the system failure or unreliable results. If this happens,
redeveloping and redeploying a new system will cost too much. A better way
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is to reconfigure the system dynamically during the running time to adapt the
changed environment or tasks.

Dynamic service composition and reconfiguration of service-oriented software
systems have attracted much attention in the past few years. Typically, there are
two principal approaches for dynamic service composition – process-driven and
semantic-driven [1]. The process-driven approach includes the workflow model
method [2], the state calculus approach [3], the process algebra approach [4],
and so on. The main idea of semantic-driven approach is to introduce machine
understood semantics for service description and service request. In this way,
the composition schemes can be generated automatically through reasoning [5].

Recent years also saw many studies on reconfiguration. In [6], Ribeiro-Justo et
al discussed the integration of FRODICA (Framework for Distributed Config-
urable Applications) framework and CODA (Complex Organic Distributed Ar-
chitecture) framework. A multi-role and multi-layered framework is then formed
to monitor and reconfigure a system. Anosike et al proposed a solution for the
logistics reconfiguration problem in manufacture sectors, in which the negotia-
tion and bidding of multi-agents without centralized control is utilized [7]. The
self-organization of distributed multi-agent systems was achieved through ne-
gotiation and trust management mechanisms [8]. Approaches were proposed to
solve the incremental web services publication and registration problem in com-
position Web services through service community, composite services, atomic
services, and the heterogeneous hierarchy of service providers [9]. The theo-
retical foundation was also laid to assure the correct operation of composition
services. Palma et al [10] proposed an agent system reconfiguration approach by
modifying the geographic distribution of agents in the system, which is based on
a structural description language called ADL.

It is noted that many organisms can achieve self organization and self op-
timization without global information and centralized control. Borrowing ideas
from biology has helped us to successfully develop neural network algorithms,
genetic algorithms and ant colony optimization algorithms etc. A recent study
shows that the slim mold Physarum polycephalum can demonstrate self organi-
zation, self optimization and self repair behaviours naturally [11]. Its foraging
behavior could guide people to improve technical systems, such as mobile com-
munication network or other dynamic networks of connected computing devices.
Drawing inspiration from this, we propose a novel dynamic service composition
and reconfiguration approach for Internetware systems in this paper. It is hoped
that this paper will shed new light for the design and construction of Internet-
ware systems.

The rest of the paper is organized as follows. In Section 2, background knowl-
edge of the foraging principles of Physarum polycephalum and its corresponding
mathematical model as well as Internetware is introduced. Section 3 presents
the bio-inspired service composition and reconfiguration model. Experimental
results and discussions are provided in Section 4. Section 5 concludes the paper.
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2 Background

For the sake of further discussion, a brief introduction to the foraging principle
of Physarum polycephalum and its corresponding mathematical model as well as
Internetware is provided in this section.

2.1 Foraging Principles of Physarum polycephalum and Its
Mathematical Model

The slime mould Physarum polycephalum is a kind of large amoeba-like cell con-
sisting of a dendritic network of tube-like structures (pseudopodia). It changes
its shape as it crawls over a plain agar gel and, if food is placed at two different
points, it will put out pseudopodia that connects the two food sources in order to
absorb nutrition through the flow of protoplasm. At last, an optimized network
is formed by connecting different food sources.

The physiological mechanism of tube formation can be summarized as follows:
Tubes thicken in a given direction when shuttle streaming of the protoplasm per-
sists in that direction for a certain time. This implies positive feedback between
flux and tube thickness, as the conductivity of the sol is greater in a thicker tube.
Experimental results have revealed two empirical rules describing the changes in
the tubular structure of the plasmodium: first, open-ended tubes are likely to dis-
appear; and second, when two or more tubes connect the same two food sources,
the longer tube tends to disappear [13]. Based on the physiological mechanism of
tube formation, a mathematical model is proposed [14]: Suppose that the pres-
sures at nodes i and j are pi and pj , respectively, and that the two nodes are con-
nected by a cylinder of length Lij and radius of the cylinder is rij . According to
the Hagen− Poiseuille equation in chemistry, the flux through the tube can be
described as Qij = πr4(pi−pj)

8ηLij
= Dij(pi−pj)

Lij
where η is the viscosity of the fluid,

and Dij = πr4

8η is a measure of the conductivity of the tube. As the length Lij is a
constant, the behavior of the network is described by the conductivity Dij .

The foraging principle of Physarum has been used to solve the maze-problem.
The two special nodes corresponding to the food sources are named N1 and N2

and other nodes are designated N3, N4, N5, and so forth.
N1 always acts as a source and N2 as a sink. We assume zero capacity at each

node, by considering the conservation law of sol we have
∑
i

Qij = 0 if j �= 1, 2.

The source node N1 and the sink node N2 meet
∑
i

Qi1 + I0 = 0 and
∑
i

Qi2−
I0 = 0, respectively. Where I0 represents the flux of the source node (or into the
sink node). It should be noted that I0 is a constant in our model, which means
that the total flux is fixed constant throughout the process.

Experimental observations show that tubes with larger flux expand, while
those with smaller flux shrink gradually. Such adaptation behaviours of plas-
modium can be described according to the conductivity Dij changing over time
with the flux Qij . More specifically, the evolution of conductivity Dij can be
described as follows:
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dDij

dt
= f(|Qij |)− rDij (1)

Based on the mathematical model, a network model has been proposed and a
lot of experiments have been done. Different parameters are discussed in different
situations. This model was also used to find the shortest path between designated
cities through freeways in United States. Experiments show that the Physarum
model can not only find the shortest path successfully but also has efficient
reconfiguration ability in the case of traffic accidents.

2.2 A Brief Introduction to Internetware

Web services are web-based, self-described, modular and distributed computing
model. Its main idea is to describe software as services while Internetware belongs
to this paradigm. As the function of individual services is quite limited, and can
not meet the requirements of different users at most of the time, individual
services can be combined to provide more powerful composite services. Dynamic
composition or reconfiguration is necessary as an atomic service consisting of a
composite service may fails during running time.

Internetware entities consist of different components, which can be published
in open environments such as the Internet. Those entities can be connected across
networks. The development processes of Internetware systems are different from
traditional software systems due to the open and dynamic characteristics of
the network environments. More specifically, Internetware systems are required
to perceive the changes of the external network environments, and then adapt
accordingly in regard to the functionality, performance and trustworthness. The
development activities of Internetware systems are treated as combining basic
software resources without orders into a basic system in order. This process is
an iterative one as the system in order may become out-of-order with time goes
by [15][16].

Different Web services published on the Internet can be viewed as different
components for Internetware. The service composition process is to combine
services without order to ordered ones to form a new basic system.

3 Bio-inspired Service Composition and Reconfiguration
Model

In this section, we present the Physarum inspired service composition and recon-
figuration model for Internetware systems. For better understanding the model,
a problem description is given first.

3.1 Problem Description

Generally, there are different service composition problems - sequential, circular,
parallel, and so forth. As other service composition problems such as circular and
parallel service composition problems can be converted to sequential problem
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Fig. 1. Relationship among candidate services

by changing some conditions [17], we focus on sequential service composition
problem only in this paper.

Suppose there are m different sets of Web services in an Internetware system
consisting of Web service components, and there are various service components
in each service set.

The relationship among those candidate services can be represented by the
directed acyclic graph shown in Figure 1 where n1 is the number of web service
in service set one, n2 is the number of web service in service set two, and so forth.
Therefore, the total number of the combination services is n1 × n2 × · · · × nm.
With a relatively large number of services, the service composition problem can
not be solved by traditional exhaustive methods. Here, we turn to Physarum
and propose a Physarum-like algorithm to solve this problem.

The formation of this ordered system is similar to Physarum maze-solving
problem. The users and registry can be viewed as the start and end points
in the maze. Different services are viewed as different nodes in the maze. The
relation among services is corresponding to the flow among nodes of the maze.
Therefore, the mechanism of Physarum protoplasm flow changes to find the
shortest path can be used to solve the service composition problem – a problem
to find the optimal service combination according to the change of relations of
the internal components for an Internetware system. This problem is essentially
reduced to the problem seeking an optimal path in a weighted directed acyclic
graph. As Physarum has the ability to find the shortest path in an intricate maze
according to the length of paths from the start to the end, we can follow it to
find the optimal combination of services from the service nodes with different
QoS (Quantity of Service).
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3.2 Mathematical Model

Usually, services composition performance is defined based on its QoS. Five
generic QoS criteria for service composition are proposed in [18], which are
service execution cost, service execution duration, satisfaction degree of service,
reliability, and availability. In this paper, service execution cost, service execution
duration and reliability are chosen as our quality criteria, which are the weights
of the relation edges.

According to the Physarum maze-solving model, some parameters of web
service combination are introduced into our model. Suppose that the pressures
at nodes i and j in adjacent service sets are pi and pj , and the service execution
costs are costi and costj , respectively. The total execution cost could be the sum
of these two nodes when the relation is established between these two nodes,
which is Cij = costi + costj . Similarly, the total execution duration could be
Tij = timei + timej, where timei and timej are the execution duration at nodes
i and j, respectively . However, the reliability Kij is defined as Kij = Ki ×Kj ,
where Ki and Kj are the reliability at nodes i and j, respectively. According to
the definition above, the relation strength RS is defined as follows:

RSij =
Dij(pi − pj)Kij

Cij × Tij
= Dij(pi − pj)×QoS (2)

The change behavior of network is described by the conductivity Dij of every
relation edge. The QoS of relations among services are measured by Kij/Cij ×
Tij . For any node i, its reliability is defined as Ki = reqi

reqsum
.

We define users and registry as N1 and N2. For any intermediate service
nodes i and j, based on the Kirchhoff’s law, we can obtain

∑
i

RSij = 0 if j �=
1, 2. The equations to describe nodes N1 and N2 are

∑
i

RSi1 + I0 = 0 and∑
i

RSi2 − I0 = 0, respectively, where I0 is a constant.

To simulate the adaptive behaviors of service components, the conductivity
of service components evolves as described in dDij

dt = f(|RSij |)−Dij .
The first term in the right side of the equation indicates that the conductivity

increases with increasing of the relation strength, while the second term denotes
the shrinking rate of the relation edges. In the case of low relation strength,
relations will gradually disappear.

The service relationship between the components can be expressed by a seven-
tuple, denoted as R(ID1, ID2, WSL1, WSL2, WSD1, WSD2, RS), where ID1

and ID2 are unique identifiers of two related services; WSL1 and WSL2 are
URLs of the two services; WSD1 and WSD2 are service descriptions,; and RS
represents the relation strength between services.

3.3 Algorithm Characteristics

The characteristics of the service composition and reconfiguration algorithms
described above can be summarized as follows:
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– This slime mold amoeba - Physarum polycephalum can establish a reliable
adaptive network efficiently in the foraging process. A world class team in
Japan and the United Kingdom has been conducting research on this for
quite a long time [11] – [14] and [19] – [24], which laid a solid theoretical
foundation for such approaches.

– The proposed service combination and reconfiguration algorithms integrate
both Web service and and amoeba based features.
item Our approach is based on global optimization, which will ensure the
optimal combination and reconfiguration with correct parameters.

– Our reconfiguration method can be obtained through real-time index, the
iterative calculation that can select the best QoS service for the user through
its own parameters automatically evolution with non-human intervention
and non-stop.

4 Experimental Results and Discussion

In our experiments, the execution price, execution duration and reliability of the
node connections are all randomly generated in the experiments in the range of
[0, 1]. The number of services sets is 10, with start node and end node, a total
of 12 categories of services, the number of web services in each service set is 10
which are present by the following web service composition and reconfiguration
simulation.

Assume that what is needed is a combination of 10 different services; each
type of service has 10 service nodes provide the same service. Only two services
in adjacent service sets could have edges. There is no relation edge between
non-adjacent set of services and services within the same service set. Then the
process of finding the optimal combination is finding the of strongest relation
edge from the beginning to the end nodes.

Services Composition Simulation Experiments: In the bitmap, each node
represents a service that service composition starts at the left-most single node
in a column and ends at the right-most single node in a column. The nodes listed
between the start and end nodes in the same column are services to provide the
same functionality, the connection line between two points, represent the two
nodes (service) relation. The thickness of Line represents the relation strength.
The initial state is shown in Figure 2.

When the simulation experiment begins, the strength of relationship will grad-
ually changes with repeated iterations. Ultimately, it will choose some node of
different type from the beginning to the end for the optimal path, that is, the
optimal combination of services.

Reconfiguration Simulation Experiments: The process of reconfiguration
simulation experiment is as follows:

Simulation results based on a combination of the above, assuming that rela-
tions edge ofe453 and e546 failure, service node 64 is not available, the system
will select a new optimal services through its own parameters automatically evo-
lution with non-human intervention and non-stop as shown in Figure 3 (top).



Bio-inspired Dynamic Composition and Reconfiguration 371

Fig. 2. Initial state

The system automatically selects the other sub-optimal node to ensure that the
software system automatically is reconfigured (Figure 3, bottom).

Fig. 3. The process of reconfiguration(b)
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The final reconfiguration result is shown in Figure 4.

Fig. 4. Result of reconfiguration

5 Conclusions

We focused on solving the problem of service-oriented Internetware component
composition and dynamic reconfiguration. In response to this kind of problem,
there are a number of related researches. This paper is based on the Physarum
polycephalum maze-solving bionic model. It can be seen from the experiment, our
method can find the optimal combination of services by QoS, and if some changes
happened in the environment, with non-stop and non-human intervention the
adaptive reconfiguration succeed in finding replacement nodes to achieve the best
combination to ensure excellent. Our approach provides a new way for dynamic
web service composition and reconfiguration; some parameters in the model will
be adjusted and optimized in our future work.
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Abstract. In this paper, we propose a novel search interval forecasting (SIF) 
optimization algorithm for global numerical optimization. In the SIF algorithm, 
the information accumulated in the previous iteration of the evolution is utilized 
to forecast area where better optimization value can be located with the highest 
probability for the next searching operation. Five types of searching strategies 
are designed to accommodate different situations, which are determined by the 
history information. A suit of benchmark functions are used to test the SIF 
algorithm. The simulation results illustrate the good performance of SIF, 
especially for solving large scale optimization problems. 

Keywords: Global Numerical Optimization, Evolutionary Algorithm, Search 
Interval Forecasting. 

1   Introduction 

Global numerical optimization is an important research topic because many real-
world problems can be described as global numerical optimization problems. Many 
numerical optimization problems are difficult to solve and some of them even can not 
be solved by analytical methods. Consequently, Evolutionary Algorithms (EAs) [1], 
which simulate the natural processes of evolution, were proposed to solve these 
problems. In CEC (IEEE Congress on Evolutionary Computation) 2005, a special 
competition of real-parameter optimization was hold and 17 algorithms [2] were 
proposed, all of which had been tested on a suite of 25 benchmark functions with 10 
and 30 dimensions, respectively [3]. Furthermore, another special competition on 
solving large scale global optimization problems using EAs [4] was organized in CEC 
2008. The test suite was designed based on 7 benchmark functions with 100, 500 and 
1000 dimensions, respectively [4]. Eight algorithms were selected to enter the final 
competition, among which MTS (Multiple Trajectory Search) [5] proposed by Tseng 
and Chen won the first prize. MTS uses multiple agents to search the solution space 
concurrently [6]. Nevertheless, other algorithms also contributed a lot to improve 
global numerical optimization methods as well. Yang et.al proposed the MLCC 
(Multilevel Cooperative Coevolution) [7], in which an improved framework of 
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cooperative coevolution was designed to overcome the hard-to-determine parameters. 
In this paper, we proposed a novel search interval forecasting (SIF) optimization 
algorithm, which utilizes the history information accumulated in the previous iteration 
of the evolution. The framework of search interval forecasting algorithm is designed 
for solving large scale optimization, but it has downward compatibility for solving 
lower dimensional problems. 

The remainder of this paper is organized as follows. Section 2 gives some 
definitions of optimization and subinterval used in this paper. Section 3 introduces 
and describes the SIF algorithm. Experimental simulation and result discussion are 
given in Section 4, followed by conclusions in Section 5. 

2   Preliminaries 

2.1   Problem Definition  

Without loss of generality; in this paper, we consider minimization problems without 
constraint. The global numerical optimization problem is defined as follows: 

Minimize ( )f x , subject to ≤ ≤x x x  

where point 1 2( , , , )Nx x x= Lx is a variable vector in the search space NR , and ( )f ⋅  

is a single-objective function without constraint. Vectors 1 2( , , , )Nx x x= Lx  and 

1 2( , , , )Nx x x= Lx  define the lower and upper bound of the variable vector x, i.e. 

each dimension ix  of a feasible solution must satisfy , 1,2,...,ii ix x x i N≤ ≤ = . The 

feasible solution space is denoted by [ , ]x x . The fitness value of a potential solution (a 
point in the search space) of the minimization problem is defined as ( )f− x . 

2.2   Subinterval Definition 

The search range of each dimension of the variable vector x  in the search space is 

denoted by[ , ]iix x , 1, 2,...,i N= . The interval [ , ]iix x is divided into M subintervals. 

 

Fig. 1. One dimension search range segmented into 4 equal subintervals 

As shown in Fig 1, the search range is segmented into 4 ( 4M = ) equally sized 

subintervals, thus 0.5( )iib x x= + , 0.5( )ia x b= +  and 0.5( )ic b x= + . The numbers 

in the top are the indexes of the subintervals. Through trial-and-error method, we 
found 4M = is a good value. When 4M = , the indexes range from 0 to 3. We name 
subinterval [ , ]ix a as .0subintervalNo , [ , ]a b as .1subintervalNo , [ , ]b c as 
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.2subintervalNo  and [ , ]ic x  as .3subintervalNo . Search Interval Forecasting (SIF) 

algorithm utilizes the history information of these subintervals accumulated in the 
previous iteration to forecast the next searching subinterval, but ignores those 
subintervals that have low probability to find the global optimal according to the 
history information, therefore SIF can reduce the objective function evaluations. 

3   Search Interval Forecasting Optimization Algorithm 

3.1   Parameters Definition 

The index of the current searching subinterval is represented by iCur . SIF marks 
three points in each subinterval, i.e. the current best point bX , which has the current 

best fitness value of all and its index is denoted by biX ; the best point before the 

current best (pre-best) point bpX , and the best points before the pre-best point bppX . 

A Boolean value /  yes no Cur  denotes whether the searching subinterval is feasible, 

which is determined by the history information. 
We define “succeed” of a searching operation as “selecting a set of points 

randomly in the specific subinterval and its fitness value is larger than the current 
best”. Otherwise, it is a failure trial of a searching operation. Five types of trial times 
of searching operations are kept. They are succeed times Sts , failure times Fts , the 
total trial times Tts , the succeed times of searching operations in the “ + ” direction 

Sts+ , and the succeed times of searching operations in the “ − ” direction Sts− . 
SIF algorithm has two queues to record the points which have specific attributes, 

i.e. the smooth queue SQ  and the failure queue FQ . The points in the smooth 

queue SQ have the same fitness value as that of the current best point. If the current 

best point changes, and the smooth queue will be updated. Consequently, SQ contains 

three types of points, “the best point” bX , bpX and bppX described before. 

In the failure queue FQ , each record includes three items of information: the 

position of current point Xpt , the residual values fδ of objective function between the 

current point and the current best point, and a Boolean value denotes whether a 
further local search is needed. The minimum fδ is marked as min fδ , which is the 

minimum residual of objective function values between the current point and the 
current best point in the failure queue FQ . 

3.2   Five Types of Searching Strategies  

We define five types of strategies for the searching in subintervals, the nearest +  
direction searching strategy( NS + ), and the nearest − direction searching strategy 

( NS − ), the longest distance searching strategy( LS ), the minimum operable 

residual + direction searching strategy( MRS + ), and the minimum operable residual 

− direction searching strategy( MRS − ). Among these strategies, a searching operation 
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is defined as “selecting a set of points randomly in the specific subinterval”. /NS + −  
search strategies mean searching in the next + or − direction subinterval. LS means 
searching in the subinterval which has a longest distance to the current point. And 

/MRS + − strategies mean searching in the subinterval which has the minimum residual 
with the current subinterval. 

3.3   SIF Summarization  

The SIF algorithm shown in Fig.2 can be summarized as follows: 

Step 1. It is the Initialization step. For each dimension, a midpoint of any subinterval 
of 4 subintervals is selected randomly, and then a vector of the initial point is 
constructed. Record the five types of trial times of searching Sts , Fts , Tts , Sts+ , 

and Sts− ; and record information of bX , bpX , bppX , biX , iCur and min fδ as well. 

Step 2. For each dimension, five types of searching strategies are utilized. 
If the current subinterval is the same as the current best subinterval i.e. biCur iX= , 

NS +  and NS −  are utilized. If Sts Sts+ −> , NS +  is utilized first, otherwise, NS −  
first. If the searching is successful, ignore the rest of Step 2 and go to Step 3; 

If biCur iX≠ , the rest three types of searching strategies are utilized. 

Searching strategy LS is utilized, and if the searching is successful, ignore the rest 

of Step 2 and go to Step 3; if the three strategies above are unsuccessful, then MRS +  

and MRS −  are utilized.  

Step 3. If there is a successful searching in Step 2, then update all parameters and 
history information. 

Otherwise, there is no successful searching, a value of subinterval is calculated as 

. subinterval.
. subinterval. . subinterval.min

. subinterval.f

No j Fts
No j value No j

No j Sts
δ= +  

 

Fig. 2. Flow Chart of SIF 
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where . subintervalNo j ( 1,2,3,4j = ) means a subinterval, Sts , Fts and min fδ are 

defined above. For four subintervals, the subinterval with the minimum 
. subinterval.No j value  is treated to be the next searching subinterval. 

Step 4. If number of objective function evaluations reaches its pre-fixed maximum 
value, the algorithm stops, otherwise, go to Step 2. 

4   Experimental Studies  

4.1   Benchmark Functions  

Six benchmark functions are adopted here. The dimensions of each function are set to 
be 100, 500 and 1000, respectively. A fixed number of Function Evaluations ( FEs ) is 
given for each problem. The performance of an algorithm is quantitatively measured 
by the value of objective functions, and the FEs is defined as  

5000 DimensionalityFEs = ×  
And for each problem, 25 independent runs are carried out. Among the series of testing, 
we focus on the problems with dimension 1000. Table.1 shows the six benchmark 
functions in our experiment. 

Table 1. Benchmark Functions 

Benchmark Functions Search Range Optimal Solution Value  

1. Sphere Function 

1
1

( )
D

i
i

f
=

=∑x x  [ 100,100]D−  1 1Min (0,0, ,0) 0f f= =L  

2. Schwefel’s Problem 2.21 

2 ( ) max{| |,1 }i
i

f i D= ≤ ≤x x  [ 100,100]D−  2 2Min (0,0, ,0) 0f f= =L  

3. Rosenbrock’s Function 
1

2 2 2
3 1

1

( ) (100( ) ( 1) )
D

i i i
i

f
−

+
=

= − + −∑x x x x  [ 100,100]D−  3 3Min (0,0, ,0) 0f f= =L  

4. Rastrigin’s Function 

4
1

( ) ( 10cos(2 ) 10)
D

i i
i

f π
=

= − +∑x x x  [ 5,5]D−  4 4Min (0,0, ,0) 0f f= =L  

5. Griewank Function 

2
5

1 1

1
( ) cos( ) 1

4000

DD
i

i
i i

f
i= =

= − +∑ ∏ x
x x  [ 600,600]D−  5 5Min (0,0, ,0) 0f f= =L  

6. Ackley's Function 

2
6

1

1

1
( ) 20 20exp( 0.2 )

1
exp( cos(2 ))

D

i
i

D

i
i

f
D

D
π

=

=

= − −

−

∑

∑

x x

x

 [ 32,32]D−  6 6Min (0,0, ,0) 0f f= =L  
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4.2   Experimental Data  

Table 2 shows the average results of 25 independent run for each problem. Six 
benchmark functions with 100, 500 and 1000 dimensions are tested within 55 10× , 

62.5 10×  and 65 10×  times of FEs , respectively. For function 4f , SIF can get the 

optimum in all 25 runs. As we know, the higher dimension a problem has, the more 
difficult it is to optimize. This can be inferred from simulation results. For function 5f , 

from Table 2, SIF can solve it with 100 dimensions accurately, and can obtain results 
with the precision of 1510− for the problem with 500 and 1000 dimensions. 

In Fig.3, processes of convergence are displayed, in which the Y-axis is set in the 
form of log and the minimum displayed is less than 4010− . For functions 1f , 2f , 5f and 

6f , SIF has fast convergence speed, while for 3f , the convergence process is 

relatively longer because of 3f is a hard-to-solve problem, which is multi-modal and 

non-separable. For function 4f , SIF can solve it within 600 iterations. 

Table 2. The Average Results of 25 Independent Runs 

Functions f1 f2 f3 f4 f5 f6 

100-Dimension 
( 55 10 FEs× ) 

6.4706E-36 5.5849E-19 2.8877E+2 0.0000E+0 0.0000E+0 1.7452E-13 

500-Dimension 
( 62.5 10 FEs× ) 

4.3108E-35 7.1876E-20 1.4893E+3 0.0000E+0 1.1102E-15 8.4598E-13 

1000-Dimension 
( 65 10 FEs× ) 

8.5512E-35 3.5223E-19 2.8601E+3 0.0000E+0 3.9968E-15 1.6417E-12 

 

(a) 

Fig. 3. Convergence Process Graphs for Optimizations with (a) 100-Dimension; (b) 500-
Dimension and (c) 1000-Dimension Problems 
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(b) 

 
(c) 

Fig. 3. (Continued) 

5   Conclusion  

In this paper, a novel population-based optimization algorithm, search interval 
forecasting algorithm, is proposed. A suit of benchmark functions are used to test the 
validity of the proposed SIF algorithm. Even though the experimental study is very 
preliminary but it do illustrate the effectiveness of the proposed SIF algorithm. More 
experimental studies, algorithm analysis, and comparison with other existing 
algorithms are our future work. 
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Abstract. This paper proposes a Danger Theory (DT) based learning
(DTL) model for combining classifiers. Mimicking the mechanism of DT,
three main components of the DTL model, namely signal I, danger signal
and danger zone, are well designed and implemented so as to define an
immune based interaction between two grounding classifiers of the model.
In addition, a self-trigger process is added to solve conflictions between
the two grounding classifiers. The proposed DTL model is expected to
present a more accuracy learning method by combining classifiers in a
way inspired from DT. To illustrate the application prospects of the DTL
model, we apply it to a typical learning problem — e-mail classification,
and investigate its performance on four benchmark corpora using 10-fold
cross validation. It is shown that the proposed DTL model can effectively
promote the performance of the grounding classifiers.

Keywords: artificial immune system, danger theory, machine learning,
spam detection.

1 Introduction

The development of Artificial Immune System (AIS) is usually promoted by the
proposal of novel Biological Immune System (BIS) paradigms. In recent years, a
novel biological paradigm — Danger theory (DT), proposed by Matzinger [1], has
become popular in explaining the mechanism of BIS. According to the DT, an
immune response is not triggered by the detection of ‘non-self’ but the discovery
of ‘danger’, and immunity is controlled by an interaction between tissues and
the cells of the immune system. Although there are still debates on the relation
between the DT and classical viewpoint, the DT does contain enough inspiration
for building relative AIS [2]. Based on DT, novel AIS paradigms have been
proposed and applied to web mining and intrusion detection. Secker et al. [3]
presented a DT based adaptive mailbox, where high number of unread messages
were defined as the source of danger. Aickelin et al. [4] gave thoughts about the
way of building a next generation Intrusion Detection System (IDS) based on
DT. In Ref. [5], the development and application of two DT based algorithms
for intrusion detection, namely the Dendritic Cell Algorithm and the Toll-like
Receptor Algorithm, were presented.
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In this paper, we propose a DT based learning (DTL) model for combining
classifiers. Mimicking the mechanism of DT, signal I, danger signal and danger
zone are designed for machine learning task, and then the framework of the
model is presented. Among the three components, danger zone is the most im-
portant one leading to the success of the DTL model. The danger zone defines
a specific way of interaction between two grounding classifiers. To illustrate the
application prospects of the DTL model, we apply it to a typical classification
task — spam detection, and investigate its performance on four benchmark cor-
pora using 10-fold cross validation. Experiments were conducted to analyze the
effect of the danger zone, and compare the DTL model with classical machine
learning approaches. It is shown that the proposed model can effectively promote
the performance of the grounding classifiers.

The remainder of the paper is organized as follows. In Section II, we present
how to transplant the three main concepts of DT into the machine learning task,
and the framework of the DTL model is given. In Section III, the DTL model
is implemented for spam filtering task. Section IV discusses our experimental
results. The conclusions are presented in Section V.

2 Danger Theory Based Learning Model

The immune system has the ability of detecting and responding to dangerous
things, according to DT. This phenomenon implies that the immune system can
discriminate between danger and non-danger. Thus, it is logical to build a DT
based Learning model for two-group classification problem. In this section, we
concern with how to transplant the three main concepts of DT, namely Match
— Signal I, Danger Signal and Danger Zone, into the field of machine learning.

2.1 Generating Signals

The signal I is generated using the classifier I for each test sample in the DTL
model. The process is depicted in Fig. 1(a). When the classifier I classify a test
sample as positive class (match occurs), it will send a positive signal I to the
sample. Otherwise, it will send negative one to the sample, if no match occurs.

Figure 1(b) shows how a danger signal (Signal II) is triggered by the classifier
II. Although the generating process of a danger signal seems to be quite similar
as that of a signal I, the transmission coverage of a danger signal is quite different
from that of a signal I. When a signal I is triggered, it will be sent only to the
specific sample, upon which the signal is arisen. However, a triggered danger
signal will be sent to all the test samples within the danger zone, besides the
specific sample.

2.2 Classification Using Signals

This phase is the key procedure of the DTL model, which defines an immune
based interaction between the two classifiers. As shown in Fig. 1(c), a test sample
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Fig. 1. The process of classification using signals

is labeled only if the two signals that it received agree with each other. Otherwise,
a self-trigger process is utilized to get the test sample classified.

The weighted result given by the interaction between the two classifiers is
defined as Eq. 1.

E(xi) =
∑

xj∈D

δ(c1(xi), c2(xj))K(d(xi, xj)), (1)

where xi and xj are test samples, D denotes the test set, c1(x) and c2(x) are the
two classifier models, d(xi, xj) =‖ xi−xj ‖ is the distance between two samples,
K(z) is defined in Eq. 2, and δ(y1, y2) = 1, if y1 = y2, and 0 otherwise.

K(z) defines the effect of the danger zone as follows.

K(z) =

{
1 if z � θ

0 otherwise
, (2)

where θ is the size of the danger zone.
After obtaining the weighted result E(xi), the sample xi can get its class label

using Eq. 3.

L(xi) =

{
c1(xi) if E(xi) � 1
f(xi) otherwise

, (3)

where f(x) denotes the class label given by the self-trigger process.
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Algorithm 1. Framework of the DTL model
Select two uncorrelated classifiers: classifier I, II;
Train the two classifiers respectively on train corpus;
for each sample xi in test corpus do

Trigger a signal I upon xi using classifier I and send the signal to xi;
Trigger a danger signal upon xi using classifier II and send the signal to the test
samples within the danger zone of xi;

end for
for each sample xi in test corpus do

if xi has received a positive signal I then
if xi has received a positive danger signal then

Label xi as positive class;
else

Call self-trigger process;
end if

else
if xi has received a negative danger signal then

Label xi as negative class;
else

Call self-trigger process;
end if

end if
end for

Self-Trigger Process: for the test samples which get conflict results from classi-
fier I and II, a self-trigger process is designed. An intuitional thought is to get the
sample activated using its nearest neighbor. Thus, the Nearest Neighbor (NN)
approach is applied in this phase [6]. In future work, we intend to incorporate
other approaches for self-trigger process into the DTL model and compare their
performance.

2.3 The Framework of the DTL Model

Algorithm 1 summarizes the framework of the DTL model, in which two ground-
ing classifiers interact through two signals. In the model, two grounding classi-
fiers are first chosen and trained independently. Then the signal I and the danger
signal, simulating the signals in the DT, are triggered upon each test sample uti-
lizing the two classifiers. Finally, each test sample gets labeled by considering
the interaction between the two classifiers.

2.4 Analysis of the DTL Model

For any machine leaning model, the essence of it is the conditional probability
P (yk|xi) of class yk that it computes for each test sample xi. In the DTL model,
a test sample xi gets a label yk in two cases as follows.

(1)The two grounding classifiers give a consistent label yk to the sample xi:
Suppose the two grounding classifiers are conditionally independent, given a test
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sample xi. Then the probability P (yk | xi, case1), which denotes the probability
that the two grounding classifiers give consistent label yk to the sample xi, is
computed as follows.

P (yk | xi, case1)

�P (c1(xi) = yk | xi) ·
∑

xj∈D

P (c2(xj) = yk ∩K(‖ xi − xj ‖) = 1 | xi, xj). (4)

(2)There is confliction between the two grounding classifiers, and the self-
trigger process gives the label yk to the sample xi. The probability P (yk |
xi, case2), which denotes the probability that this case may happen, is defined
as follows.

P (yk | xi, case2) = P (E(xi) = 0 ∩ f(xi) = yk | xi). (5)

Following the above analysis, the probability P (yk | xi), computed by the
DTL model, is presented in Eq. 6.

P (yk|xi) = P (yk | xi, case1) + P (yk | xi, case2), (6)

which can be expanded using Eqs. 4 and 5.

3 Filter Spam Using the DTL Model

3.1 Feature Extraction

At the beginning, terms are selected according to their importance for classifi-
cation, which can be measured by Information Gain (IG) [7].

Bag-of-Words (BoW), also referred to as vector space model, is usually uti-
lized as the feature extraction approach for spam filtering [8]. In BoW, an email
is transformed into a d-dimensional vector 〈x1, x2, . . . , xd〉 by calculating oc-
currence of previously selected terms. For BoW with Boolean attribute, xi is
assigned to 1 if ti occurs in the e-mail, or it is assigned to 0 otherwise. In our
experiments, 300 features were selected by using IG, and a BoW with Boolean
attribute was applied to the feature extraction phase.

3.2 Selection of Classifiers

Support Vector Machine (SVM) and Naive Bayes (NB) are chosen as the two
grounding classifiers of the DTL model, as they are two of the most prevalent
and effective classifiers especially for spam filtering [9, 10].

3.3 Performance Measures

To validate the effectiveness of the proposed DTL model, two overall performance
measures were adopted in our experiments, namely accuracy and Fβ measure [8].
The two components of Fβ measure are also given in the experiment results.
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4 Experiments of Spam Detection

Experiments were conducted on four benchmark corpora PU1, PU2, PU3, and
PUA1 [11], using 10-fold cross validation. The corpora have been preprocessed
when published, by removing attachments, HTML tags, and header fields except
for the subject. The details of the corpora can be found in Ref. [11].

4.1 The Effects of the Danger Zone

The specific interaction between the two grounding classifiers is implemented by
the design of the danger zone. To some extent, the success of the DTL model
lies in a proper danger zone design and an optimal size of the danger zone. In
this subsection, we investigate the impact of the danger zone size on the overall
performance of the DTL model. Experiments of the DTL model with different
danger zone size were conducted on PU1, using 10-fold cross validation. The
results are depicted in Fig. 2(a), which shows the variational performance of the
DTL model, as the size of the danger zone growing larger. At initial stages, the
accuracy and F1 measure increases as the size of the danger zone is enlarged.
Then, the performance of the DTL model peaks at a size of 20. After that, the
performance declines as the size growing even larger.

4.2 Comparison Experiments

Comparison experiments were conducted on four benchmark corpora PU1, PU2,
PU3, and PUA to validate the proposed DTL model, using 10-fold cross valida-
tion. As the four corpora have already been preprocessed when published, our
experiments began at the phase of feature extraction. First, 300 discriminative
words were selected by using the IG method. Then based on this, each e-mail
was transformed to a 300-dimensional feature vector. Finally, the two grounding
classifiers were built from the feature vector set.

In the experiments, two performance measures — accuray and F1 measure
were adopted as mentioned in Section 3.3. Fig. 2(b) depicts the comparison of
accuracy among SVM, NB and DTL, while Fig.2(c) shows the comparison of
F1 measure among the three approaches. More details on the comparison are
shown in Table 1, where the two components of F1 measure, namely spam recall
and spam precision, are also given. Besides, the performance of NN, which was
utilized in self-trigger process, is also presented in the table.

On corpus PU1, PU3 and PUA, the DTL model outperforms SVM and NB
in terms of both accuracy and F1 measure. On corpus PU2, the DTL model
performs equally as SVM and outperforms NB. From these results, we can draw
a preliminary conclusion that the proposed DTL model can effectively improve
the performance of classifiers.

Why does the DTL model perform not so outstandingly on corpus PU2 as it
does on the three other corpora? The preliminary investigation shows that the
1 The four PU corpora can be downloaded from the web site:

http://www.aueb.gr/users/ion/publications.html
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Fig. 2. Performance of SVM, NB and DTL on corpus PU1, PU2, PU3 and PUA

Table 1. Performance of SVM, NB, NN and DTL on four PU corpora

Corpus Approach Recall Precision Accuracy F1 Feature dim.

PU1

SVM 95.83% 95.39% 96.06% 95.54% 300
NB 85.00% 98.30% 92.75% 91.06% 300
NN 84.17% 94.43% 90.73% 88.86% 300
DTL 96.04% 96.89% 96.88% 96.44% 300

PU2

SVM 72.86% 88.72% 92.54% 79.31% 300
NB 65.71% 91.00% 91.83% 75.60% 300
NN 45.71% 84.13% 87.32% 58.52% 300
DTL 72.86% 88.72% 92.54% 79.31% 300

PU3

SVM 94.45% 96.04% 95.79% 95.19% 300
NB 77.25% 94.03% 87.72% 84.66% 300
NN 84.51% 95.38% 91.33% 89.57% 300
DTL 94.73% 95.99% 95.88% 95.31% 300

PUA

SVM 94.56% 92.60% 93.25% 93.41% 300
NB 94.39% 93.98% 93.86% 93.95% 300
NN 90.88% 86.87% 87.98% 88.39% 300
DTL 95.44% 93.93% 94.47% 94.57% 300

two grounding classifiers make more correlated error on corpus PU2 compared
to other corpus. This reflects that the success of the DTL model lies in selection
of uncorrelated grounding classifiers. Besides, the poor performance of the self-
trigger process (NN) on PU2 is also a reason for the unideal performance of the
DTL model.

5 Conclusions

In this paper, we have transplanted the main concepts of the DT into building an
immune based learning model. In addition, the DTL model has been successfully
applied to a typical machine learning problem – spam detection. The experimen-
tal results show that the proposed DTL model can promote the performance of
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grounding classifiers. In the experiments, the DTL model outperformed SVM,
NB and NN in terms of both accuracy and F1 measure.

In future work, we seek to incorporate other design of danger zone and self-
trigger process into the DTL model, and investigate the performance of the model
under different settings. In this way, we hope to obtain a more ideal model and
better performance. Finally, we intend to add other signals, which can indicate
the drift of knowledge, into the DTL model. In this way, we hope it can develop
into an adaptive learning model.
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Abstract. The interest of hybridizing different nature inspired algorithms has 
been growing in recent years. As a relatively new algorithm in this field, 
Biogeography Based Optimization(BBO) shows great potential in solving 
numerical optimization problems and some practical problems like TSP. In this 
paper, we proposed an algorithm which combines Biogeography Based 
Optimization (BBO) and Clonal Selection Algorithm (BBOCSA). Several 
benchmark functions are used for comparison among the hybrid and other 
nature inspired algorithms (BBO, CSA, PSO and GA). Simulation results show 
that clone selection can enhance the ability of exploration of BBO and the 
proposed hybrid algorithm has better performance than the other algorithms on 
some benchmarks.  

Keywords: Biogeography based optimization, Clonal selection algorithm, 
Optimization. 

1   Introduction 

Nature inspired algorithms, such as Genetic Algorithm, Particle Swarm Optimization, 
Clonal Selection Algorithm, and Biogeography Based Optimization, have been 
proposed for solving optimization problems in the last few decades. The 
characteristics of these algorithms are different for different problems and there is no 
the best algorithm for all problems. So many researchers had been trying to hybridize 
different algorithms for more effective applications. 

Biogeography researches the migration of species from one isolated habitat to 
another, the increase and distinction of species. A good habitat has a high habitat 
suitability index (HSI), which is related to the factors such as rainfall, diversity of 
vegetation, diversity of topographic feature, land area and temperature. Suitability 
index variables (SIVs) are those variables characterizing habitability. A large number 
of species tend to be in habitats with a high HIS, while a small number in habitats 
with a low HSI. Species in habitats with a high HSI are more likely to emigrate to 
nearby habitats which means high emigration rate, simply driven by the large number 
of species that they host. At the same time, habitats with a high HSI have a low 
immigration rate because of the saturation state they already have. Therefore, the 
species distribution in high HSI habitats is more stable than that in low HIS habitats.  
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Inspired by the theory, in 2008, Simon proposed Biogeography Based 
Optimization (BBO) inspired by concepts from biogeography[1]. BBO is mainly 
composed of the migration operator and the mutation operator based on immigration 
rate and migration rate. By the above two operators� poor solutions will share some 
new characters from good solutions to raise the quality of those solutions. Like EAs 
and swarm intelligence, BBO is also a population-based optimization algorithm. 
However, it has unique features of maintaining the set of solution and only some local 
variables of solution change during the optimization process. BBO has been applied 
to many optimization problems. In the past two years, many improvements to BBO 
had been finished by Simon and some other researchers[2][3][4][5][6][7]. But there 
are few researches about hybrid BBO with the other algorithms. Aniruddha et al [4] 
presented a hybrid technique combining differential evolution with biogeography – 
based optimization (DE/BBO) algorithm to solve both convex and nonconvex 
economic load dispatch (ELD) problems. In [8], Gong et al investigated the possible 
combination between BBO and DE for numeric optimizations. An attempt to 
hybridizing BBO and PSO for Cross-Country Path Finding was discussed in [9]. A 
hybrid of flower pollination by artificial bees (FPAB) and BBO was propsed in [10] 
for Satellite Image Classification. Bhattacharya et al propsed hybrid BBO and DE for 
solving economic load dispatch problem[11]. 

In the field of Artificial Immune Systems(AIS),the clonal selection theory has been 
used as inspiration for the development of AIS that perform computational 
optimization and pattern recognition tasks. de Castro and Von Zuben [12] developed 
one of the most popular and widely used clonal selection inspired AIS called 
CLONALG, which has been used to performed the tasks of pattern matching and 
multi-modal function optimisation. Like negative selection, clonal selection has 
proven to be very popular in the AIS community spawnng a great deal of research 
with recent examples including [13][14][15].For the CSA, Carlos A. Coello et al [16] 
demonstrated an approach to hybridize Genetic Algorithm and Artificial Immune 
System for global optimization. In [17], Wang et al proposed a hybrid Particle Swarm 
Optimization (PSO) method, which is based on the fusion of the PSO, Clonal 
Selection Algorithm (CSA), and Mind Evolutionary Computation (MEC).  

We proposed a hybrid algorithm of BBO and CSA. Since the performance of the 
original BBO is not very good at some optimization problems, it needs to be 
improved in further. We use the ability of local search and diversity production of 
CSA to improve the optimizing ability of BBO. 

This paper is organized as follows. After the introduction, section 2 illustrates a 
brief review of BBO and CSA. Section 3 demonstrates the framework of the hybrid 
and pseudo-code of implementation. Section 4 reports the performance of BBOCSA 
on several benchmark functions in the literature, comparing with that of BBO, Clonal 
Selection Algorithm, PSO and GA.  

2   BBOCSA 

2.1   Framework of BBOCSA 

For balancing the exploration and exploitation of the algorithm, we hybridize 
Biogeography Base Optimization and Clonal Selection Algorithm because BBO has 
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shown considerable speed of convergence while CSA has great ability in local 
searching. 

The process of the BBOCSA is as follows. 

Initializing: In this step, set up parameters of BBOCSA and generate a population of 
candidate solutions. 

Evaluating fitness: Calculate fitness value, corresponding to each candidate solution. 
At the same time, any infeasible solutions are replaced with a random feasible 
solution. 

Selection: From all solutions in the current population, the best solutions are selected 
for the next clone step, the number of which is a constant among the parameters in 
Initializing step. 

Clone: The selected solutions have different clonal amounts due to different fitness. 
The better a selected solution is, the larger its clonal amount is.  

Hypermutation: After the clone process, all candidate solutions have to go through 
hypermutation with a possibility Pm. Gaussian mutation is used here. 

Emigration and immigration operator: First of all, according to the fitness values, 
every candidate solution has a corresponding species number. Then an emigration rate 
and an immigration rate are obtained by employing a migration model. 

Termination Criterion: Terminate after some generations. Otherwise, it goes back to 
the step Evaluating fitness. 

2.2   The Procedure of BBOCSA 

The parameters used in the algorithm are as follows. 

Algorithm 1. The main procedure of BBOCSA 

1: Generate the initial population P 
2: Evaluate the fitness for each individual in P 
3: While the termination criterion is not satisfied Do 
4:  Select the best nselect individuals in P to 

form new population 
5: Obtain new population by cloning the selected 

individuals according to clone operator 
6:  Modify current population with the 

hypermutation operator 
7:  Apply migration operator to the current 

population 
8: End While 

 

Algorithm 2. Clone operator of BBOCSA 

1: For i = 1 : PopSize Do 
2:  CloneCount = CloneMax + 1 – i 
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3:  For j = 1 : CloneCount Do 
4: To duplicate one more same individual 

as the ith individual in P 
5:  End For 
6: End For 

 

Algorithm 3. Hypermutation operator of BBOCSA 

1: For i = 1 : PopSize Do 
2:  MutateRate = rand 
3:  If rand < MutateRate Then 
4:   For j = 1 : dimensionNum Do 
5:    If rand < MutateRate Then 
6:  Scale = rand * rand * 

(MaxParValue - MinParValue) 
7: Pi.chromj = Pi.chromj + + Scale * 

randn; 
8:    End If 
9:   End For 

10:  End If 
11: End For 
 

Algorithm 4. Migration operator of BBOCSA 

1: For i = 1 : PopSize Do 
2:  For each individual, map the fitness to the 

number of species 
3: Calculate the immigration rate λi and the 

emigration rate μi for each individual Pi 
4: End For 
5: For i = 1 : PopSize Do 
6:  Normalize the immigration rate lambdaScale 

for Pi in the range of 0 and 1 
7:  For j = 1 : dimensionNum Do 
8:   If rand < lambdaScale Then 
9: Select an individual Pselect to 

emigrate by roulette 
10: Pi.chromj = Pi.chromj + rand * 

rand * (PSelect.chromj - Pk.chromj) 
11:   End If 
12:  End For 

The main process of BBOCSA is shown in Algorithm 1. Algorithm 2 and 3 give the 
clone operator and hypermuation operator, which are the key strategy of CSA. 
Algorithm 4 shows the migration operator of BBOCSA. In this step, the cloned 
habitats will have many copies of itself. They have high probability to mutate to be 
individuals with high HSIs in hypermuation process. So in the migration process, 



394 Z. Qu and H. Mo 

 

more habitats with high HSIs will share good information with those poor ones. 
While in the original BBO, the habitats with high HSI have no copies of themselves. 
The diversity of habitats is lower than that of BBOCSA. In fact, the introduction of 
clone strategy enhances the ability of global search and the diversity generation for 
BBO. In [9], Ma lists six migration models for Biogeography Based Optimization and 
compares the performance of the different models for solving 23 benchmark 
functions. We apply linear migration model for this paper. 

3   Experimental Results  

For a clear observation and a fair judgment on the performance of BBOCSA, we 
employed 7 widely used benchmark functions of numerous optimizations and 
compared BBOCSA with BBO, CSA, PSO and GA. All of benchmark problems are 
30 dimensions. Each benchmark function is run30 times and gets the statistics results.  

BBO is the original one without mutation operator introduced by [8].PSO is the 
also the one used in [8], whose inertial constant is 0.3 and whose cognitive constant, 
social constant for swarm interaction and social constant for neighborhood interaction 
are all set to 1. GA employs a single point crossover operator and a single point 
mutation operator. Crossover probability is 1 and mutation probability 0.01. The test 
results are shown in Fig.1. 

From Figure.1 A to G,  we can see that BBOCSA shows faster convergence than 
BBO and CSA except Quartic_Noise. PSO and GA cannot compete with BBOCSA 
either on the convergence rate or the optimal solutions they found. Table1 shows the 
comparison results of BBOCSA with the other algorithms. It competes with the other 
algorithms and has relative better results on most of the test problmes. For most 
benchmark functions BBOCSA could not guarantee an optimal solution after 
termination, which means a better local searching scheme should be introduced to 
BBO in the future. 
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Fig. 1. The comparison of convergence of BBOCSA with the other optimization algorithms 
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Table1. The comparison BBOCSA and the other algorithms 

 Best Mean std median worst 

Sphere 6.73E-05 2.55E-04 1.56E-04 2.31E-04 7.73E-04 

Schwefel221 1.96E-03 5.13E-03 1.46E-03 4.89E-03 8.29E-03 

Rosenbrock 3.18E+01 1.05E+02 4.36E+01 9.57E+01 2.08E+02 

Quartic Noise 1.88E-01 3.16E-01 7.44E-02 3.14E-01 4.84E-01 

Ackley 2.04E+00 6.91E+01 3.82E+01 7.95E+01 1.71E+02 

Penalty1 0 0 0 0 0 

BBO 

CSA 

Penalty2 5.23E-02 1.78E-01 6.16E-02 1.80E-01 3.33E-01 

Sphere 1.359336 2.257555
2 

0.585029
2 

2.138380
5 

3.553987 

Schwefel221 4.83E-01 5.99E-01 7.86E-02 5.87E-01 7.60E-01 

Rosenbrock 1.80E+03 3.65E+03 1.33E+03 3.53E+03 7.11E+03 

Quartic Noise 2.19E+00 2.96E+00 3.78E-01 2.95E+00 3.96E+00 

Ackley 6.98E+01 2.34E+02 7.94E+01 2.44E+02 4.55E+02 

Penalty1 0.00E+00 2.17E+00 1.37E+00 2.00E+00 5.00E+00 

CSA 

 

Penalty2 3.11E-02 1.14E-01 3.95E-02 1.18E-01 1.96E-01 
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Table1. (Continued) 

Sphere 0 0 0 0 0 

Schwefel221 9.00E+00 1.79E+01 6.11E+00 1.80E+01 3.10E+01 

Rosenbrock 1.92E+01 3.61E+01 2.28E+01 2.67E+01 8.15E+01 

Quartic Noise 1.28E-06 2.29E-04 2.50E-04 1.49E-04 1.08E-03 

Ackley 1.05E-01 1.99E-01 5.24E-02 1.94E-01 3.34E-01 

Penalty1 1.57E-32 1.57E-32 5.57E-48 1.57E-32 1.57E-32 

BBO 

Penalty2 1.35E-32 1.35E-32 5.57E-48 1.35E-32 1.35E-32 

Sphere 21.35909
6 

27.96628
3 

3.151866
9 

27.40442
5 

35.49424
8 

Schwefel221 3.08E+01 4.10E+01 3.57E+00 4.11E+01 4.92E+01 

Rosenbrock 4.63E+02 6.79E+02 1.36E+02 6.57E+02 9.42E+02 

Quartic Noise 1.27E+01 2.10E+01 5.16E+00 2.09E+01 3.27E+01 

Ackley 1.42E+01 1.53E+01 5.00E-01 1.54E+01 1.60E+01 

Penalty1 6.83E+05 4.21E+06 2.26E+06 4.79E+06 8.82E+06 

PSO 

Penalty2 6.41E+06 2.55E+07 1.14E+07 2.54E+07 6.29E+07 
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Table1. (Continued) 

Sphere 0 0.096418
5 

0.098702
9 

0.065510
8 

0.382986
2 

Schwefel221 1.70E+01 3.63E+01 1.16E+01 3.50E+01 6.70E+01 
GA 

Rosenbrock 2.82E+01 5.97E+01 2.60E+01 4.95E+01 1.33E+02 

Quartic Noise 6.09E-04 7.39E+00 1.13E+01 3.95E-02 4.25E+01 

Ackley 3.56E+00 8.60E+00 2.45E+00 8.46E+00 1.35E+01 

Penalty1 1.57E-32 1.57E-32 5.57E-48 1.57E-32 1.57E-32 

GA 

Penalty2 1.35E-32 8.33E-02 1.56E-01 1.35E-32 7.00E-01 

4   Conclusions and Future Work 

In this paper, we proposed a new hybrid algorithm which combines the biogeography 
and immune clone selection. The clone selection mechanism can enhance the ability 
of exploration of BBO. We test the algorithm by six typical functions. The simulation 
results show that BBOCSA is an effective hybrid optimization algorithm. We will 
continue to research BBOCSA in more complex problems, such as multi objective 
and constrained optimization problems. 
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Abstract. Biogeography-based optimization algorithm(BBO) is a new kind of 
optimization algorithm based on Biogeography. It mimics the migration 
strategy of animals to solve the problem of optimization. In this paper, the clone 
selection strategy is combined with biogeography for solving the problem of 
sensors selection of aircraft. It is compared with other classical nature inspired 
algorithms. The comparison results show that BBOCSA is an effective 
algorithm for optimization problem in practice. It provides a new method for 
this kind of problem. 

Keywords: Biogeography, Biogeography-based optimization, Clone selection, 
Sensor selection. 

1   Introduction 

In recent years, we have seen that many algorithms inspired by natural phenomenon 
or mechanisms, including evolutionary algorithms, artificial immune systems and so 
on. In this paper, we mainly focus on a new kind of algorithm, which is called 
biogeography based optimization(BBO), which is inspired by the science of 
biogeography. It is very interesting in that it mimics the migration process of animals 
to design method for solving engineering problems, especially optimization. 

In the early 1960s, Robert MacArthur and Edward Wilson began working together 
on mathematical models of biogeography. They were interested in mathematical models 
for the extinction and migration of species. Since their distinct  work, biogeography has 
become a major area of research[1].Mathematical models of biogeography describe how 
species migrate from one island to another, how new species arise, and how species 
become extinct. The term “island” here is used descriptively rather than literally. That 
is, an island is any habitat that is geographically isolated from other habitats.  

Simon presented the first paper on biogeography inspired algorithm for 
engineering[2]. In his creative work, he merged the burgeoning field of biogeography 
with engineering in order to see how the two disciplines can be of mutual benefit. 



 The Hybrid Algorithm of Biogeography Based Optimization and Clone Selection 401 

 

Although the idea of application of biogeography to engineering is similar to those 
nature inspired algorithms mentioned above, it has completely different mechanisms 
and process from those ones. Some researches about BBO itself and its applications had 
been done[3][4][5][6].  

In the field of Artificial Immune Systems(AIS),the clonal selection theory has been 
used as inspiration for the development of AIS that perform computational 
optimization and pattern recognition tasks. de Castro and Von Zuben [7] developed 
one of the most popular and widely used clonal selection inspired AIS called 
CLONALG, which has been used to performed the tasks of pattern matching and 
multi-modal function optimisation. We proposed a hybrid algorithm of BBO and CSA 
to solve the problem of aircraft sensor selection.  

In this paper, the BBOCSA is used for sensors selection problem of aircraft. The 
paper is organized as follows. Section 2 reviews the ideas BBOCSA. Section 3 
provides some simulation results comparing BBOCSA with other optimization 
methods. Section 4 presents some concluding remarks and suggestions for further 
work. 

2   The Procedure of BBOCSA 

The parameters used in the proposed algorithm BBOCSA are illustrated as follows. 

P: the current population 
PopSize: the number of individuals in current population; 
CloneMax: the number of duplicates the best individual should be cloned; 
DimensionNum: the number of dimension in the numerous optimization problem 
randn: an operator to generate normally distributed random numbers with mean 0 

and standard deviation 1. 

Algorithm 1. The main procedure of BBOCSA 

1: Generate the initial population P 
2: Evaluate the fitness for each individual in P 
3: While the termination criterion is not satisfied Do 
4:  Select the best n selected individuals in P 

to form new population 
5: Obtain new population by cloning the selected 

individuals according to clone operator 
6:  Modify current population with the 

hypermutation operator 
7:  Apply migration operator to the current 

population 
8: End While 

Algorithm 2. Clone operator of BBOCSA 

1: For i = 1 : PopSize Do 
2:  CloneCount = CloneMax + 1 – i 
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3:  For j = 1 : CloneCount Do 
4: To duplicate one more same individual 

as the ith individual in P 
5:  End For 
6: End For 

Algorithm 3. Hypermutation operator of BBOCSA 

1: For i = 1 : PopSize Do 
2:  MutateRate = rand 
3:  If rand < MutateRate Then 
4:   For j = 1 : dimensionNum Do 
5:    If rand < MutateRate Then 
6:  Scale = rand * rand * 

(MaxParValue - MinParValue) 
7: Pi.chromj = Pi.chromj + + Scale * 

randn; 
8:    End If 
9:   End For 

10:  End If 
11: End For 

Algorithm 4. Migration operator of BBOCSA 

1: For i = 1 : PopSize Do 
2:  For each individual, map the fitness to the 

number of species 
3: Calculate the immigration rate λi and the 

emigration rate μi for each individual Pi 
4: End For 
5: For i = 1 : PopSize Do 
6:  Normalize the immigration rate lambdaScale 

for Pi in the range of 0 and 1 
7:  For j = 1 : dimensionNum Do 
8:   If rand < lambdaScale Then 
9: Select an individual Pselect to 

emigrate by roulette 
10: Pi.chromj = Pi.chromj + rand * 

rand * (PSelect.chromj - Pk.chromj) 
11:   End If 
12:  End For 
 

In geography, geographical areas that are well suited as residences for biological 
species are said to have a high habitat suitability index (HSI). The variables that 
characterize habitability are called suitability index variables (SIVs). SIVs can be 
considered the independent variables of the habitat, and HSI can be considered the 
dependent variable. 

Biogeography is nature’s way of distributing species, and is analogous to general 
problem solutions. A good solution is analogous to an island with a high HSI, and a 
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poor solution represents an island with a low HSI. High HSI solutions resist change 
more than low HSI solutions. By the same token in BBO, suppose that we have a 
global optimization problem and a population of candidate individuals. The individual 
is represented by a D-dimensional integer vector. The population consists of 

nNP =  parameter vectors. Each individual is considered as a “habitat” with a 
habitat suitability index (HSI), which is similar to the fitness of EAs, to measure the 
individual. A good solution is analogous to an island with a high HSI, and a poor 
solution indicates an island with a low HSI. High HSI solutions tend to share their 
features with low HSI solutions. Low HSI solutions accept a lot of new features from 
high HSI solutions.In TSPBBO, each individual has its own immigration rate λ  and 
emigration rate μ . A good solution has higher μ  and lower λ , vice versa. The 

immigration rate and the emigration rate are functions of the number of species in the 
habitat. The migration procedure is shown in Algorithm 4. λ  and μ  can be 

calculated as Eqn. (1) and (2). 

n

Ek
k =μ  (1)

⎟
⎠
⎞

⎜
⎝
⎛ −=

n

k
Ik 1λ  (2)

where sλ and sμ are the immigration and emigration rates when there are S species 

in the habitat.  

3   Benchmark Results 

3.1   Sensor Selection of Aircaft  

An inlet supplies air to the fan. The air that leaves the fan separates into two streams, 
one through the engine core, and the other through the bypass duct. The fan is driven 
by a low-pressure turbine. The air that passes through the engine core goes through a 
compressor, which is driven by a high-pressure turbine. Fuel is injected and ignited in 
the combustor to produce hot gas that drives the turbines. The two air streams 
recombine in the augmentor duct, where additional fuel may be added to increase the 
temperature. The air leaves the augmentor at a high velocity through the nozzle 
(which has an adjustable cross section area) and thereby produces thrust.The engine 
simulation used in this paper is called Modular Aero Propulsion System Simulation 
(MAPSS) [8], and was written using Matlab Simulink. The controller update rate is 
50 Hz. The three state variables used in MAPSS are low-pressure rotor speed, high-
pressure rotor speed, and average hot section metal temperature. The discretized time 
invariant equations that model the turbofan engine can be summarized as 

)()](),(),([)1( kwkpkukxfkx x+=+       

            
)()()1( kwkpkp p+=+       

           )()](),(),([)( kekpkukxgky +=  . 

(3)
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where k  is the time index, is the three-element state vector,is the three-element 
control vector, p is the ten-element health parameter vector, and y  is the 

measurement vector. The measurement consists of the outputs of the sensors with 
which we instrument the engine. The health parameters change slowly over time. 
Between measurement times their deviations can be approximated by the zero mean 

noise )(kwp . The noise term )(kwx  represents inaccuracies in the system model, 

and )(ke represents measurement noise. We can use multiple sensors at a single 

location if desired. The use of more sensors results in smaller elements Σ , which 
means that our health estimate will be better. However, there is a point of diminishing 
returns. The use of more sensors costs more money, and it may not be worth the extra 
cost to obtain a marginally improved health estimate. The optimality criterion for the 
health estimation problem can, therefore, be written as 

      ∑ ∑
∑

=

+=
13

1 00
),(

),(

i C

C

ii

ii
J

α
. (4)

where 0Σ and 0C are reference values used for normalization. 0Σ is the covariance 

that results if we use all 11 sensors with no duplicates, and 0C is the financial cost of 

fitting the aircraft engine with 11 sensors. α  is a scale factor that weights the 

importance of financial cost relative to estimation accuracy. J is the objective 
function for the health estimation problem. This approach to sensor selection was first 
proposed using GAs [9]. When BBO is used to solve the problem, J is referred to as 

the HSI. In general, we want to use a total of N sensors out of K unique sensors (in 
our example, K =11 ) with each sensor being used no more than times. (The 
numerical values of N , K , and M will be problem dependent.) The total number of 
possible sensor sets is found by the following procedure. First, we generate a 
polynomial )(xq   as  

             KMxxxxq )...1()( 2 ++++=  

= MKxxqxq ++++ ...1 2
21  

(5)

The total number of sets containing exactly N sensors is equal to Nq . This is 

known as the multinomial theorem [10]. 

3.2   Results and Discussion 

In order to explore the benefits of BBOCSA, we compared its performance with five 
other population-based optimization methods, including Ant Colony Optimization 
(ACO), Genetic Algorithm(GA), Simple Genetic Algorithm(SGA), Particle Swarm 
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Optimzation(PSO), Deferential Evolution (DE), Evolution Strategy(ES), Clone 
Selection Algorithm(CSA). The parameters of BBO are: habitat modification 
probability=1, maximum immigration and migration rates=1 for each habitat. We did 
some rough tuning on each of the optimization algorithms to get reasonable 
performance, but we did not make any special efforts to fine-tune the algorithms. For 
ACO, we used the following parameters: initial pheromone value 510 −= Eτ  

,pheromone update constant 20=Q , exploration constant 10 =q , global pheromone 

decay rate 9.0=gρ  , local pheromone decay rate 5.0=tρ  , pheromone sensitivity 

2=α , and visibility sensitivity 6=β . For the GA, we used roulette wheel selection, 

single point crossover with a crossover probability of 0.3, and a mutation probability 
of 0.1. For PSO, we used initial and ending inertia weight 0.9 and 0.3 respectively, 
and a social constant 0.7 for swarm interaction. For the ES, we produced offspring 

10=λ   each generation, and standard deviation 1=σ  for changing solutions. For 
CSA, we used clone rate of 0.2,mutation rate 0.1. For DE, we used a weighting factor 

5.0=F and a crossover constant   0.5.For the SGA, we used single point crossover 
with a crossover probability of 1, and a mutation probability of 0.01. The clone rate of 
BBOCSA is 0.2. The mutation rate of BBOCSA is 0.1. Each algorithm had a 
population size of 50, an elitism parameter of 2, and ran for 500 generations. Figure 1 
shows the results of the simulations.  

The sensor selection problem can be solved with population-based optimization 
methods. A population member consists of a vector of integers, with each element in 
the vector representing a sensor number. The fitness or HSI of a population member is 
given by (7) . If an invalid sensor set arises during the optimization process due to too 
many of a certain sensor type, then we replace some of the duplicated sensor types 
with a randomly chosen sensor to enforce feasibility. 

We assumed here that we could use a total of 20 sensors (out of our unique 11 
sensors) with each sensor being used no more than four times. The total number of 
sensor sets to choose from is the coefficient of in the polynomial                                 

11432 )1()( xxxxxq ++++=  . (6)

The coefficient of 20x in this polynomial is equal to 3 755 070. That is the total 

number of sensor sets that must be searched in order to find the minimum value of J  

in (5). In order to compute J for a single sensor set, we need to solve for for that 
sensor set. In order to solve for Σ , we need to solve a discrete algebraic Riccati 
equation (DARE) . This can be done with the DARE function in Matlab’s Control 
SystemToolbox. 

Table 1. The comparison results for sensor selection  

 ACO BBO DE ES GA CSA PSO BBOCSA 
Mean 8.230 8.025 8.087 8.1492 8.088 8.166 8.193 8.022 

Best 8.229 8.021 8.075 8.131 8.078 8.154 8.181 8.015 
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Table 1 shows the results of the optimization methods on the sensor selection 
problem.We see that BBOCSA performs the best in terms of both average 
performance and best performance.  
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Fig. 1. The comparison results of BBO with the other optimization algorithms 

In Fig.1, we can see that BBOCSA and BBO have the relative good performance 
for the sensor selection problem. And as a new method, BBOCSA shows better 
performance than the most other nature inspired algorithms, such as ACO, PSO, DE, 
ES and so on. 

4   Conclusion 

In this paper, we have combined biogeography and immune clone selection to solve 
optimization problems in practice. We have applied the BBOCSA to solve the 
problem of sensors selection of aircraft. The results showed that it provides better 
performance than the other population-based methods. In future, we will focus on 
improving its performance on combination optimization problems and solving more 
complex ones in further.   
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Abstract. focusing on “distinctiveness” and “effectiveness” of algorithms 
inspired by natural immune system, a novel artificial immune network 
algorithm named immune feature extracting network (IFEN) is proposed to 
realize the function of feature data extracting in this paper. Based on 
comprehensive analysis of mechanism of natural immune system and current 
researching works of artificial immune system (AIS), a modified paradigm of 
artificial immune network (AIN) and a new mutation operation are designed to 
adapt to decrease the size of sample data set and extract feature data from the 
data set with noise. The proposed algorithm is supposed to be used as a data 
preprocessing method with functions of data compression and data cleansing. 
Preliminary experiments show that the quality of the data set processed by 
IFEN is apparently improved and the size is compressed.  

Keywords: artificial immune system, artificial immune network, feature extracting. 

1   Introduction 

Artificial immune system is a general term for different intelligent computing 
approaches inspired by natural immune system. In the last two decades, a diverse set 
of immune inspired algorithms to solve various computational problems or tackle real 
world applications has been produced, and many successful works are reported[1-
3,16]. Despite some remarkable works, the field of AIS still lacks unique and 
effective application domains and algorithm model, which limits the development of 
AIS to a large degree.  

Currently, three major AIS algorithms have been constantly developed and gained 
popularity[8]: (1) negative selection algorithms (NSA); (2) clonal algorithms 
(CLONALG); (3) artificial immune networks (AINE). The negative selection 
algorithm is based upon self/nonself discrimination of T-cells within the thymus, and 
mainly applied in Computer security, Virus detection etc. Clonal algorithm focused 
on the clonal selection principle and affinity maturation process of the adaptive 
immune response and is developed suitable to perform tasks such as machine 
learning, pattern recognition, and optimization. Artificial immune networks is 
inspired by immune network theory, which suggests that B-cells are capable of 
recognizing each other and endow the immune system with a certain type of eigen-
behavior and network of communication among cell receptors. AINE is mainly 
applied in machine learning, pattern recognition.  
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Clonal selection is the theory used to explain how the immune system responds to 
nonself antigens. Negative selection in contrast, is one of the strategies used by the 
immune system to eliminate self-reactive cells, i.e. cells that recognize self antigens. 
Immune network theory describes how the cells of the immune system interact with 
other cells of the immune system. Though immune network theory was presented 
later, it is very interesting and can be used to explain the mechanism of immune 
system properly and roundly. According to this, artificial immune network can be 
more reasonable to be an immune inspired approach than clonal selection algorithms. 
Because of this, our researching work in this paper is focused on inspiration of 
immune network theory and based on existing artificial immune network models[4-8].  

In [9], Garrett tracked the development of AIS, and followed by attempting to 
make assessment of the usefulness of the AIS in terms of “distinctiveness” and 
“effectiveness”. From this point of view, we attempt to address the function of 
algorithm inspired by immune system and its application domain by analyzing the 
functional mechanism of immune system in view of immune network theory. We 
suggest that feature extraction is one of the most important functions of natural 
immune system. Starting from this understanding, we propose a modified artificial 
immune network---immune feature extracting network (IFEN), which is a hybrids of 
AINE with CLONALG and major function is extracting feature data from a sample 
data set with noise, and realizes data cleansing and compression. 

2   The Immune System: From Information Processing Perspective  

The most remarkable roles of immune system are the protection of the organism 
against the attack of antigen. The primary problem the immune system is faced with, 
is thus the recognition of these antigen. After recognizing (identifying) an antigen, the 
immune response arises to avoid or block the antigen, and immune memory which is 
the feature map of the antigen is memorized in immune system. Therefore, from 
information processing perspective, the immune system is a highly distributed, 
adaptive, and self-organizing information processing system, together with its 
learning, memory, feature extraction, and pattern recognition features, and offers rich 
metaphors for its artificial counterpart[15]. From the view of biological mechanisms, 
the main information processing mechanisms of immune system include: 

 Recognition: when an antigen entering, a set of specific antibodies recognize it 
based on shape complementary match, and only those antibodies whose match 
degree, called affinity, with the antigen is over the match threshold will be 
activated and participate the immune response.  

 Evolution: those activated antibodies are cloned and mutated, by this way, the 
affinity of whole population of activated antibodies are improved; 

 Memory: the antibodies with highest affinity must be preserved somehow as 
high quality candidate solutions, and shall only be replaced by improved 
candidates. This immune memory would ensure that both the speed and accuracy 
of the immune response becomes successively greater after each infection； 

 Network: the immune network theory suggests that antibody molecules can be 
recognized by other antibody molecules. As an outcome of this mutual 
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recognition of antibody molecules, a network of communication named immune 
network arises within the immune system and forms a stable memory structure; 
According to this new perspective of the immune interactions, the interactions of 
the immune cells are going to result in a network with a natural eigen-behavior 
whose state will be disturbed by non-self antigens. That is to say, the immune 
response will cause the component of immune network changed, and in this way, 
the immune network will be the internal image of the invading antigens; 

 Diversity: The number of antibodies contained in our immune system is known 
to be much inferior to the number of possible antigens, making the diversity and 
individual binding capability the most important properties to be exhibited by 
the antibody repertoire. The mechanism to maintain diversity of antibody 
repertoire is specific mutation and concentration suppression of antibodies in 
immune network. 

It is apparent that the most important task of immune system is to recognize, extract 
and memorize the features of invader antigens. Based on the above mechanisms, 
natural immune systems can achieve the diversity of antigen recognition and 
specificity of antigen killing.  

3   Immune Feature Extracting Network 

Based on the analysis of functional mechanism of immune system and current 
immune inspired algorithm[10-14], we propose a hybrid of AINE with CLONALG, 
named Immune Feature Extracting Network (IFEN). The main immune aspects taken 
into account to develop the algorithm are: selection and cloning of the most 
stimulated cells proportionally to their antigenic affinity; death of non-stimulated 
cells; affinity maturation and selection of cells proportionally to their antigenic 
affinity; and generation and maintenance of diversity.  

In our algorithm, antigen refers to data in sample data set, and antibody refers to 
data in resulting data set handling by IFEN. The IFEN works as follows:  

Step 1. Initialization: create an initial random population of network antibodies; 
Step 2. Antigenic presentation: for each antigenic pattern, do: 

 Antibodies activation: for each network element, determine its affinity with the 
antigen presented. Select a number of antibodies whose affinity with the antigen 
are more than a pre-specified threshold(activating threshold) as activated set; 
save the remaining antibodies in a unactivated set. 

 Clonal expansion: reproduce (clone) activated antibodies proportionally to their 
affinity; eliminate the antibodies whose clones is less than a pre-specified 
threshold(selecting threshold); 

 Affinity maturation: select a number of highest affinity antibodies in activated 
set and place them into a memory set. Mutate each clone of the remaining 
activated antibodies inversely proportional to affinity; 

 Clonal suppression: by incorporating memory antibodies with mutated 
antibodies, reconstruct the memory set, and then determine the concentration of 
each antibodies; eliminate antibodies whose concentration is more than a pre-
specified threshold; 
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 Network construction: incorporate the clonal memory set with unactivated 
antibody set, reconstruct the antibody population. 

 Network suppression: eliminate all network antibodies whose activated counting 
numbers are less than a pre-specified threshold(living threshold); 

Step 3. Cycle: repeat steps 2 until a pre-specified number of iterations is reached. 
Step 4. Output: the resulting data are output, and afforded to be sample data for 
further application. 

Several key steps of IFEN are described in details as follow: 

 Affinity definition: the affinity of antigen iAg  and antibody jAb  is computed 

according to Eq. (1). 

)),(d1/(1a jiij AbAgff +=  (1)

where d(.) denotes the Euclidian distance between iAg and jAb .  

 Clonal expansion: an initial weight value jw  is given to each activated 

antibody, and keeping the total weight value of activated set unchangeable. Then 
clone each antibody activated antibodies according to Eq.(2) and eliminate those 
antibodies whose weight value are lowest; 
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Where 0w  is the initial weight value of antibody; actN  is the total number of 

activated antibodies.  

 Affinity maturation: the main function of this step is to mutate the antibodies in 
order to improve the affinities of these antibody, and the activated antibodies are 
mutated according to Eq.(3):  
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 Clonal suppression: the concentration of antibody is evaluated according to 
Eq(4): 
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 Network suppression: at the beginning of algorithm, the initial activated 
counting number of each activated antibody is specified to zero. During the 
iterations, the activated counting number add one whenever the antibody is 
activated once. If the activated counting number is less than a pre-specified 
number, the antibody will be eliminated from the antibody population. 

4   Experiments Result and Analysis 

As mentioned above, the IFEN is used to extract the feature data from a data set, so 
we will compare the experimental results of using the feature data obtained by IFEN 
and the initial data set to show the effectiveness of IFEN as a data pre-processing 
algorithm. 

4.1   The Experiments of Clustering Analysis  

In this experiment, a data set is generated by program as an initial data set to 
clustering analysis, and then a number of noise data are added to the initial data set, in 
this way, a test data set with noise is constructed. The clustering centers of the initial 
data set and the test data set are respectively determined by K-means method first. 
Then, processing the test data set by using IFEN, the feature data set of the test data 
set are obtained by applying the IFEN to the test data, and the clustering centers of the 
feature data set are obtained by K-means. By comparing the clustering centers of the 
feature data set and the test data set with the clustering centers of the initial data set, 
the function of IFEN as a feature data extracting method is verified. The results of the 
experiments are exhibited in Fig.1. 
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Fig. 1. (a) initial data set; (b) data set with noise(i.e. The test data set) and the resulting data 
set(i.e. the feature data set) 
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From Fig.1, we can see that the size of the feature data set is apparently decreased 
by IFEN, the compression rate is nearly 90%. In order to confirm IFEN having 
function of data cleansing, we compare the clustering centers of the test data set and 
the feature data set with that of the initial data set, as shown in Table 1. The 
experiment is repeated for 20 times, and the average errors of clustering centers are 
calculated shown in last column. The average error of the feature data set is much less 
than the test data set since the noise is removed by IFEN to a large degree. 

Table 1. The clustering centers of each clustering data set and the average error of clustering 
centers 

clustering centers initial data set data set with noise resulting data set by 
IFEN 

Clustering 1 (0.3296, 0.0456 ) (0.2902, 0.1008) (0.3329, 0.0659) 
Clustering 2 (0.5076, 0.8017) (0.8135, 0.7984) (0.4814, 0.7969) 
Clustering 3 (0.2722, 0.1345) (0.1956, 0.8078) (0.2629, 0.1072) 

Average error of 
clustering centers 

(0.0000, 0.0000) (0.1345, 0.1242) (0.0063, 0.0035) 

 
It is shown that the clustering centers of the feature data set are closer to the 

clustering centers of the initial data set than that of the test data set. Therefore, IFEN 
can remove the noise in data set and realize the function of data cleansing and data 
compression.  

4.2   Function Approximation Experiment 

In this experiment, randomly selecting sample data from function shown in (5), and 
add noise to these data, then use these data with noise as sample data to approximate 
the function. First, without any pre-processing, these sample data are directly used to 
experiment. Then, handle the data with noise by IFEN, and use the processed data as 
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Fig. 2. (a) function approximation with sample data not processed by IFEN; (b) function 
approximation with sample data processed by IFEN 
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sample data to experiment. Compare the two results to confirm that IFEN has the 
function of feature data extracting. The results of the experiments are exhibited in 
Fig.2. 

[ ]4,4,)21(1.1)(f 2/2 2

−∈+−= − xexxx x  (5)

In Fig.2(a), the sample data with noise are not processed by IFEN, and directly 
used to be training data for function approximation. In Fig.2(b), the sample data with 
noise are processed by IFEN, and then the resulting data are used to be training data. 
The experimental results show that the approximation errors are using the resulting 
data processed by IFMN is much less than that of sample data without pre-processing, 
and the size of sample data is decreased after processing by IFEN. The function of 
IFEN is verified again. 

5   Conclusion and Further Works 

In this paper, an attempt is done to address the problems of application domains and 
modeling of AIS. We have presented a so-called IFEN algorithm based on the 
analysis of information processing mechanism of natural system and several typical 
model of AIN. The approach is able to extract feature data from an initial data set 
with noise and realize data cleansing and data compression. The experimental results 
indicate that IFMN is effective in practice.  

The purpose of this paper is not only to propose a new AIS algorithm, but also to 
construct a "distinctiveness" and "effectiveness" AIS algorithm, and the latter is more 
important. The distinctiveness of our algorithm lies in its function of feature data 
extracting when most existing AIS algorithms are concerned in optimization, pattern 
recognition and classification etc, so its effectiveness are focused on data 
preprocessing method to improve the quality of the initial data set. The experiments in 
this paper are designed to verify the function of IFEN. 

 However, the experiments in this paper are relatively simple ones. We suggest that 
IFEN can be a data preprocessing method to be applied in many different areas. More 
complex experiments will be done concerning different applied domains. Based on 
analysis of experimental results and theory of immune system, the proposed paradigm 
will be modified further. Mutation operation is very important for maintaining 
diversity and ensuring quality of antibody population, and finally effect the 
performance of the algorithms, so it is worth to do more researching work on this 
point. We are also interested in how to define the end condition of the algorithms. A 
general solution is to specify a running times, but it is not the most suitable one. A 
current weakness of the approach inspired by natural system is lacks of theoretical 
basis, and there will be a lot of hard and significant works to do in this field[16]. 
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Abstract. Differential Evolution (DE) algorithm is a successful optimization 
method in continuous space and has been successfully applied in many different 
areas. The operators used in DE are simple, however, the mechanism in which 
the operators are defined, makes it impossible to apply the standard DE directly 
to the problems in binary space. A novel binary encoding DE (BDE) was pro-
posed to extend DE for solving the optimization problems in binary space. A 
mixed expression, which constitutes of an arithmetical expression and a logical 
expression, was used to construct a new mutation operator. And then with a 
predefined probability, the result of the mutation operator was flipped. Initial 
experiment results indicate the novel BDE is useful and effective.  

Keywords: Discrete optimization, mutation operator, arithmetical expression, 
logical expression. 

1   Introduction 

Differential Evolution (DE), proposed by Storn and Price (1997) [1], is a simple yet 
competitive algorithm for real parameter optimization. DE, just as most popular  
Evolutionary Algorithms, is a population-based method. DE generates trials by add-
ing the scaled difference of two randomly selected vectors to the third individual. 
Then DE recombines the trial with its parent using a curtain probability to generate its 
offspring. In addition, DE employs a one-to-one spawning logic which allows re-
placement of an individual only if the offspring outperforms its corresponding parent. 

Since its inception, DE has been widely used in a variety of continuous fields. For 
example, Chiou et al. (2004) applied DE to power electronics [2]. Karaboga and  
Cetinkaya (2006) designed a filter with DE [3]. In Tirronen (2008) [4], a DE-based 
algorithm is implemented to design a digital filter for paper industry applications. An 
application to highway network capability optimization is given in Koh (2009) [5]. It 
has also been successfully used in chemical engineering, machine intelligence and pat-
tern recognition [6].And it has been shown to perform better than the Genetic Algorithm 
(GA) or the Particle Swarm Optimization (PSO) over several numerical benchmarks [7]. 

Despite the simplicity and successful application in many engineering fields, its  
application in the domain of discrete optimization problems is still unusual. This  
limitation is mainly caused by the working mechanism of DE (which is based on real 
vectors) and the lack of a principled generalization of DE [8]. In this paper, a novel 
binary encoding DE was proposed. 
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The rest of the paper is organized as follows. Section 2 gives a brief introduction of 
conventional DE. A novel BDE with binary mutation is presented in section 3. The 
three knapsack Problems are used to evaluate the BDE in section 4. Section 5 con-
cludes this paper. 

2   Conventional DE 

The DE algorithm is a kind of floating-point encoding evolutionary optimization 
algorithm. At present, there have been several variants of DE [1]. One of the most 
promising schemes, DE/Rand/1/Bin , is presented in great detail. It is supposed that 
we are going to find the minimization of the objective function )(xf . 

2.1   Generation of Initial Population  

The DE algorithm starts with the initial target population nmijxX ×= )(  with the size 

of m  and the dimension of n , which is generated by the following way. 

))(1,0()0( l
j

u
j

l
jji xxrandxx −+= . (1) 

where mi ,,2,1= , nj ,,2,1= , u
jx  and l

jx denotes the upper constraints and the lower 

constraints respectively. 

2.2   Mutation Operator 

For each target vector ),,2,1( mixi = , a mutant vector is produced by 

)()1( 321 rrri xxFxth −+=+ . (2) 

where },,2,1{,,, 321 mrrri …∈  are randomly chosen and must be different from each 

other. And F  is the scaling factor for the difference between the individual 2rx  

and 3rx . 

2.3   Crossover Operator 

DE employs the crossover operator to add the diversity of the population. The ap-
proach is given by (3). 
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where mi ,,2,1= , nj ,,2,1= , ]1,0[∈CR  is the crossover probability and 

),2,1()( nirand ∈  is the randomly selected number. The crossover operator can en-

sure at least one component of the trial individual comes from the mutation vector. 
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2.4   Selection Operator 

To decide whether the trial individual )1( +tui  should be a member of the next gen-

eration, it is compared to the corresponding )(txi . The selection operator is based on 

the survival of the fitness among the trial individual and the corresponding one such 
that: 
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In short, DE can adapt itself during the search process and find the optimum effi-
ciently and effectively.However, the search set in the continuous domain can satisfy a 
closure under the mutation operation shown as formula (2). When this mutation op-
erator is employed in the binary space, this closure cann’t be satisfied. 

3   Binary Encoding DE 

It can be easily found that the mutation operator, denoted by the formula (2), can only 
be effective in real domain. When it is used for the optimization problems in the bi-
nary space, the results of the mutation operator may fall out the space. Thus the con-
ventional DE cannot be used in discrete optimization problems directly. A Binary 
encoding DE with a newly defined mutation operator was proposed to deal with this 
problem. 

3.1   New Mutation Operator 

The main nature of the conventional DE is to use the difference of the between vec-
tors to perturb one certain vector. The difference of two multi exclusive vectors is got 
by the mutation operator in formula (2). For the optimization problems in binary 
space, the elements of each vector can be regarded as logical number. Borrowing the 
concept of difference in continuous field, the difference of two binary numbers can be 
described as the result of exclusive or (XOR) of two binary digits. For instance, the 
truth table of XOR is shown in table 1. 

Table 1. XOR Truth Table 

X Y Z 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
In table 1, a simple way to state the exclusive disjunction is "one or the other but 

not both." When the X and Y are not identical, the output is 1. Hence this can be used 
to express the difference of the X and Y. This paper will use this to adapt the 
conventional DE mutation operator. 
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A new mutation operator is given as formula (5). 

)(()1( 321 jrjrjrji xXORxxMODth +=+  (5) 

where MOD  is the function of Addition Modulo 2. 
Then with a very small probability p , )1( +thij was flipped as formula (6). 

)1(1)1( +−=+ thth jiji  (6) 

Since the crossover and selection operator in the conventional DE already manipulate 
the vectors in discrete form, the BDE can inherit them directly. 

3.2 Flowchart of the BDE 

The main steps of the proposed BDE are as fellows. 

Step1: Generation of Binary Initial Population; 
Step2: New mutation operator as formula (5) and formula (6); 
Step3: Crossover operator as formula (3); 
Step4: Selection operator as formula (4) 

The flowchart of the BDE is presented in Fig. 1. 

Meet the termination 
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Fig. 1. The flowchart of BDE 
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4   Numerical Experiments 

In this section, the three 0-1 knapsack problems in [9, 10] were used to test the pro-
posed BDE initially. 

Since the 0-1 knapsack problems are constrained, the method in [9] was used to 
deal with the infeasible solutions as well. 

The parameters of the BDE are given in table 2. 

Table 2. Parameters of the BDE for the three KPs 

Examples Population size  p CR Maxgen 
Kp1 20 0.005 0.5 50 
Kp2 20 0.005 0.5 300 
Kp3 20 0.005 0.5 500 

 
For each of the three knapsack problems, 50 trials have been conducted and the 

best results (Best), average results (Avg), worst results (Worst), standard deviations 
(Dev) and the success rate (SR) of the BDE are shown in Table 3. 

Table 3. Statistical results of the three knapsack problems 

Examples Best Avg Worst Dev SR 
Kp1 1042 1041.8 1037 0.9897 96% 
Kp2 3119 3118.3 3113 1.512 68% 
Kp3 26559 26553 26535 10.2884 72% 

 
The results in table 3 show us that BDE can find the optimums of all the three 

Knapsack Problems with comparable small size of population. 
The best results compared with TGBDE [8] and several versions of GA [10] are 

also reported in table 4. 

Table 4. Compared Results with other Algorithms 

Algorithm KP1 KP2 KP3 
TGA[10] 1042 3077 25848 
GGA[10] 1042 3112 26559 
HGA[10] 1037 3103 26487 
SEGA[10] 1042 3116 26559 
TGBDE[8] 1042 3103 26539 

BDE 1042 3119 26559 
 
Table 4 shows that for the three Knapsack Problems, the BDE is the only method 

which can find the best known optimum of each problem. Particularly, for KP2, the 
best result found by the BDE is the best one among the six different algorithms. 

In order to compare the convergence speed of the BDE with that of TGBDE [8], 
Using the identical initial poppulation, one run was excuted for the above each knap-
sack problem. The best solution against generation was recorded, as shown in Fig.2.-
Fig.4. respectively. 
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Fig. 4. Best against generation for KP3 

A conclusion can be drawn from the Figs 2, 3 and 4, that for the three knapsack 
problems used in the experiment, the convergence performance of the BDE is slightly 
better than that of the TGBDE. 

Further to evaluate the sensitivity of the probability to flip the digit, five different 
parameters of p  are used to solve Kp2. Then 10 trials have been conducted and the 

best results (Best), average results (Avg), worst results (Worst), standard deviations 
(Dev) and the success rate (SR) of the BDE are shown in Table 5. 

Table 5. Five different p  for Kp2 

p  Best Avg Worst Dev SR 
0.1 3118 3116.7 3116 0.9487 0 

0.05 3119 3118.4 3116 0.9661 60% 
0.025 3119 3118.7 3116 0.9487 90% 

0.0125 3119 3117.2 3113 2.8983 70% 
0.001 3119 3118.7 3117 0.6749 90% 

 
The results in table 5 show us that the smaller value of the probability p , the better 

results can be found by the BDE. 
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5   Conclusions 

DE is a recently developed heuristic algorithm that has been empirically proven to be 
very efficient for global optimization over continuous spaces. In order to extend the 
field of DE from the continuous domain to the binary domain, a novel BDE was pro-
posed. In the BDE, a new mutation operator was defined to deal with binary digits. 
Initial experiments on the three different sizes of Knapsack Problems show it is an 
effective and efficient way to solve the binary optimization problems. In the future, we 
will investigate this novel BDE to solve other combinatorial problems such as TSP. 
 
Acknowledgments. This work is partially support by the science and Technology 
Foundation of Jiangxi Province, China under grant no. GJJ10616 &GJJ11616. 
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Adaptive Learning Differential Evolution for  
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Abstract. Differential Evolution algorithm is a simple yet reliable and robust 
evolutionary algorithm for numeric optimization. However, fine-tuning control 
parameters of DE algorithm is a tedious and time-consuming task thus became a 
major challenge for its application. This paper introduces a novel self-adaptive 
method for tuning the amplification parameters F of DE dynamically. This 
method sampled appropriate F value from a probabilistic model build on peri-
odic learning experience. The performance of proposed MSDE is investigated 
and compared with other state-of-art self-adaptive approaches. Moreover, the 
influence of learning frequency of MSDE is investigated. 

Keywords: Differential Evolution, self-adaptive, learning experience. 

1   Introduction 

Differential evolution (DE) algorithm, proposed by Storn and Price[1], is a simple but 
powerful population-based stochastic search technique for solving global optimization 
problems. However, the performance-critical control parameters and learning strategies 
involved in DE are highly dependent on the problems under consideration. For a spe-
cific task, we may have to spend huge amount of time to try through various strategies 
and fine-tune the corresponding parameters, and this trial-and-error process can be 
fallible due to the nature of human intervention. This dilemma motivates us to develop 
a Self-adaptive DE algorithm to solve general problems more efficiently. Recently, 
several Self-adaptive DE algorithms have been proposed to tackle this problem. Om-
ran[3] proposed a Barebones DE which generate F and Pr value from a preset 
fine-tuned normal distribution. Qin[4] proposed SaDE algorithm which self-adapt 
suitable learning strategy according to the learning experience. Abbass[5].proposed a 
SPDE algorithm where Pr will be updated according to arithmetic combination of 
target vector and differential vector of Pr value. Salman [6] investigated and compared 
the above-mentioned algorithms empirically. 

This paper proposed a novel self-adaptive method for tuning the amplification 
parameters of DE dynamically. Inspired by Estimation of Distribution Algorithm 
approach[7],the proposed method sampled appropriate amplification factor value 
from a probabilistic model build on previous learning experience which accumulated 
periodically and we name the proposed self-adaptive learning algorithm My 
Self-adaptive Differential Evolution algorithm(referred to as MSDE in remainder of 
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paper).Preliminary test results show that MSDE algorithm has promising performance 
and is competitive to other well-known self-adaptive approaches. 

The reminder of the paper is organized as follows: Section 2 provides a brief de-
scription of DE. The proposed MSDE is given in Section 3. Results of the experiments 
are presented in Section 4. Finally, Section 5 concludes the paper.  

2   Basic Differential Evolution 

Basic DE algorithm comprise of three major operators, namely mutation, crossover and 
selection. They are described briefly as followed: 

Mutation: According to the mutation operator of the most commonly used 
DE/rand/1/bin strategy [1], for each target individual xi(t), a mutant vector vi(t) is de-
termined by the following equation, 

 
))()(()()( 321 txtxFtxtv iiii −+=

 .                              (1) 

Where i1, i2, i3 are index randomly selected from the set {1,2,…,NP}: Note that index 
must be mutually different from each other and from the running index i so that 
population size NP must be at least four. 

Crossover: DE follows a discrete recombination approach where elements from the 
parent vector xi(t) are combined with elements from the trial vector vi(t) to produce the 
offspring µi(t) .Using the binomial crossover, 
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Even when Pr =0, at least one of the parameters of the offspring will differ from the 
parent(forced by the condition j=r). 

Selection: To decide whether the trial vector vi(t) should be a member of the popu-
lation comprising the next generation, it is compared to the corresponding target vector 
xi(t); and the greedy selection strategy is adopted in DE. The selection operator is as 
following, 
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The above 3 steps are repeated generation after generation until a pre-specified stop-
ping criteria is satisfied. 

3   My Self-adaptive Differential Evolution 

3.1   Learning Strategy 

In this paper, we incorporated a learning frequency parameter L into proposed MSDE 
(Later experiment section show MSDE is insensitive to this parameter). L will deter-
mine the periodic learning span during the whole search. For every learning span  
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(L generations), the F value that successfully entering next generation will be collected 
in a F value pool. We pool all the successful F value together as a repository of learning 
sample and build a probabilistic model of its value distribution periodically. New F 
values will be generated according to this probabilistic model during the next L gen-
eration hence the value will adapt itself in accordance with different stages of search 
process. We assume F is normal distributed and the mean µm and σm of this distribution 
is dependent on aggregated F value within pool. This normal distribution parameters 
will remain the same for several generations and then a new set of µm and σm is recali-
brated on update generation. An update generation is the generation where µm and σm 
recalculation will be performed. In some rare case where F value pool is empty, F value 
will be generated according to initial distribution N(0.7, 0.3).After each update genera-
tion, the accumulated F value pool will be clear in case of previous outdated learning 
influence, consequently, fi,t will be generated for each individual i  according to, 

 
),(, mmti Nf σμ=

 .                            (4) 

t denote tth generation, µm, σm are mean and standard deviation of aggregated F value in 
previous L learning generations and the initial F value of every individual is generated 
from normal distribution N(0.7, 0.3). Parameter µm, σm will be update at each update 
generation. 

The crossover probability Pr of MSDE will be generated according to 
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 .                           (5) 

the subscript i denote by Pr value is sampled anew for each individual and this will 
generate Pr values which fits well within the range [0,1) [6]. 

4   Experimental Comparison 

4.1   Experimental Setting 

In this section, two well-known self-adaptive DE algorithm Barebones DE and 
Self-adaptive Pareto DE are chosen as competing candidate. No attempt was made to 
tune the MSDE parameters to each problem. The rationale behind this decision is the 
fact that in real-world applications the evaluation time is significant and as such pa-
rameter tuning is usually a time consuming process. 4 Multimodal functions and 1 
unimodal functions are selected for performance assessment. Test function Rosen-
brock,Ackey,Rastrigin, Griewank's function definition and variable X bounds were 
taken from [8],function F9's definition and X bounds came from [9]. Asymmetric  
Initialization method proposed by Angeline [10] is adopted in experiment to avoid 
accidently generating a near-optimum initial solution. The average results of 20  
independent runs with different random seed are summarized in Table 1. 

For all the algorithms used in this section, population size NP=20. All functions 
were implemented in 20 dimensions except for the two-dimensional F9 function. All 
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results are obtained through T=100000 function evaluations except for F9 function 
where T=100000. 

PC Configuration: AMD Phenom II X4 3Ghz processor with 2Gb memory and 
Visual C++ with boost library. 

Parameter Configuration: The learning frequency parameter L of msDE is fixed to 
200 in all the function except for Function F9 where L=50. 

Pr, F in bbDE is generated according to [2]. 
spDE's parameter is set(all the operators dealing with multi-objective functions were 

removed) as to [5] accordingly. 

Table 1. Mean and standard deviation(±SD) of test function optimization result, upper row is 
mean value, lower row is standard deviation 

  Fun. 
 
 

Algo. 

F9 Rastrigin Rosen-
brock 

AckeyF1 Griewank 

-0.9973 0.1492 4.0188 5.596e-015 0 
bbDE 

0.0036 0.3553 1.4026 7.952e-015 0 

-0.9979  6.631e-013  7.9386  3.109e-015 0.0023  
msDE 

0.0034 2.888e-012 1.4701 0 0.0045 

-0.9961  0.049748  1.0734  9.681e-015 0 
spDE 

0.0043 0.216846 1.0147 7.476e-015 0 

 

Fig. 1. Function Rastrigin: fitness value comparison, averaged over 20 runs 
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Fig. 2. Function Rastrigin: F value comparison, averaged over 20 runs 

 

Fig. 3. Function Rastrigin: Pr value comparison, averaged over 20 runs 

Table 1 show that msDE outperform bbDE and spDE on 3 functions out of 5 total 
test functions. MSDE outperform bbDE and spDE on function Rastrigin significantly 
and it also has higher mutation rate than that of bbDE and spDE on the same func-
tion(Fig.3) while bbDE and spDE outperform msDE in unimodal function Rosenbrock 
and multimodal function Griewank.Since Griewank function with high dimensional-
ity( 10≥ ) is unimodal function essentially,we may conclude that msDE's convergent 
rate is slower than that of bbDE and spDE but it has better performance on multimodal 
functions than bbDE and spDE . 

4.2   Impact of Learning Frequency L 

In this section, F9 function and 5 different L values are chosen to illustrate the influence 
of learning frequency L on algorithm performance and the experimental results are 
listed below: 
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Fig. 4. Generational comparison of different L value on Function F9 

Table 2. Mean and standard deviation ( SD) of function F9 optimization result 

Value 
L 

Fitness 
mean std 

F 
mean std 

1 -0.9972 0.0036 0.6620 0.0235 

25 -0.9982 0.0030 0.6195 0.0450 

50 -0.9985 0.0022 0.6162 0.0549 
100 -0.9968 0.0037 0.6792 0.0084 
250 -0.9976 0.0028 0.6791 0.0093 

 
Additional 1 degree freedom two-tailed t-test with confidence level 0.95 show that 

no statistically significant differences between all 5 L values as far as mean of fitness 
(list table above) is concerned. That means MSDE is insensitive to parameter L on 
function F9.Similar result can be observed on other 4 test functions(not listed due to 
space limit).Thus we can conclude that MSDE is relatively insensitive to its learning 
frequency parameter L. 

5   Conclusion 

In this paper we proposed a self-learning MSDE algorithm which sampled appropriate 
F value from a probabilistic model build on previous learning experiences. The per-
formance of proposed algorithm is investigated and compared with other well-known 
self-adaptive algorithms. Preliminary experimental results show MSDE is competitive 
to bbDE and spDE. Moreover, the influence of learning frequency L of MSDE is  
investigated.  

For future work, we intend to further examine convergence rate of MSDE algorithm 
and compared its various performance index to other EA algorithms. 
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Abstract. Differential evolution is a powerful evolution algorithm for optimiza-
tion of real valued and multimodal functions. To accelerate its convergence rate 
and enhance its performance, this paper introduces a top-p-best trigonometric 
mutation strategy and a self-adaptation method for controlling the crossover rate 
( CR ). The performance of the proposed algorithm is investigated on a com-
prehensive set of 13 benchmark functions. Numerical results and statistical 
analysis show that the proposed algorithm boosts the convergence rate yet 
maintaining the robustness of the DE algorithm.  

Keywords: trigonometric differential evolution, differential evolution,  
benchmark function, crossover operation. 

1   Introduction 

Differential evolution[1] has become a popular algorithm for global optimization in 
various fields. It is a simple yet powerful population-based stochastic search technique 
which has shown superior performance not only in benchmark functions  but also in 
real-world application[2]. It has been shown to perform better than genetic algorithm 
(GA)[3], and particle swarm algorithm (PSO)[4] over several benchmarks[5]. In DE, 
there exist many mutation strategies out of which a few can solve some particular 
problems. Moreover, three control parameters involved in DE, i.e., population size NP, 
scale factor F , crossover rate CR , will significantly influence the optimization per-
formance of DE. A lot of research has been focused on these issues which can be found 
in [6]. Experimental parameter study and empirical parameters setting of DE have been 
carried out in [7]. The analysis of relationship between population diversity and control 
parameters have been investigated in [8].  

In [9], Fan and Lampinen proposed a DE variant, namely trigonometric mutation 
differential evolution(TDE), in which, a new local search operation, trigonometric 
mutation, was proposed and embedded into DE. The trigonometric mutation is a rather 
greedy operator which can greatly speed up the convergence rate of DE. However, such 
an operator usually leads to a greedy algorithm prone to converging prematurely into 
local optima. In the TDE algorithm, the parameter tM (trigonometric mutation  
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probability) can maintain good balance between convergence rate and quality of solu-
tions. Therefore, TDE has better convergence rate and can obtain an acceptable solu-
tion over some benchmark functions as well. Fan and Lampinen also point out that the 
trigonometric mutation operation biases the new trial individual strongly in the direc-
tion where the best one among three individuals chosen for the mutation is. In TDE, 
Whether the new trial individual will be prone to the best individual or to the poor 
individual depends on choosing of the donor individuals. If there one donor individual 
comes from the top p % of best individuals, the new trial individual will be prone to 

those individuals, and the population will converge to top p % of the best individuals. 

Thus, the convergence rate will be higher (proved in our experiments). But the modi-
fied trigonometric mutation operator has the danger of making the population converge 
to local optima. To avoid this phenomenon happening, a good number of techniques 
have been proposed to tune the mutation strategy and parameters such as population 
size NP [10] , the scale factor F , and the crossover rate CR [11, 12]. Brest et al. pre-
sented a variant of DE called JDE, using self-adaptive updating strategy of the pa-
rameter F and CR [13]. The simulation results show the JDE has better performance 
than some evolutionary algorithms, like FEP and CEP over 21 benchmark functions. 

In our paper, we introduce a top-p-best trigonometric mutation to DE to speed up the 
convergence process. In this method, one of the donor vectors comes from the top p % 

best individuals. In order to improve the population diversity and avoid trapping in 
local optima, we adopt the random self-adaptive parameter setting strategy of CR [13]. 
Computational experiments and comparisons show that the proposed algorithm per-
forms better than TDE, standard DE and JDE[13], when applied to 13 well-known 
numerical benchmark functions.  

The rest of this paper is organized as follows: the conventional DE, TDE are re-
viewed in sections 2 and 3, respectively; section 4 describes the proposed algorithm; in 
section 5, experimental studies are present; in section 6, finally conclusions are drawn. 

2   Differential Evolution 

There are several variants of DE[1]. In this paper, we shall follow the version of 
DE/rand/1/bin. This particular scheme is described as follows: 

Like any other evolutionary algorithm, DE starts with a population of NP  candidate 
solutions which can be represented as the D-dimensional parameter,  

,X , 1,2,3,...,i G i NP= , where i  index denotes the i th individual of the population, G 

denotes the generation to which the population belongs. NP is the number of members 
in a population. Successive populations are generated by adding the weighted differ-
ence of two randomly selected vectors to a third randomly selected vector. This op-
eration is the mutation operator, and then crossover operator is employed to generate 
new candidate vectors. A selection scheme is employed to determine whether the 
offspring or the parent survives to the next generation. The process is repeated until a 
termination criterion is reached. The details are described as follows.  
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2.1   Mutation 

The mutation operation of DE applies the vector differentials between the randomly 
selected vectors from the population for making a perturbation to the individual subject 
to the mutation operation. At generation G, for the i th target individual ,i GX , the per-

turbed individual ,i GV is generated based on the three randomly selected individuals as 

follows:  

, 1 3, 1, 2,( )i G r G r G r GV X F X X+ = + ∗ −   (1) 

Where }{1 2 31,..., , , , 1,...,i NP r r r NP= ∈ are randomly selected and satisfy: 

[ ]1 2 3 , 0,1r r r i F≠ ≠ ≠ ∈ , where F is the scale factor. 

2.2   Crossover 

The perturbed individual, ( ), 1 1, , 1 , ,G 1,...,i G i G n iV v v+ + +=  and the target population mem-

ber, ( ), 1, , , ,,...,i G i G n i GX x x= , are then subject to crossover operation to generate the 

population of candidate or “trial” vectors, ( ), 1 1, , 1 , , 1,...,i G i G n i GU u u+ + += , as follow:  
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Where { }1,..., , 1,...,j n k n= ∈ is a random parameter’s index, chosen for each i , and the 

crossover rate, [ ]0,1CR∈ , the other control parameter is set by the user. 

2.3   Selection 

The selection operation selects, according to fitness value of the population vector and 
its corresponding trail vector, which vector will become a member of the next genera-
tion. If we have the minimization problem, the following selection rule is used:  
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  (3) 

3   TDE 

In TDE algorithm[9], the trigonometric mutation operation is embedded into the basic 
DE to improve the convergence rate. The main difference between DE and TDE is the  
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way the mutation operation is performed. The trigonometric mutation operation is 
performed according to the following formulation: 

( ) ( ) ( )
( )( ) ( ) ( )

, 1 1, 2, 3, 2 1 1, 2,

3 2 2, 3, 1 3 3, 1,

3

           

i G r G r G r G r G r G

r G r G r G r G

V X X X p p X X

p p X X p p X X

+ = + + + − −

+ − − + − −
  (4) 

Where for 1,2,3i = , 
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f X f X f X
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Thus, the trigonometric mutation operation is a greedy operator that for three given 
points generates an offspring by exploiting the most promising directions. The per-
formance of this operator can offer an exploitative alternative to DE. The trigonometric 
mutation biases the offspring strongly in the optimal directions, so the convergence rate 
will be accelerated. However, such an operator usually leads to the greedy algorithm 
prone to converge prematurely into a local optimum, there need some methods to avoid 
this happen. In TDE, the mutation probability tM is used for this purpose.  

4   Modified Trigonometric DE 

It has shown that TDE has the rapid convergent process because the trigonometric 
mutation is a rather greedy operator, which biases the new trial solution in the direction 
of the best one among three donor individuals. Inspired from this, we assume that if one 
of donor individuals is come from the top p % best individuals within the population, 

the others are from 1- p % members of the population, the new trial vector will con-

verge to top p % individuals, so the convergence rate will be higher. We call this DE 

variant as top-p-best TDE. The following experiments are partly proven our idea. But 
the experiments show that though top-p-best TDE accelerates the convergence rate, the 
population may prematurely lose diversity and converge to the local optima. The pre-
vious statements have been shown that JDE has very strong robustness because of its 
self-adaptive control parameter strategy. Compare with other self-adaptive scheme 
[14], this technique is simple yet effective. We apply this strategy into the crossover 
rate setting of our algorithm to increase the diversity of the population and avoid 
prematurity. For simplicity, we call our algorithm as WDE. The outline of our algo-
rithm as follows:  

(1) Initialize the population, choose F and tM , and determine the initial CR .   

(2) Mutation operation: 
(2.1) Perform p-best-trigonometric mutation with Equation (4) with a probability 

tM (in which, one of the donor individual comes from the top p % best  

individuals of the population). 
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(2.2) Perform original DE’s mutation with Equation (1) with a probability 
(1- tM ). 

(3) Crossover operation:  
   (3.1) update the crossover rate with Equation (6). 
   (3.2) perform the crossover operation with the updated CR . 

(4) Evaluate the population with the object function.  
(5) Selection. 
(6) Repeat step (2) to (5) until the termination criterion is satisfied.  

5   Experimental Studies    

5.1   Experimental Setup  

Experiments were conducted on a set of 13 benchmark functions which are detailed in 
literatures [13] to evaluate the proposed algorithm and three other DE algorithms. For 
functions 1 13f f− , 30-dimensional (30-D) were tested. The maximum number of func-

tion evaluations (FEs) is set to 150 000 for the functions 1 6 10 12 13, , , ,f f f f f , 200 000 for 

function 2 11,f f , 300 000 for 7f , 500 000 for 3 4 9, ,f f f , 900 000 for 8f  and 2000 000 

for 5f . All experiments were run 30 times independently. The population size NP is set 

to 100 for all algorithms. The algorithms in the comparison are listed:  
Standard DE (DE/rand/1/bin): 0.5, 0.9F CR= = ;TDE: 0.5F = , 0.9CR = , 

0.05tM = ; [9]Top-p-best TDE: 0.5, 0.9, 1, 0.05tF CR p M= = = = ; Our algorithm: 

0.5, 0.9, 1, 0.05tF CR p M= = = = ; JDE[13]: 0.5F = , 0.9CR = , 1 20.1, 0.1τ τ= = . 

5.2   Comparison between WDE and Other DE Algorithms 

Table 1 reports the results of 13 benchmark functions over 30 runs. However, it can be 
easily seen that on average the WDE algorithm outperforms all other compared  
algorithms.   

Table 1. Mean and standard deviation of 13 benchmark functions optimization results averaged 
over 30 runs, of WDE, top-p-best TDE, TDE, JDE and DE 

function 
WDE 

Mean Best    Std Dev 
Top-p-best TDE 

Mean Best   Std Dev 
TDE 

Mean Best   Std Dev 
JDE 

Mean Best   Std Dev 
DE 

Mean Best  Std Dev 
1 6.60E-48 1.00E-47 2.40E-52 5.20E-52 2.70E-34 5.90E-34 2.70E-28 2.90E-28 1.20E-13 1.50E-13 
2 3.60E-40 3.30E-40 2.10E-32 1.10E-31 1.70E-28 1.40E-28 1.90E-23 1.30E-23 9.60E-10 5.60E-10 
3 5.70E-20 8.70E-20 3.30E-47 8.90E-47 9.90E-18 3.30E-17 3.90E-05 3.90E-05 5.40E-11 5.20E-11 
4 1.20E-17 2.80E-17 8.50E-04 2.20E-03 5.10E+00 1.70E+00 7.80E-10 4.00E-09 3.60E-01 9.40E-01 
5 0.00E+00 0.00E+00 8.00E-01 1.60E+00 6.60E-01 1.50E+00 2.50E-29 3.20E-29 3.30E-31 1.80E-30 
6 0.00E+00 0.00E+00 6.20E+00 7.10E+00 5.30E-01 1.20E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
7 1.80E-03 4.20E-04 4.10E-03 1.70E-03 2.10E-03 7.30E-04 3.00E-03 8.00E-04 4.70E-03 1.20E-03 
8 -1.30E+04 4.10E+01 -1.10E+04 4.30E+02 -1.20E+04 2.20E+02 -1.30E+04 1.90E-12 -1.20E+04 1.40E+02 
9 0.00E+00 0.00E+00 3.20E+01 7.50E+00 7.20E+00 3.10E+00 0.00E+00 0.00E+00 8.40E+01 3.60E+01 

10 7.40E-15 1.30E-15 1.90E+00 6.00E-01 1.90E-01 3.80E-01 8.30E-15 1.10E-15 1.10E-07 2.40E-08 
11 0.00E+00 0.00E+00 2.00E-02 2.00E-02 3.70E-03 6.40E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
12 1.60E-32 5.60E-48 4.10E-01 5.50E-01 3.50E-03 1.90E-02 8.60E-30 6.00E-30 1.30E-14 1.00E-14 
13 1.30E-32 1.30E-32 8.10E-02 3.90E-01 3.70E-04 2.00E-03 1.90E-28 3.10E-28 9.10E-14 7.00E-14 
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For the unimodal functions 1f , 3f , WDE is surpassed by top-p-best TDE, but per-

forms much better than all other compared algorithms. This shows that top-p-best TDE 
has the faster convergence rate than WDE on some unimodal functions. The smallest 
values of functions 2f , 4f and 5f are produced by WDE. On functions 7 10 12 13, , ,f f f f , the 

WDE algorithm is superior to all other algorithms. On functions 6 8 9 11, , ,f f f f , there is 

almost no significant difference between WDE and JDE, but WDE outperforms other 
compared algorithms. Best results yielded by WDE on functions 7 10 12 13, , ,f f f f . From 

Fig.2, we can observe that the proposed WDE algorithm also performs well on the 
convergence speed. Though the top-p-best TDE has rapid convergence rate on some 
unimodal test functions, it performs poorly on multimodal functions.  
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Fig. 1. Average Fitness comparison on functions 13 9 6 1, , ,f f f f , over 30 runs 

5.3   Discussion on Parameter p   

The parameter p  represents that one of donor individuals comes from top p % best 

individuals of population. In order to study this parameter, we set p to 1,5,10 for several 

benchmark functions. The Fig.2 shows that for test functions 7 2,f f , the mean best 
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values are smallest for 1p = , and when 10p = , the result is worst. However, for func-

tions 10f , the values yielded by the proposed algorithm are no significant difference 

when p is set to 1,5,10. For function 4f , when p is set to 1, 5, the fitness is almost the 

same, but it becomes worse when p is set to 10. It can be observed that WDE is sensi-

tive to p  for some unimodal functions, but insensitive to some multimodal functions.  

From our experiments, we suggest that the proposed algorithm WDE will produce the 
best fitness when p  is set to 1. It means that all individuals will converge to the best 

one when using the trigonometric mutation operation. 
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Fig. 2. Average Fitness when p is set to 1,5,10 respectively on functions 12 7 4 1, , ,f f f f , over 30 

runs 

6   Conclusion  

In this paper, we proposed a new DE variant (WDE) which applied the top-p-best 
trigonometric mutation strategy and the self-adaptation control parameter strategy for 
the crossover rate (CR). The new mutation operation helps in accelerating the con-
vergence rate of the proposed algorithm. And the crossover rate update scheme makes a 
trade-off between the fast convergence rate and trapping in local optima. The proposed 
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algorithm (WDE) shows better convergence performance than other DE variants in our 
test over 13 benchmark functions, which are of low or high dimension, unimodal or 
multimodal, continuous or discontinuous.   
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Abstract. During the past decade, the particle swarm optimization
(PSO) with various versions showed competitiveness on the constrained
optimization problems. In this paper, an improved Gaussian particle
swarm optimization algorithm (GPSO) is proposed to improve the diver-
sity and local search ability of the population. A mutation operator based
on differential evolution (DE) is designed and employed to update the
personal best position of the particle and the global best position of the
population. The purpose is to improve the local search ability of GPSO
and the probability to find the global optima. The regeneration strategy
is employed to update the stagnated particle so as further to improve
the diversity of GPSO. A simple feasibility-based method is employed
to compare the performances of different particles. Simulation results
of three constrained engineering optimization problems demonstrate the
effectiveness of the proposed algorithm.

Keywords: Gaussian particle swarm optimization, differential
evolution, regeneration strategy, feasibility-based comparison method.

1 Introduction

Constrained optimization problems frequently appear in engineering optimiza-
tion, economic, military, network and management science, etc. It is usually dif-
ficult or even impossible for the traditional methods to solve them because they
could not provide the derivative information of the objective function and con-
straints. The evolutionary algorithms (EA) based on population have attracted
much attention because they could find high quality solutions without the deriva-
tive information [1]. As a new branch of EA, the particle swarm optimization
algorithm (PSO) has attracted much attention for its simpleness, efficiency and
robustness [2][3].

There have been many studies for PSO on constrained optimization prob-
lems. Takahama [4][5] introduced the ε-constrained method into PSO so as to
find much better solutions for constrained optimization problems and to improve
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the efficiency and stability of this algorithm. He [6] and Sun [7] suggested the hy-
brid PSO with a feasibility-based rule in order to guide the swarm to the feasible
region quickly. Huang [8] and He [9] introduced the co-evolutionary mechanism
into differential evolution (DE) and PSO so that the solutions and penalty coef-
ficients could evolve interactively and self-adaptively. Liu [10] incorporated DE
into PSO to force the population jump out of stagnation.

Recently, Gaussian particle swarm optimization algorithm (GPSO) has shown
promising results for solving constrained optimization problems [11]. However,
GPSO is weak in the local searching while having high global search ability.
The low local search ability may mislead the swarm from the promising region
and weaken this algorithm’s optimization precision. In this paper, a mutation
operator based on differential evolution (DE) is designed for the personal best
solutions and the global best solution so as to improve the local search ability of
GPSO and find much better solutions for constrained problems. The stagnated
particle is regenerated in order to avoid getting trapped into a local optimum.
The feasibility-based method is employed to compare the performances of dif-
ferent particles so as to find the feasible solution quickly and improve the opti-
mization efficiency. The improved GPSO is employed to solve three engineering
optimization problems to demonstrate its effectiveness.

The remainder of this paper is organized as follows. Section 2 describes the
improved GPSO approach. Section 3 presents the optimal results for three en-
gineering problems to demonstrate the effectiveness of the proposed method.
Section 4 makes concluding remarks and maps out the directions for future
work.

2 The Improved Optimization Algorithm

2.1 Gaussian Particle Swarm Optimization Algorithm

PSO is a population-based, global and stochastic optimization algorithm [12]. It
comprises of two parts: position matrix Z = [zT

1 , · · · , zT
i , · · · , zT

Np
]T and velocity

matrix V = [vT
1 , · · · ,vT

i , · · · ,vT
Np

]T. zi(i ∈ {1, · · · , Np}) represents a potential
solution of the optimization problem. vi represents the modification to solution
zi. “Np” represents the population size. The position matrix Z and velocity
matrix V are randomly initialized in the search space. The search for optimal
position is carried out by moving toward both their own historical best positions
Zp and the population’s historical best position zg.

GPSO was proposed by Krohling with the purpose of improving the con-
vergence ability of the algorithm and avoiding the necessity of tuning many
parameters like the basic PSO [13][14]. The only parameter to be specified by
the user was the number of particles. Each element of the velocity matrix and
position matrix is usually updated by [13][14]:

vi,j (t + 1) = vi,j (t) + |g1|
(
zp

i,j (t)− zi,j (t)
)

+ |g2|
(
zg

j (t)− zi,j (t)
)

(1)
zi,j (t + 1) = zi,j (t) + vi,j (t + 1) (2)
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where i ∈ {1, · · · , Np} is the particle index, j ∈ {1, · · · , n} is the dimension
index, t ∈ {1, · · · , Tmax} is the iteration index, Tmax is the maximum number
of iterations, |g1| and |g2| are the absolute values of random numbers generated
according to the normalized Gaussian distribution N(0, 1).

In this paper, if the variable value vi,j(t+1) and zi,j(t+1) generated by Eq. (1)
and Eq. (2) violates the boundary constraints, they will be randomly regenerated
in the search space of the corresponding variable so that the particles can avoid
being concentrated on the boundary and find the global optimum more easily.

2.2 Differential Evolution Mutation

DE was introduced by Storn and Price to solve the optimization problems in con-
tinuous spaces [15][16]. This algorithm uses one main parent and two supportive
parents to generate a new offspring. By linear combination of three individuals
with certain probability, DE has strong local search ability.

Though GPSO has strong global search ability, its local search ability is weak.
In this paper, a mutation operator based on DE is designed and incorporated
into GPSO to overcome its weakness so as to improve both the precision and ro-
bustness. DE is incorporated into GPSO in the following manner: In the process
of optimization, if there is no improvement to the personal best zp

i or the global
best zg, mutation is applied to zp

i or zg. As a result, a corresponding trail vector
znew is yielded. Then, zp

i or zg is compared with znew, and zp
i or zg would be

replaced by znew if znew wins.
Assuming that zp

i or zg is represented by zold, the rule of generation of the
trial vector znew for DE mutation is as follows:

znew = zp
r1 + F (zp

r2 − zp
r3) (3)

znew
j =

{
znew

j , if rcj ≤ Pm or j = rc

zold
j , otherwise (4)

znew
j =

⎧⎨
⎩

zmin,j , if znew
j < zmin,j

zmax,j , if znew
j > zmax,j

znew
j , otherwise

(5)

where r1 �= r2 �= r3 �= i ∈ {1, · · · , Np}(zold = zp
i ) or r1 �= r2 �= r3 ∈

{1, · · · , Np}(zold = zg) are three distinct random integers, F is a positive real
number that represents the step length which controls the amplification of the
difference vector (zp

r2 − zp
r3), j ∈ {1, · · · , n}, rcj is the uniformly distributed

random number corresponding to the jth variable, Pm ∈ [0, 1] is the mutation
probability which is determined by the user, rc ∈ {1, · · · , n} is a randomly chosen
dimension index which ensures that at least one variable of zold is mutated.

2.3 Regeneration Strategy

In the process of optimization, if zi(t) = zp
i (t) = zg(t), zi(t + 1) will be equal

to zi(t). Then, particle i will stop evolving and we say that it has entered into
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stagnation state. In order to prevent this phenomenon and improve the proba-
bility of the algorithm to find the global optimum, the stagnated particle would
be regenerated randomly in the search space by the following rule:

zi,j(t) = zmin,j + rs(zmax,j − zmin,j) (6)

where rs is the random number uniformly generated in the range of [0,1]. By this
method, the stagnated particle will continue to evolve. Then, the diversity of the
algorithm could be improved and the population will have more probability to
find the global optimum.

2.4 Feasibility-Based Comparison Method

In this paper, the feasibility-based method is employed to compare the perfor-
mances of different solutions. In this method, the objective function and con-
straints are treated separately, and the constraint violation precedes the objective
function. The objective value and the constraints violation value of a potential
solution z can be respectively represented by f(z) and ϕ(z).

Supposing that f(z1)(f(z2)) and ϕ(z1)(ϕ(z2)) are the objective values and
constraint violation values for two compared solutions, the comparison rules for
minimization problems are

– If ϕ(z1) = ϕ(z2) and f(z1) < f(z2), z1 is better than z2.
– If ϕ(z1) < ϕ(z2), z1 is better than z2.

Thus, the objective function needs to be evaluated only when the constraint
violation value of solution z1 is equal to or lower than that of solution z2. The
evaluation of the objective function can often be omitted, and the computation
time could be greatly cut down.

The feasibility-based comparison method has the following features:

– If both solutions are feasible, the one with lower objective value is better.
– Feasible solution is better than infeasible one.
– If both solutions are infeasible and have different constraint violation values,

the one with lower constraint violation value is better.
– If both solutions are infeasible and have equal constraint violation values,

the one with lower objective value is better.

Thus, the feasible solution will be found quickly. The feasible one with higher
objective value will win in the end.

2.5 The Improved Gaussian Particle Swarm Optimization
Algorithm

The framework of the improved GPSO based on DE mutation, the regeneration
strategy and the feasibility-based comparison method (DGPSO) is described as
Fig.1.
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Fig. 1. The framework of DGPSO
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3 Simulation Results for Engineering Optimization
Problems

In this paper, three constrained engineering problems are tested to demonstrate
the effectiveness of the proposed DGPSO. These problems are Himmelblau’s
problem, welded beam design problem and tension string design problem. The
description of these problems were given in [1][6][9] and omitted here due to
limited space. They have been used as benchmark problems for several
population-based methods. Recently, Himmelblau’s problem has been solved by
ε constrained particle swarm optimization (εPSO) [4], the hybrid algorithm of
εPSO and εGA (εPSO-GA) [4], and εPSO with adaptive velocity limit con-
trol (adaptive εPSO) [5]. The welded beam design problem has been solved by
εPSO[4], εPSO-GA [4], adaptive εPSO [5], the hybrid PSO with a feasibility-
based rule and simulation annealing (HPSO) [6], the co-evolutionary DE (CDE)
[8], the co-evolutionary PSO (CPSO) [9], and the hybrid PSO with DE (PSO-
DE) [10]. The tension string design problem has been solved by HPSO [6],
CDE [8], CPSO [9], and PSO-DE [10].

In the present study, DGPSO is used to solve the above engineering problems.
In the simulation, the population size is 30. The step length F is 0.8 [17], and the
mutation rate Pm is 0.8. The maximum iteration Tmax is 2000. 30 independent
runs are performed for each problem.

Table 1∼Table 3 are the comparison of the optimal results. The columns label
Best, Average, Worst and S.D. are the best value, the average value, the worst
value and the standard deviation for the best particle of 30 runs.

Table 1. Comparison of results for Himmelblau’s problem

Algorithm Best Average Worst S.D.

εPSO -31011.9988 -30947.3262 -30762.8890 55.8631
εPSO-GA -31016.8002 -30952.2531 -30855.6951 38.8166

adaptive εPSO -31022.3463 -30990.3279 -30873.6902 55.8631
GPSO -30960.692 -30696.131 -30312.660 158.9262

DGPSO -31025.560 -31025.560 -31025.560 0

Table 2. Comparison of results for welded beam design problem

Algorithm Best Average Worst S.D.

εPSO 1.7258 1.8073 2.1427 0.12
εPSO-GA 1.7268 1.7635 1.9173 0.0463

adaptive εPSO 1.7249 1.7545 1.8558 0.0370
HPSO 1.724852 1.749040 1.814295 0.040049
CDE 1.733461 1.768158 1.824105 0.022194
CPSO 1.724860 1.725015 1.725254 1.1468e-004

PSO-DE 1.7248531 1.7248579 1.7248881 4.1×10−6

GPSO 1.7539490 2.5354191 3.6871943 0.4766
DGPSO 1.7248523 1.7248523 1.7248523 9.0649×10−16
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Table 3. Comparison of results for tension string design problem

Algorithm Best Average Worst S.D.

HPSO 0.0126652 0.0127072 0.0127191 1.5824×10−5

CDE 0.0126702 0.012703 0.012790 2.7×10−5

CPSO 0.012681 0.012931 0.013308 1.5667×10−4

PSO-DE 0.0126652 0.0126653 0.0126653 1.2×10−8

GPSO 0.0126822 0.0146816 0.0177344 1.7484×10−3

DGPSO 0.0126652 0.0126652 0.0126652 1.6457×10−18

Based on the above comparisons, DGPSO showed the best performance for
these three engineering optimization problems. It finds not only the best optima
for all three problems but also very low standard deviation for each problem.
Among the 30 independent runs, the average number of objective function eval-
uations is 37149 with 119742 efficient particles movements for Himmelblau’s
problem, 49285 with 117497 for welded beam design problem, and 49285 with
117497 for tension string design problem. It shows that DGPSO is an efficient
method for locating the global optimum.

4 Conclusions and Future Works

In this paper, an improved Gaussian particle swarm optimization algorithm is
proposed for constrained optimization problems. In order to demonstrate the
effectiveness of the proposed method, it is applied to solve three engineering
problems. Simulation results illustrate that the proposed method is more accu-
rate and robust than the compared algorithms. The number of objective function
evaluations by the proposed method is less than half of that of efficient particles
movements. The computational execute time is greatly cut down, which is very
important for complicated optimization problems.

In the future, DGPSO will be applied to the wind farm micro-siting problem
in a spatially- continuous manner. Selection of the mutation probability will be
an important work for this complicated engineering problem.
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Abstract. Due to their efficiency and adaptability, bio-inspired algorithms have 
shown their usefulness in a wide range of different non-linear optimization 
problems. In this paper, we compare two ways of training an artificial neural 
network (ANN): Particle Swarm Optimization (PSO) and Differential Evolution 
(DE) algorithms. The main contribution of this paper is to show which of these 
two algorithms provides the best accuracy during the learning phase of an 
ANN. First of all, we explain how the ANN training phase could be seen as an 
optimization problem. Then, we explain how PSO and DE could be applied to 
find the best synaptic weights of the ANN. Finally, we perform a comparison 
between PSO and DE approaches when used to train an ANN applied to  
different non-linear problems. 

1   Introduction 

A feed-forward artificial neural network (ANN) is a powerful tool widely used in the 
field of pattern recognition and time series analysis. However, despite their power in 
some practical problems, ANNs cannot reach an optimum performance in several 
non-linear problems. This fact is caused because the parameters, used during learning 
phase such as learning rate, momentum, among others, do not allow computing the 
best set of synaptic weights. In the field of the evolutionary computation, there are 
many algorithms that allow obtaining an optimum (or more) of a specific problem. 
One of these techniques is the Differential Evolution (DE) algorithm, based on the 
classical steps of the Evolutionary Computation. DE performs mutation based on the 
distribution of the solutions in the current population. In this way, search directions 
and possible step-sizes depend on the location of the individuals selected to calculate 
the mutation values. 

On the other hand, the Particle Swarm Optimization (PSO) algorithm is inspired by 
observations of social interaction. PSO operates on a population of particles (that are 
the individuals), evolving them over a number of iterations with the goal of finding a 
solution to an optimization function. This metaphor searches an optimum solution 
based on the self and social experience of the best particle of the population. 
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Several works that use evolutionary strategies for training ANNs have been re-
ported in the literature. For example, in [1], the authors combine PSO and ANNs for 
function approximation. Another application presented in [2] is a PSO-based neural 
network in the analysis of outcomes of construction claims in Hong Kong. Other ex-
amples can be found in [3], [4],  [5], [6],  [7] and  [8]. 

DE algorithm has been less used in this kind of work. For example, Ilonen et al [9], 
propose the learning of an ANN by finding the synaptic weighs through the classical 
DE. Other examples can be found in [10] and [11]. In [12], it shows a large literature 
review where the evolutionary algorithms are used to evolve the synaptic weights. 

In this paper, we compare the accuracy of PSO and DE algorithms during training 
the synaptic weights of ANN when applied to solve different classification problems. 
All of this, in order to determine which algorithm is better in the task of adjusting the 
synaptic weights of an ANN. This comparative is important because these two  
algorithms have got a different scheme each one. The way to manipulate the data for 
doing a new population is the key to find a good solution. The task of training a set of 
synaptic weights for an ANN is an essential aim and using these two algorithms when 
observing the ANN behavior. The aim of this paper is to explain how the neural net-
work training phase could be seen as an optimization problem and how PSO and DE 
could be applied to find the best synaptic weights of the ANN. In the next section, we 
present a basic definition of an ANN. In section 3 basic PSO algorithm functioning is 
explained, while section 4 is devoted for DE algorithm. In section 5, we explain how 
PSO and DE could be applied to find the best synaptic weights of the ANN. In section 
6 we perform a comparison between several ANNs trained by means of PSO and DE 
algorithms, when applied to solve different non-linear problems. In section 7, we  
finally give the conclusions of those experimental results.  

2   Basics on Feed-Forward Neural Networks 

A basic description of an ANN can be: a massively parallel-distributed processor 
made up from simple processing units. This type of processing unit performs in two 
stages: weighted summation and some type of nonlinear function. Each value of an 
input pattern N∈A  is associated with its weight value N∈W , which is normally 
between 0 and 1. Furthermore, the summation function often takes an extra input val-
ue θ  with weight value of 1 to represent threshold or bias of a neuron. The summa-
tion function will be then performed as, 

1

N

i i
i

y f a w θ
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑  

 

(1) 

The sum-of-product value is then passed into the second stage to perform the activa-
tion function ( )f x  which generates the output from the neuron and determines the 

behavior of the neural model. In a multilayer structure the input nodes, which re-
ceived the pattern N∈x , the units in the first hidden layer, then the outputs from the 
first hidden layer are passed to the next layer, and so on until they reach the output 
layer and produce an approximation of the desired output M∈y . 
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 Basically, learning is a process by which the free parameters (i.e., synaptic 
weights W and bias levels θ ) of an ANN are adapted through a continuous process 
using a labeled set of training data made up of p  input-output samples: 

( ){ }, 1, ,N M pξ ξ ξ ξ= ∈ ∈ ∀ =T x d …  
(2) 

where x  is the input pattern and d the desired response. 

Given the training sample ξT , compute the free parameters of the neural network 

so that the actual output ξy of the neural network due to ξx  is close enough to 
ξd for all ξ  in a statistical sense. In this sense, we might use the mean-square error 

given in eq. 3 as the objective function to be minimized: 

( )2

1 1
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(3) 

3   Basics on Particle Swarm Optimization  

PSO algorithm is a method for the optimization of continuous non-linear functions 
proposed by James Kennedy and Russell C. Eberhart. This algorithm is inspired on 
observations of social and collective behavior as well as fish schooling or bird flock-
ing [13]. For example, a population or a flock could be considered as a cumulus of 
particles i  where each particle represents the position 

ix  of a particle in a multidi-

mensional space. These particles (individuals) also represent a possible solution of a 
specific function optimization. According to a velocity function 

iv  which takes into 

account the best position of a particle in a population 
gp  (i.e., social component) as 

well as the own best position of the particle 
ip  (i.e., cognitive component) the parti-

cles will move each iteration to a different position until they reach an optimum posi-
tion. At each time step t , the velocity of a particle i  is updated using 

( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 2 21i i i i g it t c r t t c r t tω+ = + − + −v v p x p x      (4) 

where ω  is the inertia weight and typically setup to vary linearly from 1 to near 0 dur-
ing the course of an iteration run; 

1c  and 
2c  are acceleration coefficients; ( )1 0,1r U∼  

and ( )2 0,1r U∼  are uniformly distributed random numbers in the range ( )0,1 . The 

velocity iv  is limited to the range [ ]min max,v v . Updating the velocity in this way en-

ables the particle i   to search around its individual best position 
ip , and the global 

best position 
gp .  Based on the updated velocities, the new position of the particle i  is 

computed using 

( ) ( ) ( )1 1i i it t t+ = + +x x v .     (5) 
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Finally, this optimum position will be the solution which maximizes or minimizes an 
objective function. 

The basic PSO algorithm for the real version could be performed as follows:  
 

Given a population of , 1, ,D
i i M∈ =x …  individuals 

1) Initialize the population at random 
2) Until a stop criterion is reached: 

a) For each individual 
ix  evaluate their fitness. 

b) For each individual i , update its best position ip . 

c) From all individual i , update the best individual 
gp . 

d) For each individual i , compute the velocity update equation 

( )1i t +v and then compute the current position ( )1i t +x .  

4   Basics on Differential Evolution  

In 1995 an adaptive and efficient scheme emerged: Differential Evolution algorithm, 
proposed by Kenneth Price and Rainer Storn, useful for Global Optimization over 
continuous spaces [14]. With this precedent, it was opened a new optimization tech-
nique in Evolutionary Computation. Due to its exploration capacity over a search 
space of a given problem, the DE algorithm avoids staying in a local optimum. It has 
few parameters and it converges to the optimum faster than others evolutionary tech-
niques (the solution’s representation is given by vectors of real numbers). All these 
characteristics convert DE into an excellent optimization algorithm of a complex, 
non-differential and non-continuous problems.  

The pseudo code of “DE/rand/1/bin” is shown in the next algorithm adapted from 
[15]. 

1. Randomly select two vectors from the current generation. 
2. Use these two vectors to compute a difference vector. 
3. Multiply the difference vector by weighting factor F. 
4. Form the new trial vector by adding the weighted difference vec-

tor to a third vector randomly selected from the current popula-
tion. 

5   Evolving the Synaptic Weights of an ANN Using PSO and DE  

In this section, we describe how given a set of patterns T , the synaptic weights of an 
ANN can be automatically adjusted by means of a basic PSO and DE. The architec-
ture of the ANN has to be previously defined because we only evolve the synaptic 
weights and the architecture must be static. The synapses weights of the ANN are co-
dified based on a vector that represents a graph x . The vector is a solution composed 
with the set of synaptic weights k

jiw ,
 between neuron i  and neuron j  that belongs to 

the layer k , until a maximum number of neurons MNN. This vector represents an  
individual (particle or solution) of the population that will be evolved by PSO. The 
individual (see Fig. 1) has a set of values that change with respect to time and each 



 Evolving Neural Networks 451 

individual is evaluated in the fitness function in order to calculate the minimum 
square error generated by the ANN which maximizes the performance. The individual 
whose weights provoke the minimum value of the MSE will be the best solution for 
the trained ANN. This individual’s representation is used by the two algorithms: PSO 
and DE. 

 

Fig. 1. Representation of an individual composed of a set of synaptic weights 

Due to we are working with predefined feed-forward architectures, the fitness 
function which measures the performance of an individual is given by eq. 3 where the 
output 

iy  of the ANN is computed by means of equation 1. 

6   Experimental Results  

In order to evaluate the accuracy of the PSO and DE algorithms, several experiments 
were performed. Three well-known data-sets were taken from the UCI machine learn-
ing benchmark repository [16] to test the algorithms: iris plant, wine and breast cancer 
datasets. Also a real object recognition problem composed of 100 images of five  
different objects was used. 

All datasets were randomly partitioned into two sets: 50% for the training data and 
50% for the testing data. The input features of all data set were rescaled in a range be-
tween [ ]0,1  and the outputs were encoded by a winner-take-all representation. There 

are two conditions for the algorithm to stop: when it achieves the total number of gen-
erations, and when the algorithm achieves a 101 10MSE −= × . This last condition can 
be replaced using a validation set.  

Before starting with the experiments, we defined the parameters of the three algo-
rithms. For the case of the basic PSO algorithm, the population size M was set to 50, 
the number of generations was set to 4000, the initial position of the particles was in 
the range [ ]40,40− , velocity range [ ]2,2− , 0.729ω = , 

1 2 2c c= = . For the case of the 

basic DE algorithm, the population size 50NP = , number of generations was set to 
4000, the population was initialized in the range [ ]40,40− , 0.9CR = , and 

[0.3,0.7]F rand= . 

These parameters were set to the same value for all the experiments according to 
the literature (

1 2, ,c cω , F  and CR ). The others were defined by means of our criteria 
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and considering the limits of the numeric representations in the computer. The veloc-
ity range is different from 0  and not so big, in order to obtain possible directions 
without big displacements that can affect particle’s movement. Before starting to 
evolve the synaptic weights, it was necessary to determine the architecture of the 
ANN. In this case, we decided to use an ANN with three layers: the input, the output 
and one hidden layer compose of five neurons. 

Ten experiments for each dataset were performed to measure the accuracy of the 
proposed method. Figs. 2 and 3 show the percentage of recognition achieved with the 
ANN applied to solve the four problems by means of PSO and DE. The two algo-
rithms found the best sets of synaptic weights that minimized the MSE of the ANN. 
After that, the classification error (CER) was calculated. 

Fig. 2 shows the accuracy of the ANN trained with the PSO algorithm. As it can be 
observed from this figure, the best recognition percentages were achieved for the Iris 
plant and for the breast cancer data set, see Fig. 2 (a) and (c) respectively. For the case 
of the object recognition problem using PSO, the percentage of recognition was not as 
good as desired (Fig. 2 (d)). Furthermore, for the case of the wine data set, the  
percentage of recognition achieved by the ANN was the worst. 

 

(a) (b) 

(c) (d) 

Fig. 2. Accuracy of the ANN using PSO algorithm. (a)Iris plant data set. (b)Wine data set. 
(c)Breast cancer data set. (d)Real object recognition data set. 

Fig. 3 shows the accuracy of the ANN trained with the DE algorithm. Using this 
algorithm we can appreciate that the percentage of recognition for all the data sets 
was much better than the results obtained by PSO algorithm. Besides this, for the real 
object recognition problem, see Fig. 3(d), DE algorithm could obtain a percentage of 
recognition over the 90% in comparison with other results (Fig.3 (a), (b) and (c)). In 
addition to this, from Table 1 the reader can appreciate the average classification error 
(CER) for all experimental results just as the standard deviation for training phase and 
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testing phase. The results show that the best technique for evolving the synaptic 
weights of an ANN was the DE algorithm. This could be due to PSO algorithm has 
more parameters to tune than DE algorithm. 

  

(a) (b) 

(c) (d) 

Fig. 3. Accuracy of the ANN using DE algorithm. (a)Iris plant data set. (b)Wine data set. 
(c)Breast cancer data set. (d)Real object recognition data set. 

Table 1. Average and standard deviation applying the CER 

Data base PSO algorithm DE algorithm 

 Tr. Er. Te. Er. Tr. Er. Te. Er. 
Iris plant  0.072 ± 0.124        0.116 ± 0.130 0.004 ± 0.006 0.058± 0.026 

Wine 0.589 ± 0.026 0.612 ± 0.026 0 ± 0 0.047 ±  0.021 
Breast Cancer 0.014 ± 0.026 0.037 ±  0.008 0.013 ±  0.015 0.032 ±  0.017 

Object Recognition  0.424 ± 0.086 0.482 ±  0.094 0.156 ±  0.074     0.2 ±  0.092 

Tr. Er = Training Error, Te. Er. = Testing Error. 

7   Conclusions  

In this paper, we compared two powerful bio-inspired algorithms in order to deter-
mine which one is more suitable to train an ANN: PSO and DE. This is very impor-
tant because the training of an ANN is one of the keys issues to obtain a good gener-
alization, and it is necessary to know the behavior of the evolutionary algorithms in 
the basic design of an ANN. 

We explained in detail how the ANN’s training phase could be seen as an optimi-
zation problem. Then, it was explained how PSO and DE could be applied to find the 
optimal synaptic weights of the neural network. Finally, we performed a comparison 
between a neural network trained with the PSO and DE algorithms, when applied to 
solve different non-linear pattern classification problems. 
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Through several experiments, we observed that DE algorithm was better in search-
ing the best set of synaptic weights. This does not mean that PSO is not useful in this 
task, but it requires to determine the best set of parameters that improve its perform-
ance. For future woks, we need to test the experimentation applying PSO algorithm 
with neighborhoods due to this improvement avoid to be trapped in a local minimums.  
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Abstract. In the last few years bio-inspired neural networks have interested an 
increasing number of researchers. In this paper, a novel approach is proposed to 
solve the problem of identifying the topology and parameters in Hindmarsh-
Rose-neuron networks. The approach introduces generalized extremal optimiza-
tion (GEO), a relatively new heuristic algorithm derived from co-evolution to 
solve the identification problem. Simulation results show that the proposed  
approach compares favorably with other heuristic algorithms based methods in 
existing literatures with smaller estimation errors. And it presents satisfying  
results even with noisy data. 

Keywords: biological neural network (BNN), identification, generalized  
extremal optimization (GEO), co-evolution method. 

1   Introduction 

In recent years, biological neural network (BNN) has aroused increasing interests 
among researchers in various fields. One of the popular emulations of BNN gives 
birth to the well-known artificial neural network (ANN), with a mimic of neuron 
system consisted of individual neurons synaptically coupled, and its application in 
pattern recognition, artificial intelligence etc. is enormous. The complexity of BNN is 
governed by neural dynamics as well as network structure. For instance, the topology 
has an impact on network synchronization and learning dynamics [1], [2], [3], hence 
the identification of BNN is a challenging task that receives much attention. Among 
many neuron models present [4], this paper focuses on Hindmarsh-Rose (HR) neuron 
model for its popularity in researches [5].  

Generally there are two major approaches under the framework of synchronization 
towards the identification of HR-neuron networks in the last few decades. In electrical 
coupling networks, adaptive observers are applied to identify the topology [6]. And in 
synaptic coupling networks, since the complexity of the problem lies in its non-linear 
nature of synaptic coupling dynamics, many heuristic-based optimization algorithms 
are applied. In previous literatures, genetic algorithm (GA), jumping gene GA 
(JGGA), simulated annealing (SA), and tabu search (TS) are used, where JGGA out-
performs the other three with better estimation results [7], [8]. 
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In this paper, a novel approach is proposed to solve the identification problem in 
synaptic coupling HR-neuron networks. Firstly, a decoupled formation of the problem 
is given. And then it is solved by generalized extremal optimization (GEO) [9]. GEO 
is a method derived from co-evolution [10] and is inspired by Bak-Sneppen model 
that emulates natural selection mechanism [11]. The experimental results show that 
the proposed approach achieves better performance than those in previous literatures. 

The paper is organized as follows. In Section 2, the preliminaries and problem 
formation are introduced. In Section 3, the detailed application of GEO is explained. 
In Section 4, experimental results are presented. Finally, conclusions are given. 

2   Problem Description 

2.1   Preliminaries 

A neuron is an electric-excitable cell which transmits information via electrical and 
chemical signaling. The signaling process takes place in synapses, where signals from 
the axon of one neuron pass to a dendrite of another. When membrane potential 
changes, action potential travels along the axon of a neuron. The HR neuron model 
[5] was originally proposed to modify the membrane potential of a neuron. Fig.1 
shows an example of membrane potential dynamics of HR neuron model. 
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Fig. 1. Dynamics of membrane potential of HR-neuron model 

 Neurons coupled together to form neuron networks of different scales. In an N-
neuron synaptic coupling network, the evolution dynamics of the i -th neuron is gov-
erned by a system of nonlinear ODEs [2], [7]:  
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Where ( )ix t  is the variable for membrane potential, ( )iy t  and ( )iz t  are the spiking 

and bursting variables measuring the rate of transportation in fast and slow ion chan-

nels respectively. sg  is coupling strength, sV  , v and sθ  are free parameters modify-

ing synaptic coupling. And ijh  are binary elements of connectivity matrix H , 

with 0iih = ; 1ij jih h= =  indicating a coupling between neuron i  and j , and 0 

otherwise. Explicit expressions of those functions in (1) are shown in (2): 
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,
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x i i i i i i i i

y i i i i i i i

z i i i i i i i i

V i i s

v x
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f x y z a x x y z

f x y z a x y

f x y z b x c z

x x V

x e θ
θ

α
μ

σ

γ − −

= − − −

= + −

= + −
= − −

= +

                                 (2) 

2.2   Problem Formation 

As it is suggested [7], [8], assume that the time series of each neuron’s membrane 

potential { ( )}ix t  are available, and all other parameters are known except for con-

nectivity matrix { }ijh  and { }iα  of each neuron. According to [6], [7], [8], a syn-

chronization-based observer is adopted for network identification, where k  is the 
feedback gain. 

 

2 3 *
1 ,

* 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ( ) ( ) ( ) ( )

ˆ ˆ ˆ( ) ( )

ˆˆ ˆ( ) ( )

s s

N
i i i i i i s j ij V i v j i i

i i i i i

i i i i i i

x t a x x y z g h x x k x x

y t a x y

z t b x c z

θσ γ

α

μ

=
⎧ = − − − + − −
⎪⎪ = + −⎨
⎪ = + −⎪⎩

∑
     (3) 

Therefore, the identification can be formed into a minimization problem [7], [8]: 

* *

2

,
ˆmin ( ( ) ( ))

ij i
i i

h i t

x t x t
α

−∑∑                                            (4) 

If ˆ{ }jx  is replaced by available data { ( )}jx t  and when objective function value 

reaches optima zero, it indicates 
*
ij ijh h=  , *

i iα α= , and the following decoupled 

optimization problem for each neuron i  is also minimized to zero.  

 
* *

2

,
ˆmin ( ( ) ( ))

ij i
i i

h t

x t x t
α

−∑                                               (5) 
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In order to evaluate optimization results, define topology estimation error tope , and 

parameter estimation error pare  as suggested in [7], [8]. When correct topology and 

parameters are obtained, both of the errors are minimized and equal to zero. 

 *| |top ij ij
i j

e h h= −∑∑                                                     (6) 

 *| |par i i
i

e α α= −∑                                                         (7) 

3   Methodology 

3.1   Solution Encoding 

The population of coded solution of the GEO metaheuristic to solve the N-neuron 
network identification problem is composed of N binary strings, each with m N+  

bits, where m bits is the differential encoding of iα  meeting accuracy requirements, 

and N bits is the encoding of ijh  with respect to neuron i , and iih  is fixed 0 . Fig.2 

shows an example of solution encoding. 

 

Fig. 2. Solution encoding 

3.2   Identification Using GEO Metaheuristic 

Extremal optimization (EO) is inspired by biological evolutionary Bak-Sneppen 
model [10], [12], which mimics natural selection by assigning each species a ‘fitness’ 
for its adaptability, and mutating the one with the lowest ‘fitness’ at each update. The 
extension of EO proposed by de Sousa and Ramos [9] is called Generalized Extremal 
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Optimization (GEO). Instead of always replacing the least-fit species, it generates a list 
of probabilities with power-law distribution, as the observed characteristics in self-
organized criticality (SOC) in natural system [13], [14], to demonstrate the likelihood 
of mutation for each species. The power-law distribution has the following form. 

 i iP m τ−=                                                            (8) 

Where iP  is the mutation probability for i -th species (bit), im  is the ranking of the 

corresponding species (bit) related to ‘fitness’, the higher the ‘fitness’, the less prob-
ability of mutation, and τ is a positive adjustable parameter. Whenτ →∞ , the algo-

rithm performs a deterministic search. When 0τ → , the algorithm conducts a random 
search [15]. The GEO algorithm is simple for it has only one parameter τ  to adjust, 
yet very effective, for it exhibits strong search ability due to its non-equilibrium nature 
[13]. A step description of applying GEO heuristic to the problem is listed below. 

1. Initializing N  binary strings each with m N+  bits randomly, where m bits 

should be the coding of iα , and N is the number of neurons in the network. 

2. Set the current configuration C  and its objective function value V  as the best, 

bestC  and bestV  respectively. 

3. For each binary string iS , do, 

─ For every bit in the string, flip one bit at a time to acquire a new configuration 

tempiC  and assign its objective function value tempiV  to the bit according to (5), 

and flip it back as the original before flip anther.  

─ Set fitness to each bit in the configuration iC  of string iS  with respect to its 

objective function values. Lower fitness indicates a relative loss in the corre-
sponding objective function value mutating the bit in a minimization problem.  

─ Perform sorting according to bit fitness, the lower the fitness the higher the rank, 
the bits with equal fitness are ranked randomly. Then flip the corresponding bit 

with probability given by (8), and generate a new configuration newiC  for string 

iS  and its objective function value newiV  according to (5). 

─ Update i newiC C= , and i newiV V= . 

─ If newi iV V<  for minimization problem, update besti newiC C=  , besti newiV V= . 

4. Consolidate iC  and iV  of each binary string iS  into C  and V  and update bestC  

and bestV  accordingly. 

5. If termination condition is not satisfied (e.g. maximum iteration is not reached), 
repeat step 3 and step 4. 

6. Feasibility checks for output, if not feasible, discard it and go to step 1. 

7. Output bestC  and bestV . 
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4   Simulation 

4.1   The Parameters 

In the simulation, we use the same parameters and test network as suggested in [7], 
[8]. The parameters are: 2.8a = , 9b = , 5c = , [0.35, 2.90]α ∈ , 0.001μ = , 

10v = , 0.25sθ = − , 2sV = , and 0.34sg = . We set: 8m = , 8N = , and GEO 

algorithm parameters: 1.5τ = , 120maximumiteration = . The 8-HR-neuron test 

network is shown in Fig.3. 

4.2   The Results 

In the simulation, the average results are given on the basis of 30 independent runs.  

In Fig.4, pare  and tope  against iteration by 30 independent runs are shown. 

 

Fig. 3. An example of 8-HR-neuron network as test network 
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Fig. 4. Estimation errors pare  and tope  against iteration 
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Fig.4. shows that at the beginning, some estimation errors exist because the initial 
configuration is random. And then the estimation errors converge to a relatively small 
value. Also, the parameter estimation errors present a slightly faster convergence than 
topology estimation errors. Overall, both of the parameter and topology estimation 
errors decrease against iteration, and the topology estimation errors of the 30 runs all 
converge to 0, indicating that correct topology can be found. However, small estima-

tion errors pare  may still occur in the final results, which are expected to be improved 

by increasing the number of iterations. 
In order to fully evaluate the performance of the proposed GEO-based method, a 

comparison with other heuristic-algorithm-based approaches to the same problem is 
presented in Tab.1, where those algorithms include GA, JGGA, SA and TS as sug-
gested in [8].  

Table 1. The performance comparision (The performance data of GA, JGGA,SA and TS are 
obtained from [8]) 

Algorithms Average tope  Average pare  

GEO based method 0 0.029 
GA 0 0.191 

JGGA 0 0.164 
SA 0 0.191 
TS 0 0.171 

The results shown in Tab. 1 demonstrate a competitive performance of the pro-

posed method with smaller pare , and all the methods can obtain the network topology 

correctly. The effectiveness of the proposed method is due to the combination of 
decoupled problem formation which reduces the searching space, and the strong 
search and hill-climbing ability of GEO algorithm. However, the GEO evaluate more 
candidate solutions, since it performs evaluation every time when assigns fitness to 
each bit in the configurations. 

While in most real life cases, the observable data { ( )}ix t  are usually acquired 

with noises. The noisy-data model is shown in (9), where ( )ix t′  is the data without 

noise, ( )ix t  is the data acquired, and ( )tω  is a zero-mean Gaussian White Noise. 

( ) ( ) ( )i ix t x t tω′= +                                                      (9) 

The noisy-data model is used to evaluate the robustness of the proposed method. The 
performance of the method under different data noise levels are shown in Tab. 2. 

As it is shown in Tab. 2, the average parameter estimation error increases, as the 
data noise level increases, this indicates that data noises have some influence on the 
identification results. Intuitively, noise may contaminate data, which makes it hard to 
recover information from it. However, the average parameter estimation errors are 
still relatively small, and the topology of the network can be obtained. 
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Table 2. The performance with noisy data  

Signal to Noise Ratio (SNR) Noise Level Average tope  Average pare  

100dB ~0% 0 0.029 
26dB 5% 0 0.045 
20dB 10% 0 0.117 

5   Conclusions 

In this paper, a novel approach of identifying topology and parameters in HR-neuron 
networks is proposed. The approach incorporates GEO, a relatively new evolutionary 
metaheuristic, to solve the identification problem. By comparing with other heuristic-
based approaches in recent literatures, the experiments demonstrate that the proposed 
approach presents more accurate results, and it performs well even if the observa-
tional data have up to 10% noise levels. Since in real cases, data are usually acquired 
with noises, therefore the robustness of the approach may lead it to more practical 
BNN-identification applications. 
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Abstract. In this paper, the delay-dependent stability problem for a class of 
neural networks of neutral-type with interval time-varying delays and nonlinear 
perturbations is investigated. A novel stability criterion is obtained in terms of 
linear matrix inequality (LMI) by employing a Lyapunov-Krasovskii functional. 
The proposed criteria can be checked easily by the LMI Control Toolbox in 
Matlab. In addition, two examples are given to show the effectiveness of the  
obtained result.  

Keywords: Delay-dependent stability, Neural networks, Neutral-type, 
Lyapunov-Krasovskii functional, Nonlinear perturbations. 

1   Introduction 

Over the past decade, there has been a growing interest in the problem of exponential 
stability or asymptotic stability for neural networks with time delays. Time delays are 
often the sources of instability and encountered in various neural networks such as Hop-
field neural networks, Cellular neural networks, Cohen-Grossberg neural networks. 
Therefore, stability criteria for neural networks with time delays have been attracted the 
attention of many researchers [1-12]. It is northing noting that the existing stability 
criteria can be classified into two categories: delay-independent stability and delay-
dependent stability, and the latter are less conservative than the former. In recent years, 
there are some research issues about neural networks of neutral-type with (or neutral 
type neural networks) time delays in [13-17], where [15-17] considered the delay-
dependent global stability results for neural networks of neutral-type with time delays.  

On the other hand, the range of time-varying delay for neural networks of neutral-
type considered in [18-19] is from zero to an upper bound. In the real world, a  
time-varying interval delay is often encountered, that is, the range of delay varies in an 
interval for which the lower bound is not restricted to zero. For example, based on the 
Lyapunov-Krasovkii functional theory and the LMI method, a novel delay-dependent 
global asymptotic stability criterion neutral type neural networks with interval time-
varying delays was studied in [19]. Very recently, the problem of robust stability 
analysis for uncertain neural networks of neutral-type is considered by some research-
ers. Some useful stability conditions have been established in [20-21]. However, most 
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of the obtained results are based on restricting norm-bounded for parameter uncertain-
ties. So far, the robust asymptotic stability problem has not been touched for neural 
networks of neutral-type with nonlinear perturbations, which is still open problem.  

Based on the above discussion, the objective of this paper is to investigate the as-
ymptotic stability criteria for neural networks of neutral-type with internal time-
varying delays and nonlinear perturbations. For this purpose, the Lyapunov functional 
method is taken in our study. Finally, two numerical examples are given to demon-
strate the applicability of the proposed stability criteria. 

Notations: The following notations will be used throughout this paper. For a real 
square matrix X , the notation 0X ≥ (respectively, 0X > ), means that X is positive 
semi-definite (respectively, positive definite); nℜ  and n n×ℜ denote the n-dimensional 
Euclidean space and the set of all n n× real matrices, respectively; The super-
scripts " "T and "-1" stand for matrix transposition and matrix inverse, respectively; The 
shorthand { }1 2diag , ,..., nX X X denotes a block diagonal matrix with diagonal blocks 

being the matrices 1 2, ,..., nX X X ; The notation∗  always denotes the symmetric block in 

one symmetric matrix. 

2   Problem Statement 

Consider the following neural networks of neutral-type with time-varying delays and 
nonlinear perturbations:  

1 2 3

2

( ) ( ) ( ( )) ( ( ( )) ( ( ))

( , ( )) ( , ( ( ))) ( , ( ( ))),

( ) ( ), ( ) ( ), [ ,0],

x t Ax t Bf x t Cf x t t Dx t t

f t x t f t x t t f t x t t

x x

τ τ
τ τ

θ ϑ θ θ δ θ θ τ

= − + + − + −⎧
⎪ + + − + −⎨
⎪ = = ∀ ∈ −⎩

                        (1) 

where [ ]1 2( ) ( ), ( ),..., ( )
T n

nx t x t x t x t= ∈ℜ  is the state vector, , , , n nA B C D ×∈ℜ are constant 

matrices with appropriate dimensions, [ ]1 1 2 2( ( )) ( ( )), ( ( )),..., ( ( ))
T n

n nf x t f x t f x t f x t= ∈ℜ  is 

the neuron activation function vector. ( )tτ is a time-varying delay, and it is assumed to 
satisfy 

1 20 ( ) , ( ) 1,dt tτ τ τ τ τ≤ ≤ ≤ ≤ <                                            (2) 

where 1 2,τ τ and dτ are constants. ( )ϑ θ and ( )δ θ are the initial condition functions that are 

continuously differentiable of 2[ ,0]τ− , 1 2 3( , ( )), ( , ( ( ))), ( , ( ( ))),f t x t f t x t t f t x t tτ τ− −  are un-

known nonlinear perturbations. They satisfy that 1 2 3( ,0) ( ,0) ( ,0) 0f t f t f t= = = , and  

2
1 1

2
2 2

2
3 3
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( , ( ( ))) ( , ( ( ))) ( ( )) ( ( )),

( , ( ( ))) ( , ( ( ))) ( ( )) ( ( )),

T T

T T

T T
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f t x t t f t x t t x t t x t t

f t x t t f t x t t x t t x t t

α
τ τ β τ τ
τ τ γ τ τ

≤

− − ≤ − −

− − ≤ − −                   

 (3) 

where 0, 0α β≥ ≥ and 0γ ≥ are given constants, for the sake of simplicity, the follow-
ing notations are adopted: 

1 1 2 3: ( , ( )), : ( , ( ( ))), : ( , ( ( ))).f f t x t f f t x t t f f t x t tτ τ= = − = −  

Then, system (1) can be re-written as 
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1 2 3

2

( ) ( ) ( ( )) ( ( ( )) ( ( )) ,

( ) ( ), ( ) ( ), [ ,0].

x t Ax t Bf x t Cf x t t Dx t t f f f

x x

τ τ
θ ϑ θ θ δ θ θ τ
= − + + − + − + + +⎧

⎨ = = ∀ ∈ −⎩
           (4) 

The following lemmas are useful in deriving the criterion. 

Lemma 1. For any constant matrix 0M > , any scalars a and b with a b< , and a vector 
function ( ) :[ , ] nx t a b →ℜ  such that the integrals concerned as well defined, the follow-
ing holds 

( ) ( ) ( ) ( ) ( ) .
Tb b b

T

a a a
x s ds M x s ds b a x s Mx s ds⎡ ⎤ ⎡ ⎤ ≤ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ ∫

                           
 (5) 

Lemma 2(Schur complement). Given constant matrix 1,M 2M  and 3M  with appropri-

ate dimensions, where 1 1
TM M= and 2 2 0,TM M= > then 1

1 3 2 3 0TM M M M−+ <  if and only if 

2 31 3

12

0 or 0.
**

T M MM M

MM

−⎡ ⎤ ⎡ ⎤
< <⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

                                    (6) 

3   Main Result and Its Proof  

In this section, a novel delay-dependent stability criterion for the system (4) is derived 
in terms of LMI. 

Theorem 1. For given scalars 1 2,τ τ and dτ , system (4) is asymptotically stable, if there 

exist matrices 0,P > 0, 1,2,3,T
j jQ Q j= > = 0, 1,2,3,T

j jR R j= > = , 1,2,iZ i =  a diagonal 

matrix 0,K > and positive scalars 0, 1,2,3i iε > = such that the following LMI holds: 

1 2 3 4
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Proof: Consider the following lyapunov-krasoskill functional for system (4) as fol-
lows 

1 2 3 4( ) ( ) ( ) ( ) ( ),V t V t V t V t V t= + + +                                               (8) 
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The time derivative of ( )V t along the trajectory of system (4) is 

1 2 3 4( ) ( ) ( ) ( ) ( ),V t V t V t V t V t= + + +                                           (9) 
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By using Lemma 1, one can get 
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From (3), one can obtain for any scalars 1 20, 0ε ε> > and 3 0.ε >  
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Then, combining (10)-(17), one can obtain that  
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and 
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Notice the fact that 0Ω < is equivalent to the LMI (7) by Lemma 2 (Schur comple-

ments). Thus, 2
( ) ( )V t x tλ< − for a sufficiently small 0λ > . This ensures the global 

asymptotic stability of the considered system (4) with condition (2), which concludes 
the proof. 

4   Numerical Examples 

To illustrate the effectiveness of the theory developed in this paper, two numerical 
examples are proposed as follows: 

Example 1. Consider a two-neuron neural network of neutral-type (4) with the fol-
lowing parameters: 

2 0.1 0.7 0.2 1.2 1.1 0.1 0
, , , ,

0.1 2 0.2 1.2 0.1 0.8 0 0.1

0.1, 0.08, 0.09.
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= = =

 

By applying Theorem 1, one can see that the system (4) is asymptotically stable 
for 20 ( ) =0.7599.tτ τ< ≤  

Let 1 2=0, =0.7599, =0dτ τ τ , by applying Theorem 1, there exists a feasible solution 

which guarantees the asymptotic stability of system (4): 
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. 
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Example 2. Consider the following three-neuron delayed neural network of neutral-
type given in (4) with the following parameters: 

1.2 0.1 0.2 -0.2 -0.1 0

0.1 0.6 0.1 , 0.1 -0.3 -0.2 ,

0.2 0.1 0.7 -0.2 0.1 -0.12
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= = = 2, ( ) 0.14 0.14sin( ).t tτ = +

 

Let 1 20.14, 0.28, 0.14dτ τ τ= = = . By applying Theorem 1, there exists a feasible solution 

which guarantees the asymptotic stability of system (4) as follows: 
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5   Conclusion 

A novel delay-dependent global asymptotic stability criterion for neural networks of 
neutral-type with interval time-varying delays and nonlinear perturbations has been 
provided. The new sufficient criterion has been presented in terms of LMI. The result 
is obtained based on the Lyapunov-Krasovskii method. The validity of the proposed 
approach has been demonstrated by two numerical examples.   
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Application of Generalized Chebyshev Neural

Network in Air Quality Prediction
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Abstract. Air pollution time series is often characterized as chaotic in
nature. The prediction using traditional statistical techniques and ar-
tificial neural network with back-propagation (BP) algorithm, which is
most widely applied, do not give reliable prediction results. The new al-
gorithm is therefore proposed to predict the chaotic time series based
on the generalized Chebyshev neural network technique. In addition, the
new algorithm has no problems such as local minima, slow convergence
arising from the steepest descent-like algorithm. Finally, to illustrate the
power of the Chebyshev Neural Network (CNN), a simulation example
is presented to show good performance that extracts useful information
from the weight functions for understanding relations inherent in the
given patterns, and the trained CNN has good performance both on
generalization and calculating precision.

Keywords: artificial neural network, Chebyshev polynomial, air quality
prediction.

1 Introduction

More and more people today are paying attention to environmental quality, and
numerous air environment studies have been carried out in various countries([1-
3]). As a result, the air environmental quality should become an important issue
of public interest. The prediction of air quality has become an important task
due to its impact on human health, vegetation and environment. The common
techniques applied in the literature to predict the air pollutant concentration
are Box-Tenkis methods, transfer function models, regression techniques and
ANNs ([3-5]). These techniques are either univariate or multivariate in nature.
If the data on input variables are not available, univariate techniques are most
preferable. Recently, the air pollution time series is characterized as chaotic
in several research studies ([6,7]). The chaotic behavior is observed due to the
interaction of air pollutants with many external variables such as meteorology.
A common practice to predict the chaotic time series is by reconstructing the
phase space of the system using delay space embedding given as

Xt = (xt, xt−τ , xt−2τ , · · · , xt−(n−1)τ ), (1)

Y. Tan et al. (Eds.): ICSI 2011, Part I, LNCS 6728, pp. 472–479, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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where Xt denotes the reconstructed state space vector for the tth state, xt, t =
1, 2, · · · , m is the observed time series, τ denotes the day time lag and n is the
embedding dimension of the dynamical system.

Takes (1981) using the embedded theorem showed that a functional map exist
that provides the next step predictions using the nonlinear predictive model

x(t + 1) = F (x(t)). (2)

Due to the nonlinear mapping capabilities and generalization abilities, multi-
layer perceptrons (MLPs) seem to be the appropriate choice for approximating
this function ([8]). Several studies contribute towards this aspect showing the
capabilities of MLPs in predicting the chaotic time series ([8,9]). This generally
happens due to the fact that two chaotic time series can be similar point wise,
but be produced by the different dynamical system or vice versa ([9]).

In this paper, a new technique is proposed to predict the chaotic time series
using the artificial neural networks. This learning algorithm based on the gen-
eralized Chebyshev polynomial is introduced for training neural networks. As
Chebyshev, the values of functions are found by the cubic spline interpolation
for the given set of data point. The Chebyshev and the obtained value are the
new training patterns of the networks. By using of the orthogonal property of
Chebyshev polynomials, each weight function can be expressed as a generalized
Chebyshev polynomial, therefore, the weight function is a optimal approximation
polynomial in the least-squares sense.

2 Database

The proposed technique is used to model a well known chaotic time series based
on Lorenz map. Lorenz attractor is given by the following equations:

dx

dt
= a(y − x)

dy

dt
= −xz + bx− y

dz

dt
= xy − cz, (3)

where the parameters a, b and c are assigned the values as a = 10, b = 28 and
c = 8

3 . This differential equation can be solved numerically using fourth-order
Runge-Kutta integrator with a time step 0.01. The first 1000 samples of Lorenz
map are plotted in Fig. 1.

Fig. 1. NO2: The first 1000 samples of Lorenz map
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To examine the efficiency of proposed techniques, the real data of NO2 con-
centration observed at a site in Ningdong Energy and Chemistry Industry Base
are also used.

Yinchuan is the big city of western China. It is capital of Ningxia Hui Au-
tonomous Region, and locates on upstream of Yellow River and middle of Ningxia
plain. Region scope is in north latitude, east longitude. At present, Yinchuan ur-
ban district area is 1.5 million people, and 1,482 square kilometers, including three
districts (Xingqing, Jinfeng and Xixia). It’s also the most industrialized and pop-
ulated district of Ningxia. Well known as ”a land of rice and fish” in west-north of
China, the region enjoys some of the favorable physical conditions, with a diver-
sity of in natural resources and the suitability for growing various crops ([2]). The
yearly average of NOX has been substantially increased (about 3ug/m3), since
the beginning of monitoring in 2003; in the Yinchuan area. Suspended NOX is
mainly produced by chemical and physical mechanisms (about 66%), vehicular
traffic (24%), moreover, a further significant part of NOX is produced in the at-
mosphere because of residential heating (especially in winter)([3]).

Yinchuan is experiencing high levels of air pollution due to Chemistry Indus-
try and coal fire. The distant has a arid climate with extreme weather conditions.
Temperature inversion often occurs during winter months whereas during sum-
mer months, wind-blown dust covers the basin. this led to accumulation of air
pollutants over the discrict. Many Chemistry Industries, power plants, coal min-
ing also adds to increasing air pollution in the basin. The hourly data of nitrogen
dioxide concentration observed at the Ningdong environmental center were ob-
tained from continuous ambient air quality measurement analyzer. Fig. 2 shows
the nitrogen dioxide time series observed during July and December 2008 in
Ningdong Energy and Chemistry Industry Base. It can be seen that nitrogen
dioxide concentration varies from 3 to 417 ug/m3 with an average of 63ug/m3.
High levels were observed between 6 a.m. and 10 p.m.

Fig. 2. The nitrogen dioxide time series observed at the Ningdong environmental center

3 Methodology

The introduced technique is based on an artificial neural network that with
generalized Chebyshev polynomial as active function. In the new scheme of pre-
diction, the training of weights and testing procedure are to be dealt separately.
The algorithm for both the cases is given as follows.



Application of Generalized Chebyshev Neural Network 475

3.1 Chebyshev Neural Network

CNN is a functional link network based on Chebyshev polynomials. One way
to approximation a function by a polynomial is to use a truncated power series.
The power series expansion represents the function with very small error near the
point of expansion, but the error increases rapidly as we employ it at point farther
away. The computational economy to be gained by chebyshev series increase
when the power series is slowly convergent. Therefore, Chebyshev series are
frequently used for approximations to functions and are much more efficient
than other power series of the same degree. Among orthogonal polynomials, the
Chebyshev polynomials occupy an important place, since, in the case of a broad
class of functions, expansions in Chebyshev polynomials converge more rapidly
than expansions in other set of polynomials. Hence, we consider the Chebyshev
polynomials as basis function for the neural network.

The Chebyshev polynomials can be generated by the following recursive for-
mula ([7]):

Ti+1(x) = 2xTi(x)− Ti−1(x), T0(x) = 1. (4)

For example, consider a two dimensional input patten X = (x1, x2)T . An en-
hanced pattern obtained by using Chebyshev function is given as:

ϕ = (1, T1(x1)T2(x1), · · · , T1(x2)T2(x2), · · ·)T , (5)

where Ti(xj) is a generalized Chebyshev polynomial, i the order of the polyno-
mials chosen and j = 1, 2. The different choices of T1(x) are x, 2x, 2x − 1 and
2x + 1. In this paper, T1(x) is chosen as x.

The output of the single layer neural network is given by:

ŷ = Ŵϕ, (6)

where Ŵ are the weights of the neural network given by Ŵ = (w1, w2, · · ·)T .

3.2 Learning Algorithm

The problem of identification consists in setting up a suitably parameterized
identification model to optimize a performance function based on the error be-
tween the plant and identification model outputs. CNN, which is a single layered
neural network is linear in the weights and nonlinear in the inputs is the identifi-
cation model used in this paper. We shall use the recursive least squares method
with forgetting factor as the learning algorithm for the purpose of on-line weight
updation. The performance function to be minimized is given by:

E =
n∑

i=1

λn−i|e(i)|2. (7)
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The algorithm for the discrete time model is given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ŵ (t) = Ŵ (t− 1) + n(t)e(t),

n(t) = λ−1P (t−1)ϕ(t)
1+λ−1ϕT (t)P (t−1)ϕ(t) ,

e(t) = y(t)− ŷ(t),

P (t) = λ−1P (t− 1)− λ−1n(t)ϕT (t)P (t − 1),

(8)

where λ is the forgetting factor and ϕ is the basis function formed by the
functional expansion of the input and P (0) = cI, c is a positive constant,
||P (t)|| < M0, M0 is a constant. All matrix and vectors are of compatible di-
mension for the purpose of computation.

The next pattern is then presented to the network and the above exercise is
repeated. This exercise is continued for all the patterns to be presented to the
network. For each pattern and each iteration, the error can be computed as the
difference of network output and desired output, so the network can be trained
on the error minimization criteria. The weights for each layer associated with
each pattern should be stored in the memory. Once the network is trained for
all the patterns, the next step is to examine its generalization capabilities.

4 Results and Discussion

The application of an ANN to the urban context in Yinchuan, particularly for
the area of the Ningdong Energy and Chemistry Industry Base, near the Yellow
river, is presented. The experimental data were obtained from the monitoring
units of the Ningdong environmental center since 2008. The neural network was
trained, tested and validated for many specific input configurations to forecast
the concentrations of the single pollutant by varying the available information.

The computations were performed using MATLAB. For Lorenz map, the sig-
nal of first 1000 samples is obtained to consider as the training set, the next 250
samples are used as the testing set and subsequent 250 samples are considered
as the prediction set. For nitrogen dioxide time series, the data available during
November-December 2008 are divided into three parts. The data observed dur-
ing November 2008 are considered for training, whereas next 15 days data are
considered for testing and subsequent data are used for examining the predic-
tion capabilities of the models. The next months data are divided equally in the
testing and prediction sets. The testing and validation data should lie within the
range of training data, which is evident from Fig. 2. The architecture of the CNN
consist of two parts. namely numerical transformation part and learning part.
Numerical transformation deals with the input to the hidden layer by approx-
imate transformable method. The transformation is the functional expansion
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of the input patten comprising of a finite set of Chebyshev polynomials. As a
results the Chebyshev polynomial basis can be viewed as a new input vector.
The CNN finally converged with the topology 5-8-1 and 6-14-1 for Lorenz and
nitrogen dioxide time series, respectively.

For MLP with BP, the input to the network is the embedded space of time
series with dimension and output is the next point in the time series. The network
was trained with momentum constant and the learning rate was adoptive in this
case. The number of hidden neurons was varied between 5 and 500. An error
goal is specified as convergence criteria. With the variation in the number of
hidden neurons and on convergence basis, the three-layer network with topology
5-10-1 and 6-15-1 is selected for Lorenz map and nitrogen dioxide time series
prediction, respectively. The prediction results are plotted in Figs. 3 and 4.

Fig. 3. The observed and predicted time series of Lorenz map: a, b, and c are the
training set , the testing set and the prediction set, respectively
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Fig. 4. The prediction of NO2 time series using BP and new scheme: a, b, and c are
the training set , the testing set and the prediction set, respectively

5 Conclusions

The CNN technique is proposed to predict the chaotic time series of air pollutant
concentrations based on the neural network modeling technique. The applica-
bility of the proposed scheme is demonstrated using a chaotic Lorenz map and
nitrogen dioxide concentration time series. Comparing the results of MLP with
BP and CNN techniquei, it is observed that the new scheme provides better
predictions than the standard one with relatively less prediction error. Also, the
invariant measures computed for the predicted time series using new scheme are
very similar to the original one, whereas the predicted time series using MLP
with BP do not posses the similar dynamic measures as the original one. Having
the knowledge of internal dynamics enables the new approach to provide the
prediction with better accuracy than the MLP with BP of prediction. Consid-
ering the chaotic nature of air pollutant concentration time series, the approach
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seems to be very useful in predictions. Another advantage is the univariate na-
ture of the approach, which takes into account the knowledge of embedding
dimension. The scheme, however, requires more computational efforts in terms
of computer memory and computational time. This result lead us to reduce the
time requirements of the CNN in the future.
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Abstract. Financial time series has been standard complex problem in the field 
of forecasting due to its non-linearity and high volatility. Though various neural 
networks such as backpropagation, radial basis, recurrent and evolutionary etc. 
can be used for time series forecasting, each of them suffer from some flaws. 
Performances are more varied for different time series with loss of generaliza-
tion. Each of the method poses some pros and cons for it. In this paper, we use 
ensembles of neural networks to get better performance for the financial time 
series forecasting. For neural network ensemble four different modules has been 
used and results of them are finally integrated using integrator to get the final 
output. Gating has been used as integration techniques for the ensembles mod-
ules. Empirical results obtained from ensemble approach confirm the outper-
formance of forecast results than single module results.  

Keywords: Neural Network, Ensemble, BPA, RBF, RNN, Time Series.  

1   Introduction 

Financial forecasting is a standard benchmark example of time series analysis prob-
lem which is challenging due to high noise, volatility, and non-linearity [1]. These 
characteristics suggest that there is no complete information that could be obtained 
from the past behavior of financial markets to fully capture the dependency between 
the future price and that of the past. The domain contains some linear and nonlinear 
characteristics [2], and thus need to build a model is required which contains linear 
and nonlinear characteristics.  

On the other hand, there is some risk to investment in the stock market due to its 
unpredictable behaviors. Thus, an intelligent prediction model for financial data 
would be of wider interest. ANNs are relatively recent method for business forecast-
ing. The success of ANN applications can be qualified of their features and powerful 
pattern recognitions capability [3]. The use of ANN in this field has been growing due 
to their ability to model complex nonlinear systems on sample data. Back Propagation 
algorithm does the task of tuning of the ANN to enable it perform as desired [4]. Here 
the algorithm sets the various weights and biases of the ANN to their optimal values. 
The aim of training is to ensure that the network gives the closest desired outputs. The 
radial basis function network is another type of ANN that performs unsupervised or 
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supervised learning. These networks, which are known for their ability to model com-
plex scenarios in a very simple architecture, are used for classification, series predic-
tion, control applications, and so forth. The radial basis function network uses radial 
basis functions as activation functions, which allows it to easily solve the problem or 
perform a mapping of the inputs to outputs [5]. 

Recurrent neural networks are a special type of ANN in which the output of one or 
more neurons is fed back into the network as inputs, forming the input for the next 
iteration. These networks offer a good means of machine learning in which past out-
puts may potentially affect the next outputs [6].The conventional training algorithms 
of the neural networks are prone to get struck at local minima. This is because of the 
gradient approaches, or similar approaches of tuning the parameters that they employ. 
Genetic Algorithms [7] use a variety of individuals, each of which presents an ANN. 
Each of the ANN or individual represents a point in the error space with some degree 
of performance or fitness value. These algorithms use the relative fitness or perform-
ance to generate or move the various individuals in this error space to finally enable 
convergence at the optimal value. 

2   Algorithms and Methods 

2.1   Backpropagation Algorithm 

General BPA Neural Network architecture shown in Fig. 1 includes input layer,  
hidden layer and output layer. Each neuron in input layers are interconnected with 
neurons in hidden layers with appropriate weights assigned to them. Similarly each 
neuron of hidden layer in interconnected with output layer neuron with weights as-
signed to the connection.  On providing learning data to the network, the learning 
values are passed through input to hidden and finally to output layer where response 
for input data is obtained. For optimizing the error obtained, the error values are back 
propagated to make changes in weights of input to hidden layer and hidden to output 
layer. With error back propagation input response are made converged to desired 
response [4] [8].  A general structure of BPA neural network has been shown below. 

 

Fig. 1. General architecture of a Backpropagation Neural Network 

2.2   Radial Basis Neural Network 

Radial Basis Function Networks [5] has a simple 3 layer ANN architecture. The first 
layer is the input layer where the inputs are applied. The second layer is the hidden 
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layer. The last layer is the output layer where the system delivers its output. These 
networks however differ in the manner in which they process information for the 
generation of the outputs from the inputs. 

Consider the input space of the problem being considered. Each neuron of the hid-
den layer in the RBN corresponds to a location in the input space. The various neu-
rons are spread all round the input space. The input itself is a point in this input space 
consisting of some value of different attributes. At the time of processing of the in-
puts, each of these neurons calculates its distance from the input. The outputs of the 
various neurons of the hidden layer serve as the inputs of the output layer. This layer 
is a linear layer and simply computes the weighted sum of the various hidden layer 
neurons. Each connection of this layer corresponds to the weight that is multiplied by 
the associated hidden neuron. In this way the system generates the final output.  

2.3   Recurrent Neural Network 

Recurrent Neural Networks architecture shown in Fig. 2 [6] are cyclic in nature unlike 
the other models that were arranged in a manner that cycles can never be formed.  The 
conventional ANNs have a big limitation of their static nature. The information flow 
is only forward where the predeceasing layers process data and forward it to the next 
layers. These networks allow backward connections where every neuron gets the 
feedback from the forward layers as well as itself [11]. This allows the ANN to again 
process data and again transmit the output for further processing by the other layers in 
backward and forward direction to which it is connected. In this manner there is a lot 
of dynamism which drives these networks. Further the algorithm operates in time-
stamps or iterations where a unit processing is performed by each of the neurons in a 
single iteration. The output of the system continuously changes with time as the layers 
undergo changes driven by the feedback connections.  

 

Fig. 2. General architecture of a Recurrent Neural Network 

2.4   Evolutionary BPA Neural Network  

A genetic algorithm performs a parallel stochastic search. It is parallel in the sense 
that many solutions in the population are considered simultaneously and the fittest 
solutions are chosen for reproduction. It is stochastic in the sense that the solutions are 
randomly selected for refinement and the likelihood of a solution being selected is 
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enhanced by the quality of the solution or its fitness, and the search direction is also 
chosen randomly. Genetic Algorithm evolves ANNs by fixing the values and the 
weights and biases of the various nodes i.e. the GA optimizes the network parameters 
for better performance [13].  

Steps followed for evolution of ANN [12][13] are problem encoding, creation of 
random initial state, fitness evaluation, and genetic operator including selection, 
crossover, mutation and elite, generate next generation, testing and verification. 

 

Fig. 3. Flow Diagram for working of Genetic Algorithm 

2.5   Ensembles 

Ensembles make use of multiple ANNs to solve the same problem. Each of the ANN 
is given the complete part of the problem input. Each ANN solves the problem using 
its own approach. All these ANNs or modules return a solution to the integrator which 
then computes the final output [14]. The input is given by the system to each of the 
modules. Each module is similar in regard to the inputs and the outputs. Each module 
represents an independent ANN of its own which is trained separately using the same 
training data. The training may hence be carried out in parallel among the various 
ANNs or modules. In this manner all the modules or ANN solve the same problem 
and make their distinct contributions. All the outputs are communicated to a central 
integrator that carries the next task of computing the final output of the system based 
on the system module outputs. Justification to ensembles revolve around the fact that 
they are more resistant to accidental under-training of a single ANN, or it being acci-
dentally struck at a local minima, since the effect may be averaged by others. 

In gating as integration technique [15], we try to combine the various outputs of 
the modules and generate the final output of the system by a simple function. The 
easiest implementation of this is to make the integrating function take a weighted or 
simple mean of the various outputs of the modules. This gives the final system output 
of the system.  
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Fig. 4. General Architecture of a Neural Network Ensemble 

3   Experiment and Results 

3.1   Research Data 

We have used two different data sets for our research. The data (un-normalized) have 
been collected from Prof. Rob J Hyndman’s website http://robjhyndman.com/TSDL/ . 
Data sets analyzed are as: Daily closing price of IBM stock, Jan. 01 1980 - Oct. 08 
1992 [10], Daily S & P 500 index of stocks, Jan. 01 1980 - Oct. 08 1992 [10].  The 
first few data indexes of series are used for the research. For training, 80% of the data 
of the series has been used and remaining 20% is used for testing. 

Table 1. Time Series Data Sets Description 

Time Series Standard Deviation Mean Count 
Daily IBM 5.736916 60.89908 500 

Daily S&P 10.1308 123.3728 
 

500 

3.2   Methodology 

Time series dataset is divided into training and testing dataset. Dataset division car-
ried out is based on the random probability followed which bifurcates the dataset into 
training and testing dataset. Training dataset which is 80% of the original dataset is 
used for defining and training of the neural network. Testing dataset which is remain-
ing 20% of the original dataset is used for performance measure. Performance meas-
urement carried out in the experiment is root mean square error.  

After dataset division, normalization followed by logarithmic scale conversion is 
carried out to draw better timely relation between index values. Thus processed train-
ing dataset is used for defining and supervised learning of the neural network. For 
whole experiment, total number of input neurons and total number of output neuron 
are kept 10 and 01 respectively. Neural Network training followed by testing is car-
ried out one by one on all four modules to record the individual performance for the 
individuals. Corresponding graphs between actual and predicted values are plotted to 
analyze the performance graphically. 
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Fig. 5. Used Architecture of Neural Network Ensemble 

For neural network ensemble used architecture as shown in figure 5, backpropaga-
tion, radial basis, recurrent and evolutionary neural networks are considered as  
individual modules of ensemble. Each modules gives output for given input to the 
ensemble system.  Output of these modules as discussed is integrated by gating tech-
nique. In gating, weighted mean is followed for outcomes as final output result. Thus 
found outcome of the neural network ensemble is compared with the individual per-
formance of standalone modules. Graph for actual and predicted values is also plotted 
for neural network ensemble for carrying out the graphical analysis of individual and 
ensemble performances. 

3.3   Empirical Results 

Table 2 shown below represents the mean root mean square error for both of the time 
series Daily IBM and Daily S&P. 

Table 2. Results Obtained for Time Series 

Methodology Daily IBM (Mean RMSE) Daily S&P (Mean RMSE) 
BPA 1.9823 2.8913 
RBN 1.2261 1.5217 
RNN 0.9918 1.1371 
EANN-BPA 1.4725 2.1237 
Ensemble 0.9743 1.1261 

3.4   Graphical Analysis 

 

Fig. 6. Graphs for Actual and Predicted Values for Daily IBM and Daily S&P using traditional 
Backpropagation Algorithm with mean RMSE = 1.9823 and 2.8913 respectively 
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Fig. 7. Graphs for Actual and Predicted Values for Daily IBM and Daily S&P using Radial 
Basis Network with mean RMSE = 1.2261 and 1.5217 respectively 

 

Fig. 8. Graphs for Actual and Predicted Values for Daily IBM and Daily S&P using Recurrent 
Neural Network with mean RMSE = 0.9918 and 1.1371 respectively 

 

Fig. 9. Graphs for Actual and Predicted Values for Daily IBM and Daily S&P using Evolution-
ary BPA Neural Network with mean RMSE = 1.4725 and 2.1237 respectively 

    

Fig. 10. Graphs for Actual and Predicted Values for Daily IBM and Daily S&P using Neural 
Network Ensemble with mean RMSE = 0.9743 and 1.1261 respectively 
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4   Conclusions 

Neural network ensemble has been used in order to improve the financial forecasting 
performance. It is based on the taking different learning models as individual  
modules, where each module accounts for the performance of the final result of the 
system. Output values from the individual modules are integrated using gating as 
integration technique in order to have the final output results. Justification to ensem-
bles revolve around the fact that they are more resistant to accidental under-training of 
a single ANN, or it being accidentally struck at a local minima, since the effect may 
be averaged by others. As a performance measurement root mean square error is used. 
Neural network ensembles are computationally efficient and it shows a very good 
behavior to estimation values. Accuracy results and comparison graph of actual and 
predicted index values shows the better performance of neural network ensemble over 
performances of individual module used. Order of performance on the basis of results 
can be adjudged as Ensembles > RNN > RBN > EANN-BPA > BPA. 

References 

1. Wang, D., Li, Y.: A novel nonlinear RBF neural network ensemble model for financial 
time series forecasting. In: 2010 Third International Workshop on Advanced Computa-
tional Intelligence (IWACI), August 25-27, pp. 86–90 (2010) 

2. Zhou, H.-r., Wei, Y.-h.: Stocks market modeling and forecasting based on HGA and wave-
let neural networks. In: 2010 Sixth International Conference on Natural Computation 
(ICNC), August 10-12, vol. 2, pp. 620–625 (2010) 

3. Ning Y.-c., Zheng X.-x., Zhao, J., Jiang, G.-j.: Forecasting the natural forest stand age 
based on artificial neural network model. In: 2010 International Conference on Computer 
and Communication Technologies in Agriculture Engineering (CCTAE), June 12-13, vol. 
3, pp. 536–539 (2010) 

4. Zhai, F., Wen, Q., Yang, Z., Song, Y.: Hybrid forecasting model research on stock data 
mining. In: 4th International Conference on New Trends in Information Science and  
Service Science (NISS), May 11-13, pp. 630–633 (2010) 

5. Karimi, B., Menhaj, M.B., Saboori, I.: Robust Adaptive Control of Nonaffine Nonlinear 
Systems Using Radial Basis Function Neural Networks. In: 32nd Annual Conference on 
IEEE Industrial Electronics, IECON 2006, November 6-10, pp. 495–500 (2006) 

6. Gupta, L., McAvoy, M., Phegley, J.: Classification of temporal sequences via prediction 
using the simple recurrent neural network. Pattern Recognition 33(10), 1759–1770 (2000) 
ISSN 0031-3203 

7. Shopova, E.G., Vaklieva-Bancheva, N.G.: BASIC–A genetic algorithm for engineering 
problems solution. Computers & Chemical Engineering 30(8), 1293–1309 (2006) ISSN 
0098-1354 

8. Lee, T.-L.: Back-propagation neural network for the prediction of the short-term storm 
surge in Taichung harbor. Engineering Applications of Artificial Intelligence 21(1), 63–72 
(2008) ISSN 0952-1976 

9. Casasent, D., Chen, X.-w.: Radial basis function neural networks for nonlinear Fisher dis-
crimination and Neyman-Pearson classification, Neural Networks. In: Advances in Neural 
Networks Research: IJCNN 2003, June-July 2003, vol. 16(5-6), pp. 529–535 (2003) ISSN 
0893-6080 



488 A. Tarsauliya et al. 

10. Hipel and McLeod Time Series Modelling of Water Resources and Environmental  
Systems. Elsevier, Amsterdam (1994) 

11. Assaad, M., Bone, R., Cardot, H.: A new boosting algorithm for improved time-series 
forecasting with recurrent neural networks. Information Fusion, Special Issue on Applica-
tions of Ensemble Methods 9(1), 41–55 (2008) ISSN 1566-2535 

12. Guo, Y., Kang, L., Liu, F., Sun, H., Mei, L.: Evolutionary Neural Networks Applied to 
Land-cover Classification in Zhaoyuan. In: IEEE Symposium on Computational Intelli-
gence and Data Mining, CIDM 2007, March 1-April 5, pp. 499–503 (2007) 

13. Sexton, R.S., Gupta, J.N.D.: Comparative evaluation of genetic algorithm and backpropa-
gation for training neural networks. Information Sciences 129(1-4), 45–59 (2000) ISSN 
0020-0255 

14. Tsai, C.-F., Wu, J.-W.: Using neural network ensembles for bankruptcy prediction and 
credit scoring. Expert Systems with Applications 34(4), 2639–2649 (2008) ISSN 0957-
4174 

15. Oza, N.C., Tumer, K.: Classifier ensembles: Select real-world applications. Information 
Fusion, Special Issue on Applications of Ensemble Methods 9(1), 4–20 (2008) ISSN  
1566-2535 

 



Y. Tan et al. (Eds.): ICSI 2011, Part I, LNCS 6728, pp. 489–496, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Selection of Software Reliability Model Based on  
BP Neural Network 

Yingbo Wu1 and Xu Wang2 

1 School of Software Engineering 
2 School of Mechanical Engineering, 

Chongqing University, Chongqing 400044, China 
wyb@cqu.edu.cn, wx921@163.com 

Abstract. Software reliability models are used for the estimation and prediction 
of software reliability. In a situation where reliability data is lacking and nu-
merous models are available, the key to quantitative analysis of software reli-
ability lies in the selection of an optimal model. This paper describes a model 
selection method which involves an encoding scheme with multiple evaluation 
metrics and uses back-propagation (BP) neural network to perform clustering 
algorithm. Finally, by utilizing 20 sets of failure data that are collected in actual 
software development projects, a simulation experiment is made. The result 
shows the method is both correct and feasible. 

Keywords: software reliability model, BP neural network, model selection. 

1   Introduction 

Software quality refers to the totality of features and characteristics of a software 
product that bear on the ability to satisfy specific needs. Among them, the software 
reliability, as the inherent feature of software quality, has become an important pa-
rameter in software quality assessment because of its wide coverage, ready quantiza-
tion and close association with other software quality features. Software reliability 
control and assessment must be implemented with a software reliability model. Since 
the initial model was introduced in 1970s, hundreds of models have been proposed. 
However, up until now, no general model has been confirmed that can be applied to 
all software products. 

The inconsistent results yielded by applying different software reliability models 
derive from the different assumptions underlying every model. Because each reliabil-
ity model has its own specific theoretical basis, thus different models deduce and 
calculate reliability in different ways, which in turn produces different reliability 
assessment results. At the moment, it is difficult to put forward a universal model. 
Besides, the universal model only adds more complexity to inconsistency in model 
application. Therefore, the most feasible way to solve the inconsistency issue is to 
select optimal model and combine different models. As far as software technicians are 
concerned, in a situation where reliability data is lacking and numerous models are 
available, how to select appropriate model to better ensure software reliability has 
become a heated topic. 
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Selecting a reliability model is a complex decision which should be based on multi-
ple criteria [1]. [2] introduces the concept of expert system on reliability, and defined 
model selection as an optimization issue based on preliminary result from user’s soft-
ware failure data and bound by preset optimization principles. Currently, the selection 
of software reliability model is primarily based on observer’s personal experience. By 
observing actual testing performance, modifications are made in software reliability 
growth model. [3] describes the unascertained-based software  reliability  model  selec-
tion,  and  at  this  basis,  an automated  tool  for  selecting  reliability  model is pro-
posed. [4] presents a meta-learning approach and describes experimental results from 
the use of a neural network meta classifier for selection among different kind of reli-
ability models. [5] has offered a new insight into reliability model selection: it is gen-
erally considered appropriate to select the same model for similar failure data sets. To 
be specific, different software failure data are sent to a classifier where cluster takes 
place, and software thus classified into the same category adopt the same model. In-
spired by clustering idea, a means to select reliability model has been proposed which 
takes advantage of classifying ability of BP (back propagation) neural network. 

2   BP Neural Network Model 

2.1   Mechanism of BP Neural Network  

Artificial neural network is a technological system which simulates the structure and 
functions of neural networks in human brain by using engineering technology. Nu-
merous nodes are abstracted from human brain, which are termed as processing unit. 
These processing units connect with each other to form a neural network.  

Because of the particularity of neural network technology, it plays significant roles 
in the field of software reliability, and has broad prospects [6]. Mechanism of the 
neural network is illustrated in Figure 1.  

∑ ( )i iy F W X∑

 

Fig. 1. Mechanism of the Neural Network 

In Figure 1, X1, X2, Xn is the input neuron, which refers to the information from 
axons of n neurons at the early level. A is the threshold of i neurons; W1, W2, Wn i 
neurons express weight coefficient of neuron i to X1, X2, Xn, namely, the efficiency 
of synaptic transmission; Y1 is the output of i neurons; f [•] express an activation 
function which determines the manner of the output when i neurons reach its thresh-
old by the concerted stimulation from Inputs X1, X2, and Xn. 

BP neural network adopted in this paper is a kind of forward neural network with-
out feedback. It can establish the global nonlinear mapping between input and output 
variables through learning from certain samples. It is by far the most widely used 
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neural network, which is so named because it adopts back propagation proposed in 
1986 by Rumelhart et al. BP algorithm is a learning algorithm for feed-forward multi-
layer network which intends to solve weight coefficient optimization of multilayer 
forward neural network. Its network architecture is shown in Figure 2. 

...
...

...
...

⊗

 

Fig. 2. Network Structure of BP 

It contains the input layer, the output layer and the intermediate layer between the 
input and output layers. The intermediate layer is single-or multi-layered, which is 
also referred to as hidden layer because of its non direct contact with the outside 
world. By the same token, neurons in the hidden layer are known as hidden units. 
Although the hidden layer has no contact with the outside world, its state of affair will 
affect the relationship between input and output. In other words, weight coefficient 
changes in the hidden layer will result in changes in the overall performance of the 
multilayer neural network. Suppose there exists an M-layered neural network with 
Sample X at the input layer; the sum total of i neurons input at the k layer is expressed 

as k
iU , and the output is expressed as k

iX ; weight coefficient of j neurons at Layer k-

1 to i neurons at Layer k is referred to as Wij, and the activation function of each neu-
ron is f, then the relationship between variables can be expressed in a mathematical 
formula as (1):   

1( ),k k k k
i i i j

j
X f U U WijX −= = ∑      (1) 

Back-propagation algorithm involves two processes, namely, forward propagation 
and back propagation. These two processes are summarized as follows: 

1) Forward propagation. Input samples are processed at hidden units at all hidden 
layers. After that, they are sent to the output layer. In the course of hierarchical 
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processing, neurons at each layer only influence neurons at the next level. At the 
output layer, comparison is made between the actual output and the estimated 
output. If the actual output is inconsistent with the estimated output, then back 
propagation comes into play.  

2) Back-propagation. In back propagation, error signal is transmitted in a way that 
is exactly opposite to the forward propagation.  Adjustments are made to the 
weight coefficient of every neuron at every hidden layer so that error signals are 
reduced to the minimum.  

In essence, BP algorithm is to obtain the minimum value of error function. This algo-
rithm adopts the steepest descent method in nonlinear programming and adjusts 
weight coefficient with gradient descent approach of error function.  

2.2   Learning Steps in BP Algorithm 

When back-propagation algorithm is applied to multiplayer feed forward network, the 
following steps can be taken to obtain the network weight coefficient by recursion. 
Note that for each layer with n neurons, and for Neuron i at Layer K, then n weight 
coefficients Wi1,Wi2,…,Win are available, a further Wi,n+1 expresses threshold iθ ; 
besides, when sample X is input, then x=(X1,X2,…,Xn,1). The algorithm takes the 
following steps: 

1) Set initial weight coefficient of Wij. Set a smaller non-zero random number 
for Wij at each layer, where Wi,n+1= θ− . 

2) Input a sample x=(X1,X2,…,Xn,1) and the corresponding estimated output 
Y=(Y1,Y2,…,Yn). 

3) Calculate the output at each layer. For the output of neuron i at Layer K, then  

1 1
, 11

1
, 1, , ( )

n
i k k k k

ij i nk j n i i
i

U W X X W X f Uθ− −
++

=
= = = − =∑      (2) 

 

4) Calculate the learning errors at all layers k
id . For the output layer m then  

(1 )( )m m m m
ii i i id X X X Y= − −      (3) 

 
while for the other layers, then  

1(1 )k k k k
iji i i j

i

d X X W d += − ∑      (4) 

 
5) Adjust weight coefficient Wij and the threshold θ . Then we get 

( 1) ( ) k
ij ij jW t W t d Xη+ = − ⋅ ⋅      (5) 
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Where  
1( ) ( 1) ( ) ( 1)k k

ij ij ij iji jW t d X a W t W t W tη −Δ = − ⋅ ⋅ + Δ − = − −      (6) 

6) When weight coefficient at each layer is obtained, judgment can be made on 
whether requirements are met based on given quality index. If met, the algo-
rithm comes to an end; if not, return to  step 3). 

3   The Execution Process of Model Selection Based on BP Network 

It is inappropriate to directly use failure data as BP network input data, before failure 
data is encoded [7]. The encoded data are then clustered through a BP network which 
is stabilized by supervised learning. All these done, optimal model selection can be 
achieved. 

3.1   Software Reliability Model  

The three models proposed in [8] serve as the candidate model, referred to as JM, GO, 
and LV respectively. These three models are widely used in reliability analysis. In 
practice, candidate models can be any proposed reliability model. For sake of conven-
ience, this paper employs the above-mentioned three models with data in [7] as  
comparison data. Among the three models, JM is a mathematical model of Markov 
process, which is the most representative among the first software reliability models; 
GO is the best-known NHPP process model; and LV is a typical Baysian model. 
These three models include both selective process model and non-selective process 
model. Thus, it can be drawn that they generally represent the features of most soft-
ware reliability models and comparisons can be made between them. The encoded 
software failure data will be divided into three categories, with each category corre-
sponding to these three models. 

3.2   Encoding  

In order to compare application ability among software reliability models, the re-
searchers have put forward many evaluation metrics. This paper uses 5 mature ones, 
namely: GOF(good-of-fit), PL(prequential likelihood), MB(model bias), MBT(model 
bias trend), and MN(model noise). The definition and calculation method of these 
evaluation metrics can be found in [8]. This paper will not discuss them for lack of 
space. The three models are encoded with 1 for JM, 2 for GO, and 3 for LV. 

Coding steps as following:  

1) For given software failure data, GOF values of the three models are calcu-
lated. Based on GOF values, the models are arranged by voting. The model 
with the best GOF scores 3 points, the second best 2 points, and the worst 1 
point. The model with the highest score is coded as x1;  

2) x2, x3, x4, x5 are obtained by calculating the values of the remaining evalua-
tion metrics in the same way as step 1); 

3) The vector (x1, x2, x3, x4, x5) is the code that corresponds to specific software 
failure data. 
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Table 1 illustrates Data Set J2 of Project JPL in [9], with numbers in brackets indicat-
ing the score, the encoding results are expressed as {1,3,3,3,2}.  

Table 1. Encoding of Data Set J2 

Evaluation 
Principles 

JM Model GO Model LV Model Scoring No. 

Good-of-Fit 0.162(3) 0.182(1) 0.17(2) 1 
Accuracy 1074(2) 1075(1) 1051(3) 3 

Model Bias 0.3378(2) 0.3378(2) 0.2592(3) 3 
Model Bias 

Trend 
0.4952(2) 0.4954(1) 0.1082(3) 3 

Model Noise 32607(2) 2539(3) 2333(1) 2 
 

3.3   The Model Selection Process 

Firstly, baseline data encoding offers learning module for BP network. This paper 
employs three models of JM, GO, and LV, thus the baseline data are encoded as 
{1,1,1,1,1}, {2,2,2,2,2} and {3,3,3,3,3} to represent respectively appropriate models 
of JM (1), GO (2), and LV (3). Obviously, if the first encoded vector is input, the 
estimated result by BP network computing should be 1. Similarly, the estimated out-
put of second input vector should be 2. And the estimated output of the third vector 
should be 3. Based on learning algorithm stated in Section 2.2, calculations continue 
until the probability of getting correct (estimated) output stabilizes. With BP network 
being stable and weight coefficient value Wi being optimal, at this point, learning 
ends and actual calculations come into play. Next, encode the actual failure data. 
Then, the encoded data are input into the stabilized BP network to receive clustering 
algorithm. Finally, by referring to the above-mentioned model numbers of the three 
models, judgment can be made on which software reliability model is most suitable 
for the kind of software with given failure data.  

4   Simulation Analysis 

We make the simulation by using 20 sets of failure data that are collected in actual 
software development projects. These 20 data sets originate from Data Set DACS 
published 1979 by Musa [7]. DACS are reasonable with good performance. The 20 
data sets are encoded as Data1, Data2, ⋯, Data20. Among them, Data1, Data2 and 
Data3 are defined as baseline data, coded as {1,1,1,1,1}、{2,2,2,2,2} and {3,3,3,3,3}. 
Table 2 lists the results obtained by this approach and the cumulative ranking results 
commonly used in engineering. By comparison, it can be found that the results in 
Data7 and Data14 differ with each other. Therefore, the approach proposed in this 
paper has certain reliability. The use of Matlab neural network toolbox makes possi-
ble complex calculations in BP network, and ensures accuracy in calculation. 

Compared with Kohonen network-based approach in [7], BP network is advanta-
geous in that it is a supervised learning approach, where empirical data are adopted as 
sample to guide network learning. It is more stable than unsupervised autonomous 
learning. Besides, the error ratio of this approach relative to cumulative ranking  
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approach is 10%; while those of Gaussian Mixture Model as in [1] and comparative 
error coefficient as in [10] are 15% and 23% respectively. This also confirms the 
validity and accuracy of this approach. 

Table 2. Classification of Simulation Data 

Data No. Coding Result Accumulation Ordering 
Computing Result of 

Neural Network 
1 11111 JM(1) JM(1) 
2 22222 GO(2) GO(2) 
3 33333 LV(3) LV(3) 
4 33312 LV(3) LV(3) 
5 21131 JM(1) JM(1) 
6 21131 JM(1) JM(1) 
7 21121 JM(1) GO(2) 
8 23111 JM(1) JM(1) 
9 22221 GO(2) GO(2) 

10 33131 LV(3) LV(3) 
11 13233 GO(3) GO(3) 
12 21211 JM(1) JM(1) 
13 33322 LV(3) LV(3) 
14 22311 GO(2) JM(1) 
15 12311 JM(1) JM(1) 
16 12313 JM(1) JM(1) 
17 21213 GO(2) GO(2) 
18 23333 LV(3) LV(3) 
19 11123 JM(1) JM(1) 
20 13332 LV(3) LV(3) 

5   Conclusions 

Extensive researches at home and abroad have indicated that several evaluation metrics 
should be taken into account in determining model application. This paper involves an 
encoding scheme with multiple evaluation metrics and uses neural network to perform 
clustering algorithm, thus offering new insights into model selection. This new approach 
is characterized by high precision, simple structure, and fast calculating speed. How-
ever, this approach is not without flaws. First of all, 17 failure data sets are used in this 
paper and baseline data have involved in supervised learning for nearly 80 times. Al-
though the accuracy has somewhat been verified in simulation experiment, more failure 
data should be used and more learning be carried out to further enhance the accuracy of 
the network. Next, BP network learning is an important step, where learning sample is 
essential to model stability and accuracy. The essence of this approach is to automati-
cally optimize standard weight coefficients through sample learning by BP network. 
Therefore, in order to strengthen the accuracy and stability of the network clustering, 
further study is needed on how to collect and select empirical data to supervise network 
learning. Finally, as model selection cannot be separated from model evaluation metrics, 
research on and advancement of more effective model evaluation metrics will further 
improve model selection approaches. 
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Abstract. Atavistic evolutionary strategy for genetic algorithm is put forward 
according to the atavistic phenomena existing in the process of biological evo-
lution, and the framework of the new strategy is given also. The effectiveness 
analysis of the new strategy is discussed by three characteristics of the repro-
duction operators. The introduction of atavistic evolutionary strategy is highly 
compatible with the minimum induction pattern, and increases the population 
diversity to a certain extent. The experimental results show that the new strat-
egy improves the performance of genetic algorithm on convergence time and 
solution quality.  

Keywords: genetic algorithm; atavistic evolutionary strategy; atavistic opera-
tor; atavistic probability; premature convergence. 

1   Introduction 

Genetic algorithm (GA) is a kind of stochastic search algorithm simulating the bio-
logical genetics and natural selection mechanism. Through studying the running 
mechanism of GA, Rudolph proved that GA does not necessarily converge only when 
reserving the best individuals [1]. From the perspective of mathematical analysis, the 
convergence process of GA can be viewed as an infinite approximation process, for 
example, the Markov process. When GA converges, the founded solutions are usually 
some approximate solutions or satisfactory solutions.  

The premature convergence phenomena of GA occur while the population evolves 
and reaches to a non-global optimal status. Under the status, the better solutions couldn't 
be found after more iteration operations. Xu etc. [2] put forward the concepts, premature 
set and population diversity, to analyze the causes and features that result in premature 
convergence, and illustrated that the maturation effect is the main cause which drives 
GA into premature convergence. Meanwhile, the premature convergence characteristic 
shows that the population diversity monotonically decreases. Accordingly, they estab-
lished a new GA which could converge to the global optimal solutions with probability. 
Wang etc. [3] gave a new definition of premature convergence based on the fuzzy the-
ory and method to establish the fuzzy model and measurement of population diversity, 
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and designed a new strategy to prevent premature convergence in which the crossover 
and mutation probability could be self-adapt according to the population diversity. The 
new strategy could improve the performance of GA and prevent premature conver-
gence. Fu etc. [4] put forward the definition of schema coefficient on the basis of the 
schema theorem to estimate the degree of schema monotonous. The new method, utiliz-
ing the schema coefficient to adjust the mutation probability, avoided the premature 
convergence due to schema monotonous when the algorithm converges. Zhou etc. [5] 
introduced the definition of life expectancy from the perspective recuperating losing 
schema and improving schema concentration. The population diversity was kept 
through controlling the schema diversity. Zhang etc. [6] put forward the ideal density 
model which guides the population searching toward to the chromosome family whose 
ancestral individuals are with higher fitness. Sultan etc. [7] introduced the time-table 
definition to control evolution strategy to keep the population diversity. Hrstka etc. [8] 
brought forward a targeted improved real encoding to control the premature conver-
gence of GA. Many researchers introduced different encoding, evolutionary strategy, 
and diversity controlling method and so on, and these new methods prevent premature 
convergence to some extent. Above-mentioned researches show that the individuals 
with higher fitness could evolve adequately and the population would prematurely  
converge if the population does not have adequate diversity. 

In general GA, the genetic information will be changed when the number and 
structure of chromosome change, and this results in that the offspring characteristic 
changes also. To keep the population evolving and ultimately converging, the popula-
tion must reserve the individual with best fitness [1]. The population scale must con-
strain in a certain number due to the constraint of computer storage space and compu-
tation time, so the individuals with better fitness replace those with worse fitness 
under the action of the selection operator, and these individuals will occupy the whole 
population after some evolution operations. Temporally, the algorithms fall into the 
premature convergence if it hadn't found the global optimal solution, and couldn't 
jump out the current search region which is reduced by this schema. There are two 
premature convergence features, the one is that the algorithm converged in the region 
not including the global optimal solutions; the other is that the algorithm fluctuated in 
the vicinity of the global optimal solution but couldn't find the global optimal solu-
tion. Fu etc. [9] found that the ability finding optimal solution will be enhanced if 
adding the atavistic operation into GA. Atavistic operation tries to help GA to break 
away the status of premature convergence. It might be a new effective method to 
retrain the premature convergence. Nevertheless, it isn’t given how to implement 
atavistic operation and related analysis in his work. In this paper, we demonstrate that 
the atavistic operation can be used to restrain the premature convergence for the trav-
eling salesman problem (TSP).  

2   Atavistic Evolutionary Strategies 

In biology, the population develops from simple to complex, from lower to higher 
according to the natural selection mechanism. Atavistic phenomena, as a kind of spe-
cial genetic phenomena, provide the persuasive evidence for biological evolution. 
Atavism is that some organisms present one or more ancestral properties which had 
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disappeared for a long time, and is a kind of unusual biological degradation phenom-
ena. When applying the phenomena to GA, the diversity would be increased to some 
extent, but the difficulty is how to judge which properties belong to atavism, and to 
control or induct these properties to increase the population diversity. For the above, 
the atavistic strategy for GA is put forward in this paper. The following briefly de-
scribes the process of GA, and then gives atavistic strategy on this basis. 

2.1   Operation Process of GA 

Assumed that L is the encoding length, HL is the individual space, 0R+  is the positive 

real set, F:Ω→ 0R+  is the fitness function. Remarked ( )
N

X t ⊂HL as tth generation N-

order population. The operation process of general GA is as follow. 

Algorithm 1: Operation process of general GA 

First step (Initialization):  

Setting the population scale N, crossover probability Pc, mutation probability Pm and stop 

condition; stochastically generating N individuals as the initial population (0)X ; t←0. 

Second step (Evaluating fitness):  

Computing all individual fitness in (0)
N

X . 

Third step (Evolving): 

Selecting: Selecting M/2 pairs individuals as parents from ( )
N

X t  utilizing selection  

operator, M≥N. 

Crossover: Executing crossover operation on these parents according to Pc, and generating 

M candidate individuals. 

Mutation: Applying mutation operation to these new individuals according to Pm. 

Evaluating fitness: Computing all fitness of M new candidate individuals. 

Breeding: Selecting N individuals from ( )
N

X t  and M new candidate individuals  

to constitute new generation population ( 1)
N

X t + . 

Forth step (Checking stop condition):  

If satisfying stop condition, returning the individual with best fitness in ( 1)
N

X t + ,  

otherwise setting t←t+1 and jumping to the third step. 

In algorithm 1, the breeding operation in the third step is an important step to con-
trol the diversity, and to implement different evolution strategy also. In the process 
constituting next generation population, we could constitute next generation popula-
tion whose diversity is more ideal by gene type, gene block, effective alleles, individ-
ual similarity and information entropy and so forth.  
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2.2   Atavistic Evolution Strategy 

Assumed that ( )
M

X t  is the tth generation population, SE: ( ) ( 1)
M N

X t X t→ +  is the 

breeding operation. 

Definition 1 If ( 1) ( 1)
Nix t X t∃ + ∈ + , referring 

( ) ( )
[ ( 1)] min [ ( )]

j N

i j

x t X t
F x t F x t

∀ ∈
+ <  as 

degradation. 

Many researches pointed out that the degradation would restrain the absorption of 
high-fitness individuals to low-fitness individuals to some extent. It is beneficial to 
keeping the diversity, and then expanding the search space of GA [9]. The absorption 
will gradually assimilate the low-fitness individuals under the action of minimal in-
duct schema. This is the root cause for premature phenomena of GA [2]. Above 
analysis is fit for new individuals, including the individuals generated during evolu-
tion, those individuals generated stochastically and those individuals from other popu-
lations in multi-population evolution. 

Now assumed that the minimal induct schema in population is min ( )L X , and if an 

individual x∈HL includes the minimal induct schema, remarked as min ( )x L X∝ . 

Definition 2 If ( 1) ( 1)
Nix t X t∃ + ∈ + , referring min( 1) ( )ix t L X+ ∝ and 

( ) ( )
[ ( 1)] min [ ( )]

j N

i j

x t X t
F x t F x t

∀ ∈
+ <  as atavism. 

We could know that atavism is a special instance of degradation from definition 2. 
The minimal induct schema affects all individuals in population through-out the proc-
ess of evolution, so it is generally implied in some individuals, but there isn't an effec-
tive model or method to judge it up to now. Therefore, the methods, stochastically 
generating individuals or selecting individuals from other populations, aren't fit for 
atavistic operation, because the probability which these new individuals include the 
minimal induct schema of current population is so low that these new individuals will 
be absorbed by the schema sooner or later. Although the atavism function could be 
implemented, the effect would be not very good. In the meanwhile, it will spend a 
large amount of storage space if reserving the populations through the generations, so 
the atavism strategy is reserving the initial population as a copy, and the copy pro-
vides all chromosomes for the strategy. New atavism strategy is as follow. 

1. reserving the initial population as a chromosome copy P  after initializing the 
population; 

2. Executing the following process when selecting an individual from the candidate 
population: 

1.1. Adding the individual into next generation population ( 1)
N

X t +  if the  

fitness of the individual is higher or the highest; 
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1.2. If the individual couldn't be added into next generation according to the ata-

vistic probability, stochastically selecting a individual from P  and adding into 

( 1)
N

X t + . 

2.3   Atavistic Evolution GA 

The framework of new GA with atavistic operation is as algorithm 2. 

Algorithm 2: New GA with atavistic operation. 

First step (Initialization):  

Setting the population scale N, crossover probability Pc, mutation probability Pm,  

atavistic probability Pa and stop condition; stochastically generating N individuals as 

initial population (0)X ; t←0; (0)P X← . 

Second step (Evaluating fitness):  

Computing all individual fitness in ( )
N

X t . 

Third step (Evolving): 

Selecting: Selecting M/2 pairs individuals as parents from ( )
N

X t  utilizing selection 

operator, M≥N. 

Crossover: Executing crossover operation on these parents according to Pc, and generating 

M candidate individuals. 

Mutation: Applying mutation operation to these candidate individuals according to Pm. 

Evaluating fitness: Computing all fitness of M new candidate individuals. 

Atavistic breeding: Selecting N individuals from M new candidate individuals;  

Replacing the individuals whose fitness isn't the highest by the individuals selected sto-

chastically from P  according to Pa; Constituting next generation ( 1)
N

X t + . 

Forth step (Checking stop condition):  

If satisfying stop condition, returning the individual with best fitness in ( 1)
N

X t + , 

otherwise setting t←t+1 and jumping to the third step. 

The following is analyzing the effect of atavism to the algorithm convergence and 
the population diversity. 

3   Effectiveness Analyzing of Atavistic Strategy 

Aggregating rate AE, scattering rate k
ES  and stability rate k

EST  of abstract operators E 

in general GA are as follow [10]: 
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{ }
{ }
{ }

min { [ ( )] 1}: ( ) 0,

max { [ ( )] 0}: ( ) ,

min { [ ( )] }: ( ) ,

E L

k
E L

k
E L

A P n E X n X X H

S P n E X n X k X H

ST P n E X k n X k X H

⎧ = ≥ = ⊂
⎪
⎪ = = ≥ ⊂⎨
⎪
⎪ = ≥ ≥ ⊂⎩

 

(1) 

n represents a kind of selection, crossover or mutation. According to above-mentioned 
settings, the GA with atavistic operation will add an atavistic operator SE. The opera-
tor has all of three above properties. In the meanwhile, its transition probability is 

{ ( ) 1 }

{ ( ) } 1

ij ij SE

ij ij SE

P SE X x P

P SE X x P

⎧ = − =⎪
⎨

= = −⎪⎩

 
(2) 

PSE is a predetermined atavistic probability; xij represents the jth gene in individual Xi. 

if PSE≤1/2, the aggregating rate, scattering rate and stability rate of SE are 

1 (1 )

[1 (1 ) ] (1 )

(1 )

L M
SE SE

k L k L M k
SE SE SE

k Lk
SE SE

A P

S P P

ST P

−

⎧ = − −
⎪

= − − −⎨
⎪ = −⎩

 

(3) 

If PSE≠0, the values of three properties are not zero. It represents that atavistic opera-
tor has better anti-absorption and scattering ability. On the premise of reserving the 
best individual, atavistic operator SE changes all locus of a chromosome, so the op-
erator is just like the mutation operator. Therefore, the properties of GA with atavistic 
operator will change as follow. 

( )

1 1 ( )

[1 (1 ( )) ]

( 1)
1 1 ( )

ML
G m SE

M L M
G m SE

k
Lkk c

G m SE

A P P

S P P

L P
ST P P

L

⎧ ⎡ ⎤= − − +⎣ ⎦⎪
⎪ = − − +⎪
⎨

⎡ ⎤⎪ −⎛ ⎞≥ − − +⎢ ⎥⎪ ⎜ ⎟
⎝ ⎠⎢ ⎥⎪ ⎣ ⎦⎩

 

(4) 

G is a term of the genetic operators as a group. If the GA with atavistic operator had 
been weak convergence with probability, the GA would be satisfied the following 
three conditions, because the atavistic operator doesn't change selection, crossover 
and mutation operators [10].  

• The selection pressure of {St} has a consistent lower bound m0. There exists a posi-
tive integer m0 makes PS(t)≥m0. 

• The aggregating rate {AE(t)} of {Et} is satisfied ( )E t
t

A
∞

= ∞∑ . 

• Selection intensity {αS(t)}, aggregating rate {AE(t)} and scattering rate { }0
( )

m
E tS  are 

satisfied the following relationship 
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0
( ) ( )

( )

1 (1 )
lim 0

m
E t E t

t
E t

S

A

α
→∞

− − ×
=  (5) 

For the above three conditions, the first condition is satisfied because atavistic opera-
tor has no effect on selection operator. When Pm+PSE<1, the second condition can be 

apparently met. As 1 (1 ( ) ) 1 (1 )L M L M
m SE mP P P⎡ ⎤ ⎡ ⎤− − + > − −⎣ ⎦ ⎣ ⎦  and 

( ) ( )1 1 ( ) 1 1
M ML L

m SE mP P P⎡ ⎤ ⎡ ⎤− − + < − −⎣ ⎦ ⎣ ⎦ , we can know that the GA also meet the 

third condition. Therefore, the atavistic operator doesn't damage the property of weak 
convergence with probability. 

Similar to the above process, if the original GA satisfies the strong convergence 
with probability, it will remain strong convergence with probability algorithm after 
being introduced the atavistic operator. This paper will not repeat them. 

4   Experimental Simulation and Analysis 

The following experimental environment is Intel T8300 2.4GHz CPU, 2GB RAM, 
Microsoft Windows XP operating system. The primary parameters of GA are cross-
over probability 0.615, mutation probability 0.15, atavistic probability 0.025, popula-
tion scale 50, maximum evolution generation 5 000. All algorithms will stop once 
finding the global optimal solution (GOS). The evolutionary rules are as follow: if the 
fitness of an offspring individual is higher than all fitness of parent individuals, re-
placing the parent individual whose fitness is lower than the fitness of the offspring 
individual with the offspring individual, and stopping this generation evolution. The 
local search algorithm is 2-Opt for better observing experimental situation. All ex-
perimental datasets are from TSPLIB95 and their scales are less than 100 cities. 

Table 1. Comparison Experiment on atavistic GA 

General GA GA with Atavistic Operator 
Dataset 
Name 

Cities
Global 

Optimal 
Solution 

Average
Length 

Average
Time 

(s) 

Times 
finding 
GOS 

Average
Length 

Average
Time 

(s) 

Times 
finding 
GOS 

burma14 14 3 323 3 323 0.030 30 3 323 0.033 30 
att48 48 10 628 10 628 2.174 30 10 628 1.976 30 
eil51 51 426 427 38.389 16 427 7.765 20 
berlin52 52 7 542 7 542 0.159 30 7 542 0.204 30 
st70 70 675 675 1.358 30 675 1.463 30 
eil76 76 538 538 3.661 30 538 3.178 30 
pr76 76 108 159 108 159 1.420 30 108 159 1.558 30 
rat99 99 1 211 1 211 2.665 30 1 211 3.221 30 
kroa100 100 21 282 21 282 1.793 30 21 282 1.553 30 
krob100 100 22 141 22 143 8.154 29 22 141 4.426 30 
kroc100 100 20 749 20 749 2.551 30 20 749 2.641 30 
krod100 100 21 294 21 306 113.485 6 21 303 19.075 13 
kroe100 100 22 068 22 103 91.706 10 22 099 17.478 12 
rd100 100 7 910 7 910 2.037 30 7 910 2.146 30 
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Each algorithm runs on a dataset for 30 times, and computing statistic data. The re-
sult is as table1. The convergence times recorded how many times the algorithm con-
verges to the global optimal solution for 30 times repeated running. 

We could know from the experimental results: 

• For those datasets which could be found its global optimal solutions for 30 times, 
new GA spent a little more time than the general GA due to the scattering action of 
the atavistic operation. The convergence analysis figures of dataset eil51 and 
krob100 are given in figure 1. 

  
(a) eil51 (b) krob100 

Fig. 1. Convergence analysis for data set eil51 and krob100 from TSPLIB95 

Average convergence speed of new GA is slow than general GA due to the scattering 
action of atavistic operator at initial phase of algorithm running, but the speed is fast 
than general GA at later phase of algorithm running because the diversity is better 
than general GA under the action of atavistic operator.  

• For those datasets which can't be found its global optimal solutions for each run-
ning, the times which new GA converges to the global optimal solutions is more 
than the general GA, and average convergence time is significantly shortened. 

• No large-scale datasets are used in our experiments because the ability searching 
optimal solutions of 2-Opt is so weak that it needs a long time to converge to opti-
mal solutions, especially using the atavistic operation. If solving some large-scale 
datasets, some advanced local search algorithms can be employed, such as 2.5-Opt, 
3-Opt or Lin-Kernighan and its variants. While employed these advanced local 
search algorithms, the problem when and how to select, establish or update the an-
cestral chromosome library will be discussed further more. 

• Atavistic probability must be introduced into the new GA because utilizing atavis-
tic operator. The value of atavistic probability has a greater impact on GA. A larger 
probability will increase the scattering ability of atavistic operator. This will result 
in that the convergence speed slows down or GA converges to some worse optimal 
solutions. A smaller probability will decrease the ability, although this can acceler-
ate search speed and shorten convergence time, but the diversity will be decreased 
also. Especially, the new GA will degrade to general GA while the value is zero. 
The suggested value is 0.025 in this paper. 
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5   Conclusions 

This paper brought forward the atavistic strategy for GA according to the inherent 
atavism phenomena existing in the process of biological evolution. New operation has 
the property of simplicity and effectiveness. In this paper, the effectiveness of new 
operation is analyzed through three characteristics of breeding operators in GA, and 
validated through experiments. Experimental results showed that the new operation 
can improve the performance of GA from convergence speed to solution quality. It is 
demonstrated also how to apply the new operator to solving some large-scale travel-
ing salesman problems.  
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Abstract. This paper presents an improved co-evolution genetic algorithm 
(ICGA), which uses the methodology of game theory to solve the mode decep-
tion and premature convergence problem. In ICGA, groups become different 
players in the game. Mutation operator is designed to simulate the situation in 
the evolutionary stable strategy. Information transfer mode is added to ICGA to 
provide greater decision-making space. ICGA is used to solve large-scale de-
ceptive problems and an optimal control problem. Results of numerical tests 
validate the algorithm’s excellent performance.  

Keywords: genetic algorithm; co-evolution; deceptive function; game theory; 
optimal control. 

1   Introduction 

Since 1980s, researchers in different fields pay more attention to genetic algorithm. 
Nowadays, genetic algorithm has been made a wide range of applications in many 
areas. 

Holland proposed the building block hypothesis: short, highly fit combinations of 
bits can combine to form optima. This hypothesis, which provides the mathematics 
foundation to explain the mechanism of genetic algorithm, makes the quantity of the 
good schemas increasing exponentially [1]. In the later, Goldberg improved this hy-
pothesis [2]. 

If the linkage between necessary bit combinations is too weak, in certain types of 
problems called deceptive problems, genetic algorithms will converge to suboptimal 
points [3]. Aiming at the weakness of building block hypothesis, Goldberg con-
structed the deceptive problem. In his opinion, it is very important to use deceptive 
problems as the test function to study genetic algorithm or other algorithm having the 
similar search mechanism. 

This paper presents an improved co-evolution genetic algorithm (ICGA) .ICGA 
uses thoughts of co-evolutionary to establish and maintain a number of different sub-
groups which are cooperative co-evolution and mutual influence [4] [5].There are 
great similarities between evolutionary game theory and evolutionary algorithm, such 
as evolutionary stable strategy and replicator dynamics [6]. The cheap talk can be 
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used to improve the information transfer mode among the subgroups [8], so ICGA 
redesigned the mutation operator and information transfer mode among the subgroups 
by using the ideas of the game theory.  

2   The Improved Co-Evolution Genetic Algorithm (ICGA) 

2.1   The Traditional Genetic Algorithm (GA) 

GA is originated from the computer simulation in the biological system. Simply stated, 
it’s a search procedure which based on the mechanics of natural selection and natural 
genetics: any initial population can create new individuals which adapt to the environ-
ment better, according to the random selection, crossover and mutation operation. 

2.2   Mutation 

Suppose that a small group of mutants appears in a large population of individuals, all 
of whom are programmed to play the same incumbent strategy x .Suppose also that 
the mutants all are programmed to play some other mutant strategy y . Let the share 

of mutants in the population beε , where (0,1)ε ∈ . Pairs of individuals in this bio-

morphic population are repeatedly drawn at random to play the game, each individual 
being drawn with equal probability. Hence, if an individual is drawn to play the game, 
then the probability that the opponent will play the mutant strategy y isε , and the 

probability that the opponent will play the incumbent strategy x is 1 ε− .The payoff 
in a match in this biomorphic population is the same as in a match with an individual 
who plays the mixed strategy (1 )w y xε ε= + − .Biological intuition suggests that 

evolutionary forces select against the mutant strategy if and only if its payoff (fitness) 
is lower than that of the incumbent strategy. 

Let mP be the mutation rate in ICGA� and individuals represented as strategy. 

The incumbent strategy is i
jx .The mutant strategy which bases on the incumbent 

strategy is as follow: 

  
1

1
( 1) ( )

n
i

j jli
i

z b a i x
b=

= − ∑  
(1) 

        

1
1, Pr { ( ) 1}

( )
1

0, Pr { ( ) 0} 1

ob a i
na i

ob a i
n

⎧ = =⎪⎪= ⎨
⎪ = = −
⎪⎩   

(2) 

The mixed strategy is as follow: 

   (1 )i i
jl m jl m jy P x P z= − +   (3) 
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2.3   Information Transfer Mode 

Battle of the sexes is one of a large class of games called coordination games, which 
share the common feature that the players need to coordinate on one of multiple Nash 
equilibriums. It is a conflict between a man who wants to go to a prize fight and a 
woman who wants to go to a ballet. The Battle of the Sexes has two Nash equilib-
riums, which is iterated dominance equilibrium. One of which is the strategy profile 
(Prize Fight, Prize Fight). And the strategy profile (Ballet, Ballet) is another Nash 
equilibrium. 

Each of the Nash equilibrium in the Battle of the Sexes is pareto-efficient; no other 
strategy profile increases the payoff of one player without decreasing that of the other. 

When the optimal problem has more than one minimal points, algorithms often 
converge to one of the points. It is similar with the situation which happens in the 
coordination game, so I think about using this method in game theory to solve this 
problem. 

Now set the number of subgroups be N and the number of the individual in any 

subgroup be 1N .The ith subgroup represented as { }i
i jC x= , where i

jx  is the jth 

element of the ith subgroup� 1,2, ,i N= � 11, 2, ,j N= .The fitness can be 

calculated by the formula as follow: 

1

1

1

( )
j

N
l

l

N X
Fitness j

X

−

−

=

×=
∑

 
 

(4) 

Let X be the root of the polynomial equation as follow:           

1

0
( ) 0

N i

i
sp i X

−

=
− × =∑  (5) 

Sorting the elements of set iC  from large to small, the probability based on the indi-

vidual fitness, for 1max{[ ],1}M N δ= , where δ  belongs to natural number. Get 

the sequence{ }i
jm , for 1, 2, ,j M= . 

Let the ith subgroup iC ’s information transmission be iS , let 0 NS S= , 

1 1NS S+ = ; receiving information set is iG .We can have the formulas as follow:          

1 2{ , , , }i i i
i MS m m m=   

(6) 

1 1i i iG S S− += ∪   (7) 

2.4   The Optimal Solution and Nash Equilibrium 

If the scale of the problem is very large, the precision of evolutionary algorithm (EA) 
will be badly affected. So, I think EA should represent as the Data Pre-processing, 
rather than an optimization procedure. It is important that EA provide a solution set of 
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large-scale problems, which contains some satisfactory solutions. Expecting to find 
some favorable modes, I analysis the solution set by the principle of the game theory. 
In my opinion, one optimization procedure of ICGA represents as one game, the ob-
jective function represent as the utility function. The optimal solution, which resolves 
by ICGA, is the dominant strategy of the game. By Theorem 1, the game must have 
Nash equilibrium. Let the dominated strategy invade dominant strategy to find the 
Nash equilibrium. 

Theorem 1: Every finite strategic-form game has a mixed-strategy equilibrium [9]. 

3   Numerical Experiments on Deceptive Problems 

This part uses three kinds of small-scale deceptive functions, namely, sub func-
tions� to form the two types of large-scale deceptive problems: If all of the input 
variables of the sub functions are arrange side by side. The deceptive problem is 
strong-linkage. If the input variable of the sub functions is not neighboring. The de-
ceptive problem is weak-linkage. These problems are used to test ICGA’s perform-
ance. In these problems, all of input variables take 0 or 1.u represented the number of 
the input variables taking 1. These three sub functions are as follows: 

Three-order deceptive function: 

      
1 2 3

0 .9 , 0
0 .8 , 1

( , , )3
0 , 2
1, 3

u
u

f a a ad e c e p tiv e
u
u

⎧ =⎪
⎪ =
⎨=
⎪ =
⎪ =⎩

. (8) 

Five-order trap function:  

1 2 3 4 5

5 , 5
( , , , , )5

4 ,

u
f a a a a atrap

u o therw ise

⎧ =⎪= ⎨
⎪ −⎩

. (9) 

Six-order bipolar function: 
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 . (10) 

3.1   Strong-Linkage Deceptive Functions 

The three strong-linkage deceptive functions used as follows: 

3

1 3 3 2 3 1 3
1

( ) ( , , )
n

deceptive i i i
i
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=

= ∑   
(11) 
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= ∑   (12) 
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3 6 6 5 6 4 6 3 6 2 6 1 6
1

( ) ( , , , , , )
n

bipolar i i i i i i
i

f a f a a a a a a− − − − −
=

=∑   (13) 

Table 1. ICGA’s average of function evaluations over 50 independent runs comparing with 
other algorithms for f1-f3 

 ICGA [9] [10] [11] 
n=30 2550 842 8500 6510 
n=60 3050 3817 27300 25200 f1 

 n=90 3550 9790 57000 45300 
n=30 2850 869 14300 7150 
n=60 3150 4088 41250 39620 f2 

 n=90 6050 8956 75450 67620 
n=30 2800 2098 9000 3150 
n=60 11100 16099 36000 13010 f3 

 n=90 21600 50260 45900 24310 

Table 2. ICGA’s average of function evaluations compared with other algorithms 

 ICGA [9] [13] 
n=60 3050 3817 28807 
n=240 52400 96061 235126 
n=510 268400 516144 — 
n=810 856530 1470082 — 

f1 
 
 n=990 1064470 2244465 — 

n=100 12100 12514 97746 
n=250 15100 99899 478410 
n=510 50200 541398 — 
n=810 265200 1489900 — 

f2 
 
 n=990 479600 2443265 — 

 
Results of numerical tests are given in Table 1. These results, which compared 

with those in [9], [10] and [11], are the average number of function evaluations over 
50 independent runs of ICGA when n = 30, 60, and 90.For f1, f2 and f3, When n=30, 
the computational cost of ICGA is bigger than MAGA in [9]. In the rest of the case, 
ICGA outperforms the other methods. 

As the scale of the problem increases, the number of local extreme become 
more and more, leading to the greater difficulty of the problem. To validate 
ICGA’s performance in the large-scale problems, Numerical tests are done: for f1, 
n increases from 60 to 990; for f2, n increases from 100 to 990. The results are 
given in Table 2. Compared with methods in [9] and [13], ICGA outperforms the 
other methods. 
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3.2   Weak-Linkage Deceptive Functions 

The four weak-linkage deceptive functions used as follows: 

3

4 3 3 2 3
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( ) ( , , )
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= ∑   
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Numerical tests are done: for f4, f5 and f6, n increases from 30 to 210 in steps of 30; 
these results are the average number of function evaluations over 50 independent runs 
of ICGA when n takes different values. As we can see in the Table 3, the computa-
tional cost of ICGA is smaller than MAGA.  

Table 3. ICGA’s average of function evaluations over 50 independent runs compared with 
other algorithms for f4-f6 

 ICGA [9] 
n=30 21100 69541 
n=60 104200 929707 
n=90 412400 2851883 f4 

 n=210 1656800 47719535 
n=30 402800 455201 
n=60 4010400 428605105 
n=90 7017000 — f5 

 n=210 10017000 — 
n=30 50600 60111 
n=60 804400 1578582 
n=90 3212800 8027175 f6 

 n=210 10036000 284445620 

4   ICGA Applied in the Optimal Control 

The optimal control is the core of modern control theory. Its main problem is that 
finding the optimal control strategy to make the given performance meet the mini-
mum or the maximum. Dynamic programming and the maximum principle are the 
main numerical methods to solve an optimal control problem. Because the traditional 
methods can’t solve the optimization problem of non-differentiability and high mor-
bidity, researchers turn their attention to evolutionary algorithm. In this part, ICGA is 
applied to a discrete linear system’s optimal control problem to test algorithm's  
performance[14]. 
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4.1   Discrete Linear System’s Optimal Control Problem 

The discrete linear system as follows： 

         1 2

2 2 1 2

( 1) ( )
, 1,2, ,1

( 1) 2 ( ) ( ) ( )

x k x k
k N

x k x k x k u k
N

+ =⎧
⎪ =⎨ + = ∗ − +⎪⎩

    

(17) 

In this problem, the objective function of the performance Index defined as follow: 

   2
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1
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Theoretical optimization of the discrete linear system is: 
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4.2   Results 

Numerical tests are done: for the discrete linear system, N from 10 to 50 in the steps 
of 10. The results show the good global searching ability of this new algorithm. 

Table 4. Comparison between ICGA and GA 

 
Algorithms theory value 

Mean of 
optimal 
solution 

Average 
termination 

algebra 
Error 

GA -0.1407 82 0.0018 
N=10 ICGA -0.1425 -0.1424 43 0.0001 

GA -0.1496 108 0.0048 
N=20 ICGA -0.1544 -0.1541 44 0.0003 

GA -0.1507 182 0.0077 
N=30 ICGA -0.1584 -0.1582 52 0.0002 

5   Conclusion 

ICGA is an adaptive, robust optimal algorithm, which base on the thoughts of co-
evolutionary and the methodology in game theory .The mutation operation is redes-
igned and information transfer mode is added. In the experiments, strong-linkage and 
weak-linkage deceptive functions are used to test the performance of ICGA. The 
results show algorithms excellent performance. In the end, ICGA applied to an opti-
mal control problem. The results verify the applicability of ICGA. 
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Abstract. This paper proposed an improved decomposition approach for struc-
turing elements of arbitrary shape. For the model of this method, we use the re-
cursive model which decomposes a given structuring element into a variable-
size matrix dilated by a fixed-size matrix and with union of a residue compo-
nent, such procedures repeated until the variable-size matrix is smaller than a 
predefined threshold. For the algorithm of our method, we proposed an im-
proved GA based on the ring topology of migration model and the power-rank 
fitness scaling strategy. The experiments demonstrate that our method is more 
robust than Park’s method, Anelli’s method, and Shih’s method, and gave the 
final decomposition tree of different SE shapes such as the letter “V”, heart, and 
umbrella. 

Keywords: mathematical morphology, structuring element decomposition,  
genetic algorithm, migration model, fitness scaling. 

1   Introduction 

Mathematical morphology (MM) is a theory and technique for the analysis and proc-
essing of geometrical structures, based on set theory, lattice theory, topology, and 
random functions. The basic idea in MM is to probe an image with a simple, pre-
defined shape, drawing conclusions on how this shape fits or misses the shapes in the 
image. This simple probe is called structuring element (SE), and is itself a binary 
image. However, implementation becomes difficult when the size of SE is large [1]. 
Hence, the techniques for decomposing a large SE into combined small SEs are  
extremely important.  

Many techniques have been proposed for the decomposition of SE, but they are com-
plicated and appear indecomposable cases [2]. Hashimoto indicated that traditional 
algorithms have the disadvantage of being unable to decompose many simply connected 
decomposable SEs [3]. Shih [4] developed a method for decomposing arbitrarily shaped 
binary SEs using canonical genetic algorithm (CGA). The algorithm performs an itera-
tive process to create new ones that minimize a given fitness function. After a sufficient 
number of iterations, the algorithm tends to converge toward the optimal solution [5]. 
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However, the algorithm suffers from two disadvantages since it takes too much time and 
the success rate is not satisfying. 

In this study, we present an improved genetic algorithm for decomposing arbitrary 
SEs. The rest of the paper is organized as follows. In Section 2 we introduced the 
basic principles of SE decomposition. Section 3 describes the recursive model. In 
Section 4 we transfer the recursive model to an optimization problem which is suit-
able for GA. In Section 5 we propose a new migration fitness scaling GA. Section 6 
compare our method with Park’s, Shih’s, and Anelli’s method. Final Section 7 is 
devoted to conclusion. 

2   Background 

Let A denotes a binary image and S denotes a SE. If we decompose S into S1 ⊕  S2 ⊕  
…⊕  Sk, the dilation and erosion will become as follows according to associative law 

 ( )1 2 1 2((( ) ) )k kA S A S S S A S S S⊕ = ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕  (1) 

 A – S A= – ( )1 2 (((kS S S A⊕ ⊕ ⊕ = – 1)S – 2 )S – )kS  (2) 

The advantage of SE decomposition is that the time complexity for the morphological 
operations will be reduced extremely. The time complexity for dilation (erosion) 
operators is proportional to the number of nonzero element of S. Fig. 1(a-b) shows two 
examples. The first is to decompose a square SE of size 5×5 into two row vectors of 
size 1×3 and two column vectors of size 3×1, and the computation time will decrease 
from 25 to 3+2+3+2=10. The second example is to decompose a diamond SE of di-
ameter 7 into three small SEs, and the time will decrease from 25 to 5+4+4=13. 

) (

 

Fig. 1. Examples of SE Decomposition: (a) 7×7 Square; (b) 7×7 Diamond; (c) 5×5 Rand 
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For parallel pipelined architecture, we decompose the SE using both dilation and 
union operator. The cost time of the union operator is the maximum of the number of 
nonzero element of both operands. Fig. 1(c) gives an example, here the subscript (-1,-1) 
denotes this square matrix should be translated -1 at both x-axis and y-axis. The paral-
lel computation time after decomposition will decrease from 14 to max(3+4,2) = 7. 

3   Recursive Model 

Let SNN denote a SE of size N×N. The first decomposition can be written as 

 ( 2)( 2) 33
PC

NN N N NNS V F R− −= ⊕ ∪  (3) 

Here we use the dilation and union model: the V denotes the variable-size matrix of 
SE, the FPC denotes the fixed-size prime component, and R denotes the residue com-
ponent. The R can be easily decomposed into union of factors of size 3×3 because the 
size 3×3 is often used as the elementary structuring component for decomposition in 
literature.  

 ( ) ( ) ( )1 2
( 2)( 2) 33 33 33 33( 1, 1) ( 2, 2) ( , )

PC n
NN N N x y x y xn yn

S V F R R R− −
⎡ ⎤= ⊕ ⎢ ⎥⎣ ⎦

∪ ∪ ∪ ∪  (4) 

Here n denotes the number of 3-by-3 residual matrix. The subscript (xi, yi) denotes 
that the Ri should be translated by (xi, yi). Therefore, the iteration continues to V(N-2)(N-

2) until the size is smaller or equal to 3×3. The flow of the recursive decomposition 
model is depicted in Fig. 2. 

( 2)( 2) 33
PC

NN N N NNS V F R− −= ⊕ ∪

( ) ( ) ( )1 2
33 33 33( 1, 1) ( 2, 2) ( , )

nk
NN x y x y xnk ynk

R R R R= ∪ ∪ ∪

 

Fig. 2. Flow of Recursive Decomposition Model 
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Fig. 2 indicates we record 4 variables (Vk, Fk, Rk, and Pk) at each iteration level k, 
and the decomposition tree can be depicted via those variables. Our task is to develop 
an effective method to decompose formula (3). 

4   Optimization Problem 

GA simulates the process of natural selection, and is well suited to optimize solutions 
over large combinatorial spaces [6]. To apply GA in decomposition model, the encod-
ing strategy and the fitness function should be determined first, which are presented in 
the following. 

For the encoding strategy, we encoded the variable Fk and straighten it into a one-
dimensional string of chromosome. For any SE at any iteration, the Fk is a 3-by-3 
two-value image, therefore, the chromosome can be written as 

 1 2 9( ) ...straighten F f f fξ =  (5) 

Here ξ denotes the chromosome and fi denotes the locus. Fig. 3(a) illustrates the num-
bering scheme for ξ. Two examples are shown in Fig. 3(b-c), and their 1D string of 
chromosomes are “100101011” and “011001101” respectively. 

1 2 3

4 5 6

7 8 9
   

1 0 0

1 0 1

0 1 1
   

0 1 1

0 0 1

1 0 1
 

Fig. 3. (a) Index of gene positions with two examples: (b) “100101011”; (c) “011001101”. 

For the fitness function, the prime component F is encoded, therefore, variable ma-
trix of SE V and residual matrix R can be obtained through following formulas 

 V S= – F  (6) 

 R S V F= − ⊕  (7) 

Then, we can extract two different types of costs. One is serial computation cost JS, 
and the other is parallel computation cost JP. Note that those variables satisfy the 
equality of S V F R= ⊕ ∪ , the costs are written as 

 SJ V F R= + +∑ ∑ ∑  (8) 

 PJ R=∑  (9) 

In this paper, we combine those two costs with a weight factor ω, viz. J = ω JS +(1-ω) 
JP. For simplicity, ω=0.5. 
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5   Migration Fitness Scaling GA 

GA is efficient and has the ability of jumping out of local minima, but some times it 
spends excessive time on redundant iteration [7]. To overcome this problem, we pro-
posed a novel migration fitness-scaling GA (MFSGA) which combines the migration 
model and the fitness scaling strategy. 

The migration model takes the idea of separately evolving subpopulations and ex-
tends it by adding a means of selectively sharing genetic information between them. 
Migration may occur in a variety of ways. Two parameters associated with the migra-
tion algorithm [8] are extremely important: the migration interval and the migration 
rate. The migration interval is the number of generations between each migration, and 
the migration rate is the number of individuals selected for migration. 

For each subpopulation in the distributed GA, migration is accomplished as fol-
lows. Every migration interval, the best individuals from one subpopulation replace 
the worst individuals in its neighbor. Individuals that migrate from one subpopulation 
to another are copied. They are not removed from the source subpopulation. As with 
multiple elitist selection, migration represents a tradeoff between exploration of new 
designs and exploitation of highly fit designs which have already been found. The 
physical relationship between subpopulations imposed by the topology of the distrib-
uted system has an effect on this tradeoff as well. The ring topology used for the pro-
posed migration model ensures local communications between subpopulations. The 
benefit of this design is that migration occurs locally between adjacent populations on 
the ring. This yields local exploitation of fit designs, while globally the separate sub-
populations are free to explore different types of designs independently [9]. 

Fitness scaling is the other improvement, which converts the raw fitness scores that 
are returned by the fitness function to values in a range that is suitable for the selec-
tion function [10]. The selection function uses the scaled fitness values to select the 
particles of the next generation. Then, the selection function assigns a higher prob-
ability of selection to particles with higher scaled values. There exist bundles of fit-
ness scaling methods. The most common scaling techniques include traditional linear 
scaling, rank scaling, power scaling, and top scaling.  

Among those fitness scaling methods, the power scaling finds a solution nearly the 
most quickly due to improvement of diversity but it suffers from unstability [11], 
meanwhile, the rank scaling show stability on different types of tests. Therefore, a 
new power-rank scaling method was proposed combing both power and rank strate-
gies as follows 

 
1

/
Nk k

i i ii
fit r r

=
= ∑  (10) 

where ri is the rank of ith individual, N is the number of population. Our strategy 
contains a three-step process. First, all individuals are sorted to obtain the ranks. Sec-
ond, powers are computed for exponential values k. Third, the scaled values are nor-
malized by dividing the sum of the scaled values over the entire population. 
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6   Experiments 

The experiments were carried out on the platform of P4 IBM with 3GHz processor 
and 2GB memory, running under Windows XP operating system. The algorithm was 
developed via the global optimization toolbox of Matlab 2010b. 

The SE shown in Fig. 4 is indecomposable by Park’s algorithm [3]. However, a 
successful decomposition can be found via our algorithm as shown in Fig. 4(a). The 
serial computation cost is 10 and the parallel computation cost is 1.  

We run both our proposed improved GA and the CGA in Shih’s method 20 times 
[4] without using Park’s 13 prime factor as initialization population. Our method all 
finds the global best result, while three runs of CGA finds a failed result as shown in 
Fig. 4(b) with serial computation cost of 11 and parallel computation cost of 2. There-
fore, the proposed improved GA is more robust than the CGA algorithm of Shih’s 
algorithm. 

(     ) ⊕

⊕ ∪
(-1,-2)    

(     ) ⊕

⊕ ∪
(1,-1)  

Fig. 4. A typical decomposition tree: (a) A success run; (b) A failed run 

=

(     ) ⊕

(     ) ⊕ ∪
(-2,2)

∪
(0,-2)

∪
(2,2)

⊕ ∪
(-1,1)

∪
(0,-1)  

Fig. 5. Decomposition tree of Anelli’s SE 

Fig. 5 shows the decomposition tree of Anelli’s SE. We compared our method with 
Anelli’s paper [12]. The serial computation cost of our algorithm is 18, and the paral-
lel computation cost of our algorithm is 6. Conversely, the serial and parallel compu-
tation costs of Anelli’s method are 22 and 10, respectively. The decomposition tree of 
Anelli can be seen in Ref. [12]. 

We use 4 examples of 15-by-15 different shapes including the letter “V”, heart, and 
umbrella. Tab. 1 lists their original SE shape, the decomposition tree, the serial com-
putation cost, and the parallel computation cost. For the V-shaped SE, the original 
points are 94, the serial and parallel computation cost after decomposition is only 94 
and 13, respectively. For the heart, the points of original SE, JS, and JP are 142, 32, and 
8, respectively. For the umbrella, the points of original SE, JS, and JP are 94, 44, and 
27, respectively. 
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Table 1. Three Decomposition Examples (black denotes 0 & white denotes 1) 

Original SE & its points Decomposition Tree JS JP 

 
(94) 

(     ) ⊕ ∪
(-6,6)

∪
(6,6)

(     ) ⊕ ∪
(0,-5)

∪
(1,-2)

∪
(2,1)

(     ) ⊕ ∪
(-4,4)

(     ) ⊕ ∪
(-3,0)

∪
(-3,-3)

(     ) ⊕

⊕ ∪
(1,1)  

29 13 

 
(142) 

(     ) ⊕ ∪
(-1,-5)

(     ) ⊕ ∪
(-1,-3)

(     ) ⊕

(     ) ⊕ ∪
(-3,3)

∪
(3,3)

(     ) ⊕ ∪
(-2,2)

⊕ ∪
(-1,1)

∪
(1,1)  

32 8 

 
(94) 

(     ) ⊕ ∪
(-3,-6)

∪
(-6,3)

∪
(-2,-6)

(     ) ⊕ ∪
(-5,4)

∪
(5,4)

(     ) ⊕ ∪
(-4,4)

∪
(-2,-4)

∪
(2,4)

(     ) ⊕ ∪
(-2,-3)

(     ) ⊕ ∪
(-2,2)

∪
(-1,-2)

⊕ ∪
(1,1)

∪
(-1,1)  

44 27 

7   Conclusions 

In this paper, a decomposition method for arbitrarily-shaped structuring elements is 
proposed based on recursive model and migration fitness scaling genetic algorithm. 
The MFSGA method uses the ring topology of the migration model and the power-
rank scaling strategy. Compared to Park’s method [3], Anellie’s method [12], and 
Shih’s method [4], our method is more robust and have higher rate to find global 
minima. The future work will focus on applying the proposed MFSGA method to 
various industrial fields including image classification [13], pattern recognition [14], 
and weights optimization [15]. 
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Abstract. Minimizing computing energy consumption has many benefits, such 
as environment protection, cost savings, etc. An important research problem is 
the energy aware task scheduling for cloud computing. For many diverse com-
puters in a typical cloud computing system, great energy reduction can be 
achieved by smart optimization methods. The objective of energy aware task 
scheduling is to efficiently complete all assigned tasks to minimize energy con-
sumption with various constraints. Genetic Algorithm (GA) is a popular and  
effective optimization algorithm. However, it is much slower than other tradi-
tional search algorithms such as heuristic algorithm. In this paper, we propose a 
shadow price guided algorithm (SGA) to improve the performance of energy 
aware task scheduling. Experiment results have shown that our energy aware 
task scheduling algorithm using the new SGA is more effective and faster than 
the standard GA.    

Keywords: Energy Aware Task Scheduling, Genetic Algorithm, Green  
Computing, Cloud Computing, Optimization, Shadow Price.  

1   Introduction 

Computer has significantly boosted modern technology development and revolution-
ized people’s lifestyle. Energy used by computers is roughly equivalent to that in 
aviation industry. It accounts for 2% of anthropogenic CO2 from its share of energy 
consumption [8].  

Cloud computing needs huge amount of energy [9][10]. It is estimated that US 
servers and data centers consumed about 61 billion kilowatt-hours (kWh) in 2006 (1.5 
percent of total U.S. electricity consumption) for a total electricity cost of about $4.5 
billion [7]. To protect environment, it is necessary to schedule tasks more efficient for 
cloud computing. The objective is to use the least amount of energy to complete com-
puting tasks under various constraints.  

The energy aware task scheduling methodologies can be categorized as heuristic 
algorithms [10][17][19], bio-inspired search algorithms [13][16], and hybrid algo-
rithms [14][15].  

Heuristic algorithms can find good solutions among all possible ones, but they do not 
guarantee that the best or the near optimal solution will be found. Bio-inspired search 
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algorithms find excellent solutions by simulating nature. The typical algorithms are 
Genetic Algorithm (GA), Particle Swarm Optimization (PSO), etc. They can find opti-
mal or near optimal solutions. They are less efficient than heuristic algorithms.  

This paper uses the shadow price based GA [4][11][12] to solve the energy aware 
task scheduling problem.   

2   Energy Aware Task Scheduling 

The amount of power a processor consumes is the product of voltage and current it 
draws. Increasing voltage can increase the processor’s speed. Thus, the power con-
sumption of a processor is directly linked to its running speed.  

It is a combinatorial optimization problem to achieve the most efficient balance be-
tween the processor voltage and its running speed for a target problem. Li established 
the theories on efficient energy aware task scheduling for multi-processor or multi-
computer [1]. The problem can be defined as: 

n cloud computers in a cloud computing system are used to finish m tasks by the 
deadline time T.  Assume that im  tasks i

kP  for k=1, 2, …, im are executed on com-

puter i for ∑
=

=
n

i
imm

1

. A changeable speed for task i

kP  is denoted as i

kS for i=1, 2, …, 

n, and k=1, 2, …, im . The speed is defined as the number of instructions per second.  

The number of instructions of task i

kP  is denoted as i

kR . The execution time for 

task i

kP  on computer i is
i

k

i

k

S

R
. The total execution time for im  tasks i

kP  on computer i 

is defined as ∑
=

=
im

k
i

k

i

k
i S

R
T

1

. According to [1], the energy for i

kP  on computer i is 
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The optimization problem is [19]: 

Minimize ∑ ∑=
= =
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1 1
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i
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=1

and i

i

ki bSa ≤≤  where ia  is the minimum speed and ib  is the 

maximum speed of computer i, respectively, for i=1, 2, …, n, and k=1, 2, …, im .  

The goal is to design a new energy aware task scheduling algorithm that can find 
an optimal or near optimal schedule to compete all m tasks on n computers using 
minimum or near minimum energy E by the deadline time T. It’s a complex integer 
combinatorial optimization problem. It is a NP hard problem.  
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3   Shadow Price Guided Genetic Task Scheduling Algorithm 

Genetic Algorithm [2][3] is a reward based multi solution search algorithm. It is a 
branch of bio inspired evolution algorithm (EA). It has been applied to many applica-
tions successfully [18].  

There are primary three operations in GA. The crossover operator mimics two par-
ents producing a child in nature. The child shall have some characteristics of both 
parent and different from both parents. The unary mutation operator modifies the 
component(s) of a solution. Often times, the newly generated solution is much differ-
ent than the original and may not even be valid. New solutions are randomly gener-
ated to further broaden the search space. 

There are two major challenges in the GA search process, solution quality and 
search speed. All three GA operations heavily rely on randomness. Although the 
randomness is necessary in GA, it introduces many unnecessary and  worse solutions. 
It slows down the search process and results low quality solution.  

3.1   Shadow Price 

GA operates on the components of the solution(s). It uses randomness to select com-
ponent(s) to participate operation and evolve them into random directions. The result 
can be highly diverse. This directly impacts the algorithm’s results and generates a lot 
of unnecessary calculations.  

To add some intelligence into GA operations, a method is needed to evaluate and 
compare components. Without a unified means to evaluate components, it is difficult 
for GA operators to select and work on high potential component(s) for generating 
better solutions. Since the fitness function can only evaluate the overall solution, GA 
does not provide a method to intelligently select components and guide evolution. Our 
research did not locate any direct attempt to address this challenge. 

We define the shadow price in GA as the relative potential improvement to the so-
lution’s (chromosome) fitness value with a change of a component (gene). It’s a rela-
tive potential improvement since the concept is defined on a single component and a 
component change may force other components’ change to maintain solution’s feasi-
bility. The improvement may or may not be realizable. A change of component states 
the fact that component change can be a value change, a position change, or other 
applicable changes. We use shadow price to directly compare components, their rela-
tionships, and their contributions toward a better solution. 

Based on different problems, shadow prices can take on different meanings or val-
ues. In the traveling salesman problem, it can simply be the possible distance reduc-
tions from changing the next visiting city [4]. In manufacture, shadow price can be 
the cost of material, time, etc. [11][12]. The definition has to be clear and comparable 
among components. Here are a few guidelines for selecting shadow price. 

• The shadow price shall enable comparison among components. Precise values 
are preferred over fuzzy values.  

• The shadow price shall reflect the attribute of a component such as price, cost, 
material, etc. The attribute shall directly or indirectly impact the solution qual-
ity (fitness value). 
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• The shadow price for the solution (sum of shadow prices from all components) 
shall change with the quality of the solution (fitness value). There is no need to 
define a math function to associate them. The only requirement is to ensure that 
the shadow price is consistent with the search process.  

• The shadow price calculation shall be simple and fast.  

There is no direct relationship between a solution’s fitness value and its components’ 
shadow prices. The fitness value represents the current solution’s position in the 
search space. The shadow prices represent potential improvements and directions to 
evolve. The shadow prices are only meaningful in the search process. 

3.2   Shadow Price Guided Genetic Algorithm 

The objectives of our new shadow price guided GA are to find better solutions and 
use less time than the standard GA. When search time is not restricted, our new SGA 
shall find optimal solutions faster. When search time is limited, our new SGA shall 
find better solutions. We use shadow price to generate many better solutions and 
reduce the amount of unnecessary calculations. The new SGA can find better solution 
and find it fast. 

We establish a two-measurement system in our new SGA: fitness values are used 
to evaluate overall solutions and shadow prices are used to evaluate components. We 
use shadow prices to guide the evolution operations.  

The goal of mutation is to improve solution by changing a component’s state. Se-
lecting component is the key. Changing a component from a good state to a less qual-
ity state is counterproductive. Standard GA provides no help. We use shadow price to 
define the potential contribution of a component. The component with high potential 
has high shadow price. We can intelligently select a component with high shadow 
price to mutate and try to change its state to a lower shadow priced state. That is, we 
try to realize the component’s potential. In order to avoid local optimal trap, compo-
nent is selected from a pool of high shadow priced components. The new mutation 
increases the chance of generating better solutions and reduces calculations.  

The crossover operator tries to generate a better child by inheriting components 
from both parents. This can only happen when good attributes are passed down. Stan-
dard GA relies on randomness and generates a lot of calculations. We use shadow 
price to evaluate components’ quality and try to pass good components (low shadow 
priced) to the child. To avoid local trap, randomness are also used to select good 
components from a pool of low shadow priced components.  

Our new SGA still uses the standard GA’s framework. We enhance the GA opera-
tors with shadow price information. Randomness is used to ensure a global search and 
avoid local optimal trap. The contribution is that we use shadow price to influence the 
GA operators to increase the odds of generating better solutions.   

3.3   Energy Aware Shadow Price Guided Genetic Task Scheduling Algorithm  

There are two optimizations in the energy aware task scheduling problem, assigning 
tasks to processors and minimizing each processor’s energy. Li proved that the total 
energy consumption is minimized when all tasks are executed with the same power 
(speed) on a uniprocessor computer [1] (theorem 3). This solves the second optimization 



526 G. Shen and Y.-Q. Zhang 

 

sub problem. In our new algorithm (as shown below), all assigned tasks for a processor 
are combined to calculate the minimal energy consumption. 

 
Begin 
1. Validate there is at least one feasible solution. 
2. Build initial population. 
3. While stop criteria has not met 

3.1 Select a sub population to randomly apply one of the following operations 
• Classic mutation operation (Move). Randomly select two processors 

and move one randomly selected task from one processor the other. 
• Classic mutation operation (Exchange). Exchange two randomly se-

lected tasks between two randomly selected processors. 
• Shadow priced guided mutation operation (Move). 

(a) Calculate shadow prices for all processors. 
(b) Establish a pool of high shadow priced processors and random      

select one processor (Pa). 
(c) Establish a pool of low shadow priced processors and random       

select one processor (Pb). 
(d) Random select one task from Pa and move it to Pb. 

• Shadow priced guided mutation operation (Exchange). 
(a) Calculate shadow prices for all processors. 
(b) Establish a pool of high shadow priced processors and random 

select one processor (Pa). 
(c) Establish a pool of low shadow priced processors and random  

select one processor (Pb). 
(d) Sort Pa and Pb’s tasks based on their instruction count. 
(e) Establish a task pool from Pa’s tasks whose instruction count 

are more than average and random select one task. 
(f) Establish a task pool from Pb’s tasks whose instruction count 

are less  than average and random select one task. 
(g) Exchange the selected tasks between Pa and Pb. 

3.2 Add random solutions 
3.3 Filter and build next generation 
End While 

End 
 

The shadow price SPi is the average energy consumption per instruction for the 
processor i. The evolution direction is to reduce processor’s shadow price by moving 
tasks among them. The four mutation operations have equal opportunities to be used 
when algorithm starts and the odds change with the search progression. The two new 
shadow price guided operations can greatly improve the GA’s performance. 
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4   Experiment 

To evaluate our new algorithm, we conducted a comparative study between GA and 
our new shadow price guided SGA. Both algorithms followed the same framework 
and were identical except the mutation operations. SGA used all four mutation opera-
tions and standard GA used two. Same calculations were used to optimize the proces-
sor’s power consumption after tasks have been assigned.  

We implemented both algorithms in Microsoft C#. Tests were run on a Lenovo 
Thinkpad T410 with Intel Core i5-M520 2.4 GHz CPU and 4 GB of memory running 
Windows 7. Each test was run at least 10 times. Results were averaged and reported.  

We selected the latest commercial released CPUs [5] for our experiments. We used 
published speed as the processor’s minimum speed. A random number between 5% 
and 25% was used as the speed improvement to define the processor’s maximum 
speed. Constants C and Φ were randomly generated. Instruction counts for tasks were 
also randomly generated between 500 and 100,000. To improve quality, we used a 
public available true random number generating services [6] instead of C# library.  

Table 1. Energy Saving using SGA (Ega-Esga) 

Cp Gmax  Ct=500 Ct=1000 Ct=1500 Ct=2000 Ct=3000 Ct=5000 

10 500 3.90E+19 7.31E+20 2.10E+21 1.59E+21 1.40E+21 4.00E+21 

10 1000 4.90E+15 6.05E+19 8.59E+20 8.00E+20 7.51E+20 2.06E+21 

10 2000 4.51E+15 1.46E+16 2.10E+18 1.46E+20 3.65E+20 1.21E+21 

20 500 2.22E+19 6.29E+20 4.81E+21 6.41E+21 9.28E+20 1.17E+21 

20 1000 6.79E+18 1.42E+20 6.35E+20 1.22E+21 3.27E+20 1.07E+21 

20 2000 8.00E+16 2.05E+19 9.83E+19 1.54E+20 2.20E+20 8.36E+20 

30 500 5.97E+18 4.85E+19 1.31E+20 1.48E+20 7.94E+19 1.65E+20 

30 1000 1.37E+18 1.76E+19 4.85E+19 5.17E+19 4.82E+19 1.35E+20 

30 2000 1.24E+17 3.85E+18 1.60E+19 1.89E+19 2.24E+19 6.44E+19 

40 500 2.65E+18 1.71E+19 7.28E+19 7.36E+19 3.22E+19 2.85E+19 

40 1000 8.39E+17 8.20E+18 2.48E+19 3.30E+19 2.74E+19 5.96E+19 

40 2000 9.97E+16 1.58E+18 6.73E+18 8.71E+18 1.34E+19 3.85E+19 

50 500 1.60E+18 1.06E+19 1.97E+19 2.02E+19 1.39E+19 1.34E+19 

50 1000 3.58E+17 3.45E+18 8.18E+18 8.74E+18 1.18E+19 1.77E+19 

50 2000 5.15E+16 8.74E+17 3.07E+18 3.62E+18 4.53E+18 1.59E+19 

Average   5.41E+18 1.13E+20 5.88E+20 7.12E+20 2.83E+20 7.25E+20 

Experiment cases were created using different combination of processors and 
tasks. Time constraint for each experiment case was randomly created, validated and 
shortened to ensure that very few processors can be idle in the optimal solutions.  

The first test was to compare solution quality between two algorithms. Each test 
case is a combination of CPU counts (Cp), task counts (Ct), and max generations 
(Gmax). Table 1 lists the SGA energy (Esga) savings over GA (Ega). It is Ega-Esga. 
A positive value states SGA used less energy than GA. In all test cases, Table 1 
shows SGA used less energy than standard GA. SGA achieved better solutions. 

Next, we conducted speed test between the two algorithms. For each test case, we 
used the average energy consumption from above test as the stopping criteria. Algo-
rithm only stops when the solution is equal or better than the target energy value. 
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Table 2. SGA Speed Improvement in Generations, Gga-Gsga 

Cp Ct=500 Ct=1000 Ct=1500 Ct=2000 Ct=3000 Ct=5000 

10 230 214 221 284 305 217 

20 291 145 120 141 221 190 

30 333 258 207 241 252 211 

40 313 228 223 234 282 306 

50 351 260 295 202 231 260 

Average 303.6 221 213.2 220.4 258.2 236.8 

Table 2 lists the generation savings from SGA (Gsga) over GA (Gga), Gga-Gsga. 
All positive values show SGA used fewer generations than GA. Table 3 lists the time 
savings from SGA (Tsga) over GA (Tga), Tga-Tsga. Again, all positive values show 
SGA is faster than GA to reach the target. Both tables show SGA is faster than GA.  

Table 3. SGA Speed Improvement in Time (second), Tga-Tsga 

Cp Ct=500 Ct=1000 Ct=1500 Ct=2000 Ct=3000 Ct=5000 

10 0.463 1.066 2.313 3.826 7.836 14.876 

20 0.561 0.626 0.812 1.292 3.357 7.872 

30 0.573 0.778 1.166 1.799 3.458 5.873 

40 0.584 0.799 0.882 1.71 2.626 6.296 

50 0.681 0.804 1.302 1.209 2.28 4.468 

Average 0.5724 0.8146 1.295 1.9672 3.9114 7.877 

Our experiment results demonstrated that our new shadow price guided GA can 
find better solutions than standard GA. SGA is also faster than GA. The experiments 
validated our design and the effectiveness of our new algorithm. 

5   Conclusion 

GA is an effective global search algorithm and has been used widely in solving many 
optimization problems. But GA can take a very long time to solve large complex 
problems and may provide sub optimal solutions.  

We propose a new shadow price guided GA in this paper to improve GA’s per-
formance. We add a new component measurement method to the search. We propose 
a two-measurement system: fitness values are used to evaluate overall solutions and 
shadow prices are used to evaluate components. We use shadow prices to guide the 
evolution operations. Our new SGA improves the result qualityand the search speed.   

We applied our new SGA to solve the energy aware task scheduling problem and 
delivered very good results. Experiments showed that our new algorithm achieved 
better results than the standard GA and used less time.  
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Abstract. Crossing minimization problem in a bipartite graph is a well-known 
NP-Complete problem. Drawing the directed/undirected graphs such that they 
are easy to understand and remember requires some drawing aesthetics and 
crossing minimization is one of them. In this paper, we investigate an intelligent 
evolutionary technique i.e. Genetic Algorithm (GA) for bipartite drawing prob-
lem (BDP). Two techniques GA1 and GA2 are proposed based on Genetic Al-
gorithm. It is shown that these techniques outperform previously known heuris-
tics e.g., MinSort (M-Sort) and BaryCenter (BC) as well as a genetic algorithm 
based level permutation problem (LPP), especially when applied to low density 
graphs. The solution is tested over various parameter values of genetic bipartite 
drawing problem. Experimental results show the promising capability of the 
proposed solution over previously known heuristics. 

Keywords: Crossing Minimization, Bipartite Graph, Genetic Algorithm,  
Bipartite Drawing Problem (BDP), Crossing Minimization Heuristics (CMH) 

1   Introduction 

In the context of graph theory, bipartite graph ‘G’ is a graph whose set of vertices can 
be partitioned into two non-empty sets or layers; e.g., ‘V1’ & ‘V2’ such that the edges 
only connect the vertices in different layers. Alternatively, ‘V1’ and ‘V2’ are also 
known as the upper and the lower layers of bipartite graph respectively. The edge 
connectivity may introduce crossings in the bipartite graph. Drawing a graph with as 
few edge crossings as possible is a well-known NP-Complete problem of graph the-
ory [1, 2, 3, 4]. A more detailed description about bipartite graph may be found in [5, 
8, 10, 15]. Watkins [8] restricted the edge crossing minimization problem to the bipar-
tite graphs. Crossing minimization in a bipartite graph has several applications in 
various graph drawing systems [9], most notably in those based on the Sugiyama’s 
algorithm [11] and is also used in VLSI design [10], bi-clustering [12], networking, 
and information engineering. Stallmann et al. [15] described the importance of cross-
ing minimization based on two motivational factors; a) it improves the appearance of 
a graph, and b) it reduces the wiring congestion and crosstalk in VLSI circuits, which 
in turn may reduce the total wire length and the layout area. 
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There are two main problems discussed regarding the bipartite graphs. First, the 
level permutation problem (LPP) where the order of nodes in one layer is kept fixed, 
and second, the bipartite drawing problem (BDP) where both layers of the bipartite 
graph can be subject to permutation. In both of these problems, the objective is to 
minimize the number of crossings in the bipartite graph. Researchers have carried out 
a fair amount of work on this problem including Catarci [13], Camel and Irene [14], 
Stallmann et al. [15] and Zheng et al. [16]. Zoheir Ezziane [17] has used an Evolu-
tionary Algorithm (EA) for BDP and compared the results with BaryCenter (BC). 
There is no crossover operator used in [17] and the experiments are done over very 
small sizes (10-17) of the bipartite graph. In Laguna et al. [18], the application of tabu 
search for Arc crossing minimization in hierarchal digraphs is analyzed. Martí [19] 
used GRASP (Greedy Randomized Adaptive Search Procedure) for Arc crossing 
minimization problem. In most of these approaches, researchers have tried to permute 
single layer of the bipartite graph (keeping the second layer fixed i.e. LPP) with the 
condition that the bipartite graph will have same cardinality of vertices in both layers.  

In this paper, we use Genetic Algorithm (GA) for the bipartite drawing problem 
and propose two techniques i.e., GA1 and GA2. It is shown that these techniques 
outperform previously known heuristics such as MinSort (M-Sort) [12] and BaryCen-
ter (BC) [11] as well as a Genetic Algorithm based level permutation problem (LPP) 
especially when applied to low density graphs. In our techniques, we use the 
X_Order1 crossover operator and experiments are carried over large sizes (15-100) of 
the bipartite graph that gives a better estimation of the approach based on its perform-
ance and scalability.  Moreover, both the layers of the bipartite graph are considered 
to be rearranged during searching or learning, so it is essentially the bipartite drawing 
problem (BDP). Thus, the intention is to find certain permutation on both the layers of 
the bipartite graph such that the crossing count is minimized. Moreover, the restric-
tion that the vertices in both the layers must have the same cardinality as imposed in 
[1] is also compromised. In our experiments, we consider two well-known crossing 
minimization heuristics i.e. MinSort  and BaryCenter  and the solution proposed in [1] 
as the basis of comparisons. In addition, the relationship between M-Sort and BC is 
also elaborated and their difference is noted for graphs with different densities. Re-
sults are compared upon input of variant density graphs. 

The rest of the paper is organized as follows: In Section 2, Genetic Algorithm is 
discussed. The proposed solution is explained in Section 3. Experimental results and 
analysis are shown in Section 4. Finally, Section 5 concludes the paper. 

2   Genetic Algorithm 

Genetic Algorithm (GA) is a computational model of intelligence inspired by evolu-
tion introduced by John Holland in 1975 [6] [7]. The algorithm encodes a potential 
solution to a specific problem on a simple chromosome-like data structure and applies 
recombination operators to these structures [6]. The problems are not solved by rea-
soning logically about them, rather the populations of competing candidate solutions 
are spawned and then evolved to become better solutions through a process patterned 
after biological evolution [7]. Thus, increasingly powerful solutions emerge in a  
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Darwinian universe. Learning is viewed as a competition among a population of 
evolving candidate problem solutions [7]. 

3   Proposed Techniques 

Two GA based techniques i.e., GA1 and GA2 are proposed. The main difference 
between these two techniques is the initialization step in the algorithm. The details are 
explained as follows: 

3.1   Chromosome Representation 

The implementation of a GA begins with a population of (typically random) chromo-
somes [6]. Chromosome is a string of genes and represents an individual i.e. a possi-
ble solution to a problem. A Gene is a basic unit which represents one characteristic 
of the individual. The value of each gene is called an allele. Each chromosome repre-
sents a point in the search space. A population is a collection of chromosomes. An 
appropriate chromosome representation is important for efficiency and reducing the 
complexity of the GA [7]. A chromosome for this problem is composed of permuta-
tions of two layers of bipartite graph as shown in Fig. 1. 

Upper Layer Vertices 
 
 
 
 

Lower Layer Vertices 

Fig. 1. Chromosome representation  

3.2   Initialization 

Based on different initialization strategies, two techniques are presented i.e., GA1 and 
GA2. In GA1, during initialization, the chromosomes in the population are created 
randomly i.e. both layers’ permutations of bipartite graph are randomly enumerated; 
thus the initialization does not use any intelligence. The GA2 is a meta-heuristic in the 
sense that it uses M-Sort and BC during initialization phase. Instead of creating all the 
chromosomes randomly, the state of the bipartite graph in different iterations of M-
Sort and BC is used to initialize/create a few chromosomes intelligently. The state 
means the permutations of vertices labels in both the layers where connectivity does 
not change. It takes usually several iterations to minimize the crossings in a bipartite 
graph using M-Sort and BC. In each iteration of M-Sort and BC, the permutation of 
the layers would change and thus may be used to create a new chromosome. In order 
to understand this, let us discuss an example for creating chromosomes using M-Sort 
as shown in Fig. 2. In this example, we create three chromosomes to be used in GA2. 
The format of the input data is also shown. The bipartite graph contains three vertices 
in both the layers having labels 0, 1 and 2 as highlighted in the input data.  

[0, 2, 1, 3, 4] 
  [0, 3, 2, 1] 
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The remaining data not highlighted contains ‘0’ and ‘1’; where ‘0’ indicates no edge 
and ‘1’ indicates an edge between two vertices. The steps for crossing minimization 
under M-Sort are shown in Fig. 2. 

 

Fig. 2. Chromosome creation using MinSort 

3.3   Stochastic Operator 

GA evaluates the chromosomes and allocates reproductive opportunities in such a 
way that those chromosomes which represent a better solution to the target problem 
are given more chances to “reproduce” than those chromosomes which are poorer 
solutions [7]. For this, GA makes use of some stochastic operators mainly mutation 
and crossover. Both of these operators are used and the detail is given below: 

Crossover: In our experiments, the X_Order1 method is used and the crossover rate 
is chosen equal to 1. In the X_Order1 method, the offspring inherits the elements 
between the two crossover points, inclusive, from the selected parent in the same 
order and position as they appear in that parent. The remaining elements are inherited 
from the alternate parent in the same order as they appear in that parent, beginning 
with the first position following the second crossover point and skipping over all 
elements already present in the offspring. In our approach, the chromosome is com-
posed of two layer permutations of the bipartite graph thus X_Order1 crossover 
method is first applied on the upper layer and then on the lower layer between two 
selected parent chromosomes. 

Mutation: The probability of mutation operator is kept constant to 0.03 which is 
found better experimentally. A swap method is used for mutation. In this method, two 
genes positions e.g. ‘i’ & ‘j’ from the parent are selected randomly and then swapped 
to form a new offspring. 

Selection: The selection policy of individuals for the next generation is based on the 
survival of the fittest. New offspring are created equal to the size of the population. 
Population and offspring are sorted out on the basis of their relative fitness and best 
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individuals are selected to form the new population. For significant improvements in 
the results, duplicate chromosomes in the population are disallowed which definitely 
increases the computational effort but it encourages the new areas of the search space 
to be explored. As discussed, a chromosome is a search point in the search space and 
thus disallowing the duplicate search points means new search points to be examined 
or explored. 

3.4   Fitness Function 

Fitness function determines how much an individual is valuable to the problem at 
hand. In our case, crossing count is the basic criterion that can be used for indicating 
the value of an individual/chromosome. So, in order to evaluate the individual solu-
tion, the crossing count is used as a fitness function value, therefore, higher the fitness 
value, low valuable is the individual solution. Crossing count algorithms for bipartite 
graphs are very slow w.r.t. their time complexity. So, this would deteriorate the per-
formance of GA due to multiple crossing counts of individuals in a population for 
multiple generations.  Therefore, as a remedy, a fast O(|E|.log|Vsmall|) algorithm pre-
sented in [5] is used which overcomes this deterioration effect. 

4   Experimental Results 

The proposed techniques i.e., GA1 and GA2 are implemented in Visual Studio 2008 
C# and run on Intel P-IV processor with 1 GB of RAM. The comparison among dif-
ferent techniques is done on the basis of various parameters. Each subsection below 
compares the techniques with respect to these parameters. 

 

Fig. 3. GA vs Minsort and BC based on population size 
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4.1   Population Size 

A random graph is generated with the size of 15 vertices on both the layers and the 
density is kept 20% as used in [1]. GA1 is run 50 times over the test graph and the 
average fitness gain is used for comparison with M-Sort and BC heuristics. Note that 
in Fig. 3, one curve depicts the GA’s best result and the second and the third curves 
depict the number of iterations required to reach the results of M-Sort and BC heuris-
tics, respectively. The result of GA1 is considered best when it does not improve in 
next twenty consecutive generations. Another interesting finding is the relationship 
between M-Sort and BC heuristics. It is found that BC outperforms the M-Sort heuris-
tic with respect to minimizing the number of crossings, especially for high density 
graphs but it takes more iterations as compared to M-Sort. 

4.1.1   GA1 vs. Minsort and BaryCenter 
Fig. 3 shows the results of GA1 in comparison to MinSort and BC and the points in 
the graph are sprinkled based on different population sizes. On y-axis the numbers of 
iterations required are presented. For instance, our technique takes 30 iterations to 
reach MinSort results when population size is set to 10 and we get 107 crossings 
count as the best result after 80 iterations. We find no improvement in next twenty 
consecutive iterations after the completion of 80 iterations, thus consider best result of 
GA1 at this point. The working nature of the genetic algorithm is apparent that if 
population size is increased then the iterations required to acquire certain result are 
decreased. The population size ‘40’ is found best during experiments as after that we 
find no significant improvement in the results, so considering it a saturation point in 
terms of performance gain. In general, we find that it requires large number of genera-
tions using GA1 to reach the results of BaryCenter as compared to the MinSort. 

4.2   Graph Density 

The known heuristics for LPP have the property of making larger relative error with 
low density graphs than with high density graphs [1]. We, therefore, test the effect of 
graph density in order to compare our technique with M-Sort and BC heuristics. For 
this purpose, we use random graphs of size 15, population size of 30 and mutation 
rate of 0.03.  Graph size 15 means that there are 15 vertices in the upper layer as well 
as in the lower layer. This is just to compare our results with the one presented in [1], 
otherwise, this restriction is not relevant as evident from the representation of the 
chromosome. Moreover, even though the approach presented in [1] is based on GA 
and is used for crossing minimization, the solution presented in [1] is for a level per-
mutation problem (LPP), whereas our proposed approach is a solution for the bipartite 
drawing problem (BDP). Therefore, it may be considered unfair to compare our ap-
proach with the one presented in [1], however, these comparisons are performed in 
order to show that rearranging both the layers of vertices of bipartite graph performs 
better (for crossing minimization) than just considering a single layer for possible 
rearrangements. 
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Fig. 4. Iterations to acquire the results of MinSort and BC with variant graph densities 

The GA1 results for this experiment are calculated as the average of 50 runs for 
different values of graph densities as shown in Fig. 4 for M-Sort and BC. Graph den-
sity represents the number of edges in the graph. For example, if we have total (n=30) 
vertices (15 vertices in each layer) in the bipartite graph and the graph density is 
(d=20%) then there will be 45 edges ((n*n)*d/ 100) in total. 

4.2.1   GA1 vs. Minsort and BaryCenter 
Fig. 4 shows the graphical representation of the results obtained for the comparison of 
GA1 with MinSort and BaryCenter based on different graph densities. We can see 
from the results in Fig. 4 that we need small number of iterations of GA1 to reach the 
MinSort results for highly dense graphs as we have observed that MinSort makes 
relatively large error in case of highly dense graphs. BaryCenter has the property of 
making larger relative error with low-density graphs than with high-density graphs 
[1]. So, based on this observation, we can see in Fig. 4 that GA1 needs large number 
of iterations to reach BaryCenter results in case of highly dense graphs. 

4.3   Crossing Minimization 

We compare GA1 with MinSort and BaryCenter such that we allow a total of 500 
generations for GA1 and analyze possible average crossing minimizations using GA1. 
We generate a random bipartite graph with the size of 15 vertices on both the layers 
and density is kept 20%. We calculate the average crossing count after running the 
GA1 50 times with the mutation rate of 0.03 and the population size of 40. From 
experiments, we show that GA1 performs much better than M-Sort and B-Center with 
average crossing count of 77 as compared to M-Sort (166) & B-Center (123) where 
the original crossing count are 460. 
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4.4   Comparison of GA1 with GA2 

We now present the comparison of GA1 and GA2 based on different graph densities 
and different sizes of bipartite graphs generated randomly. The comparison based on 
different graph densities is shown in Table 1. The constant parameters during these 
experiments are given as: (Graph Size = 15*15, Generations = 200, Mutation rate = 
0.03, Crossover rate = 1 and Total Runs = 50). 

The comparison of GA1 and GA2 for different graph sizes generated randomly is 
shown in Table 2. The constant parameters during these experiments are given as: 
(Graph Density = 30%, Population Size = 40, Generations = 500, Mutation rate = 
0.03, Crossover rate = 1 and Total Runs = 50). It is clear from Table 1 and Table 2 
that GA2 is able to minimize the crossings in the bipartite graph much better than 
GA1 since GA2 uses an intelligent initialization scheme as discussed in Section 3.2. 

Table 1. Comparison of GA1 and GA2 based on graph densities and population size  
(O.C = Original Crossings and A.C.C = Average Crossing Count) 

10% (O.C = 123) 20% (O.C = 460) 30% (O.C = 918)      Density = > 
 

Population 
GA2 

A.C.C 
GA1 

A.C.C 
GA2 

A.C.C 
GA1 

A.C.C 
GA2 

A.C.C 
GA1 

A.C.C 

10 10 16 110 159 359 363 
20 4 15 106 148 352 362 
30 3 10 105 125 329 352 
40 3 9 103 120 327 339 
50 3 6 95 121 321 323 

 

Table 2. GA1 vs GA2 (different graph Sizes) (A.C.C = Average Crossing Count) 

Graph Size GA2 A.C.C GA1 A.C.C Original Crossing Count 
20*20 1173 1346 3634 
30*30 8291 8309 16697 
40*40 26040 26081 55557 
50*50 85824 86089 136542 

100*100 905916 905966 2197974 

5   Conclusion 

In this paper, we proposed two techniques i.e., GA1 and GA2 based on genetic algo-
rithm for the bipartite drawing problem (BDP). The proposed techniques are also 
compared with previously known heuristics such as MinSort and BaryCenter as well 
as a genetic algorithm based level permutation problem (LPP). We have found that on 
average, the proposed techniques always outperform BaryCenter on low-density 
graphs and MinSort on high-density graphs. The behavior shown during experiments 
by the genetic algorithm in our techniques is quite good with respect to average num-
ber of crossing minimization. There is, of course, a saturation point especially in evo-
lutionary computing based techniques such as GA where the improvement in the 
results stops or improves very slowly. The parameters we used in our experiments for 
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GA1 and GA2 are; population size of 10-50, elitism is at least one individual, cross-
over rate is 1 and mutation rate is 0.03. 
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Abstract. In many challenging numerical optimization problems, the conflict
between exploitation and exploration abilities of EAs must be balanced in an
effective and efficient way. In the previous research, in order to address this is-
sue, the Two-Stage ensemble Evolutionary Algorithm (TSEA) was originally pro-
posed for engineering application. In TSEA, the optimization is divided into two
relatively separate stages, which aims at handling the exploitation and exploration
in a more reasonable way. In this paper, we try to extend the application area
of TSEA from specific engineering problems to general numerical optimization
problems by altering its sub-optimizers. The experimental studies presented in
this paper contain three aspects: (1) The benefits of the TSEA framework are ex-
perimentally investigated by comparing TSEA with its sub-optimizers on 26 test
functions; then (2) TSEA is compared with diverse state-of-the-art evolutionary
algorithms (EAs) to comprehensively show its advantages; (3) To benchmark the
performance of TSEA further, we compare it with 4 classical memetic algorithms
(MAs) on CEC05 test functions. The experimental results definitely demonstrate
the excellent effectiveness, efficiency and reliability of TSEA.

1 Introduction

Numerical optimization problems widely exist in scientific and engineering applications
[1]. Since the competition of searching for optimal working conditions in engineering
application has become much more furious, the development of the optimization meth-
ods always lead to rapid improvement of the competitive strength [2,3,4]. However,
these problems always have different characteristics and rise more and more challenges
to the optimization methods [5,6]. Among these challenges, the balance between ex-
ploitation and exploration is an important one that has attracted public attention.

In the previous research, many attempts have been carried out to synthesize diverse
kinds of merits from different optimization techniques, which surely strengthens the
universality in one algorithmic framework. Among these attempts, memetic algorithm
(MA) is a typical example [7,8,9]. The major idea of MAs is to make up the demerit of
less exploration ability of global search algorithms by embedding efficient local search
techniques, which can more easily obtain a near optimal solution. Another important
way is to combine numbers of new offspring generating strategies from one or multiple
evolutionary algorithms (EAs) in a parallel way [4,10,11,12,13,14].
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Different from the above works, an Estimation of Distribution and Differential Evolu-
tion cooperation (ED-DE), which adopt a serial algorithmic framework to extract the mer-
its from both estimation of distribution and differential evolution, is originally proposed
in [2]. At each iteration, ED-DE only utilizes self-adaptive mixed distribution based uni-
variate estimation of distribution algorithm (MUEDA) [6] or modified differential evolu-
tion (MDE). In ED-DE, the whole optimization procedure is divided into two relatively
separate stages, which mainly focus on exploitation and exploration respectively. The
essence of ED-DE is to completely solve the simple problems in the first stage, and ob-
tain a good initial status for the second stage when the problems are too hard to solve by
only implementation of MUEDA. Following the similar line of thinking, Wang and Li
[5] extend the two-stage search idea to large scale global optimization.

It can be observed that the two-stage search idea has just been applied to specific op-
timization problems, while inevitably ignores some requirements of general usage, such
as rotation. In this paper, we try to extend the application area of TSEA from specific
engineering problems to general numerical optimization problems by altering its sub-
optimizers. The sub-optimizers used in TSEA are the Covariance Matrix Adaptation
Evolution Strategy (CMAES) [15] and Self-adaptive Learning based Particle Swarm
Optimization (SLPSO) [4]. The reasons of implementing these two algorithms can be
summarized as follows:

– (1) CMAES shows particularly reliable and excellent performance for local opti-
mization. In the Matlab source code of CMA-ES, it is stated that its convergence
speed is ten times slower than the mathematical local search Davidon, Fletcher and
Powell Strategy (DFP) [16], but its robustness for difficult problems is far more
excellent. Given an initial individual, CMA-ES performs iterative self-adaptive
Gaussian-based mutation and recombination. Especially, for the rotated problems,
CMA-ES can effectively handle them by adapting a covariant matrix during the
optimization procedure [17,18].

– (2) SLPSO simultaneously applies four PSO based search strategies, whose asso-
ciated probabilities of using different strategies are self-adaptively learnt by con-
sidering the ability of generating better quality solutions in the past generations. In
this case, the robustness and universality of SLPSO can be highly improved. Es-
pecially, the effectiveness of SLPSO, which is the main requirement of the second
optimization stage in TSEA, has been experimentally verified in [4].

In order to fully show the advantages of TSEA, we design three experimental studies:
(1) The benefits of the TSEA framework are experimentally investigated by comparing
TSEA with its sub-optimizers on 26 test functions; then (2) TSEA is compared with
diverse state-of-the-art evolutionary algorithms (EAs) to comprehensively show its ad-
vantages; (3) To benchmark the performance of TSEA further, we compare it with 4
classical memetic algorithms (MAs) on CEC05 test functions.

The remainder of this paper is structured as follows: In the next section, the TSEA
framework is depicted. Experimental comparison between TSEA and its sub-optimizers
is shown and discussed in the Section III and in Section IV, further experimental studies
are presented. Finally, the contributions of this paper are summarized and the future
work is outlined in Section V.
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Table 1. Procedure of TSEA

TSEA

Input:

– Optimization task ;
– a transformation criterion (trigger) (it depends on different algorithms used in the first stage);
– a termination condition;

Output: The best solution found.

Step 0) Initialization: Randomly initialize the population Xt . Set t = 0.
Step 1) The first optimization stage: Perform new offspring generating strategy 1 for one iteration to
update Xt . Set t = t + 1.
Step 2) Trigger Determine whether to trigger the second optimization stage or continue the first opti-
mization stage. In case of former, go to step 3), otherwise, go back to step 2).
Step 3) The second optimization stage:Perform iterative new offspring generating strategy 2.
Step 4) Terminate and output.

2 Algorithm

As introduced in Section I, TSEA combines two EAs to form a new serial coopera-
tive optimizer. More promising results are expected when the characteristic merits of
both EAs are successfully united in the cooperative optimizer. Generally speaking, the
motivation of combining two perspective EAs in a successive manner are:

– When a new black-box problem is given, its properties are completely unknown.
Therefore, the choice of the optimization maybe sightless for users. To address
this issue, TSEA adopts an efficient algorithm to accomplish the pre-trial. If the
problem is simple, TSEA can completely solve it in the first stage. Contrary, when
the problem is too hard, e.g. the problem contains too many local optima, the first
stage can also achieve a good initial status for the second stage within a limited
computational cost.

– The situation that the problem cannot be solved in the first stage implies that it is a
hard task. The second stage, which implements an effective algorithm, is launched
with the initial status inherited from the first stage. The effective algorithm, which
mainly focuses on exploration, always consumes larger computational cost in ac-
complishing one search procedure. If we directly use this algorithm in the first
stage, much computational cost may be wasted for the easy problems.

The detailed procedure of the TSEA is illustrated in Table 1, where the new offspring
generating strategies 1 and 2 are CMAES and SLPSO respectively.

3 Experiment Comparison between TSEA and Its Sub-optimizers

In order to demonstrate the benefits of TSEA framework over its sub-optimizers, we
perform TSEA versions and its sub-optimizers on the test suit shown in Table 2. The
first two groups contain separable problems. Test functions of group 2 have mis-scaled
variables or noisy landscapes, which are much more challenging for optimization. For
group 3 problems, the classical test functions are rotated by z = M(x − o), where M
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Table 2. Classical benchmark problems to be minimized

Group 1: Classical test functions (non-linear, separable, scalable) (z = x − o)

Num S R Problems Objective function

fun1
√

Shifted Sphere f1(x) =
∑n

i=1 z2
i + fbias

fun2
√

Shifted Schwefel 1.2 f2(x) =
∑n

i=1(
∑ i

j=1 z2
j ) + fbias

fun3
√

Shifted Schwefel 2.22 f3(x) =
∑n

i=1 |zi| +
∏n

i=1 |zi| + fbias

fun4
√

Shifted Schwefel 2.21 f4(x) = max |zi| + fbias

fun5
√

Shifted Rochenbrock f5(x) =
∑D

i=1(100(z2
i − zi+1)2 + (zi − 1)2) + fbias

fun6
√

Shifted Ackley f6(x) = −20 · exp(−0.2
√

1
n

∑n
i=1 z2

i
) + e − exp( 1

n

∑n
i=1 cos(2πzi)) + 20 + fbias

fun7
√

Shifted Griewank f7(x) = 1
4000

∑n
i=1 z2

i + 1 − ∏n
i=1 cos(

zi√
i
) + fbias

fun8
√

Shifted Rastrigin f8(x) =
∑n

i=1(z2
i ) − 10cos(2πzi) + 10 + fbias

fun9
√

Noncontinues Rastrigin f9(x) =
∑n

i=1(y2
i ) − 10cos(2πyi) + 10, yi+1 =

⎧⎨
⎩ zi, if |zi| < 1/2

round(2 ∗ zi)/2, otherwise,

fun10
√

Shifted Penalized 1 f10 = π
30 {10 sin2 +

∑2
i=1 9(yi − 1)2 · [1 + 10 sin2(πyi+1 + (yn − 1)2)]

+
∑30

i=1 u(xi, 10, 100, 4)}, u and y is shown in Appendix

fun11
√

Shifted Penalized 2 f11 = 0.1{sin2(π3x1) +
∑2

i=1 9(xi − 1)2 · [1 + sin2(3πxi+1)] + (xn − 1)2}
·[1 + sin2(2πx30)] +

∑30
i=1 u(xi, 5, 100, 4)}, u and y is shown in Appendix

Group 2: Test functions that are mis-scaled or with noise (z = x − o)

fun12
√

Shifted Rochenbrock100 f12(x) =
∑D

i=1(100((aizi)
2 − (ai+1zi+1))2 + ((aizi) − 1)2) + fbias , ai = 10

i−1
D−1

fun13
√

Shifted Rastrigin10 f13(x) =
∑n

i=1((aizi)
2) − 10cos(2π(aizi)) + 10 + fbias , ai = 10

i−1
D−1

fun14
√

Shifted Rastrigin1000 f14(x) =
∑n

i=1((aizi)
2) − 10cos(2π(aizi)) + 10 + fbias , ai = 1000

i−1
D−1

fun15
√

Noise Schwefel 1.2 f15(x) = (
∑n

i=1(
∑ i

j=1 z2
j ))(1 + 0.4|N(0, 1)|) + fbias

Group 3: Rotated test functions (non-linear, non-separable, scalable) (z = M(x − o))

Num S R Problems Objective function

fun16
√ √

Rotated Sphere f16(x) =
∑D

i=1 z2
i + fbias

fun17
√ √

Rotated Tablet f17(x) = (1000x1)2 +
∑D

i=2 z2
i + fbias

fun18
√ √

Rotated Ellipse f18(x) =
∑D

i=1(20
i−1
D−1 zi)

2 + fbias

fun19
√ √

Rotated diff pow f19(x) =
∑D

i=1 z
2+ai
i

+ fbias , ai = 10
i−1
D−1

fun20
√ √

Rotated Schwefel 2.21 f20(x) = max |zi| + fbias

fun21
√ √

Rotated Rochenbrock f21(x) =
∑D

i=1(100(z2
i − zi+1)2 + (zi − 1)2) + fbias

fun22
√ √

Rotated Ackley f22(x) = −20 · exp(−0.2
√

1
n

∑n
i=1 z2

i
) + e − exp( 1

n

∑n
i=1 cos(2πzi)) + 20 + fbias

fun23
√ √

Rotated Griewank f23(x) = 1
4000

∑n
i=1 z2

i + 1 − ∏n
i=1 cos(

zi√
i
) + fbias

fun24
√ √

Rotated Rastrigin f24(x) =
∑n

i=1(z2
i ) − 10cos(2πzi) + 10 + fbias

fun25
√ √

Noise Schwefel 1.2 f25(x) = (
∑n

i=1(
∑ i

j=1 z2
j ))(1 + 0.4|N(0, 1)|) + fbias

fun26
√ √

Noise Quadric f26(x) =
∑n

i=1 iz4
i + random[0, 1) + fbias

is an orthogonal rotation matrix, to avoid local optima lying along the coordinate axes
while retaining the properties of the test functions.

Before presenting the experiment, we first define the comparison criterion: the rank-
ing of the algorithms is based on the success performance SP [17], which is defined as
follows:

SP = mean(function evaluations of successful runs)

× all runs
number of successful runs

(1)

Small values of SP are preferable. As shown in [4,11,14,17], the empirical cumulative
distribution of normalized SP can strongly benchmark the performance of multiple
algorithms.
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Fig. 1. Empirical distribution of normalized success performance of TSEA and its sub-optimizers

In this experiment, we set the dimension size of all test functions to be 30 and the
maximum number of function evaluations to be 300000. For all test functions, we per-
form 30 independent runs with each algorithm. A run is considered to be successful if
at least one solution was discovered during its course whose fitness value is not worse
than (fit(x∗) + 1e− 5).

It is observed from Fig. 1 that CMA-ES provides top convergence speed for almost
50% problems. However, for over 30% problems, it fails completely, which implies
that it is not sufficient to implement only once for reliably solving diverse tasks. This
viewpoint is the main reason of applying restart strategy in [17,18]. SLPSO can solve
more problems than CMAES, however, its convergence speed is relatively lower. With
the good cooperation of the both techniques, the overall performance curves of TSEA
is the highest, which means TSEA has the best universality and excellent efficiency.

4 Experiment Comparison between TSEA and State-of-the-Art
EAs and MAs

4.1 Experiment Comparison with State-of-the-Art EAs

In order to show the superiority of TSEA over the effective global search methods, we
compared it with eight recently proposed state-of-the-art EAs:

– SaDE: self-adaptive differential evolution [14];
– jDE: differential evolution with parameter adaption [19].
– MUEDA: self-adaptive mixed distribution based univariate EDA [6];
– CLPSO: comprehensive learning particle swarm optimizer [20];
– FIPS-PSO: fully informed PSO [21];
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Fig. 2. Comparison between TSEA and state-of-the-art EAs

– FDR-PSO: Fitness-distance-ratio based PSO [22];
– IPOP-CMAES: global CMAES variant with increasing population size and restart

strategy [18];
– Restart-L-CMAES: local CMAES variant with restart strategy [17];

Especially, the self-adaptively utilize offspring generating strategies to strengthen the
robustness. CLPSO has exhibited the top capability of handling multi-modal problems
[20] among the PSO variants. IPOP-CMAES showed top performance in function opti-
mization competition of IEEE Congress of Evolutionary Computation 2005 (CEC05).
The essential of IPOP-CMAES and Restart-L-CMAES is to restart CMA-ES version
when the search fails. Therefore, their searches are made of multiple runs of CMA-ES
on many problems.

Fig. 2 depicts the comparison between TSEA and eight state-of-the-art EAs. The
superior capacity in universality of SaDE compared the other DE variants has been
experimentally verified in [14]. It is observed that SaDE significantly outperform jDE,
MUEDA and the other PSOs. Among all the algorithms, only IPOP-CMAES and
Restart-L-CMAES use the restart strategy, which can highly improve their performance.
However, when the problems contain too many local optima, it is still too hard to locate
the initial individuals to an area near the global optimum for them. Therefore, they just
can provide a comparable overall result compared with SaDE without restart strategy.
It is interesting to see that TSEA has significantly better convergence speed and uni-
versality in Fig. 1. For almost 30% problems, TSEA provides the fastest optimization
speed. Furthermore, when its empirical cumulative distribution curve reaches the top,
the normalized SP value is still small. In Fig. 3, the comparison of optimization curves
of algorithms without restart strategy on four representative problems again confirms
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Fig. 3. Optimization curves of function optimization with 30 D. (Sphere, Schwefel 2.21, Rochen-
brock and Rastrigin).

this viewpoint. Therefore, the advantages of the TSEA compared with effective EAs
are definitely verified.

4.2 Experiment Comparison with State-of-the-Art MAs

To demonstrate the advantages of TSMA over the other MAs, we compare TSMA with
three MA versions from CEC05 function optimization competition and another recently
proposed MA for general problems:

– SaDE-L: self-adaptive differential evolution with local search DFP [23];
– DMS-L-PSO: dynamic multi-swarm particle swarm optimizer with local search

[25];
– BLX-MA: real-coded memetic algorithm with adaptive local-search probability

and local search length [26].
– APrMA: adaptive probabilistic memetic algorithm [8];

In general, they have different strengthes. APrMA is specially proposed for general
problems, and has shown distinct progress compared with diverse MAs.

In this experiment, a run is considered to be successful if at least one solution was
discovered during its course whose fitness value is not worse than (fit(x∗) + 1e − 6)
for the functions 1 to 5 and (fit(x∗) + 1e− 2) for the other functions. The overall per-
formance on the first 16 problems in empirical accumulative distribution of normalized
SP is described in Fig. 4.
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Fig. 4. Empirical distribution of normalized success performance on CEC05 function
optimization tasks

From Fig. 4, we can observe that TSEA is definitely the best, because of the higher
optimization speed and the higher number of solved problems. For the other algorithms,
the performance of APrMA, SaDE-L and DMS-L-PSO is similar and cannot solve no
more than 80% of the problems that can be solved by TSEA.

5 Conclusion

In the previous research, the idea of two-stage search has shown promising perfor-
mance on specific engineering applications. This paper extends its application to general
numerical optimization. The experimental results definitely verify the superior perfor-
mance of TSEA over its sub-optimizers, state-of-the-art EAs and MAs. In the recent
future, we expect to apply it to solve more engineering optimization problems.
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Abstract. In this paper, we propose an applicable genetic programming
approach to solve the problems of binary image analysis and gray scale image
enhancement. Given a section of original image and the corresponding goal im-
age, the proposed algorithm evolves for generations and produces a mathematic
morphological operation sequence, and the result performed by which is close
to the goal. When the operation sequence is applied to the whole image, the
objective of image analysis is achieved. In this sequence, only basic morpho-
logical operations— erosion and dilation, and logical operations are used. The
well-defined chromosome structure leads brings about more complex morpho-
logical operations can be composed in a short sequence. Because of a reasonable
evolution strategy, the evolution effectiveness of this algorithm is guaranteed.
Tested by the binary image features analysis, this algorithm runs faster and is
more accurate and intelligible than previous works. In addition, when this algo-
rithm is applied to infrared finger vein gray scale images to enhance the region of
interest, more accurate features are extracted and the accuracy of discrimination
is promoted.

1 Introduction

Digital images processing on computers have been applied to many fields like pattern
recognition, robotic vision, biomedical image analysis, and biometrics, etc [10][12][16].
Recent years, a variety of evolutionary methods are used to solve the problem of discov-
ering algorithm for image processing [2][7][11][13]. Most of them concentrate on that
the image analysis problems can be re-framed as filtering problems, and use
genetic algorithm (GA) and genetic programming (GP) to produce a set of standard
filters [7][11][12]. However, all these filter-based GA(GP) methods need complicated
formulations which require a large amount of analysis and computation [11].

Mathematic morphological is a powerful non-linear tool for extracting image com-
ponents, which is useful in the representation and description of region shape, such
as boundaries, skeletons, and the convex hulls [5]. Morphological operators aim at
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extracting relevant structures of the image considered as a set through its sub graph
representation, which is achieved by probing the image with another set of the known
shapes called structural element (SE) [15]. Searching suitable morphological opera-
tion sequence and corresponding SEs in a big searching space is suited to the genetic
programming [13]. Some researchers use an evolutionary morphological approach to
analyze image. Yoda et al. explore the possibility of obtaining mathematic morpholog-
ical algorithm for binary images by means of GA [18]. Harvey et al. describe a tech-
nique by GA for the optimization of multidimensional gray scale soft morphological
filters [6]. They use this technique in the spatiotemporal domain for applications in au-
tomatic film restoration. Quintana et al. propose an approach of morphological binary
image analysis based on GP [13][14]. Their algorithm is constructed by logic opera-
tors and the basic morphological operators — erosion and dilation — with a group of
manually chosen SEs. This algorithm evolves to generate morphological operation se-
quence which converts a binary image into the target image contained just a particular
feature of interest. Additional, they prove that it is possible to evolve good morpholog-
ical methods by using GP. Ballerini et al. propose a GP method without a goal image
and the morphological operations are not used for noise reduction or segmentation, but
for image classification [1].

In this paper, we propose a applicable genetic programming algorithm to automatic
generate methods for binary image analysis and gray scale image enhancement. Given
a section of original image and the corresponding goal image, this algorithm automati-
cally produces a mathematic morphological operation sequence, and the result by which
is close to the goal. Afterwards, when the operation sequence is applied to the whole
image, the objective of image analysis is achieved. This paper is organized as follows.
Section 2 presents a novel genetic programming algorithm with mathematic morpho-
logical operations. The experimental results of binary images analysis and gray scale
image enhancement are reported in Section 3. Finally, Section 4 gives the concluding
remarks of this paper.

2 Proposed GP Algorithm

2.1 Definition of GP Algorithm

The genetic programming provides an approach to the problem of finding a computer
program to solve a problem [9]. In our problem, by giving an original image and a
learning target— goal image, the GP algorithm automatically produces a sequence of
operations, which is applied to the original image and the obtained result is very close
to the goal.

Definition of Chromosome. A chromosome in this algorithm is an individual, i.e., a
method, which is composed by a sequence of genes, illustrated in Fig 1.

We use gene to express the primitive operation set. One single gene is a primitive
unit of morphological operation accompanied with logical operations. The number of
genes in each chromosome may be different while each gene has a fixed length. And
two processing sequences are kept in one chromosome, which are connected by logical
operations.
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Fig. 1. Chromosome definition

2.2 Definition of Gene

The gene structure is shown in Table 1. Each gene has 16 bits and only 14 bits have real
meanings since the first two bits are used for alignment. All these bits are classified into
two parts: one part expresses logical operation and the control flow, and the other part
expresses morphological operation.

Table 1. The meaning of each bit in a gene

Index Meaning

Unused
1 null
2 null

logical and control

3 switch
4 storage flag
5 direct/difference flag
6 logical operation flag

7-8 logical operator

morphological operation

9 erosion/dilation flag
10-11 SEs size

12 SE class
13-16 SEs index

Direct/Difference flag. The direct/difference flag means which one will be chosen as
current output, the morphological operation result directly or the arithmetic difference
between the result and the input. This operation brought forward will improve the mor-
phological expression of this algorithm. In the morphological meanings, the arithmetic
difference devotes to morphological gradient [15].

Storage flag. The storage operation was firstly introduced in [14] represents whether
the result of this gene should be stored or not. When the finite automaton parses a
chromosome, the input of current gene is the previous one’s result and the output is the
input of next one. Therefore, the intermediate result is abandoned. The storage operation
means whether memorizes the intermediate result, which can be used in subsequent
logical operations.

Logical operation. The logical operator flag represents which logical operation will
be applied to current gene. Four logical operations are defined in this algorithm, AND,
OR, NOT and XOR. Some logical operations need two operands: one operand is cur-
rent morphological operation result, and the other one is the stored intermediate result
mentioned above. When being applied on the binary images, the logical operations are
bitwise. There are some changes when the logical operations are applied to gray scale
images [15].
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Switch operation. In this paper, we bring forward a new operation— “switch”, which
helps to keep two operation sequences in one chromosome. When the automaton parses
a chromosome, there is a register named “backup”, which is initiated with the source
image and changed by the switch flag. If the switch flag is true, the input of current
gene is exchanged with the backup. Therefore, the backup is brought foreground to
be processed in this section, and the current input is stored as the backup. The switch
operation accompanied with storage operation can express two operation sequences in
one chromosome. Actually, many morphological operations are hardly realized in one
process [15]. Because of two operation processes contained in one chromosome, this
algorithm can express most of the morphological operations with basic erosion and
dilation [15].

Pattern of structural elements. Erosion and dilation are basic morphological opera-
tions [5][15], which depend on the pattern of SE. The pattern space of SE is exponen-
tially increased along with its size . For example, a SE whose size is n × n has 2n×n

type of patterns. Therefore, we define the patterns manually. We use the concept of reg-
ular and irregular SEs same as [13], but with some differences: regular(irregular) SEs
are defined which are all symmetrical(asymmetrical, vice versa). Three sizes of SEs are
used in our algorithm, 3 × 3, 5 × 5 and 7 × 7. Each size has two styles, regular and
irregular, and each style has 16 patterns. Patterns of 3× 3 SEs are shown in Fig 2.

Fig. 2. Patterns of 3 × 3 regular & irregular structural elements

Fitness function. The objective fitness function F(0 � F � 1) is known as similarity
as the correlation coefficient between a processed image and the goal [18],

F =
(f · g)√

(g · g)×√
(f · f)

where f and g are two binary images of size M ×N and

(f · g) =
1

M ×N

M∑
i=1

N∑
j=1

f(i, j) · g(i, j),

image f is the processed result, and image g is the goal.
Since in a binary image the white pixels represent objects, this is a reasonable choice

of fitness function. The optimum is F = 1 when all the pixels match. The worst case is
F = 0 when none of the pixels match [18].
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2.3 Evolution Strategy

We define a structural evolution strategy in this algorithm. This algorithm initiates 1024
chromosomes at the beginning which are all single genes. The chromosome will grow
in evolution and its length is limited to no more than 20 genes. The selection rate is 0.3,
the mutation rate is 0.3, the crossover rate is 0.4, max generations is 300.

Structural mutation. Each gene has 14 valid bits and the random variant range is
214 = 16348. Therefore, it is hard to evolve effectively if the gene are mutated ran-
domly. We bring forward a structural mutation strategy. All these 14 bits in one gene
are divided into three parts according to their function: flow control, logical operation
and morphological operation. These three parts are mutated separately, which makes
the mutation position well–distributed.

Fig. 3. Crossover

Structural crossover. The genetic operation of crossover(sexual recombination) al-
lows new individuals to be created [9]. We use a structural crossover in this algorithm.
The basic unit of crossover is gene and crossover in the middle of a gene is not al-
lowed. The goal of the structural crossover is to exchange a bunch of genes of two
participated chromosomes. The crossover generates new individuals which may have
different lengths from their parents. There are two random variants in each chromo-
some which participate crossover, the start position and the end position (Fig. 3). And
these variants result in three different meanings:

– If the amount of one of the switched parts is zero, this means that a section of the
counterpart should be inserted in it.

– If both amounts of switched parts are not zero, this means to switch sections of two
chromosomes, as shown in Fig 3(b).

– If the insert position is the beginning or the end of a chromosome, this means to
extend this chromosome.

3 Experimental Results

We conduct three experiments to verify our algorithm. First, we apply this algorithm
to two binary image analysis experiments: artificial objects extraction and OCR music
sheet analysis. These tests have been used by former researchers and we compare the
effectiveness of our algorithm with other other works. Next, we apply this algorithm to
gray scale image enhancement to check the effects.
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3.1 Experiment on Artificial Binary Images

We use this algorithm to obtain valid objects in an artificial image composed by four
features: squares, disks, rings and stars, same as Quintana et al. in [13]. Each target
image has one type of the four features with randomly distributed position with size
of 640 × 480. All four target images are overlaid to obtain the source image(Fig 4).
The features randomly distributed in the source image may overlap, which makes their
detection more difficult.

Fig. 4. Source image of artificial dataset

Training course. We select a small area from the source image which contains all four
features as the source of the training set. The same areas on the target images are also
selected as target images in the training set, as shown in Fig 5.

Fig. 5. Selected area of source and target images. a: source image, b c d e: target images

Testing course. The methods of four features detection are obtained in the training
course by our algorithm. We apply them on the whole image, and four features are
extracted separately. Executing these procedures for 10 times, we get the mean per-
formance of our algorithm (Table. 2). The criterion is the fitness values of processed
results and the target images. Except the extraction of rings, our algorithm is better than
Quintana’s on squares, disks and stars. Furthermore, Quintana et al. use a Linux cluster
with one master node (CPU dual Intel Xeon 2 GHz, 2 GB Memory) and 22 client nodes
(CPU Dual Athlon MP 1900+, 1.6 GHz, 1 GB Memory) in their experiments [13]. Our
algorithm performs on a PC (CPU Intel Core Duo T9400 2.53 GHz, 4 GB Memory).
Even on the most time consuming training of star, our algorithm get the result in a few
minutes. This indicates our algorithm is more effective and fewer computational load.
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Table 2. Performance comparison of our GP algorithm with Quintana et al.’s

Feature Our algorithm Quintana et al.’s
Disks 0.9822 0.868
Rings 0.8583 0.906

Squares 0.9900 0.870
Stars 0.9590 0.922

3.2 Experiment on OCR Music Sheet

We apply our GP algorithm to another type of binary image — the OCR music sheet,
which was used by Yoda et al. in [18] to explore the automatic acquisition of morpho-
logical procedures by GA. We capture this music sheet from the original paper. The
object of this test is to extract the four features, heads, hooks, staff lines and stems
from the music sheet. Similarly, a small typical area is selected from the original im-
age as the source image which contains all the four features. Four target images are
obtained by manually calibrating, and each of which only contains one feature of four
types. In the training cource of heads detection, Yoda et al. get the final fitness value
of 0.963 [18], and our algorithm gets 0.9662— more accurate. The best fitness val-
ues of heads, staffs lines and stems all converge fast and stable. The best fitness value
of hooks goes through a longer period, and converges to 0.9780. When we apply the
methods obtained to whole music sheet, all four features are detected accurately. Ex-
perimental results also support that the efficiency and effectiveness of our algorithm are
all better than Yoda et al.’s.

3.3 Experiment on Gray Scale Image

In this process, we apply this algorithm to the enhancement of gray scale image. There
are more 2000 low quality finger vein images collected by an infrared CCD device,
which contains 400 fingers, and each finger has 4 to 6 images. We want to use this al-
gorithm to enhance these images and expect to extract more accurate vein features. We
randomly choose four images from data set as learning samples and manually calibrate
the corresponding feature images as learning goals, and all these images compose four
pair of “training set”. It is difficult to evaluate the effects of gray scale image enhance-
ment. Because of the purpose of image enhancement is to get more accurate finger vein
features, we use an threshold and thinning method to get the skeleton feature results of
enhanced images which will be used in the evaluation. The GP algorithm runs for four
times with these training set, each time with a pair of source and target, and produces
four methods.

We get four operation sequences in the training course, namely morphological image
analysis method(MAIM 1 ∼ 4 , corresponding to four pairs of training set). Fig. 6
illustrates the four pairs of training set and the training results, images in column a
are original images, in b are corresponding learning goals, in c are the learning results
followed by threshold and thinning, and in d are the results by using the contrastive
method which is processed by mean filtering with threshold and thinning. From the
comparison, the generated methods enhance the images and more accurate features are
extracted.
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Fig. 6. Visual effect comparison for different learning pairs: (a) four original learning samples; (b)
corresponding learning goals; (c) learning results of MAIM 1 ∼ 4 with threshold and thinning;(d)
results obtained by mean filter with threshold and thinning

After, the obtained methods are applied to the whole data set and we examine the ef-
fects of the enhancement and verify the features obtained from enhanced images in the
application of identity authentication. We test this process with combination of differ-
ent number and order of MAIMes. We use the false acceptance rate (FAR) to evaluate
our proposed algorithm, which is the most commonly used measure of identity authen-
tication, the fraction of access attempts by an un–enrolled individual that are neverthe-
less deemed a match [17]. The classifier is Nearest Neighbor [4] and the experimental
strategy is Leave–One–Out. We use the Modified Hausdorff Distance(MHD) [3][8] to
measure the similarity of two images. The results are shown in Fig. 7. Bar 1 is FAR re-
sult of the contrastive method and the others are FARs of different combined MAIMes.
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Fig. 7. Comparison of false acceptance rate for test groups and the control group. Bar 1, FAR
result of control group. Bar 2, FAR result of MAIM-1,2,3,4. Bar 3, FAR result of MAIM-4,3,2,1.
Bar 4, FAR result of MAIM-1,2,3. Bar 5, FAR result of MAIM-1,3,4. Bar 6, FAR result of
MAIM-1,2,4. Bar 7, FAR result of MAIM-4,2,1.
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Fig. 7 indicates that the enhancement methods produced by our algorithm all decrease
the FARs. The most remarkable is the Bar 2 which FAR result of images are enhanced
by MAIM-1,2,3,4(sequence-dependent) reduces the FAR by about 8%.

4 Conclusion

For a long time, researchers explore GA and GP approach in searching automatically
produce morphological image processing methods. But the heavy computational load
of evolution prevents the application of this approach. In this paper, we propose an ap-
plicable genetic programming approach to solve the problems of binary image analysis
and gray scale image enhancement. It has strong ability of generalization, and shows
robustness in experiments.
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Abstract. This work develops a new fuzzy version of single-source ca-
pacitated facility location problem (FLP), in which a set of capacitated
facilities is selected to provide service to demand points with possibility
distributions at the minimal total cost. Since the proposed FLP includes
credibility service level constraints and 0–1 decision variables, its solution
method is a challenge issue for research, and usually relies on metaheuris-
tics and approximation approach. However, for frequently used trape-
zoidal, Gamma and Normal fuzzy demands, the FLPs are equivalent to
deterministic 0-1 programming problems. As a consequence, the equiv-
alent 0-1 programming problems can be solved by general purpose soft-
ware or conventional optimization algorithms. At the end of this paper,
we demonstrate the developed modeling idea via numerical experiments.

Keywords: Capacitated facility location problem, Fuzzy programming,
Credibility service level, Integer programming.

1 Introduction

The single-source capacitated facility location problem (FLP) studies an FLP
and a generalized assignment problem between a set of demand points and a
set of capacitated facilities via some decision criterion. In the literature, most
research focused on deterministic single-source capacitated FLPs, which are also
related to uncapacitated FLPs. The interested reader may refer to the review
on FLPs [1]. As for the successful solution approaches to deterministic single-
source capacitated FLPs, Ahujia et al. [2] proposed a multi-exchange search
with heuristic on specially designed dynamic single-source capacitated FLP net-
works; Holmberg [3] designed an exact branch-and-bound method with a La-
grangian heuristic to solve single-source capacitated FLP; Tragantalerngsak [4]
developed a Lagrangian relaxation-based branch-and-bound algorithm for two-
echelon FLP; Cortinhal and Captivo [5] applied a tabu search with classical shift
and swap moves for single-source capacitated FLP, and Korupolu, Plaxton and
Rajaraman [6] suggested a simple local search heuristic for the capacitated FLP
in which the service costs obey triangular inequality.
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Recently, some researchers have paid their attention to stochastic single-
source FLPs. For example, Zhou and Liu [7] presented expected value model,
chance-constrained programming and dependent-chance programming for capac-
itated FLP with stochastic demands, and integrated network simplex algorithm,
stochastic simulation and genetic algorithm for solving these stochastic mod-
els; Lin [8] considered a stochastic single-source capacitated FLP, and designed
a hybrid heuristic of Lagrangean relaxation within a branch-and-bound frame-
work to find upper and lower bounds for this problem. With the development of
fuzzy set and uncertainty theories [9,10,11,12,13], some researchers realized the
importance of fuzzy uncertainty in decision systems, and applied fuzzy theory
to FLPs. Zhou and Liu [14] proposed fuzzy expected cost minimization model,
fuzzy α-cost minimization model, and credibility maximization model according
to different decision criteria, and designed some hybrid intelligent algorithms
for solving these models; Wen and Iwamura [15] considered the FLP with un-
certainties, presented an α-cost model under the Hurwicz criterion with fuzzy
demands, and integrated the simplex algorithm, fuzzy simulation and genetic
algorithm to solve this model. As for two-stage fuzzy FLPs, Liu and Zhu [16],
Liu and Tian [17], Shen and Liu [18] developed three classes of two-stage models
based on minimum-risk and value-at-risk decision criteria, and discussed their
approximation methods as well as the convergence of the methods about opti-
mal solutions and optimal objective values, and Liu [19] presented a new class
of two-stage fuzzy random minimum risk problem based on mean chance theory
[12], and applied the developed optimization method to the capacitated FLP
with fuzzy random demands. In this paper, we consider a new fuzzy version of
single-source capacitated FLP, in which a set of capacitated facilities is selected
to provide service to demand points with possibility distributions at the minimal
total cost.

The plan of this paper is as follows. In Section 2, we formulate a new fuzzy
single-source capacitated FLP with service level requirements. In Section 3, we
discuss the equivalent programming problems when demands are characterized
by trapezoidal, Gamma and Normal fuzzy variables. In Section 4, we present one
numerical example to illustrate the developed modeling idea and effectiveness of
the proposed methods. Section 5 concludes the paper.

2 Problem Formulation

In this section, we will present a new fuzzy single-source capacitated FLP with
service level requirements. The model attempts to minimize the total system
costs, including the fixed cost of facilities and the transportation cost. To model
the problem, we adopt the following indices and parameters.

Indices:
I is the index set of facilities, i = 1, 2, . . . , m, and J is the index set of cus-
tomers, j = 1, 2, . . . , n.
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Decision variables:

yi =
{

1, if the facility i is opened
0, otherwise, (1)

and

Xij =
{

1, if the customer j is served by facility i
0, otherwise. (2)

Parameters:
fi is the fixed cost of facility i; cij is the transportation cost from facility i
to customer j; ξj is the fuzzy demand for customer j; Qi is the maximum
capacity of facility i, and αi is the prescribed credibility service level of
facility i.

Using the notation above, we present a new fuzzy single-source capacitated FLP,
which is formally built as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min Z =
∑m

i=1 fiyi +
∑m

i=1

∑n
j=1 cijXij

s.t.
∑m

i=1 Xij = 1, j = 1, 2, . . . , n
Xij ≤ yi, i = 1, 2, . . . , m; j = 1, 2, . . . , n

Cr
{∑n

j=1 ξjXij ≤ Qiyi

}
≥ αi, i = 1, 2, . . . , m

yi, Xij = 0, 1, i = 1, 2, . . . , m; j = 1, 2, . . . , n,

(3)

where Cr is the credibility measure defined in [20]. The objective of problem
(3) includes the fixed cost

∑m
i=1 fiyi that facilities are opened, and the trans-

portation cost
∑m

i=1

∑n
j=1 cijXij from opened facilities to customers. As a con-

sequence, the objective is to minimize the following total cost:∑m
i=1 fiyi +

∑m
i=1

∑n
j=1 cijXij . (4)

The constraints of problem (3) consist of the following several items:

I: The constraints
m∑

i=1

Xij = 1, j = 1, 2, . . . , m (5)

ensure that each customer is served by a single facility.

II: The constraints

Xij ≤ yi, i = 1, 2, . . . , m; j = 1, 2, . . . , n (6)

indicate a facility must be set up if a demand node is assigned.

III: The quantity Qi in (3) is the maximum service ability of facility i, and
αi(0 < αi ≤ 1) is a prescribed credibility service level. The credibility service
level to the ith customer is

Cr
{∑n

j=1 ξjXij ≤ Qiyi

}
≥ αi, i = 1, 2, . . . , m. (7)

The constraints impose the credibility of fuzzy event that the demands of all
customers are less than the maximal service ability at each facility i is more
than the predetermined service level requirement.
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3 Handling Credibility Service Level Constraints

Problem (3) is a 0-1 programming subject to credibility constraints. To solve
problem (3) effectively, this section will discuss how to turn the credibility service
level constraints into their equivalent deterministic forms.

First, we consider the case of trapezoidal fuzzy demand. Let ξj be mutu-
ally independent trapezoidal fuzzy variables (rj1, rj2, rj3, rj4). According to the
independence of the fuzzy variables [21], one has

∑n
j=1 ξjXij =

(∑n
j=1 rj1Xij ,

∑n
j=1 rj2Xij ,

∑n
j=1 rj3Xij ,

∑n
j=1 rj4Xij

)
, (8)

which is also a trapezoidal fuzzy variable. In this case, the credibility service
level constraint Cr{∑n

j=1 ξjXij ≤ Qiyi} can be transformed into an equivalent
deterministic constraint, which is stated in the following theorem.

Theorem 1. For any given αi ∈ (0, 1], we have:

(i) When αi ≥ 0.5, the constraint Cr{∑n
j=1 ξjXij ≤ Qiyi} ≥ αi if and only if

(2 − 2αi)
n∑

j=1

rj3Xij + (2αi − 1)
n∑

j=1

rj4Xij −Qiyi ≤ 0. (9)

(ii) When αi < 0.5, the constraint Cr{∑n
j=1 ξjXij ≤ Qiyi} ≥ αi if and only if

(1− 2αi)
n∑

j=1

rj1Xij + 2αi

n∑
j=1

rj2Xij −Qiyi ≤ 0. (10)

Proof. On the basis of the possibility distribution of fuzzy variable
∑n

j=1 ξjXij ,
and the definition of credibility function Cr{ξ ≤ x}, one has

Cr{∑n
j=1 ξjXij ≤ Qiyi}

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if
∑n

j=1 rj4Xij ≤ Qiyi

1−
∑n

j=1 rj4Xij−Qiyi

2(
∑n

j=1 rj4Xij−
∑n

j=1 rj3Xij)
, if

∑n
j=1 rj3Xij ≤ Qiyi ≤

∑n
j=1 rj4Xij

1
2 , if

∑n
j=1 rj2Xij ≤ Qiyi ≤

∑n
j=1 rj3Xij∑n

j=1 rj1Xij−Qiyi

2(
∑n

j=1 rj1Xij−
∑n

j=1 rj2Xij)
, if

∑n
j=1 rj1Xij ≤ Qiyi ≤

∑n
j=1 rj2Xij

0, otherwise.

Hence, if αi ≥ 0.5 for i = 1, 2, . . . , m, then Cr{∑n
j=1 ξjXij ≤ Qiyi} ≥ αi is

equivalent to

1−
∑n

j=1 rj4Xij −Qiyi

2(
n∑

j=1

rj4Xij −
∑n

j=1 rj3Xij)
≥ αi,

i.e., (2− 2αi)
∑n

j=1 rj3Xij + (2αi − 1)
∑n

j=1 rj4Xij −Qiyi ≤ 0.
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On the other hand, when αi < 0.5 for i = 1, . . . , m, the service level constraint
Cr{∑n

j=1 ξjXij ≤ Qiyi} ≥ αi is equivalent to∑n
j=1 rj1Xij −Qiyi

2(
∑n

j=1 rj1Xij −
∑n

j=1 rj2Xij)
≥ αi,

i.e., (1− 2αi)
∑n

j=1 rj1 + 2αi

∑n
j=1 rj2Xij −Qiyi ≤ 0. The proof of the theorem

is complete.

In practical decision problem, the facilities with large capacities are always re-
quired to have high service levels. As a consequence, problem (3) can be con-
verted into the following programming problem:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min Z =
∑m

i=1 fiyi +
∑m

i=1

∑n
j=1 cijXij

s.t.
∑m

i=1 Xij = 1, j = 1, 2, . . . , n
Xij ≤ yi, i = 1, 2, . . . , m; j = 1, 2, . . . , n
(2− 2αi)

∑n
j=1 rj3Xij + (2αi − 1)

∑n
j=1 rj4Xij −Qiyi ≤ 0,

i = 1, 2, . . . , m
yi, Xij = 0, 1, i = 1, 2, . . . , m; j = 1, 2, . . . , n.

(11)

We now consider the case of Gamma fuzzy demand. Let ξj ’s be Gamma fuzzy
variables with parameters λj such that their possibility distributions are μξj (x) =
(x/λjr))r exp(r − x/r), where x ≥ 0, λj ∈ R, and r is a fixed constant. When
these Gamma fuzzy variables are mutually independent, their sums

∑n
j=1 ξjXij

are also Gamma fuzzy variables with parameters
∑n

j=1 λjXij , i = 1, . . . , m. In
this case, we have the following results about credibility service level constraints.

Theorem 2. For any given αi ∈ (0, 1], we have:

(i) When αi ≥ 0.5, the constraint Cr{∑n
j=1 ξjXij ≤ Qiyi} ≥ αi if and only if

ln 2(1− αi)− r ln Qiyi + r ln
n∑

j=2

λjXijr + Qiyi/

n∑
j=1

λjXij − r ≤ 0. (12)

(ii) When αi < 0.5, the constraint Cr{∑n
j=1 ξjXij ≤ Qiyi} ≥ αi if and only if

ln 2αi − r ln Qiyi + r ln
n∑

j=1

λjXijr + Qiyi/

n∑
j=1

λjXij − r ≤ 0. (13)

According to Theorem 2, if service level αi ≥ 0.5, then problem (3) can be turned
into the following deterministic equivalent 0–1 programming problem:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min Z =
∑m

i=1 fiyi +
∑m

i=1

∑n
j=1 cijXij

s.t.
∑m

i=1 Xij = 1, j = 1, 2, . . . , n
Xij ≤ yi, i = 1, 2, . . . , m; j = 1, 2, . . . , n
ln 2(1− αi)− r ln Qiyi + r ln

∑n
j=2 λjXijr

+Qiyi/
∑n

j=1 λjXij − r ≤ 0, i = 1, 2, . . . , m

yi, Xij = 0, 1, i = 1, 2, . . . , m; j = 1, 2, . . . , n.

(14)
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Before ending this section, we discuss the case when Normal possibility distri-
butions included in credibility constraints. Let ξj ’s be Normal fuzzy variables
with possibility distributions μξj (x) = exp(−(x−aj)2/σ2

j ), aj ∈ R, σj > 0. Note
that the sum of mutually independent Normal fuzzy variables is also a Normal
fuzzy variable. That is,

∑n
j=1 ξjXij is a Normal fuzzy variable with parameter

(
∑n

j=1 ajXij ,
∑n

j=1 σjXij), which leads to the following result:

Theorem 3. For any given αi ∈ (0, 1], we have:

(i) When αi ≥ 0.5, the constraint Cr{∑n
j=1 ξjXij ≤ Qiyi} ≥ αi if and only if

Qiyi −
n∑

j=1

ajXij −
√√√√− n∑

j=1

σ2
j ln 2(1− αi) ≥ 0. (15)

(ii) When αi < 0.5, the constraint Cr{∑n
j=1 ξjXij ≤ Qiyi} ≥ αi if and only if

Qiyi −
n∑

j=1

ajXij +

√√√√− n∑
j=1

σ2
j ln 2αi ≥ 0. (16)

Therefore, in the case when credibility service level αi ≥ 0.5, problem (3) can
be turned into the following equivalent 0–1 programming problem:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min Z =
∑m

i=1 fiyi +
∑m

i=1

∑n
j=1 cijXij

s.t.
∑m

i=1 Xij = 1, j = 1, 2, . . . , n
Xij ≤ yi, i = 1, 2, . . . , m; j = 1, 2, . . . , n

Qiyi −
∑n

j=1 ajXij −
√
−∑n

j=1 σ2
j ln 2(1− αi) ≥ 0, 1 ≤ i ≤ m

yi, Xij = 0, 1, i = 1, 2, . . . , m; j = 1, 2, . . . , n.

(17)

So far, we have discussed the issue about handling credibility service level con-
straints. In the cases when the demands are mutually independent trapezoidal,
Gamma and Normal fuzzy variables, problem (3) can be turned into its equiv-
alent 0–1 programming problem (11), (14), and (17), respectively. Therefore,
conventional optimization method like branch-and-bound, or general purpose
software can be employed to solve the equivalent 0–1 programming problems
(11), (14), and (17). In the next section, we will perform numerical experiments
to demonstrate the developed modeling idea.

For general problem (3), the demands included are not necessarily indepen-
dent fuzzy variables, or they have general possibility distributions instead of
the special cases discussed above. To handle the general cases, we may com-
bine approximation method [22] and conventional optimization methods to solve
problem (3).

4 Numerical Experiments

To illustrate the developed modeling idea and effectiveness of the proposed meth-
ods, we have performed a number of numerical experiments. For the sake of pre-
sentation, this section provides some of them via one numerical example about
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fuzzy single-source capacitated FLP with 10 facilities and 20 customers. The set
of data in this problem is collected in Table 1 including the generalized credibility
service level αi, the maximum capacities of facilities Qi, the fixed opened costs
fi, and the demands of customers ξj ; while transportation costs from facility i
to customer j are provided in Table 2.

Table 1. The Set of Data in Numerical Experiments

m × n 10 × 20

i 1 2 3 4 5
6 7 8 9 10

fi 10 12 12 10 14
14 12 16 12 15

Qi 80 90 95 90 92
89 94 92 91 96

αi 0.85 0.85 0.85 0.85 0.85
0.85 0.85 0.85 0.85 0.85

j 1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

ξj (16,18,19,25) (12,13,23,29) (10,11,12,13) (18,20,23,25) (11,13,24,37)
(19,23,26,29) (23,24,32,41) (17,20,24,34) (18,21,46,52) (12,24,39,41)
(22,24,26,29) (16,21,32,40) (18,22,24,35) (28,32,46,49) (12,24,30,41)
(20,22,26,29) (27,31,32,40) (17,22,24,35) (28,31,46,49) (12,24,27,47)

Table 2. Transportation Costs from Facility i to Customer j

cij j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

i = 1 24 35 18 19 11 23 29 23 28 26 24 35 18 19 11 23 29 23 28 26
2 25 31 26 41 34 25 27 28 32 33 25 31 26 41 34 25 27 28 32 33
3 16 37 41 18 24 26 18 22 38 27 16 37 41 18 24 26 18 22 38 27
4 33 32 32 42 25 26 24 23 18 28 33 32 32 42 25 26 24 23 18 28
5 41 42 43 42 42 32 26 27 28 36 41 42 43 42 42 32 26 27 28 36
6 32 31 41 19 18 18 19 41 28 18 32 31 41 19 18 18 19 41 28 18
7 26 22 32 23 24 24 26 26 28 35 26 22 32 23 24 24 26 26 28 35
8 19 31 41 21 19 19 18 17 18 19 19 31 41 21 19 19 18 17 18 19
9 19 19 31 41 21 11 31 41 28 39 19 19 31 41 21 11 31 41 28 39
10 29 22 31 43 31 36 41 48 38 29 29 22 31 43 31 36 41 48 38 29

Using the given sets of data in Tables 1 and 2, we employ LINGO 8.0 soft-
ware to solve the equivalent mathematical programming problem (11) with
m = 10, n = 20, and credibility service level αi = 0.80. In this case, the minimum
cost is 478.0000 with the following optimal solution

X13 = X15 = X1,13 = X34 = X3,11 = X3,17 = X49 = X4,15 = X57 = X5,19 =
X6,10 = X6,20 = X7,12 = X7,14 = X81 = X88 = X8,18 = X92 = X96 = X9,16 = 1,
and y1 = y3 = y4 = y5 = y6 = y7 = y8 = y9 = 1.
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Furthermore, in order to demonstrate the influence of service level parameter
to solution quality, we also compare solutions with different values of credibility
level αi. The computational results are reported in Table 3.

Table 3. Comparison of Solutions with Different Service Levels

m × n αi Max-Iter Optimal Objective Values Time (sec)

10 × 20 0.80 830 478.0000 1
10 × 20 0.85 830 481.0000 1
10 × 20 0.90 941 481.0000 2
10 × 20 0.95 25319 493.0000 5

5 Conclusions

As demand is usually uncertain in reality, this paper attempts to deal with
single-source capacitated FLP with fuzzy demands and credibility service level
requirements. Our main results are summarized as follows. First, we developed
a new fuzzy version of single-source capacitated FLP, in which a set of capac-
itated facilities is selected to provide credibility service to demand points with
possibility distributions at the minimal total cost. Second, we handled the cred-
ibility service level constraints in the cases when the demands are characterized
by frequently used trapezoidal, Gamma and Normal fuzzy demands, and turned
the original FLPs into their equivalent deterministic 0-1 linear or nonlinear pro-
gramming problems. Third, some numerical experiments have been performed
via one numerical example to demonstrate the developed modeling idea.

This paper studied a new fuzzy single-source FLP. The focus is on special cases
when demands are trapezoidal, Gamma and Normal fuzzy variables. While some
issues have been resolved, some new ones have been exposed. For general problem
(3), the demands included are not necessarily independent fuzzy variables, or
they have general possibility distributions. To handle the general cases, we may
combine approximation method and conventional optimization methods to solve
general FLP (3). So the fuzzy single-source FLP is a fertile field for research.
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Abstract. Based on granular spaces, some relational problems with
fuzzy equivalence relations is studied, and three results are obtained as fol-
lows. Firstly, the dynamic property of a fuzzy equivalence relation on its
granular space is discussed. Secondly, the ordering relationship between
fuzzy equivalence relations and their granular spaces is researched, and
they are order-preserving. Furthermore, the collaborative clustering of
fuzzy equivalence relations on granular spaces by their intersection oper-
ation is given, which the collaborative clustering derived from the fuzzy
equivalence relations obtained by the intersection operation is a thinner
or more precise consistent cluster. These conclusions will help us pursue
an even deeper understanding of the essence of granular computing.

Keywords: Granular Computing, Fuzzy Equivalence Relation, Fuzzy
Granular Space, Ordering Relationship, Collaborative Clustering.

1 Introduction

Clustering and in particular, fuzzy clustering occupy an important role in un-
derstanding data revealing their underlying structures and offering some useful
insights into the general tendencies, associations and dependencies manifesting
therein [1]. With the development of relationship between information granules
regarded as fuzzy sets [2,3,4,5,6], the structural analysis of fuzzy sets and fuzzy
clusterings on information granules have addressed, these researches help us
pursue an even deeper understanding of the essence of fuzzy sets and clustering
procedures.

During the past few years, a considerable number of studies have been con-
ducted fuzzy collaborative clustering, and together with a rapid growth in the
variety of applications [7,8,9,10,11,12,13]. How is to establish a collaborative
clustering method? Recently, an important extension of clustering leads to the
concepts of combination of several clustering results, which it is used on several
differential clusterings for the same data set or clustering for several data sets.
With a growing diversity of problems in which we traverse a path from data to
knowledge, we encounter information processing tasks in which a vital interest is
in a multifaceted perspective. In Refs.[1,2,8,9], Pedrycz et al conducted research
on collaborative fuzzy clustering based on FCM, which it mainly concentrate on
� The research was supported in part by the Program for Innovative Research Team

of Jiangnan University.
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some essential algorithmic facets of processing data. In Ref.[14], Chen and Yao
proposed a multiview collaborative approach based on data operators. Besides,
Miyamoto studied information fusion based on fuzzy multi-sets [15]. Esnaf et
al proposed a fuzzy clustering-based hybrid method for a multi-facility loca-
tion problem [16], and Shuu also presented the fusion problem based on fuzzy
multi-attribute group decision-making with multi-granularity linguistic informa-
tion [17]. These collaborative methods of structural clusters were developed to
address a common problem, i.e., for given several clusterings on the same data
set, how to obtain a more perfect (or better) cluster.

Recently, We also presented cluster analysis based on fuzzy quotient spaces
[18], reported a direct method for solving clustering problems based on normal-
ized metric. To better analyze clustering structures, we proposed the research
on fuzzy granular spaces [19,20] based on the fuzzy quotient space theory [5,6].
In Ref.[21], we introduced granular spaces into fuzzy proximity relations, pro-
posed the research on structural clusters of a fuzzy proximity relation, and re-
searched the structural clustering characteristic based on a fuzzy granular space.
In Ref.[22], we also presented the research on structural clustering and analysis
of metric based on a granular space.

In this paper, we study some relational problems on a fuzzy granular space. It
is organized as follows: in Section 2, some preliminaries on fuzzy granular space
derived from a fuzzy equivalence relation are introduced; in Section 3, the dy-
namic property of a fuzzy equivalence relation on its granular space is discussed;
in Section 4, the ordering relationship between fuzzy equivalence relations and
their granular spaces is researched; in Section 5, the collaborative clustering
of fuzzy equivalence relations on granular spaces is presented; Conclusions are
included in Section 6.

2 Preliminaries on Fuzzy Granular Space

We will first introduce some basic concepts and lemmas, as follows.
If R is a fuzzy equivalence relation (abbreviated “FE relation”) on X and

satisfies the separability (i.e., ∀x, y ∈ X, R(x, y) = 1↔ x = y), then R is called
a separable FE relation on X [19]. Let SFE(X) and FE(X) stand for the set
of separable FE relations and the set of FE relations on X , respectively. Given
R ∈ FE(X) and ∀λ ∈ [0, 1], define a relation Rλ : (x, y) ∈ Rλ ↔ R(x, y) ≥ λ
(note: Rλ is the cut equivalence relation of R on X . The set of all cut equivalence
relations of R is denoted by �R(X), i.e., �R(X) = {Rλ | λ ∈ [0, 1]}. �R(X) is
also called the equivalence relations set derived from R. The equivalence classes
of Rλ is denoted by [x]λ = {y | R(x, y) ≥ λ, y ∈ X}, and X(λ) = {[x]λ | x ∈ X}
is called a granulation corresponding to λ derived from R. The set {X(λ) | λ ∈
[0, 1]} is called a granular space on X derived by R and it is denoted by ℵR(X).
In fact, a granulation just stands for a partition of X here.

Definition 1. Let (X, d) be a metric space. If d satisfies:
(1) ∀x, y ∈ X, 0 ≤ d(x, y) ≤ 1;(2) ∀x, y, z ∈ X, there does not exist any number
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within the array {d(x, y), d(y, z), d(z, x)} such that it is greater than the maxi-
mum of the other two numbers.

Then d is called a normalized ultrametric distance (NU metric) on X. The
first above-mentioned condition (1) is also called the normalized condition, and
the second above-mentioned condition (2) is called the ultrametric condition.

If d : X × X → R+, and d satisfies the symmetry, triangle inequality and
∀x ∈ X, d(x, x) = 0, then d is called a natural pseudo-distance on X [23]. If d is a
natural pseudo-distance satisfying the normalized condition and the ultrametric
condition, then d is also called a normalized and natural pseudo-ultrametric
(abbreviated “NPU metric”) on X . Let NU(X) and NPU(X) stand for the set
of normalized and ultrametrics and the one of normalized and natural pseudo-
ultrametrics on X , respectively.

Definition 2. Let X(λ1) and X(λ2) be two granulations on X.
(1) If ∀x ∈ X, [x]λ1 ⊆ [x]λ2 , then granulation X(λ2) is deemed to be less fine
than X(λ1) and it is denoted by X(λ2) ≤ X(λ1).
(2) If X(λ2) ≤ X(λ1) and there exists x0 ∈ X such that [x0]λ1 ⊂ [x0]λ2 , then
X(λ1) is deemed to be more fine than X(λ2) and it is denoted as X(λ2) < X(λ1).

If R ∈ SFE(X), then ∀x ∈ X, [x]1 = {x}, i.e., X(1) = {{x} | x ∈ X} = X .
∀λ ∈ [0, 1], X(λ) ≤ X(1), i.e., X(1) (or X) is the finest granulation of X .

Lemma 1. If R ∈ FE(X), then the deriving fuzzy granular space ℵR(X) is
an ordered set, and it satisfies ∀λ1, λ2 ∈ [0, 1], λ1 ≤ λ2 → X(λ1) ≤ X(λ2).
Particularly, ∀λ1, λ2 ∈ D, λ1 < λ2 → X(λ1) < X(λ2), where D = {R(x, y) |
x, y ∈ X}.
Proof. The proof is similar to the one of Proposition 3.2 in Ref.[19], here we
omitted it.

In Lemma 1, ℵR(X) is also called the ordered fuzzy granular space derived from
R. In Ref.[21], we discussed the theory of ordered fuzzy granular spaces derived
from FE(X), studied relationships between FE relations on X and NPU metrics
on X , and given the following result.

Lemma 2. Assume that R ∈ FE(X) (or R ∈ SFE(X)), and there exists an
one-to-one and strictly increasing mapping g satisfying g(0) = 0 on [0, 1]→ [0, 1].
Define d on X: ∀x, y ∈ X, d(x, y) = g(1 − R(x, y)). Then d ∈ NPU(X) (or
d ∈ NU(X)).

In Lemma 2, the d is called a NPU (or NU) metric on X derived by R.

Lemma 3. Assume that R ∈ FE(X), that ℵR(X) denotes the derived granular
space from R and that d stands for the a NPU metric derived from R. ∀X(λ) ∈
ℵR(X), define dλ : ∀a, b ∈ X(λ), dλ(a, b) = inf{d(x, y)|x ∈ a, y ∈ b}. If X(λ) <
X(1), then, dλ is a NU metric on X(λ).

In Ref.[21], we have discussed the relationship between the consistent clustering
and the fuzzy granular spaces, and get the result that a consistent clustering
of X is given for given a FE relation on X , and its granular space is just a
consistent clustering of X .
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3 The Dynamic Property of a FE Relation on Its
Granular Space

Theorem 1. Assume that R ∈ FE(X), ℵR(X) is the derived granular space
from R on X. For any granulation X(λ) ∈ ℵR(X), define a fuzzy relation R∗

λ

on X(λ): ∀a, b ∈ X(λ), R∗
λ(a, b) = sup{R(x, y)|x ∈ a, y ∈ b}. If X(λ) > X(1),

then R∗
λ ∈ SFE(X(λ)).

If the theorem holds, then R∗
λ is called the projecting FE relation of R to X(λ).

Proof. By R ∈ FE(X), taking d(x, y) = 1 − R(x, y), d ∈ NPU(X) and dλ ∈
NU(X(λ)) from Lemma 2 and 3, where dλ(a, b) = inf{d(x, y)|x ∈ a, y ∈ b} =
1 − sup{R(x, y)|x ∈ a, y ∈ b} = 1 − R(a, b), a, b ∈ X(λ). R∗

λ obviously satisfies
the symmetry and ∀a, b ∈ X(λ), 0 ≤ R∗

λ(x, y) ≤ 1 from the definition of R∗, and
(1) ∀a ∈ X(λ), R∗

λ(a, a) = sup{R(x, y)|x, y ∈ a} = 1.
(2)∀a, b ∈ X(λ), R∗

λ(a, b) = 1↔ dλ(a, b) = 0↔ a = b from dλ ∈ NU(X(λ)), i.e.,
R∗

λ satisfies the separability on X(λ);
(3) ∀a, b, c ∈ X(λ), R∗

λ(a, b) = 1 − dλ(a, b) ≥ min{1 − dλ(a, c), 1 − dλ(c, b)} =
min{R∗

λ(a, c), R∗
λ(c, b)}. So R∗

λ(a, b) ≥ supc∈X(λ){min{R∗
λ(a, c), R∗

λ(c, b)}}.
Therefore, R∗

λ ∈ SFE(X(λ)).

In Theorem 1, the R∗
λ is also called as the projective SFE relation on X(λ) by

R. Given a FE relation R, Theorem 1 states that we can get a FE relation R∗
λ

on X(λ) of X derived from R according to the projective FE relation.

Theorem 2. Assume that X(λ) is a granulation of X, and that Rλ ∈ FE(X(λ))
(or Rλ ∈ SFE(X(λ))). Define a fuzzy relation Rλ on X: ∀x, y ∈ X, Rλ(x, y) =
Rλ(a, b), where x ∈ a, y ∈ b, a, b ∈ X(λ). Then, Rλ ∈ FE(X).

Proof. When R ∈ FE(X(λ)), Rλ obviously satisfies the symmetry and ∀x, y ∈
X, 0 ≤ Rλ(x, y) ≤ 1 from the definition of Rλ. In addition,
(1) ∀x ∈ X, Rλ(x, x) = Rλ(a, a) = 1, where x ∈ a ∈ X(λ);
(2) ∀x, y, z ∈ X, Rλ(x, y) = R(a, b) ≥ supc∈X(λ){min{Rλ(a, c), Rλ(c, b)}} =
supz∈X{min{Rλ(x, z), Rλ(z, y)}}, where x ∈ a, y ∈ b, z ∈ c, a, b, c ∈ X(λ). So
Rλ(x, y) = R(a, b) ≥ supz∈X{min{Rλ(x, y), Rλ(z, y)}}.
Therefore, Rλ ∈ FE(X).
As in the above proof, it also holds when Rλ ∈ SFE(X(λ)).

In Theorem 2, Rλ is also called the extending FE relation on X from the R on
X(λ). Theorem 2 shows that we can get a FE relation Rλ on X by the extending
FE relation for given a FE relation Rλ ∈ FE(X(λ)).

Remark 1. From Theorem 1 and 2, the dynamic property of FE relations on
an ordered granular space is given, i.e., given a (separable) FE relation on a
granulation X(λ), we can determine a separable FE relation on any granulation
that is more coarse than X(λ) by its projective FE relation; we can also define
the FE relation on any granulation that is finer than X(λ) by its extending FE
relation.
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For a given FE relation R on X , its granular space is denoted by ℵR(X) =
{X(λ)|λ ∈ [0, 1]}. The set, which is all extending FE relations of projective FE
relations on all granulations X(λ) (Note: it is called the extending FE relations
set), is denoted by �R(ℵ), i.e., �R(ℵ) = {R∗

λ|0 ≤ λ ≤ 1}.
Definition 3. Let ℵ1(X) and ℵ2(X) be two ordered granular spaces on X, and
their granulations are marked as X1(λ) and X2(λ) (λ ∈ [0, 1]), respectively.
(1) If ∀λ ∈ [0, 1], X1(λ) ≤ X2(λ), then the granular space ℵ1(X) is deemed to be
less fine than ℵ2(X) and it is denoted as ℵ1(X) ≤ ℵ2(X);
(2) If ℵ1(X) ≤ ℵ2(X) and there exists λ0 ∈ [0, 1] such that X1(λ0) < X2(λ0),
then ℵ2(X) is deemed to be more fine than ℵ1(X) and it is marked as ℵ1(X) <
ℵ2(X).

Theorem 3. Suppose that R ∈ FE(X), and that its granular space is denoted
by ℵR(X) = {X(λ)|λ ∈ [0, 1]}. ∀λ ∈ [0, 1], R∗

λ stands for the projective FE
relation derived from R on the granulation X(λ), and R∗

λ is the extending FE
relation of R∗

λ on X. ℵR∗
λ
(X(λ)) and ℵR∗

λ
(X) is the granular space derived by

R∗
λ (on X(λ)) and R∗

λ (on X), respectively; their granulations are marked as
Xλ(μ) and X∗

λ(μ), respectively (μ ∈ [0, 1]). Then, ∀μ ∈ [0, 1], Xλ(μ) = X∗
λ(μ).

Proof. ∀λ ∈ [0, 1], μ ∈ [0, 1], [x]λ,μ and [x]∗λ,μ stands for the equivalence class
corresponding to x of Xλ(μ) and one of X∗

λ(μ), respectively. By Theorem 2 and
Definition 2, ∀x ∈ a ∈ Xλ(μ) ↔ a = [x]λ,μ = {y|R∗

λ([x]λ,μ, [y]λ,μ) ≥ μ} =
{y|R∗

λ(x, y) ≥ μ} = [x]∗λ,μ ↔ a ∈ X∗
λ(μ), therefore, Xλ(μ) = X∗

λ(μ).

Theorem 3 shown that the ordered granular space derived from R∗
λ is the same

as the one derived from its extending FE relation.

4 The Ordering Relationship between FE Relations and
Their Granular Spaces

Definition 4. Let R1, R2 ∈ FE(X).
(1) If ∀x, y ∈ X, R1(x, y) ≤ R2(x, y), then R2 is deemed to be less fine than R1

and is denoted as R2 ≤ R1;
(2) If R2 ≤ R1, and there exists x0, y0 ∈ X such that R1(x0, y0) < R2(x0, y0),
then R1 is deemed to be more fine than R2 and is denoted as R2 < R1.

Like an amplifying or reducing scale, the “coarse-fine” relation among FE rela-
tions shows a basic property of fuzzy relations. For any two given FE relations
on a universe, the smaller the relation value, the finer the fuzzy relation.

Theorem 4. Assume that R ∈ FE(X) (or R ∈ SFE(X)), then the extending
FE relations set �R(ℵ) = {R∗

λ|0 ≤ λ ≤ 1} is an ordered set, satisfying ∀λ1, λ2 ∈
[0, 1], λ1 ≤ λ2 → R∗

λ1
≤ R∗

λ2
.

Proof. Let X(λ) be the granulation derived from R on X to λ, i.e., let X(λ) =
{[x]λ|x ∈ X}. For any λ1, λ2 ∈ [0, 1], λ1 ≤ λ2. Then we get X(λ1) ≤ X(λ2)
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from Lemma 1, so ∀x, y ∈ X, [x]λ2 ⊆ [x]λ1 , [y]λ2 ⊆ [y]λ1 . According to Theorem
1 and 2, R∗

λ1
(x, y) = R∗

λ1
([x]λ1 , [y]λ1) = sup{R(x1, y1)|x1 ∈ [x]λ1 , y1 ∈ [y]λ1} ≥

sup{R(x1, y1)|x1 ∈ [x]λ2 , y1 ∈ [y]λ2} = R∗
λ2

(x, y). Therefore, R∗
λ1
≤ R∗

λ2
by

Definition 4.

Theorem 5. Suppose that R1, R2 ∈ FE(X) and that their deriving granular
spaces are ℵR1(X) and ℵR2(X). Then, R1 ≤ R2 ⇐⇒ ℵR1(X) ≤ ℵR2(X). Par-
ticularly, when R1, R2 ∈ SFE(X), we have R1 < R2 ⇐⇒ ℵR1(X) < ℵR2(X).

Proof. From R1, R2 ∈ FE(X), we denoted ℵRi(X) = {Xi(λ)|λ ∈ [0, 1]}, where
Xi(λ) = {[x]iλ|x ∈ X}, i = 1, 2.
“=⇒”. ∀λ ∈ [0, 1], x, y ∈ X , by the condition R1 ≤ R2 ↔ R2(x, y) ≤ R1(x, y),
i.e., ∀x ∈ X, [x]2λ = {y|R2(x, y) ≥ λ} ⊆ {y|R1(x, y) ≥ λ} = [x]1λ ∈ X1(λ).
Therefore, ℵR1(X) ≤ ℵR2(X) by Definition 3.
“⇐=”. ∀λ ∈ [0, 1], X1(λ) ≤ X2(λ), i.e., ∀x ∈ X, [x]2λ ⊆ [x]1λ. By the extend-
ing principle of fuzzy sets, ∀x, y ∈ X, R1(x, y) = supλ∈[0,1]{λ | y ∈ [x]1λ} ≥
supλ∈[0,1]{λ | y ∈ [x]2λ} = R2(x, y), that is R1 ≤ R2.
As in the above proof, it is easy to get R1 < R2 ⇐⇒ ℵR1(X) < ℵR2(X) when
R1, R2 ∈ SFE(X), and the details are omitted here.

Theorem 5 shown that the order of FE(X) (or SFE(X)) relations on universe
X is the same as the one of their deriving granular spaces, i.e., they are order-
preserving.

5 The Collaborative Clustering of FE Relations on
Granular Space

Lemma 4. FE(X) (or SFE(X)) composes a perfect semi-order lattice under
the relation “≤” as defined by Definition 4. And for a given {Rα, α ∈ I} ⊆
FE(X) (or ⊆ SFE(X)), define R and R: R(x, y) = infα∈I{Rα(x, y)}, R(x, y) =
supα∈I{Rα(x, y)}, then R and R is the superior and inferior of {Rα, α ∈ I},
respectively.

Proof. The proof is similar to the one of Theorem 3.1 in [6], so we have omitted
it here.

In Lemma 4, the R is just a FE relation on X by a crisp fuzzy intersection
operation with {Rα, α ∈ I}, and it is denoted as R = ∩α∈IRα.

Theorem 6. Suppose that X1 and X2 are granulations on X and that Ri ∈
EF (Xi) (or ∈ SFE(Xi)), i = 1, 2. X1 ∩X2 = {a ∩ b | a ∈ X1, b ∈ X2}, define

R : ∀a, b ∈ X1 ∩X2, R(a, b) = min{R1(a1, b1), R2(a2, b2)} (1)
where a ⊆ ai ∈ Xi, b ⊆ bi ∈ Xi, i = 1, 2. Then, R ∈ FE(X1 ∩ X2) (or R ∈
SFE(X1 ∩X2)).
If the theorem holds, R is also called a FE relation on X1∩X2 by the intersection
operation with R1 (on X1) and d2 (on X2), and it is also denoted as R = R1∩R2.
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Proof. When Ri ∈ SFE(Xi) (i = 1, 2), it is obvious that R satisfies the symme-
try and ∀a, b ∈ X1 ∩X2, 0 ≤ R(a, b) ≤ 1 by the definition of R.
(1) ∀a ∈ X1 ∩X2, a ⊆ ai ∈ Xi, i = 1, 2, R(a, a) = 1;
(2) ∀a, b ∈ X1 ∩ X2, R(a, b) = min{R1(a1, b1), R2(a2, b2)} = 1 ↔ a1 = b1, a2 =
b2 ↔ a = b, i.e., R satisfies the separability on X1 ∩X2;
(3) ∀a, b, c ∈ X1 ∩ X2, a ⊆ ai ∈ Xi, b ⊆ bi ∈ Xi, c ⊆ ci ∈ Xi (i = 1, 2). We
have 1 − Ri ∈ D(Xi) by Lemma 3 (i = 1, 2). So, 1 − R1(a1, b1) ≤ max{1 −
R1(a1, c1), 1 − R1(c1, b1)} = 1 − min{R1(a1, c1), R1(c1, b1)}, i.e., R1(a1, b1) ≥
min{R1(a1, c1), R1(c1, b1)}. Similarly, R2(a2, b2) ≥ min{R2(a2, c2), R2(c2, b2)}.
Therefore, R(a, b) = min{R1(a1, b1), R2(a2, b2)} ≥ min{min{R1(a1, c1),
R2(a2, c2)}, min{R1(c1, b1), R2(c2, b2)}} ≥ min{R(a, c), R(c, b)}. Furthermore,
we have R(a, b) ≥ supc∈X1∩X2

{min{R(a, c), R(c, b)}}. Form (1)-(3), we have
R ∈ SFE(X1 ∩ X2). As in the above proof, this proof also holds when Ri ∈
FE(Xi) (i = 1, 2).

Remark 2. The intersection operation in Theorem 6 is different from the crisp
fuzzy intersection operation. The former is defined on different granulations of
a universe, the latter is defined on the same granulation.

Theorem 7. Suppose that X1 and X2 are two granulations on X and that Ri ∈
FE(Xi) (i = 1, 2). R∗

1, R
∗
2 stands for the extending FE relation derived from R1

and R2 on X1∩X2, respectively. Then R∗
1∩R∗

2 = R1∩R2, where the intersection
operation of R∗

1 ∩R∗
2 is defined by the crisp fuzzy intersection operation and the

intersection operation of R1 ∩R2 is seen in Theorem 6.

Proof. ∀c1, c2 ∈ X1 ∩ X2, c1 ⊆ ai ∈ Xi, c2 ⊆ bi ∈ Xi, i = 1, 2, we have
R∗

1 ∩R∗
2(c1, c2) = inf{R∗

1(c1, c2), R∗
2(c1, c2)} = inf{R1(a1, b1), R2(a2, b2)} = R1∩

R2(c1, c2). Therefore, R∗
1 ∩R∗

2 = R1 ∩R2.

Although the intersection operation in Theorem 6 is different from the crisp
fuzzy intersection operation, Theorem 7 shown that their deriving FE relations
on X1 ∩ X2 are the same. Furthermore, their deriving granular spaces are also
the same, so they have the same consistent clusterings. From Theorem 6, 7 and
Definition 4, we directly obtain the following corollary.

Corollary 1. In Theorem 7, R∗
i ≤ R1 ∩R2 (i = 1, 2).

Theorem 8. Suppose that X1 and X2 are two granulations on X, and that
Ri ∈ FE(Xi), i = 1, 2, R = R1 ∩ R2. Then, ℵRi(Xi) ≤ ℵR(X1 ∩ X2), where
ℵRi(Xi) and ℵR(X1 ∩ X2) stand for the granular space derived from Ri on Xi

(i = 1, 2) and R (on X1 ∩X2), respectively.

Proof. Based on Corollary 1, Theorem 4 and 5, we may easily give the proof,
and we have omitted it here.

Theorem 9. Suppose that X1 and X2 are two granulations on X, and that
Ri ∈ FE(Xi), i = 1, 2. R ∈ FE(X1 ∩X2), ℵR1(X1),ℵR2(X2) and ℵR(X1 ∩X2)
stands for the deriving granular space by R1 (on X1), R2 (on X2) and R (on
X1 ∩X2), respectively. If ℵRi(Xi) ≤ ℵR(X1 ∩X2) (i = 1, 2), then R1 ∩R2 ≤ R.
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Proof. The denoted R∗
1 and R∗

2 stand for the extending FE relation derived from
R1 and R2 on X1 ∩ X2, respectively. ℵR∗

1
(X1 ∩ X2) and ℵR∗

2
(X1 ∩ X2) is the

granular space derived from R∗
1 and R∗

2 on X1 ∩X2, respectively. By Theorem 3
and 8, ℵR∗

i
(X1 ∩X2) = ℵRi(Xi) ≤ ℵR(X1 ∩X2), i = 1, 2. Furthermore, we can

derive R∗
i ≤ R, i = 1, 2 from Theorem 5. Therefore, R1 ∩ R2 = R∗

1 ∩ R∗
2 ≤ R

according to Theorem 7.

We get the following corollary directly from Theorem 7 and 9.

Corollary 2. In Theorem 6, R = R1 ∩ R2 is the superior of R1 and R2 on
X1 ∩X2.

Theorem 9 shown that a new structural cluster (i.e.,ℵR(X1 ∩X2)) may be ob-
tained by Theorem 6 for the given two structural clusters (i.e.,ℵR1(X1) and
ℵR2(X2)). This new structural cluster is expected to satisfy ℵRi(Xi) ≤ ℵR(X1 ∩
X2) (i = 1, 2), where it shows that the new structural cluster is finer than
ℵR1(X1) or ℵR2(X2). By Corollary 2, the granular space ℵR(X1 ∩X2) derived
from R is the finest obtained from R1 (on X1) and R2 (on X2) on X1 ∩ X2,
and it satisfies R1 ∩R2 = R∗

1 ∩R∗
2 by Theorem 7. We also gave the construction

method of R in Theorem 6 and 7, where it was derived through the intersection
operation of the extending FE relation R∗

1 and R∗
1 on X1 ∩ X2, which was in

turn derived from R1 and R1, respectively.
In fact, the results obtained above can be generalized to the collaborative

clustering of an arbitrary number of clusters on universe X by Lemma 4 and
Theorem 7, i.e., the following result also holds.

Theorem 10. Assume that {Xα | α ∈ I} is a granulations set on X, that Rα is
a FE relation on Xα and that R∗

α is the extending FE relation of Rα on ∩α∈IXα.
Then
(1) R = ∩α∈IRα ∈ FE(∩α∈IXα), and ∩α∈IRα = ∩α∈IR

∗
α;

(2) R = ∩α∈IRα is the superior of {Xα | α ∈ I} on ∩α∈IXα;
(3) ℵRα(Xα) ≤ ℵR(∩α∈IXα) (α ∈ I), where ℵRα(Xα) and ℵR(∩α∈IXα) stand
for the deriving granular space by Rα (on Xα) and R (on ∩α∈IXα), respectively.

Below is an example to illustrate the above theoretical results.

Example 1. Let X1 = {a1 = {1, 2}, a2 = {3, 4}, a3 = {5, 6}, a4 = {7, 8}}
and X2 = {b1 = {1, 2}, b2 = {3, 4, 5}, b3 = {6, 7, 8}} are two granulations on
X = {1, 2, · · · , 8}. Ri ∈ SFE(Xi), i = 1, 2, where R1 : R1(ai, ai) = 1, i =
1, 2, 3, 4, R1(a1, a2) = R1(a1, a3) = R1(a1, a4) = 0.3, R1(a2, a3) = R1(a2, a4) =
0.5, R1(a3, a4) = 0.7; R2 : R2(bi, bi) = 1, i = 1, 2, 3, R2(b1, b2) = 0.8, R2(b1, b3) =
R2(b2, b3) = 0.2. The respective granular spaces of R1 and R2 are as follows:
ℵR1(X1) = {X1(1) = X1, X1(0.7) = {{a1}, {a2}, {a3, a4}}, X1(0.5) = {{a1}, {a2,
a3, a4}}, X1(0.3) = {X1}}; ℵR2(X2) = {X2(1) = X2, X2(0.8) = {{b1, b2}, {b3}},
X2(0.2) = {X2}}.

By Theorem 6, we get X1 ∩ X2 = {c1 = {1, 2}, c2 = {3, 4}, c3 = {5}, c4 =
{6}, c5 = {7, 8}}. Furthermore, we get a FE relation R = R1 ∩ R2 on X1 ∩X2

by formula (1), i.e., R : R(ci, ci) = 1, i = 1, 2, 3, 4, 5, R(c1, c4) = R(c1, c5) =
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R(c2, c4) = R(c2, c5) = R(c3, c4) = R(c3, c5) = 0.2, R(c1, c2) = d(c1, c3) =
0.3, d(c2, c3) = 0.5, R(c4, c5) = 0.7. Its deriving granular space is ℵR(X1 ∩X2) =
{X(1) = X1 ∩X2, X(0.7) = {{c1}, {c2}, {c3}, {c4, c5}}, X(0.5) = {{c1}, {c2, c3},
{c4, c5}}, X(0.3) = {{c1, c2, c3}, {c4, c5}}X(0.2) = {X1 ∩X2}}, and the compar-
ison graph of corresponding dendrogram of R1, R2 and R in Example 1 is shown
in Fig.1, where (a), (b) and (c) stands for their dendrogram of R1, R2 and R,
respectively. From Fig.1, we obviously have ℵRi(Xi) ≤ ℵR(X1 ∩X2) (i = 1, 2).

∼ ∼ �

�
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a1 a2 a3 a4 b1 b2 b3 c1 c2 c3 c4 c5

0.8
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0.5
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Fig. 1. The comparison graph of corresponding dendrograms in Example 1

6 Conclusions

Based on granular spaces, we study some relational problems with FE relation,
and obtained results as follows: (1)The dynamic property of a FE relation on its
granular space is discussed, i.e., i.e., given a (separable) FE relation on a granu-
lation X(λ) of X , we can determine a separable FE relation on any granulation
that is more coarse than X(λ) by its projective FE relation; we can also define
the FE relation on any granulation which is finer than X(λ) by its extending FE
relation. (2)The ordering relationship between FE relations and their granular
spaces is researched, and they are order-preserving. (3)The fusion on structural
clusters of FE relations on granular spaces by their intersection operation is
given, which the consistent cluster derived from the FE relation obtained by the
intersection operation is a thinner or more precise consistent cluster.

These conclusions will help us pursue an even deeper understanding of the
essence of granular computing.
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Abstract. Data fusion using diverse biological data has been applied to predict 
the protein function in recent years. In this paper, fuzzy integral fusion based on 
fuzzy measure is used to integrate the probabilistic outputs of different classifi-
ers. Support vector machines as base learners are applied to predict the func-
tions of examples from each data source. Fuzzy density values are determined 
by Particle Swarm Algorithm and an improved λ-measure is used. We compare 
our improved fuzzy measure to typical one. The experimental results show that 
our method has the better results. 

Keywords: Fuzzy measure; Particle Swarm Algorithm; Data fusion; Protein 
function prediction. 

1   Introduction 

Protein function prediction has become one of the main challenges in post-genome 
era. With the development of technology, there are large amounts of functional ge-
nomic data available, including protein-protein interaction, expression, phylogenetic 
profiles data, etc. How to use them becomes a major problem. Because of noise in a 
data set, the protein function prediction using the single source is often ineffective. 
Moreover, a data set can usually provide useful information only for a subset of func-
tion classes, while for others may be substantially uninformative [1]. This leads to the 
excellent performance in prediction of some function classes, but the poor one in 
others. So in recent years there have been many protein function prediction methods 
based on data fusion, such as Classifiers Ensemble [2][3], Artificial Neural Networks 
[4], Markov Random Field [5], Fusion Kernels [6], Integrated Weighted Averaging 
[7], Hopfield Network [8] and Simulated Annealing [9].  

The weighted average is a common method in the field of information fusion. The 
weights in this method reflect the importance of different objects, but they can’t re-
flect the interactions among objects. When there are interactions, the weighted aver-
age method will inevitably lead to loss of interactions information. Because of the 
non-additive property, fuzzy measure can reflect both of the importance of different 
objects and the interactions among objects. So we use Choquet fuzzy integral based 
on our improved λ-measure to perform the data fusion and use probabilistic support 
vector machines (SVM) as base learners to predict the functions of examples from 
each data source. The Particle Swarm Algorithm is adopted to search the optimized 
values of fuzzy density. 
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Currently, there are two main protein function taxonomies. One is the Functional 
Catalogue (FunCat) based on the Munich Information Center for Protein Sequences 
(MIPS) [10], the other is Gene Ontology (GO) [11]. The structure of FunCat is a tree 
forest and GO is a directed acyclic graph. Both of them are hierarchical. In this paper, 
we use FunCat to define the functions of protein. 

The paper is organized as follows. In section 2, we present some definitions, the 
detailed description of our improved Sugeno λ-measure and how to use the Particle 
Swarm Algorithm to determine the fuzzy density. In section 3, we use five data sets to 
predict protein functions and analysis the results. The conclusions end the paper. 

2   Methods 

2.1   Fuzzy Measures and Choquet Integral 

Definition 1. [12] Let X is a non-empty finite set X={x1, x2,…, xn}, and P(X) indicates 
the power set of X. A set function g: P(X) → [0, 1] is called a fuzzy measure g on X, if 
it satisfying the following axioms: 

(i) ( ) 0, ( ) 1g g Xφ = =  .                     

(ii) , ( ), ( ) ( )A B P X A B g A g B∀ ∈ ⊆ ⇒ ≤  .     

From the above we can see that the fuzzy measures are normal and monotone. From this 
definition, Sugeno introduced the λ-fuzzy measure satisfying the following property: 

( ) ( ) ( ) ( ) ( )g A B g A g A g A g Bλ∪ = + +  .                                  (1) 

1
1 [1 ({ })]

n

i
i

g xλ λ
=

+ = +∏ , for λ >-1, xi∈X .                                   (2) 

For all A, B∈P(X) and A∩B=φ . In equation (2), ({ })ig x  is called fuzzy density. It 

can be simply denoted by ig . 

Definition 2. [13] Let g be a fuzzy measure on X and X={ x1, x2,…, xn }. Without loss 

of generality we assume that 0 10 ( ) ( ) ( ) 1nf x f x f x= ≤ ≤ ≤ ≤  and iA ={xi, 

xi+1…xn}, 1nA φ+ = . The Choquet integral of f with respect to g is defined by 

1
1

( ) ( ( ) ( )) ( )g g i i i

n

i
C f fd f x f x g A−

=
= = −∑∫  .                                (3) 

Note that when g is a Sugeno λ-measure, the values of ( )ig A can be determined re-

cursively by the following equation [14]. 

( ) ({ }) n
n ng A g x g= =  .                                               (4) 

1 1( ) ( ) ( )i i
i i ig A g g A g g Aλ+ += + +  , for 1 i n≤ <  .                       (5) 
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2.2   Our Improved Sugeno λ-Measure 

We can calculate the value of λ by the equation (2), but the problem is that the value 
of λ is just only determined by the fuzzy density. So it cannot reflect the real relation-
ship among the objects. In order to resolve this problem, we use Pearson correlation 
coefficient r instead of λ. The improved Sugeno λ-measure can be expressed as fol-

low. For simplicity we let ,( ) ( ) ( ) ( )A Bs g A g B g A g Br= + − . 

( )g A B∪ =
max( ( ), ( ))g A g B

1s <
(6)

if

s fi

1s ≥
 

For all A, B∈P(X) and A∩B=φ . If |A|=|B|=1, we assume that A= {xa} and B= {xb}, 

then the value of 
,A B

r  is the Pearson correlation coefficient of xa and xb. If |A|=1 and 

|B|>1, we assume that A={xa} and B={xb1, xb2,…, xbn}, then 
,A B

r  can be estimated 

using the following equation (7). 

,

,
2
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1
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x B
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∈

= ×
+

−∏  .                                               (7) 

Where ,a ix xr  is the Pearson correlation coefficient of xa and xi. Then we can recur-

sively calculate our improved Sugeno λ-measure using the equations (4) and (6).  

Because the range of ,A Br  is -1 to 1, it is easy to know that our improved Sugeno λ-
measure is normal and monotone. 

2.3   Determine Fuzzy Measure Based on Particle Swarm Algorithm 

If the fuzzy measures are obtained, the Choquet integral is used to combine the prob-
abilistic outputs of different support vector machines to give the final prediction. 
Because we use Sugeno λ-measure, it is just need to determine the fuzzy density. In 
this paper, the Particle Swarm Algorithm is adopted to search the optimized values of 
fuzzy density.  

Particle Swarm Algorithm is originally attributed to Kennedy and Eberhart [15] in 
1995. It has fewer parameters and it is easy to implement this algorithm. Considering 

a swarm of N particles, each particle’s position 1 2( , , ..., )i i i idX x x x=  represents a 

possible solution point in d-dimensional problem space. In this paper, the particle can 

be treated as fuzzy density ig  corresponding to the ith data set. In every iteration, the 

fitness value will be calculated when the particle flies to a new position. The iterative 
process will continue until the program finds the optimal solution or meets the end 
condition. We use the method in [16] as the update mode of the particle’s flying  
velocity and position. The details about Particle Swarm Algorithm can be seen in [15] 
and [16]. 
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Most fitness functions used to determine the fuzzy density are based on the differ-
ence of ideal integral value and the actual of integral value. But this kind of fitness 
function is not suitable for the problem containing the extremely unbalance between 
positive and negative samples (In our experiment, all of the classes have more nega-
tive samples than positive samples). When the sum of absolute differences is used as 
the fitness function, the particles will be extremely close to zero. Even in some classes 
the fuzzy density are all of zero, such as classes “30”, “32” and “42”. So in this paper, 
we use the Area Under ROC Curve (AUC) as the fitness function. Receiver Operating 
Characteristic (ROC) Curve is a graphical plot of the true positive rate vs. false 
positive rate [17]. The AUC is equal to the probability that a classifier will rank a 
randomly chosen positive instance higher than a randomly chosen negative one [18]. 
The range of AUC is 0.5 to 1. The more AUC gets close to 1, the better classification 
is. The fitness function AUC can be calculated as follow. 

1

( 1)
RANK( )

2fitness=AUC

N

i
i

N N
R

N M

=

× +
−∑

=
×

 .                                   (8) 

Where N is the number of positive samples, M is the number of negative samples. 

RANK( )iR  is the order number of Sample i after all the samples are ranked in the 

increasing order of probability. 
Moreover, because the outputs of SVM and the results of data fusion are probabil-

istic, the threshold t is needed to determine the samples’ class. We calculate F-
measure by varying the value of t between 0 and 1 and the value of t which makes the 
biggest F-measure will be the value of threshold. The F-measure can be obtained by 
the follow equation. 

 
2

F-measure
2

TP

TP FP FN

×
=

× + +
 .                                     (9) 

Where TP, FP and FN are the number of true positive, false positive and false nega-
tive, respectively. 

3   Experimental Results and Analysis 

3.1   Data Sets and Functional Classes of Protein 

The above approach is applied to predict the protein function of yeast and we chose 
five different types of data. Their main characteristics used in the experiments are 
summarized in Table 1. 

For the data of Domain, we use the Pfam (protein families version 24.0) [19] offi-
cial software toolkit (pfam_scan.pl) to search against the HMM (Hidden Markov 
Models) library of Pfam-A.hmm and Pfam-B.hmm. For each sample the presence or 
absence of the protein domains is stored as a binary vector. 
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Table 1. Data sets used in the experiments 

Data set Number of samples Number of features 
Domain 5030 4046 
HMM-logE 5885 3260 
Blast 5885 6101 
STRING 4683 6100 
Exp 6108 244 

HMM-logE data are obtained by using the software toolkit HMMER [20] to calcu-
late the log E-values of each sample against Pfam-A.hmm. 

Blast data are obtained through GABLAM (Global Alignment from BLAST Local 
AlignMent) [21], which returns a set of pair wise sequence similarity statistics using 
the results from a basic BLAST search [22]. Each sample sequence is aligned with all 
other sequences using GABLAM. Then the negative log E-value is calculated as the 
score. 

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins version 8.3) 
[23] data are downloaded from STRING database. STRING is a database of known 
and predicted protein interactions of very high quality. For each protein pair, it has an 
interactive combined score S that ranges from 0 to 1. We extract the yeast data from 
the database and let one of the interactive protein pair as sample, the other one as the 
feature. Then we can get the STRING data used in our experiments. 

We merge the gene expression microarray data from [24] and [25] to obtain the 
gene expression (Exp) data set, and select the root classes of FunCat with at least 200 
positive samples (The “99 UNCLASSIFIED PROTEINS” class does not include.). 
We thus have 15 functional classes in our analysis. The details about the classes and 
the positive samples are seen in [26]. 

3.2   Experimental Setup and Results 

The base learner of our approach is the SVM classifier. We use LIBSVM [27] soft-
ware toolkit in our paper and modify the source code of LIBSVM, so that it can meet 
the requirements of our experiments. 

First of all, we scale all the data to [0, 1] by svm-scale program in LIBSVM and 
find out that the performance of the classification can be improved and the computing 
time can be also reduced. The parameters of SVM are optimized by the modificatory 
grid.py in LIBSVM. Then we applied 10-fold cross-validation method to each data 
set. Except for the Gaussian kernel on Exp data, all others used a linear kernel. 

We use particle swarm optimization toolbox [28] in MATLAB developed by Prof 
Brian Birge to optimize the fuzzy density. The goal of PSO is to maximize the value 
of the fitness function until the value is convergent. We set the number of particle 
swarm is 24, the number of the particle dimension is 5, the flying range of particle is 
[0, 1] and the maximum speed of the particle is 0.2. The other parameters are the 
default values of Brian Birge’s program. The 10-fold cross-validation method is also 
used in the two data fusion methods. 

Fig. 1 shows that both of the two Choquet integral fusion methods based on the 
typical Sugeno λ-measure and our improved Sugeno λ-measure can significantly im-
prove the performance of the prediction. We can also find out that the performance of 
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the prediction based on STRING data is very good (Thirteen of the fifteen classes’ 
AUC values ranked first in the five independent predictions.), but the performance of 
the prediction based on the Exp data is very poor (All of the fifteen classes’ AUC 
values ranked last). On one hand this can prove the high quality of the STING data-
base; on the other hand this can be a proof that the high-throughput data Exp has very 
high degree of noise. 

    

Fig. 1. Scatter-plot of AUCs of the fusion methods versus SVM predictions of five different 
data sets. The figure on the left is the comparison of the Choquet integral based on the tradi-
tional λ-measure and the five different SVM predictions with each data set. The right one is the 
comparison of the Choquet integral based on our improved λ-measure and the five different 
SVM predictions with each data set. The different colors mean different data sets. 

 

Fig. 2. Scatter-plot of AUCs after versus before our improved Sugeno λ-measure. Points above 
the diagonal correspond to accuracy improvements by our method. The points represent the 
AUC of the classes. 



584 Y. Lu et al. 

It can be seen in Fig. 2 that our improved approach increases AUC for 14 of the 15 
classes, comparing with the method based on the traditional Sugeno λ-measure. Just 
only the AUC of class “32” is less than the latter. It can be seen that the performance 
of our improved approach is better from the overall perspective. 

We also calculate the variances of the fuzzy density determined by the PSO in the 
two fusion methods’ 10-fold cross-validation (shown in Table 2). With the limitation 
of the space, we just list three classes. We find our improved method can achieve 
more stable values of fuzzy density using an improved fuzzy measure. This maybe 
one reason our improved method can get a better result. 

Table 2. The variances of the fuzzy density determined by the PSO in the two fusion methods’ 
10-fold cross-validation 

method class  HMM-logE Blast STRING Exp Domain 
01 0.001651 0.00513 0.002102 0.005376 0.006567 
02 0.009529 0.03821 0.069212 0.003016 0.011522 

Traditional 
Choquet 

10 0.000653 0.00193 0.001528 0.001796 0.001526 
01 0.000133 9.13e-05 2.4e-05 0.000108 4.69e-05 
02 0.000201 0.00163 0.018385 0.008513 0.000256 

Improved 
Choquet 

10 0.000371 0.00085 0.001376 0.000269 0.000571 

4   Conclusions 

In this paper, we use Choquet integral methods to integrate five different data sets. 
The results of our experiment show that the fusion method can significantly improve 
the performance of the prediction. 

The key of the Choquet integral fusion method is the determination of the fuzzy 
density. We use PSO to resolve this problem. The typical fitness function may make 
the particles extremely close to zero, so AUC as the fitness function can avoid the 
problem and achieve a better result. We also find that scaling the data can get a better 
result and reduce the computing time when the SVM is used. How to calculate the 
fuzzy measure in a more feasible way in predicting the protein functions will be our 
further research. 

Acknowledgements. This work was supported by the Science and Technology De-
velopment Plan Project of Jilin Province (No. 20070703, No. 20090501). 
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Abstract. K-means is one of the most commonly used clustering methods for an-
alyzing gene expression data, where it is sensitive to the choice of initial
clustering centroids and tends to be trapped in local optima. To overcome these
problems, a memetic K-means (MKMA) algorithm, which is a hybridization of
particle swarm optimizer (PSO) based memetic algorithm (MA) and K-means,
is proposed in this paper. In particular, the PSO based MA is used to minimize
the within-cluster sum of squares and the K-means is used to iteratively fine-tune
the locations of the centers. The experimental results on two gene expression
datasets indicate that MKMA is capable of obtaining more compact clusters than
K-means, Fuzzy K-means, and the other PSO based K-means namely PK-means.
MKMA is also demonstrated to attain faster convergence rate and more robust-
ness against the random choice of initial centroids.

1 Introduction

DNA microarray is a high-throughput technology that gives biologists a large amount
of gene expression data for studying the cellular gene expression patterns [1]. Gene
expression data is normally arranged as a matrix E = [eij ] of size G × C, where
G is the number of genes and C denotes the number of experimental conditions. An
element eij represents the corresponding expression level of the i-th gene at the j-th
experimental condition. One of the main tasks of microarray data analysis is to identify
the co-expressed genes that are likely to have similar biological functions or involve in
the same biological process. Clustering techniques are commonly used to fulfil the task
by grouping the co-expressed genes into the same cluster.

There have existed numerous clustering methods for the analysis of the gene expres-
sion data. Hierarchical clustering [2], one of the earliest cluster methods applied on gene
expression data, organizes gene in a hierarchical tree using either bottom-up or top-down
approach. In bottom-up approach, hierarchical clustering successively merges pairs of
clusters together into a single cluster. On the contrary, the top-down approach starts from
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the whole set as a single cluster and successively splits it into small clusters. Hierarchical
clustering has achieved promising results on gene clustering yet its hierarchy is greatly
affected by minor perturbations of the input data. Self-organizing map (SOM) [3], a kind
of artificial neural network, is another widely used clustering algorithm for gene cluster-
ing. SOM is a unsupervised learning method based on a mapping from high-dimensional
data to a two-dimensional representation space. It is robust against minor changes on the
input data. However, it has trouble with identifying clear-cut clusters. K-means [4], one
of the simplest partition clustering methods, categories genes into k groups based on
inter-gene similarity/distance. The clustering proceeds to minimize the sum of squared
distance between genes and the corresponding cluster centroid. K-means tends to ob-
tain better performance and robustness than hierarchical clustering and SOM on gene
expression data [5]. However, the performance of K-means is sensitive to the choice of
initial clustering centroids and it could easily result in local minima.

In this paper, we propose a particle swarm optimizer (PSO) [9] based memetic
algorithm (MA) [10] to solve the optimization problem involved in K-means, i.e., the
minimization of the sum of squared distances. The new algorithms is named as memetic
K-means algorithm (MKMA). MA is a newly proposed synergy of evolutionary
population-based global search approaches with local refinement heuristic. It always
converges to high-quality solutions more efficiently than its conventional counterpart
thanks to the advantage of using both global search and local search. MKMA evolves
a particle swarm of candidate clustering solutions rather than concerning only one so-
lution in global search to reduce the dependency of the performance on the initial cen-
troids and avoid being trapped in local optimal. A local search is applied on each parti-
cle to refine the solution and accelerate convergence in local region. The experimental
results on two gene expression datasets indicate that MKMA is capable of handling
high-dimensional multi-modal optimization problems efficiently.

The remainder of this paper is organized as follows. Section 2 describes the details of
the proposed MKMA. Section 3 presents the experimental design and Section 4 shows
the experimental results of the new algorithm on two gene expressing datasets. Finally,
Section 5 concludes this study with a short discussion.

2 Methods

MA is a framework of combining global search and local search to take the advantage
of both. The main inspiration of MA is Dawkins’ notion of “meme”, which defines
a unit of cultural evolution and represents the evolution law of human beings. In this
study, a MA based K-means clustering method is proposed to accelerate the search
convergence of the cluster centroids and increase the possibility of identifying global
optima. The procedure of MKMA is outlined in Algorithm 1.

2.1 Particle Encoding and Fitness Calculation

In MKMA, each particle is designed to encode candidate positions of K cluster cen-
troids. Each particle is presented as a vector of K × L elements, where L denotes
the dimension of a gene. A shortened K-means is performed using the initial centroid
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Algorithm 1. The procedure of MKMA
1. Initialize the position and velocity of each particle in the swarm;
2. Update the velocity and position according to Eq.(2);
3. Evaluate the fitness of the particles;
4. Identify the leader and populace particles;
5. Perform local search on the leader particles;
6. Update on the populace particles using three updating strategies;
7. Evaluate the fitness of the particles;
8. Go to step 2 if the stopping criterion is not satisfied.

positions encoded in each particle. The centroids are refined with only three updating
iterations as follows:

Algorithm 2. A shortened K-means
1. Assign each gene to the closest centroid encoded in the particle;
2. Update the centroid by calculating the new means of the genes in the cluster;
3. Repeat steps 1 and 2 for three times.

More iterations could be applied, whereas our empirical studies show that the
performance of MKMA does not improve too much with more than three iterations.
Therefore, the number of the iterations is set to three in this study to avoid wasting
computational efforts. Once the shortened K-means outlined in Algorithm 2 is finished,
the fitness of the renewed particle can be calculated based on the mean square error
(MSE):

D̃ =
1
M

M∑
i=1

[dmin(xi)]2 (1)

where dmin(xi) denotes the Euclidean distance between genes xi to its closest centroid
and M is the total number of genes.

2.2 Global Search

The global search in MKMA is conducted with the comprehensive learning particle
swarm optimizer (CLPSO) [11]. Using a novel learning strategy whereby all other par-
ticles’ historical best information is used to update a particle’s velocity, CLPSO main-
tains the diversity of the swarm to improve the exploration efficiency of global search.
The velocity update equations of CLPSO are defined as:

V k+1
i = ωV k

i + crk(pbest(fi )k − P k
i )

P k+1
i = P k

i + V k+1
i

(2)

where V k+1
i and P k+1

i denote the i-th particle’s velocity and position in iteration k+1,
respectively. Variable ω is an additional inertia weight for balancing the exploration and
exploitation on the search space, c is a constant learning factor, r is a random number
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in [0,1], and pbest(fi) represents the the best previous position of particle fi where
fd

i is set to i in a learning probability of Pc, otherwise, two particles are randomly
selected from the swarm using tournament selection and fi is assigned the one with
better fitness.

2.3 Local Search

In each iteration of CLPSO, the particle swarm is partitioned into a leader and a popu-
lace group based on fitness value.

One third of the best particles in the swarm are considered as leader particles. The
remainder particles in the swarm form the populace group. The leader particles are as-
sumed to be closer to the optimal solutions and they are worth spending local refinement
to reach the optima. For the conventional PSO [9] has strong ability of exploitation in
local region, the local search of MKMA fine-tunes the leader particles based on the
updating rules of PSO:

V k+1
i = ωV k

i + c1r
k
1 (pbestki − P k

i ) + c2r
k
2 (gbestk − P k

i )

P k+1
i = P k

i + V k+1
i

(3)

where c1 and c2 are the learning factors, r1 and r2 are the random values [0, 1], pbesti
represents the previous best position of particle i, and gbest denotes the best position
of all particles.

For the populace particles, they each adopts one of the following three strategies
based on the performance improvement of gbest.

– Approaching strategy: In this strategy, particle is moved toward gbest based on
the updating equation:

P k+1
i = P k

i + r(gbestk − P k
i ) (4)

– Random strategy: In this strategy, particle updates its position randomly to in-
crease the diversity of swarm. The updating equation is defined as follows:

P k+1
i = rand(Pmin, Pmax) (5)

where [Pmin, Pmax] is the range of particle’s position.
– Dispersal strategy: By performing this strategy, the particles push away gbest

according to the equation:

P k+1
i = P k

i − r(gbestk − P k
i ) (6)

Let the performance improvement of gbest be δ:

δ =
(lastvalue − fitness(gbest))

lastvalue
(7)

where lastvalue denotes the previous fitness value of gbest. The fitness value fitness
(gbest) is considered as decreasing fast if δ ≥ 0.01. In that case gbest is probably
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located in a promising region that is worth more exploration, hence populace particles
will adopt approaching strategy and move toward gbest. If δ < 0.001, fitness(gbest)
is stagnant, which suggests gbest could be trapped in a local optima, therefore the
dispersal strategy is applied to keep the populace particles away from the local optima
and search a larger region in the solution space. Otherwise, when δ ∈ [0.001, 0.01), the
random strategy is used to increase the diversity of the swarm.

3 Experimental Design

To evaluate the performance of MKMA, comparison study to other K-means based
algorithms including the conventional K-means, Fuzzy K-Means (FKM) [6] and PK-
means [7] is conducted on two gene expression datasets.

FKM extends K-means by assigning each point to more than one clusters in terms
of the degree of membership. FKM is less sensitive to the initial partitions but it is
much more time-consuming than K-means. PK-means is a newly proposed PSO based
K-means for gene clustering. It bridges particle-pair optimizer [8] and K-means to out-
perform K-means and FKM in terms of convergence rate and computational time.

Two datasets are used to evaluate the performance of the clustering algorithms:

– Yeast cell-cycle data [12] consists of 6179 genes and 77 dimensions. Genes missing
more than 20% were deleted and 5571 genes are obtained after processing and
filtering. For the genes retained for analysis, missing values were imputed by KNN
algorithm [13].

– Sporulation data [14] contains 6120 genes with 7 dimensions. It assays nearly every
yeast gene changes in gene expression during sporulation. After processing and
filtering procedure, there are 6039 genes retained for analysis.

The number of clusters K for all clustering algorithms is set to 256 on each dataset.
The parameters of PK-means are set according to [7]. For K-means, FKM, and MKMA
the iterations are terminated if the following condition holds.

(D̃(k−1) − D̃(k))
D̃(k)

≤ ε (8)

where D̃k is the mean square error (defined in Eq. 1) in iteration k. The key parameter
values used in K-means, FKM, PK-means and MKMA are listed in Table 1. The other
parameters of CLPSO are set according to [11].

4 Results

4.1 Mean Square Error, Homogeneity and Separation

In addition to MSE D̃ , the other two indices, homogeneity(D1) and separation(D2),
are also introduced for measuring the clustering performance.

Homogeneity calculates the average distance between each gene expression profile
and its closest controid as follows:

D1 =
1
M

∑
i

d(xi, c(xi)) (9)
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Table 1. Parameter values

Algorithms ε λ ω c c1 c2

K-means 0.001 – – – – –

FKM 0.001 10 – – – –

PK-means – – 0.1 – 0.3 0.5

MKMA 0.001 – 0.1 0.3 0.3 0.5

where xi is the i-th gene, c(xi) is the i-th center of the cluster, and d is the Euclidean
distance function. Separation is calculated as the weighted average distance between
cluster centers:

D2 =
1∑

i	=j NCiNCj

∑
i	=j

NCiNCj d(Ci, Cj) (10)

where Ci and Cj represent the centers of the i-th and j-th clusters, respectively. NCi

and NCj denote the number of genes in the i-th and j-th clusters, respectively.
D1 reflects the compactness of the clusters while D2 reflects the overall distance

between clusters. Decreasing D1 and D̃ or increasing D2 suggests an improvement in
the clustering results.

Table 2. MSE, homogeneity and separation

Dataset Algorithm D̃ D1 D2

K-means 5.73 2.30 3.16
Yeast cell-cycle FKM 6.58 2.44 2.77

PK-means 5.52 2.29 3.20
MKMA 5.48 2.28 3.22

K-means 23.38 4.59 7.49
Lymphoma FKM 24.39 4.66 7.11

PK-means 21.44 4.47 7.62
MKMA 21.21 4.45 7.66

The average MSE, homogeneity and separation values over 10 random runs of the
four comparing clustering algorithms are summarized in Table 2. It is shown that MKMA
attains competitive or better performance than K-means, FKM, and PK-means in terms
of inter- and intra-cluster distance.

4.2 Sensitivity to the Choice of Initial Centroids

To evaluate the sensitive of the final clustering performance to the choice of initial
centroids. The four algorithms are randomly run 10 times with different initial centroids.
The results shown in Fig.1 indicate that the performance of both PK-means and MKMA
is less sensitive to different selections of initial clustering centroids than K-means and
FKM. MKMA is observed to obtain smaller MSN than other three clustering methods.
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(a) MSE plots on yeast cell-cycle data (b) MSE plots on lymphoma data

Fig. 1. MSE plots by 10 randomly runs on (a) yeast cell-cycle data (b) lymphoma data

4.3 Convergence Rate

The convergence trace of all algorithms is depicted in Fig.2, where MSE value is plotted
against the number of iterations on updating the centroid positions. It can be seen that
MKMA converges faster to better MSE values than the other three clustering algorithms
on the two datasets.
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Fig. 2. MSE plots by iterations on (a) yeast cell-cycle data (b) lymphoma data

5 Conclusion and Discussion

This paper presented a novel memetic K-means algorithm (MKMA) for gene expression
data. MKMA applies particle swarm optimized based memetic algorithm to solve the
optimization problem of K-means. The experimental results on two gene expression
datasets suggest that MKMA consistently attain competitive or better performance than
K-means, FKM, and PK-means. MKMA is demonstrated to be less sensitive to the
initial clustering centroids, and it has fast convergence rate.
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Abstract. This paper presents the implementation of a Hybrid Particle Swarm 
Optimization with Biased Mutation (HPSOBM) algorithm to solve the load 
flow computation in electrical power systems. The load flow study obtains the 
system status in the steady-state and it is widely used in the power system op-
eration, planning and control. The proposed methodology is applied in a differ-
ent computational model, which is based on the minimization of the power 
mismatches in the system buses. This new model searches for a greater conver-
gence, and also a larger application in comparison with traditional numerical 
methods. In order to illustrate the proposed algorithm some simulations were 
conducted using the IEEE 14 bus system.  

Keywords: Particle Swarm Optimization, Load Flow, Evolutionary  
Computation, Artificial Intelligence, Electrical Power Systems. 

1   Introduction 

Modern operation centers have managed electrical power systems remotely and 
automatically, accomplishing functions such as automatic generation control, state 
estimation, topology analysis, etc [1]. The load flow studies are required by most of 
these functions. Load flow is an electrical engineering known problem which deter-
mines the power system operation point in the steady-state [2]. The load flow – or 
power flow – algorithm calculates the buses voltages and the amount of power in the 
system generation buses as well as the power flow in the system branches. A set of 
non-linear equations is applied to model this kind of problem, which is commonly 
solved using numerical methods [3]. Among the traditional numerical methods used 
for load flow computation the Newton-Raphson approach has a better and a faster 
convergence. However, such method has some difficulties because of the complex 
Jacobian matrix calculation and inversion and also the dependence on good initial 
estimated values to guarantee the convergence. Moreover, some present changes in 
the power system characteristics, such as an occurrence of a higher R/X ratio, may 
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complicate the load flow convergence [6]. Thus these difficulties have been inducing 
the researches to concentrate efforts in order to develop alternative methods to solve 
the load flow equations. These new methods look for an easier and a more efficient 
implementation and less computational time, as well as overcoming some possible 
limitations and convergence problems. Many of these new methods have applied arti-
ficial intelligence techniques. 

Many researchers in the area of artificial intelligence have been putting their atten-
tions in the computational intelligence algorithms, and Particle Swarm Optimization 
(PSO) is pointed out among these techniques. PSO algorithms are applied in function 
optimization and they are based on the behavior of birds’ flocks searching for food 
[10]. PSO has been applied in several themes related to electrical power systems and 
they have provided good convergence properties, ease of implementation and good 
computational time [5]. In [7] the author approaches the PSO to the load flow calcula-
tion in shipboard systems. In [5,8,14] the authors propose the PSO application to the 
optimal power flow (OPF) problem. In [11] the author proposes a PSO methodology 
applied to power system restoration.  In [12] it is presented the PSO applied to voltage 
and reactive power control. Besides PSO application, many researches have been im-
plementing hybrid models, joining PSO with other techniques, for instance the Ge-
netic Algorithm (GA) operators. In [4] it is proposed a Hybrid PSO with Mutation 
applied to loss power minimization, and in [6] it is presented a chaotic PSO algorithm 
with local search to the load flow calculation, overcoming some limitations found in 
the traditional methods.  

The paper proposes the application of a Hybrid Particle Swarm Optimization with 
Biased Mutation (HPSOBM) algorithm to the load flow computation. This methodol-
ogy is based on the minimization of the apparent power mismatches in the system 
buses. The involved variables are continuous and must remain within the specified 
boundaries in the system input data. Experiments for the proposed methodology were 
accomplished using the IEEE 14-bus system using the software implemented. 

2   Power System Load Flow Analysis  

The power flow study provides the system status in the steady-state; it consists in the 
determination of the possible power system operational states through the previous 
knowledge of some variables of the system buses. This study aims to obtain the sys-
tem buses voltages in order to determine later the power adjustments in the generation 
buses and the power flow in the system branches [3]. After the system steady-state is 
calculated, it is possible to obtain the amount of power generation necessary to supply 
the power demand plus the power losses in the system branches. Besides, the voltage 
levels must remain within the boundaries and overloaded operations added to those in 
the stability limit must be prevented [3].  The general form of the Static Load Flow 
Equations (SLFE) is given by (1):  

0*...** 2211 =−−−−− ininiiiiii VVyVVyVVyjQP  . 
  (1) 
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where: i = 1,..., n, bus number; Pi = active power generated or injected in the bus i; Qi 
= reactive power generated or injected in the bus i; |Vi| = voltage module of the bus i; 
δi = voltage angle of the bus i; Vi = |Vi|e

jδi, i. e., the voltage in the polar form; Vi* = 
|Vi|e

-jδi, i. e., the conjugate voltage; yik = element of the nodal admittance matrix Ybus. 
The nodal admittance matrix can be computed as follows: if i = k, yik is the sum of 

the admittances that come out from the bus i; else yik is the admittance between the 
buses i and k, multiplied by -1. 

The power system buses are classified according to the variables previously known 
and to the variables that will be calculated later through the SLFE. Type 1 Bus or PQ 
Bus: Pi and Qi are specified and |Vi| and δi are calculated; Type 2 Bus or PV Bus: Pi 
and |Vi| are specified and Qi and δi are calculated; Type 3 Bus or Vδ Bus (“Slack 
Bus”): |Vi| and δi are specified and Pi and Qi are calculated. 

A complex and non-linear equations system is represented by (1), so its solution is 
obtained through approximations using numeric methods. These methods make the 
assumption of the initial estimate values to the bus voltages and in the application of 
the SLFE in successive iterations, looking for better approximations. The required 
accuracy determines the stop criterion.  

3   Hybrid Particle Swarm Optimization with Biased Mutation 
Applied to Load Flow Computation 

Swarm Intelligence is a kind of Artificial Intelligence based on social behavior, i. e., 
the behavior of the animals living in groups and having some ability to interact among 
each other as well as with the environment in which they are inserted [10,15]. PSO is 
an optimization algorithm developed through the simulation of simplified social mod-
els as bird flocks flying randomly in search for food [10,15].  

PSO is applied to function optimization and it uses a population of individuals, i. 
e., a set of particles, where each particle is a candidate to the solution of the problem. 
These particles are distributed in the search space, each one having a determined posi-
tion and velocity at each time instant. Moreover, such particles have knowledge about 
their performances and also about their neighbors’ performances. The best individual 
position of a particle is called personal best, and the best position of all the particles is 
called global best. The rule function is the evaluation function which performs the 
interaction between the particles and the environment in which they are inserted, and 
it is related to the problem modeling [10,15].   

The PSO algorithm analyzes, at each time step, the displacement of each particle in 
search for the best position and updating its velocity and position through defined 
equations. This process is iterative and it proceeds until all the particles converge to 
the achieved global best, which is adopted as the problem solution. 

3.1   Mutation Operation in Genetic Algorithms 

Genetic Algorithm (GA) is a search heuristic iterative procedure that uses a popula-
tion of individuals, in which each one represents a possible solution to the treated 
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problem [16,17]. It is based on Darwin’s natural selection, inspired by the evolution 
process [18]. The GA accumulated information is applied to decrease the search space 
and create new good solutions to the problem domain [19].  

The GA mutation operation is used in order to cover better the state space and also 
to prevent the GA from converging to a local best. The mutation is performed by mu-
tating the individual gene value in a random way with a determined probability, i. e., 
some individuals of the new population may have one of their genes – or nature – 
randomly modified [19].  

3.2   Definition of the Proposed Algorithm 

The presented HPSOBM (Hybrid Particle Swarm Optimization with Biased Mutation) 
algorithm is based on the minimization of the power mismatches in the system buses. 
The methodology consists in the adoption of initial estimated values for the particles 
positions, which are defined as the buses voltages, and updating them at each process’ 
iteration using the HPSOBM equations. Once particles are defined as the buses volt-
ages, they assume continuing values within the boundaries specified in the input data. 
The rule function parameters are defined as grades and they must be minimized in the 
HPSOBM algorithm. The grades are computed as the arithmetic mean of the buses 
apparent power. Each particle has a personal grade, i. e., the value obtained by its 
personal best. The global grade is the grade associated to the global best. The current 
grade is the grade obtained by a particle at the current iteration of the process. 

The algorithm begins generating the initial estimate value to the position of the 
particles, velocities, personal best values and global best values. The voltage angle 
begins with a random initial value within the specified boundary. In the case of a PQ 
bus, the voltage module begins with a random value within the specified boundary; 
for a PV bus, the voltage module receives the related value specified in the input data. 
The initial velocities are null. The personal best parameters start with the position of 
the particle values and the global best parameter starts with an arbitrary particle value. 
The grades begin with high values in order to be minimized later. Thus the iterations 
are initialized. The procedure explained as follows is executed for each particle of the 
population, which was fixed in 15 particles. Firstly the buses voltages start with the 
position of the particle. Thus the reactive power of the PV buses is computed using 
equation (1), then the active and reactive power of the Vδ bus are also computed us-
ing (1). The power flow in the system branches is calculated using the equation (2). 

i,shiiijjiiijijij Y*VV*Y*)V*V(VjQPS +−=+=  . (2) 

where: Sij = complex apparent power between the buses i and j; Pij = active power 
between the buses i and j; Qij = reactive power between the buses i and j; Vi = bus i 
voltage; Vj = bus j voltage; Vi* = |Vi|e

-jδi, i. e., the conjugate voltage; Vj* = |Vj|e
-jδj, i. 

e., the conjugate voltage; Yij = admittance between the buses i and j; Ysh,i = shunt  
admittance of the bus i. 
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The active and reactive power mismatches of each bus are calculated as the sum of 
the injected power in the approached bus and the apparent power mismatches  
arithmetic mean is obtained. It is also obtained the particle position which has the 
worst – the biggest – power mismatch until now. This particle index is kept and it is 
used in the mutation operation. The personal best updating verification is made. After 
all the particles pass through the described routine, it is made the global best updating  
verification. The velocities as well as the position of the particles are updated accord-
ing to the equations (3), (4) and (5); which are, respectively: velocities equation, posi-
tions equation and inertia weight equation, applied to each particle [4,9-11].  

))()(.(.))()(.(.)(.)1( 2211 txtgrctxtprctvwtv −+−+=+  . 
(3) 
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−=  . 
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where: i = particle index; t = iterations counter; ni = total number of iterations; v(t) = 
particle i velocity at iteration t; x(t) = particle i position at iteration t; r1, r2  = random 
numbers between 0 and 1; c1, c2 = acceleration coefficients, both set to a value of 2.0; 
p(t) = particle i personal best found at iteration t; g(t) = global best found at iteration t; 
w = velocity equation’s inertia weight, wmax = inertia weight maximum value, set to a 
value of 0.7; wmin = inertia weight minimum value, set to a value of 0.2. 

Then, the mutation operation is applied. This operation aims to coverage better the 
problem domain and to obtain a new particle, avoiding a premature convergence to a 
local best point. The mutation is applied to the worst particle of the current iteration, i. 
e., the particle which has the bigger power mismatch value, and because of this phi-
losophy it is called Biased Mutation. The procedure consists in adding a random value 
to the particle voltage module and angle, according to (6). 

])..[(1.0)()( minminmax xrxxkxkmx +−+=  . 
(6) 

where: k = mutated particle index; x(k) = particle position before the mutation opera-
tion; mx(k) = particle position after the mutation operation; r = random number  
between 0 and 1; xmax = maximum value of the position, related to the specified 
boundary in the input data; xmin = minimum value of the position, related to the  
specified boundary in the input data. 

Finally, in the end of the iterations, it is obtained the final global best, which is 
adopted as the load flow solution. It is important to notice that the HPSOBM method-
ology can achieve several acceptable results for the same load flow study, depending 
on the simulation. It occurs because each particle has a random initial estimate value 
and the HPSOBM equations also make use of random values, so several solutions can  
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be achieved for the same initial estimative. However, numeric traditional methods 
start with the same initial estimative values and achieve the same final results,  
regardless of the program simulation. 

4   Numerical Results 

The results obtained through the proposed HPSOBM algorithm are presented in this 
section. The IEEE 14 bus test system, Fig. 1, is used for this purpose. The transform-
ers taps were kept in the rated positions. The implemented version of this algorithm 
obtains the power flow solution based on the minimization of the power mismatches 
in the system buses. Tables 1 and 2 present the power flow results for the test system, 
obtained through a conventional program applying the Newton-Raphson method. 

Two different and arbitrary simulations were accomplished using the proposed 
methodology, simulation 1 and simulation 2. Tables 3 and 4 present the results related 
to the simulation 1 and Tables 5 and 6 are related to the simulation 2. Each simulation 
has a different solution for the power flow due to the HPSOBM algorithm nature. The 
solutions are valid because the values are still within the permitted limits. 

 

Fig. 1. IEEE 14-bus test system, with all system buses, branches and elements 

The odd-numbered tables contain the results related to the system buses. The three 
last columns of the table represent the active, reactive and apparent power mis-
matches, respectively. The even-numbered tables represent the results related to the 
system branches. These tables show the power flow in the system lines computed for 
the voltage solutions found in each simulation.  
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Table 1. Simulation using Newton-Raphson method: buses parameters results. k = bus index, 
Vk = bus voltage module k, δk = bus voltage angle k, Pk = active power generated at bus k, Qk = 
reactive power generated at bus k, ΔPk = active power mismatch at bus k, ΔQk = reactive power 
mismatch at bus k, ΔSk = apparent power mismatch at bus k.  

k Vk δk Pk Qk ΔPk ΔQk ΔSk 

1 1,060000 0,000000 2,304174 -0,222584 -5,551115E-16 1,856154E-15 1,937384E-15 

2 1,045000 -0,085521 0,183000 0,169491 -2,771615E-02 -3,025358E-15 2,771615E-02 

3 1,010000 -0,219911 -0,942000 0,009071 -4,235448E-03 1,000935E-15 4,235448E-03 

4 1,026000 -0,181514 -0,478000 0,039000 6,141135E-02 -2,113986E-03 6,144773E-02 

5 1,033000 -0,155334 -0,076000 -0,016000 -4,482804E-02 -6,610994E-03 4,531290E-02 

6 1,070000 -0,260054 -0,112000 0,422322 1,697325E-02 4,607426E-15 1,697325E-02 

7 1,045000 -0,233874 0,000000 0,000000 -4,328546E-03 -3,045509E-04 4,339247E-03 

8 1,090000 -0,233874 0,000000 0,278456 2,954397E-17 1,887379E-15 1,887610E-15 

9 1,028000 -0,261799 -0,295000 -0,166000 -2,019721E-02 5,011505E-03 2,080968E-02 

10 1,028000 -0,267035 -0,090000 -0,058000 8,420636E-03 -6,329197E-03 1,053403E-02 

11 1,045000 -0,265290 -0,035000 -0,018000 -1,657940E-03 2,750084E-03 3,211188E-03 

12 1,053000 -0,274017 -0,061000 -0,016000 -2,235718E-03 -1,006758E-04 2,237984E-03 

13 1,046000 -0,274017 -0,135000 -0,058000 -7,457740E-03 9,407115E-03 1,200465E-02 

14 1,018000 -0,286234 -0,149000 -0,050000 4,933314E-03 -5,509430E-03 7,395364E-03 

Table 2. Simulation using Newton-Raphson method: power flow in the system lines. Pij (ji) = 
active power in the line composed by the buses i-j (j-i), Qij (ji) = reactive power in the line com-
posed by the buses i-j (j-i). 

i j Pij Qij Pji Qji 

1 2 1,543861 -0,198190 -1,502260 0,266711 

1 5 0,760313 -0,024394 -0,732515 0,085256 

2 3 0,728546 0,035980 -0,705552 0,014638 

2 4 0,567517 -0,064999 -0,550264 0,080890 

2 5 0,416914 -0,068200 -0,407722 0,058911 

3 4 -0,232213 -0,005567 0,235755 0,001343 

4 5 -0,645319 0,042655 0,650624 -0,025924 

4 7 0,268329 -0,086193 -0,268329 0,101972 

4 9 0,152088 0,002419 -0,152088 0,009805 

5 6 0,458441 -0,127633 -0,458441 0,181117 

6 11 0,076296 0,098133 -0,075014 -0,095449 

6 12 0,077887 0,034114 -0,077111 -0,032499 

6 13 0,175285 0,108958 -0,172824 -0,104112 

7 8 0,000000 -0,266960 0,000000 0,278456 

7 9 0,272658 0,165293 -0,272658 -0,155051 

9 10 0,057411 -0,021441 -0,057298 0,021741 

9 14 0,092532 -0,004325 -0,091499 0,006520 

10 11 -0,041123 -0,073412 0,041672 0,074699 

12 13 0,018347 0,016599 -0,018225 -0,016489 

13 14 0,063506 0,053193 -0,062434 -0,051011 
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Table 3. Simulation 1 using the proposed HPSOBM algorithm: buses parameters results 

k Vk δk Pk Qk ΔPk ΔQk ΔSk 

1 1.060000 0.000000 2.325316 -0.225075 -5.551115E-16 1.162265E-15 1.288025E-15 

2 1.045000 -0.086509 0.183000 0.180537 -5.203014E-09 2.414735E-15 5.203014E-09 

3 1.010000 -0.220486 -0.942000 0.010455 -3.729702E-09 1.306247E-15 3.729702E-09 

4 1.026096 -0.180923 -0.478000 0.039000 -3.670963E-08 -4.293257E-08 5.648719E-08 

5 1.032600 -0.156152 -0.076000 -0.016000 -1.587668E-06 -2.858496E-06 3.269815E-06 

6 1.070000 -0.259695 -0.112000 0.416080 8.960580E-09 -4.996004E-16 8.960580E-09 

7 1.044823 -0.234759 0.000000 0.000000 3.180789E-08 -1.617875E-07 1.648847E-07 

8 1.090000 -0.234759 0.000000 0.279552 8.644264E-10 2.220446E-15 8.644264E-10 

9 1.027653 -0.263027 -0.295000 -0.166000 2.065322E-07 -3.049806E-06 3.056791E-06 

10 1.027578 -0.267366 -0.090000 -0.058000 2.813536E-05 -2.468896E-04 2.484876E-04 

11 1.044961 -0.265533 -0.035000 -0.018000 1.956981E-08 -3.222618E-08 3.770284E-08 

12 1.053019 -0.274361 -0.061000 -0.016000 5.053687E-08 -3.887773E-08 6.376090E-08 

13 1.046237 -0.274686 -0.135000 -0.058000 3.074048E-08 -6.885231E-08 7.540304E-08 

14 1.017448 -0.286134 -0.149000 -0.050000 6.936667E-07 -3.002547E-06 3.081633E-06 

Table 4.  Simulation 1 using the proposed HPSOBM algorithm: power flow in the system lines 

i j Pij Qij Pji Qji 

1 2 1.560964 -0.202203 -1.518423 0.273593 

1 5 0.764352 -0.022872 -0.736257 0.084979 

2 3 0.726414 0.036191 -0.703553 0.013869 

2 4 0.558508 -0.063507 -0.541802 0.077735 

2 5 0.416501 -0.065740 -0.407340 0.056373 

3 4 -0.238447 -0.003414 0.242183 -0.000318 

4 5 -0.609731 0.042531 0.614468 -0.027590 

4 7 0.275863 -0.084462 -0.275863 0.100993 

4 9 0.155486 0.003514 -0.155486 0.009264 

5 6 0.453131 -0.129759 -0.453131 0.182269 

6 11 0.079140 0.097005 -0.077840 -0.094283 

6 12 0.080392 0.032875 -0.079582 -0.031190 

6 13 0.181599 0.103930 -0.179070 -0.098949 

7 8 0.000000 -0.267966 0.000000 0.279552 

7 9 0.275863 0.166972 -0.275863 -0.156494 

9 10 0.047841 -0.016977 -0.047764 0.017183 

9 14 0.088508 -0.001790 -0.087565 0.003796 

10 11 -0.042265 -0.074936 0.042840 0.076283 

12 13 0.018582 0.015190 -0.018467 -0.015086 

13 14 0.062537 0.056035 -0.061436 -0.053793 

 

 
 



 Hybrid Particle Swarm Optimization with Biased Mutation 603 

Table 5.  Simulation 2 applying the HPSOBM algorithm: buses parameters results 

k Vk δk Pk Qk ΔPk ΔQk ΔSk 

1 1.060000 0.000000 2.323085 -0.224850 -2.220446E-16 3.132911E-15 3.140769E-15 

2 1.045000 -0.086423 0.183000 0.179706 1.146248E-09 -3.330669E-16 1.146248E-09 

3 1.010000 -0.220338 -0.942000 0.010169 2.729703E-09 1.042569E-15 2.729703E-09 

4 1.026146 -0.180739 -0.478000 0.039000 -7.088421E-04 -1.718341E-04 7.293724E-04 

5 1.032639 -0.155997 -0.076000 -0.016000 3.467779E-08 -7.061203E-09 3.538940E-08 

6 1.070000 -0.259436 -0.112000 0.415807 3.487077E-07 -2.331468E-15 3.487077E-07 

7 1.044870 -0.234460 0.000000 0.000000 -9.817892E-07 -2.709120E-07 1.018481E-06 

8 1.090000 -0.234460 0.000000 0.279258 -4.714854E-08 8.881784E-16 4.714854E-08 

9 1.027724 -0.262667 -0.295000 -0.166000 -8.835327E-04 -3.555616E-04 9.523938E-04 

10 1.027643 -0.266990 -0.090000 -0.058000 -4.628260E-04 -1.307619E-04 4.809434E-04 

11 1.044996 -0.265215 -0.035000 -0.018000 -7.659737E-09 -2.820208E-10 7.664927E-09 

12 1.053017 -0.274104 -0.061000 -0.016000 7.420782E-05 -4.456680E-06 7.434153E-05 

13 1.046248 -0.274417 -0.135000 -0.058000 3.224100E-06 -2.196902E-07 3.231576E-06 

14 1.017493 -0.285812 -0.149000 -0.050000 8.714802E-09 -2.711772E-08 2.848366E-08 

Table 6.  Simulation 2 applying the HPSOBM algorithm: power flow in the system lines 

i j Pij Qij Pji Qji 

1 2 1.559486 -0.201857 -1.517027 0.272997 

1 5 0.763599 -0.022993 -0.735560 0.084870 

2 3 0.726093 0.036223 -0.703251 0.013754 

2 4 0.557887 -0.063657 -0.541217 0.077773 

2 5 0.416047 -0.065857 -0.406905 0.056430 

3 4 -0.238749 -0.003585 0.242494 -0.000125 

4 5 -0.609044 0.042557 0.613770 -0.027650 

4 7 0.275302 -0.084483 -0.275302 0.100953 

4 9 0.155173 0.003450 -0.155173 0.009275 

5 6 0.452695 -0.129649 -0.452695 0.182056 

6 11 0.078798 0.096978 -0.077503 -0.094265 

6 12 0.080403 0.032877 -0.079593 -0.031191 

6 13 0.181494 0.103896 -0.178967 -0.098920 

7 8 0.000000 -0.267695 0.000000 0.279258 

7 9 0.275303 0.166743 -0.275303 -0.156304 

9 10 0.047684 -0.016850 -0.047607 0.017055 

9 14 0.088676 -0.001765 -0.087730 0.003779 

10 11 -0.041930 -0.074924 0.042503 0.076265 

12 13 0.018518 0.015196 -0.018404 -0.015092 

13 14 0.062368 0.056013 -0.061270 -0.053779 

 
It is possible to test the effectiveness of the proposed methodology analyzing the 

obtained power mismatches, which must be as small as possible. The voltage modules 
obtained through the Newton-Raphson based program have accuracy until the third 
decimal place, so it obscures a direct comparison between the power mismatches ob-
tained through conventional method and through the proposed methodology, because 
the power mismatches accuracy also depends on the voltage modules accuracy. The 
HPSOBM proposed algorithm presents voltage modules and angles very close to 
those found using the Newton-Raphson method and the power mismatches are well 
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minimized, most of the obtained values are smaller than the tolerance usually ac-
cepted, which is about 10-4. Therefore, the proposed methodology efficacy is proved, 
because it provides results that are better or as good as those obtained using the New-
ton-Raphson based program. 

5   Conclusion 

The paper presents a load flow solution methodology based on a Hybrid Particle 
Swarm Optimization with Biased Mutation (HPSOBM) algorithm. The methodology 
was tested for the IEEE 14-bus system through the developed computational program. 
The main advantages of the proposed methodology are the flexibility of implementa-
tion and its better convergence.  

Analyzing the results for the simulations, it is possible to conclude that the pro-
posed methodology presents acceptable solutions for the buses power mismatches and 
the results are also better or as good as those obtained through Newton-Raphson 
method. The proposed methodology computational implementation is simpler than 
the Newton-Raphson method computational implementation. It is proposed for the 
future works an improvement in the proposed algorithm in order to achieve lower 
mismatches in the cases which they were about 10-3 or 10-4 and also to evaluate its 
applicability in cases where the traditional methods fail or have difficult convergence. 
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Abstract. Avoiding collision of nano-particles during manipulation operations 
and selecting the best route and lowest Atomic Force Microscopy (AFM) 
movement are major concerns in the area of nano-space. To apply the lowest 
force on the cantilever from fluid environment forces, we try to minimize AFM 
movements. Our proposed method calculates the optimum routing for AFM 
probe movement for nano-particles transmission using hybrid GA (Genetic al-
gorithm) and PSO-AS (Particle Swarm Optimization- Ant System) simulates it 
in various type of medium. We consider the collision of the probe with minor 
barriers. An optimized AFM path minimizes the time and energy required for 
nano-particle manipulation. For movement of the nano-particles, we seek an  
efficient probe pattern. A second goal is to transfer the nano-particles without 
undesired collision. The optimum routing method will increase the speed of the 
process. Our proposed model, utilizes both Mathematical and Matlab software 
to simulate the process.  

Keywords: Simulation, Routing, Nano-manipulation, GA and PSO-AS,  
Creating Pattern, Atomic Force Microscopy. 

1   Introduction 

Nanoparticles are suitable units to be used in nano-structures. Also, we can use AFM 
manipulator in order to create patterns of nano-particles. Furthermore, AFM capabil-
ity in imaging of the surfaces and in nano-particle manipulation makes it an effective 
tool to be exploited in creating nano-particles patterns [1]. AFM is used as a simple 
nano-manipulator for guiding nano-particles movement on surfaces. In this study, we 
have defined nano-particles as having a radius RP and with the capability of being 
absorbed in substrate and ridden by an AFM probe under particular liquid environ-
mental conditions. In order to ride the particles, the tip of the probe must be in contact 
with the particle. So, for the safety of this contact under particular conditions, a basic 
jump, ZP0, should be verified through system feedback. Different steps of nano-
manipulation of a particle movement are shown in Figure.1 [2, 3]. Figure 1 shows 
states of manipulation using probe of AFM in contact mode.  
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Using an optimal routing algorithm, we can manipulate nano-particles quickly and, 
without any collision, can create patterns in various types of environments. In this 
article, we'll focus on creating patterns in almost any environment. At first nanoparti-
cles are randomly distributed in the environments. Creating patterns for routing is 
performed by using hybrid GA and PSO-AS without any collision, hence no  
nano-particle collides with another.  

 

Fig. 1. The strategy of pushing with AFM in Contact model[3] 

2   View of Dynamic Modeling 

In nano-manipulation processes, the probe is considered to be a cylinder [4]. The 
involved forces between probe and cantilever and also between probe and nano-
particle are illustrated in Figures 2 respectively. As displayed in these figures, there 
are 3 forces applied on the cantilever and the probe: Fx, Fy, and Fz. 
 

 
Fig. 2. Cantilever and probe bending along y-z axes (right) and x-z axes (left) during pushing 
nano objects in air [4] 
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Dynamic equations are developed based on the free body diagram (FOB) of push-
ing system, including AFM cantilever and probe, nano-particle and substrate. Fig. 3 
presents the FOB of probe of AFM in contact with particle. Total steps of manipula-
tion under fluid conditions are illustrated in figure 3 All of the forces including fluid, 
frictional, and adhesive forces on the tip of the cantilever are calculated [5, 6].  

 

 

Fig. 3. Flowchart of dynamic modelling algorithm in pushing nano-particle [3] 

3   GA and PSO Algorithms  

PSO is an optimization algorithm innovated by Kennedy and Eberhart in 1995 and 
inspired by swarm intelligence. A swarm is a group of particles with each particle 
containing position and velocity vectors [7, 8, 9]. The “basical” PSO equation, where 
the position and velocity represent physical attributes of the particles, is represented 
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by (1) and (2) [9]. Calculating a single Particle’s New Velocity (1) and Moving of a 
single Particle in a swarm (2)  

Vt+1 =C1Vt+C2(Pig-Xt)+C3(P∀g -Xt)                                    (1) 

Xt+1 =Xt+Vt+1                                                       (2) 

The Genetic Algorithm (GA) has been suggested using Darwin’s evolution theory and 
a searching process based on the natural selection and genetics lows. GA is considered 
as one of the best algorithms for optimization problems. [10, 11]. Often, all of simple 
GA consists of three operations: Selection, Genetic Operation, and Replacement [10]. 
The operations which are used in genetic algorithm are crossover and mutation. 

3.1   Description of Hybrid Algorithms  

Expressing a route: Any-member of the population could be considered as a route. A 
route consists of a set of nano-particles which forms our patch. These nano-particles 
are to migrate from their current location to another destination. A group of nano-
particles in a patch form a route between the source and destination, instead of trans-
ferring only one nano-particle through a route. In fact instead of covering the patch by 
nano-particles, probe of AFM routes all through the patch. Some of the nano-particles 
and nodes are the destinations of other nano-particles. Figure 4.A shows an example 
of members used in this method, which included information of nano-particle’s posi-
tion and their potential destination. 

 

Fig. 4. An example of member (including nano-particles with yellow color and place for  
transfer nano-particles with green color) 

Coding members: Assume an environment with 5 nodes to detect the environment. 
First five nodes are used for nano-particles position and five next nodes are used as 
their destinations. For example nano-particles has been transferred as following (4 to 
5,1 to 2, 3 to 1, 2 to 5,5 to 3). As it is shown in figure 4.B, red lines are nano-particle 
positions and blue lines are their destinations. 

Structure of PSO-AS [9]:  
When a connection request arrives at the ingress node, a predetermined number of 

particles are created. Each particle in the algorithm contains a random general route 
that presents the location of the nano-particle using a specific route from source to 
destination. So, after initial random assignment of the routes, each particle will have a 
position. Equation 2 is used to update the fitness value of all the particles. The particle 
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with the lowest fitness value in the current iteration is marked as global best. The 
lowest value met by the particle through its travel from start to current iteration is 
marked as a local best [9]. 

Every particle will then have its new velocity calculated. This will take it to the 
new position (i.e. establish a new route with new source and its potential destination) 
given by equation 3. The velocity is represented as a sequence of nodes in a particular 
order, and is calculated according to equations 3 and 4, in a step-by-step manner as in 
Ant Systems. Equation 3 will find just one member (next node to go) of the new ve-
locity sequence, in a single step [9].  

   Vt+1 =Nk+1+Nk+2                                                        (3) 

∀k = 1 to D-2 where N=Source Node and N=Destination Node. 
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After calculating the new velocity Vt+1, each particle will update its current position 
Xt by using (2). When the particle has moved to a new position, the fitness value of 
the particle is updated according to (5) [9].  

F(x) =β*(hop-count)+(1-β)(Fw/W)                                   (5) 

β is an algorithm parameter. Fw is the number of free nano-particles and distances 
available on the route. W is the calculated total number of nano-particle distances. 
Table I summarizes all of parameters used in PSO-AS [9]. 

Describing the algorithm[12]:  
We select first node of the member as first node of the route. Then we create a ran-

dom number for selecting destination node. If the random number be less than C3, 
we'll select destination node of the global best. A destination node will be selected 
from global best (best member) which is existed in the global best (have not selected 
before, and are peer to peer). If the random number is more than C3 and less than 
C2+C3, we will select destination node of the local best. A destination node will be 
selected from the local best which is existed in the local best (have not selected be-
fore, and are peer to peer). If destination have not selected in above conditions, we 
will randomly select a destination node which have not selected before. For the next 
node above steps will be repeated but source and destination positions will be 
changed. This method will be used for all of nodes including nano-particle positions 
and destinations.  
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Structure of Genetic: 

Crossover: First, we select a random number. If it be less than a const, Crossover will 
done in left portion of selected position in a chromosome. If it be more than const, 
Crossover will done in right portion of selected position in a chromosome. Crossover 
in left portion of a member don’t use nodes of same member that are in right portion 
of it, only the nodes are exchanged that are in left portion. Crossover in right portion 
of a member don’t use nodes of same member that are in left portion it, only the 
nodes are exchanged that are in right portion (Fig. 5.A) . Crossover was done for 
position and destination of members. Position and destination of member is showed 
with yellow and blue color in figure 5.A.  

 

Fig. 5. A) Crossover of self-left nano-particles (nodes of yellow color). B) Mutation do in a 
member(in position and destination ). 

Mutation: First, we select a random number. If, it be less than 5%, mutation will be 
done. In mutation, we select two number as random and exchange them. We do the 
mutation separately for position and destination nano-particles. (Fig.5.B)  

Four parts in both algorithms are identical: 

1. Route length: In this step route length is calculated for each member. Then all of 
them will be saved in 1st column of the fitness array.  

 2. Total collisions: If a nano-particle is too close to another nano-particle moving 
route and the distance is less than a certain value, collision will be occurred. For each 
member total collisions are calculated. Then all of them will be saved in 2nd column of 
the fitness array.  

3. Selecting the global best of current state: If two or more of members have equal 
number of collisions and number of collisions is the lowest among other members, we 
will select the route with minimum route length. But, if we have just one member 
with fewer collisions, we will select it, because having fewer collisions has high 
priority of less route length (Fig. 6.Left). 

4. Selecting global best: We have the global best which is the best member till 
former stage. If the best member of this stage is better than the global best, we will 
replace the global best with it. There are three cases for this replacement you can see 
in fig. 7. 
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Fig. 6. Select best member of fitness in a stage and Change local best if possible 

 

Fig. 7. Select best global best 
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Selecting the local best: If the local best of each member is worse than the created 
route for each member in this stage, we will replace the local best with created route 
as shown in fig. 6.right. 

Collision detection: Shorter path between two nanoparticles is obtained from the 
following equation: 

)()(_ 2
int

2
int cleotherpartiCrashPocleotherpartiCrashPo XXYYCrashDic −+−=

 
(6) 

4   Simulation in Mathematical  

We have designed a simulation model for transferring nano-particles in nano-scale in 
Mathematica software. This simulation covers all parts of Figure 1 and all formulas of 
section 2 used in the simulation.Figures 8 and 9 are a view of this simulation. At first 
we locate the probe of AFM in (20μm,20μm,20μm). Then it is moved to first 
nanoparticle. After creating the pattern the prove go back back to First place. 

 

Fig. 8. Veiw of simulation in micro-scale in water 

 

Fig. 9. Veiw of simulation in nano-scale in air and water 
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5   Simulation of Creating Pattern  

First, we distributed 15 nano-particles in small range of a 1000×1000 nm environ-
ment. Nano-particles were created in Mathematica and the routing algorithm was 
simulated in a Matlab environment. We manipulated nano-particles to create a pat-
tern. You can see a pattern with shape of (A) as well as the state of routing in Figure 
10. Secod, we distributed 10 nano-particles in the same environment. You can see a 
pattern with shape of (B) as well as the state of routing in Figure 11. 

For finding best routing, we have run 100 iteratoin with 200 member for 10  
nano-particles and have run 500 iteratoin with 200 member for 15 nano-particles. But   

 

Fig. 10. manipulation nanoparticles for creating pattern(A) 

 

Fig. 11. manipulation nanoparticles for creating pattern(B) 
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when nano-particles of a pattern are more than 15 nano particle, total iteration will be 
more. In fact total iteration with different nano particle is different. In this study, we 
have run once GA and once PSO-AS until finished total iterations. 

6   Conclusions 

Using our model, transferring of nano-particles for creating the patterns is performed 
faster using optimized routes for the nano-particles. The advantage of our method is 
collision avoidance, so AFM doesn’t need to image again. In this manner, we further 
reduce the time required for creating patterns. The simulation also helps us in under-
standing the pattern creation process and, therefore, the micro and nano-scale. This 
method of creating patterns is performed in less time and with less applied force. 
Nano-particles will find best location for transfer. Future work will be done this way: 
Also in order to create the new nano-instrument in air or fluid environments, our 
simulation models can be used to facilitate the experiment and their functionality 
without damaging the real instruments. 
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Abstract. Exchange rate fluctuation has a significant effect on the risk of 
marketing business, economic development and financial stability. Accurate 
prediction for exchange rate may reduce commercial and economic risk arisen 
by exchange rate fluctuation. In this study, we propose an intelligent approach 
to the forecasting problem of the CNY-USD exchange rate, where a neuro-
fuzzy self-organizing system is used as the intelligent predictor. For learning 
purpose, a novel hybrid learning method is devised for the intelligent predictor, 
where the well-known particle swarm optimization (PSO) algorithm and the 
recursive least squares estimator (RLSE) algorithm are involved. The proposed 
learning method is called the PSO-RLSE-PSO method. Experiments for time 
series forecasting of the CNY-USD exchange rate are conducted. For 
performance, the intelligent predictor is trained by several different methods. 
The experimental results show that the proposed approach has excellent 
forecasting performance. 

Keywords: time series forecasting, neuro-fuzzy system (NFS), particle swarm 
optimization (PSO), recursive least-squares estimator (RLSE), hybrid learning, 
self-organization. 

1   Introduction 

Exchange rate systems can be divided into the categories of floating rate and fixed 
rate. Before the collapse of Bretton Wood System [1], banks adopted the fixed 
exchange rate system. After 1973, many countries have turned to adopt floating 
exchange rate. Since the floating exchange rate is changeably fluctuated, it may 
induce impact and risk on international trade, economic investment, and financial 
stability. Changes of exchange rate may come up with opportunity and risk. How to 
reduce the risk is a very interesting research topic. Many factors can affect exchange 
rates, for example, inflation rates, government intervention and economic growth [2]. 
The historical records in time sequential order of an exchange rate can be viewed as a 
time series [3]. Based on a prediction model, time series forecasting is to forecast 
future trend or change, based on past known observations. 

Several approaches have been presented to predict exchange rate in literature [4]-[7]. 
Neural fuzzy system (NFS) approach [8] is one of the major methods. Many machine-
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learning algorithms can be used to adjust the parameters of a NFS for application, such 
as, particle swarm optimization (PSO) [9] [10] [11], genetic algorithm (GA) [12], 
simulated annealing [13], simplex method [14], and downhill climbing method [15]. In 
this study, we use the theory of neuro-fuzzy system (NFS) to design an intelligent 
predictor for the time series forecasting problem of the CNY-USD exchange rate. In the 
NFS-based intelligent predictor, there are several fuzzy If-Then rules. The fuzzy rule 
can be divided into the Mamdani type and the Takagi-Sugeno (T-S) type [16] [17]. The 
difference between them lies on the Then-parts of the fuzzy rules. The Then-part of a T-
S fuzzy rule is a function of inputs while a Mamdani fuzzy rule has a fuzzy set for its 
Then-part. Because T-S fuzzy rules possess greater capability of nonlinear functional 
mapping for applications than Mamdani fuzzy rules, we use T-S fuzzy rules for the 
NFS-based predicting approach in this study. For the formation of the NFS-based 
predictor in the study, there are two learning stages, the structure learning stage and the 
parameter learning stage. For the structure learning stage, we use a Fuzzy C-Means 
(FCM) based clustering method [18] to automatically determine the optimal number of 
fuzzy rules for the NFS-based predictor. Note that clusters generated the clustering 
method are regarded as fuzzy rules, based on the concept of input space partition. For 
the parameter learning stage, we develop a hybrid learning method, called the PSO-
RLSE-PSO method, to fine-tune the parameters of the predictor. The hybrid learning 
method includes the well-known particle swarm optimization (PSO) algorithm and the 
recursive least squares estimator (RLSE) algorithm [16] [19]. In a hybrid way, the PSO 
algorithm updates the premise parameters of If-Then fuzzy rules, and the RLSE 
algorithm adjusts the consequent parameters. Afterward, the premise parameters are 
fixed, and the PSO algorithm is used again to update the consequent parameters, based 
on the result by the RLSE. With the PSO-RLSE-PSO hybrid learning algorithm, the 
intelligent can make better prediction accuracy. 

In Section 2, the proposed methodology is specified, including the theory of NFS, 
the hybrid learning method and the FCM-based clustering algorithm for self-
organization of the NFS-based predictor. In Section 3, experiments for the China 
Yuan (CNY) to US Dollar (USD) exchange rate forecasting by the proposed approach 
and the compared approaches are conducted, and the experimental results are given. 
Finally, a discussion is given is given and the paper is concluded. 

2   Methodology of the Proposed Approach 

2.1   Theory of Neuro-Fuzzy System (NFS)  

The theory of fuzzy sets and fuzzy logic can be used to transform the experience of 
experts and knowledge into fuzzy If-Then rules, which are usually with uncertain 
information and imprecise expression. Fuzzy systems using this excellent property are 
usually known as an excellent problem-solving paradigm. Artificial neural networks 
have strong learning capability and they can adaptively learn to find hidden 
information and they have made great progress for extreme learning machines [20] 
[21]. Both of fuzzy systems and neural networks are universal approximator, by 
which any function can be approximated to any accuracy theoretically [22] 
[23].Integrating the advantages of fuzzy system and neural network, a NFS [10] [16] 
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is a fuzzy inferential neural system, which can handle with complex issues. Suppose 
that there are K Takagi-Sugeno (T-S) type fuzzy rules [17] in a NFS. The ith fuzzy If-
Then rule can be expressed as follows. 

  Rule i:    IF  is and … and is  

           Then   
(1)

for i=1,2,…,K, where H(t)=[h1(t) h2(t) … hM(t)]T is the crisp input vector to the NFS 
at time t, {xi, i=1,2,…,M} are the input linguistic variables, { , j=1,2,…,M} are the 

premise fuzzy sets of the ith fuzzy rule,  is the output, and { , j=0,1,…,M } are the 
consequent parameters. Note that in the study the inputs are from historical data of 
exchange rate time series. The fuzzy inference of fuzzy system can be cast into 
neural-net structure with five layers to become the NFS [10] [16] [24] [25]. The 
explanation for the structure of NFS layer by layer is specified as follows. Layer 1: 
This layer is called the fuzzy-set layer. There are several nodes in the layer. Each 
node of the layer represents a fuzzy set in an input universe, by which the measured 
crisp input is transformed into fuzzy value. Each node output is a membership degree. 
In the study, fuzzy sets are designed using the Gaussian type membership function, 
given below. Gaussian exp 12  (2)

where h is a base variable, {m, } are the mean and spread. Layer 2: This layer is 
called the firing-strength layer. The premise parts of fuzzy rules are formed in this 
layer. The nodes of the layer perform product operation (for t-norm operation) to 
calculate the firing strengths of the fuzzy rules, which are written as ∏ , i=1,2,…,K. Note that { , j=1,2,…,M} are the premise fuzzy sets of 

the i-th fuzzy rule specified in (1) and designed in (2) in the study. Layer 3: This 
layer is normalization layer. The nodes in the layer perform the process of 
normalization for the firing strengths of the fuzzy rules, given below. 

∑  (3)

Layer 4: This layer is called the consequent layer. The nodes perform normalized 
consequents of all the fuzzy rules. Each node output represents a normalized 
consequent of fuzzy rule, given below. 

t  (4)

for i=1,2,…,K. Layer 5: This layer is called the output layer. The number of nodes is 
equal to that of the NFS outputs. In the study, we need one node only, which 
combines the node outputs of Layer 4 to produce the forecast for the CNY-USD 
exchange rate by the NFS output  below.  
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∏∑ ∏  (5)

2.2   Clustering for Self-organization of the NFS Predictor 

A Fuzzy C-means (FCM) based clustering method is used the self-organization of the 
intelligent NFS based predictor, by which the optimal number of fuzzy rules are 
automatically determined. The FCM algorithm, derived from K-means algorithm, was 
first proposed by Dunn and Bezdek [26]. Although FCM is better than K-means, but 
it still needs to enter a preset number of clusters for clustering. Haojun et al. improved 
this drawback and proposed the FCM-based splitting algorithm (FBSA) [18], which is 
based on the FCM method and a cluster validity index [27]. The FBSA can select the 
optimal number of clusters in between two preset positive integers, Cmin and Cmax 
which are the minimal and maximal numbers of clusters for the algorithm. The FBSA 
algorithm is given below. Step1: Preset Cmin and Cmax. Step 2: initialize Cmin cluster 
centers (V). Step 3: Do for-loop c = Cmin to Cmax; 3.1: apply the FCM algorithm to 
update the membership matrix U and the cluster centers,  , , , , 
where , , , , , ,  is the j-th cluster center; 3.2: test for convergence; if 
no, go to 3.1; 3.3: compute a validity value Vd(c); 3.4: compute a score S(i) for each 
cluster; split the worst cluster. Step 4: Compute the optimal number cf such that the 
cluster validity index Vd(cf) is optimal. The validity index Vd(.) is defined as follows. 

, ,  (6a)1 ∑
 (6b)

 (6c)

where , , , ,  ∑ , , ,    ,  and n is the total number of data vectors 
in a given data set. Note that Scat(c) represents the compactness among obtained 
clusters, whose range is between 0 and 1, and Sep(c) represents the separation among 
the clusters. 

2.3   Parameter Learning with PSO-RLSE-PSO Hybrid Learning Method 

Particle Swarm Optimization (PSO) [9] is a swarm-based optimization algorithm, 
motivated by the food searching behavior by bird flocking or fish schooling in a 
society-oriented pattern. For a bird swarm, each bird is regarded as a particle whose 
location is viewed as a candidate solution to the problem. The search movement of the 
ith particle of the swarm is affected by two factors, the particle’s best location in its 
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experience and the swarm’s best location during the search, denoted by Pbesti and 
Gbest, respectively. Assume that the search space is with Q dimensions. The location 
and velocity of the ith particle at time t are denoted as Xi(t) and ψi(t), respectively. 
The PSO algorithm is given by the following equations. 

1  (7a)1  (7b) 

where w in the inertia factor, {c1,c2} are the learning rates, { , } are random 
uniformly between 0 and 1. The procedure of PSO algorithm is given as follows. Step 
1: initialize the position and velocity of particles. Step 2: calculate fitness for current 
position with fitness function f(.). Step 3: update position and velocity of each 
particle. Step 4: If f(Pbesti) gets improved, then update Pbesti. Step 5: If f(Pbesti) < 
f(Gbest), then update Gbest. Step 6: If termination condition is met, stop. Otherwise, 
go to Step 3 and the procedure continues.  

In the general least squares estimation (LSE) problem, a linear model can be 
described as follows [19]. 

 (8)

where , , ,  is the Q-dimensional input to the model, y is the observed 
data corresponding to the input u, { , , ,  are known functions of u, , , ,  are the parameter vector to be estimated, and ε is the model error. 
Note that the contents of the vector  can be viewed as the consequent parameters of 
the NFS predictor for the problem of time series forecasting. Observed data can be 
collected and used as training data for the proposed NFS predictor. The training data 
set with m data pairs is denoted as {(uj, yj), j=1,2,…,m}, where (uj, yj) is the j-th data 
pair in the form of (input, target). With the training data set, the LSE problem can be 
written in matrix form, given below. 

 (9)

where , , , , , , ,  and A is the matrix formed by , 1,2, … ,  and 1,2, … , . We denote the kth row of A and Y as 
[ak

T,yk]. Recursively, the optimal estimation for  can be obtained by the method of 
recursive least squares estimator (RLSE) [16], given below. 

1  (10a)

 (10b)

 
for k=0,1,…,m-1. Initially, we set  to zero vector and , where α is a large 
positive number and I is the identity matrix. The optimal estimator for  is obtained 
after the last pair of training data (um, ym) is done. 
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Table 1. Settings for PSO and RLSE 

PSO RLSE 
Swarm size 125 Consequent parameters 12 
Initial particle 
position  

Random in [0, 
1] 

 12×1 zero vector 

Initial particle 
velocity  

Random in [0, 
1] 

 , 10  

{w, c1, c2} {0.8, 2, 2} I Identity matrix 
 

In the study, a hybrid learning method is devised for the parameter learning of the 
proposed NFS predictor, based on the result of self-organization by the FBSA 
clustering method to determine the optimal number of fuzzy rules for the intelligent 
predictor. There are two stages for the parameter learning. In stage 1, the PSO method 
is used to adapt the premise parameters of the NFS predictor and the RLSE method is 
use to update the consequent parameters. Both methods cooperate in hybrid way for 
fast learning purpose in the first stage. In stage 2, based on the result of the PSO-
RLSE learning in the first stage, the PSO method is used again in the second stage to 
update the consequent parameters while the premise parameters are kept fixed. This 
two-stage learning method is called the PSO-RLSE-PSO method, for which the 
procedure is arranged below. 

Step 1.  Initialize necessary settings for the PSO and RLSE methods (in stage 1).  
Step 2.  Adapt the premise parameters of the NFS predictor by the PSO algorithm  
Step 3.  Update the consequent parameters by the RLSE algorithm.  
Step 4.  Calculate forecast error , where  is the observed at 

time t and  is the forecast by the NFS predictor.  
Step 5.  Calculate root mean squared error (RMSE), based on {e(t), t=1,2,…m}, as 

follows. 

RMSE ∑
 (11)

Step 6.  Update Pbest (for each particle) and Gbest for PSO.  
Step 7.  If termination condition for the PSO-RLSE learning (stage 1) is met, go to 

Step 8 to proceed to stage 2 of the parameter learning. Otherwise, go back to 
Step 3. 

Step 8.  Adapt the consequent parameters by the PSO (in stage 2). Calculate RMSE 
for all particles of the PSO. Update Pbest and Gbest. 

Step 9.  If termination condition for the PSO (stage 2) is met, then stop. Otherwise, 
go back to Step 8 and the procedure continues. 
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3   CNY-USD Exchange Rate Forecasting by the Proposed 
Approach 

The dataset recording the daily exchange rate of China Yuan (CNY) to US Dollar 
(USD) from 2006/01/01 to 2007/12/31 are obtained [28]. The dataset is normalized to 
[0, 1], from which the first 730 data are used as the training data and the rest 365 data 
are for testing purpose. For the proposed NFS predictor, the input vector is arranged 
as H(t)=[y(t-1), y(t-2)]T and the target is y(t), where t is the time index. The FBSA 
clustering method is used for self-organization of the predictor to automatically 
determine the optimal number of fuzzy rules. Each cluster generated by the clustering 
method corresponds to a fuzzy If-Then rule. For the generated clusters, the cluster 
centers and their spreads in standard deviation are used for the initial settings of the 
premise fuzzy sets of the fuzzy rues. For parameter learning, the RMSE is used for the 
cost function. For the FBSA clustering method, the Cmin and Cmax are given as 2 and 
10, respectively. After clustering, the curve of validity index versus cluster number is 
shown in Fig. 1, by which the optimal number of clusters is six. Thus, there are six 
rules generated automatically for the NFS predictor. The settings for PSO and RLSE 
are given in Table 1 and the parameters of the proposed PSO-RLSE-PSO are shown 
in Table 2. For the CYN-USD exchange rate forecasting, the NFS predictor with four  
 
 

Fig. 1. Validity index versus cluster number by
the FBSA clustering method 

 

 

Fig. 2. Predicting response by the NFS
predictor with six fuzzy rules (with PSO 
learning method only) 

 

Fig. 3. Predicting response by the NFS
predictor with six fuzzy rules (with PSO-
RLSE learning method) 

 

Fig. 4. Predicting response by the NFS
predictor with six fuzzy rules (with PSO-
RLSE-PSO learning method) 
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rules is trained by the PSO method only, the PSO-RLSE method, and the PSO-RLSE-
PSO method, respectively. Ten trials are conducted for each experiment. The learning 
iterations for PSO and PSO-RLSE are set to 1000 and 500, respectively. The 
forecasting accuracy in RMSE for the training and testing are summarized in Table 2 
for performance comparison. 

Table 2. Parameters after learning by the PSO-RLSE-PSO 

Premise-part =  is  and is  
Parameter m σ m σ 

Rule 1 0.7273 -6.5392 -3.006 -1.0228 

Rule 2 2.32606 -9.0054 -4.2367 -1.5436 

Rule 3 -9.3967 -3.1629 5.4079 3.5961 

Rule 4 -3.4467 1.1636 3.3745 2.8554 

Rule 5 -10.5639 2.5563 9.2401 0.3268 

Rule 6 7.9862 1.6916 -10.4697 -3.3565 

Consequent-part = a0+a1h1(t)+ a2h2(t) 
Parameter a0 a1 a2 

Rule 1 -0.2478 -0.0592 0.9167 

Rule 2 -0.0371 0.1809 0.6538 

Rule 3 0.5980 0.1124 0.6040 

Rule 4 0.2942 0.5874 0.5094 

Rule 5 -9.0993e-06 -0.0438 -0.0010 

Rule 6 0.9698 0.0017 0.0003 

Table 3. Forecasting performance comparison in RMSE (mean/std) 

Method PSO PSO-RLSE PSO-RLSE-PSO 

Training phase 0.1036/0.0696 0.0509/0.0484 0.0397/0.0126 

Testing phase 0.1434/0.3048 0.0333/0.0316 0.0277/0.0022 

Note that above results are based on ten trials. 

4   Discussion and Conclusion 

The self-organization neural fuzzy approach to the forecasting problem of the CNY-
USD exchange rate has been presented. The design of the NFS-based predictor 
includes the structure-learning (self-organization) phase and the parameter learning 
phase. In the structure learning phase, there are no fuzzy rules at beginning. The NFS-
based predictor is formed by the FBSA clustering method to automatically determine 
the optimal number of fuzzy If-Then rules and their complexity. After this, the 
parameter learning phase follows to fine-tune the predictor for good forecasting 
performance. There are three machine-learning methods used for parameter learning, 
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Which are the PSO method, the PSO-RLSE method and the PSO-RLSE-PSO method. 
Although the PSO learning algorithm can adapt the predictor for the problem, the 
forecasting performance is merely plain. This could be because the parameter space 
was large, formed by the premise parts and the consequent parts, and the PSO might 
not easy to find the optimal or near-optimal solution. We further devised the PSO-
RLSE hybrid learning method to train the NFS predictor and found the forecasting 
performance in accuracy got much improved, as shown in Table 3. The forecasting 
improvement may thank to the divide-and-conquer concept, based on which the PSO-
RLSE method is devised. The parameter space was divided into two subspaces, the 
subspace of the premise parameters and the subspace of the consequent parameters. 
The PSO and the RLSE were used in hybrid way to search for the optimal solution, as 
stated previously. The PSO-RLSE method adapted the NFS predictor for forecasting 
not only in performance improvement but also in fast learning convergence. For this 
study, we further proposed the PSO-RLSE-PSO method to train the predictor to 
further improve the forecasting performance, and it worked, as shown in Table 3. The 
idea for the method is that based on the result by the PSO-RLSE, the PSO is used to 
further update the consequent parameters for better performance, while the premise 
parameters are fixed. Although the RLSE is good for linear regression model, it may 
not be good enough for the nonlinear forecasting problem, such as the CNY-USD 
exchange rate, which is usually fluctuated constantly and sometimes vibrated 
radically. This motivates the further use of PSO to the improvement search for the 
consequent parameters. Thus, the proposed PSO-RLSE-PSO method not only can 
preserve the merit of the PSO-RLSE method but also can deal with nonlinear 
forecasting problem with better performance.  

The contribution of this research is three-fold. Firstly, the structure of the 
knowledge base in terms of fuzzy If-Then rules for the NFS-based intelligent 
predictor is automatically determined by the FBSA clustering method. Secondly, the 
innovation of the swarm-intelligence-based PSO-RLSE-PSO method is devised and 
applied successfully to the intelligent predictor for the nonlinear forecasting problem 
of the CNY-USD exchange rate. Thirdly, through performance comparison, excellent 
performance by the proposed approach has been shown. 
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Abstract. This paper provides a novel hybrid model to solve credit scoring 
problems. This model is based on RBF neural network with genetic algorithm 
and its principal character is that Central position, center spread and weights of 
RBF neural network are encode as genes of Chromosome in genetic algorithm. 
And then using genetic algorithm trains RBF neural network circularly. A real 
world credit dataset in the University of California Irvine Machine Learning 
Repository are selected for the experiment. Numerical experiment shows that the 
model possesses fast learning ability and excellent generalization ability, and 
verifies that the novel model has better preference. 

Keywords: Credit scoring; RBF neural network; Genetic Algorithm. 

1   Introduction 

Recently, credit scoring has become widely used in issuing credit cards and in other 
types of consumer lending, such as auto loans and home equity loans. Credit scoring is 
a method of evaluating the credit risk of loan applications. The method produces a 
“score” that a bank can use to rank its loan applicants or borrowers in terms of risk. A 
better model should give a higher percentage of high scores to borrowers whose loans 
will perform well and a lesser percentage of low scores to borrowers whose loans won’t 
perform well. Even a good scoring system won’t predict with certainty any individual 
loan’s performance, but it should give a fairly accurate prediction of the likelihood that 
a loan applicant with certain characteristics will default. To build a good scoring model, 
developers need sufficient historical data, which reflect loan performance in periods of 
both good and bad economic conditions.[1][2]  

There are mainly two types of credit scoring models, statistical methods and 
machine learning methods. Several statistical methods, such as linear probability 
models, logistic models and probabilistic models, are used to develop credit scoring 
systems. They are standard statistical techniques for estimating the probability based on 
historical data on loan performance and characteristics of the borrower [1].  The second 
method is based on machine learning (examples of machine learning techniques used to 
solve the above financial decision-making problems are Atiya[3]; Huang, Chen, Hsu, 
Chen, & Wu[4]; Lee, Chiu, Chou, & Lu[5]) use the multi-layer perceptron (MLP) as 
classifier. Other tested classifiers are the Decision Tree and the Support Vector 
Machine [6-8]. We want to stress that these studies show that the machine learning 
based systems are better than the traditional (statistical) methods for bankruptcy 
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prediction and credit scoring problems (Huang et al.[4]; Ong, Huang, & Tzeng[9]; 
Vellido, Lisboa, & Vaughan[10]; Wong & Selvi[11]). In Tsai and Wu[12] the authors 
compare a single MLP classifier with multiple classifiers and diversified multiple 
classifiers on three datasets. Artificial neural network models are used to solve credit 
evaluation problem. However, neural network has some shortcomings, such as slow 
training speed and local optimum. This paper presents a new model, which combines 
artificial neural network and genetic algorithm and trains neural network circularly 
using genetic algorithm. 

2   RBF Neural Network and Genetic Algorithm 

2.1   RBF Neural Network 

Radial basis function neural network is different from classic BP neural network. 
Design of RBF is seen as a curve fitting problem in high-dimensional space, so the 
network learning is equivalent to the multidimensional space to find a surface to fit the 
given dataset. Although theory of RBF neural network and BP neural network is 
different, RBF neural network, like BP neural network, can approximate any nonlinear 
functions.  In addition, RBF neural network is better than BP neural network in the 
generalization ability.  And more, RBF neural network converges faster than BP neural 
network.  From network structure, RBF neural network has also three layers, the input 
layer, hidden layer and output layer, but hidden layer has only one layer, while the BP 
neural network have two or more layers, The structure of RBF neural network is shown 
in Fig.1 as follow.  

The output of RBF neural network is according to expression as follows:           
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Where, 

x  is an input vector,   

ϕ  is a processing function for the hidden layer. In this paper, ϕ  is the Gaussian 

function . 

 denotes the Euclidean norm,  

kw is weight value of the output layer weights,  
n  is the number of neurons in hidden layer, 

kc  is RBF centers.  
 Different with BP, neurons in hidden layer of RBF neural network is the RBF center, 

whose role is to calculate the distance between the center and the network input, and then 
transmit to output layer for processing.  RBF output function,ϕ ,is defined as follows:  
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Fig. 1. The structure of RBF neural network 

2.2   Genetic Algorithm  

Genetic algorithm (GA) is an adaptive global optimization statistical search algorithm, 
which simulate biological evolution process in natural environment.  GA was provided 
by Professor Holland in 1970’s, and then, De Jong carried out several numerical 
experiments to verify its preference.  Goldberg summarized related study and formed 
the basic framework of genetic algorithm in 1980’s. Based on some common features, 
Goldberg summarized a basic genetic algorithm (Simple Genetic Algorithms, SGA for 
short).  Simple genetic algorithm included three basic genetic operators, selection, 
crossover and mutation.  

Select operator can exclude worst individuals, and improve the global convergence 
and computational efficiency.  In biological evolution process, crossover is a major 
component and can produce new individuals or species. Genetic algorithm uses this 
feature to produce a new generation with character of parents individual. Mutation 
operator can generate individuals with new features. 

3   GA-RBF Neural Network Model 

This section will describe the process that using genetic algorithm and RBF neural 
network construct personal credit assessment model. This model applies genetic 
algorithm to establish the overall framework and merges RBF neural networks to the 
framework. Central position, center spread and weights of RBF neural network can be 
improved iteratively and increase predictive rate. In each iterations, there are three 
major steps, select operation, crossover operation and mutation operation.  Select 
operation will retain excellent individuals and eliminate negative individuals.  
Crossover operation and mutation operation are able to reproduce a new individual. 
This model process is in detail as follows:  

 

Input layer Hidden layer Output layer 
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Step 1: 

Parameter settings.  

Setting the population size M, crossover probability Pc, mutation probability Pm,.  

Step 2: 

Set the fitness function.  

Fitness function is the optimization goal, where is denoted by predictive rate. 

Step 3 : 

Population initialization.  
Each individuals within the population M is initialized, viz, establish M different 

RBF neural network model.  

Step 4: 

Individual assessment.  
Verify whether all of the individual to achieve the desired results according to the 

group fitness function, and if so, input the best individual parameters.  

Step 5: 

Select operation.  

Calculate all the individuals’ fitness Fi ,in population M. F i is predictive rate for the 
unknown data.       

Select probability, pi, can be defined as follows,  

∑
=

=
M

i
i

i
i

F

F
p

1

    Mi ,3,2,1=                                   (3) 

       According pi, calculate the next generation population.  

Step 6: 

Chromosome encoding.  

Weights of each individual correspond to genes of a chromosome, as shown in Fig.2. 
Population will produce M chromosomes.  

Step 7: 
Crossover operation.  

The group of M chromosomes make pairs randomly and form M / 2 pairs of 
chromosomes for crossover operation.  This paper uses double-point crossover. 

Step 8: 
Mutation operation.  

Each gene of chromosomes can mutate randomly according to the probability Pm.  
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Fig. 2. Central position, center spread and weights of RBF neural network and weights transfer 
Chromosome encoding 

  

Fig. 3. The flow chart of GA-RBFNN 

Input layer Hidden layer Output layer 
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Step 9: 
Training neural network.  

The new generation of chromosomes correspond to the RBF neural network and 
training it. 

Step 10: 
Recalculate fitness values of M individuals and go back to step 4.  

 The flow chart of GA-RBFNN is shown in fig.3. 

4   GA-RBF Neural Network Model to Evaluate the Application of 
Personal Credit 

4.1   Dataset and Pretreatment 

Test dataset is personal credit assessment data of Germany Bank from the University of 
California Irvine Machine Learning Repository. German credit card dataset has 1000 
Instances. There are twenty-four numerical attributes in this dataset. Number of 
customers as “good” is 700, and number of customers as “bad” is 300. In the dataset, 
“0” denotes a customer as “bad”, and “1” denotes a customer as “good”. 80% of the 
dataset is used for training, and the rest is used for validating.  

In German credit card dataset, data of different attribute has different range. The 
largest range is between 0 and 184, while the smallest range is 0 to 1. Because learning 
rate of the weights in neural network is uniform, it will be instability for data of 
attribute with larger range, and simultaneously speed lower time to training for data of 
attribute with smaller range. In a word, it is necessary to implement the normalization 
operation as preprocessing before training. 

In this paper, the goal of pretreatment is that data of different attribute has same 
range, which is 0 to 1. Pretreatment process is denoted for normalized as follows: 

Step 1:  
Calculate maximum and minimum values with the same attribute.  

Step 2:  
Normalize the given data with the same attribute according to expression as follow, 

minmax

min

dd

dd
D i

i −
−

=       mi ,,3,2,1=                        (4) 

Where, 

iD  is data that has been processed,  

id  is data that will be processed, 
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maxd is the maximum value in the given attribute,  

mind is the minimum value in the given attribute.  

4.2   Parameters Setting and Experiment Results 

After the preliminary design model, this paper uses Visual Studio 2005 as development 
platform. Related parameters are set as follows:  

  Number of neurons in Input layer : 24  
  Number of neurons in Hidden layer: 10  
  Learning rate of weights: 0.02  
  Learning rate of Center position: 0.01  
  Learning rate of Center spread: 0.03  
  Population size: M = 30 
  Crossover probability: 0.002 
  Mutation probability: 0.001 

The prediction rate is shown in fig.4.  

 

Fig. 4. The Change of prediction rate for personal credit data by GA-RBF 

Prediction rate of GA-RBF can achieve 81.0 % at best.  
The same parameter settings compared RBF neural networks:  

Number of neurons in Input layer : 24  
Number of neurons in Hidden layer: 10  
Learning rate of weights: 0.02  
Learning rate of Center position: 0.01  
Learning rate of Center spread: 0.03   
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The prediction rate is shown as follows.  

 

Fig. 5. The Change of prediction rate for personal credit data by RBF 

It’s obviously seen that GA-RBF can get higher prediction rate than RBF, increase 
about 5%.  

5   Conclusion 

This paper constructs a new hybrid personal credit scoring model by combining RBF 
neural network with genetic algorithm.  The new model uses genetic algorithm to 
optimize weights, the centers position and the centers spread of RBF neural network, so 
that convergence of the model is rapid and has excellent generalization in numerical 
experiments. 
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Bilal, Mohsin I-530
Breedon, Philip I-19

Castro, Rodrigo M.C.S. II-543
Cavalcanti-Júnior, George M. II-543
Chai, Yi I-260
Chao, Chih-Chiang II-66
Chen, Chien-Hsing II-236, II-269
Chen, JenLian I-28
Chen, Lei II-411
Chen, Min-you I-165
Chen, Powen I-56
Chen, Qinglan II-502
Chen, Walter I-56
Chen, Wei II-465
Chen, Weili II-164
Chen, Weirong I-310, I-338
Chen, Xue-bo II-82, II-449
Chen, Xue-jun II-441
Chen, Yanju I-329
Chen, Yingge II-317
Chen, Zhenmin II-434
Cheng, Shi I-38
Chhabra, Jitender Kumar I-147, II-146
Chiang, Ya-Tzu II-66
Choi, Kyung-Sik II-91
Chou, PenChen I-28
Chunguo, Wu II-275
Chuyi, Song II-275
Coelho, André L.V. II-573
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