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Preface

CAI 2011 was the 4th International Conference on Algebraic Informatics. The
three previous conferences, CAI 2005, CAI 2007, and CAI 2009, were all held
at the Department of Mathematics of the Aristotle University of Thessaloniki
in Greece. At CAI 2009, the Steering Committee asked me to organize CAI
2011 at RISC in Linz/Hagenberg, Austria; a proposal which I gladly accepted.
In fact the focus of CAI is in very close correlation to the research topics at
RISC, seeing mathematics and computer science as one academic field with close
internal interactions and mutual dependencies. Thus, CAI 2011 continued the
tradition established by previous CAIs, namely, to bring together researchers
from theoretical computer science and constructive algebra. The goal of this
endeavor was to enhance the understanding of syntactic and semantic problems
by algebraic models; and also to propagate the application of modern techniques
from informatics in algebraic computation. CAI 2011 tried to achieve these goals
via invited lectures, tutorials, and contributed research talks.

As stated in the call for papers and on the homepage of CAI 2011, the
topics of interest included algebraic semantics, formal power series, syntactic
objects, algebraic picture processing, finite and infinite computations, acceptors
and transducers for discrete structures, decision problems, algebraic characteri-
zation of logical theories, process algebra, algebraic algorithms, algebraic coding
theory, algebraic aspects of cryptography, term rewriting, algebraic aspects of
number theory.

The program of CAI 2011 consisted of 4 invited lectures and 13 contributed
talks. With 1 exception, all these presentations are reflected in the proceed-
ings. Additionally 2 tutorials were given: by A. Middeldorp and F. Neurauter
on “Termination and Complexity of Rewrite Systems,” and by P. Padawitz on
“Co/Algebraic Modelling and Verification at Work.” Unfortunatey, during the
preparation phase of CAI 2011 one of our leading colleagues and designated
member of the Program Committee, Stephen L. Bloom, passed away. In the first
lecture at the opening of CAI 2011, Z. Ésik, member of the Steering Committee,
recalled the life and academic achievements of Stephen L. Bloom.

I am grateful to a great number of colleagues for making CAI 2011 a successful
event: the members of the Steering Committee, the colleagues in the Program
Committee, my co-workers in the Local Committee, and also Alfred Hofmann
and his team at Springer LNCS.

June 2011 Franz Winkler
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Joint Spectral Radius Theory for Automated

Complexity Analysis of Rewrite Systems�

Aart Middeldorp1, Georg Moser1, Friedrich Neurauter1,
Johannes Waldmann2, and Harald Zankl1

1 Institute of Computer Science, University of Innsbruck, Austria
2 Fakultät Informatik, Mathematik und Naturwissenschaften, Hochschule für

Technik, Wirtschaft und Kultur Leipzig, Germany

Abstract. Matrix interpretations can be used to bound the derivational
complexity of term rewrite systems. In particular, triangular matrix in-
terpretations over the natural numbers are known to induce polynomial
upper bounds on the derivational complexity of (compatible) rewrite
systems. Recently two different improvements were proposed, based on
the theory of weighted automata and linear algebra. In this paper we
strengthen and unify these improvements by using joint spectral radius
theory.

Keywords: derivational complexity, matrix interpretations, weighted
automata, joint spectral radius.

1 Introduction

This paper is concerned with automated complexity analysis of term rewrite
systems. Given a terminating rewrite system, the aim is to obtain information
about the maximal length of rewrite sequences in terms of the size of the initial
term. This is known as derivational complexity. Developing methods for bound-
ing the derivational complexity of rewrite systems has become an active and
competitive1 research area in the past few years (e.g. [6, 11–15, 19, 21]).

Matrix interpretations [4] are a popular method for automatically proving
termination of rewrite systems. They can readily be used to establish upper
bounds on the derivational complexity of compatible rewrite systems. However,
in general, matrix interpretations induce exponential (rather than polynomial)
upper bounds. In order to obtain polynomial upper bounds, the matrices used in
a matrix interpretation must satisfy certain (additional) restrictions, the study
of which is the central concern of [14, 15, 19].

So what are the conditions for polynomial boundedness of a matrix inter-
pretation? In the literature, two different approaches have emerged. On the one
hand, there is the automata-based approach of [19], where matrices are viewed as

� This research is supported by FWF (Austrian Science Fund) project P20133.
Friedrich Neurauter is supported by a grant of the University of Innsbruck.

1 http://www.termination-portal.org/wiki/Complexity

F. Winkler (Ed.): CAI 2011, LNCS 6742, pp. 1–20, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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weighted (word) automata computing a weight function, which is required to be
polynomially bounded. The result is a complete characterization (i.e., necessary
and sufficient conditions) of polynomially bounded matrix interpretations over
N. On the other hand, there is the algebraic approach pursued in [15] (originat-
ing from [14]) that can handle matrix interpretations over N, Q, and R but only
provides sufficient conditions for polynomial boundedness. In what follows, we
shall see, however, that these two seemingly different approaches can be unified
and strengthened with the help of joint spectral radius theory [9, 10], a branch
of mathematics dedicated to studying the growth rate of products of matrices
taken from a set.

The remainder of this paper is organized as follows. In the next section we re-
call preliminaries from linear algebra and term rewriting. We give a brief account
of the matrix method for proving termination of rewrite systems. In Section 3
we introduce the algebraic approach for characterizing the polynomial growth of
matrix interpretations. We improve upon the results of [15] by considering the
minimal polynomial associated with the component-wise maximum matrix of
the interpretation. We further show that the joint spectral radius of the matri-
ces in the interpretation provides a better characterization of polynomial growth
and provide conditions for the decidability of the latter. Section 4 is devoted to
automata-based methods for characterizing the polynomial growth of matrix
interpretations. We revisit the characterization results of [19] and provide pre-
cise complexity statements. In Section 5 we unify the two approaches and show
that, in theory at least, the joint spectral radius theory approach subsumes the
automata-based approach. Automation of the results presented in earlier sec-
tions is the topic of Section 6. To this end we extend the results from [15, 19].
We also provide experimental results. We conclude with suggestions for future
research in Section 7.

2 Preliminaries

As usual, we denote by N, Z, Q and R the sets of natural, integer, rational and
real numbers. Given D ∈ {N, Z, Q, R} and m ∈ D, >D denotes the standard
order of the respective domain and Dm abbreviates {x ∈ D | x � m}.

Linear Algebra: Let R be a ring (e.g., Z, Q, R). The ring of all n-dimensional
square matrices over R is denoted by Rn×n and the polynomial ring in n indeter-
minates x1, . . . , xn by R[x1, . . . , xn]. In the special case n = 1, any polynomial
p ∈ R[x] can be written as p(x) =

∑d
k=0 akxk for some d ∈ N. For the largest

k such that ak �= 0, we call akxk the leading term of p, ak its leading coefficient
and k its degree. The polynomial p is said to be monic if its leading coefficient
is one. It is said to be linear, quadratic, cubic if its degree is one, two, three.

In case R is equipped with a partial order �, the component-wise extension of
this order to Rn×n is also denoted as �. We say that a matrix A is non-negative
if A � 0 and denote the set of all non-negative n-dimensional square matrices of
Zn×n by Nn×n. The n × n identity matrix is denoted by In and the n × n zero
matrix is denoted by 0n. We simply write I and 0 if n is clear from the context.
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The characteristic polynomial χA(λ) of a square matrix A ∈ Rn×n is defined
as det(λIn − A), where det denotes the determinant. It is monic and its degree
is n. The equation χA(λ) = 0 is called the characteristic equation of A. The
solutions of this equation, i.e., the roots of χA(λ), are precisely the eigenvalues
of A, and the spectral radius ρ(A) of A is the maximum of the absolute values
of all eigenvalues. A non-zero vector x is an eigenvector of A if Ax = λx for
some eigenvalue λ of A. We say that a polynomial p ∈ R[x] annihilates A if
p(A) = 0. The Cayley-Hamilton theorem [16] states that A satisfies its own
characteristic equation, i.e., χA annihilates A. The unique monic polynomial of
minimum degree that annihilates A is called the minimal polynomial mA(x) of
A. The multiplicity of a root λ of p ∈ R[x] is denoted by #p(λ).

With any matrix A ∈ Rn×n we associate a directed (weighted) graph G(A)
on n vertices numbered from 1 to n such that there is a directed edge (of weight
Aij) in G(A) from i to j if and only if Aij �= 0. In this situation, A is said to be
the adjacency matrix of the graph G(A). The weight of a path in G(A) is the
product of the weights of its edges.

With a finite set of matrices S ⊆ Rn×n we associate the directed (weighted)
graph G(S) := G(M), where M denotes the component-wise maximum of the
matrices in S, i.e., Mij = max {Aij | A ∈ S and 1 � i, j � n}. Following [10],
we define a directed graph Gk(S) for k � 2 on nk vertices representing ordered
tuples of vertices of G(S), such that there is an edge from vertex (i1, . . . , ik)
to (j1, . . . , jk) if and only if there is a matrix A ∈ S with Ai�j�

> 0 for all
� = 1, . . . , k. This is akin to the k-fold Kronecker product of the matrix A.

For functions f, g : N → N we write f(n) = O(g(n)) if there are constants
M, N ∈ N such that f(n) � M · g(n) + N for all n ∈ N. Furthermore, f(n) =
Θ(g(n)) if f(n) = O(g(n)) and g(n) = O(f(n)).

Rewriting: We assume familiarity with the basics of term rewriting [1, 18]. Let V
denote a countably infinite set of variables and F a fixed-arity signature. The
set of terms over F and V is denoted by T (F ,V). The size |t| of a term t is
defined as the number of function symbols and variables occurring in it. The
set of positions Pos(t) of a term t is defined as usual. Positions are denoted as
sequences of natural numbers. A term rewrite system (TRS for short) R over
T (F ,V) is a finite set of rewrite rules � → r such that � /∈ V and Var(�) ⊇ Var(r).
The smallest rewrite relation that contains R is denoted by →R. The transitive
(and reflexive) closure of →R is denoted by →+

R (→∗
R). Let s and t be terms. If

exactly n steps are performed to rewrite s to t, we write s →n t. The derivation
height of a term s with respect to a well-founded and finitely branching relation
→ is defined as dh(s,→) = max {n | s →n t for some term t}. The derivational
complexity function of R is defined as: dcR(k) = max {dh(t,→R) | |t| � k}.

Matrix Interpretations: An F -algebra A consists of a carrier set A and a col-
lection of interpretations fA : Ak → A for each k-ary function symbol in F .
By [α]A(·) we denote the usual evaluation function of A according to an as-
signment α which maps variables to values in A. An F -algebra together with a
well-founded order > on A is called a monotone algebra if every function symbol
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f ∈ F is monotone with respect to > in all arguments. Any monotone algebra
(A, >) (or just A if > is clear from the context) induces a well-founded order on
terms: s >A t if and only if [α]A(s) > [α]A(t) for all assignments α. A TRS R
and a monotone algebra A are compatible if � >A r for all � → r ∈ R.

For matrix interpretations, we fix a dimension n ∈ N \ {0} and use the set
Rn

0 as the carrier of an algebra M, together with the order >δ on Rn
0 defined as

(x1, x2, . . . , xn)T >δ (y1, y2, . . . , yn)T if x1 >R,δ y1 and xi �R yi for 2 � i � n.
Here x >R,δ y if and only if x �R y + δ. Each k-ary function symbol f is
interpreted as a linear function of the following shape: fM(v1, . . . , vk) = F1v1 +
· · · + Fkvk + f where v1, . . . , vk are (column) vectors of variables, F1, . . . , Fk ∈
Rn×n

0 and f is a vector in Rn
0 . The F1, . . . , Fk are called the matrices of the

interpretation fM, while f is called the absolute vector of fM. We write abs(f)
for the f . To ensure monotonicity, it suffices that the top left entry (Fi)11 of
every matrix Fi is at least one. Then it is easy to see that (M, >δ) forms a
monotone algebra for any δ > 0. We obtain matrix interpretations over Q by
restricting to the carrier Qn

0 . Similarly, matrix interpretations over N operate on
the carrier Nn and use δ = 1.

Let α0 denote the assignment that maps every variable to 0. Let t be a term.
In the following we abbreviate [α0]M(t) to [t]M (or [t] if M can be inferred from
the context) and we write [t]j (1 � j � n) for the j-th element of [t].

Let M be a matrix interpretation of dimension n. Let S be the set of matrices
occurring in M and let Sk = {A1 · · ·Ak | Ai ∈ S, 1 � i � k} be the set
of all products of length k of matrices taken from S. Here S0 consists of the
identity matrix. Further, S∗ denotes the (matrix) monoid generated by S, i.e.,
S∗ =

⋃∞
k=0 Sk.

3 Algebraic Methods for Bounding Polynomial Growth

In this section we study an algebraic approach to characterize polynomial growth
of matrix interpretations (over N, Q, and R). We employ the following definition
implicitly used in [14, 15].

Definition 1. Let M be a matrix interpretation. We say that M is polynomi-
ally bounded (with degree d) if the growth of the entries of all matrix products
in S∗ is polynomial (with degree d) in the length of such products.

The relationship between polynomially bounded matrix interpretations and the
derivational complexity of compatible TRSs is as follows (cf. [15]).

Lemma 2. Let R be a TRS and M a compatible matrix interpretation. If M
is polynomially bounded with degree d then dcR(k) = O(kd+1). ��

3.1 Spectral Radius

In this subsection we over-approximate the growth of entries of matrix products
of the form A1 · · ·Ak ∈ Sk by Mk where Mij = max {Aij | A ∈ S} for all
1 � i, j � n. Then, by non-negativity of the matrices in S, we have
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(A1 · · ·Ak)ij � (Mk)ij for all 1 � i, j � n (1)

Thus, polynomial boundedness of the entries of A1 · · ·Ak follows from polynomial
boundedness of the entries of Mk. In [15], the latter is completely characterized
by the spectral radius ρ(M) of M being at most one. Here we build on this result
(and its proof) but establish a lemma that allows to obtain a tight bound for
the degree of polynomial growth of the entries of Mk.

Lemma 3. Let M ∈ Rn×n
0 and let p ∈ R[x] be a monic polynomial that annihi-

lates M . Then ρ(M) � 1 if and only if all entries of Mk (k ∈ N) are asymptot-
ically bounded by a polynomial in k of degree d, where d := maxλ(0, #p(λ) − 1)
and λ are the roots of p with absolute value exactly one and multiplicity #p(λ).

Proof. Straightforward adaptation of the proof of [15, Lemma 4]. ��
Based on Lemma 3 (with p(x) = χM (x)), one obtains the following theorem
concerning complexity analysis via matrix interpretations.

Theorem 4 ([15, Theorem 6]). Let R be a TRS and M a compatible matrix
interpretation of dimension n. Further, let M denote the component-wise max-
imum of all matrices occurring in M. If the spectral radius of M is at most
one, then dcR(k) = O(kd+1), where d := maxλ(0, #χM (λ) − 1) and λ are the
eigenvalues of M with absolute value exactly one. ��
Obviously, the set of (monic) polynomials that annihilate a matrix M is infinite.
However, from linear algebra we know that this set is generated by a unique
monic polynomial of minimum degree that annihilates M , namely, the minimal
polynomial mM (x) of M . That is, if p(x) is any polynomial such that p(M) = 0
then mM (x) divides p(x). In particular, mM (x) divides the characteristic poly-
nomial χM (x). Moreover, mM (λ) = 0 if and only if λ is an eigenvalue of M ,
so every root of mM (x) is a root of χM (x). However, in case mM (x) �= χM (x),
the multiplicity of a root in mM (x) may be lower than its multiplicity in χM (x)
(cf. [8]). In light of these facts, we conclude that in Lemma 3 one should use the
minimal polynomial mM (x) rather than the characteristic polynomial χM (x).
Then the corresponding analogon of Theorem 4 is as follows.

Theorem 5. Let R be a TRS and M a compatible matrix interpretation of
dimension n. Further, let M denote the component-wise maximum of all matri-
ces occurring in M. If the spectral radius of M is at most one then dcR(k) =
O(kd+1), where d := maxλ(0, #mM (λ)−1) and λ are the eigenvalues of M with
absolute value exactly one. ��
Next we illustrate the usefulness of Theorem 5 on an example.

Example 6. Consider the TRS R consisting of the following two rewrite rules:2

h(x, c(y, z)) → h(c(s(y), x), z)
h(c(s(x), c(s(0), y)), z) → h(y, c(s(0), c(x, z))) M =

⎛

⎜
⎜
⎝

1 1 1 1
0 0 0 0
0 1 1 0
0 1 0 1

⎞

⎟
⎟
⎠

2 TPDB problem TRS/Endrullis 06/direct.xml
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There is a compatible matrix interpretation such that the component-wise max-
imum matrix M (given above) has characteristic polynomial χM (x) = x(x− 1)3

and minimal polynomial mM (x) = x(x − 1)2. Thus, the upper bound for the
derivational complexity of R derived from Theorem 4 is cubic, whereas the bound
obtained by Theorem 5 is quadratic.

Next we present an example that demonstrates the conceptual limitations arising
from the over-approximation of matrix products by the powers of the correspond-
ing maximum matrix.

Example 7. Consider the TRS R consisting of the rules

f(f(x)) → f(g(f(x))) g(g(x)) → x b(x) → x

Lemma 8. There is a matrix interpretation compatible with R that is polynomi-
ally bounded (in the sense of Definition 1), but there is no matrix interpretation
compatible with R where all entries in the component-wise maximum matrix are
polynomially bounded.

Proof. For the first item consider the following matrix interpretation M estab-
lishing linear derivational complexity of R (cf. Theorem 16) from Example 7:

fM(x) =

⎛

⎝
1 1 0
0 0 0
0 0 0

⎞

⎠x +

⎛

⎝
0
4
0

⎞

⎠ gM(x) =

⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠x +

⎛

⎝
1
0
3

⎞

⎠ bM(x) = x+

⎛

⎝
4
4
0

⎞

⎠

For the second item assume a compatible matrix interpretation M of dimension
n with bM(x) = Bx + b, fM(x) = Fx + f and gM(x) = Gx + g. Assume
G � In. To orient the first rule, the constraint Ff > FGf must be satisfied, but
by (weak) monotonicity of matrix multiplication we obtain the contradiction
Ff > FGf � FInf = Ff and hence G �� In, i.e., there exists an index l
such that Gll < 1. Since GG � In is needed to orient the second rule, we have∑

j GljGjl � 1 and consequently
∑

j �=l GljGjl > 0. The third rule demands
B � In and for the maximum matrix M we have M � max(In, G). From
(In)ll � 1 and

∑
j �=l GljGjl > 0 we conclude (M2)ll > 1, which gives rise to

exponential growth of (Mk)ll since all entries in M are non-negative. ��

3.2 Joint Spectral Radius

Instead of using a single maximum matrix to over-approximate the growth of
finite matrix products taken from a set of matrices S, in this subsection we pro-
vide a concise analysis using joint spectral radius theory [9, 10]. In particular,
we shall see that the joint spectral radius of S completely characterizes polyno-
mial growth of all such products, just like the spectral radius of a single matrix
characterizes polynomial growth of the powers of this matrix (cf. Lemma 3).
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Definition 9. Let S ⊆ Rn×n be a finite set of real square matrices, and let ‖·‖
denote a matrix norm. The growth function growth associated with S is defined
as follows:

growthS(k, ‖·‖) := max { ‖A1 · · ·Ak‖ | Ai ∈ S, 1 � i � k }

The asymptotic behaviour of growthS(k, ‖·‖) can be characterized by the joint
spectral radius of S.

Definition 10. Let S ⊆ Rn×n be finite, and let ‖·‖ denote a matrix norm. The
joint spectral radius ρ(S) of S is defined by the limit

ρ(S) := lim
k→∞

max { ‖A1 · · ·Ak‖1/k | Ai ∈ S, 1 � i � k }

It is well-known that this limit always exists and that it does not depend on
the chosen norm, which follows from the equivalence of all norms in Rn; e.g.,
one could take the norm given by the sum of the absolute values of all matrix
entries. Further, if S = {A} is a singleton set, the joint spectral radius ρ(S) of
S and the spectral radius ρ(A) of A coincide:

ρ(S) = lim
k→∞

‖Ak‖1/k = max { |λ| | λ is an eigenvalue of A } = ρ(A)

Since Definition 10 is independent of the actual norm, from now on we simply
write growthS(k). The following theorem (due to [2]) provides a characterization
of polynomial boundedness of growthS(k) by the joint spectral radius of S.

Theorem 11 ([2, Theorem 1.2]). Let S ⊆ Rn×n be a finite set of matrices.
Then growthS(k) = O(kd) for some d ∈ N if and only if ρ(S) � 1. In particular,
d � n − 1. ��

Hence, polynomial boundedness of growthS(k) is decidable if ρ(S) � 1 is decid-
able. But it is well-known that in general the latter is undecidable for arbitrary,
but finite sets S ⊆ Rn×n, even if S contains only non-negative rational (real)
matrices (cf. [10, Theorem 2.6]). However, if S contains only non-negative integer
matrices then ρ(S) � 1 is decidable. In particular, there exists a polynomial-time
algorithm that decides it (cf. [10, Theorem 3.1]). This algorithm is based on the
following lemma.

Lemma 12 ([10, Lemma 3.3]). Let S ⊆ Rn×n
0 be a finite set of non-negative,

real square matrices. Then there is a product A ∈ S∗ such that Aii > 1 for some
i ∈ {1, . . . , n} if and only if ρ(S) > 1. ��

According to [10], for S ⊆ Nn×n, the existence of such a product can be charac-
terized in terms of the graphs G(S) and G2(S) one can associate with S. More
precisely, there is a product A ∈ S∗ with Aii > 1 if and only if

1. there is a cycle in G(S) containing at least one edge of weight w > 1, or
2. there is a cycle in G2(S) containing at least one vertex (i, i) and at least one

vertex (p, q) with p �= q.
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Hence, we have ρ(S) � 1 if and only if neither of the two conditions holds, which
can be checked in polynomial time according to [10]. Furthermore, as already
mentioned in [10, Chapter 3], this graph-theoretic characterization does not only
hold for non-negative integer matrices, but for any set of matrices such that all
matrix entries are either zero or at least one (because then all paths in G(S)
have weight at least one).

Lemma 13. Let S ⊆ Rn×n
0 be a finite set of matrices such that all matrix

entries are either zero or at least one. Then ρ(S) � 1 is decidable in polynomial
time. ��

So, in the situation of Lemma 13, polynomial boundedness of growthS(k) is
decidable in polynomial time. In addition, the exact degree of growth can be
computed in polynomial time (cf. [10, Theorem 3.3]).

Theorem 14. Let S ⊆ Rn×n
0 be a finite set of matrices such that ρ(S) � 1 and

all matrix entries are either zero or at least one. Then

growthS(k) = Θ(kd)

where the growth rate d is the largest integer possessing the following property:
there exist d different pairs of indices (i1, j1), . . . , (id, jd) such that for every
pair (is, js) the indices is, js are different and there is a product A ∈ S∗ for
which Aisis , Aisjs , Ajsjs � 1, and for each 1 � s � d − 1, there exists B ∈ S∗

with Bjsis+1 � 1. Moreover, d is computable in polynomial time. ��

Next we elaborate on the ramifications of joint spectral radius theory on com-
plexity analysis of TRSs via polynomially bounded matrix interpretations. To
begin with, we observe that the characterization of polynomially bounded ma-
trix interpretations given in Definition 1 can be rephrased as follows: A matrix
interpretation M is polynomially bounded if the joint spectral radius of the set
of matrices occurring in M is at most one. This follows directly from Theorem 11
(using as ‖·‖ in growthS(k, ‖·‖) the matrix norm given by the sum of the abso-
lute values of all matrix entries). Due to the relationship between polynomially
bounded matrix interpretations and the derivational complexity of compatible
TRSs expressed in Lemma 2, we immediately obtain the following theorem,
which holds for matrix interpretations over N, Q, and R.

Theorem 15. Let R be a TRS and M a compatible matrix interpretation of
dimension n. Further, let S ⊆ Rn×n

0 denote the set of all matrices occurring in
M. If the joint spectral radius of S is at most one then dcR(k) = O(kn). ��

As this theorem assumes the worst-case growth rate for growthS(k), the inferred
degree of the polynomial bound may generally be too high (and unnecessarily
so). Yet with the help of Theorem 14, from which we obtain the exact growth
rate of growthS(k), Theorem 15 can be strengthened, at the expense of having
to restrict the set of permissible matrices.
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Theorem 16. Let R be a TRS and M a compatible matrix interpretation of
dimension n. Further, let S ⊆ Rn×n

0 denote the set of all matrices occurring in
M and assume that all matrix entries are either zero or at least one. If the joint
spectral radius of S is at most one then dcR(k) = O(kd+1), where d refers to the
growth rate obtained from Theorem 14. ��

4 Automata Methods for Bounding Polynomial Growth

In this section we study automata-based methods to classify polynomial growth
of matrix interpretations. Complementing Definition 1, we employ the following
definition of polynomial growth [19].

Definition 17. The growth function of a matrix interpretation M is defined as
growthM(k) := max {[t]1 | t is a term and |t| � k}. We say that M is polyno-
mially bounded with degree d if growthM(k) = O(kd) for some d ∈ N.

We recall basic notions of automata theory (cf. [3, 17]). A weighted automaton
(over R) is a quintuple A = (Q, Σ, λ, μ, γ) where Q is a finite set of states, Σ a
finite alphabet, and the mappings λ : Q → R, γ : Q → R are weight functions for
entering and leaving a state. The transition function μ : Σ → R|Q|×|Q| associates
with any letter in Σ a (|Q| × |Q|)-matrix over R. For a ∈ Σ, μ(a)pq denotes the
weight of the transition p

a−→ q. We often view λ and γ as row and column
vectors, respectively. We also write weight(p, a, q) for μ(a)pq and extend the
transition function μ homomorphically to words. The weight of x ∈ Σ∗, denoted
by weightA(x), is the sum of the weights of paths in A labeled with x. We define

weightA(x) =
∑

p,q∈Q

λ(p) · μ(x)pq · γ(q) = λ · μ(x) · γ

where the weight of the empty word is just λ · γ.
A weighted automaton A = (Q, Σ, λ, μ, γ) is called normal if the row vector

λ is (1, 0) and the column vector γ contains only entries with weight 0 or 1. Here
0 denotes a sequence of |Q| − 1 zeros. Let A be a normal weighted automaton.
The unique state q0 such that λ(q0) �= 0 is called initial and the states in
F := {q | γ(q) �= 0} are called final. We call a state p ∈ Q useful if there exists
a path in A from q0 to q ∈ F that contains p. An automaton A is trim if all
states are useful. In the sequel all considered automata will be normal.

The main result of this section is a complete (and polytime decidable) charac-
terization of polynomial growth of matrix interpretations over N, thus re-stating
the main result in [19]. We extend upon [19] by clarifying the polytime decid-
ability of the properties involved. Given a matrix interpretation M, we denote
by CM the component-wise maximum of all absolute vectors in M.

Definition 18. With every n-dimensional matrix interpretation M for a sig-
nature F we associate a weighted automaton A = (Q, Σ, λ, μ, γ) as follows: Q =
{1, . . . , n}, Σ = {fi | f ∈ F has arity k and 1 � i � k}, λ = (1, 0), γ ∈ {0, 1}n

such that γ(i) = 1 if and only if CM
i > 0, and μ(fi) = Fi where Fi denotes the

i-th matrix of fM.
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Example 19. Consider the matrix interpretation M of dimension 3 with

aM(x) =

⎛

⎝
1 1 0
0 1 0
0 0 0

⎞

⎠x bM(x) =

⎛

⎝
1 0 0
0 1 1
0 0 1

⎞

⎠x +

⎛

⎝
0
0
1

⎞

⎠

The following automaton A = (Q, Σ, λ, μ, γ) corresponds to M:

1 2 3

a1 : 1, b1 : 1

a1 : 1

a1 : 1, b1 : 1

b1 : 1

b1 : 1

As A is normal, we represent λ and γ by indicating the input and output states
as usual for finite automata.

In analogy to Definition 17 we define the growth function of a weighted
automaton.

Definition 20. Let A = (Q, Σ, λ, μ, γ) be a weighted automaton. The growth
function of A is defined as growthA(k) := max {weight(x) | x ∈ Σk}.

The following theorem restates [19, Theorem 3.3] in connection with the remark
immediately following the theorem.

Theorem 21. Let M be a matrix interpretation and A the corresponding au-
tomaton. Then growthA(k) = O(kd) if and only if growthM(k) = O(kd+1). ��

As a consequence of Theorem 21 we observe that the growth of matrix interpre-
tations and weighted automata are polynomially related. Hence if we can decide
the polynomial growth rate of automata, we can decide the polynomial growth
rate of matrix interpretations. In the remainder of this section we restrict to
matrix interpretations over N (and therefore to weighted automata over N).

The growth rate of automata has been studied in various contexts. Here we
only mention two independent developments. Weber and Seidl provide in [20] a
complete characterization of the degree of growth of the ambiguity of nondeter-
ministic finite automata (NFAs). If we restrict to weights over {0, 1}, weighted
automata simplify to NFAs. Furthermore, if the degree of growth of the ambi-
guity of an NFA A is d then growthA(k) = O(kd) and vice versa. Jungers [10]
completely characterizes polynomial growth rates of matrix products in the con-
text of joint spectral radius theory (cf. Theorem 14). Due to the closeness of
weighted automata to finite automata we follow the account of Weber and Seidl
here. To make full use of the results in [20] it suffices to observe that weighted
automata over N can be represented as finite automata with parallel edges. This
will also allow to place later developments (see Section 5) into context.

Consider the following criterion for a weighted automaton A = (Q, Σ, λ, μ, δ):

∃ q ∈ Q ∃x ∈ Σ∗ such that weight(q, x, q) � 2 and q is useful (EDA)
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The criterion was introduced in [20] for NFAs. A similar criterion can be distilled
from the decision procedures given in [10, Chapter 3]. Note that the conditions
given after Lemma 12 are equivalent to EDA if we restrict our attention to trim
automata. Without loss of generality let Q = {1, . . . , n} and let S be the set
of transition matrices in A. By definition, there exists a product A ∈ S∗ with
Aii � 2 if and only if there exists x ∈ Σ∗ such that weight(i, x, i) � 2. Hence A
fulfills EDA if and only if condition 1 or condition 2 is fulfilled. In the following
we sometimes refer to EDA as the collection of these conditions.

Condition EDA is sufficient to decide the polynomial growth of N-weighted
automata. The following theorem embodies Theorem 5.2 in [19]. The polytime
decision procedure stems from [20].

Theorem 22. Let A = (Q, Σ, λ, μ, γ) be a weighted automaton over N. Then
there exists d ∈ N such that growthA(k) = O(kd) if and only if A does not admit
EDA. Furthermore this property is decidable in time O(|Q|4 · |Σ|). ��

To determine the degree of polynomial growth, the following criterion introduced
in [20] is used:

∃ p1, q1, . . . , pd, qd ∈ Q ∃ v1, u2, v2, . . . , ud, vd ∈ Σ∗ such that ∀ i � 1 ∀ j � 2
pi �= qi, pi

vi−→ pi, pi
vi−→ qi, qi

vi−→ qi, qj−1
uj−→ pj, pi and qi are useful (IDAd)

The criterion IDAd can be visualized as follows:

p1 q1 · · · pd qd

v1

v1

v1

u2 ud

vd

vd

vd

In the same vein as for EDA, one easily sees that the condition IDAd is closely
linked (on trim automata) to the conditions stated in Theorem 14. This will be
detailed in Section 5.

Example 23 (continued from Example 19). It is easy to see that A complies with
IDA2, where p1 = 1, q1 = p2 = 2, and q2 = 3. Moreover, an easy calculation
gives weightA(anbm) = weightA(1, anbm, 3) = nm and thus the growth rate of A
is quadratic.

The next theorem essentially follows from a close inspection of the proof of [20,
Theorem 4.2] in connection with Theorem 21.

Theorem 24. Let M be a matrix interpretation of dimension n and let A =
(Q, Σ, λ, μ, γ) be the corresponding weighted automaton. Then growthM(k) =
Θ(kd+1) if and only if A does not comply with EDA nor with IDAd+1, but complies
with IDAd. Furthermore this property is decidable in time O(|Q|6 · |Σ|). ��

As a direct consequence of the theorem together with Theorem 21 we obtain the
following corollary.
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Corollary 25. Let R be a TRS and let M be a compatible matrix interpretation
of dimension n. Further, let A be the corresponding weighted automaton such
that A does not comply with EDA nor with IDAd+1. Then dcR(k) = O(kd+1).
Furthermore the conditions given are decidable in polynomial time. ��

Example 26 (continued from Example 23). It is easy to see that A does not
comply with EDA nor with IDA3. Hence the growth of the matrix interpretation
M is at most cubic, i.e., growthM(k) = O(k3).

5 Unifying Algebraic and Automata-Based Methods

In this section we unify the algebraic and the automata-based approach presented
in Sections 3 and 4. We start by relating the two different notions of polynomial
growth of matrix interpretations that have been studied in the literature (cf.
Definitions 1 and 17). The next example shows that these two definitions are
not polynomially related.

Example 27. Consider the TRS f(x) → x together with the following compatible
matrix interpretation M:

fM(x) =
(

1 1
0 2

)

x +
(

1
0

)

It is easy to see that the growth of the entries in the second column of the matrix
is exponential, so M is not of polynomial growth with respect to Definition 1.
However, [t]1 < |t| for any term t and thus M is of polynomial growth with
respect to Definition 17.

Still, morally both definitions are equal. Observe that the entries that grow ex-
ponentially in the matrix in Example 27 are irrelevant when computing the value
[t]1. In order to prove this we exploit the connection between matrix interpreta-
tions and weighted automata emphasized in Section 4.

Example 28 (continued from Example 27). The weighted automaton A corre-
sponding to M can be pictured as follows:

1 2

f1 : 1

f1 : 1

f1 : 2

Observe that A is not trim because state 2 is not useful.

Lemma 29. Let R be a TRS and let M be a compatible matrix interpretation.
There exists a matrix interpretation N compatible with R such that the corre-
sponding automaton is trim. Furthermore, growthM(k) = growthN (k).
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Proof. Following [19], with every position p ∈ Pos(t) we associate a word tp
over Σ:

tp =

{
ε if p = ε

fi · tq if p = i · q and t = f(t1, . . . , tn)

The set Path(t) consists of all these words. We write t(p) for the root symbol of
the subterm of t at position p. Let M be a matrix interpretation of dimension
n and let A = (Q, Σ, λ, μ, γ) be the corresponding normal weighted automaton.
A key observation is the following identity, which holds for all assignments α of
vectors in Nn to the variables in t:

[α]M(t) =
∑

p∈Pos(t)

μ(tp) · abs(α, t(p))

where abs(α, t(p)) = abs(t(p)) if t(p) ∈ F and abs(α, t(p)) = α(t(p)) otherwise.
Without loss of generality we assume that R is non-empty. As M is compatible
with R, there must be a word in Σ∗ of positive weight. This implies in particular
that state 1 is useful. Now suppose that A is not trim. Let B = (Q′, Σ, λ′, μ′, γ′)
denote an equivalent trim automaton. We have λ′ = λ�Q′ , γ′ = γ�Q′ , and for
all a ∈ Σ, μ′(a) = μ(a)�Q′×Q′ . To simplify notation we assume (without loss of
generality; recall that state 1 is useful) that Q′ = {1, . . . , m} for some m < n.

Let N be the matrix interpretation corresponding to B, where the absolute
vector of every fN equals abs(f)�Q′ . We prove that N is compatible with R. Let
� → r be a rule in R and let β : V → Nm be an arbitrary assignment. Let α : V →
Nn be the assignment that is obtained from β by zero padding, i.e., β(x)i = α(x)i

for 1 � i � m and β(x)i = 0 for m < i � n. From the compatibility of M and R
we obtain [α]M(�)1 > [α]M(r)1 and [α]M(�)j � [α]M(r)j for all 1 < j � n. We
claim that [α]M(t)i = [β]N (t)i for all 1 � i � m. From the claim we immediately
obtain [β]N (�)1 > [β]N (r)1 and [β]N (�)j � [β]N (r)j for all 1 < j � m. It follows
that N is compatible with R and by Definition 17, growthM(k) = growthN (k).

To prove the claim, fix i ∈ {1, . . . , m} and let λi = (0, 1, 0) be the row vector
of dimension n where the 1 is at position i. Let p ∈ Pos(t). We have

λi · μ(tp) · abs(α, t(p)) = (μ(tp) · abs(α, t(p)))i

= (μ′(tp) · abs(α, t(p))�Q′)i

= (μ′(tp) · abs(β, t(p)))i = λ′
i · μ′(tp) · abs(β, t(p))

where λ′
i = λi�Q′ . It follows that [α]M(t)i = [β]N (t)i for all 1 � i � m. ��

Example 30 (continued from Example 28). Because state 2 in the weighted au-
tomaton A is useless, it is removed to obtain an equivalent trim automaton B.
This one-state automaton gives rise to the 1-dimensional matrix interpretation
(i.e., linear polynomial interpretation) N with fN (x) = x + 1.

An immediate consequence of Theorem 21 and Lemma 29 is that Definitions 1
and 17 are equivalent in the following sense.

Corollary 31. Let R be a TRS. The following statements are equivalent.
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1. There exists a matrix interpretation M compatible with R that is polynomi-
ally bounded according to Definition 1.

2. There exists a matrix interpretation N compatible with R that is polynomi-
ally bounded according to Definition 17.

Furthermore the entries of all products of matrices in M are polynomial with
degree d in the length of such products if and only if growthN (k) = O(kd+1).

Proof. First, assume that M is a compatible matrix interpretation that is poly-
nomially bounded according to Definition 1. Further assume the entries of all
matrix products of matrices in M are polynomial with degree d in the length
of such products. Since the matrices occurring in M form the transitions of
the automaton A corresponding to M, growthA(k) = O(kd). Hence, by Theo-
rem 21, growthM(k) = O(kd+1), which means that M is polynomially bounded
according to Definition 17.

As to the converse statement, assume that N is a compatible matrix in-
terpretation that is polynomially bounded according to Definition 17 and let
growthN (k) = O(kd+1). By Lemma 29 there exists a compatible matrix inter-
pretation M such that growthN (k) = growthM(k) and the corresponding au-
tomaton A is trim. By Theorem 21, we have growthA(k) = O(kd). This entails
that all entries of all matrix products of matrices in M are polynomial with
degree d, as A is trim, which means that M is polynomially bounded according
to Definition 1. ��

In what follows we show that the algebraic approach presented in Section 3
readily subsumes the automata theory based approach of Section 4. To be precise,
we show that the restriction of Theorem 16 to matrix interpretations over N

applies in any situation where Corollary 25, the main result of Section 4, applies.

Theorem 32. Let R be a TRS. If one can establish polynomial derivational
complexity of some degree via Corollary 25, then one can also establish polyno-
mial derivational complexity of the same degree via Theorem 16.

Proof. Let M be a compatible matrix interpretation over N of dimension n and
let S ⊆ Nn×n denote the set of all matrices occurring in M. By Lemma 29
we may assume that the automaton A = (Q, Σ, λ, μ, γ) corresponding to M
is trim. By assumption A does not comply with EDA nor with IDAd+1 and
dcR(k) = O(kd+1). As one obtains the tightest bound for dcR(k) if d + 1 is the
least integer such that ¬IDAd+1 holds in A, or, equivalently, if d is the largest
integer such that IDAd holds in A, this will be assumed in what follows.

First we show that ¬EDA implies ρ(S) � 1. By Lemma 12 we have ρ(S) > 1 if
and only if there is a product A ∈ S∗ such that Aii > 1 for some i ∈ {1, . . . , n}.
By construction of A the latter is equivalent to the existence of a word x ∈ Σ∗

(corresponding to the product A ∈ S∗) such that μ(x)ii > 1 for some state
i ∈ Q = {1, . . . , n}, or, equivalently, μ(x)ii = weight(i, x, i) � 2 since A is
N-weighted. This means that A complies with EDA because state i is useful.

Next we show that d is exactly the growth rate mentioned in Theorem 16,
that is, the growth rate inferred from Theorem 14. As A complies with IDAd,
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there are useful states p1, q1, . . . , pd, qd ∈ Q and words v1, u2, v2, . . . , ud, vd ∈ Σ∗

such that ps �= qs, ps
vs−→ ps, ps

vs−→ qs, and qs
vs−→ qs for all s = 1, . . . , d and

qs−1
us−→ ps for all s = 2, . . . , d. Letting As = μ(vs) ∈ S∗ for s = 1, . . . , d and

Bs = μ(us) ∈ S∗ for s = 2, . . . , d (by the one-to-one correspondence between
letters in Σ and matrices in S), this is equivalent to the existence of d pairs
of indices (p1, q1), . . . , (pd, qd) and matrix products A1, B2, A2, . . . , Bd, Ad ∈ S∗

such that ps �= qs and (As)psps , (As)psqs , (As)qsqs � 1 for all s = 1, . . . , d and
(Bs)qs−1ps � 1 for all s = 2, . . . , d. Note that all pairs of indices (states) must
be different because otherwise A would comply with EDA, contradicting our
assumption. Hence, all conditions concerning the growth rate in Theorem 14 are
satisfied and Theorem 16 yields dcR(k) = O(kd+1). ��

6 Automation and Experimental Results

6.1 Automation

In this section we describe certificates for polynomial boundedness of matrix
interpretations. These certificates will be described by finite-domain constraint
systems and are solved by machine. The constraint domain consists of relations
on the state set of an automaton. In our implementations, the constraint system
is solved via translation to a constraint system in propositional logic. This is mo-
tivated by the intended application in conjunction with a constraint system for
the entries in the matrices that describes its compatibility with a given TRS [4].
So if there is a solution, it fulfills both properties (compatibility and polynomial
growth).

First we focus on how to ensure ρ(A) � 1 for a single n-dimensional matrix
with non-negative real entries, which is needed to implement Theorem 5. We
base our encoding of the minimal polynomial mA on the factorization approach
(C) from [15] but instead of demanding certain properties of the characteristic
polynomial we encode a monic polynomial p that annihilates A such that |λ| � 1
for every root λ of p. One candidate for p is the characteristic polynomial of A,
so the degree of p can be chosen n. To cancel some factors we introduce variables
C, Cj ∈ {0, 1} such that

p(λ) = (Cλ − Cr + 1 − C)b ·
∏

j

(Cjλ
2 + Cjpjλ + Cjqj + 1 − Cj)

Here r, pj , qj ∈ R and b = 0 if n is even and b = 1 otherwise. Note that if C
is zero then this factor simplifies to one and hence does not affect the product,
while if C is one, the factor contributes to p. The same property holds for the Cj .
We add a constraint p(A) = 0 to the encoding which ensures that p annihilates
A. By the shape of the factorization, p is automatically monic. The condition
|λ| � 1 is encoded based on Cr, Cjpj , Cjqj as in [15] if Cj = 1, while Cj = 0 does
not require additional constraints. Finding the minimal polynomial mA is then
an optimization problem, i.e., it amounts to minimize the maximum multiplicity
of roots with absolute value exactly one.
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Next we sketch how to count the number of roots equal to one. We abbreviate
(Cjpj)2 − 4Cjqj by Dj. Obviously Cr = 1 corresponds to an occurrence of root
one and Cr = −1 to an occurrence of root minus one. For the other factors,
inspecting the quadratic formula gives root one if Cjpj + Cjqj = −1. Then
Dj = 0 corresponds to a double occurrence and Dj > 0 to a single occurrence.
The reasoning for root minus one is similar and based on Cjpj = Cjqj + 1. To
keep the encoding simple, we over-approximate the multiplicity of a complex
root with absolute value one (i.e., we possibly identify different complex roots
for counting). This counter is incremented by one if Dj < 0 and Cjqj = 1.

The following example shows that computing the minimal polynomial after es-
tablishing a compatible matrix interpretation may not result in optimal bounds.

Example 33. Consider the TRS consisting of the single rule f(x) → x and assume
a compatible matrix interpretation of dimension n having maximum matrix A
with Aij = 0 if i > j and Aij = 1 otherwise. Then χA(x) = mA(x) and
hence Theorem 5 establishes a polynomial bound of degree n. However, if the
maximum matrix equals In then Theorem 5 establishes a linear upper bound on
the derivational complexity.

Next we aim to describe polynomial growth of arbitrary matrix products with
entries from N. Section 4 gives polynomial-time algorithms for checking polyno-
mial boundedness and computing the degree of growth for weighted automata.
We will express these algorithms as constraint systems. By Cook’s theorem, we
know that any P (even NP) computation can be simulated by a polynomially-
sized SAT formula. The size of the formula is the product of space and time of
the computation. Thus a straightforward translation of the decision procedure
for polynomial boundedness (¬EDA) results in a formula size of O(n6), and for
polynomial boundedness of a fixed degree (¬IDAd+1), in a formula size of O(n9),
where n is the dimension of the matrices.

Note that Cook’s translation produces a formula where the number of vari-
ables is of the same order as the number of clauses. We will strive to reduce
theses numbers, and in particular, the number of variables. E.g., we implement
the criterion ¬IDAd+1 by O(n8) clauses but only O(n5) variables. The fewer vari-
ables, the less choice points there are for the SAT solver, and for a fixed set of
variables, more constraints allow for more unit propagations, hopefully speeding
up the solver even more.

The formula size is reduced by replacing parts of the original algorithms by
approximations, but using them in such a way as to still ensure correctness and
completeness. E.g., for reachability with respect to a set of matrices S, we specify
a relation R ⊆ Q2 such that R is reflexive and transitive and, for all p, q ∈ Q,
G(S)pq > 0 implies (p, q) ∈ R,

While the presence of patterns (EDA, IDAd) is easily described by a con-
straint system in existential logic, the challenge is to specify the absence of those
patterns.

¬EDA: By the algorithm given right after Lemma 12, we use the following
constraints, for a given set S of matrices:
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– Condition 1 follows from the constraint G(S)ij > 1 ⇒ (j, i) /∈ R, for all i
and j, where R is the over-approximation of reachability discussed above.

– For condition 2, denote by G2 the adjacency relation of G2(S). A cycle
from (i, i) through some (p, q) for p �= q means that (p, q) is strongly G2-
connected to (i, i). Therefore, we set D = {(q, q) | q ∈ Q} and specify an
over-approximation D1 of the index pairs reachable from the main diagonal
by D ⊆ D1 and G2(D1) ⊆ D1, and an over-approximation D2 of the index
pairs that can reach the main diagonal by D ⊆ D2 and G−

2 (D2) ⊆ D2, and
then require D1 ∩ D2 ⊆ D.

The resulting constraint system is satisfiable if and only if A does not comply
with EDA. So we have a complete characterization of polynomial boundedness,
equivalently, of ρ(S) � 1 for a set of non-negative integer matrices (cf. Lemma 13
and Theorem 22).

The constraint system has O(n2) variables and O(n4) constraints, which is
small in comparison to the size of the constraint system that describes compat-
ibility of the interpretation with the rewrite system [4].

¬IDAd+1: We use the relation I ⊆ Q2 given by

I = {(p, q) | p �= q and p
x−→ p, p

x−→ q, q
x−→ q for some x ∈ Σ+}

and let J = I ◦ R, where R is an over-approximation of reachability as defined
previously. Then IDAd implies that there is a J-chain of length d, and conversely,
if there is no J-chain of length d + 1 then ¬IDAd+1 holds. To specify I, we use
the graph G3(S), and denote its adjacency relation by G3. For each (p, q) with
p �= q we specify a set T ⊆ Q3 by (p, p, q) ∈ T and G3(T ) ⊆ T . Then (p, q, q) ∈ T
implies I(p, q). We bound the length of J-chains by encoding a height function
h : Q → {0, 1, . . . , d} and a monotonicity property J(p, q) ⇒ h(p) > h(q). Since
only comparison but no arithmetic is needed here, it is convenient to represent
numbers in unary notation.

The resulting constraint system is satisfiable if and only if ¬IDAd+1, so we
obtain a characterization of growth O(kd). The system has O(n5) variables and
O(n8) constraints. This is comparable in size to the compatibility constraints.

6.2 Experimental Results

The criteria proposed in this paper have been implemented in the complexity
tools CaT [21] and matchbox [19]. All tests have been performed on a server
equipped with 64 GB of main memory and eight dual-core AMD Opteron R© 885
processors running at a clock rate of 2.6 GHz with a time limit of 60 seconds per
system. For experiments3 the 295 non-duplicating TRSs in TPDB 8.0 for which
CaT could find a compatible matrix interpretation (not necessarily polynomially
bounded) have been considered.

We searched for matrix interpretations of dimension n ∈ {1, . . . , 5} by encod-
ing the constraints as an SMT problem (quantifier-free non-linear arithmetic),
3 For full details see http://colo6-c703.uibk.ac.at/hzankl/11cai

http://colo6-c703.uibk.ac.at/hzankl/11cai
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Table 1. Polynomial bounds for 295 systems

O(k) O(k2) O(k3) O(kn)

triangular 92 194 208 210
Theorem 4 66 180 194 196
Theorem 5 72 187 193 194∑

92 201 215 216

Theorem 15 (¬EDA) 73 173 188 213
Theorem 16 (¬EDA, ¬IDAd+1) 107 214 219 224∑

110 225 231 236
∑

112 227 235 239

which is solved by “bit-blasting”. That means the problem is transformed into
a finite domain problem by prescribing discrete and finite domains for numeri-
cal unknowns. Then we encode these discrete domains by propositional values,
to obtain a propositional satisfiability problem, for which efficient solvers are
available. For finding matrix interpretations, this is a successful method, even
with surprisingly small domains that can be represented by at most 5 bits. In the
experiments we only considered matrix interpretations over the natural numbers.

Table 1 indicates the number of systems where polynomial upper bounds on
the derivational complexity could be established. The rows in the table corre-
spond to different approaches to polynomially bound the derivational complexity
of rewrite systems and the columns give the degree of these polynomials. Trian-
gular matrix interpretations [14, 15, 19] serve as a reference (here the degree of
the polynomial is determined by the number of ones in the main diagonal).

The first three rows (and the accumulated results in row four) operate on
the component-wise maximum matrix. While in theory Theorem 4 allows to
establish strictly more polynomial bounds than triangular matrices, in practice
the constraints are harder to solve, resulting in a worse overall score. A similar
argument holds when comparing Theorems 4 and 5, i.e., explaining the better
performance of the latter for low bounds but worse result for polynomial bounds.
The accumulative score of the first three rows justifies each of the approaches.

The criteria in the next two rows are not restricted to the growth of the
maximum matrix. In the former row no explicit bounds on the degree are added
to the constraints (so the dimension of the matrices dominates the degree of
polynomial growth) while in the latter row upper bounds are explicitly added
to the search. Somehow surprisingly, the accumulated score of these two rows is
noticeable larger than the score for each row on its own.

The final row in Table 1 shows that the methods from the first block do not
significantly increase the power of the second block (in our experiments). How-
ever, the criteria from the first block are also suitable for matrix interpretations
over R, while the methods involved in the second block become undecidable over
this domain.
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7 Concluding Remarks

In this paper we employed joint spectral radius theory to unify as well as clarify
the different approaches to obtain upper bounds on the derivational complexity
of rewrite systems from compatible matrix interpretations. Our results are not
limited to the study of derivational complexity, but can also be employed in the
context of runtime complexity of rewrite systems [7].

It remains to be seen whether joint spectral radius theory will advance imple-
mentations (for matrix interpretations over Q and R). For matrices with rational
or real entries the joint spectral radius is not computable in general. In the future
we will investigate whether good approximations can be obtained to improve the
complexity bounds inferred from matrix interpretations over Q and R [5, 22].

We conclude the paper by observing that matrix interpretations are incom-
plete when it comes to establishing polynomial derivational complexity. This
shows that new ideas are necessary to obtain a complete characterization of
TRSs with polynomial derivational complexity (cf. RTA open problem #107).4

Lemma 34. There exists a TRS with linear derivational complexity that is com-
patible with a matrix interpretation but not with a polynomially bounded one.

Proof. To prove this result we extend the TRS R from Example 7 with the rule
b(x) → g(x). The resulting TRS S has linear derivational complexity since it is
match-bounded by 3 [6]. To obtain a matrix interpretation compatible with S,
we change the interpretation of b in the proof of Lemma 8 to

bM(x) =

⎛

⎝
1 0 0
0 1 1
0 1 1

⎞

⎠ x +

⎛

⎝
4
4
3

⎞

⎠

That there cannot exist a polynomially bounded matrix interpretation for S
follows from Corollary 31 and the proof of Lemma 8 since B � max(In, G) and
hence entries in Bk grow exponentially. ��

Since the TRS in the proof of the above lemma is a string rewrite system and
match-bounded, this lemma also answers a question by Waldmann, cf. [19, Sec-
tion 10]: Do all match-bounded string rewrite systems have a polynomially (even
linearly) bounded matrix interpretation? Here linearly bounded refers to Defini-
tion 17.
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(2002)

17. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press,
Cambridge (2009)

18. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer
Science, vol. 55. Cambridge University Press, Cambridge (2003)

19. Waldmann, J.: olynomially bounded matrix interpretations. In: Lynch, C. (ed.)
RTA 2010. LIPIcs, vol. 6, pp. 357–372. Schloss Dagstuhl, Dagstuhl (2010)

20. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. TCS 88(2),
325–349 (1991)

21. Zankl, H., Korp, M.: Modular complexity analysis via relative complexity. In:
Lynch, C. (ed.) RTA 2010. LIPIcs, vol. 6, pp. 385–400. Schloss Dagstuhl, Dagstuhl
(2010)

22. Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational arithmetic. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16. LNCS(LNAI), vol. 6355, pp. 481–500.
Springer, Heidelberg (2010)

http://arxiv.org/abs/0904.0570


From Grammars and Automata to Algebras and
Coalgebras

Peter Padawitz

Technical University of Dortmund
Germany

Abstract. The increasing application of notions and results from cat-
egory theory, especially from algebra and coalgebra, has revealed that
any formal software or hardware model is constructor- or destructor-
based, a white-box or a black-box model. A highly-structured system may
involve both constructor- and destructor-based components. The two
model classes and the respective ways of developing them and reasoning
about them are dual to each other. Roughly said, algebras generalize the
modeling with context-free grammars, word languages and structural in-
duction, while coalgebras generalize the modeling with automata, Kripke
structures, streams, process trees and all other state- or object-oriented
formalisms. We summarize the basic concepts of co/algebra and illus-
trate them at a couple of signatures including those used in language or
compiler construction like regular expressions or acceptors.

1 Introduction

More than forty years of research on formal system modeling led to the dis-
tinction between algebraic models on the one hand and coalgebraic ones on the
other. The former describes a system in terms of the synthesis of its components
by means of object-building operators (constructors). The latter models a sys-
tem in terms of the analysis of its components by means of object-modifying,
-decomposing or -measuring operators (destructors). The traditional presenta-
tion of a class of algebraic models is a context-free grammar that provides a
concrete syntax of a set of constructors, whereas a class of coalgebraic models is
traditionally given by all automata, transition systems or Kripke structures with
the same behavior. Their respective state transition or labeling functions yield a
set of the destructors. But not any member of such a class of models admits the
application of powerful methods to operate on and reason about it. Among the
members of an algebraic class it is the initial one, among those of a coalgebraic
class it is the final one that the modeling should aim at. Initial algebras enable
recursion and induction. Final coalgebras enable corecursion and coinduction.

Twenty years ago algebraic modeling was mainly algebraic specification and
thus initial and free algebras were the main objects of interest [18,17,14,9], al-
though hidden algebra and final semantics approaches [21,30,16,27,47,48] already
tended to the coalgebraic view (mostly in terms of greatest quotients of initial
models). But first the dual concepts of category and fixpoint theory paved the

F. Winkler (Ed.): CAI 2011, LNCS 6742, pp. 21–43, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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way to the principles and methods current algebraic system modeling is based
upon.

Here we use a slim syntax of types and many-sorted signatures, expressive
enough for describing most models one meets in practice, but avoiding new
guises for well-established categorical concepts. For instance and in contrast to
previous hierarchical approaches (including our own), we keep off the explicit dis-
tinction of primitive or base sorts and a fixed base algebra because such entities
are already captured by the constant functors among the types of a signature.
Section 2 presents the syntax and semantics of the domains for co/algebraic
models of constructive resp. destructive signatures. Section 3 draws the connec-
tion from signatures to functor co/algebras and provides initial and final model
constructions. Roughly said, the latter are least resp. greatest fixpoints of the
respective functor. Section 4 presents fundamental concepts and rules dealing
with the extension, abstraction or restriction of and the logical reasoning about
co/algebraic models. Again we are faced with least and greatest fixpoints, here
with the relational ones co/inductive proofs are based upon. Moreover, each el-
ement of a – usually coalgebraic – class of infinite structures can be modeled as
the unique fixpoint of the function derived from a set of guarded equations.

We assume that the reader is somewhat familiar with the notions of a category,
a functor, a diagram, a co/cone, a co/limit, a natural transformation and an
adjunction. Given a category K, the target object of a colimit resp. source object
of a limit of the empty diagram ∅ → K is called initial resp. final in K. We
remind of the uniqueness of co/limits modulo or up to isomorphism. Hence initial
or final objects are also unique up to isomorphism.
Set denotes the category of sets with functions as morphisms. Given an index

set I,
∏

s∈I Ai and
∐

s∈I Ai denote the product resp. coproduct (= disjoint
union) of sets Ai, i ∈ I. For all i ∈ I, πi :

∏
s∈I Ai → Ai and ιi : Ai →

∐
s∈I Ai

denote the i-th projection resp. injection: For all a = (ai)i∈I ∈
∏

s∈I Ai, i ∈ I
and b ∈ Ai, πi(a) = ai and ιi(b) = (b, i). Given functions fi : A → Ai and
gi : Ai → A for all i ∈ I, 〈fi〉i∈I : A →

∏
s∈I Ai and [gi]i∈I :

∐
s∈I Ai → A

denote the product resp. coproduct extension of {fi}i∈I : For all a ∈ A, i ∈ I
and b ∈ Ai, 〈fi〉i∈I(a) = (fi(a))i∈I , [gi](b, i) = gi(b),

∏
s∈I fi = 〈fi ◦ πi〉 and∐

s∈I gi = [ιi ◦ gi].
1 denotes the singleton {∗}. 2 denotes the two-element set {0, 1}. The elements

of 2 are regarded as truth values. Let A be a set. idA : A→ A denotes the identity
on A. A∗, Pfin(A) and Bfin(A) = {f : A→ N | supp(f) = f−1(N \ {0}) is finite}
denote the sets of finite words, finite sets resp. finite multisets of elements of A.

2 Many-Sorted Signatures and Their Algebras

Let S be a set of sorts. An S-sorted or S-indexed set is a family A = {As | s ∈
S} of sets. An S-sorted subset of A, written as B ⊆ A, is an S-sorted set with
A ⊆ B for all s ∈ S. Given S-sorted sets A1, . . . , An, an S-sorted relation
r ⊆ A1 × . . . × An is an S-sorted set with rs ⊆ A1,s × . . . × An,s for all s ∈ S.
Given S-sorted sets A,B, an S-sorted function f : A → B is an S-sorted set



From Grammars and Automata to Algebras and Coalgebras 23

such that for all s ∈ S, fs is a function from As to Bs. SetS denotes the category
of S-sorted sets as objects and S-sorted functions as morphisms.

BT(S) denotes the inductively defined set of (bounded) types over S:

S ⊆ BT(S),
X ∈ Set ⇒ X ∈ BT(S),
e1, . . . , en ∈ BT(S) ⇒ e1 × . . .× en, e1 + . . .+ en ∈ BT(S),
e ∈ BT(S) ⇒ word(e), bag(e), set(e) ∈ BT(S),
X ∈ Set ∧ e ∈ S ⇒ eX ∈ BT(S).

We regard e ∈ BT(S) as a finite tree: Each inner node of e is labelled with a
type constructor (×, +, list, bag, set or _X for some X ∈ Set) and each leaf is
labelled with an element of S.
e ∈ BT(S) is polynomial if e does not contain set. PT(S) denotes the set of

polynomial types over S.
The meaning of e ∈ BT(S) is a functor Fe : SetS → Set that is inductively

defined as follows (also called predicate lifting; see [24,25]): Let A,B be S-
sorted sets, h : A → B be an S-sorted function, s ∈ S, e, e1, . . . , en ∈ BT(S),
a1, . . . , an ∈ Fe(A), f ∈ Bfin(Fe(A)), B ∈ Pfin(Fe(A)), b ∈ B, X ∈ Set and
g : X → Fe(A).

Fs(A) = As, Fs(h) = hs, FX(A) = X, FX(h) = idX ,
Fe1×...×en(A) =

∏n
i=1 Fei (A), Fe1×...×en(h) =

∏n
i=1 Fei(h),

Fe1+...+en(A) =
∐n

i=1 Fei (A), Fe1+...+en(h) =
∐n

i=1 Fei(h),
Fword(e)(A) = Fe(A)∗, Fword(e)(h)(a1 . . . an) = Fe(h)(a1) . . . Fe(h)(an),
Fbag(e)(A) = Bfin(Fe(A)), Fbag(e)(h)(f)(b) =

∑
{f(a) | Fe(h)(a) = b},

Fset(e)(A) = Pfin(Fe(A)), Fset(e)(h)(B) = {Fe(h)(b) | b ∈ B},
FeX (A) = (X → Fe(A)), FeX (h)(g) = Fe(h) ◦ g.

Each function E : S → BT(S) induces an endofunctor FE : SetS → SetS: For
all s ∈ S, FE(A)(s) = FE(s)(A) and FE(h)(s) = FE(s)(h).

Given S-sorted sets A,B and an S-sorted relation r ∈ A × B, the relation
lifting Rele(r) ⊆ Fe(A) × Fe(B) of r is inductively defined as follows (analo-
gously to [24,25]): Let s ∈ S, e, e1, . . . , en ∈ BT(S) and X ∈ Set.

Rels(r) = rs, RelX(r) = 〈idX , idX〉(X),
Rele1×...×en(r) = {((a1, . . . , an), (b1, . . . , bn)) | ∀ 1 ≤ i ≤ n : (ai, bi) ∈ Relei(r)},
Rele1+...+en(r) = {((a, i), (b, i)) | (a, b) ∈ Relei(r), 1 ≤ i ≤ n},
Relword(e)(r) = {(a1 . . . an, b1 . . . bn) | ∀ 1 ≤ i ≤ n : (ai, bi) ∈ Rele(r), n ∈ N},
Relbag(e)(r) = {(f, g) | ∃ p : supp(f) ∼→ supp(g) :

∀ a ∈ supp(f) : f(a) = g(p(a)) ∧ (a, p(a)) ∈ Rele(r)},
Relset(e)(r) = {(C,D) | ∀ c ∈ C ∃ d ∈ D : (c, d) ∈ Rele(r) ∧

∀ d ∈ D ∃ c ∈ C : (c, d) ∈ Rele(r),
ReleX (r) = {(f, g) | ∀ x ∈ X : 〈f, g〉(x) ∈ Rele(r)}.

A signature Σ = (S, F,R) consists of a finite set S (of sorts), a finite BT(S)2-
sorted set F of function symbols and a finite BT(S)-sorted set R of relation
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symbols. f ∈ F(e,e′) is written as f : e→ e′ ∈ F . dom(f) = e is the domain of
f , ran(f) = e′ is the range of f . r ∈ Re is written as r : e ∈ R. f : e→ e′ is an
e′-constructor if e′ ∈ S. f is an e-destructor if e ∈ S. Σ is constructive resp.
destructive if F consists of constructors resp. destructors. Σ is polynomial if
for all f : e → e′ ∈ F , e′ is polynomial. A set X is a base set of Σ if it occurs
in the domain or range of a function or relation symbol and thus induces the
constant functor FX .

Example 2.1. Here are some constructive signatures without relation symbols.
Let X and Y be sets.

1. Nat (natural numbers) S = {nat}, F = {0 : 1 → nat, succ : nat→ nat}.
2. Reg(X) (regular expressions over X) S = {reg},

F = { ∅, ε : 1 → reg, _ : X → reg,
_|_, _ ·_ : reg × reg → reg, star : reg → reg }.

3. List(X) (finite sequences of elements of X) S = {list},
F = {nil : 1 → list, cons : X × list→ list}.

4. Tree(X,Y ) (finitely branching trees of finite depth with node labels from X
and edge labels from Y ) S = {tree, trees},

F = { join : Y × trees→ tree, nil : 1→ trees,
cons : X × tree× trees→ trees }.

5. BagTree(X,Y ) (finitely branching unordered trees of finite depth)
S = {tree}, F = {join : Y × bag(X × tree) → tree}.

6. FDTree(X,Y ) (finitely or infinitely branching trees of finite depth)
S = {tree}, F = {join : Y × ((X × tree)N + word(X × tree)) → tree}. ❏

Example 2.2. Here are some destructive signatures without relation symbols.
For each signature, we list its base sorts, sorts and function symbols. All other
components are empty.

1. CoNat (natural numbers with infinity) S = {nat},
F = {pred : nat→ 1 + nat}.

2. CoList(X) (finite or infinite sequences of elements of X ; CoList(1) � CoNat)
S = {list}, F = {split : list→ 1 + (X × list)}.

3. DetAut(X,Y ) (deterministic Moore automata with input set X and output
set Y ) S = {state}, F = {δ : state→ stateX , β : state→ Y }.

4. NDAut(X,Y ) (non-deterministic Moore automata; image finite labelled
transition systems) S = {state}, F = {δ : state → set(state)X , β :
state→ Y }.

5. CoTree(X,Y ) (finitely or infinitely branching trees of finite or infinite depth
with node labels from X and edge labels from Y ) S = {tree, trees},

F = { root : tree→ Y, subtrees : tree→ trees,
split : trees→ 1 + (X × tree× trees) }.



From Grammars and Automata to Algebras and Coalgebras 25

6. FBTree(X,Y ) (finitely branching trees of finite or infinite depth) S = {tree},
F = {root : tree→ Y, subtrees : tree→ word(X × tree)}. ❏

Let Σ = (S, F,R) be a signature. A Σ-algebra A consists of an S-sorted set,
the carrier of A, also denoted by A, for each f : e → e′ ∈ F , a function
fA : Fe(A) → Fe′(A), and for each r : e ∈ R, a relation rA ⊆ Fe(A).

Let A and B be Σ-algebras, h : A → B be an S-sorted function and f :
e → e′ ∈ F . h is compatible with f if Fe′ (h) ◦ fA = fB ◦ Fe(h). h is a Σ-
homomorphism if for all f ∈ F , h is compatible with f and for all r : e ∈ R,
Fe(h)(rA) ⊆ rB . h is relation preserving if the converse holds true as well,
i.e., for all r : e ∈ R, rB ⊆ Fe(h)(rA). A Σ-isomorphism is a bijective and
relation preserving Σ-homomorphism. AlgΣ denotes the category of Σ-algebras
and Σ-homomorphisms.

A signature Σ′ = (S′, F ′, R′) is a subsignature of Σ if S′ ⊆ S, F ′ ⊆ F and
R′ ⊆ R. Let A be a Σ-algebra and h : A→ B be a Σ-homomorphism. The Σ′-
reducts A|Σ′ and h|Σ of A resp. h are the Σ′-algebra resp. Σ′-homomorphism
defined as follows:
• For all s ∈ S′, (A|Σ′)s = As and (h|Σ)s = hs.
• For all f ∈ F ′ ∪R′, fA|Σ′ = fA.

Σ′-reducts yield the reduct functor or forgetful functor _|Σ′ from AlgΣ to
AlgΣ′.

A constructive signature Σ = (S, F,R) admits terms if for all f ∈ F there
are e1, . . . , en ∈ S ∪ Set with dom(f) = e1 × . . . × en. If Σ admits terms, then
the Σ-algebra TΣ of (ground) Σ-terms is defined inductively as follows:
• For all s ∈ S, f : e→ s ∈ F and t ∈ Fe(TΣ), fTΣ (t) = ft ∈ TΣ,s.

If a Σ-term is regarded as a tree, each inner node is labelled with some f ∈ F ,
while each leaf is labelled with an element of a base set of Σ. The interpretation
of R in TΣ is not fixed. Any such interpretation would be an S-sorted set of
term relations, usually called a Herbrand structure. Constructive signatures that
admit terms can be presented as context-free grammars:

A context-free grammar G = (S,Z,BS, P ) consists of finite sets S of
sorts (also called nonterminals), Z of terminals, BS of base sets and P ⊆
S× (S∪Z ∪BS)∗ of rules (also called productions). The constructive signature
Σ(G) = (S, F, ∅) with

F = {fp : e1 × . . .× en → s |p = (s, w0e1w1 . . . enwn) ∈ P,
w0, . . . , wn ∈ Z∗, e1, . . . , en ∈ S ∪BS

}

is called the abstract syntax of G (see [18], Section 3.1; [45], Section 3). Σ(G)-
terms are usually called syntax trees of G.

Example 2.3. The regular expressions over X form the reg-carrier of the
Reg(X)-algebra TReg(X) of Reg(X)-terms.

The usual interpretation of regular expressions over X as languages (= sets
of words) over X yields the Reg(X)-algebra Lang: Langreg = P(X∗). For all
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x ∈ X and L,L′ ∈ P(X∗),

∅Lang = ∅, εLang = {ε}, _Lang(x) = {x},
L|LangL′ = L ∪ L′, L ·Lang L′ = {vw | v ∈ L, w ∈ L′},
starLang(L) = {w1 . . . wn | n ∈ N, ∀ 1 ≤ i ≤ n : wi ∈ L}.

The Reg(X)-Algebra Bool interprets the regular operators as Boolean func-
tions: Boolreg = 2. For all x ∈ X and b, b′ ∈ 2,

∅Bool = 0, εBool = 1, _Bool(x) = 0,
b|Boolb′ = b ∨ b′, b ·Bool b′ = b ∧ b′, starBool(b) = 1. ❏

Let Σ = (S, F,R) be a signature and A be a Σ-algebra. An S-sorted subset
inv of A is a Σ-invariant or -subalgebra of A if inv is compatible with
all f : e → e′ ∈ F , i.e. fA(Fe(inv)) ⊆ Fe′(inv). inc : inv → A denotes the
injective S-sorted inclusion function that maps a to a. inv can be extended
to a Σ-algebra: For all f : e→ e′ ∈ F , f inv = fA ◦Fe(inc), and for all r : e ∈ R,
rinvrA∩Fe(inv). Given an S-sorted subsetB ofA, the leastΣ-invariant including
B is denoted by 〈B〉.

An S-sorted relation ∼⊆ A2 is a Σ-congruence if ∼ is compatible with
all f : e → e′ ∈ F , i.e. (fA × fA)(Rele(∼)) ⊆ Rele′(∼). ∼eq denotes the
equivalence closure of ∼. A∼ denotes the Σ-algebra that agrees with A except for
the interpretation of all r : e ∈ R: rA∼ = {b ∈ Fe(A) | ∃ a ∈ rA : a ∼eq b}. A/∼
denotes the S-sorted quotient set {[a]∼ | a ∈ A} where [a]∼ = {b ∈ A | a ∼eq b}.
nat∼ : A → A/∼ denotes the surjective S-sorted natural function that maps
a ∈ A to [a]∼. A/∼ can be extended to a Σ-algebra: For all f : e → e′ ∈ F ,
fA/∼ ◦ Fe(nat∼) = Fe′(nat∼) ◦ fA. For all r : e ∈ R, rA/∼ = {Fe(nat∼)(a) | a ∈
rA∼}.

Let h : A → B be an S-sorted function. The S-sorted subset img(h) =
{h(a) | a ∈ A} of B is called the image of h. The S-sorted relation ker(h) =
{(a, b ∈ A2) | h(a) = h(b)} is called the kernel of h.

Proposition 2.4. (1) inc and nat∼ are Σ-homomorphisms. h : A → B is
surjective iff img(h) = B. h is injective iff ker(h) = 〈idA, idA〉(A).

(2) A is a Σ-algebra and h is a Σ-homomorphism iff ker(h) is a Σ-congruence.
B is a Σ-algebra and h is a Σ-homomorphism iff img(h) is a Σ-invariant. ❏

Homomorphism Theorem 2.5. h is a Σ-homomorphism iff there is a unique
surjective Σ-homomorphism h′ : A → img(h) with inc ◦ h′ = h iff there is a
unique injective Σ-homomorphism h′ : A/ker(h) → B with h′ ◦ natker(h) = h.❏

Example 2.6. Given a behavior function f : X∗ → Y , the minimal realization of
f coincides with the invariant 〈f〉 of the following DetAut(X,Y )-algebra MinAut :
MinAutstate = (X∗ → Y ) and for all f : X∗ → Y and x ∈ X , δMinAut (f)(x) =
λw.f(xw) and βMinAut (f) = f(ε).
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Let Y = 2. Then behaviors f : X∗ → Y coincide with languages over X , i.e.
subsets L of X∗, and 〈L〉 is DetAut(X, 2)-isomorphic to the minimal acceptor
of L with {L ⊆ X∗ | ε ∈ L} as the set of final states. Hence the state-carrier of
MinAut agrees with the reg-carrier of Lang (see Ex. 2.3). TReg(X) also provides
acceptors of regular languages, i.e., T = TReg(X) is a DetAut(X, 2)-algebra. Its
transition function δT : T → TX is called a derivative function. It has been
shown that for all regular expressions R, 〈R〉 ⊆ TReg(X) has only finitely many
states ([13], Thm. 4.3 (a); [41], Section 5; [26], Lemma 8). If combined with coin-
ductive proofs of state equivalence (see Section 4), the stepwise construction of
the least invariant 〈R〉 of TReg(X) can be transformed into a stepwise construc-
tion of the least invariant 〈L(R)〉 of MinAut = Lang, thus leading to an efficient
construction of the minimal acceptor that avoids the usual detour via powerset
construction and minimization (see [44], Section 4).

LetX=1. Then MinAut is DetAut(1, Y )-isomorphic to the algebra of streams
over Y : MinAutstate = Y 1∗ ∼= Y N. For all s ∈ Y N, β(s) = s(0) and δ(s)(∗) =
λn.s(n+ 1).

Let X = 2. Then MinAut represents the set of infinite binary trees with
node labels from Y : MinAutstate = X2∗

. For all t ∈ X2∗
and b ∈ 2, β(t) = s(ε),

δ(t)(b) = λw.t(bw). ❏

3 Σ-Algebras and F -Algebras

Let K be a category and F be an endofunctor on K.
An F -algebra or F -dynamics is a K-morphism α : F (A) → A. AlgF denotes

the category whose objects are the F -algebras and whose morphisms from α :
F (A) → A to β : F (B) → B are the K-morphisms h : A → B with h ◦ α =
β ◦F (h). Hence α is initial in AlgF if for all F -algebras β there is unique AlgF -
morphism h from α to β. h is called a catamorphism and to be defined by
recursion.

An F -coalgebra or F -codynamics is a K-morphism α : A→ F (A). coAlgF

denotes the category whose objects are the F -coalgebras and whose morphisms
from α : A → F (A) to β : B → F (B) are the K-morphisms h : A → B with
F (h) ◦ α = β ◦ h. Hence α is final in coAlgF if for all F -coalgebras β there is
unique coAlgF -morphism h from β to α. h is called an anamorphism and to
be defined by corecursion.

Theorem 3.1. ([28], Lemma 2.2; [10], Prop. 5.12; [7], Section 2; [40], Thm. 9.1)
Initial F -algebras and final F -coalgebras are isomorphisms in K. ❏

In other words, the object A of an initial F -algebra α : F (A) → A or a final F -
coalgebra α : A→ F (A) is a fixpoint of F , i.e., A solves the equation F (A) = A.

Let Σ = (S, F,R) be a signature. Σ induces an endofunctor HΣ on SetS

(notation follows [1]): For all S-sorted sets and functions A and s ∈ S,

HΣ(A)s =
{∐

f :e→s∈F Fe(A) if Σ is constructive,
∏

f :s→e∈F Fe(A) if Σ is destructive.
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Example 3.2. (see Exs. 2.1 and 2.2) Let A be an S-sorted set.

HNat (A)nat = HCoNat(A)nat = 1 +Anat,
HList(X)(A)list = HCoList(X)(A)list = 1 + (X ×Alist),
HReg(X)(A)reg = 1 + 1 +X +A2

reg +A2
reg +Areg,

HDetAut(X,Y )(A)state = AX
state × Y,

HNDAut(X,Y )(A)state = Pfin(Astate)X × Y,
HTree(X,Y )(A)tree = HCoTree(X,Y )(A)tree = X ×Atrees,
HTree(X,Y )(A)trees = HCoTree(X,Y )(A)trees = 1 + (X ×Atree ×Atrees),
HBagTree(X,Y )(A)tree = Y × Bfin(X ×Atree),

HFDTree(X,Y )(A)tree = Y × ((X ×Atree)N + word(X ×Atree)),
HFBTree(X,Y )(A)tree = Y × word(X ×Atree). ❏

Given a constructive signature Σ, an HΣ-algebra HΣ(A) α→ A is an S-sorted
function and uniquely corresponds to a Σ-algebra A: For all s ∈ S and f : e →
s ∈ F ,

HΣ(A)s

αs = [fA]f :e→s∈F
> As

Fe(A)

ιf =

∧

fA = αs ◦ ιf

>

Given a destructive signature Σ, an HΣ-coalgebra A
α→ HΣ(A) is an S-

sorted function and uniquely corresponds to a Σ-algebra A: For all s ∈ S and
f : s→ e ∈ F ,

As

αs = 〈fA〉f :s→e∈F
> HΣ(A)s

Fe(A)

= πf

∨
fA = πf ◦ αs

>

αs combines all s-constructors resp. -destructors into a single one.
An ascending K-chain is a diagram sending the category {n→ n+ 1 | n ∈

N} to K. K is ω-cocomplete if the empty diagram and each ascending K-
chain has a colimit. A descending K-chain is a diagram sending the category
{n ← n + 1 | n ∈ N} to K. K is ω-complete if the empty diagram and each
descending K-chain has a limit.

Let K and L be ω-cocomplete. A functor F : K → L is ω-cocontinuous
if for all ascending K-chains D and colimits {μn : D(n) → C | n ∈ N} of D,
{F (μn) | n ∈ N} is a colimit of F ◦ D.
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Let K and L be ω-complete. A functor F : K → L is ω-continuous if for
all descending K-chains D and limits {νn : C → D(n) → C | n ∈ N} of D,
{F (νn) | n ∈ N} is a limit of F ◦ D.

Theorem 3.3. ([7], Section 2; [29], Thm. 2.1) LetK be ω-cocomplete, F : K → K
be an ω-cocontinuous functor, I be initial in K, ini be the unique K-morphism
from I to F (I) and A be the target of the colimit of the ascending K-chain D
defined as follows:

n→ n+ 1 �→ Fn(I)
F n(ini)→ Fn+1(I).

Since F is ω-cocontinuous, F (A) is the target of the colimit of F ◦ D. Hence
there is a unique K-morphism ini′(F ) : F (A) → A, which can be shown to be
an initial F -algebra.

Let K be ω-complete, F : K → K be an ω-continuous functor, T be final in
K, fin be the unique K-morphism from F (T ) to T and A be the source of the
limit of the descending K-chain D defined as follows:

n← n+ 1 �→ Fn(T )
F n(fin)← Fn+1(T ).

Since F is ω-continuous, F (A) is the source of the limit of F ◦ D. Hence there
is a unique K-morphism fin ′ : A → F (A), which can be shown to be a final
F -coalgebra. ❏

Theorem 3.4. (folklore) Set and SetS are ω-complete and ω-cocomplete. ❏

Theorem 3.5. For all polynomial types e over S, Fe : SetS → Set is ω-
continuous. For all types e over S, Fe is ω-cocontinuous. Consequently, for all
E : S → PT(S), FE : SetS → SetS is ω-continuous, and for all E : S → BT(S),
FE is ω-cocontinuous (see Section 2).

Proof. By [8], Thm. 1 and 4, or [11], Prop. 2.2 (1) and (2), ω-continuous or
-cocontinuous functors are closed under all finite products and all coproducts.
Moreover, by [11], Prop. 2.2 (3), they are also closed under quotients of ω-
continuous or -cocontinuous functors modulo a finite equivalence relation. Since
for all e ∈ BT(S) and A ∈ SetS , Fword(e)(A) ∼=

∐
n∈N Fe(A)n and Fbag(e)(A) ∼=∐

n∈N Fe(A)n/∼n where a ∼n b iff a is a permutation of b, we conclude that for
all e ∈ PT(S), Fe is ω-continuous and -cocontinuous. Since Pfin is ω-cocontinuous
(see [4], Ex. 2.2.13) and the composition of ω-co/continuous functors is ω-
co/continuous, we conclude that for all e ∈ BT(S), Fe is ω-cocontinuous. A
proof for the fact that Pfin is not ω-continuous is given by [4], Ex. 2.3.11. ❏

Define E(Σ) : S → BT(S) as follows: For all s ∈ S,

E(Σ)(s)=

⎧
⎪⎪⎨

⎪⎪⎩

dom(f1) + . . .+ dom(fn) if {f1, . . . , fn}= {f ∈ F | ran(f)= s}
and Σ is constructive,

ran(f1)× . . .× ran(fn) if {f1, . . . , fn} = {f ∈ F | dom(f)=s}
and Σ is destructive.

Obviously, the endofunctor FE(Σ) agrees with HΣ . Hence by Thm. 3.5, if Σ is
constructive, then there is an initialΣ-algebra, ifΣ is destructive and polynomial,
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then there is a final Σ-algebra, and both algebras are represented by co/limits of
ascending resp. descending SetS-chains:

Theorem 3.6. Let Σ be a constructive signature, I be the S-sorted set with
Is = ∅ for all s ∈ S, ini be the unique S-sorted function from I to HΣ(I) and ∼s

is the equivalence closure of {(a,Hn
Σ(ini)(a)) | a ∈ Hn

Σ(I)s, n ∈ N}. By Thm.
3.3, the following Σ-algebra A is initial: For all s ∈ S and f : e→ s ∈ F ,

As = (
∐

n∈N

Hn
Σ(I)s)/∼s and fA = ini′(HΣ) ◦ ιf .

Let B be a Σ-algebra, β0 be the unique S-sorted function from I to B and
for all n ∈ N and s ∈ S, βn+1,s = [fB ◦ Fe(βn,s)]f :e→s∈F : Hn+1

Σ (I)s → Bs.
The unique Σ-homomorphism foldB : A → B is the unique S-sorted function
satisfying foldB ◦ nat∼ = [βn]n∈N. ❏

Theorem 3.7. If Σ admits terms, then TΣ is an initial Σ-algebra and for all
Σ-algebras A, foldA : TΣ → A agrees with term evaluation in A, evalA: For
all f : e→ s ∈ F and t ∈ Fe(TΣ), evalA(ft) = fA(Fe(evalA)(t)). ❏

Let G = (S,Z,BS, P ) be a context-free grammar (see Section 2) and Y =
∪X∈BSX . The following Σ(G)-algebra is called the word algebra of G: For
all s ∈ S, Word(G)s = Z∗. For all w0, . . . , wn ∈ Z∗, e1, . . . , en ∈ S ∪ BS,
p = (s, w0s1w1 . . . snwn) ∈ P and v ∈ Fe1×...×en(Word(G)) ⊆ (Z ∪ Y )n,
f

Word(G)
p (v) = w0v1w1 . . . vnwn. The language L(G) of G is the S-sorted

image of TΣ(G) under term evaluation in Word(G): For all s ∈ S, L(G)s =
{evalWord(G)(t) | t ∈ TΣ(G),s}. L(G) is also characterized as the least solution
of the set E(G) of equations between the left- and right-hand sides of the rules
of G (with the non-terminals regarded as variables). If G is not left-recursive,
then the solution is unique [39]. This provides a simple method of proving that
a given language L agrees with L(G): Just show that L solves E(G).

Each parser for G can be presented as a function parseG : (Z ∪ Y )∗ →
M(TΣ(G)) where M is a monadic functor that embeds TΣ(G) into a larger set of
possible results, including syntax errors and/or sets of syntax trees for realizing
non-deterministic parsing [39]. The parser is correct if parseG ◦ evalWord(G) =
ηTΣ(G) (where η is the unit of M) and if all words of (Z ∪Y )∗ \L(G) are mapped
to error messages.

The most fascinating advantage of algebraic compiler construction is the fact
that the same generic compiler can be used for translating L(G) into an arbi-
trary target language formulated as a Σ(G)-algebra A. The respective instance
compileA

G : (Z ∪ Y )∗ → M(A) agrees with the composition M(evalA) ◦ parseG.
More efficiently than by first constructing a syntax tree and then evaluating it in
A, compileA

G can be implemented as a slight modification of parseG. Whenever
the parser performs a reduction step w.r.t. a rule p of G by building the syntax
tree fp(t1, . . . , tn) from already constructed trees t1, . . . , tn, the compiler derived
from parseG applies the interpretation fp in A to already computed elements
a1, . . . , an of A and thus returns the target object fA

p (a1, . . . , an) instead of the
tree fp(t1, . . . , tn). Syntax trees need not be constructed at all!
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Expressing the target language of a compiler for G as a Σ(G)-algebra Target
also provides a method for proving that the compiler is correct w.r.t. the seman-
tics Sem(G) and Sem(Target) of G resp. Target . The correctness amounts to
the commutativity of the following diagram:

TΣ(G)

evalTarget

> Target

(1)

Sem(G)

evalSem(G)

∨ encode
> Sem(Target)

execute

∨

Of course, Sem(G) has to be a Σ(G)-algebra. Sem(Target), however, usually
refers to a signature different from Σ(G). But the interpretations of the con-
structors of Σ(G) in Target can often be transferred easily to Sem(Target) such
that the interpreter execute becomes a Σ(G)-homomorphism: For all p ∈ P ,
f

Sem(Target)
p ◦ execute = execute ◦ fTarget

p is a definition of fSem(Target)
p iff the

kernel of execute is compatible with fTarget
p . Finally, we need a homomorphism

encode that mirrors the (term) compiler evalTarget on the semantical level. Fi-
nally, if all four functions of (1) are Σ(G)-homomorphisms, then the initiality of
TΣ(G) in AlgΣ(G) implies that the diagram commutes!

Algebraic approaches to formal languages and compiler design are not new.
They have been applied sucessfully to various programming languages (see, e.g.,
[18,45,32,12,46,31,36]). Hence it is quite surprising that they are more or less
ignored in the currently hot area of document definition and query languages
(XML and all that) – although structured data play a prominent rôle in such
languages. Instead of associating these data with adequate co/algebraic types,
XML theoreticians boil everything down to regular expressions, words and word
recognizing automata.

Example 3.8. (cf. Exs. 2.1 and 2.4) N is an initial Nat -algebra: 0N = 0 and for
all n ∈ N, succN(n) = n+ 1.
TReg(X) is an initial Reg(X)-algebra. Hence TReg(X),reg is the set of regular

expressions over X . For all such expressions R, foldLang(R) = evalLang(R) is
the language of R and evalBool(R) checks it for inclusion of the empty word.

For Σ ∈ {List(X),Tree(X,Y ),BagTree(X,Y ),FDTree(X,Y )}, the elements
of the list- resp. tree-carrier of an initial Σ-algebra can be represented by the
sequences resp. trees that Ex. 2.1 associates with Σ. ❏

We proceed with to the destructor analogue of Thm. 3.6:

Theorem 3.9. Let Σ be a polynomial destructive signature, T be the S-sorted
set with Ts = 1 for all s ∈ S and fin be the unique S-sorted function from
HΣ(T ) to T . By Thm. 3.3, the following Σ-algebra A is final: For all s ∈ S and
f : s→ e ∈ F ,

As = {a ∈
∏

n∈N

Hn
Σ(T )s | ∀ n ∈ N : an =Hn

Σ(fin)(an+1)} and fA =fin ′(HΣ)◦πf .
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Let B be a Σ-algebra, β0 be the unique S-sorted function from B to T and
for all n ∈ N and s ∈ S, βn+1,s = 〈Fe(βn,s) ◦ fA〉f :s→e∈F : As → Hn+1

Σ (T )s.
The unique Σ-homomorphism unfoldB : B → A is the unique S-sorted function
satisfying inc ◦ unfoldB = 〈βn〉n∈N. ❏

Example 3.10. (cf. Exs. 2.2 and 2.6) A = N ∪ {∞} is a final CoNat -algebra:
For all n ∈ A,

predA(n) =

⎧
⎨

⎩

∗ if n = 0,
n− 1 if n > 0,
∞ if n =∞.

MinAut is a final DetAut(X,Y )-algebra, in particular, the DetAut(1, Y )-
algebra of streams over Y is a final DetAut(1, Y )-algebra.

Since T = TReg(X) and Lang are DetAut(X, 2)-algebras, foldLang = evalLang :
T → Lang is a DetAut(X, 2)-homomorphism (see [39], Section 12) and Lang is
a final DetAut(X, 2)-algebra, foldLang coincides with unfoldT . This allows us
to extend T to a generic parser, not only for regular languages, but also for
context-free ones (see [39], Sections 12 and 14).

For Σ ∈ {CoList(X),CoTree(X,Y ),FBTree(X,Y )}, the elements of the list-
resp. tree-carrier of a final Σ-algebra can be represented by the sequences resp.
trees that Ex. 2.2 associates with Σ. ❏

The construction of CoNat , CoList and CoTree from Nat , List resp. Tree is
not accidental. Let Σ = (S, F,R) be a constructive signature and A be a Σ-
algebra. Σ induces a destructive signature CoΣ: Since for all s ∈ S, HΣ(A)s =∐

f :e→s∈F Fe(A), and since by Thm. 3.1, the initial HΣ-algebra [fA]f :e→s∈F is
an isomorphism, ini−1 is both a HΣ-algebra and a HCoΣ-coalgebra where

CoΣ = (S, {ds : s→
∐

f :e→s∈F

e | s ∈ S}, R).

The final CoΣ-algebra is a completion of the initial Σ-algebra in the sense of
[2]. Its carriers consist of finitely branching trees such that each node is labelled
with a base set or a constructor of Σ (cf. [18], Section 4; [6], Section II.2):

Let BS be the set of base sets of Σ and Y = ∪X∈BSX . The (BS ∪ S)-sorted
set CTΣ of Σ-trees consists of all partial functions t : N∗ → Y ∪ F such that
for all s ∈ BS, CTΣ,s = Ys and for all s ∈ S, t ∈ CTΣ,s iff for all w ∈ N∗,
• t(ε) ∈ F ∧ ran(t(ε)) = s,
• if t(w) : e1 × . . . × en → s′ ∈ F , then for all 0 ≤ i ≤ n, t(wi) ∈ Yei or
t(wi) ∈ F and ran(t(wi)) = s′.

CTΣ is both a Σ- and a CoΣ-algebra: For all f : e → s ∈ F , t ∈ Fe(CTΣ) and
w ∈ N∗,

fCTΣ (t)(w) =
{
f if w = ε,
πi(t)(v) if ∃ i ∈ N, v ∈ N∗ : w = iv.

For all s ∈ S and t ∈ CTΣ,s,

dCTΣ
s (t) = ((λw.t(0w), . . . , λw.t((|dom(t(ε))| − 1)w)), t(ε)) ∈

∐

f :e→s∈F

Fe(CTΣ).
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Moreover,CTΣ is a(n S-sorted) complete partial order (ω-complete �-semilattice)
– provided that Σ is inhabited or grounded, i.e., for all s ∈ S, TΣ,s �= ∅ (TΣ,s

needs a least element!). A Σ-algebra A is ω-continuous if its carriers are com-
plete partial orders and if for all f ∈ F , fA is ω-continuous. ωAlgΣ denotes the
subcategory of AlgΣ that consists of all ω-continuous Σ-algebras as objects and
all ω-continuous Σ-homomorphisms between them.

Theorem 3.11. If Σ is inhabited, then CTΣ is initial in ωAlgΣ. In any case,
CTΣ is a final CoΣ-algebra.

Proof. The first part follows from [18], Thm. 4.15, [11], Thm. 3.2, or [2], Prop.
IV.2. Here is a proof of the second part: Let A be a CoΣ-algebra. An S-sorted
function h = unfoldA : A → CTΣ is defined as follows: For all s ∈ S, a ∈ As,
i ∈ N and w ∈ N∗, dA

s (a) = ((a1, . . . , an), f) implies

h(a)(ε) = f,

h(a)(iw) =
{
h(ai)(w) if 0 ≤ i < |dom(f)|,
undefined otherwise,

in short: h(a)=f(h(a1), . . . , h(an)). Let s∈S, a∈As and dA
s (a)=((a1, . . . , an), f).

Then
dCTΣ

s (h(a)) = dCTΣ
s (f(h(a1), . . . , h(an)))

= ((h(a1), . . . , h(an)), f) = h((a1, . . . , an), f) = h(dA
s (a)).

Hence h is a coΣ-homomorphism. Conversely, let h′ : A → CTΣ be a coΣ-
homomorphism. Then

dCTΣ
s (h′(a)) = h′(dA

s (a)) = h′((a1, . . . , an), f) = ((h′(a1), . . . , h′(an)), f)
= dCTΣ

s (f(h′(a1), . . . , h′(an)))

and thus h′(a) = f(h′(a1), . . . , h′(an)) because dCTΣ
s is injective. We conclude

that h′ agrees with h. ❏

Another class of polynomial destructive signatures is obtained by dualizing con-
structive signatures that admit terms. A destructive signature Σ = (S, F,R)
admits coterms if for all f ∈ F there are e1, . . . , en ∈ S ∪ Set with ran(f) =
e1 + . . . + en. If Σ admits terms, then the Σ-algebra coTΣ of Σ-coterms is
defined as follows:
• For all s ∈ S, coTΣ,s is the greatest set of finitely branching trees t of infinite

depth such that for all f : s → e1 + . . . + en ∈ F , n ∈ N, a unique arc a
labelled with a pair (f, i), 1 ≤ i ≤ n, emanates from the (unlabelled) root of
t and either ei ∈ S and the target of a is in coTΣ,ei or ei is a base set and
the target of a is leaf labelled with an element of ei.

• For all f : s → e1 + . . .+ en ∈ F and t ∈ coTΣ,s, f coTΣ (t) is the tree where
the edge emanating from the root of t and labelled with (f, i) for some i
points to.

Again, the interpretation of R in TΣ is not fixed.

Theorem 3.12. If Σ admits coterms, then coTΣ is an final Σ-algebra and
for all Σ-algebras A, unfoldA : A → coTΣ agrees with coterm evaluation



34 P. Padawitz

in A, coevalA: Let s ∈ S, a ∈ As, f : s → e ∈ F and fA(a) = (bf , if).
{(f, if) | f : s→ e ∈ F} is the set of labels of the arcs emanating from the root
of coevalA(a) and for all f : s→ e ∈ F , the outarc labelled with (f, i) points to
coevalA(bf ). ❏

Example 3.13. (cf. Exs. 2.2 and 3.10) Since DetAut(1,N) admits coterms (if
stateX is replaced by state), coTDetAut(1,N) is a final DetAut(1,N)-algebra. For
instance, the stream [1, 2, 3, . . .] is represented in coTDetAut(1,N) as the following
infinite tree:

1 2 3

We omitted the number component of the edge labels because it is always 1. ❏

Of course, the construction of a destructive signature from a constructive one
can be reversed: Let Σ = (S, F,OP ) be a destructive signature. Then

CoΣ = (S, {cs :
∏

f :s→e∈F

e→ s | s ∈ S}, R)

is a constructive signature.
It remains to supply a construction for final Σ-algebras for non-polynomial

destructive signatures where the range of some destructor involves the finite-set
constructor set.

Given an S-sorted set M , a signature Σ is M-bounded if for all Σ-algebras
A, s ∈ S and a ∈ As, |〈a〉s| ≤ |Ms|.

By [5], Thm. 4.1, boundedness is equivalent to a kind of cocontinuity, namely
accessibility, i.e., preservation of colimits of κ-chains where κ is a regular cardinal.

Example 3.14. (cf. Ex. 2.2) By [40], Ex. 6.8.2, or [19], Lemma 4.2,
HDetAut(X,Y ) is X∗-bounded: For all DetAut(X,Y )-algebras A and a ∈ Astate,

〈st〉 = {δA∗(a)(w), w ∈ X∗}

where δA∗(a)(ε) = st and δA∗(a)(xw) = δA∗(δA(a)(x))(w) for all x ∈ X and
w ∈ X∗. Hence |〈st〉| ≤ |X∗|. ❏

Example 3.15. (cf. Ex. 2.2) HNDAut(X,Y ) is (X∗×N)-bounded: For all NDAut-
algebras A and a ∈ Astate, 〈st〉 = ∪{δA∗(a)(w), w ∈ X∗} where a ∈ Astate,
δA∗(a)(ε) = {st} and δA∗(a)(xw) = ∪{δA∗(st′)(w) | st′ ∈ δA(a)(x)} for all x ∈ X
and w ∈ X∗. Since for all a ∈ Astate and x ∈ X , |δA(a)(x)| ∈ N, |〈st〉| ≤ |X∗×N|.
If X = 1, then X∗ × N ∼= N and thus HNDAut(1,Y ) is N-bounded (see [40], Ex.
6.8.1; [19], Section 5.1). ❏

Theorem 3.16. ([40], Thm. 10.6; [19], Cor. 4.9 and Section 5.1) All signatures
are bounded. ❏

Lemma 3.17. Let X be an S-sorted set and Σ = (S, F,R) be a destructive
signature such that for all f : s → e ∈ F , e = sXs or e is a base set. Σ is
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polynomial and thus by Thm. 3.8, AlgΣ has a final object A. If |S| = 1, then Σ
agrees with DetAut(X,Y ) and thus A is DetAut(X,Y )-isomorphic to MinAut
(see Exs. 2.6 and 3.9). Otherwise A can be constructed as a straightforward
extension of MinAut to several sorts: For all s ∈ S, As = (X∗

s →
∏

g:s→Z∈F Z),
and for all f : s → sXs , g : s → Z ∈ F and h ∈ As, fA(h) = λx.λw.h(xw) and
gA(h) = πg(h(ε)).
A can be visualized as the S-sorted set of trees of infinite depth such that for all

s ∈ S and h ∈ As, h is |Xs|-branching and for all f : s→ sXs , g : s→ Z ∈ F and
x ∈ Xs, each node of h is labelled with an element of Z, fA(h)(x) = λw.h(xw)
is the subtree of h where the x-th outarc of the root r of h points to and gA(h)
is the Z-label of r. ❏

Theorem 3.18. Let M be an S-sorted set, Σ = (S, F,R) be an M -bounded
destructive signature, F ′ = {fs : s → sMs | s ∈ S} ∪ {f ′ : s → Fe(M) | f :
s → e ∈ F}, Σ′ = (S, F ′, R) and η : HΣ′ → HΣ be the function defined as
follows: For all S-sorted sets A, f : s→ e ∈ F and a ∈ HΣ′(M)s, πf (ηA,s(a)) =
Fe(πfs(a))(πf ′ (a)). η is a surjective natural transformation.

Proof. The theorem is an adaption of [19], Thm. 4.7 (i)⇒(iv), and the definitions
in its proof to our many-sorted syntax. ❏

Lemma 3.19. Let Σ = (S, F,R) and Σ′ = (S, F ′, R) be destructive signatures
and η : HΣ′ → HΣ be a surjective natural transformation. The following Σ-
algebra B is weakly final (i.e., the Σ-homomorphisms emanating from B are
not unique): For all s ∈ S, Bs = As, and for all f : s→ e ∈ F , fB = πf ◦ ηA,s ◦
〈g1, . . . , gn〉 where {g1, . . . , gn} = {gA | g : s → e ∈ F ′}. Moreover, B/∼ is a
final Σ-algebra where ∼ is the greatest Σ-congruence on B, i.e. the union of all
Σ-congruence on B. ❏

Proof. The lemma is an adaption of [19], Lemma 2.3 (iv), and the definitions in
its proof to our many-sorted syntax. ❏

Given an arbitrary destructive signature Σ, the previous results lead to a con-
struction of the final Σ-algebra – provided that the bound is known:

Theorem 3.20. Let M be an S-sorted set, Σ = (S, F,R) be an M -bounded
destructive signature and F ′ = {f ′ : s→ Fe(M) | f : s→ e ∈ F}. The following
Σ-algebra C is weakly final: For all s ∈ S, Cs = (M∗

s →
∏

f ′:s→Z∈F ′ Z), and
for all f : s → e ∈ F and h ∈ Cs, fC(h) = Fe(λx.λw.h(xw))(πf ′ (h(ε))). C/∼ is
a final Σ-algebra where ∼ is the greatest Σ-congruence on C, i.e. the greatest
S-sorted binary relation on C such that for all f : s→ e ∈ F and h, h′ ∈ Cs,

h ∼ h′ ⇒ fC(h) Rele(∼) fC(h′).

Proof. Let Σ′ = (S, F ′ ∪ {fs : s → sMs | s ∈ S}, R). By Thm. 3.18, η : HΣ′ →
HΣ with πf (ηA,s(a)) = Fe(πfs(a))(πf ′ (a)) for all A ∈ SetS, f : s → e ∈ F
and a ∈ HΣ′(M)s, is a surjective natural transformation. By Lemma 3.17, the
following Σ′-algebra is final: For all s ∈ S, As = (M∗

s →
∏

f ′:s→Z∈F ′ Z), and for
all h ∈ As and f ′ : s→ Z ∈ F ′, fA

s (h) = λm.λw.h(mw) and f ′A(h) = πf ′(h(ε)).
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Let {g1, . . . , gn} = {fA | f : s → e ∈ F ′}, By Lemma 3.19, the following Σ-
algebra B is weakly final: For all s ∈ S, Bs = As, and for all f : s → e ∈ F ,
fB = πf ◦ ηA,s ◦ 〈g1, . . . , gn〉. Hence for all f : s→ e ∈ F and h ∈ Bs,

fB(h) = πf (ηA,s(〈g1, . . . , gn〉(h))) = πf (ηA,s(g1(h), . . . , gn(h)))
= Fe(πfs(g1(h), . . . , gn(h)))(πf ′ (g1(h), . . . , gn(h))) = Fe(fA

s (h))(f ′A(h))
= Fe(λx.λw.h(xw))(πf ′ (h(ε))) = fC(h).

We conclude that C = B is weakly final and C/∼ is final in AlgΣ. ❏

Example 3.21. Let M = Mstate = X∗×N, Z1 = Fset(state)X (M) = Pfin(M)X ,
Z2 = FY (M) = Y and F ′ = {δ′ : state → Z1, β

′ : state → Z2}. By Ex. 3.11,
HNDAut(X,Y ) is M -bounded. Hence by Thm. 3.17, the following NDAut(X,Y )-
algebra C is weakly final: Cstate = (M∗ → Z1 × Z2) and for all h ∈ Cstate and
x ∈ X , h(ε) = (g, y) implies

δC(h)(x) = Fset(state)X (λm.λw.h(mw))(πδ′ (h(ε)))(x)
= Fset(state)X (λm.λw.h(mw))(g)(x)=Fset(state) (λm.λw.h(mw))(g(x))
= {Fstate(λm.λw.h(mw))(m) | m ∈ g(x)}
= {λm.λw.h(mw))(m) | m ∈ g(x)} = {λw.h(mw) | m ∈ g(x)},

βC(h) = FY (λx.λw.h(xw))(πβ′ (h(ε)))=FY (λx.λw.h(xw))(y) = idY (y) = y.

Moroever, C/∼ is a final Σ-algebra where ∼ is the greatest binary relation on
C such that for all h, h′ ∈ Cstate,

h ∼ h′ ⇒ δC(h) Relset(state)X (∼) δC(h′) ∧ βC(h) RelY (∼) βC(h′),

i.e., for all x ∈ X , h ∼ h′, h(ε) = (g, y) and h′(ε) = (g′, y′) imply

∀ m ∈ g(x) ∃n ∈ g′(x) : λw.h(mw) ∼ λw.h′(nw) ∧
∀ n ∈ g′(x) ∃m ∈ g(x) : λw.h(mw) ∼ λw.h′(nw) ∧ y = y′.

Let NDAut(X,Y )′ = ({state}, F ′ ∪ {fstate : state → stateM}, ∅). By the proof
of Thm. 3.20, C is constructed from the NDAut(X,Y )′-algebra A with Astate =
Cstate and for all h ∈ Astate, fA

state(h) = λm.λw.h(mw) and 〈δ′A, β′A〉(h) = h(ε).
Hence by Lemma 3.17, Cstate can be visualized as the set of |M |-branching trees
h of infinite depth such that for all m ∈ M , each node of h is labelled with an
element of Pfin(M)X × Y , λw.h(mw) is the subtree of h where the m-th outarc
of the root r of h points to and h(ε) is the pair of labels of r. See [20], Section
5, for a description of C/∼ in the case X = Y = 1. ❏

4 Co/Induction, Abstraction, Restriction, Extension and
Co/Recursion

After having shown in the previous sections how to build the domains of many-
sorted initial or final models, let us turn to their analysis (by co/induction),
the definition of functions on their domains (by co/recursion), their extension
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by further constructors resp. destructors, the factoring (abstraction) of initial
models and the restriction of final one.

The dual operations of the last two, i.e., restriction of an initial model or
abstraction of a final model, are impossible because an initial Σ-algebra has no
Σ-invariants besides itself and a final Σ-algebra has no congruences besides the
diagonal ([43], Thm. 4.3):

Lemma 4.1. (see Section 2) Let Σ be a constructive signature. (1) For all Σ-
algebras A, img(foldA) is the least Σ-invariant of A. (2) If A is initial, then A
is the only Σ-invariant of A.

Let Σ be a destructive signature. (3) For all Σ-algebras A, ker(unfoldA) is
the greatest Σ-congruence on A. (4) If A is final, then 〈idA, idA〉(A) is the only
Σ-congruence on A.

Proof of (2) and (4). Let Σ be constructive, A be initial and inv be a Σ-invariant
of A. Then inc ◦ fold inv = idA. Hence inc ◦ fold inv and thus inc are surjective.
We conclude that inv and A are Σ-isomorphic.

Let Σ be destructive, A be final and ∼ be a Σ-congruence on A. Then
unfoldA/∼ ◦ nat∼ = idA. Hence unfoldA/∼ ◦ nat∼ and thus nat∼ are injective.
We conclude that A and A/∼ are Σ-isomorphic. ❏

By Lemma 4.1 (2) and (4), algebraic co/induction is sound:

Algebraic Induction. Let Σ be a constructive signature with sort set S, A be
an initial Σ-algebra and p be an S-sorted subset of A. p = A iff inv ⊆ p for some
Σ-invariant inv of A. ❏

Algebraic Coinduction. Let Σ be a destructive signature with sort set S, A
be a final Σ-algebra and r be an S-sorted relation r ⊆ A. r = 〈idA, idA〉(A) iff
r ⊆∼ for some Σ-congruence ∼ on A. ❏

In practice, an inductive proof of p = A starts with inv := p and stepwise
decreases inv as long as inv is not an invariant. In terms of the formula ϕ that
represents inv, each modification of inv is a conjunctive extension – usually
called a generalization – of ϕ. The goal p = A means that A satisfies ϕ.

Dually, a coinductive proof of r = 〈idA, idA〉(A) starts with ∼:= r and step-
wise increases ∼ as long as ∼ is not a congruence. In terms of the formula ϕ
that represents ∼, each modification of ∼ is a disjunctive extension of ϕ. The
goal r = 〈idA, idA〉(A) means that A satisfies the equations given by ϕ.

Example 4.2. (see Exs. 2.6 and 3.10) Let A be a DetAut(X, 2)-algebra. ∼⊆
A2 is a DetAut(X, 2)-congruence iff for all a, b ∈ Astate and x ∈ X , a ∼ b
implies δA(a)(x) ∼ δA(b)(x) and βA(a)(x) = βA(b)(x). Since the algebra T =
TReg(X) of regular expressions and the algebra Lang of languages over X is a
final DetAut(X, 2)-algebra, Lang is final and unfoldT agrees with foldLang =
evalLang, two regular expressions R,R′ have the same language (= image under
evalLang) iff for some w ∈ X∗, the regular expressions δT∗(R)(w) and δT∗(R′)(w)
(see Ex. 3.14) have the same language (since, e.g., they are rewritable into each
other by applying basic properties of regular operators). It is easy to see how this
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way of proving language equality can also be used for constructing the minimal
acceptor 〈L〉 of the language L of a regular expression. ❏

Algebraic co/induction is a special case of relational co/induction that applies
to an arbitrary Σ-algebra A and least resp. greatest interpretations of relation
symbols of Σ, which are axiomatized in terms of co/Horn clauses [33,34,37,38]:

Let Σ = (S, F,R) be a signature and A be a Σ-algebra. A Σ-formula ϕ
is a well-typed first-order formula built up from logical operators, symbols of
F ∪ R, liftings thereof (see Section 2) and elements of a fixed BT(S)-sorted
set Var of variables. The interpretation ϕA of ϕ in A is the set of BT(S)-sorted
valuations f : Var → A (where Ae = Fe(A)), which satisfy ϕ. The interpretation
tA : AVar → A of a term t occurring in ϕ is the BT(S)-sorted function that takes
a valuation f and evaluates t in A under f . (For lack of space, we omit formal
definitions here.) A Σ-formula ϕ ⇐ ψ resp. ϕ ⇒ ψ is called a Σ-Horn clause
resp. Σ-co-Horn clause if ϕ is an atom(ic formula) and ψ is negation-free.

Let Σ′ = (S, F, ∅), C be a Σ′-algebra and AlgΣ,C be the category of all Σ-
algebras A with A|Σ′ = B. AlgΣ,C is a complete lattice: For all A,B ∈ AlgΣ,C ,
A ≤ B ⇔ ∀ r ∈ R : rA ⊆ rB . For all A ⊆ AlgΣ,C and r : e ∈ R, r⊥ = ∅,
r� = Fe(A), r�(A) =

⋃
A∈A r

A and r
(A) =
⋂

A∈A r
A. Let Φ : AlgΣ,C → AlgΣ,C

be a monotone function. A ∈ AlgΣ,C is Φ-closed if Φ(A) ≤ A. A is Φ-dense
if A ≤ Φ(A). The well-known fixpoint theorem of Knaster and Tarski provides
fixpoints of Φ:

Theorem 4.3. lfp(Φ) = �{A ∈ AlgΣ,C | A is Φ-dense} is the least and gfp(Φ) =
�{A ∈ AlgΣ,C | A is Φ-closed} is the greatest fixpoint of Φ. ❏

Obviously, for all negation-free formulas ϕ and A,B ∈ AlgΣ,C, A ≤ B implies
ϕA ⊆ ϕB . A set AX of Σ-formulas that consists of only Horn clauses or only
co-Horn clauses induces a monotone function AX,C : AlgΣ,C → AlgΣ,C : For all
A ∈ AlgΣ,C and r : e ∈ R, rAX,C(A) = {(tA(f) | f ∈ ϕA, r(t) ⇐ ϕ ∈ AX} if AX
consists of Horn clauses and rAX,C(A) = Fe(A)\{(tA(f) | f ∈ AVar \ϕA, r(t) ⇒
ϕ ∈ AX} if AX consists of co-Horn clauses. Hence by Thm. 4.3, AX,C has a
least fixpoint lfp = lfp(AX,C) and a greatest fixpoint gfp = gfp(AX,C). In
other words, lfp and gfp are the least resp. greatest A ∈ AlgΣ,C that satisfy AX ,
or, if we regard the relation symbols in AX as variables, then {rlfp | r ∈ R} is
the least and {rgfp | r ∈ R} is the greatest solution of AX in R. This implies
immediately that relational co/induction is sound:

Relational Induction. Let AX be set of Horn clauses. lfp(AX,C) satisfies
r(x) ⇒ ψ(x) iff there is a formula ψ′(x) such that for all r(t) ⇐ ϕ ∈ AX ,
lfp(AX,C) satisfies r(t) ⇐ ϕ′ where ϕ′ is obtained from ϕ by replacing all
occurrences of atoms r(u) with ψ(u) ∧ ψ′(u). ❏

Relational Coinduction. Let AX be set of co-Horn clauses. gfp(AX,C) sat-
isfies r(x) ⇐ ψ(x) iff there is a formula ψ′(x) such that for all r(t) ⇒ ϕ ∈ AX ,
gfp(AX,C) satisfies r(t) ⇒ ϕ′ where ϕ′ is obtained from ϕ by replacing all
occurrences of atoms r(u) with ψ(u) ∨ ψ′(u). ❏
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Co/Horn clause syntax admits four ways of axiomatizing invariants resp. con-
gruences and thus restricting resp. factoring initial or final models:

Theorem 4.4. (restrictions) [35] For all s ∈ S, let r : s ∈ R. (1) Suppose that
AX includes co-Horn clauses such that for all A ∈ AlgΣ,C, rA is a Σ-invariant.
Let C be final and gfp = gfp(AX,C). AX meets certain syntactical restrictions,
then rgfp is the greatestΣ-invariant of gfp satisfyingAX and final in the category
Alg�Σ,C,AX of all algebras of AlgΣ,C that satisfy AX and interpret r : s as Cs.

(2) Suppose that AX includes Horn clauses such that for all A ∈ AlgΣ,C, rA

is a Σ-invariant. If C is initial, then Lemma 4.1 implies rA = C, and it is easy to
see that algebraic induction is a special case of relation induction. Let C be final
and lfp = lfp(AX,C). If AX meets certain syntactical restrictions, then rlfp is
initial in the category of all F -observable (see below) algebras ofAlg�Σ,C,AX . ❏

Theorem 4.5. (abstractions) [35] For all s ∈ S, let r : s × s ∈ R. (1) Sup-
pose that AX consists of Horn clauses such that for all A ∈ AlgΣ,C , rA is a
Σ-congruence. Let C be initial and lfp = lfp(AX,C). If AX meets certain syn-
tactical restrictions, then rlfp is the least Σ-congruence on lfp satisfying AX and
the quotient of lfp by rlfp is initial in the category Alg�Σ,C,AX of all algebras of
AlgΣ,C that satisfy AX and interpret r : s× s as 〈id, id〉(Cs).

(2) Suppose that AX includes co-Horn clauses such that for all A ∈ AlgΣ,C , rA

is a Σ-congruence. If C is final, then Lemma 4.1 implies rA = 〈id, id〉(C), and it is
easy to see that algebraic coinduction is a special case of relation coinduction. Let
C is initial and gfp = gfp(AX,C). If AX meets certain syntactical restrictions,
then the quotient of gfp by rgfp is final in the category of all F -reachable (see
below) algebras of Alg�Σ,C,AX . rgfp coincides with the final semantics [27,47,48]
deal with. ❏

Let F ′ ⊆ F and Σ′ = (S, F ′, R), A be a Σ-algebra and B = A|Σ′ .
Let Σ be constructive, AX be a set of Σ-Horn clauses, AX ′ ⊆ AX and

μΣ′ and μΣ be initial in Alg�Σ′,C,AX′ resp. Alg�Σ,C,AX. A is F ′-reachable or
-generated if foldB : μΣ′ → B is surjective. A is F ′-consistent if foldB is injec-
tive. (Σ,AX) is a conservative extension of (Σ′, AX ′) if μΣ is F ′-reachable
and F ′-consistent, i.e. if μΣ|Σ′ and μΣ′ are isomorphic.

Let Σ be destructive, AX be a set of Σ-co-Horn clauses, AX ′ ⊆ AX and
νΣ′ and νΣ be initial in Alg�Σ′,C,AX′ resp. Alg�Σ,C,AX. A is F ′-observable or
-cogenerated if unfoldB : B → νΣ′ is injective. A is F ′-complete if unfoldB

is surjective. (Σ,AX) is a conservative extension of (Σ′, AX ′) if νΣ is F ′-
observable and F ′-complete, i.e. νΣ|Σ′ and νΣ′ are isomorphic.

Proposition 4.6. [35] Let Σ be constructive. If A is F -reachable, then A is
F ′-reachable iff img(foldA) is compatible with F \F ′. If μΣ′ can be extended to
an algebra of Alg�Σ,C,AX , then (Σ,AX) is a conservative extension of (Σ′, AX ′)
and, equivalently (!), μΣ′ satisfies the same Σ-formulas as μΣ|Σ′ does.

Let Σ be destructive. If A is F -observable, then A is F ′-observable iff
ker(unfoldA)is compatible with F \ F ′. If νΣ′ can be extended to an algebra of
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Alg�Σ,C,AX, then (Σ,AX) is a conservative extension of (Σ′, AX ′) and, equiva-
lently (!), νΣ′ satisfies the same Σ-formulas as νΣ|Σ′ does. ❏

Conservative extensions add constructors or destructors to a signature without
changing the carrier of the initial resp. final model. Each other functions can
be axiomatized in terms of co/recursive equations, which means that there is
a Σ-algebra A such that f agrees with foldA resp. unfoldA. By Prop. 2.4 (2),
this holds true iff f is simply an S-sorted function whose kernel resp. image
is compatible with F . (The use Prop. 2.4 (2) for co/recursive definitions on
initial resp. final co/algebras was first suggested by [15], Thm. 4.2 resp. 5.2.)
However, as constructors and destructors usually are not (components of) S-
sorted functions, the domain or range of f is seldom a single sort s ∈ S, but a
composed type e ∈ BT(S). Hence we follow [22] and start out from a category
K and an adjunction between K and SetS such that f can be described as a
K-morphism, while foldA resp. unfoldA comes up as the unique SetS-extension
of f that the adjunction generates:

Let Σ = (S, F,R) be a constructor signature and (L : SetS → K, G : K →
SetS, η, ε) be an adjunction. A K-morphism f : L(μΣ) → B is Σ-recursive if
the kernel of the SetS-extension f# : μΣ → G(B) of f is compatible with F .

Let Σ = (S, F,R) be a destructor signature and (L : K → SetS, G : SetS →
K, η, ε) be an adjunction. A K-morphism f : A → G(νΣ) is Σ-corecursive if
the image of the SetS-extension f∗ : L(A) → νΣ of f is compatible with F .

Example 4.7. The factorial function fact : N → N is usually axiomatized by the
following equations involving the constructors 0 : 1→ nat and succ : nat→ nat
of Nat (see Ex. 2.1):

fact(0) = 1, fact(n+ 1) = fact(n) ∗ (n+ 1).

Since by Ex. 3.8, N is an initial Nat-algebra, we may show that fact is Nat -
recursive. This cannot be concluded from the above equations because the vari-
able n occurs at a non-argument position. Hence we add the identity on N and
show that the desired property for fact and id simultaneously. The corresponding
equations read as follows:

〈fact , id〉(0) = (1, 0), 〈fact , id〉(n+ 1) = (fact(n) ∗ (id(n) + 1), id(n) + 1).

We choose the product adjunction

((_,_) : Set→ Set2,× : Set2 → Set, λA.〈idA, idA〉, (π1, π2)).

The latter equations imply that the kernel of the Set-extension (fact , id)# =
〈fact , id〉 : N → N2 of (fact , id) : (N,N) → (N,N) is compatible with 0 and
succ. Hence (fact , id) is Nat-recursive and by Prop. 2.4 (2), 〈fact , id〉 is a Nat -
homomorphism, in particular, N2 is a Nat -algebra: 0N2

= (1, 0) and succN2
=

λ(m,n).(m ∗ (n+ 1), n+ 1). ❏

Example 4.8. The streams 01 = [0, 1, 0, 1, . . .] and 10 = [1, 0, 1, 0, . . .] can be
axiomatized by the following equations involving the destructors δ : state →
state and β : state→ 2 of DetAut(1, 2) (see Ex. 2.2):
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〈δ, β〉(01) = (10, 0), 〈δ, β〉(10) = (01, 1) (1)

Since by Ex. 3.10, 2N is a final DetAut(1, 2)-algebra, we may show that (01, 10)
is DetAut(1, 2)-corecursive. We choose the coproduct adjunction

(+ : Set2 → Set, (_,_) : Set→ Set2, (ι1, ι2), λA.[idA, idA]).

The above equations imply that the image of the Set-extension (01, 10)∗ =
[01, 10] : 2 → 2N of (01, 10) : (1, 1) → (2N, 2N) is compatible with δ and β.
Hence (01, 10) is DetAut(1, 2)-corecursive and by Prop. 2.4 (2), [01, 10] is a
DetAut(1, 2)-homomorphism, in particular, 2 is a DetAut(1, 2)-algebra: δ2(0) =
1, δ2(1) = 0 and β2 = id2.

Since for all sets 2, DetAut(1, 2) admits coterms, DetAut(1, 2) induces the
constructive signature CoDetAut(1, 2) = ({state}, {cons : 2× state→ state}, ∅)
that admits terms (see Section 3). It does not matter that initial CoDetAut(1, 2)-
algebras are empty. Here we only use the syntax of CoDetAut(1, 2): The streams
01 and 10 can be axiomatized by equations involving cons:

01 = cons(0, 10), 10 = cons(1, 01). (2)

The definition of 01 and 10 derived from (1) provides a solution of (2) where 01
and 10 are regarded as variables. Conversely, each solution (a, b) of (2) has the
unique Set-extension [a, b], which is a DetAut(1, 2)-homomorphism into a final
DetAut(1, 2)-algebra and thus unique. Hence (2) has a unique solution! ❏

The last observation can be generalized to the following result obtained in several
ways and on many levels of abstraction (see, e.g., [18], Thm. 5.2; [3], Thm. 3.3):
Given a constructive signatureΣ that admits terms, ideal or guarded Σ-equations
like (2) have unique solutions in CTΣ (see Section 3). Via this result, coalgebra
has even found its way into functional programming (see, e.g. [42,23]).
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Theme and Variations

on the Concatenation Product

Jean-Éric Pin�

LIAFA, University Paris-Diderot and CNRS, France

Abstract. The concatenation product is one of the most important op-
erations on regular languages. Its study requires sophisticated tools from
algebra, finite model theory and profinite topology. This paper surveys
research advances on this topic over the last fifty years.

The concatenation product plays a key role in two of the most important results
of automata theory: Kleene’s theorem on regular languages [23] and Schützen-
berger’s theorem on star-free languages [60].

This article surveys the most important results and tools related to the con-
catenation product, including connections with algebra, profinite topology and
finite model theory. The paper is organised as follows: Section 1 presents some
useful algebraic tools for the study of the concatenation product. Section 2 intro-
duces the main definitions on the product and its variants. The classical results
are summarized in Section 3. Sections 4 and 5 are devoted to the study of
two algebraic tools: Schützenberger products and relational morphisms. Closure
properties form the topic of Section 6. Hierarchies and their connection with
finite model theory are presented in Sections 7 and 8. Finally, new directions are
suggested in Section 9.

1 The Instruments

This section is a brief reminder on the algebraic notions needed to study the con-
catenation product: semigroups and semirings, syntactic ordered monoids, free
profinite monoids, equations and identities, varieties and relational morphisms.
More information can be found in [1,2,3,18,35,42,45].

1.1 Semigroups and Semirings

If S is a semigroup, the set P(S) of subsets of S is also a semiring, with union
as addition and multiplication defined, for every X,Y ∈ P(S), by

XY = {xy | x ∈ X, y ∈ Y }

In this semiring, the empty set is the zero and for this reason, is denoted by 0.
It is also convenient to denote simply by x a singleton {x}.

If k is a semiring, we denote by Mn(k) be the semiring of square matrices of
size n with entries in k.
� The author acknowledges support from the project ANR 2010 BLAN 0202 02 FREC.
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1.2 Syntactic Ordered Monoid

Let L be a language of A∗. The syntactic preorder of L is the relation �L defined
on A∗ by u �L v if and only if, for every x, y ∈ A∗,

xvy ∈ L⇒ xuy ∈ L

The syntactic congruence of L is the relation ∼L defined by u ∼L v if and only
if u �L v and v �L u.

The syntactic monoid of L is the quotient M(L) of A∗ by ∼L and the natural
morphism η : A∗ → A∗/∼L is called the syntactic morphism of L. The syntactic
preorder �L induces an order on the quotient monoid M(L). The resulting
ordered monoid is called the syntactic ordered monoid of L.

The syntactic ordered monoid can be computed from the minimal automaton
as follows. First observe that if A = (Q,A, · , q−, F ) is a minimal deterministic
automaton, the relation � defined on Q by p � q if for all u ∈ A∗,

q ·u ∈ F ⇒ p·u ∈ F

is an order relation, called the syntactic order of the automaton. Then the syntac-
tic ordered monoid of a language is the transition monoid of its ordered minimal
automaton. The order is defined by u � v if and only if, for all q ∈ Q, q ·u � q · v.

For instance, let L be the language {a, aba}. Its minimal deterministic au-
tomaton is represented below:

1

2 3

4

0

a

b

a

a, b

b

a b

a, b

The order on the set of states is 2 � 4, 1 � 3 and 1, 2, 3, 4 � 0. Indeed, one has
0·u = 0 for all u ∈ A∗ and thus, the formal implication

0·u ∈ F ⇒ q ·u ∈ F

holds for any state q. Similarly, 1 � 3 since a is the only word such that 3· a ∈ F
and one also has 1· a ∈ F .

The syntactic monoid of L is the monoid M = {1, a, b, ab, ba, aba, 0} presented
by the relations a2 = b2 = bab = 0. Its syntactic order is 1 < ab < 0, 1 < ba < 0,
a < aba < 0, b < 0.
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1.3 Free Profinite Monoids

We briefly recall the definition of a free profinite monoid. More details can be
found in [1,45]. A finite monoid M separates two words u and v of A∗ if there is
a morphism ϕ : A∗ →M such that ϕ(u) �= ϕ(v). We set

r(u, v) = min
{
|M | | M is a finite monoid that separates u and v }

and d(u, v) = 2−r(u,v), with the usual conventions min ∅ = +∞ and 2−∞ = 0.
Then d is a metric on A∗ and the completion of A∗ for this metric is denoted by
Â∗. The product on A∗ can be extended by continuity to Â∗. This extended prod-
uct makes Â∗ a compact topological monoid, called the free profinite monoid.
Its elements are called profinite words.

In a compact monoid, the smallest closed subsemigroup containing a given
element s has a unique idempotent, denoted sω. This is true in particular in a
finite monoid and in the free profinite monoid.

One can show that every morphism ϕ from A∗ into a (discrete) finite monoid
M extends uniquely to a a uniformly continuous morphism ϕ̂ from Â∗ to M . It
follows that if x is a profinite word, then ϕ̂(xω) = ϕ̂(x)ω .

1.4 Equations and Identities

Let ϕ be a morphism from A∗ into a finite [ordered] monoid M and let x, y be
two profinite words of Â∗. We say that ϕ satisfies the profinite equation x = y
[x � y] if ϕ̂(x) = ϕ̂(y) [ϕ̂(x) � ϕ̂(y)].

A regular language ofA∗ satisfies a profinite equation if its syntactic morphism
satisfies this equation. More generally, we say that a set of regular languages L
is defined a set of profinite equations E if L is the set of all regular languages
satisfying every equation of E.

A lattice of languages is a set L of languages of A∗ containing ∅ and A∗ and
closed under finite union and finite intersection. It is closed under quotients if,
for each L ∈ L and u ∈ A∗, the languages u−1L and Lu−1 are also in L. It is
proved in [19] that a set of regular languages is a lattice [Boolean algebra] closed
under quotient if and only if it can be defined by a set of profinite equations of
the form u � v [u = v].

A finite [ordered] monoid M satisfies the identity x = y [x � y] if every
morphism from A∗ into M satisfies this equation. These notions can be extended
to semigroups by considering morphisms from the free semigroup A+ to a finite
semigroup.

1.5 Varieties of Monoids

In this paper, we will only consider varieties in Eilenberg’s sense. Thus, for
us, a variety of semigroups is a class of finite semigroups closed under taking
subsemigroups, quotients and finite direct products [18]. Varieties of ordered
semigroups, monoids and ordered monoids are defined analogously [39].



Theme and Variations on the Concatenation Product 47

Given a set E of identities, we denote by �E� the class of all finite [ordered]
monoids which satisfy all the identities of E. Reiterman’s theorem [57] and its
extension to ordered structures [53] states that every variety of [ordered] monoids
[semigroups] can be defined by a set of identities. For instance, the variety of
ordered semigroups �xωyxω � xω� is the variety of ordered semigroups S such
that, for each idempotent e ∈ S and for each s ∈ S, ese � e.

The following varieties will be used in this paper: the variety A of aperiodic
monoids, defined by the identity xω+1 = xω , the variety R [L] of R-trivial [L-
trivial ] monoids, defined by the identity (xy)ωx = xω [y(xy)ω = xω] and the
variety DA, which consists of the aperiodic monoids whose regular J -classes
are idempotent semigroups. This variety is defined by the identities xω = xω+1

and (xy)ω(yx)ω(xy)ω = (xy)ω .
We will also consider two group varieties: the variety Gp of p-groups (for a

prime p) and the variety Gsol of soluble groups.
Finally, if V is a variety of monoids, the class of all semigroups S such that,

for each idempotent e ∈ S, the “local” monoid eSe belongs to V, form a variety
of semigroups, denoted LV. In particular, the variety LI is the variety of locally
trivial semigroups, defined by the identity xωyxω = xω .

1.6 Varieties of Languages

A class of languages C associates with each alphabet A a set C(A∗) of regular
languages of A∗. A positive variety of languages is a class of languages V such
that, for all alphabets A and B,

(1) V(A∗) is a lattice of languages closed under quotients,
(2) if ϕ : A∗ → B∗ is a morphism, then L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗).

A variety of languages is a positive variety V such that, for each alphabet A,
V(A∗) is closed under complement. We can now state Eilenberg’s variety theorem
[18] and its counterpart for ordered monoids [39].

Theorem 1.1. Let V be a variety of monoids. For each alphabet A, let V(A∗)
be the set of all languages of A∗ whose syntactic monoid is in V. Then V is a
variety of languages. Further, the correspondence V → V is a bijection between
varieties of monoids and varieties of languages.

Theorem 1.2. Let V be a variety of ordered monoids. For each alphabet A,
let V(A∗) be the set of all languages of A∗ whose syntactic ordered monoid is
in V. Then V is a positive variety of languages. Further, the correspondence
V→ V is a bijection between varieties of ordered monoids and positive varieties
of languages.

A slightly more general definition was introduced by Straubing [71]. Let C be a
class of morphisms between free monoids, closed under composition and con-
taining all length-preserving morphisms. Examples include the classes of all
length-preserving morphisms, of all length-multiplying morphisms (morphisms
such that, for some integer k, the image of any letter is a word of length k),
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all non-erasing morphisms (morphisms for which the image of each letter is
a nonempty word), all length-decreasing morphisms (morphisms for which the
image of each letter is either a letter or the empty word) and all morphisms.

A positive C-variety of languages is a class V of recognisable languages sat-
isfying the first condition defining a positive variety of languages and a second
condition
(2′) if ϕ : A∗ → B∗ is a morphism in C, L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗).

A C-variety of languages is a positive C-variety of languages closed under com-
plement. When C is the class of non-erasing morphisms (for which the image of
a letter is a nonempty word), we use the term ne-variety. These ne-varieties are
essentially the same thing as Eilenberg’s +-varieties (see [49, p. 260–261] for a
detailed discussion) and they correspond to varieties of semigroups.

1.7 Relational Morphisms

A relational morphism between two monoids M and N is a function τ from M
into P(N) such that:

(1) for all M ∈M , τ(m) �= ∅,
(2) 1 ∈ τ(1),
(3) for all m,n ∈M , τ(m)τ(n) ⊆ τ(mn)

Let V be a variety of [ordered] semigroups. A [relational] morphism τ : M → N
is said to be a [relational] V-morphism if for every [ordered] semigroup R of N
belonging to V, the [ordered] semigroup τ−1(R) also belongs to V.

Let me point out an important subtlety. The definition of a [relational] V-
morphism adopted in this paper is taken from [44] and differs from the original
definition given for instance in [68,42]. The original definition only requires that,
for each idempotent e, the [ordered] semigroup τ−1(e) also belongs to V. In
many cases the two definitions are equivalent: for instance, when V is one of
the varieties A, �xωyxω = xω�, �xωy = xω�, �yxω = xω� or LH where H is a
variety of groups. However, the two definitions are not equivalent for the variety
�xωyxω � xω�.

2 Theme and Variations: The Concatenation Product

We now come to the main topic of this article. Just like a piece of classical music,
the concatenation product includes theme and variations.

2.1 Main Theme

The product (or concatenation product) of the languages L0, L1, . . . , Ln of A∗ is
the language

L0L1 · · ·Ln = {u0u1 · · ·un | u0 ∈ L0, u1 ∈ L1, · · · , un ∈ Ln}
A language L of A∗ is a marked product of the languages L0, L1, . . . , Ln if

L = L0a1L1 · · · anLn

for some letters a1, . . . , an of A.
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2.2 Three Variations

Variations include the unambiguous, deterministic, bideterministic and modular
products, that are defined below.

Unambiguous Product

A marked product L = L0a1L1 · · · anLn is said to be unambiguous if every
word of L admits a unique decomposition of the form u = u0a1u1 · · · anun with
u0 ∈ L0, . . . , un ∈ Ln. For instance, the marked product {a, c}∗a{1}b{b, c}∗ is
unambiguous.

Deterministic Product

A word x is a prefix [suffix ] of a word u if there is a word v such that u = xv
[u = vx]. It is a proper prefix [suffix] if x �= u. A subset C of A+ is a prefix
[suffix ] code if if no element of C is a proper prefix [suffix] of another element
of C.

A marked product L = L0a1L1 · · · anLn of n nonempty languages L0, L1, . . . ,
Ln of A∗ is left [right ] deterministic if, for 1 � i � n, the set L0a1L1 · · ·Li−1ai

[aiLi · · · anLn] is a prefix [suffix] code. This means that every word of L has a
unique prefix [suffix] in L0a1L1 · · ·Li−1ai [aiLi · · · anLn]. It is observed in [9, p.
495] that the marked product L0a1L1 · · · anLn is deterministic if and only if,
for 1 � i � n, the language Li−1ai is a prefix code. Since the product of two
prefix codes is a prefix code, any left [right ] deterministic product of left [right ]
deterministic products is left [right ] deterministic.

A marked product is said to be bideterministic if it is both left and right
deterministic.

Modular Product of Languages

Let L0, . . . , Ln be languages of A∗, let a1, . . . , an be letters of A and let r and p
be integers such that 0 � r < p. We define the modular product of the languages
L0, . . . , Ln with respect to r and p, denoted (L0a1L1 · · ·anLn)r,p, as the set
of all words u in A∗ such that the number of factorizations of u in the form
u = u0a1u1 · · ·anun, with ui ∈ Li for 0 � i � n, is congruent to r modulo p.

A language is a p-modular product of the languages L0, . . . , Ln if it is of the
form (L0a1L1 · · · anLn)r,p for some r.

3 Classical Area

The most important results on the concatenation product are due to Schützen-
berger. They concern the smallest Boolean algebra of languages closed under
marked product or one of its variants.

Recall that the set of star-free languages is the smallest Boolean algebra of
languages of A∗ which is closed under marked product.

Theorem 3.1 (Schützenberger [60]). A regular language is star-free if and
only if its syntactic monoid is aperiodic.
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There are essentially two proofs of this result. Schützenberger’s original proof
[60,35], slightly simplified in [30], works by induction on the J -depth of the syn-
tactic semigroup. Schützenberger’s proof actually gives a stronger result since
it shows that the star-free languages form the smallest Boolean algebra of lan-
guages of A∗ which is closed under marked products of the form L→ LaA∗ and
A∗aL. In other words, marked products with A∗ suffice to generate all star-free
languages.

The other proof [17,28] makes use of a weak form of the Krohn-Rhodes theo-
rem: every aperiodic semigroup divides a wreath product of copies of the monoid
U2 = {1, a, b}, given by the multiplication table aa = a, ab = b, ba = b and
bb = b.

Theorem 3.1 provides an algorithm to decide whether a given regular language
is star-free. The complexity of this algorithm is analysed in [16,65].

Let us define in the same way the set of unambiguous [right deterministic, left
deterministic] star-free languages as the smallest Boolean algebra of languages
of A∗ containing the languages of the form B∗, for B ⊆ A, which is closed
under unambiguous [left deterministic, right deterministic] marked product. The
algebraic characterizations of these classes are also known.

Theorem 3.2 (Schützenberger [61]). A regular language is unambiguous
star-free if and only if its syntactic monoid belongs to DA.

One can show that the set of unambiguous star-free languages of A∗ is the
smallest set of languages of A∗ containing the languages of the form B∗, for B ⊆
A, which is closed under finite disjoint union and unambiguous marked product.
The languages corresponding to DA admit several other nice characterizations:
see [72] for a survey.

Deterministic products were also studied in [61]. Alternative descriptions of
these languages can be found in [18,13].

Theorem 3.3 ([18]). A regular language is left [right ] deterministic star-free
if and only if its syntactic monoid is R-trivial [L-trivial ].

Similar results are known for the p-modular product [18,66,73,76,29,78,79,80].

Theorem 3.4. Let p be a prime. A language of A∗ belongs to the smallest
Boolean closed under p-modular product if and only if its syntactic monoid is
a p-group.

Theorem 3.5. A language of A∗ belongs to the smallest Boolean closed under
p-modular product for all prime p if and only if its syntactic monoid is a soluble
group.

Finally, one may consider the product and the p-modular products simultane-
ously.

Theorem 3.6. A language of A∗ belongs to the smallest Boolean closed under
product and under p-modular product for all prime p if and only if all the groups
in its syntactic monoid are soluble.

See also [75] for another description of this variety of languages.
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4 The Ground Bass: Schützenberger Products

The Schützenberger product is the first algebraic tool used to study the concate-
nation product. It was first defined by Schützenberger [60] and later generalized
by Straubing [67]. An intuitive construction, related to the linear representa-
tion of a suitable transducer, was given in [46,47] and is briefly sketched below.
More information on transducers and their linear representations can be found
in Sakarovitch’s book [59].

4.1 Transducers for the Product

The construction given in [46,47] relies on the following observation. Let τ and
τa be the transductions from A∗ to A∗ ×A∗ defined by

τ(u) = {(u1, u2) | u1u2 = u}
τa(u) = {(u1, u2) | u1au2 = u}

It is easy to see that the two transducers pictured below realise these trans-
ductions. In these figures, c is a generic letter and the symbol | is a separator
between the input letter and the output.

1 2 1 2

c | (c, 1)

1 | (1, 1)

c | (1, c) c | (c, 1)

a | (1, 1)

c | (1, c)

The transducer on the left [right] realizes τ [τa]. Now L0L1 = τ−1(L0 × L1)
and L0aL1 = τ−1

a (L0 × L1) and this equality allows one to compute a monoid
recognising L0L1 and L0aL1, given monoids recognising L0 and L1.

This construction can be readily extended to (marked) products of several
languages. For instance, given a1, . . . , an ∈ A, the transduction σ defined by
σ(u) = {(u0, · · · , un) ∈ (A∗)n+1 | u0a1u1 · · · anun = u} is realised by the
transducer

1 2 . . . n− 1 n

c | (c, 1)

a1 | (1, 1)

c | (1, c) c | (1, c)

an | (1, 1)

c | (1, c)

and the marked product L0a1L1 · · · anLn is equal to σ−1(L0 × L1 × · · · × Ln).
A bit of algebra is now required to make full use of this transduction.
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4.2 Linear Representations

The R be the semiring P(A∗×A∗). Then for each word u in A∗, τa(u) = μ(u)1,2,
where μ : A∗ →M2(R) is defined by

μ(a) =
(

(c, 1) (1, 1)
0 (1, c)

)

and μ(c) =
(

(c, 1) 0
0 (1, c)

)

if c �= a

Indeed, for each u ∈ A∗, one gets

μ(u) =
(

(u, 1) {(u0, u1) | u0au1 = u}
0 (1, u)

)

which gives the result. Let now π0 : A∗ → M0 [π1 : A∗ → M1] be a monoid
morphism recognising the language L0 [L1] and let M = M0 ×M1. Let π =
π0× π1. Then π is a monoid morphism from A∗×A∗ into M , which can be first
extended to a semiring morphism from A∗×A∗ to P(M) and then to a semiring
morphism from M2(A∗ × A∗) to M2(P(M)), also denoted by π. It follows that
π ◦ μ is a morphism from A∗ into M2(P(M)) and it is not difficult to see that
this morphism recognises the language τ−1

a (L0×L1), that is, L0aL1. Further, if
u is a word of A∗, the matrix π ◦ μ(u) has the form

(
(m0, 1) P

0 (1,m1)

)

for some m0 ∈M0, m1 ∈ M1 and P ⊆ M0 ×M1. In particular, L0aL1 is recog-
nised by the monoid of matrices of this form. This monoid is the Schützenberger
product of the monoids M0 and M1.

A similar representation can be given for the transducer σ and this leads to the
definition of the Schützenberger product of n+ 1 monoids M0, . . . ,Mn. In fact,
one can give a slightly more general definition. Let M = M0×· · ·×Mn, let k be
a semiring and let k[M ] be the monoid algebra of M over k. The Schützenberger
product over k of the monoids M0, . . . ,Mn, is the submonoid of Mn+1(k[M ])
made up of matrices m = (mi,j) such that

(1) mi,j = 0, for i > j,
(2) mi,i = (1, . . . , 1,mi, 1, . . . , 1) for some mi ∈Mi,
(3) mi,j ∈ k[1× · · · × 1×Mi × · · · ×Mj × 1× · · · × 1], for i < j.

This monoid is denoted k♦(M0, . . . ,Mn). The first condition means that the
matrices are uppertriangular, the second one that the entry mi,i can be identified
with an element of Mi.

When k is the Boolean semiring, then k[M ] is isomorphic to P(M) and the
Schützenberger product is simply denoted ♦(M0, . . . ,Mn). For instance, a ma-
trix of ♦3(M1,M2,M3) will have the form

⎛

⎝
s1 P1,2 P1,3

0 s2 P2,3

0 0 s3

⎞

⎠
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with si ∈Mi, P1,2 ⊆M1×M2, P1,3 ⊆M1×M2×M3 and P2,3 ⊆M2×M3. The
first part of the next proposition is due to Schützenberger [60] for n = 1 and to
Straubing [67] for the general case.

Proposition 4.1. Let L = L0a1L1 · · · anLn be a marked product and let Mi be
the syntactic monoid of Li, for 0 � i � n. Then the Schützenberger product
♦n(M0, . . . ,Mn) recognises L.

A similar result holds for the p-modular product, for a prime p, by taking k = Fp,
the field with p elements [34,37,79].

Proposition 4.2. Let L = (L0a1L1 · · · anLn)r,p be a p-modular product and
let Mi be the syntactic monoid of Li, for 0 � i � n. Then the Schützenberger
product Fp♦n(M0, . . . ,Mn) recognises L.

In view of Proposition 4.1, a natural question arises: what are the languages
recognised by a Schützenberger product? In the Boolean case, the answer was
first given by Reutenauer [58] for n = 2 and by the author [33] in the general
case (see also [80,63]). The case k = Fp was treated by Weil [79, Theorem 2.2].

Theorem 4.3. A language is recognised by the Schützenberger product of M0,
. . . , Mn if and only if it belongs to the Boolean algebra generated by the marked
products of the form Li0a1Li1 · · ·asLis where 0 � i0 < i1 < · · · < is � n and Lij

is recognised by Mij for 0 � j � s.

Theorem 4.4. A language is recognised by the monoid Fp♦(M0, . . . ,Mn) if and
only if it belongs to the Boolean algebra generated by the p-modular products of
the form (Li0a1Li1 · · · asLis)r,p where 0 � i0 < i1 < · · · < is � n and Lij is
recognised by Mij for 0 � j � s.

In the Boolean case, it is possible to give an ordered version of Theorem 4.3
[54,44]. Indeed, the (Boolean) Schützenberger product can be ordered by reverse
inclusion: P � P ′ if and only if for 1 � i � j � n, Pi,j ⊇ P ′

i,j . The corresponding
ordered monoid is denoted ♦+

n (M0, . . . ,Mn) and is called the ordered Schützen-
berger product of M1, . . . , Mn.

Theorem 4.5. A language is recognised by the ordered Schützenberger product
of M0, . . . , Mn if and only if it belongs to the lattice generated by the marked
products of the form Li0a1Li1 · · ·asLis where 0 � i0 < i1 < · · · < is � n and Lij

is recognised by Mij for 0 � j � s.

4.3 Algebraic Properties of the Schützenberger Product

It follows from the definition of the Schützenberger product that the map sending
a matrix to its diagonal is a morphism π from k♦(M0, . . . ,Mn) to M . The
properties of this morphism were first analysed by Straubing [67] and by the
author [36,54,44] in the Boolean case and by Weil [80, Corollary 3.6] when k =
Fp. See also [4].
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Proposition 4.6. The morphism π : ♦(M0, . . . ,Mn) →M is a �xωyxω � xω�-
morphism.

Proposition 4.7. The morphismπ :Fp♦(M0, . . . ,Mn)→Mis a LGp-morphism.

5 Passacaglia: Pumping Properties

The second method to study the product is to use relational morphisms. This
technique was initiated by Straubing [68] and later refined in [10,8,36,44,50,54].
We first state the main result under the form of a pumping lemma before turning
to a more algebraic formulation.

Let L = L0a1L1 · · ·anLn be a marked product of regular languages.

Theorem 5.1. Let u and v be words of A∗ satisfying the following properties:
(1) u2 ∼L u and
(2) for each i ∈ {0, . . . , n}, u2 ∼Li u and uvu �Li u.

Then for all x, y ∈ A∗, the condition xuy ∈ L implies xuvuy ∈ L.

Another possible formulation of the theorem is to say that, under the assump-
tions (1) and (2), L is closed under the rewriting system u→ uvu.

We now turn to the algebraic version of this statement. For each i, let Li be
a language of A∗, let ηi : A∗ →M(Li) be its syntactic morphism and let

η : A∗ →M(L0)×M(L1)× · · · ×M(Ln)

be the morphism defined by η(u) = (η0(u), η1(u), . . . , ηn(u)). Finally, let μ :
A∗ →M(L) be the syntactic morphism of L. Theorem 5.1 can be reformulated
as a property of the relational morphism (see picture below)

τ = η ◦ μ−1 : M(L)→M(L0)×M(L1)× · · · ×M(Ln)

M(L) M(L0)×M(L1)× · · · ×M(Ln)

A∗

μ

τ = η ◦ μ−1

η

Theorem 5.2
(1) The relational morphism τ is a relational �xωyxω � xω�-morphism.
(2) If the product is unambiguous, it is a relational �xωyxω = xω�-morphism.
(3) If the product is left deterministic, it is a relational �xωy = xω�-morphism.
(4) If the product is right deterministic, it is a relational �yxω =xω�-morphism.

A similar result holds for the p-modular product.
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Proposition 5.3. Let L = (L0a1L1 · · ·anLn)r,p be a p-modular product. The
relational morphism τ : M(L) → M(L0) × · · · ×M(Ln) is a relational LGp-
morphism.

Theorem 5.2 is often used in the following weaker form.

Corollary 5.4. The relational morphism τ : M(L) →M(L0) ×M(L1)× · · · ×
M(Ln) is an aperiodic relational morphism.

6 Chaconne: Closure Properties

The results of Section 3 give a description of the smallest Boolean algebra closed
under marked product and its variants. The next step would be to characterize
all Boolean algebras closed under marked product and its variants. A related
problem is to describe the classes of regular languages closed under union and
marked product.

Both problems have been solved in the case of a variety of languages, but the
description of these results requires an algebraic definition. Let V be a variety
of [ordered] monoids and let W be a variety of ordered semigroups. The class
of all [ordered] monoids M such that there exists a V-relational morphism from
M into a monoid of V is a variety of [ordered] monoids, denoted W−1V.

6.1 Varieties Closed under Product

Varieties closed under marked products were described by Straubing [66].

Theorem 6.1. Let V be a variety of monoids and let V be the associated vari-
ety of languages. For each alphabet A, let W(A∗) be the smallest Boolean algebra
containing V(A∗) and closed under product. Then W is a variety and the asso-
ciated variety of monoids is A−1V.

This important result contains Theorem 3.1 as a particular case, when V is
the trivial variety of monoids. Examples of varieties V satisfying the equality
A−1V = V also include the variety of monoids whose groups belong to a given
variety of groups.

Theorem 6.1 has been extended to C-varieties in [15, Theorem 4.1].

6.2 Varieties Closed under Modular Product

Finally, let us mention the results of Weil [80]. A set of languages L of A∗ is
closed under p-modular product if, for any language L0, . . . , Ln ∈ L, for any letter
a1, . . . , an ∈ A and for any integer r such that 0 � r < p, (L0a1L1 · · · anLn)r,p ∈
L. A set of languages L of A∗ is closed under modular product if it is closed
under p-modular product, for each prime p.

Theorem 6.2. Let p be a prime number, let V be a variety of monoids and
let V be the associated variety of languages. For each alphabet A, let W(A∗)
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be the smallest Boolean algebra containing V(A∗) and closed under p-modular
product. Then W is a variety of languages and the associated variety of monoids
is LG−1

p V.

Theorem 6.3. Let p be a prime number, let V be a variety of monoids and
let V be the associated variety of languages. For each alphabet A, let W(A∗) be
the smallest Boolean algebra containing V(A∗) and closed under product and p-
modular product. Then W is a variety of languages and the associated variety of
monoids is LG−1

p V.

Theorem 6.4. Let V be a variety of monoids and let V be the associated variety
of languages. For each alphabet A, let W(A∗) be the Boolean algebra containing
V(A∗) and closed under modular product. Then W is a variety of languages and
the associated variety of monoids is LGsol−1V.

6.3 Polynomial Closure

Let L be a lattice of languages. The polynomial closure of L is the set of lan-
guages that are finite unions of marked products of languages of L. It is denoted
Pol(L). Similarly, the unambiguous polynomial closure of L is the set of lan-
guages that are finite unions of unambiguous marked products of languages of
L. It is denoted UPol(L). The left and right deterministic polynomial closure are
defined analogously, by replacing “unambiguous” by “left [right] deterministic”.
They are denoted DlPol(V) [DrPol(V)].

An algebraic characterization of the polynomial closure of a variety of lan-
guages was first given in [51,54]. It was extended to positive varieties in [44].

Theorem 6.5. Let V be a variety of [ordered ] monoids and let V be the associ-
ated [positive ] variety of languages. Then Pol(V) is a positive variety of languages
and the associated variety of ordered monoids is �xωyxω � xω�−1V.

Theorem 6.5 has been extended to C-varieties in [49, Theorem 7.2]. For the
unambiguous product, one has the following result [32,50,4].

Theorem 6.6. Let V be a variety of monoids and let V be the associated variety
of languages. Then UPol(V) is a variety of languages and the associated variety
of ordered monoids is �xωyxω = xω�−1V.

For the left (resp. right) deterministic product, similar results hold [32,50].

Theorem 6.7. Let V be a variety of monoids and let V be the associated variety
of languages. Then DlPol(V) (resp. DrPol(V)) is a variety of languages, and the
associated variety of monoids is �xωy = xω�−1V (resp. �yxω = xω�−1V).

It is known that the smallest nontrivial variety of aperiodic monoids is the variety
J1 = �xy = yx, x = x2�. One can show that �xωy = xω�−1J1 is equal to
the variety R of all R-trivial monoids, which is also defined by the identity
(xy)ωx = (xy)ω . This leads to the following characterization [18,13].
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Corollary 6.8. For each alphabet A, R(A∗) consists of the languages which
are disjoint unions of languages of the form A∗

0a1A
∗
1a2 · · · anA

∗
n, where n � 0,

a1, . . . an ∈ A and the Ai’s are subsets of A such that ai /∈ Ai−1, for 1 � i � n.

A dual result holds for L-trivial monoids. Finally, �xωyxω = xω�−1J1 = DA,
which leads to the description of the languages of DA given hereinabove.

6.4 Back to Identities

A general result of [52] permits to give identities defining the varieties of the
form V−1W. In particular, we get the following results.

Theorem 6.9. Let V be a variety of monoids. Then
(1) A−1V is defined by the identities of the form xω+1 = xω, where x is a

profinite word such that V satisfies the identity x = x2.
(2) �xωyxω = xω�−1V is defined by the identities of the form xωyxω = xω,

where x, y are profinite words such that V satisfies the identity x = y = x2.
(3) �xωyxω � xω�−1V is defined by the identities of the form xωyxω � xω,

where x, y are profinite words such that V satisfies the identity x = y = x2.

7 Hierarchies and Bridges

The Boolean algebra BL generated by a lattice L is called its Boolean closure.
In particular, BPol(L) denotes the Boolean closure of Pol(L).

Concatenation hierarchies are defined by alternating Boolean operations and
polynomial operations (union and marked product). More precisely, let L be a set
of regular languages (or more generally, a class of languages). The concatenation
hierarchy built on L is the sequence Ln defined inductively as follows1: L0 = L
and, for each n � 0:

(1) L2n+1 is the polynomial closure of the level 2n,
(2) L2n+2 is the Boolean closure of the level 2n+ 1.

The next results summarize the results of [5,6,54].

Proposition 7.1. If L is a lattice of regular languages, then each even level is
a lattice of regular languages and each odd level is a Boolean algebra. Further, if
L is closed under quotients, then every level is closed under quotients.

Since the polynomial closure of a C-variety of languages is a positive C-variety
of languages [49, Theorem 6.2], a similar result holds for C-varieties.

Proposition 7.2. If L is a C-variety of languages, then each even level is a
positive C-variety of languages and each odd level is a C-variety of languages.

1 In the literature, concatenation hierarchies are usually indexed by half integers, but
it seems simpler to use integers.



58 J.-É. Pin

For instance, the Straubing-Thérien’ hierarchy Vn [74,67,69] is built on the trivial
Boolean algebra V0 = {∅, A∗}. The starting point of Brzozowski’s “dot-depth”
hierarchy Bn [12] was originally defined as the Boolean algebra of finite and
cofinite languages but it was later suggested to start with the Boolean algebra

B0(A∗) = {FA∗G ∪H | F , G, H are finite languages}

This suggestion was motivated by Theorem 7.4 below.
Another series of concatenation hierarchies is obtained as follows. Let H be a

variety of groups and let H be the associated variety of languages. The concate-
nation hierarchy built on H is denoted by Hn and these hierarchies are called
group hierarchies.

It is not immediate to see that all these hierarchies do not collapse. This was
first proved by Brzozowski and Knast [14] for the dot-depth hierarchy, but the
result also holds for the other hierarchies [26].

Theorem 7.3. The Straubing-Thérien’ hierarchy, the dot-depth hierarchy and
the group hierarchies are infinite.

Let Vn be the variety of monoids corresponding to Vn and let Bn be the variety
of semigroups corresponding to Bn. There is a nice algebraic connection between
Vn and Bn, discovered by Straubing [69]. Given a variety of [ordered] monoids
V and a variety of monoids [semigroups] W, let V∗W be the variety of [ordered]
monoids generated by the semidirect products M ∗N with M ∈ V and N ∈W.

Theorem 7.4. The equality Bn = Vn ∗ LI holds for each n � 0.

There is a similar bridge between Vn and Hn for each variety of groups H
[43,44].

Theorem 7.5. The equality Hn = Vn ∗H holds for each n � 0.

It is still an outstanding open problem to know whether there is an algorithm
to compute the concatenation level of a given regular language. Here is a brief
summary of the known results. Let us start with the level 1 [26,39,41,56]. Let G
be the variety of all groups.

Theorem 7.6. The following relations hold: V1 = �x � 1�, B1 = �xωyxω �
xω� and G1 = �xω � 1�. In particular, these varieties are decidable.

The languages of G1 are also known to be the open regular sets for the progroup
topology [26]. Extensions of this result to the varieties H1 where H is a variety
of groups is the topic of intensive research. See in particular Steinberg’s article
[64].

The first decidability result for the level 2 was obtained by Simon [62].

Theorem 7.7. A language belongs to V2 if and only if its syntactic monoid is
J -trivial.

The corresponding result for B2 is due to Knast [24,25]
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Theorem 7.8. A language belongs to B2 if and only if its syntactic semigroup
satisfies the identity

(xωpyωqxω)ωxωpyωsxω(xωryωsxω)ω = (xωpyωqxω)ω(xωryωsxω)ω .

The corresponding result for G2 has a long story, related in detail in [38], where
several other characterizations can be found.

Theorem 7.9. A language belongs to G2 if and only if in its syntactic monoid,
the submonoid generated by the idempotents is J -trivial.

Theorem 7.9 shows that G2 is decidable. Again, there is a lot of ongoing work to
try to extend this result to varieties of the form H2. See in particular [7].

Since level 3 is the polynomial closure of level 2, Theorem 6.5 can be ap-
plied. One gets in particular the following decidability result [54]. Recall that
the content of a word is the set of letters occurring in this word.

Theorem 7.10. A language belongs to V3 if and only if its syntactic ordered
monoid satisfies the identities xωyxω � xω for all profinite words x, y with the
same content.

The corresponding problem for B3 is studied in [20,22,56]. In fact, Theorem 7.4
can be used to prove the following more general decidability result [56,69].

Theorem 7.11. For every integer n, the variety Bn is decidable if and only if
Vn is decidable.

It is still an open problem to know whether a similar reduction exists for the
hierarchy Gn.

For the level 4, several partial results are known [48,70] and several conjectures
have been formulated and then disproved [54,64,55]. Due to the lack of space,
we will not detail these results here. Some partial results are also known for the
level 5 [21].

8 Harmony with Logic

One of the reasons why the decidability problem is particularly appealing is its
close connection with finite model theory, first explored by Büchi in the early
sixties. Büchi’s logic comprises a relation symbol < and, for each letter a ∈ A,
a unary predicate symbol a. The set FO[<] of first order formulas is built in
the usual way by using these symbols, the equality symbol, first order variables,
Boolean connectives and quantifiers.

A word u is represented as a structure (Dom(u), (a)a∈A, <) where Dom(u) =
{1, . . . , |u|} and a = {i ∈ Dom(u) | u(i) = a}. The binary relation symbol <
is interpreted as the usual order. Thus, if u = abbaab, Dom(u) = {1, . . . , 6},
a = {1, 4, 5} and b = {2, 4, 6}. Formulas can now be interpreted on words. For
instance, the sentence

ϕ = ∃x ∃y
(
(x < y) ∧ (ax) ∧ (by)

)
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means “there exist two integers x < y such that, in u, the letter in position x is
an a and the letter in position y is a b”. Therefore, the set of words satisfying
ϕ is A∗aA∗bA∗. More generally, the language defined by a sentence ϕ is the set
of words u such that ϕ satisfies u. The connection with star-free languages was
established by McNaughton and Papert [27].

Theorem 8.1. A language is FO[<]-definable if and only if it is star-free.

Thomas [77] (see also [31]) refined this result by showing that the concatenation
hierarchy of star-free languages corresponds, level by level, to the Σn-hierarchy,
defined inductively as follows:

(1) Σ0 consists of the quantifier-free formulas.
(2) Σn consists of the formulas of the form ∃∗ ∀∗ ∃∗ · · · ϕ with n alternating

blocks of quantifiers and ϕ quantifier-free.
(3) BΣn denotes the class of formulas that are Boolean combinations of Σn-

formulas.
For instance, ∃x1∃x2∀x3∀x4∀x5∃x6 ϕ, where ϕ is quantifier free, is in Σ3. The
next theorem is due to Thomas [77] (see also [31,40]).

Theorem 8.2
(1) A language is Σn[<]-definable if and only if it belongs to V2n−1.
(2) A language is BΣn[<]-definable if and only if it belongs to V2n.

A slightly expanded logic is required for the dot-depth hierarchy. Let min [max]
be a predicate symbol interpreted as the minimum [maximum] of the domain
and let P [S] be a relation symbol interpreted as the predecessor [successor]
relation. Let Loc be the signature {min,max, S, P} ∪ {(a)a∈A}.

Theorem 8.3
(1) A language is Σn[Loc]-definable if and only if it belongs to B2n−1.
(2) A language is BΣn[Loc]-definable if and only if it belongs to B2n.

Thus deciding whether a language has level n is equivalent to a very natural
problem in finite model theory.

9 Other Variations, Recent Advances

Some specialized topics require even more sophisticated algebraic tools, like the
kernel category of a morphism. This is the case for instance for the bidetermin-
istic product [9,10,11] or for the marked product of two languages [4].

Another topic that we did not mention at all, but which is highly interesting,
is the extension of these results to infinite words or even to words over ordinals
or linear orders.

I would like to conclude with a recent result, which opens a new research
direction. We have given in Section 6 various closure properties for varieties or
even for C-varieties. The next result of Branco and the author [8] is much more
general.
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Theorem 9.1. If L is a lattice of languages closed under quotients, then Pol(L)
is defined by the set of equations of the form xωyxω � xω, where x, y are profinite
words such that the equations x = x2 and y � x are satisfied by L.

Work is in progress to extend the other results of Section 6 to this more gen-
eral setting. The difficulty stems from the fact that definitions like V−1W are
no longer available in this context and one has to work directly on profinite
identities.
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Inform. Théor. Appl. 26(6), 553–564 (1992)

30. Perrin, D.: Finite automata. In: Handbook of Theoretical Computer Science, vol. B,
pp. 1–57. Elsevier, Amsterdam (1990)

31. Perrin, D., Pin, J.-E.: First order logic and star-free sets. J. Comput. System Sci. 32,
393–406 (1986)

32. Pin, J.-E.: Propriétés syntactiques du produit non ambigu. In: de Bakker, J.W., van
Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 483–499. Springer, Heidelberg
(1980)

33. Pin, J.-E.: Hiérarchies de concaténation. RAIRO Informatique Théorique 18, 23–46
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Abstract. Let IF be a field, V ⊆ IFn be a (combinatorially interesting)
finite set of points. Several important properties of V are reflected by the
polynomial functions on V . To study these, one often considers I(V ), the
vanishing ideal of V in the polynomial ring IF[x1, . . . , xn]. Gröbner bases
and standard monomials of I(V ) appear to be useful in this context,
leading to structural results on V .

Here we survey some work of this type. At the end of the paper a
new application of this kind is presented: an algebraic characterization
of shattering-extremal families and a fast algorithm to recognize them.

Keywords: Gröbner basis, standard monomial, lexicographic order,
vanishing ideal, Hilbert function, inclusion matrix, rank formula, combi-
natorial Nullstellensatz, S-extremal set family.

1 Introduction

Throughout the paper n will be a positive integer, and [n] stands for the set
{1, 2, . . . , n}. The set of all subsets of [n] is denoted by 2[n]. Subsets of 2[n] are
called set families or set systems. Let

(
[n]
m

)
denote the family of all m-subsets of

[n] (subsets which have cardinality m), and
(

[n]
≤m

)
is the family of those subsets

that have at most m elements. IN denotes the set of the nonnegative integers,
ZZ is the set of integers, Q is the field of rational numbers, and IFp is the field
of p elements, where p is a prime.

Let IF be a field. As usual, we denote by IF [x1, . . . , xn] = IF [x] the ring of
polynomials in variables x1, . . . , xn over IF. To shorten our notation, we write
f(x) for f(x1, . . . , xn). Vectors of length n are denoted by boldface letters, for
example y = (y1, . . . , yn) ∈ IFn. If w ∈ INn, we write xw for xw1

1 . . . xwn
n ∈ IF [x].

For a subset M ⊆ [n], the monomial xM is
∏

i∈M xi (and x∅ = 1).
Suppose that V ⊆ IFn. Then the vanishing ideal I(V ) of V consists of the

polynomials in IF [x], which, as functions, vanish on V . In our applications, we
consider finite sets V , and use the Gröbner bases, and standard monomials of
I(V ) (see the next subsection for the definitions) to prove claims on V .
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Let vF ∈ {0, 1}n denote the characteristic vector of a set F ⊆ [n], that is, the
ith coordinate of vF is 1 iff i ∈ F . For a system of sets F ⊆ 2[n], let us put VF
for the set of the characteristic vectors of elements of F . By I(F) we understand
the vanishing ideal I(VF ), as it will make no confusion.

In Sect. 2 we collected some basic facts about Gröbner bases and related no-
tions, such as standard monomials, reduction and Hilbert functions. Section 3 is
devoted to the complete uniform families and their extensions. Here we discuss
results describing the Gröbner bases and standard monomials of the ideals I(F),
where F is a complete uniform family

(
[n]
d

)
for some 0 ≤ d ≤ n. We outline some

combinatorial applications of these results, including an extension of Wilson’s
rank formula. Generalizations and extensions are also considered. Section 4 gives
a brief explanation of the lex game method, which gives a powerful technique
to determine lex standard monomials both in theory and practice. In Sect. 5
we consider ideals and Gröbner bases attached to more complex objects, such
as partitions, permutations and graph colorings. The latter topic is particularly
rich in results involving polynomial ideals. Section 6 briefly introduces a pow-
erful algebraic technique of combinatorics, the combinatorial Nullstellensatz by
Noga Alon, together with the resulting non-vanishing theorem. The last section
gives an algebraic characterization of shattering-extremal set families. The char-
acterization involves Gröbner bases and, together with the lex game method, it
provides an efficient algorithm for recognizing shattering-extremal families.

Ideals I of IF [x] generated by monomials are perhaps the most important
objects in algebraic combinatorics. Their study, initiated by Stanley, has led to
some spectacular results, in particular, in the area of simplicial complexes and
convex polytopes. Gröbner basis methods are also applicable there. In this paper
we avoid the area of monomial ideals, as there are many excellent treatments of
this subject. We refer the interested reader to the recent volume of Herzog and
Hibi [30], and the sources cited therein.

2 Gröbner Bases, Standard Monomials and Hilbert
Functions

We recall now some basic facts concerning Gröbner bases in polynomial rings
over fields. For details we refer to [11], [12], [13], [14], and [2].

A total order ≺ on the monomials composed from variables x1, x2, . . . , xn

is a term order, if 1 is the minimal element of ≺, and ≺ is compatible with
multiplication with monomials (if m1,m2,m3 are monomials, m1 ≺ m2, then
m1m3 ≺ m2m3). Two important term orders are the lexicographic (lex for short)
and the degree compatible lexicographic (deglex ) orders. We have xw ≺lex xu if
and only if wi < ui holds for the smallest index i such that wi �= ui. As for
deglex, we have that a monomial of smaller degree is smaller in deglex, and
among monomials of the same degree lex decides the order. Also in general, ≺
is degree compatible, if deg (xw) < deg (xu) implies xw ≺ xu.

The leading monomial lm(f) of a nonzero polynomial f ∈ IF [x] is the largest
monomial (with respect to ≺) which appears with nonzero coefficient in f , when
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written as the usual linear combination of monomials. We denote the set of all
leading monomials of polynomials of a given ideal I�IF [x] by Lm (I) = {lm(f) :
f ∈ I}, and we simply call them the leading monomials of I.

A monomial is called a standard monomial of I, if it is not a leading monomial
of any f ∈ I. Let Sm (I) denote the set of standard monomials of I. Obviously,
a divisor of a standard monomial is again in Sm (I).

A finite subset G ⊆ I is a Gröbner basis of I, if for every f ∈ I there exists a
g ∈ G such that lm(g) divides lm(f). It is not hard to verify that G is actually
a basis of I, that is, G generates I as an ideal of IF [x]. It is a fundamental fact
that every nonzero ideal I of IF [x] has a Gröbner basis.

A Gröbner basis G ⊆ I is reduced, if for all g ∈ G, the leading coefficient of
g (i.e. the coefficient of lm(g)) is 1, and g �= h ∈ G implies that no nonzero
monomial in g is divisible by lm(h). For any fixed term order and any nonzero
ideal of IF [x] there exists a unique reduced Gröbner basis. A Gröbner basis is
universal, if it is a Gröbner basis for every term order ≺ on the monomials.

Suppose that f ∈ IF [x] contains a monomial xw · lm(g), where g is some
other polynomial with leading coefficient c. Then we can reduce f with g (and
obtain f̂), that is, we can replace xw · lm(g) in f with xw ·

(
lm(g)− 1

cg
)
. Clearly

if g ∈ I, then f and f̂ represent the same coset in IF [x] /I. Also note that
lm
(
xw ·

(
lm(g)− 1

cg
))
≺ xw·lm(g). As≺ is a well founded order, this guarantees

that if we reduce f repeatedly with a set of polynomials G, then we end up with
a reduced f̂ in finitely many steps, that is a polynomial such that none of its
monomials is divisible by any lm(g) (g ∈ G).

If G is a Gröbner basis of an ideal I, then it can be shown that the reduction
of any polynomial with G is unique. It follows that for a nonzero ideal I the
set Sm (I) is a linear basis of the IF-vector space IF [x] /I. If I(V ) is a vanishing
ideal of a finite set V of points in IFn, then IF [x] /I(V ) can be interpreted as
the space of functions V → IF. An immediate consequence is that the number
of standard monomials of I(V ) is |V |. In particular, for every family of sets we
have |F| = |Sm (I(F))|.

Another property of the standard monomials of I(F) we will meet several
times: for an arbitrary set family F , one has x2

i − xi ∈ I(F), therefore all the
elements of Sm (I(F)) are square-free monomials.

We write IF [x]≤m for the vector space of polynomials over IF with degree at
most m. Similarly, if I � IF [x] is an ideal, then I≤m = I ∩ IF [x]≤m is the linear
subspace of polynomials from I with degree at most m. The Hilbert function of
the IF-algebra IF [x] /I is HI : IN → IN, where

HI(m) = dimIF

(
IF [x]≤m

/
I≤m

)
.

Let ≺ be any degree compatible term order (deglex for instance). One can
easily see that the set of standard monomials with respect to ≺ of degree at
most m forms a linear basis of IF [x]≤m

/
I≤m. Hence we can obtain HI(m) by

determining the set Sm (I) with respect to any degree compatible term ordering.
In the combinatorial literature HI(F)(m) is usually given in terms of inclusion

matrices. For two families F ,G ⊆ 2[n] the inclusion matrix I(F ,G) is a matrix
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of size |F| × |G|, whose rows and columns are indexed by the elements of F and
G, respectively. The entry at position (F,G) is 1, if G ⊆ F , and 0 otherwise
(F ∈ F , G ∈ G). It is a simple matter to verify that the Hilbert function of F is
given by

HI(F)(m) = dimIF

(
IF [x]≤m

/
I(F)≤m

)
= rankIFI

(

F ,
(

[n]
≤ m

))

.

3 Complete Uniform Families, Applications and
Extensions

3.1 Gröbner Bases and Standard Monomials for Complete Uniform
Families

We start here with an explicit description of the (reduced) Gröbner bases for
the ideals In,d := I(F), where F =

(
[n]
d

)
for some integer 0 ≤ d ≤ n. That is, we

consider the vanishing ideal of the set of all 0,1-vectors in IFn whose Hamming
weight is d.

Let t be an integer, 0 < t ≤ n/2. We set Ht as the set of those subsets
{s1 < s2 < · · · < st} of [n] for which t is the smallest index j with sj < 2j.

We have H1 = {{1}},H2 = {{2, 3}}, and H3 = {{2, 4, 5}, {3, 4, 5}}. It is clear
that if {s1 < . . . < st} ∈ Ht, then st = 2t− 1, and st−1 = 2t− 2 if t > 1.

For a subset J ⊆ [n] and an integer 0 ≤ i ≤ |J | we denote by σJ,i the i-th
elementary symmetric polynomial of the variables xj , j ∈ J :

σJ,i :=
∑

T⊆J,|T |=i

xT ∈ IF[x1, . . . , xn] .

In particular, σJ,0 = 1. Now let 0 < t ≤ n/2, 0 ≤ d ≤ n, and H ∈ Ht. Set

H ′ = H ∪ {2t, 2t+ 1, . . . , n} ⊆ [n] .

We write

fH,d = fH,d(x1, . . . , xn) :=
t∑

k=0

(−1)t−k

(
d− k

t− k

)

σH′,k .

As an example, with U = {2, 3, . . . , n} we have

f{2,3},d = σU,2 − (d− 1)σU,1 +
(
d

2

)

.

Gröbner bases of In,d have been described in [26]:

Theorem 1. Let 0 ≤ d ≤ n/2 be integers, IF a field, and ≺ be an arbitrary
term order on the monomials of IF [x] for which xn ≺ xn−1 ≺ . . . ≺ x1. Then
the following set G of polynomials is a Gröbner basis of the ideal In,d:

G = {x2
1 − x1, . . . , x

2
n − xn} ∪ {xJ : J ∈

(
[n]
d+ 1

)

}∪

∪{fH,d : H ∈ Ht for some 0 < t ≤ d} .
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A similar description is valid for In,n−d in the place of In,d. The standard mono-
mials for the complete uniform families have also been obtained. The next the-
orem is valid for an arbitrary term order ≺ such that xn ≺ xn−1 ≺ . . . ≺ x1.
For the lex order it was proved in [6], and later it was extended to general term
orders in [26].

Theorem 2. Let 0 ≤ d ≤ n/2 and denote by M = Md the set of all monomials
xG such that G = {s1 < s2 < . . . < sj} ⊂ [n] for which j ≤ d and si ≥ 2i holds
for every i, 1 ≤ i ≤ j. Then M is the set of standard monomials for In,d as well
as for In,n−d with respect to any term order ≺ as above.

In particular, |M| =
(
n
d

)
and M is an IF basis of the space of functions from VF

to IF. Also, Theorem 1 allows one to determine the reduced Gröbner bases of
the ideals In,d. Here we note only the fact that a suitable subset of G turns out
to be the reduced Gröbner basis of In,d for 0 ≤ d ≤ n

2 .

3.2 Some Combinatorial Applications to q-Uniform Families

Let p be a prime, k an integer, and q = pα, α ≥ 1. Put

F(k, q) = {K ⊆ [n] : |K| ≡ k (mod q)} .

In [27] the following rank inequality is proved for the inclusion matrices of
F(k, q):

Theorem 3. Let p be a prime and k an integer. Let q = pα > 1. If � ≤ q − 1
and 2� ≤ n, then

rankIFp I

(

F(k, q),
(

[n]
≤ �

))

≤
(
n

�

)

.

This result is a generalization of a theorem of Frankl [19] covering the case
α = 1. Theorem 3 is a direct consequence of the next inclusion relation involv-
ing deglex standard monomials. In simple words, it states that the low degree
standard monomials of F(k, q) are contained among the standard monomials of
the complete uniform families.

Theorem 4. Let p be a prime and q = pα > 1. Let ≺ be the deglex order on
the monomials of IF [x] with IF = IFp. Suppose further that k, � ∈ IN, for which
0 ≤ k, � < q, and 2� ≤ n. Then

Sm (I(F(k, q))) ∩ IF [x]≤� ⊆M� ,

hence

| Sm (I(F(k, q))) ∩ IF [x]≤� | ≤
(
n

�

)

.

The crucial point of the proof is the fact that we know quite explicitly a Gröbner
basis for the complete uniform families. To be a bit more specific here, suppose
that k′ is an integer such that 0 ≤ k′ ≤ n and k ≡ k′ (mod q). Using simple
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properties of binomial coefficients one can infer that fH,k ≡ fH,k′ (mod p), i.e.,
the coefficients of the two polynomials are the same modulo p. This fact, together
with a Gröbner reduction argument leads to a proof of Theorem 4.

Babai and Frankl conjectured the following in [7], p. 115.

Theorem 5. Let k be an integer and q = pα, α ≥ 1 a prime power. Suppose
that 2(q − 1) ≤ n. Assume that F = {A1, . . . , Am} is a family of subsets of [n]
such that

(a) |Ai| ≡ k (mod q) for i = 1, . . . ,m

(b) |Ai ∩Aj | �≡ k (mod q) for 1 ≤ i, j ≤ m, i �= j .

Then

m ≤
(

n

q − 1

)

.

We briefly sketch a proof from [27]: let vi ∈ ZZn denote the characteristic vector
of Ai, and write

fi(x1, . . . , xn) =
(
x · vi − k − 1

q − 1

)

.

This is a polynomial in n rational variables x = (x1, . . . , xn) ∈ Qn. By conditions
(a) and (b) the integer fi(vj) is divisible by p iff i �= j.

Let f ′
i be the square-free reduction of fi for i = 1, . . . ,m. Then f ′

i ∈ ZZ[x],
because fi(v) ∈ ZZ for each v ∈ {0, 1}n. Let gi ∈ IFp[x] be the reduction of f ′

i

modulo p, and hi ∈ IFp[x] be the reduction of gi by a deglex Gröbner basis for
the ideal I(F(k, q)) over IFp.

For 1 ≤ i, j ≤ m we have then

fi(vj) = f ′
i(vj) ≡ gi(vj) ≡ hi(vj) (mod p) .

These imply, that the polynomials hi are linearly independent mod p. They have
degree at most q− 1 and they are and spanned by Sm (I(F(k, q))). By Theorem
4 their number is at most

(
n

q−1

)
.

3.3 Wilson’s Rank Formula

Consider the inclusion matrix A = I
((

[n]
d

)
,
(
[n]
m

))
, where m ≤ d ≤ n−m.

A famous theorem of Richard M. Wilson [46, Theorem 2] describes a diagonal
form of A over ZZ. As a corollary, he obtained the following rank formula:

Theorem 6. Let p be a prime. Then

rankIFp
(A) =

∑

0≤i≤m

p�( d−i
m−i)

(
n

i

)

−
(

n

i− 1

)

.
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In [22] a simple proof is given which uses polynomial functions, and some basic
notions related to Gröbner bases. The starting point is the observation that
the rank of A is exactly the dimension of the linear space Pd,m over IFp of
the functions from V([n]

d ) to IFp which are spanned by the monomials xM with

|M | = m.
The approach allows a considerable generalization of the rank formula. Here

is a result of this kind from [22]:

Theorem 7. Suppose that 0 ≤ m1 < m2 · · · < mr ≤ d ≤ n−mr and let p be a
prime. Consider the set family F =

(
[n]
m1

)
∪
(

[n]
m2

)
∪ · · · ∪

(
[n]
mr

)
. Then

rankIFp

(

I

((
[n]
d

)

,F
))

=
∑

0≤i≤mr

p�ni

(
n

i

)

−
(

n

i− 1

)

,

where ni = gcd
((

d−i
m1−i

)
,
(

d−i
m2−i

)
, . . . ,

(
d−i

mr−i

))
.

3.4 Generalizations of Uniform Families

Let n, k, � be integers with 0 ≤ �− 1 ≤ k ≤ n. The complete �-wide family is

Fk,� = {F ⊆ [n] : k − � < |F | ≤ k} .

Theorem 1 was extended in [21] to complete �-wide families. Gröbner bases
and standard monomials are described there over an arbitrary ground field IF. As
in the case � = 1, the bases are largely independent of the term order considered.

A part of these results has been extended even further in [16]. Let q be a
power of a prime p, and let n, d, � be integers such that 1 ≤ n, 1 ≤ � < q.
Consider the modulo q complete �-wide family:

G = {F ⊆ [n] : ∃ f ∈ ZZ s. t. d ≤ f < d+ � and |F | ≡ f (mod q)} .

In [16] a Gröbner basis of the vanishing ideal I(G) has been computed over
fields of characteristic p. As before, it turns out that this set of polynomials is
a Gröbner basis for all term orderings ≺, for which the order of the variables
is xn ≺ xn−1 ≺ · · · ≺ x1. The standard monomials and the Hilbert function of
I(G) were also obtained. In this work the lex game method (see Sect. 4) was
substantially used. As corollaries, several combinatorial applications follow. One
of them is described next. It is a generalization of Theorem 5.

Let L be a subset of integers and F be a system of sets. Then F is modulo q L-
avoiding if G ∈ F and f ∈ L implies |G| �≡ f (mod q). We call F L-intersecting
if for any two distinct sets G1, G2 ∈ F the congruence |G1 ∩G2| ≡ f (mod q)
holds for some f ∈ L. A set L ⊆ {0, . . . , q− 1} is called a modulo q interval if it
is either an interval of integers or a union of two intervals L1 and L2, such that
0 ∈ L1 and q − 1 ∈ L2.
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Theorem 8. Let q be a power of a prime, L be a modulo q interval and F ⊆ 2[n]

be a modulo q L-avoiding, L-intersecting family of sets. If |L| ≤ n− q + 2, then

|F| ≤
q−1∑

k=|L|

(
n

k

)

.

More generally, one may consider arbitrary fully symmetric set families. Let
D ⊆ [n] be arbitrary, and put

FD := {Z ⊆ [n] : |Z| ∈ D} .

Thus, FD consists of all subsets of [n] whose size is in D. It would be quite inter-
esting to describe Gröbner bases and related structures for general set families
of the form FD. Only some preliminary results are available, the most important
of them being a beautiful theorem of Bernasconi and Egidi from [9]. It provides
the deglex Hilbert function hI(FD)(m) of I(FD) over Q.

Theorem 9. Let 0 ≤ m ≤ n, and suppose that

D = {l1, . . . , ls} ∪ {m1, . . . ,mt} ,

where lj ≤ m and m < m1 < m2 < · · · < mt. Assume also, that

{0, 1, . . . ,m} \ {l1, . . . , ls} = {n1, n2, . . . , nm+1−s} ,

with n1 > n2 > · · · > nm+1−s and u = min{t,m+ 1− s}. Then we have

hI(FD)(m) =
s∑

j=1

(
n

lj

)

+
u∑

j=1

min{
(
n

mj

)

,

(
n

nj

)

} .

A combinatorial description of the deglex standard monomials for I(FD) over
Q was obtained in [42] in the case when D has the following property: for each
integer i, at most one of i and n−i is in D. This characterization uses generalized
ballot sequences. It would be of interest to extend this to more general sets D.
Multivalued generalizations of uniform families are considered in [29].

4 The Lex Game and Applications

Based on [17], we outline a combinatorial approach to the lexicographic standard
monomials of the vanishing ideal of a finite sets of points V ⊆ IFn. This technique
can be applied to compute the lex standard monomials of sets of combinatorial
interest. The idea has been extended to general zero dimensional ideals in [18].

In this section, we use the lex term order. As before, let IF be a field, V ⊆ IFn

a finite set, and w = (w1, . . . , wn) ∈ INn an n dimensional vector of natural
numbers. With these data as parameters, we define the Lex Game Lex(V ;w),
which is played by two persons, Lea and Stan.
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Both Lea and Stan know V and w. Their moves are:

1 Lea chooses wn elements of IF.
Stan picks a value yn ∈ IF, different from Lea’s choices.

2 Lea now chooses wn−1 elements of IF.
Stan picks a yn−1 ∈ IF, different from Lea’s (last wn−1) choices.

. . . (The game proceeds in this way until the first coordinate.)
n Lea chooses w1 elements of IF.

Stan finally picks a y1 ∈ IF, different from Lea’s (last w1) choices.

The winner is Stan, if during the game he could select a vector y = (y1, . . . , yn)
such that y ∈ V , otherwise Lea wins the game. (If in any step there is no proper
choice yi for Stan, then Lea wins also.)

Example. Let n = 5, and α, β ∈ IF be different elements. Let V be the set of all
α-β sequences in IF5 in which the number of the α coordinates is 2 or 3. We claim
that Lea can win with the question vector w = (11100), but for w = (00110)
Stan has a winning strategy.

First consider w = (11100). To have y ∈ V , Stan is forced to select values
from {α, β}. If Stan gives only β for the last 2 coordinates, then Lea will choose
α in the first three, therefore y cannot contain any α coordinates. However, if
Stan gives at least one α for the last 2 coordinates, then Lea, by keeping on
choosing β, can prevent y from having at least two β coordinates.

For w = (00110) Stan’s winning strategy is to pick y5 = β, and choose from
{α, β} (for the 4th and 3rd coordinates). If he selected so far α twice, then he
can win by setting the first two coordinates to β. Otherwise he wins with the
moves y1 = y2 = α.

The game allows a nice characterization of the lexicographic leading monomi-
als and standard monomials for V :

Theorem 10. Let V ⊆ IFn be a finite set and w ∈ INn. Stan wins Lex(V ;w) if
and only if xw ∈ Sm (I(V )). Equivalently, Lea wins the game if and only if xw

is a leading monomial for I(V ).

The theorem leads to a fast combinatorial algorithm to list those vectors w ∈ INn

for which xw ∈ Sm (I(V )). The method uses constant times |V |nk comparisons
of field elements in the worst case, where k is the maximum number of different
elements which appear in a fixed coordinate of points of V ; see [17]. In particular,
if V ⊆ {0, 1}n then k ≤ 2 and hence we have a linear time algorithm.

The problem of computing lexicographic standard monomials for finite sets
has had a long history starting with the seminal paper by Buchberger and Möller
[40]. Their algorithm, as well as the subsequent methods of Marinari, Möller and
Mora [36] and Abbott, Bigatti, Kreuzer and Robbiano [1] give also a Gröbner
basis of I(V ). For the arithmetic complexity of these methods we have the bound
O(n2m3) when V is a subset of IFn and |V | = m (see Sect. 3 in [15] for a related
discussion). The Lex Game provides only the standard monomials, but in return
it appears to lead to a much faster algorithm (see [17] for the details). In general
we have the bound O(nm2). In some important special cases, such as the case
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of small finite ground fields which appear naturally in coding applications, we
have a linear bound O(nm) on the time cost of the algorithm.

5 Partitions and Colorings

5.1 Permutations, Trees and Partitions

Let α1, . . . , αn be n different elements of IF and put

Πn := Πn(α1, . . . , αn) := {(απ(1), . . . , απ(n)) : π ∈ Sn} .
Πn is the set of all permutations of the αi, considered as a subset of IFn.

We recall the definition of the complete symmetric polynomials. Let i be a
nonnegative integer and write

hi(x1, . . . , xn) =
∑

a1+···+an=i

xa1
1 xa2

2 · · ·xan
n .

Thus, hi ∈ IF[x1, . . . , xn] is the sum of all monomials of total degree i. For
0 ≤ i ≤ n we write σi for the i-th elementary symmetric polynomial:

σi(x1, . . . , xn) =
∑

S⊆[n], |S|=i

xS .

For 1 ≤ k ≤ n we introduce the polynomials fk ∈ IF [x] as follows:

fk =
k∑

i=0

(−1)ihk−i(xk, xk+1, . . . , xn)σi(α1, . . . , αn) .

We remark, that fk ∈ IF[xk, xk+1, . . . , xn]. Moreover, deg fk = k and the
leading monomial of fk is xk

k with respect to any term order ≺ for which x1 "
x2 " . . . " xn. In [25] the following was proved:

Theorem 11. Let IF be a field and let ≺ be an arbitrary term order on the
monomials of IF[x1, . . . , xn] such that xn ≺ . . . ≺ x1. Then the reduced Gröbner
basis of I(Πn) is {f1, f2, . . . , fn}. Moreover, the set of standard monomials is

{xα1
1 . . . xαn

n : 0 ≤ αi ≤ i− 1, for 1 ≤ i ≤ n} .
We remark, that [25] gives also the reduced Gröbner basis of the set Ym of
characteristic vectors of oriented trees with vertex set [m]. Here we have Ym ⊆
IFn with n = m(m − 1) and the coordinates are indexed by the edges of the
complete digraph KDm. The term order ≺ involved is a lexicographic order.
It would be interesting to understand a Gröbner basis of Ym with respect to a
deglex (or other degree compatible) order.

Recall, that a sequence λ = (λ1, . . . , λk) of positive integers is a partition of
n, if λ1 + λ2 + · · ·+ λk = n and λ1 ≥ λ2 ≥ . . . ≥ λk > 0. Let IF be a field, and
α0, . . . , αk−1 be k distinct elements of IF. Let λ = (λ1, . . . , λk) be a partition of
n and Vλ be the set of all vectors v = (v1, . . . , vn) ∈ IFn such that

|{j ∈ [n] : vj = αi}| = λi+1

for 0 ≤ i ≤ k − 1.
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In their study of the q-Kostka polynomials, Garsia and Procesi have described
the deglex standard monomials of I(Vλ) (Proposition 3.2 in [23]). They worked
over Q, but their argument is valid over an arbitrary field. The associated graded
ring grIF [x] /I(Vλ) is also described there.

In [28] it is shown that the lexicographic standard monomials of I(Vλ) are the
same as the deglex standard monomials over an arbitrary IF. In the proof a new
description of the orthogonal complement (Sλ)⊥ (with respect to the James
scalar product) of the Specht module Sλ is given. As applications, a basis of
(Sλ)⊥ is exhibited, and a combinatorial description of the Hilbert function of Vλ

is provided. This approach provides a new, simpler proof of the Garsia-Procesi
theorem on the deglex standard monomials. An interesting feature of the results
is that both in the lex and deglex cases the standard monomials are independent
of the specific choice of α0, . . . , αk−1, or the field IF itself.

These results partially extend the special cases we treated here earlier: the
complete uniform set families, i.e., λ = (n − d, d), see Theorem 2, and the per-
mutations (the case λ = (1n)), see Theorem 11. For general λ it seems to be
difficult to give explicit Gröbner bases of I(Vλ).

5.2 Graph Colorings

The algebraic study of graph colorings also employs fruitfully some Gröbner basis
techniques. Here we briefly discuss some of these. Let G be a simple undirected
graph on the vertex set V = [n] and with edge set E. Let k be a fixed positive
integer, and IF be a field which contains k distinct k-th roots of unity. The set of
those k-th roots of unity will be denoted by Ck. The graph polynomial fG ∈ IF [x]
is the polynomial

fG :=
∏

(i,j)∈E, i<j

(xi − xj) .

Recall that a k-coloring of G is a map μ from V (G) to Ck such that μ(i) �= μ(j),
whenever (i, j) ∈ E. Moreover, a k coloring can be viewed as an element of
Cn

k ⊆ IFn. Let K be the set of graphs whose vertex set is [n], which consist of a
k+1-clique and n− k− 1 isolated vertices. We introduce some important ideals
from IF [x]:

Jn,k := 〈fH : H ∈ K〉
is the ideal generated by the graph polynomials of k + 1-cliques on [n]. Put

In,k := 〈xk
i − 1 : i ∈ V 〉 .

It is easy to show that In,k is actually I(Cn
k ), in fact, {xk

1 − 1, . . . xk
n − 1} is a

universal Gröbner basis of In,k. Finally set

IG,k := In,k + 〈xk−1
i + xk−2

i xj + · · ·+ xk−1
j : (i, j) ∈ E〉 .

It is a simple matter to verify, that IG,k is the ideal of the k-colorings of G:
μ ∈ IFn is a common zero for all polynomials from IG,k iff μ is a valid k-coloring
of G.
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The fact that G is not k colorable admits an algebraic characterization:

Theorem 12. The next statements are equivalent:
(1) G is not k-colorable.
(2) The constant polynomial 1 belongs to IG,k.
(3) The graph polynomial fG belongs to In,k.
(4) The graph polynomial fG belongs to Jn,k.

The equivalence of (1) and (2) is due to Bayer [8], (1) ⇔ (3) is from Alon and
Tarsi [5], this was reproved by Gröbner basis techniques by de Loera [34] and
Mnuk [39]. The equivalence (1) ⇔ (4) is due to Kleitman and Lovász [35]. The
following beautiful theorem is due to de Loera [34]:

Theorem 13. The set of polynomials {fH : H ∈ K} is a universal Gröbner
basis of the ideal Jn,k.

Let μ be a k-coloring of G, � ≤ k be the number of colors actually used by μ.
The class cl(i) is the set of vertices with the same color as i. Let

m1 < m2 < · · · < m� = n

be the maximal elements (coordinates) of the color classes.
For a set U of indices let hd

U denote the complete symmetric polynomial of
degree d in the variables whose indices are in U .

We define the polynomials gi as follows:

gi =

⎧
⎨

⎩

xk
i − 1 if i = m�,

hk−�+j
{mj ,...,m�} if i = mj for some j �= �,

xi − xmax cl(i) otherwise.

Let Aμ := 〈g1, g2, . . . , gn〉 be the ideal generated by the polynomials gi. Hillar
and Windfeldt [31] obtained the following:

Theorem 14. We have
IG,k = ∩μAμ ,

where μ runs over the k-colorings of G.

In the course of the proof they established, that for term orders ≺ with x1 "
x2 " · · · " xn the set {g1, g2, . . . , gn} is actually a Gröbner basis of Aμ. By using
these facts, they developed an algebraic characterization of unique k-colorability:

Theorem 15. Let μ be a k-coloring of G that uses all k colors, g1, g2, . . . , gn be
the corresponding basis of Aμ. The following are equivalent.
(1) G is uniquely k-colorable.
(2) The polynomials g1, g2, . . . , gn generate IG,k.
(3) The polynomials g1, g2, . . . , gn are in IG,k.
(4) The graph polynomial fG is in the ideal In,k : 〈g1, g2, . . . , gn〉.
(5) dimIFIF [x] /IG,k = k!



Some Combinatorial Applications of Gröbner Bases 77

Condition (5) leads easily to an algebraic algorithm for testing the unique k-
colorability of G. The left hand side is the number of the standard monomials
for IG,k with respect to an arbitrary term order, hence (5) can be checked by
standard techniques for computing Gröbner bases. See Sect. 6 in [31] for more
details and data on computational experiments.

6 Alon’s Combinatorial Nullstellensatz

Alon’sCombinatorialNullstellensatz, and inparticular the resulting non-vanishing
criterion from [4] is one of the most powerful algebraic tools in combinatorics, with
dozens of important applications.

Let IF be a field and S1, . . . , Sn be nonempty, finite subsets of IF, |Si| = ti.
Put S = S1 × · · · × Sn and define gi(xi) =

∏
s∈Si

(xi − s).

Theorem 16. (Theorem 1.1 from [4].) Let f = f(x) be a polynomial from IF[x]
that vanishes over all the common zeros of g1, . . . , gn (that is, if f(s) = 0 for
all s ∈ S). Then there exist polynomials h1, . . . , hn ∈ IF[x] satisfying deg(hi) ≤
deg(f)− deg(gi) so that

f =
n∑

i=1

higi .

Moreover, if f, g1, . . . , gn lie in R[x] for some subring R of IF, then there are
polynomials hi ∈ R[x] as above.

The Combinatorial Nullstellensatz can be reformulated in terms of Gröbner
bases. It states that {g1, g2, . . . , gn} is a universal Gröbner basis of the ideal
I(S). The most important corollary of Theorem 16 is a non-vanishing criterion:

Theorem 17. (Theorem 1.2 from [4].) Let f = f(x) be a polynomial in IF[x].
Suppose the degree of f is

∑n
i=1 di, where di < ti for all i and the coefficient of

∏n
i=1 x

di

i in f is nonzero. Then there is a point s ∈ S such that f(s) �= 0.

The theorem has numerous applications in combinatorial number theory, graph
theory and combinatorics. To demonstrate the amazing versatility of Theorem
17, we give here an argument form [4] to prove the Cauchy and Davenport
inequality from additive number theory. The inequality states that if p is a
prime and A,B are two nonempty subsets of ZZp, then

|A+B| ≥ min{p, |A|+ |B| − 1} .

We remark first, that the case |A|+ |B| > p is easy. We may then assume that
|A|+ |B| ≤ p. Assume for contradiction, that there is a subset C ⊂ IFp such that
C ⊇ A+B, and |C| = |A|+ |B| − 2. Put

f(x, y) =
∏

c∈C

(x + y − c) ∈ IFp[x, y] .
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Clearly f is identically zero on A × B. Now set n = 2, S1 = A, S2 = B,
t1 = |A| and t2 = |B|. We have deg f = t1 − 1 + t2 − 1; the coefficient of
xt1−1yt2−1 is

(
t1−1+t2−1

t1−1

)
, which is not 0 in IFp, as t1 − 1 + t2 − 1 < p. By

Theorem 17 f can not be identically zero on A × B. This is a contradiction
proving the Cauchy-Davenport inequality.

There are natural ways to generalize Theorems 16 and 17. One is to prove a
variant of the Nullstellensatz over rings instead of fields, an other is to consider
the non-vanishing problem for multisets and not merely sets. Extensions along
these lines are considered in [32], [33], and [38].

7 Gröbner Bases and S-Extremal Set Systems

Gröbner basis methods may be useful when studying extremal problems of com-
binatorics (see Frankl [20] for a survey of extremal questions on set families).
We give here a new application of this kind.

We say that a set system F ⊆ 2[n] shatters a given set S ⊆ [n] if

2S = {F ∩ S : F ∈ F}.

The family of subsets of [n] shattered by F is denoted by Sh(F). The notion
of shattering occurs in various fields of mathematics, such as combinatorics,
statistics, computer science, and logic. As an example, one can mention the
Vapnik-Chervonenkis dimension of a set system F , i.e. the size of the largest
S shattered by F . Sauer [43], Shelah [44] and Vapnik and Chervonenkis [45]
proved that if F is a family of subsets of [n] with no shattered set of size k (i.e.
VC− dimF < k), then

|F| ≤
(

n

k − 1

)

+
(

n

k − 2

)

+ · · ·+
(
n

0

)

,

and this inequality is best possible. The result is known as Sauer’s lemma and
has found applications in a variety of contexts, including applied probability.

It was proved by several authors (Aharoni and Holzman [3], Pajor [41], Sauer
[43], Shelah [44]) that for every set system F ⊆ 2[n] we have that |Sh(F)| ≥ |F|.
Accordingly, we define a set system F to be S-extremal, if |Sh(F)| = |F|. We
refer to Bollobás and Radcliffe [10] for some basic properties of S-extremal set
families, where they mention the lack of a good structural description of these
families.

It turns out, that shattered sets are in close connection with the standard
monomials of the ideal I(F) for different term orders. To make this connection
explicit, we first have to define a special family of term orders. At the beginning
we have already defined the lex term order. By reordering the variables one can
define another lex term order, so from now on we will talk about lex term orders
based on some permutation of the variables x1, x2, . . . , xn. There are n! possible
lexicographic orders on n variables.
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For a pair of sets G ⊆ H ⊆ [n] we define the polynomial fH,G as

fH,G = (
∏

j∈G

xj)(
∏

i∈H\G

(xi − 1)) .

Lemma 1. a) If xH ∈ Sm (I(F)) for some term order, then H ∈ Sh(F).
b) If H ∈ Sh(F), then there is a lex term order for which xH ∈ Sm (I(F)).

Proof. a) Let xH ∈ Sm (I(F)), and suppose that H is not shattered by F .
This means that there exists a G ⊆ H for which there is no F ∈ F such
that G = H ∩ F . Now fH,G(vF ) �= 0 only if H ∩ F = G. According to our
assumption, there is no such set F ∈ F , so fH,G(x) ∈ I(F). This implies that
xH ∈ Lm(I(F)) for all term orders, since lm(fH,G) = xH for all term orders,
giving a contradiction.

b) We prove that a lex order, where the variables of xH are the smallest ones,
satisfies the claim. Suppose the contrary, that xH ∈ Lm(I(F)) for this term
order. Then there is a polynomial f(x) vanishing on F with leading monomial
xH . Since the variables in xH are the smallest according to this term order,
there cannot appear any other variable in f(x). So we may assume that f(x)
has the form

∑
G⊆H αGxG. Take a subset G0 ⊆ H which appears with a nonzero

coefficient in f(x), and is minimal w.r.t. this property. F shatters H , so there
exists a set F0 ∈ F such that G0 = F0 ∩ H . For this we have xG0(vF0) = 1,
and since G0 was minimal, xG(vF0 ) = 0 for every other set G in the sum. So
f(vF0) = αG0 �= 0, which contradicts f ∈ I(F)). This contradiction proves the
statement. ��

Combining the two parts of Lemma 1, we obtain that Sm (I(F)) ⊆ Sh(F) for
every term order, and

Sh(F) =
⋃

term orders

Sm (I(F)) . (1)

(Here, by identifying a squarefree monomial xH with the set of indicesH ⊆ [n],
we view Sm (I(F)) as a set family over [n].) Note that on the right hand side it
is sufficient to take the union over the lex term orders only. Using the lex game
method, one can efficiently compute Sm (I(F)) for any lex term order. However,
as the number of lex orders is n!, (1) does not immediately provide an efficient
way to calculate Sh(F). Nevertheless Lemma 1 implies at once a simple algebraic
characterization of S-extremal set systems:

Theorem 18. F is S-extremal if and only if Sm (I(F)) is the same for all lex
term orders.

Theorem 18 leads to an algebraic characterization of S-extremal set systems,
involving the Gröbner bases of I(F).

Theorem 19. F ⊆ 2[n] is S-extremal if and only if there are polynomials of the
form fS,H, which together with {x2

i −xi : i ∈ [n]} form a Gröbner basis of I(F)
for all term orders.
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Proof. Suppose first, that F is S-extremal. Consider all minimal sets S ⊆ [n]
for which S /∈ Sh(F), with a corresponding polynomial fS,H . Here H ⊆ S is a
set which is not of the form S ∩F for any F ∈ F . Denote the set of these sets S
by S and fix an arbitrary term order. We prove that these polynomials together
with {x2

i − xi : i ∈ [n]} form a Gröbner basis of I(F). In order to show this, we
have to prove that for all monomials m ∈ Lm(I(F)), there is a monomial in

{xS : S ∈ S} ∪ {x2
i : i ∈ [n]}

that divides m. If m is not square-free, then this is trivial. Now suppose m is
square-free, say m = xF for a subset F ⊆ [n]. F is extremal, thus we have
|Sh(F)| = |F| = | Sm (I(F)) | and hence Sm (I(F)) = Sh(F). We have then
F �∈ Sh(F), as m is a leading monomial. Then there is an S ∈ S with S ⊆ F .
This proves that our basis is a Gröbner basis.

For the opposite direction, suppose that there is a common Gröbner basis G
for all term orders of the desired form. G is a Gröbner basis of I(F), so

Lm(G) = {xS : S ∈ S} ∪ {x2
i : i ∈ [n]}

determines Lm(I(F)) and hence Sm (I(F)). This clearly implies that Sm (I(F))
is the same for all term orders, since G is a common Gröbner basis for all term
orders. ��

We remark that in the theorem the phrase all term orders may be replaced by a
term order. To see this, please note that the standard monomials of F are then
precisely the monomials xF where there is no polynomial fS,H in the basis with
S ⊆ F . This is independent of the term order considered.

In addition to this characterization, Theorem 18 leads also to an efficient
algorithm for testing the S-extremality. The test is based on the theorem below.

Theorem 20. Take n orderings of the variables such that for every index i there
is one in which xi is the greatest element, and take the corresponding lex term
orders. If F is not extremal, then among these we can find two term orders for
which the standard monomials of I(F) differ.

Proof. Let us fix one of the above mentioned lex orders. Suppose that F is not
S-extremal. Then there is a set H ∈ F shattered by F for which xH is not a
standard monomial but a leading one. Sm (I(F)) is a basis of the linear space
IF[x]/I(F), and since all functions from VF to IF are polynomials, every lead-
ing monomial can be written uniquely as an IF-linear combination of standard
monomials, as a function on VF . This holds for xH as well. As functions on VF
we have

xH =
∑
αGxG .

Suppose that for all sets G in the sum we have G ⊆ H . Take a minimal G0 with
a nonzero coefficient. Since H is shattered by F , there is an F ∈ F such that
G0 = F ∩ H . For this xG0(vF ) = 1. From the minimality of G0 we have that
xG′(vF ) = 0 for every other G′ ⊆ H , giving that
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∑
αGxG(vF ) = αG0 .

On the other hand xH(vF ) = 0, since H ∩ F = G0, but H �= G because xH

is a leading monomial, and xG is a standard monomial, giving a contradiction.
Therefore in the above sum there is a set G with nonzero coefficient such that
G\H �= ∅. Now let us fix an index i ∈ G\H . For the term order where xi

is the greatest variable, xH cannot be the leading monomial of the polynomial
xH−

∑
αGxG. Then the leading monomial is another xG′ , which, for the original

term order was a standard monomial. So we have found two term orders for which
the standard monomials differ. ��

In view of the preceding theorem, it is enough to calculate the standard mono-
mials e.g. for a lexicographic term order and its cyclic permutations, and to
check, whether they differ or not. The standard monomials can be calculated in
time O(n|F|) for one lexicographic term order, see [17]. We have n term orders,
therefore the total running time of the algorithm is O(n2|F|).

Theorem 21. Given a set family F ⊆ 2[n], |F| = m by a list of characteristic
vectors, we can decide in O(n2m) time whether F is extremal or not.

This improves the algorithm given in [24] by Greco, where the time bound is
O(nm3). But it is still open whether it is possible to test S-extremality in linear
time (i.e. in time O(nm)).

We note that the results discussed here can be generalized to a multivalued
setting, see [37]. The starting point is Theorem 18. We define a set V ⊆ IFn to
be S-extremal, if Sm (I(V )) is independent of the term order, i.e. it stays the
same for all term orders.
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13. Buchberger, B.: Gröbner-Bases: An Algorithmic Method in Polynomial Ideal The-
ory. In: Bose, N.K. (ed.) Multidimensional Systems Theory - Progress, Directions
and Open Problems in Multidimensional Systems Theory, pp. 184–232. Reidel
Publishing Company, Dordrecht (1985)

14. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, Heidel-
berg (1992)
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29. Hegedűs, G., Rónyai, L.: Multivalued Generalizations of the Frankl–Pach Theorem.
To appear, Journal of Algebra and its Applications,
http://arxiv.org/pdf/1008.4660

30. Herzog, J., Hibi, T.: Monomial Ideals. GTM, vol. 260. Springer, Heidelberg (2010)
31. Hillar, C.J., Windfeldt, T.: Algebraic Characterization of Uniquely Vertex Col-

orable Graphs. Journal of Combinatorial Theory, Series B 98, 400–414 (2007)
32. Kós, G., Rónyai, L.: Alon’s Nullstellensatz for multisets,

http://arxiv.org/pdf/1008.2901

33. Kós, G., Mészáros, T., Rónyai, L.: Some Extensions of Alon’s Nullstellensatz,
http://arxiv.org/abs/1103.4768
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Abstract. The main problem in this paper is to find feasible conditions
to prove/disprove that a given two-dimensional language is tiling rec-
ognizable. We focus on two known conditions necessarily satisfied by a
recognizable language, that are based on the idea to reduce the problem
from picture to string languages. We emphasize that they are grounded
on two lower bound techniques for regular string languages. Starting
from a stronger lower bound, named the nondeterministic message com-
plexity technique, we are able to state a new necessary condition for the
recognizability of two-dimensional languages. We compare the three con-
ditions and find that the new one extends the previous two yielding a
greater accuracy.

Keywords: Two-dimensional languages, Lower bound techniques on
NFA.

1 Introduction

Picture languages are a generalization of string languages to two dimensions:
a picture is a two-dimensional array of elements from a finite alphabet. The
increasing interest for pattern recognition and image processing has motivated
the research on two-dimensional languages, and especially tile-based models. The
aim is to generalize or extend the well-founded theory of formal languages. Since
the sixties, the problem has been approached from different points of view: finite
automata, grammars, logics and regular expressions have been proposed. Among
the various classes of languages defined, probably the most successful, as far as
theoretical aspects are concerned, is the class of tiling recognizable languages,
also known as REC (see [11,12]). A two-dimensional language is said (tiling)
recognizable when it is the alphabetic projection of a local language defined in
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terms of a finite set of 2 × 2 pictures, the allowed tiles; the recognition is given
by a so called tiling system.

Since its introduction, family REC has been intensively studied (see e.g.
[1,4,8,12]). The definition in terms of tiling systems turns out to be robust in
comparison with the other models in the literature: REC has a characterization
in terms of logical monadic second-order formulas [12,14]; it has a counterpart as
machine model in the two-dimensional on-line tessellation acceptor [20], whereas
other models of automata are proposed in [2,7,21]. Tiling systems can be also
simulated by domino systems [20], Wang tiles [9] and grammars [8].

Nevertheless the problem of establishing whether a language is tiling recogniz-
able or not still deserves to be investigated. There do not exist, in the literature,
feasible characterizations of REC based on the “nature” of the language itself,
that could be handily used for this goal. In the string language theory, the prob-
lem of deciding whether a given language is regular, can be solved considering
some congruence classes and the Myhill-Nerode Theorem; while a very useful
tool to prove that a language is not regular is given by the Pumping Lemma
([17]). The problem seems much more complex in two dimensions. Recall that
the runs of a Turing machine form a recognizable two-dimensional language (cf.
[12]) so that one cannot expect simple periodicity results.

Recently, useful tools to prove the non-recognizability of a picture language,
were given in [1,3,5,13]. The starting idea is to view the pictures with same
number of rows m, as strings over the alphabet of the columns of height m.
Hence a picture language can be considered as the sequence, when m grows, of
such “string” languages. More in details, a first step in this direction was done
in [22], where O. Matz isolated a technique for showing that a language is not
recognizable. It consists in considering, for any recognizable picture language L
and integer m, the string language L(m) of all pictures in L of fixed height m.
Then if L ∈ REC it is possible to associate to any tiling system recognizing
L a family {Am}, where each Am is an automaton accepting L(m) with 2O(m)

states. Using some known lower bound on the size of an automaton, he proved
a necessary condition for the belonging of a picture language to REC (as stated
in Lemma 2).

In [3] a further step forward was done: Matz’s technique was firstly used
together with some bound on the Hankel matrices of the string languages L(m).
The combination of these two ideas (Matz’s technique and Hankel matrices) has
allowed to obtain necessary conditions for the belonging of a language to other
meaningful sub-classes of REC [1]. Recently in [13], several necessary conditions
for the belonging of a language to REC or to other related families, have been
put in a uniform framework, by introducing some complexity functions (the
“row”, “permutation” and “rank” complexity functions) of a picture language
expressing the growth of some parameters of the associated Hankel matrices.
Note that other necessary conditions for non-recognizabilty have been proved in
[5,10] for a specific class of unary picture languages definable by functions (see
Section 4).
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Also note that, in [22], the author wondered whether its necessary condition
for REC (Lemma 2) was also sufficient, in order to have a handy characterization
of REC. Very recently, Matz’s condition was considered in [5] in its formulation
by Hankel matrices, together with another recognizability condition. Unfortu-
nately, both conditions were showed to be not sufficient.

Recognizability conditions are the starting point of the investigation in this
paper. We will enucleate in the proofs of such conditions the use, often not ex-
plicit, of known lower bound techniques for regular string languages. In fact, the
condition stating a bound on the permutation complexity function of a language
in REC, follows from the “fooling set” technique; while the condition stating a
bound on the fooling complexity function of a language in REC follows from the
“extended fooling set” technique (see [5,16]).

Deepening the investigation of such lower bounds (see [16,19]), we will also
consider the “nondeterministic message complexity” technique. It allows us to
state another condition necessary for a picture language be in REC, as an upper
bound to its “covering” complexity function, here introduced. This new condi-
tion implies and extends the previous two, as it follows from the comparison of
the three functions. Moreover the comparison of the asymptotic growth of the
functions shows that the cover complexity function provides a more accurate
bound than the other two, also in the two-dimensional case.

The computation of the three functions is algorithmically possible, but, in
general, not easy. So that it is important to consider all the complexity functions,
since the computation, in some cases, could be easier for a function than another.
At last we will find that even this condition is not sufficient for the recognizability
of a picture language, but it could constitute a stronger condition to prove that
a language is not tiling recognizable.

2 Preliminaries

In this section we recall some definitions about two-dimensional recognizable
languages. More details can be mainly found in [12].

A two-dimensional string (or a picture) over a finite alphabet Σ is a two-
dimensional rectangular array of elements of Σ. The set of all pictures over Σ is
denoted by Σ∗∗ and a two-dimensional language over Σ is a subset of Σ∗∗.

Given a picture p ∈ Σ∗∗, let p(i,j) denote the symbol in p with coordinates
(i, j), |p|r the number of rows and |p|c the number of columns of p; the pair
(|p|r, |p|c) is the size of p. Note that when a one-letter alphabet is concerned,
a picture p is totally defined by its size (m,n), and we will write p = (m,n).
Remark that the set Σ∗∗ includes also all the empty pictures, i.e. all pictures of
size (m, 0) or (0, n) for all m,n ≥ 0, that we denote by λm,0 and λ0,n respectively.
The set of all pictures overΣ of size (m,n) is denoted byΣm,n, whileΣm,∗ (Σ∗,n,
resp.) denotes the set of all pictures over Σ with m rows (with n columns, resp.).
It will be needed to identify the symbols on the boundary of a given picture: for
any picture p of size (m,n), we consider the bordered picture p̂ of size (m+2, n+2)
obtained by surrounding p with a special boundary symbol # �∈ Σ.
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A tile is a picture of size (2, 2) and B2,2(p) is the set of all sub-blocks of size
(2, 2) of a picture p. Given an alphabet Γ , a two-dimensional language L ⊆ Γ ∗∗ is
local if there exists a set Θ of tiles over Γ∪{#} such that L = {p ∈ Γ ∗∗|B2,2(p̂) ⊆
Θ} and we will write L = L(Θ).

A tiling system is a quadruple (Σ,Γ,Θ, π) where Σ and Γ are finite alphabets,
Θ is a finite set of tiles over Γ ∪ {#} and π : Γ → Σ is a projection. A two-
dimensional language L ⊆ Σ∗∗ is tiling recognizable if there exists a tiling system
(Σ,Γ,Θ, π) such that L = π(L(Θ)) (extending π in the usual way). For any
p ∈ L, a local picture p′ ∈ L(Θ), such that p = π(p′), is called a pre-image of p.
We denote by REC the family of all tiling recognizable picture languages.

The column concatenation of p and q (denoted by p �q) and the row con-
catenation of p and q (denoted by p �q) are partial operations, defined only if
|p|r = |q|r and if |p|c = |q|c, respectively, and are given by:

p �q = p q p �q =
p
q

.

These definitions of picture concatenations can be extended to define two-
dimensional languages concatenations; furthermore, by iterating the concatena-
tion operations, we obtain the column and row closure or star. More precisely:
the column closure of L (denoted by L∗ �

) and the row closure of L (denoted
by L∗ �

) are defined respectively as L∗ �
=
⋃

i L
i �

and L∗ �
=
⋃

i L
i �

where
L0 �

= {λm,0 | m ≥ 0}, Ln �
= L(n−1) �

�L and L0 �
= {λ0,m | m ≥ 0},

Ln �
= L(n−1) �

�L. REC family is closed under row and column concatenation
and their closures, under union, intersection and under rotation (see [12] for all
the proofs).

Example 1. Consider the language L of square pictures over a one-letter alpha-
bet, say Σ = {a}, that is pictures with same number of rows as columns. L
is not a local language, but it belongs to REC. Indeed it can be obtained as
projection of the local language of squares over the alphabet {0, 1} in which all
the symbols in the main diagonal are 1, whereas the remaining positions carry
symbol 0. Below it is given a picture p ∈ L together with its pre-image p′. The
reader can infer the set of all tiles by taking all possible 2×2 sub-pictures of the
bordered picture p̂′.

p =

a a a a
a a a a
a a a a
a a a a

p′ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Consider now the language Lmult = {(m, km) | m ≥ 0, k ≥ 0}: we have
Lmult = L∗ �

and, since REC is closed under the column closure, Lmult ∈ REC.

Example 2. Let Σ = {a, b} and let us consider the language L2col = {p ∈ Σ∗,2 |
there exist 1 ≤ i1 ≤ i2 ≤ |p|r such that p(i1,1) = p(i2,2) = b, p(i,1) = a for every
i �= i1 and p(i,2) = a for every i �= i2}. L2col is the language of pictures p with
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two columns such that there is only one symbol b in each column and the entry
that carries the symbol b in the second column of p is not higher than the one
in the first column.
L2col ∈ REC. Indeed it can be obtained as the projection of the local language

of two-columns pictures over the alphabet {X,Y,X, Y ,Xb, Yb} such that in the
first column (second column, resp.) there is only one occurrence of the symbol
Xb (Yb, resp.) and all the positions above it carry symbol X (Y , resp.) whereas
all the positions below it carry symbol X (Y , resp.). The projection π is so
defined: π(X) = π(Y ) = π(X) = π(Y ) = a and π(Xb) = π(Yb) = b. Below it is
given a picture p ∈ L2col together with its pre-image p′.

p =

a a

b a

a a

a b

a a

p′ =

X Y

Xb Y

X Y

X Yb

X Y

3 Recognizability Conditions for Picture Languages

In this section we, first, recall two necessary conditions for the recognizability
of picture languages, stated in [13] and [5], and, then, we introduce another
condition using similar arguments. All these conditions are based on the idea of
O. Matz [22] of reducing the problem from two dimensions to one dimension and,
then, using some known lower bounds on string languages. Different lower bounds
give raise to different necessary conditions. Moreover, they can be expressed
using some complexity functions of picture languages that are defined in terms
of Hankel matrices associated to the picture languages.

Let L ⊆ Σ∗∗ be a picture language. For any m ≥ 1, we can consider the
subset L(m) ⊆ L containing all pictures in L with exactly m rows. Note that
the language L(m) can be viewed as a string language over the alphabet of the
columns of heightm. Using this reduction from two dimensions to one dimension,
O. Matz stated the following recognizability condition for picture languages.

Lemma 1. [22] If L is in REC then it is possible to associate to any tiling
system recognizing L a family {Am}, where each Am is an automaton accepting
L(m) with 2O(m) states.

This result is the starting point for all the other necessary conditions we are
going to deal with. Using Lemma 1 together with some lower bound on the
size of a nondeterministic automaton accepting a regular string language, it is
possible to obtain the following recognizability condition founded on a property
of the language itself. In the follow the cardinality of a set S will be denoted
by |S|.

Lemma 2. [22] Let L ⊆ Σ∗∗, L ∈ REC and let {Pm} be a sequence such that,
for any m, Pm ⊆ Σm,∗ ×Σm,∗ and
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a) for all (p, q) ∈ Pm, p �q ∈ L
b) for all (p, q), (p′, q′) ∈ Pm, with (p, q) �= (p′, q′), {p �q′, p′ �q} �⊆ L.
Then |Pm| is 2O(m).

Remark that if Pm ⊆ Σm,∗ × Σm,∗ satisfies conditions a) and b) of Lemma 2,
then, for all (p, q), (p′, q′) ∈ Pm, with (p, q) �= (p′, q′), we have p �= p′ and q �= q′.

The lower bound used by O. Matz is indeed the technique known in communi-
cation complexity as the “extended fooling set” technique (cf. [6]). Furthermore,
in [13] one can find a second recognizability condition for picture languages,
that, when carefully analyzed, is a consequence of the lower bound known in
communication complexity as the “fooling set” technique (cf. [15]). Let us recall
these techniques.

Lemma 3. Let L ⊆ Σ∗ be a regular language and suppose there exists a set of
pairs S = {(xi, yi) |1 ≤ i ≤ n} such that xiyi ∈ L for 1 ≤ i ≤ n. Then

i) if i �= j implies xiyj /∈ L for 1 ≤ i, j ≤ n, then any NFA accepting L has at
least n states; here S is called a fooling set.

ii) if i �= j implies xiyj /∈ L or xjyi /∈ L, for 1 ≤ i, j ≤ n, then any NFA
accepting L has at least n states; here S is called an extended fooling set.

The condition in [13] is formulated in terms of the Hankel matrices of a language
and some related complexity functions. Let us recall such notions.

For any string language L ⊆ Σ∗, one can define the infinite boolean Hankel
matrix associated to L, as ML = ‖aαβ‖α∈Σ∗,β∈Σ∗ where aαβ = 1 if and only if
αβ ∈ L (see [19]). Observe that, when L is a regular language, the number of
different rows of ML is finite. A sub-matrix M(U,V ) of an Hankel matrix ML is a
matrix specified by a pair of languages (U, V ), with U, V ⊆ Σ∗, that is obtained
by intersecting all rows and all columns of ML that are indexed by the strings
in U and V , respectively.

Remark that, if L is a picture language in REC, then by Lemma 1, for any m,
L(m) is a regular language and, therefore, the Hankel matrix ML(m) has a finite
number of different rows and columns. In the following examples, for an Hankel
matrix M with a finite number of different rows and columns, the sub-matrix
indexed by the distinct rows and the distinct columns (in a proper order) will
be referred to as the “finite part” of M .

Example 3. Consider again the language Lmult = {(m, km) | m ≥ 0, k ≥ 0}
defined in Example 1 and, for any m, the Hankel matrix M = MLmult(m). M
can be obtained as a repetition of the following block both on the rows and on
the columns.

(m, 1) (m, 2) · · · (m,m− 2) (m,m− 1) (m,m)
(m, 0) 0 0 · · · 0 0 1
(m, 1) 0 0 · · · 0 1 0
(m, 2) 0 0 · · · 1 0 0

...
...

...
...

...
...

...
(m,m− 2) 0 1 · · · 0 0 0
(m,m− 1) 1 0 · · · 0 0 0

.
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The investigation of the growth of some parameters of the Hankel matrices
associated to L(m), as functions of m, will provide a general setting for some
recognizability conditions. Let us introduce some definitions.

A permutation matrix is a boolean matrix that has exactly one 1 in each
row and in each column. A boolean matrix A is a fooling matrix if there exists
a permutation of its rows such that, in the resulting matrix B = ‖bij‖, we have,
for any i, bii = 1 and, for any i, j with i �= j, if bij = 1 then bji = 0 (cf. [5]).
Then, given a picture language L, one can define the following functions from
IN to IN ∪{∞}: the row complexity function RL(m) gives the number of distinct
rows of ML(m), the permutation complexity function PL(m) gives the size of the
maximal permutation matrix that is a sub-matrix of ML(m) (cf. [13]), while the
fooling complexity function FL(m) gives the size of the maximal fooling matrix
that is a sub-matrix of ML(m) (cf. [5]).

The above mentioned condition in [13] says that: if a picture language L is in
REC, then PL(m) = 2O(m). In the same framework Matz’s condition in Lemma
2 becomes: if a picture language L is in REC, then FL(m) = 2O(m) (cf. [5]).

We are going to deal with the technique known as the “nondeterministic mes-
sage complexity” technique (cf. [18]; in terms of graphs it is named the “biclique
edge cover” technique [16]). Note that the bound given by this technique is al-
ways as good as the logarithm of the nondeterministic state complexity, while
the gaps between the best bounds for the other two can be arbitrarily large.

Consider a boolean matrix A = ‖aij‖; A is a 1-monochromatic matrix if, for
any i, j, aij = 1.

Definition 1. Let A = ‖aij‖ be a boolean matrix and S = {A1, . . . , Ak} be a set
of 1-monochromatic sub-matrices of A. S is a cover for A if, for any 1 ≤ i, j ≤ k
such that aij = 1, there exists an integer 1 ≤ t ≤ k such that the entry indexed
by (i, j) belongs to At.

Definition 2. Let L be a picture language. The covering complexity function
CL(m) gives the cardinality of a minimal cover for ML(m).

In analogy with the other recognizability conditions, we obtain a new necessary
condition for a picture language to be in REC. Its proof proceeds similarly to
an analogous one in [16], in the graph setting.

Theorem 1. Let L ⊆ Σ∗∗. If L ∈ REC then CL(m) is 2O(m).

Proof. If L is in REC then, from Lemma 1, it is possible to associate to any
tiling system recognizing L a family {Am}, where, for some constant c, each Am

is an automaton accepting L(m) with a number of states that is at most cm. For
any m, consider the NFA Am = (Qm, q

0
m, Fm, δm) over the alphabet Σm,1. For

any q ∈ Qm consider the sets Xq and Yq of strings over Σm,1, defined as follows:
Xq = {x ∈ (Σm,1)∗ : q ∈ δ∗m(q0m, x)} and Yq = {y ∈ (Σm,1)∗ : δ∗m(q, y)∩Fm �= ∅}.

Let ML(m) be the Hankel matrix of the language L(m) and denote Mq its
sub-matrix specified by the pair of picture/string languages (Xq, Yq). Mq is a 1-
monochromatic sub-matrix of ML(m) since xy ∈ L(m) for all x ∈ Xq and y ∈ Yq.
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Moreover Sm = {Mq : q ∈ Qm} is a cover ofML(m). Indeed, if an entry ofML(m),
indexed by a pair (x, y), carries a symbol 1, then x y ∈ L(m) and then there
exists at least a state q ∈ Qm such that q ∈ δ∗m(q0m, x) and δ∗m(q, y) ∩ Fm �= ∅.
Therefore x ∈ Xq and y ∈ Yq and the entry indexed by (x, y) belongs to Mq.

Since CL(m) is the cardinality of a minimal cover forML(m), we have CL(m) ≤
|Sm| = |Qm|. But |Qm| ≤ cm and the result follows. ��

Let us conclude the section with an example. Note that, as pointed out in [16], the
computation of the bounds given by the three techniques (fooling set, extended
fooling set and nondeterministic message complexity) is algorithmically possible,
but it is computationally hard. In the sequel, we will show some examples where
the calculation is possible, directly or using next Proposition 1.

Example 4. Consider the language L = Lmult as defined in Example 1. For any
m, the finite part of the Hankel matrix M = ML(m) (see Example 3) is both a
maximal permutation matrix and a maximal fooling matrix as sub-matrix of M .
Its size is m and, hence, PL(m) = FL(m) = m. Moreover, it is easy to see that
any cover for M must have at least m elements and therefore CL(m) = m.

Consider now the language L1 = {(m, km) | m ≥ 0, k ≥ 1} that is a slight
variation of L. For any m, the Hankel matrix M1 = ML1(m) can be obtained by
adding the column indexed by the picture (m, 0) to the Hankel matrix of L(m).
The finite part of M1 is the following.

(m, 0) (m, 1) (m, 2) · · · (m,m− 2) (m,m− 1) (m,m)
(m, 0) 0 0 0 · · · 0 0 1
(m, 1) 0 0 0 · · · 0 1 0
(m, 2) 0 0 0 · · · 1 0 0

...
...

...
...

...
...

...
...

(m,m− 2) 0 0 1 · · · 0 0 0
(m,m− 1) 0 1 0 · · · 0 0 0

(m,m) 1 0 0 · · · 0 0 1

.

It is easy to see that the sub-matrix that contains the first m rows and the
last m columns of M1 is a maximal permutation matrix, therefore PL1(m) = m.
Moreover,M1 is a fooling matrix and it is a maximal one. Hence FL1(m) = m+1.
At last, it is possible to obtain a cover of M1 with m + 1 elements and, it can
be easily proved that CL1(m) = m+ 1. Hence, in line with Theorem 1, CL1(m)
is linear in m, and then CL1(m) = 2O(m).

4 Comparison of Recognizability Conditions for Picture
Languages

In Section 3 we have shown a necessary condition for the recognizability of
picture languages, given as a bound on the cover complexity function, and in
the same setting as two other known conditions. Now we compare all the three
conditions and find that the new condition extends the other ones. Moreover the
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cover complexity function provides a more accurate bound than the other two,
also in the two-dimensional case.

Proposition 1. Let L ⊆ Σ∗∗. Then, for all m ≥ 1, PL(m) ≤ FL(m) ≤
CL(m) ≤ RL(m).

Proof. Since every permutation matrix is a fooling matrix, it holds PL(m) ≤
FL(m). Moreover, FL(m) ≤ CL(m). Indeed, for anym, let S = {M1,M2, . . .Mn}
be a cover for the Hankel matrix ML(m) and let A = ‖aij‖, 1 ≤ i, j ≤ k, be a
sub-matrix of ML(m) that is a fooling matrix. If A is specified by the pair of
picture languages (X,Y ) with X = {x1, x2, . . . xk} and Y = {y1, y2, . . . yk}, we
can suppose w.l.o.g. that, for any 1 ≤ i ≤ k, axiyi = 1 and, for any 1 ≤ i, j ≤ k
with i �= j, if axiyj = 1 then axjyi = 0. Then consider two entries in A indexed
by the pairs (xi, yi) and (xj , yj), with i �= j: since they carry the symbol 1 and S
is a cover of ML(m), these entries belong to some matrix in S. But they cannot
belong to the same matrix: S contains only 1-monochromatic matrices and we
cannot have, at the same time, axiyj = axjyi = 1. Therefore, for any 1 ≤ i ≤ k,
the entries in A indexed by the pair (xi, yi) belong to different elements of S i.e.
the size of A is less or equal to the cardinality of S. The last inequality follows
from the fact that it is always possible to obtain a cover for the Hankel matrix
ML(m) with as many elements as the number of rows. ��

Using Proposition 1 and Theorem 1, we obtain another proof of the necessary
conditions for the recognizability of picture languages proved in [13] and [5].

Corollary 1. Let L ⊆ Σ∗∗. If L ∈ REC then PL(m) and FL(m) are 2O(m).

Remark 1. There exist languages such that, for any m, PL(m) = FL(m) =
CL(m). Consider for example the language L = Lmult: we have PL(m) =
FL(m) = CL(m) = m (see Example 4).

Theorem 1 extends the conditions in Corollary 1. Nevertheless it is important to
consider all the tools we have to prove non-recognizability of a picture language:
in some cases the calculation of the values of one complexity function could
be simpler than for another one, and at the meantime sufficient to apply a
method and disprove recognizability. From Proposition 1, we know that PL(m) ≤
FL(m) ≤ CL(m). Now we want to understand how bigger can FL(m) be with
respect to PL(m) and CL(m) with respect to FL(m). In [16] it is shown that the
gap between the best bounds in the three techniques can be arbitrarily large,
for some given string languages. Inspired from the examples of string languages
in [16], we will show the analogous result for picture languages.

Proposition 2. There exists L ∈REC such that PL(m) = 3 and FL(m) = m+2.

Proof. Consider the language L = L2col of Example 2. For any m ≥ 1, consider
the language L(m) and the corresponding Hankel matrix ML(m). For any 1 ≤
i ≤ m, let us denote by pi the one-column picture, i.e. pi ∈ Σm,1, with symbol
b in its i-th row and symbol a in the other ones, by p the picture p1

�p1 and by
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λ the picture λm,0. The Hankel matrix ML(m) is given by the following matrix
glued with other |L|− 1 rows all equal to that one indexed by p, also glued with
other |L|−1 columns all equal to that one indexed by p and, at last, surrounded
by an infinite number of columns and rows of 0s.

p1 p2 p3 · · · pm λ p
p1 1 1 1 · · · 1 0 0
p2 0 1 1 · · · 1 0 0
p3 0 0 1 · · · 1 0 0
...

...
...

...
...

...
...

...
pm 0 0 0 · · · 1 0 0
p 0 0 0 · · · 0 1 0
λ 0 0 0 · · · 0 0 1

.

Consider now a permutation matrix A = ‖aij‖, 1 ≤ i, j ≤ k, that is a sub-
matrix of ML(m). If A is specified by the pair of string/picture languages (X,Y )
with X = {x1, x2, . . . xk} and Y = {y1, y2, . . . yk}, we can suppose w.l.o.g. that,
for any 1 ≤ i ≤ k, axiyi = 1 and, for any 1 ≤ i, j ≤ k with i �= j, axiyj = 0 i.e. for
any 1 ≤ i ≤ k, xiyi ∈ L(m) and, for any 1 ≤ i, j ≤ k with i �= j, xiyj /∈ L(m).

Remark that, for any 1 ≤ i ≤ k, we have xi, yi ∈ Σm,0 ∪Σm,1 ∪Σm,2. Since
a permutation matrix cannot have two equal rows or columns, we can have only
one index i such that xi = λ. Moreover, we can have only one index i such that
xi ∈ Σm,2: indeed in the case xi ∈ Σm,2, since axiyi = 1, we must have xiyi ∈
L(m) and this is possible if and only if yi = λ. Hence xi = xiyi ∈ L(m). But all
rows in ML(m) indexed in L(m) are equal whereas a permutation matrix cannot
have two equal rows. At last, we can have only one index i such that xi ∈ Σm,1:
if there were two different indexes, say i1 and i2, such that xi1 , xi2 ∈ Σm,1 then,
since xi1yi1 , xi2yi2 ∈ L(m), we must have xi1 = pj1 , xi2 = pj2 and yi2 = pj′2 with
j2 ≤ j′2. We can suppose w.l.o.g. j1 ≤ j2. But this implies xi1yj2 = pj1pj′2 ∈ L(m)
and, hence, the row indexed by xi1 = pj1 would have two symbols 1 that is a
contradiction.

Therefore any permutation matrix that is a sub-matrix of ML(m), has size at
most 3. The bound is tight: it suffices to consider in the figure above the sub-
matrix specified by the pair of picture languages (X,X) with X = {pm, p, λ}.

For the fooling complexity of L consider the sub-matrix F = ‖fij‖ of ML(m)

above depicted. F is a fooling matrix: indeed we have fλp = fpλ = 1 and, for
any 1 ≤ i ≤ m, fpipi = 1. Moreover, for any 1 ≤ i, j ≤ m, fpipj = 1 if and only if
i < j (and in this case fpipj = 0) and, for any 1 ≤ i ≤ m, fλpi = fpiλ = 0. Since,
from Proposition 1, the size of a fooling sub-matrix of ML(m) must be less than
or equal to RL(m) = m+ 2, it follows that F , that has size m+ 2, is a maximal
fooling sub-matrix of ML(m) and, hence, FL(m) = m+ 2. ��

Remark 2. Remark that, for the language L = L2col considered in the proof of
Proposition 2, we have CL(m) = m + 2. Indeed, from Proposition 1, FL(m) ≤
CL(m) ≤ RL(m) = m+2. From FL(m) = m+2, it easily follows CL(m) = m+2.
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Proposition 3. There exists L ∈REC such that FL(m) = 3 and CL(m) is
logarithmic in m.

Proof. Consider the language L = L1, where L1 is the language defined in Exam-
ple 4, L = {(m,n) | n is not a multiple of m or n = 0}. For any m, consider the
Hankel matrix ML(m): it can be obtained by exchanging entries 0 with entries 1
in the Hankel matrix for L1. We will show that FL(m) = 3.

Let F be a fooling sub-matrix of ML(m). Any row of F has one symbol 0 at
most, with the exception of one row that can contain two occurrences of 0 at
most. Suppose F of size k, for some integer k, and let b0 the number of symbols
0 that occur in F . Obviously b0 ≤ k+ 1. The number of symbols 1 that occur in
F , apart from the k on the counter-diagonal positions, is k2− k− b0. Since B is
fooling, it must be k2−k− b0 ≤ b0, i.e. recalling b0 ≤ k+1, k2−3k−2 ≤ 0 that
is k ≤ 3. Hence FL(m) ≤ 3. But it is easy to find a fooling sub-matrix of ML(m)

of size 3 (consider for example the sub-matrix specified by the pair (X,Y ) with
X = {(m, 1), (m, 2), (m, 3)} and Y = {(m,m− 1), (m,m− 2), (m,m− 3)}) and
hence the equality FL(m) = 3 follows.

For the covering complexity, one can prove that there exists a strict relation
between the Hankel matrix of L(m) and the bipartite graph associated to the
string language L(m) and, in particular, that CL(m) is equal to the bipartite
dimension of the graph. The definition of bipartite dimension was introduced
in [16], where the authors also show that, for L(m) as above, it is equal to

the smallest integer k such that m ≤
(

k
$k\2%

)

and, then, that it is logarithmic

in m. ��

Let us now consider a one-letter alphabet. Recall that, given a function f , the
picture language defined by f , is the set Lf = {(m, f(m)) | m ≥ 0} (cf. [10], see
also [12]). In [10], it is proved that, if f(m) is a super-exponential function, then
Lf /∈ REC. Moreover, in [5] it is shown that, in the same hypothesis, Lf /∈ REC.
This result is obtained by using Lemma 2 and some ad-hoc arguments concerning
automata over one-letter alphabet. Remark that the same result could be inferred
by some properties of the monadic second-order definable functions [23] and by
their correspondence with REC family as stated in [14].

Proposition 4. The necessary condition stated in Theorem 1 is not sufficient.

Proof. Examples of languages not in REC with covering complexity less than
exponential are all languages Lf where f(m) is a super-exponential function
and f(m) = 2O(cm), for some constant m (an example is f(m) = m!). Indeed, if
f(m) is a super-exponential function, then Lf /∈ REC [5]. Moreover, for any m,
the Hankel matrix associated to the language Lf (m) is given by the following
matrix “surrounded” by an infinite number of columns and rows of 1’s.
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(m, 0) (m, 1) · · · (m, f(m− 2)) (m, f(m− 1)) (m, f(m))
(m, 0) 1 1 · · · 1 1 0
(m, 1) 1 1 · · · 1 0 1
(m, 2) 1 1 · · · 0 1 1

...
...

...
...

...
...

...
(m, f(m− 1)) 1 0 · · · 1 1 1

(m, f(m)) 0 1 · · · 1 1 1

.

Now it can be proved, with similar reasoning as in Proposition 3, that CL(m) is
logarithmic in f(m) and, hence, it is O(cm). ��

5 Conclusions and Open Problems

In this paper we highlighted the possibility to gain necessary conditions for
the recognizability of two-dimensional languages, from lower bound methods for
regular string languages. Indeed to estimate the number of states of a minimal
NFA for a regular language is still an open problem, while computing such an
NFA is PSPACE-complete. This field is therefore an active research area, where
problems are tackled by different methods (communication complexity as well as
graph theory, for instance). Hopefully, further results in the area could provide
new insights also on two-dimensional languages.

In particular, consider the unary language given in the proof of Proposition 4
as an example of a language whose non-recognizability cannot be proved using
the function CL. Its non-recognizability follows from some result on automata
over a one-letter alphabet. It should be interesting to see whether for unary lan-
guages one can obtain a stronger non-recognizability condition by reformulating
in terms of Hankel matrices some known result of the automata theory.

All results given along the paper are based on the investigation of the se-
quence of languages L(m), the languages of pictures with fixed number of rows
m. They can be straightaway translated to get further recognizability condi-
tions concerning the languages of pictures with fixed number of columns. The
combination of both bounds (on fixed number of rows and columns) could be a
possible way to strengthen the conditions, in such a way to much more exploit
the two-dimensional nature of picture languages.
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Abstract. Based on different concepts to obtain a finer notion of lan-
guage recognition via finite monoids we develop an algebraic structure
called typed monoid. This leads to an algebraic description of regular
and non regular languages.

We obtain for each language a unique minimal recognizing typed
monoid, the typed syntactic monoid. We prove an Eilenberg-like the-
orem for varieties of typed monoids as well as a similar correspondence
for classes of languages with weaker closure properties than varieties.

1 Introduction

We present an algebraic viewpoint on the study of formal languages and extend
the known approach to use language recognition via monoids and morphisms by
equipping the monoids with additional information to obtain a finer notion of
recognition.

In the well established algebraic theory of automata, a language L ⊆ Σ∗ is
recognized by a monoid M if there exists a morphism h : Σ∗ →M and a subset
A of M such that L = h−1(A). The syntactic monoid, which is the smallest
monoid recognizing L, has emerged as an important tool to study classes of
regular languages. However, even for regular languages this instrument lacks
precision, and it is poorly suited to the study of non regular languages. Although
there has been progress to extend the theory to infinite monoids that are torsion
using topological methods [18].

One problem is that not only the syntactic monoid but also the syntactic
morphism, i.e. the morphism recognizing L via the syntactic monoid, plays an
important role: consider the two languages Lparity, Leven over the alphabet Σ =
{a, b} where the first one consists of all words with an even number of a’s while
the latter consists of all words of even length. Both languages have C2, the cyclic
group of order two, as syntactic monoid. But there are well-known results [9,1]
that in the model of circuit complexity classes the language Lparity is harder
than Leven. This reflects in the recognition via morphism through the fact that
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in Lparity the morphism needs to distinguish between an “a” as input and a “b”
as input, whereas in Leven we count only the number of inputs.

So one of our goals is to introduce an algebraic structure where we have
control over the morphisms allowed, especially over the images of single letters.
The concept of limiting the images of morphisms in the setting of finite monoids
has been studied in [8]. It was shown that this concept is useful and yields nice
algebraic objects. A similar approach but with a different algebraic object was
used in [17].

Limiting the morphisms is a useful tool, but especially if we want to study
non regular languages we need to add more information. Consider the language
LMaj over the alphabet Σ = {a, b} of all words with more a’s than b’s. This
is clearly a non regular language and hence not recognized by a finite monoid.
The syntactic monoid of LMaj is Z, but Z is also the syntactic monoid of an
undecidable language in unary encoding.

The standard approach to recognize LMaj by Z is the following: η : Σ∗ → Z

is defined by η(a) = +1 and η(b) = −1. Then w ∈ L ⇔ η(w) > 1. Hence LMaj

is recognized by Z, η, and the accepting set Z+ (the positive numbers). While
in general various, even undecidable, languages can be recognized by Z with
suitable accepting sets, what happens if we restrict the accepting set to Z+? Let
h : Σ∗ → Z be a morphism, then h(w) = h(a) ·#a(w) + h(b) ·#b(w), since Z is
commutative. Hence, any language accepted by such a morphism is defined by
a linear inequality of the ratio of the letters occurring.

The idea to limit the allowed accepting subset has been studied in [20] and
applied to context free languages. We use a different approach here: instead of
one accepting subset, we will consider a set of subsets and then consider the
Boolean algebra generated by these sets. Each element of that Boolean algebra
can be an accepting subset. We loose precision there, because this forces us to be
closed under complementation, but our aim is the application of our approach
to circuit complexity and descriptive complexity. The use of a Boolean algebra
helps a lot to obtain a neat definition for the block product which is an important
tool to characterize such classes algebraically.

If we combine the two approaches, i.e. fix the set of acceptance subsets of the
monoid and limit the allowed morphisms we obtain even better possibilities. If
we take Z and allow only morphisms mapping a letter to {−1,+1}, and have
Z+ as accepting subset then we can only recognize languages that partition the
alphabet into two sets A and B and test if the letters of set A occur more often
than the letters of set B. All these languages are “close” to LMaj in the sense
that they reduce by a length preserving morphism to it.

These two observations lead us to the definition of a typed monoid. A typed
monoid is a triple (S,S, E), where S is a finitely generated monoid, S is a finite
Boolean algebra over S, and E ⊆ S is a finite set. The elements of S are called
types and the elements of E are called units (see Definition 1).

A language is recognized by (S,S, E) if there is a morphism h from Σ∗ → S,
h(Σ) ⊆ E , and L = h−1(SSS) for a type SSS ∈ S. More generally, we use the units
to limit the allowed morphisms while only types may be acceptance sets.
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The syntactic monoid plays an important role in the study of (regular) lan-
guages. In the theory of finite monoids it can be shown that the syntactic monoid
is the smallest monoid recognizing a language with respect to division. Further-
more, if a monoid M divides a monoid N , then all languages recognized by M
are recognized by N and hence the partial order of division on monoids is mean-
ingful in terms of language recognition. We will show the same properties for our
typed monoids. On the other hand, we are even able to distinguish the typed
syntactic monoids of languages like majority and prime numbers, although they
have the same syntactic monoid, namely Z, in the conventional case.

In the finite case the theorem of Eilenberg, stating a one-to-one correspon-
dence between varieties of (finite) monoids and varieties of (regular) languages,
is the origin of the algebraic study of formal languages. Recall that by results
of Schützenberger and McNaughton and Papert [21,14] the (regular) starfree
languages are exactly the languages that can be recognized by (finite) aperiodic
monoids, i.e. monoids that contain only trivial subgroups. This result lead to
the decidability of the question whether a given regular language is starfree, and
there are similar results for many varieties of regular languages.

In Section 6 we will define varieties of typed monoids and formulate a version
of Eilenberg’s theorem for typed monoids. Using this it is possible to obtain
algebraic counterparts of varieties of (non-regular) formal languages [13,12].

Another important tool in the study of formal languages is their description
via logic. So it was shown that the starfree languages are exactly the languages
describable by a first order logic fragment, namely FO[<]. The fact that FO is
connected to the circuit class AC0 which cannot recognize a group language [1,9]
led to an investigation of the links between subclasses of regular languages and
classes of circuits. These studies exhibited some interesting connections between
some varieties of regular languages and certain circuit classes. For a survey we
recommend [23].

While varieties play an important role, many language classes defined by
logic classes do not form a variety. Consider for instance FO[<,mod]: this class
can describe all words of even length Leven, but it is known [1,9] that this
class cannot express Lparity. Hence FO[<,mod] cannot be closed under arbitrary
inverse morphisms, because there is a non length preserving morphism h such
that Lparity = h−1(Leven).

Eilenberg studied classes of transformation semigroups with weaker closure
properties than varieties. We define weakly closed classes of typed monoids in
Section 5 and show that for each weakly closed class of languages there exists
a corresponding weakly closed class of typed monoids. This gives a weaker ver-
sion of the variety theorem for classes of languages with closure properties like
FO[<,mod].

We sum up the structure of the paper: in Section 3 we give the basic definition
s of our algebraic objects, morphisms, and language recognition. In the following
sections we transfer the Eilenberg program for (finite) monoids into the world
of typed monoids. The typed syntactic monoid and its minimality are treated in
Section 4. We define closure properties in Section 5 and show that weakly closed
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classes of typed monoids correspond to weakly closed classes of languages. In
Section 6 we consider varieties and show that the correspondence of the previous
section is one-to-one for varieties.

2 Preliminaries

We define here most notions in a very basic way and presume the reader to
be familiar with Eilenberg’s variety theory, namely the concepts of language
recognition via monoids and varieties. For a complete survey of monoids and
language recognition we recommend [15]. For readers who wish an in-depth study
of monoids and varieties [2] is a good source. We will bring up some logic classes
from time to time, mostly used in examples and as motivation for some classes
of languages. The reader can skip these parts but for those interested we refer
to [22]. Most examples can be found there and we use the same notation. It
also displays the connections of descriptive complexity, circuit complexity, and
algebra.

Let A,B be nonempty sets; A mapping f : A �→ B is called surjective if
h(A) = B and injective if for every b ∈ B there is at most one a ∈ A such that
h(a) = b; f is bijective iff f is injective and surjective.

A semigroup S is a nonempty set equipped with a binary relation · which is
associative. We call a semigroup M a monoid if it has a (unique) neutral element
1M , i.e. an element such that 1M · x = x · 1M = x for all x ∈ M . A monoid G
is called group if for each g ∈ G there is a (unique) element g−1 ∈ G such that
g · g−1 = g−1 · g = 1G. As usual we write xy for x · y and 1 for 1M if the context
is understood.

A monoid M is finite if M is a finite set. A subset P of M generates M ,
denoted by M = 〈P 〉, if each element in M can be written as a finite product
of elements in P and the neutral element. M is finitely generated if there exists
a finite subset P of M generating M . The free monoid with generator set A is
usually denoted by A∗, i.e. we take the set of all finite sequences of elements of A
together with the empty word as neutral element, the multiplication is defined as
concatenation. Let M,N be monoids, a (monoid-)morphism h from M to N is
a mapping h : M → N such that for all m1,m2 ∈ M : h(m1m2) = h(m1)h(m2)
and h(1) = 1. A subset M ′ is a submonoid of M , if xy ∈ M ′ for all x, y ∈ M ′

and 1 ∈M ′. A monoid N divides a monoid M (N &M) if it is a morphic image
of a submonoid of M , that is there exists a submonoid M ′ of M and a surjective
morphism from M ′ to N .

A congruence on a monoid M is an equivalence relation ∼ on M , such that
x ∼ y and x′ ∼ y′ imply xx′ ∼ yy′. We denote by [x] the congruence class of
x, i.e. {y | y ∼ x}. Given a congruence ∼ on M , the set of equivalence classes
together with the multiplication [x][y] = [xy] form a monoid, the quotient monoid
denoted by M/ ∼. The mapping x �→ [x] is a morphism, the so called canonical
epimorphism. Conversely, a morphism h : M → N defines a congruence ∼h on
M by setting x ∼h y ⇔ h(x) = h(y).

The set of integers Z with the usual addition is an infinite monoid generated
by {−1, 1}; for each natural number k we denote the quotient monoid Z/kZ
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of Z (corresponding to the congruence x ∼ y iff x ≡ y mod k) by Ck and its
elements by 0, . . . , k − 1.

A Boolean algebra B over a nonempty set S is a finite set of subsets of S
containing ∅, S and being closed under union, intersection and complement. Let
B,C be two Boolean algebras over sets S and T respectively. A morphism h from
B to C is a mapping h : B → C such that h(∅) = ∅, h(S) = T , h(S \ B1) =
T \ h(B1) and h(B1 ∪B2) = h(B1) ∪ h(B2) for all B1, B2 ∈ B.

If B is a Boolean algebra over S and C ⊆ B is again a Boolean algebra over
S, then C is a Boolean subalgebra of B.

Languages. An alphabet Σ is a finite non-empty set and its elements are called
letters. The elements of the free monoid Σ∗ are called words and a language is
a subset of Σ∗. Let w be a word then we can uniquely write it as a product of
letters w = w1 . . . wn, where n is called the length of the word, denoted by |w|.
For a letter a and a word w we define #a(w) = |{i | wi = a}|, i.e. the number of
occurrences of the letter a in w. A morphism h from Σ∗ to Δ∗ is called length
preserving if h(Σ) ⊆ Δ.

A monoidM recognizes a language L ⊆ Σ∗ iff there is a morphism h : Σ∗ →M
and a subset A ⊆M such that L = h−1(A).

Given a language L ⊆ Σ∗ the syntactic congruence is defined on Σ∗ by x ≡L y
iff for all w, v ∈ Σ∗ holds wxv ∈ L⇔ wyv ∈ L. The syntactic monoid M(L) of L
is defined as the quotient monoid Σ∗/ ≡L. The canonical epimorphism for this
congruence is called syntactic morphism and denoted by ηL. It can be shown
that the syntactic monoid is a minimal monoid recognizing L with respect to
division.

3 Typed Monoids

In this section we introduce the notion of typed monoids. We start from the
usual concept of language recognition by monoids. Instead of only considering
the monoid M we want control over the possible morphisms, a concept already
studied in [8,17]. We follow the approach of [8] and enhance the monoid with
a subset, called units, and require morphisms to map units on units. Further,
to reduce the power of the monoid we equip the structure with a finite Boolean
algebra over the monoid, and require the accepting subsets to be elements of this
Boolean algebra. This is in particular helpful when dealing with infinite monoids
or non regular languages.

Definition 1 (Typed Monoid). A typed monoid is a triple (S,S, E), where S
is a finitely generated monoid, S is a finite Boolean algebra over S, and E ⊆ S
is a finite set. The elements of S are called types and the elements of E are
called units.

For a typed monoid (S,S, E) we will write (S, {SSS1, . . . ,SSSd}, E), where the SSSi are
types generating S. If the Boolean algebra S is generated by a single set we will
drop the braces: (S, {SSS}, E) = (S,SSS, E). We call a typed monoid (S,S, E) free, if
the underlying monoid S is free.



102 C. Behle, A. Krebs, and S. Reifferscheid

Please note, that we do not require the units to generate S.

Example 1. We give some examples of typed monoids.

(a) Let S = Z, S = {∅,Z,Z+,Z−
0 } (where Z+ are the positive numbers and

Z−
0 are the non positive numbers), and E = {−1, 1}. Then (S,S, E) is a

typed monoid. As stated above we use for (S,S, E) the short hand notation
(Z, {Z+,Z−

0 }, {−1, 1}) or even (Z,Z+, {−1, 1}) to denote (S,S, E).
(b) Let S = Z, S = {∅, 2Z, 2Z+ 1,Z}, and E = {0, 1}. Then (S,S, E) is a typed

monoid. Again, we use the short hand notation (Z, {2Z, 2Z + 1}, {0, 1}) or
even (Z, 2Z, {0, 1}) to denote (S,S, E).

(c) Let S = C4, S = {∅, {0}, {1, 2, 3}, {0, 1, 2, 3}}, and E = {1}. Then (S,S, E)
is a finite typed monoid. As we will see later this monoid is more restricted
than C4 in the untyped world.

(d) Each finite monoid Scan be seen as a typed monoid (S,S, E) where the types
are the subsets of S (that is, S is the powerset of S) and the set of units is
E = S.

(e) There is a strong connection between a language L ⊆ Σ∗ and typed monoids.
The structure (Σ∗, {∅, L,Σ∗ \ L,Σ∗}, Σ) = (Σ∗, L,Σ) is a typed monoid.
Note, that a language L and its complement L̄ lead to the same typed
monoid.

As mentioned before the units will limit the set of possible morphisms. On the
free monoid Σ∗ we usually pick Σ as the units; in this case every element has a
unique representation as a product of the units and the “length” of an element
is the number of units in its representation. Even on arbitrary monoids units
give a kind of length property, this has been studied in [8].

We define the notion of a morphism for typed monoids.

Definition 2 (Typed Morphism). We let a (typed) morphism h : (S,S, E)→
(S′,S′, E ′) of typed monoids be specified by a triple (hS , hS, hE), where hS : S →
S′ is a monoid morphism, hS : S → S′ is a morphism of Boolean algebras,
hE : E → E ′ is a mapping of sets, and the triple fulfills the two compatibility
requirements:

1. ∀SSS ∈ S it holds hS(SSS) = hS(SSS) ∩ hS(S),
2. ∀u ∈ E it holds hS(u) = hE(u).

Because of the compatibility conditions of this definition we can omit the indices
of the morphisms.

Condition 2 forces hS to map units to units and to be compatible with hE , and
thus the compatibility conditions imply that hS induces hE and - in case hS is
surjective - also hS. Note further that 1 implies that a nonempty type cannot
be mapped to the empty type, and thus hS needs to be injective, i.e. |S| ≤ |S′|.

The definitions of injective and surjective morphisms are straightforward.
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Definition 3 (Injective, Surjective, Typed Submonoid, Division)
Let (S,S, E), (T,T,F) be two typed monoids.

– A typed morphism h : (S,S, E) → (T,T,F) with h = (hS , hS, hE) is in-
jective (resp. surjective, bijective) if hS , hS, and hE are all injective (resp.
surjective, bijective).

If h is bijective we say that (S,S, E) and (T,T,F) are isomorphic
(denoted ∼=).

– A typed monoid (T,T,F) is a typed submonoid of (S,S, E) (we write
(T,T,F) ≤ (S,S, E)) if T is a submonoid of S and there is an injective
morphism from (T,T,F) to (S,S, E).

– A typed monoid (T,T,F) divides a typed monoid (S,S, E) (we write
(T,T,F) & (S,S, E)) if (T,T,F) is a morphic image of a typed submonoid
of (S,S, E).

As one should expect, concatenation of two (injective/surjective) morphisms
is again a (injective/surjective) morphism. And given a typed morphism h :
(S,S, E) → (T,T,F), the image (preimage) of h is a submonoid of (T,T,F)
((S,S, E)).

To clarify the notion of a typed morphism consider the following typed monoids.
We let

(S,S, E) = (C4, {{0}, {1}, {2}, {3}}, {0, 1}),

(T,T,F) = (C4, {{0, 2}, {1, 3}}, {0, 1}), and

(U,U,G) = (C2, {{0}, {1}}, {0, 1}).

Since |S| > |T|, there is no typed morphism from (S,S, E) to (T,T,F). On the
other hand the identity mapping yields an injective (but not surjective) typed
morphism from (T,T,F) to (S,S, E). Hence, (T,T,F) is a typed submonoid of
(S,S, E).

There is no typed morphism from (U,U,G) to (S,S, E): assume h is such
a morphism. Then hG(0) = hU (0) = 0 and hG(1) can be 0 or 1. In the first
case we hurt condition 1. Because then the following equation should hold: 0 ∈
hU({0}) ∩ hU({1}) = hU(∅) = ∅; contradiction. If we let hU (1) = 1 then hU is
not a (monoid) morphism; in particular (U,U,G) is no submonoid of (S,S, E).
Conversely, (U,U,G) is a factor of (S,S, E), since the mapping hT : (T,T,F)→
(U,U,G), i �→ i (mod 2) defines a typed morphism from (T,T,F) onto (U,U,G),
and (T,T,F) is a submonoid of (S,S, E).

Lemma 1. If (S,S, E) & (T,T,F) and (T,T,F) & (U,U,G), then (S,S, E) &
(U,U,G).

Proof. Suppose that (S,S, E) & (T,T,F) and (T,T,F) & (U,U,G). By defini-
tion of divisor we have submonoids (T ′,T′,F ′) ≤ (T,T,F) and (U ′,U′,G′) ≤
(U,U,G) and are in the following situation:
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(S,S, E) (T,T,F) (U,U,G)

(T ′,T′,F ′)

α

����

��

�������������
(U ′,U′,G′)

β

����

��

������������

(U ′′,U′′,G′′)

����

��

��

In the diagram above we define (U ′′,U′′,G′′) = β−1((T ′,T′,F ′)), then α ◦ β
maps (U ′′,U′′,G′′) surjectively on (S,S, E) and is a submonoid of (U,U,G), hence
(S,S, E) & (U,U,G). ��

A concept strongly connected to morphisms is the concept of congruences. Each
morphism induces a congruence and vice versa. Congruences on typed monoids
need to be compatible with the set of types.

Definition 4 (Typed congruence). Let (S,S, E) be a typed monoid and ∼ be
a congruence on S. Then ∼ is a typed congruence if ∀SSS ∈ S, s1, s2 ∈ S : s1 ∼
s2 ∧ s1 ∈ SSS ⇒ s2 ∈ SSS.

In this case we say that ∼ is finer than S.

Example 2. The usual syntactic congruence ≡L forms a typed congruence on
(Σ∗, L,Σ). To see this we have to show that ≡L respects the types, but these
are only ∅, L, L̄, Σ∗ and L is a union of congruence classes of ≡L.

Let ∼ be a typed congruence on a typed monoid (S,S, E). Let E/ ∼= {[x]∼ |
x ∈ E}, SSS/ ∼= {[x]∼ | x ∈ SSS} and S/ ∼= {SSS/ ∼| SSS ∈ S}. This is well defined,
since ∼ is finer than S. We call (S,S, E)/ ∼= (S/ ∼,S/ ∼, E/ ∼) the typed
quotient monoid of (S,S, E) by ∼.

As in the classical case, a typed morphism h defines a typed congruence via
s1 ∼h s2 ⇔ hS(s1) = hS(s2). Likewise, a typed congruence ∼ on a typed monoid
(S,S, E) defines a morphism from (S,S, E) to (S,S, E)/ ∼.

4 Typed Syntactic Monoid

We turn now to the recognition of languages by typed monoids. Instead of
considering all morphisms into a monoid we limit the allowed morphisms to
those mapping letters to units, and the only accepting subsets allowed are types.
We can reduce the definition of language recognition to the notion of a typed
morphism:

Definition 5. We say that (S,S, E) recognizes a language L ⊆ Σ∗ if there is a
typed morphism h : (Σ∗, L,Σ)→ (S,S, E).
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Since L and L̄ are disjoint types they have to be mapped on two disjoint types.
Hence, there is a type SSS ∈ S, such that L = h−1

S (SSS). So the definition resembles
the usual definition of language recognition via monoids. The standard notion of
language recognition for finite monoids coincides with our notion in the following
way: given a finite monoid S then S and the typed monoid (S,P(S), S) recognize
exactly the same languages.

Example 3. Let L ⊆ Σ∗ be a language, M(L) its usual syntactic monoid, ηL the
syntactic morphism, and A = ηL(L) the accepting subset. Then L is recognized
by the typed monoid (M(L), A, ηL(Σ)) = (ηL(Σ∗), ηL(L), ηL(Σ)).

The typed syntactic monoid will be defined using the syntactic congruence which
is a typed congruence on the typed monoid (Σ∗, L,Σ).

Definition 6 (Typed Syntactic Monoid). Let L ⊆ Σ∗ be a language, then
syn(L) = (Σ∗, L,Σ)/ ≡L is the typed syntactic monoid of L.

It is easy to see that L is recognized by its typed syntactic monoid via the typed
morphism induced by the syntactic morphism ηL. We call that morphism the
typed syntactic morphism.

In the finite case it is known that the syntactic monoid is the unique (up to
isomorphism) minimal monoid recognizing the language (minimal with respect
to division). Since in general, division is only a preorder (see example 4), in
the classical case we only have that M(L) is a minimal element recognizing the
language L, i.e.: if N is a monoid recognizing L, then M(L) divides N .

Example 4. Let S and T be the free monoid with two and three generators,
respectively. We define the typed monoids (S,S, E) = (〈a, b〉, {〈a, b〉}, {1}) and
(T,T,F) = (〈a, b, c〉, {〈a, b, c〉}, {1}). Then S and T divide each other but are
not isomorphic: 〈a, b, c〉 is isomorphic to the submonoid 〈a, ab, abb〉 (this remains
true with the given types and units) and 〈a, b〉 is isomorphic to the submonoid
〈a, b〉 of 〈a, b, c〉 (this also remains true for the given types and units).

We want to show that syn(L) divides (S,S, E) if (S,S, E) recognizes L.

Lemma 2. If there is a surjective morphism β : (S,S, E) → (S′,S′, E ′), then
every morphism from the free monoid (T,T,F), where F is the standard gener-
ator set for T , to (S′,S′, E ′) factors though β. That is for every morphism α,
there is a morphism α′ such that the following diagram commutes, i.e. β◦α′ = α:

(T,T,F)
α′

��

α

������������

(S,S, E)
β

�� �� (S′,S′, E ′)

Proof. We need to define the typed morphism α′ = (α′
T , α

′
T, α

′
F). For each unit

s′ ∈ E ′ there is an element s ∈ E with β(s) = s′. For each s′ pick such an element
and call it ss′ . We define α′ : (T,T,F) → (S,S, E) by setting α′

T (t) = sα(t) for



106 C. Behle, A. Krebs, and S. Reifferscheid

all free generators t of T . Recall that this defines a morphism on T , and thus
also the mapping α′

F . It remains to define the corresponding mapping for the
types. Let TTT ∈ T and set α′

T(TTT ) = max{SSS ∈ S : SSS ∩ α′
T (T ) = α′

T (TTT )}. Since
every SSS ∈ β−1(α(TTT )) is in the above set, this is well defined. ��

As in the finite case the syntactic monoid is minimal with respect to language
recognition. We start by showing the following lemma which is a consequence of
Lemma 2:

Lemma 3. Let (S,S, E), (S′,S′, E ′) be typed monoids, such that (S′,S′, E ′) di-
vides (S,S, E). Then every languages recognized by (S′,S′, E ′) is also recognized
by (S,S, E).

In particular: if syn(L) divides (S,S, E), then (S,S, E) recognizes L.

Proof. By definition there is a submonoid (U,U,G) of (S,S, E) and a surjective
morphism β : (U,U,G) → (S′,S′, E ′). Since (S′,S′, E ′) recognizes the language
L ⊆ Σ∗ there is a morphism α : (Σ∗, L,Σ) → (S′,S′, E ′). Hence by Lemma 2
there is a morphism α′ : (Σ∗, L,Σ) → (U,U,G). Since (U,U,G) is a submonoid
of (S,S, E) there is a morphism i : (U,U,G) → (S,S, E), thus L is recognized
by (S,S, E) via the morphism i ◦ α′. ��

Although in the theory of typed monoids division is not a partial order (see
example 4) we can show that the typed syntactic monoid of L is in fact the
unique minimal typed monoid recognizing L.

Lemma 4. Let L ⊆ Σ∗ be a language and (S,S, E) a typed monoid.

(a) (S,S, E) recognizes L if and only if syn(L) divides (S,S, E).
(b) syn(L) is the unique minimal element (with respect to division) recognizing

L, i.e. if (S,S, E) recognizes L and (S,S, E) divides syn(L), then (S,S, E) ∼=
syn(L).

Proof. (a) : We only need to show that syn(L) divides every typed monoid that
recognizes L ⊆ Σ∗. So let h : (Σ∗, L,Σ) → (S,S, E) be a morphism. Further
let (S′,S′, E ′) be the image of (Σ∗, L,Σ). We show that there is a surjective
morphism α from (S′,S′, E ′) to syn(L) (and hence syn(L) divides (S,S, E)).

So we need to show that α(s) = η(h−1(s)) is well defined. By contradiction
assume that there are w1, w2 with h(w1) = h(w2) and η(w1) �= η(w2), then
there are u, v ∈ Σ∗ with uw1v ∈ L and uw2v /∈ L, but h(uw1v) = h(uw2v) and
hence L is not recognized by S. It is obvious that α respects units and types and
therefore defines a typed morphism.

(b) : Let (S,S, E) be a typed monoid recognizing a language L ⊆ Σ∗ via a
morphism h and dividing syn(L) := (SL,SL, EL). Then there is a submonoid
(S′

L,S
′
L, E ′L) of (SL,SL, EL), a submonoid (S′,S′, E ′) of (S,S, E), and mor-

phisms α and β as shown below:
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(Σ∗, L,Σ) h �� ��

η

����

(S′,S′, E ′)

α
				�����������

�� �� (S,S, E)

(SL,SL, EL)

(S′
L,S

′
L, E ′L)
��

��

β

�� ������������������������������

Since Σ generates Σ∗ and h, η is surjective, we know E ′ generates S′, and SL is
generated by EL. Moreover |E ′| ≤ |E| ≤ |E ′L| ≤ |EL| ≤ |E ′|, so |E ′| = |E| = |E ′L| =
|EL|. In particular (SL,SL, EL) ∼= (S′

L,S
′
L, E ′L), and thus E generates S, which

again implies (S,S, E) ∼= (S′,S′, E ′).
Now we have a surjective morphism from (S,S, E) to (SL,SL, EL) and con-

verse, but this does not imply that α or β are isomorphisms. But it is clear
that α ◦ β is a permutation of E , hence there is a power of α ◦ β that is the
identity on E . But then this power is also an identity on (S,S, E) and we have
(SL,SL, EL) ∼= (S,S, E). ��

5 Weakly Closed Classes

Motivated by Eilenberg’s notion of a weakly closed class of transformation semi-
groups we consider weakly closed classes of typed monoids and languages. Weakly
closed classes of transformation semigroups are closed under division and direct
product. For typed monoids we add an additional operation which allows to
identify typed monoids recognizing the same languages.

Definition 7 (Reduced Monoid/Trivial Extension). Let (S,S, E) and
(T,T,F) be typed monoids such that there exists a surjective morphism from
(T,T,F) to (S,S, E). We call (S,S, E) a reduced monoid of (T,T,F) and con-
versely (T,T,F) a trivial extension of (S,S, E).

The following lemma formalizes the idea that from a language recognition per-
spective, reduced monoids and trivial extensions are equivalent.

Lemma 5. If (S,S, E) is a reduced monoid of (T,T,F), then they recognize
exactly the same languages.

The proof is straightforward using Lemma 3.
Similar to the case of the syntactic monoid, we can show that for each typed

monoid there exists a unique minimal reduced monoid. This can be constructed
- as the syntactic monoid - as a quotient monoid: given a typed monoid (S,S, E),
define the relation ≡(S,S,E) by letting x ≡(S,S,E) y (x, y ∈ S) iff for all z, z′ ∈ S
for all types SSS ∈ S we have zxz′ ∈ SSS ⇔ zyz′ ∈ SSS. If we view a language as
a typed monoid with two nontrivial types, the definition above coincides with
the definition of the syntactic congruence. It is easy to verify that the relation
above forms a type preserving congruence. This allows us to define the minimal
reduced monoid:
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Definition 8 (Minimal Reduced Monoid). Given a typed monoid (S,S, E),

the minimal reduced monoid is defined by ˜(S,S, E) = (S,S, E)/ ≡(S,S,E).

Lemma 6. Let (S,S, E) be a typed monoid and (T,T,F) be a reduced monoid

of (S,S, E) then ˜(S,S, E) is a reduced monoid of (T,T,F).

Proof. Let h : (S,S, E) → (T,T,F) be a surjective morphism. Since hS(s1) =

hS(s2) implies that s1 ≡(S,S,E) s2 the mapping T → ˜(S,S, E) which maps every
t to the congruence class of an inverse image of t is well defined and gives the
desired surjective morphism. ��

A standard operation on monoids is the direct product which corresponds to
the Boolean closure on the language side. We will get the same equivalence in
the typed world. The definition of the direct product of two typed monoids is
straightforward and sound in the category theory sense.

Definition 9 (Direct Product). The direct product of two monoids (S,S, E),
(S′,S′, E ′), denoted by (S,S, E)×(S′,S′, E ′), is defined as (S×S′,S×S′, E×E ′).

The direct product for typed monoids can express Boolean operations on the
language side as in the case of conventional monoids:

Lemma 7. Let L1, L2 ⊆ Σ∗ be languages recognized by typed monoids (S,S, E)
and (S′,S′, E ′) respectively. Then L1∩L2 and L1∪L2 are recognized by (S,S, E)×
(S′,S′, E ′).

Motivated by the definition of a weakly closed class of transformation semigroups
([7, Chapter III]) we define:

Definition 10 (Weakly closed class of languages). A weakly closed class
of languages is a function V which associates to each alphabet A a nonempty set
A∗V of languages over A such that

1. A∗V is closed under Boolean combinations, and
2. ϕ−1(L) ∈ B∗V for every L ∈ A∗V and every length preserving morphisms

ϕ : B∗ → A∗.

Many sets of languages defined in other contexts, e.g. descriptive complexity
or circuit complexity, do not form varieties (see Section 6) but weakly closed
classes.

Example 5. The languages described by the logic class FO[<,mod] form a weakly
closed class. One can easily verify that L(FO[<,mod]) is closed under length
preserving morphisms and it is closed under Boolean operations. But since
FO[<,mod] cannot recognize the language Lparity, it is not closed under non
length preserving morphisms.
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We will now define sets of typed monoids:

Definition 11 (Weakly Closed Class). We define a weakly closed class of
typed monoids as a nonempty set of typed monoids that is closed under trivial
extensions, division and finite direct products.

Given a nonempty set V of typed monoids, we let L(V) be a mapping which
associates with every alphabet A the nonempty set of all languages over A that
can be recognized by a typed monoid of V.

Obviously we have

Lemma 8. Let V, W be sets of typed monoids.

(a) If V is closed under division, then A∗L(V) is the set of all languages L ⊆ A∗

with syn(L) ∈ V.
(b) For two classes V ⊆W we have A∗L(V) ⊆ A∗L(W) for every alphabet A.

Our aim is a correspondence between weakly closed classes of languages and
weakly closed classes of typed monoids, where the correspondence is given by
the function L.

Proposition 1. If V is a weakly closed class of typed monoids, then L(V) is a
weakly closed class of languages.

Proof. We have to show that V = L(V) forms a weakly closed class of languages.
We first show V to fulfill the closure under inverse length preserving morphisms:
let L ⊆ Σ∗ be a language in Σ∗V and (S,S, E) be a typed monoid recognizing
L via the typed morphism h. Assume that L′ ⊆ Π∗ is a language such that L′ =
ϕ−1(L) where ϕ : Π∗ → Σ∗ is a length preserving morphism. Since ϕ is length
preserving it can be seen as typed morphism from (Π∗, L′, Π) to (Σ∗, L,Σ), thus
h◦ϕ is a typed morphism from (Π∗, L′, Π) to (S,S, E), and therefore L′ ∈ Π∗V .

The other closure properties follow with Lemma 7. ��

The next proposition ensures that every weakly closed class of languages can be
characterized by a weakly closed class of typed monoids.

Proposition 2. If V is a weakly closed class of languages, then there is a weakly
closed class of typed monoids V with L(V) = V.

Proof. Let V be the smallest weakly closed class that contains all syntactic
monoids of V . We have to show that L(V) ⊆ V , i.e. if L ∈ Σ∗L(V) then
L ∈ Σ∗V . The other inclusion is obvious.

The outline of the proof is as follows: we start with a language L ∈ Σ∗L(V)
and want to show that it is also in Σ∗V . We do this by constructing a language
L′ ∈ Π∗ as a Boolean combination of languages Li ∈ Σ∗

i V , where the Li raise
immediately from the typed monoid recognizing L, and constructing a length
preserving morphism ϕ : Σ∗ → Π∗, such that L = ϕ−1(L′).
L is recognized by a monoid in V. We may assume that L is recognized

via a typed morphism h : (Σ∗, L,Σ) → ×n
i=1(Si,Si, Ei), where (Si,Si, Ei) are
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syntactic monoids of some languages Li ∈ Σ∗
i V , in particular (Si,Si, Ei) ∈ V

(we can ignore the closure under division and trivial extension by Lemma 5).
Further, the languages Li ⊆ Σ∗

i are recognized via surjective morphisms ηi :
(Σ∗

i , Li, Σi) → (Si,Si, Ei).
We now construct L′ and ϕ. The following diagram depicts the situation:

(Σ∗, L,Σ) h ��

h̃





×n
i=1(Si,Si, Ei) ∈ V

×n
i=1(Σ∗

i , Li, Σi) ∈ V

����

The typed monoids (Σ∗
i , Li, Σi) are trivial extensions of (Si,Si, Ei) and there-

fore there exists a typed morphism h̃ : (Σ∗, L,Σ) → ×n
i=1(Σ

∗
i , Li, Σi). So

L = h̃−1(SSS) for some type SSS =×n
i=1SSSi, where SSSi ∈ {∅, Σ∗

i , Li, Σ
∗
i \ Li}. Note

that h̃Σ∗(Σ∗) ⊆ (×n
i=1Σi)∗ (since h̃Σ(Σ) ⊆×n

i=1 Σi and by the compatibility
conditions of typed morphisms), thus h̃Σ∗ : Σ∗ → (×n

i=1Σi)∗ is a length pre-
serving morphism. The assertion follows by setting Π = (×n

i=1 Σi), L′ = SSS and
ϕ = h̃Σ∗ . ��

Thus, by Proposition 1 and Proposition 2 we get:

Theorem 1. Let V be a weakly closed class of typed monoids, then L(V) is a
weakly closed class of languages.

Moreover, if V is a weakly closed class of languages, then there is a weakly
closed class V of typed monoids such that L(V) = V.

Note that this theorem does not guarantee a 1-1 correspondence: for a given
weakly closed class of languages, there could be multiple weakly closed classes
of typed monoids.

6 Varieties

In this section we prove our analogon to Eilenberg’s theorem. Our notion of a
language variety is the same that is found as ∗-variety in the literature [7,15].

The right quotient of a language L ⊆ Σ∗ by w ∈ Σ∗ is defined by Lw−1 =
{x ∈ Σ∗ | xw ∈ L}. The left quotient w−1L is defined analogously. A variety of
languages is a weakly closed class V of languages such that for all alphabets A
and B holds:

1. If L ∈ A∗V , then a−1L,La−1 ∈ A∗V for all a ∈ A and ϕ−1(L) ∈ B∗V where
ϕ : B∗ → A∗ is a morphism.

To adapt this concept to the theory of typed monoids, we need the notion of
shifts and unit relaxations. The following definition models the fact that varieties
are closed under left and right quotients.
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Definition 12 (Shifting). Let (S,S, E) be a typed monoid. Then (S,S′, E) is
a shift of (S,S, E), if there are λ, � ∈ S with S′ = {λ−1SSS�−1 | SSS ∈ S}, where
{λ−1SSS�−1}={s ∈ S | λs� ∈ SSS}.

The use of units let typed morphism correspond to length preserving morphisms
for languages. In order to a notion for non-length-preserving morphism we allow
arbitrary finite subsets as units:

Definition 13 (Unit Relaxation). Let (S,S, E) be a typed monoid. Then for
any finite set E ′ ⊆ S we say (S,S, E ′) is a unit relaxation of (S,S, E).

Adding these two closure properties to the requirement of a weakly closed class
of typed monoids we obtain a variety of typed monoids.

Definition 14 (Variety of Typed Monoids). A variety of typed monoids is
a weakly closed class that is closed under shifting and unit relaxation.

Note that a variety of finite monoids in the sense of [15] does not form a variety
of typed monoids if we consider every finite monoid S as the typed monoid
(S,P(S), S), since it is not closed under trivial extension leading to infinite
typed monoids.

Proposition 3. If V is a variety of typed monoids, then L(V) is a variety of
languages.

Proof. Let V = L(V). By Proposition 1 it remains to show that V is closed under
quotients and under inverse morphism. The closure under quotients is obviously
given, since V is closed under shifting.

Assume that ϕ : Π∗ → Σ∗ is a morphism and L ⊆ Σ∗ is a language
recognized by a typed monoid (S,S, E) ∈ V (thus there is a typed morphism h :
(Σ∗, L,Σ) → (S,S, E)). We need to show that L′ = ϕ−1(L) is also
recognized by a monoid in V. But this follows by unit relaxation, since
we can consider ϕ as a typed morphism from (Π∗, L′, Π) to (Σ∗, L, ϕ(Π)) and
thus h ◦ ϕ : (Π∗, L′, Π) → (S,S, h(ϕ(Π))) is a typed morphism to a monoid
in V. ��

Proposition 4. For two varieties V ⊆W we have L(V) ⊆ L(W), where equal-
ity occurs only if V = W.

Proof. Let L(V) = V and L(W) = W . By Lemma 8 we have V ⊆ W , so we
need to show the equality statement for varieties.

Let (S,S, E) be a monoid in W and assume V = W , we show (S,S, E) is in V.
We denote the types in S by SSSi. Let G be a generating set of S containing E , then
(S,SSSi, G) is a typed monoid in W for all i. The set G generates S, thus there is a

language Li ⊆ G∗ recognized by (S,SSSi, G), moreover syn(Li) ∼= ˜(S,SSSi, G) ∈W.

Thus Li is in G∗W = G∗V and consequently ˜(S,SSSi, G) and therefore (S,SSSi, G) ∈
V for all i. Since (S,S, E) divides ×i(S,SSSi, G) we conclude (S,S, E) ∈ V and
hence V = W. ��
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Proposition 5. For every variety of languages V there is a corresponding va-
riety of typed monoids V, such that V = L(V).

Proof. The proof is similar to the proof of Proposition 2. We let V be the
smallest variety that contains all syntactic monoids of V . We need to show that
L ∈ Σ∗L(V) implies L ∈ Σ∗V . We construct a language L′ ∈ Π∗V and a
morphism ϕ : Σ∗ → Π∗ such that L = ϕ−1(L′).
L is recognized by a monoid in V. We may assume that L is recognized

by ×(Si,Si, Ẽi) via some morphism h : (Σ∗, L,Σ) → ×(Si,Si, Ẽi), where
(Si,Si, Ei) are syntactic monoids of some languages Li ∈ Σ∗

i V and Ẽi are ar-
bitrary finite subsets of Si. Further, the languages Li ⊆ Σ∗

i are recognized via
surjective morphisms ηi : (Σ∗

i , Li, Σi) → (Si,Si, Ei). Note that we may ignore
the closure under shifting since V is closed under quotients.

The typed monoids (Σ∗
i , Li, η

−1
i (Ẽi)) are trivial extensions of (Si,Si, Ẽi) and

therefore exists a typed morphism h̃ : (Σ∗, L,Σ) → ×n
i=1(Σ∗

i , Li, η
−1
i (Ẽi)). So

L = h̃−1(SSS) for some type SSS =×n
i=1SSSi, where SSSi ∈ {∅, Σ∗

i , Li, Σ
∗
i \ Li}.

In contrast to the proof of Proposition 2 we can not immediately conclude that
h̃Σ∗(Σ∗) ⊆ (×Σi)∗, since every entry in a tuple h̃Σ∗(w) ∈ (×Σ∗

i ) could have
different length. Nevertheless, since we have the closure under unit relaxation
we may assume that every language Li has a neutral letter, i.e. a letter that
gets mapped to the neutral elements by the morphism ηi. Thus we can identify
h̃Σ∗(w) = (w1, . . . wn) with a word (v1, . . . , vn) ∈ (×Σi)∗ where vi is wi padded
with the neutral letter.

Now the assertion follows with ϕ is the morphism induced by h̃Σ∗ , Π =
(×n

i=1 Σi) and L′ = SSS. ��

Summing up these results we obtain a one-to-one correspondence for varieties
as in the finite case:

Theorem 2. Varieties of typed monoids and varieties of languages are in a
one-to-one correspondence:

– Let V be a variety of languages and V the smallest variety of typed monoids
that recognizes all languages in V, then L(V) = V.

– Let V be a variety of typed monoids and W be the smallest variety that
recognizes all languages of L(V), then V = W.

As shown above, a variety of typed monoids always contains infinite typed
monoids because of the closure under trivial extensions. But without this closure
property there would be no one-to-one correspondence in the previous theorem.
It is easy to construct a typed monoid (S,S, E) such that any language recog-
nized by (S,S, E) is aperiodic but S contains a group.

7 Discussion

We have introduced typed monoids and shown that they can be used to describe
languages, weakly closed classes, and varieties of languages. Typed monoids allow
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us to obtain a more precise description of language classes than with the usual
approach with monoids or as mg-pairs or stamps as in [8] and [17].

In this paper we presented basic results about typed monoids. We have shown
the existence and uniqueness of a typed syntactic monoid and the equivalent of
Eilenberg’s theorem for typed monoids as well as a weaker version for weakly
closed classes. A number of questions are open when studying typed monoids.
Green’s relation are a useful tool in the study of monoids. Many important
varieties within the regular languages can be defined via some properties of the
Green’s relations of the monoids involved. This opens the question whether there
is a useful notion of similar relations for typed monoids.

It usually makes a difference if one considers language recognition via monoids
or semigroups. In the latter case languages are subsets of Σ+ instead of Σ∗

and the term +-varieties is used. The difference between these two approaches
diminishes for typed monoids. The empty word must be mapped onto the neutral
element of the typed monoid. But if the neutral element is not contained in the
units, the morphism on Σ∗ \ {λ} = Σ+ behaves like a semigroup morphism.
Conversely, if one considers a language L ⊆ Σ+ recognized by a semigroup S with
accepting set A, this language is recognized by the typed monoid (S1, A, ηL(Σ)).
Here, S1 denotes S with an additional neutral element added. If for example
a language L without a neutral letter is recognized by a semigroup S then
(S1, A, ηL(Σ)) recognizes L but not L with an additional neutral letter.

The motivation to study typed monoids stems from an interest in algebraic
characterizations of logic and circuit classes. The program linking finite monoids
[10,11,5,4,3] to first order logic relied heavily on the block product [19] (or the
bilateral semidirect product). It is possible to define the block product for typed
monoids and, for example, obtain characterizations for first order logic with
the majority quantifier [13] as well as subclasses [6]. To do so it was essential
to limit the set of possible accepting subsets. The limitation of the acceptance
sets (types) was used in [20] to obtain monoids for context free languages. By
using a Boolean algebra we loose the ability to characterize language classes
that are not closed under Boolean operations. We choose a Boolean algebra
because circuit classes are usually closed under Boolean operations. Even more,
the use of a Boolean algebra lead to a clean definition of a block product (or
bilateral semidirect product) and eases the characterizations of logic classes with
(arbitrary) Lindström quantifiers.

The approach of ordered monoids ([16]) allows to examine language classes
not closed under complement. A possible research area is to introduce “positive”
and “negative” types, closed under union to characterize context free languages
and one might be even able to define a block product for these kind of objects.

Acknowledgments. The authors want to thank Pierre McKenzie for his help
to improve the paper and the anonymous referees for their useful comments on
the paper.
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Abstract. Nearrings are generalized rings in which addition is not in
general abelian and only one distributive law holds. Some interesting
combinatorial structures, as tactical configurations and balanced incom-
plete block designs (BIBDs) naturally arise when considering the class
of planar and circular nearrings. In [12] the authors define the concept
of disk and prove that in the case of field-generated planar circular near-
rings it yields a BIBD, called disk-design. In this paper we present a
method for the construction of an association scheme which makes the
disk-design, in some interesting cases, an union of partially incomplete
block designs (PBIBDs). Such designs can be used in the construction of
some classes of codes for which we are able to calculate the parameters
and to prove that in some cases they are also cyclic.

Keywords: Binary codes, Planar circular nearring, PBIB design.

1 Introduction

A binary (n,m, d)-code is a subset C of Zn
2 such that |C| = m and the number of

coordinates in which any two elements of C, called codewords, differ is at least d.
A code which is also a vector subspace of Zn

2 is a linear code. Binary codes are
widely used in information theory, as they allow the correction of errors in the
delivery of digital data over unreliable communication channels. Moreover (error-
correcting) codes are strongly related with other areas of theoretical computer
science. They are used in [15] to show an example of a general provably secure
steganographic protocol, while in [18] it is shown that the IP theorem, stating
that any set in PSPACE has an interactive proof, can be proved by using
(linear) error-correcting codes.

The construction of codes from planar nearrings was at first pointed out in
[14], where the codes arising from balancing incomplete block designs (BIBDs)
constructed from planar nearrings are investigated. These codes turn out to be
“good” w.r.t. several properties, although it is well known that there cannot
exist a universal criterion that decides the efficiency of a code. Such “nearring
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codes” were further investigated in [10] and decoding methods are presented
in [13]. Moreover, with the implementation of the GAP package SONATA [2,1]
which provides methods for the construction and the analysis of finite nearrings,
algorithms for coding/decoding of such codes can be effectively realized.

A left (resp. right) nearring is an algebraic structure (N,+, ·) extending the
concept of ring. In particular the addition is not necessarily abelian and only the
left (resp. right) distributive law holds. A standard example is the collection of all
mappings from a group into itself w.r.t. addition and composition of functions,
which gives a right nearring. In a left nearring one can define “line” by means of
the equation y = a · x+ c. A nearring is planar if any two non-parallel lines has
exactly one intersection and if there exists at least three non-equivalent slopes
(note that lines y = a · x and y = b · x can be equal also if a �= b, Definition 2).
A well-known example for a planar nearring is a normed vector space V over R

with the multiplication x � y = ‖x‖y. Then two slopes a and b are equivalent if
and only if ‖a‖ = ‖b‖. Thus, (V,+, �) is a planar nearring which is not a ring.
Circular planar nearrings are special planar nearrings in which any two distinct
sets of the form N∗a + b, called circles, intersect in at most two points. For
example, (C,+, ◦), where a ◦ b = a

|a| · b if a �= 0 and 0 otherwise, is a planar
circular nearring. While incidence structures that arise considering lines and
circles have been widely studied, little is known about the concept of disk, i.e.,
the union of the circle and its interior part. Various definitions of disk have been
proposed in [6,7] and in [11] the author proves some properties of this kind of
disks, but no special combinatorial structure seems to arise from this approach.
Recently, in [12], a new and more natural definition was proposed from which a
new class of BIBDs can be constructed.

2 Preliminaries and Notations

2.1 Circular Planar Nearrings

Definition 1. A (left) nearring is an algebraic structure (N,+, ·) on a nonempty
set N with two inner operations, + and ·, such that:

1. (N,+) is a group;
2. (N, ·) is a semigroup;
3. the left distributive law holds, i.e.,

∀x, y, z ∈ N, x · (y + z) = (x · y) + (x · z).
Moreover, if (N \ {0}, ·) is a group, then (N,+, ·) is a (left) nearfield.

We remind now some definitions and simple properties of nearrings,
for details see [6].

Let (N,+, ·) be a nearring, then for any x, y ∈ N , x · (−y) = −(x · y) and
x · 0 = 0; moreover if for any x ∈ N we have x · 0 = 0 · x = 0, N is said to be
0-symmetric.

We say that a, b ∈ N are equivalent multipliers if and only if for all n ∈ N ,
a · n = b · n. It is easy to see that to be equivalent multipliers is an equivalence
relation and we denote it by ≡m. We have the following fundamental definition.
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Definition 2. A nearring (N,+, ·) is said to be planar if:

1. |N/ ≡m | ≥ 3;
2. ∀a, b, c ∈ N , with a �≡m b, the equation

a · x = b · x+ c

has a unique solution in N .

For planar nearrings we consider the set A = {n ∈ N | n ≡m 0 }, called
annihilator of N , and we write

N0 = N \ {0} and N∗ = N \A.

It is well known that planar nearrings are 0-symmetric; moreover planar near-
rings with identity are also planar nearfield. Vice-versa a finite nearfield with
at least three elements is planar and 0-symmetric and its additive group is the
additive group of a field.

Definition 3. Let (N,+) be a group. A subgroup of automorphisms Φ, {1} �=
Φ < AutN , is said to be regular if for any ϕ ∈ Φ \ {1}, ϕ is a fixed point free
(f.p.f.) automorphism, i.e., ϕ(x) = x⇔ x = 0. Moreover, if for any ϕ ∈ Φ\ {1},
−ϕ + 1 is surjective, the pair (N,Φ) is called a Ferrero pair. Then an orbit of
Φ is the set

Φ(a) = {ϕ(a) | ϕ ∈ Φ},

for some a ∈ N (Φ(0) = {0} is the trivial orbit).

The concept of Ferrero pair is central in this framework since every planar near-
ring can be constructed from such pair by the so called Ferrero Planar Nearring
Factory (for details, see [6],§4.1). Moreover we remember that, even if non-
isomorphic nearrings can be generated by the same pair, the knowledge of the
generating pair suffices in the study of the geometrical properties of the nearring.

Theorem 1 (Ferrero, Clay). Let (N,Φ) be a finite Ferrero pair. Then

1. ∀a ∈ N0, |Φ(a)| = |Φ|;
2. ∀a ∈ N , ∀b ∈ Φ(a), Φ(a) = Φ(b);
3. {Φ(a) | a ∈ N} is a partition of N ;
4. |Φ| divides |N | − 1.

Definition 4. A planar nearring is said to be field-generated if it is generated
from a Ferrero pair (N,Φ), where (N,+, ·) is a field and Φ is isomorphic to a
subgroup of (N0, ·).

It follows immediately that a field-generated planar nearring has a very simple
structure, in fact every non trivial orbit is isomorphic to a multiplicative sub-
group of a field.
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Now, on a planar nearring (N,+, ·) we consider the incidence structure (N,B∗)
where B∗ ⊂ P(N) is defined by

B∗ = {N∗ · a+ b | a, b ∈ N, a �= 0}.

As usual in this context, we call the elements of N points and those of B∗

blocks. It is immediate to observe that the structure (N,B∗) depends only on the
pair (N,Φ) in the sense that if (N,+, ∗) and (N,+, ◦) are two planar nearrings
constructed from the same Ferrero pair, then they yield identical (N,B∗); it
makes no difference to assume that the nearring is integral planar. This allows
the following definition.

Definition 5. Let (N,+, ·) be a finite planar nearring generated by the Ferrero
pair (N,Φ) and let (N,B∗) be the incidence structure with B∗ = {N∗ · a + b |
a, b ∈ N, a �= 0}. Then (N,+, ·) is said circular if every three distinct points of
N belong to at most one block of B∗ and if every two distinct points belong to at
least two distinct blocks. In this case, also the incidence structure (N,B∗) and
the pair (N,Φ) are called circular and the block N∗ · a + b = Φ(a) + b is called
circle with center b and radius a (see [6],§5.1).

2.2 PBIBDs and Association Scheme

Definition 6. Let (X,B) be an incidence structure with |X | = v and |B| = b.
The pair (X,B) is called tactical configuration with parameters v, b, k, r if
for any B ∈ B, |B| = k, and every x ∈ X belongs to exactly r distinct blocks
B1, ..., Br ∈ B. Moreover, if an integer λ exists so that every pair of points
belongs to exactly λ distinct blocks, then (X,B) is called balanced incomplete
block design (BIBD) with parameters v, b, k, r, λ.

Proposition 1 ([6],§5). Let (X,B) be a BIBD with parameters v, b, k, r, λ.
Then vr = bk and λ(v − 1) = r(k − 1).

If (N,+, ·) is a finite planar nearring, then (N,B∗) is a BIBD with parameters
v = |N |, k = |N∗/ ≡m |, b = v(v − 1)/k, r = v − 1, λ = k − 1. Moreover if the
BIBD is circular, then k ≤ (3 +

√
4v − 7)/2 and this limit is effective.

For more information on design theory we refer to [5].

Definition 7. An association scheme with m associate classes on a finite set X
is a family of m symmetric and antireflexive binary relations R1, . . . , Rm on X
such that:

1. any two distinct elements of X are ith associates for exactly one value of
i = 1, . . . ,m;

2. for all i = 1, . . . ,m and x ∈ X, there are exactly ni distinct elements y ∈ X
so that (x, y) ∈ Ri;

3. for all i, j, k = 1, . . . ,m, if (x, y) ∈ Rk, the number pk
ij of z ∈ X so that

(x, z) ∈ Ri and (y, z) ∈ Rj is a constant depending on i, j, k but not on the
particular choice of x and y.
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For further information about association schemes see [4].

Definition 8. A tactical configuration (X,B) with an association scheme on
X is called partially balanced incomplete block design (PBIBD) if there are
positive integers λi, i = 1, . . . ,m, such that, if x, y ∈ X are any two ith associate
elements, then x, y occur together in exactly λi blocks of B.

Thus a PBIBD has the tactical configuration parameters v, b, r and k, the
association scheme parameters ni and pk

ij , and the partial balance parameters
λi, in addition. We refer to [19] for more information on PBIBDs.

3 Disks

In [12] the authors introduced the following definition.

Definition 9. Let (N,Φ) be a circular Ferrero pair and Φ(a) + b ∈ B∗, then we
define D(a; b), the disk of center b and radius a, as

D(a; b) = {x ∈ Φ(r) + c | r �= 0, b ∈ Φ(r) + c, |(Φ(r) + c) ∩ (Φ(a) + b)| = 1}.

The idea is to construct a disk of center b and radius a joining together all the
circles tangent to the circle Φ(a) + b and containing its center.

In [12] the geometrical structure of the disks is studied and in particular is
presented, at least in the more interesting cases, a very fast way to construct
them and to check the membership of a point. Now we summarize some results
proved in [12].

Lemma 1. Let (N,Φ) be a Ferrero pair and a, b ∈ N with a �= 0, then

D(a; b) = D(a; 0) + b

Lemma 2. Let (N,Φ) be a field-generated Ferrero pair and let (N,+, ·) be the
generating field. If a ∈ N0, then

D(a; 0) = a ·D(1; 0)

By the two previous lemmas we immediately have the following corollary.

Corollary 1. With the same hypothesis of the previous lemma, we have

D(a; b) = a ·D(1; 0) + b = a ·D(1; a−1 · b)

Theorem 2. In the same hypothesis of the previous lemma, if c ∈ D(a; b), then
Φ(c) + b ⊆ D(a; b). More precisely, if |Φ| = 2n, then every disk is union of n+ 1
circles (one of which degenerates), that is there are c1, ..., cn−1 ∈ N0 \Φ(a), with
Φ(ci) �= Φ(cj) if i �= j, so that

D(a; b) = {Φ(0) ∪ Φ(c1) ∪ ... ∪ Φ(cn−1) ∪ Φ(a)}+ b.

It follows that every disk has exactly 2n2 + 1 points.
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In [12] the authors prove, in a special case, an important combinatorial property
of the incidence structure obtained considering the sets of all disks, namely

BD = {D(a; b) | a, b ∈ N, a �= 0}
Theorem 3. Let (N,Φ) be a finite circular field-generated Ferrero pair with
|N | = p, p prime, and |Φ| = 2n. Then (N,BD) is a BIBD.

Moreover, if D(1; 0)\{0} is not a group, then (N,BD) is a BIBD of parameters
v = p, b = p(p− 1)/2n, k = 2n2 + 1, r = (p− 1)(2n2 + 1)/2n, λ = n(2n2 + 1).

3.1 Construction of PBIBDs

Now, in a special case, we describe the steps of the construction of an association
scheme which makes Da = (N,Ba = {D(a; b) | b ∈ N}), for a ∈ N0, a PBIBD.

First step. Let now N be a circular field-generated integral nearring obtained
by the Ferrero pair (Zp, Φ), where Zp denote the finite field of order p prime
and |Φ| = 2n < p− 1. For convenience, in what follows each element of Zp

will be denoted via his smallest non negative representative, that is Zp =
{0, 1, . . . , p−1}. Moreover, we will denote byDa,b the diskD(a; b) = D(a; 0)+
b defined in Def. 9. From [12] we know that Da1,0 = Da2,0 if and only if a1

and a2 belong to the same Φ-orbit. Let E = {e1, e2, . . . , em} be a set of
representatives of the non trivial Φ-orbits, so there are m = (p − 1)/2n
different disks with center 0: those with radius ei ∈ E. From Theorem 2 we
learn that Dei,0 is an union of Φ-orbits and Dei,b1 = Dei,b2 implies b1 = b2.
So the development of Dei,0 in N , results in a tactical configuration whose
blocks are of the form Dei,0 + b = Dei,b, b ∈ N , for each i = 1, . . . ,m. From
Theorem 3 we know that the union of previous designs, for ei ∈ E, results
in a tactical configuration, too.

Second step. Consider the orbit of ei and denote it by Φi. Define x and y to
be ith associates if x− y belongs to Φi, that is the ith associates of y are the
elements of the circle of center y and radius ei. In this way an association
scheme is given on Zp and it fits in with all the previously constructed
block designs. Precisely, the tactical configuration Dei = (N,Bei) with this
association scheme results a PBIBD, called orbital disk-design. In this way
we obtain m = (p − 1)/2n orbital disk-designs, isomorphic to each other.
Moreover, the union disk-design D =

⋃
ei∈E Dei , where the blocks have the

form Dei,b, with ei ∈ E and b ∈ N , turns out to be even a BIB-design
(Theorem 3).

3.2 Notations and Parameters

To remember easily and quickly the main definitions and properties, we give in
Table 1, 2 and 3 some useful keys about notation and parameters of designs.

Remark 1. It is easy to see that for any h ∈ N ,

fa1,a2,h = fa1,a2,φ(h) ∀φ ∈ Φ, ∀a1, a2 ∈ N0 and fa,h = f1,ha−1 , ∀a ∈ N0



Codes and Combinatorial Structures from Circular Planar Nearrings 121

Table 1. Notation for nearrings and disk-designs

Φ automorphism group of (Zp, +)
1 < |Φ| = 2n < p − 1

vspace-2mm

N = (Zp, +, ∗) circular planar integral nearring

m number of the non trivial Φ-orbits m = (p − 1)/2n

E = {ej} representatives of the non trivial Φ-orbits

Φl = Φ(el) lth non trivial Φ-orbit with representatives el l = 1, . . . , m

Φ(a) + b circle of center b ∈ N and radius a ∈ N0

Da,b disk (block) of center b ∈ N and radius a ∈ N0

[Da1,b1 − Da2,b2 ] list of differences between the elements of Da1,b1 and those of Da2,b2

fa1,a2,h frequency of h in [Da1,0 − Da2,0] note: fa,a,h = fa,h

Da = (N,Ba) orbital disk-design: development of Da,0 Ba = {D(a; b) | b ∈ N}
D = (N,BD) (union) disk-design

BD =
⋃

a∈N0 Ba =
{Da,b | a ∈ N0, b ∈ N}

Table 2. Parameters for association schemes

x, y ∈ Ri ith associate elements if x ∈ Φi + y

m number of the associate classes m = (p − 1)/2n

ni number of the ith associates elements of an element ni = |Φ| = 2n

pk
ij

number of the ith associates of x and jth associates of y
when x and y are kth associates

Thus, to know the frequency of h in the list [Da1,0 − Da2,0] it is sufficient to
know the frequency of any element of its orbit Φ(h) in the same list. Moreover,
for any a ∈ N0, the frequency of h in [Da,0−Da,0] equals the frequency of ha−1

in [D1,0 −D1,0].

Proposition 2. Let Da1,b1 and Da2,b2 be two blocks of the design D. Set a =
a2a

−1
1 and h = (b2 − b1)a−1

1 . Then

|Da1,b1 ∩Da2,b2 | = f1,a,h.

Proof. Let y ∈ Da1,b1 ∩Da2,b2 . From Corollary 1 there are x, x ∈ D1,0 so that
y = a1x + b1 = a2x + b2. Setting a = a2a

−1
1 and h = (b2 − b1)a−1

1 , we obtain
x − ax = h, thus h ∈ [D1,0 − Da,0]. Suppose that y′ = a1x

′ + b1 = a2x
′ + b2

belongs to Da1,b1 ∩Da2,b2 , then x′− ax′ = h, also. If y′ �= y we have a1x �= a1x
′,

and this implies x �= x′, as well as a2x �= a2x
′ implies ax �= ax′. So, two

different elements in Da1,b1 ∩ Da2,b2 produce two different occurrences of h in
[D1,0 − Da,0]. Conversely, if h occurs in [D1,0 − Da,0], we have h = x′′ − ax′′

for a = a2a
−1
1 , h = (b2 − b1)a−1

1 and for some x′′, x′′ ∈ D1,0. Thus, there exists
y′′ = a1x

′′ +b1 = a2x
′′ +b2 belonging to Da1,b1 ∩Da2,b2 . Obviously, two different

occurrences of h in [D1,0−Da,0] imply two different elements in Da1,b1 ∩Da2,b2 .

Remark 2. To compute the pk
ij as well, we can observe that pk

ij equals the fre-
quency of ek, the representative of Φk, in the list [Φi − Φj ] of the differences
between the elements of Φi and those of Φj .
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4 Incidence Matrix of a Disk-Design

If B = {B1, . . . , Bb} is a block design on X = {x1, . . . , xv} of parameters
(v, b, r, k), the v × b matrix A = (ay,z) is called incidence matrix of the block
design when ay,z = 1 if xy ∈ Bz and ay,z = 0 if xy �∈ Bz.

Table 3. Parameters for tactical configurations and PBIBDs

tactical configuration partial balance
design v b k r λi

Des = (N,Bes) p p 2n2 + 1 k (λi)s = fes,ei = f
1,eie−1

s

D = (N,BD) p p(p − 1)/2n 2n2 + 1 k(p − 1)/2n λ = n(2n2 + 1)

Here we remember that a matrix of the form
⎛

⎜
⎜
⎜
⎝

c0 c1 . . . cn−1

cn−1 c0 . . . cn−2

...
...

...
c1 c2 . . . c0

⎞

⎟
⎟
⎟
⎠

is called circulant matrix and, for a given circulant matrix C, we have

det(C) =
n∏

j=1

f(εj) where f(x) =
n−1∑

z=0

czx
z (1)

is the defining polinomial of C and ε1, ε2, . . . , εn denote the distinct nth roots
of unity, (see [9,16]).

Let As = (ay,z) be the p× p incidence matrix of Des , where ay,z = 1 if, and
only if, y−1 ∈ Des,z−1 and ay,z = 0 otherwise, for y, z = 1, . . . , p. The incidence
matrix A of the union disk-design D =

⋃
es∈E Des , is a p×mp matrix obtained

by the juxtaposition of the Ass, that is A = (A1A2 . . . Am).

Theorem 4. Let Des be the orbital disk-design generated by the development
of the disk of center 0 and a fixed radius es ∈ E. Then, for s = 1, . . . ,m, the
following results hold:

1. As is a symmetric circulant matrix;

2. det(As) = k

p−1∏

j=1

⎛

⎝
∑

z∈D1,0

εjz

⎞

⎠;

3. Hs = As · AT
s is a symmetric circulant matrix and

det(Hs) =
p∏

j=1

(

k +
m∑

i=1

(λi)s

∑

z∈Φi

εjz

)

where ε is a primitive pth root of unity and (λ1)s, . . . , (λm)s are the partial
balance parameters of the orbital design Des .
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Proof. 1. As = (ay,z) is circulant, because y − 1 ∈ Des,z−1 if, and only if, y ∈
Des,z, for y, z = 1, . . . , p. This implies ay,z = ay+1,z+1, where the subscripts
are considered modulo p for all y, z = 1, . . . , p.

Moreover, As = (ay,z) is symmetric, because all the orbits are self paired
being |Φ| even. Thus, if ay,1 = 1, that means y−1 ∈ Des,0, it results in −(y−
1) ∈ Des,0. Hence 0 ∈ Des,y−1, that is a1,y = 1. The converse is analogous,
so ay,1 = a1,y for y = 1, . . . , p. Using this last statement in addition to
the circulant definition, when y > z we have ay,z = ay−(z−1),z−(z−1) =
ay−z+1,1 = a1,y−z+1 = a1+(z−1),y−z+1+(z−1) = az,y.

2. Setting a1,z = cz−1 and applying (1), for s = 1, . . . ,m we have

det(As) =
p∏

j=1

(
p−1∑

z=0

czε
z
j

)

=
p∏

j=1

(
p−1∑

z=0

czε
jz

)

(2)

where ε is a primitive pth root of unity and we set εj = εj . We know that
cz = a1,z+1 = 1 if, and only if, 0 ∈ Des,z and this happens if, and only
if, −z ∈ Des,0, for z = 0, . . . , p − 1. To be |Φ| even implies −z ∈ Des,0 if,
and only if, z itself belongs to Des,0, because the Φ-orbits are self paired. So
cz = 1 ⇐⇒ z ∈ Des,0.

Thus, applying (2), for s = 1, . . . ,m we have

det(As) =
p∏

j=1

⎛

⎝
∑

z∈Des,0

εjz

⎞

⎠ =
p∏

j=1

⎛

⎝
∑

z∈jDes,0

εz

⎞

⎠ .

Finally, for every s = 1, . . . ,m, we can see that (Des,0, 2Des,0, . . . , pDes,0)
becomes

(
es(D1,0), 2es(D1,0), . . . , pes(D1,0)

)
, being Des,0 = es(D1,0).

Since {es, 2es, . . . , pes} = Zp, rearranging the previous sequence we obtain
(
(D1,0), 2(D1,0), . . . , p(D1,0)

)
.

Thus, ∀s = 1, . . . ,m,

det(As) =
p∏

j=1

⎛

⎝
∑

z∈D1,0

εjz

⎞

⎠ = k

p−1∏

j=1

⎛

⎝
∑

z∈D1,0

εjz

⎞

⎠

being
∑

z∈D1,0
εpz = |D1,0| = k.

3. The matrix Hs = As ·AT
s = (hy,z) is obviously symmetric and circulant. The

element hy,z gives us the number of the blocks of Des containing both the
elements y−1 and z−1, hence hy,y = k, for y = 1, . . . , p. When y �= z, y−1
and z − 1 are i-associates if, and only if, their difference belongs to Φi. So,
z ∈ Φi implies h1,z+1 = (λi)s, for i = 1, . . . ,m. Applying again (1), where
cz = h1,z+1, we can write

det(Hs) =
p∏

j=1

(
p−1∑

z=0

czε
jz

)

=
p∏

j=1

(

k +
m∑

i=1

(λi)s

∑

z∈Φi

εjz

)

being c0 = k and cz = (λi)s when z ∈ Φi, for i = 1, . . . ,m.
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Remark 3. Let D =
⋃

es∈E Des be the union disk-design and A = (A1A2 . . . Am)
its p×mp incidence matrix. Since D is BIBD, we know that H = A · AT is the
p× p matrix

H =

⎛

⎜
⎜
⎜
⎝

r λ . . . λ
λ r . . . λ
...

...
...

λ λ . . . r

⎞

⎟
⎟
⎟
⎠

and det(H) = (r − λ)p−1[r + λ(p− 1)].

5 Row and Column Codes from a Disk-Design

A binary code of length n is a subset C of Zn
2 . The weight of a codeword is the

number of its non zero coordinate places. The Hamming distance between two
codewords is the number of coordinate places in which they differ. The smallest
of the distances between distinct codewords is called minimum distance of C and
denoted by d(C). A binary code of length n having m codewords and minimum
distance d is called a binary (n,m, d)-code. If C is a vector subspace of Zn

2 and
dim(C) = k, then it is called a binary linear (n, k)-code.

It is well known that there is a link between block designs and codes via the
design incidence matrix A: the set of all the columns of A, the set of all the
rows of A, as well as their linear hulls, can be regarded as binary codes and
A itself can be regarded as the parity check matrix of a linear code. For more
information on codes see [3,17].

In what follows we are interested in the set Cc of all the columns of A and the
set Cr of all the rows of A, the so called column code and row code, respectively.
The parameters characterizing Cc and Cr depend on the design parameters, as
we summarize in the following proposition.

Proposition 3. Let (N,B) be a PBIBD with parameters (v, b, r, k, λ1, . . . , λm),
A its incidence matrix, Cr and Cc the related row and column codes. Set λ =
max{λ1, . . . , λm} and μ = max{|Bi ∩Bj |, Bi, Bj ∈ B, i �= j}.Then

1. the cardinality of Cr is v, the codeword length is b, each codeword has the
same weight r and the minimum distance is d(Cr) = 2(r − λ);

2. the cardinality of Cc is b, the codewords length is v, each codeword has the
same weight k and the minimum distance is d(Cc) = 2(k − μ).

Now, we come back to the PBIBDs constructed before, our orbital disk-designs,
and we consider their incidence matrices. Working on Zp with |Φ| = 2n, each
orbital disk-design has a p× p matrix Ai, for i = 1, . . . ,m, and A = (A1 . . . Am)
is the incidence matrix of the union disk-design. Applying previous proposition
and using the keys of Paragraph 3.2, we are able to compute all the disk-design
parameters as well as those of the row (and column) codes related to their
incidence matrices. Results are summarized in Table 4.
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Table 4. Parameters for row and column codes where k = 2n2 + 1, m = (p − 1)/2n,
λes = max{f

1,eie−1
s

| ei ∈ E}, λ = n(2n2 + 1), μ = max{f1,ei,ej | (ei, ej) ∈ E × E}.
orbCr and orbCc are the row and column codes obtained from the orbital disk-design,
respectively. diskCr and diskCc are the row and column codes obtained from the union
disk-design, respectively.

design code words length d weight

Des orbCr/orbCc p p 2(k − λes) k

D diskCr p mp 2(mk − λ) mk

D diskCc mp p 2(k − μ) k

Table 5. Parameters of some row and column codes generated by the circular Ferrero
pair (N, Φ). For codes orbCr, orbCc, diskCc and diskCr the parameters (n, m, d); for
linear codes linCr the parameters (n, k) and the minimum distance d are reported.
All designs were constructed via the SONATA [1] GAP package and the parameters
checked via the GUAVA [8] GAP package.

(N, Φ) |Φ| orbCr/orbCc diskCc diskCr linCr

(Z13, 〈5〉) 4 (13, 13, 4) (13, 39, 4) (39, 13, 18) (39, 13), d=9

(Z17, 〈4〉) 4 (17, 17, 6) (17, 68, 6) (68, 17, 36) (68, 17), d=20

(Z29, 〈12〉) 4 (29, 29, 6) (29, 203, 6) (203, 29, 90) (203, 29), d=63

(Z31, 〈6〉) 6 (31, 31, 10) (31, 155, 10) (155, 31, 76) (155, 31), d=35

(Z37, 〈6〉) 4 (37, 37, 6) (37, 333, 6) (333, 37, 126) (333, 37), d =81

(Z37, 〈11〉) 6 (37, 37, 10) (37, 222, 10) (222, 37, 114) (222, 37), d=66

(F25, 〈4x + 3〉) 6 (25, 25, 8) (25, 100, 4) (100, 25, 32) (100, 25), d=20

Although no general criterion exists to decide the efficiency of a code, we can
observe that these codes turn out to have some useful properties. For example all
of them have a small redundancy R, which is the length of the codewords− log |C|
(see [17], observe that for linear codes redundancy is sometimes defined as the
difference between dimension and word length) and the row code from D has a
high minimum distance. An incidence matrix of a design generates a row (resp.
column) linear code whose codewords are the linear combinations of its rows
(resp. columns). As the incidence matrix of an orbital disk-design has always
maximum rank, it generates a trivial linear code (all possible words are code-
words). The same holds for the column linear code generated by a matrix of
a union disk-design. On the other hand, the row linear code generated by D
(called linCr) proves to be quite interesting. All linCrs, we obtain, have a high
minimum distance, e.g., the linCr obtained from the Ferrero pair (Z29, 〈12〉)
is a linear 31-error-correcting code. Moreover, we observe that the generated
linCrs of Table 5, result to be self-complementary, i.e., for any codeword c, also
1 − c, where 1 is the all-one word, is a codeword. Finally, in the last entry of
Table 5 we consider codes obtained from the union disk-design generated from
(F25, 〈4x+ 3〉), with F25 � Z5[x]/〈x2 + 2〉 but also that ones obtained from the
orbital disk-design. So we observe that the construction of the PBIBDs shown
above could be carried out also for general field-generated Ferrero pairs.
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6 Future Work

We are interested in studying further properties of the codes we obtained, in
particular to establish when the linCr code results self-complementary. We are
also implementing some GAP functions in order to simplify the construction of
the disk-designs and the calculation of the parameters of the associated code.
Efficient decoding strategies can be envisaged for such codes, as in the non-linear
cases codewords have the property they are cyclic permutation of a word of type
1wwr, where wr is the reversed of the word w.
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Abstract. We obtain a necessary and sufficient condition for the linear
independence of solutions of differential equations for hyperlogarithms.
The key fact is that the multiplier (i.e. the factor M in the differential
equation dS = MS) has only singularities of first order (Fuchsian-type
equations) and this implies that they freely span a space which contains
no primitive. We give direct applications where we extend the property
of linear independence to the largest known ring of coefficients.

1 Introduction

In his 1928 study of the solutions of linear differential equations following
Poincaré, Lappo-Danilevski introduced the so-called hyperlogarithmic functions
of order n, functions of iterated integrals of the following form with logarithmic
poles [1] :

L(a0, . . . , an|z, z0) =
∫ z

z0

∫ sn

z0

. . .

∫ s1

z0

ds0
s0 − a0

. . .
dsn

sn − an
, (1)

where z0 is a fixed point. It suffices that z0 �= a0 for this iterated integral to
converge. The classical polylogarithm Lin is a particular case of these integrals
[2] :

Lin(z) =
∫ z

0

∫ sn

0

. . .

∫ s2

0

ds1
1− s1

ds2
s2

. . .
dsn

sn
= −L(1, 0, . . . , 0

︸ ︷︷ ︸
n−1 times

|z, 0). (2)

These iterated integrals also appear in quantum electrodynamics (see [3,4] for
example). Chen [5] studied them systematically and provided a noncommuta-
tive algebraic context in which to treat them. Fliess [6,7] encoded these iter-
ated integrals by words over a finite alphabet and extended them to a symbolic
calculus1 for nonlinear differential equations of the following form, in the context
of noncommutative formal power series:
1 A kind of Feynman like operator calculus [8].
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y(z) = f(q(z)),

q̇(z) =
m∑

i=0

Ai(q)
z − ai

,

q(z0) = q0,

(3)

where the state q = (q1, . . . , qn) belongs to a complex analytic manifold of dimen-
sion N , q0 denotes the initial state, the observable f belongs to Ccv[[q1, . . . , qN ]],
and {Ai}i=0,n is the polysystem defined as follows

Ai(q) =
n∑

j=1

Aj
i (q)

∂

∂qj
, (4)

with, for any j = 1, . . . , n, Aj
i (q) ∈ Ccv[[q1, . . . , qN ]].

By introducing the encoding alphabet X = {x0, . . . , xm}, the method of Fliess
consists in exhibiting two formal power series over the monoid X∗ :

F :=
∑

w∈X∗
A(w) ◦ f|q0 w and C :=

∑

w∈X∗
αz

z0
(w) w (5)

in order to compute the output y. These series are subjected to convergence
conditions (precisely speaking, the convergence of a duality pairing), as follows:

y(z) = 〈F ||C〉 :=
∑

w∈X∗
A(w) ◦ f|q0 α

z
z0

(w), (6)

where

– A is a morphism of algebras from C〈〈X〉〉 to the algebra generated by the
polysystem {Ai}i=0,n :

A(1X∗) = identity, (7)
∀w = vxi, xi ∈ X, v ∈ X∗, A(w) = A(v)Ai (8)

– αz
z0

is a shuffle algebra morphism from (C〈〈X〉〉, ) to some differential ring
C :

αz
z0

(1X∗) = 1, (9)

∀w = vxi, xi ∈ X, v ∈ X∗, αz
z0

(w) =
∫ z

z0

αs
z0

(v)
s− ai

. (10)

Formula (6) also states that the iterated integrals over the rational functions

ui(z) =
1

z − ai
, i = 0, .., n, (11)

span the vector space A.
As for the linear differential equations, the essential difficulty is to construct

the fundamental system of solutions, or the Picard-Vessiot extension, to describe
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the space of solutions of the differential system (3) algorithmically [9]. For that,
one needs to prove the linear independence of the iterated integrals in order to
obtain the universal Picard-Vessiot extension. The C-linear independence was al-
ready shown by Wechsung [10]. His method uses a recurrence based on the total
degree. However this method cannot be used with variable coefficients. Another
proof, based on monodromy, was given in [11] but also leads to strong restrictions
on the coefficients. In this note we describe a general theorem in differential com-
putational algebra and show that, at the cost of using variable domains (which
is the realm of germ spaces), and replacing the recurrence on total degree by a
recursion on the words (with graded lexicographic ordering), one can encompass
the previous results mentioned above and obtain much larger rings of coefficients
and configuration alphabets (even infinite of continuum cardinality).

2 Non Commutative Differential Equations

We recall the Dirac-Schützenberger notation, as in [12,13,14]. Let X be an al-
phabet and R be a commutative ring with unit. The algebra of noncommutative
polynomials is the algebra R[X∗] of the free monoid X∗. As an R-module, R(X∗)

is the set of finitely supported R-valued function on X∗ and, as such, it is in
natural duality with the algebra of all functions on X∗ (the large algebra of X∗

[15]), RX∗
= R〈〈X〉〉, the duality being given, for f ∈ R〈〈X〉〉 and g ∈ R[X∗],

by
〈f |g〉 =

∑

w∈X∗
f(w)g(w) . (12)

The rôle of the ring is played here by a commutative differential k-algebra
(A, d); that is, a k-algebra A (associative and commutative with unit) endowed
with a distinguished derivation d ∈ Der(A) (the ground field k is supposed
commutative and of characteristic zero). We assume that the ring of constants
ker(d) is precisely k.

An alphabet X being given, one can at once extend the derivation d to a
derivation of the algebra A〈〈X〉〉 by

d(S) =
∑

w∈X∗
d(〈S|w〉)w . (13)

We now act with this derivation d on the power series C given in (5). We then
get :

d(C) =
( m∑

i=1

uixi

)

C . (14)

We are now in a position to state the main theorem which resolves many
important questions, some of which we shall see in the applications.

Theorem 1. Let (A, d) be a k-commutative associative differential algebra with
unit (ch(k) = 0) and C be a differential subfield of A (i.e. d(C) ⊂ C). We suppose
that S ∈ A〈〈X〉〉 is a solution of the differential equation

d(S) = MS ; 〈S|1〉 = 1 (15)
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where the multiplier M is a homogeneous series (a polynomial in the case of
finite X) of degree 1, i.e.

M =
∑

x∈X

uxx ∈ C〈〈X〉〉 . (16)

The following conditions are equivalent :

i) The family (〈S|w〉)w∈X∗ of coefficients of S is free over C.
ii) The family of coefficients (〈S|y〉)y∈X∪{1X∗} is free over C.
iii) The family (ux)x∈X is such that, for f ∈ C and αx ∈ k

d(f) =
∑

x∈X

αxux =⇒ (∀x ∈ X)(αx = 0) . (17)

iv) The family (ux)x∈X is free over k and

d(C) ∩ spank

(
(ux)x∈X

)
= {0} . (18)

Proof — (i)=⇒(ii) Obvious.

(ii)=⇒(iii)
Suppose that the family (〈S|y〉)y∈X∪{1X∗} (coefficients taken at letters and the
empty word) of coefficients of S is free over C and let us consider the relation as
in eq. (17)

d(f) =
∑

x∈X

αxux . (19)

We form the polynomial P = −f1X∗ +
∑

x∈X αxx. One has d(P ) = −d(f)1X∗

and

d(〈S|P 〉)=〈d(S)|P 〉+〈S|d(P )〉=〈MS|P 〉−d(f)〈S|1X∗〉=(
∑

x∈X

αxux)−d(f)=0

(20)
whence 〈S|P 〉 must be a constant, say λ ∈ k. For Q = P − λ.1X∗ , we have

supp(Q) ⊂ X ∪ {1X∗} and 〈S|Q〉 = 〈S|P 〉 − λ〈S|1X∗〉 = 〈S|P 〉 − λ = 0 .

This implies that Q = 0 and, as Q = −(f + λ)1X∗ +
∑

x∈X αxx, one has, in
particular, all the αx = 0.

(iii)⇐⇒(iv)
Obvious, (iv) being a geometric reformulation of (iii).
(iii)⇐⇒(i)
Let K be the kernel of P �→ 〈S|P 〉 (a linear form C〈X〉 → C) i.e.

K = {P ∈ C〈X〉|〈S|P 〉 = 0} . (21)

If K = {0}, we are done. Otherwise, let us adopt the following strategy.
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First, we order X by some well-ordering < ([16] III.2.1) and X∗ by the graded
lexicographic ordering ≺ defined by

u ≺ v ⇐⇒ |u| < |v| or (u = pxs1 , v = pys2 and x < y). (22)

It is easy to check that ≺ is also a well-ordering relation. For each nonzero
polynomial P , we denote by lead(P ) its leading monomial; i.e. the greatest
element of its support supp(P ) (for ≺).

Now, as R = K−{0} is not empty, let w0 be the minimal element of lead(R)
and choose a P ∈ R such that lead(P ) = w0. We write

P = fw0 +
∑

u≺w0

〈P |u〉u ; f ∈ C − {0} . (23)

The polynomial Q = 1
f P is also in R with the same leading monomial, but the

leading coefficient is now 1; and so Q is given by

Q = w0 +
∑

u≺w0

〈Q|u〉u . (24)

Differentiating 〈S|Q〉 = 0, one gets

0 = 〈d(S)|Q〉+ 〈S|d(Q)〉 = 〈MS|Q〉+ 〈S|d(Q)〉 =
〈S|M †Q〉+ 〈S|d(Q)〉 = 〈S|M †Q+ d(Q)〉 (25)

with
M †Q+ d(Q) =

∑

x∈X

ux(x†Q) +
∑

u≺w0

d(〈Q|u〉)u ∈ C〈X〉 . (26)

It is impossible that M †Q+d(Q) ∈ R because it would be of leading monomial
strictly less than w0, hence M †Q+d(Q) = 0. This is equivalent to the recursion

d(〈Q|u〉) = −
∑

x∈X

ux〈Q|xu〉 ; for x ∈ X , u ∈ X∗. (27)

From this last relation, we deduce that 〈Q|w〉 ∈ k for every w of length deg(Q)
and, because 〈S|1〉 = 1, one must have deg(Q) > 0. Then, we write w0 = x0v
and compute the coefficient at v

d(〈Q|v〉) = −
∑

x∈X

ux〈Q|xv〉 =
∑

x∈X

αxux (28)

with coefficients αx = −〈Q|xv〉 ∈ k as |xv| = deg(Q) for all x ∈ X . Condition
(17) implies that all coefficients 〈Q|xu〉 are zero; in particular, as 〈Q|x0u〉 = 1,
we get a contradiction. This proves that K = {0}. �
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3 Applications

Let V be a connected and simply connected analytic variety (for example, the
doubly cut plane C− (]−∞, 0[∪]1,+∞[), the Riemann sphere or the universal
covering of C−{0, 1}), and let H = Cω(V,C) be the space of analytic functions
on V .

It is possible to enlarge the range of scalars to coefficients that are analytic
functions with variable domains f : dom(f)→ C.

Definition 1. We define a differential field of germs as the data of a filter basis
B [18] of open connected subsets of V , and a map C defined on B such that for
every U ∈ B, C[U ] is a subring of Cω(U,C) and

1. C is compatible with restrictions i.e. if U, V ∈ B and V ⊂ U , one has

resV U (C[U ]) ⊂ C[V ]

2. if f ∈ C[U ] \ {0} then there exists V ∈ B s.t. V ⊂ U −Of and 1
f (defined on

V ) is in C[V ] .

There are important cases where the conditions (2) are satisfied as shown by the
following theorem.

Theorem 2. Let V be a simply connected non-void open subset of C −
{a1, · · ·an} ({a1, · · ·an} are distinct points), M =

∑n
i=1

λixi

z−ai
be a multiplier

on X = {x1, · · ·xn} with all λi �= 0 and S be any regular solution of

d

dz
S = MS . (29)

Then, let C be a differential field of functions defined on V which does not contain
linear combinations of logarithms on any domain but which contains z and the
constants (as, for example the rational functions).

If U ∈ B (i.e. U is a domain of C) and P ∈ C[U ]〈X〉, one has

〈S|P 〉 = 0 =⇒ P = 0 (30)

Proof — Let U ∈ B. For every non-zero Q ∈ C[U ]〈X〉, we denote by lead(Q)
the greatest word in the support of Q for the graded lexicographic ordering ≺.
We endow X with an arbitrary linear ordering, and call Q monic if the leading
coefficient 〈Q|lead(Q)〉 is 1. A monic polynomial is then given by

Q = w +
∑

u≺w

〈Q|u〉u . (31)

Now suppose that it is possible to find U and P ∈ C[U ]〈X〉 (not necessarily
monic) such that 〈S|P 〉 = 0; we choose P with lead(P ) minimal for ≺.
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Then
P = f(z)w +

∑

u≺w

〈P |u〉u (32)

with f �≡ 0. Thus U1 = U \ Of ∈ B and Q = 1
f(z)P ∈ C[U1]〈X〉 is monic and

satisfies
〈S|Q〉 = 0 . (33)

Differentiating eq. (33), we get

0 = 〈S′|Q〉+ 〈S|Q′〉 = 〈MS|Q〉+ 〈S|Q′〉 = 〈S|Q′ +M †Q〉 . (34)

Remark that one has
Q′ +M †Q ∈ C[U1]〈X〉 (35)

If Q′ + M †Q �= 0, one has lead(Q′ + M †Q) ≺ lead(Q) and this is not possible
because of the minimality hypothesis of lead(Q) = lead(P ). Hence, one must
have R = Q′ +M †Q = 0. With |w| = n, we now write

Q = Qn +
∑

|u|<n

〈Q|u〉u (36)

where Qn =
∑

|u|=n〈Q|u〉u is the dominant homogeneous component of Q. For
every |u| = n we have

(〈Q|u〉)′ = −〈M †Q|u〉 = −〈Q|Mu〉 = 0 (37)

thus all the coefficients of Qn are constant.
If n = 0, Q �= 0 is constant which is impossible by eq. (33) and because S is

regular. If n > 0, for any word |v| = n− 1, we have

(〈Q|v〉)′ =−〈M †Q|v〉 = −〈Q|Mv〉=−
n∑

i=0

λi

z − ai
〈Q|xiv〉=−

n∑

i=0

λi

z − ai
〈Qn|xiv〉

(38)
because all xiv are of length n.
Then

〈Q|v〉 = −
n∑

i=0

〈Qn|xiv〉
∫ z

α

λi

s− ai
ds+ const (39)

But all the functions
∫ z

α
λi

s−ai
ds are linearly independent over C and not all

the scalars 〈Qn|xiv〉 are zero (write w = xkv and choose v accordingly). This
contradicts the fact that Q ∈ C[U1]〈X〉 as C contains no linear combination of
logarithms. �

Corollary 1. Let V be as above and R be the ring of functions which can
be analytically extended to some V ∪ Ua1 ∪ Ua2 ∪ · · ·Uan where Uai are open
neighborhoods of ai, i = 1 · · ·n and have non-essential singularities at these
points. Then, the family of hyperlogarithms (〈S|w〉)w∈X∗ is linearly independent
over R.
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Remark 1. i) If a series S =
∑

w∈X∗〈S|w〉w is a regular solution of (29) and
satisfies the equivalent conditions of the theorem (1), then so too does
every SeC (with C ∈ LieC〈〈X〉〉) .

ii) Series such as that of polylogarithms and all the exponential solutions of
equation

d

dz
(S) = (

x0

z
+

x1

1− z
)S (40)

satisfy the conditions of the theorem (1) as shown by theorem (2).

iii) Call F(S) the vector space generated by the coefficients of the series S.
One may ask what happens when the conditions for independence are not
satisfied.

In fact, the set of Lie series C ∈ LieC〈〈X〉〉 such that there exists a
φ ∈ End(F(S)) (thus a derivation) such that SC = φ(S), is a closed Lie
subalgebra of LieC〈〈X〉〉 which we will denote by LieS. For example
– for X = {x0, x1} and S = ezx0 one has x0 ∈ LieS ; x1 /∈ LieS

– for X = {x0, x1} and S = ez(x0+x1), one has x0, x1 /∈ LieS but (x0 +
x1) ∈ LieS.

iv) Theorem (2) holds mutatis mutandis when the multiplier is infinite i.e.

M =
∑

i∈I

λixi

z − ai

even if I is continuum infinite (say I = R, singularities being all the reals).
v) Theorem (2) no longer holds with singularities of higher order (i.e. not

Fuchsian). For example, with

M =
x0

z2
+

x1

(1− z)2
. (41)

Firstly, the differential field C generated by

u0 =
1
z2
, u1 =

1
(1− z)2

(42)

contains
d

dz
(

1
2u0

) = z (43)

and hence C = C(z), the field of rational functions over C. Condition (ii) of
theorem (1) is not satisfied (as z2u0 − (1 − z)2u1 = 0). Moreover, one has
Z-dependence relations such as

〈S|x1x0〉+ 〈S|x0x1〉+ 〈S|x1〉 − 〈S|x0〉 = 0 . (44)
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4 Through the Looking Glass: Passing from Right to Left

We are still in the context of analytic functions as above. A series S ∈ H〈〈X〉〉
is said to be group-like if

Δ(S) = S ⊗ S (45)

where Δ is the dual of the shuffle product [14] defined on series by Δ(S) =∑
w∈X∗〈S|w〉Δ(w) and on the words by the recursion (x ∈ X,u ∈ X∗)

Δ(1X∗) = 1X∗ ⊗ 1X∗ ; Δ(xu) = (x⊗ 1X∗ + 1X∗ ⊗ x)Δ(u) (46)

Let S ∈ H〈〈X〉〉. We call F(S) the C-vector space generated by the coefficients
of S. One has

F(S) = {〈S|P 〉}P∈C〈X〉 . (47)

We recall that, for a ∈ X and w ∈ X∗, the partial degree |w|a is the number
of occurrences of a in w, it is defined by the recursion

|1X∗ |a = 0 ; |bu|a = δb,a + |u|a . (48)

Of course the lenght of the word is the sum of the partial degrees i.e. |w| =∑
x∈X |w|x. The function a �→ |w|a belongs to N(X) (finitely supported functions

from X to N). For α ∈ N(X), we note C≤α〈X〉, the set of polynomials Q ∈ C〈X〉
such that supp(Q) ⊂ X≤α i.e.

〈Q|w〉 �= 0 =⇒ (∀x ∈ X)(|w|x ≤ α(x)) (49)

In the same way, we consider the filtration by total degree (length)

C≤n〈X〉 =
∑

|α|≤n

C≤α〈X〉 . (50)

We use the following increasing filtrations

F≤α(S) = {〈S|P 〉}P∈C≤α〈X〉 . (51)

or
F≤n(S) = {〈S|P 〉}P∈C≤n〈X〉 . (52)

Proposition 1. We have the following properties :

i) If T ∈ C〈〈X〉〉 then F(ST ) ⊂ F(S) and one has equality if T is invertible.

ii) If S is group-like, then F(S) is a unital sub-algebra of H, which is filtered
w.r.t. (51) and (52) i.e.

F≤α(S)F≤β(S) ⊂ F≤α+β(S) (53)
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Proof — (i) The space F(ST ) is spanned by the

〈ST |w〉 =
∑

uv=w

〈S|u〉〈T |v〉 ∈ F(S)

and if T is invertible one has F(S) = F(STT−1) ⊂ F(ST ) which proves the
equality.
ii) If S is group-like, one has

〈S|u〉〈S|v〉 = 〈S ⊗ S|u⊗ v〉 = 〈Δ(S)|u ⊗ v〉 = 〈S|u v〉 (54)

In the case when all the functions 〈S|w〉 are C-linearly independent, one has
a correspondence between the differential Galois group (acting on the right)
of a differential equation of type (40) (acting on the right) and the group of
automorphisms of F(S) compatible with the preceding filtration (they turn out
to be unipotent).

Proposition 2. Let S be a group-like series. The following conditions are
equivalent:

i) For every x ∈ X, kerC(S) ⊂ kerC(Sx).

ii) For every x ∈ X, there is a derivation δx ∈ Der(F(S)) such that

δx(S) = Sx (55)

iii) For every x ∈ X, there is a one-parameter group of automorphisms φt
x ∈

Aut(F(S)); t ∈ R such that

φt
x(S) = Setx (56)

iv) For every C ∈ LieC〈〈X〉〉, there is δ ∈ Der(F(S)) such that

δ(S) = SC (57)

v) For every C ∈ LieC〈〈X〉〉, there is φ ∈ Aut(F(S)) such that

φ(S) = SeC (58)

vi) The functions (〈S|w〉)w∈X∗ are C-linearly independent.

Proof — i) =⇒ ii) From the inclusion, we deduce that, for all x ∈ X there exists
a C-linear mapping φ ∈ End(F(S)) such that for all w ∈M, φ(〈S|w〉) = 〈Sx|w〉.
It must be a derivation of F(S) as

φ(〈S|u〉〈S|v〉) = φ(〈S|u v〉) = 〈Sx|u v〉 = 〈S|(u v)x−1〉 =
〈S|(ux−1 v) + (u vx−1)〉 = 〈S|(ux−1 v)〉〈S|(u vx−1)〉 =
〈Sx|u〉〈S|v〉 + 〈S|u〉〈Sx|v〉 = φ(〈S|u〉)〈S|v〉 + 〈S|u〉φ(〈S|v〉) (59)

from the fact that (〈S|w〉)w∈X∗ spans F(S).
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ii) =⇒ iv) As (〈S|w〉)w∈X∗ spans F(S), the derivation φ is uniquely de-
fined. We denote it by δx, and notice that, in so doing, we have constructed
a mapping Φ : X → Der(F(S)), which is a Lie algebra. Therefore, there is a
unique extension of this mapping as a morphism LieC〈X〉 → Der(F(S)). This
correspondence, which we denote by P → δ(P ), is (uniquely) recursively defined
by

δ(x) = δx ; δ([P,Q]) = [δ(P ), δ(Q)] . (60)

For C =
∑

n≥0 Cn ∈ LieC〈〈X〉〉 with Cn ∈ LieC〈X〉n, we remark that the
sequence 〈S

∑
0≤n≤N Cn|w〉 is stable (for large N). Set δ≤N := δ(

∑
0≤n≤N Cn).

We see that δ≤N is stable (for large N) on every Fα; we call its limit δ(C). It is
clear that this limit is a derivation and that it corresponds to C.

iv) =⇒ v) For every C =
∑

n≥0 Cn ∈ LieC〈〈X〉〉, the exponential eC de-
fines a mapping φ ∈ End(F(S)) as indeed eδ≤N is stationnary. It is easily
checked that this mapping is an automorphism of algebra of F(S).

v) =⇒ iii) For Ci ∈ LieC〈〈X〉〉; i = 1, 2 which commute we have

SeC1eC2 = φC1(S)eC2 = φC1(Se
C2) = φC1φC2(S). (61)

This proves the existence, for a C ∈ LieC〈〈X〉〉, of a one-parameter (rational)
group φt

C in Aut(F(S)) such that SetC = φt
C(S). This one-parameter (rational)

group can be extended to R as continuity is easily checked by taking the scalar
products 〈φt

C(S)|w〉 = 〈SetC |w〉 and it suffices to specialize the result to C = x.

iii) =⇒ ii) By stationary limits one has

〈Sx|w〉 = lim
t→0

1
t
(〈Setx|w〉 − 〈S|w〉) = lim

t→0

1
t
(〈φt

x(S)|w〉 − 〈S|w〉) (62)

v) =⇒ i) Let x ∈ X, t ∈ R, we take C = tx and φt ∈ Aut(F(S)) s.t. φt(S) =
Setx. It there is P ∈ C〈X〉 such that 〈S|P 〉 = 0 one has

0 = 〈S|P 〉 = φt(〈S|P 〉) = 〈φt(S)|P 〉 = 〈Setx|P 〉 =
deg(P )∑

n=0

tn

n!
〈Sxn|P 〉 (63)

and then, for all z ∈ V , the polynomial

deg(P )∑

n=0

tn

n!
〈S(z)xn|P 〉 (64)

is identically zero over R hence so are all of its coefficients in particular
〈S(z)x|P 〉 for all z ∈ V . This proves the claim.
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i) =⇒ vi) Let P ∈ kerC(S) if P �= 0 take it of minimal degree with this property.
For all x ∈ X , one has P ∈ kerC(Sx) which means 〈Sx|P 〉 = 0 and then Px† = 0
as deg(Px†) = deg(P )− 1. The reconstruction lemma implies that

P = 〈P |1〉+
∑

x∈X

(Px†)x = 〈P |1〉 (65)

Then, one has 0 = 〈S|P 〉 = 〈S|1〉〈P |1〉 = 〈P |1〉 which shows that kerC(S) = {0}.
This is equivalent to the statement (vi).

vi) =⇒ i) Is obvious as kerC(S) = {0}. �

Remark 2. The derivations δx cannot in general be expressed as restrictions of
derivations of H. For example, with equation (40), one has δx0(

log(z)n+1

(n+1)! ) =
log(z)n

n! but δx0(〈S|ux1〉) = 0.

5 Conclusion

In this paper, we showed that by using fields of germs, some difficult results
can be considerably simplified and extended. For instance, polylogarithms
were known to be independant over either C[z, 1/z, 1/(1 − z)] or, presumably,
over ”functions which do not involve monodromy”; these two results are now
encompassed by Theorem (1). We believe that this procedure is not only of
theoretical importance, but can be taken into account at the computational
level because every formula (especially analytic) carries with it its domain
of validity. As a matter of fact, having at hand the linear independence of
coordinate functions over large rings allows one to express uniquely solutions of
systems like (3) in the basis of hyperlogarithms.

A valuable prospect would be to determine the asymptotic expansion at
infinity of the Taylor coefficients of the y(z) as given in (6) for the general case.
This has been done already for the case of singularities at {0, 1} and for different
purposes (see arXiv:1011.0523v2 and http://fr.arxiv.org/abs/0910.1932).
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Abstract. We give an algebraic quantifier elimination algorithm for the
first-order theory over any given finite field using Gröbner basis meth-
ods. The algorithm relies on the strong Nullstellensatz and properties of
elimination ideals over finite fields. We analyze the theoretical complex-
ity of the algorithm and show its application in the formal analysis of a
biological controller model.

1 Introduction

We consider the problem of quantifier elimination of first-order logic formulas in
the theory Tq of arithmetic in any given finite field Fq. Namely, given a quantified
formula ϕ(x; y) in the language, where x is a vector of quantified variables and y
a vector of free variables, we describe a procedure that outputs a quantifier-free
formula ψ(y), such that ϕ and ψ are equivalent in Tq.

Clearly, Tq admits quantifier elimination. A naive algorithm is to enumerate
the exponentially many assignments to the free variables y, and for each as-
signment a ∈ F |y|, evaluate the truth value of the closed formula ϕ(x; a) (with
a decision procedure). Then the quantifier-free formula equivalent to ϕ(x; y) is∨

a∈A(y = a), where A = {a ∈ F |y| : ϕ(x; a) is true.}. This naive algorithm
always requires exponential time and space, and cannot be used in practice.
Note that a quantifier elimination procedure is more general and complex than
a decision procedure: Quantifier elimination yields an equivalent quantifier-free
formula while a decision procedure outputs a yes/no answer. For instance, fully
quantified formulas over finite fields can be “bit-blasted” and encoded as Quanti-
fied Boolean Formulas (QBF), whose truth value can, in principle, be determined
by QBF decision procedures. However, for formulas with free variables, the use
of decision procedures can only serve as an intermediate step in the naive al-
gorithm mentioned above, and does not avoid the exponential enumeration of
values for the free variables. We believe there has been no investigation into
quantifier elimination procedures that can be practically used for this theory.
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Such procedures are needed, for instance, in the formal verification of cipher
programs involving finite field arithmetic [16,8] and polynomial dynamical sys-
tems over finite fields that arise in systems biology [11,12,4]. Take the S2VD
virus competition model [11] as an example, which we study in detail in Section
6: The dynamics of the system is given by a set of polynomial equations over the
field F4. We can encode image computation and invariant analysis problems as
quantified formulas, which are solvable using quantifier elimination. As is men-
tioned in [11], there exists no verification method suitable for such systems over
general finite fields so far.

In this paper we give an algebraic quantifier elimination algorithm for Tq.
The algorithm relies on strong Nullstellensatz and Gröbner basis methods. We
analyze its theoretical complexity, and show its practical application.

In Section 3, we exploit the strong Nullstellensatz over finite fields and prop-
erties of elimination ideals, to show that Gröbner basis computation gives a way
of eliminating quantifiers in formulas of the form ∃x(

∧
i αi), where the αis are

atomic formulas and ∃x is a quantifier block. We then show, in Section 4, that the
DNF-expansion of formulas can be avoided by using standard ideal operations to
“flatten” the formulas. Any quantifier-free formula can be transformed into con-
junctions of atomic formulas at the cost of introducing existentially quantified
variables. This transformation is linear in the size of the formula, and can be seen
as a generalization of the Tseitin transformation. Combining the techniques, we
obtain a complete quantifier elimination algorithm.

In Section 5, we analyze the complexity of our algorithm, which depends
on the complexity of Gröbner basis computation over finite fields. For ideals in
Fq[x] that contain xq

i−xi for each xi, Buchberger’s Algorithm computes Gröbner
bases within exponential time and space [13]. Using this result, the worst-case
time/space complexity of our algorithm is bounded by qO(|ϕ|) when ϕ contains
no more than two alternating blocks of quantifiers, and qqO(|ϕ|)

for more alter-
nations. Recently a polynomial-space algorithm for Gröbner basis computation
over finite fields has been proposed in [17], but it remains theoretical so far. If the
new algorithm can be practically used, the worst-case complexity of quantifier
elimination is qO(|ϕ|) for arbitrary alternations.

Note that this seemingly high worst-case complexity, as is common for
Gröbner basis methods, does not prevent the algorithm from being useful on
practical problems. This is crucially different from the naive algorithm, which
always requires exponential cost, not just in worst cases. In Section 6, we show
how the algorithm is successfully applied in the analysis of a controller design in
the S2VD virus competition model [11], which is a polynomial dynamical sys-
tem over finite fields. The authors developed control strategies to ensure a safety
property in the model, and used simulations to conclude that the controller is ef-
fective. However, using the quantifier elimination algorithm, we found bugs that
show inconsistency between specifications of the system and its formal model.
This shows how our algorithm can provide a practical way of extending formal
verification techniques to models over finite fields.

Throughout the paper, omitted proofs are provided in the Appendix.



142 S. Gao, A. Platzer, and E.M. Clarke

2 Preliminaries

2.1 Ideals, Varieties, Nullstellensatz, and Gröbner Bases

Let k be any field and k[x1, ..., xn] the polynomial ring over k with indeterminates
x1, ..., xn. An ideal generated by f1, ..., fm ∈ k[x1, ..., xn] is 〈f1, ..., fm〉 = {h :
h =

∑m
i=1 gifi, gi ∈ k[x1, ..., xn]}. Let a ∈ kn be an arbitrary point, and f ∈

k[x1, ..., xn] be a polynomial. We say that f vanishes on a if f(a) = 0.

Definition 2.1. For any subset J of k[x1, ..., xn], the affine variety of J over
k is Vn(J) = {a ∈ kn : ∀f ∈ J, f(a) = 0}.

Definition 2.2. For any subset V of kn, the vanishing ideal of V is defined
as I(V ) = {f ∈ k[x1, ..., xn] : ∀a ∈ V, f(a) = 0}.

Definition 2.3. Let J be any ideal in k[x1, ..., xn], the radical of J is defined
as
√
J = {f ∈ k[x1, ..., xn] : ∃m ∈ N, fm ∈ J}.

When J =
√
J , we say J is a radical ideal. The celebrated Hilbert Nullstellensatz

established the correspondence between radical ideals and varieties:

Theorem 2.1 (Strong Nullstellensatz [14]). For an arbitrary field k, let J
be an ideal in k[x1, ..., xn]. We have I(V a(J)) =

√
J, where ka is the algebraic

closure of k and V a(J) = {a ∈ (ka)n : ∀f ∈ J, f(a) = 0}.

The method of Gröbner bases was introduced by Buchberger [6] for the algo-
rithmic solution of various fundamental problems in commutative algebra. For
an ideal 〈f1, ..., fm〉 in a polynomial ring, Gröbner basis computation transforms
f1, ..., fm to a canonical representation 〈g1, ..., gs〉 = 〈f1, ..., fm〉 that has many
useful properties. Detailed treatment of the theory can be found in [3].

Definition 2.4. Let T = {xα1
1 · · ·xαn

n : αi ∈ N} be the set of monomials in
k[x1, ..., xn]. A monomial ordering ≺ on T is a well-ordering on T satisfying
(1) For any t ∈ T , 1 ≺ t
(2) For all t1, t2, s ∈ T , t1 ≺ t2 then t1 · s ≺ t2 · s.

We order the monomials appearing in any single polynomial f ∈ k[x1, ..., xn]
with respect to ≺. We write LM(f) to denote the leading monomial in f (the
maximal monomial under ≺), and LT (f) to denote the leading term of f (LM(f)
multiplied by its coefficient). We write LM(S) = {LM(f) : f ∈ S} where S is a
set of polynomials.

Let J be an ideal in k[x1, ..., xn]. Fix any monomial order on T . The ideal of
leading monomials of J , 〈LM(J)〉, is the ideal generated by the leading mono-
mials of all polynomials in J . Now we are ready to define:

Definition 2.5 (Gröbner Basis [3]). A Gröbner basis for J is a set
GB(J) = {g1, ..., gs} ⊆ J satisfying 〈LM(GB(J))〉 = 〈LM(J)〉.
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2.2 The First-Order Theory over a Finite Field

Let Fq be an arbitrary finite field of size q, where q is a prime power. We fix the
structure to be Mq = 〈Fq, 0, 1,+,×〉 and the signature Lq = 〈0, 1,+,×〉 (“=” is
a logical predicate). For quantified formulas, we write ϕ(x; y) to emphasize that
the x is a vector of quantified variables and y is a vector of free variables.

The standard first-order theory for each Mq consists of the usual axioms for
fields [15] plus ∃x1 · · · ∃xq((

∧
1≤i<j≤q xi �= xj) ∧ ∀y(

∨
i y = xi)), which fixes the

size of the domain. We write this theory as Tq. In Lq, we consider all the atomic
formulas as polynomial equations f = 0. The realization of a formula is the set of
assignments to its free variables that makes the formula true over Mq. Formally:

Definition 2.6 (Realization). Let ϕ(x1, ..., xn) be a formula with free vari-
ables x = (x1, ..., xn). The realization of ϕ, written as �ϕ� ⊆ Fn

q , is inductively
defined as:

– �p = 0� =df V (〈p〉) ⊆ Fn
q (in particular, �)� = Fn

q )
– �¬ψ� = Fn

q \ �ψ�
– �ψ1 ∧ ψ2� = �ψ1� ∩ �ψ2�
– �∃x0.ψ(x0,x)� = {〈a1, ..., an〉 ∈ Fn

q : ∃a0 ∈ Fq, such that 〈a0, ..., an〉 ∈ �ψ�}

Proposition 2.1 (Fermat’s Little Theorem). Let Fq be a finite field. For
any a ∈ Fq, we have aq − a = 0. Conversely, V (xq − x) = �xq − x� = Fq.

Definition 2.7 (Quantifier Elimination). Tq admits quantifier elimination if
for any formula ϕ(x; y), where the x variables are quantified and the y variables
free, there exists a quantifier-free formula ψ(y) such that �ϕ(x; y)� = �ψ(y)�.

2.3 Nullstellensatz in Finite Fields

The strong Nullstellensatz admits a special form over finite fields. This was
proved for prime fields in [10] and used in [4,5]. Here we give a short proof that
the special form holds over arbitrary finite fields, as a corollary of Theorem 2.1.

Lemma 2.1. For any ideal J ⊆ Fq[x1, ..., xn], J+〈xq
1−x1, ..., x

q
n−xn〉 is radical.

Theorem 2.2 (Strong Nullstellensatz in Finite Fields). For an arbitrary
finite field Fq, let J ⊆ Fq[x1, ..., xn] be an ideal, then

I(V (J)) = J + 〈xq
1 − x1, ..., x

q
n − xn〉.

Proof. Apply Theorem 2.1 to J + 〈xq
1 − x1, ..., x

q
n− xn〉 and use Lemma 2.1. We

have I(V a(J + 〈xq
1 − x1, ..., x

q
n − xn〉)) = J + 〈xq

1 − x1, ..., x
q
n − xn〉. But since

V a(〈xq
1 − x1, ..., x

q
n − xn〉) = Fn

q , it follows that

V a(J + 〈xq
1 − x1, ..., x

q
n − xn〉) = V a(J) ∩ Fn

q = V (J).

Thus we obtain I(V (J)) = J + 〈xq
1 − x1, ..., x

q
n − xn〉. ��
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3 Quantifier Elimination Using Gröbner Bases

In this section, we show that the key step in quantifier elimination can be re-
alized by Gröbner basis computation. Namely, for any formula ϕ of the form
∃x
∧r

i=1 fi(x,y) = 0, we can compute a quantifier-free formula ψ(y) such that
�ϕ(x; y)� = �ψ(y)�. We use the following notational conventions:

– |x| = n is the number of quantified variables and |y| = m the number of
free variables. We write xq − x =df {xq

1 − x1, ..., x
q
n − xn} and yq − y =df

{yq
1 − y1, ..., y

q
m − ym}, and call them field polynomials (following [10]).

– We use a = (a1, ..., an) ∈ Fn
q to denote the assignment for the x variables,

and b = (b1, ..., bm) ∈ Fm
q for the y variables. (a, b) ∈ Fn+m

q is a complete
assignment for all the variables in ϕ.

– When we write J ⊆ Fq[x,y] or a formula ϕ(x; y), we assume that all the
x,y variables do occur in J or ϕ. We assume that the x variables always
rank higher than the y variables in the lexicographic order.

3.1 Existential Quantification and Elimination Ideals

First, we show that eliminating the x variables is equivalent to projecting the
variety V (〈f1, ..., fr〉) from Fn+m

q to Fm
q .

Lemma 3.1. For f1, ..., fr ∈ Fq[x,y], we have �
∧r

i=1 fi = 0� = V (〈f1, ..., fr〉).

Definition 3.1 (Projection). The l-th projection mapping is defined as:

πl : FN
q → FN−l

q , πl((c1, ..., cN )) = (cl+1, ..., cN )

where l < N . For any set A ⊆ FN
q , we write πl(A) = {πi(c) : c ∈ A} ⊆ FN−l

q .

Lemma 3.2. �∃xϕ(x; y)� = πn(�ϕ(x; y)�).

Next, we show that the projection πn of the variety Vn+m(〈f1, ..., fr〉) from Fn+m
q

to Fm
q , is exactly the variety Vm(〈f1, ..., fr〉 ∩ Fq[y]).

Definition 3.2 (Elimination Ideal [7]). Let J ⊆ Fq[x1, ..., xn] be an ideal.
The l-th elimination ideal Jl, for 1 ≤ l ≤ N , is the ideal of Fq[xl+1, ..., xN ]
defined by Jl = J ∩ Fq[xl+1, ..., xN ].

The following lemma shows that adding field polynomials does not change the
realization. For f1, ..., fr ∈ Fq[x,y], we have:

Lemma 3.3. �
∧r

i=1 fi = 0� = �
∧r

i=1 fi = 0 ∧
∧

(xq
i − xi = 0) ∧

∧
(yq

i − yi = 0)�.

Now we can prove the key equivalence between projection operations and elim-
ination ideals. This requires the use of Nullstellensatz for finite fields.

Theorem 3.1. Let J ⊆ Fq[x,y] be an ideal which contains the field polynomials
for all the variables in J . We have πn(V (J)) = V (Jn).
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Proof. We show inclusion in both directions.

– πn(V (J)) ⊆ V (Jn) :
For any b ∈ πn(V (J)), there exists a ∈ Fn

q such that (a, b) ∈ V (J). That is,
(a, b) satisfies all polynomials in J ; in particular, b satisfies all polynomials
in J that only contain the y variables (a is not assigned to variables). Thus,
b ∈ V (J ∩ Fq[y]) = V (Jn).

– V (Jn) ⊆ πn(V (J)) :
Let b be a point in Fm

q such that b �∈ πn(V (J)). Consider the polynomial

fb =
m∏

i=1

(
∏

c∈Fq\{bi}
(yi − c)).

fb vanishes on all the points in Fn
q , except b = (b1, ..., bm), since (yi − bi)

is excluded in the product for all i. In particular, fb vanishes on all the
points in V (J), because for each (a, b′) ∈ V (J), b′ must be different from b,
and fb(a, b′) = fb(b′) = 0 (since there are no x variables). Therefore, fb is
contained in the vanishing ideal of V (J), i.e., fb ∈ I(V (J)).

Now, Theorem 2.2 shows I(V (J)) = J + 〈xq−x,yq−y〉. Since J already
contains the field polynomials, we know J + 〈xq − x,yq − y〉 = J , and
consequently I(V (J)) = J. Since fb ∈ I(V (J)), we must have fb ∈ J . But
on the other hand, fb ∈ Fq[y]. Hence fb ∈ J ∩ Fq[y] = Jn. But since
fb(b) �= 0, we know b �∈ V (Jn). ��

3.2 Quantifier Elimination Using Elimination Ideals

Theorem 3.1 shows that to obtain the projection of a variety over Fq, we only
need to take the variety of the corresponding elimination ideal. In fact, this can
be easily done using the Gröbner basis of the original ideal:

Proposition 3.1 (cf. [7]). Let J ⊆ Fq[x1, ..., xN ] be an ideal and let G be the
Gröbner basis of J with respect to the lexicographic order x1 " · · · " xN . Then
for every 1 ≤ l ≤ N , G∩Fq [xl+1, ..., xN ] is a Gröbner basis of the l-th elimination
ideal Jl. That is, Jl = 〈G〉 ∩ Fq[xl+1, ..., xN ] = 〈G ∩ Fq[xl+1, ..., xN ]〉.

Now, putting all the lemmas together, we arrive at the following theorem:

Theorem 3.2. Let ϕ(x; y) be ∃x.(
∧r

i=1 fi = 0) be a formula in Lq, with fi ∈
Fq[x,y]. Let G be the Gröbner basis of 〈f1, ..., fr,x

q − x,yq − y〉. Suppose G ∩
Fq[y] = {g1, ..., gs}, then we have �ϕ� = �

∧s
i=1(gi = 0)�.

Proof. We write J = 〈f1, ..., fr,x
q−x,yq−y〉 for convenience. First, by Lemma

3.3, adding the polynomials xq − x and yq − y does not change the realization:

�ϕ� = �∃x.(
r∧

i=1

fi = 0)� = �∃x.(
r∧

i=1

fi = 0 ∧
n∧

i=1

(xq
i − xi = 0) ∧

m∧

i=1

(yq
i − yi = 0))�
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Next, by Lemma 3.2, the quantification on x corresponds to projecting a variety:

�∃x.(
r∧

i=1

fi = 0 ∧
n∧

i=1

(xq
i − xi = 0) ∧

m∧

i=1

(yq
i − yi = 0))� = πn(V (J)).

Using Theorem 3.1, we know that the projection of a variety is equivalent to the
variety of the corresponding elimination ideal, i.e., πn(V (J)) = V (J ∩ Fq[y]).
Now, using the property of Gröbner bases in Proposition 3.1, we know the elim-
ination ideal 〈G〉 ∩ Fq[y] is generated by G ∩ Fq[y]:

V (J ∩ Fq[y]) = V (〈G〉 ∩ Fq[y]) = V (〈G ∩ Fq[y]〉) = V (〈g1, ..., gs〉)

Finally, by Lemma 3.1, an ideal is equivalent to the conjunction of atomic for-
mulas given by the generators of the ideal: V (〈g1, ..., gs〉) = �

∧s
i=1 gi = 0�.

Connecting all the equations above, we have shown �ϕ� = �
∧s

i=1 gi = 0�. Note
that g1, ..., gs ∈ Fq[y] (they do not contain x variables). ��

4 Formula Flattening with Ideal Operations

If negations on atomic formulas can be eliminated (to be shown in Lemma 4.1),
Theorem 3.2 already gives a direct quantifier elimination algorithm. That is, we
can always use duality to make the innermost quantifier block an existential one,
and expand the quantifier-free part to DNF. Then the existential block can be
distributed over the disjuncts and Theorem 3.2 is applied. However, this direct
algorithm always requires exponential blow-up in expanding formulas into DNF.

We show that the DNF-expansion can be avoided: Any quantifier-free formula
can be transformed into an equivalent formula of the form ∃z.(

∧r
i=1 fi = 0),

where z are new variables and fis are polynomials. The key is that Boolean
conjunctions and disjunctions can both be turned into additions of ideals; in the
latter case new variables need be introduced. This transformation can be done
in linear time and space, and is a generalization of the Tseitin transformation
from F2 to general finite fields.

We use the usual definition of ideal addition and multiplication. Let J1 =
〈f1, ..., fr〉 and J2 = 〈g1, ..., gs〉 be ideals, and h be a polynomial. Then J1 +J2 =
〈f1, ..., f,g1, ..., gs〉 and J1 · h = 〈f1 · h, ..., fr · h〉.

Lemma 4.1 (Elimination of Negations). Suppose ϕ is a quantifier free for-
mula in Lq in NNF and contains k negative atomic formulas. Then there is a
formula ∃z.ψ, where ψ contains new variables z but no negative atoms, such
that �ϕ� = �∃z.ψ�.

Lemma 4.2 (Elimination of Disjunctions). Suppose ψ1 and ψ2 are two for-
mulas in variables x1, ..., xn, and J1 and J2 are ideals in Fq[x1, ..., xn] satisfying
�ψ1� = V (J1) and �ψ2� = V (J2). Then, using x0 as a new variable, we have
�ψ1 ∨ ψ2� = V (J1) ∪ V (J2) = π0(V (x0J1 + (1− x0)J2)).
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Theorem 4.1. For any quantifier-free formula ϕ(x) given in NNF, there ex-
ists a formula ψ of the form ∃u,v(

∧
i(fi(x,u,v) = 0)) such that �ϕ� = �ψ�.

Furthermore, ψ can be generated in time O(|ϕ|), and also |u|+ |v| = O(|ϕ|).

Proof. Since ϕ(x) is in NNF, all the negations occur in front of atomic formulas.
We first use Lemma 4.1 to eliminate the negations. Suppose there are k negative
atomic formulas in ϕ, we obtain �ϕ� = �∃u1, ..., uk.ϕ

′�. Now ϕ′ does not contain
negations.

We then prove that there exists an ideal Jϕ′ for ϕ′ satisfying π|v|(V (Jϕ′)) =
�ϕ′�, where v are the introduced variables (which rank higher than the existing
variables in the variable ordering, so that the projection π|v| truncates assign-
ments on the v variables).

– If ϕ′ is an atomic formula f = 0, then Jϕ′ = 〈f〉;
– If ϕ′ is of the form θ1 ∧ θ2, then Jϕ′ = Jθ1 + Jθ2 ;
– If ϕ′ is of the form θ1∨θ2, then Jϕ′ = vi ·Jθ1 +(1− vi) ·Jθ2 , where vi is new.

Note that the new variables are only introduced in the disjunction case, and
therefore the number of v variables equals the number of disjunctions. Following
Lemma 3.1 and 4.2, the transformation preserves the realization of the formula
in each case. Hence, we have πv(V (Jϕ′)) = �ϕ′�. Writing Jϕ′ = 〈f1, ..., fr〉, we
know �ϕ� = �∃u.ϕ′� = �∃u∃v.

∧r
i=1 fi�. Notice that the number of rewriting

steps is bounded by the number of logical symbols appearing in ϕ. Hence the
transformation is done in time linear in the size of the formula. The number of
new variables is equal to the number of negations and disjunctions. ��

5 Algorithm Description and Complexity Analysis

We now describe the full algorithm using the following notations:

– The input formula is given by ϕ = Q1x1 · · ·Qmxmψ. Each Qixi represents
a quantifier block, where Qi is either ∃ or ∀. Qi and Qi+1 are different quan-
tifiers. We write x = (x1, ...,xm). ψ is a quantifier-free formula in x and y
given in NNF, where y are free variables.

– We assume the innermost quantifier is existential, Qm = ∃. (Otherwise we
apply quantifier elimination on the negation of the formula.)

5.1 Algorithm Description

Section 3 shows how to eliminate existential quantifiers over conjunctions of
positive atomic formulas. Section 4 shows how formulas can be put into con-
junctions of positive atoms with new quantified variables. It follows that we can
always eliminate the innermost existential quantifiers, and iterate the process by
flipping the universal quantifiers into existential ones. We first emphasize some
special features of the algorithm:
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Algorithm 1. Quantifier Elimination for ϕ = Q1x1 · · ·Qmxm.ψ

1: Input: ϕ = Q1x1 · · ·Qmxm.ψ(x1, ...,xm,y) wherem is the number of quan-
tifier alternations, Qmxm is an existential block (Qm = ∃), and ψ is in
negation normal form.

2: Output: A quantifier-free equivalent formula of ϕ
3: Procedure QE(ϕ)
4: while m ≥ 1 do
5: ∃u.ψ′ ← Eliminate Negations(ψ)
6: ∃v.(f1 = 0 ∧ · · · ∧ fr = 0)← Formula Flattening(ψ′)
7: ϕ← Q1x1 · · ·Qmxm∃u∃v.(f1 = 0 ∧ · · · ∧ fr = 0)
8: {g1, ..., gs} = Gröbner Basis(〈f1, ..., fr,x

q − x,uq − u,vq − v〉)
9: if m = 1 then

10: ϕ← g1 = 0 ∧ · · · ∧ gs = 0
11: break
12: end if
13: ϕ← Q1x1 · · ·Qm−2xm−2Qm−1xm−1.(

∧s
i=1 gi = 0) where Qm−1 = ∀

14: ϕ← Q1x1 · · ·Qm−2xm−2.(
∧s

i=1 ¬∃xm−1(gi �= 0))
15: for i = 1 to s do
16:

∧ti

j=1 hij = 0 ←QE(∃xm−1(gi �= 0))
17: end for
18: ϕ← Q1x1 · · ·Qm−2xm−2

∧s
i=1(
∨ti

j=1 hij �= 0)
19: m← m− 2
20: end while
21: return ϕ

– In each elimination step, a full quantifier block is eliminated. This is desir-
able in practical problems, which usually contain many variables but few
alternating quantifier blocks. For instance, many verification problems are
expressible using two blocks of quantifiers (∀∃-formulas).

– The quantifier elimination step essentially transforms an ideal to another
ideal. This corresponds to transforming conjunctions of atomic formulas to
conjunctions of new atomic formulas. Therefore, the quantifier elimination
steps do not introduce new nesting of Boolean operators.

– The algorithm always directly outputs CNF formulas.

A formal description of the full algorithm is given in Algorithm 1. The main
steps in the algorithm are explained below. Each loop of the algorithm contains
three main steps. In Step 1, ϕ is flattened; in Step 2, the innermost existential
quantifier block is eliminated; in Step 3, the next (universal) quantifier block is
eliminated and the process loops back to Step 1. The algorithm terminates either
after Step 2 or Step 3, when there are no remaining quantifiers to be eliminated.

• Step 1: (Line 5-7)
First, since ψ is in NNF, we use Theorem 4.1 to eliminate the negations and
disjunctions in ψ to get �ϕ� = �Q1x1 · · ·Qmxm∃u∃v.(

∧r
i=1 fi = 0)�, where u
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are the variables introduced for eliminating negations (Lemma 4.1), and v are
the variables introduced for eliminating disjunctions (Lemma 4.2).

• Step 2: (Line 8-12) Since Qm =∃, using Theorem 4.1, we can eliminate the
variables xm,u,v simultaneously by computing

{g1, ..., gr1}=GB(〈f1, ..., fr,x
q
m−xm,u

q−u,vq−v,yq−y〉)∩Fq [x1, ...,xm−1,y].

Now we have �ϕ� = �Q1x1 · · ·Qm−1xm−1.(
∧s

i=1(gi = 0))�.
If there are no more quantifiers, the output is

∧s
i=1(gi = 0), which is in CNF.

• Step 3: (Line 13-18) Since Qm−1 = ∀, we distribute the block Qm−1xm−1

over the conjuncts:

�ϕ� = �Q1x1 · · ·Qm−2xm−2(
s∧

i=1

(¬∃xm−1¬(gi = 0)))�

Now we do elimination recursively on ∃xm−1(¬gi = 0) for each i ∈ {1, ..., s},
which can be done using only Step 1 and Step 2. We obtain:

�∃xm−1(¬gi = 0)� = �∃xm−1∃u′.(gi · u′ − 1 = 0)� = �

ti∧

j=1

hij = 0� (1)

and the formula becomes (note that the extra negation is distributed)

�ϕ� = �Q1x1 · · ·Qm−2xm−2.(
s∧

i=1

(
ti∨

j=1

hij �= 0))�. (2)

If there are no more quantifiers left, the output formula is
∧s

i=1(
∨ti

j=1 hij �= 0),
which is in CNF. Otherwise, Qm−2 = ∃, and we return to Step 1.

Theorem 5.1 (Correctness). Let ϕ(x; y) be a formula Q1xi · · ·Qmxm.ψ
where Qm = ∃ and ψ is in NNF. Algorithm 1 computes a quantifier-free for-
mula ϕ′(y), such that �ϕ(x; y)� = �ϕ′(y)� and ϕ′ is in CNF.

5.2 Complexity Analysis

The worst-case complexity of Gröbner basis computation on ideals in Fq[x] that
contain xq

i − xi for each variable xi is known to be single exponential in the
number of variables in time and space. This follows from the complexity result
for Gröbner basis computation of zero-dimensional radical ideals [13] (a direct
proof can be found in [9]).

Proposition 5.1. Let J = 〈f1, ..., fr,x
q − x〉 ⊆ Fq[x1, ..., xn] be an ideal. The

time and space complexity of Buchberger’s Algorithm is bounded by qO(n), as-
suming that the length of input (f1, ..., fr) is dominated by qO(n).

Now we are ready to estimate the complexity of our algorithm.
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Theorem 5.2 (Complexity). Let ϕ be the input formula with m quantifier
blocks. When m ≤ 2, the time/space complexity of Algorithm 1 is bounded by
qO(|ϕ|). Otherwise, it is bounded by qqO(|ϕ|)

.

Proof. The complexity is dominated by Gröbner basis computation, whose com-
plexity is determined by the number of variables occurring in the ideal. When
m ≤ 2, the main loop is executed once, and the number of newly introduced vari-
ables is bounded by the original length of the input formula. Therefore, Gröbner
basis computations can be done in single exponential time/space. When m > 2,
the number of newly introduced variables is bounded by the length of the formula
obtained from the previous run of the main loop, which can itself be exponential
in the number of the remaining variables. In that case, Gröbner basis computa-
tion can take double exponential time/space.

• Case m ≤ 2:
In Step 1, the number of the introduced u and v variables equals to the number
of negations and disjunctions that appear in the ϕ. Hence the total number of
variables is bounded by the length of ϕ. The flattening takes linear time and
space, O(|ϕ|), as proved in Theorem 4.1.

In Step 2, by Proposition 5.1, Gröbner basis computation takes time/space
qO(|ϕ|).

In Step 3, the variables xm,u,v have all been eliminated. The length of each
giu

′ − 1 (see Formula (1) in Step 3) is bounded by the number of monomials
consisting of the remaining variables, which is O(q(|y|+∑m−1

i=1 |xi|)) (because the
degree on each variable is lower than q). Following Proposition 5.1, Gröbner
basis computation on each giu

′−1 takes time and space qO(|y|+∑m−1
i=1 |xi|), which

is dominated by qO(|ϕ|). Also, since the number s of conjuncts is the number of
polynomials in the Gröbner basis computed in the previous step, we know s is
bounded by qO(|ϕ|). In sum, Step 3 takes qO(|ϕ|) time/space in worst case.

Thus, the algorithm has worst-case time and space complexity qO(|ϕ|) when
m ≤ 2.

• Case m > 2:
When m > 2, the main loop is iterated for more than one round. The key change
in the second round is that, the initial number of conjunctions and disjunctions
in each conjunct could both be exponential in the number of the remaining
variables (x1, ...,xm−2). That means, writing the max of ti as t (see Formula (2)
in Step 3), both s and t can be of order qO(|ϕ|).

In Step 1 of the second round, the number of the u variables introduced for
eliminating the negations is s · t. The number of the v variables introduced for
eliminating disjunctions is also s·t. Hence the flattened formula may now contain
qO(|ϕ|) variables.

In Step 2 of the second round, Gröbner basis computation takes time and
space exponential in the number of variables. Therefore, Step 2 can now take
qqO(|ϕ|)

in time and space.
In Step 3 of the second round, however, the number of conjuncts s does not

become doubly exponential. This is because gi in Step 3 no longer contains the
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exponentially many introduced variables – they were already eliminated in the
previous step. Thus s is reduced back to single exponential in the number of the
remaining variables; i.e., it is bounded by qO(|ϕ|). Similarly, the Gröbner basis
computation on each giu

′−1, which now contains variables x1, ...,xm−1,y, takes
time and space qO(|ϕ|). In all, Step 3 takes time and space qO(|ϕ|).

In sum, the second round of the main loop can take time/space qqO(|ϕ|)
. But

at the end of the loop, the size of formula is reduced to qO(|ϕ|) after the Gröbner
basis computations, because it is at most single exponential in the number of
the remaining variables. Therefore, the double exponential bound remains for
future iterations of the main loop. ��

Recently, [17] reports a Gröbner basis computation algorithm in finite fields
using polynomial space. This algorithm is theoretical and cannot be applied
yet. Given the analysis above, if such a polynomial-space algorithm for Gröbner
basis computation can be practically used, the intermediate expressions do not
have the double-exponential blow-up. On the other hand, it does not lower the
space bound of our algorithm to polynomial space, because during flattening of
the disjunctions, the introduced terms are multiplied together. To expand the
introduced terms, one may still use exponential space. It remains further work to
investigate whether the algorithm can be practically used and how it compares
with Buchberger’s Algorithm.

Proposition 5.2. If there exists a polynomial-space Gröbner basis computa-
tion algorithm over finite fields for ideals containing the field polynomials, the
time/space complexity of our algorithm is bounded by qO(|ϕ|).

6 Example and Application

6.1 A Walk-Through Example

Consider the following formula over F3:

ϕ : ∃b∀a∃y∃x.((y = ax2 + bx+ c) ∧ (y = ax))

which has three alternating quantifier blocks and one free variable. We ask for
a quantifier-free formula ψ(c) equivalent to ϕ.

We fix the lexicographic ordering to be x " y " a " b " c. First, we compute
the Gröbner basis G0 of the ideal: 〈y − ax2 − bx− c, y − ax, x3 − x, y3 − y, a3 −
a, b3 − b, c3 − c〉,and obtain the Gröbner basis of the elimination ideal

G1 = G0 ∩ F3[a, b, c] = {abc+ ac2 + b2c− c, a3 − a, b3 − b, c3 − c}.

After this, x and y have been eliminated, and we have:

�ϕ� = �∃b∀a.((abc + ac2 + b2c − c = 0) ∧ (a3 − a = 0) ∧ (b3 − b = 0) ∧ (c3 − c = 0))�

= �∃b∀a.(abc + ac2 + b2c − c = 0)�

= �∃b.(¬∃a∃u.(u(abc + ac2 + b2c − c) − 1 = 0))�
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Now we eliminate quantifiers in ∃a∃u((abc+ ac2 + b2c− c) · u− 1 = 0), again by
computing the Gröbner basis G2 of the ideal

〈(abc+ ac2 + b2c− c)u− 1, a3 − a, b3 − b, c3 − c, u3 − u〉 ∩ F3[b, c].

We obtainG2 = {b2−bc, c2−1}. Therefore �ϕ� = �∃b(¬(b2−bc = 0∧c2−1 = 0))�.
(Note that if both b and c are both free variables, b2− bc �= 0∨ c2− 1 �= 0 would
be the quantifier-free formula containing b, c that is equivalent to ϕ.)

Next, we introduce u1 and u2 to eliminate the negations, and v to eliminate
the disjunction:

�ϕ� = �∃b∃u1∃u2∃v.(((b2 − bc)u1 − 1)v = 0 ∧ ((c2 − 1)u2)(1− v) = 0)�.

We now do a final step of computation of the Gröbner basis G3 of:

〈((b2−bc)u1−1)v, ((c2−1)u2)(1−v), b3−b, c3−c, u3
1− t1, u3

2− t2, v3−v〉∩F3[c].

We obtain G3 = {c3 − c}. This gives us the result formula �ϕ� = �c3 − c = 0�,
which means that c can take any value in F3 to make the formula true.

6.2 Analyzing a Biological Controller Design

We studied a virus competition model named S2VD [11], which models the
dynamics of virus competition as a polynomial system over finite fields. The
authors aimed to design a controller to ensure that one virus prevail in the
environment. They pointed out that there was no existing method for verifying
its correctness. The current design is confirmed effective by computer simulation
and lab experiments for a wide range of initializations. We attempted to establish
the correctness of the design with formal verification techniques. However, we
found bugs in the design.

All the Gröbner basis computations in this section are done using scripts in
the SAGE system [1], which uses the underlying Singular implementation [2]. All
the formulas below are solved within 5 seconds on a Linux machine with 2GHz
CPU and 2GB RAM. They involve around 20 variables over F4, with nonlinear
polynomials containing multiplicative products of up to 50 terms.

Fig. 1. (a) The ten rings of S2VD; (b) Cell x and its neighbor y cells; (c) The
counterexample
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The S2VD Model. The model consists of a hexagonal grid of cells. Each
hexagon represents a cell, and each cell has six neighbors. There are four possible
colors for each cell. A green cell is infected with (the good) Virus G, and a red
cell is infected with (the bad) Virus R. When the two viruses meet in one cell,
Virus G captures Virus R and the cell becomes yellow. A cell not infected by
any virus is white. The dynamics of the system is determined by the interaction
of the viruses.

There are ten rings of cells in the model, with a total of 331 cells (Figure
1(a)). In the initial configuration, the cells in Ring 4 to 10 are set to white, and
the cells in Ring 1 to 3 can start with arbitrary colors. The aim is to have a
controller that satisfies the following safety property: The cells in the outermost
ring are either green or white at all times. The proposed controller detects if any
cell has been infected by Virus R, and injects cells that are “one or two rings
away” from it with Virus G. The injected Virus G is used to block the further
expansion of Virus R.

Formally, the model is a polynomial system over the finite field
F4 = {0, 1, a, a + 1}, with each element representing one color:
(0, green), (1, red), (a,white), (a+1, yellow). The dynamics is given by the func-
tion f : F 331

4 → F 331
4 . For each cell x, its dynamics fx is determined by

the color of its six neighbors y1, ..., y6, specified by the nonlinear polynomial
fx =df γ

2
2 + γ2γ

3
1 + a2(γ3

1 + γ2
1 + γ1), where γ1 =

∑6
i=1 yi and γ2 =

∑
i�=j yiyj .

The designed controller is specified by another function g : F 331
4 → F 331

4 : For
each cell x, with y1, ..., y18 representing the cells in the two rings surrounding it,
we define gx =df

∏18
i=1(1− yi)3. More details can be found in [11].

Applying Quantifier Elimination. We first try checking whether the safety
property itself forms an inductive invariant of the system (which is a strong
sufficient check). To this end, we check whether the controlled dynamics of the
system remain inside the invariant on the boundary (Ring 10) of the system.
Let x be a cell in Ring 10 and y = (y1, ..., y18) be the cells in its immediate
two rings. We assume the cells outside Ring 10 (y8, ..., y12, y2, y3) are white. See
Figure 1(b) for the coding of the cells. We need to decide the formula:

∀x((∃y((

12∧

i=8

(yi = a) ∧ y2 = a ∧ y3 = a) ∧ Safe(y) ∧ x = Fx(y)))

︸ ︷︷ ︸
ϕ1

→ x(x − a) = 0)
︸ ︷︷ ︸
“green/white”

(3)

where (writing γ1 =
∑6

i=1 yi, γ2 =
∑

i�=j∈{1,...,6} yiyj)

Safe(y) =df (y1(y1 − a) = 0 ∧ y4(y4 − a) = 0 ∧ y7(y7 − a) = 0 ∧ y13(y13 − a) = 0)

Fx(y) =df (γ2
2 + γ2γ

3
1 + a2(γ3

1 + γ2
1 + γ1)) · (

18∏

i=1

(1 − yi))
3

After quantifier elimination, Formula (3) turns out to be false. In fact, we ob-
tained �ϕ1� = �x4−x = 0�. Therefore, the safety property itself is not an induc-
tive invariant of the system. We realized that there is an easy counterexample
of safety of the proposed controller design: Since the controller is only effective
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when red cells occur, it does not prevent the yellow cells to expand in all the
cells. Although this is already a bug of the system, it may not conflict with the
authors’ original goal of controlling the red cells. However, a more serious bug
is found by solving the following formula:

∀x((∃y(
18∧

i=1

yi(yi − a)(yi − a2) = 0) ∧ x = Fx(y))

︸ ︷︷ ︸
ϕ2

→ ¬(x = 1)
︸ ︷︷ ︸
“not red”

) (4)

Formula (4) expresses the desirable property that when none of the neighbor cells
of x is red, x never becomes red. However, we found again that �ϕ2� = �x4−x =
0�, which means in this scenario the x cell can still turn red. Thus, the formal
model is inconsistent with the informal specification of the system, which says
that non-red cells can never interact to generate red cells. In fact, the authors
mentioned that the dynamics Fx is not verified because of the combinatorial
explosion. Finally, to give a counterexample of the design, we solve the formula

ϕ3 =df ∃y∃x.(x = 1 ∧
6∧

i=1

yi(yi − a)(yi − a2) = 0 ∧ x = Fx(y)) (5)

The formula checks whether there exists a configuration of y1, ..., y6 which are
all non-red, such that x becomes red. ϕ3 evaluates to true. Further, we obtain
x = 1,y = (a, a, a, 0, 0, 0) as a witness assignment for ϕ3. This serves as the
counterexample (see Figure 1(c)).

This example shows how our quantifier elimination procedure provides a prac-
tical way of verifying and debugging systems over finite fields that were previ-
ously not amenable to existing formal methods and cannot be approached by
exhaustive enumeration.

7 Conclusion

In this paper, we gave a quantifier elimination algorithm for the first-order the-
ory over finite fields based on the Nullstellensatz over finite fields and Gröbner
basis computation. We exploited special properties of finite fields and showed
the correspondence between elimination of quantifiers, projection of varieties,
and computing elimination ideals. We also generalized the Tseitin transforma-
tion from Boolean formulas to formulas over finite fields using ideal operations.
The complexity of our algorithm depends on the complexity of Gröbner basis
computation. In an application of the algorithm, we successfully found bugs in a
biological controller design, where the original authors expressed that no verifi-
cation methods were able to handle the system. In future work, we expect to use
the algorithm to formally analyze more systems with finite field arithmetic. The
scalability of the method will benefit from further optimizations on Gröbner ba-
sis computation over finite fields. It is also interesting to combine Gröbner basis
methods and other efficient Boolean methods (SAT and QBF solving). See [9]
for a discussion on how the two methods are complementary to each other.
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Appendix: Omitted Proofs

Proof of Lemma 2.1. This is a consequence of the Seidenberg’s Lemma
(Lemma 8.13 in [3]). It can also be directly proved as follows.

Proof. We need to show
√
J + 〈xq

1 − x1, ..., x
q
n − xn〉 = J+〈xq

1−x1, ..., x
q
n−xn〉.

Since by definition, any ideal is contained in its radical, we only need to prove
√
J + 〈xq

1 − x1, ..., x
q
n − xn〉 ⊆ J + 〈xq

1 − x1, ..., x
q
n − xn〉.

Let R denote Fq[x1, ..., xn]. Consider an arbitrary polynomial f in the ideal√
J + 〈xq

1 − x1, ..., x
q
n − xn〉. By definition, for some integer s, fs ∈ J + 〈xq

1 −
x1, ..., x

q
n − xn〉. Let [f ] and [J ] be the images of, respectively, f and J , in

R/〈xq
1− x1, ..., x

q
n− xn〉 under the canonical homomorphism from R to R/〈xq

1−
x1, ..., x

q
n − xn〉. For brevity we write S = 〈xq

1 − x1, ..., x
q
n − xn〉.

Now we have [f ]s ∈ [J ], and we further need [f ] ∈ [J ]. We prove, by induction
on the structure of polynomials, that for any [g] ∈ R/S, [g]q = [g].

– If [g] = cxa1
1 · · ·xan

n + S (c ∈ Fq, ai ∈ N), then

[g]q = (cxa1
1 · · ·xan

n + S)q = (cxa1
1 · · ·xan

n )q + S = cxa1
1 · · ·xan

n + S = [g].

– If [g] = [h1] + [h2], by inductive hypothesis, [h1]q = [h1], [h2]q = [h2], and,
since any element divisible by p is zero in Fq (q = pr), then

[g]q = ([h1] + [h2])q =
q∑

i=0

(
q

i

)

[h1]i[h2]q−i = [h1]q + [h2]q = [h1] + [h2] = [g]

Hence [g]q = [g] for any [g] ∈ R/S, without loss of generality we can assume
s < q in [f ]s. Then, since [f ]s ∈ [J ], [f ] = [f ]q = [f ]s · [f ]q−s ∈ [J ]. ��

Proof of Lemma 3.1

Proof. Let a ∈ Fn+m
q be an assignment vector for (x,y).

If a ∈ �
∧r

i=1 fi = 0�, then f1(a) = · · · = fr(a) = 0 and a ∈ V (〈f1, ..., fk〉).
If a ∈ V (〈f1, ..., fr〉), then

∧r
i=1 fi(a) = 0 is true and a ∈ �

∧r
i=1 fi = 0�. ��

Proof of Lemma 3.2

Proof. We show set inclusion in both directions.

– For any b ∈ �∃xϕ(x; y)�, by definition, there exists a ∈ Fn
q such that (a, b)

satisfies ϕ(x; y). Therefore, (a, b) ∈ �ϕ(x; y)�, and b ∈ πn(�ϕ(x; y)�).
– For any b ∈ πn(�ϕ(x; y)�), there exists a ∈ Fn

q such that (a, b) ∈ �ϕ(x; y)�.
By definition, b ∈ �∃xϕ(x; y)�. ��

Proof of Lemma 3.3

Proof. We have �
∧

i∈Ax
(xq

i −xi = 0)∧
∧

i∈Ay
(yq

i − yi = 0)� = �)�, which follows
from Proposition 2.1. ��
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Proof of Lemma 4.1

Proof. Let ϕ[ψ1/ψ2] denote substitution of ψ1 in ϕ by ψ2. Suppose the negative
atomic formulas in ϕ are f1 �= 0, ..., fk �= 0.

We introduce a new variable z1, and substitute f1 �= 0 by p · z1 = 1. Since the
field Fq does not have zero divisors, all the solutions for �f1 �= 0� = �∃z1(p · z1 =
1)� (the Rabinowitsch trick).

Iterating the procedure, we can use k new variables z1, ..., zk so that:

�ϕ� = �ϕ[f1 �= 0/(∃z1.(p · z1 − 1 = 0))] · · · [fk �= 0/(∃zk.(p · zk − 1 = 0))]�

Since the result formula contains no more negations and the zis are new variables,
it can be put into prenex form ∃z.(ϕ[f1 �= 0/(p·z1−1 = 0)] · · · [fk �= 0/(p·zk−1 =
0)]). ��

Proof of Lemma 4.2

Proof. �ψ1 ∨ ψ2� = V (J1) ∪ V (J2) follows from the definition of realization. We
only need to show the second equality. Let a = (a1, ..., an) ∈ Fn

q be a point.
- Suppose a ∈ V (J1) ∪ V (J2). If a ∈ V (J1), then (1, a1, ..., an) ∈ V (x0J1 +

(1 − x0)J2). If a ∈ V (J2), then 〈0, a1, ..., an〉 ∈ V (x0J1 + (1 − x0)J2). In both
cases, a ∈ π0(V (x0J1 + (1− x0)J2)).

- Suppose a ∈ π0(V (x0J1 + (1 − x0)J2)). There exists a0 ∈ Fq such that
(a0, a1, ..., an) ∈ V (x0J1 +(1−x0)J2). If a0 �∈ {0, 1}, then all the polynomials in
J1 and J2 need to vanish on a; if a0 = 1 then J1 vanishes on a; if a0 = 0 then
J2 vanishes on a. In all cases, a ∈ V (J1) ∪ V (J2). ��

Proof of Theorem 5.1

Proof. We only need to show the intermediate formulas obtained in Step 1-3 are
always equivalent to the original formula ϕ. In Step 1, the formula is flattened
with ideal operations, which preserve the realization of the formula as proved in
Theorem 4.1. In Step 2, we have (by Theorem 3.2) �∃xm∃t∃s(

∧r
i=1(fi = 0))� =

�
∧u

i=1(gi = 0)�.
Hence the formula obtained in Step 2 is equivalent to ϕ. In Step 3, the sub-

stitution preserves realization of the formula because

�

u∧

i=1

∀xm−1(gi = 0)� = �

u∧

i=1

(¬∃xm−1(¬gi = 0))� = �(
u∧

i=1

(
vi∨

j=1

hij �= 0))�,

where the second equality is guaranteed by Theorem 3.2 again.
The loop terminates either at the end of Step 2 or Step 3. Hence the output
quantifier-free formula ψ is always in conjunctive normal form, which contains
only variables y, and is equivalent to the original formula ϕ. ��
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Abstract. Rank-width is a complexity measure equivalent to the clique-
width of undirected graphs and has good algorithmic and structural prop-
erties. It is in particular related to the vertex-minor relation. We discuss
an extension of the notion of rank-width to all types of graphs - di-
rected or not, with edge colors or not -, named F-rank-width. We extend
most of the results known for the rank-width of undirected graphs to
the F-rank-width of graphs: cubic-time recognition algorithm, character-
isation by excluded configurations under vertex-minor and pivot-minor,
and algebraic characterisation by graph operations. We also show that
the rank-width of undirected graphs is a special case of F-rank-width.

Keywords: rank-width, clique-width, local complementation, vertex-
minor, pivot-minor, excluded configuration, 2-structure, sigma-symmetry.

1 Introduction

In their investigations of a recognition algorithm for undirected graphs of clique-
width at most k, for fixed k, Oum and Seymour [21] introduced the notion of
rank-width of undirected graphs. Rank-width is defined in a combinatorial way
and is equivalent to the clique-width of undirected graphs in the sense that a
class of graphs has bounded clique-width if and only if it has bounded rank-width
[21]. But, being defined in a combinatorial way provides to rank-width better
algorithmic properties than clique-width. In particular, for fixed k, there exists
a cubic-time algorithm that decides whether the rank-width of an undirected
graph is at most k and if so, constructs a rank-decomposition of width at most
k [15]. Moreover, a characterisation in terms of graph operations is given in [5]
which allows to solve MSOL properties without using clique-width operations.

Another advantage of rank-width over clique-width is that it is invariant with
respect to the vertex-minor relation (no such notion, except for induced sub-
graph relation, is known for clique-width), i.e., if H is a vertex-minor of G,
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then the rank-width of H is at most the rank-width of G [20]. Moreover, every
class of undirected graphs of bounded rank-width is characterised by a finite list
of undirected graphs to exclude as vertex-minors [20]. This later result gener-
alises the one of Robertson and Seymour on undirected graphs of bounded tree-
width [22].

Despite all these positive results of rank-width, the fact that clique-width is
defined for graphs - directed or not, with edge colors or not - is an undeniable
advantage over rank-width. It is thus natural to ask for a notion of rank-width
for all types of graphs - directed or not, with edge colors or not - that has the
same advantages as the rank-width of undirected graphs. We investigate in this
paper such a notion of rank-width. It is worth noticing that there is no unique
natural way to define it. For instance, Courcelle and Oum [8], and Courcelle [4]
suggested to define the rank-width of a graph G as the rank-width of B(G),
where B(G) is an undirected bipartite graph associated - in a unique way, up
to isomorphism - to G. However, this definition, even if it approximates well
clique-width, suffers from, among others, this important drawback: a vertex-
minor of B(G) does not always correspond to a coding of a graph. In this paper,
we define a better notion of rank-width for graphs that, not only extends the
rank-width of undirected graphs, but also shares most of its advantages. For
these purposes, we will define the notion of sigma-symmetric matrices, which
generalizes the notion of symmetric and skew-symmetric matrices. We then use
this notion to represent graphs by matrices over finite fields and derive, from
this representation, a notion of rank-width, called F-rank-width (Section 3), that
generalises the one of undirected graphs. A cubic-time recognition algorithm and
a characterisation of graphs of F-rank-width at most k by excluded configurations
under vertex-minor are presented. We finish by characterisations in terms of
graph operations.

This paper is related to a companion paper where the authors introduce a
decomposition of graphs on a fixed field [18]. This decomposition plays a role
similar to the split decomposition [9] for the rank-width of undirected graphs.
Particularly we show that the F-rank-width of a graph is exactly the maximum
over the F-rank-width over all prime graphs in the decomposition, and we give
different characterisations of graphs of F-rank-width one.

2 Preliminaries

If A and B are two sets, A\B denotes the set {x ∈ A | x /∈ B}. The power-set
of a set V is denoted by 2V .

The set of natural integers is denoted by N. We denote by + and · the binary
operations of any field and by 0 and 1 the neutral elements of + and · respectively.
We refer to [19] for our field terminology.

For sets R and C, an (R,C)-matrix is a matrix where the rows are indexed by
elements in R and columns indexed by elements in C. For X ⊆ R and Y ⊆ C, let
M [X,Y ] be the sub-matrix of M where the rows and the columns are indexed
by X and Y respectively. Let rk be the matrix rank-function (the field will be
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clear from the context). We denote by MT the transpose of a matrix M . The
order of an (R,C)-matrix is defined as |R| × |C|. We often write k× �-matrix to
denote a matrix of order k × �.

We use the standard graph terminology, see for instance [10]. A graph G is a
couple (VG, EG) where VG is the set of vertices and EG ⊆ VG × VG is the set of
edges. A graph G is said to be oriented if (x, y) ∈ EG implies (y, x) /∈ EG, and
it is said undirected if (x, y) ∈ EG implies (y, x) ∈ EG, hence we can write xy
(equivalently yx). We let G[X ], called the sub-graph of G induced by X ⊆ VG,
the graph (X,EG∩(X×X)) and write G-X for G[VG\X ]. Two graphs G and H
are isomorphic if there exists a bijection h : VG → VH such that (x, y) ∈ EG if
and only if (h(x), h(y)) ∈ EH . We suppose that all graphs are finite and loop-free
(i.e. (x, x) �∈ EG for every x ∈ VG).

A tree is an acyclic connected undirected graph. The vertices of degree 1 are
called leaves and the set of leaves in a tree T is denoted by LT . A sub-cubic tree
is an undirected tree such that the degree of each node is at most 3. For a tree
T and an edge e of T , we let T -e denote the graph (VT , ET \{e}.

Let C be a (possibly infinite) set that we call the colors. A C-graphs G is a
tuple (VG, EG, �G) where (VG, EG) is a graph and �G : EG → C is a function. Its
associated underlying graph u(G) is the graph (VG, EG). Two C-graphs G and
H are isomorphic if there is an isomorphism h between (VG, EG) and (VH , EH)
such that for every (x, y) ∈ EG, �G((x, y)) = �H((h(x), h(y))). We let G (C) be
the set of C-graphs for a fixed color set C. Even though we authorise infinite
color sets in the definition, most of the results in this article concern only finite
color sets. It is worth noticing that an edge-uncolored graph can be seen as an
edge-colored graph where all the edges have the same color.

In our definition, an edge in a C-graph has only one color. However, this is not
restrictive because if in an edge-colored graph an edge can have several colors
from a set C, we just extend C to 2C .

Remark 1 (2-structures and edge-colored graphs). A 2-structure [11] is a pair
(D,R) where D is a finite set and R is an equivalence relation on the set D2 =
{(x, y) | x, y ∈ D and x �= y}. Every 2-structure (D,R) can be seen as a C-
colored graph G = (D,D2, �) where C := {[e] | [e] is an equivalence class of R}
and for every edge e, �(e) := [e]. Equivalently, every C-graph G can be seen
as a 2-structure (VG, R) where eRe′ if and only if �G(e) = �G(e′) and all the
non-edges in G are equivalent with respect to R.

The clique-width, denoted by cwd, is a graph parameter defined by Courcelle
and Olariu [7]. It is studied in many other papers (see for instance the sur-
vey [16]). But, most of the investigations concern edge-uncolored graphs. How-
ever, its edge-colored version has been investigated these last years (see [2,12]).
Note that it is also defined in a more general case where edges can have several
colors [3].

If F is a set of binary and unary function symbols and C a set of constants,
we let T (F , C) be the set of finite well-formed terms built with F ∪ C.
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3 F-Rank-Width

We want a notion of rank-width for edge-colored graphs which generalises the
one on undirected graphs (recall that an undirected graph can be seen as an
edge-colored graph with all edges having same color). For this purpose, we will
identify each color by an non-zero element of a field. This representation will
allow us to define the rank-width of edge-colored graphs using the matrix rank.

Let F be a field, and let F∗ = F \ {0}. One can note that there is a natural
bijection between the class of F∗-graphs and the class of F-graphs with complete
underlying graph (replace every non-edge by an edge of color 0). From now on,
we do not distinguish these two representations, and we let �G((x, y)) = 0 for all
(x, y) /∈ EG.

We can represent every F∗-graph G by a (VG, VG)-matrix MG such that
MG[x, y] := �G((x, y)) for every x, y ∈ VG with x �= y, and MG[x, x] := 0
for every x ∈ VG.

Let σ : F → F be a bijection. We recall that σ is an involution if σ(σ(a)) = a
for all a ∈ F. We say that σ is a sesqui-morphism if σ is an involution, and
the mapping [x �→ σ(x)/σ(1)] is an automorphism. It is worth noticing in this
case that σ(0) = 0 and for every a, b ∈ F, σ(a + b) = σ(a) + σ(b) (i.e. σ is an
automorphism for the addition).

A F∗-graph is σ-symmetric if for every arc (x, y), �G((x, y)) = a if and only
if �G((y, x)) = σ(a). Clearly, if G is a σ-symmetric F∗-graph, then MG[x, y] =
σ(MG[y, x]). We denote by S (F) (respectively S (F, σ)) the set of F∗-graphs
(respectively σ-symmetric F∗-graphs). Note that S (F) = G (F∗).

To represent a C-graph, one can take an injection from C to F∗ for a large
enough field F. Notice that the representation is not unique: on one hand, several
incomparable fields are possible for F, and on the other hand, the representa-
tion depends on the injection from C to F∗. For example, oriented graphs can
be represented by a F∗

3-graph or by a F∗
4-graph (see Section 3.4). Two differ-

ent representations can give two different rank-width parameters, but the two
parameters are equivalent when C is finite (direct consequence of Proposition 3).

We now explain how to see a F∗-graph as a σ̃-symmetric (F2)∗-graph, using
the algebraic extension F2 of the field F (proofs are omitted because of space
constraints).

Lemma 1. There exists an element p in F∗ such that the polynomial X2−p(X+
1) has no root in F.

We construct an algebraic extension of the finite field F. Let p ∈ F∗ such that
X2 − p(X + 1) has no root in F and let F2 be isomorphic to the field F[X ]
mod (X2− p(X + 1)) (i.e. F2 is the finite field with the same characteristic and
order |F|2). Let α := X mod (X2 − p(X + 1)). Then every element of F2 is a
polynomial on α of the form a0 + a1α where a0, a1 ∈ F. Moreover, α is a root of
X2− p(X + 1) in F2. We let γ := 1− p−1α and τ := p−1α be in F2. Notice that
α = pτ and 1 = γ + τ .
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Lemma 2. We have the following equalities:

γ2 = (1 + p−1)γ + p−1τ,

τ2 = p−1γ + (1 + p−1)τ,

γ · τ = p−1γ + p−1τ.

To every pair of elements in F, we associate an element in F2 by letting f̃ :
F× F → F2 where, for every (a, b) ∈ F× F, f̃(a, b) := aγ + bτ .

Lemma 3. f̃ is a bijection.

For the sesqui-morphism in F2, we let σ̃ : F2 → F2 where σ̃(aγ+ bτ) := bγ+ aτ .
One easily verifies that σ̃(σ̃(β)) = β for all β ∈ F2.

Lemma 4. σ̃ is an automorphism.

For every F∗-graph G, we let G̃ be the (F2)∗-graph (VG, EG, �G̃) where, for every
two distinct vertices x and y,

�G̃((x, y)) := f̃(�G((x, y)), �G((y, x))).

By the definitions of G̃ and σ̃, and Lemmas 2-4, we get the following.

Proposition 1. The mapping [G �→ G̃] from S (F) to S (F2, σ̃) is a bijection
and for every F∗-graph G, G̃ is σ̃-symmetric. Moreover, for two F∗-graphs G
and H, G̃ and H̃ are isomorphic if and only if G and H are isomorphic.

If F is infinite, a mapping from S (F) to S (G, σ) is not always possible with
the previous construction. For example, a mapping is possible from S (R) to
S (C, σ) with f(a, b) = (1+ i)a+(1− i)b and σ(a+ ib) = a− ib (where a, b ∈ R),
but the construction fails for F = C since the complexes are algebraically closed.

From Proposition 1, we can now concentrate to σ-symmetric F∗-graphs.

3.1 Rank-Width of σ-Symmetric F∗-Graphs

We say that a function f : 2V → N is symmetric if for any X ⊆ V, f(X) =
f(V \X); it is submodular if for any X,Y ⊆ V , f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) +
f(Y ).

A layout of a finite set V is a pair (T,L) of a sub-cubic tree T and a bijective
function L : V → LT . For each edge e of T , the connected components of T -e
induce a bipartition (Xe, V \Xe) of LT , and thus a bipartition (Xe, V \Xe) =
(L−1(Xe),L−1(V \Xe)) of V (we will omit the sub or superscript e when the
context is clear).

Let f : 2V → N be a symmetric function and (T,L) a layout of V . The f -width
of each edge e of T is defined as f(Xe) and the f -width of (T,L) is the maximum
f -width over all edges of T . The f -width of V is the minimum f -width over all
layouts of V .

Along this section, we let F be a fixed field (of characteristic p and of order
q if F is finite), and we let σ : F → F be a fixed sesqui-morphism. If G is a
F∗-graph, we let cutrkF

G(X) = rk(MG[X,VG\X]) for all X ⊆ VG.
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Lemma 5. For every σ-symmetric F∗-graph G, the function cutrkF
G is symmet-

ric and submodular.

In order to prove Lemma 5, we first recall the submodular inequality of the matrix
rank-function.

Proposition 2. [20, Proposition 4.1] Let M be an (R,C)-matrix over a field F.
Then for all X1, Y1 ⊆ R and X2, Y2 ⊆ C,

rk(M [X1, X2]) + rk(M [Y1, Y2]) ≥ rk(M [X1 ∪ Y1, X2 ∩ Y2]) + rk(M [X1 ∩ Y1, X2 ∪ Y2]).

Proof (of Lemma 5). Let X and Y be subsets of VG. We let A1 = MG[X,VG\X]
and A2 = MG[Y, VG\Y ]. We first prove the first statement.

We let M ′ be the (VG\X,X)-matrix where M ′[y, x] = σ(A1[x, y])/σ(1). Since
σ is a sesqui-morphism, the mapping [x �→ σ(x)/σ(1)] is an automorphism and
then rk(M ′) = rk((A1)T ) = rk(A1). But, MG[VG\X,X ] = σ(1) · M ′. Then,
rk(MG[VG\X,X ]) = rk(M ′) = rk(MG[X,VG\X]).

For the second statement, we have by definition and Proposition 2,

cutrkF
G(X) + cutrkF

G(Y ) = rk(A1) + rk(A2)

≥ rk(MG[X ∪ Y , VG\X ∩ VG\Y ])

+ rk(MG[X ∩ Y , VG\X ∪ VG\Y ]).

Since VG\X ∩ VG\Y = VG\(X ∪ Y ) and VG\X ∪ VG\Y = VG\(X ∩ Y ), the
second statement holds. ��

The F-rank-width of a σ-symmetric F∗-graph G, denoted by rwdF(G), is defined
as the cutrkF

G-width of VG.
This definition generalises the one for undirected graphs. If we let σ1 be the

identity automorphism on F2, every undirected graph is a σ1-symmetric F∗
2-

graph. One easily verifies that F2-rank-width and rank-width ([21]) coincide.
One can easily verify that the F-rank-width of a σ-symmetric F∗-graph is the

maximum of the F-rank-width of its maximum connected components. The fol-
lowing proposition, which says that F-rank-width and clique-width are equivalent
when F is finite, has an easy proof. We omit it because its proof is an easy adap-
tation of the one comparing rank-width and clique-width of undirected graphs
[21, Proposition 6.3].

Proposition 3. Let G be a σ-symmetric F∗-graph. Then, rwdF(G) ≤ cwd(G) ≤
2 · qrwdF(G) − 1.

It is also easy to show that the clique-width and the F-rank-width are equivalent
if F is infinite but C is finite.

3.2 Vertex-Minor and Pivot-Minor

We say that λ in F∗ is σ-compatible, for some sesqui-morphism σ : F → F, if
σ(λ) = λ · σ(1)2.
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Definition 1 (λ-local complementation). Let λ in F∗. Let G be a F∗-graph
and x a vertex of G. The λ-local complementation at x of G is the F∗-graph
G ∗ (x, λ) represented by the (VG, VG)-matrix MG∗(x,λ) where:

MG∗(x,λ)[z, t] :=

{
MG[z, t] + λ ·MG[z, x] ·MG[x, t] if x �∈ {z, t},
MG[z, t] otherwise.

One can easily verify that for every F∗-graph G and every vertex x of G, the
adjacency matrix of G ∗ (x, λ) is obtained by modifying the sub-matrix induced
by the neighbors of x. Then for every vertex y of G, MG[x, y] = MG∗(x,λ)[x, y].

Since we are interested in σ-symmetric graphs, we have to restrict ourselves
to a subset of λ-local complementations which preserve the σ-symmetry.

Lemma 6. Let G be a σ-symmetric F∗-graph and let λ ∈ F∗ be σ-compatible.
Then every λ-local complementation of G is also σ-symmetric.

Proof. Let H := G ∗ (x, λ) for some σ-compatible λ. It is sufficient to prove that
MH [t, z] = σ(MH [z, t]) for any z, t ∈ VG, z �= t.

MH [t, z] = MG[t, z] + λ ·MG[t, x] ·MG[x, z]
= σ(MG[z, t]) + λ · σ(MG[x, t]) · σ(MG[z, x])
= σ(MG[z, t]) + λ · σ(1) · σ(MG[z, x] ·MG[x, t])

= σ(MG[z, t]) + σ(λ) · σ−1(1) · σ(MG[z, x] ·MG[x, t])
= σ(MG[z, t]) + σ(λ ·MG[z, x] ·MG[x, t])
= σ(MG[z, t] + λ ·MG[z, x] ·MG[x, t])
= σ(MH [z, t]). ��

Lemma 6 shows that λ-local complementation is well-defined on σ-symmetric
F∗-graphs for σ-compatible λ. Moreover, one can easily verify that, when F is the
field F2, this notion of 1-local complementation coincides with the one defined
by Bouchet (see [1,20]).

We call H a σ-vertex-minor of G if H is obtained from G by applying a
sequence of λ-local complementations - with σ-compatibles λ - and deletions of
vertices. Note that if no σ-compatible λ ∈ F∗ exists, H is a σ-vertex-minor of G
if and only if H is an induced subgraph of G.

The following lemma proves that λ-local-complementations do not increase
F-rank-width.

Lemma 7. Let G be a σ-symmetric F∗-graph and x a vertex of G. For every
subset X of VG, cutrkF

G∗(x,λ)(X) = cutrkF
G(X).

Proof. We can assume that x ∈ X since cutrkF
G is a symmetric function (Lemma

5). For each y ∈ X , the λ-local-complementation at x results in adding a mul-
tiple of the row indexed by x to the row indexed by y. Precisely, we obtain
MG∗(x,λ)[y, VG\X] by adding λ ·MG[y, x] ·MG[x, VG\X] to MG[y, VG\X]. This
operation is repeated for all y ∈ X . In each case, the rank of the matrix does
not change. Hence, cutrkF

G∗(x,λ)(X) = cutrkF
G(X). ��
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Unfortunately, such a σ-compatible λ does not always exist. For instance, if the
field is F3 and σ is such that σ(x) = −x (see Section 3.4), no σ-compatible λ
exists. We present now another F∗-graph transformation which is defined for
every couple (F, σ).

Definition 2 (Pivot-complementation). Let G be a σ-symmetric F∗-graph,
and x and y two vertices of G such that �G((x, y)) �= 0. The pivot-complementa-
tion at xy of G is the F∗-graph G∧xy represented by the (VG, VG)-matrix MG∧xy

where MG∧xy[z, z] := 0 for every z ∈ VG, and for every z, t ∈ VG \ {x, y} with
z �= t:

MG∧xy[z, t] := MG[z, t]− MG[z, x] ·MG[y, t]
MG[y, x]

− MG[z, y] ·MG[x, t]
MG[x, y]

MG∧xy[x, t] :=
MG[y, t]
MG[y, x]

MG∧xy[y, t] :=
σ(1) ·MG[x, t]
MG[x, y]

MG∧xy[z, x] :=
σ(1) ·MG[z, y]

MG[x, y]
MG∧xy[z, y] :=

MG[z, x]
MG[y, x]

MG∧xy[x, y] := − 1
MG[y, x]

MG∧xy[y, x] := − σ(1)2

MG[x, y]

We call H a pivot-minor of G if H is obtained from G by applying a sequence
of pivot-complementations and deletions of vertices.

Note that G ∧ xy = G ∧ yx if σ(1) = 1. In the case of undirected graphs
(F = F2), this definition coincides with the pivot-complementation of undirected
graphs [20]. The following lemma shows that this transformation is well defined.

Lemma 8. Let G be a σ-symmetric F∗-graph and let xy be an edge of G. Then
G ∧ xy is also σ-symmetric.

Proof. Let z, t ∈ V , with z �= t. If {z, t} ∩ {x, y} = ∅, then

MG∧xy[t, z] = MG[t, z] − MG[t, x] · MG[y, z]

MG[y, x]
− MG[t, y] · MG[x, z]

MG[x, y]

= σ(MG[z, t]) − σ(MG[x, t]) · σ(MG[z, y])

σ(MG[x, y])
− σ(MG[y, t]) · σ(MG[z, x])

σ(MG[y, x])

= σ(MG[z, t]) − σ

(
MG[x, t] · MG[z, y]

MG[x, y]

)

− σ

(
MG[y, t] · MG[z, x]

MG[y, x]

)

= σ

(

MG[z, t]) − MG[x, t] · MG[z, y]

MG[x, y]
− MG[y, t] · MG[z, x]

MG[y, x]

)

= σ (MG∧xy [z, t]) .

If t �= y, then:

MG∧xy[t, x] =
σ(1) · MG[t, y]

MG[x, y]
=

σ(1) · σ(MG[y, t])

σ(MG[y, x])

= σ

(
MG[y, t]

MG[y, x]

)

= σ (MG∧xy [x, t]) .
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Finally:

MG∧xy[y, x] = − σ(1)2

MG[x, y]
= − σ(1)2

σ(MG[y, x])

= σ

(

− 12

MG[y, x]

)

= σ (MG∧xy[x, y]) . ��

Similarly to Lemma 7, the following lemma proves that pivot-complementations
do not increase F-rank-width.

Lemma 9. Let G be a σ-symmetric F∗-graph and xy an edge of G. For every
subset X of VG, cutrkF

G∧xy(X) = cutrkF
G(X).

Proof. Let Y := VG \ X . We can assume w.l.o.g. that x ∈ X . If y ∈ X , then
(with X ′ := X \ {x, y})

rk (MG∧xy[X, Y ]) = rk

⎛

⎜
⎝

1
MG[y,x]

· MG[y, Y ]
σ(1)

MG[x,y]
· MG[x, Y ]

MG[X ′, Y ] − MG[X′,x]·MG[y,Y ]
MG[y,x]

− MG[X′,y]·MG[x,Y ]
MG[x,y]

⎞

⎟
⎠

= rk

⎛

⎜
⎝

1
MG[y,x]

· MG[y, Y ]
σ(1)

MG[x,y]
· MG[x, Y ]

MG[X ′, Y ] − MG[X′,x]·MG[y,Y ]
MG[y,x]

⎞

⎟
⎠

= rk

⎛

⎜
⎝

1
MG[y,x]

· MG[y, Y ]
σ(1)

MG[x,y]
· MG[x, Y ]

MG[X ′, Y ]

⎞

⎟
⎠ = rk

⎛

⎝
MG[y, Y ]
MG[x, Y ]
MG[X ′, Y ]

⎞

⎠

= rk (MG[X, Y ]) .

If y �∈ X , then (with X ′ := X \ {x} and Y ′ := Y \ {y})

rk (MG∧xy[X, Y ])

= rk

(
− 1

MG[y,x]
MG[y,Y ′]
MG[y,x]

MG[X′,x]
MG[y,x]

MG[X ′, Y ′] − MG[X′,x]·MG[y,Y ′]
MG[y,x]

− MG[X′,y]·MG[x,Y ′]
MG[x,y]

)

= rk

(
− 1

MG[y,x]
MG[y,Y ′]
MG[y,x]

0 MG[X ′, Y ′] − MG[X′,y]·MG[x,Y ′]
MG[x,y]

)

= rk

(− 1
MG[y,x]

0

0 MG[X ′, Y ′] − MG[X′,y]·MG[x,Y ′]
MG[x,y]

)

= rk

(
MG[x, y] 0

0 MG[X ′, Y ′] − MG[X′,y]·MG[x,Y ′]
MG[x,y]

)

= rk

(
MG[x, y] 0

MG[X ′, y] MG[X ′, Y ′] − MG[X′,y]·MG[x,Y ′]
MG[x,y]

)

= rk

(
MG[x, y] MG[x, Y ′]
MG[X ′, y] MG[X ′, Y ′]

)

= rk (MG[X, Y ]) . ��
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The main result of this section is the following which is a generalization of
Theorem [20, Theorem 5.4].

Theorem 1. (i) For each positive integer k ≥ 1, there is a set C
(F,σ)
k of σ-

symmetric F∗-graphs, each having at most (6k+1 − 1)/5 vertices, such that
a σ-symmetric F∗-graph G has F-rank-width at most k if and only if no
σ-symmetric F∗-graph in C

(F,σ)
k is isomorphic to a pivot-minor of G.

(ii) Suppose that a σ-compatible λ ∈ F∗ exists. Then for each positive integer
k ≥ 1, there is a set C ′(F,σ)

k of σ-symmetric F∗-graphs, each having at most
(6k+1− 1)/5 vertices, such that a σ-symmetric F∗-graph G has F-rank-width
at most k if and only if no σ-symmetric F∗-graph in C ′(F,σ)

k is isomorphic
to a σ-vertex-minor of G.

Note that C
(F,σ)
k and C ′(F,σ)

k are finite when F is finite. The most important
ingredients for proving Theorem 1 are Propositions 4 and 5, and Lemmas 10
and 11. All the other ingredients are already proved in [14,20] except that they
are stated for the connectivity function of matroids in [14] and for undirected
graphs in [20]. Their proofs rely only on the fact that the parameter is sym-
metric, submodular and integer valued. (Proofs are omitted because of space
constraints.)

Proposition 4. Let G be a σ-symmetric F∗-graph, λ a σ-compatible element in
F∗ and x a vertex of G. For every subset X of VG \ {x},

cutrkF
(G∗(x,λ))-x(X) = rk

( −1 MG[x, VG\(X ∪ x)]
MG[X, x] MG[X, VG\(X ∪ x)]

)

− 1.

The following lemma is thus the counterpart of [20, Lemma 4.4] and [14, Propo-
sition 3.2].

Lemma 10. Let G be a σ-symmetric F∗-graph and x a vertex in VG. Assume
that (X1, X2) and (Y1, Y2) are partitions of VG\{x}. Then,

cutrkF
G-x(X1) + cutrkF

(G∗(x,λ))-x(Y1) ≥ cutrkF
G(X1 ∩ Y1) + cutrkF

G(X2 ∩ Y2) − 1.

Similarly, we get the followings for pivot-minor.

Proposition 5. Let G be a σ-symmetric F∗-graph and xy an edge of G. For
every subset X of VG \ {x},

cutrkF
(G∧xy)-x(X) = rk

(
0 MG[x, VG\(X ∪ x)]

MG[X, x] MG[X, VG\(X ∪ x)]

)

− 1.

Lemma 11. Let G be a σ-symmetric F∗-graph and xy an edge in VG. Assume
that (X1, X2) and (Y1, Y2) are partitions of VG\{x}. Then

cutrkF
G-x(X1) + cutrkF

(G∧xy)-x(Y1) ≥ cutrkF
G(X1 ∩ Y1) + cutrkF

G(X2 ∩ Y2) − 1.
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3.3 Recognizing F-Rank-Width at Most k

We give in this section a cubic-time algorithm that decides whether a F∗-graph
has F-rank-width at most k, for fixed finite field F and a fixed k. This algorithm
is an easy corollary of the one by Hliněný and Oum concerning representable
matroids [15]. We refer to Schrijver [23] for our matroid terminology. We recall
that if M := (S, I) is a matroid and rM its rank-function, we let λM(U) :=
rM(U)+rM(S\U)−rM(S)+1 for every U ⊆ S. This function is symmetric and
submodular. The branch-width of M is the λM-width of S. If P is a partition of
S, we let λPM(Z) := λM(

⋃
Y ∈Z Y ) for any Z ⊆ P . λPM is clearly symmetric and

submodular. We recall the following important result by Hliněný and Oum [15].

Theorem 2 ([15]). Let F be a fixed finite field, and k be a fixed positive integer.
There exists a cubic-time algorithm that takes as input a representable matroid
M = (S, I) given with its representation over F and a partition P of S, and
outputs a layout of P of λPM-width at most k or confirms that all layouts of P
have λPM-width at least k + 1.

We can now derive our recognition algorithm from Theorem 2. For a set X , we
let X ′ be a disjoint copy of it defined as {x′ | x ∈ X}. For G a F∗-graph, we let
MG be the matroid on VG ∪ V ′

G represented by the (VG, VG ∪ V ′
G)-matrix (In

denotes the n× n identity matrix):

VG V ′
G

VG

(
I|VG| MG

)

For each x ∈ V , we let Px := {x, x′} and we let Π(G) := {Px | x ∈ VG}.

Proposition 6. Let G be a σ-symmetric F∗-graph. For every X ⊆ VG,

λ
Π(G)
MG

(P ) = 2 · cutrkF
G(X) + 1

where P := {Px | x ∈ X}.

Proof. Since when G is σ-symmetric, we have:

rk(MG[X,VG\X]) = rk(MG[VG\X,X ]) = cutrkF
G(X),

it is sufficient to prove the following:

λ
Π(G)
MG

(P ) = rk(MG[X,VG\X]) + rk(MG[VG\X,X ]) + 1.

We have:

λ
Π(G)
MG

(P ) = rMG(X ∪ X ′) + rMG(VG\X ∪ (VG\X)′) − rMG(VG ∪ V ′
G) + 1

= rk

(
0 MG[VG\X, X]

I|X| MG[X, X]

)

+ rk

(
0 MG[X, VG\X ]

I|VG|−|X| MG[VG\X, VG\X ]

)

− |VG| + 1

= |X| + rk(MG[VG\X, X]) + |VG − X| + rk(MG[X, VG\X ]) − |VG| + 1

= rk(MG[X, VG\X ]) + rk(MG[VG\X, X]) + 1. ��
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Theorem 3 (Checking F-Rank-Width at most k). For fixed k and a fixed
finite field F, there exists a cubic-time algorithm that, for a σ-symmetric F∗-
graph G, either outputs a layout of VG of cutrkF

G-width at most k or confirms
that the F-rank-width of G is larger than k.

Proof. Let k be fixed and let A be the algorithm constructed in Theorem 2 for
2k + 1. Let G be a σ-symmetric F∗-graph. We run the algorithm A with input
(MG, Π(G)). If it outputs a layout of Π(G) of λΠ(G)

MG
-width at most 2k + 1, we

can transform it into a layout of VG of cutrkF
G-width at most k. Otherwise, we

can confirm that the F-rank-width of G is greater than k (Proposition 6). The
fact that the algorithm A runs in cubic-time concludes the proof. ��

3.4 Specialisations to Graphs without Edge-Colors

We specialise in this section the F-rank-width to directed and oriented graphs
without edge-colors. As we already said, for undirected graphs without edge-
colors, the F2-rank-width matches with the known rank-width of undirected
graphs.

Directed Graphs. We recall that the adjacency matrix of a directed graph
G is the (VG, VG)-matrix MG over F2 where MG[x, y] := 1 if and only if
(x, y) ∈ EG. This matrix is not symmetric except when G is undirected.
In particular, rk(MG[X,VG\X]) is a priori different from rk(MG[VG\X,X ]).
The quest for finding another representation of directed graphs by matrices
where rk(MG[X,VG\X]) = rk(MG[VG\X,X ]) motivates the definition of sigma-
symmetry. We now give this representation.

We recall that F4 is the finite field of order four. Let {0, 1,�,�2} be its elements
with the property that 1+�+�2 = 0 and �3 = 1. Moreover, it is of characteristic
2. Let σ4 : F4 → F4 be the automorphism where σ4(�) = �2 and σ4(�2) = �. It
is clearly a sesqui-morphism.

For every directed graph G, let G̃ := (VG, EG ∪ {(y, x)|(x, y) ∈ EG}, �G) be
the F4

∗-graph where for every pair of vertices (x, y):

�G̃((x, y)) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if (x, y) ∈ EG and (y, x) ∈ EG,

� (x, y) ∈ EG and (y, x) /∈ EG,

�2 (y, x) ∈ EG and (x, y) /∈ EG,

0 otherwise.

It is straightforward to verify that G̃ is σ4-symmetric. The rank-width of a
directed graph G, denoted by rwdF4(G), is the F4-rank-width of G̃. Note that
for an undirected graph G, we have clearly rwdF4(G) = rwd(G), since F4 is an
extension of F2.

We now specialise the notion of σ-vertex-minor. We recall that given a sesqui-
morphism σ : F → F, an element λ of F∗ is said σ-compatible if σ(λ) = λ ·σ(1)2.
Since σ4(1) = 1, 1 is σ4-compatible and is the only one. We then denote G∗(v, 1)
by G ∗ v, and say that a directed graph H is a vertex-minor of a directed graph
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G if H̃ is a σ-vertex-minor of G̃. One easily verifies that if a directed graph H is
obtained from a directed graph G by applying a 1-local-complementation at x,
then H is obtained from G by modifying the subgraph induced on the neighbours
of x as shown on Table 1.

Table 1. We use the following notations: x → y means �G̃((x, y)) = �, x ← y means
�G̃((x, y)) = �2, x ↔ y means �G̃((x, y)) = 1, and z ⊥ t means �G̃((x, y) = 0).
(a) Uniform Case: z ← x → t or z → x ← t or z ↔ x ↔ t.
(b) Non Uniform Case: z ← x ← t or z → x ↔ t or z ↔ x → t.

G G ∗ x

z ⊥ t z ↔ t

z → t z ← t

z ← t z → t

z ↔ t z ⊥ t

G G ∗ x

z ⊥ t z → t

z → t z ⊥ t

z ← t z ↔ t

z ↔ t z ← t

(a) (b)

Moreover, as in the undirected case, we have G∧xy = G∧yx = G ∗ x ∗ y∗x =
G ∗ y ∗ x ∗ y. As corollaries of Theorems 1 and 3 we get that directed graphs of
rank-width at most k can be recognised by a cubic-time algorithm, and are
characterised by a finite list of directed graphs to exclude as vertex-minors.

Oriented Graphs. We can define another parameter in the case of oriented
graphs. Let G = (V,A) be an oriented graph, and let G̃ = (V,E, �) be the
F∗

3-graph such that E = A ∪ A′ where A′ = {(y, x)|(x, y) ∈ A}, �((x, y)) := 1
if (x, y) ∈ A and �((x, y)) := −1 if (x, y) ∈ A′. Clearly, G̃ is a σ-symmetric
F∗

3-graph, with σ(x) := −x. Moreover, one can show immediately that σ is a
sesqui-morphism. Note that there is no σ-compatible λ in F∗

3, thus no σ-local-
complementation is defined on σ-symmetric F∗

3-graphs. Nevertheless, oriented
graphs of F3-rank-width k are characterized by a finite set of oriented graphs
C

(F3,σ)
k of forbidden pivot-minors (whereas sets C

(F4,σ)
k and C ′(F4,σ)

k contains
directed graphs).

F3-rank-width and F4-rank-width of oriented graphs are two equivalent pa-
rameters (i.e the F3-rank-width of a graph class G is bounded if and only if the
F4-rank-width of G is bounded), since they are both equivalent to the clique
width.

4 Algebraic Operations for F-Rank-Width

Graph operations that generalise the ones in [5] and that characterise exactly
F-rank-width are given here. We let F be a fixed finite field along this section.
For a fixed positive integer k, we let Fk be the set of row vectors of length k.

We let σ : F → F be a fixed sesqui-morphism. If u := (u1, . . . , uk) ∈ Fk, we
let σ(u) be (σ(u1), . . . , σ(uk)). Similarly, if M = (mi,j) is a matrix, we let σ(M)
be the matrix (σ(mi,j)). Throughout this section, we will say graph instead of
σ-symmetric F∗-graph to avoid overloading the text.
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An Fk-coloring of a graph G is a mapping γG : VG → Fk with no con-
straint on the values of γ for adjacent vertices. An Fk-colored graph G is a
tuple (VG, EG, �G, γG) where (VG, EG, �G) is a graph and γG is an Fk-coloring
of (VG, EG, �G). Notice that an Fk-colored graph has not only its edges colored
with colors from F, but also its vertices with colors from Fk.

The following is a binary graph operation that combines several operations
consisting in adding colored edges between its disjoint arguments and recolor
them independently.

Definition 3 (Bilinear Products). Let k, � and m be positive integers and
let M,N and P be k × �, k ×m and � ×m matrices, respectively, over F. For
an Fk-colored graph G and an F�-colored graph H, we let G ⊗M,N,P H be the
Fm-colored graph K := (VG ∪ VH , EG ∪ EH ∪ E′, �K , γK) where:

E′ := {xy | x ∈ VG, y ∈ VH and γG(x) ·M · σ(γH(y))T �= 0},

�K((x, y)) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�G((x, y)) if x, y ∈ VG,

�H((x, y)) if x, y ∈ VH ,

γG(x) ·M · σ(γH(y))T if x ∈ VG, y ∈ VH ,

σ
(
γG(y) ·M · σ(γH(x))T

)
if y ∈ VG, x ∈ VH .

γK(x) :=

{
γG(x) ·N if x ∈ VG,

γH(x) · P if x ∈ VH .

Definition 4 (Constants). For each u ∈ Fk, we let u be a constant denoting
a Fk-colored graph with one vertex colored by u and no edge.

We denote by CF
n the set {u | u ∈ F1 ∪ · · · ∪ Fn}. We let R(F,σ)

n be the set
of bilinear products ⊗M,N,P where M,N and P are respectively k × �, k × m

and � ×m matrices for k, �,m ≤ n. Each term t in T (R(F,σ)
n , CF

n) defines, up to
isomorphism, a graph val(t).

One easily verifies that the operations ⊗M,N,P can be defined in terms of the
disjoint union and quantifier-free operations. The following is thus a corollary of
results in [6].

Theorem 4. For each monadic second-order property ϕ, there exists an algo-
rithm that checks for every term t ∈ T (R(F,σ)

n , CF
n), in time O(|t|), if the graph

defined by this term, up to isomorphism, satisfies ϕ.

The principal theorem of this section is the following. Its proof is omitted because
of space constraints.

Theorem 5. A graph G has F-rank-width at most n if and only if it is isomor-
phic to val(t) for some term t in T (R(F,σ)

n , CF
n).

The following is thus a corollary.

Theorem 6 ([5]). An undirected graph has rank-width at most n if and only if
it is isomorphic to val(t) for some term t in T (R(F2,σ1)

n , CF2
n ).
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5 Conclusion

We extended the rank-width of undirected graphs and some related results to
the C-graphs. Presented results imply in particular that every MSOL-definable
property can be checked in polynomial time on C-graphs, when C is finite,
and C-graphs of bounded F-rank-width are characterised by a finite list of C-
graphs to exclude as pivot-minors. We notice that the first author prove in [17]
that graphs of bounded F-rank-width are well-quasi-ordered by the pivot-minor
relation. Every open question in the undirected case is of course still relevant for
the C-graphs.

Recently, some authors investigated the clique-width of multigraphs [3] or
weighted graphs [13]. These graphs can be seen as N-graphs. It is straightforward
to verify that the rank-width is not equivalent to the clique-width when C is
infinite. It would be interesting to investigate the rank-width over an infinite
field, and in particular its algorithmic aspects: the recognition of C-graphs of
bounded rank-width, and the property checking on C-graphs of bounded rank-
width.
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Abstract. In this paper we consider the problem of computation of a
basis for a finite abelian group G with N elements. We present a deter-
ministic algorithm such that given a generating set for G and the prime
factorization of N , it computes a basis of G.

Keywords: Abelian group, generating system, basis of abelian group.

1 Introduction

In recent years, interest in studying finite abelian groups has raised due to the
increasing significant of its relationship with public key cryptography, quantum
computing and error-correcting codes. Abelian groups as the groups Z∗

n of in-
vertible elements of Zn, the multiplicative groups of finite fields, the groups of
elements of elliptic curves over finite fields, the groups of Jacobian varieties of
hyperelliptic curves, the class groups of quadratic fields and others have been
used for the specification of public key cryptosystems [13]. On the other hand,
in quantum computing, the famous hidden subgroup problem in case of a finite
abelian group has been solved by a polynomial time quantum algorithm [6], [12],
[16]. The Shor’s algorithm to factorize integers is one very important special case
[17]. Recently, an interesting application of finite abelian groups has been given
in the construction of efficient error correcting codes [7].

A finite abelian group can be decomposed to a direct sum of cyclic groups
with prime-power order. A set which consists of exactly one generator from each
of those cyclic groups form a basis of the abelian group. The elements of a basis
of a finite abelian group and their orders fully determine its structure. Therefore,
the development of efficient algorithms for this task has fundamental significance
in all the above applications.

In [4], Chen gave anO(N2) time algorithm for finding a basis of a finite abelian
group G. Recently, in [5], Chen and Fu showed two O(N) time algorithms for
this task. In case where G is represented by an explicit set of M generators,
a O(MN1/2+ε) time algorithm is given by Iliopoulos [10] and O(MN1/2) time

F. Winkler (Ed.): CAI 2011, LNCS 6742, pp. 174–184, 2011.
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algorithm is obtained by Buchmann and Schmidt [3]. Also, Teske [19] gave an
algorithm with expected running time O(MN1/2). Moreover, a randomized algo-
rithm for this task is proposed in [5]. When G is represented by a set of defining
relations that is associated with an integer matrix M(G), the computation of the
structure of G can be reduced to computing the Smith Normal Form of M(G).
One such approach can be found in [11]. Finally, in [2], an algorithm is given
for computing the structure of G, as well as a set of generators of G, based on
Gröbner bases techniques.

In this paper we obtain a deterministic algorithm for the computation of a
basis of a finite abelian group G with N elements in case where a generating
system of G with M elements and the prime factorization of N are given. We
express the time complexity of our algorithm in terms of M and the prime
factorization of N . This has the advantage to relate the time complexity of the
algorithm more closely with the structure of the finite abelian group. Note that
the complexity of our deterministic algorithm is very close to the complexity of
the randomized algorithm obtained in [5].

The paper is organized as follows. In Section 2 we recall some definitions from
Group Theory. Section 3 is devoted to the presentation of our results. In Section
4, we give some auxiliary algorithms which are necessary for the presentation of
our algorithms. In Section 5, we present an algorithm for the computation of the
order of an element and the order of its images in the directed factors of a finite
abelian group. The proof of Theorem 1 is given in Section 6. Section 7 contains
the proofs of Corollaries 1 and 2. Finally, the last section concludes the paper.

2 Preliminaries

In this section we recall some definitions from Group Theory.

1. Let (G,+) be a finite abelian group. We denote by |G| the cardinality of
a group G. For x ∈ G, the order of x, denoted by ord(x), is the smallest
positive integer k ≥ 1 such that kx = 0, where 0 is the the neutral element
of G.

2. Let x be an element of a group G such that ord(x) = k. The set

< x >= {x, 2x, 3x, . . . , kx = 0}

is a subgroup of G called the cyclic group generated by x.
3. Let H1, . . . , Hr be subgroups of G. The set

H1 + · · ·+Hr = {x1 + · · ·+ xr/ xi ∈ Hi, i = 1, . . . , r}

is a subgroup of G called the sum of H1, . . . , Hr.
4. If for every i = 1, . . . , r, we have

Hi ∩ (H1 + · · ·+Hi−1 +Hi+1 + · · ·+Hr) = {0},

then the set H = H1 + · · · + Hr is called direct sum of H1, . . . , Hr and in
this case we write

H = H1 ⊕ · · · ⊕Hr.
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5. Let S ⊆ G. The group
< S >=

∑

x∈S

< x >

is called the group generated by S. In case where G =< S >, the set S is
called a generating system for G.

6. Suppose now that G has N elements and

N = pa1
1 · · · pak

k

is the prime factorization of N . It is well known that any finite Abelian group
G of order N > 1, can be represented as

G ∼= G(p1)⊕ · · · ⊕G(pk),

where G(pi) is a subgroup of G of order pai

i (i = 1, . . . , k) [15, Theorem 16,
page 96] and is called the pi-primary component of G.

7. Furthermore, each G(pi) can be decomposed to a direct sum of cyclic groups

G(pi) ∼=< xi,1 > ⊕ · · ·⊕ < xi,μ(pi) >

and the order of xi,j (j = 1, . . . , μ(pi)) is a power of pi.
The set of elements xi,j (i = 1, . . . , k, j = 1, . . . , μ(pi)) is called a basis
of G.

8. The smallest prime power pe(pi)
i such that pe(pi)

i x = 0, for every x ∈ G(pi)
is called the exponent of G(pi).

Finally, if x is a real number, then we denote by +x,, as usually, the smallest
integer z such that x ≤ z.

We assume that for a, b ∈ G we can compute c = a+ b, we can test whether
a = b and for a ∈ G we can compute −a. We call these group operations. Note
that from every a ∈ G we can compute the neutral element 0 = a + (−a).
We assume that each group operation, arithmetic operation on O(logN) bits
integers and comparison can be performed in constant time.

3 Our Results

In this section we present our results.

Theorem 1. Let G be an abelian group with N elements. Suppose that a gener-
ating system with M elements for G and the prime factorization N = pa1

1 · · · pak

k

of N are given. Then, there is a deterministic algorithm for computing a basis
of G with time complexity

O(M(logN)2/ log logN +M

k∑

i=1

A(pi) +
k∑

i=1

B(pi)),

where

A(pi) = e(pi)+p1/2
i ,μ(pi)−1, B(pi) = (ai − e(pi))(log pai

i )2 log log pai

i .
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The expression of the time complexity of our algorithm in terms of the prime
factorization of N has the advantage to relate it more closely with the structure
of G.

The basic idea of the proof of Theorem 1 is the following: We select elements of
the generating system and computing their order and the orders of their images
in G(p), we construct bases of successively larger subgroups of every p-primary
components G(p) of G combining an algorithm of Teske [18] and an algorithm
of Beynon and Iliopoulos [1], until a basis of G(p) is obtained.

Next, we give two applications of Theorem 1. First, we present the important
special case of cyclic groups.

Corollary 1. Let G be a cyclic group with N elements. Suppose that a generat-
ing system with M elements for G and the prime factorization of N are given.
Then, there is an algorithm for computing a basis of G with time complexity

O(M(logN)2/ log logN).

Our next application concerns the groups of elliptic curves over finite fields.

Corollary 2. Let E be an elliptic curve over a finite field Fq and E(Fq) its
group of points over Fq. Let |E(Fq)| = N . Suppose that a generating system with
M elements for E(Fq) and the prime factorization of N are given. Then, there
is an algorithm for computing a basis of E(Fq) in time

O(MN1/4 logN).

Note that there is an algorithm for the computation of a basis for E(Fq) with
running time O(q1/2+ε) [14, Theorem 3]. Since N = Θ(q) [20, Theorem 4.2,
page 91], the running time of this algorithm is O(N1/2+ε). So, in case when the
computation of a generating system of E(Fq) with M < N1/4 elements in time
O(N1/2) is possible, we obtain a faster algorithm.

When a generating set {x1, . . . , xM} for G and the prime factorization of
ord(xi) (i = 1, . . . ,M) are given, a randomized algorithm is proposed in [5] for
the computation of a basis for G. Its time complexity is

O(M(logN)2 +
k∑

i=1

aip
ai/2
i )

which, as we see, is very close to the complexity of our deterministic algorithm.
We shall show that the hypothesis in [5] that the prime factorization of ord(xi)

(i = 1, . . . ,M) are given is equivalent to our hypothesis that the prime factor-
ization of N is given. The integers ord(xi) (i = 1, . . . ,M) are divisors of N and
so, if the prime factorization of N is known, the prime factorizations of ord(xi)
(i = 1, . . . ,M) can be easily computed (see also Proposition 1 below). Con-
versely, consider a prime divisor p of N . Then there is y ∈ G with ord(y) = p.
Further, there are c1, . . . , cM ∈ Z such that

y = c1x1 + · · ·+ cMxM .
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We denote by L the least common multiple of ord(xi) (i = 1, . . . ,M). If for
every i ∈ {1, . . . ,M} we have p � |ord(xi), then p � |L. On the other hand, we have
Ly = 0 and hence p|L which is a contradiction. Therefore, there is i such that
p|ord(xi). Thus, if the prime factorization of ord(xi) (i = 1, . . . ,M) are known,
then the prime divisors of N are known and so, one can easily compute their
exponents in the prime factorization of N . Thus, the hypothesis that the prime
factorization of ord(xi) (i = 1, . . . ,M) are given is equivalent to the hypothesis
that the prime factorization of N is given.

4 Auxiliary Results

In this section we give two algorithms necessary for the presentation of our
algorithms. We denote by G an abelian group with N elements.

The Extended Discrete Logarithm Problem

Suppose
B = {b1, . . . , bn}

is a subset of G such that the group H =< B > is the direct sum of the cyclic
groups < bi > (i = 1, . . . , n).

The extended discrete logarithm problem (EDLP) is the following problem:
Given a set B ⊆ G as above and w ∈ G, determine the smallest positive integer
z with zw ∈ H and integers z1, . . . , zn with 0 ≤ zi < ord(bi) (i = 1, . . . , k)
satisfying

zw =
n∑

i=1

zibi.

Note that z ≤ ord(w). If z = ord(w), then H∩ < w >= {0}. In [18], an algorithm
is presented which solves the EDLP. We assume that the baby-step giant-step
method is used to implement it [18, Remark 4.1, page 529]. The number of group
operations needed for its application is

O(max{+p1/2,ne(p)}),

where the maximum is taken over all prime divisors ofN and pe(p) is the exponent
of the p-component of G. It is called SOLVE-EDLP. Thus, we have

SOLVE-EDLP(w,B) = (z, z1, . . . , zn).

The Basis Algorithm

Let p be a prime divisor of N and G(p) the p-component of G. Suppose that

C = {c1, . . . , cn}
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is a subset of G(p) such that the group H =< C > is the direct sum of the
cyclic groups < ci >, (i = 1, . . . , n). If x ∈ G(p), then we denote by H� the
group generated by the set C ∪ {x}. Suppose that the orders of elements of C
are known and we have a relation of the form

plx =
n∑

i=1

δici,

where l, δi ∈ Z, k ≥ 0 and 0 ≤ δi < ord(ci) (i = 1, . . . , n). In [1], an algo-
rithm is given for the computation of a basis C� for H� called BASIS which
needs O((log |H�|)2) group operations and O((log |H�|)2 log log |H�|) arithmetic
operations. Then we write

BASIS(C, x, (pl, δ1, . . . , δn)) = C�.

5 Computing the Order of an Element

Let G be an abelian group with N elements and N = pa1
1 · · · p

ak

k the prime
factorization of N . Let x ∈ G and m = ord(x). By Lagrange’s theorem [15, page
35], m divides N and so,

m = pb1
1 · · · p

bk

k , where 0 ≤ bi ≤ ai (i = 1, . . . , k).

The following lemma gives the orders of elements xi = (m/pbi

i )x (i = 1, . . . , k)
and the decomposition of < x > in direct product of subroups of G(pi) (i =
1, . . . , k).

Lemma 1. If x ∈ G has order m = pb1
1 · · · p

bk

k , then for i = 1, . . . , k the element
xi = (m/pbi

i )x has order pbi

i and we have

< x >=< x1 > ⊕ · · ·⊕ < xk > .

Proof. See [15, page 96].

For the presentation of our algorithm for the computation of a basis of G in
the next section, we need a procedure such that given x ∈ G, it computes m,
the elements xi (i = 1, . . . , k) and theirs orders. This result is obtained in the
following proposition.

Proposition 1. Let G be an abelian group with N elements. Suppose that the
prime factorization N = pa1

1 · · · p
ak

k of N is given. Then there is a deterministic
algorithm such that for every x ∈ G it computes its order m = pb1

1 · · · p
bk

k , the
elements xi = (m/pbi

i )x (i = 1, . . . , k) and theirs orders in time

O((logN)2/ log logN).

Proof. The following algorithm achieves the above task.
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Algorithm 1. ORDER (x)
% N = pa1

1 . . . pak
k

% Where x ∈ G

1: m = N
2: for i = 1 to k
3: for bi = 0 to ai

4: if pbi
i (m/pai

i )x = 0
5: break
6: end if
7: end for
8: m = m/pai−bi

i

9: end for
10: for i = 1 to k
11: compute mi = m/pbi

i .
12: end for
13: for i = 1 to k
14: compute xi = mix.
15: end for
16: return [x, m, (x1, p

b1
1 ), . . . , (xk, pbk

k )]

% Where ord(x) = m = pb1
1 · · · pbk

k , xi = (m/pbi
i )x and ord(xi) = pbi

i .

Proof of Correctness: In Steps 1-13, the algorithm computes the smallest positive
integer m such that mx = 0 and so, ord(x) = m. Since m = pb1

1 · · · p
bk

k , then
Lemma 1 implies that ord(xi) = pbi

i .

Proof of Time Complexity: For the computation of pai

i , m/pai

i , p
bi

i and mi (i =
1, . . . , k), the algorithm ORDER requires O(a1 + · · ·+ak) arithmetic operations.
Since we have

a1 + · · ·+ ak = O(logN),

the algorithm needs O(logN) arithmetic operations. For every i = 1, . . . , k the
computation of mix needs O(logmi) group operations and the computation of
pj

i (m/p
ai

i )x, O(logm) group operations [8, page 69]. By [9, page 355], we have

k = O(logN/ log logN).

Thus, we have O((logN)2/ log logN) group operations. Hence the time com-
plexity of ORDER is O((logN)2/ log logN). ��

6 Proof of Theorem 1

In this section we devise an algorithm for computing a finite abelian group basis
(FAGB). Our algorithm accepts as input an abelian group G with N elements,
a generating system S of G with M elements and the prime factorization of N .
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Algorithm 2. COMPUTE-FAGB(G, S, N)
% An abelian group (G, +) with |G| = N ,
% a generating system S = {g1, . . . , gM} of G,
% and the prime factorization N = pa1

1 · · · pak
k of N .

1: for j = 1 to M

2: compute ORDER(gj) = [gj , mj , (gj,1, p
bj,1
1 ), . . . , (gj,k, p

bj,k

k )].
3: end for
4: for i = 1 to k
5: Sort the non-zero elements among g1,i, . . . , gM,i in decreasing order of quantities

ord(gj,i). These are the elements γ1,i, . . . , γm(i),i

with ord(γ1,i) ≥ . . . ≥ ord(γm(i),i) and m(i) ≤ M .
6: end for
7: for i = 1 to k
8: Set B1,i = {γ1,i}.
9: end for

10: for i = 1 to k
11: for j = 2 to m(i)
12: if | < Bj−1,i > | �= pai

i

13: Compute SOLVE-EDLP(γj,i, Bj−1,i) = (zj,i, zj,i,1, . . . , zj,i,r(j,i)).

14: Compute the largest integer kj,i ≥ 0 such that p
kj,i

i divides zj,i

15: if kj,i �= 0, then compute

16: sj,i = zj,i/p
kj,i

i and hj,i = sj,iγj,i

17: Compute BASIS(Bj−1,i, hj,i, (p
kj,i

i , zj,i,1, . . . , zj,i,r(j,i))) = Bj,i

18: else Bj,i = Bj−1,i

19: end if
20: end if
21: end for
22: end for
23: return For i = 1, . . . , k, output the couples (y1,i, n1,i), . . . , (yl(i),i, nl(i),i).

%Where l(i) is the largest index j for which Bj,i is computed, Bl(i),i = {y1,i, . . . , yl(i),i}
and ord(yj,i) = nj,i.

Proof of Correctness: Let Bj,i = {bj,i,1, . . . , bj,i,r(j,i)} (i = 1, . . . , k, j =
1, . . . ,m(i)). For every j = 1, . . . ,m(i), the algorithm SOLVE-EDLP gives ele-
ments zj,i, zj,i,1, . . . , zj,i,n such that

zj,iγj,i =
r(j,i)∑

s=1

zj,i,sbj,i,s.

Let kj,i be the largest integer ≥ 0 such that pkj,i

i divides zj,i. Put sj,i = zj,i/p
kj,i

i

and hj,i = sj,iγj,i. Thus, we have

p
kj,i

i hj,i =
r(j,i)∑

s=1

zj,i,sbj,i,s.
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If kj,i = 0, then γj,i ∈ Bj−1,i and so, Bj,i = Bj−1,i. Otherwise, the algorithm
BASIS applied on Bj−1,i, hj,i, p

kj,i

i and zj,i,1, . . . , zj,i,r(j,i) gives the basis Bj,i of
< {γj,i} ∪Bj−1,i >. The procedure continuous until | < Bj,i > | = pai

i in which
case Bj,i is a basis of G(pi).

Proof of Time Complexity: We denote by μ(pi) the number of cyclic subgroups
which are direct factors of G(pi) and by pe(pi)

i the exponent of G(pi).
In Steps 1-3 we apply the algorithm ORDER M times. Thus, the correspond-

ing time complexity is O(M(logN)2/ log logN).
Steps 4-6 requires O(kM logM) comparisons. By [9, page 355], we have

k = O(logN/ log logN), and so we need O(M(logM) logN/ log logN)
comparisons.

In Step 13, for i = 1, . . . , k, we apply SOLVE-EDLP, provided that μ(pi) > 1,
until a basis for G(pi) is obtained. Suppose that |Bj,i| = μ(pi) and < Bj,i > is
generated by the elements γ1,i, . . . , γj,i. It follows that it contains all the elements
of G(pi) having order ≤ ord(γ1,i). Since we have

ord(γ1,i) ≥ . . . ≥ ord(γm(i),i),

the elements γj+1,i, . . . , γm(i),i belong to < Bj,i > and so, we get < Bj,i >=
G(pi). Hence, if |Bj,i| = μ(pi), then Bj,i is a basis of G(pi). So, we have applied
SOLVE-EDLP in bases B1,i, . . . , Bj−1,i which have at most μ(pi) − 1 elements.
Thus, for i = 1, . . . , k, Steps 10-13 need

O(e(pi)M+p1/2
i ,μ(pi)−1)

group operations.
For i = 1, . . . , k, Steps 14-16 require O(M log pai

i ) group operations and
O(Mai) arithmetic operations.

Since we have ord(γ1,i) ≥ ord(γt,i) (t = 2, . . . ,m(i)), it follows that B1,i =
{γ1,i} and ord(γ1,i) = pe(pi). For i = 1, . . . , k there are ai − e(pi) subgroups
of G(pi) containing < B1,i > and so in Step 17 we need at most ai − e(pi)
applications of the algorithm BASIS. Every application of this algorithm requires

O((ai − e(pi))(log pai

i )2)

group operations and

O((ai − e(pi))(log pai

i )2 log log pai

i )

arithmetic operations.
Hence, the time complexity of the algorithm COMPUTE-FAGB is

O(M(logN)2/ log logN +M

k∑

i=1

A(pi) +
k∑

i=1

B(pi).

where

A(pi) = e(pi)+p1/2
i ,μ(pi)−1, B(pi) = (ai − e(pi))(log pai

i )2 log log pai

i .
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7 Proofs of Corollaries 1 and 2

Proof of Corollary 1. Let N = pa1
1 · · · pak

k be the prime factorization of N . Since
G is cyclic, we have μ(pi) = 1 and ai = e(pi) (i = 1, . . . , k). On the other hand,
we have

k∑

i=1

e(pi) = O(logN).

Thus, Theorem 1 implies the result.

Proof of Corollary 2. By [20, Theorem 4.1, page 91], E(Fq) ∼= ZN1 ×ZN2 , where
N1|N2. If N1 = 1, then Corollary 1 implies the result. Suppose that N1 > 1. The
prime factorizations of N1 and N2 are

N1 = pa1
1 · · · p

ak

k , N2 = pb1
1 · · · p

bl

l ,

where k ≤ l and ai ≤ bi (i = 1, . . . , k). Hence

N = N1N2 = pa1+b1
1 · · · pak+bk

k p
bk+1
k+1 · · · p

bl

l

and so e(pi) = ai + bi, μ(pi) = 2 (i = 1, . . . , k) and e(pi) = bi, μ(pi) = 1
(i = k+ 1, . . . , l). Therefore, Theorem 1 implies that the computation of a basis
for E(Fq) requires O(MN1/4 logN) time.

8 Conclusion

In this paper we have presented a deterministic algorithm for the computation
of a basis of a finite abelian group G. We have considered the case where a
generating system of G and the prime factorization of N is given. Its time com-
plexity is comparable with that of the randomized algorithm of Chen and Fu
[5]. In a future work we plan to study more closely families of groups where our
algorithm has better time complexity from the existing algorithms. Especially,
the computation of a generating system S for the group of points of an elliptic
curve E over a finite field Fq with |S| < |E(Fq)|1/4 will give a faster algorithm
for the computation of a basis for the group E(Fq).
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Abstract. We consider rewriting as a tool for solving identity problems
in varieties of idempotent semigroups. It is known that there exist fi-
nite canonical term rewrite systems and finite canonical word rewrite
systems for only a very limited number of those varieties. We present a
finite canonical conditional word rewrite system for a particular variety
in which the classical approaches cannot be applied. Moreover, we ob-
tain infinite single letter deleting rewrite systems for each join-irreducible
variety.

Keywords: Rewriting, identity problems, varieties of semigroups.

1 Introduction

Rewriting is one of the main tools in algorithmic algebra. In semigroup theory
one considers the so-called word problems for finitely presented semigroups (i.e.
one looks for an effective description of consequences of a given finite set of
relations over a finite alphabet). It was quite unexpected that there are finite
presentations where the word problem is solvable and where no finite canonical
rewrite system exist – see Squier [14].

On the other hand, solving the identity problems in varieties of universal
algebras (i.e. to decide effectively which identities are valid there) is other cru-
cial topic in algorithmic algebra. Again, one possibility to solve them is to use
rewriting techniques. In contrary to word problems we have to substitute terms
(words) into our rewriting rools. We discuss here rewriting for solving the iden-
tity problems in varieties of idempotent semigroups.

The lattice L(B) of all varieties of idempotent semigroups was described by
Birjukov [3], Fennemore [5], Gerhard [6]. – see Figure 1 in Section 2. The authors
also showed that each proper variety in L(B) could be defined by x2 � x and
single additional identity. In [11,12] the third author presented a transparent
way how to solve the identity problems in all members of L(B) using certain
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invariants. In this paper, we explore the usage and limitations of rewriting to
solve the identity problems in varieties of idempotent semigroups.

Basically three variants of rewrite systems for varieties of semigroups are
studied currently: term rewrite systems, word rewrite systems and conditional
word rewrite systems. In [1], Baader showed that the first two approaches (using
finite systems) are quite restrictive, they apply only in a very limited number of
varieties – see Section 3. Concerning the third approach, a remarkable conditional
word rewrite system for the variety of all idempotent semigroups was found by
Siekmann and Szabó in [13].

In our paper, we first show that a word rewrite system for a certain variety
(C1 in our notation) from [1] can be simplified using a new finite conditional
word rewriting system. In an other variety (B2 in our notation), where a finite
word rewrite system does not exist, we can apply successfully a simple finite
conditional word rewrite system.

All our rules are single letter deleting. Such rules are appropriate when show-
ing confluency – see Remark 1, and when characterizing canonical forms. There-
fore, it was a natural task to find single letter deleting identities for a wide
class of varieties in L(B); more precisely, we do this for all join-irreducible va-
rieties in L(B). Moreover, we show that in those varieties one can reach the
canonical forms using single letter deleting rules (whose systems are infinite in
general). The main result here is the existence of (infinite) word rewrite systems
for those varieties. This can be considered as the first step when looking for
finite conditional rewrite systems for such varieties. Other varieties of idempo-
tent semigroups are joins of the join-irreducible ones and u � v is an identity
in U ∨ V if and only if the words u and v have the same canonical forms both
in U and in V . This fact implies that in order to efficiently solve the identity
problem in proper varieties of idempotent semigroup, it would suffice to have
rewrite systems for join-irreducible varieties.

In our paper we first collect some basic facts from universal algebra and about
varieties of idempotent semigroups. In Section 3 we start with a general approach
of rewriting and we specify it for varieties of groupoids. Then we consider word
rewrite systems for varieties of semigroups and we deal with conditional word
rewrite systems (we modified a bit the usual definition – for instance, the system
from [13] is finite for us – and we also distinguish between letters and words).
Each subsection collects also known results.

In Section 4 we consider finite conditional word rewrite systems for the variety
C1 and for the variety of all idempotent semigroups. A nontrivial example is
presented in the next section. Finally, Section 6 deals with single letter deleting
identities and single letter deleting rewrite systems.

2 Varieties of Idempotent Semigroups

Let X = {x1, x2, ...} be a fixed countable set of variables. As usual, we denote by
X+ the free semigroup overX (i.e. the set of all words over X with the operation
of concatenation). Let λ be the empty word and we denote by X∗ = X+ ∪ {λ}
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the free monoid over X . Let p(r1, r2, . . . ) be the word resulting from p ∈ X+

after simultaneous substitutions r1 for x1, r2 for x2, ... (r1, r2, · · · ∈ X+).
An identity is a pair of words (p, q) ∈ X+×X+; we write p � q. A semigroup

S satisfies the identity p � q if for each homomorphism α : X+ → S, we have
α(p) = α(q). We write Mod(Σ) for the class of all semigroups satisfying all
identities from a given system Σ of identities. Such classes are called varieties.
For a variety V = Mod(Σ), let ∼V be the set of all identities valid in all members
of V ; in other words, the set of all consequences of the system Σ. Let

→Σ = { (sp(r1, r2, . . . )t, sq(r1, r2, . . . )t) | (p, q) ∈ Σ, s, t ∈ X∗, r1, r2, . . . ∈ X+ }.

A well-known result, the so-called completeness of equational logics, by Birkhoff
(see Theorem 14.19 in [4]) assures that ∼V is the equivalence relation generated
by →Σ . Moreover the relations of the form ∼V are exactly the fully invariant
congruences on X+ (i.e. congruences invariant with respect to substitutions).
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Fig. 1. The lattice of varieties of idempotent semigroups
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The lattice of all varieties of idempotent semigroups was independently de-
scribed by Birjukov [3], Fennemore [5] and Gerhard [6].

Varieties of semigroups are usually presented by systems of identities or by
structural properties of their members. In [11,12] we studied the varieties of
unions of groups (idempotent semigroups are unions of trivial groups) and the
basic tools were alternative descriptions of the relations ∼V ’s. We used the fol-
lowing “invariants”.

For p ∈ X+, we define

– the content c(p) ⊆ X of p as the set of all variables in p,
– the head h(p) ∈ X of p as the leftmost variable in p,
– the tail t(p) ∈ X of p as the rightmost variable in p,
– 0(p) ∈ X∗ as the longest initial segment of p containing all but one variable,
– 1(p) ∈ X∗ as the longest final segment of p containing all but one variable,
– −→p ∈ X+ as the sequence of the first occurrences of variables when reading
p from the left,

– ←−p ∈ X+ as the sequence of the first occurrences of variables when reading
p from the right,

– |p| denotes the length of p.

We also put h(λ) = t(λ) = 0(λ) = λ, 00(p) = p, 02(p) = 0(0(p)) and so on.

For the quite simple case of idempotent semigroups the descriptions of the
relations ∼V ’s is transparently explained in [7], Section 1.1.3.

3 Rewriting on Varieties of Semigroups

3.1 Generalities

An excellent source on rewriting is the book by Baader and Nipkow [2]. We recall
here only facts needed in our text.

Consider a binary relation→ on a set M , called rewrite relation. The problem
consists in finding an effective description of the equivalence relation eq(→)
generated by →. We denote by ρ∗ the reflexive transitive closure of ρ ⊆M ×M .
The relation → is

– terminating if there is no infinite sequence a1 → a2 → . . . , a1, a2, . . . ∈M ,
– locally confluent if for each a, b, c ∈ M with b ← a → c, there exists d ∈ M

such that
b→∗ d←∗ c ,

– confluent if for each a, b, c ∈ M with b ←∗ a →∗ c, there exists d ∈ M such
that

b→∗ d←∗ c ,

– canonical if it is terminating and confluent.
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In [9], Neuman proves that a terminating locally confluent relation is conflu-
ent. A →-canonical form of a ∈M is an element b ∈M that a→∗ b and there is
no c ∈M with b→ c. In general, an element needs not have a canonical form or
it can have several of them. In the case of a canonical relation →, every element
a possesses exactly one →-canonical form which we denote by [a]→. In this case,
the elements a and b are in the same equivalence class of the relation eq(→) if
and only if [a]→ = [b]→.

In fact, the main task in rewriting consists in the following: let ∼ be a given
(often not effectively) equivalence relation on a set M and we are looking for a
finite canonical rewrite relation −→ on M generating the relation ∼.

3.2 Term Rewriting and Known Results for Idempotent Semigroups

We are interested only in the signature of single binary operational symbol. Let
G be the free groupoid over X , i.e. the set of all terms over X in the above
signature. For p, r1, r2, · · · ∈ G we define p(r1, r2, . . . ) as the term resulting from
p = p(x1, x2, . . . ) after simultaneous substitutions r1 for x1, r2 for x2, .... A term
rewrite system (TRS in short) is a subset T of G×G. The corresponding rewrite
relation on G is

→T = { (t, t′) ∈ G×G | where t, r1, r2, · · · ∈ G, (u, v) ∈ T, u(r1, r2, . . . )

being a subterm of t and t′ results from t by putting

v(r1, r2, . . . ) in place of u(r1, r2, . . . ) } .
A usage of TRS’s for varieties of idempotent semigroups is very restrictive;

namely:

Result 1 (Baader [1]). Let V be a variety of idempotent semigroups. Then
there exists a TRS TV such that the rewrite relation →TV is canonical on G and
the equivalence it generates coincides with the fully invariant congruence on G
corresponding to the variety V (i.e. with the set of all groupoid identities which
are valid in V) if and only if V ∈ {LZ,RZ,RB}. Moreover, one can take

– TLZ = { (xy)z → x(yz), xy → x },
– TRZ = { (xy)z → x(yz), xy → y },
– TRB = { (xy)z → xz, x(yz) → xz, xx→ x }.

3.3 Word Rewriting and Known Results for Idempotent Semigroups

According to Baader [1], a word rewrite system (WRS in short) is a subset W
of X+ ×X+. For a rule (p, q) ∈ W we also write p→ q. A WRS W also defines
a rewrite relation →W on X∗ by

→W = { (sp(r1, r2, . . . )t, sq(r1, r2, . . . )t) | (p, q) ∈ W, s, t ∈ X∗, r1, r2, · · · ∈ X+}.

A usage of WRS’s for varieties of idempotent semigroups is applicable also
only for a small number of varieties; namely:
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Result 2 (Baader [1]). Let V be a variety of idempotent semigroups. Then
there exists a WRS WV such that the rewrite relation →WV is canonical and
the equivalence it generates coincides with ∼V if and only if V equals one of the
following varieties:

(i) LZ = Mod(xy � x ),
(ii) RB = Mod(x2 � x, xyx � x ),
(iii) LRB = Mod(x2 � x, xyx � xy ),
(iv) LQNB = Mod(x2 � x, xyxz � xyz ),
(v) LSNB = Mod(x2 � x, xyzxz � xyz ).

or the left-right duals for items (i), (iii)–(v). Moreover, one can take

– WLZ = { xy → x },
– WRB = { x2 → x, xyz → xz },
– WLRB = { x2 → x, xyx→ xy },
– WLQNB = { x2 → x, xyxz → xyz },
– WLSNB = { x2 → x, xyztzx→ xyztx, xzyzx→ xyzx, zxyzx→ zxyx,
zyxzx→ zyx, zyxtzx→ zyxtx }.

3.4 Conditional Word Rewriting Systems: Definitions and Examples

For our purposes we formalize the concept of a conditional word rewrite system
as follows. Here we use two alphabets; we substitute variables for elements of
the first set and words for elements of the second one.

Let A = {a1, a2, . . . } and P = {p1, p2, . . . } be the so-called rule alphabets.
A conditional rule is an triple (�, r, ϕ) where �, r ∈ (A ∪ P )+ and ϕ is a finite
relation on (A∪P )+. A ϕ-substitution is a mapping σ from A to X and from P
to X∗ (in fact, a pair of mappings), naturally extended to the domain (A∪P )+,
satisfying

(u, v) ∈ ϕ implies c(σ(u)) ⊆ c(σ(v)) .

A conditional word rewrite system (CWRS in short) C is a set of conditional
rules. It defines a rewrite relation →C on X+ by

→C = { (sσ(�)t, sσ(r)t) | (�, r, ϕ) ∈ C, σ is a ϕ-substitution, s, t ∈ X∗ } .

In what follows we are a bit informal, for instance, we write

pxqxr → pxqr, p, q, r ∈ X∗, x ∈ X, c(q) ⊆ c(r) ⊆ c(pxq),

instead of

( pxqxr, pxqr, {(q, r), (r, pxq)} ), x ∈ A, p, q, r ∈ P .

Notice that a WRS is a special case of a CWRS; we identify P with X and
we do not use A and conditions.

A significant example of a finite CRWS follows.
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Result 3 (Siekmann and Szabó [13]). Let B = Mod(x2 � x) be the variety
of all idempotent semigroups. Then the conditional rules

– p2 → p, p ∈ X+,
– pqr → pr, p, q, r ∈ X+, c(q) ⊆ c(p) = c(r)

determine a canonical CWRS on X+ such that the equivalence it generates is
exactly ∼B.

The proof of the local confluency is extremely complicated there. Another type
of proof is presented in [8] by Neto and Sezinando; the idea of the proof is to
show that each class of ∼B contains just one word on which conditional rules
can not be applied. We return to that result in Section 4.

Also Nordahl in [10] claims that a certain finite set of conditional rules de-
termines a canonical CWRS such that the equivalence it generates is the fully
invariant congruence on X+ corresponding to the join of the variety of all idem-
potent semigroups and the variety of all commutative semigroups.

4 Two Examples of Finite CWRS with Single Letter
Deleting Rules

First we present a simple CWRS for the variety C1 = LSNB = Mod(x2 �
x, xyzxz � xyz ). According to [11,12], the corresponding fully invariant congru-
ence ≈1 = ∼C1 can be described as follows:

for all u, v ∈ X∗,we have u ≈1 v iff −→u = −→v and ( ∀ k ≥ 0 ) t(0k(u)) = t(0k(v)).

Let C be a CWRS consisting of the following rules:
(C1) x2 → x, x ∈ X ,
(C2) pxy → py, x, y ∈ X, p ∈ X+, x, y ∈ c(p).

Note that each u ∈ X+ can be written in a unique way in the following form:

(∗) u = y1w1y2w2 . . . ynwn where n ≥ 1, y1, . . . , yn ∈ X, w1, . . . , wn ∈ X∗ ,

and for all k ∈ {0, . . . , n− 1}, we have 0k(u) = y1w1y2w2 . . . yn−kwn−k .

Lemma 1. The word of the form (∗) is a →C-canonical form if and only if
(1) w1, . . . , wn ∈ X ∪ {λ}, and
(2) for all j ∈ {1, . . . , n}, we have yj �= wj .

Proof. First we show that for an arbitrary word u ∈ X+ written in the form (∗)
there is such a word v in the form (∗) satisfying conditions (1) and (2) such that
u→∗

C v. Indeed, if u has form (∗) and for some j the length of wj is more than
1, we apply rule (C2) to shorten this word. Using this repeatedly, we get a word
satisfying (1). Then using rule (C1) (repeatedly) we can get the desired form.

By definition of the rules (C1) and (C2), they cannot be applied to reduce
words with shape (∗) that satisfy properties (1) and (2). ��
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Lemma 2. (i) We can derive the defining identities for C1 from the rules of C.
(ii) The system C is consistent with C1, i.e. both rules are identities in C1.
(iii) If both u and v are →C-canonical forms and u ≈1 v, then u = v.

Proof. (i): Using rule (C1) one can derive x from xx. Similarly, xyzxz → xyzz
by (C2) and xyzz → xyz by (C1).

(ii): By definition of C1 we have (x2, x) ∈ ≈1 for x ∈ X . Let us consider
x, y ∈ X, p ∈ X+ such that x, y ∈ c(p), i.e. we have pxy → py. We have
−−→pxy = −→p = −→py and t(pxy) = y = t(py). Moreover, 0(pxy) = 0(p) = 0(py).

(iii): Let u and v be →C -canonical forms. By Lemma 1 we can write u =
y1w1 . . . ynwn and v = y′1w′

1 . . . y
′
mw

′
m, with n,m ≥ 1, y1 . . . , yn, y

′
1, . . . y

′
m ∈ X

and w1, . . . , wn, w
′
1, . . . , w

′
n ∈ X ∪ {λ}. Since u ≈1 v, we have y1y2 . . . yn = −→u =

−→v = y′1y
′
2 . . . y

′
m from which n = m and y1 = y′1, . . . , yn = y′n follows. Now for

each k ∈ {0, . . . , n−1} we consider wn−k and w′
n−k. If wn−k ∈ X then t(0k(u)) =

wn−k and if wn−k = λ then t(0k(u)) = yn−k. Similarly for t(0k(v)). Recall that
t(0k(u)) = t(0k(v)) follows from the assumption u ≈1 v. If wn−k = λ and w′

n−k ∈
X at the same moment, then y′n−k = yn−k = t(0k(u)) = t(0k(v)) = w′

n−k which
contradicts condition (ii) in Lemma 1. The case wn−k ∈ X and w′

n−k = λ is
impossible from the same reason. Thus wn−k = w′

n−k = λ or wn−k, w
′
n−k ∈ X .

In the second case we have wn−k = t(0k(u)) = t(0k(v)) = w′
n−k and we can

conclude with wn−k = w′
n−k in all cases. Hence we get u = v. ��

Theorem 1. For each u, v ∈ X+, we have that u � v is an identity in C1 if and
only if the words u and v have the same →C-canonical forms.

Proof. Since the rewriting using the rules C shortens the words, the relation→C

is terminating. We show that this relation is also locally confluent. Let u ∈ X+

that can be rewritten to v and to w in single step using C. Those two words have
→C -canonical forms, say v and w. By Lemma 2 (ii) we have that v ≈1 u ≈1 w
and Lemma 2 (iii) gives that v = w.

To complete the proof we have to show that eq(→C) = ≈1. The ⊆-part follows
from Lemma 2 (ii). Lemma 2 (iii) gives the opposite inclusion. ��

The second example of finite CWRS with single letter deleting rules follows.

Remark 1. Having letters instead of words in certain places of a CWRS often
leads to the same canonical forms and showing the (local) confluency is much
easier. For instance, we can modify the second rule from Result 3 to

pxr → pr, p, r ∈ X+, x ∈ X, x ∈ c(p) = c(r) .

On the other hand such modified rules slow down the rewriting.

5 A Finite CWRS for the Variety B2

We consider the variety B2 = Mod(x2 � x, xyz � xyzxzyz ) using the identi-
ties from [5]. According to Proposition 1, proved later in Section 6, the second
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identity can be replaced by xyzxyx � xyzyx. By [11,12], the corresponding fully
invariant congruence ∼2 can be effectively described as follows:

for all u, v ∈ X∗, we have u ∼2 v if and only if ( ∀ k ≥ 0 )
←−−−
0k(u) =

←−−−
0k(v) .

Let D be the CWRS consisting of the following rules:
(D1) xx→ x, x ∈ X ,
(D2) pxqx→ pqx, p, q ∈ X∗, x ∈ X, c(qx) ⊆ c(p),
(D3) pxqxr → pxqr, p, q, r ∈ X∗, x ∈ X, c(q) ⊆ c(r) ⊆ c(pxq).

Lemma 3. Let u be as in (∗) with

w1 = y1,1 . . . y1,�1 , . . . , wn = yn,1 . . . yn,�n , where yi,j ∈ X, �i ≥ 0 .

Then u is a →D-canonical form if and only if
(1) y1 �= y1,1, . . . , yn �= yn,1,
(2) |{y1,1, . . . , y1,�1}| = �1, . . . , |{yn,1, . . . , yn,�n}| = �n,
(3) for j = 2, . . . , n, if 0n+1−j(u) = syj,1t with s, t ∈ X∗ and yj,1 �∈ c(t),

then c(tyj) �⊆ {yj,2, . . . , yj,�j}.

Proof. First we show that for an arbitrary word u ∈ X+ written in the form (∗)
there is such a word v in the form (∗) satisfying conditions (1) – (3) such that
u→∗

C v. We use rule (D1) to guarantee condition (1).
Let u have the form (∗) with (1) being satisfied. Let j ∈ {2, . . . , n}, yj,� =

yj,�′ , � �= �′. We use rule (D2) with the first x being yj,� and the second one
being yj,�′ . Using this repeatedly, we get a word satisfying (1) and (2).

Let u have the form (∗) with (1) and (2) being satisfied. Let j ∈ {2, . . . , n},
0n+1−j(v) = syj,1t, s, t ∈ X∗, yj,1 �∈ c(tyj) ⊆ {yj,2, . . . , yj,�j}. We use rule (D3)
where the x’s in (D3) are the above mentioned occurrences of yj,1 and p = s,
q = tyj and r = yj,2 . . . yj,�j . Using this repeatedly, we get a word satisfying (1)
– (3).

Now we show that rules (D1) – (D3) are not applicable to a word u of the
form (∗) satisfying (1) – (3). (D1) cannot be applied to such a u because (1) and
(2) prevent the occurrence of a subword xx in u.

Concerning (D2): due to c(qx) ⊆ c(p) the xqx part of pxqx should be placed
between some yj and yj+1 in u. But it contradicts (2).

Finally, we show that also rule (D3) is not applicable. Indeed, take a word u
of the form (∗) satisfying (1) – (3). Let us examine the possible subwords of u
with shape pxqxr, as in (D3). Notice that q = λ is not possible and therefore
also r �= λ. Due to c(r) ⊆ c(pxq) the word r is a segment of some wj in u. Due
to yj �∈ c(y1w1 . . . yj−1wj−1), the right x in pxqxr is not yj from (∗). We can
suppose that x �∈ c(q), otherwise q = q1xq2 and we can put p′ = pxq1 and use
p′xq2xr → p′xq2r instead with the same effect. If wj = w′xrw′′ then w′ = λ due
to c(w′) ⊆ c(q) ⊆ c(r) and condition (2). Hence x = yj,1 and if we consider s
and t from (3) we have q = tyj . Thus c(q) �⊆ {yj,2, . . . , yj,�j} and consequently
c(q) �⊆ c(r), leading to a contradiction. ��
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Lemma 4. (i) We can derive the defining identities for B2 from the rules of D.
(ii) The system D is consistent with B2, i.e. the rules are identities in B2.
(iii) If both u and v are →D-canonical forms and u ∼2 v, then u = v.

Proof. (i): Using rule (D1) one can derive x from xx. Using (D2) with p = xyz
and q = y one can obtain xyzxyx→D xyzyx.

(ii): By construction, we have xx ∼2 x for x ∈ X .
Consider pxqx→ pqx, p, q ∈ X∗, x ∈ X, c(qx) ⊆ c(p). Then ←−−−pxqx =←−−pqx and

0(pxqx) = 0(pqx). Thus pxqx ∼2 pqx.
Consider pxqxr → pxqr, p, q, r ∈ X∗, x ∈ X, c(q) ⊆ c(r) ⊆ c(pxq). Then

←−−−pxqxr = ←−−pxqr and 0(pxqxr) = 0(pxqr). Thus pxqxr ∼2 pxqr.
(iii): Notice that, for a canonical form w with |c(w)| ≥ 2, the word 0(w) is

again a canonical form. Furthermore, for w, t ∈ X∗ with |c(w)| ≥ 2, the fact
w ∼2 t gives 0(w) ∼2 0(t). Indeed, w ∼2 t implies

( ∀ k ≥ 0 )
←−−−
0k(u) =

←−−−
0k(v) .

Using it for k = �+ 1, � ≥ 0 we obtain

( ∀ � ≥ 0 )
←−−−−−
0�(0(w)) =

←−−−−−
0�(0(t))

which gives 0(w) ∼2 0(t).
Let u be as in Lemma 3 and let v be another word satisfying u ∼2 v. We use

induction with respect to n = |c(u)|. For n = 1, we have u = v ∈ X . Let n ≥ 2.
Then 0(u) ∼2 0(v) by the remark in the previous paragraph and by the induction
assumptions we have 0(v) = 0(u). We can write u = 0(u)ynyn,1 . . . yn,�n and
v = 0(u)ynzn,1 . . . zn,�′n . Now suppose that �n < �′n (the case �n > �′n is similar).
Due to (2) and ←−u = ←−v we have v = 0(u)ynzn,1 . . . zn,�′′nyn,1 . . . yn,�n . From (1)
we have yn �= zn,1. Let consider the last occurrence of zn,1 in 0(u) from the
right, i.e. 0(u) = u′zn,1u

′′, where zn,1 �∈ c(u′′). Again due to ←−u = ←−v we have
c(u′′yn) ⊆ c(zn,2 . . . zn,�′′nyn,1 . . . yn,�n). Now we can use rule (D3) on v for p = u′,
x = zn,1, q = u′′yn, r = zn,2 . . . zn,�′′nyn,1 . . . yn,�n , leading to a contradiction.

Thus �n = �′n then u = v by (2) and by ←−u =←−v . ��

The proof of the following result is, in fact, the same as that of Theorem 1. The
only difference is the usage of Lemma 4 instead of Lemma 2.

Theorem 2. For each u, v ∈ X+, we have that u � v is an identity in B2 if
and only if the words u and v have the same →D-canonical forms. ��

6 Single Letter Deleting Identities and Single Letter
Deleting Rewrite Systems

To solve the identity problem, a natural goal is to have a WRS for each va-
riety of idempotent semigroups. As mentioned in the introduction one can re-
strict consideration to the join-irreducible varieties from L(B) which are on the
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sides of the lattice L(B) on Figure 1. They can be described inductively by us-
ing the invariant 0 and left-right duality. These descriptions follow from [12],
Theorem 3.6.

For a word u = x1x2 . . . xm ∈ X∗, with x1, x2, . . . , xm ∈ X , the word ur =
xm . . . x2x1, is called the reverse of u. Furthermore, for a relation ρ on X+ we
consider the reverse relation ρr given by ρr = { (ur, vr) | (u, v) ∈ ρ }.

Now we define ρ0 in the following way: for all u, v ∈ X∗, we have

u ρ0 v if ( ∀ k ≥ 0 ) (0k(u) ρ 0k(v)) .

Denote ∼1 = ∼LRB, i.e u ∼1 v if and only if −→u = −→v . Then ∼r
1 = ∼RRB.

For each n ≥ 1, we inductively define ∼n+1 = (∼r
n)0. In particular, ∼2 coincides

with the relation used in Section 5. We denote the corresponding varieties of
idempotent semigroups Bn, i.e. ∼Bn = ∼n. We also denote by ∼0 = { (u, v) ∈
X∗ ×X∗ | c(u) = c(v) }. Then ∼r

0 = ∼0, ∼1 = (∼r
0)

0 and B0 = SL.
If we start from the variety C1 = LSNB we obtain the following similar

sequence of varieties We denote ≈1 = ∼C1 = ∼LSNB (see Section 4). Now for
each n ≥ 1 we define inductively ≈n+1 = (≈r

n)0 and we denote the corresponding
varieties of idempotent semigroups Cn, i.e. ≈Cn = ≈n. We also put u ≈0 v if and
only if u and v have the same content and the first letter. Now ≈1 = (≈r

0)
0,

≈r
0 �= ≈0 and C0 = LNB is not a join-irreducible variety. The positions in the

lattice of varieties of idempotent semigroups is depicted at Figure 2.
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Fig. 2. A part of the lattice of varieties of idempotent semigroups

Remark 2. For each n ≥ 1 we have ∼n ⊆ ≈n−1 ⊆ ∼n−1 and consequently the
considered relations are contained in ∼1. Let ∼ be a relation ∼n or ≈n for some
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n ≥ 1. For u, v ∈ X∗ such that u ∼ v we have −→u = −→v . In particular, if 0(u) = u0,
which means u = u0xu1, u0, u1 ∈ X∗, x �∈ c(u0), c(u1) ⊆ c(u0x), then v = v0xv1
such that v0, v1 ∈ X∗, x �∈ c(v0), c(v1) ⊆ c(v0x) and consequently 0(v) = v0.
Note also that for each k ≥ 1 from u ∼ v it follows that 0k(u) ∼ 0k(v). These
easy observations will be used many times later without a precise reference.

We show that each of the varieties Bn and Cn is defined by single identity of
the following special form. For our purpose we need identities different from the
identities given in [3,5,6]. We denote u1 = xy1x, v1 = xy1 and then for each n ≥ 1
we define inductively un+1 = xy1y2 . . . yn+1u

r
n and vn+1 = xy1y2 . . . yn+1v

r
n. The

identity un � vn is referred as πn.

Proposition 1. For each n ≥ 1, we have Bn = Mod(x2 � x, πn ).

Proof. For n = 1 the statement follows from Bn = LRB. Thus assume n ≥ 2.
We denote wn = xy1 . . . yn.

It is enough to prove that un ∼n vn and that the identity πn is not valid in
the variety V which covers variety Bn in the lattice of varieties of idempotent
semigroups. Indeed, from this we have Bn ⊆ Mod(x2 � x, πn ) � V which gives
the result. The variety V is the join of the variety Bn and the dual variety for
Cn−1. This means that we need to show (un, vn) ∈ ∼n and (un, vn) �∈ ≈r

n−1. One
can show these statements by induction with respect to n.

We see that for each k > 0 we have 0k(un) = 0k(wn) = 0k(vn) and trivially
0k(un) ∼r

n−1 0k(vn). Hence (un, vn) ∈ ∼n if and only if (un, vn) ∈ ∼r
n−1. By the

induction assumption we have (un−1, vn−1) ∈ ∼n−1, hence (ur
n−1, v

r
n−1) ∈ ∼r

n−1

and consequently un = wnu
r
n−1 ∼r

n−1 wnv
r
n−1 = vn, which finishes the proof of

the first statement.
For the relation ≈r

n−1 and n = 2 we can see that u2 = xy1y2xy1x and v2 =
xy1y2y1x, i.e. ur

2 = xy1xy2y1 and vr
2 = xy1y2y1x. Since 0(ur

2) = xy1x and
0(vr

2) = xy1 have not the same last letters, we can conclude (ur
2, v

r
2) �∈ ≈1, thus

(u2, v2) �∈ ≈r
1. We proved the second part for n = 2 and we can assume n ≥ 3.

Now, (un, vn) ∈ ≈r
n−1 if and only if (un−1w

r
n, vn−1w

r
n) ∈ ≈n−1 which is not

true because 0(un−1w
r
n) = un−1, 0(vn−1w

r
n) = vn−1 and we have the induction

assumption that (un−1, vn−1) �∈ ≈r
n−2. ��

In a similar way we can construct identities for the varieties Cn. We put s1 =
xy1y2xy1 and t1 = xy1y2y1. Furthermore, for every n ≥ 1 we put sn+1 =
xy1 . . . yn+2s

r
n and tn+1 = xy1 . . . yn+1t

r
n. The identity sn � tn is referred as

σn. Then one can prove the following result in the same way as Proposition 1.

Proposition 2. For each n we have Cn = Mod(x2 � x, σn).

For n ≥ 1 we consider a rewrite relation −→n on X∗ given in the following way:
for u, v ∈ X∗ we put u −→n v if v is a subword of u, |v| = |u| − 1 and u ∼n v.
Similarly, for u, v ∈ X∗ we put u =⇒n v if v is a subword of u, |v| = |u| − 1
and u ≈n v. Note that the relations −→n and =⇒n are not defined for n = 0
although some statements concerning ∼n and ≈n are also valid in this case.



Rewriting in Varieties of Idempotent Semigroups 197

Lemma 5. Let V be one of the varieties Bn, Cn or their dual, where n ≥ 0.
If u, v, w ∈ X∗ are such that |v| ≥ 2 and uvw ∼V uw, then there exist words
v0, v1, v2 such that v = v0v1v2, 1 ≤ |v1| < |v| and uvw ∼V uv0v2w.

Proof. We prove the statement by induction with respect to n and the size of
the set c(uvw). We show the detailed proof for varieties Bn and their duals. If
V = B0 then we have c(uvw) = c(uw). This means that c(v) ⊆ c(uw). Let v0 be
the empty word, v1 be the first letter of v and v2 be such that v = v0v1v2 = v1v2.
Then c(v2) ⊆ c(uw) and c(uv2w) = c(uw) = c(uvw) follows.

Now let n ≥ 1 and let V = Bn. Let u, v, w be as in the statement, in particular
we have uvw ∼n uw. If c(uvw) = c(u) then 0(uvw) = 0(u). By the induction
assumption for uvw ∼r

n−1 uw there are v0, v1, v2 such that v = v0v1v2, 1 ≤
|v1| < |v| and uvw ∼r

n−1 uv0v2w. Since 0(uvw) = 0(u) = 0(uv0v2w) we get
uvw ∼n uv0v2w.

Let assume now, that 0(uvw) = us, where s is a prefix of v such that |s| < |v|.
This means that v = sxt, where x ∈ X , c(tw) ⊆ c(usx), x �∈ c(us). Since
c(uw) = c(uvw) we have x ∈ c(w). We consider the first occurrence of x in w,
i.e. w = w0xw1, where w0, w1 ∈ X∗ and x �∈ c(w0). Now from the assumption
uvw ∼n uw we get us = 0(uvw) ∼n 0(uw) = uw0. We can multiply it by
w = w0xw1 to obtain usw ∼n uw0w0xw1 ∼B uw0xw1 = uw. So, if s is not the
empty word λ we are done, we can put v0 = s, v1 = xt and v2 = λ. If s = λ
then t �= λ and we have u ∼n uw0. We can multiply it by xw = xw0xw1 to
obtain uxw ∼n uw0xw0xw1 ∼B uw0xw1 = uw. Thus we have the statement for
v0 = sx = x, v1 = t and v2 = λ.

Finally, assume that 0(uvw) = uvw0 for a certain prefix w0 of w. This means
w = w0xw1 where c(w1) ⊆ c(uvw0x) and x �∈ c(uvw0). Hence we have 0(uw) =
uw0. Now we use the induction assumption for the smaller set c(uvw0) � c(uvw).
From uvw ∼n uw we have uvw0 ∼n uw0 and there are v0, v1, v2 such that
v = v0v2v2 and uvw0 ∼n uv0v2w0. When we multiply it by xw1 we obtain
uvw ∼n uv0v2w. ��

Lemma 6. Let n ≥ 1 and u, v, w ∈ X∗.

i) If uvw ∼n uw, then uvw −→∗
n uw.

ii) If uvw ≈n uw, then uvw =⇒∗
n uw.

Proof. It follows from Lemma 5 by induction with respect to the length of v. ��

Lemma 7. Let ∼ be one of the relations ∼n, ∼r
n, ≈n and ≈r

n with n ≥ 1. Let
u, v, w, s ∈ X∗ and x, y ∈ X, x �= y.

i) If s = uxvyw ∼ uxvw ∼ uvyw, then uvw ∼ s or uw ∼ s.
ii) If s = uxvxw ∼ uxvw ∼ uvxw, then uvw ∼ s or uxw ∼ s.

Proof. i) We prove the statement by induction with respect to n and with respect
to the number of letters used in s. We prove it even for n = 0. So, let ∼ = ∼0,
which means that t1 ∼ t2 if and only if c(t1) = c(t2). From the assumption
uxvyw ∼ uxvw ∼ uvyw we get that x ∈ c(uvyw) and y ∈ c(uxvw). Since x �= y,
we have x, y ∈ c(uvw) and we get c(uvw) = c(s), i.e. uvw ∼ s.
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Assume that the statement holds for ∼n, which gives the statement for ∼r
n

immediately. Let ∼ = ∼n+1 and s = uxvyw ∼ uxvw ∼ uvyw. Similarly to the
proof of Lemma 5 we distinguish the cases depending on 0(uxvyw).

If 0(uxvyw) = u0, where u0 is a proper prefix of u, then u = u0zu1, z ∈ X ,
u0, u1 ∈ X∗, z �∈ c(u0) and c(u1xvyw) ⊆ c(u0z). Hence 0(uxvw) = 0(uvyw) =
0(uvw) = 0(uw) = u0. Since these words are identical we have uvw ∼n+1 s
if and only if uvw ∼r

n s and we have the same for uw. From the assumption
s = uxvyw ∼n+1 uxvw ∼n+1 uvyw we have s = uxvyw ∼r

n uxvw ∼r
n uvyw

and by the induction assumption we obtain uvw ∼r
n s or uw ∼r

n s. Thus we get
uvw ∼ s or uw ∼ s.

If 0(uxvyw) = u then x �∈ c(u) and c(vyw) ⊆ c(ux). We distinguish two cases
x ∈ c(v) and x �∈ c(v). In the first case let v0, v1 ∈ X∗ be words such that
v = v0xv1, x �∈ c(v0). Then 0(uvyw) = uv0 and we have u ∼ uv0. We multiply
it by xvw = xv0xv1w and we obtain uxvw ∼ uv0xv0xv1w ∼B uv0xv1w = uvw
which means that uvw ∼ s. In the second case x �∈ c(v), since x ∈ c(uvyw) we
have x ∈ c(w), i.e. w = w0xw1 for some words w0, w1 ∈ X∗, x �∈ c(w0). Then
u = 0(uxvyw) ∼n+1 0(uvyw) = uvyw0. If we multiply it by w = w0xw1 we get
uw ∼n+1 uvyw0w0xw1 ∼B uvyw0xw1 = uvyw ∼ s.

If 0(uxvyw) = uxv0, where v0 ∈ X∗ is a prefix of v, |v0| < |v| then v =
v0zv1, z ∈ X , v1 ∈ X∗, z �∈ c(uv0). Then 0(uvyw) = uv0 and we get uxv0 =
0(uxvyw) ∼ 0(uvyw) = uv0. If we multiply it by zv1w we obtain s ∼ uxvw ∼
uvw.

If 0(uxvyw) = uxv then y �∈ c(uxv), but y ∈ c(uxvyw) = c(uxvw). Let w0, w1

be words such that w = w0yw1 and y �∈ c(w0). Hence we have uxv = 0(uxvyw) ∼
0(uvyw) = uv. We multiply it by w = w0yw1 and we obtain uxvw ∼ uvw.

Finally, if 0(uxvyw) = uxvyw0 where w0 ∈ X∗ is a prefix of w, |w0| < |w|
then w = w0zw1, z ∈ X , w1 ∈ X∗, z �∈ c(uxvyw0). Then from the assumption
s = uxvyw ∼ uxvw ∼ uvyw we obtain s′ = uxvyw0 ∼ uxvw0 ∼ uvyw0. If we
use the induction assumption for the set c(s′) then we get uvw0 ∼ s′ or uw0 ∼ s′.
If we multiply it by zw1 we obtain the statement.

For relations ≈n the only difference is that at the beginning for ≈0 we need
to check in addition that all considered words have the same first letter.

ii) For ∼n the statement can be proved in the same manner. The only differ-
ence is that it does not hold for n = 0. Indeed, if u = w = λ, and v = z �= x,
z ∈ X , then we have the assumption xzx ∼0 xz ∼0 zx because they have the
content {x, z}. But v = z and x have different content. This means that we need
to prove the statement for ∼1 first. Assume that −−−−→uxvxw = −−−→uvxw. If x ∈ c(u)
then we see that −−−→uvxw = −−→uvw. If x �∈ c(uv) then from −−−−→uxvxw = −−−→uvxw we see that
c(v) ⊆ c(u) and consequently −−−→uvxw = −−→uxw. Finally, if x �∈ c(u) but x ∈ c(v),
then −−−→uvxw = −−→uvw. We prove the statement for n = 1. The induction step can
we done in the same way as in the proof of item i). For the relations ≈n one can
prove the statement in similar way. ��

Theorem 3. Let n be an arbitrary natural number. Then the rewrite relations
−→n and =⇒n are canonical. Moreover, for all u, v ∈ X∗, we have u ∼n v if
and only if [u]−→n = [v]−→n and u ≈n v if and only if [u]=⇒n = [v]=⇒n .
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Proof. The relation −→n is strictly size-decreasing, hence it is terminating. We
show that −→n is locally confluent. Assume that s = uxvyw −→n uxvw and
uxvyw −→n uvyw. We need to find t such that uxvw −→∗

n t and uvyw −→∗
n t.

First, assume in addition that x �= y. By Lemma 7 (i) we know that uvw ∼n s
or uw ∼n s. In the first case we have uxvw −→n uvw and also uvyw −→n uvw.
In the second case we have uxvw ∼n uw and uvyw ∼n uw. Now we use Lemma 6
to state uxvw −→∗

n uw and also uvyw −→∗
n uw. Now we assume that x = y. By

Lemma 7 part ii) we have that uvw ∼ s or uxw ∼ s and one can finish the proof
in the same way as in the case x �= y. We proved that −→n is terminating and
locally confluent and, consequently, it is confluent.

To prove the second part of the statement we first assume that [u]−→n = w =
[v]−→n . Then u −→∗

n w and v −→∗
n w from which it follows that u ∼n w ∼n v.

Now we assume that u ∼n v. This means that u � v is an identity for Bn.
By Proposition 1, we know that Bn = Mod(x2 � x, πn). From the completeness
of equational logic, there is a sequence of words u = u1, u2, . . . , un = v such
that each pair (ui, ui+1) is of the form (sp(r1, r2, . . . )t, sq(r1, r2, . . . )t) where
p(x1, x2, . . . ) � q(x1, x2, . . . ). More precisely

(p, q) ∈ I = {(x, x2), (x2, x), (un, vn), (vn, un)}

where un and vn form the identity πn from Proposition 1. Each identity from
I is of a very special form, namely it is a letter deleting one. After applying
a considered substitution, we get that p(r1, r2, . . . ) arises from q(r1, r2, . . . ) by
removing a certain factor or vice-versa q(r1, r2, . . . ) arises from p(r1, r2, . . . ) in
the same way. Consequently, the same holds for each pair (ui, ui+1). Since ui ∼n

ui+1 we can apply Lemma 6 to get that for each i we have ui −→∗
n ui+1 or

ui+1 −→∗
n ui. In both cases we can deduce [ui]−→n = [ui+1]−→n because −→n is

a canonical rewrite relation. Hence we get [u]−→n = [u1]−→n = [u2]−→n = · · · =
[un]−→n = [v]−→n .

The proof for =⇒n is analogical. ��
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Simplifying Algebraic Functional Systems
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Abstract. A popular formalism of higher order rewriting, especially in
the light of termination research, are the Algebraic Functional Systems
(AFSs) defined by Jouannaud and Okada. However, the formalism is
very permissive, which makes it hard to obtain results; consequently,
techniques are often restricted to a subclass. In this paper we study
termination-preserving transformations to make AFS-programs adhere
to a number of standard properties. This makes it significantly easier to
obtain general termination results.

Keywords: higher order term rewriting, algebraic functional systems,
termination, transformations, currying, η-expansion.

1 Introduction

The last years have seen a rise in the interest in higher order rewriting, especially
the field of termination. While this area is still far behind its first order coun-
terpart, various techniques for proving termination have been developed, such
as monotone algebras [11], path orderings [4,1] and dependency pairs [12,9,8].
Since 2010 the annual termination competition [13] has a higher order category.

However, a persistent problem is the lack of a fixed standard. There are several
formalisms, each dealing with the higher order aspect in a different way, as well
as variations and restrictions. Each style has different applications it models
better, so it is hard to choose one over the others. Because of the differences,
results in one formalism do not, in general, carry over to the next.

Consequently, when the topic of a higher order termination competition was
brought up last year, the first question was: “What formalism?” Even having
settled on monomorphic Algebraic Functional Systems, neither of the partici-
pating groups could immediately deal with the other’s benchmarks, since one
group used functional syntax and the other applicative.

In this paper we seek to alleviate this situation by studying transformations
of Algebraic Functional Systems. AFSs, which were introduced as a modelling
of functional programming languages, are an often recurring format in higher-
order termination research, although most of the time they appear with some
restrictions. Here we study an unrestricted version, with polymorphic types. Af-
ter transforming an AFS it will satisfy a number of pleasant properties, such as
β-normality and possibly η-normality, and we can freely swap between applica-
tive and functional notation. The transformations are designed to have as little
impact as possible and to preserve both termination and non-termination.

F. Winkler (Ed.): CAI 2011, LNCS 6742, pp. 201–215, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The aim of this work is to simplify termination research and tools for AFS.
Without changing the syntactical freedom of the formalism, most unwelcome
intricacies of the syntax can be eliminated in the input module of a tool. Tech-
niques which are defined on a restricted subclass of AFSs (for example when
rules are assumed to be η-normal) become generally applicable.

We will first present the definition of (polymorphic) AFSs. Section 3 sketches
the problems we aim to solve; Sections 4–8 discuss various transformations. In
Section 9 we will say a few words about generalising existing results.

2 Preliminaries

Algebraic Functional Systems (AFSs) were first defined in [3], but we follow
(roughly) the more common definitions of [4]. Rather than using type declara-
tions for variables in an environment, we annotate variables with their types
directly in terms. This avoids the need to keep track of an environment.

Types. Given a set of type constructors B, each with a fixed arity ar (b), and a
set of type variables A, the set of polymorphic types is defined by the grammar:

T = α | b(T n) | T →T (α ∈ A, b ∈ B, ar (b) = n)

A monomorphic type does not contain type variables. We assume at least one
type constructor has arity 0, so monomorphic types exist. A type σ → τ is
functional, and a type b(σ1, . . . , σn) is a data type. Types are written as σ, τ, ρ,
data types as ι, κ and type variables as α, ε, ω. The→operator associates to the
right. A type declaration is an expression of the form (σ1 × . . .× σn) −→ τ with
σ1, . . . , σn, τ ∈ T . A type declaration () −→ τ is usually just denoted τ . For any
type σ, let FTVar(σ) be the set of type variables occurring in σ.

Example 1. Examples of monomorphic types are nat, nat→ bool, and list
(nat), and an example of a non-monomorphic type is α→list(α).

A type substitution θ is a finite mapping [α1 := σ1, . . . , αn := σn]; dom(θ) =
{α1, . . . , αn}, and τθ is the result of replacing all αi in τ by σi (with τ a type
or type declaration). We say σ ≥ τ if τ = σθ for some type substitution θ.
For example, α ≥ α ≥ α→ ε ≥ nat→ nat, but not α→ α ≥ nat→ bool.
Substitutions θ, χ unify types σ, τ if σθ = τχ1. We will use the following lemma:

Lemma 1 (most general unifiers). If σ, τ are unifiable, there exist type sub-
stitutions θ, χ which unify σ, τ such that for any unifying substitutions θ′, χ′,
there is a type substitution d such that θ′�FTVar(σ) = d◦θ and χ′

�FTVar(τ) = d◦χ.

The type substitutions θ, χ in this Lemma are called most general unifiers. The
composition d ◦ θ is defined as [α := d(θ(α))|α ∈ dom(θ)], and θ′�FTVar(σ) is
defined as [α := θ′(α)|α ∈ dom(θ′) ∩ FTVar(σ)].
1 Note that this definition of unifiers considers the type variables in σ and τ as different

entities: the types α and b(α) are unified by θ = [α := b(ε)] and χ = [α := ε].
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Terms. Given a set F of function symbols, each equipped with a type declara-
tion (notation fσ), and an infinite set V of variables, the set of terms consists
of those expressions for which we can derive s : σ for some type σ, using the
clauses:

(var) xσ : σ if x ∈ V and σ a type
(fun) fσ(s1, . . . , sn) : τ if fρ ∈ F and ρ ≥ σ = (σ1 × . . .× σn) −→ τ

and s1 : σ1, . . . , sn : σn

(abs) λxσ .s : σ→τ if x ∈ V , σ a type and s : τ
(app) s · t : τ if s : σ→τ and t : σ

Moreover, variables must have a unique type in s: if for x ∈ V both xσ and xτ

occur in s then σ = τ . The abstraction operator λ binds occurrences of a variable
as in the λ-calculus; term equality is modulo renaming of variables bound by an
abstraction operator (α-conversion). Write FVar(s) for the set of variables in
s not bound by a λ. The · operator for application associates to the left. To
maintain readability, we will regularly omit explicit type notation in function
symbols and variables, and just assume the most general possible type.

Example 2. As a running example we will use the system Fmap with symbols:
{
map((α→α)×list(α))−→list(α), op(ω→ε×α→ω)−→α→ε, nillist(α), Onat,
cons(α×list(α))−→list(α), pow(α→α×nat)−→α→α, s(nat)−→nat

}

An example term in this system is map(λx.s(x), cons(O, nil)). Since type anno-
tations have been omitted, they should be imagined as general as possible to keep
the term well-typed, so cons, for instance, would be cons(nat×list(nat))−→list(nat).

We extend type substitutions and ≥ to terms in the obvious way, with a type
substitution θ replacing α by θ(α) in all type denotations in the term.

Example 3. Using the symbols of Example 2, op(α→ε×ε→α)−→ε→ε(Fα→ε, Gε→α)
[α := ε, ε := nat] = op(ε→nat×nat→ε)−→nat→nat(Fε→nat, Gnat→ε).

A (term) substitution is the homomorphic extension of a mapping [x1
σ1

:=
s1, . . . , x

n
σn

:= sn], where each si : σi. Substitutions are denoted γ, δ, . . ., the
result of applying a substitution sγ. A substitution cannot affect bound vari-
ables; applying a substitution (λxσ .s)γ assumes x occurs neither in domain nor
range of γ (a safe assumption since we can rename bound variables). A context
is a term C containing a special symbol �σ. The result of replacing �σ in C by
a term s of type σ is denoted C[s]. Here, s may contain variables bound by C.

β and η. ⇒β is the monotonic relation generated by (λx.s) · t ⇒β s[x := t].
This relation is strongly normalising and has unique normal forms.

For a given set V of variables, we define restricted η-expansion: C[s] ↪→η,V

C[λxσ .s · xσ] if s : σ→τ , x is fresh and the following conditions are satisfied:

1. s is neither an abstraction nor a variable in V
2. s in C[s] is not the left part of an application.
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By (2), s is not expanded if it occurs in a subterm of the form s t1 · · · tn; (1)
and (2) together guarantee that ↪→η,V terminates. Therefore every term s has a
unique η, V -long form s↑η

V which can be found by applying ↪→η,V until it is no
longer possible. We say a term s is in η-long form if s = s↑η = s↑η

∅.

Rules and Rewriting. An AFS consists of an alphabet F and a (finite or
countably infinite) set R of rules. Rules are tuples l⇒ r where l and r are terms
of the same type such that all variables and type variables in r also occur in l.
The relation⇒R induced byR is the monotonic relation generated by the β-rule
and: lθγ ⇒R rθγ if l ⇒ r ∈ R, θ is a type substitution and γ a substitution.

Example 4. Using the symbols Fmap from Example 2, let Rmap be the set:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

map(F, nil) ⇒ nil
map(F, cons(x, y)) ⇒ cons(F · x, map(F, y))
pow(F, 0) ⇒ λx.x
pow(F, s(x)) ⇒ op(F, exp(F, x))
op(F,G) · x ⇒ F · (G · x)
λx.F · x ⇒ F

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

As before, types should be imagined as general as possible. The last rule, for
example, should be read as λxα.Fα→ε · xα ⇒ Fα→ε. An example reduction:

map(pow(λx.s(s(x)), s(0)), cons(0, nil)) ⇒R
map(op(λx.s(s(x)), pow(λx.s(s(x)), 0)), cons(0, nil)) ⇒R
cons(op(λx.s(s(x)), pow(λx.s(s(x)), 0)) · 0, map(. . . , nil)) ⇒R
cons(op(λx.s(s(x)), pow(λx.s(s(x)), 0)) · 0, nil) ⇒R
cons(op(λx.s(s(x)), λy.y) · 0, nil) ⇒R
cons((λx.s(s(x))) · ((λy.y) · 0), nil) ⇒β

cons((λx.s(s(x))) · 0, nil) ⇒β

cons(s(s(0)), nil)

Note that the ⇒β steps in this are also ⇒R steps since ⇒β is included in ⇒R
by definition; they are named separately for clarity.

3 Problems

The permissive nature of AFS-syntax makes it difficult to obtain general results.
The first issue is the status of application. When extending first order results
it is convenient to consider the · operator as a (polymorphic) binary function
symbol. But this doesn’t work very well with applicative systems, which have
rules like map · F · (cons · x · y) ⇒ cons · (F · x) · (map · F · y); AFSs generated
from functional programs in e.g. Haskell will commonly have such a form. Due
to the repeated occurrence of the · symbol, no version of a higher-order path
ordering [4,1] can handle this system. To avoid this problem, we might consider
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· as a stronger construction, much like function application; this is done in Nip-
kow’s Higher-Order Rewriting Systems (HRSs) [10], where terms are built using
only abstraction and application. Ideally, a term map · x · (cons · y · z) could be
translated to its functional counterpart map(x, cons(y, z)). But initially this is
impossible: a system with the rule x · 0 ⇒ f · 0 admits a self-loop f · 0 ⇒ f · 0,
whereas the corresponding functional rule, x · 0 ⇒ f(0), is terminating.

Another difficulty is the form of the left-hand side of a rule. Methods like the
dependency pair approach crucially rely on rules having a form f(. . .) ⇒ r or, in
the recent dependency pair analysis for AFSs in [8], f(l1, . . . , ln)·ln+1 · · · lm ⇒ r.
Consequently, systems with rules like λx.F · x⇒ F cannot be handled.

Termination techniques are often defined only on a restricted subset of AFSs.
Since most common examples are expressed in a well-behaved manner, this does
not seem too high a price. However, a transformational approach, where for in-
stance a term f(s, t) is replaced by t·s, is likely to create rules which do not follow
the usual assumptions. Instead, we will see how any AFS can be transformed so
that all rules have a form l = f(s) · t⇒ r with l and r both β-normal and l not
containing leading free variables. We tackle standard assumptions (monomor-
phism and η-normality) which can be made about terms, and show that, after
the first transformations, functional and applicative syntax are interchangeable.
We aim to keep the complexity of the transformations minimal: a finite system
remains finite after transforming, a monomorphic system remains monomorphic.

4 Polymorphism

In a first step towards simplifying the system, let us investigate polymorphism.
To start, observe that polymorphism is only needed to define rules, not terms.

Theorem 1. If a system is non-terminating, there is an infinite reduction on
monomorphic terms.

Proof. Given an infinite reduction s0 ⇒R s1 ⇒R . . ., let θ be a type substitution
which replaces all type variables in s0 by a type constructor b of arity 0. Since
⇒R does not create type variables and is closed under type substitution, s0θ ⇒R
s1θ ⇒R . . . is an infinite monomorphic reduction.

Polymorphism has its purpose in defining rules: any set of rules corresponds
with a monomorphic set, but instantiating type variables leads to infinitely many
rules. Finiteness is a high price to pay, since both humans and computers have
trouble with the infinite. Nevertheless, from a perspective of reasoning we might
as well use monomorphic rules, as long as we remember how they were generated.

Let a rule scheme be a pair l ⇒ r of equal-typed (polymorphic) terms, such
that all free variables and type variables of r also occur in l. Given a set R of
rule schemes, let RR = {lθ ⇒ rθ|l ⇒ r ∈ R and θ a type substitution mapping
all type variables in l to monomorphic types}. The following is evident:

Theorem 2. For a given set of rule schemes R, the set RR is a set of monomor-
phic rules and ⇒R is terminating if and only if ⇒RR is.
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Henceforth, rules are understood to be monomorphic. Rule schemes
may not be. R indicates a set of rules, R a set of rule schemes.

A pleasant consequence of using monomorphic rules is that type substitution is
no longer needed to define the rewrite relation ⇒R; s ⇒R t if either s ⇒β t or
s = C[lγ] and t = C[rγ] for some substitution γ, context C and rule l⇒ r.

In the following sections we will define transformations on a set of rule
schemes. Note that a setR of rules is always generated from a set of rule schemes,
since even for monomorphic systems R := R is a suitable set.

5 Leading Variables

The presence of leading variables in the left-hand side of a rule l ⇒ r (that is,
subterms x · s where x is free in l) hinders techniques like dependency pairs2

and makes it impossible to swap freely between functional and applicative no-
tation (see also Section 7). We can avoid this problem by making applica-
tion a function symbol: replace s · t everywhere by @(σ→τ×σ)−→τ (s, t) and add
@(α→ε×α)−→τ (x, y) ⇒ x ·y to R. The resulting system is terminating if and only
if the original was. However, as discussed in Section 3, this transformation is
not very good. A mostly applicative system would become almost impossible to
handle with conventional techniques. In addition, the new rule scheme uses type
variables, while the original system might be monomorphic. Thus, we will use a
more complicated transformation that leads to an easier system.

Sketch of the Transformation. We sketch the idea for transforming a
monomorphic system. Polymorphism brings in additional complications, but the
rough idea is the same. First we instantiate headmost variables with functional
terms: for any rule l = C[x · s] ⇒ r all possible rules l[x := f(y) · z] ⇒ r[x :=
f(y) · z] are added. Now when a rule with leading variables is used, we can
assume these variables are not instantiated with a functional term. Second, we
introduce a symbol @ and replace occurrences s · t in any rule by @(s, t) if s
is not functional, and its type corresponds with the type of a leading variable
in any left-hand side. We add rules @σ(x, y) ⇒ x · y only for those @σ oc-
curring in the changed rules. With this transformation, the applicative map rule
map(nat→nat)→list(nat)→list(nat) ·F ·(cons ·x ·y)⇒ cons ·(F ·x) ·(map ·F ·y) either
stays unchanged (if there are no rules with a leading variable of type nat→nat
in the left-hand side) or becomes map·F ·(cons·x·y) ⇒ cons·@(F, x)·(map ·F ·y)
(if there are).

5.1 Output Arity

Polymorphism complicates this transformation. Even with finite F there may be
infinitely many terms of the form f(x) · y. So assign to every fσ ∈ F an integer
oa(f) ≥ 0; terms of the form f(s) · t1 · · · tm with m ≤ oa(f) are “protected”.
2 Leading variables in the right-hand side also complicate dependency pairs, but are

harder to avoid; existing methods use various techniques to work around this issue.
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The choice for oa is not fixed, but oa(f) > 0 may only hold for finitely many f .
Typically, if σ = (τ ) −→ ρ1→ . . .→ρm→ ι we choose oa(f) = m. We may also
choose the highest m such that f(s) · t1 · · · tm occurs in a rule scheme. Or, in a
(mostly) functional system we could choose oa(f) = 0 for all f ; Transformations
1-2 have no effect then. A term is limited functional if it has the form f(s) ·
t1 · · · tm with m < oa(f) (note that f(s) is not limited functional if oa(f) = 0!).

Example 5. We follow the second guideline, so oa(f) is the highest number m
such that f(s)·t1 · · · tm occurs in a rule scheme. In the system Rmap from Example
4 this gives output arity 0 for all symbols except op, which gets output arity 1.

To start, we adjust rules for the chosen output arity. For any rule f(s)·t1 · · · tn ⇒
r with n < oa(f), we add a new rule f(s)·t1 · · · tn ·x⇒ r ·x. This is done because
an application of the form f(s) · t · u will be “protected” while r · u may not be.

Transformation 1 (respecting output arity). Given a set of rule schemes R, for
every l ⇒ r ∈ R with l limited functional add a rule scheme l ·x⇒ r ·x if this is
well-typed (if l : α first apply the type substitution [α := α→ε]). Repeat for all
newly added rule schemes. This process terminates because oa(f) is bounded,
and the result, Rres, is finite if R is. ⇒Rres and ⇒R define the same relation.

Example 6. Since none of the left-hand sides of Rmap are limited functional,
Transformation 1 has no effect. If we had chosen, for example, oa(pow) = 2
(this is allowed, even if there is no point in doing so), then we would have had
to add four additional rules:
powσ(F, 0) · y ⇒ (λx.x) · y powσ(F, s(x)) · y ⇒ op(F, pow(F, x)) · y
powτ (F, 0) · y · z ⇒ (λx.x) · y · z powτ (F, s(x)) · y · z ⇒ op(F, pow(F, x)) · y · z

Here, σ is the type declaration (α→ α × nat) −→ α→ α and τ is ((α→ ε)→
(α→ε)× nat) −→ (α→ε)→α→ε.

5.2 Filling in Head Variables

With this preparation, we can proceed to a larger transformation. Let HV (s) be
the set of those xσ ∈ FVar(s) where xσ occurs at the head of an application in
s (so s = C[xσ · t] for some C, t). We will replace any rule l = C[xσ · t]⇒ r by a
set of rules where a limited functional term f(y) · z is substituted for xσ .

Transformation 2 (filling in head variables). For every rule scheme l ⇒ r in
Rres, every xσ ∈ HV (l), every function symbol fτ ∈ F and n < oa(f) such
that (. . .) −→ α1→ . . .→ αn→ σ unifies with τ , let θ, χ be their most general
unifiers and add a rule scheme lθδ ⇒ rθδ, where δ = [xσθ := fτχ(y) · z1 · · · zn]
(with y1, . . . , yk, z1, . . . , zn fresh variables). Repeat this for the newly added rule
schemes. If Rres is finite, this process terminates and the result, Rfill, is also
finite. Otherwise define Rfill as the limit of the procedure.
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Example 7. Following on Example 6, the only rule with a leading variable in the
left-hand side is the η-reduction rule λxα1 .Fα1→α2 xα1 ⇒ Fα1→α2 . Consequently,
Transformation 2 completes after one step, with a single new rule; Rfill contains:

map(F, nil) ⇒ nil op(F,G) · x ⇒ F · (G · x)
map(F, cons(x, y)) ⇒ cons(F · x, map(F, y)) λx.F · x ⇒ F
pow(F, 0) ⇒ λx.x λx.op(F,G) · x⇒ op(F,G)
pow(F, s(x)) ⇒ op(F, exp(F, x))

It is not hard to see that Rfill and Rres generate the same relation. Moreover:

Lemma 2. If s⇒Rfill t with a topmost step, then there are l⇒ r ∈ Rfill, type
substitution θ and substitution γ such that s = lθγ, t = rθγ and γ(x) is not
limited functional for any x ∈ HV (l).

Proof. By definition of topmost step, there exist l, r, θ, γ such that s = lθγ
and t = rθγ; using induction on the size of {xσ|xσ ∈ HV (l)|γ(xσθ) is limited
functional} and the definition of Rfill the Lemma follows without much effort.

5.3 Preparing Polymorphic Types

As suggested in the sketch of the transformation, we will introduce new symbols
@σ only for those σ where it is necessary. Formally, let S be a set of functional
types such that its closure under type substitution, Sc, contains all types σ where
xσ ∈ HV (l) for some variable x and l⇒ r ∈ Rfill. Transformation 4 will replace
subterms u ·v by @(u, v) if u : τ ≤ σ and u is not limited functional. There is one
remaining problem: a subterm u · v where the type of u unifies with a type in S
but is not an instance. We deal with this problem by adding some rule schemes.

Transformation 3 (S-normalising the rules). For every rule scheme l ⇒ r ∈
Rfill, add a rule scheme lθ ⇒ rθ if either l or r has a subterm s · t with s : σ not
limited functional, and σ unifies with a type τ ∈ S such that τ �≥ σ. Here, θ and
some χ are the most general unifiers of σ and τ . Repeat this for the newly added
rules. If S and Rfill are both finite, this procedure terminates and the result,
RnormS, is finite. Otherwise we define RnormS as the limit of the procedure.

Example 8. Consider our main Example; Rfill is given in Example 7. We must
choose S = {α→ε} due to the rule λx.Fα→ε ·x⇒ F . But α→ε ≥ any functional
type, so Transformation 3 has no effect.

Again it is evident that the rewrite relations generated by RnormS and Rfill are
the same. Moreover, we can derive the following (technical) result:

Lemma 3. For l ⇒ r ∈ Rfill, type substitution θ, there are l′ ⇒ r′ ∈ RnormS

and type substitution χ such that lθ = l′χ, rθ = r′χ and for u · v occurring in l′

or r′ with u : σ not limited functional, either both σ, σχ ∈ Sc or both σ, σχ /∈ Sc.
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5.4 Explicit Application

Finally, then, we move on to the main substitution. For every type σ→ τ ∈ S,
introduce a new symbol @(σ→τ×σ)−→τ and for all terms s define exp(s) as follows:

exp(f(s1, . . . , sn)) = f(exp(s1), . . . , exp(sn))
exp(x) = x (x a variable)
exp(λx.s) = λx.exp(s)

exp(s · t) =
{
exp(s) · exp(t) if s limited functional or type(s) /∈ Sc

@(exp(s), exp(t)) otherwise

That is, subterms s · t are replaced by @σ(s, t), provided the split does not occur
in a “protected” functional term, and s has a “dangerous” type.

Transformation 4 (Embedding head symbols). Let Rnoapp = {exp(l) ⇒
exp(r)|l ⇒ r ∈ RnormS} ∪ {@(σ→τ×σ)−→τ (x, y) ⇒ x · y|σ→τ ∈ S}.

Transformations 1–4 preserve monomorphism and finiteness, yet Rnoapp will not
have leading (free) variables. We pose the main theorem of Section 5.

Theorem 3. The rewrite relation ⇒Rnoapp generated by Rnoapp is terminating
if and only if ⇒R is.

Proof (Sketch). For one direction, if s⇒Rnoapp t then also s′ ⇒=
RnormS t′, where

s′, t′ are s, t with occurrences of @(u, v) replaced by u ·v. Equality only occurs if
s has less @ symbols than t, so any infinite ⇒Rnoapp reduction leads to an infinite
⇒RnormS reduction, and RnormS defines the same relation as R. For the other
direction, s⇒Rres t implies exp(s) ⇒+

Rnoapp exp(t) by induction on the size of s.
For the induction step the only difficult case is when s = u ·v ⇒Rres u′ ·v with u
limited functional while u′ is not, but using Transformation 1 we can assume this
is a topmost step. For the base case, if s⇒Rres t by a topmost rule step, we note
that using Lemmas 2 and 3, s = lθγ and t = rθγ with l⇒ r ∈ RnormS, γ(x) not
limited functional if x ∈ HV (lθ) and for any subterm u · v of l with u : τ , either
both τ and τθ ∈ Sc or neither. With these facts it is easy to show (using induction
on the definition of exp) that exp(lθγ) = exp(l)θγexp and exp(r)θγexp ⇒∗

Rnoapp

exp(rθγ). If s ⇒β t we use that exp(u)[x := exp(v)] ⇒∗
Rnoapp exp(u[x := v]).

Thus, any ⇒R reduction leads to a ⇒Rnoapp reduction of at least equal length.

Example 9. Considering our example with S = {α→ε}, Rnoapp consists of:

map(F, nil) ⇒ nil op(F,G) · x ⇒ @(F,@(G, x))
map(F, cons(x, y)) ⇒ cons(@(F, x), map(F, y)) λx.@(F, x) ⇒ F
pow(F, 0) ⇒ λx.x λx.op(F,G) · x⇒ op(F,G)
pow(F, s(x)) ⇒ op(F, exp(F, x)) @(F, x) ⇒ F · x
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6 Abstractions in Left-hand Sides and β-Redexes

The next step is to get rid of rule schemes λx.l ⇒ r, where an abstraction is
reduced directly; rules like this will form a definite blockade to working with η-
expanded terms and they make it hard to define dependency pairs. The solution
is very similar to the one employed in Section 5: we identify the types of all
rule schemes of this form, and replace abstractions λx.s of such a type σ by
Λσ(λx.s), where Λσ is a new function symbol. As a side bonus, we will get rid
of any remaining β-redexes in the rule schemes (note that the transformations
of Section 5 may already have removed such redexes).

Formally, let Q be a set of types such that its closure under type substitution,
Qc, contains all types σ such that λx.l : σ ⇒ r ∈ R, or (λx.s) · t occurs in any
rule scheme. We could choose the set of all such types, or for instance {α→ε}.
As before we need to prepare polymorphic rule schemes for a type match.

Transformation 5 (Q-normalising the rules). . For every rule scheme l ⇒ r ∈
R, add a rule scheme lθ ⇒ rθ if either l or r has a subterm λx.s : σ, and σ
unifies with a type τ ∈ Q such that τ �≥ σ. Here, θ and some χ are the most
general unifiers of σ and τ . Repeat this for the newly added rules. If Q and
R are both finite, this procedure terminates and the result, RnormQ, is finite.
Otherwise define RnormQ as the limit of the procedure.

We can derive a Lemma very similar to Lemma 3, but it would not bring much
news. Let us instead pass straight to the main transformation:

expL(f(s1, . . . , sn)) = f(expL(s1), . . . , expL(sn))
expL(s · t) = expL(s) · expL(t)
expL(x) = x (x a variable)

expL(λx.s) =
{
Λ(σ)−→σ(λx.expL(s)) if λx.s : σ ∈ Qc

λx.expL(s) otherwise

Transformation 6 (Marking Abstractions). RΛ := {expL(l)⇒ expL(r)|l ⇒ r ∈
RnormQ} ∪ {Λ(σ)−→σ(x) ⇒ x|σ ∈ S}

It is evident that RΛ has no rule schemes of the form λx.l ⇒ r and is β-normal.
Moreover, its termination is equivalent to termination of the original system.

Theorem 4. ⇒RΛ is terminating if and only if ⇒R is.

Proof. It is not too hard to derive that s ⇒R t implies expL(s) ⇒+
RΛ expL(t),

using that expL(C[u]) = expL(C)[expL(u)] and a separate induction for the top
step (using Transformation 5 to choose the right rule and type substitution).
Defining s′, t′ as s, t with occurrences of any Λσ erased, it is also obvious that
s⇒RΛ t implies s′ ⇒=

R t′, with equality only if the former was Λ-erasing.
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Example 10. Continuing the transformation of Rmap, we choose Q = {α→ε} (we
have no other choice, because of the rule λx.@(Fα→ε, x) ⇒ Fα→ε). Transforma-
tion 5 has no effect, and Transformation 6 introduces Λ around all abstractions:

map(F, nil) ⇒ nil Λ(λx.@(F, x)) ⇒ F
map(F, cons(x, y)) ⇒ cons(@(F, x), map(F, y)) Λ(λx.op(F,G) · x) ⇒ op(F,G)
pow(F, 0) ⇒ Λ(λx.x) Λα→ε(F ) ⇒ F
pow(F, s(x)) ⇒ op(F, exp(F, x)) @(F, x) ⇒ F · x
op(F,G) · x ⇒ @(F,@(G, x))

Summing Up. Combining Sections 5 and 6, we can transform a set of rule
schemes, without affecting termination, to satisfy the following properties:

1. both sides of rule schemes are β-normal
2. left-hand sides l have no subterms x · s with x a free variable
3. left-hand sides have the form f(l1, . . . , ln) · ln+1 · · · lm with m ≥ n

Property (3) holds by elimination: after transforming, the left-hand side of a rule
scheme is neither an abstraction, nor an application headed by an abstraction
or variable. If it is a variable, x⇒ r ∈ R, the AFS is non-terminating and (since
termination is all we are interested in) we might replace R by the set {a⇒ a}.
Henceforth, rule schemes are assumed to satisfy the requirements
listed above.

7 Currying

Let us turn our eyes to the status of application. As mentioned in Section 3, an
applicative AFS cannot be handled with most existing termination techniques,
nor can we naively turn it into a functional system. The issues are partial appli-
cation (an applicative map system has terms like map ·s which have no functional
counterpart) and leading free variables (a terminating rule g · (x · 0) ⇒ g · f(0)
has an applicative counterpart g · (x · 0) ⇒ g · (f · 0) which is not terminating).
However, we have excluded rules with leading free variables in the left-hand side.
The issue of partial application can be dealt with using η-expansion.

There are two directions we might take. Usually, we would like to uncurry an
applicative system, transforming a term f · s · t into f(s, t). Such a form is more
convenient in for instance path orderings, or to define argument filterings. On
the other hand, we will have to deal with application anyway, since it is part
of the term syntax; to simplify the formalism it might be a good move to curry
terms, making the system entirely applicative.

Transformation 7 (Currying). Let R be a set of rules schemes over a set of
function symbols F . We define the following mapping on type declarations:
flat((σ1 × . . . σn) −→ τ) = σ1 → . . . → σn → τ . Next we define the map-
ping flat from functional terms over F to applicative terms over the ‘flattened
version’ of F , notation Fflat, as follows:



212 C. Kop

flat(fσ(s1, . . . , sn)) = fflat(σ) · flat(s1) · · · flat(sn)
flat(λx.s) = λx.flat(s)
flat(s · t) = flat(s) · flat(t)
flat(x) = x (x a variable)

The flattened version Rflat of the set of rule schemes R consists of the rule
scheme flat(l)⇒ flat(r) for every rule scheme l⇒ r in R.

Theorem 5. ⇒R is well-founded on terms over F if and only if ⇒Rflat is well-
founded on terms over Fflat.

Proof. It is easy to see that s⇒R t implies flat(s) ⇒Rflat flat(t) (with induc-
tion on the size of s, and a separate induction for topmost steps to see that flat-
tening is preserved under substitution); this provides one direction. For the other,
let flat−1 be the “inverse” transformation of flat, which maps occurrences of f ·
s1 · · · sk with f(σ1×...×σn)−→τ ∈ F to λxk+1 . . . xn.f(flat−1(s1), . . . , flat−1(sk),
xk+1, . . . , xn) if k < n or to f(flat−1(s1), . . . , flat−1(sn)) · flat−1(sn+1) · · ·
flat−1(sk) otherwise. It is not hard to see that flat−1(s)[x := flat−1(t)] ⇒∗

β

flat−1(s[x := t]), and this ⇒∗
β is an equality if HV (s) = ∅. Therefore, and be-

cause flat−1(Rflat) is exactly R, flat−1(s) ⇒+
R flat−1(t) holds if s⇒Rflat t.

Note the if and only if in Theorem 5. Because of this equivalence the theorem
works in two ways. We can turn a functional system applicative, but also turn
an applicative system functional, simply by taking the inverse of Transforma-
tion 7. For an applicative system, there are usually many sets of corresponding
functional rules, all of which are equivalent for the purpose of termination.

Example 11. Our running example can be transformed into the applicative AFS:

pow · F · 0 ⇒ Λ · (λx.x) Λ · (λx.@ · F · x) ⇒ F
pow · F · (s · x) ⇒ op · F · (exp · F · x) Λ · (λx.op · F ·G · x) ⇒ op ·F ·G
op · F ·G · x ⇒ @ · F · (@ ·G · x) @ · F · x ⇒ F · x
map · F · nil ⇒ nil Λ · F ⇒ F
map · F · (cons · x · y)⇒ cons · (@ · F · x) · (map · F · y)

Related Work. In first-order rewriting, the question whether properties such as
confluence and termination are preserved under currying or uncurrying is stud-
ied in [5,6,2]. In [6] a currying transformation from (functional) term rewriting
systems (TRSs) into applicative term rewriting systems (ATRSs) is defined; a
TRS is terminating if and only if its curried form is. In [2], an uncurrying trans-
formation from ATRSs to TRSs is defined that can deal with partial application
and leading variables, as long as they do not occur in the left-hand side of rewrite
rules. This transformation is sound and complete with respect to termination.

However, these results do not apply to AFSs, both due to the presence of
typing and because AFSs use a mixture of functional and applicative notation.
We may for instance have terms of the form f(x)·y, and currying might introduce
new interactions via application.
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8 η-Expansion

Finally, we consider η-expansion. It would often be convenient if we could assume
that every term of some functional type σ→ τ has the form λxσ.s, which only
reduces if its subterm s does. This is the case if we work modulo η, equating
s : σ→ τ , with s not an abstraction, to λxσ .(s · xσ). As is well-known, simply
working modulo η in the presence of β-reduction causes problems. Instead, we
will limit reasoning to η-long terms.

Theorem 6. Let R be a set of rules in restricted η-long form, that is, l =
l↑η

FVar(l) and r = r↑η
FVar(r) for every rewrite rule l ⇒ r in R. Then the set

of η-long terms is closed under rewriting. Moreover, the rewrite relation ⇒R is
terminating on terms iff it is terminating on η-long terms.

Proof. Evidently, if⇒R is terminating then it is terminating on all η-long terms.
For the less obvious direction, we see that s ⇒R t implies s↑η ⇒+

R t↑η. Hence
any infinite reduction can be transformed to an infinite reduction on η-long
terms. Writing γ↑ := {x �→ γ(x)↑η|x ∈ dom(γ)}, a simple inductive reasoning
shows that s↑η

V γ
↑ ⇒∗

β sγ ↑η if V = dom(γ), and this is an equality if HV (s) = ∅.
Thus, if s ⇒R t by a topmost reduction, then also s↑η = lγ ↑η = l↑η

FVar(l)γ
↑ =

lγ↑ ⇒R rγ↑ = r↑η
FVar(r)γ

↑ ⇒β rγ ↑η = t↑η. This forms the base case for an
induction on s, which proves s↑η ⇒+

R t↑η whenever s⇒R t.

The requirement that the rules should be η-long is essential. Consider for example
the system with a single rule fo→o ·xo ⇒ g(o→o)→o ·fo→o. The relation generated by
this rule is terminating, but evidently the set of η-long terms is not closed under
rewriting. The η-long variation of this rule, fo→o · xo ⇒ g(o→o)→o · (λyo.fo→o · yo),
is not terminating, as the left-hand side can be embedded in the right-hand
side. This example is contrived, but it shows that we cannot be careless with η-
expansion. However, when developing methods to prove termination of a system
the most essential part of any transformation is to preserve non-termination. At
the price of completeness, we can use Transformation 8:

Transformation 8 (η-expanding rules). Let R be a set of rules. Define R↑ to
be the set consisting of the rules (l · x1

σ1
· · ·xn

σn
)↑η

V ⇒ (r · x1
σ1
· · ·xn

σn
)↑η

V , for
every rule l ⇒ r in R, with l : σ1 → . . . σn → ι, all xi

σi
s fresh variables, and

V = FVar(l) ∪ {x1
σ1
, . . . , xn

σn
}.

The proof of the following theorem is a straightforward adaptation of the proof
of Theorem 6.

Theorem 7. If the rewrite relation generated by R↑ is terminating on η-long
terms, then the relation generated by R is terminating on the set of terms.

Note that Theorems 6 and 7 concern rules, not rule schemes. The η-expansion
of a terminating set of rule schemes may not be terminating, as demonstrated
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by the system with R = {fα→α · gα ⇒ hα, hnat→nat · 0nat ⇒ f(nat→nat)→nat→nat ·
gnat→nat · 0nat}. Thus, η-expansion is mainly useful on monomorphic systems, or
for termination methods which, given rule schemes R, prove termination of R↑

R.

9 Conclusions

We have seen various techniques to transform AFSs, essentially making it pos-
sible to pose restrictions on terms and rule schemes without losing generality.
Considering existing results, this has various applications:

Applicative terms As mentioned before, most applicative systems cannot be
dealt with directly. Consider for example the system with symbols splitnat→tuple

and pairα→ε→tuple which has the following rule:

split · (xnat→nat · ynat)⇒ pair · xnat→nat · ynat
Even the computability path ordering [1], which is the latest definition in a
strengthening line of path orderings, cannot deal with this rule. However, using
Transformations 1–4 we introduce @(nat→nat×nat)−→nat and the system becomes:

split ·@(x, y)⇒ pair · x · y @(x, y) ⇒ x · y
This system has the same curried form as:

split(@(x, y))⇒ pair(x, y) @(x, y) ⇒ x · y

Consequently, termination of one implies termination of the other by Theorem
5. But the latter is immediate with HORPO [4], using a precedence @ >F pair.

CPO The latest recursive path ordering, CPO, is defined only for monotonic
systems where all symbols have a data type as output type. It cannot, for in-
stance, deal with a system with rules:

emap(F, nil) ⇒ nil
emap(F, cons(x, y)) ⇒ cons(F · x, emap(twice(F ), y))

twice(F ) · x⇒ F · (F · x)

Here, twice has type declaration (nat→nat) −→ nat→nat. By Theorem 6 we
can η-expand these rules, the result of which has the same curried form as:

emap(F, nil)⇒ nil
emap(F, cons(x, y)) ⇒ cons(F · x, emap(λz.twice(F, z), y))

twice(F, x) ⇒ F · (F · x)

Thus, if this system can be proved terminating with CPO (which it can, if
a reverse lexicographical ordering is used), the original system is terminating.
CPO can be applied on any monomorphic system in this way, although the
transformation may lose termination due to the η-expansion.

Dependency Pairs Since rules can be assumed to have a form f(l1, . . . , ln) ·
ln+1 · · · lm, the dependency pair method for AFSs in [8] is now applicable without
restrictions other than monotonicity; a transformation tool which has Transfor-
mations 1–6 built into the input module could build around a dependency pair
framework without losing out.
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Summary and Future Work. In this paper we discussed transformations
which simplify Algebraic Functional Systems significantly. We saw that poly-
morphism only has a function in defining rule schemes, that rule schemes can be
assumed to be β-normal and that there is no need for leading free variables in the
left-hand side of rules. We know that applicative and functional notation can be
interchanged, and rule schemes can be assumed to have a form f · l1 · · · ln ⇒ r
with f a function symbol. Moreover, when we are interested only in proving
termination, we may η-expand the rules and restrict attention to η-long terms.

A monomorphic version of the transformations given here was implemented in
WANDA v1.0 [7], which participated in the Termination Competition 2010 [13].

In the future, we intend to look further into other formalisms, and give con-
ditions and techniques to transfer results across.
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Abstract. In this paper, we give some methods to generate new secret-
sharing schemes from Hadamard matrices derived through orthogonal
3-designs. A close connection of Hadamard designs and secret-sharing
schemes is shown. In addition, we survey some of the most prolific con-
struction methods for Hadamard matrices thus providing the neces-
sary structures to describe a two-part secret-sharing scheme based on
Hadamard designs. Furthermore, we exhibit how some algebraic aspects
of secret-sharing cryptography are interpreted in terms of combinato-
rial design theory, such as the access structure and the security of the
secret-sharing schemes.

Keywords: Hadamard matrices, Hadamard designs, construction,
secret–sharing schemes.

1 Introduction – Preliminaries

A Hadamard matrix of order n, denoted by H(n), is an n×n matrix with entries
from {1,−1} with the property

HHT = nIn

where HT stands for the transpose matrix of H and In is the identity matrix
of order n. The Hadamard property entails that the rows (and columns) of a
Hadamard matrix are orthogonal. It is well known that if n is the order of
a Hadamard matrix then n is necessarily 1, 2 or a multiple of 4, see [23]. A
Hadamard matrix is said to be semi-normalized if all entries in its first row
are equal to 1, while normalized if all entries in both first row and column are
equal to 1. Two Hadamard matrices are equivalent if one can be transformed
into the other by a series of row or column permutations and negations. The
Hadamard conjecture stipulates that there exists a Hadamard matrix of order
4m, for every positive integer m. The Hadamard conjecture is one of the basic
unsolved problems in Discrete Mathematics [12]. The smallest order n for which
a Hadamard matrix is not known, is n = 668.
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Hadamard matrices have important applications in Statistics, Coding The-
ory, Cryptography, Communication Systems and numerous other areas. The
Computational Algebra System, MAGMA, maintains a database for inequiv-
alent Hadamard matrices of small orders [3], while lower bounds for inequivalent
Hadamard matrices of small orders can be reached in [18]. For authoritative
information on Hadamard matrices and their applications we refer to [8], [12],
[23], [28].

A t − (v, k, λ) design is a pair (P ,B) where P is a set of v elements, called
points, and B is a collection of distinct subsets of P of size k, called blocks,
such that every subset of points of size t is contained in exactly λ blocks. Any
t− (v, k, λ) design is also an s− (v, k, λs) design for s ≤ t, where λs = (v−s)

(k−s)λs+1

and λt = λ. Moreover, if (P ,B) is a t − (v, k, λ) design then (P{x}, DERx(B))
is a (t− 1)− (v − 1, k− 1, λ) design, called the derived design for (P ,B), where
x ∈ P and DERx(B) = {B{x} : x ∈ B ∈ B} [1]. Any 3-design with v =
4m, k = 2m, and λ = m − 1, is called a Hadamard 3-design, because of the
association with Hadamard matrices, as we will explain presently. Further, if D is
a Hadamard 3-design, then each of its derived designs, DP , obtained by omitting
a point P and all the blocks that are not incident with P , is symmetric. Both
DP and D̄P , are called Hadamard 2-designs. Their parameters are, respectively,
(4m − 1, 2m − 1,m − 1) and (4m − 1, 2m,m). For more details we refer to [6]
and [1].

Let H be a Hadamard matrix of size 4m and let r = (r1, r2, ..., r4m) be any
row of H . Then for any other row s of H , ls = {j|sj = rj} is a 2m-subset of
P = {1, 2, ..., 4m} , and the same is true for l̄s = P − ls = {j|sj �= rj} . It is well
known and elementary to verify (see [13]) that the collection

B(H(r)) = {ls|s �= r} ∪ {l̄s|s �= r} (1)

forms the block set of a Hadamard 3-design. To get a 2-design, we pick a point
j, then retain the block ls if j ∈ ls, and l̄s if not.

In the present work we study Hadamard matrices of order n = 4m and
their corresponding 3-designs. Using them, we describe a two-part secret-sharing
scheme based on Hadamard 3-designs. A secret-sharing scheme is a way of
sharing a secret among a finite set of people or entities such that only some dis-
tinguished subsets of these have access to the secret. The collection Γ of all such
distinguished subsets is called the access structure of the scheme. A perfect
secret-sharing scheme for Γ is a method by which the shares are distributed to
the parties such that: (1) any subset in Γ can reconstruct the secret from its
shares, and (2) any subset not in Γ can never reveal any partial information
on the secret (in the information theoretic sense). Secret-sharing schemes were
first introduced by Blakley [2] and Shamir [24] for the threshold case, that is, for
the case where the subsets that can reconstruct the secret are all the sets whose
cardinality is at least a certain threshold. In this work we consider some special
properties of Hadamard matrices that play an important role in our study when
enumerating access structures by size.
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The paper is organized as follows. In Section 2 we consider fast construc-
tions for Hadamard matrices. In Section 3 we describe the proposed two-part
secret-sharing scheme and its access structure. In the last Section an algorithmic
construction for secret-sharing schemes from Hadamard matrices is given.

2 Some Constructions for Hadamard Matrices

There is a large number of constructions for Hadamard matrices which can be
roughly classified in three types:

• multiplication (recursion) theorems
• direct constructions
• “plug-in” methods

A good overview of the topic appears in [23]. The constructions given here by
no means exhaust those known, but suffice to give a Hadamard matrix of each
admissible order less up to 100.

2.1 Hadamard Matrices Obtained via Kronecker Product

The foundation of most multiplicative methods is the Kronecker product of two
matrices. That is, if A = (aij) is a m×p matrix and B = (bij) is an n×q matrix,
then the Kronecker product A⊗B is the mn× pq matrix

A⊗B =

⎡

⎢
⎢
⎢
⎢
⎣

a11B a12B . . . a1pB
a21B a22B . . . a2pB

...
...

...
...

am1B am2B
... ampB

⎤

⎥
⎥
⎥
⎥
⎦
.

Jacques Hadamard showed the following tensor (also called Kronecker) product
construction.

Theorem 1 (Hadamard [11]). If H1 and H2 are Hadamard matrices of orders
m and n respectively, then the their Kronecker product H1 ⊗H2 is a Hadamard
matrix of order mn.

The first major family of Hadamard matrices however was found by Sylvester
in his pioneering paper [25] for all orders 2k, k ≥ 1. In terms of the Kronecker

product construction, his results can now be detailed by setting S1 =
[
1 1
1 −

]

as

the Kronecker product S1 ⊗H(n).

Lemma 1 (Sylvester [25]). The Sylvester Hadamard matrices are the matri-
ces in the family {Sk = ⊗kS1 : k ≥ 1}.
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2.2 Paley Type Hadamard Matrices

Another major family of Hadamard matrices is the so called Paley Type Hada-
mard matrices. These families of Hadamard matrices were found by Paley’s [22]
direct construction using the quadratic residues (that is, the non-zero perfect
squares) in a finite field GF (q) of odd order. In the field GF (q), half the non-
zero elements are quadratic residues of squares and the other half are quadratic
non-residues of non-squares. In particular, +1 is a square and −1 is a non-square
only if q ≡ 3 (mod 4).

The quadratic character of GF (q) is the function χ given by

χ(x) =

⎧
⎨

⎩

0 if x = 0;
+1 if x is a quadratic residue;
−1 if x is a quadratic non-residue.

Theorem 2 (Paley [22]). For q an odd prime power, and an ordering {g0 =

0, g1, . . . , gq−1} of GF (q), set Q = [χ(gi − gj)]0≤i,j<q and set S =
[

0 1
1T Q

]

,

where 1 is the all-1s vector of length q.

1. (Paley Type I Hadamard matrix) If q ≡ 3 (mod 4) then

Pq =
[

1 -1
1T Q+ Iq

]

is a Hadamard matrix of order (q + 1).
2. (Paley Type II Hadamard matrix) If q ≡ 1 (mod 4) then

P
′
q =

[
S + Iq+1 S − Iq+1

S − Iq+1 −S − Iq+1

]

is a Hadamard matrix of order 2(q + 1).
Remark 1. Paley Type I Hadamard matrices of order q+1 are strongly connected
to 2− (q, q−1

2 , q−3
4 ) designs. For example, normalize the Pq; the resulting design

can be described as follows: the point set is GF (q); one block is the set J of
non-zero squares (quadratic residues) in GF (q), and the others are its translates
J + x = {j + x : j ∈ J} for x ∈ GF (q). As noted earlier, these designs are also
called Hadamard 2-designs.

2.3 Hadamard Matrices Obtained from Two Circulant Submatrices

We now present a method to “plug-in” matrices in a suitable array, firstly given
by Yang [27].

Theorem 3 (Yang [27]). If A and B are n × n circulant matrices with
elements ±1 that satisfy:

AAT +BBT = 2nIn (2)

then the matrix H =
[

A B
−BT AT

]

is a Hadamard matrix of order 2n.
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In order to find suitable circulant submatrices that satisfy the additive property
in (2) we use an important result that comes from sequences with zero non-
periodic autocorrelation (NPAF), as outlined in [20].

Remark 2. If there are two sequences A and B of length n with entries from
{±1} with zero non-periodic autocorrelation function, then these sequences can
be used as the first rows of circulant matrices which can be used in the Yang
array to form a Hadamard matrix of order 2n.

We adopt the following definitions from [17].

Definition 1. Let A = [a1, a2, . . . , an] be a sequence of length n. The non-
periodic autocorrelation function, NPAF, NA(s) is defined as:

NA(s) =
n−s∑

i=1

aiai+s , s = 0, 1, . . . , n− 1.

Definition 2. Two sequences, A = [a1, · · · , an] and B = [b1, · · · , bn], of length
n are said to have zero NPAF, if NA(s) +NB(s) = 0 for s = 1, . . . , n− 1.

Definition 3. Two sequences, A = [a1, · · · , an] and B = [b1, · · · , bn], of length
n with elements from {−1,+1} are called Golay sequences, denoted by GS(n),
if they have zero NPAF, i.e. if NA(s) +NB(s) = 0 for s = 1, . . . , n− 1.

GS(n) are known for lengths n = 2 and 10 ([9]), and for length 26 ([10]).

– n = 2: [1, 1] and [1,−1]

– n = 10: [1,−1,−1, 1,−1, 1,−1,−1,−1, 1] and [1,−1,−1,−1,−1,−1,−1, 1, 1,−1]

– n = 26: [1, 1, 1,−1,−1, 1, 1, 1,−1, 1,−1,−1,−1,−1,−1, 1,−1, 1, 1, −1,−1, 1,−1,−1,−1,−1]

and [−1,−1,−1, 1, 1, −1,−1,−1, 1,−1, 1, 1,−1, 1,−1, 1, −1, 1, 1,−1,−1, 1,−1,−1,−1,−1]

The basic properties of Golay sequences were studied by Golay in [9]. It is well
known that GS(n) exist for n = 2a · 10b · 26c where a, b, c are nonnegative
integers. Infinitely many lengths of Golay sequences can be produced from a
recursive construction due to Turyn [26]. Hence, an infinite family of Hadamard
matrices can be obtained from Golay sequences (using Theorem 3 and Re-
mark 2). In particular, the following family exists: {H(2n) is a Hadamard matrix
of order 2n : n = 2a ·10b ·26c, a, b, c nonnegative integers such as GS(n) exist}.

2.4 Hadamard Matrices Obtained from Other Multiplication
Methods

A prolific method for constructing Hadamard matrices uses T-matrices or T-
sequences. This method relies on Base sequences and Yang numbers as its main
characteristics. We give the necessary definitions needed for establishing the the-
oretical background for multiplications theorem using T-sequences. For further
details on these multiplication methods for T-sequences we refer the interested
reader to [14,17].
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Definition 4. Four (−1, 1) sequences A, B, C, D of lengths n + p, n + p, n, n
are Base sequences, (abbreviated as BS(n+ p, n)) if:

1. NA(s) +NB(s) +NC(s) +ND(s) =
{

0, s = 1, . . . , n− 1
4n+ 2p, s = 0

2. NA(s) +NB(s) = 0, s = n, . . . , n+ p− 1

whereas with NX we denote the non-periodic autocorrelation function of a se-
quence X.

Definition 5. Four sequences X = [x1, . . . , xn], Y = [y1, . . . , yn], Z = [z1, . . . ,
zn], W = [w1, . . . , wn] of length n with entries (−1, 0, 1) are called T-sequences,
(abbreviated as TS(n)) if:

1. |xi|+ |yi|+ |zi|+ |wi| = 1, i = 1, . . . , n.

2. NX(s) +NY (s) +NZ(s) +NW (s) =
{

0, s = 1, . . . , n− 1
n, s = 0

There is a close connection between Base and T-sequences as this can be seen
from the following construction.

Theorem 4 (Seberry and Yamada [23]). If A,B,C,D are BS(n+1, n) then
the sequences, X = [12 (A + B), 0n], Y = [12 (A − B), 0n], Z = [0n+1,

1
2 (C +D)],

W = [0n+1,
1
2 (C −D)] are TS(2n+ 1).

Definition 6. Four circulant matrices T1, T2, T3, T4 of order t with entries
(−1, 0, 1) are called T-matrices if:

1. Ti ∗ Tj = 0, i �= j ( ∗ denotes the Hadamard product)
2. T1T

T
1 + T2T

T
2 + T3T

T
3 + T4T

T
4 = tIt.

We recall that T-sequences always yield T-matrices, since a T-sequence of length
n can be used as the first row of a circulant matrix which results in a T-matrix
of order n, but not conversely. If there is a multiplication method which uses
suitable sequences of lengths n+ p, n+ p, n, n to produce T-sequences of length
y(2n + p), then y is called a Yang number. These methods have been used to
produce vast numbers of inequivalent Hadamard matrices of large orders in [15],
[16]. It is well known that if there exist T-sequences of length t then there exists
a Hadamard matrix of order 4t.

Theorem 5 (Cooper and Wallis [5]). Suppose there exist circulant
T-matrices (or equivalent T-sequences) Ti, i = 1, . . . , 4 of order n. Then the
matrices,

A = T1 + T2 + T3 + T4

B = −T1 + T2 + T3 − T4

C = −T1 − T2 + T3 + T4

D = −T1 + T2 − T3 + T4

can be used in the Goethals-Seidel array (see [8, page 107]) to obtain a Hadamard
matrix of order 4n.



222 C. Koukouvinos , D.E. Simos, and Z. Varbanov

2.5 List of Hadamard Matrices of Orders Up to 100

In the following Table we give a list of Hadamard matrices for orders up to 100,
using only the construction methods given previously. Hence, these Hadamard
matrices are easily constructed and thus can provide immediately the secret
sharing schemes presented in this paper. For higher orders we refer to the re-
spective Tables of [15] and [16]. Note that, for a permissible order of H(n) there
may be more than one construction methods available. We list only one of them
for each case.

Table 1. Fast Construction Methods for H(n), 4 ≤ n ≤ 100

Order Family Construction Order Family Construction

4 Sylvester Lemma 1 8 GS(4) exist Theorem 3
12 Paley Type I Theorem 2 16 GS(8) exist Theorem 3
20 GS(10) exist Theorem 3 24 Paley Type I Theorem 2
28 Paley Type II Theorem 2 32 Sylvester Lemma 1
36 Paley Type II Theorem 2 40 GS(20) exist Theorem 3
44 TS(11) exist Theorem 5 48 Paley Type I Theorem 2
52 GS(26) exist Theorem 3 56 H(2) ⊗ H(28) Theorem 1
60 Paley Type II Theorem 2 64 Sylvester Lemma 1
68 Paley Type I Theorem 2 72 Paley Type I Theorem 2
76 Paley Type II Theorem 2 80 H(4) ⊗ H(20) Theorem 1
84 Paley Type II Theorem 2 88 H(2) ⊗ H(44) Theorem 1
92 TS(23) exist Theorem 5 96 H(2) ⊗ H(48) Theorem 1
100 TS(25) exist Theorem 5

3 Hadamard 3-Designs and Secret-Sharing Schemes

Dougherty, Mesnager, and Solé [7] proposed the following secret-sharing scheme.
A secret consisting of elements of Fq is split into its components. Let s ∈ Fq be
the secret we wish to share, and let G be a generator matrix for a code C of
length n with columns G0, G1, . . . , Gn−1. Let z be the information vector such
that zG0 = s, and u = zG. The corresponding coordinate ui, i = 1, 2, . . . , n− 1,
is assigned to each party. Assume that G0 is a linear combination of the n − 1
columns G1, . . . , Gn−1. The secret s is then determined by the set of shares
{ui1 , ui2 , . . . , uim}, if and only if G0 is a linear combination G0 =

∑m
j=1 xjGij ,

where 1 ≤ i1 < · · · < im ≤ n−1 andm ≤ n−1. So by solving this linear equation,
we find xj and from then on the secret by s = zG0 =

∑m
j=1 xjzGij =

∑m
j=1 xjuij .

The set of m shares {ui1 , ui2 , . . . , uim} determines the secret if and only if there
is a codeword (1, 0, ..., 0, ci1, 0, ..., 0, cim , 0.., 0) ∈ C⊥, where cij �= 0 for at least
one j [7] (see also [21] for descriptions of this technique). Let P be the set of
parties involved in the secret sharing. In this case P is the set of coordinates
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except for the first one. The set Γ , called the access structure of the secret-
sharing scheme, consists of subsets of P such that any element of Γ can uncover
the secret.

In [4] the following two-part scheme is explained: Let the codewords of weight
i of a given binary self-dual [n, n/2] code C hold a 3− (v, k, λ) design Di, where
v = n and k = i (the codewords of weight i are the blocks of Di). For the first
part of the secret the distribution is the same as in the previous scheme. For
the second part of the secret the first two participants should be removed, so
only n − 3 participants are involved in this part. The second part of the secret
is s′ = s+ zG1 + zG2 = z(G0 +G1 +G2). Then s′ can be determined by the set
of shares {ui3 , ui4 , . . . , uim}, if and only if G2 = G0 + G1 +

∑m
j=3 xjGij where

3 ≤ i3 < · · · < im ≤ n − 1 and m ≤ n − 1. Hence s′ can be determined by the
set of shares {ui3 , ui4 , . . . , uim}, if and only if there is a codeword x ∈ C with
supp(x) = {1, 2, 3, i3, . . . , im}.

Briefly, the idea of the two-part scheme can be described as: there are two
doors (one after another) and n users (any user has a part of the key) and small
groups of users can unlock the “inner” door by combining their parts of the key.
Just after that bigger groups of users can combine their parts of the key in order
to unlock the “outer” door.

Here we propose the following scheme: Let H(4m) be a Hadamard matrix of
order 4m with all entries 1 in its first row. Using it, we construct a Hadamard
3 − (4m, 2m,m− 1) design D that has an orthogonality property. The scheme
is based on the design structure and the orthogonality of any two rows. For the
first part of the secret s, the access structure of this secret-sharing scheme is
given by

Γ = {A | A is the support of a block B ∈ B with B0 = 1}. (3)

We take the blocks that have 1 in the first position. It is easy to compute that
there are (v−1)(v−2)

(k−1)(k−2)λ such blocks where v = 4m, k = 2m, and λ = m− 1 (then
(v−1)(v−2)
(k−1)(k−2)λ = 4m−1). These blocks without the first point hold 2−(v−1, k−1, λ)

designD′
. For the second part we take the v−2

k−2λ (= 2m−1) blocks ofD′
that have

1 in the first position. These blocks without the first point hold 1−(v−2, k−2, λ)
design D′′

. Then, for the second part of the secret, the access structure consists
of λ groups of size k−3. To recover the two-part secret we should use the groups
of size k − 3 at first. They recover the second part of the secret. After that
to recover the other part of the secret we use these groups (they are of size
k − 2 already) and the other v−2

k−2λ − λ = v−k
k−2λ groups of size k − 2. We add

a new participant that has ones in these groups of size k − 2 (the other values
are 0). At last, we use the obtained v−2

k−2λ groups of size k − 1, and the other
(v−1)(v−2)
(k−1)(k−2)λ −

v−2
k−2λ = (v−k)(v−2)

(k−1)(k−2)λ groups of the same size to recover the first
part of the secret. Therefore, we obtain the following:

Theorem 6. Let H(4m) be a Hadamard matrix of order 4m in semi-normalized
form. Then there exists a two-step secret-sharing scheme derived from a
Hadamard 3− (4m, 2m,m− 1) design with the following access structure:
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(i) 4m− 1 groups of size 2m− 1 can recover the first part of the secret
(ii) m− 1 groups of size 2m− 3 can recover the second part of the secret

Recall from Section 2, that there exist infinite families of Hadamard matrices
that arise from Golay sequences (in powers of 2, 10 and 26), and of Sylvester
(in powers of 2) or Paley Type (for prime numbers). Using this remark with the
previous Theorem the following Corollary is immediate.

Corollary 1. Let H(4m) be a Hadamard matrix in semi-normalized form as
above, constructed from Golay sequences, Paley or Sylvester Type, and their
Kronecker product. Then there exists an infinite family of two-step secret-sharing
schemes with access structure as in Theorem 6.

Note that there are cases when the access structure for the second part of the
scheme is not threshold (as in the given example in the next section). It can be
useful for cases when some users (or special groups of users) have more privileges
than the other users.

Example 1. Let H(16) be a Hadamard matrix of order 16 (Sylvester Type or
constructed from GS(8)). The corresponding Hadamard design is a 3− (16, 8, 3)
design D. For the first part of the secret s, the access structure of this secret-
sharing scheme contains those 15 blocks of D that have 1 in the first position.
Then, there are 15 groups of size 7. These blocks without the first point hold
2 − (15, 7, 3) design D′

. For the second part we take those 7 blocks of D′
that

have 1 in the first position. These blocks without the first point hold 1−(14, 6, 3)
design D′′

. Then, for the second part of the secret, the access structure consists
of 3 groups of size 5. To recover the two-part secret we should use the groups of
size 5 at first. They recover the second part of the secret. After that to recover
the other part of the secret we use these groups (they are of size 6 already) and
the other 4 groups of size 6. We add a new participant that has ones in these
groups of size 6 (the other values are 0). At last, we use the obtained 15 groups
of size 7, and the other 15 groups of the same size to recover the first part of the
secret.

Example 2. Let H(56) be a Hadamard matrix of order 56. The corresponding
Hadamard design is a 3−(56, 28, 13) design D. In the same way, for the first part
of the secret s, the access structure of this secret-sharing scheme contains those
55 blocks of D that have 1 in the first position. Then, there are 55 groups of
size 27. These blocks without the first point hold 2− (55, 27, 13) design D′

. For
the second part we take those 27 blocks of D′

that have 1 in the first position.
These blocks without the first point hold 1−(54, 26, 13) design D′′

. Then, for the
second part of the secret, the access structure consists of 13 groups of size 25.
To recover the two-part secret we should use the groups of size 25 at first. They
recover the second part of the secret. After that to recover the other part of the
secret we use these groups (they are of size 26 already) and the other groups of
size 26. We add a new participant that has ones in these groups of size 26 (the
other values are 0). At last, we use the obtained 55 groups of size 27, and the
other 55 groups of the same size to recover the first part of the secret.
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4 Algorithmic Construction of Secret-Sharing Schemes
from Hadamard Matrices

Finally, we present an algorithmic construction of secret-sharing schemes from
Hadamard matrices, based on the multiplication methods presented in Section
2.4, via Base sequences. Note that BS(n+1, n) exist for each n = 1, . . . , 35, and
is one of the most promising methods to show the Hadamard conjecture. For
more details on this matter see [14]. All BS(n + 1, n) for n = 1, . . . , 35 can be
found in [19].

Algorithm 1
function BaseSeqs2SecretSharingScheme(B1, B2, B3, B4)

Require: BS(n + 1, n) exist
X, Y, Z, W ← BaseSeqs2TSeqs(B1, B2, B3, B4) � X, Y, Z, W are TS(2n + 1)
H(4(2n + 1)) ← TSeqs2Hadamard(X, Y, Z, W ) � Theorem 5 Construction
H(4m(2n + 1)) ← H(4(2n + 1)) ⊗ H(m) � Theorem 1 Construction
Hadamard3Design(4m(2n + 1), 2m(2n + 1), 2mn + m − 1) ←
Hadamard2HadamardDesign(H(4m(2n + 1)))
return (SecretSharingScheme)

end function

We illustrate the execution of Algorithm 1 for n = 1, thus visualizing our pro-
posed method for secret-sharing schemes in a small example (in order to save
space).

Input. BS(2, 1): B1 = [1, 1], B2 = [1,−1], B3 = [1], B4 = [1]
Step 1. TS(3): X = [1, 0, 0], Y = [0, 1, 0], Z = [0, 0, 1], W = [0, 0, 0]
Step 2. H(24): We consider the Kronecker product of the produced H(12) from

TS(3) by H(2), i.e. H(24) = H(12)⊗H(2)
Step 3. We normalize the derived Hadamard matrix of order 24, H(24):

H(24) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 − 1 − 1 1 1 − − − 1 − 1 − 1 − 1 1 1 − − − 1 −
1 − − 1 − 1 1 1 − − − 1 1 − − 1 − 1 1 1 − − − 1
1 1 − − 1 − 1 1 1 − − − 1 1 − − 1 − 1 1 1 − − −
1 − 1 − − 1 − 1 1 1 − − 1 − 1 − − 1 − 1 1 1 − −
1 − − 1 − − 1 − 1 1 1 − 1 − − 1 − − 1 − 1 1 1 −
1 − − − 1 − − 1 − 1 1 1 1 − − − 1 − − 1 − 1 1 1
1 1 − − − 1 − − 1 − 1 1 1 1 − − − 1 − − 1 − 1 1
1 1 1 − − − 1 − − 1 − 1 1 1 1 − − − 1 − − 1 − 1
1 1 1 1 − − − 1 − − 1 − 1 1 1 1 − − − 1 − − 1 −
1 − 1 1 1 − − − 1 − − 1 1 − 1 1 1 − − − 1 − − 1
1 1 − 1 1 1 − − − 1 − − 1 1 − 1 1 1 − − − 1 − −
1 1 1 1 1 1 1 1 1 1 1 1 − − − − − − − − − − − −
1 − 1 − 1 1 1 − − − 1 − − 1 − 1 − − − 1 1 1 − 1
1 − − 1 − 1 1 1 − − − 1 − 1 1 − 1 − − − 1 1 1 −
1 1 − − 1 − 1 1 1 − − − − − 1 1 − 1 − − − 1 1 1
1 − 1 − − 1 − 1 1 1 − − − 1 − 1 1 − 1 − − − 1 1
1 − − 1 − − 1 − 1 1 1 − − 1 1 − 1 1 − 1 − − − 1
1 − − − 1 − − 1 − 1 1 1 − 1 1 1 − 1 1 − 1 − − −
1 1 − − − 1 − − 1 − 1 1 − − 1 1 1 − 1 1 − 1 − −
1 1 1 − − − 1 − − 1 − 1 − − − 1 1 1 − 1 1 − 1 −
1 1 1 1 − − − 1 − − 1 − − − − − 1 1 1 − 1 1 − 1
1 − 1 1 1 − − − 1 − − 1 − 1 − − − 1 1 1 − 1 1 −
1 1 − 1 1 1 − − − 1 − − − − 1 − − − 1 1 1 − 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Step 4. The incidence matrix of the corresponding Hadamard 3-design is:

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

101011100010101011100010
010100011101010100011101
100101110001100101110001
011010001110011010001110
110010111000110010111000
001101000111001101000111
101001011100101001011100
010110100011010110100011
100100101110100100101110
011011010001011011010001
100010010111100010010111
011101101000011101101000
110001001011110001001011
001110110100001110110100
111000100101111000100101
000111011010000111011010
111100010010111100010010
000011101101000011101101
101110001001101110001001
010001110110010001110110
110111000100110111000100
001000111011001000111011
111111111111000000000000
000000000000111111111111
101011100010010100011101
010100011101101011100010
100101110001011010001110
011010001110100101110001
110010111000001101000111
001101000111110010111000
101001011100010110100011
010110100011101001011100
100100101110011011010001
011011010001100100101110
100010010111011101101000
011101101000100010010111
110001001011001110110100
001110110100110001001011
111000100101000111011010
000111011010111000100101
111100010010000011101101
000011101101111100010010
101110001001010001110110
010001110110101110001001
110111000100001000111011
001000111011110111000100

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Step 5. The matrix D1 represents the key (the first coordinate) for the first
part of the secret. The blocks of D1 without this coordinate form the groups
of size 11 and hold 2 − (23, 11, 5) design D′. The matrix D2 contains the
blocks of D′ with 1 in the first coordinate. Without their first coordinate,
the blocks of D′ hold 1 − (22, 10, 5) design. The matrix D3 represents the
key (the third coordinate) for the second part of the secret. These two rows
(without the coordinates in black) form the groups of size 9.
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D1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

101011100010101011100010
100101110001100101110001
110010111000110010111000
101001011100101001011100
100100101110100100101110
100010010111100010010111
110001001011110001001011
111000100101111000100101
111100010010111100010010
101110001001101110001001
110111000100110111000100
111111111111000000000000
101011100010010100011101
100101110001011010001110
110010111000001101000111
101001011100010110100011
100100101110011011010001
100010010111011101101000
110001001011001110110100
111000100101000111011010
111100010010000011101101
101110001001010001110110
110111000100001000111011

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

D2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

110010111000110010111000
110001001011110001001011
111000100101111000100101
111100010010111100010010
110111000100110111000100
111111111111000000000000
110010111000001101000111
110001001011001110110100
111000100101000111011010
111100010010000011101101
110111000100001000111011

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, D3 =

⎛

⎜
⎜
⎜
⎝

111000100101111000100101
111100010010111100010010
111111111111000000000000
111000100101000111011010
111100010010000011101101

⎞

⎟
⎟
⎟
⎠

In this example the second part of the scheme is not threshold. Here the set of
users {3, 4, 5, 6, 7, 8, 9, 10, 11} can uncover the secret but also it can be uncovered
by subsets of users {3, 4, 6}, {5, 7, 9}, or {8, 10, 11}. It is useful when special
groups of users have more privileges. For example, if the users are managers,
accountants, and guards in a branch bank then a given safe can be unlocked by
all users or by special group manager-accountant-guard.

5 Conclusion

In this paper, we have considered some connections between Hadamard 3-designs
and secret-sharing schemes. This has been achieved by considering some con-
structions for Hadamard matrices and Hadamard 3-designs. In the sequel, we
describe a two-step secret-sharing scheme based on Hadamard matrices in semi-
normalized form and their corresponding 3-designs.
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Fragment of Real Algebra
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Abstract. This paper connects research in computer science in the field
of SAT-modulo-theories (SMT) solving and research in mathematics on
decision procedures for real algebra. We consider a real algebraic decision
procedure computing all realizable sign conditions of a set of polynomials.
We modify this procedure so that it satisfies certain requirements needed
for the embedding into an SMT-solver.

Keywords: SMT Solving, Real Algebra, I-RiSC, FO Logic, DPLL(T).

1 Introduction

Though the propositional satisfiability problem (SAT), where the variables range
over the values 1 (true) and 0 (false), is NP-complete, SAT-solvers are quite
efficient in practice due to a vast progress in SAT-solving over the last years. In
particular, the DPLL algorithm [12] and its recent improvements such as clause
learning or sophisticated decision heuristics made SAT-solving highly efficient for
practical problems, what led to a break-through of SAT-solving also in industry.

SAT-modulo-theories (SMT) solving aims at embedding decision procedures
for various first-order theories into the SAT-solving context [1,15] This combina-
tion yields highly efficient solvers, which are frequently applied, for example, in
the formal analysis, verification, and synthesis of systems, even over a continuous
domain. For the domain of the real numbers, research in the area of SMT solving
concentrates on linear real arithmetic. Prominent examples of SMT-solvers for
this logic are Z3 [14], Yices [9], MathSAT [7] and OpenSMT [6]. Less emphasis is
put on real algebra, the first-order logic with addition and multiplication over
the reals, which we address in this paper. However, there is a growing interest
in SMT-solving for real algebra. This drift is reflected, for instance, by 2010’s
SMT-competition [16], where the non-linear real arithmetic (NRA) division was
introduced for the first time. The few existing SMT-solvers supporting non-linear
real algebraic constraints are incomplete. For example, Z3, CVC3 [2], MiniSMT [18]
and ABsolver [4] can handle only fragments of real algebra, whereas the solver
iSAT [10], based on interval arithmetic, allows even trigonometrical expressions
but may terminate with the answer “unknown”.

F. Winkler (Ed.): CAI 2011, LNCS 6742, pp. 230–246, 2011.
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Several decision procedures were developed for real algebra since the 1940s,
which are currently operational in some computer algebra systems. The most
well-known approaches are the CAD method [8] and Gröbner bases computa-
tions. The textbook [3] comprises the state of the art for algorithms in real
algebraic geometry. This book is also available online at

http://perso.univ-rennes1.fr/marie-francoise.roy/bpr-ed2-posted2.pdf

However, the employment of these procedures in an SMT-solver is not straight-
forward, because SMT-solvers impose some requirements on the embedded de-
cision procedures for the approach to be feasible in practice [1, 26.4.1]:

– First of all, for efficient SMT-solving we need decision procedures that work
incrementally. That is, after the consistency check of a set of real algebraic
constraints the procedure should be able to extend the set by adding new
constraints, and reuse the previous computations for the check of the ex-
tended set.

– For an unsatisfiable set of constraints the decision procedure should be able
to determine a minimal infeasible subset, i.e., an unsatisfiable subset which
is minimal in the sense that removing any constraint makes it satisfiable.

– The ability to backtrack should allow to remove previously added constraints.

Unfortunately, current decision procedures for real algebra do not support the
above functionalities. In this paper we describe how a method from [3], based
on computing realizable sign conditions, can be modified to satisfy the require-
ments for SMT-solving. We call the modified new method I-RiSC (Incremental
Realization of Sign Conditions).

2 Preliminaries

2.1 SMT-Solving

DPLL-based decision procedures [12] are also applicable to logics richer than
propositional logic, by abstracting all non-propositional atomic constraints by
propositional variables. This approach is called lazy SAT-modulo-theories (SMT )
solving (cf. Fig. 1).

Full lazy (off-line) SMT-solvers first create a Boolean skeleton of the input
formula, replacing all theory constraints by fresh Boolean variables. The result-
ing Boolean formula is passed to a SAT-solver, which searches for a satisfying
assignment. If it does not succeed, the formula is unsatisfiable. Otherwise, the
assignment found corresponds to certain truth values for the theory constraints
and has to be verified by the theory solver. If the constraints are satisfiable,
then the original formula is satisfiable. Otherwise, if the theory solver detects
that the conjunction of the corresponding theory constraints is unsatisfiable,
it then hands over a reason for the unsatisfiability, a minimal infeasible subset
of the theory constraints, to the SAT-solver. The SAT-solver uses this piece of
information to exclude the detected conflict from further search. Afterwards,

http://perso.univ-rennes1.fr/marie-francoise.roy/bpr-ed2-posted2.pdf
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ϕ

SAT-solver UNSAT

Constraint set Reason

Theory solver SAT

Boolean abstraction

satisfiable
unsatisfiable

unsatisfiable

satisfiable

Fig. 1. The basic scheme of DPLL(T )-based SMT-solving

the SAT-solver computes again an assignment for the refined Boolean problem,
which in turn has to be verified by the theory solver. Continuing this iteration
in the end decides the satisfiability of the input formula.

Such full lazy check is often disadvantageous, since the SAT-solver may do a
lot of needless work by extending an already (in the theory domain) contradictory
partial assignment. Less lazy (on-line) DPLL(T) variants of the procedure call
the theory solver more often, handing over constraints corresponding to partial
assignments. To do so efficiently, the theory solver should accept constraints
in an incremental fashion, where computation results of previous steps can be
reused. In case of a conflict the theory solver should also be able to backtrack,
i.e., remove the last asserted constraints.

Note that we strictly separate the satisfiability checks in the Boolean and in
the theory domains, that means, we do not consider theory propagation embed-
ded in the DPLL search like, e.g., Yices [9] does.

2.2 Real Algebra

In SMT-solving we consider only a fragment of real algebra, containing exis-
tentially quantified conjunctions of real algebraic constraints c, which compare
polynomials p to zero:

p ::= 0 | 1 | x | (p+ p) | (p · p)
c ::= p = 0 | p < 0 | p > 0

The operators + and · have the standard semantics of addition and multiplica-
tion. We stick to a more algebraic point of view and refer to [13] or [3] for basic
notions on real algebra.

Let n ∈ N with n ≥ 1 and Z[x1, . . . , xn] be the set of all polynomials in
the real-valued variables x1, . . . ,xn, called the polynomial ring of multivariate
polynomials with integer coefficients. For a polynomial p ∈ Z[x1, . . . , xn] the xi-
degree of p, written degxi

(p), is the highest exponent at xi in p, and [xd
i ]p denotes

the coefficient of xd
i in p, which is a polynomial in x1, . . . , xi−1, xi+1, . . . , xn. A
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polynomial p is called a monomial if p =
∏n

i=1 x
ei

i with ei ∈ N; and in this case
we define its degree as deg(p) :=

∑n
i=1 ei. For arbitrary multivariate polynomials

p we set deg(p) := max{deg(q) | q monomial of p}. The power set of S is denoted
by 2S , and

(
S
k

)
:= {S′ ∈ 2S | |S′| = k}.

A system of m real algebraic constraints is a sequence p1 ∼1 0, . . . , pm ∼m 0
of real algebraic constraints with m ≥ 1 and pi ∈ Z[x1, . . . , xn], ∼i∈ {=, <,>}
for 1 ≤ i ≤ m. We define the signs σ = (σ1, . . . , σm) ∈ {−1, 0, 1}m of the
polynomials P = (p1, . . . , pm) by sgn(pi) = σi for all 1 ≤ i ≤ m. We call (P, σ)
a sign condition on P . The set

/ealiσ(P ) = {(a1, . . . , an) ∈ Rn | sgn(pi(a1, . . . , an)) = σi, 1 ≤ i ≤ m}

of real solutions to the sign condition (P, σ) is called the realization of (P, σ).
Note that /ealiσ(P ) is also a special semi-algebraic set. A sign condition (P, σ) is
called realizable if /ealiσ(P ) �= ∅ (cf. [3, Def. 2.25]). The sign condition (P, {0}m)
is said to be algebraic.

The satisfiability problem for conjunctions of real algebraic constraints, which
we address in this paper, can be formulated in an algebraic context as follows:

Problem 1. Satisfiability problem of real algebraic conjunctions
Input: n, m ∈ N, m,n ≥ 1, P ∈ Z[x1, . . . , xn]m, σ ∈ {−1, 0, 1}m.
Problem: Determine whether �ealiσ(P ) = ∅ and compute an a ∈ �ealiσ(P )

in case the set is not empty.

A realization of a sign condition can be composed of several sign-invariant
subsets which do not have to be connected among each other. The connected
sign-invariant sets are defined as follows.

Definition 1 (Sign-invariance, region)
Let n,m ∈ N, m,n ≥ 1, R ⊆ Rn, P ∈ Z[x1, . . . , xn]m, and σ ∈ {−1, 0, 1}m.

– R is said to be σ-invariant over P if R ⊆ /ealiσ(P ).
– R is said to be sign-invariant over P or P -sign invariant if there is a σ ∈
{−1, 0, 1}m such that R ⊆ /ealiσ(P ).

– R is called a region if R �= ∅ and R is connected, i.e., R �= (A∩R)∪ (B∩R)
with A∩R �= ∅ and B ∩R �= ∅ for any open, nonempty sets A,B ⊆ Rn with
A ∩B = ∅.

Considering the real line, the maximal sign-invariant regions have a simple struc-
ture: The P -sign invariant regions are confined by the roots and intersection
points of the polynomials of P . This results in a decomposition of R into these
points and the open intervals between the points. All points which can be solu-
tions to a sign condition are called samples.

Definition 2 (Sample)
A set S ⊆ Rn is called set of samples for the sign condition (P, σ) if S ∩R �= ∅
for each σ-invariant region R ⊆ /ealiσ(P ).
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A natural approach to determine a real-valued point which satisfies a given semi-
algebraic system of polynomials is to construct sample points for each maximal
sign-invariant region and to search in the set of sample points for a solution point.
The crucial part is the construction of the sample points. The CAD-method
(partial-CAD), for example, tackles this problem by iteratively projecting the
input set of polynomials until only univariate polynomials are left. Their roots,
computed as algebraic numbers, and all points between the roots as well as one
point below the smallest and one point above the largest root are the possible
values for the current component of the sample points for the sign-invariant
regions in a CAD.

If the set of samples for a given sign condition (P, σ) is empty, the sign condi-
tion is not realizable. In terms of SMT-solving, (P, σ) is then called an infeasible
subset, which the SAT-solver gets back as a reason of unsatisfiability. We now
define the notion of minimal infeasible subset precisely.

Definition 3 (Minimal infeasible subset)
Let n,m ∈ N, m,n ≥ 1, P ∈ Z[x1, . . . , xn]m and σ ∈ {−1, 0, 1}m. The sign
condition

((Pi1 , σi1), . . . , (Pik
, σik

)), {i1, . . . , ik} ⊆ {1, . . . ,m}, 1 ≤ k ≤ m

is called infeasible subset if ((Pi1 , σi1), . . . , (Pik
, σik

)) is not realizable. If in this
case

((Pj1 , σj1), . . . , (Pjk−1 , σjk−1))

is realizable for all {j1, . . . , jk−1} � {i1, . . . , ik} with {j1, . . . , jk−1} �= ∅, then
((Pj1 , σj1), . . . , (Pjk

, σjk
)) is said to be minimal.

For the explanation of a recent approach for the sample construction in Section 3,
we introduce algebraic computations with infinitesimal values. These are needed
for several transformations of the input polynomials in order to obtain a set
of polynomials whose realizable sign conditions can be computed much more
efficiently than with the CAD-method.

Puiseux series. Since the abstraction to general fields is not needed in this
paper, we introduce the notion of Puiseux series over the real field R. Let ε be
an infinitesimal element and j, k ∈ Z with j > 0. We call a series

a =
∑

i∈Z,i≥k

aiε
i
j

with ai ∈ R a Puiseux series in ε. Puiseux series are Laurent series in ε
1
j . If,

for example, j = 1 and k = 0 then the Puiseux series a is nothing else than a
Taylor series in ε. The additional parameters in a Puiseux series allow for the
representation of elements algebraic over the field of rational functions R(ε),
i.e. the representation of roots of polynomials in R(ε)[x]. We denote the field of
algebraic Puiseux series R〈ε〉. Given several infinitesimal elements ε1 < . . . < εl,
we identify R〈ε1, . . . , εl〉 with R〈ε1〉 · · · 〈εl〉. For a ∈ R〈ε1, . . . , εl〉 we denote
limε1,...,εl

a = [ε01 · · · ε0l ]a, i.e. the part of a which is constant in ε1, . . . , εl.
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3 Computing Realizable Sign Conditions

Let m,n ∈ N with n ≥ 1 and P ∈ Z[x1, . . . , xn]m throughout this section.
We describe a method from [3] for determining all realizable sign conditions

over P by computing samples for them. After presenting a first approach to
solve this problem, in a second step we give an improved variant utilizing some
state-of-the-art optimizations. Apart from these, both algorithms have a similar
structure: They compute all or possibly a bounded number of subsets of the
possibly modified input polynomials, and for each of these subsets they construct
the samples for a specific algebraic sign condition. The union of all of these
samples builds the samples for the original sign condition. The different subsets
of polynomials need to be considered in order to transform strict sign conditions
to just equations (see [3, Prop. 13.1]).

In this paper, we solely concentrate on the search structure of the procedure.
Therefore, we decouple the subset computation from the construction of samples.
Moreover, we make the sample construction a black box represented by the sub-
procedure samples(Q,(x1 . . . xn)) where Q is a tuple of k ≥ 1 polynomials with
coefficients possibly using infinitesimal elements δ and γ.

The method samples(Q,(x1 . . . xn)) combines [3, Alg. 12.17] and [3, Alg. 13.2].
For readers familiar with real algebra, we give an intuitive description of how
samples(Q,(x1 . . . xn)) works in Table 1. We use the term samples(Q,(x1 . . . xn))
to refer to both, the method and its output. samples(Q, (x1, . . . , xn)) has the
time complexity dO(k) where d = max{deg(Qi) | 1 ≤ i ≤ k} (cf. [3, p. 512]).

Listing 1 shows the first variant of the algorithm for determining all realizable
sign conditions over P suggested in [3, Rem. 13.3], combined with [3, Alg. 13.2].

Notation for lists. Empty lists are denoted by () and list concatenations by ⊕.
We use Li to refer to the ith element of a list L; the same notation is used for
tuples.

Listing 1. First algorithm for computing realizable sign conditions

1 Input: m, n ∈ N, n ≥ 1, P ∈ Z[x1, . . . , xn]m

2 Output: samples S ⊆ Rn for every sign condition (P, σ)
3

4 S := ∅;
5 for 1 ≤ i ≤ m:
6 for {j1, . . . , ji} ∈ ({1,...,m}

i

)
:

7 S := S ∪ samples((Pj1 , . . . , Pji), (x1, . . . , xn));
8 return S;

The correctness of this algorithm follows from [3, Prop. 13.2].
Taking the complexity of the samples computation into account, the number

of steps performed by Listing 1 is 2mdO(k), because lines 5 and 6 define a search
through every subset of the given m polynomials.

An optimized version of Listing 1 needs mn+1dO(k) steps to compute all realiz-
able sign conditions. This method is given by [3, Alg. 13.1] combined with [3, Alg.
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Table 1. Description of the method samples(Q,(x1 . . . xn))

Input: k, n ∈ N, k, n ≥ 1, Q ∈ R[x1, . . . , xn]k with R ∈ {Z, Z[δ, γ]}
Output: set of samples in Rk for (Q2

1 + · · · + Q2
k + (ε(x1, . . . , xn, y) − 1)2, {0}k)

(1) Define q := Q2
1 + · · · + Q2

k + (ε(x1, . . . , xn, y) − 1)2. In Listing 1, the polynomials
Q1, . . . , Qk are a selection of the input polynomials P1, . . . , Pm. However in the
improved Listing 2, Q1, . . . , Qk comprise a subset of perturbed versions of the
input polynomials. We will give some more details on the perturbation below.

Squaring the polynomials Q1, . . . , Qk and adding the term (ε(x1, . . . , xn, y)−1)2

applies a perturbation of the given set of polynomials. The common roots of the
transformed set of polynomials are bounded. This is achieved by intersecting the
cylinders based on the extension of sign-invariant regions of Q to R〈ε〉 with the
k-dimensional sphere with center 0 and radius 1

ε
, as given by (ε(x1, . . . , xn, y)−1)2

and an appropriate projection eliminating y (see [3, 12.6]).
(2) Generate, based on q, a special Gröbner basis G containing n elements, by applying

additional perturbations to q utilizing a fresh infinitesimal element ζ (see [3, Not.
12.46]). The special structure of this Gröbner basis assures a finite number of
common roots with multiplicity 1 of the polynomials in G (see [3, Lem. 12.45]).
In particular, the remainders modulo the ideal generated by G can be computed
using a finite multiplication table; and, in addition to it, each of them represents
exactly one common root of G.

(3) Apply [3, Alg. 12.9] on the input G to obtain the finite, special multiplication
tables mentioned in the previous step.

(4) Apply [3, Alg. 12.14] (performing limζ or limγ,ζ) using the special multiplication
tables to compute univariate representations (see [3, p. 465]) for the roots of q.
Note that this representation can still contain infinitesimal elements.

(5) Apply [3, Alg. 11.20] (performing limε or limδ,ε) to remove the remaining infinites-
imal elements. Multiplication with the main denominator results in univariate rep-
resentations for the roots of q in R.

13.2]. We now describe some details on this optimization and give the improved
algorithm in Listing 2 by making use of the black box samples(Q, (x1, . . . , xn))
as introduced above.

Let ε, δ, γ be infinitesimal elements with ε > δ > γ > 0.
Definition 4 (Perturbed general position polynomial)
Let d, i, n ∈ N with n ≥ 1 and 1 ≤ i ≤ n, p ∈ Z[x1, . . . , xn], and μ ∈
{−1, 1,−γ, γ} be a perturbation value, then

PGμ
n,i,d(p) := (1− δ)p+ δμ(1 +

∑

1≤j≤n

ijxd
j )

denotes the perturbed general position polynomial of p w.r.t. n, i, d, and μ.

This perturbation of P enables that not more than n polynomials need to be
combined in order to compute the realizable sign conditions over P . More pre-
cisely, let d = max{deg(pi) | 1 ≤ i ≤ m} and for 1 ≤ i ≤ m

Γi := {PG1
n,i,d(pi),PG−1

n,i,d(pi),PGγ
n,i,d(pi),PG−γ

n,i,d(pi)},
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then any n polynomials from different Γi have at most a finite number of common
roots; in particular, no n+ 1 polynomials from different Γi have a common root
(see [3, Prop. 13.6]).

Note that there are only
∑n

j=0

(
m
j

)
4j = mn+1 combinations to consider, in

contrast to 2m of the first approach.

Listing 2. Improved algorithm for computing realizable sign conditions

1 Input: m, n ∈ N, n ≥ 1, P ∈ Z[x1, . . . , xn]m

2 Output: samples S ⊆ Rn for every sign condition (P, σ)
3

4 S := ∅;
5 Γ := ();
6 for 1 ≤ i ≤ m:
7 Γ := Γ ⊕ (∅);
8 d := max{deg(pi) | 1 ≤ i ≤ m};
9 for 1 ≤ i ≤ m:

10 Γi := {PG1
n,i,d(pi), PG−1

n,i,d(pi), PGγ
n,i,d(pi), PG−γ

n,i,d(pi)};
11 for 1 ≤ i ≤ n:
12 for {j1, . . . , ji} ∈ ({1,...,m}

i

)
:

13 for (pj1 , . . . , pji) ∈ Γj1 × · · · × Γji :
14 S := S ∪ samples((pj1 , . . . , pji), (x1, . . . , xn));
15 return S;

Observe that Listing 2 is similar to Listing 1, only the perturbation performed
in lines 8 to 10 and the additional loop over the combinations of perturbed
general position polynomials in line 13 are new.

The correctness of the improved algorithm follows from the correctness of the
algorithm presented in 1 as well as [3, Cor. 13.8], which states that the sample
computation also works for the perturbed general position polynomials.

Both algorithms can be implemented using only a polynomial amount of space
[3, Rem. 13.10].

4 The I-RiSC Solver

In this section, we present an SMT-compliant solver for the satisfiability problem
of real algebraic conjunctions, which especially supports adding sign conditions
incrementally, providing minimal infeasible subsets as reason for unsatisfiabil-
ity or an assignment as proof of satisfiability, and the possibility to backtrack
the search by a given number of steps. We call this solver I-RiSC referring to
Incremental computation of Realizable Sign Conditions.

We pursue a class-based design of I-RiSC as it will be implemented in C++
using GiNaCRA, which is a library providing real algebraic data structures [11].

http://ginacra.sourceforge.net/
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4.1 Data Structure

Let m,n ∈ N with n ≥ 1, P ∈ Z[x1, . . . , xn]m, and σ ∈ {−1, 0, 1}m. When
adding a sign condition, the I-RiSC solver first chooses at most n of the sets
of perturbed general position polynomials Γ1, . . . , Γm. The search tree for these
selections can be represented as a binary tree of depth m where each inner node
characterizes one decision whether to take a specific Γk or not. The left edge
of an inner node labeled by 0 indicates that a specific Γk was not selected, the
right edge labeled by 1 indicates that it was. The leaves of the tree are labeled
with the bit words w ∈ {0, 1}m representing the path to the leaf, as shown in
Fig. 2 for m = 2. A w ∈ {0, 1}m induces a choice of polynomials, denoted by

Γ2?

Γ1? Γ1?

00 01 10 11

0 1

0 1 0 1

Fig. 2. I-RiSC search tree for two sets of polynomials Γ1 and Γ2

Pw = (Pi | wi = 1), a choice of sets of perturbed general position polynomials,
denoted by Γw = (Γi | wi = 1), and a choice of corresponding sign conditions,
denoted by σw = (σi | wi = 1). The samples are generated only at the leafs
of the search tree. The mapping α : {0, 1}m → 2Rn

assigns a set of samples
α(w) to each leaf w ∈ {0, 1}m. We use the notation |w|1 for the number of 1s
in w ∈ {0, 1}m; the empty word is denoted by ε. In order to traverse the search
tree we use an order ≺ on bit words, defined as

w1 ≺ w2 :⇔ |w1|1 < |w2|1 or (|w1|1 = |w2|1 and w1 <lex w2)

where w1 <lex w2 compares the words lexicographically. For example, 00 <lex

01 <lex 10 <lex 11. Note that ≺ defines a strict total ordering on {0, 1}m. This
enables the definition of the next≺ operator providing the next element next≺(w)
of w. Moreover, we write

∏
(Q1, . . . , Qk) for the product Q1 × · · · × Qk of the

sets Q1, . . . , Qk.
We now define a notion useful for the analysis of the I-RiSC methods, espe-

cially the method for adding a new sign condition.

Definition 5 (Admissible and inadmissible leaves)
Let w ∈ {0, 1}m be a leaf of the I-RiSC search tree. Let

S(w) := {a ∈ samples(Pw,σw) | a is a sample for (Pw, σw)},

then w is called admissible if S(w) �= ∅, and inadmissible if S(w) = ∅.
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If a leaf w ∈ {0, 1}m is admissible, then the set S(w) can be reused in a later
stage of the search. If, for example, the search is backtracked and the last i
sign conditions, which did not contribute to the sample construction in w, are
deleted, then S(w) = S(wm−i+1 . . . wm). Thus, we do not need to recompute the
samples for wm−i+1 . . . wm.

In the same fashion, we can reuse the result that S(w) is empty. In particular,
S(w) = ∅ entails that (Pw, σw) is an infeasible subset.

Lemma 1 (Minimal infeasible subset characterization)
Let w ∈ {0, 1}m be a leaf of the I-RiSC search tree.
Then (Pw , σw) is a minimal infeasible subset iff w is inadmissible and for all
v ∈ {0, 1}m with 0 < |v|1 < |w|1 it holds that v is admissible.

Proof. By Definition 3, (Pw , σw) is a minimal infeasible subset iff (Pv, σv) is
realizable where v = v1 . . . v|w| with vi ∈ {wi, 0} for 1 ≤ i ≤ |w| such that not
all vi are 0 and not all vi are wi. Because of Definition 5, this is equivalent to v
being admissible with 0 < |v|1 < |w|1. �
Note that if all leaves of the I-RiSC search tree are traversed in order of ≺, then
the first leaf w which proves to be inadmissible represents a minimal infeasible
subset (Pw , σw), because only leaves with at least |w|1 1s would follow. The
method IRiSC.add proceeds in this manner.

4.2 Class Design

In the following listing we specify the class containing the I-RiSC data structure
and methods for the interaction with the DPLL-based SAT-solver.

Table 2 contains annotations to the variables defined in Listing 3. Note that
the type of the variables sometimes depends on m or n, which are instantiated
at runtime. But this does not affect the realizability of the class in C++ because
the type can be implemented by means of dynamic data structures.

The methods in Listing 3 are described in Table 3.

4.3 Methods

The methods IRiSC.add and IRiSC.backjump are presented in Listings 4 and 5.

IRiSC.add. In lines 3 to 12, the new sign condition (p, ς) is stored in P and σ,
the corresponding set of perturbed general position polynomials is attached to
Γ , and w and α are adapted to the new search tree. In particular, the arriving
sign condition is the new root of the search tree, and the old search tree is the
new left successor of the root. This is illustrated in Fig. 3.

In case the sign conditions added so far are not realizable, the arriving sign
condition does not change that result. Thus, the solver does not have to construct
new samples and may abort the search immediately, copying the previous entries
of W , S, R, and K. This case is captured by lines 13 to 16.
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Table 2. Annotations to the variables in Listing 3

Variable Initial value Description
d fixed d ≥ max{deg(q) | q ∈ P} (preselected large enough)
m 0 current number of polynomials
n fixed dimension, i.e., the number of variables
P () current list of polynomials
σ () current list of signs
Γ () current list of sets of perturbed general position polynomials
W () list of search tree leafs such that Wk is the leaf where the

search for the first k polynomials stopped
w ε current leaf of the search tree
α (ε �→ ∅) set of samples not yet considered at the leaves of the search

tree
S () list of m samples where the kth sample satisfies the first k

sign conditions, in case they were satisfiable
r 1 flag determining the current state of w being a candidate for

representing the reason of unsatisfiability (r = 1 means that
w is still a candidate)

R () list of reasons for the unsatisfiability results where each rea-
son represents a conjunction of constraints (() in case of
satisfiability)

K () list of satisfiability results such that Wk is the state of satis-
fiability (1 means satisfiable, 0 not) when the search for the
first k polynomials stopped

Table 3. Annotations to the methods in Listing 3

IRiSC Constructor fixing the dimension, the maximal degree of input polyno-
mials, and the initial values for the variables as given in Table 2.

add Adds a constraint in the form of a sign condition (p, σ) to the system
of polynomial equations and inequalities.

backjump Jumps back to a previous state of the search, by undoing the last j
additions of sign conditions.

satisfiable Asks whether the current sign condition is satisfiable.
reason Returns a reason of unsatisfiability as list of sign conditions if

appropriate.
assignment Returns a satisfying assignment if appropriate.
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Listing 3. The class IRiSC

1 class IRiSC
2 {
3 const VAR δ, γ, ε;
4 d, m,n ∈ N;
5 P ∈ Z[x1, . . . , xn]m;
6 σ ∈ {−1, 0, 1}m;
7 Γ ∈ (2Z[x1, . . . , xn])m;
8 W ∈ ({0, 1}m)m;
9 w ∈ {0, 1}m;

10 α : {0, 1}m → 2Rn

;
11 S ∈ (Rn)m;
12 bool r;
13 R ∈ 2Z[x1,...,xn];
14 K ∈ {0, 1}m;
15

16 IRiSC(d, n ∈ N);
17

18 void add(p ∈ Z[x1, . . . , xn], ς ∈ {−1, 0, 1});
19 void backjump (i ∈ N : 1 ≤ i ≤ m);
20 bool satisfiable (){ return Km; };
21 2Z[x1,...,xn] reason (){ return {(Rm)j | 1 ≤ j ≤ |Rm|}; };
22 {x1, . . . , xn} → R assignment () { return (xj �→ (Sm)j | 1 ≤ j ≤ n); };
23 }

Γ1?

0 1

0 1

Γ2?

Γ1? Γ1?

00 01 10 11

0 1

0 1 0 1

Fig. 3. Evolution of the I-RiSC search tree when adding a new sign condition with its
corresponding set of perturbed general position polynomials Γ2

If the previously added sign conditions are realizable, the search for a sample
satisfying all sign conditions continues at the currently smallest leaf w.r.t. ≺
which has an empty sample set. Since only those leaves w matter, which choose
at least one polynomial for the sample construction (|w|1 > 0), we must exclude
the cases where |w|1 = 0 (lines 17 and 18). Lines 19 to 45 comprise the outer
loop, enumerating all leaves w ∈ {0, 1}m with |w|1 > 0 in order of ≺.

This loop can be exited in two cases, each of which also terminates: firstly, in
case a sample satisfying all sign conditions was found; secondly, if w is inadmis-
sible. The samples are constructed for all combinations polynomials of different
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Listing 4. IRiSC.add

1 void IRiSC.add(p ∈ Z[x1, . . . , xn], ς ∈ {−1, 0, 1})
2 {
3 m := m + 1;
4 P := P ⊕ (p); σ := σ ⊕ (ς);
5 Γ := Γ ⊕ ({PG1

n,k,d(p),PG−1
n,k,d(p), PGγ

n,k,d(p), PG−γ
n,k,d(p)});

6 α̃ : {0, 1}m → 2Rn

;
7 for v ∈ {0, 1}m−1: {
8 α̃(0v) := α(v);
9 α̃(1v) := ∅;

10 }
11 α := α̃;
12 w := min≺( w, min≺{v ∈ {0, 1}m | α(v) = ∅} );
13 if Km−1 = 0: {
14 W := W ⊕ (w); S := S ⊕ (1); R := R ⊕ (Rm−1); K

:= K ⊕ (0);
15 return;
16 }
17 if |w|1 = 0:
18 w := next≺(w);
19 while true : {
20 if α(w) = ∅: {
21 α(w) :=

⋃
Q∈

∏
Γw

samples (Q, (x1, . . . , xn));
22 r := true ;
23 }
24 else :
25 r := false;
26 S′ := ∅;
27 for a ∈ α(w): {
28 if a ∈ �ealiσw (Pw): {
29 r := false;
30 S′ := S′ ∪ {a};
31 if a ∈ �ealiσ(P ): {
32 W := W ⊕ (w); S := S ⊕ (a); R := R ⊕ (());
33 K := K ⊕ (1); α(w) := α(w) ∪ S′;
34 return;
35 }
36 }
37 α(w) := α(w) \ {a};
38 }
39 if r = true : {
40 W := W ⊕ (w);S := S ⊕ (1);R := R ⊕ ((Pw, σw));K := K ⊕ (0);
41 return;
42 }
43 α(w) := S′;
44 w := next≺(w);
45 }
46 }
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sets of perturbed general position polynomials in line 21. This construction is
only performed if no samples were constructed for this node beforehand. The
inner loop in lines 27 to 38 then iterates over all samples for the current leaf w.
The test of satisfiability is two-fold: first, the current sample is checked for satis-
fying (Pw , σw) in line 28; second, it is tested against the complete sign condition
(P, σ) in line 31. This proceeding enables on the one hand the storage of the
set S(w), by the variable S′ which later is assigned to α(w) in line 43. On the
other hand, it allows for recognizing an inadmissible leaf, by using the variable
r: r is only set to true in line 22 where w’s samples are constructed newly, and
r is switched to false immediately in case one sample satisfies the current local
sign condition (Pw, σw), i.e., if w proves to be admissible. If otherwise all checks
against (Pw, σw) fail, then w must be inadmissible; and by Lemma 1, (Pw, σw)
is a minimal infeasible subset, which is stored as such in line 40. Note that r is
set to false in line 25, where w is identified to be admissible.

IRiSC.backjump. The method IRiSC.backjump(i ∈ N : 1 ≤ i ≤ m) removes the last
i entries from P , σ, Γ , W , S, R, and K. It also updates the mapping α.

Listing 5. IRiSC.backjump

1 void IRiSC.backjump (i ∈ N : 1 ≤ i ≤ m)
2 {
3 α̃ : {0, 1}m−i → 2Rn

;
4 for w ∈ {0, 1}m:
5 if w = 0 . . . 0wi+1 . . . wm:
6 α̃(wi+1 . . . wm) := α(w);
7 α := α̃; P̃ := (); σ̃ := ε; Γ̃ := ();
8 W̃ := (); S̃ := (); R̃ := (); K̃ := ();
9 for 1 ≤ k ≤ m − i: {

10 P̃ := P̃ ⊕ (Pk); σ̃ := σ̃ ⊕ (σk); Γ̃ := Γ̃ ⊕ (Γk);
11 W̃ := W̃ ⊕ (Wk); S̃ := S̃ ⊕ (Sk); R̃ := R̃ ⊕ (Rk); K̃ := K̃ ⊕ (Kk);
12 }
13 P := P̃ ; σ := σ̃; Γ := Γ̃ ;
14 W := W̃ ; S := S̃; R := R̃; K := K̃; m := m − i; w := Wm;
15 }

Fig. 4 shows the execution of IRiSC.backjump(1) using the example search tree
of Fig. 3.

4.4 Example

We explain the functioning of I-RiSC by an example, illustrating how the I-RiSC
search tree evolves when adding the sign conditions ((p1), (σ1)), ((p2), (σ2)),
((p3), (σ3)) one by one, then backtracking 2 steps, and finally add a last sign
condition ((p4), (σ4)).
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Γ2?

Γ1? Γ1?

00 01 10 11

0 1

0 1 0 1
Γ1?

0 1

0 1

Fig. 4. Evolution of the I-RiSC search tree when backtracking, undoing the last step

We assume ((p1, p2), (σ1, σ2)) and ((p1, p3), (σ1, σ3)) being satisfiable, but
((p2, p3), (σ2, σ3)) is not. We depict sample points constructed for one combi-
nation of a leaf by •, and circle the sample satisfying the current sign condition.

1. Search tree after adding (p1, σ1): 2. Search tree after adding (p2, σ2):
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0 1

•••

0 1

Γ2?

Γ1? Γ1?

00 01

••

10

••••

11

••••••

0 1
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3. Search tree after adding (p3, σ3):
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Γ2? Γ2?

Γ1? Γ1? Γ1? Γ1?
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••
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••••

011

••••••· · ·

100

••••••· · ·
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••••••· · ·

110

•••••• · · ·/∈ �ealiσ110 (P110)

0 1

0 1

0 1 0 1

0 1

11 1 1

In the first step, I-RiSC constructs the set Γ1 of perturbed general position
polynomials for p1 and, using Γ1, constructs three samples for the given sign
condition, where the third sample satisfies it. The second condition is added by
first constructing the node “Γ2”, which represents the choice of Γ2, and second,
appending the previous search tree as left successor of the new root node “Γ2”.
The samples of Γ1 are discarded, except for two of the two of them, which
satisfy (p1, σ1) but not ((p1, p2), (σ1, σ2)). I-RiSC proceeds by trying samples for
Γ2 and for (Γ1, Γ2). The latter yields a satisfying sample after computing 6 of
the possible 16 choices of sets of general position polynomials. In the last step,
(p3, σ3) is added. Now, following ≺ back to the next leaf without samples, Γ3 is
used for sample construction. In this example, the samples generated at the leaves
100, 011, or 101 satisfy their respective sign conditions (P100, σ100), (P011, σ011),
or (P101, σ101), but not all sign conditions. The next condition (P110, σ110) is
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satisfied by none of its respective samples. This allows I-RiSC to stop the search
process and store the sign condition (P110, σ110) as reason of unsatisfiability.

This reason is now removed by performing IRiSC.backjump(2). Thereby, the
search tree of the very first step is restored, still containing some of the samples
computed for Γ1. The final step of this example shows the adding of ((p4), (σ4)),
which here is satisfied already by the next sample, computed for Γ1.

The resulting search trees may look as follows.

1. Search tree after backtracking 2 steps: 2. Search tree after adding (p4, σ4):

Γ1?

0 1

••

0 1

Γ4?

Γ1? Γ1?

00 01

••

10 11

0 1

0 1 0 1

4.5 Optimizations

There are several ways to optimize the implementation of I-RiSC. Here, we list
three of them.

– The method IRiSC.add does not have to compute all the complete set
∏
Γw

and all samples for a given w in advance, but could store the current position
in the

∏
Γw and the corresponding sample computation. This would at best

avoid 4|w|1−1 calls of the method IRiSC.samples as well as save the memory
consumed by the samples and the tuples of

∏
Γw.

– I-RiSC does not yet support theory propagation. As discussed in [15], theory
propagation can considerably speed-up the solving procedure. We plan first
to implement the I-RiSC solver as proposed in this paper, before further
improving it by adding theory propagation.

– Last but not least, since good search heuristics are very important for the
practical applicability of I-RiSC, we will investigate them in the near future.

5 Conclusion

In this paper we introduced a modification of an existing decision procedure for
real algebra from [3]. Our modified algorithm I-RiSC satisfies the requirement
to be embedded into an efficient SMT-solver.

Currently, we work on the implementation of the I-RiSC method. The im-
plementation, based on the C++ library GiNaCRA [11], will allow to develop a
complete SMT-solver for real algebra.

There are several points for further optimization of the proposed algorithm.
In addition, I-RiSC can be combined with techniques applied in other decision
procedures for real algebra. One example is the reduction of the dimension of the
input polynomials by variable elimination techniques. E.g., if the multivariate
input polynomials are at most quadratic in one variable, then solution formulas
can be used for variable elimination, as done by the virtual substitution [17].

http://ginacra.sourceforge.net/
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Abstract. We introduce variable tree automata with infinite input
ranked alphabets. Our model is based on an underlying bottom-up tree
automaton over a finite ranked alphabet containing variable symbols.
The underlying tree automaton computes its tree language, and then
replaces the variable symbols with symbols from the infinite alphabet
following certain rules. We show that the class of recognizable tree
languages over infinite ranked alphabets is closed under union and inter-
section but not under complementation. The emptiness problem is decid-
able, and the equivalence problem is decidable within special subclasses
of variable tree automata. The universality problem is also decidable in a
subclass of variable tree automata. We demonstrate the robustness of our
model by connecting it to variable finite automata and indicating sev-
eral characterizations of recognizable tree languages over infinite ranked
alphabets.
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1 Introduction

The automata-theoretic approach, based on finite automata, has been success-
fully applied so far, in automated reasoning for finite state systems. Nevertheless,
a corresponding approach for reasoning on infinite state systems with finite con-
trol and infinite data, requires automata working over infinite alphabets. Several
authors considered such automata models, namely register (cf. [14,16,17,19]),
pebble (cf. [16,17]), and data automata (cf. [1,2]). Recently in [10] (cf. also [11]),
the authors considered a new model of finite automaton, the variable finite au-
tomaton consuming words over infinite alphabets. It is based on an underlying
finite automaton with input finite alphabet which consists of a constant alpha-
bet (subalphabet of the infinite alphabet) and variable symbols. The variable
symbols are of two types, namely bounded and free with the restriction that
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there exists only one free variable symbol. The automaton accepts a language as
follows. Firstly, it computes the language of the underlying automaton. Then,
it substitutes the variable symbols with letters from the infinite alphabet. For
this substitution concrete requirements are imposed. It is shown that variable
finite automata have nice properties, but their main advantage is the simplicity
of their operation in comparison to the other models of automata over infinite
alphabets.

The processing of XML documents led to the investigation of unranked trees
and especially to data trees, cf. for instance [2,3,13] and the references in these
papers. Important results have been established for XML reasoning using tree
automata on data trees. Nevertheless, those automata are quite complicated ac-
cording to implementation and application. In this paper, we introduce a simple
tree automaton model accepting trees from an infinite ranked alphabet with
bounded rank. Our model is based on an underlying bottom-up tree automaton
with finite input ranked alphabet, consisting of a subalphabet of the infinite
alphabet, and two variable ranked alphabets, namely bounded and free. Firstly,
we compute the tree language of the underlying automaton, and then we apply
certain relabelings on the variable symbols assigning letters (of the same rank)
from the infinite alphabet. In this way we get the tree language accepted by
the tree automaton. We call our model a variable tree automaton. We show that
the class of tree languages accepted by variable tree automata is closed under
union and intersection. The equivalence problem is decidable in two subclasses of
variable tree automata. Our formalism allows further characterizations of the rec-
ognizable tree languages as well as the consideration of top-down tree automata
which are shown to be equivalent to the bottom-up models. Furthermore, this
formalism clearly indicates the definition of tree automata over infinite trees,
not considered in this paper. This shows the robustness of our model; moreover
there is a natural connection of our tree automata, via monadic alphabets, with
the variable finite automata of [10,11]. In this way, we show for instance, that
the equivalence is decidable in two subclasses of variable finite automata. Fur-
thermore, we show that our recognizable tree languages are not closed under
complementation, using a corresponding result from the string case. One more
well-known result from classical tree language theory fails in our setup, namely
the class of the branches of our recognizable tree languages does not coincide
with the recognizable languages over infinite alphabets. Several problems remain
open, the most important may be, the determinization of variable tree automata
and the closure under tree homomorphisms and tree substitutions.

2 Preliminaries

For a set X , we let X∗ for the free monoid generated by X , and ε for the unit
element of X∗ which is called the empty word if we consider X as an alphabet.
We shall denote by N the set of natural numbers and let N+ = N \ {0}. The
prefix relation ≤ over N∗ is a partial order defined in the usual way: for every
w, v ∈ N∗, w ≤ v iff there exists u ∈ N∗ such that wu = v. A set A ⊆ N∗ is
called prefix-closed if wu ∈ A implies w ∈ A.
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A (finite) ranked alphabet Σ is a pair (Σ, rk) (simply denoted by Σ) where
Σ is a finite set and rk : Σ → N. As usually, we set Σk = {σ ∈ Σ | rk(σ) = k},
k ≥ 0 and deg(Σ) = max{k ∈ N | Σk �= ∅} is the degree of Σ.

The union Σ∪Γ, the intersection Σ∩Γ , the difference Σ\Γ , and the cartesian
product Σ × Γ of two ranked alphabets Σ and Γ are ranked alphabets defined,
respectively, by (Σ ∪ Γ )k = Σk ∪ Γk, (Σ ∩ Γ )k = Σk ∩ Γk, (Σ \ Γ )k=Σk \ Γk,
and (Σ × Γ )k = Σk × Γk, for every k ≥ 0.

A finite tree t over Σ is a partial mapping t : N∗
+ → Σ such that the domain

dom(t) is a nonempty prefix-closed set, and if t(w) ∈ Σk, k ≥ 0, then for i ∈ N+,
wi ∈ dom(t) iff 1 ≤ i ≤ k. The set dom(t) is the set of nodes of t, and for every
w ∈ dom(t) the symbol t(w) is the label of t at w. Hence, t(dom(t)) is the set of
all labels of t. We denote by TΣ the set of all finite trees over Σ. Alternatively,
the set TΣ is defined to be the smallest set T such that if k ≥ 0, σ ∈ Σk, and
t1, . . . , tk ∈ T , then σ(t1, . . . , tk) ∈ T . If σ ∈ Σ0, then we write just σ for σ( ).
By definition TΣ �= ∅ iff Σ0 �= ∅, thus we assume that every ranked alphabet we
consider in this paper has at least one nullary symbol. In the following, we recall
tree automata (cf. [4,8,9]).

A (nondeterministic) bottom-up tree automaton (buta for short) is a quadru-
ple M = (Q, Σ, Δ, F ) where Q is the finite state set, Σ is the input ranked
alphabet, Δ = (Δk)k≥0 is the family of transitions with Δk ⊆ Qk × Σk × Q for
every k ≥ 0, and F ⊆ Q is the final state set.

Let t ∈ TΣ. A run of M over t is a partial mapping rt : N∗
+ → Q with

dom(rt) = dom(t), such that for every w ∈ dom(t) it holds ((rt(w1), . . . , rt(w �
rk(t(w)))), t(w), rt(w)) ∈ Δrk(t(w)). The run rt is called successful if rt(ε) ∈ F .
The tree t is recognized (or accepted) by M if there is a successful run of M over
t. The tree language of M consists of all trees accepted by M and is denoted by
L(M).

Dually, a (nondeterministic) top-down tree automaton (tdta for short) is a
quadruple N = (Q, Σ, Q0, Δ) where Q is the finite state set, Σ is the input
ranked alphabet, Q0 ⊆ Q is the set of initial states, and Δ = (Δk)k≥0 is the
family of transitions with Δk ⊆ Q × Σk × Qk for every k ≥ 0.

Given a tree t ∈ TΣ, a run of N over t is a partial mapping rt : N∗
+ → Q with

dom(rt) = dom(t), such that for every w ∈ dom(t), it holds (rt(w), t(w), (rt(w1),
. . . , rt(w�rk(t(w))))) ∈ Δrk(t(w)). Now the run rt is called successful if rt(ε) ∈ Q0.
The tree t is recognized (or accepted) by N if there is a successful run of N over
t. The tree language of N consists of all trees accepted by N and is denoted
by L(N). It is well-known that the classes of tree languages accepted by all
buta and all tdta coincide. This common class is the class of recognizable tree
languages and is denoted by REC. If we need to restrict REC over a specific
ranked alphabet Σ, then we write REC(Σ).

3 Variable Tree Automata

In this section, we consider tree automata whose input ranked alphabet is infi-
nite. More precisely, a ranked alphabet (Σ, rk) is infinite if Σ is infinite but still
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its degree is a finite number. The set TΣ of finite trees over Σ is defined in the
same way as for finite ranked alphabets. Again, we will assume that every infinite
ranked alphabet we shall use in this paper has at least one nullary symbol.

Let Σ and Σ′ be (infinite) ranked alphabets. A relabeling from Σ to Σ′ is
a family of mappings (hk)k≥0 such that for every k ≥ 0, hk : Σk → P (Σ′

k).
The relabeling (hk)k≥0 induces a mapping h : TΣ → P (TΣ′) which is defined
inductively in the following way. For every t ∈ TΣ with t = σ (t1, . . . , tk) we
let h(t) = {σ′(t′1, . . . , t′k) | σ′ ∈ hk(σ) and t′i ∈ h(ti), 1 ≤ i ≤ k}. Note that
dom(s) = dom(t) for every s ∈ h(t). For simplicity, sometimes we write just h
for hk, k ≥ 0.

Next let Z and Y be two nonempty finite ranked alphabets with deg(Z) ≤
deg(Σ), deg(Y ) ≤ deg(Σ), and card(Yk) ≤ 1 for every k ≥ 0. Moreover, we
assume that Σ, Z, and Y are pairwise disjoint and Zk = Yk = ∅ if Σk = ∅ for
every 0 ≤ k ≤ deg(Σ). For reasons explained in the sequel, we call the elements
of Z bounded variable symbols (or bounded variables) and the elements of Y free
variable symbols (or free variables). Let A ⊆ Σ be a finite subalphabet of Σ and
set Γ = A ∪ Z ∪ Y . A relabeling h from Γ to Σ is called valid on Γ if

(i) it is the identity on A,1
(ii) card(hk(z)) = 1 for every k ≥ 0 and z ∈ Zk,
(iii) h is injective on Z and Ak ∩ hk(Zk) = ∅ for every k ≥ 0,
(iv) hk(y) = Σk \ (Ak ∪ hk(Zk)) for every k ≥ 0 and y ∈ Yk.

Thus, the application of h on a tree t over Γ , assigns to every occurrence of a
symbol z ∈ Z in t the same label from Σ, but it is possible to assign different
labels to different occurrences of the same symbol y ∈ Y in t. This justifies the
names bounded and free for the set of variables Z and Y , respectively. Clearly,
it is sufficient to define a valid relabeling on Γ only on Z. We denote by V R(Γ )
the class of all valid relabelings on Γ . Clearly V R(Γ ) is infinite. Now we are
ready to introduce the main concept of the paper.

A variable bottom-up tree automaton (vbuta for short) is a pair M = 〈Σ, M〉
where Σ is an infinite ranked alphabet and M = (Q, ΓM , Δ, F ) is a buta with
input alphabet ΓM = ΣM ∪Z∪Y where ΣM ⊆ Σ is a finite ranked subalphabet,
Z is a finite ranked alphabet of bounded variables, and Y is a finite ranked
alphabet of free variables. The tree language L(M) of M is defined by L(M) =⋃

h∈V R(ΓM ) h(L(M)). Then, we say that the tree language L(M) is accepted (or
recognized) by M. We denote by V REC(Σ) the class of tree languages over
Σ accepted by all vbuta with input ranked alphabet Σ. Moreover, we denote
by V REC the class of all recognizable tree languages over all infinite ranked
alphabets.

Example 1. Consider the vbuta M = 〈Σ, M〉 with M = (Q, ΓM , Δ, F ), where
Q = {q, q′}, Z = Z2 = {z}, Y = {y0, y2} with rk(y0) = 0, rk(y2) = 2, F = {q′},
and Δ = {(y0, q), ((q, q), y2, q), ((q, q), z, q′)}. Then, L(M) consists of all binary
trees t over the infinite alphabet Σ, such that the label of the root(=t(ε)) of t
is different from the label of every other node of t.
1 Abusing notations we identify {a} with a, for every a ∈ A.
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Example 2. Let M = 〈Σ, M〉 with M = ({q}, ΓM , Δ, {q}), where ΣM = ∅,
Yk = {yk} and Δk = {((q, . . . , q), yk, q)} for every 0 ≤ k ≤ deg(Σ) with Σk �= ∅.
Trivially, the vbuta M accepts every tree in TΣ, hence L(M) = TΣ .

Example 3. For every recognizable tree language L over a finite ranked alphabet
Σ′ ⊆ Σ, we have L ∈ V REC(Σ). Indeed, a buta M accepting L is a vbuta
M = 〈Σ, M〉 whose transitions do not contain any variable.

From the above Example 3, we immediately obtain the subsequent result.

Proposition 1. REC ⊆ V REC.

In the rest of the paper Σ will denote an infinite ranked alphabet.

Variable top-down tree automata (vtdta for short) are defined analogously. More
precisely, a vtdta is a pair M = 〈Σ, M〉 where M = (Q, ΓM , Q0, Δ) is a tdta.
The tree language of M is defined by L(M) =

⋃
h∈V R(ΓM ) h(L(M)). Using the

equivalence of buta and tdta, we trivially get the next equality result.

Proposition 2. The class of tree languages accepted by all vtdta with input
ranked alphabet Σ coincides with V REC(Σ).

In the sequel, we intend to investigate closure properties of the class V REC(Σ).
Nevertheless, standard constructions on tree automata over finite ranked alpha-
bets cannot be applied in a straightforward way in our setup. For instance,
consider two vbuta M(i) =

〈
Σ, M (i)

〉
where M (i) = (Q(i), Γ (i), Δ(i), F (i)) with

Γ (i) = Σ(i) ∪ Z(i) ∪ Y (i), i = 1, 2. Let M be the well-known disjoint union (cf.
[4]) of M (1) and M (2) and h(1) ∈ V R(Γ (1)) such that h(1)(z) ∈ Σ(2) for some
z ∈ Z(1). Then h(1) cannot be anymore a valid relabeling on Γ (1)∪Γ (2) which im-
plies that if t ∈ h(1)(L(M (1))) and there is a node of t with label h(1)(z), then it
is not guaranteed that t ∈ L (M), where M = 〈Σ, M〉. The subsequent Lemma
1 will be crucial for our constructions. For its proof we need some preliminary
matter.

Let M = 〈Σ, M〉 be a vbuta, h ∈ V R(ΓM ), and Σ′ ⊆ Σ a finite subalphabet
with Σ′ \ ΣM �= ∅. We consider the buta Mh = (Qh, ΓMh

, Δh, Fh) where Qh

is a copy of Q, i.e., Qh = {qh | q ∈ Q} and Fh = {qh ∈ Qh | q ∈ F}. The
input alphabet ΓMh

is defined by ΓMh
= ΣM ∪ (h(Z ∪ Y ) ∩ Σ′) ∪ (Z \ Zh) ∪ Y

where Zh = {z ∈ Z | h(z) ∈ Σ′ \ ΣM}. The family Δh of transitions is de-
termined as follows. For every k ≥ 0 and z ∈ (Zh)k we replace every tran-
sition ((q1, . . . , qk), z, q) ∈ Δk with the new transition ((qh

1 , . . . , qh
k ), hk(z), qh).

We repeat the same procedure in case hk(y) ∩ (Σ′ \ ΣM )k �= ∅ , hence we re-
place every transition ((q1, . . . , qk), y, q) ∈ Δk with the transitions of the form
((qh

1 , . . . , qh
k ), σ′, qh) for every σ′ ∈ hk(y)∩ (Σ′ \ΣM )k. Formally, for every k ≥ 0

we set
(Δh)k = {

((
qh
1 , . . . , qh

k

)
, σ, qh

)
| ((q1, . . . , qk) , σ, q) ∈ Δk, σ ∈ (ΣM )k ∪ (Z \ Zh)k ∪ Yk}

∪
{((

qh
1 , . . . , qh

k

)
, hk(z), qh

)
| ((q1, . . . , qk) , z, q) ∈ Δk, z ∈ (Zh)k

}
∪

{((
qh
1 , . . . , qh

k

)
, σ′, qh

)
| ((q1, . . . , qk) , y, q) ∈ Δk, σ′ ∈ hk(y) ∩ (Σ′ \ ΣM)k

}
.



252 I.-E. Mens and G. Rahonis

The alphabets ΣM , Z, Y, and Σ′ are finite, thus by applying the above pro-
cedure for every h ∈ V R(ΓM ) we get a finite number of buta modulo the iden-
tification of the sets of states. Let V be a finite subset of V R(ΓM ) determining
this finite class of tree automata and Mg = (Qg, ΓMg , Δg, Fg) for every g ∈ V .
Without any loss, we assume the sets Qg, g ∈ V , to be pairwise disjoint. Now
we consider the buta M(Σ′,V ) = (QV , ΓV , ΔV , FV ) with ΓV = ΣM ∪Σ′ ∪Z ∪Y ,
QV =

⋃
g∈V Qg, FV =

⋃
g∈V Fg, and ΔV =

⋃
g∈V Δg. Clearly L

(
M(Σ′,V )

)
=⋃

g∈V L(Mg) and thus L(M(Σ′,V )) =
⋃

h∈V R(ΓV ) h
(⋃

g∈V L(Mg)
)
.

Lemma 1. L(M) = L(M(Σ′,V )).

Proof. Let t ∈ TΣ and assume firstly that t ∈ L(M). By definition, there is a tree
s ∈ TΓM and a valid relabeling h ∈ V R(ΓM ) such that t ∈ h(s). By construction
of the vbuta M(Σ′,V ) there is a valid relabeling g ∈ V such that g(z) = h(z) for
every z ∈ Zh and g(y)∩Σ′ = h(y)∩Σ′ for every y ∈ Y . We consider the tree s′

with dom(s′) = dom(s), defined as follows. For every w ∈ dom(s′) we let

s′(w) =
{

s(w) if (s(w) ∈ ΣM ∪ (Z \ Zh)) or (s(w) = y and t(w) /∈ Σ′ \ ΣM )
t(w) if (s(w) ∈ Zh) or (s(w) = y and t(w) ∈ Σ′ \ ΣM ).

Clearly s′ ∈ L(Mg). We consider a valid relabeling h′ ∈ V R (ΓV ) defined
in the following way. For every z ∈ (Z \ Zh)k , k ≥ 0, we let h′

k(z) =
hk(z), for every z ∈ (Zh)k , k ≥ 0, we (nondeterministically) let h′

k(z) ∈
(Σ \ (ΣM ∪ Σ′ ∪ h(Z \ Zh)))k. Thus, for every k ≥ 0 we have h′

k(y) =
(Σ \ (ΣM ∪ Σ′ ∪ h′(Z)))k. Trivially t ∈ h′(s′), hence t ∈ h′(L(Mg)).

Conversely, assume that t ∈ L(M(Σ′,V )). Then, there is a tree s ∈ L(M(Σ′,V ))
and a valid relabeling h ∈ V R (ΓV ) such that t ∈ h(s). This in turn implies that
there is a g ∈ V such that s ∈ L (Mg) hence t ∈ h(L(Mg)). By construction of
Mg, there is a tree s′ ∈ L(M) such that s ∈ g′(s′) where g′ : ΓM → P(Σ)∪Z∪Y
is a mapping which coincides with g on ΣM ∪ Zg, it is the identity on Z \ Zg,
and g′(y) = g(y) ∪ {y} for every y ∈ Y . Now we consider the relabeling h′

from ΓM to Σ defined in the following way. It is the identity on ΣM , and for
every k ≥ 0, h′

k(z) = hk(z) for every z ∈ (Z \ Zg)k, h′
k(z) = gk(z) for every

z ∈ (Zg)k, and h′
k(y) = hk(y) ∪

(
(gk(y) ∩ Σ′

k) \ gk

(
(Zg)k

))
for y ∈ Yk (in fact

(gk(y) ∩ Σ′
k) ∩ gk

(
(Zg)k

)
= ∅ since g is a valid relabeling on ΓM ). Trivially h′

is a valid relabeling on ΓM and t ∈ h′(s′). We conclude that t ∈ L(M) and our
proof is completed.

Proposition 3. The class V REC(Σ) is closed under union.

Proof. Let M(i) =
〈
Σ, M (i)

〉
, i = 1, 2, be two vbuta where M (i) = (Q(i), Γ (i),

Δ(i), F (i)) with Γ (i) = Σ(i) ∪ Z(i) ∪ Y (i). Without any loss, we assume
Q(1) ∩ Q(2) = ∅ and the variable sets Z(1), Z(2), Y (1), and Y (2) to be pairwise
disjoint. We consider the buta M

(1)

(Σ(2),V1)
=

(
Q

(1)
V1

, Γ (1) ∪ Σ(2), Δ
(1)
V1

, F
(1)
V1

)
and

M
(2)

(Σ(1),V2)
=

(
Q

(2)
V2

, Γ (2) ∪ Σ(1), Δ
(2)
V2

, F
(2)
V2

)
obtained by the procedure described

before Lemma 1. Again without any loss, we can assume that Q
(1)
V1

∩ Q
(2)
V2

= ∅.
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We consider the buta M = (Q(1)
V1

∪ Q
(2)
V2

, Γ, Δ
(1)

V1
∪ Δ

(2)

V2
, F

(1)
V1

∪ F
(2)
V2

) which is

obtained by the disjoint union of M
(1)

(Σ(2),V1)
and M

(2)

(Σ(1),V2)
by letting Γ =

Σ(1)∪Σ(2)∪Z(1) ∪Z(2)∪Y . The ranked alphabet Y of free variables is assumed
disjoint from Y (1) and Y (2) with card(Yk) = max{card(Y (1)

k ), card(Y (2)
k )} for

every k ≥ 0. The transition set Δ
(i)

Vi
is obtained from Δ

(i)
Vi

, i = 1, 2, by replacing

every occurrence of y(i) ∈ Y
(i)
k with the new symbol y ∈ Yk, k ≥ 0. We will show

that L(M) = L
(
M(1)

)
∪L

(
M(2)

)
where M = 〈Σ, M〉. For this, let t ∈ L(M).

Then, there exists a tree s ∈ L(M) and a valid relabeling h ∈ V R(Γ ) such that
t ∈ h(s). Furthermore, there is a tree s′ ∈ L

(
M

(1)

(Σ(2),V1)

)
∪ L

(
M

(2)

(Σ(1),V2)

)
such

that s is obtained from s′ by replacing, for every k ≥ 0, every occurrence of
y(1) ∈ Y

(1)
k and y(2) ∈ Y

(2)
k with y ∈ Yk (in fact, by construction of the finite

automaton M , only free variables from Y (1) or Y (2) occur in s′). Assume firstly
that s′ ∈ L

(
M

(1)

(Σ(2),V1)

)
. We consider the relabeling h′ from Γ (1) ∪ Σ(2) to Σ

which coincides with h on Σ(1) ∪ Σ(2) ∪ Z(1), and h′
k(y(1)) = hk(y) ∪ hk

(
Z

(2)
k

)
for every k ≥ 0 and y(1) ∈ Y

(1)
k . Trivially h′ ∈ V R

(
Γ (1) ∪ Σ(2)

)
and t ∈ h′(s′),

hence t ∈ L
(
M(1)

(Σ(2),V1)

)
. Thus, by Lemma 1 we get t ∈ L

(
M(1)

)
. The case

s′ ∈ L
(
M

(2)

(Σ(1),V2)

)
is treated similarly.

Conversely, let t ∈ L
(
M(1)

)
∪ L

(
M(2)

)
and assume that t ∈ L

(
M(1)

)
.

By Lemma 1, we get that t ∈ L
(
M(1)

(Σ(2),V1)

)
which implies that there is a

tree s ∈ L
(
M

(1)

(Σ(2),V1)

)
and a valid relabeling h ∈ V R(Γ (1) ∪ Σ(2)) such that

t ∈ h(s). We consider a valid relabeling h′ from Γ to Σ determined as follows. It
coincides with h on Σ(1) ∪Σ(2) ∪Z(1) and we let (nondeterministically) h′

k(z) ∈
Σk \

(
Σ(1) ∪ Σ(2) ∪ h(Z(1)) ∪ Σ′′)

k
for every k ≥ 0 and z ∈ Z

(2)
k , where Σ′′ is set

of all labels of t which are obtained by replacing (via h) all occurrences of free
variables in s. Let s′ be the tree obtained from s by replacing, for every k ≥ 0,
every occurrence of y(1) ∈ Y

(1)
k with y ∈ Yk. Clearly, s′ ∈ L(M) and t ∈ h′(s′),

hence t ∈ L (M). The case t ∈ L
(
M(2)

)
is treated similarly, and we are done.

Proposition 4. The class V REC(Σ) is closed under intersection.

Proof. Let M(i) =
〈
Σ, M (i)

〉
, i = 1, 2, be two vbuta where M (i) = (Q(i), Γ (i),

Δ(i), F (i)) with Γ (i) = Σ(i) ∪ Z(i) ∪ Y (i). Without any loss, we assume the sets
Z(1), Z(2), Y (1), and Y (2) to be pairwise disjoint. Consider the buta M

(1)

(Σ(2),V1)
=

(Q(1)
V1

, Γ (1)∪Σ(2), Δ
(1)
V1

, F
(1)
V1

) and M
(2)

(Σ(1),V2)
=

(
Q

(2)
V2

, Γ (2) ∪ Σ(1), Δ
(2)
V2

, F
(2)
V2

)
ob-

tained by the procedure described before Lemma 1. We consider also the ranked
alphabet ((Z(1) ∪ Y (1)) × (Z(2) ∪ Y (2))) \ Y , where Y = Y (1) × Y (2), and a
maximal subalphabet R ⊆ ((Z(1) ∪ Y (1))× (Z(2) ∪ Y (2))) \ Y satisfying the next
condition: every element of Z(1) (resp. Z(2)) occurs as a left (resp. right) coordi-
nate in at most one pair in R. Let R1, . . . , Rm be all such alphabets. For every
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1 ≤ j ≤ m, we consider the buta MRj =
(
Q

(1)
V1

× Q
(2)
V2

, ΓRj , ΔRj , F
(1)
V1

× F
(2)
V2

)
with ΓRj = Σ(1)∪Σ(2)∪Rj ∪Y , where Rj is the set of bounded variables and Y
is the set of free variables. The set ΔRj of transitions is defined, for every k ≥ 0,
in the following way.(
ΔRj

)
k

= {(((q(1)
1 , q

(2)
1 ), . . . , (q(1)

k , q
(2)
k )), σ, (q(1), q(2)))

| ((q(i)
1 , . . . , q

(i)
k ), σ, q(i)) ∈ Δ

(i)
Vi

, i = 1, 2, σ ∈ Σ
(1)
k ∪ Σ

(2)
k }

∪{(((q(1)
1 , q

(2)
1 ), . . . , (q(1)

k , q
(2)
k )), (x(1), x(2)), (q(1), q(2)))

| ((q(i)
1 , . . . , q

(i)
k ), x(i), q(i)) ∈ Δ

(i)
Vi

, i = 1, 2, (x(1), x(2)) ∈ (Rj)k∪Yk}.
We will show that L

(
M(1)

)
∩ L

(
M(2)

)
= L(MR1) ∪ . . . ∪ L(MRm) where

MRj =
〈
Σ, MRj

〉
for every 1 ≤ j ≤ m. To this end, let t ∈ L

(
M(1)

)
∩L

(
M(2)

)
.

Then, by Lemma 1, there are trees s1 ∈ L
(
M

(1)

(Σ(2),V1)

)
, s2 ∈ L

(
M

(2)

(Σ(1),V2)

)
and valid relabelings h(1) ∈ V R(Γ (1) ∪ Σ(2)), h(2) ∈ V R(Γ (2) ∪ Σ(1)) such that
t ∈ h(1)(s1)∩h(2)(s2). We get dom(s1) = dom(s2) = dom(t). Moreover, for every
w ∈ dom(t) we have either t(w) ∈ Σ(1) ∪ Σ(2), hence s1(w) = s2(w) = t(w) or
t(w) ∈ Σ \ (Σ(1) ∪ Σ(2)). The latter case implies:

– there are bounded variables z(1) ∈ Z(1), z(2) ∈ Z(2) such that s1(w) =
z(1), s2(w) = z(2) and h(1)(z(1)) = h(2)(z(2)) = t(w), or

– there is a bounded variable z(1) ∈ Z(1) such that s1(w) = z(1), s2(w) =
y(2) ∈ Y (2) and h(1)(z(1)) = t(w) ∈ h(2)(y(2)), or

– there is a bounded variable z(2) ∈ Z(2) such that s2(w) = z(2), s1(w) =
y(1) ∈ Y (1) and h(2)(z(2)) = t(w) ∈ h(1)(y(1)), or

– s1(w) = y(1) ∈ Y (1), s2(w) = y(2) ∈ Y (2), and t(w) ∈ h(1)(y(1)) ∩ h(2)(y(2)).

By definition of the alphabets R1, . . . , Rm, there is an index 1 ≤ j ≤ m such
that {(s1(w), s2(w)) | w ∈ dom(t) and t(w) ∈ Σ \ (Σ(1) ∪ Σ(2))} ⊆ Rj ∪ Y . We
define a valid relabeling h ∈ V R(ΓRj ) by letting h((x(1), x(2))) = h(1)(x(1)) for
every (x(1), x(2)) ∈

(
Z(1) × (Z(2) ∪ Y (2))

)
∩ Rj and h((x(1), x(2))) = h(2)(x(2))

for every (x(1), x(2)) ∈
(
Y (1) × Z(2)

)
∩ Rj . Consider the tree s, with dom(s) =

dom(t) defined by s(w) = t(w) if t(w) ∈ Σ(1) ∪ Σ(2), and s(w) = (s1(w), s2(w))
otherwise. Trivially s ∈ L(MRj), and we get t ∈ h(s) which in turn implies that
t ∈ L(MRj ).

Conversely, let 1 ≤ j ≤ m and t ∈ L(MRj ). Then there is an s ∈ L(MRj ) and
a valid relabeling h ∈ V R(ΓRj ) such that t ∈ h(s). We consider the valid relabel-
ings h(1) ∈ V R(Γ (1)∪Σ(2)) and h(2) ∈ V R(Γ (2)∪Σ(1)) defined as follows. For ev-
ery z(1) ∈ Z(1) such that there is an x(2) ∈ Z(2)∪Y (2) with (z(1), x(2)) ∈ Rj we let
h(1)(z(1)) = h((z(1), x(2))), for every z(2) ∈ Z(2) such that there is an x(1) ∈ Z(1)∪
Y (1) with (x(1), z(2)) ∈ Rj we let h(2)(z(2)) = h((x(1), z(2))). Finally for every k ≥
0 and every remaining bounded variable z

(i)
k ∈ Z

(i)
k (i = 1, 2) we define (nondeter-

ministically) h
(i)
k (z(i)

k ) ∈ Σk\
(
Σ

(1)
k ∪ Σ

(2)
k ∪ hk((Rj)k) ∪ (hk(Yk) ∩ s(dom(s)))

)
.

Let s1 and s2 be the projections of s on Γ (1) ∪ Σ(2) and Γ (2) ∪ Σ(1), respec-
tively, defined in the obvious way. By construction of the buta MRj , we get that

s1 ∈ L
(
M

(1)

(Σ(2),V1)

)
and s2 ∈ L

(
M

(2)

(Σ(1),V2)

)
. Moreover, by definition of h(1) and
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h(2) we get t ∈ h(1)(s1) ∩ h(2)(s2), i.e., t ∈ L
(
M(1)

)
∩ L

(
M(2)

)
. We complete

our proof by taking into account Proposition 3.

It is well-known (cf. [5]) that the branches of a recognizable tree language con-
stitute a recognizable string language. Next, we show that this result fails when
we consider recognizability over infinite alphabets. We need some preliminary
matter. For variable finite automata considered in the sequel, we refer the reader
to [10,11].

To every ranked alphabet Σ we assign a monadic alphabet br(Σ) determined
as follows:

- br(Σ)0 = Σ0, and
- br(Σ)1 = {[σ, i] | σ ∈ Σk, k ≥ 1 and 1 ≤ i ≤ k}.

Then the branches of a tree t ∈ TΣ is the set of strings br(t) ⊆ (br(Σ)1)
∗ br(Σ)0

defined inductively by

- br(t) = {t} if t ∈ Σ0, and
- br(t) =

⋃
1≤i≤k[σ, i](br(ti)) if t = σ(t1, . . . , tk) with σ ∈ Σk, k ≥ 1, and

t1, . . . , tk ∈ TΣ.

For a tree language L ⊆ TΣ we set br(L) =
⋃

t∈L br(t).
Now we are ready to prove our claim. Consider a letter a ∈ Σ0 and the tree

language L = {σ(σ(a, a), σ(a, a)) | σ ∈ Σ2}. Then L ∈ V REC(Σ). Indeed, L is
accepted by a vbuta M = 〈Σ, M〉 with M = (Q, ΓM , Δ, F ) where ΓM = {a}∪Z∪
Y , z ∈ Z2, and L(M) = {z(z(a, a), z(a, a))}. Then br(L) = {[σ, i][σ, j]a | σ ∈ Σ2,
and i, j = 1, 2}. Let us assume that br(L) is a recognizable word language over
the infinite alphabet br(Σ) in the sense of [10,11]. Hence there is a variable finite
automaton A = 〈br(Σ), A〉 such that br(L) = L(A). Since the letters [σ, i], [σ, j],
for σ ∈ Σ2 and i, j = 1, 2, are infinitely many, we get that there is a word
x1x2a ∈ L(A) where x1 and x2 are both bounded variables with x1 �= x2 or at
least one of them is the free variable of A. This in turn implies that the words
[σ, i][σ′, j]a ∈ L(A), where σ, σ′ ∈ Σ2 and σ �= σ′, which is a contradiction.

Proposition 5. The emptiness problem is decidable in V REC(Σ).

Proof. Let L ∈ V REC(Σ). Then L = L(M) where M = 〈Σ, M〉 is a vbuta.
Moreover, L = ∅ iff L(M) = ∅. Since the emptiness problem is decidable for
recognizable tree languages (cf. [4]), we are done.

Our next task, is to show that the equivalence problem is decidable for two
subclasses of vbuta. In fact, we will prove that the equivalence problem is de-
cidable for vbuta whose transitions contain only one type of variables, bounded
or free, but not both. Let M(i) =

〈
Σ, M (i)

〉
, i = 1, 2, be two vbuta where

M (i) = (Q(i), Γ (i), Δ(i), F (i)) with Γ (i) = Σ(i) ∪ Z(i) ∪ Y (i). Without any loss,
we assume the sets of variables Z(1), Z(2), Y (1), and Y (2) to be pairwise disjoint.
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Case (i): Assume that the transitions of M(1) and M(2) do not contain any
free variable. Consider the vbuta M

(1)

(Σ(2),V1)
=

(
Q

(1)
V1

, Γ (1) ∪ Σ(2), Δ
(1)
V1

, F
(1)
V1

)
and

M
(2)

(Σ(1),V2)
=

(
Q

(2)
V2

, Γ (2) ∪ Σ(1), Δ
(2)
V2

, F
(2)
V2

)
obtained, respectively, from M (1)

and M (2) by the procedure described before Lemma 1. We consider the ranked
alphabet Θ = (Σ(1) ∪ Σ(2)) ∪ (Z(1) × Z(2)) and the projection relabelings pri,
i = 1, 2, from Θ to (Σ(1) ∪ Σ(2)) ∪ Z(i) defined in the obvious way. We set
L1 = L

(
M

(1)

(Σ(2),V1)

)
, L2 =

(
M

(2)

(Σ(1),V2)

)
, L′

1 = pr−1
1 (L1), and L′

2 = pr−1
2 (L2).

Let G be a maximal subalphabet of Θ satisfying the following condition. Every
element of Z(1) (resp. Z(2)) occurs as a left (resp. right) coordinate in at most
one pair in G. Let G1, . . . , Gm be an enumeration of all such subalphabets of Θ.
Finally, let L = (L′

1 ∩ L′
2) ∩ (TG1 ∪ . . . ∪ TGm).

Lemma 2. The following statements are equivalent

(i) pr1(L) = L1 and pr2(L) = L2.
(ii) L(M(1)) = L

(
M(2)

)
.

Proof. Assume firstly that (i) holds and let t ∈ L(M(1)). Then, there is a tree
s1 ∈ L1 and a valid relabeling h(1) ∈ V R(Γ (1) ∪ Σ(2)) such that t ∈ h(1)(s1).
Let s ∈ L such that pr1(s) = s1 and let pr2(s) = s2. We have dom(s1) =
dom(s) = dom(s2). Let also 1 ≤ j ≤ m such that s ∈ TGj . We define a valid
relabeling h(2) ∈ V R(Γ (2) ∪ Σ(1)) as follows. For every node w ∈ dom(s) with
s(w) = (z(1), z(2)), z(i) ∈ Z(i) i = 1, 2, we let h(2)(z(2)) = t(w) (in fact, we have
t(w) = h(1)(z(1)). It should be clear that such a valid relabeling exists by our
assumption for the ranked alphabet Gj . Now we easily obtain that t ∈ h(2)(s2)
and since s2 ∈ L2, we get t ∈ L(M(2)). Thus L(M(1)) ⊆ L(M(2)). In a similar
way, we show that L(M(2)) ⊆ L(M(1)), hence L(M(1)) = L(M(2)).

Assume next that (ii) holds. We will show that pr1(L) = L1 and pr2(L) = L2.
Since pr1(L) ⊆ L1 and pr2(L) ⊆ L2, it remains to show the converse inclusions.
For this, let s1 ∈ L1, and consider an h(1) ∈ V R(Γ (1) ∪ Σ(2)) and a tree t ∈
h(1)(s1). Then t ∈ L(M(1)), hence t ∈ L(M(2)). This implies that there is a tree
s2 ∈ L2 and a valid relabeling h(2) ∈ V R(Γ (2) ∪Σ(1)) such that t ∈ h(2)(s2). We
claim that there exists a tree s ∈ L′

1 ∩L′
2 such that pr1(s) = s1 and pr2(s) = s2.

Indeed, if this is not the case, then there is a node w ∈ dom(s1) = dom(s2)
such that s1(w) ∈ Σ(1) ∪ Σ(2) and s2(w) ∈ Z(2) or s1(w) ∈ Z(1) and s2(w) ∈
Σ(1) ∪ Σ(2). But both of these conditions contradict our assumuption that t ∈
h(1)(s1) ∩ h(2)(s2). Now assume that s /∈ TG1 ∪ . . . ∪ TGm . This implies that
there are two nodes w, u ∈ dom(s) and bounded variables z(1), z(1) ∈ Z(1),
z(2), z(2) ∈ Z(2) such that

(1) s(w) = (z(1), z(2)) and s(u) = (z(1), z(2)), or
(2) s(w) = (z(1), z(2)) and s(u) = (z(1), z(2)).

Assume that (1) holds. Then s1(w) = s1(u) = z(1), and s2(w) = z(2), s2(u) =
z(2) which in turn implies that h(1)(s1(w)) = h(1)(s1(u)) and h(2)(s2(w)) �=
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h(2)(s2(u)). But this is a contradiction since, by our assumption, t ∈ h(1)(s1) ∩
h(2)(s2). The case (2) contradicts to our assumption, similarly. Thus, we get
s ∈ L which implies L1 ⊆ pr1(L). The inclusion L2 ⊆ pr2(L) is shown by similar
arguments, and our proof is completed.

Case (ii): Assume that the transitions of M(1) and M(2) do not contain any
bounded variable. Without any loss, we suppose that Σ(1) = Σ(2). Indeed, if
this not the case, then in the vbuta M(1), for every k ≥ 0 and every transi-
tion ((q1, . . . , qk), yk, q) ∈ Δ

(1)
k we add the transition ((q1, . . . , qk), σ, q) for every

σ ∈ (Σ(2) \ Σ(1))k; we make a similar modification on the vbuta M(2). Now,
we consider the ranked alphabet Θ = Σ(1) ∪ (Y (1) × Y (2)) and the projection
relabelings pri, i = 1, 2, from Θ to Σ(1)∪Y (i) defined in the obvious way. We set
L1 = L

(
M (1)

)
, L2 =

(
M (2)

)
, L′

1 = pr−1
1 (L1), L′

2 = pr−1
2 (L2), and L′ = L′

1∩L′
2.

Lemma 3. The following statements are equivalent

(i) pr1(L′) = L1 and pr2(L′) = L2.
(ii) L(M(1)) = L

(
M(2)

)
.

Proof. Assume firstly that (i) holds and let t ∈ L(M(1)). Then, there is a tree
s1 ∈ L1 and a valid relabeling h(1) on Γ (1) such that t ∈ h(1)(s1). Let s ∈ L′ such
that pr1(s) = s1 and let pr2(s) = s2. We have dom(s1) = dom(s) = dom(s2). We
define a valid relabeling h(2) on Γ (2) as follows. For every node w ∈ dom(s) with
s(w) = (y(1), y(2)), y(i) ∈ Y (i) i = 1, 2, we let h(2)(y(2)) = h(1)(y(1)). Clearly,
such a valid relabeling exists by our assumption that Σ(1) = Σ(2). Trivially
t ∈ h(2)(s2) and since s2 ∈ L2, we get t ∈ L(M(2)). Thus L(M(1)) ⊆ L(M(2)).
In a similar way, we show that L(M(2)) ⊆ L(M(1)), hence L(M(1)) = L(M(2)).

Next, assume that (ii) holds. We will show that pr1(L′) = L1 and pr2(L′) =
L2. For this, let s1 ∈ L1, and consider an h(1) ∈ V R(Γ (1)) and a tree t ∈ h(1)(s1).
Then t ∈ L(M(1)), hence t ∈ L(M(2)). This implies that there is a tree s2 ∈ L2

and a valid relabeling h(2) ∈ V R(Γ (2)) such that t ∈ h(2)(s2). We claim that
there exists a tree s ∈ L′ such that pr1(s) = s1 and pr2(s) = s2. Indeed, if
this is not the case, then there is a node w ∈ dom(s1) = dom(s2) such that
s1(w) ∈ Σ(1) and s2(w) ∈ Y (2) or s1(w) ∈ Y (1) and s2(w) ∈ Σ(1). But both of
these conditions contradict our assumption that t ∈ h(1)(s1) ∩ h(2)(s2). Hence,
L1 ⊆ pr−1

1 (L′). The inclusion L2 ⊆ pr−1
2 (L′) is shown similarly, and we are done.

Now we are ready to show the following important result.

Theorem 1. The equivalence problem is decidable for

(i) vbuta whose transitions do not contain any free variable
(ii) vbuta whose transitions do not contain any bounded variable.

Proof. (i) We follow the notations of Lemma 2. Let M(1) =
〈
Σ, M (1)

〉
and

M(2) =
〈
Σ, M (2)

〉
be two vbuta. The tree languages (over finite ranked al-

phabets) L1, L2 are recognizable and thus L′
1, L

′
2 are recognizable, too (cf. [4]).
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Moreover, the tree language TG1 ∪ . . .∪TGm is recognizable, hence L is recogniz-
able. Finally, pr1(L), pr2(L) are recognizable tree languages (cf. [4]), and since
the equality of recognizable tree languages is decidable (cf. for instance Thm.
10.3, page 110, in [8]), the equalities pr1(L) = L1 and pr2(L) = L2 are decidable.
Hence, by Lemma 2 we conclude our proof.

(ii) We use the notations of Lemma 3 and similar arguments with the proof
of Statement (i) in this theorem.

Theorem 2. The universality problem is decidable for vbuta whose transitions
do not contain any bounded variable.

Proof. We combine Theorem 1(ii) and Example 2.

As an application of Theorem 1, we will get the decidability of the equivalence
in two subclasses of variable finite automata. For this, we need the subsequent
discussion.

Let A be an infinite alphabet and e a new symbol not belonging to A. Then, by
standard arguments on finite automata, we can show that a language L over the
infinite alphabet A is recognizable iff the language Le over the infinite alphabet
A ∪ {e} is recognizable. Furthermore, for two languages L1, L2 over A we have
L1 = L2 iff L1e = L2e. Next, we define an infinite monadic ranked alphabet
Σ, by Σ1 = A and Σ0 = {e}. It should be clear that the string language Le is
recognizable iff it is a recognizable tree language over Σ (cf. [7]). Hence, taking
into account Theorem 1, we obtain the subsequent result.

Corollary 1. The equivalence problem is decidable for

(i) variable finite automata whose transitions do not contain any free variable
(ii) variable finite automata whose transitions do not contain any bounded vari-

able.

Using the above formalism and a corresponding result in [10,11], we can show
that the class V REC(Σ) is not closed under complementation. Indeed assume
the contrary, and let L be a recognizable language over the infinite alphabet
A whose complement is not recognizable (cf. Thm. 3 in [11]). Then, keeping
the above notations, Le is a recognizable word language and a recognizable
tree language. Then, by our assumption the complement tree language Le is
recognizable. Since our ranked alphabet has only one nullary symbol we get
Le = Le. Hence, L is a recognizable word language, which is a contradiction.

Corollary 2. The class V REC(Σ) is not closed under complementation.

4 Conclusions and Future Work

We introduced variable bottom-up tree automata accepting tree languages over
infinite ranked alphabets. Our model works in the same way as variable finite
automata which were investigated in [10,11]. It is based on a classical bottom-up
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tree automaton over a finite ranked alphabet which contains constant and vari-
able symbols. The variable symbols are of two types, namely bounded and free.
Firstly, we compute the tree language accepted by the automaton, and then we
apply on the variable symbols relabelings satisfying certain requirements, the so-
called valid relabelings. The image of the original recognizable tree language un-
der all valid relabelings constitutes the tree language accepted by our new model.
We proved that the class of recognizable tree languages over infinite ranked al-
phabets is closed under union and intersection, and the emptiness problem is
decidable. We showed that the equivalence problem is decidable within two sub-
classes of vbuta. As a corollary, we obtained the decidability of the equivalence
of two subclasses of variable finite automata of [10,11]. Still interesting problems
remain open, like the determinization of vbuta, the closure under (inverse) tree
homomorphisms and tree substitutions, and the existence of a pumping lemma.
Especially, we conjecture that the equivalence of arbitrary vbuta is decidable.
Our model, and accordingly the string model of [10,11], permits further charac-
terizations of recognizable tree languages over infinite alphabets. For instance,
instead of the underlying buta M one can consider an MSO -sentence, a regu-
lar tree grammar, a rational tree expression, or even a system of tree equations
over the finite alphabet ΓM , and then consider the image of the obtained tree
language under the valid relabelings. In this way, we introduce MSO -definable,
regular, rational, and equational tree languages respectively, over infinite ranked
alphabets. Using the corresponding equivalences for tree languages over finite
ranked alphabets (cf. [4,6,7,8,9,15,20], we get for a tree language L ⊆ TΣ:

L is recognizable iff L is MSO -definable iff L is regular
iff L is rational iff L is OI -equational.

Furthermore, our model allows the investigation of other classes of tree languages
over infinite ranked alphabets. More precisely, we can define synchronized or
context-free tree languages if the underlying tree automaton is synchronized
(cf. [18]) or pushdown (cf. [12]), respectively. Another important extension is
the study of recognizability for infinitary tree languages over infinite ranked
alphabets. This is done in a future paper.
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