

Lecture Notes in Computer Science 6721
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Wolfgang De Meuter
Gruia-Catalin Roman (Eds.)

Coordination Models
and Languages
13th International Conference, COORDINATION 2011
Reykjavik, Iceland, June 6-9, 2011
Proceedings

13

Volume Editors

Wolfgang De Meuter
Vrije Universiteit Brussel, Faculty of Sciences
Pleinlaan 2, 1050 Brussels, Belgium
E-mail: wdmeuter@vub.ac.be

Gruia-Catalin Roman
Washington University, Department of Computer Science and Engineering
Campus Box 1045, 1 Brookings Drive, St. Louis, MO 63130-4899, USA
E-mail: roman@wustl.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-21463-9 e-ISBN 978-3-642-21464-6
DOI 10.1007/978-3-642-21464-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011928244

CR Subject Classification (1998): D.2, C.2, C.2.4, F.1.2, I.2.8, I.2.11, C.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

In 2011 the 6th International Federated Conferences on Distributed Comput-
ing Techniques (DisCoTec) took place in Reykjavik, Iceland, during June 6–9.
It was hosted and organized by Reykjavik University. The DisCoTec series of
federated conferences, one of the major events sponsored by the International
Federation for Information processing (IFIP), included three conferences: Coor-
dination, DAIS, and FMOODS/FORTE.

DisCoTec conferences jointly cover the complete spectrum of distributed
computing subjects ranging from theoretical foundations to formal specification
techniques to practical considerations. The 13th International Conference on
Coordination Models and Languages (Coordination) focused on the design and
implementation of models that allow compositional construction of large-scale
concurrent and distributed systems, including both practical and foundational
models, run-time systems, and related verification and analysis techniques. The
11th IFIP International Conference on Distributed Applications and Interopera-
ble Systems (DAIS) elicited contributions on architectures, models, technologies
and platforms for large-scale and complex distributed applications and services
that are related to the latest trends in bridging the physical/virtual worlds based
on flexible and versatile service architectures and platforms. The 13th Formal
Methods for Open Object-Based Distributed Systems and 31st Formal Tech-
niques for Networked and Distributed Systems (FMOODS/FORTE) together
emphasized distributed computing models and formal specification, testing and
verification methods.

Each of the three days of the federated event began with a plenary speaker
nominated by one of the conferences. On the first day, Giuseppe Castagna
(CNRS, Paris 7 University, France) gave a keynote titled “On Global Types
and Multi-Party Sessions.” On the second day, Paulo Verissimo (University of
Lisbon FCUL, Portugal) gave a keynote talk on “Resisting Intrusions Means
More than Byzantine Fault Tolerance.” On the final and third day, Pascal
Costanza (ExaScience Lab, Intel, Belgium) presented a talk that discussed “Ex-
treme Coordination—Challenges and Opportunities from Exascale Computing.”

In addition, there was a poster session, and a session of invited talks from
representatives of Icelandic industries including Ossur, CCP Games, Marorka,
and GreenQloud.

There were five satellite events:

1. The 4th DisCoTec workshop on Context-Aware Adaptation Mechanisms for
Pervasive and Ubiquitous Services (CAMPUS)

2. The Second International Workshop on Interactions Between Computer Sci-
ence and Biology (CS2BIO) with keynote lectures by Jasmin Fisher (Mi-
crosoft Research - Cambridge, UK) and Gordon Plotkin (Laboratory for
Foundations of Computer Science - University of Edinburgh, UK)

VI Foreword

3. The 4th Workshop on Interaction and Concurrency Experience (ICE) with
keynote lectures by Prakash Panangaden (McGill University, Canada), Rocco
de Nicola (University of Florence, Italy), and Simon Gay (University of Glas-
gow, UK)

4. The First Workshop on Process Algebra and Coordination (PACO) with
keynote lectures by Jos Baeten (Eindhoven University of Technology, The
Netherlands), Dave Clarke (Katholieke Universiteit Leuven, Belgium), Rocco
De Nicola (University of Florence, Italy), and Gianluigi Zavattaro (Univer-
sity of Bologna, Italy)

5. The 7th International Workshop on Automated Specification and Verifica-
tion of Web Systems (WWV) with a keynote lecture by Elie Najm (Telecom
Paris, France)

I believe that this rich program offered each participant an interesting and
stimulating event. I would like to thank the Program Committee Chairs of each
conference and workshop for their effort. Moreover, organizing DisCoTec 2011
was only possible thanks to the dedicated work of the Publicity Chair Gwen
Salaun (Grenoble INP - INRIA, France), the Workshop Chairs Marcello Bon-
sangue (University of Leiden, The Netherlands) and Immo Grabe (CWI, The
Netherlands), the Poster Chair Martin Steffen (University of Oslo, Norway), the
Industry Track Chairs Björn Jónsson (Reykjavik University, Iceland), and Oddur
Kjartansson (Reykjavik University, Iceland), and the members of the Organizing
Committee from Reykjavik University: Árni Hermann Reynisson, Steinar Hugi
Sigurðarson, Georgiana Caltais Goriac, Eugen-Ioan Goriac and Ute Schiffel. To
conclude I want to thank the International Federation for Information Processing
(IFIP), Reykjavik University, and CCP Games Iceland for their sponsorship.

June 2011 Marjan Sirjani

Preface

The 13th International Conference on Coordination Models and Languages, part
of the IFIP federated event on Distributed Computing Techniques, took place in
Reykjavik, June 6-9, 2011. The conference focused on the design and implemen-
tation of models that allow compositional construction of large-scale concurrent
and distributed systems, including both practical and foundational models, run-
time systems, and related verification and analysis techniques.

The Program Committee received more than 45 abstracts eventually followed
by 35 full paper submissions, covering a varied range of topics including paral-
lel and multicore programming, coordination of mobile systems, (session) types,
context management, and programming and reasoning about distributed and
concurrent software. Each paper was reviewed anonymously by at least three
Program Committee members. After a careful and thorough review process,
the Program Committee selected 14 papers for publication, based on their sig-
nificance, originality, and technical soundness. The review process included a
shepherding phase whereby some of the papers received active guidance by one
of the Program Committee members in order to produce a high-quality final
version.

The program was further enhanced by an inspiring invited talk by Pascal
Costanza of the Intel ExaScience Lab. The presentation was entitled “Extreme
Coordination—Challenges and Opportunities from Exascale Computing.”

The success of Coordination 2011 was due to the dedication of many people.
We thank the authors for submitting high-quality papers, and the Program Com-
mittee (and their co-reviewers) for their careful reviews, lengthy discussions, and
balanced deliberations during the final selection process. We thank the providers
of the EasyChair conference management system, which was used to run the re-
view process and to facilitate the preparation of these proceedings. Finally, we
thank the Distributed Computing Techniques Organization Committee (led by
Marjan Sirjani) for their enormous contribution in making the logistic aspects
of Coordination 2011 a success.

June 2011 Wolfgang De Meuter
Gruia-Catalin Roman

Organization

Program Committee

Farhad Arbab CWI and Leiden University, The Netherlands
Carlos Canal University of Málaga, Spain
Dave Clarke Katholieke Universiteit Leuven, Belgium
Wolfgang De Meuter Vrije Universiteit Brussel, Belgium
Rocco De Nicola University of Florence, Italy
Susan Eisenbach Imperial College, UK
Patrick Eugster Purdue University, USA
John Field IBM Research, USA
Robert Hirschfeld Hasso-Plattner-Institut, Germany
Jean-Marie Jacquet University of Namur, Belgium
Doug Lea SUNY Oswego, USA
Jay A. Mccarthy Brigham Young University, USA
Sun Meng Peking University, China
Mark Miller Google, USA
Gruia-Catalin Roman Washington University in St. Louis, USA
Manuel Serano INRIA, France
Marjan Sirjani School of Computer Science, Reykjavik University,

Iceland
Carolyn Talcott SRI International, USA
Vasco Vasconcelos University of Lisbon, Portugal
Mirko Viroli Università di Bologna, Italy

Additional Reviewers

Malte Appeltauer
Lorenzo Bettini
Laura Bocchi
Behnaz Changizi
Francisco Couto
Ali Hong
Mohammad Izadi
Sung-Shik Jongmans
Narges Khakpour
Ramtin Khosravi
Jens Lincke
Michele Loreti

Francisco Martins
Ronaldo Menezes
Dimitris Mostrous
Andrea Omicini
Michael Perscheid
Rosario Pugliese
Tamara Rezk
Alessandro Ricci
Manuel Serrano
Bastian Steinert
Francesco Tiezzi

Table of Contents

Fault in the Future . 1
Einar Broch Johnsen, Ivan Lanese, and Gianluigi Zavattaro

Revisiting Glue Expressiveness in Component-Based Systems 16
Cinzia Di Giusto and Jean-Bernard Stefani

Encoding Context-Sensitivity in Reo into Non-Context-Sensitive
Semantic Models . 31

Sung-Shik T.Q. Jongmans, Christian Krause, and Farhad Arbab

The Context of Coordinating Groups in Dynamic Mobile Networks 49
Christine Julien

CSP as a Coordination Language . 65
Moritz Kleine

An Efficient Management of Correlation Sets with Broadcast 80
Jacopo Mauro, Maurizio Gabbrielli, Claudio Guidi, and
Fabrizio Montesi

Session Typing for a Featherweight Erlang . 95
Dimitris Mostrous and Vasco T. Vasconcelos

Safe Parallel Programming with Session Java . 110
Nicholas Ng, Nobuko Yoshida, Olivier Pernet, Raymond Hu, and
Yiannos Kryftis

Fair Subtyping for Multi-party Session Types . 127
Luca Padovani

Enabling Cross-Technology Mobile Applications with Network-Aware
References . 142

Kevin Pinte, Dries Harnie, and Theo D’Hondt

Coordination and Concurrency in Multi-engine Prolog 157
Paul Tarau

Abstract Machines for Safe Ambients in Wide-Area and Mobile
Networks . 172

Seiji Umatani, Masahiro Yasugi, and Taiichi Yuasa

XII Table of Contents

Simulation-Based Performance Analysis of Channel-Based Coordination
Models . 187

C. Verhoef, C. Krause, O. Kanters, and R. van der Mei

Combining Static Analysis and Runtime Checking in Security Aspects
for Distributed Tuple Spaces . 202

Fan Yang, Tomoyuki Aotani, Hidehiko Masuhara,
Flemming Nielson, and Hanne Riis Nielson

Author Index . 219

Fault in the Future�

Einar Broch Johnsen1, Ivan Lanese2, and Gianluigi Zavattaro2

1 Department of Informatics, University of Oslo, Norway
einarj@ifi.uio.no

2 Focus Team, Università di Bologna/INRIA, Italy
{lanese,zavattar}@cs.unibo.it

Abstract. In this paper we consider the problem of fault handling in-
side an object-oriented language with asynchronous method calls whose
results are returned inside futures. We present an extension for those
languages where futures are used to return fault notifications and to
coordinate error recovery between the caller and callee. This can be ex-
ploited to ensure that invariants involving many objects are restored
after faults.

1 Introduction

Concurrent and distributed systems demand flexible communication forms be-
tween distributed processes. While object-orientation is a natural paradigm for
distributed systems [14], the tight coupling between objects traditionally en-
forced by method calls may be criticized. Concurrent (or active) objects have
been proposed as an approach to concurrency that blends naturally with object-
oriented programming [1, 18, 27]. Several slightly differently flavored concurrent
object systems exist for, e.g., Java [5, 25], Eiffel [8, 22], and C++ [21]. Concur-
rent objects are reminiscent of Actors [1] and Erlang processes [4]: objects are
inherently concurrent, conceptually each object has a dedicated processor, and
there is at most one activity in an object at any time. Thus, concurrent objects
encapsulate not only their state and methods, but also a single (active) thread of
control. In the concurrent object model, asynchronous method calls may be used
to better combine object-orientation with distributed programming by reducing
the temporal coupling between the caller and callee of a method, compared to
the tightly synchronized (remote) method invocation model. Intuitively, asyn-
chronous method calls spawn activities in objects without blocking execution
in the caller. Return values from asynchronous calls are managed by so-called
futures [12,19,27]. Asynchronous method calls and futures have been integrated
with, e.g., Java [17] and Scala [11] and offer a large degree of potential concur-
rency for deployment on multi-core or distributed architectures.

In the event-driven communication model of Actors and Erlang processes,
fault recovery is typically managed by linking processes together [4] or by mon-
itors [2, 26]. These approaches do not address asynchronous method calls and
� Partly funded by the EU project FP7-231620 HATS and the ANR-2010-SEGI-013

project AEOLUS.

W. De Meuter and G.-C. Roman (Eds.): COORDINATION 2011, LNCS 6721, pp. 1–15, 2011.
c© IFIP International Federation for Information Processing 2011

2 E. Broch Johnsen, I. Lanese, and G. Zavattaro

futures. In this paper, we extend the Java approach [17] with mechanisms for
error recovery developed in the context of web services. Futures are used to iden-
tify calls, so they provide a natural means to distribute fault notifications and
kill requests. We introduce also primitives for defining and invoking compensa-
tions allowing one to undo already completed method executions. In this way,
we obtain a symmetric framework where caller and callee can notify their failure
to the partner and manage the incoming notifications. This supports distributed
error recovery policies programming.

The work reported in this paper is based on ABS, a formal modeling language
for distributed concurrent objects which communicate by asynchronous method
calls and futures, to take advantage of its formal semantics and simplicity. ABS
is a variant of Creol [9, 16], and it is the reference language of the European
Project HATS [13]. Creol has been shown to support compositional verification
of concurrent software [3,9], in contrast to multi-threading. A particular feature
of ABS is its cooperative scheduling of method activations inside concurrent
objects, which allows different activities to be pursued within the object in a
controlled way; in particular, active and reactive object behaviors are easily and
dynamically combined. In ABS, any method may be called both synchronously
and asynchronously. Recently, this notion of cooperative scheduling has been
integrated in Java by means of concurrent object groups [25].

We work with an ABS kernel language for distributed concurrent objects in
which asynchronous method calls and futures form the basic communication
constructs. The proposed kernel language combines the concurrency model of
ABS with explicit language constructs for error recovery. In particular, both the
caller and callee may signal a failure: the caller by performing a x := f.kill
operation (reminiscent of the cancel method of Java futures) on the future
f identifying the call, while the callee by executing the abort n command (n
describes the kind of failure). If the callee aborts, then it will definitely terminate
its activities. On the contrary, if the caller performs x := f.kill, it expects that
the callee will react by executing some compensating activity (in contrast to Java,
where the call is just interrupted). Such activities are attached to the return
statement, that we replace with the new command return e on compensate s
(where s is the compensation code). This is the main novelty of our proposal:
when a callee successfully completes, it has not definitely completed its activity as
it will possibly have to perform its compensation activity in case of failure of the
caller. This mechanism is inspired by the compensation mechanisms adopted in
service orchestration languages like WS-BPEL [23] or Jolie [10]. A compensation
can return to the caller some results: to this aim we use a new future which is
freshly created and assigned to x by x := f.kill.

Paper structure. Section 2 introduces our ABS kernel language (without error
handling) and presents its syntax and semantics. Section 3 proposes fault-handling
primitives for ABS and discusses by simple examples the typical patterns of inter-
action between the caller and callee under our model of failures. Section 4 discusses
the operational semantics of the new primitives and their impact on the ABS type
system. Section 5 concludes the paper.

Fault in the Future 3

2 A Language for Distributed Concurrent Objects

We consider ABS, an abstract behavioral specification language for distributed
concurrent objects (modifying Creol [9, 16] by, e.g., excluding class inheritance
and dynamic class upgrades). Characteristic features of ABS are that: (1) it al-
lows abstracting from implementation details while remaining executable; i.e.,
a functional sub-language over abstract data types is used to specify internal,
sequential computations; and (2) it provides flexible concurrency and synchro-
nization mechanisms by means of asynchronous method calls, release points in
method definitions, and cooperative scheduling of method activations.

Intuitively, concurrent ABS objects have dedicated processors and run in a dis-
tributed environment with asynchronous and unordered communication. Com-
munication between objects is based on asynchronous method calls. (There is no
remote field access.) Calls are asynchronous as the caller may decide at runtime
when to synchronize with the reply from a call. Method calls may be seen as
triggers, spawning new concurrent activities (so-called processes) in the called
object. Thus, an object has a set of processes to be executed, which stem from
method activations. Among these, at most one process is active. The others
are suspended in a process pool. Process scheduling is non-deterministic, but
controlled by processor release points in a cooperative way.

An ABS model defines interfaces, classes, datatypes, and functions, and a
main method to configure the initial state. We elide the definition of data types
and functions to focus on the concurrency and communication aspects of ABS
models. Objects are dynamically created instances of classes; their declared at-
tributes are initialized to arbitrary type-correct values. This paper assumes that
models are well-typed, so method binding is guaranteed to succeed.

The concurrent object language of ABS is given in Fig. 1. Here, an interface IF
has a name I and method signatures Sg. A class implements interfaces specifying
types for its instances. A class CL has a name C, interfaces I, class parameters
and state variables x of type T , and methods M . (The attributes of the class are
its parameters and state variables.) A method signature Sg declares the return
type T of a method with name m and formal parameters x of types T . M defines
a method with signature Sg, local variable declarations x of types T , and a body
with statement s. Statements may access attributes of the current class, locally
defined variables, and the method’s formal parameters.

Right-hand side expressions rhs include object creation new C(e), commu-
nication constructs (discussed below), and expressions e. Expressions include
Boolean expressions, the read-only self-reference this, references x to attributes
and local variables, and functional terms (omitted here). Statements are stan-
dard for assignment x := rhs, sequential composition s1; s2, skip, if, while,
and return constructs. The release statement unconditionally releases the
processor, suspending the active process. In await g do {s}, the guards g con-
trol processor release and consist of Boolean conditions b and return tests x? (see
below). If all guards g evaluate to false, the processor is released and the process
suspended. When the processor is idle, any enabled process from the object’s
pool of suspended processes may be scheduled.

4 E. Broch Johnsen, I. Lanese, and G. Zavattaro

Syntactic categories.
C, I, m in Names
g in Guard
s in Statement
e in Expression
b in Bool Expression

Definitions.

IF ::= interface I {Sg }
CL ::= classC [(T x)] [implements I] {T x; M}
Sg ::= T m (T x)

M ::= Sg{T x; s}
g ::= b | x? | g ∧ g | g ∨ g
e ::= b | x | this | . . .

s ::= s; s | x := rhs | release | await g do {s} | skip
| if b then { s } [else { s }] | while b { s } | return e

rhs ::= e | new C [(e)] | e!m(e) | x.get

Fig. 1. ABS syntax for the concurrent object language

Communication in ABS is based on asynchronous method calls, denoted
o!m(e). After an asynchronous call x := o!m(e), the caller may proceed with
its execution without blocking on the call. Here x is a future variable, o is an
object (an expression typed by an interface), and e are expressions. A future
variable x refers to a return value which has yet to be computed. There are two
operations on future variables, which control external synchronization in ABS.
First, a return test x? evaluates to false unless the reply to the call can be re-
trieved. (Return tests are used in guards.) Second, the return value is retrieved
by the expression x.get, which blocks execution in the object until the return
value is available. The statement sequence x := o!m(e); v := x.get encodes
a blocking, synchronous call, abbreviated v := o.m(e) whereas the statement
sequence x := o!m(e); await x? do v := x.get encodes a non-blocking, pre-
emptable call, abbreviated await v := o.m(e).

2.1 Operational Semantics

The operational semantics of ABS is presented as a transition system in an SOS
style [24]. The rules, given in Fig. 2, apply to subsets of configurations (the stan-
dard context rules are not listed). For simplicity we assume that configurations
can be reordered to match the left hand side of the rules (i.e., matching is mod-
ulo associativity and commutativity as in rewriting logic [20]). We denote by
[[e]]cn

σ a confluent and terminating reduction system which reduces expressions e
to data values (from a set Val) in a substitution σ and a configuration cn. (In
particular, [[x?]]cn

σ = true if [[x]]cn
σ = f and fut(f, v) ∈ cn for some value v �= ⊥,

otherwise [[x?]]cn
σ = false. The remaining cases are fairly straightforward.)

Configurations cn are sets of objects, invocation messages, and futures. The
associative and commutative union operator on configurations is denoted by
whitespace. Configurations live inside curly brackets; in the term {cn}, cn cap-
tures the entire configuration. An object is a term ob(o, a, p, q) with identifier o,
an attribute mapping a representing the object’s fields, an active process p, and
a pool of suspended processes q. A process p consists of a mapping l of local vari-
able bindings and a list s of statements, denoted by {l|s} when convenient. In
an invocation message invoc(o, f, m, v), o is the callee, f the future to which the
call’s result is returned, m the method name, and v the call’s actual parameter

Fault in the Future 5

(Assign1)

x ∈ dom(l) v = [[e]]ε(a◦l)

ob(o, a, {l|x := e; s}, q)
→ ob(o, a, {l[x �→ v]|s}, q)

(Assign2)

x ∈ dom(a) v = [[e]]ε(a◦l)

ob(o, a, {l|x := e; s}, q)
→ ob(o, a[x �→ v], {l|s}, q)

(Bind-Mtd)

p′ = bind(o, f, m, v)

ob(o, a, p, q) invoc(o, f, m, v)
→ ob(o, a, p, enqueue(p′, q))

(Async-Call)

o′ = [[e]]ε(a◦l) v = [[e]]ε(a◦l) fresh(f)

ob(o, a, {l|x := e!m(e); s}, q)
→ ob(o, a, {l|x := f ; s}, q)
invoc(o′, f, m, v) fut(f,⊥)

(Return)

v = [[e]]ε(a◦l) l(destiny) = f

ob(o, a, {l|return e; s}, q) fut(f,⊥)
→ ob(o, a, {l|s}, q) fut(f, v)

(Await1)

[[gi]]
cn
(a◦l)

{ob(o, a, {l|await gi do si; s}, q) cn}
→ {ob(o, a, {l|si; s}, q) cn}

(Await2)

∀i.¬[[gi]]
cn
(a◦l)

{ob(o, a, {l|await gi do si; s}, q) cn}
→ {ob(o, a, {l|release; await gi do si; s}, q) cn}

(Read-Fut)

v 	= ⊥ f = [[e]]ε(a◦l)

ob(o, a, {l|x := e.get; s}, q) fut(f, v)
→ ob(o, a, {l|x := v; s}, q) fut(f, v)

(Release)

ob(o, a, {l|release; s}, q)
→ ob(o, a, idle,

enqueue({l|s}, q))

(Activate)

p = select(q, a, cn)

{ob(o, a, idle, q) cn}
→ {ob(o, a, p, q\p) cn}

Fig. 2. ABS semantics

values. A future fut(f, v) has an identifier f and a reply value v (which is ⊥ when
the reply value has not been received). Values are object and future identifiers,
Boolean expressions, and null (as well as expressions in the functional language).
For simplicity, classes are not represented explicitly in the semantics, but may
be seen as static tables. We assume given a function bind(o, f, m, v) which re-
turns a process resulting from the activation of m in the class of o with actual
parameters v, callee o and associated future f ; and a predicate fresh(i) asserts
that a name i is globally unique (where i may be an identifier for an object or
a future). Let idle denote any process {l|s} where s is an empty statement list.

Transition Rules. There are different assignment rules for expressions (Assign1
and Assign2), method calls (Async-Call), and future dereferencing (Read-Fut).
Rules Assign1 and Assign2 assign the value of expression e to a variable x in
the local variables l or in the fields a, respectively. Here and in the sequel, the
variable s will match any (possibly empty) statement list. (We omit the standard
rules for skip, if-then-else, and while and the rule for object creation.)

Process Suspension and Activation. Three operations manipulate a process pool
q: enqueue(p, q) adds a process p to q, q \ p removes the process p from q, and
select(q, a, cn) selects a process from q (if q is empty or no process is ready,
this is the idle process [16]). The different possible definitions correspond to dif-
ferent process scheduling policies. Let ∅ denote the empty pool. Rule Release
suspends the active process to the pool, leaving the active process idle. Rule
Await1 consumes the await statement if one of the guards evaluates to true in
the current state and selects the related continuation, rule Await2 adds a release
to suspend the process if all the guards evaluate to false. Rule Activate selects

6 E. Broch Johnsen, I. Lanese, and G. Zavattaro

s ::= . . . Standard statements
| abort n (Abort)
| return e on compensate s (Return)
| on x := f.get do s on fail n s (Get)

rhs ::= . . . Standard rhs
| f.kill (Kill)

Fig. 3. Primitives for error handling

a process from the pool for execution if this process is ready to execute, i.e., if
it would not directly be resuspended or block the processor [16].

Communication. Rule Async-Call sends an invocation message to o′ with the
unique identity f (by the condition fresh(f)) of a new future, the method name
m, and actual parameters v. The return value of the new future f is undefined
(i.e., ⊥). Rule Bind-Mtd consumes an invocation method, placing the process
corresponding to the method activation in the callee’s process pool. A reserved
local variable ‘destiny’ stores the identity of the future associated with the call.
Rule Return places the return value in the call’s associated future. Rule Read-Fut
dereferences the future f if v �= ⊥, otherwise the object is blocked.

3 Primitives for Error Handling

In this section we describe the syntax and the informal semantics of the primi-
tives we propose for distributed error handling. As already said, ABS communi-
cation is asynchronous and based on futures. Thus we extend this idea to allow
also for error notification and management. We assume to have a set Err of
fault names, ranged over by n. The sets Err of fault names and Val of values
are disjoint. Consider a method invocation x := o!m(e). The caller will use future
x inside all primitives related to handling errors for this method invocation. In
the callee instead the used future is implicit, since each method execution has
an attached future, i.e. the one where the return value is put.

In order to deal with errors, we mainly have to extend statements s and right-
hand sides rhs w.r.t. Fig. 1. Small extensions will be needed also for method
signatures and types. The extended syntax for statements and right-hand sides
is described in Fig. 3. One may have a look to Fig. 4 and Fig. 5, described in
detail later, to see how those primitives can be used.

We have a new primitive, abort n, to be used by the callee to signal its
failure to its caller. Name n is used to notify the kind of error, and is rem-
iniscent of exception types in e.g. Java1. The abort statement concludes the
execution of the method. Also, the primitive return is extended with the clause
on compensate s. This clause declares that, after the return has been ex-
ecuted and the method’s normal execution completed, if compensation of this
1 Our approach can be generalized to exception types, we choose to have just names

for simplicity.

Fault in the Future 7

method call is needed, code s has to be executed. No continuation different from
a compensation is allowed after return. Compensation s will be executed in
the same environment of the method body.

The two primitives above are executed by the callee. The caller has primitives
for detecting the result of an invocation and for killing/compensating a past
invocation. For detecting the result of the invocation we extend the x := f.get
primitive of ABS (we use f for an expression that evaluates to a future). It
becomes part of the construct on x := f.get do s on fail ni si, which executes
x := f.get as before, but then it executes s if the future f contains a value v,
or the clause si if f contains a fault name ni. In the first case the value v is
assigned to variable x, otherwise x is unchanged.

The primitives described so far allow errors generated in the callee to be
managed. On the other side, the caller may enter an error situation that requires
to annul the effect of the call. This is done using the statement x := f.kill.
Here f is the future corresponding to the method call to be annulled while x
is a variable that will contain the fresh future f ′ to be used to interact with
the compensation. The annul request is asynchronous, and the result can be
tested by using the normal await and get primitives. Upon the execution of
x := f.kill the value of f becomes the special value kill(f ′), denoting that a
kill request has been sent, and a reply is expected in f ′. The identity of future
f ′ is stored in x and f ′ is initialized to ⊥. The annul request will be managed
by the target method call either before it starts, or at its end. In the first case
the method is not executed at all. In the second case, if execution was successful
then the compensation code is executed, otherwise no code is executed (only
successful executions can be compensated). The value of future f ′ is changed
to a normal value v or to an error notification n depending on the result of the
compensation code. Since f ′ is a future, one may even ask to kill an ongoing
compensation. Two special fault notifications may be returned in such a future:
Ann, specifying that either the method call has been annulled before starting or
that it aborted on its own, and NoC, specifying that the killed method defined
no compensation.

Note that both values and fault notifications unlock the await statement.
We clarify the error handling style induced by these primitives with a simple

bank transfer example and a speculative parallelism example2.

Example 1 (Bank transfer). Assume that a bank A wants to transfer some
amount of money money from one of its accounts accNoA to an account accNoB
of a bank B. Clearly, the interaction has to guarantee that money is neither cre-
ated nor destroyed, and this should hold even in case of failures.

The codes of the caller and callee are in Fig. 4 and Fig. 5, respectively. The
caller asks for the transfer by invoking method MAKETRANSFER (Fig. 4,
line 3). If later on it finds a problem (e.g., there is not enough money in the

2 For simplicity, we avoid in the examples the typing of faults: this is considered in the
following. We also shorten x := x + e (resp. x := x− e) into x += e (resp. x −= e).

8 E. Broch Johnsen, I. Lanese, and G. Zavattaro

1 bool TRANSFER (int accNoA, int accNoB, int money)
2 { bool x, y;
3 f := bankB!MAKETRANSFER (int accNoB, int money);
4 if accountsA[accNoA].balance < money then
5 { f’ := f.kill;
6 on x := f’.get
7 do return false
8 on fail no-money abort lost-money
9 on fail Ann return false

10 }
11 else
12 { await f? do
13 on y := f.get
14 do accountsA[accNoA].balance -= money;
15 return x
16 on fail no-acc
17 return false
18 } }

Fig. 4. Bank transfer example: caller

source account3) it kills the MAKETRANSFER computation (Fig. 4, line 5). If
the computation has already failed then nothing has to be done, and the clause
on fail Ann (Fig. 4, line 9) is executed. If the MAKETRANSFER computation
has not started yet, it is annulled and the same clause line on fail Ann is
executed on the caller. If the MAKETRANSFER computation has successfully
terminated then a compensation has been installed and its execution is started
(when the scheduler decides to schedule it). When executing the compensation
one does not know whether the received money is still available. In fact, the lock
has been released after completion of method MAKETRANSFER, and another
method of bank B may have used the money. If the money is still available then
compensation is successful (we will see that the invariant has been preserved),
clause do is executed on the caller (Fig. 4, line 7), and value false is given as
a result. If the money is no longer available then the abort no-money (Fig. 5,
line 12) statement triggers the on fail no-money clause on the caller (Fig. 4,
line 8). In the caller this will cause an abort lost-money signaling at the upper
level that error recovery has not been successful. This is the only case where
money is not preserved, but this is notified by a failure to the upper level. Note
that in case of successful termination of the caller (which may happen even if
the call failed), the TRANSFER method returns true if the transfer has been
performed, false otherwise.

Example 2 (Speculative parallelism). As an additional example of the usage of
the error handling primitives, we consider a typical pattern of service composi-
tion —the so-called speculative parallelism. This pattern generalizes client-server
3 This particular problem could have been checked before the invocation, but this is

useful to show in a small example most of the error recovery mechanisms.

Fault in the Future 9

1 bool MAKETRANSFER (int accNo, int money)
2 { if not valid(accNo) then
3 { abort no-acc }
4 else
5 { accountsB[accNo].amount += money;
6 return true
7 on compensate
8 if accountsB[accNo].amount >= money then
9 { accountsB[accNo].amount -= money;

10 return false }
11 else
12 { abort no-money }
13 } }

Fig. 5. Bank transfer example: callee

interaction to cases in which several servers can provide to the client the required
reply. In these cases, the client asynchronously calls all the possible (alternative)
servers, and then waits for the replies. The first reply will be accepted, while the
other calls will be killed.

Consider, for instance, a concert ticket reservation method (the client of the
pattern is specified in Fig. 6) that invokes two possible reservation services
(Fig. 6, lines 2-3). The servers are specified in Fig. 7. When one of the two
requests succeeds, the other is canceled. If the first one fails, the second one
is waited for. Only if both of them abort (Fig. 6, lines 10 and 17), the failure
no ticket is propagated to the upper level. In case both of them will succeed,
only one request will be considered (according to which of the two branches of
the await clause will be selected): the other one will be compensate via the
kill mechanism (Fig. 6, lines 6 and 13).

4 Semantics for Error Handling

In this section we extend the ABS semantics in Fig. 2 to include the error
handling primitives discussed above. The rules defining the semantics for error
handling in Fig. 8 are to be added to the ones of Fig. 2, but for rules Return
and Read-Fut, which are supposed to replace the homonymous rules in Fig. 2.

In order to understand the rules, one has to keep in mind the different states
a future can have. Futures are created with a value ⊥, saying that no result from
the invoked method is available yet. The callee can store in the future either a
value v ∈ Val specifying the return value of a successful method, or a failure
notification n ∈ Err in case of abort of the method call. On the other side the
caller can store in the future the kill request kill(f ′) where f ′ is the fresh future
used for receiving the result of the kill request.

Rules Return-Comp1 and Return-Comp2 model successful return and instal-
lation of a compensation. The two rules differ since in the first case the return
value is stored in the future, in the second case it is discarded because of a

10 E. Broch Johnsen, I. Lanese, and G. Zavattaro

1 int CONCERT_TICKET (int concert_code)
2 { f1 := service1!RESERVE_TICKET (int concert_code);
3 f2 := service2!RESERVE_TICKET (int concert_code);
4 await f1? do
5 on x := f1.get
6 do { f3 := f2.kill;
7 return x }
8 on fail no_ticket
9 on y := f2.get do return y

10 on fail no_ticket abort no_ticket,
11 f2? do
12 on x := f2.get
13 do { f3 := f1.kill;
14 return x }
15 on fail no_ticket
16 on y := f1.get do return y
17 on fail no_ticket abort no_ticket
18 }

Fig. 6. Client in the “speculative parallelism” example

1 int RESERVE_TICKET (int concert_code)
2 { await x := this.AVAILABLE(concert_code)
3 //returns the ticket code or -1
4 if (x = -1)
5 then abort no_ticket
6 else return x on compensate f := this!CANCEL(concert_code,x)
7 }

Fig. 7. Server in the “speculative parallelism” example

kill request. The compensation is installed by letting it precede by a release,
forcing the terminated method to release the lock, and by an onkill f state-
ment. This last is runtime syntax. Its semantics is defined by rules Onkill1 and
Onkill2. In case there is a kill(f ′) inside future f the effect of onkill f is to
change the special local variable destiny to f ′ so specifying that the result of
the compensation will be advertised on future f ′. Otherwise it releases the lock
and checks again later. Notice that the standard return statement corresponds
just to a return installing the default compensation abort NoC (rule Return).

Rules Abort1 and Abort2 define the abort n primitive. Essentially, it stores
the fault name n in the future and releases the lock. In case the future contains
kill(f ′) instead the fault name is not stored, and f ′ is set to fault name Ann.

Rules Kill1 and Kill2 perform kill. In Kill1 future f (containing a value,
possibly ⊥) is set to kill(f ′) and future f ′ is created and set to ⊥. In Kill2 instead
f contained a failure notification, thus f ′ is set to Ann. Rule Kill3 deals with
killing of an already killed method call: simply the existing reference to the re-
sult of the kill is assigned to the variable. Thus kill is essentially idempotent.

Fault in the Future 11

(Return)

ob(o, a, {l|return e}, q)
→ ob(o, a, {l|return e on compensate abort NoC}, q)

(Return-Comp1)

v = [[e]]ε(a◦l) l(destiny) = f

ob(o, a, {l|return e on compensate s}, q) fut(f,⊥)

→ ob(o, a, {l|release; onkill f ; s}, q) fut(f, v)
(Return-Comp2)

l(destiny) = f

ob(o, a, {l|return e on compensate s}, q) fut(f, kill(f ′))
→ ob(o, a, {l|release; onkill f ; s}, q) fut(f, kill(f ′))

(Onkill1)

ob(o, a, {l|onkill f ; s}, q) fut(f, kill(f ′))
→ ob(o, a, {l[destiny �→ f ′]|s}, q) fut(f, kill(f ′))

(Onkill2)

y �= kill(f ′)
ob(o, a, {l|onkill f ; s}, q) fut(f, y)

→ ob(o, a, {l|release; onkill f ; s}, q) fut(f, y)
(Abort1)

l(destiny) = f

ob(o, a, {l|abort n}, q) fut(f,⊥)

→ ob(o, a, {l|release}, q) fut(f, n)

(Abort2)

l(destiny) = f

ob(o, a, {l|abort n}, q) fut(f, kill(f ′)) fut(f ′, x)
→ ob(o, a, {l|release}, q) fut(f, kill(f ′)) fut(f ′,Ann)

(Kill1)

f = [[e]]ε(a◦l) fresh(f ′) v ∈ Val

ob(o, a, {l|x := e.kill; s}, q) fut(f, v)
→ ob(o, a, {l|x := f ′; s}, q) fut(f, kill(f ′)) fut(f ′,⊥)

(Kill2)

f = [[e]]ε(a◦l) fresh(f ′) n ∈ Err

ob(o, a, {l|x := e.kill; s}, q) fut(f, n)
→ ob(o, a, {l|x := f ′; s}, q) fut(f, kill(f ′)) fut(f ′,Ann)

(Kill3)

f = [[e]]ε(a◦l)
ob(o, a, {l|x := e.kill; s}, q) fut(f, kill(f ′))
→ ob(o, a, {l|x := f ′; s}, q) fut(f, kill(f ′))

(Pre-Kill)

invoc(o, f,m, v) fut(f, kill(f ′)) fut(f ′,⊥)

→ fut(f, kill(f ′)) fut(f ′,Ann)

(Read-Fut)

v ∈ Val v �= ⊥ f = [[e]]ε(a◦l)
ob(o, a, {l|on x := e.get do s′ on fail ni si; s}, q) fut(f, v)

→ ob(o, a, {l|x := v; s′; s}, q) fut(f, v)
(Read-Err)

nj ∈ Err f = [[e]]ε(a◦l) (on fail nj sj) ∈ on fail ni si

ob(o, a, {l|on x := e.get do s′ on fail ni si; s}, q) fut(f, nj)

→ ob(o, a, {l|sj ; s}, q) fut(f, nj)

Fig. 8. ABS semantics for error handling

Rule Pre-Kill discards a method invocation which has not started yet and which
has to be killed. The future waiting for the result is set to Ann.

The last two rules are used for getting the result of a method invocation (or of
a kill). If the value in the future is a non ⊥ data value (rule Read-Fut) then it is
assigned to the variable x and clause do is executed. If it is an error notification
(rule Read-Err) instead the corresponding clause on fail is executed.

12 E. Broch Johnsen, I. Lanese, and G. Zavattaro

(Get)

Γ � x : fut〈T 〉
Γ � x.get : T

(Return)

Γ � e : Γ (return)

Γ � return e

(Assign)

Γ � e : T ′ T ′ � Γ (v)

Γ � v := e

Fig. 9. Sample typing rules for ABS

4.1 Typing

ABS relies on a type system guarenteeing that method binding always succeeds.
One can extend the type system to additionally ensure that faults are managed
in a correct way, in particular that all the faults that may be raised by a method
invocation are managed by the caller.

While referring to [15] for a full description of the type system, we report in
Fig. 9 the more interesting rules, and extend them to deal with error handling.

We use typing contexts which are mappings from names (of variables, inter-
faces and classes) to types. The reserved name return is bound to the return
type of the current method. Relation � is the subtyping relation.

To check the correctness of error management, one has essentially to tag a
method with the list of failures it can raise. Also, one has to specify the behavior
of the compensation, including (recursively) its ability to throw faults. According
to this idea, the signature Sg of a method m becomes:

Sg ::= T m (T x) ED

ED ::= throws n [on comp T ED]

Here n is the list of names of faults method m may throw. The optional clause
on comp T ED specifies the typing of the compensation. It is omitted if the
compensation is not present. In this case it stands for the (infinite) unfolding
of the type on comp null throws NoC rec X.on comp null throws ε X
where null is a subtype of any data type and ε the empty list.

As an example, the signatures of methods TRANSFER in Fig. 4 and MAKE-
TRANSFER in Fig. 5 are respectively:

bool TRANSFER(int accNoA, int accNoB, int money)
throws lost-money

bool MAKETRANSFER(int accNo, int money)
throws no-acc on comp bool throws no-money

Similarly, futures have to declare the kinds of faults they are supposed to manage.
The type declaration of a future becomes:

T ::= . . . | fut〈T 〉 ED where ED is as before.

We show in Fig. 10 the main typing rules for error recovery. We need two
reserved names: faults, bound to the list of faults that the current method can
throw, and comp, bound to the typing of the current compensation. Rule T-
Abort simply checks that the thrown fault is allowed. Rule T-Get verifies that
the returned value has the correct type, and that all faults that may be raised

Fault in the Future 13

(T-Abort)

n ∈ Γ (faults)

Γ � abort n

(T-Get)

Γ � x : T Γ � f : fut〈T ′〉 throws ni CM T ′ � T Γ � s Γ � si

Γ � on x := f.get do s on fail ni si

(T-Return)

Γ � e : Γ (return) Γ (comp) = T throws n CM
Γ [return �→ T, faults �→ n, comp �→ CM] � s

Γ � return e on compensate s
(T-Kill)

Γ � x : T ′ fut〈T 〉 throws mi, Ann CM � T ′
Γ � f : fut〈T ′′〉 throws ni on comp T throws mi CM

Γ � x := f.kill

Fig. 10. Sample typing rules for error management in ABS

by the callee are managed. Rule T-Return checks the type of the returned value,
and ensures that the compensation has the expected behavior. Finally rule T-
Kill controls that variable x can store the result of the kill, including the
possibility for it to be Ann.

The subtyping relation � has to be defined also on the new types for futures.
It can be defined by:

(Fut-Sub)

T
 T ′ n ⊇ n′ T1
 T ′
1 ED
 ED′

fut〈T 〉 throws n [on comp T1 ED]
 fut〈T ′〉 throws n′ [on comp T ′
1 ED′]

The type system is easily extended from statements to configurations. Then, a
standard subject reduction theorem holds for configurations, ensuring that well-
typed configurations evolve to well-typed configurations. Finally, it is possible
to prove that in well-typed configurations whenever a get statement receives a
fault n, it provides a corresponding on fail n s clause for managing it.

5 Conclusion and Future Work

Taking inspiration from models and languages for fault and compensation han-
dling like the Sagas calculi [6] and the orchestration languages WS-BPEL [23]
and Jolie [10], we have presented an extension of the concurrent object-oriented
language ABS (the reference language in the European Projects HATS [13]) with
primitives for error handling. Callee side faults are similar to exceptions as in
e.g. Java, while the use of compensations for managing caller side kill requests is
novel for the object-oriented world as far as we know. Our main contribution has
been to combine these two mechanisms in a coherent way, suitable for a language
with asynchronous communication based on futures. This approach has been de-
veloped by ensuring that the main principles underlying ABS were preserved,
in particular concerning collaborative scheduling and asynchronous method ex-
ecution. These features of ABS are needed so to allow compositional correctness
proofs based on invariants, similarly e.g. to what done in [3, 9]. In fact, under
collaborative scheduling processes may ensure that an invariant holds only at
release points. If all pieces of code ensure that the invariant holds before any
release point by assuming that it holds at the beginning of their execution, then

14 E. Broch Johnsen, I. Lanese, and G. Zavattaro

the invariant holds under any possible scheduling, without any need to check for
interferences.

Invariants shed some light on a typical problem of the compensation approach,
namely compensation correctness. In fact, compensations are supposed to take
the process back to a consistent state which is however different from the state
where the process started. In other words, the rollback is not perfect. For in-
stance, in [7] this is kept into account by relying on an user-defined equivalence
on states: the compensations should lead the program to a state which is equiv-
alent to the one where the program itself started. In a world where programs are
equipped with invariants, compensation correctness becomes clearer: compensa-
tion should restore the invariant which has been broken by the failure.

Let us consider Example 1. There we have a distributed invariant specifying
that the sum of the money in the source and target accounts should not change.
Since this invariant involves two distinct objects, it may not hold when there
are pending method invocations, kills or when at least one of the objects has
not released the lock. It is easy to check that the invariant is preserved by the
normal execution, where no fault happens. Interestingly, it is also preserved in
case of faults which are handled. In fact, in case of fault in the callee the money
is never removed from the starting account, and in case of failure in the caller
the compensation withdraws the excess of money from the callee. The only case
where the invariant is violated is if the caller wants to compensate the call, but
this is no more possible because the money has already been used by the callee.
This is also the only case where method TRANSFER aborts. Thus one can say
that the code satisfies the invariant above in the sense that either it aborts, or
the invariant holds when the call is terminated, independently on the number of
(successfully managed) failures. In this sense we can say that the compensation
code in the example is correct w.r.t. this specific invariant.

As future work, we plan to develop general techniques for proving correctness
of compensations using invariants. Moreover, to better evaluate the practical
impact of our proposal, we will implement the proposed primitives in ABS and
we will investigate the possibility to apply our fault handling model in other
object-oriented languages with futures.

References

1. Agha, G., Hewitt, C.: Actors: A conceptual foundation for concurrent object-
oriented programming. In: Research Directions in Object-Oriented Programming,
pp. 49–74. MIT Press, Cambridge (1987)

2. Agha, G., Ziaei, R.: Security and fault-tolerance in distributed systems: an actor-
based approach. In: Proc. of CSDA 1998, pp. 72–88. IEEE Computer Society Press,
Los Alamitos (1998)

3. Ahrendt, W., Dylla, M.: A system for compositional verification of asynchronous
objects. Science of Computer Programming (2010) (in press)

4. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

5. Baduel, L., et al.: Programming, Composing, Deploying, for the Grid. In: Grid
Computing: Software Environments and Tools. Springer, Heidelberg (2006)

Fault in the Future 15

6. Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensations
in flow composition languages. In: Proc. of POPL 2005, pp. 209–220. ACM Press,
New York (2005)

7. Caires, L., Ferreira, C., Vieira, H.T.: A process calculus analysis of compensations.
In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 87–103.
Springer, Heidelberg (2009)

8. Caromel, D.: Service, Asynchrony, and Wait-By-Necessity. Journal of Object Ori-
ented Programming, 12–22 (November 1989)

9. deBoer, F.S.,Clarke,D., Johnsen,E.B.:A complete guide to the future. In:DeNicola,
R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg (2007)

10. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: Dynamic error handling in service
oriented applications. Fundam. Inform. 95(1), 73–102 (2009)

11. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theoretical Computer Science 410(2-3), 202–220 (2009)

12. Halstead Jr., R.H.: Multilisp: A language for concurrent symbolic computation.
ACM Trans. Prog. Lang. Syst. 7(4), 501–538 (1985)

13. European Project HATS, http://www.cse.chalmers.se/research/hats/
14. International Telecommunication Union. Open Distributed Processing — Refer-

ence Model parts 1–4. Technical report, ISO/IEC, Geneva (July 1995)
15. Johnsen, E.B., Kyas, M., Yu, I.C.: Dynamic classes: Modular asynchronous evolu-

tion of distributed concurrent objects. In: Cavalcanti, A., Dams, D.R. (eds.) FM
2009. LNCS, vol. 5850, pp. 596–611. Springer, Heidelberg (2009)

16. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

17. JSR166: Concurrency utilities, http://java.sun.com/j2se/1.5.0/docs/
guide/concurrency

18. Lavender, R.G., Schmidt, D.C.: Active object: an object behavioral pattern for
concurrent programming. In: Pattern Languages of Program Design 2, pp. 483–
499. Addison-Wesley Longman Publishing Co., Inc., Amsterdam (1996)

19. Liskov, B.H., Shrira, L.: Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. In: Proc. of PLDI 1988, pp. 260–267. ACM
Press, New York (1988)

20. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96, 73–155 (1992)

21. Morris, B.: CActive and Friends. Symbian Developer Network (Novem-
ber 2007), http://developer.symbian.com/main/downloads/papers/
CActiveAndFriends/CActiveAndFriends.pdf

22. Nienaltowski, P.: Practical framework for contract-based concurrent object-oriented
programming. PhD thesis, Department of Computer Science, ETH Zurich (2007)

23. Oasis. Web Services Business Process Execution Language Version 2.0, http://
docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

24. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60-61, 17–139 (2004)

25. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299.
Springer, Heidelberg (2010)

26. Venkatasubramanian, N., Talcott, C.L.: Reasoning about meta level activities in
open distributed systems. In: Proc. PODC 1995, pp. 144–152. ACM Press, New
York (1995)

27. Yonezawa, A.: ABCL: An Object-Oriented Concurrent System. MIT Press,
Cambridge (1990)

http://www.cse.chalmers.se/research/hats/
http://java.sun.com/j2se/1.5.0/docs/guide/concurrency
http://java.sun.com/j2se/1.5.0/docs/guide/concurrency
http://developer.symbian.com/main/downloads/papers/CActiveAndFriends/CActiveAndFriends.pdf
http://developer.symbian.com/main/downloads/papers/CActiveAndFriends/CActiveAndFriends.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

Revisiting Glue Expressiveness in
Component-Based Systems�

Cinzia Di Giusto and Jean-Bernard Stefani

INRIA Rhône Alpes, Grenoble, France

Abstract. We take a fresh look at the expressivity of BIP, a recent in-
fluential formal component model developed by J. Sifakis et al. We intro-
duce a process calculus, called CAB, that models composite components
as the combination of a glue (using BIP terminology) and subcompo-
nents, and that constitutes a conservative extension of BIP with more dy-
namic forms of glues. We study the Turing completeness of CAB variants
that differ only in their language for glues. We show that limiting the glue
language to BIP glues suffices to obtain Turing-completeness, whereas re-
moving priorities from the control language loses Turing-completeness.
We also show that adding a simple form of dynamic component creation
in the control language without priorities is enough to regain Turing com-
pleteness. These results complement those obtained on BIP, highlighting
in particular the key role of priorities for expressivity.

1 Introduction

Component-based software engineering is by now well entrenched in various ar-
eas, from embedded systems to Web applications, and is supported by numerous
standards, including UML. Its central tenet is that complex systems can be built
by composing, or gluing together possibly independently developed components.

In their paper on glue expressiveness [3] Bliudze and Sifakis have proposed
to look at the expressive power of glues or composition operators in an effort
to assess the relative merits of different component frameworks with respect
to their composition capabilities. In essence, the criterion they use to compare
two sets G1 and G2 of composition operators is whether it is possible, given a
family of primitive components B and an equivalence relation ∼ between these
components, to find, for a given operator g1 ∈ G1, a corresponding operator
g2 ∈ G2 such that all their compositions are equivalent, i.e. ∀B1, . . . , Bn ∈ B :
g1(B1, . . . , Bn) ∼ g2(B1, . . . , Bn). As a notable result, they showed that their
BIP component framework, whose glues feature multiparty synchronization and
priorities, is universal with respect to a family of operators defined by inference
rules in a subset of the GSOS format.

This work, however, leaves open a number of questions, in particular regarding
the form glues can take, and their intrinsic expressivity. Indeed, the notion of
� Research partially funded by ANR Project PiCoq, Fondation de Coopération

Scientifique Digiteo Triangle de la Physique, and Minalogic Project Mind.

W. De Meuter and G.-C. Roman (Eds.): COORDINATION 2011, LNCS 6721, pp. 16–30, 2011.
c© IFIP International Federation for Information Processing 2011

Revisiting Glue Expressiveness in Component-Based Systems 17

glue in [3] is essentially a static one. One may legitimately argue in favor of more
dynamic forms of composition, e.g. to allow the creation of new components or
the replacement of existing ones to accommodate different forms of software
update. Even without considering full dynamic reconfiguration, one may take
into account changes in configuration or interconnection between components,
e.g. to accommodate different modes of operation, where the notion of mode
is loosely understood as a collection of execution states [9]. It thus appears
beneficial to consider not just static glues but glue processes in their own right.

In the paper, we adopt this view: we model component assemblages as terms in
a process calculus, called CAB (for Components And Behaviors). A component
assemblage (or composite component) in CAB takes the form l[C1; . . . ; Cn �B],
where l is the name of the composite, C1, . . . , Cn are the subcomponents of the
composite, i.e. the components that are glued together (using BIP terminology)
in the assemblage, and B is the glue – a term in a simple process calculus which
we call the glue language. By construction, we recover BIP glues as essentially
single state processes of our glue language.

With this view of glues as terms of a glue language, new expressivity questions
arise, such as:

1. What is the expressivity of the resulting process calculus (in particular, if
we restrict the glue language to terms corresponding to BIP glues only)?

2. What is the expressivity of the calculus if we remove the possibility of spec-
ifying priority constraints in the glue language ?

3. What is the expressivity of the calculus if we add more dynamic forms of
control, such as component creation, in the glue language ?

In this paper we (begin to) answer these questions using classical Turing-
completeness as our benchmark for expressivity. Following BIP, the CAB calculus
is parametric over a family P of primitive components. So if we considered a large
enough family, these questions would be trivial. Instead, we restrict our primitive
components to be given by terms from the glue language itself – which form a
strict non-Turing-complete subset of CCS – so as to characterize the intrinsic
expressivity of the glue language. The questions then become non-trivial, and we
obtain answers that may even appear surprising. Indeed, we first show that even
with the restricted glue language consisting of static BIP glues only, the resulting
variant of CAB is Turing-complete. Second, we show that this expressivity is
lost if one restricts oneself to a subset of the glue language without priority
constraints. These results confirms the expressive power of priorities, which was
pointed out but not necessarily as clearly apparent in earlier works on BIP and
process calculi with priorities. Finally, as a first answer to the last question,
we show that we recover Turing-completeness if we add a very simple form of
component creation in our glue language without priorities.

To summarize, our contributions are the following:

– We introduce a new process calculus, CAB, that extends the BIP framework
with dynamic composition (or glue) capabilities.

– We demonstrate the expressiveness of priorities in the BIP framework by
showing that BIP glues, composing simple CCS processes, is enough to

18 C. Di Giusto and J.-B. Stefani

obtain a Turing-complete language, and that Turing completeness is lost
if we remove priorities.

– We show that Turing-completeness can be retained if we introduce more dy-
namic aspects in the language, namely a simple form of component creation.

The paper is organized as follows. Section 2 introduces the CAB process cal-
culus and defines its operational semantics in SOS style. Section 3 proves our
first result: CAB, restricted to a control language consisting of BIP glues, is
Turing-complete. Section 4 proves our two other results: dropping priorities from
CAB results in a non Turing-complete language; adding component creation to
the control language without priorities is enough to regain Turing-completeness.
Section 5 concludes the paper and discusses some related works.

2 CAB: Syntax and Semantics

We introduce in this section the CAB process calculus. In order to explain its
constructs, as well as to make its relationship with the BIP framework clear, we
begin by recalling the definition of the latter.

The BIP framework. We rely on the description of the BIP framework pro-
vided by [2,3]. A BIP component is simply a labeled transition system (LTS),
whose labels are ports1.

Definition 1. A component is an LTS B = (Q, P,→) where

1. Q is a set of states
2. P is a set of ports
3. →⊆ Q×P ×Q is a set of transitions. We use q

a−→ q′ to denote (q, a, q′) ∈→.

Components can be composed (glued) to form systems. A composition is given
by a set of rules (the glue) that enforce synchronization and priority constraints
among them.

Definition 2. A BIP system S that glues together n components Bi = (Qi, Pi,
→i) where ports and states are pairwise disjoint, is an LTS S = (Q, P,→S)
where Q =

∏n
i=1 Qi, P =

⋃n
i=1 Pi and where →S is a relation derivable as the

least relation satisfying a finite set of rules2 obeying the following format:

r :
{Bi

ai−→ B′
i}i∈I {Bj �

bk
j−→| k ∈ [1..mj]}j∈J

(B1, . . . , Bn) a−→S (B′
1, . . . , B

′
n)

(1)

where I and J are sets of indexes in [1, n], B′
i = Bi if I �∈ I, and I �= ∅ (i.e.

there is at least one positive premise).
1 This is a difference with the definition in [3], where labels are defined to be sets of

ports. We have adopted labels as simple ports in this paper to simplify the presenta-
tion. Our results are not impacted by this decision, however, for our processes only
have a fixed finite number of distinct ports, so that we can always bijectively map a
set of ports onto a single port.

2 The finiteness of the set of rules defining a glue seems implicit in [3].

Revisiting Glue Expressiveness in Component-Based Systems 19

Note that by definition there is at most one positive premise for each Bi in a
rule in BIP format. The key features of the BIP framework are: (i) the ability
to build hierarchical components; (ii) the concept of an explicit entity (the glue)
responsible for the composition of components; (iii) the support of multipoint
synchronizations, manifested by the positive premises in glue rules; (iv) The
presence of priority constraints, given by the negative premises in glue rules.

The CAB calculus. As indicated in the introduction, we retain for CAB the
general structure of composite components suggested by the BIP framework: a
component in CAB takes the form l[C1; . . . ; Cn � B], where l is the name of the
component, C1, . . . , Cn are its subcomponents and B is the glue. In contrast to
glues in BIP, a glue in CAB can evolve over time, corresponding to changes in
the synchronization and priority constraints among components, and is given by
a term of a process calculus we call the glue language. We adopt in this paper a
very simple glue language featuring:

– Action prefix α.B, where α is an action, and B a continuation glue. The
presence of action prefix in our glue language allows the definition of dynamic
glues.

– Parallel composition B1 ‖ B2, where B1 and B2 are two glues. The parallel
composition of glues can be interpreted as an and operator combining the
synchronization and priority constraints embodied by B1 and B2. It is im-
portant to note that the two branches B1 and B2 in a parallel composition
B1 ‖ B2 do not interact.

– Recursion recX.B, where X is a process variable, and B a glue. This allows
the definition of glues with cyclic behaviors.

Formally, let NP = {a, b, c . . . } and NC = {h, k, l . . . } be denumerable sets of
ports names and components names respectively. The CAB calculus is paramet-
ric over a set P of primitive components defined as labeled transition systems
with labels in NP . We define CAB(P) processes as follows:

Definition 3 (CAB). The set of CAB(P) processes is described by the follow-
ing grammar, where P denotes an element of P:

S ::= l[C � B] | l[P] Act ::= ∅ | {evt}
C ::= 0 | S | C; C evt ::= l : a | evt, evt
B ::= 0 | 〈Act, Tag, Act〉.B | B ‖ B | rec X.B | X Tag ::= τ | a

In order to simplify notation we write l : a instead of l : {a}, and a instead of
l : a when it is clear from the context which component is providing event a. We
abbreviate α.0 to α. We define S.nm = l if S = l[P] or S = l[C � B] for some
P, C, B (i.e. the function nm returns the name of an individual component S).

Actions in our glue language differ from those in classical process calculi, such
as CCS, for they play different roles: they embody synchronization and priority
constraints that apply to subcomponents in a composition, and they provide a
form of label renaming. An action is a triplet of the form 〈pr, tag, syn〉, where

20 C. Di Giusto and J.-B. Stefani

���
B{X/recX.B} α−→ B′

recX.B
α−→ B′

����
B

α−→ B′

B ‖ B2
α−→ B′ ‖ B2

����
B

α−→ B′

B2 ‖ B
α−→ B2 ‖ B′

	�
 〈pr, tag, syn〉.B 〈pr,tag,syn〉−−−−−−−−→ B

���
Ci

τ−→ C′
i

l[C1; . . . ;Ci; . . . ;Cm �B]
τ−→ l[C1; . . . ;C′

i; . . . ;Cm �B]

��
Ci1

a1−→ C′
i1 . . . Cin

an−−→ C′
in B

〈pr,tag,{li1 :a1,...,lin :an}〉−−−−−−−−−−−−−−−−−→ B′ C1 . . . Cm
 pr

l[C1; . . . ;Cm �B]
tag−−→ l[C′

1; . . . ;C
′
m �B′]

����� I = {i1, . . . , in} ⊆ [1,m], ∀i ∈ I, Ci.nm = li ��� ∀j ∈ [1,m] � I, C′
j = Cj

Fig. 1. A labeled transition system semantics for CAB(P)

pr is a priority constraint (i.e. events in subcomponents which would preempt
the synchronization syn), syn is a synchronization constraint (i.e. events to be
synchronized between subcomponents), and tag is an event made visible by the
composite as a result of a successful syn synchronization.

Hence a glue B of the form 〈{l : a}, t, {l1 : c1, l2 : c2}〉.B′ specifies a syn-
chronization constraint between two subcomponents l1 and l2: if the first one
is ready to perform event c1, and the other is ready to perform event c2, then
the composition is ready to perform event t, provided that subcomponent l is
not ready to perform event a. When the event t of the composite is performed
(implying the two subcomponents l1 and l2 have performed events c1 and c2,
respectively), a new glue B′ is then put in place to control the behavior of the
composite. Note that tag t can be either τ (which denotes an internal event)
or a port (an event). Hence a tag t = τ results in a synchronization between
subcomponents that takes place silently, with no implication from the environ-
ment of the composite. A tag t �= τ subjects the evolution of the composite to
the availability of an appropriate synchronization on t in the environment of the
composite.

The operational semantics of CAB(P) is defined as the least labeled transition
relation derivable by the inference rules in Figure 1. Rules for parallel composi-
tion and recursion are defined as usual. Rules Beh and Tau define the evolution
of an aggregation of components inside a composite named l. Rule Beh stipu-
lates that if a glue B is ready to perform an action 〈pr, tag, {l1 : a1, . . . , ln : an}〉
and components named l1, . . . , ln are ready to perform a1, . . . , an respectively,
then their composition is ready to perform action tag, provided priority con-
straint pr is satisfied. Having a priority constraint satisfied is defined as follows.
Let pr = {lj1 : cj1 , . . . , ljk

: cjk
} with J = {j1 . . . jm} ⊆ [1, m], we say that

C1 . . . Cm � pr iff for every i ∈ J , Si � ci−→ with Si.nm = li and Si ∈ {C1, . . . , Cm}.
If pr = ∅ we are not imposing any priority policy on the synchronization.

Revisiting Glue Expressiveness in Component-Based Systems 21

Similarly, with an action of the form 〈pr, tag, ∅〉 there is no synchronization
requirement, but the environment of the composite must be ready to perform
tag in order for the system to evolve.

Notation 1. We denote with !α.P the process rec X. α.(P ‖ X). We use −→ to
denote the relation τ−→. We use

∏n
i=1 Bi to denote B1 ‖ . . . ‖ Bn

3.

Encoding BIP. The operational semantics, and in particular rule Beh, above
was defined so as to mimic very closely the capabilities of glues in BIP. We now
clarify the relationship between CAB(P) and BIP systems defined over a set P of
components. We can encode a BIP glue G in CAB(P) as follows. By definition,
G is given by a finite set of rules r that obey the format given in Definition 2.
Let r be such a rule:

r :
{Ci

ai−→ C′
i}i∈I {Cj �

ck
j−→| k ∈ [1..mj]}j∈J

(C1, . . . , Cn)
tag−−→ (C′

1, . . . , C
′
n)

where I and J are set of indexes in [1, n]. The encoding �r� of rule r in CAB(P)
is defined as:

�r� =!〈{hj : ck
j | k ∈ [1, mj]}j∈J , tag, {hi : ai}i∈I〉

A BIP composition S with glue rules r1, . . . , rp and components C1, . . . , Cn ∈ P
can thus be encoded as follows:

�S� = l[h1[C1]; . . . ; hn[Cn] �

p∏

i=1

�ri�]

By construction, we obtain:

Theorem 2. BIP systems defined over a set P of components can be encoded
in CAB(P): any BIP system S is strongly bisimilar to its encoding �S�.

3 Turing-Completeness of CAB

In this section as in the rest of the paper, we work within CAB(∅), which,
for simplicity, we denote CAB. We show the Turing-completeness of CAB by
proving we can encode Minsky machines into it. This gives us a result on the
intrinsic expressive power of the CAB glue language, in the sense that it does not
depend on the presence of primitive components: we only construct component
systems using glue language terms. Note that this is equivalent to considering
only primitive components which are labeled transition systems defined by CAB
terms of the form l[0�B], where B is a term with actions of the form 〈∅, a, ∅〉. For
reference, these primitive processes are given by terms of the following grammar,
whose operational semantics is given by rules Rec, Par1, Par2, and Act in
Figure 1:

B ::= 0 | 〈∅, a, ∅〉.B | B ‖ B | rec X.B | X.

3 The parallel operator ‖ is commutative and associative modulo strong bisimilarity.

22 C. Di Giusto and J.-B. Stefani

�����
i : INC(rj) m′

j = mj + 1 m′
1−j = m1−j

(i,m0,m1) −→� (i+ 1,m′
0,m

′
1)

�����
i : DECJ(rj , s) mj �= 0 m′

j = mj − 1 m′
1−j = m1−j

(i,m0,m1) −→� (i+ 1,m′
0,m

′
1)

���	

i : DECJ(rj , s) mj = 0

(i,m0,m1) −→� (s,m0,m1)
����
�

i : HALT

(i,m0,m1) ��

Fig. 2. Semantics of Minsky machines

Minsky Machines. Minsky machines [10] provide a Turing-complete model
of computation. A Minsky machine is composed of a set of sequential, labeled
instructions, and at least two registers. Registers rj (j ∈ {0, 1}) can hold arbitrar-
ily large natural numbers. Instructions (1 : I1), . . . , (n : In) can be of two kinds:
INC(rj) adds 1 to register rj and proceeds to the next instruction; DECJ(rj , s)
jumps to instruction s if rj is zero, otherwise it decreases register rj by 1 and
proceeds to the next instruction. A Minsky machine includes a program counter
p indicating the label of the instruction being executed. In its initial state, the
machine has both registers initialized to m0 and m1 respectively, and the pro-
gram counter p is set to the first instruction. The Minsky machine stops whenever
the program counter is set to the HALT instruction. A configuration of a Minsky
machine is a tuple (i, m0, m1); it consists of the current program counter and
the values of the registers. Formally, the reduction relation over configurations
of a Minsky machine , denoted −→M, is defined in Figure 2.

The encoding. The encoding of Minsky machines in CAB, denoted �·�1, is
given in Figure 3. We now give some intuitions on it. Given a Minsky machine
M , we encode it as a system m. m contains three components: the two registers
r0 and r1, and the program counter. The instructions of the machine are encoded
in the glue of m. Numbers inside registers are encoded in the glue as the parallel
composition of as many occurrences of the unit process 〈∅, uj, ∅〉 as the number to
be encoded. An increment simply adds an occurrence of the unit process 〈∅, uj, ∅〉
to the register. The decrement and jump is encoded as the parallel composition
of the two branches. The decrement branch simply removes one occurrence of
the unit process 〈∅, uj , ∅〉, if such occurrence is available. The jump branch is
guarded by the priority rj : uj . In other words, to be able to execute the jump,
it is necessary to check that the register is indeed empty. If this is the case
the program counter is updated accordingly. More formally, the encoding of a
configuration in the Minsky machine is defined as follows:

Revisiting Glue Expressiveness in Component-Based Systems 23

�Rj = m�1 = rj [0�

m∏

1

〈∅, uj , ∅〉 ‖!〈∅, zj , ∅〉 ‖!〈∅, incj , ∅〉.〈∅, uj , ∅〉]

���������	�� (i : Ii)
�(i : INC(rj))�1 =!〈∅, τ, {pi, incj , nexti+1}〉
�(i : DECJ(rj , s))�1 =!〈∅, τ, {pi, uj , nexti+1}〉 ‖!〈rj : uj , τ, {pi, zj , nexts}〉)
�(i : HALT)�1 = 〈∅, halt, pi〉

Fig. 3. Encoding of Minsky machines into CAB

Definition 4. Let M be a Minsky machine and (k, m0, m1) one of its configu-
rations. The encoding of �k, m0, m1�1 is defined as

m[�R0 = m0�1; �R1 = m1�1; pr[0 �

n∏

i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉];

pr[0 � 〈∅, pk, ∅〉 ‖
n∏

i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉] �
n∏

i=1

�i : Ii�1]

where the encoding of registers and instructions is defined in Figure 3.

Notice that in order to synchronize at the same time pi and nexti we have
to duplicate the component representing the program counter. This does not
introduce non determinism as only one instance of the action 〈∅, pi, ∅〉 is available
at every step.

The correctness of the encoding follows by a case analysis on the type of
instruction performed when the program counter reaches k. This is formalized
by the following Lemma.

Lemma 1. Let M be a Minsky machine and (k, m0, m1) one of its configuration
then (k, m0, m1) −→M (k′, m′

0, m
′
1) iff �k, m0, m1�1 −→ �k′, m′

0, m
′
1�1.

Proof (Sketch). Here we show only that if (k, m0, m1) −→M (k′, m′
0, m

′
1) then

�k, m0, m1�1 −→ �k′, m′
0, m

′
1�1 when the k-th instruction is a decrement on reg-

ister m0 > 0. The other cases and the other direction are similar or simpler.
Then, from Definition 4, we have that

m[�R0 = m0�1; �R1 = m1�1; pr[0 �

n∏

i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉];

pr[0 � 〈∅, pk, ∅〉 ‖
n∏

i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉] �
n∏

i=1

�i : Ii�1]

where the k-th instruction is encoded as

!〈∅, τ, {pk, u0, nextk+1}〉 ‖!〈r0 : u0, τ, {pk, z0, nexts}〉)

24 C. Di Giusto and J.-B. Stefani

and m′
0 = m0 − 1, k′ = k + 1. In this case, the only possible evolution is the

one that synchronizes the program counter pk, the unit u0 inside register r0 and
nextk+1, evolving into the system:

m[�R0 = m0 − 1�1; �R1 = m1�1; pr[0 � 〈∅, pk+1, ∅〉 ‖
n∏

i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉];

pr[0 �

n∏

i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉] �
n∏

i=1

�i : Ii�1]

Now, it is easy to see that the system above corresponds to �k′, m′
0, m

′
1�1.
�

By means of the previous lemma, we can state the operational correspondence
between M and its encoding �M�1.

Theorem 3. Let M be a Minsky machine and �M�1 as defined in Definition 4.
Then M halts with registers Ri = m′

i for i ∈ [0, 1] iff �M�1
halt−−→ and locations

ri for i ∈ [0, 1] is �Ri = m′
i�1.

It is important to notice that our encoding relies on elementary components of
the form l[0 � B], which are glued together by glue terms which are essentially
in BIP format, as discussed in Section 2. The above theorem gives us actually
a stronger result which says that the subset of CAB where glues are restricted
to be in BIP format, and where primitive components correspond to labeled
transition systems given by elementary components of the form l[0 � B], is
Turing-complete.

4 Expressivity of CAB Variants

We have shown that CAB is Turing powerful. We now investigate the sources of
expressiveness in the language. The first thing we show is that in the encoding
given in Section 3 the presence of priorities is essential. Indeed we can prove
that if we consider a fragment of CAB without priorities the resulting language
is not Turing powerful anymore. This can be proven by providing an encoding
into Petri nets, a well known non Turing-powerful model.

4.1 CAB without Priorities

A Petri net (see e.g. [6]) is a tuple N = (P, T, m0), where P and T are finite sets
of places and transitions, respectively. A finite multiset over the set S of places
is called a marking, and m0 is the initial marking. Given a marking m and a
place p, we say that the place p contains m(p) tokens in the marking m if there
are m(p) occurrences of p in the multiset m. A transition is a pair of markings
written in the form m′ ⇒ m′′. The marking m of a Petri net can be modified by
means of transitions firing: a transition m′ ⇒ m′′ can fire if m(p) ≥ m′(p) for
every place p ∈ S; upon transition firing the new marking of the net becomes

Revisiting Glue Expressiveness in Component-Based Systems 25

n = (m \ m′) � m′′ where \ and � are the difference and union operators for
multisets, respectively. This is written as m→ n.

We denote the fragment of CAB without priorities as CAB−p. This fragment
is obtained by replacing production 〈Act, Tag, Act〉 with 〈∅, T ag, Act〉 in Defini-
tion 3. Before presenting the encoding into Petri Nets, we introduce some more
terminology: we define a notion of top level actions in the glue of a component.

Definition 5 (top). Let l[C � B] be a system in CAB. top(B) is defined induc-
tively on the structure of the glue B as follows:

top(0) = top(X) ::= ∅ top(〈pr, tag, syn〉.B) ::= {〈pr, tag, syn〉}
top(recX.B) ::= top(B) top(B1 ‖ B2) ::= top(B1) ∪ top(B2)

We also define how to build the graph of precedence of a glue B:

Definition 6. Let l[C � B] be a system in CAB. The graph of B, denoted with
G(B) = (Nodes(B), Edges(B)), is a directed graph, inductively defined as:

G(0) ::= Nodes(B) = {0},
Edges(B) = ∅

G(〈act〉.B1) ::= Nodes(B) = {〈act〉} ∪Nodes(B1),
Edges(B) = {〈act〉 → x | x ∈ top(B1)} ∪ Edges(B1)

G(B1 ‖ B2) ::= Nodes(B) = Nodes(B1) ∪Nodes(B2),
Edges(B) = Edges(B1) ∪ Edges(B2)

G(recX.B1) ::= Nodes(B) = Nodes(B1)
Edges(B) = Edges(B1) where every time we encounter

X we add an edge to the nodes in top(B1)

Let n ∈ Nodes(B), we denote with Adj(n) the list of nodes adjacent to n.

The idea is that every system is a Petri Net and the marking represents the
components that are ready to interact at a given instant. Transitions mimic the
semantics of CAB−p systems. The construction of the Petri Net is inductive
on the hierarchy of components: let S = lS [S1; . . . ; Sm � BS] be a system in
CAB−p. We assume that k is the maximum number of levels of nesting in S. We
decorate every location in S with the corresponding level of nesting in S, from
1 the innermost, to k the outermost level.

Let PN (Si) = (P (Si), T (Si), m0(Si)) be the Petri Net for the subsystem Si

for all i ∈ [1, m]. PN (S) is built by taking:

– as set of places, the set of all places of the subnets for S1 . . . Sn plus all the
nodes in the graph of the behavior BS :

P (S) =
n⋃

i=1

P (Si) ∪ {[lkS : 〈∅, tag, syn〉] | 〈∅, tag, syn〉 ∈ Nodes(BS)};

Notice that there is a bijection between nodes in the graphs of glues and the
places in the Petri Net. Hence for every node n in the graph of glue located
at l in level j there exists a distinctive place [lj : n] and vice-versa.

26 C. Di Giusto and J.-B. Stefani

– as set of transitions all the transitions of subnets PN (S1) . . .PN (Sn) plus
for all nodes 〈∅, tag, syn〉 in Nodes(BS) where tag = τ we add a set of
transitions that:
• Take as precondition, recursively on the part syn of the nodes considered,

all the places [lj : 〈∅, t, s〉] for j ∈ [1, k − 1] and such that l : t appears
in the synchronization part syn in one of the nodes. Notice that, this
accounts in considering in a single transition all the components involved
in a τ step: i.e. the places involved in the precondition correspond to all
the leafs in the derivation tree of the τ step.
• Take as postcondition all the places built from nodes in the adjacent list

of all the nodes obtained by places in the preconditions.
For instance, consider the system

l3[l2[l1[0 � 〈∅, a, ∅〉.0] � 〈∅, b, {l1 : a}〉.0] � 〈∅, τ, {l2 : b}〉.0]

here there is a single transition that takes as precondition the places: {[l3 :
〈∅, τ, {l2 : b}〉], [l2 : 〈∅, b, {l1 : a}〉], [l3 : 〈∅, a, ∅〉]} and as post condition the
places {[l1 : 0], [l2 : 0], [l3 : 0]}

– as initial marking, the initial marking of all subnets plus the nodes corre-
sponding to the top level actions in BS :

m0(S) = �n
i=1m0(Si) � {[lkS : n] | n ∈ top(BS)}

The correctness of the above construction follows by induction on the nesting
of components.

Theorem 4. Let S = lS [S1; . . . ; Sm�BS] be a system in CAB−p, and PN (S) =
(P (S), T (S), m0(S)) the corresponding Petri Net. Then S −→ S′ iff there exists
a marking m′ such that m0(S)⇒ m′ and m′ is a marking that takes all the top
level actions in S′.

Proof. Here we show only the correctness direction, soundness is similar. Let
S = lS [S1; . . . ; Sm�BS] be a system in CAB−p, and m0(S) the initial marking in
the Petri Net constructed as described above. The proof proceeds by induction on
the nesting of components in S. If S −→ S′ then we have that either rule Beh or
Tau has been used. The case of Tau follows by inductive hypothesis. Instead if
the τ step comes from Beh , we have that there exists an action 〈∅, τ, {a1 . . . an}〉
at top level in BS . Moreover we have Ci1 . . . Cin components that are offering
actions a1 . . . an respectively. Hence at top level in these components we have an
action 〈∅, aij , syn〉 for j ∈ [1, n]. Therefore, by construction we have a token in
all these places and the transition can fire, moving all tokens in the successors
of the action: i.e. in all the nodes of the adjacency list, that by construction
corresponds to the new action at top level in S′.
�

4.2 Recovering Expressiveness

We, now, introduce a new construct to CAB−p to recover the loss of expressive-
ness due to the absence of priorities. We consider an operator that adds new

Revisiting Glue Expressiveness in Component-Based Systems 27

�Rj = 0�2 ::= rj [a[0� 〈∅, actj , ∅〉 ‖!〈∅, zeroj , ∅〉.〈∅, actj , ∅〉]� Fwd ‖ Z ‖ INC]

Fwd ::= !〈∅, incj , incj〉 ‖!〈∅, decj , decj〉
Z ::= !〈∅, zj , actj〉.〈∅, τ, zeroj〉
INC ::= !〈∅, incj , actj〉.new Level
Level ::= a[a[0� 〈∅, actj , ∅〉]� Fwd ‖ DEC ‖ INC]

DEC ::= 〈∅, decj , actj〉.〈∅, actj , ∅〉

���������	�� (i : Ii)
�(i : INC(rj))�2 =!〈∅, τ, {pi, incj , nexti+1}〉
�(i : DECJ(rj , s))�2 =!〈∅, τ, {pi, decj , nexti+1}〉 ‖!〈∅, τ, {pi, zj , nexts}〉)
�(i : HALT)�2 = 〈∅, halt, pi〉

Fig. 4. Encoding of Minsky machines into CAB without priorities

components inside a system. To this aim, we add to Definition 3 the following
production:

B ::= new S

with this operational semantics:

New new S
new S−−−−→ 0 Cre

B
new S−−−−→ B′

l[C � B] τ−→ l[C; S � B′]

Thanks to the interplay between the creation of new components and recursion
we can re-obtain Turing equivalence. The result, similarly to the one in Section 3,
is obtained by resorting to an encoding of Minsky machines. We proceed by giv-
ing some intuitions on the encoding given in Figure 4. Registers are encoded as a
hierarchy of components that handle both the representation of the number and
a mechanism to increment or decrement. The nesting of these components rep-
resents the number contained. At every instant, the mechanism controlling the
register is placed in the innermost position. Thus, whenever an increment takes
place, a new component is created inside the deepest level and all the control is
transfered to the newly created object: this is the role of a[0 � 〈∅, actj, ∅〉] which
activates the current instance. On the contrary, in case of a decrement, the current
instance is deactivated: i.e. it remains as garbage but it cannot be used anymore
and a signal is passed to the upper component so to activate decrements and in-
crements at the proper level of nesting. Notice, that in order to communicate with
the active instance, it is necessary to equip every level of the nesting with a process
Fwd. This process is responsible for forwarding increment and decrement events
to reach the component that controls the simulation of the computation. With-
out loss of generality, we assume that registers are initialized to zero. The following
definition formalizes the encoding of a Minsky machine M :

Definition 7. Let M be a Minsky machine with registers initialized to 0 and
program counter set to 1: its encoding �M�2 is

28 C. Di Giusto and J.-B. Stefani

m[�R0 = 0�2; �R1 = 0�2; pr[0 �

n∏

i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉];

pr[0 � 〈∅, p1, ∅〉 ‖
n∏

i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉] �
n∏

i=1

�i : Ii�2]

where the encoding of registers and instructions is defined in Figure 4.4

Similarly as before, the correctness of the encoding follows by a case analysis on
the type of instruction performed when the program counter reaches k. Notice
that, depending on the specific computation there can be components as a[a[0�

0] � Fwd ‖ INC] “floating” in the system. Nevertheless this garbage can be
ignored as it is never re-used: i.e. it cannot interact with the rest of the system.

Lemma 2. Let M be a Minsky machine and (k, m0, m1) one of its configuration
then (k, m0, m1) −→M (k′, m′

0, m
′
1) iff �k, m0, m1�2 −→ �k′, m′

0, m
′
1�2.

Proof (Sketch). Here we show only that if (k, m0, m1) −→M (k′, m′
0, m

′
1) then

�k, m0, m1�2 −→ �k′, m′
0, m

′
1�2 when the k-th instruction is a decrement on reg-

ister m0 > 0. The other cases and the other direction are similar or simpler.
We first define �k, m0, m1�2, for the sake of simplicity we will not consider

the occurrences of garbage objects, taking for grant that those will not interfere
with the computation.

�k, m0, m1�2 ::= m[�R0 = m0�2; �R1 = m1�2; pr[0 �

n∏

i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉];

pr[0 � 〈∅, pk, ∅〉 ‖
n∏

i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉] �
n∏

i=1

�i : Ii�2]

where

�Rj = mj�2 ::= rj [a[0 � 〈∅, actj , ∅〉 ‖!〈∅, zeroj, ∅〉.〈∅, actj , ∅〉],
C[. . . C[a[a[0 � 〈∅, actj, ∅〉] � Fwd ‖ DEC ‖ INC]] . . .] � Fwd ‖ Z ‖ INC]

and C[•] = a[a[0 � 0], • � Fwd ‖ DEC ‖ INC] is repeated mj times. The
k-th instruction is encoded as

!〈∅, τ, {pk, dec0, nextk+1}〉 ‖!〈r0 : u0, τ, {pk, z0, nexts}〉)

and m′
0 = m0 − 1, k′ = k + 1. In this case, the only possible evolution is the

one that synchronizes the program counter pk, the message dec0 inside register
r0 and nextk+1, evolving into the system:

4 Notice that the interplay of recursion and creation of new components is implicit
in the definition of INC and Level. The same thing could have been written as:
!recX〈∅, incj , actj〉.new a[a[0 � 〈∅, actj , ∅〉] � Fwd ‖ DEC ‖ X].

Revisiting Glue Expressiveness in Component-Based Systems 29

m[�R0 = m0 − 1�2; �R1 = m1�2; pr[0 � 〈∅, pk+1, ∅〉 ‖
n∏

i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉];

pr[0 �

n∏

i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉] �
n∏

i=1

�i : Ii�2]

Notice that the message on dec0 will start a chain of synchronizations between
components a[. . .] through the Fwd event to reach the deepest component and
then activate the real decrement. It is easy to conclude that the system above
corresponds to �k′, m′

0, m
′
1�2.
�

The previous lemma allows us to conclude:

Theorem 5. Let M be a Minsky machine and �M�2 as defined in Definition 7.
Then M halts with registers Ri = m′

i for i ∈ [0, 1] iff �M�2
halt−−→ and locations

ri for i ∈ [0, 1] is �Ri = m′
i�2.

5 Final Remarks

We have taken in this paper a decidedly process algebraic view of glues in
component-based systems, introducing an alternate view, and an extension, of
the BIP framework in the form of the CAB process calculus. We have studied
the expressiveness of CAB, which gave us a way to characterize the intrinsic
(i.e. not relatively to a predefined family of components) expressive power of
its glue language. We have shown that, while being very simple, the calculus is
Turing-complete thanks mainly to the presence of priorities. As a matter of fact,
we have shown that the fragment of CAB where priorities have been removed is
only as expressive as Petri nets, which is a testament to the gain in expressive
power obtained through the use of priorities. However expressiveness can be re-
covered in a calculus without priorities if dynamic operators are added to the
language.

We have already discussed in the introduction the relations with the BIP
framework and seen how the present paper brings new light on BIP expres-
siveness. Here we relate our paper to other works studying the expressiveness
of multiparty synchronization or priority. Multiparty synchronization has been
proposed in several process calculi. One of the first proposals is CSP [7] where
synchronization can take place among all processes that share a channel with the
same name. A recent work by Laneve and Vitale [8] has shown that a calculus
able to synchronize on n channels is strictly more expressive than one that can
only synchronize up to n − 1 channels. [5] shows a similar result in the con-
text of a concurrent logic calculus. In the current paper we have mostly shown
the benefit of priorities for expressiveness. However we suspect that multiparty
synchronization is also important for expressiveness. In our two encodings of
Minsky machines in Section 3 and in Section 4, we rely decisively on 3-way
synchronization; whether it is absolutely required is a question for further study.

30 C. Di Giusto and J.-B. Stefani

Several works tackle the problem of adding priority mechanisms in a process
calculus [4]. In [11] it has been shown that CCS enriched with a form of priority
guards is strictly more expressive than CCS: essentially, it is possible to model the
leader election problem in CCS with priorities, which is not the case with plain
CCS. Analogously, [12] shows that a core calculus similar to CCS, if extended
with several kinds of priorities, can model the leader election problem while
the core calculus can not. Both these studies state the impossibility to encode
the calculus with priorities in the plain calculus. In contrast, we show in this
paper an absolute increase in expressiveness from Petri Nets to Minsky machines.
Closer to the present work is the paper in [1], where the authors show that CCS
without restriction, and with replication instead of recursion, can be encoded
into Petri Nets while the same calculus enriched with priorities and a weak form
of restriction is Turing-powerful. Compared to [1] we are considering recursive
processes instead of replicated ones thus the drop of expressiveness when not
using priorities is stronger in our case.

As for future work, we plan to investigate other, more involved, forms of dy-
namic configuration of components. Moreover we are interested in understanding
if our result of Turing completeness can be related to the ability of simulating
all recursively enumerable LTSs thus making unnecessary the presence of the
parameter P in the full calculus CAB(P).

References

1. Aranda, J., Valencia, F., Versari, C.: On the expressive power of restriction and
priorities in CCS with replication. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS,
vol. 5504, pp. 242–256. Springer, Heidelberg (2009)

2. Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in bip.
IEEE Trans. Computers 57(10), 1315–1330 (2008)

3. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based sys-
tems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 508–522. Springer, Heidelberg (2008)

4. Cleaveland, R., Lüttgen, G., Natarajan, V.: Priority in process algebra. Technical
report, Nasa (1999)

5. Di Giusto, C., Gabbrielli, M., Meo, M.C.: On the expressive power of multiple
heads in chr. To appear in ACM Transactions on Computational Logic (2010)

6. Esparza, J., Nielsen, M.: Decidability issues for petri nets - a survey. Bulletin of
the EATCS 52, 244–262 (1994)

7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International
Series in Computer Science (1985)

8. Laneve, C., Vitale, A.: The expressive power of synchronizations. In: LICS 2010,
pp. 382–391. IEEE Computer Society, Washington, DC (2010)

9. Maraninchi, F., Rémond, Y.: Mode-automata: a new domain-specific construct for
the development of safe critical systems. Sci. Comput. Program 46(3) (2003)

10. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs (1967)

11. Phillips, I.: CCS with priority guards. J. Log. Algebr. Progr. 75(1), 139–165 (2008)
12. Versari, C., Busi, N., Gorrieri, R.: An expressiveness study of priority in process

calculi. Mathematical. Structures in Comp. Sci. 19, 1161–1189 (2009)

Encoding Context-Sensitivity in Reo into

Non-Context-Sensitive Semantic Models

Sung-Shik T.Q. Jongmans1,�, Christian Krause2,��, and Farhad Arbab1

1 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
jongmans@cwi.nl

2 Hasso Plattner Institute (HPI), University of Potsdam, Germany

Abstract. Reo is a coordination language which can be used to model
the interactions among a set of components or services in a compositional
manner using connectors. The language concepts of Reo include syn-
chronization, mutual exclusion, data manipulation, memory and context-
dependency. Context-dependency facilitates the precise specification of
a connector’s possible actions in situations where it would otherwise ex-
hibit nondeterministic behavior. All existing formalizations of context-
dependency in Reo are based on extended semantic models that provide
constructs for modeling the presence and absence of I/O requests at the
ports of a connector.

In this paper, we show that context-dependency in Reo can be encoded
in basic semantic models, namely connector coloring with two colors
and constraint automata, by introducing additional fictitious ports for
Reo’s primitives. Both of these models were considered as not expressive
enough to handle context-dependency up to now. We demonstrate the
usefulness of our approach by incorporating context-dependency into the
constraint automata based Vereofy model checker.

1 Introduction

Over the past decades, coordination languages have emerged for modeling and
implementing interaction protocols between two or more software components.
One example is Reo [1], a language for compositional construction of connectors.
Connectors are software entities that coordinate the communication between
components; they constitute the glue that holds components together, and be-
come, once considered at a higher level of abstraction, components themselves.

Connectors have several behavioral properties; for instance, they may manipu-
late data items that pass through them. Another property is context-dependency
or context-sensitivity: whereas the behavior of a context-insensitive connector
depends only on its own state, the behavior of a context-sensitive connector de-
pends also on the presence or absence of I/O-requests at its ports—its context.
To illustrate context-sensitivity, we consider the LossySync connector, which co-
ordinates the interaction between two components: a writer and a taker. If the
� Corresponding author.

�� Supported by the research school in ‘Service-Oriented Systems Engineering’ at HPI.

W. De Meuter and G.-C. Roman (Eds.): COORDINATION 2011, LNCS 6721, pp. 31–48, 2011.
c© IFIP International Federation for Information Processing 2011

32 S.-S.T.Q. Jongmans, C. Krause, and F. Arbab

taker is prepared to receive data, LossySync properly relays a data item from the
writer to the taker. If the taker, however, refuses to receive, LossySync loses the
data item sent by the writer. Since LossySync’s behavior depends on the taker’s
willingness to receive data, that is, the presence or absence of a request for input,
LossySync exhibits context-dependent behavior.

Several formal models for describing the behavior of Reo connectors exist,
but not all of them have constructs for context-dependency. For example, the
early models (e.g., an operational model based on constraint automata [2]), al-
though attractive because of their simplicity, lack such constructs. These models
implement context-sensitivity as non-determinism. In an attempt to mend this
deficiency, more recent models incorporate constructs for context-dependency,
but at the cost of more complex formalisms (e.g., the 3-coloring model [3]). As
a result, the algorithms for their simulation and verification suffer from a high
computational complexity, which makes these models less attractive in practice.

In this contribution, we show that context-dependency in fact can be cap-
tured in simple semantic models, namely the 2-coloring model [3] and constraint
automata: we define an operator that transforms a connector with 3-coloring se-
mantics to one with 2-coloring semantics, while preserving its context-sensitive
behavior. Furthermore, we prove the transformation’s correctness, and, to illus-
trate its merits, we show how our approach enables the verification of context-
dependent connectors with the Vereofy model checker (impossible up to now).
Other applications of our approach include context-sensitive connector decompo-
sition [4], and, as we speculate, an improved implementation of Reo’s interpreter.

The paper is organized as follows. In Section 2, we briefly discuss Reo and
connector coloring. In Section 3, we present the transformation from 3-coloring
models to 2-coloring models. In Section 4, we present an application of our
approach to Vereofy. We discuss related work in Section 5. Section 6 concludes
the paper.

2 Reo Overview

In this section, we discuss connectors in Reo and the coloring models for describ-
ing their behavior. A comprehensive overview appears in [1,5].

The simplest connectors, called primitives, consist of a number of input and
output nodes to which components can connect and at which they can issue
write and take requests for data items. Data items flow through a primitive
from its input node(s) to its output node(s); if data flow through a node, this
node fires. The semantics of a primitive specifies its behavior by describing how
and when data items flow through the primitive’s nodes. To illustrate this, we
now present some common primitives and sketch their semantics informally.

The Sync primitive consists of an input node and an output node. Data items
flow through this primitive only if these nodes have pending write and take re-
quests. The LossySync primitive behaves similarly, but, as described in Section 1,
loses a data item if its input node has a pending write request, while its output
node has no pending take request. In contrast to the previous two memoryless
primitives, primitives can have buffers to store data items in. Such primitives

Encoding Context-Sensitivity in Reo 33

Table 1. Common primitives

Sync LossySync FIFO1 (Empty) FIFO1 (Full)

A B A B A B A B

2
-C

o
l.

3
-C

o
l.

exhibit different states, while the internal configuration of Sync and LossySync
always stays the same. For instance, the FIFO1 primitive consists of an input
node, an output node, and a buffer of size 1. In the EMPTY state, a write re-
quest on the input node of FIFO1 causes a data item to flow into the buffer (i.e.,
the buffer becomes full), while a take request on its output node remains pend-
ing. Conversely, in the FULL state, a write request on its input node remains
pending, while a take request on its output node causes a data item to flow from
the buffer to the output node (i.e., the buffer becomes empty). The first row of
Table 1 depicts the three primitives discussed. In general, we define primitives
as follows. Let Node be a denumerable set of nodes.

Definition 1 (Primitive). A primitive P of arity k is a list (nj1
1 , . . . , njk

k) such
that ni ∈ Node, ji ∈ {“i”, “o”}, and [if i �= i′, then ni �= ni′] for all 1 ≤ i, i′ ≤ k.

One can construct complex connectors from simpler constituents using compo-
sition. In this view, a connector consists of a set of nodes, a set of primitives
connecting these nodes, and a subset of boundary nodes on which components
can perform I/O-operations. Although primitives have only boundary nodes,
this generally does not hold for composed connectors. For instance, composing
LossySync and FIFO1, by joining the former’s output node with the latter’s in-
put, causes their shared node to become internal to the composed connector.
This connector, called LossyFIFO1, appears in the top–left cell of Table 2. We
proceed with the formal definitions.

Definition 2 (Connector). A connector C is a tuple 〈N, B, E〉 such that N
is the set of nodes occurring in C, ∅ �= B ⊆ N is a set of boundary nodes, and
E is a set of primitives.

Definition 3 (Composition of connectors). Let C1 = 〈N1, B1, E1〉 and
C2 = 〈N2, B2, E2〉 be connectors such that E1 ∩ E2 = ∅. Their composition,
denoted C1×C2, is defined as: C1×C2 = 〈N1∪N2, (B1∪B2)\(B1∩B2), E1∪E2〉.
Thus, to compose two connectors, we merge their sets of nodes, compute a new
set of boundary nodes, and merge the primitives that constitute them.

Thus far, we presented only the structure of connectors; next, we focus on their
behavior. More specifically, we discuss connector coloring [3], the most relevant

34 S.-S.T.Q. Jongmans, C. Krause, and F. Arbab

Table 2. Empty LossyFIFO1 and its M-transformation

LossyFIFO1 M(LossyFIFO1)

A B C A B C

A B C

2
-C

o
l.

2
-C

o
lo

ri
n
g

3
-C

o
l.

model to this paper, in some detail; we mention other models in Section 5.
Connector coloring works by assigning colors to the nodes of a connector. These
colors specify whether data items may flow at a node. For instance, when using
two colors, one color expresses that data can flow at a node (i.e., the flow-color:

), while the other expresses the opposite (i.e., the no-flow color:).
We call a total map from the nodes of a connector to colors a coloring.

Definition 4 (Coloring [3]). Let N ⊆ Node and Colors a set of colors. A
coloring over N , denoted c, is a total map N → Colors. We denote c’s domain
by dom(c).

To model a connector’s different behavior in different states, we use coloring
tables. A coloring table consists of a number of colorings and corresponds to a
configuration of a connector; each coloring describes one way in which nodes can
fire synchronously in this configuration.

Definition 5 (Coloring table [3]). A coloring table, denoted T , is a set of
colorings with mutually equal domains, denoted dom(T), and co-domains.

When certain nodes fire synchronously, a connector’s configuration may change
(e.g., a full FIFO1 can become empty). We use next functions, which describe
transitions from one coloring table to the next, to model this change.

Definition 6 (Next function [5]). Let S be a set of coloring tables such that
dom(T1) = dom(T2) for all T1, T2 ∈ S. A next function over S, denoted η, is a
map S × {dom(S) → Colors} → S in which dom(S) = [dom(T) for any T ∈ S]
is the domain of any coloring in

⋃
T∈S T .

Coloring tables that consist of 2-colorings for the previously discussed primitives
appear in the third row of Table 1. For instance, the top coloring of Sync denotes
the presence of flow between A and B; its bottom coloring denotes the absence
of flow. The middle coloring of LossySync denotes that data items flow only at
A, causing them to get lost before reaching B.

To compute the behavior of a composed connector whose constituents have
coloring tables and next functions as semantic model, we use the composition

Encoding Context-Sensitivity in Reo 35

operators for coloring tables and next functions. The formal definitions appear
below; shortly, we discuss an example (LossySync).

Definition 7 (Composition of colorings [3]). Let c1 and c2 be colorings such
that c1(n) = c2(n) for all n ∈ dom(c1) ∩ dom(c2). Their composition, denoted
c1 ∪ c2, is defined as:

c1 ∪ c2 =
{

n �→ κ

∣∣∣∣n ∈ dom(c1) ∪ dom(c2) and κ =
(

c1(n) if n ∈ dom(c1)
c2(n) otherwise

) }
Definition 8 (Composition of coloring tables [3]). Let T1 and T2 be col-
oring tables. Their composition, denoted T1 · T2, is defined as:

T1 · T2 =
{

c1 ∪ c2

∣∣∣∣ c1 ∈ T1 and c2 ∈ T2 and
c1(n) = c2(n) for all n ∈ dom(c1) ∩ dom(c2)

}
Definition 9 (Composition of next functions [5]). Let η1 and η2 be next
functions over sets of coloring tables S1 and S2, respectively, and let S1 ∗ S2 =
{ T1 ·T2 | T1 ∈ S1 and T2 ∈ S2 }. Their composition, denoted η1⊗ η2, is defined
as:

η1 ⊗ η2 =
{

(T1 · T2, c1 ∪ c2) �→ η1(T1) · η2(T2)
∣∣∣∣T1 · T2 ∈ S1 ∗ S2

and c1 ∪ c2 ∈ T1 · T2

}
The expressiveness of connector coloring depends on the instantiation of Colors

in Definitions 4, 5, and 6. With two colors, we obtain 2-coloring models in which
Colors = { , }. Whereas 2-coloring models can express synchroniza-
tion, they cannot express context-dependency: to model context-sensitive con-
nectors, three colors seem necessary. With three colors, we obtain 3-coloring
models in which Colors = { , � , � }. Instead of one no-flow color
as in 2-coloring models, two colors to express the absence of flow exist in 3-
coloring models. As a result, in 3-coloring models, one can express why data
does not flow, whereas in 2-coloring models, one can express only that data does
not flow. More precisely, in 3-coloring models, the direction of the arrow of the
no-flow colors indicates where the reason for the absence of flow comes from.
Loosely speaking, an arrow pointing in the same direction as the flow indicates
that a node has no pending write requests, while an arrow pointing in the op-
posite direction indicates that a node has no pending take requests. In text,
we associate � with the former case and � with the latter. We prefix
“coloring” by “2-” (respectively, “3-”) if Colors in Definitions 4, 5, and 6 accords
with 2-coloring (respectively, 3-coloring) models.

To illustrate the previous, 3-colorings for Sync, LossySync and FIFO1 appear
in the fourth row of Table 1, and composed 2-coloring and 3-coloring tables
for LossyFIFO1 appear in the two bottom–left cells of Table 2. The middle col-
oring in the 2-coloring table of the empty LossyFIFO1 describes an inadmissi-
ble behavior: if A fires, but B does not, LossySync loses a data item between
A and B despite the empty buffer. Such a coloring does not exist in the 3-
coloring table of the empty LossyFIFO1. Thus, 3-coloring models can capture

36 S.-S.T.Q. Jongmans, C. Krause, and F. Arbab

Table 3. M-transformation of common primitives

M(Sync) M(LossySync) M(FIFO1) (Empty) M(FIFO1) (Full)

A B

A B

A B

A B

A B

A B

A B

A B

2
-C

o
lo

u
ri
n
g

context-dependency—through the propagation of the reason for the absence of
flow—whereas 2-coloring models cannot.

Finally, we define colored connectors (respectively, 2-colored, 3-colored con-
nectors), which are connectors whose semantics are defined in terms of a coloring
model (respectively, 2-coloring model, 3-coloring model), and their composition
operator, which preserves well-formedness by Proposition 3.3.5 in [5].

Definition 10 (Colored connectors). A colored connector over a set of col-
oring tables S, denoted CCol, is a tuple 〈C, η〉 in which C = 〈N, B, E〉 is a
connector, and η is a next function over S such that dom(S) = N .

Definition 11 (Composition of colored connectors). Let CCol
1 = 〈C1, η1〉

and CCol
2 = 〈C2, η2〉 be colored connectors. Their composition, denoted CCol

1 ×CCol
2 ,

is defined as: CCol
1 × CCol

2 = 〈C1 × C2, η1 ⊗ η2〉.

3 From Three to Two Colors

In the literature, 2-coloring models are considered not expressive enough to cap-
ture context-dependency of connectors. In this section, however, we show the
converse: at the expense of making the models of the primitives more complex, we
encode context-dependent behavior using only two colors (and without altering
the existing composition operators for coloring models). Our encoding comprises
a generic transformation from 3-colored connectors to 2-colored connectors. Es-
sentially, we trade a more complex semantic model—i.e., 3-coloring—with simple
primitives for a simpler semantic model—i.e., 2-coloring—with more complex
primitives. We start by introducing our transformation operator, denoted M,
which we liberally overload for different types of arguments for notational conve-
nience. In Section 3.1, we prove the correctness of the transformation by showing
that flow through nodes of a 3-colored connector CCol implies corresponding flow
through its transformation M(CCol) (a 2-colored connector); in Section 3.2, we
discuss the distributivity properties—important for compositionality—ofM.

Encoding Context-Sensitivity in Reo 37

We begin with the M-transformation for connectors. Informally, this trans-
formation clones all nodes in a connector and inverts the direction of the flow
through these clones. The latter facilitates the backwards propagation of the
reason for the absence of flow in case the connector lacks appropriate take
requests (in a similar spirit as the � color). Henceforth, we call a node
n of the original connector a base node and its unique clone, denoted n, a
context node. Base and context nodes correspond one-to-one, and we consider
them each other’s duals. Next, let N be a set of base nodes. We define its M-
transformation, denotedM(N), asM(N) =

⋃
n∈N{n, n}, that is, the set of base

nodes and their duals. Finally, let inv be the inverse map of “i” and “o”, that
is, inv = {“i” �→ “o”, “o” �→ “i”}. We can now defineM for connectors, starting
with a definition ofM for primitives.

Definition 12 (M-transformation of primitives). Let P = (nj1
1 , . . . , njk

k)
be a primitive. Its M-transformation, denoted M(P), is defined as: M(P) =(
nj1

1 , . . . , njk

k , n
inv(j1)
1 , . . . , n

inv(jk)
k

)
.

Definition 13 (M-transformation of connectors). Let C = 〈N, B, E〉 be
a connector. Its M-transformation, denoted M(C), is defined as: M(C) =
〈M(N),M(B),M(E)〉 in which M(E) = { M(P) | P ∈ E }.
One can straightforwardly show that M for primitives yields primitives, that
is, preserves well-formedness with respect to Definition 1 [6]. The same holds
for M for connectors (the proof uses preservation of well-formedness byM for
primitives).

Proposition 1 (M-transformation of primitives and connectors pre-
serves well-formedness). M-transforming a primitive yields a primitive.
M-transforming a connector yields a connector.

The M-transformations of Sync, LossySync, and FIFO1 appear in the first row
of Table 3, while the top–right cell of Table 2 depicts the M-transformation
of LossyFIFO1. The figures exemplify that data flow in the opposite direction
through context nodes when compared with the direction of the flow through
base nodes. As mentioned before, this resembles how the 3-coloring model com-
municates the reason for no-flow backwards through the connector. Furthermore,
context nodes nowhere communicate with base nodes: they form a context circuit
that influences the behavior of the base circuit and vice versa, but data items
cannot flow from one of these circuits to the other. The M-transformation of
LossySync exemplifies this influence: the new dotted arrow tangent to the orig-
inal dashed arrow indicates that data may disappear between A and B iff data
flow through B.

To describe the behavior ofM-transformed connectors, we proceed with the
definition ofM for colorings, coloring tables, and next functions. We first present
their formal definitions, and clarify these afterwards.

38 S.-S.T.Q. Jongmans, C. Krause, and F. Arbab

Definition 14 (M-transformation of colorings). Let c be a 3-coloring. Its
M-transformation, denoted M(c), is defined as:

M(c) =
⋃

n∈dom(c)

⎧⎨⎩
{ n �→ , n �→ } if c(n) = �
{ n �→ , n �→ } if c(n) = �
{ n �→ , n �→ } if c(n) =

Definition 15 (M-transformation of coloring tables). Let T be a 3-color-
ing table. Its M-transformation, denoted M(T), is defined as: M(T) =
{ M(c) | c ∈ T }.

Definition 16 (M-transformation of next functions). Let η be a next func-
tion over a set of 3-coloring tables S. Its M-transformation, denoted M(η), is
defined as: M(η) = { (M(T),M(c)) �→ M(η(T, c)) | T ∈ S and c ∈ T }.

Informally,M applied to a 3-coloring c clones its domain (similar to the wayM
for connectors clones nodes) and maps each node in the new domain to either

or . The idea behind these mappings follows below.

– If c maps n to ,M(c) also maps n to , while it maps n to .
This ensures that data never flow through the same parts of the base and
the context circuits synchronously. If we would allow such synchronous flow,
for instance, data items could flow between the base nodes and through
the context circuit of a LossySync (i.e., this LossySync has pending write
and take requests) at the same time. This would mean, however, that this
LossySync may lose the data item flowing through its base circuit without
reason (because of the pending take request). This is inadmissible behavior.

– If c maps n to � (i.e., the no-flow color indicating that n lacks take re-
quests),M(c) maps n to (because flow cannot appear out of nowhere),
while it maps n to (because the absence of pending take requests may
cause lossy channels to lose data items).

– If c maps n to � (i.e., the no-flow color indicating that n lacks write re-
quests),M(c) maps n to (because flow cannot appear out of nowhere),
and the same holds for n (because the absence of pending write requests may
never cause loss of data).

Next, we discuss preservation of well-formedness [6]. Let c be a 3-coloring. We
make two observations: (i) because context nodes correspond one-to-one to base
nodes, M(c) maps all nodes in M(dom(c)) exactly once, and (ii) M(c) maps
all nodes in its domain to either or . Hence, M(c) defines a 2-
coloring over the set M(dom(c)). Well-formedness of M for 3-coloring tables
then follows immediately. Finally, we argue thatM for next functions preserves
well-formedness; let η be a next function over a set of 3-coloring tables S. Since
M for 3-colorings (respectively, 3-coloring tables) yields well-formed 2-colorings
(respectively, 2-coloring tables), and since S is a set of 3-coloring tables, M(η)
defines a map from [2-coloring tables and 2-colorings] to 2-coloring tables. Hence,
M(η) defines a next function over a set of 2-coloring tables.

Encoding Context-Sensitivity in Reo 39

Proposition 2 (M-transformation of colorings, coloring tables, and
next functions preserves well-formedness).M-transforming a 3-coloring c
yields a 2-coloring over M(dom(c)). M-transforming a 3-coloring table yields a
2-coloring table.M-transforming a next function over a set of 3-coloring tables S
yields a next function over a set of 2-coloring tablesM(S) = { M(T) | T ∈ S },
and dom(M(S)) = dom(M(T)) for any T ∈ S.

Finally, we present the M-transformation of colored connectors. Both the def-
inition and its preservation of well-formedness turn out straightforwardly. To
M-transform a colored connector, we take the M-transformations of its con-
stituents; preservation of well-formedness then follows from Propositions 1 and 2.

Definition 17 (M-transformation of colored connectors). Let CCol =
〈C, η〉 be a colored connector over a set of 3-coloring tables. Its M-transforma-
tion, denoted M(CCol), is defined as: M(CCol) = 〈M(C),M(η)〉.
Proposition 3 (M-transformation of colored connectors preserves
well-formedness). M-transforming a colored connector over a set of 3-color-
ings yields a colored connector over a set of 2-colorings.

3.1 Correctness of M
In this subsection, we show the correctness of M for colored connectors. To
define “correctness” in this context, we first introduce the concept of paintings,
which are, essentially, (infinite) executions of a colored connector.

Definition 18 (Painting). Let CCol = 〈C, η〉 be a colored connector over S and
T0 ∈ S the coloring table corresponding to its initial configuration. A painting of
CCol is a sequence [T0, c0, T1, c1, . . .] such that ci ∈ Ti, and Ti+1 = η(Ti, ci) for
all i ≥ 0. The set of all CCol’s paintings is denoted Painting(CCol).

We call M for colored connectors correct if, for each painting of CCol, there
exists a corresponding painting ofM(CCol) and vice versa; paintings correspond
if, for all indexes, (i) the respective colorings assign flow to the same shared
nodes—i.e., nodes that occur in both of the colored connectors—and (ii) the
respective coloring tables correspond to the same configuration. We formulate
our correctness theorem more formally below; a proof follows shortly.

Theorem 1 (Correctness of M). Let CCol = 〈C, η〉 be a colored connector
over a set of 3-coloring tables S and M(CCol) = 〈M(C),M(η)〉 a colored con-
nector over a set of 2-coloring tables M(S) (by Proposition 3). Then:

i. if: [T0, c0, . . .] ∈ Painting(CCol)
then: [M(T0),M(c0), . . .] ∈ Painting(M(CCol)) such that for all 0 ≥ i :

{ n | ci(n) = } = { n ∈ dom(ci) | (M(ci))(n) = }

ii. if: [M(T0),M(c0), . . .] ∈ Painting(M(CCol))
then: [T0, c0, . . .] ∈ Painting(CCol) such that for all 0 ≥ i :

{ n | ci(n) = } = { n ∈ dom(ci) | (M(ci))(n) = }

40 S.-S.T.Q. Jongmans, C. Krause, and F. Arbab

Later, we sketch a proof by induction that establishes the theorem. For the sake
of conciseness, however, we first move large parts of the inductive step to the
following two lemmas. Lemma 1 states thatM for next functions over 3-coloring
tables preserves the flow behavior of the connector. That is, if an untransformed
coloring assigns flow to some base node, the M-transformed coloring (i) exists,
and (ii) also assigns flow to this base node. The same must hold in the opposite
direction. Lemma 2 states thatM for next functions preserves transitions from
one configuration to the next. Note that these two lemmas correspond to the
two conditions for “correspondence” given above.

Lemma 1 (M for colored next functions preserves flow). Let η be a next
function over a set of 3-coloring tables S, let M(η) be its M-transformation,
that is, a next function over a set of 2-coloring tables M(S) (by Proposition 2),
and let n ∈ dom(S) be a node. Then:(

T ∈ S and c ∈ T
and c(n) =

)
iff

(M(T) ∈M(S) and M(c) ∈M(T)
and (M(c))(n) =

)
Proof. We first prove the left-to-right direction (only if), and proceed with the
right-to-left direction (if).

only if — We start by deriving the first two conjuncts of the right-hand side
(RHS) from the first two conjuncts of the left-hand side (LHS). This turns
out straightforwardly: T ∈ S implies M(T) ∈ M(S) by the definition of
M(S) in Proposition 2, and c ∈ T implies M(c) ∈ M(T) by Definition
15 of M for 3-coloring tables. Finally, we derive the RHS’s third conjunct
from the third conjunct of the LHS. By the premise, c(n) = . Then,
by Definition 14 of M for 3-colorings, { n �→ , n �→ } ⊆ M(c).
Hence, (M(c))(n) = .

if — The first two conjuncts of the LHS follow from the first two conjuncts of
the RHS similar to the only if case. Next, by the premise, (M(c))(n) =

, that is, n �→ ∈ M(c). By Definition 14 of M for 3-colorings,
this happens only if c(n) = .
�

Lemma 2 (M for colored next functions preserves transitions). Let
η be a next function over a set of 3-coloring tables S, let M(η) be its M-
transformation, that is, a next function over a set of 2-coloring tables M(S)
(by Proposition 2), and let n ∈ dom(S) be a node. Then:(

T, T ′ ∈ S and c ∈ T
and η(T, c) = T ′

)
iff

(M(T),M(T ′) ∈M(S) and M(c) ∈M(T)
and (M(η))(M(T),M(c)) =M(T ′)

)
Proof. The implication, in both directions, follows from the definition of M(S)
in Proposition 2 (first conjunct), Definition 15 ofM for 3-coloring tables (second
conjunct), and Definition 16 of M for next functions (third conjunct).
�

Finally, given the previous two lemmas, we sketch a proof of Theorem 1.

Encoding Context-Sensitivity in Reo 41

Proof (Of Theorem 1; Sketch). Both i. and ii. follow from induction on the length
of a painting’s prefix. The base case (prefix of length 1) follows from preservation
of well-formedness ofM for next functions (recall M(S) = { M(T) | T ∈ S }),
and because T0 ∈ S by Definition 18. To prove the inductive step, first, suppose
there exists a painting with prefix of length 2j − 1 on which the theorem holds,
for some j ≥ 1 (note that the (2j−1)-th element is a coloring table). Next, apply
Lemma 1 to establish that there exists a painting with a prefix of length 2j on
which the theorem holds (note that the (2j)-th element is a coloring). Finally,
apply Lemma 2 to establish that there exists a painting with a prefix of length
2j + 1 = 2(j + 1)− 1 on which the theorem holds.
�

3.2 Distributivity of M

Previously, we showed that by applyingM to a 3-colored connector, we obtain a
corresponding 2-colored connector. Though an essential result, it not yet suffices:
to properly construct a complex 2-colored connector from context-dependent
constituents, we still must compose a corresponding 3-colored connector from
3-colored primitives first. Only thereafter, we can apply M to obtain the de-
sired 2-colored connector. Instead, we would prefer (i) to apply M only once
to the 3-colored primitives (yielding, among others, the primitives in Table 3),
and (ii) to construct context-dependent 2-colored connectors by composing these
M-transformed primitives. We prefer this approach, because we speculate that
an implementation of Reo that operates on 2-coloring models can compute con-
nector composition more efficiently than an implementation that operates on
3-coloring models. In this section, we develop the theory that accommodates
this: we show the compositionality of M. This means that it does not matter
whether we (a) first applyM to 3-colored connectors and then the composition
operator on the resulting 2-colored connectors, or (b) first apply the composi-
tion operator on 3-colored connectors and thenM to the resulting composition.
Specifically, we show that M distributes over composition of connectors (Def-
inition 2) and composition of next functions (Definition 9). Distributivity over
composition of colored connectors (Definition 10) then follows straightforwardly.

We start, however, with a proposition stating thatM for sets of nodes (defined
in the second paragraph of Section 3) distributes over the set operators ∪, ∩,
and \. Our complete proof [6] consists of a series of straightforward applications
of the definitions and the distributivity laws of these operators, while making
use of the one-to-one correspondence between base and context nodes.

Proposition 4 (M for sets of nodes distributes over ∪,∩, \ for sets).
Let N1, N2 ⊆ Node be sets of nodes. Then: M(N1) ∪M(N2) = M(N1 ∪ N2),
M(N1) ∩M(N2) =M(N1 ∩N2), and M(N1) \M(N2) =M(N1 \N2).

We proceed with a compositionality lemma that concernsM for connectors.

Lemma 3 (M for connectors distributes over × for connectors). Let C1

and C2 be connectors. Then: M(C1)×M(C2) =M(C1 × C2).

42 S.-S.T.Q. Jongmans, C. Krause, and F. Arbab

Proof. Suppose C1 = 〈N1, B1, E1〉 and C2 = 〈N2, B2, E2〉 (without loss of gen-
erality). Applying Definition 13 of M for connectors and Definition 2 of × to
rewrite the above equation, we obtain the following:〈M(N1) ∪M(N2),
M(B1) ∪M(B2) \M(B1) ∩M(B2),
M(E1) ∪M(E2)

〉
=

〈M(N1 ∪N2),
M(B1 ∪B2 \B1 ∩B2),
M(E1 ∪ E2)

〉 (i)
(ii)
(iii)

Sub-equations (i) and (ii) follow from Proposition 4. Sub-equation (iii) holds
because, by Definition 13 of M for sets of primitives: M(E1) ∪ M(E2) =
{ M(P) | P ∈ E1 } ∪ { M(P) | P ∈ E2 } = { M(P) | P ∈ E1 ∪E2 } =M(E1 ∪
E2) =M(E1 ∪ E2).
�
To show that M distributes over composition of next functions, we, as before,
start with a proposition. More specifically, Proposition 5 states that M dis-
tributes over composition of colorings and coloring tables. We consider our com-
plete proofs [6], though rather technical and detailed, straightforward. They rely
on the following observations: (i) context nodes correspond one-to-one to base
nodes, (ii) the colors assigned to a base node and its dual context node by an
M-transformed 2-coloring uniquely define the color assigned to the base node by
the 3-coloring (by Definition 14 ofM for 3-colorings), and (iii) each context node
that corresponds to a base node in the domain-intersection of two untransformed
3-colorings occurs in the domain-intersection of theirM-transformations.

Proposition 5 (M for colorings and coloring tables distributes over
∪ for colorings and · for coloring tables). Let c1 and c2 be 3-colorings.
Then, M(c1) ∪M(c2) =M(c1 ∪ c2). Let T1 and T2 be 3-coloring tables. Then,
M(T1) · M(T2) =M(T1 · T2).

We proceed with a compositionality lemma that concernsM for next functions.

Lemma 4 (M for next functions distributes over ⊗ for next functions).
Let η1 and η2 be next functions over sets of 3-coloring tables S1 and S2. Then:
M(η1)⊗M(η2) =M(η1 ⊗ η2).

Proof. Follows from Table 4.
�
Finally, we present the compositionality theorem of M, which states that M
distributes over composition of colored connectors. As mentioned before, this
result follows straightforwardly from the previous lemmas.

Theorem 2 (Compositionality of M). Let CCol
1 and CCol

2 be colored connec-
tors over sets of 3-coloring tables. Then: M(CCol

1)×M(CCol
2) =M(CCol

1 × CCol
2).

Proof. Suppose CCol
1 = 〈C1, η1〉 and CCol

2 = 〈C2, η2〉 (without loss of generality).
Applying Definition 17 of M for 3-colored connectors and Definition 11 of × to
rewrite the above equation, we obtain the following:〈M(C1)×M(C2),

M(η1)⊗M(η2)

〉
=

〈M(C1 × C2),
M(η1 ⊗ η2)

〉
(i)
(ii)

Sub-equation (i) follows immediately from Lemma 3, while sub-equation (ii) fol-
lows from Lemma 4.
�

Encoding Context-Sensitivity in Reo 43

Table 4. Proof: M(η1) ⊗M(η2) = M(η1 ⊗ η2)

M(η1) ⊗M(η2)
= /∗ By Definition 9 of ⊗ /∗⎧⎨⎩

〈M(T1) · M(T2),M(c1) ∪M(c2)〉�→

(M(η1))(T1, c1) · (M(η2))(T2, c2)

∣∣∣∣∣∣
M(T1) ·M(T2) ∈ M(S1) ·M(S2)

and
M(c1) ∪M(c2) ∈ M(T1) · M(T2)

⎫⎬⎭
= /∗ By the distributivity of M over ∪ and · in Proposition 5 /∗⎧⎨⎩

〈M(T1 · T2),M(c1 ∪ c2)〉�→

(M(η1))(T1, c1) · (M(η2))(T2, c2)

∣∣∣∣∣∣
M(T1 · T2) ∈ M(S1 · S2)

and
M(c1 ∪ c2) ∈ M(T1 · T2)

⎫⎬⎭
= /∗ Because, by the definition of M(S) in Proposition 2, M(T) ∈ M(S) iff T ∈ S,

and because, by Definition 15 of M for 3-coloring tables, M(c) ∈ M(T) iff c ∈ T

/∗⎧⎨⎩
〈M(T1 · T2),M(c1 ∪ c2)〉�→

(M(η1))(T1, c1) · (M(η2))(T2, c2)

∣∣∣∣∣∣
T1 · T2 ∈ S1 · S2

and
c1 ∪ c2 ∈ T1 · T2

⎫⎬⎭
= /∗ Because, by Definition 16 of M for next functions,

(M(η1))(T1, c1) = M(η1(T1, c1)) and (M(η2))(T2, c2) = M(η1(T2, c2))

/∗⎧⎨⎩
〈M(T1 · T2),M(c1 ∪ c2)〉�→

M(η1(T1, c1)) ·M(η2(T2, c2))

∣∣∣∣∣∣ T1 · T2 ∈ S1 · S2 and c1 ∪ c2 ∈ T1 · T2

⎫⎬⎭
= /∗ By the distributivity of M over · in Proposition 5

/∗{ 〈M(T1 · T2),M(c1 ∪ c2)〉 �→
M(η1(T1, c1) · η2(T2, c2))

∣∣∣∣ T1 · T2 ∈ S1 · S2 and c1 ∪ c2 ∈ T1 · T2

}
= /∗ By Definition 16 of M for next functions, /∗

M
({ 〈T1 · T2, c1 ∪ c2〉 �→

η1(T1, c1) · η2(T2, c2)

∣∣∣∣ T1 · T2 ∈ S1 · S2 and c1 ∪ c2 ∈ T1 · T2

})
= /∗ By Definition 9 of ⊗ /∗

M(η1 ⊗ η2)

4 Application: Context-Dependency in Vereofy

As an application, we present an implementation of our encoding in a constraint
automata based model checker, which is considered as not expressive enough
for the verification of context-dependent connectors. Specifically, we extend the
Vereofy [7] model checking tool for the analysis of Reo connectors, developed at
the TU of Dresden.1 Vereofy uses two input languages: the Reo Scripting Lan-
guage (a textual version of Reo) and the guarded command language CARML (a
textual version of constraint automata). Vereofy allows the verification of tem-
poral properties expressed in LTL and CTL-like logics and supports bisimulation
equivalence checks. Moreover, it can generate counterexamples and provides a
GUI integration with the Eclipse Coordination Tools (ECT).2

1 Vereofy homepage: http://www.vereofy.de
2 ECT homepage: http://reo.project.cwi.nl

http://www.vereofy.de
http://reo.project.cwi.nl

44 S.-S.T.Q. Jongmans, C. Krause, and F. Arbab

1 #inc lude " b u i l t i n "
2 / / Non-deterministic LossyFIFO:
3 CIRCUIT L O S S Y _ F I F O _ N D {
4 new L O S S Y _ S Y N C _ N D (A ; M) ;
5 new F I F O 1 (M ; B) ;
6 M = NULL;
7 }

EMPTY FULL

{A}
{A}

{B}
{A,B}

{A}

8 #inc lude " b u i l t i n _ C D . c a r m l "
9 / / Context-dependent LossyFIFO:

10 CIRCUIT L O S S Y _ F I F O _ C D {
11 new L O S S Y _ S Y N C _ C D (A , n M ; M , n A) ;
12 new F I F O 1 _ C D (M , n B ; B , n M) ;
13 M = NULL; n M = NULL;
14 }

EMPTY FULL

{A}
{A,B}

{B} {B}
{A,B}

{A,B}

{B}

Fig. 1. Non-deterministic (left) vs. context-dependent (right) LossyFIFO1 in Vereofy

Vereofy operates on constraint automata and, thus, does not natively support
context-dependent behavior. However, in the previous section, we showed that
we can transform 3-colored connectors to 2-colored connectors, while preserving
their context-sensitive semantics. Moreover, 2-coloring models and constraint
automata correspond to each other (informal arguments appear in [3,5], while
[6] contains a formal account). Hence, by using the M-transformation, we can
construct context-dependent constraint automata as follows. First, we trans-
form the 3-colored primitives to context-dependent 2-colored primitives. Next,
we compute the constraint automata corresponding to the resulting 2-colored
primitives. Note that the resulting automata can have context-sensitive behav-
ior (because the 2-colored primitives to which they correspond can have such
behavior). Finally, we compose the resulting constraint automata to form more
complex context-sensitive connectors (possible due to Theorem 2). Although
simple and straightforward, this recipe enables the analysis of context-sensitive
connectors in Vereofy. For this purpose, we have adapted Vereofy’s library of
built-in primitives: using the M-transformation, we wrote a new library con-
taining context-dependent versions of the basic Reo primitives.3

As an example, Figure 1 depicts a listing of the non-deterministic and the
context-dependent versions of the LossyFIFO1 example, and two constraint au-
tomata generated from them using Vereofy. For simplicity, we have hidden the
internal node M , used a singleton set as data domain, and removed all data
constraints in the generated automata. The constraint automata on the left and
right correspond to the non-deterministic and the context-dependent versions,
respectively. The latter uses our new context-dependent primitives. The crucial
difference between the two is that the non-deterministic version contains an ille-
gal transition via port A in the EMPTY state. This corresponds to the connector
losing a data item in a situation where the FIFO1 buffer is empty and should,
in any case, accept the data item. In the context-sensitive version, however, this
illegal transition does not exists. (Note that if we hide all context nodes—i.e.,
disregard all gray transitions in Figure 1—we obtain the non-deterministic au-
tomaton without the illegal transition.)

3 CD-Library and examples: http://reo.project.cwi.nl/vereofy_CD.tar.gz

http://reo.project.cwi.nl/vereofy_CD.tar.gz

Encoding Context-Sensitivity in Reo 45

A B

EMPTY FULL
{A}

{B}

{A, B} {B}
{B}

EMPTY FULL
{A, B}

{B}

{A, B} {B}
{B, A}

{B}

{A}

Fig. 2. SyncFIFO1: its composition (left), its ordinary constraint automaton (top–
right), and its context-dependent constraint automaton (bottom–right)

A more complex example concerns SyncFIFO1, a connector with an input
node, an output node, and a buffer of size 1. SyncFIFO1 behaves identically to
FIFO1, except for the case in which it has an empty buffer and pending I/O-
requests on both of its nodes: then, SyncFIFO1 routes a data item from its input
node past its buffer to its output node in one atomic step (thus behaving as a
Sync). Instead of modeling SyncFIFO1 as a primitive without inner structure, we
can construct it by composing other primitives as depicted in Figure 2 (left);
for reasons of space, we do not discuss the interaction and characteristics of the
primitives involved in this composition (more details appear in [6]).

A first attempt to model SyncFIFO1 using our library of context-sensitive
primitives failed due to the presence of causality loops in the resulting com-
position.4 Since one cannot detect and remove causality loops from constraint
automata, we removed the colorings that contain causality loops from the com-
posed 3-coloring model of SyncFIFO1 and, afterwards, appliedM to this filtered
model. This process yielded a 2-coloring model, whose equivalent constraint au-
tomaton we encoded in CARML. In Figure 2, we depict the constraint automa-
ton resulting from the procedure just sketched (bottom–right). Additionally, we
depict the constraint automaton that one obtains when composing the ordi-
nary primitives (top–right) instead of the context-sensitive ones. (As before, we
hide internal nodes.) At first sight, these automata seem very similar. In fact, if
we hide all context nodes in the context-dependent constraint automaton—i.e.,
disregard its gray transitions—we obtain two identical automata.

The crux of the difference between the two automata, therefore, lies exactly in
these context nodes: in contrast to LossyFIFO1, SyncFIFO1 itself exhibits context-
dependent behavior (instead of only the primitives that constitute it, namely
LossySync). Recall that in the EMPTY state, if output node B lacks a take

4 Causality loops may occur if a composed connector has one or more circular sub-
circuits (as in the case of SyncFIFO1) and can cause, among other anomalous phe-
nomena, a reason for the absence of flow to appear out of nowhere. Colorings that
contain causality loops, therefore, describe inadmissible behavior. In [5], Costa pro-
poses an algorithm for the detection of colorings that contain causality loops.

46 S.-S.T.Q. Jongmans, C. Krause, and F. Arbab

request, a write request on A causes a data item to flow into the buffer. How-
ever, if B has a pending take request, a write request on A causes a data item to
flow immediately to node B. The ordinary constraint automaton of SyncFIFO1

does not capture this difference, which means that an implementation of this
constraint automaton would non-deterministically choose one of these two op-
tions in case of a pending write request on A and a pending take request on
B. In contrast, an implementation of the context-dependent constraint automa-
ton of SyncFIFO1 always chooses the appropriate option, because in the absence
of a take requests on B, data items with irrelevant content—i.e., signals—flow
through B. To illustrate this, we encourage the interested reader to compose
SyncFIFO1 and FIFO1 in the same way we composed LossySync and FIFO1.5

5 Related Work

In [8], Arbab et al. introduce a coalgebra-based semantic model—the first—for
Reo. Some years later, in [2], Baier et al. present an automaton-based ap-
proach, namely constraint automata (CA), and prove correspondences with the
coalgebra-based model. In [3], however, Clarke et al. observe that neither of
these models can handle context-sensitivity, and they introduce the 2-coloring
and 3-coloring models to mend this deficiency. Since then, other semantic models
with the same aim have come to existence. In [5], Costa introduces intentional
automata (IA) as an operational model with constructs for context-dependency.
Unlike CA, whose states correspond one-to-one to the internal configurations of
connectors, IA have more states than the connectors they model; each state of
an IA contains information about not only the configuration of the connector,
but also about the nodes that intend to fire (i.e., with a pending I/O-request).
Similarly, transition-labels consist of two sets of nodes: those that intend to fire,
and those that actually fire. By maintaining information about I/O-request on
nodes, IA capture context-dependency. The number of states, however, quickly
grows large, whereas our approach yields succinct CA. In [9], Bonsangue et al.
introduce guarded automata (GA) as another automaton-based model for cap-
turing context-dependency. Like CA, the states of GA correspond one-to-one to
the configurations of connectors, which makes them significantly more compact
than IA. To encode context-sensitivity, every transition-label of a GA consists
of a guard and a string. Together, they express which nodes can fire (the string),
given the presence and absence of requests at certain nodes (the guard). Guarded
automata seem very similar to the CA we obtain with our approach: instead of
5 The constraint automaton that results from composing the ordinary constraint au-

tomata of SyncFIFO1 and FIFO1 includes a transition that describes an inadmissible
behavior in which, in case both SyncFIFO1 and FIFO1 have empty buffers, the input
node of SyncFIFO1 fires and causes its own buffer to become full (while the buffer
of FIFO1 remains empty). The constraint automaton that results from composing
the context-dependent constraint automata of SyncFIFO1 and FIFO1, in contrast,
does not include such a transition: if the input node of SyncFIFO1 fires when both
SyncFIFO1 and FIFO1 have empty buffers, the buffer of FIFO1 becomes full (while
the buffer of SyncFIFO1 remains empty).

Encoding Context-Sensitivity in Reo 47

guards that contain negative occurrences of (base) nodes to specify that these
nodes have no pending I/O-requests, we make these negative occurrences explicit
with the introduction of (flow through) context nodes.

Besides Vereofy, other approaches to model checking Reo connectors exist.
In [10], Kokash et al. employ the mCRL2 toolset, developed at the TU of Eind-
hoven, for model checking connectors, combined with a translation tool that
automatically generates mCRL2 specifications from graphical models of Reo
connectors. The tool’s original algorithm operated on constraint automata, mak-
ing it impossible to verify context-dependent connectors using this approach.
Later, however, Kokash et al. incorporated (3-)coloring information in the tool,
thus facilitating verification of context-dependent connectors. This advantage
of mCRL2 over Vereofy, which could not handle context-dependent connectors
up to now, seems no longer valid as we have shown how to encode context-
sensitivity in Vereofy. An advantage of Vereofy over mCRL2, on the other hand,
is its ability to generate counterexamples, which mCRL2 cannot do. In [11],
Kemper introduces a SAT-based approach to model checking timed constraint
automata (TCA). In her work, Kemper represents TCA as formulas in proposi-
tional logic and uses existing SAT solvers for verification. This approach allows
for model checking timed properties of Reo connectors, but it cannot handle
context-dependency. In [12], Mousavi et al. develop a structural operational se-
mantics in Plotkin’s style for Reo, encode this semantics in the Maude term-
rewriting language, and use Maude’s LTL model checking module to verify Reo
connectors. In [13], Khosravi et al. introduce a mapping from Reo to Alloy,
a modeling language based on first-order relational logic, and apply the Al-
loy Analyzer for verification. Although the approach can handle some context-
dependent connectors—using a maximal progress rule that removes undesired
behavior—Khosravi et al. admit to have considerable performance issues.

6 Conclusions and Future Work

We showed how to encode context-sensitivity in the 2-coloring model and
constraint automata by adding fictitious nodes to primitives, while both these
models are considered incapable of capturing context-dependent behavior. Our
approach, constituted by theM-transformation, enables the application of tools
and algorithms devised for such simpler semantic models to context-dependent
connectors. As an example, we demonstrated how Vereofy can model check
context-sensitive connectors, which seemed impossible up to now.

With respect to future work, we would like to investigate whether Reo’s im-
plementation can benefit from the results presented in this paper. We speculate
that algorithms for the computation of connector composition run faster onM-
transformed 2-colored connectors (or their corresponding constraint automata)
than on the original 3-colored connectors, because of the simpler semantic model.
Furthermore, we would like to study the relation between other formalisms for
Reo that facilitate the proper modeling of context-dependent behavior (e.g., in-
tentional automata and guarded automata).

48 S.-S.T.Q. Jongmans, C. Krause, and F. Arbab

Acknowledgments. We are grateful to the Vereofy team for their support.

References

1. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14, 329–366 (2004)

2. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Science of Computer Programming 61(2), 75–113
(2006)

3. Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and con-
text dependency. Science of Computer Programming 66(3), 205–225 (2007)

4. Pourvatan, B., Sirjani, M., Arbab, F., Bonsangue, M.: Decomposition of constraint
automata. In: Proceedings of the 7th International Workshop on Formal Aspects of
Component Software (FACS 2010). LNCS. Springer, Heidelberg (to appear, 2011)

5. Costa, D.: Formal Models for Component Connectors. PhD thesis, Vrije Univer-
siteit Amsterdam (2010)

6. Jongmans, S.S., Krause, C., Arbab, F.: Encoding context-sensitivity in Reo
into non-context-sensitive semantic models. Technical Report SEN-1105, Centrum
Wiskunde & Informatica (2011)

7. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: Formal verification for com-
ponents and connectors. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 82–101. Springer, Heidelberg (2009)

8. Arbab, F., Rutten, J.: A coinductive calculus of component connectors. In: Wirsing,
M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 34–55.
Springer, Heidelberg (2003)

9. Bonsangue, M.M., Clarke, D., Silva, A.: Automata for context-dependent con-
nectors. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS,
vol. 5521, pp. 184–203. Springer, Heidelberg (2009)

10. Kokash, N., Krause, C., de Vink, E.P.: Verification of context-dependent channel-
based service models. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel,
M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 21–40. Springer, Heidelberg (2010)

11. Kemper, S.: SAT-based verification for timed component connectors. ENTCS 255,
103–118 (2009)

12. Mousavi, M.R., Sirjani, M., Arbab, F.: Formal semantics and analysis of component
connectors in Reo. ENTCS 154(1), 83–99 (2006)

13. Khosravi, R., Sirjani, M., Asoudeh, N., Sahebi, S., Iravanchi, H.: Modeling
and analysis of Reo connectors using Alloy. In: Lea, D., Zavattaro, G. (eds.)
COORDINATION 2008. LNCS, vol. 5052, pp. 169–183. Springer, Heidelberg
(2008)

The Context of Coordinating Groups

in Dynamic Mobile Networks

Christine Julien

The University of Texas at Austin
Austin, Texas, USA

c.julien@mail.utexas.edu

Abstract. Context-awareness in dynamic and unpredictable environ-
ments is a well-studied problem, and many approaches handle sensing,
understanding, and acting upon context information. Entities in these
environments are not in isolation, and oftentimes the manner in which
entities coordinate depends on some (implicit) notion of their shared con-
text. In this paper, we are motivated by the need to explicitly construct
notions of the context of a group that can support better coordination
within the group. First we identify an efficient representation of context
(both of an individual and of a group) that can be shared across wire-
less connections without incurring a significant communication overhead.
Second we provide precise semantics for different types of groups, each
with compelling use cases in these dynamic computing environments.
Finally, we define and demonstrate protocols for efficiently computing
groups and their context in a distributed manner.

1 Introduction

In this paper, we motivate the need to share context information in a local
neighborhood that is a subset of a larger dynamic mobile or pervasive com-
puting environment. Existing context-aware approaches tend to be exclusively
ego-centric, focusing on how to sense the context of a single entity and how to
use that sensed context to create better behavior of that single entity. We posit
that the context of a group of entities within a dynamic network can be just as
important if not more important to the overall behavior of the system.

There are many situations in which knowledge about the context of a group
is invaluable, not the least of which are emerging social scenarios. Consider a
dynamic and opportunistic network of mobile devices in a public space like a
park; a group context that identifies a group of people interested in a pick-up
game of football and having a similar skill level could support ad hoc formation
of groups in physical space. A device on an automobile on a highway may want
to generate an individualized group containing nearby automobiles that have a
potential to collide with it. Knowledge about network protocols used in a neigh-
borhood of a dynamic mobile computing network can support regional protocol
selection [15]. While these groups are all fundamentally very different in struc-
ture and purpose, in all of these situations, the group is defined by the context

W. De Meuter and G.-C. Roman (Eds.): COORDINATION 2011, LNCS 6721, pp. 49–64, 2011.
c© IFIP International Federation for Information Processing 2011

50 C. Julien

of the situation, and the group itself exhibits an aggregated context that can in
turn affect the behavior of its component entities (and perhaps the definition of
the group itself). These notions of groups, context, and their intersection are all
fundamental pieces of coordinated mobile and pervasive computing applications.
Consider again the selection of a network protocol based on network context.
Any single node observing just its own context may choose a protocol that ends
up incurring more overhead or delay given the network context beyond the node
itself; the ability to efficiently acquire information about a wider context of a
group of network nodes allows a more informed, coordinated, decision.

A well recognized challenge in realizing such a notion of group context is in
how to efficiently share context without overburdening an already constrained
communication environment (where wireless links create serious bandwidth and
energy limitations). While recent approaches have recognized the need for ef-
ficient context-awareness, they have largely focused on the acquisition of an
ego-centric view of context and not on the view of the context of a group or on
sharing information among entities to generate a distributed shared view of the
context of that group. We tackle both of these challenges in this paper.

Consider university students’ pervasive computing devices. An individual stu-
dent’s context (collected and maintained by his device(s)) can include his courses,
his participation in activities, and his individual context (e.g., he is in the library
studying, he is part of a particular group project, he is distracted, he is hungry).
Existing work has created mechanisms to clearly understand, represent, and use
individual context [11,23]. What is equally interesting is the context of a group of
students. Such group context may be symmetric (shared and coordinated among
the group members) or asymmetric (egocentric and individualized to a partic-
ular entity); applications demand both forms to enable entities within groups
to understand, support, and adapt coordination behaviors. As an example of a
symmetric group context, given a group of students enrolled in the same course,
a context measure that represents the students’ aggregate understanding of the
course material can provide feedback to the instructor; there is only a single view
of the group’s context, regardless of the perspective of the entity looking at the
context. As an example of an asymmetric context, a particular student studying
in the library may be interested in which the students at nearby tables have a
copy of a the textbook. The latter is defined with respect to the student looking
for the textbook; students in different locations in the library will have different
views for the same group context definition. In the asymmetric case, the group
membership is determined by the relationship between the defining entity’s con-
text and other entities’ contexts; in the symmetric group, membership is defined
by the aggregate relationship among all of the entities’ contexts.

Abstracting the pervasive computing entities, their physical environment, and
the networks that connect them into measures of context and group context eases
the development of application logic, allowing one to focus on how such context
measures can be used to aid entities’ activities. We provide an expressive defini-
tion of a group and its context, delegate the construction of the group and the
computation of its context to a middleware, and provide easy interface from the

The Context of Coordinating Groups in Dynamic Mobile Networks 51

application logic to the group context infrastructure. In this paper, we demon-
strate the feasibility of providing a variety of definitions of groups and their
contexts. Given the resource constrained devices and networks that comprise
emerging environments, it is essential that computation and sharing of groups
and their contexts is highly space and communication efficient. Our architec-
ture enables future work in expressive coordination among these groups that
can easily rely on the group’s context for enhancing the coordination activities.

This paper makes three fundamental contributions. In Section 2, we design a
space-efficient context summary that can be communicated and shared in multi-
hop wireless networks, evaluate its space efficiency, and give a simple framework
for communicating these summaries efficiently. In Sections 3 and 4 we define
groups in these coordinating environments and create precise formulations of
the context of groups. We create space- and communication-efficient protocols
for distributed determination of group context; we demonstrate and evaluate
these approaches in Section 5. We argue that supporting expressive coordination
among networked entities with complex social, spatial, and temporal relation-
ships requires a formal understanding of groups and their shared context.

2 A Space Efficient Context Summary

Sharing context can add significant overhead; communicating detailed context,
which is necessary for determining arbitrary groups and their contexts, has re-
mained too expensive for practical implementations. In this section, we describe
an efficient representation of context that can be shared with limited overhead.

Summary Data Structures. Our context summary is based on a derivative
of a Bloom filter [2], which succinctly represents set membership using a bit array
m and k hash functions. To add an element to a Bloom filter, we use k hash
functions to get k positions in m and set each position to 1. To test whether an
element e is in the set, we check whether the positions associated with e’s k hash
values are 1. If any position is not 1, e is not in the set. Otherwise, e is in the set
with high probability. False positives occur if inserting other elements happens
to set all k positions associated with e’s hash values. Bloom filters trade size for
false positive rate; a false positive rate of 1% requires 9.6 bits per element.

A Bloomier filter [6] associates a value with each element. The intuitive con-
struction consists of a cascade of Bloom filters on each bit of the values. Consider
the case where each value is either 0 or 1. Within a Bloomier filter, a Bloom
filter A0 contains all of the keys that map to 0; B0 contains all of the keys that
map to 1. If the value associated with element e is 0, it is inserted in A0; if the
value is 1, it is inserted in B0. When one queries the Bloomier filter for the value
of e′, the query checks whether e′ is in A0 and in B0. There are four possible
results. (1) If e′ is in neither A0 or B0, e′ has not been associated with a value in
the Bloomier filter. (2) If e′ is in A0 but not B0, e′ was inserted in the Bloomier
filter with high likelihood, and when it was inserted, it was associated the value
0. It is possible that e′ was not inserted at all (the unlikely false positive), but
it was not inserted with value 1. (3) Similarly, if e′ is in B0 but not in A0, the
query returns 1. (4) If e′ is in both A0 and B0, one of these is a false positive. To

52 C. Julien

handle this fourth case, another pair of Bloom filters attempts to resolve false
positives in the first pair. A1 contains keys that map to 0 and generated false
positives in B0. B1 contains keys that map to 1 and generated false positives
in A0. The problem is the same as before but with a smaller key set whose size
depends on the false positive rates of A0 and B0. The Bloomier filter continues
to add levels of filters until the key set becomes small enough to store in a map.

To handle longer values, a Bloomier filter uses a cascaded filter for each bit,
i.e., when the range of values is {0, 1}r, it creates r Bloom filter cascades. This
has space complexity of O(rn), where n is the number of elements stored and r is
the number of bits needed to represent an element’s value. This is in comparison
to the O(rn log N) space complexity of enumerating the value of every element in
the set (where N is the number of possible context elements). The Bloomier filter
has a false positive rate ε ∝ 2−r. We use this construction, which achieves fast
computation with slightly higher than optimal space use; different constructions
make varying tradeoffs in space and time complexity [5,21].

Defining Context Summaries. Our context summary must be space ef-
ficient while retaining semantic fidelity. We assume every entity has a unique
identifier, nodei. We also assume that the universe of context types C is well-
known and shared a priori among all entities in the network. Let |C| = N . A
given entity senses a (small) subset of the possible context types. Let Cnodei

⊆ C
be the types that nodei senses. |Cnodei

| = n; n � N . A general statement of
context sensing is as a function contextnodei : Cnodei → {0, 1}r where r is the
maximum number of bits needed to represent any type in C. Each context item
c ∈ Cnodei

has a value contextnodei
(c) in the range [0 . . 2r]. For any c /∈ Cnodei

,
contextnodei(c) =⊥. That is, if nodei does not sense c, the sensed value is null.

We aim to create a summary that, when queried with a context type, re-
turns the relevant state of the entity. If c′ ∈ Cnodei

, then the summary should
return contextnodei

(c′). If c′ /∈ Cnodei
, the summary should return ⊥ with high

probability. False positives are allowed (but undesirable) for context types that
were not sensed by nodei. Every summary contains the key cs id mapped to the
value node id ; when a summary is queried with cs id it will, without fail, return
the unique id of the entity whose context is summarized. Our context summary
is a straightforward Bloomier filter. This summary achieves a space complexity
of O(rn) bits. The time required to traverse the cascaded data structures and
retrieve a value is O(log log n). With probability O(2−r), when the summary is
queried with c′ /∈ Cnodei

, it returns a false positive, i.e., a value that is garbage.
To determine whether a summary contains an attribute’s value, we have to

poll all N possible attributes. If N is large (and it usually is), this is excessive.
The summary can also return false positives (albeit with low probability) that
can negatively impact applications that use context. We refine our summary by
adding a bit vector bv of length N , each element of which is a flag for a c ∈ C.
If the value for c is included in the summary, bv [c] is 1; otherwise it is 0. This
adds overhead, particularly if N is huge, but it removes all false positives. This
summary requires O(N + rn) bits; it retains the O(log log n) lookup time.

The Context of Coordinating Groups in Dynamic Mobile Networks 53

(a) Varying N (n = 10, l = 64, r = 64) (b) Varying n (N = 100, l = 64, r = 64)

Fig. 1. Number of bits required to represent context using the four different approaches.
(l is the length of a context label; r is the the max context size (both in bits).

We adopt some simple notational conveniences to refer to context summaries
and their components. Given a context summary CS and a context attribute
l and its value v that has been inserted, CS.l = v; if an attribute referred to
by l has not had a value inserted, CS.l =⊥ with high probability. We use the
notation CS.l ← v to insert the value v associated with the key l into CS, e.g.
CS.cs id ← node id . CS.bv refers to the bit vector of the extended context
summary; CS.bv [l] is 1 if attribute l is stored in CS and 0 otherwise.

Fig. 1 compares four approaches to context representation analytically. Simple
Context Summary is our simple Bloomier filter representation. Context Summary
with Bitvector Label is our approach that extends the simple context summary
with a bit vector of length N . Complete Context enumerates the value of every
element in the set (which requires O(nr log N) space [6]). Labeled Context enu-
merates only the values of context attributes in Cnodei

, each labeled with its key
(which requires a O(n(r + l)) space, where l is the length of a label).

The summary approaches significantly reduce the size of the context represen-
tation, especially as N grows (Fig. 1(a)). However, when we hold N constant,
but increase n (Fig. 1(b)), sending labels becomes expensive. Fig. 1 assumes
context labels that are 64 bits in length (8 characters); longer labels with more
semantic information increase this gap. From this analysis, we can conclude that
our context summary achieves the highest reduction in size of context represen-
tation. In addition, when the number of possible context types remains relatively
small, it is reasonable to add a bit vector summary of the context summary.

Communicating Context Summaries. We have reduced the size of the
context representation to reduce communication overhead of sharing context in
pervasive computing environments. We construct a framework that transpar-
ently piggybacks context summaries on outgoing wireless transmissions. Fig. 2
shows our framework’s architecture. An application sends context to the Context
Handler and retrieves context about other entities and groups. The Context Shim
attaches context summaries to outgoing packets and examines incoming packets
for received contexts. The right of Fig. 2 shows the internals of Context Shim,
which stores myContext, this entity’s context information. This architecture

54 C. Julien

Fig. 2. Architecture for Context Sharing

allows neighboring nodes to exchange context; we also spread summaries beyond
one-hop neighbors by inserting an attribute into each summary, hops , initialized
to 0. Every time the shim receives an incoming summary, it increments this hop
count before storing it in receivedSummaries. As long as the summary’s hop
count has not surpassed a provided threshold, τ , the receiving node appends the
summary to its outgoing packets (in addition to its own summary).

Fig. 3 gives the behavior of the CreateContextSummary and Extract-

Summaries from Fig. 2. The ⊕ appends the summary to the packet without
altering the packet in any other way. This shows creation of the extended context
summary; the simple context summary is the same without line 4.

CreateContextSummary(pkt)

1 for (l, v) ∈ myContext

2 do CS.cs id ← node id
3 CS.l ← v
4 CS.bv [l] = 1
5 CS.hops = 0
6 pkt ′ = pkt ⊕ CS
7 for CS ∈ReceivedSummaries

8 do if CS.hops < τ
9 then pkt ′ = pkt ′ ⊕ CS

10 return pkt ′

ExtractSummaries(pkt)

1 pkt ′ = pkt
2 for CS appended to pkt ′

3 do CS.hops ← (CS.hops + 1)
4 insert (CS.cs id , CS)

in ReceivedSummaries

5 pkt ′ = pkt ′
 CS
6 return pkt ′

Fig. 3. Pseudocode for CreateContextSummary and ExtractSummaries

3 Supporting Groups and Their Context

A group is a set of nodes (identified by node ids or context summaries). In this
section, we define the context of such groups using individual context summaries.

The Context of Coordinating Groups in Dynamic Mobile Networks 55

The Context of a Group. Given a group of entities and their context sum-
maries, we must devise a space-efficient representation of the aggregate context
of the group. Given a set of context summaries, we define an aggregate of those
summaries that captures the context of the group by summarizing the values
included in the individual summaries. Assuming complete knowledge of all of
the context summaries of a group g, we define the group context of g as:

GROUPCONTEXTg id = {(l, vagg) : vagg = fagg,l({CSni .l : ni ∈ g}), ∀l ∈
⋃

ni∈g

CSni}

where fagg,l is an aggregation function associated with the context type l. Differ-
ent types of context have different forms of aggregation. For example, to aggregate
multiple location values, fagg,loc may construct a bounding box. Aggregation func-
tions can be standard functions like average, maximum, or minimum, or they may
be defined by the context ontology. We assume the aggregation function for each
context label is defined and shared a priori. A group context is a set of pairs of
labels and values and can be represented by a context summary. In this case, the
context attribute cs id is a unique g id instead of the node id . We can construct
a group context summary iteratively as shown in Fig. 4.

A group summary
CreateGroupAgg(g id)
1 Create empty group summary GS
2 for CS ∈ receivedSummaries

3 do if g id ∈ CS.G ∧ ¬CS.cs id ∈ GS.agg nodes
∧CS.agg nodes ∩GS.agg nodes = ∅

4 then GS = AggSummaries(GS, CS)
5 return GS

AggSummaries(CS1, CS2)
1 create empty aggregate summary CSagg

2 for l ∈ (CS1.labels ∪ CS2.labels)
3 do if l = cs id
4 then CSagg.agg nodes ← fids(CS1.l, CS2.l)
5 else if l ∈ CS1.labels and l ∈ CS2.labels
6 then CSagg .l← fagg,l(CS1.l, CS2, l)
7 else if l �∈ CS1.labels and l ∈ CS2.labels
8 then CSagg .l← CS2.l
9 else CSagg .l ← CS1.l

10 return CSagg

Fig. 4. Pseudocode to create group context summaries

tracks the nodes it
summarizes to ensure
that it does not ag-
gregate information
for a node twice. This
information is added
in line 4 of AggSum-

maries (which uses
fids to make a list of
included node ids).
Line 3 in Create-

GroupAgg checks
before incorporating
CS into GS that
GS does not already
include the node.
Context summaries
and group summaries
are interchangeable; it
is possible that a CS ∈ receivedSummaries is a group summary; the check on
the second half of line 3 in CreateGroupAgg ensures that we never include
information about the same node more than once in an aggregate summary.

Capturing Connectivity. Our group definitions can be expressed from a
global perspective that assumes knowledge of all entities and their contexts. This
is unreasonable in a distributed, dynamic environment since it does not account
for connectivity, which is necessary for entities to share context and determine
groups in a distributed manner. We define connectivity as a binary relation, K,

56 C. Julien

that captures the ability of two entities to communicate via a single network hop.
We assume K is symmetric. We define K∗ to contain pairs of mutually reachable
entities (i.e., (n, n′) ∈ K∗ if there exists a (potentially multihop) path between n
and n′). Of course, actually carrying out communication across a multihop path
may or may not succeed due to dynamics, noise, dropped packets, and subtleties
of communication protocols; K∗ represents the ideal connectivity. We forward
summaries only in a limited region defined by a constraint on the number of
hops, τ . While K∗ captures all paths, Kτ defines pairs of entities within τ of
each other; these entities should mutually know each other’s context. Obviously,
Kτ ⊆ K∗. The summaries stored in receivedSummaries of entity n should be
a subset of the summaries of the entities to which n is related under Kτ .

4 Defining Groups: A Distributed Emergent Approach

We construct formal definitions of four types of groups that capture coordination
needs of entities in dynamic environments. This set is not meant to be complete,
but it is expressive. We refine our context handling protocols to create, maintain,
and share groups. CSn is the summary for entity with node id = n. Every group
has a unique id g id that is also unique from all node ids.

Labeled Groups. The simplest type of group is one in which members are
determined a priori. Such groups are effectively labeled; the group’s g id is a
shared unique id (whether public or secreted in some way). As a convenient
way for designating that entity n is in group g id , we use the entity’s context
summary; for every group of which it is a member, an entity inserts a pair
(Groupi, g id) in its summary. Labels of the form Groupi are reserved identifying
groups; the value of i ranges from 1 to the number of groups of which the entity
is a member, and g id is the (unique) group id for one of these groups. If an
entity is a member of three groups with ids g id1, g id2, and g id3, its summary
may contain the following three mappings: (Group1, g id1), (Group2, g id2), and
(Group3, g id3), though there is no association between the i in Groupi and the
group ids. We refer to entity n’s groups as CSn.G, where G is a set of group
ids. As an application example, consider devices carried by students enrolled in
a course. These students may each belong to a group identified by the course
name; a student’s context summary includes a group id for each enrolled course.

Given the context summaries of all entities, the membership of a labeled group
is a set gg id such that ∀n′ ∈ ggid

: g id ∈ CSn′ .G. For our students, gid contains
all of the students enrolled in a course. To refine a labeled group to account for
connectivity, we consider only context summaries from entities that are related to
n under K∗. The membership of the partition of ggid

of which n is a member (i.e.,
ggid

[n]) is a set of entities such that ∀n′ ∈ ggid
[n] : (n, n′) ∈ K∗ ∧ g id ∈ CSn′ .G.

Consider students studying in the library; gg id [n] for a student n includes all
students reachable via an ad hoc network of their devices.

Since we do not distribute summaries beyond τ , we may not have information
about the entire partition g[n]. The group membership that a given entity n
may know about is defined relative to Kτ ; to capture this, we simply replace K∗

in the above with Kτ . This use of the connectivity relation is pretty strong; it

The Context of Coordinating Groups in Dynamic Mobile Networks 57

CreateLGContextSummary(pkt)

1 for (l, v) ∈ myContext

2 do CS.l ← v
3 CS.bv [l] = 1
4 i = 1
5 for g id ∈LabeledGroups

6 do CS.(“Group”+i) ← g id
7 CS.bv [(“Group” + i)] = 1
8 i = i + 1
9 pkt ′ = pkt ⊕ CS

10 for CS ∈ReceivedSummaries

11 do if CS.hops < τ
12 then pkt ′ = pkt ′ ⊕ CS
13 return pkt ′

LGExtractSummaries(pkt)

1 pkt ′ = pkt
2 for CS appended to pkt ′

3 do CS.hops ← (CS.hops + 1)
4 insert (CS.cs id , CS)

in ReceivedSummaries

5 pkt ′ = pkt ′
 CS
6 i = 1
7 g id =myContext.(“Group”+i)
8 while g id �=⊥
9 do CSagg =

CreateGroupAgg(g id)
10 CSagg .Group1 ← g id
11 insert (g id , CSagg)

in receivedSummaries

12 post group context update
to application if changed

13 i = i + 1
14 g id = CS.(“Group”+i)
15 return pkt ′

Fig. 5. Pseudocode for CreateLGContextSummary and LGExtractSummaries

requires that all members of the (partition of the) group must be related to n
under Kτ . In a weaker form, each member must be related under the transitive
closure of Kτ , i.e., (Kτ)+: ∀n′ ∈ ggid

[n] : (n, n′) ∈ (Kτ)+ ∧ g id ∈ CSn′ .G.
We replace CreateContextSummary in Fig. 3 with CreatedLGCon-

textSummary in Fig. 5, which inserts the group id (g id) for this entity’s
groups. LGExtractSummaries processes received summaries and computes
group membership by determining the group membership(s) of the entities from
which received summaries came, updating the aggregate information for those
groups, and informing the application of the changed group context. A node
only creates group summaries for groups of which it is a member; the group’s
aggregate context is based on any context summary received from any other en-
tity with the same group id. This implements the weak form of labeled groups;
the groups will include entities related by (Kτ)+. To create the strong form, we
simply remove line 11 of LGExtractSummaries. When line 11 is included,
the computed group summary is inserted in receivedSummaries and will be
appended to sent packets. This enables the computation of groups that extend
across (Kτ)+. When LGExtractSummaries operates over the summaries in
receivedSummaries to compute the aggregate context (lines 9-14), it does
not matter if the summary used is an individual context summary or a group
summary since AggSummaries is iterative. The check on line 3 of Create-

GroupAgg in Fig. 4 prevents us from aggregating two summaries that include
information about the same entity. The result is a heuristic; it may be possible
to create a group summary that incorporates information about a larger num-
ber of entities, but this is not possible from the summary data we distribute. To
maximize the number of entities represented in an aggregate, we can optimize
the order in which we incorporate them; we omit these algorithms for brevity.

58 C. Julien

The context of the group of students labeled by course number could represent
a variety of factors. As one example, the students’ context summaries may also
carry a field labeled “understanding of concept A”; this value may be filled in
automatically by some assessment applications on the device; the context of a
group can then be the group’s average understanding of the material.

Asymmetric Groups. Entities can also define ego-centric notions of context,
or asymmetric groups, known only to the entity at its center. As an example, an
application on a car may keep the driver aware of other nearby cars that have
the potential for collision. Members of an asymmetric group need not know they
are part of the group; if two entities use the same asymmetric group definition,
they likely end up with completely different groups. This is the case in our
example; two different cars clearly have different perspectives of other cars with
a potential for collision. Information about asymmetric groups is not shared
(i.e., asymmetric group summaries are not placed in receivedSummaries).
Asymmetric groups can be defined given a function fn provided by entity n
that constrains the relationship between the entity’s context and the context
of any group member. Specifically, the membership of an asymmetric group is
a set gfn such that ∀n′ ∈ gfn : (n, n′) ∈ Kτ ∧ fn(CSn, CSn′). In our collision-
awareness application, fn may compute the “time to collision” given my velocity
and another nearby car’s velocity; if this time to collision is over a threshold, fn

returns true.
We use fn to “tag” the summaries stored in receivedSummaries that should

be part of the asymmetric group and compute the group context for those tagged
summaries. When sending summaries from receivedSummaries, the tags need
to be stripped from the summaries. We omit this pseudocode for brevity. The
context computed by our car’s fagg could be the number of cars within the
dangerous zone or their average speed. A more complex fagg could compute
the bounding box of dangerous cars to show on a heads-up display.

Symmetric Groups. Entities can share a symmetric definition of a group
that constrains the pairwise relationship between any entities in the group. Con-
sider a set of devices forming a mobile ad hoc network that wants to determine
the best network protocols given current network conditions. Such a network
may wish to form a group of mutually reachable devices whose context deter-
mines a set of protocols. A function fg id shared among entities a priori can
define membership in the group based on pairwise comparisons of members’
contexts. The set gfg id

[n] of members of n’s partition of this group is one such
that ∀n, n′ ∈ gfg id

[n] : (n, n′) ∈ Kτ ∧ fg id (CSn, CSn′). Symmetry refers to the
fact that n′ ∈ gfg id

[n] ⇔ n ∈ gfg id
[n′]; this is ensured by the symmetry of K

and the shared fg id . The above provides a strong requirement on connectivity;
in the weaker form, each group member must be related to n under (Kτ)+. With
respect to our mobile ad hoc network example, fg id may require all of the nodes
in the group to be mutually reachable within a specified number of hops or time.

If a receiving entity determines that a received summary is part of one of its
symmetric groups, it tags the summary with the group id before inserting it
in receivedSummaries. Like labeled groups (and unlike asymmetric groups),

The Context of Coordinating Groups in Dynamic Mobile Networks 59

these summaries are inserted in receivedSummaries and are appended to out-
going packets to enable computation of groups across (Kτ)+. Our protocol checks
fg id(myContext, CS) for any received summary CS, calculates the aggregate
context, and updates both receivedSummaries and the application.

In our application scenario, metrics such as relative mobilities of the nodes,
neighbor densities, and communication error rates influence the selection of the
best protocol [15]. Given information in the group members’ context summaries
(e.g., connectivity, velocity, position, error rates), these aggregate measures can
be easily calculated and handed to a process that selects the best protocol.

Context-Defined Groups. Context-defined groups require that a group to-
gether satisfy some requirement. Consider a network with changing capabilities
and an application that wants to leverage network resources to perform a task.
A group may be a set of devices, which, in the aggregate, is capable of complet-
ing that task. Similarly, imagine using a local network of smart phones to form
teams for a pick-up game of football, where each team should have a capable
player at each position. As with symmetric groups, such a group is defined by a
function over context summaries; in this case, the requirement specifies a prop-
erty that the group as a whole must uphold. Given fg id that defines the group
constraint(s), gg id [n] is valid if and only if fg id (gg id [n]). The strong version of
a context-defined group requires all members of gg id [n] to be related to n via
Kτ ; the weaker version requires each member to be related to n via (Kτ)+. Mul-
tiple groups defined with the same fg id may overlap (i.e., a single node could
define multiple groups using the same context function).

Summaries for
CDGroupExtractSummaries(pkt)
1 pkt ′ = pkt
2 for CS appended to pkt ′

3 do CS.hops ← (CS.hops + 1)
4 insert (CS.cs id , CS) in receivedSummaries

5 pkt ′ = pkt ′ � CS
6 for g id ∈ ContextDefinedGroups

7 do for each permutation P of
receivedSummaries sorted by size

8 do if fg id (P)
9 then CS agg =AggSummaries(P)

10 insert (g id , CSagg) in
receivedSummaries

11 post group context update
to application if changed

12 skip remaining permutations
13 return pkt ′

Fig. 6. Pseudocode for CDGroupExtractSummaries

these groups are
placed in received-

Summaries and
appended to packets.
The more complex
piece of determin-
ing context-defined
groups is the appli-
cation of f to the
receivedSummaries

(both individual and
group summaries),
shown in Fig. 6. There
are several ways one
can apply fg id for
a context-defined
group. We generate
all permutations of receivedSummaries and look at them from largest to
smallest, where the size is the number of nodes for which it contains summary
information. We take the largest permutation that satisfies fg id (if one exists),
compute its aggregate context, and return it to the application as the context

60 C. Julien

of the group. Different heuristics exist for choosing which of the groups that
satisfy fg id is best, including application-defined metrics for the quality of a
group. Evaluating the relative merits of these alternatives is out of the scope of
this paper but is an area of future research.

In our examples, the context could capture the quality of the aggregate. For
devices providing resource capabilities, the context may be the quality of service
the aggregate of entities can provide for the task. For the ad hoc sport team
formation, the context may be a measure of the overall quality of a team.

5 Implementation, Demonstration, and Evaluation

We implemented our approaches in C++ using the architecture in Fig. 2. We
incorporated this prototype into the OMNeT++ discrete event simulator with
the INET framework and used this prototype to define contexts of individual
entities, share them, create groups, and define and share the context of those
groups1. We provide a few demonstrative results, first for the performance of the
context summary mechanisms and then for some groups and their context.

Evaluation Settings. We used an available UDP implementation to generate
data packets (on top of which context summaries could be piggybacked) and
the provided AODV routing implementation to route data packets. While we
experimented with a variety of settings, we report results we achieved when
using 50 nodes moving according to the random waypoint mobility model with
varying speeds (from 0 to 20 m/s). Each node generated UDP traffic at a rate
of 10 packets/s and was assigned a different set of destinations (to allow for the
AODV protocol to form and reuse existing routes); when a node generated a
UDP packet, it selected a destination randomly from this list. Unless specified
otherwise, the charts below use a τ of three hops, a context label and value
lengths of 64 bits, n of 10, and N of 1000. We show 95% confidence intervals.

Sharing Context Summaries. We implemented the four approaches for
context summaries described in Section 2. We executed each on our sample net-
works; the results given a varying n (the number of contexts used in a context
summary) and N (the number of context labels known to the application) are
shown in Fig. 7. It is immediately obvious that the shapes of these curves match
those in Fig. 1, which indicates that our experience with the context summary
structures matches our analytical expectations. These results boost our confi-
dence that our simple Bloomier filter based context summary and the Bloomier
filter based context summary with the associated bit vector provide good com-
munication efficiency for sharing context information in a distributed network.

Calculating and Sharing Groups. Fig. 8 shows a labeled group created
using context summaries with bit vectors. We varied the fraction of the 50 nodes
that were labeled with the group and their speeds. Fig. 8(a) compares the cor-
rectness of calculating the groups for a scenario when 15 nodes were labeled as
group members. The bottom line in the figure compares the nodes our approach
determined to be within the group to 15. The second line compares this to the
1 The code is available at http://www.ece.utexas.edu/~julien/GroupContext.html

http://www.ece.utexas.edu/~julien/GroupContext.html

The Context of Coordinating Groups in Dynamic Mobile Networks 61

Fig. 7. Context Summary Size in Simulation

(a) Correctness of group vs. g, K∗, and Kτ (b) Additional overhead of group context

Fig. 8. Calculating and Sharing Groups (Actual Group Size = 15)

number of nodes that were connected (i.e., K∗). The highest line compares the
number of group members discovered to the number that were expected to be
within range (i.e, Kτ , based on an estimated radio range). The latter is the fair
comparison; given the opportunistic distribution of context information, we were
able to identify ∼ 50% of the actual group members. Errors in group calcula-
tion can be due to communication failures, noise, and stale knowledge (which
is impacted by the data rate since summaries are piggybacked on data pack-
ets). Further study of the impact of data rates and update intervals for context
information may help to better understand the incompleteness of group
calculation.

Fig. 8(b) shows the overhead for sharing group contexts. This overhead is
higher when nodes are stationary since they are more likely to succeed in cal-
culating the group, thereby generating a summary to share. Future work will
investigate heuristics to help reduce this overhead. As one example, in our pro-
totype, we forward both group context summaries and the individual context
summaries that the group summary is based on. Removing some of this redun-
dant information can lower the cost of context communication, albeit at the
expense of having detailed individual information spread further in the network.

62 C. Julien

6 Related Work

Because of their space efficiency, Bloom filters are widely used in networking [3],
for example to succinctly represent coding symbols for efficient erasure coded
communication [4] or support uniform distribution of stored data [16]. Bloom
filters have been used to gossip cache entries and reduce overlaps in collections
in a P2P network [1] and to summarize the shared contents of a group [18].
Similarly, Bloom filters have been used in wireless sensor networks to dynami-
cally create clusters and aggregate data [13] or to efficiently route queries [14].
Dynamic Bloom filters [10] improve upon space efficiency by shrinking their
size when possible, specifically for the purpose of representing data shared in a
network. These approaches all focus on set membership representations, which
cannot represent context values.

The spectral Bloom filter [7] extends the Bloom filter to multisets, allowing
one to estimate frequencies, which is applicable to managing per-flow traffic in
network routers [17]. Using attenuated Bloom filters, each node stores discounted
Bloom filters representing the contents of its neighbors, which it uses to route
queries to locations that are likely to store results [22]. This is similar to using
context summaries to form asymmetric groups, however we devise a generalized
framework instead of tailoring the summary to a given application.

Other approaches have recognized that groups and their context are impor-
tant. In [9] groups are formed statically or based on co-location, while our groups
can be defined in many ways. The approach in [9] also does not focus on effi-
cient representation and sharing of context and is therefore not transferable to
resource constrained infrastructureless environments.

The Team Analysis and Adaptation Framework (TAAF) [8] observes the be-
havior of a distributed collaborative team and introduces constructs to adapt
supporting services and team coordination. TAAF assumes the team is already
assembled, and the generation of the context of the team is centralized. Context-
Aware Ephemeral Groups (CAEG) [24] explore a more abstract definition of
groups based solely on social connections that are used to guide users to likely
relevant resources and to maintain persistent state among the users in a ubiq-
uitous computing space, though the focus in on function and interface instead
of on efficiency of context representation. We argue that the latter is essential
in ad hoc environments, which are severely resource constrained. Our work is a
complement to CAEG in supporting the necessary efficient exchange of individ-
ual and group context information and new ways to support expressive group
creation and management (outside of CAEG’s social group).

7 Conclusions and Future Work

In this paper, we have tackled the multipart problem of expressively summa-
rizing the context of individual entities in a dynamic environment so that they
can be shared efficiently across wireless links. We use these individual context
summaries to define and compute groups on-the-fly, dependent on the context
and to the compute the aggregate context of the group. The work in this paper

The Context of Coordinating Groups in Dynamic Mobile Networks 63

is a first step in being able to compute and share such expressive aggregate con-
text information without supporting infrastructure and opens many interesting
new research questions. Directly related to the work in this paper are ideas for
incorporating additional mechanisms to shrink the summaries further [12,19,20].
In computing the groups, we assumed we used a slightly larger structure (the
context summary with a bit vector) that removed all false positives; if the size of
this structure is undesirable, it becomes interesting to ask what the impact is of
false positives on group formation. These questions and others lay the ground-
work for future use of shared distributed context state to support expressive
coordination in dynamic environments.

References

1. Bender, M., Michel, S., Triantafillou, P., Weikum, G., Zimmer, C.: Improving col-
lection selection with overlap awareness in p2p search engines. In: SIGIR (2005)

2. Bloom, B.: Space/time tradeoffs in hash coding with allowable errors. Comm. of
the ACM 13(7) (1970)

3. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey.
Internet Mathematics 1(4) (2004)

4. Byers, J., Considine, J., Mitzenmacher, M., Rost, S.: Informed content delivery
across adaptive overlay networks. IEEE/ACM Trans. on Netw. 12(5) (2004)

5. Charles, D., Chellapilla, K.: Bloomier filters: A second look. In: Halperin, D.,
Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 259–270. Springer, Heidelberg
(2008)

6. Chazelle, B., Kilian, J., Rubinfeld, R., Tal, A.: The bloomier filter: An efficient
data structure for static support lookup tables. In: SIAM (2004)

7. Cohen, S., Matias, Y.: Spectral bloom filters. In: SIGMOD (2003)
8. Dorn, C., Truong, H.L., Dustdar, S.: Measuring and analyzing emerging proper-

ties for autonomic collaboration service adaptation. In: Rong, C., Jaatun, M.G.,
Sandnes, F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060, pp. 162–176.
Springer, Heidelberg (2008)

9. Ferscha, A., Holzmann, C., Oppl, S.: Context awareness for group interaction sup-
port. In: MobiWac (2004)

10. Guo, D., Wu, J., Chen, H., Luo, X.: Theory and network applications of dynamic
bloom filters. In: INFOCOM (2006)

11. Hackmann, G., Julien, C., Payton, J., Roman, G.C.: Supporting generalized con-
text interactions. In: SEM (2005)

12. Hagerup, T., Tholey, T.: Efficient minimal perfect hashing in nearly minimal space.
In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, p. 317. Springer,
Heidelberg (2001)

13. Hebden, P., Pearce, A.: Bloom filters for data aggregation and discovery: A hier-
archical clustering approach. In: ISSNIP (2005)

14. Jardak, C., Riihijarvi, J., Mahonen, P.: Analyzing the optimal use of bloom filters
in wireless sensor networks storing replicas. In: WCNC (2009)

15. Jun, T., Julien, C.: Automated routing protocol selection in mobile ad hoc net-
works. In: SAC (2007)

16. Kostic, D., Rodriguez, A., Albrecht, J., Vahdat, A.: Bullet: High bandwidth data
dissemination using an overlay mesh. In: SOSP (2003)

64 C. Julien

17. Kumar, A., Xu, J., Wang, J.: Space-code bloom filter for efficient per-flow traffic
measurement. IEEE J. on Selected Areas in Comm. 24(12) (2006)

18. Ledlie, J., Taylor, J., Serben, L., Seltzer, M.: Self-organization in peer-to-peer sys-
tems. In: SIGOPS European Wkshp. (2002)

19. Mitzenmacher, M.: Compressed bloom filters. IEEE Trans. on Netw. 10(5) (2002)
20. Pagh, A., Pagh, R., Rao, S.: An optimal bloom filter replacement. In: SODA (2005)
21. Porat, E.: An optimal bloom filter replacement based on matrix solving. In:

Frid, A., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS,
vol. 5675, pp. 263–273. Springer, Heidelberg (2009)

22. Rhea, S., Kubiatowicz, J.: Probabilistic location and routing. In: INFOCOM (2002)
23. Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: Aiding the development

of context-enabled applications. In: CHI (1999)
24. Wang, B., Bodily, J., Gupta, S.: Supporting persistent social groups in ubiquitous

computing environments using context-aware ephemeral group service. In: PerCom
(2004)

CSP as a Coordination Language

Moritz Kleine

Technische Universität Berlin,
Institute for Software Engineering and Theoretical Computer Science,

Berlin, Germany
mkleine@cs.tu-berlin.de

Abstract. Coordination languages allow us to separate interaction be-
havior from the sequential functional aspects of the components of con-
current systems. This helps us to reduce the complexities of such systems
making them easier to design and to understand. However, there is still
a gap between formal approaches to coordination and their implemen-
tation in programming languages. For example, CSP is often used as a
coordination model but only subsets of CSP are supported by program-
ming languages (e. g., occam) or frameworks (e. g., JCSP). In this paper,
we present our approach to using a more complete CSP as a coordination
language. Our approach allows us to use standard CSP tools for verify-
ing the coordination processes of a system and to use these processes at
runtime to coordinate the systems’ components.

1 Introduction

A major problem in developing concurrent software is that the additional com-
plexity that comes with concurrency often causes unexpected asynchronous
behavior that quite often manifests in subtle bugs. Formal methods such as
Communicating Sequential Processes (CSP) and formal designs help to avoid
such bugs during the design phase of a system. However, finding methods for
deriving implementations from CSP-based models is an active field of research.
It is, for example, not obvious how to integrate CSP with internal actions of a
system, because CSP abstracts from internal actions to a great extent. Coordi-
nation languages such as Linda [2] offer an approach to taming the complexities
of concurrent programs. This family of languages targets the description of the
interaction behavior of a system’s components separating the interactions from
the sequential functional properties of the components. While coordination lan-
guages target the implementation level description of concurrent or distributed
systems, process algebras target their design and are more tailored to (mechan-
ically) verify systems.

In this paper, we present our approach to using CSP as a coordination lan-
guage. The approach is to coordinate non-atomic actions of a concurrent system
by a CSP-based coordination environment in a noninvasive way. We present a
model of a coordination environment that interprets a process simulating its
truly concurrent semantics (where concurrent events may be performed at the

W. De Meuter and G.-C. Roman (Eds.): COORDINATION 2011, LNCS 6721, pp. 65–79, 2011.
c© IFIP International Federation for Information Processing 2011

66 M. Kleine

same time and not only interleaved) within the standard interleaving opera-
tional semantics of CSP. The abstractions inherent to the process algebra are
undone by regarding an event as a terminating (not necessarily atomic) action
and a hidden transition as an internal action of the final system. Whenever the
coordination environment performs a (possibly hidden) event, it performs the
action mapped to that particular event. Actions can implement arbitrary com-
putations, even communication, including shared-memory communication and
message-passing. Our approach allows us to use CSP for the design and im-
plementation of concurrent systems by adding a coordination environment to
a (sequential) host language. The use of CSP enables us to perform deadlock-
checking and more advanced properties (by means of refinement and LTL model
checking) at design time.

In the next section, CSP is introduced and approaches using CSP for the
engineering of coordinated concurrent systems are presented. Abstractions built
into the language and their relevance for coordination are discussed in Section 3.
The model of a coordination environment is presented in Section 4. Section 5
presents a proof obligation to ensure data independence of concurrent actions.
Important properties of coordination processes are characterized and discussed
in Section 6. The Java implementation supporting our approach is presented in
Section 7. In that section, we also give pointers to further work. We then present
related work in Section 8. The conclusions of this paper are given in Section 9.

2 CSP and Coordination

The process algebra Communicating Sequential Processes (CSP) [6,14], provides
an algebraic notation based on events, process names and process operators
tailored for the concise modeling of current systems. Concurrent systems are
modeled as processes that perform events. If a process offers an event with which
its environment agrees to synchronize, the event is performed. Events are both
atomic and instantaneous.

Events are commonly regarded as rendezvous communication between pro-
cesses. From this viewpoint, processes are anonymous entities communicating
synchronously over named channels. Accordingly, an event models the occur-
rence of a communication identified by the channel name and the message being
sent over it. Messages can only be sent if the receiver is willing to accept them.
Events can also be regarded as abstractions of atomic actions of a system in the
understanding that duration of actions can be modeled by splitting events into
start and end events.

CSP is equipped with operational, denotational and algebraic semantics. The
concept of refinement facilitates the step-wise development of processes by grad-
ually restricting their behaviors. In this context, CSP enjoys the property of
compositionality: given a process that satisfies some specification and another
process refining a part of the first process, we may replace that part with the
second process and obtain a new process that also satisfies the specification.
Modeling, exploration and verification of processes is supported by a number of

CSP as a Coordination Language 67

industrial-strength tools. The automatic refinement checker FDR [14], for ex-
ample, proves or refutes refinement assertions in the denotational models traces,
stable failures and failures-divergences.

In [15], Schneider and Treharne present a combination of CSP and B [1] that
is now known as CSP‖B. The idea of CSP‖B is to separate the specification of a
component into state related and interaction properties. The B method is used
to express requirements on state of the components and their coordination is
expressed in CSP. CSP events are associated with operations, hence assuming
atomicity of operations.

CSP++ [5], is a framework realizing CSP concurrency on top of POSIX
threads for C++. The framework defines a whole development life-cycle starting
with a CSPM specification being refined down to a CSP implementation model.
The implementation model is finally translated into C++ using the CSP++
framework. This framework implements channels as an inter-process communi-
cation primitive and allows us to bind user-coded functions to events that are
executed when the event is performed. The CSP++ framework implements the
occam-style CSP supporting sequential composition, external choice, interleav-
ing and parallel composition.

JCSP [18] is a well-known Java library offering CSP concepts as a foundation
for developing concurrent systems in an event-based style. In this framework,
processes communicate over channels which are basically buffers. JCSP realizes
CSP’s synchronous communication between Java threads by blocking the send
operation until the value is read by its receiver. This is realized using the Java
primitives synchronize, wait and notify. Processes (implemented as Java threads)
are not allowed to invoke each other’s methods but they may be combined to
wait passively on a number of alternative events. The external generation of such
an event triggers the processes into action according to the CSP semantics of
the process operator combining the events.

3 Unravelling Abstractions

This section explains, how the abstractions built into CSP can be unravelled to
coordinate concurrent systems. The arguments presented here are based on the
following assumptions.

1. CSP offers a rich set of operators to facilitate the concise modeling of con-
current systems. This set is intendedly non-minimal and offers different op-
erators to describe semantically equivalent processes. The idea is that the
operators model abstractions of different implementations. The coordination
environment must be able to unravel these abstractions accordingly.

2. Once a process is proved to satisfy the interaction behavior of the compo-
nents of a system, the process should be directly usable as a coordination
process without being refined further (even if the process is a nondetermin-
istic one).

3. Coordination processes still abstract from data being used in the implemen-
tation.

68 M. Kleine

4. Although the standard CSP semantics are interleaving ones, a coordination
environment must be able to profit from true concurrency if that is offered
by the underlying computing hardware.

5. Coordination processes define the external and internal interactions of a
system.

3.1 Timeout, Hiding and Nondeterminism

The operators timeout, hiding and internal choice, offer abstractions that allow
us to develop concise models of concurrent systems but which have to be undone
for the implementation of a conforming system For example, although

P � Q = (P � Q)
 Q

holds, the timeout operator offers a convenient abstraction of a process that
switches automatically to Q if P fails to perform a visible event within a cer-
tain time interval. From an implementation point of view this is fundamentally
different from (P � Q)
 Q which can be understood as a process deciding to
offer either the initials of P and Q for synchronization or just the initials of Q .
Thus, our approach unravels the abstractions built into the timeout operator
differently than that built into its semantically equivalent version. On the im-
plementation level, P � Q is implemented as a timeout (e. g., using a timer),
while (P � Q)
 Q models a combination of internal and external influences
(independent of time).

In the semantic framework of CSP, timeout is introduced by hiding. As ex-
plained above, our understanding of a timeout is somewhat different. Analo-
gously, we deal with hiding different from its treatment on the semantic level of
CSP. There, hiding abstracts events such that the following equality holds:

(a → STOP) \ {a} = STOP .

Nevertheless, in the operational semantics (a → STOP) \ {a} performs a hidden
action before evolving to STOP. Our approach adopts this understanding and
takes hidden actions into account. A coordination process like P \ A removes A
from the externally visible events and specifies that the system cannot synchro-
nize with its environment on any event from A. However, within P , the events
in A are available for synchronization, of course.

A similar argument applies to

a → P � a → Q = a → (P
 Q) .

The left-hand side models a system that offers two similar actions for synchro-
nization but its future depends on the external decision which one of the two
exclusive actions is chosen. The right-hand side models a system offering a single
action to its environment and then decides internally if it continues as P or as
Q . Accordingly, P
 Q is understood as a system performing an internal action
to make the decision between P and Q . Thus, when used in a coordination pro-
cess, the internal (nondeterministic) choice gives rise to a single internal action

CSP as a Coordination Language 69

whose outcome determines which one of the processes is chosen. There are more
reasons for allowing the internal choice to be used in a coordination process. For
example, it is quite often the case that nondeterministic models of a system are
sufficient to express certain properties (e. g., deadlock-freedom). Once a process
is proved to express the interaction requirements of a system it is clearly desir-
able to take it as the coordination process and to implement the missing details
on the level of some programming language instead of further refining the CSP
model.

3.2 Duration, Conflict and Concurrency

Events are assumed to be instantaneous and atomic. In [6], Hoare proposes
to unravel this abstraction by splitting an event into start and end event to
model duration of the original event. Our approach adopts this idea. Events are
split into start and end events and the action that realizes the original event
is performed between these two. It is important to note that actions can be
of arbitrary granularity (i.e. just a few basic operations of a processing unit
or a long running service) and may even be internally concurrent. The single
requirement is that it is guaranteed to terminate eventually.

Furthermore, we believe that concurrency must be distinguished from choice
for the purposes of a coordination language. Designers of concurrent systems
should be able to specify which parts of a system may be executed simultaneously
(truly concurrent) and which are mutual exclusive. For example, the processes

P = a → b → STOP � b → a → STOP
Q = a → STOP |∅| b → STOP

are equivalent in the standard CSP models (e. g., traces, stable failures and
failures-divergences) but we think of them as describing different systems. P de-
scribes a system that must perform a and b exclusively while Q may perform a
and b at the same time. This observation is of theoretical and practical impor-
tance for a CSP-based approach to coordination. The theoretical issue is that
the standard semantics for CSP are interleaving ones and thus do not distin-
guish choice from concurrency. The practical issue is that a concurrent program
should be able to profit from the gains promised by concurrency instead of being
limited to purely sequential runs (due to interleaving).

There are two ways of understanding a CSP event. Either as a hand-shaken
communication of parallel processes (or components) or as an abstraction of some
sequential action (not necessarily related to communication). The former under-
standing gives rise to implementations of channels that can be used by software
developers to build their programs using CSP-style communication. Operators
like hiding or internal choice are not supported by these approaches. As explained
above, our approach interprets events as arbitrary actions that are performed be-
tween the start and end events of a split event in the coordination process.

Interestingly, as shown in [8], the splitting of events allows us to distinguish
choice from concurrency. In that paper, a syntactical transformation T of pro-
cesses is presented that splits the events in its argument (even the hidden ones)

70 M. Kleine

of its input process into start and end events and relabels them in such a way
that hidden transitions become observable again. T allows us to determine pairs
of possibly concurrent events taking hidden events into account. T distinguishes
concurrency from conflict in that start and end events of concurrent events
may interleave while conflict relates to exclusive start evens. The transitions
x , y ∈ Σ∪{�, τ}, leading from P to the states Px ,Py , Px �= Py respectively, are
conflicting in P if x cannot fire in Py or y cannot fire in Px . This deliberately
includes the case x = y, because events can be auto-conflicting (if they lead to
different states). This also extends to τ transitions, because conflicts between
those are also possible (as, e. g., in (a → P � b → Q) \ {a, b}). Furthermore, T
allows us to simulate truly concurrent CSP within the framework of standard
interleaving CSP. This is beneficial because these semantics are well-developed,
well-documented and supported by a number of industrial-strength tools such
as FDR and ProB.

Any of the choices presented in this section is justified by the standard seman-
tics of (untimed) CSP. An important feature is that nondeterminism is supported
on the design level but resolved on the implementation level. The advantage is
simplicity of reasoning about the design (e. g., deadlock-freedom is often provable
on a quite abstract design level).

4 Designing a Coordination Environment

The ideas presented in the previous section are supported by the transformation
T presented in [8]. The transformation splits events into start and end events,
introduces fresh hidden actions for internal choices and timeouts, and takes
internal transitions into account. T gives rise to a coordination environment
that simulates the truly concurrent version of a CSP coordination process at
runtime and starts a user-defined function (UDF) after performing the start
event of a split event and performs the respective end event after termination
of the UDF. A UDF is the implementation of a terminating action provided by
the user.

The intent of the coordination environment is to enable coordination of a
concurrent system in a noninvasive way separating interaction and data inde-
pendently from a specific target language.

The notion of noninvasiveness means that existing implementations of com-
ponents do not need to be modified to be coordinated. The coordination is done
on top of the component implementations provided by the user encapsulating
the coordinated components, taking their operations as UDFs implementing the
actions of the final system.

The separation of interaction and data is important with respect to the mod-
eling of the coordination process (which may involve data but which does not
necessarily relate to data being communicated or computed by the actions of the
system) and with respect to the final combination of the coordination process
with the UDFs of the system. The first aspect means that the variables used in
a coordination process are independent of the actual values being communicated

CSP as a Coordination Language 71

and processed by the system (unlike in CSP‖B [15], for example). The second
aspect means that the UDFs being mapped to possibly concurrent events may
not modify data being shared amongst themselves.

The design-flow associated with our approach allows the concurrency struc-
ture and the UDFs to be developed and verified independently up to the point
when the system is assembled to a concrete executable concurrent system (by
combining the coordination process with the UDFs implementing the actions).
Only then sets of possibly concurrent events must be identified and it must be
proved that the UDFs do not introduce data races. This issue is discussed in
Section 5. The following subsections present our understanding of how a coor-
dination environment should perform actions and enable actions to be chosen
internally or by the environment.

4.1 Performing Actions

The purpose of the coordination environment is not only to coordinate concur-
rent parts of a system but also to execute UDFs when performing actions and
to assign the execution of UDFs to threads. This is done while performing an
event or a τ -transition made visible by T .

Since the simulation of the original process P is defined by the operational
firing rules of CSP unrolling T (P) while hiding the externalized hidden actions
and the end events of visible actions, we do not go into details of unrolling the
coordination process here. The important point is that the events are regarded
as actions which are associated with UDFs and that these UDFs are executed
between the atomic steps of the actions start and its end.

The following cases are to be considered when performing an action. The
action either corresponds to a (a) synchronized event, (b) to a hidden event, (c)
to a renamed event, or (d) to any other event.

The first case (a) is commonly considered to be a problem when matching
actions with events. The argument against performing actions for synchronized
events is the following question:

“which of the synchronized components should perform the action?”

This question remained unanswered for some systems. For example the process
analysis toolkit PAT [16] allows events – except synchronization events – to be
associated with UDFs. Our answer to this question (and our argument in favor
of performing actions for synchronized events) is that synchronization primarily
affects the order of events and not their ownership. Thus, a single action is
performed after the start event in an arbitrarily chosen context (either one of
the threads performing the preceding actions, possibly another).

In the second case (b) the original event (being subject to hiding) defines
the action to be performed. In the third case (c) the renamed event (not the
original one) defines the action to be performed. Although this decision seems
to be at odds with case (b), because both renaming and hiding can be regarded
as a substitution of the original event’s name (in a user-defined way or by τ
respectively), the different treatments are necessary for uniquely identifying the

72 M. Kleine

UDFs to be executed. The reason is that hidden events cannot be synchronized
on but renamed events are available for synchronization.

In the last case, the event directly identifies the UDF to be performed. It
is noteworthy, however, that � is not associated with a UDF. It solely models
termination of a process, is commonly considered to be outside the alphabet of
a process, and it is the only event not being split by T .

As an example, the single UDF to be performed by the following coordination
process P (being algebraically equivalent to SKIP) is the one identified by event a.

P = ((b → SKIP)[b ← a] |{a}| a → SKIP) \ {a}
This design decisions described above allow us to relinquish the idea that a

sequential process models a single thread of control. A sequential process defines
the order of its actions but these can be performed by different threads. This
gives us great freedom in distributing the actions amongst processing units of
the final system. Load balancing could, for example, be realized by statically
creating a task queue and distributing the actions dynamically at runtime. Any
of these informal descriptions above conforms to the formal definition of T .

4.2 Choosing Events

There must be some additional component added to the coordination environ-
ment dealing with the execution of hidden events. Visible events are available
for external synchronization and chosen externally. But how to resolve conflicts
of hidden actions?

Our solution is to use event listeners that reside above the component per-
forming T (P) and below the one realizing the hiding of externalized hidden
actions and the end events of actions. This way, it can be ensured that the e
and eh events are immediately performed so that T (P) can proceed and offer
any causally dependent s and sh events. The strategy how to choose amongst
sh events, however, must be provided by the user of our coordination approach.
Like the UDFs realizing the resolution of internal choices, listeners are to be
injected into the coordination environment to deal with sh events introduced by
hiding (those not being introduced by internal choice or timeout).

This leaves it open to the programmer to decide if hidden actions have priority
over visible ones as, e. g., in the tau-priority model presented in [14], and how
conflicts of hidden actions are resolved.

It is important to notice that this does not contradict non- invasiveness of
our approach. By making hidden events on the outermost process available for
internal event listeners, we provide a general way for resolving nondeterminism.

5 Detecting Data Races

CSP can be used as a coordination language independent of the target language.
Thus, we do not consider a particular specification language for the UDFs here
and present a purely mathematical proof obligation to ensure freedom of data

CSP as a Coordination Language 73

races in a coordinated system. It is defined as a so-called frame property, based
on our notion of possible concurrency (as presented in [8]), describing the mod-
ification behavior of a UDF with respect to another UDF. Refer to [11] for a
more in-depth presentation of framing.

Let F be the type of all UDFs and Var the type of all modifiable entities
(references to objects and primitive types). The mapping of events to UDFs is
formally defined as a partial injective function such that its inverse is a total
injection. It is

udf : Σ � �� F , and its inverse is udf −1 : F � Σ .

Hence, a UDF uniquely identifies an event but events do not necessarily identify
a UDF. A data race is formally expressed using the following functions:

shared : F × F → P Var

shared(f , g) =̂ (writes(f) ∩ rw(g)) ∪ (writes(g) ∩ rw(f))

writes , reads , rw : F → P Var

rw(f) =̂ writes(f) ∪ reads(f)

Two UDFs f and g suffer from a data race if their frames overlap and one
modifies data also read or written by the other.

race(f , g) =̂ shared(f , g) �= ∅

Let conc : Σ × Σ → Bool be the predicate telling us whether or not two
events are possibly concurrent in a given process P (i. e., conc(x , y) ↔ (x , y) ∈
conc(P)). This predicate is combined with udf −1 to the following predicate
telling us whether or not two UDFs are possibly concurrent:

concF : F × F → Bool , where concF (f , g) =̂ conc(udf −1(f), udf −1(g)) .

The proof obligation ensuring freedom of data races is

∀ f , g ∈ F : concF (f , g)⇒ ¬ race(f , g) .

A system violating this condition can be corrected by either adjusting the
coordination process (by removing possible simultaneity) or modifying the UDFs
(by making the frames distinct).

In general, determining the sets reads and writes of arbitrary UDFs is a hard
problem (due to aliasing). Dealing with this issue is beyond the scope of the
work presented here. However, it is noteworthy that specialized logics such as
separation logic [13] offer a prospective alternative for specifying (and verifying)
properties such as the data independence of UDFs.

Besides this data related proof obligation, it must be proved that the UDFs
are never called outside their preconditions and that they are guaranteed to

74 M. Kleine

terminate to obtain total correctness of a system. Furthermore, it must be proved
that the UDFs resolving nondeterministic choices always return a valid process
name.

As motivated in the Introduction, the sequential terminating UDFs imple-
menting the sequential parts of the program are oblivious to concurrency modulo
the proof obligation presented above. This means that our approach is nonin-
vasive and allows us to turn a verified sequential system into a concurrent one
by identifying parts of the program that make up the UDFs, adding a suitable
CSP script and mapping events to UDFs. Provided that the additional proof-
obligation can be discharged successfully, modular verification remains valid on
that program. This implies that the sequential parts do not have to be modified
at all. The coordination environment is the entry point to the final program and
solely requires implementation of the mapping from events to UDFs.

6 Supported Processes

The approach presented here supports all finite alphabet CSP processes except
the ill-formed recursive process P = P (which is sometimes understood as div).
This includes infinite state processes as well as diverging ones. The limitation
to processes whose alphabet is finite matches the assumption that there are
only finitely many UDFs assigned to the events of a process. Our approach to
simulation is capable of dealing with any CSP process whose alphabet is finite.
Consider the following divergent processes:

P = μP ′ • (e → P ′) \ {e} and Q = μQ ′ • (e → Q ′
 SKIP) \ {e} .

P models a process that runs forever without any interaction with its environ-
ment. This is not a problem in its own right, because, as shown in our case-study
on modeling and implementing a workflow server in CSP [7], divergence may nat-
urally arise when modeling server processes. Q may also diverge, but may as well
eventually decide to terminate gracefully.

The reason for accepting such processes is that the internal actions resolving
the choices can be used to implement local fairness conditions. The notion of
fairness conditions refers to conditions that ‘cure’ processes that behave badly
under the assumption that repeated (local) choices can always be resolved in
the same way. The fact that this is unlikely to happen in reality is expressed by
fairness. FDR does not support fairness but PAT explicitly deals with fairness,
as described in [17]. Fairness can be specified on different levels of granularities
(e. g., local or global) and can be regarded as an abstraction of probabilities.

Consequently, the process Q shown above is not necessarily diverging and
might be guaranteed to terminate eventually under certain fairness assump-
tions. The same applies to other processes containing process control constructs
such as internal or external choice, timeout or interrupt allowing the process to
eventually exit from cycles of hidden actions.

Both tools FDR and ProB can be used to verify that P unavoidably diverges
while Q may eventually terminate. FDR proves this in the traces model because

T �P� = {〈〉} and T �Q� = {〈〉, 〈�〉} .

CSP as a Coordination Language 75

In the failures-divergences model P = Q because both processes may diverge
initially.

The same result can be obtained using the LTL model checking capabilities
of ProB. In ProB’s LTL syntax, the formula φ = F G [tau] states that a process
unavoidably diverges (all of its executions eventually end up in an endless cycle
of τ events). Now

P |= φ but Q �|= φ .

The counterexample found by ProB expectedly shows that Q may eventually
perform �. Another interesting example is the infinite state process

R = μR′ • (a → R′ ||| b → STOP) .

It can be simulated although it is obviously questionable if any reasonable pro-
gram conforming to this design exists. Infinite state processes such as R are
likely to eventually run out of memory, crashing the whole system.

Now, the same mechanism that can be used to implement fairness can be fa-
cilitated to turn theoretically infinite state processes into finite state processes.
However, this requires knowledge of the structure of the processes when imple-
menting the UDF resolving the internal choices. In the example of process R,
the relevant UDF could count the a’s and always choose the b if a certain bound
is reached.

In this context it is important to observe that CSPM scripts modeling infinite
state systems cannot in general be checked by FDR because compilation of the
script to the internal LTS will not terminate. The ProB LTL model checker,
however, performs on-the-fly model checking and quite often succeeds in model
checking infinite-state systems [12].

7 Implementation and Further Work

The coordination model presented here is given in a target language independent
way. In this section, we present its implementation for the target language Java.
It simulates a coordination process at runtime and executes user-defined Java
code when performing an event. For now, it implements the operational seman-
tics of the process operators prefixing, sequential composition, internal choice,
external choice, generalized parallel, timeout, interrupt, hiding, and renaming.

The coordination environment provides the final class CspEnvironment en-
capsulating the coordination process. This class manages the events offered by
the coordination process, listeners that deal with changes of offered events, and
the mapping of events to UDFs. The mapping of events to UDFs is defined
by an implementation of the CspEventExecutor interface. The environment im-
mutably references a single instance of a CspProcessStore holding the process
configurations that describes the coordination process to be simulated. The en-
vironment instance is the only object that the implementation synchronizes on
when performing the atomic start and end transitions modeling an event of the
coordination process. The start transitions of visible events are available for

76 M. Kleine

CspEventExecutor cee = . . . ;
F i l t e r f i l t e r = . . . ;
// se tup cee and f i l t e r
CspProcessStore s t o r e = new CspProcessStore () ;
// r e g i s t e r proces s c on f i g u r a t i on s
CspEnvironment env = new CspEnvironment (s to re , cee) ;
env . r e g i s t e r L i s t e n e r (new CspEventConsumer (f i l t e r)) ;
CspSimulator s = new SwingCspSimulator (”my example” , env) ;
s . run () ;

Fig. 1. Code stub of a coordinated Java program

external synchronization, while start transitions of hidden events are only ac-
cessible for event listeners. The end transitions are performed immediately after
termination of the action’s UDF.

The CspEnvironment provides a start method taking a process name that
determines the coordination process instance. When started, the environment
retrieves the coordination process from its store and adds the events offered by
the process to its set of offered events. Then it informs the event listeners about
that change. From that point on, interaction with the coordination environment
is done by choosing events from the set of offered events and performing them.
Subsequently the listeners are performed after every change of the set of events
offered by the outermost process. This set changes only when an event is per-
formed. If a client holds a reference to an event that is no longer available, it
cannot be performed, of course (resulting in a no-op).

To create an executable system one has to instantiate a CspEnvironment
with a CspProcessStore and a CspEventExecutor . One can then create a coordi-
nated system as shown in Figure 1. A CspSimulator may be used to connect a
CspEnvironment to the outside world. One useful example is the
SwingCspSimulator that provides a simple Swing GUI to chose and perform
events.

The example code shown in Figure 1 assumes the existence of suitable
CspEventExecutor and Filter classes (filters are convenience objects helping
event listeners to find the events that they act upon). The instances may be
configured to fit the needs of the final system. Then a process store is created
and must be filled with process configurations. A CspEnvironment is created us-
ing the CspEventExecutor and CspProcessStore instances. To deal with possibly
hidden events, a CspEventConsumer takes the Filter instance as argument and
is registered as a listener for event changes at the environment. Finally, the en-
vironment is run using a Swing GUI. Our implementation handles the nesting of
process operators and the offered (initial) events of processes in an explicit way.
This causes a considerable runtime overhead but allows us to resolve conflicts of
actions when an action is started and to leave concurrent actions on offer while
an action is performing.

CSP as a Coordination Language 77

The workflow server presented in [7] is built using this coordination environ-
ment. The workflow server accepts workflow definitions that are implemented in
the same way and uses FDR to verify workflow definitions before activating them.

Extending the implementation towards the coordination of distributed sys-
tems is subject to future work. Explicit support for data storage and communi-
cation by the coordination environment is another concern that deserves further
investigation. We also strive for a deeper integration with the functional verifica-
tion of UDFs. Development of specialized provers for the conflict-freedom proof
obligation is also subject to future work.

8 Related Work

Linda [2] is a parallel programming language that adds parallelism to sequential
languages (e. g., C, Fortran, etc) and allows tasks to be distributed dynamically
at runtime. Like Linda, our approach separates concurrency concerns from se-
quential ones in a machine- and language-independent way. In contrast to Linda,
it builds on ordinary shared memory communication (as built into the under-
lying language) instead of a special memory model (the so-called tuplespace).
Moreover, our approach is based on a formal method that is supported by a
number of industrial-strength tools.

Reference Nets [9] provide an object-oriented High-Level Petri Net formalism
where instances of Petri Nets carry references to other instances of Petri Nets
instead of tokens. In that model, the firing of a transition moves a reference
from one place to another. The concept of synchronous channels allows Petri
Net instances to communicate when a transition fires. Reference Nets extend
this to the execution of arbitrary (terminating) Java code. Thus, in that model,
a Petri Net can be regarded as the coordination process of a system and the
code attached to transitions relates to our understanding of actions. Unlike our
approach, Reference Nets do not support verification of the coordination process
and lack proof obligations relating the ordering of Petri Net transitions (as de-
fined by their firing sequences) to the pre- and postconditions of their associated
implementations, for example.

Another formal approach to the modeling and verification of distributed com-
ponent based systems is described by Baier et al. [3]. Their approach is based
on the model checker Vereofy which supports multiple input languages capable
of modeling concurrent systems. However, their approach does not extend to
implementing such systems but remains on the modeling level.

CSP++ [5] and JCSP [18] offer CSP-like channels as inter-thread commu-
nication facilities but realize only a limited set of CSP operators. The feature
that distinguishes our approach from CSP-based software libraries is that events
are not interpreted as communications over a typed channel but as abstractions
of arbitrary actions. It realizes the common understanding that an action can
be modeled by a start and an end event (and the action executing between
these two). Furthermore, the CSP model is simulated at runtime to drive the
concurrent application.

78 M. Kleine

Since sequential processes in CSP are viewed as executions of computational
entities whose behavior can be observed in terms of events, it is natural to map
a single sequential process to its own thread. This is the general idea under-
lying CSP++ and JCSP. Our approach does not necessarily map two causally
dependent threads to the same thread. It merely maintains the order of UDFs
as defined by the events of the CSP script coordinating the system. This is
comparable to Linda’s feature of distributing tasks at runtime.

9 Conclusions

In this paper, our approach to using CSP as a coordination language is presented.
It unravels the various abstractions that are carefully built into CSP for the
purpose of coordinating concurrent systems in a noninvasive way. The approach
taken here is quite different from other approaches to implementing CSP because
it does not built on the channel concept which is a common approach realizing
the hand-shaken communication. Instead, our approach is based on atomic steps
denoting start- and endpoints of a system’s actions. It also deals with internal
(hidden) actions. Associating the resolution of internal choices with UDFs undoes
nondeterminism inherent to the CSP model coordinating the program. This
allows us, for example, to turn systems that are not fair in the standard CSP
semantics into fair ones.

The semantic foundation of the coordination runtime environment is given by
a syntactic process transformation turning a standard interleaving CSP process
into a truly concurrent one. The transformation also allows us to predict which
functions are possibly executed in parallel. Dependent on possibly concurrent
events we stated a proof obligation for ensuring absence of data races.

Our approach allows us to separate concurrency issues from sequential ones,
and to reuse the concurrent design of the system at runtime. It also enables us to
use state-of-the-art CSP tools such as FDR [14] and ProB [10] for the automated
verification of concurrency aspects of the software, and integrates with modular
verification of UDFs. The use of CSP makes it especially well suited for systems
with highly communicative concurrent components.

Compared to other CSP implementations, the approach presented here sup-
ports a richer CSP in terms of supported process operators. Unlike other CSP
library-level implementations, our approach is noninvasive. It allows the sys-
tem’s basic actions to be coordinated very directly. Our approach is capable of
handling infinite state and divergent processes. However, this comes at the cost
of the runtime overhead of explicitly managing processes and events caused by
simulation of CSP.

References

1. Abrial, J.: The B Book - Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Ahuja, S., Carriero, N., Gelernter, D.: Linda and Friends. Computer 19(8), 26–34
(1986)

CSP as a Coordination Language 79

3. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A Uniform Framework for
Modeling and Verifying Components and Connectors. In: Field, J., Vasconce-
los, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 247–267. Springer,
Heidelberg (2009)

4. Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A mod-
ular reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387.
Springer, Heidelberg (2006)

5. Gardner, W.B.: Converging CSP specifications and C++ programming via selec-
tive formalism. ACM Trans. Embed. Comput. Syst. 4(2), 302–330 (2005)

6. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International,
Englewood Cliffs (1985)

7. Kleine, M., Göthel, T.: Specification, Verification and Implementation of Business
Processes using CSP. In: 4th IEEE International Symposium on Theoretical As-
pects of Software Engineering, pp. 145–154. IEEE Computer Society, Los Alamitos
(2010)

8. Kleine, M., Sanders, J.W.: Simulating truly concurrent CSP. In: Brazilian Sympo-
sium on Formal Methods (SBMF 2010). Springer, Heidelberg (2010)

9. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002)
10. Leuschel, M., Fontaine, M.: Probing the Depths of CSP-M: A New fdr-Compliant

Validation Tool. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp.
278–297. Springer, Heidelberg (2008)

11. Müller, P.: Modular specification and verification of object-oriented programs.
Springer, Heidelberg (2002)

12. Plagge, D., Leuschel, M.: Seven at one stroke: LTL model checking for High-level
Specifications in B, Z, CSP, and more. In: STTT (2008)

13. Reynolds, J.: Separation logic: a logic for shared mutable data structures (2002)
14. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, Englewood

Cliffs (2005)
15. Schneider, S., Treharne, H.: Verifying Controlled Components. In: Boiten, E.A.,

Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 87–107. Springer,
Heidelberg (2004)

16. Sun, J., Liu, Y., Dong, J.S.: Model Checking CSP Revisited: Introducing a Pro-
cess Analysis Toolkit. In: International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation, pp. 307–322. Springer, Heidelberg
(2008)

17. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009)

18. Welch, P.H.: Process Oriented Design for Java: Concurrency for All. In: Arabnia,
H.R. (ed.) Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA 2000), vol. 1, pp. 51–57. CSREA
Press, CSREA (2000)

An Efficient Management of Correlation Sets

with Broadcast

Jacopo Mauro1,2, Maurizio Gabbrielli1,2, Claudio Guidi4,
and Fabrizio Montesi3

1 Department of Computer Science, University of Bologna, Italy
2 Lab. Focus, INRIA, Bologna, Italy

{gabbri,jmauro}@cs.unibo.it
3 IT University of Copenhagen, Denmark

fabr@itu.dk
4 italianaSoftware srl, Imola, Italy
cguidi@italianasoftware.com

Abstract. A fundamental aspect which affects the efficiency and the
performance of Service-Oriented Architectures is the mechanism which
allows to manage sessions and, in particular, to assign incoming messages
to the correct sessions (also known as service instances). A relevant mech-
anism for solving this problem, first introduced by BPEL and then used
in other languages (e.g. Jolie) is that one based on correlation sets. The
BPEL and Jolie languages are currently allowing the use of messages
whose target is only one session. However there are a lot of scenarios
where being able to send a broadcast message to more than one session
could be useful. Supporting such a broadcast primitive means to allow
correlation sets which can contain unspecified variables and this can be
very inefficient, since usual implementations in terms of hash tables can-
not be used in this case.

In this paper we propose a data structure, based on radix trees and
an algorithm for managing a correlation mechanism that supports the
broadcast primitive, without degrading the performances.

1 Introduction

Service-Oriented Computing (SOC) is a paradigm for programming distributed
applications by means of the composition of services. Services are autonomous,
self-descriptive computational entities that can be dynamically discovered and
composed in order to build more complex functionalities. The resulting systems,
called Service-Oriented Architectures (SOA), have a wide diffusion; as of today
the most prominent technology in this context consist of Web Services, a set
of open specifications that focuses on interoperability and compatibility with
existing infrastructures. This is mainly obtained through the adoption of the
XML document format and by using HTTP as the underlying transport protocol
for communications.

In a SOA services are loosely coupled, i.e. they stress a minimality on the
dependencies that each service has w.r.t. the others, and can be stateful; this last

W. De Meuter and G.-C. Roman (Eds.): COORDINATION 2011, LNCS 6721, pp. 80–94, 2011.
c© IFIP International Federation for Information Processing 2011

An Efficient Management of Correlation Sets with Broadcast 81

point is the case of orchestrators which maintain a state for each created session.
Usually, in a stateful service a session is created at the first client invocation. But,
differently from the object-oriented approach, SOC does not guarantee references
for identifying the new session. Thus a fundamental aspect which affects the
efficiency and the performance of SOAs is the mechanism which allows to manage
sessions. In fact, in a typical pattern of interaction, a service may manage many
different sessions, corresponding to different clients. Since communications are
usually supported with stateless protocols (e.g. SOAP on HTTP), when a service
receives a message from a client C the system must be able to identify which
is the session corresponding to C and that, therefore, must receive the message.
In other words, sessions usually need to be accessed only by those invokers
(messages) which hold some specific rights.

A relevant mechanism for solving this problem, first introduced by BPEL [1]
and then used in JOLIE [8,9], COWS [6] and in other languages, is that based
on correlation sets. Intuitively a correlation set is a set of variables whose values
allow to distinguish sessions initiated by different clients. More precisely, both
the sessions and the incoming messages contain some specific “correlation values”
defining the variables in the correlation set. When a message m arrives it is routed
to the session which has the same values as m for the correlation variables.

As a simple example of correlation set consider the case of a service S used
for buying goods. Suppose that S handles all the communication of a specific
customer using a unique session, while different customers have different ses-
sions. Assuming that a customer is uniquely determined by her name and sur-
name we can use a correlation set consisting of the two variables name and
surname for determining the customer’s session. Now let us suppose that S
can receive the following three types of messages (with the obvious meaning):
buy(name, surname, product id); delete order(name, surname, product id);
pay(name, surname, product id, credit card info). When a customer, say John
Smith, wants to buy product 1 he can send a message of the form buy(John,
Smith, 1). When this message is received the service checks whether there is a
session that correlates with it, i.e. whether there exists a session whose variables
name and surname are respectively instantiated to the values John and Smith.
If this is the case message m is assigned to such session. On the other hand, if
John Smith is a new customer and no session correlates with m then the message
is not delivered (note however, that in this case a new session could be created
which correlates with the message, see for example [2,1,5]).

The BPEL and Jolie languages are currently allowing the use of messages
whose target is only one session. However there are a lot of scenarios where being
able to send a broadcast message to more than one session could be useful. Let’s
consider for instance a cloud environment where every user can start, control
and terminate a virtual machine on the cloud (a framework similar for instance
to Amazon EC2). Let’s suppose that we would like a unique entry point to this
system and this entry point is a service that can receive and send messages to the
users and the administrators of the cloud. We could consider to have a session

82 J. Mauro et al.

for every virtual machine and control the virtual machine through this session.
The key to identify a session can be the union of the following fields:

– the name, surname and date of birth of the user (we assume that these values
univocally determine the user);

– the kind of virtualized operating system (i.e Ubuntu, Windows, . . .);
– the version of the operating system;
– the priority of the virtual machine (high, medium, low).

Having this key a user (say John Smith born on the 1st of Jan 1970) can start
a Windows 7 machine with low priority sending for instance a message like
start(John,Smith,19700101,windows,7,low). Later he can control and terminate
the session (and therefore the virtual machine) simply sending messages like
execute or terminate specifying every time all the fields of the key.

On the other hand suppose now that an administrator wants to apply a patch
to all the Windows virtual machines. Without a broadcast primitive he/she
should retrieve all the keys of sessions controlling a Windows machine and later
send them the message that triggers the application of the patch. For the pro-
grammer point of view this usually involves the definition of a session or service
that keeps the log of all the sessions. This session/service often slows down the
performances due to the creation or deletion of new sessions. On the other hand
having a broadcast primitive an administrator could send:

– a message like get location() that will be sent to every session for asking to
the session which hardware machine is used to run the virtual machine;

– a message like patch(operating system, operating system version, . . .) to patch
all the virtual machines with a certain operating system and version;

– a messages like terminate(name, surname, birthday date) that can terminate
all the virtual machines belonging to a user;

– messages like stop(priority) or stop(operating system, priority) can be used
to stop every virtual machine having a specific priority or operating system
+ priority.

These are only few examples of the use of broadcast primitives. Another im-
portant application for these messages is for the implementation of a publish/
subscribe pattern: This is a messaging pattern where senders (publishers) of mes-
sages do not send the messages directly to specific receivers (subscribers). The
messages are instead divided into classes and the subscribers subscribe for the re-
ception of messages of a given class. The system is responsible for sending every
message belonging to a certain class to every subscriber that has subscribed for
that class. Publisher may not know who are the subscribers and vice versa.

This pattern can be easily implemented using broadcast and a service having
a correlation set that contains the class identifier. Whenever a subscriber sub-
scribes for a class, a new session responsible for the forwarding of the message
is created. The publisher now can send a broadcast message specifying in the
message its class. The correlation mechanism will check this value and route the
message to every session that has subscribed for that class. The session can later
forward the message to the real subscriber.

An Efficient Management of Correlation Sets with Broadcast 83

The aim of this paper is to present a data structure and an implementation
of the correlation mechanism that supports the broadcast primitive without
degrading the performances of the correlation of normal messages.

The operations that a correlation mechanism has to support can be seen as
the select, insert and delete operations of a relational database, where every
tuple of the relation is a session. The correlation set is a key of a relation. When
a normal message arrives it always contains a key that determine the target
session. In the database analogy the correlation operation is then a “select”
operation, and in the case of normal messages the (complete) key is used to
retrieve the target session. On the contrary, a broadcast message specifies only
part of the key, indeed its target is potentially a set of sessions. Continuing in
the database analogy, the broadcast operation can be efficiently implemented by
adding an index for every type of broadcast messages. However, since increasing
the number of indexes decrease the performances of the insert and delete queries
(i.e. creation and deletion of sessions), the less indexes we have the better it is.
We will then define a solution that uses the minimal number of indexes needed
to correlate the messages to the right sessions. The indexes will be implemented
using radix trees.

We would like to underline that in this work we have taken as a starting point
the correlation mechanism of Jolie. We made this choice because we find that
Jolie correlation mechanism is more flexible than the BPEL one. For instance
Jolie correlation variables are normal variables and not a late-bound constant
like in BPEL. While in BPEL the values of a correlation set are defined only
by a specially marked send or receive message and once defined they can not
change, in Jolie the programmer can decide to instantiate or change the values
of a correlation set at run time. In BPEL all the fields (correlation proprieties or
correlation tokens) of a message key should be always defined. Jolie instead allows
partially defined keys. This flexibility comes with a price: the implementation of
the search of a correlating session is linear w.r.t. the number of session while in
BPEL it is constant (usually hash table are used).

The correlation mechanism can be seen as a special case of the well know
content-based publish/subscribe mechanism [11]. Indeed the correlation mecha-
nism can be seen as a simpler content-based publish/subscribe mechanism where
messages are notifications, sessions are subscriptions and correlation variables
are attributes. The correlation mechanism exploits however two constraints that
usually a content-based publish/subscribe mechanism does not have. In corre-
lation, few attributes need to be considered and only equality predicates are
used to compare the attributes. Hence, this work could be considered as an im-
provement over publish/subscribe algorithms such as [4,3] for scenarios where
the previous two constraints hold.

After having provided some background in Section 2 we explain the idea of the
algorithm in Section 3. In Section 4 we show how the data structure is created
and used, while in Section 5 we prove the correctness of the algorithm and we
perform some complexity analysis. Finally Section 6 concludes describing some
future work.

84 J. Mauro et al.

2 Background

In this section we formally define the main concepts that we will use in the rest
of the paper. A correlation set, c-set for short, can be seen as a key that can
be used to retrieve a session. For our purposes a c-set can be seen as a set of
variables names (in BPEL these correspond to c-set proprieties) that can assume
values in a domain. To simplify the notation we assume that the variables of a
c-set can assume values in the domain D defined as the set of strings on a given
signature.

Definition 1 (c-set). Given a service S, a correlation set for S is a finite set of
variables names. When these variables are defined their values uniquely identify
a session of S.

Sessions may define the variables of a c-set. The definition of variables belonging
to a c-set is captured with the following definition.

Definition 2 (c-instance). Given a c-set c we say that a c-instance for c is a
total function that maps every variable of c to a value in D.

We will say that a session s has a c-instance ϕ if for every variable v in c the
variable v has been assigned and its value is ϕ(v).

Services, especially those having multi-party sessions, may need more than one
c-set because the users may need to use different keys to identify a session.
These services, also known as multi correlation services, do not require to have a
c-instance for every c-set. However since c-sets are used to identify a session we
require that a session must have at least a c-instance. Moreover we do not allow
the starting of a session having the same c-instance of another existing session.

Every message that is exchanged will contain some arguments associated to a
c-set. Usually these arguments are called correlation tokens or correlation values
and are used to find the recipient of the message. BPEL and other service engines
allow the use of potentially one correlation token (c-token for short) for every c-
set of the service. For example a multi-party session can be initialized submitting
a message having as correlation tokens the values for all the c-sets of the service.
In this work instead we will consider messages having only one c-token. This
restriction is however insignificant since the behaviour that is caused by the
exchange of messages with more than one c-token can be easily simulated in our
framework. This is due to the fact that differently from BPEL we do not need
the exchange of a message to change the value of a correlation variable.

Formally we can define a c-token in the following way.

Definition 3 (c-token). Given a message m a c-token is a pair (c, ϕ) where

– c is a c-set containing the variables used to specify the message recipients
– if m is a normal message then ϕ is a total function that maps a variable of

c into a value in D
– if m is a broadcast message then ϕ is a partial function that maps a variable

of c into a value in D. Moreover ϕ is not total.

An Efficient Management of Correlation Sets with Broadcast 85

For instance the service for buying goods has only one c-set c = {name,
surname} and the c-instance of John’s session is the function ϕ s.t. ϕ(name) =
John and ϕ(surname) = Smith. The message buy(John, Smith, 1) has instead
as c-token the couple (c, ϕ). If we want to send a message m to every per-
son named John for wishing him a happy name day we can use a broadcast
message whose c-token will be the couple (c, ϕ′) where ϕ′(name) = John and
ϕ(surname) is not defined.

As it can be seen in the previous definition the introduction of the broadcast
primitive allows the user to not define all the variables of a c-set. Normal mes-
sages, like c-instances, need to define all the variables of a c-set because they
need to identify their (unique) target session. On the other hand, broadcast
messages can specify only a part of the key, indeed their target can be a set of
sessions. Note that, in case of multi correlation services, the c-token definition
does not allow to consider part of two different keys to determine the targets
of a broadcast message. We do not allow this possibility since we haven’t find a
significant example that justifies this increased power. However we could easily
extend our framework to treat also this case. Now we can formally define when a
message correlates with a session. Intuitively a message correlates with a session
when the values of the correlation token match the c-instance of a session. In
the following ϕm(v) ↑ denotes that ϕm is not defined in v.

Definition 4 (Correlation). Given a service S, a session s and a message m
with c-token (cm, ϕm) we will say that s correlates with m iff s has a c-instance
ϕ for the c-set cm and ∀v ∈ cm. ϕm(v) = ϕ(v) ∨ ϕm(v) ↑.

3 The Idea

As we have discussed above the current mechanisms for assigning a message
to the correct session does not support the possibility of identifying a set of
sessions. A naive implementation for the support of broadcast messages would
use an associative array for every c-set variable. However, if this solution is
used, for finding the targets of a broadcast message we have to compute a set
intersection whose complexity depends on the number of sessions. Another naive
solution is using an associative arrays for every subsets of correlation variables
that can be used in a broadcast message. If we consider a c-set with n variables
this means that for the support of the broadcast primitive we could have 2n− 1
associative arrays, since with n variables we can use up to 2n − 1 different kind
of broadcast messages (one for every subset of the c-set variables). Our key idea
in order to improve on this is to use radix trees to memorize the c-instances of
all the sessions and therefore for routing messages to the correct session. In this
section we will explain intuitively the idea, while its formalization and complexity
analysis are contained in the next sections.

A trie, or a prefix tree, is an ordered tree for storing strings, in which there is
one node for every common prefix. Edges are labeled with characters, while the
strings are stored in extra leaf nodes. Tries are extremely useful for constructing
associative arrays with keys that can be expressed as strings, since the time

86 J. Mauro et al.

complexity of retrieving the element with a given key is linear time in the length
of the key. In fact, looking up for a key of length k consists in following a path
in the trie, from the root to a leaf, guided by the characters in the key. A radix
tree (or Patricia tree, [10]) is essentially a compact representation of a trie in
which any node that has no siblings is merged with its parent (so, each internal
node has at least two children). Unlike in regular tries, edges can be labeled with
sequences of characters as well as single characters. This makes radix tree more
efficient than tries for storing sets of strings (keys) that share long prefixes. The
operations of lookup (to determine whether a string is in the set represented by
a radix tree), insert (of a string in the tree), and delete (of a string from the
tree) have all worst case complexity of O(l), where l is the maximal length of
the strings in the set.

Intuitively our idea is to use radix trees to map incoming messages to sessions,
by using the values of the c-set variables as keys. In other words, the session
pointers can be seen as elements stored in an associative array, while the values
of the variables of the c-sets, conveniently organized as strings, are the keys.
Our radix trees implements such a structure by memorizing the values of the
c-set variables which appear in the existing sessions. In particular, since every
broadcast message can define only part of the c-set variables, to be able to
process every message we could use a radix tree for every subset of the c-set
variables. This however is not an optimal solution. For example if a service has
two c-set variables name and surname we could receive the following kind of
messages

1. broadcast messages s.t. their c-tokens do not define any variable
2. broadcast messages s.t. their c-tokens define only the field name

3. broadcast messages s.t. their c-tokens define only the field surname

4. normal messages s.t. their c-tokens define both name and surname

With the naive approach we need to use 4 associative arrays (one for every
message type). Using radix trees is however possible to use a unique radix tree
for 1st, 2nd and 4th types since the c-tokens of the 1st and 2nd kind of messages
can be considered as prefix of the c-tokens of the 4th type of messages. For the
message of the 3th type instead we have to use a different radix tree, since in
this case the c-tokens are not a prefix of those for the 4th type of messages. So
it is sufficient to use two radix trees to cover all the possible cases.

To better explain the idea let us consider some more examples. In the following
we use a special character, denoted by # and not used elsewhere, to denote in a
string the termination of the values of c-set variables.

We first consider a unique c-set variable with only one field: name. When
there exist no session for such a variable we have a radix tree consisting of the
only root (recall that in radix trees the root is associated with the empty string).
We represent such a radix tree as a �. If now a session s1 is created which is
identified by the value John for the c-set variable name then the radix tree
became as the one depicted in Figure 1(a). The value John allows to reach s1

by an (obvious) lookup in the tree.

An Efficient Management of Correlation Sets with Broadcast 87

�
John#

��
s1

(a)

�

Jo

��
�

hn#
��

�

����
� s

���
�

���
���

s1 �
eph#

��
�

����
� h#

��
�

���
��

s2 s3

(b)

Fig. 1. Example of radix trees

Next assume that two more sessions are created: a session s2, which is identi-
fied by the value Joseph for the variable name and a session s3 which is identified
by Josh. The radix tree we obtain is the one depicted in Figure 1(b). Notice that
the longest common prefixes of the three key values are associated to edges of
the tree. When a message arrives, the value that it carries for the name variable
allows one to select a root-leaf path in the tree, so reaching the correct session.

Assume now that our correlation set is composed by the two variables name
and surname and consider four sessions s1−s4 identified as follows by the values
of the c-set variables:

s1 : name = John, surname = Smith; s2 : name = John, surname = Smirne
s3 : name = Josh, surname = Smith; s4 : name = John, surname = Smithson

Correspondingly we have the radix tree depicted in Figure 2(a). In this case,
as mentioned before, we need more that one radix tree to store the values of
c-sets variables of the sessions. This because in a broadcast message the value of
some c-set variables could be not specified. For example, in the case above, let
us consider a broadcast message which contains the token Smith for surname
and no token for name. If we have only a radix tree like the one depicted in
Figure 2(a) we can not find with a lookup which session correlate with it. This is
due to the fact that the first part of the key of the radix tree is the value of the
variable name. Hence we need an additional radix tree like the one depicted in
Figure 2(b) that can be used to retrieve sessions for messages that do not define
the variable name.

It is easy to see that these two radix trees allow to cover all the possible cases.
First consider what happens if we receive a message m where name = John
and surname = Smith, hence we consider the string John#Smith#. In this
case, by using the 2(a) radix tree, we see that the message m will be assigned
to s1, since this is the session which correlates with m. However, note that this
first tree covers also the case in which no value for surname is provided by the
message, hence we do not need a further radix tree to keep only the sessions
that define only the variable name. For example, if we receive a message m with

88 J. Mauro et al.

�

Jo

��
�

hn#Smi
��

�

����
� sh#Smith#

��
�

���
��

�

th
��

�

����
� rne#

��
�

���
��

s3

�
#

��
�

����
� sonian#

��
�

���
��

s2

s1 s4

(a)

�

Smi

��
�

th
��

�

����
� rne#

��
�

���
��

�
#

���
�

�����
� sonian#

��
�

���
��

s2

s1, s3 s4

(b)

Fig. 2. Example or radix trees for c-set with 2 variables

name = John, that is we consider the string John#, then the 2(a) radix tree
shows that m correlates to the sessions s1, s2, s4.

On the other hand, if we receive a broadcast message m′ where name is not
defined and surname = Smith we will use the 2(b) radix tree (with the string
Smith#) to find that the session correlating with m′ are s1, s3.

4 Building the Radix Trees

As previously discussed, with our approach every c-set of the service has a group
of radix trees that can be used for checking the correlation of a message to a
session. We have also shown that, if we assume that the c-set has n variables,
one does not need to consider 2n different radix trees, because a radix tree for
a sequence of variables cover also all the cases given by the prefixes of such a
sequence.

In this section we provide an algorithm that, given a c-set with n variables,
in the worst case constructs a set containing

(
n

�n/2�
)
(= n!

�n/2�! 	n/2
!) radix trees.
In the next section we will prove that such set allow us to route all the possible
messages to a service. We also prove that this set is minimal, in the sense that
any other set of radix trees which allow to route correctly all the messages has
at least the same cardinality. So our algorithm cannot be improved w.r.t. the
number of radix trees generated.

In the following we assume that the c-set c has n variables and the set V con-
tains all and only these variables. We denote by seqi a sequence x1, . . . , xhi of
variables of c. Given a list of sequences of variables seq1, . . . , seqm such that seqi

is a prefix of seqi+1, for i ∈ [1, m− 1], we use the notation RT (seq1, . . . , seqm)
to indicate any radix tree whose keys are strings of the form d1# . . . #dhi#
where dj = ϕ(xj), for j ∈ [1, hi], and for some c-set-instance ϕ. In other
words, RT (seq1, . . . , seqm) is a kind of schema which can be instantiated by
considering the values of the variables for one specific sequence seqi, with i ∈

An Efficient Management of Correlation Sets with Broadcast 89

[1, m] (and using # as separator of values), to obtain a specific concrete radix
tree. As previously discussed, a radix tree (described by) RT (seq1, . . . , seqm)
allows us to check the existence of a session defining all the variables in one of
the sequences seqi. For example the radix tree in Figure 2(a) can be denoted
by RT (〈〉, 〈name〉, 〈name, surname〉) while the radix tree 2(b) is denoted by
RT (〈surname〉)1. By using this notation our problem can be stated as follows:
we need to find the minimum number h of radix trees schemas RT1(seq1,1, . . .
seq1,l1), . . . , RTh(seqh,1, . . . seqh,lh) such that, for each set X ⊆ V , there exists
a sequence seqk,o that contains all and only the variables in X .

We find convenient to formulate this problem in terms of a graph represen-
tation. Indeed, given a set of variables V , we can create a labeled direct graph
G(V) where:
– the nodes are (labeled by) elements in P(V). Intuitively we will consider all

the set of variables that can be defined by a c-token;
– there is an arc from u to v if u ⊂ v;
– the arc (u, v) is labeled with the variables v \ u (where \ denotes set

difference).

x, y, z

x, y

z

�����������
x, y

��

y, z

�����������

x

c�����

������y

��

																	
y

�����������

�����������
z

�����������

��

��

∅
x�����

�������
y

��

z�����

�������

x,y

��

x,z

��

y,z
							

									

Fig. 3. Example of the graph obtained for with three variables: x, y, z (note that for
convenience only few arc labels are reported)

For example, in Figure 3 we see the graph constructed by considering the three
variables x, y and z where we can receive all the possible 7 broadcast messages. A
path on this graph corresponds to a radix tree schema (see definition 5). Hence,
with this graph representation our problem can be stated as follows: we have
to find the minimum number of paths that cover all the nodes of the graph

where, as usual, we say that a path u1

x1
��
u2

x2 ��
. . .

xn ��
un+1

covers the
nodes u1, . . . , un+1.

The algorithm that produces this minimum number of paths is Algorithm
1 and its intuition is the following. Consider the graph G(V) associated to a
c-set V , as explained above. We first partition all the nodes of G(V) into levels

1 Note that the order of the cset variables is important and therefore for instance
RT (〈name, surname〉) �= RT (〈surname,name〉).

90 J. Mauro et al.

according to the number of variables of the nodes, so level i contains all the nodes
that have exactly i variables. Then starting from the lowest levels (i.e. level 0 and
1) we consider two next levels at a time, say level i and i+1. These two levels are
seen as a bipartite graph where the nodes of each level form an independent set.
We then use a maximum bipartite matching algorithm for selecting a set of arcs
between the nodes of these two levels. Next we repeat the same procedure with
levels i+1 and i+2, and we continue until we reach the level n. At this point we
take the graph G′(V) obtained by considering all the nodes in the original graph
G(V) and only the edges which have been selected by the matching algorithm.
As we prove in the next section, the maximal paths2 on the graph G′(V) form
a minimum set of paths covering all the nodes of P .

Before providing the algorithm we need to introduce some notation. We as-
sume that each node is (labeled by) an element of P(V) (n = |V |), as mentioned
above and we denote by levelV (i) the set of nodes in the i-th level, i.e. the
set of elements in P(V) which have cardinality i. Moreover graph(A, B) de-
notes the bipartite direct graph (A ∪ B, E) where (u, v) ∈ E iff u ⊂ v. Finally
maximal matching(G) is one of the maximal matchings of the bipartite graph
G chosen in a non deterministically way. Algorithm 1 takes as input the set
P ⊆ P(V) and returns the graph containing a minimum set of paths covering
all the nodes of P . Once we have obtained a graph by using the Algorithm 1 it

Algorithm 1. radix trees(P)
1: i = 0
2: V = levelP (i)
3: M = ∅
4: while (i < n) do
5: i = i + 1
6: V ′ = levelP (i)
7: G = graph(V, V ′)
8: M ′ = maximal matching(G)
9: V = V − {v | (v, x) is an edge in M ′, for some x}

10: V = V ∪ V ′

11: M = M ∪ M ′

12: end while
13: return (P, M)

is possible to compute the radix trees by simply finding all the maximal paths,
as shown below.

Definition 5. Given P ⊆ P(V) we say that a radix tree schema RT (u′
1, u

′
2 . . . ,

u′
m) is produced by the algorithm radix tree(P) if u1

x1
��
u2

x2 ��
. . .

xm ��
um+1

is a maximal path in the graph G = radix tree(P) and
– u′

i is a sequence of all the variables in the set ui, for each i ∈ [1, m];
– u′

i is a prefix of u′
i+1, for each i ∈ [1, m− 1].

2 A maximal path is a path that can not be a proper part of another path.

An Efficient Management of Correlation Sets with Broadcast 91

We now consider an example of application of the previous algorithm to the
graph in Figure 3. In Figure 4 we have reported the three steps denoting by
⇒ the arcs selected by the maximal matching algorithm (i.e. arcs in M) while
→ indicates the arcs considered by the maximal matching algorithm (i.e. arcs
in G, line 7). The nodes in frame are the nodes that are used for computing
the maximal matching (i.e. the nodes in V and in levelP (i)), while nodes in
dotted frame are the nodes already processed (not considered by the matching
algorithm and deleted from V , line 9).

x y z

∅

x

��

y

��

z����

������

(a) 1st step

x, y x, z y, z

x

y

��

z��

��������
y

x��

��������
z����

��������
������

z
x����

��������

������
y

��

∅

x����
����

������
����

(b) 2nd step

x, y, z

x, y

z����

������

x, z

y

��

y, z

x����

������

x

y

��

y
z����

��������
������

z
x����

��������

������

∅

x�����
�����

������
����

(c) 3rd step

x, y, z

x, y x, z

y

��

b, z

x

y

��

y
z��

��������

z

x��

���������

∅

x�����

�������

(d) Final graph

Fig. 4. Example of execution of Algorithm 1 with 3 variables

∅
x

��
x

y
��
x, y

y
z ��

y, z

z
x ��

x, z
y ��

x, y, z

From the final graph (Figure 4(d)) we can compute
the radix trees schemas by taking the maximal paths:

The first path corresponds to the radix tree
schema RT (〈〉, 〈x〉, 〈x, y〉) while the other two corre-
sponds to RT (〈y〉, 〈y, z〉) and RT (〈z〉, 〈z, x〉, 〈z, x, y〉),
respectively.

4.1 Using Radix Trees

Once we have created the radix tree schemas by using our algorithm, we need
some operations for inserting and removing values from them, thus creating the
concrete radix trees to be used for correlating messages and sessions. Moreover
we need to define a lookup operation, that, given a message, allows us to use

92 J. Mauro et al.

the (concrete) radix tree to find all the correlating sessions. To this aim we first
introduce the three operations described below. Here and in the following, unless
differently specified, with “radix tree” we mean a concrete radix tree, contain-
ing values for keys and whose leafs contain (pointers to) sessions. Moreover we
assume w.l.o.g. that the service has a unique c-set and therefore only one group
of radix trees. If the service has more than one c-set the following considerations
should be applied to every c-set.

– RT.add(s) is the operation for adding to the radix tree RT the session s;
– RT.del(s) is the dual operation that deletes the session s in RT ;
– RT.find(m) returns all the sessions which correlate with m. If no sessions

in RT correlates with m then the null pointer is returned.

Assuming that RT belongs to the radix tree schema RT (seq1, . . . , seqk), when
RT.add(s) is invoked s is added to the radix tree RT using as key the string
ϕs(x1)# . . . #ϕs(xl)# where 〈x1, . . . , xl〉 = seqk and ϕs is the c-instance for s.
In a similar way RT.del(s) deletes from RT the session pointer to s.

If 〈x1, . . . , xl〉 is the sequence of all the variable defined by the c-token ϕ of a
message m, the operation RT.find(m) can be applied iff there exists a sequence
seqi = 〈x1, . . . , xl〉. In this case this operation returns all the sessions whose keys
have as prefix the string ϕ(x1)# . . . #ϕ(xl)#.

Using these basic operation we can now define the operations which manage
the set of radix trees produced by our algorithm . More precisely, we assume that
the set of radix tree schemas produced by the algorithm has been instantiated
to a set of (concrete) radix trees. Then this set is managed by the following
three operations: find session(m) (for finding a session that correlates with
a message m); add session(s) (for adding the session s); del session(s) (for
deleting a session s). The definition of the add session(s) and del session(s) is
obvious since the only thing to do is to execute RT.add(s) and RT.del(s) for
every radix tree RT . The find session(m) instead first have to select a specific
RT based on the variables defined by the c-token of m and later return the
RT.find(m) result.

5 Correctness and Complexity Analysis

In this section we prove the correctness of Algorithm 1 and we discuss the com-
plexity of correlation mechanism based on it. In particular, we show that it pro-
duces the minimal number of radix trees needed to guarantee correctness. In the
following, as usual, we assume that V is the set of variables of a c-set and that
n = |V |.

First of all, we show that Algorithm 1 produces a number of radix trees
much smaller than 2n. With a slight abuse of notation, when no ambiguity arise,
we indicate by radix trees(P) both the graph produced by the algorithm, with
input P , the radix tree schemas obtained from this graph according to Definition
5, and the concrete radix tree obtained from the schemas as described at the
end of previous section. All the proofs of the theorems are reported in [7].

An Efficient Management of Correlation Sets with Broadcast 93

Theorem 1. If W ⊆ P(V) the result of radix trees(W) is a graph containing
at most

(
n

�n/2�
)

maximal paths. Hence the algorithm produces at most
(

n
�n/2�

)
radix trees schemas.

Next we show that the algorithm is correct, that is, the number of radix trees
produced is sufficient to check correlation.

Theorem 2. Let m be a message and V1, . . . , Vk be all the subsets of c-set vari-
ables that are defined by all the possible c-tokens. Then there exists a radix tree
schema produced by radix trees({V1, . . . , Vk}) which allows us to check if the
message correlates with a session.

Finally we show that the number of radix trees produced by the algorithm is the
minimal one which guarantees correctness.

Theorem 3. The graph produced by radix trees(P) contains the minimal num-
ber of maximal paths covering all the nodes in P .

As an obvious consequence of previous theorem we obtain that if we consider less
radix trees than those produced by Algorithm 1 we cannot establish correctly
correlation for some kind of messages. Thus our algorithm cannot be improved
with respect to the number of radix trees that one can use to solve this problem.

The complexity of Algorithm 1 is polynomial on the size of P . As for the com-
plexity of the operations described in Section 4.1, assuming that l is the maxi-
mum length of a c-set value and k is the number of the sessions that correlate with
a message m, the (time) complexity of find session(m), is O(n+knl) = O(knl).
For normal (i.e. non broadcast) messages the complexity of find session(m) re-
duces to O(nl). On the other hand, the (time) complexity of add session(s) and
del session(s) is O(

(
n

�n/2�
)
l) (for more details see [7]). We would like to underline

that, in practice, the number of the c-set variables which are used is very small
(less or equal to 5) so, in practice, the complexity of our operations is constant.

6 Conclusions and Future Work

We have proposed a data structure, based on radix trees, for managing a correla-
tion mechanism which supports also a broadcast communication in the context
of languages for service oriented computing. We have also described an algo-
rithm that computes the minimal number of radix trees required for handling
correctly every normal and broadcast message. The complexity of the correlation
operation is constant for normal messages, and linearly dependent with respect
to the number of targets for broadcast messages. The operations of session cre-
ation and termination have a complexity that depends on the number of different
types of broadcast messages. In the worst case (i.e. when an exponential num-
ber of broadcast messages is used) it is exponential. The worst case scenario is
however impossible in practice, since real scenarios use few types of broadcast
messages. For this reason the complexity of session creation and termination
have in practice a constant complexity.

94 J. Mauro et al.

The major drawback of our approach is memory consumption: having more
than one radix tree means that we require more memory to store the correlation
values. For services that use huge data as correlation values memory consumption
could be problematic. Nevertheless, we believe that in practice this is not an
issue, since correlation values should be small for minimizing the cost of the
message exchange over the network. If a service uses huge data as correlation
values then we argue that it is worth considering the introduction of a new
shorter key that can be used as a new correlation variable.

We are currently implementing the data structure and the algorithm in the
JOLIE language interpreter. With this new implementation hopefully we will be
able to provide a faster mechanism for the assignment of messages to session.

We are currently extending our work to support a property-based correlation
mechanism (see [2]) where also such operators as >, <,∨ can be used for the
assignment of messages and therefore the analogous of range queries in databases
arise. We think that radix trees could be very useful in this context, since these
data structures allow to manage range queries in a very natural way.

References

1. Web Services Business Process Execution Language Version 2.0,
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

2. Barros, A.P., Decker, G., Dumas, M., Weber, F.: Correlation patterns in service-
oriented architectures. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 245–259. Springer, Heidelberg (2007)

3. Carzaniga, A., Wolf, A.L.: Forwarding in a content-based network. In: SIGCOMM,
pp. 163–174 (2003)

4. Fabret, F., Jacobsen, H.-A., Llirbat, F., Pereira, J., Ross, K.A., Shasha, D.: Filter-
ing algorithms and implementation for very fast publish/subscribe. In: SIGMOD
Conference, pp. 115–126 (2001)

5. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A calculus
for service oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

6. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

7. Mauro, J., Gabbrielli, M., Guidi, C., Montesi, F.: An efficient management of
correlation sets with broadcast. Technical report (2011),
www.cs.unibo.it/~jmauro/papers/tech_report_coordination_2011

8. Montesi, F., Guidi, C., Lucchi, R., Zavattaro, G.: JOLIE: a java orchestration
language interpreter engine. Electr. Notes Theor. Comput. Sci. 181, 19–33 (2007)

9. Montesi, F., Guidi, C., Zavattaro, G.: Composing services with jolie. In: ECOWS,
pp. 13–22 (2007)

10. Morrison, D.R.: PATRICIA - practical algorithm to retrieve information coded in
alphanumeric. J. ACM 15(4), 514–534 (1968)

11. Mühl, G.: Generic constraints for content-based publish/Subscribe. In: Batini, C.,
Giunchiglia, F., Giorgini, P., Mecella, M. (eds.) CoopIS 2001. LNCS, vol. 2172, pp.
211–225. Springer, Heidelberg (2001)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
www.cs.unibo.it/~jmauro/papers/tech_report_coordination_2011

Session Typing for a Featherweight Erlang

Dimitris Mostrous and Vasco T. Vasconcelos

LaSIGE, Faculty of Sciences, University of Lisbon

Abstract. As software tends to be increasingly concurrent, the paradigm
of message passing is becoming more prominent in computing. The lan-
guage Erlang offers an intuitive and industry-tested implementation of
process-oriented programming, combining pattern-matching with message
mailboxes, resulting in concise, elegant programs. However, it lacks a suc-
cessful static verification mechanism that ensures safety and determinism
of communications with respect to well-defined specifications. We present
a session typing system for a featherweight Erlang calculus that encom-
passes the main communication abilities of the language. In this system,
structured types are used to govern the interaction of Erlang processes, en-
suring that their behaviour is safe with respect to a defined protocol. The
expected properties of subject reduction and type safety are established.

1 Introduction

In the age of web services, distributed systems and multicore processors, the
paradigm of message passing is becoming increasingly prominent in computing.
The functional-declarative language Erlang is widely used for process-oriented
software, utilising pattern-matching to extract messages from mailboxes, and
resulting in concise, elegant programs. However, it lacks a static verification
mechanism that can ensure safety and determinism of communications with
respect to well-defined protocol specifications. Such verification is highly useful
but also very challenging, since the language is dynamically typed, and any
type system has to work on top of the existing semantics of its communication
primitives.

In this work we present the first typing system for the concurrent fragment
of Erlang, based on session types, and distilled in a featherweight calculus. To
overcome the uncontrolled nature of process identifiers, which address the unique
mailbox owned by each process (thread), we make extensive use of the ability
of the language to generate unique references (fresh names), created with the
built-in function make ref(). By carefully controlling the use of references, and
by including them in messages where they play the role of uniquely identifying
(correlating) conversations, we can guarantee properties about the fine-grained
structure of communications between pairs of processes. For example we ensure
that messages are always of the expected type and that sending and receiving
follows a prescribed pattern respected by both sides.

The programming style required in our methodology may seem cumbersome
for simple programs with protocols consisting of a single message exchange, but

W. De Meuter and G.-C. Roman (Eds.): COORDINATION 2011, LNCS 6721, pp. 95–109, 2011.
c© IFIP International Federation for Information Processing 2011

96 D. Mostrous and V.T. Vasconcelos

without references it is difficult to ensure message correlation even for simple
request–response: using just process identity (e.g., the unique mailbox of the
sender) is not enough, as any process can “impersonate” another just by knowing
its identity which it can attach to a message [2]. Thus, make ref() seems to be the
only means to “get concurrency right.” Yet, an ad-hoc use of make ref() may lead
to applications that suffer from interference, race conditions, or even that fail
from delivering the expected results. Our system provides for a methodology that
governs its use, while statically guaranteeing that programs behave according to
the plan. We have only addressed a tiny part of the language, a language that is
untyped in nature. Scaling our proposal to a larger subset of Erlang constitutes
an interesting challenge. Moreover, our contribution can be viewed also as a type
system for an important pattern of concurrent behavior, a pattern that goes
well beyond what conventional session types currently allow, while presenting
ideas that may be incorporated in future message passing, buffered, concurrent
languages where receivers may inspect a mailbox picking appropriate messages.

Core Erlang [4], a canonical format for Erlang programs, is used internally
by the Erlang compiler, and also by many verification tools, most notably Dia-
lyzer which is part of the Erlang distribution. Dialyzer detects errors by infering
types based on Success Typings [9]. However, until now the type-based methods
developed for Erlang focus entirely on the functional part of the language, and
are therefore irrelevant in verifying the properties of concurrent message-passing
programs.

More recently, in [5], an analysis method was implemented that can statically
detect definite communication errors in Erlang programs, based on a topological
synthesis of communication primitive usages. Such properties include the case
where sent messages cannot be matched by a receive, however, it has a differ-
ent approach than ours: it does not check programs against types, but rather
analyses them against each other, detecting undesirable compositions of send-
ing and receiving. On the other hand, this method is automated and has been
implemented on top of the Dialyzer tool.

The rest of the paper is structured as follows. The next section presents our
language via an example. Then, Section 3 formally introduces the syntax and
reduction semantics of the language. Section 4 presents the type assignment
system and its main results. Section 5 concludes the paper.

2 A Motivating Example

Consider the classical readers-writer problem. A given resource can be written
by (exactly) one writer when no readers are reading; it can be simultaneously
read by a bounded number or readers while no writer is writing. A controller
protecting accesses to such a resource provides for two distinct operations (or
services): read and write. Given the constraints enumerated above, each of these
services is associated with a little protocol.

Upon invoking service write, writers receive one of two messages: welcome

meaning that no reader is reading, or reading meaning there is at least one
reader reading. In the first case, the protocol terminates (the writer may try

Session Typing for a Featherweight Erlang 97

later, perhaps in a busy waiting manner); in the second case, the writer must
store its data and the protocol terminates. Readers, on the other hand, invoke
service read . Three things can happen: the reader is allowed in, there is one writer
writing, or the bound on the number of readers was exceeded. In the first case,
the reader receives a message welcome, after which it must store its data and the
protocol terminates. In the two other cases, the protocol terminates after the
reception of a writing or a full message.

The services and their associated protocols are captured by simple type ab-
stractions. To a resource we associate a record type describing the two services:

{write: Write, read : Read}
Each service is described by a session type. Session type Write is of the form:

⊕ [welcome: &[load : end], reading : end]

where type operator ⊕ means that the resource sends one of the two messages
welcome or reading , and operator & says that the resource accepts message load .
Type constructor end denotes the conclusion of the session. The session type
Read is similar, only that it starts with three options.

⊕ [welcome : &[store: end], writing : end, full : end]

We write the code for the resource monitor in an Erlang-like language. When
idle the monitor accepts any of the service requests, answers welcome in both
cases and proceeds appropriately. We could try writing our code as follows,

idle () = receive {write,Writer} →Writer!{welcome}, ...
{read ,Reader} →Reader!{welcome}, ...

Messages are selected from the monitor’s mailbox by a pattern matching mecha-
nism. A pattern of the form {write,writer} matches an arbitrary message
composed of a label (an atom in the Erlang jargon) write and any value (the
process identifier—pid in short—of the writer) that becomes associated to vari-
able Writer. Term Writer!{welcome} sends a message {welcome} to the Writer’s
mailbox.

Each interaction with the monitor is composed of a series (of two or three)
messages; we call a session the sequence of messages that pertain to the same run
of some protocol. When a monitor interacts with different clients, the client’s pid
is enough to distinguish to which session messages belong. For more elaborate
scenarios, where the same client constitutes two or more readers or writers, we
must resort to more complex protocols. A common method used to distinguish
different sessions running simultaneously, is to use correlation sets [3,10].

A correlation set is a set of identifiers (references in the Erlang jargon) that
uniquely identifies a session. Clients create the required references and send
them in the service invocation message. For each session we need two correlation
references, one for the sending operations, the other for receiving. So here is
the revised version of the monitor, noting that ‘,’ denotes sequencing and ‘;’
separates alternative receive clauses, with ‘.’ marking the end:

idle () = receive {write,X,Y,Writer} →Writer!{welcome ,Y}, write(X);
{read ,X,Y,Reader} →Reader!{welcome,Y}, readOne(X).

98 D. Mostrous and V.T. Vasconcelos

In the first line the monitor receives a message with two references and uses
the second, Y, for letting the writer know to which session does the welcome

message belong to. The writer, in turn, uses the first reference, X, to ‘sign’ the
subsequent messages in the session. In the write phase, the monitor may accept
messages from the just initiated session (we omit the actual data to be stored
at the resource).

write (X) = receive {store,X} →idle ().

During this phase, readers invoking the read service would block waiting for the
server to go back to the idle state. Our language allows for more than this: the
server may as well answer immediately to clients (with a writing message), while
waiting from the writer’s store message. That is, our server is able to initiate new
services while running other services.

write (X) = receive {store,X} →idle ();
{read , ,Z,Reader} →Reader!{writing ,Z}, write(X).

The code for the read phase should by now be easy to understand; for simplicity
we allow two simultaneous readers, max. And we never leave a client without an
answer.

readOne(X1) = receive {load ,X1} →idle();
{write, ,Z,Writer} →Writer!{reading ,Z}, readOne(X);
{read ,X2,Y2,Reader2} →Reader2!{welcome ,Y2}, readTwo(X1,X2).

readTwo(X1,X2) = receive {load ,X1} →readOne(X2);
{load ,X2} →readOne(X1);
{write, ,Z,Writer} →Writer!{reading ,Z}, readTwo(X1,X2);
{read , ,Z,Reader} →Reader!{full ,Z}; readTwo(X1,X2).

In the readTwo phase we decided to honor all possible cases: continuing with the
two open sessions with both readers, opening new sessions with new readers and
writers. But that need not be the case, at any moment programmers may choose
which sessions to continue and which new service requests to accept.

To complete our example we write the code for a reader that tries to store at
the resource (and gives up if unable).

reader () = make ref X,Y for self ,Resource in
Resource!{read,X,Y,self},
receive {welcome , Y} →Resource!{load ,X};

{writing , Y} →;
{full , Y} → .

For convenience, we create pairs of fresh references in one step with a make ref

operation. The thus created references, X and Y, must be bound to the pid of
the processes that will engage in interaction. The monitor, with pid Resource, is
going to use X for reading and Y for writing. Symmetrically, the current writer
(with pid self) will use Y for reading and X for writing.

What guarantees do we obtain from our type system? To discuss this mat-
ter we must remember that, in Erlang, message sending is non-blocking and
that messages may be retrieved from the mailbox in any order (as opposed to,

Session Typing for a Featherweight Erlang 99

Identifiers

u ::= X variable
| α process id
| r reference

Values

V ::= u identifier
| a atom

Messages

M ::= {�V } tuple

Receive patterns

p ::= { �X} when �X = �V

Terms

P ::= V value
| u!M, P send
| receive pi → Pi

i∈I receive
| spawn P asX in P spawn
| make ref X, X for u, u in P refs

Configurations

C ::= α : �M mbox
| α [P] process
| (να)C new pid
| (νrαrα)C new refs
| C | C par

Fig. 1. Syntax

say, first-in first-out). The guarantee that Erlang processes engage in protocols
as specified by the session types—commonly known as session fidelity—is cap-
tured in our setting by inspecting mailboxes at termination. In the case of the
Reader above, the type system guarantees that the reader did not receive (dur-
ing its short life) unexpected messages from the server that remain unseen in
the mailbox. The same can be said of the monitor: at termination (if this ever
happens) no unexpected message remains in the mailbox.

3 Featherweight Erlang

This section presents our language, its syntax and reduction semantics.
For the programmers’ language we rely on a (countable) set of variables; we

use upper-case letters X and Y to range over variables, following the Erlang
conventions. A distinguished variable, self, plays a special role in the semantics.
We also need a set of non-interpreted atoms (or labels), ranged over by lower-
case letter a. The syntax of the language is defined in Figure 1. The identifiers in
the programmer’s syntax are variables only (the remaining two alternatives are
described below). Values V of the programmers’ language are simply variables
or atoms. The messages exchanged by processes, M , are tuples of values.

A program is a (closed) term that uses for identifiers variables only. The
constructors of terms include values as well as primitives to send and to re-
ceive messages, to spawn new processes and to create new unique references. A
term of the form u!M, P sends message M to the process named u and contin-
ues as P . A term of the form receive pi → Pi

i∈I attempts to pattern-match a
message from the mailbox against the various patterns pi and continues with
the term Pj for which the matching succeeds (patterns and pattern matching
are described below), blocking if no message matches. A term spawnP asX inQ
creates a new process with running code P , binds the (newly created) process

100 D. Mostrous and V.T. Vasconcelos

identifier to variable X and continues with term Q. Finally, a term of the form
make ref X, Y for u, v inP creates two unique references, binds them to variables
X and Y , associates them to process identifiers u and v, and continues with
term P . A simple form of terms allowing the description of unbounded behaviour,
e.g. def A �X = P in P and A�V , can be easily incorporated in our language, fol-
lowing, e.g., [7,12]. For the sake of simplicity, and in order to concentrate on the
novel aspects of our system, we decided not to include them.

For the runtime language we need two new classes of identifiers: process iden-
tifiers (pid’s) denoted by α and unique references denoted by r. The syntax of
terms remains unchanged, except for the extended category of identifiers. Terms
do not engage in reduction per se. Instead they must be uploaded into a con-
figuration. Configurations are built from five different constructors. A term of
the form α : �M describes a mailbox for the process with pid α, containing a list
of (unread) messages �M ; a process α [P] is a term P located at pid α. Then we
have scope restriction operators, (να)C for process identifiers, and (νrα1

1 rα2
2)C

for pairs of references. Finally, configurations of the form C1 | C2 allow C1 and
C2 to run in parallel.

We count with three binders for terms and two for configurations. They are:
the variables �X in a receive pattern { �X} when �Y = �u, variable X in a spawn
term spawnP asX inQ, variables X1 and X2 (but not u1 and u2) in a refer-
ence creation term make ref X1, X2 for u1, u2 in P , process identifier α in config-
uration (να)C, and references r1 and r2 (but not α1 and α2) in configuration
(νrα1

1 rα2
2)C. In order to simplify the subsequent presentation we use letter n for

any of the binders α or rα1
1 rα2

2 . The sets of free variables and bound variables
are defined accordingly. We follow Barendregt’s variable convention, requiring
bound identifiers to be distinct from free identifiers in any mathematical con-
text. A substitution is a map (finite, partial domain) from variables into values,
written {�V/�X} and ranged over by σ. The (capture free) operation of applying
a substitution to term P , denoted Pσ, is standard.

If P is a program (a closed term), we upload P at our machine by building a
configuration of the form

(να)(α [P{α/self}] | α :ε)

composed of program P located at process identifier α, and empty mailbox
for the same pid (ε denotes the empty sequence). The distinguished nature of
variable self is apparent in P{α/self}: process P may refer to its own pid via self,
which at runtime is replaced by the actual value α.

Structural congruence is the smallest relation on processes including the rules
in Figure 2. The first two rules say that parallel composition is commutative
and associative. The rules in the second line deal with scope restriction. The
first, scope extrusion, allows the scope of n to encompass C2; due to the variable
convention, n bound in (νn2)C1, cannot be free in C2. The other two rules allow
exchanging the order of restrictions.1

1 Notice that (νrα1
1 rα2

2)(να1)C �≡ (να1)(νrα1
1 rα2

2)C due to the variable convention
(the left-hand side configuration is not well formed).

Session Typing for a Featherweight Erlang 101

C1 |C2 ≡ C2 |C1 (C1 |C2) |C3 ≡ C1 | (C2 |C3)

(νn)C1 |C2 ≡ (νn)(C1 |C2) (νn1)(νn2)C1 ≡ (νn2)(νn1)C1

Fig. 2. Structure Congruence

match({ �X} when �Y = �U, {�V }) = match�Y =�U (�X, �V)

match�Y =�U (X �X, V �V) = {V/X} ∪ match�Y =�U (�X, �V) if X /∈ �Y

match�Y1X �Y2=�U1V �U2
(X �X, V �V) = {V/X} ∪ match�Y1X�Y2=�U1V �U2

(�X, �V)

match = (ε, ε) = ∅

Fig. 3. Pattern Matching

Messages are read from a mailbox via a pattern matching mechanism. In order
to simplify the definitions (type system included), patterns { �X} when �Y = �V

introduce as many variables �X as the length of the tuple expected. The actual
matching is then performed on the �Y = �V part. The definition is in Figure 3. If
defined, the output of the matching function may then be applied to a term. In
examples we often elide the when clause, by using atoms as well as previously
introduced variables in patterns. The code for write presented previously

write (X) = receive {store,X} →idle ().

must be understood as

write (X) = receive {Y,Z} when Y,Z=store,X →idle().

Reduction is the smallest relation on processes that includes the rules in
Figure 4. Rule send places message M in the mailbox of the target process
α2, while the sender continues as P . Syntactically splitting the process behav-
ior α [P] from its mailbox α : �M as two separate resources allows a process to
send to its own mailbox. That is the case when, in rule send, α1 is equal to α2.
Rule recv reads from the mailbox the first message M that matches one of the
patterns pi in the receiving term. The matching function, if defined, yields a
substitution σ which we apply to term Pj , corresponding to the selected pattern
pj . The message is removed from the mailbox. If no pattern matches M , then
the configuration does not reduce. Rule mkref creates two fresh references r1 and
r2 and replaces them by bound variables X1 and X2 in term P . Each reference
becomes associated in the ν-binder to the correspondent process identifier, α1

or α2. Rule spawn creates a fresh pid α2 for the spawned term P . Two new
resources are created: process α2 [P{α2/self}] where the self variable is replaced

102 D. Mostrous and V.T. Vasconcelos

α1 [α2!M, P] | α2 : �M −→ α1 [P] | α2 : �MM (send)

j ∈ I match(pj , M) = σ match(pi, M
′) undefined ∀ i ∈ I,∀M ′ ∈ �M1

α : �M1M �M2 | α [receive pi → Pi
i∈I] −→ α : �M1

�M2 | α [Pjσ]
(recv)

α [make ref X1, X2 for α1, α2 inP] −→ (νrα1
1 rα2

2)α [P{r1r2/X1X2}] (mkref)

α1 [spawn P asX in Q] −→ (να2)(α1 [Q{α2/X}] | α2 [P{α2/self}] | α2 :ε) (spawn)

C1 −→ C2

C1 | C3 −→ C2 | C3

C1 −→ C2

(νn)C1 −→ (νn)C2

C1 ≡ C2 −→ C3 ≡ C4

C1 −→ C4

(par, res, str)

Fig. 4. Reduction

by α2, and the (empty) queue α2 : ε. The newly created pid is replaced in the
continuation process Q, so that Q may then communicate with the new process.

What can go wrong with our machine? Looking at the operational semantics
(Figure 4) nothing, really. Send always succeeds (for we admit mailbox buffers to
be unbounded); receive may not succeed (for two reasons: no message in mailbox,
no message in the mailbox matches the patterns) but that does not constitute an
abnormal behaviour; finally, there is no reason why make ref and spawn should
not succeed.

The possible abnormal conditions have to do with our understanding of how
sessions must happen. We identify two cases: a process terminates (reduces to
a value) but leaves session messages in the mailbox; a process tries to receive
a message with a given label within a given session but finds no such message
in the mailbox. For the former case and given the asynchronous nature of our
operational semantics, one may still find, at termination and in the mailbox,
a session initiation message followed by session messages. This does constitute
a malfunctioning since the session was never started on the server side. In the
latter case, processes need not receive messages for all open sessions at all times,
but if they decide to receive a message on a given session, then they must contain
patterns for all possible messages in that session (otherwise one or both of the
participants can get stuck by being unable to receive the next message).

We then say that a configuration C constitutes an error when C is structural
congruent to (ν�n)(α [P] | α : �M | C′) and

Incomplete session: term P is a value, buffer �M is of the form �M1{ , X, } �M2,
and no message in �M1 is of the form { , , X, }, or

Unmatched session message: term P is receive ({X, Y, }whenX, Y = a, r →
Q, . . .), there is one message in �M of the form { , r, } but no message of the
form {a, r, }.

The type system in the next section filters out such abnormal cases.

Session Typing for a Featherweight Erlang 103

T ::= {ai : Si}i∈I process id
| atom atom

S ::= &[ai : Ti → Si]
i∈I receive

| ⊕[ai : Ti → Si]
i∈I send

| end close

Fig. 5. Types

4 Typing

This section introduces our type system and presents its main result.
The syntax of types is in Figure 5. We distinguish types T for shared data

and session types S. In the former category we have types for pids, {ai : Si}i∈I ,
describing the set of sessions a process may engage in, and the type of atoms.
For session types we distinguish a type &[ai : Ti → Si]i∈I describing patterns
in a receive term labelled with ai, receiving values of type Ti, and proceeding
as prescribed by Si; a type ⊕[ai : Ti → Si]i∈I describing the various messages
a client may send; and end, a type describing the completed session. A process
may engage in different new sessions Si, each labelled with a different label ai.
Receiving on a given session yields a type &[ai : Ti → Si]i∈I ; a client that sends
on the same session has the dual type ⊕[ai : Ti → Si]i∈I , where S denotes the
type dual of S. Type end is dual of itself.

We use two sorts of typing environments: shared environments, Γ , containing
entries of the form p : T , and linear environments, Δ, containing entries (u1, u2 �

p) : S and (up1
1 , up2

2) : ref (with p, p1, p2 variables or process identifiers, and u1, u2

variables or references). An entry of the form (u1, u2 � p) : S describes a session
running between the current process and p, using references u1 and u2, and at
state S; an entry (up1

1 , up2
2) : ref describe a pair of references u1, u2 destined to

be used in a session between processes with pids p1 and p2.
In typing rules we will freely compose Δ environments assuming that the

result is defined (or the respective rule cannot be applied). The principle of
composition is that when a pair of new references is added, the references do
not already occur in the environment; also, when a session usage is added, the
only allowed occurrence of the mentioned references is in a dual usage where they
appear in reverse order. Formally, we have that Δ, (up1

1 , up2
2) : ref is defined when

u1 �= u2 and, if (up3
3 , up4

4) : ref ∈ Δ or (u3, u4 � p4) : S2 ∈ Δ, then u1,2 �∈ {u3, u4}.
Similarly, Δ, (u1, u2 � p1) : S1 is defined when u1 �= u2 and, if (up3

3 , up4
4) : ref ∈ Δ

then u1,2 �∈ {u3, u4}, and if (u3, u4 � p4) : S2 ∈ Δ, then u1,2 �= u3,4 and u1 = u4

iff u2 = u3.
The type system for terms is in Figure 6. Sequents are of the form Γ ; Δ �u

P : T , meaning that, under contexts Γ and Δ, term P with pid u has type T .
The rules for identifiers and atoms should be evident; we require ‘completed’

linear contexts at the leaves of typing derivations, as usual in session type sys-
tems. We then have two rules for message send, one to initiate a new session,
the other to output on a running session. In the former case, we make sure that
the process on p knows how to start an aj session, read (and remove) the pair

104 D. Mostrous and V.T. Vasconcelos

Γ, u : T ; {(ui, wi � pi) : end}i∈I � u : T Γ ; {(ui, wi � pi) : end}i∈I � a : atom
(identifier,atom)

Γ ; � p : {ai : Si}i∈I Γ ; Δ, (u2, u1 � p) : Sj �u P : T j ∈ I

Γ ; Δ, (up
1, u

u
2) : ref �u p!{aj , u1, u2, u}, P : T

(request)

Γ ; � V : Tj Γ ; Δ, (u1, u2 � p) : Sj �u P : T j ∈ I

Γ ; Δ, (u1, u2 � p) : ⊕ [ai : Ti → Si]i∈I �u p!{aj , u2, V }, P : T
(out)

Γ ; Δ �acc
u pi → Pi : T Γ ; Δ �in

u qj → Qj : T ∀i ∈ I, j ∈ J consistent(Δ, (qj)
j∈J)

Γ ; Δ �u receive (pi → Pi)i∈I , (qj → Qj)j∈J : T
(receive)

Γ ; � u : {ai : Si}i∈I Γ ; Δ, (X1, X2 � p) : Sj �u P{aj/Xa} : T j ∈ I

Γ ;Δ �acc
u {Xa, X1, X2, p} when Xa = aj → P : T

(accept)

Γ, Y : Tj ; Δ, (u1, u2 � p) : Sj �u P{aju1/XaX} : T j ∈ I

Γ ;Δ, (u1, u2 � p) : &[ai : Ti → Si]i∈I �in
u {Xa, X, Y } when XaX = aju1 → P : T

(in)

Γ, X : T ; Δ1 �X P{X/self} : Γ, X : T ; Δ2 �u Q : T

Γ ; Δ1, Δ2 �u spawn P asX in Q : T
(spawn)

Γ ;Δ, (Xu, Y v) : ref �u P : T

Γ ; Δ �u make ref X, Y for u, v in P : T
(mkref)

Fig. 6. Typing rules for terms

of references u1, u2 from Δ and add a new session-entry to Δ. The new entry
records the two references, the pid of the target process and the dual (since we
are on the client side) of the session type for session aj . In the latter case we are
within a session: we type check the continuation term P to obtain a type Sj for
the session pertaining to u2 (the write reference) and build a ⊕ type accordingly.

The rule for receive is the most complex one for there may be multiple
branches, some trying to open new sessions, others trying to progress on already
open sessions. We assume the branches partitioned in two sets: those opening
new sessions and those engaged in open sessions. For the former we use rule
accept which should be confronted with rule request. This time we use Sj be-
cause we are on the server side; we also propagate the effect of pattern matching
on the continuation process P , via an appropriate substitution. For the latter
we use rule in which should be confronted with rule out: we place an entry for
message payload Y in the shared environment and propagate the substitution
as in accept; for the type of the session, we use a & type, rather than a ⊕ type.

In the rule for receive all branches must have the same linear context Δ. But
this is not enough, for in rule in we ‘guess’ from one label aj the whole set of
labels in a receive session type. We must then make sure that we do not declare
in the type labels that are not in the receive pattern. Predicate consistent is
used for the effect. We say that context Δ is consistent with a set of patterns
({Xi, Yi, } when Xi, Yi = ai, ui)i∈I) when ∀i ∈ I.(ui, �) : &[a : → , . . .] ∈ Δ
implies ∃j ∈ I s.t. a = aj and ui = uj .

Session Typing for a Featherweight Erlang 105

For spawn, we place an entry X : T for the spawned process P in the typing
environment and type check P by replacing self by X . The continuation term Q
also knows X at type T . The shared environment is passed to both terms,
whereas the linear one is split in two, one for each term. The rule for make ref
places a new ref-entry for the newly created pair of references in the linear
context, and type checks the continuation process P .

At this point we can explain the reasons behind using two references per
session instead of just one. Consider the following example:

clientAndServer () = make ref X,Y for self , self in self !{connect,X,Y,self},
receive {connect,X,Y,Client} →

self !{hello,Y, }, receive {hello,Y, } →...

The above code, in which the request is made to self, is typable in our system, but
if we had been using only one reference X , the presence of both ends of a session
in a single term would (eventually, after some steps) produce a single typing
for (X � self) which would include the actions of both participants (sending of
{hello...} followed by receive of the same message) on one session type, due to
the aliasing of the two intended uses of X in one place. This soundness problem
with aliased endpoints is well-understood in the session types literature; see [12].

The type system in Figure 6 does not yield an obvious algorithm: it requires
splitting linear context in rule spawn, as well guessing types in different rules. For
the former problem there are well-known techniques associated with linear type
systems that pass the whole context to one of the subterms, get back the unused
part of the context and pass it to the second subterm; see e.g., [11]. The second
problem occurs in rules spawn, out and in. In the first case, the common solution
is to seek the help of programmers by requiring a type annotation for the pid
of the spawned process P , providing the session types for its various services.
This would avoid tedious annotation of every receive, in which new sessions are
intermixed with existing ones that, moreover, can be partially satisfied. In rule
in we need to guess the right &-type based on one of its branches. All these
branches are then gathered together in rule receive where all types are checked
for consistency via predicate consistent. The strategy here goes along the lines of
preparing, in rule in, singleton branch types, and then merging them all together
in rule receive. Finally, for rule out we record one only ⊕-branch in the type and
add the remaining types to match the requirements in the remaining rules.

In order to prove subject-reduction we also have to type configurations. To fa-
cilitate typing in the presence of mailboxes, we introduce types τ for messages in
mailboxes. A type a(T)@r represents a session message with reference r carrying
an atom a and a value of type T ; type req is for new session requests.

The typing rules for configurations are in Figure 7. When typing with process,
the actual process id α is propagated in the typing of the enclosed term, ensuring
that it is understood as self. Rule par splits the linear context, and passes each
part to a different sub-configuration (cf. rule spawn for terms in Figure 6). In
rule newpid we introduce two usages for the subject pid: we add α : T in the
shared environment, exposing a type for incoming requests, and we also expect
in the linear environment some entry α : �τ for the corresponding mailbox.

106 D. Mostrous and V.T. Vasconcelos

Γ ; Δ �α P :

Γ ; Δ � α [P]

Γ ; Δ1 � C1 Γ ; Δ2 � C2

Γ ; Δ1, Δ2 � C1 | C2
(process, par)

Γ, α : T ; Δ, α : �τ � C

Γ ;Δ � (να)C

Γ ; Δi �α Mi : τi ∀i ∈ 1 . . . n

Γ ;Δ1, . . . , Δn, α : τ1 . . . τn � α :M1 . . . Mn

(newpid, mbox)

Γ ; ∅ � α : {ai : Si}i∈I j ∈ I

Γ ; {(r1, r2 � α′) : Sj} �α {aj , r1, r2, α′} : req

Γ ; ∅ � V : T

Γ ; ∅ � {a, r, V } : a(T)@r
(reqmsg, sesmsg)

Γ ; Δ, (rα1
1 , rα2

2) : ref � C

Γ ; Δ � (νrα1
1 rα2

2)C

α1 : �τ1, α2 : �τ2 ∈ Δ S1 − (�τ1 � r1) = S2 − (�τ2 � r2)
Γ ; Δ, (r1, r2 � α2) : S1, (r2, r1 � α1) : S2 � C

Γ ; Δ � (νrα1
1 rα2

2)C
(sesrefs, newrefs)

Fig. 7. Typing rules for configurations

Rule mbox which types each message in the mailbox of α and composes the
linear environments together with a sequence of message types for α. In turn,
we can examine the message typing rules reqmsg and sesmsg. In reqmsg the
request message introduces, in the linear environment, the usage that the process
receiving the message would perform, which is needed to match the symmetric
(dual) usage obtained with rule request of Figure 6. Observe that the given type
req does not need to carry additional information. Then in sesmsg a session
message is given a type a(T)@r; a sequence of such message types can inform
about the messages of a session that are already in the mailbox, and is used to
obtain the correct remaining usage (modulo these messages) per session.

Rule newrefs is for when a pair of references has been created, but a session
request message has not been sent yet. It facilitates a subsequent use of rule
request. Rule sesrefs ensures that sessions are dual. To obtain the actual session
type that remains to be performed on each side of a session, we carefully advance
the session types Si of each session partner according to the types of messages
already received. To achieve this, we utilise two auxiliary definitions. First, we
want to extract from a mailbox the message type information that pertains to
the specific reference ri used for input; for this we use (τi � ri) defined as:

req�τ � r = �τ � r a(T)@r�τ � r = a(T)(�τ � r) a(T)@r′�τ � r = �τ � r if r �= r′

which generates a sequence (written �ρ) of message pre-types a(T) stripped of
reference information. Then, we advance each session type Si by calculating the
session remainder S′

i given from Si − ρi = S′
i. The remainder is defined as:

S − ε = S &[ai : Ti → Si]i∈I − aj(Tj)�ρ = Sj − �ρ if j ∈ I

⊕[ai : Ti → Si]i∈I − �ρ = ⊕ [ai : Ti → Si]i∈I

In the above definition, branch types advance according to received messages,
but selections remain unchanged since they correspond to the messages that will
be sent, and not to those that are received.

Session Typing for a Featherweight Erlang 107

The basic tenet of sessions is that remaining communications always “match,”
captured by the notion of type duality. To this end, following the conditions of
type rule sesrefs, we define balanced environments below.

Definition 1 (Balanced Δ). Predicate balanced(Δ) holds if (r1, r2 � α2) : S1

and (r2, r1 � α1) : S2, α1 : �τ1, α2 : �τ2 in Δ implies S1 − (τ1 � r1) = S2 − (τ2 � r2).

Next, we define an ordering on linear environments that specifies the ways in
which typings evolve with reduction.

Definition 2 (Δ Reduction). We define Δ⇒ Δ′ as follows:

(r2, r1 � α1) : S, (r1, r2 � α2) : &[ai : Ti → Si]
i∈I , α1 :�τ1aj(Tj)@r1�τ2 ⇒

(r2, r1 � α1) : S, (r1, r2 � α2) : Sj , α1 :�τ1�τ2 if j ∈ I

(r1, r2 � α2) : ⊕ [ai : Ti → Si]
i∈I , α2 :�τ2 ⇒ (r1, r2 � α2) : Sj , α2 :�τ2aj(Tj)@r2 if j ∈ I

(rα1
1 , rα2

2) : ref ⇒ (r2, r1 � α1) : S, (r1, r2 � α2) : S

Δ ⇒ Δ Δ1, Δ2 ⇒ Δ′
1, Δ2 if Δ1 ⇒ Δ′

1

A property of the evolution of linear environments with ⇒ is that it preserves
balance, which in turn constitutes a measure of type soundness.

Lemma 1 (Balance Preservation). If balanced(Δ) and Δ ⇒ Δ′ then
balanced(Δ′).

Subject Reduction (type soundness) ensures that after reduction processes can
be typed and that the resulting linear environment follows the above ordering.
By Balance Preservation, this implies that the resulting environment is also
balanced. The same can be easily shown for structural transformation.

Theorem 1 (Subject Reduction). If Γ ; Δ � C with balanced(Δ) and C −→
C′, then Γ ; Δ′ � C′ with Δ⇒ Δ′.

We can now state Type Safety which guarantees that configurations that are
typed with balanced environments never reduce to an error configuration. Note
also that environments are always balanced for user-level code in which no free
references occur.

Theorem 2 (Type Safety). If Γ ; Δ � C with balanced(Δ), then C does not
reduce to an error.

Proof (Outline). Type Safety can be proved easily by contradiction: since we
have Subject Reduction it is enough to show that error processes are not ty-
pable. In the case of an incomplete session with input reference r (where the
corresponding request message has been consumed), the only possible typing
mentioning r in a terminated process α [V] will be end, and the mailbox will
have a non-empty set of session messages on r not preceded by a corresponding
request message (with input reference r); therefore the session remainder will be

108 D. Mostrous and V.T. Vasconcelos

undefined. In the case of unmatched messages, we can show that a configuration
in which a mailbox contains a message carrying r together with an atom that
is not supported in the receiving process is untypable, since again the message
remainder will be undefined. In both cases an application of sesrefs will fail.

There are other undesirable configurations, namely when the same reference ap-
pears in messages occurring in parallel threads (causing non-determinism in the
receiving order), or when subsequent (or parallel) requests share some reference.
However, such configurations are trivially untypable, since the linear environ-
ments composed in these cases are undefined.

5 Further Work

Some Erlang programs consist of simple message exchanges and do not require
provisions for sessions, in particular the use of references. We can easily adapt
our system to handle these cases by extending pid types to {ai : Si, bj : Tj}i∈I,j∈J

allowing a process to receive simple messages such as {b, V }. Then, receive pat-
terns of the shape {X, Y } when X = b can be typed using an extra rule in the
style of accept, to be invoked from the receive rule in Figure 6.

Our type system guarantees that all within-session messages have a chance of
being received. It would be desirable to also guarantee this property for session
initiation messages, thus offering stronger behaviour guarantees. Intuitively, we
need to ensure that at any state, terms can receive all possible session-initiation
messages, either immediately or by reducing to a state that does so. A technique
along the lines of non-uniform receptivity may prove helpful [1]. Moreover, since
Erlang has general pattern matching, it would be useful to allow guards to impose
constraints on the values received (e.g., receive only integer 5), and this can be
achieved by using dependent types.

Delegation is the term used to describe the ability to pass a session identifier on
a message. It allows, e.g., for a server to balance its load by sending some (open)
sessions to other servers. The very nature of Erlang makes delegation a delicate
matter, as opposed to the pi calculus where it is built in the language. Due to
the nature of Erlang semantics, where communication is buffered, each process
is co-located with its mailbox, and messages are addressed to pids, delegation
requires a fairly complex protocol, and remains outside the scope of this work (if
interesting at all in Erlang). A possible source of inspiration may come from the
work on Session Java where a runtime API implements a delegation protocol for
socket based session communication [8].

In order to concentrate on the novelty of our proposal, we deliberately ex-
cluded unbound behaviour. Such an extension should be easy to include via,
e.g., recursive term definitions, as explained in Section 3. Realistic examples
may require recursive types. This is, e.g., the case of our example in Section 2
if we allow an unbounded number of store or load operations in a sequence.
Fortunately, recursion in session types is well studied (see, e.g., [6,12]) and its
incorporation in the present setting should not present difficulties. In order to

Session Typing for a Featherweight Erlang 109

better convey our typing proposal, the typing system in this paper is not algo-
rithmic. We are nevertheless confident that there is an equivalent algorithmic
type system (see discussion in Section 4).

Acknowledgements. We are indebted to the anonymous reviewers and to Kostis
Sagonas for their comments. This work was supported by FCT/MCTES via
projects PTDC/EIA–CCO/105359/2008 and CMU–PT/NGN44–2009–12.

References

1. Amadio, R.M., Boudol, G., Lhoussaine, C.: On message deliverability and non-
uniform receptivity. Fundam. Inf. 53, 105–129 (2002)

2. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming
in Erlang, 2nd edn. Prentice-Hall, Englewood Cliffs (1996)

3. Business process execution language for web services,
http://public.dhe.ibm.com/software/dw/specs/ws-bpel/ws-bpel.pdf

4. Carlsson, R.: An introduction to Core Erlang. In: PLI 2001 Erlang Workshop (2001)
5. Christakis, M., Sagonas, K.: Detection of asynchronous message passing errors

using static analysis. In: Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS,
vol. 6539, pp. 5–18. Springer, Heidelberg (2011)

6. Gay, S.J., Hole, M.J.: Subtyping for session types in the pi calculus. Acta Infor-
matica 42(2/3), 191–225 (2005)

7. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998),
http://www.di.fc.ul.pt/ vv/papers/honda.vasconcelos.kubo language-

primitives.pdf

8. Hu, R., Yoshida, N., Honda, K.: Session-based distributed programming in java. In:
Ryan, M. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidelberg
(2008)

9. Lindahl, T., Sagonas, K.: Practical type inference based on success typings. In: 8th
ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming, PPDP 2006, pp. 167–178. ACM, New York (2006)

10. Viroli, M.: Towards a formal foundation to orchestration languages. Electronic
Notes in Theoretical Computer Science 105, 51–71 (2004); Proceedings of the First
International Workshop on Web Services and Formal Methods (WSFM 2004)

11. Walker, D.: Substructural Type Systems. In: Advanced Topics in Types and Pro-
gramming Languages. MIT Press, Cambridge (2005)

12. Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for struc-
tured communication-based programming revisited: Two systems for higher-order
session communication. In: 1st International Workshop on Security and Rewriting
Techniques. ENTCS, vol. 171(4), pp. 73–93. Elsevier, Amsterdam (2007)

http://public.dhe.ibm.com/software/dw/specs/ws-bpel/ws-bpel.pdf
http://www.di.fc.ul.pt/~vv/papers/honda.vasconcelos.kubo_language-primitives.pdf
http://www.di.fc.ul.pt/~vv/papers/honda.vasconcelos.kubo_language-primitives.pdf

Safe Parallel Programming with Session Java

Nicholas Ng1, Nobuko Yoshida1, Olivier Pernet1,
Raymond Hu1, and Yiannos Kryftis2

1 Imperial College London
2 National Technical University of Athens

Abstract. The session-typed programming language Session Java (SJ) has
proved to be an effective tool for distributed programming, promoting struc-
tured programming for communications and compile-time safety. This paper in-
vestigates the use of SJ for session-typed parallel programming, and introduces
new language primitives for chained iteration and multi-channel communica-
tion. These primitives allow the efficient coordination of parallel computation
across multiple processes, thus enabling SJ to express the complex communica-
tion topologies often used by parallel algorithms. We demonstrate that the new
primitives yield clearer and safer code for pipeline, ring and mesh topologies
through implementations of representative parallel algorithms. We then present
a semantics and session typing system including the new primitives, and prove
type soundness and deadlock-freedom for our implementations. The benchmark
results show that the new SJ is substantially faster than the original SJ and per-
forms competitively against MPJ Express1 used as reference.

1 Introduction

The current practice of parallel and distributed programming is fraught with errors that
go undetected until runtime, manifest themselves as deadlocks or communication er-
rors, and often find their root in mismatched communication protocols. The Session
Java programming language (SJ) [12] improves this status quo. SJ is an extension of
Java with session types, supporting statically safe distributed programming by message-
passing. Session types were introduced as a type system for the π-calculus [8, 21], and
have been shown to integrate cleanly with formal models of object-oriented program-
ming. The SJ compiler offers two strong static guarantees for session execution: (1)
communication safety, meaning a session-typed process can never cause or encounter a
communication error by sending or receiving unexpected messages; and (2) deadlock-
freedom — a session-typed process will never block indefinitely on a message receive.

Parallel programs often make use of complex, high-level communication patterns
such as globally synchronised iteration over chained topologies like rings and meshes.
Yet modern implementations are still written using low-level languages and libraries,
commonly C and MPI [13]: implementations make the best use of hardware, but at the

1 MPJ Express [16] is a Java implementation of the MPI standard. Extensive benchmarks com-
paring MPJ Express to other MPI implementations are presented in [16]. The benchmarks
show performance competitive with C-based MPICH2.

W. De Meuter and G.-C. Roman (Eds.): COORDINATION 2011, LNCS 6721, pp. 110–126, 2011.
c© IFIP International Federation for Information Processing 2011

Safe Parallel Programming with Session Java 111

cost of complicated programming where communication is entangled with computa-
tion. There is no global view of inter-process communication, and no formal guarantees
are given about communication correctness, which often leads to hard-to-find errors.

We investigate parallel programming in SJ as a solution to these issues. However,
SJ as presented in [12] only guarantees progress for each session in isolation: dead-
locks can still arise from the interleaving of multiple sessions in a process. Moreover,
implementing chained communication topologies without additional language support
requires temporary sessions, opened and closed on every iteration — a source of non-
trivial inefficiencies (see § 3 for an example). We need new constructs, well-integrated
with existing binary sessions, to enable lightweight global communication safety and
deadlock-freedom, increase expressiveness to support structured programming for com-
munication topologies and improve performance.

Our new multi-channel session primitives fit these requirements, and make it possi-
ble to safely and efficiently express parallel algorithms in SJ. The combination of new
primitives and a well-formed topology check extension to SJ compilation [12] bring the
benefits of type-safe, structured communications programming to HPC. The primitives
can be chained, yielding a simple mechanism for structuring global control flow. We for-
malise these primitives as novel extensions of the session calculus, and the correctness
condition on the shape of programs enforced by a simple extension of SJ compilation.
This allows us to prove communication safety and deadlock-freedom, and offers a new,
lightweight alternative to multiparty session types for global type-safety.

Contributions. This paper constitutes the first introduction to parallel programming
in SJ, in addition to presenting the following technical contributions:
(§ 2) We introduce SJ as a programming language for type-safe, efficient parallel pro-

gramming, including our implementation of multi-channel session primitives, and
the extended SJ tool chain for parallel programming. We show that the new primi-
tives enable clearer, more readable code.

(§ 3) We discuss SJ implementations of parallel algorithms using the Jacobi solution to
the discrete Poisson equation (§ 3) as an example. The algorithm uses communi-
cation topology representative of a large class of parallel algorithms, and demon-
strates the practical use of our multi-channel primitives.

(§ 4) We define the multi-channel session calculus, its operational semantics, and typ-
ing system. We prove that processes conforming to a well-formed communica-
tion topology (Definition 4.1) satisfy the subject reduction theorem (Theorem 4.1),
which implies type and communication-safety (Theorem 4.2) and deadlock-freedom
across multiple, interleaved sessions (Theorem 4.3).

(§ 5) Performance evaluation of n-Body simulation and Jacobi solution algorithms,
demonstrating the benefits of the new primitives. The SJ implementations using
the new primitives show competitive performance against an MPJ Express [14].

Related and future work are discussed in § 6. Detailed definitions, proofs, benchmark
results and source code can be found at the on-line Appendix [5].

2 Session-Typed Programming in SJ

This section firstly reviews the key concepts of session-typed programming using Ses-
sion Java (SJ) [11, 12]. In (1), we outline the basic methodology; in (2), the protocol

112 N. Ng et al.

structures supported by SJ. We then introduce the new session programming features
developed in this paper to provide greater expressiveness and performance gains for
session-typed parallel programming. In (3), we explain session iteration chaining; and
in (4), the generalisation of this concept to the multi-channel primitives. Finally, (5)
describes the topology verification for parallel programs.

(1) Basic SJ programming. SJ is an extension of Java for type-safe concurrent and
distributed session programming. Session programming in SJ, as detailed in [12], starts
with the declaration of the intended communication protocols as session types; we shall
often use the terms session type and protocol interchangeably. A session is the inter-
action between two communicating parties, and its session type is written from the
viewpoint of one side of the session. The following declares a protocol named P:

protocol P !<int>.?(Data)

Protocol P specifies that, at this side of the session, we first send (!) a message of
Java type int, then receive (?) another message, an instance of the Java class Data,
which finishes the session. After defining the protocol, the programmer implements the
processes that will perform the specified communication actions using the SJ session
primitives. The first line in the following code implements an Alice process conforming
to the P protocol:

A: alice.send(42); Data d = (Data) alice.receive();//!<int>.?(Data)

B: int i = bob.receiveInt(); bob.send(new Data()); //?(int).!<Data>

The alice variable refers to an object of class SJSocket, called a session socket, which
represents one endpoint of an active session. The session-typed primitives for session-
typed communication behaviour, such as send and receive, are performed on the ses-
sion socket like method invocations. SJSocket declarations associate a protocol to the
socket variable, and the SJ compiler statically checks that the socket is indeed used ac-
cording to the protocol, ensuring the correct communication behaviour of the process.

This simple session application also requires a counterpart Bob process to interact
with Alice. For safe session execution, the Alice and Bob processes need to perform
matching communication operations: when Alice sends an int, Bob receives an int,
and so on. Two processes performing matching operations have session types that are
dual to each other. The dual protocol to P is protocol PDual ?(int).!<Data>, and a
dual Bob process can be implemented as in the second line of the above listing.

(2) More complex protocol structures. Session types are not limited to sequences
of basic message passing. Programmers can specify more complex protocols featuring
branching, iteration and recursion.

The protocols and processes in Fig.1 demonstrate session iteration and branching.
Process P1 communicates with P2 according to protocol IntAndBoolStream; P2 and P3

communicate following protocol IntStream. Like basic message passing, iteration and
branching are coordinated by active and passive actions at each side of the session.
Process P1 actively decides whether to continue the session iteration using outwhile

(condition), and if so, selects a branch using outbranch(label). The former action
implements the ![τ]* type given by IntAndBoolStream, where τ is the !{Label1: τ1,

Label2: τ2, . . .} type implemented by the latter. Processes P2 and P3 passively follow

Safe Parallel Programming with Session Java 113

P1 P2 P3

protocol IntAndBoolStream ![!{Label1: !<int>, Label2: !<boolean>}]*

protocol IntAndBoolDual ?[?{Label1: ?<int>, Label2: ?(boolean)}]*

protocol IntStream ![!<int>]*

protocol IntStreamDual ?[?(int)]*

P1:

P3:

s.outwhile(x < 10) {

s.outbranch(Label1) {

s.send(42);

}}

s.inwhile {

int i = s.receiveInt();

}

P2:
s2.outwhile(s1.inwhile()) {

s1.inbranch() {

case Label1:

int i = s1.receiveInt();

s2.send(i);

case Label2:

boolean b = s1.receiveBool();

s2.send(42);

}}

Session socket s in P1 follows IntAndBoolStream; s1 and s2 in P2 follows IntAndBoolDual
and IntStream; s in P3 follows IntStreamDual.

Fig. 1. Simple chaining of session iterations across multiple pipeline process

the selected branch and the iteration decisions (received as internal control messages)
using inbranch and inwhile, and proceed accordingly; the two dual protocols show the
passive versions of the above iteration and branching types, denoted by ? in place of !.

So far, we have reviewed basic SJ programming features [12] derived from standard
session type theory [8,21]; the following paragraphs discuss new features motivated by
the application of session types to parallel programming in practice.

(3) Expressiveness gains from iteration chaining. The three processes in Fig. 1 ad-
ditionally illustrate session iteration chaining, forming a linear pipeline as depicted at
the top of Fig. 1. The net effect is that P1 controls the iteration of both its session with
P2 and transitively the session between P2 and P3. This is achieved through the chain-
ing construct s2.outwhile(s1.inwhile()) at P2, which receives the iteration decision
from P1 and forwards it to P3. The flow of both sessions is thus controlled by the same
master decision from P1.

Iteration chaining offers greater expressiveness than the individual iteration primi-
tives supported in standard session types. Normally, session typing for ordinary inwhile

or outwhile loops must forbid operations on any session other than the session chan-
nel that of loop, to preserve linear usage of session channels. This means that e.g.
s1.inwhile(){ s1.send(v); } is allowed, whereas s1.inwhile(){ s2.send(v); } is
not. With the iteration chaining construct, we can now construct a process containing
two interleaved inwhile or outwhile loops on separate sessions. In fact, session itera-
tion chaining can be further generalised as we explain below.

(4) Multi-channel iteration primitives. Simple iteration chaining allows SJ program-
mers to combine multiple sessions into linear pipeline structures, a common pattern
in parallel processing. In particular, type-safe session iteration (and branching) along
a pipeline is a powerful benefit over traditional stream-based data flow [18]. More
complex topologies, however, such as rings and meshes, require iteration signals to

114 N. Ng et al.

Master: <s1,s2>.outwhile(i < 42) {...}

Forwarder1: s3.outwhile(s1.inwhile()) {...}

Forwarder2: s4.outwhile(s2.inwhile()) {...}

End: <s3,s4>.inwhile() {...}

Master
Forwarder

1

End
Forwarder

2

Fig. 2. Multi-channel iteration in a simple grid topology

be directly forwarded from a given process to more than one other, and for multiple
signals to be directed into a common sink; in SJ, this means we require the ability to
send and receive multiple iteration signals over a set of session sockets. For this pur-
pose, SJ introduces the generalised multi-channel primitives; the following focuses on
multi-channel iteration, which extends the chaining constructs from above.

Fig. 2 demonstrates multi-channel iteration for a simple grid topology. Process Master
controls the iteration on both the s1 and s2 session sockets under a single iteration con-
dition. Processes Forwarder1 and Forwarder2 iterate following the signal from Master

and forward the signal to End; thus, all four processes iterate in lockstep. Multi-channel
inwhile, as performed by End, is intended for situations where multiple sessions are
combined for iteration, but all are coordinated by an iteration signal from a common
source; this means all the signals received from each socket of the inwhile will always
agree — either to continue iterating, or to stop. In case this is not respected at run-
time, the inwhile will throw an exception, resulting in session termination.Together,
multi-channel primitives enable the type-safe implementation of parallel programming
patterns like scatter-gather, producer-consumer, and more complex chained topologies.
The basic session primitives express only disjoint behaviour within individual sessions,
whereas the multi-channel primitives implement interaction across multiple sessions as
a single, integrated structure.

SJ program
source

SJ
deployment
config. file

Topology verifier

Cluster node Cluster nodeCluster node

User program
classes

ConfigLoader
class

(C)

Running SJ
program

Running SJ
program

Running SJ
program

SJ compiler

(B)

(A)

Fig. 3. The SJ tool chain

(5) The SJ tool chain with topology
verification. In previous work, the safety
guarantees offered by the SJ compiler
were limited to the scope of each inde-
pendent binary (two-party) session. This
means that, while any one session was
guaranteed to be internally deadlock-
free, this property may not hold in the
presence of interleaved sessions in a pro-
cess as a whole. The nodes in a paral-
lel program typically make use of many
interleaved sessions – with each of their
neighbours in the chosen network topol-
ogy. Furthermore, inwhile and outwhile

in iteration chains must be correctly
composed.

As a solution to this issue, we add
a topology verification step to the SJ
tool chain for parallel programs. Fig. 3

Safe Parallel Programming with Session Java 115

summarises the SJ tool chain for developing type-safe SJ parallel program on a dis-
tributed computing cluster. An SJ parallel program is written as a collection of SJ source
files, where each file corresponds to a role in the topology. Topology verification (A)
takes as input the source files and a deployment configuration file, listing the hosts where
each process will be deployed and describing how to connect the processes. The sources
and configuration files are then analysed statically to ensure the overall session topology
of the parallel program conforms to a well-formed topology defined in Definition 4.1 in
§ 4, and in conjunction with session duality checks in SJ, precludes global deadlocks
in parallel SJ programs (see Theorem 4.3). The source files are then compiled (B) to
bytecode, and (C) deployed on the target cluster using details on the configuration file to
instantiate and establish sessions with their assigned neighbours, ensuring the runtime
topology is constructed according to the verified configuration file, and therefore safe
execution of the parallel program.

3 Parallel Algorithms in SJ

This section presents the SJ implementation of a Jacobi method for solving the Discrete
Poisson Equation and explains the benefits of the new multi-channel primitives. The ex-
ample was chosen both as a representative real-world parallel programming application
in SJ, and because it exemplifies a complex communication topology [7]. Implementa-
tions of other algorithms featuring other topologies, such as n-Body simulation (circular
pipeline) and Linear Equation Solver (wraparound mesh), are available from [5].

Jacobi solution of the discrete Poisson equation: mesh topology. Poisson’s equation
is a partial differential equation widely used in physics and the natural sciences. Jacobi’s
algorithm can be implemented using various partitioning strategies. An early session-
typed implementation [1] used a one-dimensional decomposition of the source matrix,
resulting in a linear communication topology. The following demonstrates how the new
multi-channel primitives are required to increase parallelism using a two-dimensional
decomposition, i.e. using a 2D mesh communication topology. The mesh topology is
used in a range of other parallel algorithms [3].

The discrete two-dimensional Poisson equation (∇2u)i j for a m×n grid reads:

ui j = 1
4 (ui−1, j + ui+1, j + ui, j−1 + ui, j+1−dx2gi, j)

where 2≤ i≤ m−1, 2 ≤ j ≤ n−1, and dx = 1/(n + 1). Jacobi’s algorithm converges
on a solution by repeatedly replacing each element of the matrix u by an adjusted aver-
age of its four neighbouring values and dx2gi, j. For this example, we set each gi, j to 0.
Then, from the k-th approximation of u, the next iteration calculates:

uk+1
i j = 1

4 (uk
i+1, j + uk

i−1, j + uk
i, j+1 + uk

i, j−1)
Termination may be on reaching a target convergence threshold or on completing a
certain number of iterations. Parallelisation of this algorithm exploits the fact that each
element can be independently updated within each iteration. The decomposition divides
the grid into subgrids, and each process will execute the algorithm for its assigned sub-
grid. To update the points along the boundaries of each subgrid, neighbouring processes
need to exchange their boundary values at the beginning of each iteration.

A 2D mesh implementation is shown in Fig. 7. The Master node controls iteration
from the top-left corner. Nodes in the centre of the mesh receive iteration control signals

116 N. Ng et al.

protocol MasterToWorker

cbegin. // Open a session with the Worker

!<int>.!<int>. // Send matrix dimensions

![// Main loop: checking convergence condition

!<double[]>. // Send our boundary values...

?(double[]). // ..and receive our neighbour’s

?(ConvergenceValues) // Convergence data for neighbouring subgrid

]* // (end of main loop)

Fig. 4. The session type between the Master and Workers for the Jacobi algorithm

from their top and left neighbours, and propagate them to the bottom and right. Nodes
at the edges only propagate iteration signals to the bottom or the right, and the final
node at the bottom right only receives signals and does not propagate them further.

The session type for communication from the Master to either of the Workers under
it or at its right is given in Fig. 4. The Worker’s protocol for interacting with the Master

is the dual of MasterToWorker; the same protocol is used for interaction with other
Workers at their right and bottom (except for Workers at the edges of the mesh).

As listed in Fig. 5, it is possible to express the complex 2D mesh using single-
channel primitives only. However, this implementation suffers from a problem: without
the multi-channel primitives, there is no way of sending iteration control signals both
horizontally and vertically; the only option is to open and close a temporary session
in every iteration (Fig. 7), an inefficient and counter-intuitive solution. Moreover, the
continuous nature of the vertical iteration sessions cannot be expressed naturally.

Having noted this weakness, Fig. 6 lists a revised implementation, taking advan-
tage of multi-channel inwhile and outwhile. The multi-channel inwhile allows each
Worker to receive iteration signals from the two processes at its top and left. Multi-
channel outwhile lets a process control both processes at the right and bottom. To-
gether, these two primitives completely eliminate the need for repeated opening and
closing of intermediary sessions in the single-channel version. The resulting implemen-
tation is clearer and also much faster. See § 5 for the benchmark results.

4 Multi-channel Session π-Calculus

This section formalises the new nested iterations and multi-channel communication
primitives and proves correctness of our implementation. Our proof method consists of:

1. We first define programs (i.e. starting processes) including the new primitives, and
then define operational semantics with running processes modelling intermediate
session communications.

2. We define a typing system for programs and running processes.
3. We prove that if a group of running processes conforms to a well-formed topology,

then they satisfy the subject reduction theorem (Theorem 4.1) which implies type
and communication-safety (Theorem 4.2) and deadlock-freedom (Theorem 4.3).

4. Since programs for our chosen parallel algorithms conform to a well-formed topol-
ogy, we conclude that they satisfy the above three properties.

Safe Parallel Programming with Session Java 117

Master :
right.outwhile(notConverged()) {

under = chanUnder.request();

sndBoundaryVal(right, under);

rcvBoundaryVal(right, under);

doComputation(rcvRight, rcvUnder);

rcvConvergenceVal(right, under);

}

Worker :
right.outwhile(left.inwhile) {

over = chanOver.accept();

under = chanUnder.request();

sndBoundaryVal(left,right,over,

under);

rcvBoundaryVal(left,right,over,

under);

doComputation(rcvLeft,rcvRight,

rcvOver,rcvUnder);

sndConvergenceVal(left,top);

}

WorkerSE :
left.inwhile {

over = chanOver.request();

sndBoundaryVal(left,over);

rcvBoundaryVal(left,over);

doComputation(rcvLeft,rcvOver);

sndConvergenceVal(left,top);

}

Fig. 5. Initial 2D mesh implementation
with single-channel primitives only

Master :
<under,right>.outwhile(

notConverged()) {

sndBoundaryVal(right, under);

rcvBoundaryVal(right, under);

doComputation(rcvRight, rcvUnder

);

rcvConvergenceVal(right, under);

}

Worker :
<under,right>.outwhile

(<over,left>.inwhile) {

sndBoundaryVal(left,right,over,

under);

rcvBoundaryVal(left,right,over,

under);

doComputation(rcvLeft,rcvRight,

rcvOver,rcvUnder);

sndConvergenceVal(left,top);

}

WorkerSE :
<over,left>.inwhile {

sndBoundaryVal(left,over);

rcvBoundaryVal(left,over);

doComputation(rcvLeft,rcvOver);

sndConvergenceVal(left,top);

}

Fig. 6. Efficient 2D mesh implementation using
multi-outwhile and multi-inwhile

Worker
NorthEast

Worker
NorthMaster

Worker
EastWorkerWorker

West

Worker
SouthEast

Worker
South

Worker
SouthWest

Worker
NorthEast

Worker
NorthMaster

Worker
EastWorkerWorker

West

Worker
SouthEast

Worker
South

Worker
SouthWest

1

3

6

2

5

8

4

7

9

Repeated session open/close

Iteration control msg.

Data transfer

Iteration control msg.
(emphasis, difference between impl.)

Fig. 7. Initial and improved communication patterns in the 2D mesh implementation

118 N. Ng et al.

4.1 Syntax

The session π-calculus we treat extends [8]. Fig. 8 defines its syntax. Channels (u,u′, ...)
can be either of two sorts: shared channels (a,b,x,y) or session channels (k,k′, ...).
Shared channels are used to open a new session. In accepting and requesting processes,
the name a represents the public interaction point over which a session may commence.
The bound variable k represents the actual channel over which the session communi-
cations will take place. Constants (c,c′, ...) and expressions (e,e′, ...) of ground types
(booleans and integers) are also added to model data. Selection chooses an available
branch, and branching offers alternative interaction patterns; channel send and channel
receive enable session delegation [8]. The sequencing, written P;Q, meaning that P is
executed before Q. This syntax allows for complex forms of synchronisation, joining,
and forking since P can include any parallel composition of arbitrary processes. The
second addition is that of multicast inwhile and outwhile, following SJ syntax. Note
that the definition of expressions includes multicast inwhile 〈k1 . . .kn〉.inwhile, in or-
der to allow inwhile as an outwhile loop condition. The control message k † [b] created
by outwhile appears only at runtime.

The precedence of the process-building operators is (from the strongest) “�,�,{}”,
“.”, “;” and “|”. Moreover we define that “.” associates to the right. The binders for
channels and variables are standard.

(Values) (Expressions)
v ::= a,b,x,y shared names

| true,false boolean
| n integer

e ::= v | e+e | not(e) . . . value, sum, not
| 〈k1 . . .kn〉.inwhile inwhile

(Processes) (Prefixed processes)
P ::= 0 inaction

| T prefixed
| P ; Q sequence
| P | Q parallel
| (νu)P hiding

(Declaration)
D ::= X(xk) = P

T ::= a(k).P request
| a(k).P accept
| k〈e〉 sending
| k(x).P reception
| k〈k′〉 sending
| k(k′).P reception
| X [ek] variables

| def D in P recursion
| k� l selection
| k�{l1 : P1[] · · · []ln : Pn} branch
| if e then P else Q conditional
| 〈k1 . . . kn〉.inwhile{Q} inwhile
| 〈k1 . . . kn〉.outwhile(e){P} outwhile
| k † [b] message

Fig. 8. Syntax

We formalise the reduction relation −→ in Fig.8 up to the standard structural equiva-
lence ≡ with the rule 0 ;P ≡ P based on [8]. Reduction uses the standard evaluation
contexts defined as:

E ::= [] | E;P | E | P | (νu)E | def D in E
| if E then P else Q | 〈k1 . . . kn〉.outwhile(E){P} | E + e | · · ·

We use the notation Πi∈{1..n}Pi to denote the parallel composition of (P1 | · · · | Pn).
Rules [LINK] is a session initiation rule where a fresh channel k is created, then re-

stricted because the leading parts now share the channel k to start private interactions.
Rule [COM] sends data. Rule [LBL] selects the i-th branch, and rule [PASS] passes a session

Safe Parallel Programming with Session Java 119

a(k).P1 | a(k).P2 −→ (νk)(P1 | P2) k〈c〉 | k(x).P2 −→ P2{c/x} [LINK], [COM]

k�{l1 : P1[] · · · []ln : Pn} | k � li −→ Pi (1 ≤ i ≤ n) k〈k′〉 | k(k′).P2 −→ P2 [LBL], [PASS]

if true then P else Q −→ P if false then P else Q −→ Q [IF]

def X(xk) = P in X [ck] −→ def X(xk) = P in P{c/x} [DEF]

〈k1 . . . kn〉.inwhile{P} | Πi∈{1..n}ki † [true] −→ P;〈k1 . . . kn〉.inwhile{P} [IW1]

〈k1 . . . kn〉.inwhile{P} | Πi∈{1..n}ki † [false] −→ 0 [IW2]

E[〈k1 . . .kn〉.inwhile] | Πi∈{1..n}ki † [true] −→ E[true] [IWE1]

E[〈k1 . . .kn〉.inwhile] | Πi∈{1..n}ki † [false] −→ E[false] [IWE2]

E[e]−→∗ E ′[true] ⇒
E[〈k1 . . . kn〉.outwhile(e){P}] −→ E ′[P;〈k1 . . . kn〉.outwhile(e){P}]

| Πi∈{1..n}ki † [true] [OW1]

E[e]−→∗ E ′[false] ⇒
E[〈k1 . . . kn〉.outwhile(e){P}] −→ E ′[0] | Πi∈{1..n}ki † [false] [OW2]

P ≡ P′ and P′ −→ Q′ and Q′ ≡ Q ⇒ P −→ Q [STR]

e −→ e′ ⇒ E[e] −→ E[e′] P −→ P′ ⇒ E[P] −→ E[P′]
P | Q −→ P′ | Q′ ⇒ E[P] | Q −→ E[P′] | Q′ [EVAL]

In [OW1] and [OW2], we assume E = E ′ | Πi∈{1..n}ki † [bi]

Fig. 9. Reduction rules

channel k for delegation. The standard conditional and recursive agent rules [IF1], [IF2]

and [DEF] originate in [8].

Rule [IW1] synchronises with n asynchronous messages if they all carry true. In this
case, it repeats again. Rule [IW2] is its dual and synchronises with n false messages. In
this case, it moves to the next command. On the other hand, if the results are mixed (i.e.
bi is true, while b j is false), then it is stuck. In SJ, it will raise the exception, cf. § 2 (4).
The rules for expressions are defined similarly. The rules for outwhile generates appro-
priate messages. Note that the assumption E[e]−→ E ′[true] or E[e]−→ E ′[false] is
needed to handle the case where e is an inwhile expression.

In order for our reduction rules to reflect SJ’s actual behaviour, inwhile rules should
have precedence over outwhile rules. Note that our algorithms do not cause an infinite
generation of k † [b] by outwhile: this is ensured by the well-formed topology criteria
described later, together with this priority rule.

4.2 Types, Typing System and Well-Formed Topologies

This subsection presents types and typing systems. The key point is an introduction of
types and typing systems for asynchronous runtime messages. We then define the nota-
tion of a well-formed topology.

Types. The syntax of types, an extension of [8], follows:

Sort S ::= nat | bool | 〈α,α〉
Partial session τ ::= ε | τ; τ | ?[S] | ?[α] | &{l1 : τ1, . . . , ln : τn} | ![τ]∗ | x

| ![S] | ![α] | ⊕{l1 : τ1, . . . , ln : τn} | ?[τ]∗ | μx.τ
Completed session α ::= τ.end | ⊥ Runtime session β ::= α | α† | †

120 N. Ng et al.

Sorts include a pair type for a shared channel and base types. The partial session type
τ represents intermediate sessions. ε represents inaction and τ;τ is a sequential com-
position. The rest is from [8]. The types with ! and ? express respectively the sending
and reception of a value S or session channel. The selection type⊕ represents the trans-
mission of the label li followed by the communications described by τi. The branching
type & represents the reception of a label li chosen in the set {l1, . . . , ln} followed by
the communications described by τi. Types ![τ]∗ and ?[τ]∗ are types for outwhile and
inwhile. The types are considered up to the equivalence: &{l1 : τ1, . . . , ln : τn}.end ≡
&{l1 : τ1.end, . . . , ln : τn.end}. This equivalence ensures all partial types τ1 . . .τn of se-
lection ends, and are compatible with each other in the completed session type (and
vice versa). ε is an empty type, and it is defined so that ε;τ ≡ τ and τ;ε ≡ τ .

Runtime session syntax represents partial composed runtime message types. α† rep-
resents the situation inwhile or outwhile are composed with messages; and † is a type
of messages. The meaning will be clearer when we define the parallel composition.

Judgements and environments. The typing judgements for expressions and processes
are of the shape:

Γ ;Δ � e � S and Γ � P� Δ
where we define the environments as Γ ::= /0 | Γ · x : S | Γ ·X : Sα and Δ ::= /0 |
Δ ·k : β . Γ is the standard environment which associates a name to a sort and a process
variable to a sort and a session type. Δ is the session environment which associates
session channels to running session types, which represents the open communication
protocols. We often omit Δ or Γ from the judgement if it is empty.

Sequential and parallel compositions of environments are defined as:

Δ ;Δ ′ = Δ\dom(Δ ′)∪Δ ′\dom(Δ)∪{k : Δ(k)\ end;Δ ′(k) | k ∈ dom(Δ)∩dom(Δ ′)}
Δ ◦Δ ′ = Δ\dom(Δ ′)∪Δ ′\dom(Δ)∪{k : Δ(k)◦Δ ′(k) | k ∈ dom(Δ)∩dom(Δ ′)}
where Δ(k)\ end means we delete end from the tail of the types (e.g. τ.end\ end = τ).
Then the resulting sequential composition is always well-defined. The parallel compo-
sition of the environments must be extended with new running message types. Hence
β ◦β ′ is defined as either (1) α ◦α =⊥; (2) α ◦ † = α† or (3) α ◦α† =⊥†. Otherwise
the composition is undefined. Here α denotes a dual of α (defined by exchanging ! to
? and & to ⊕; and vice versa). (1) is the standard rule from session type algebra, which
means once a pair of dual types are composed, then we cannot compose any processes
with the same channel further. (2) means a composition of an iteration of type α and
n-messages of type † becomes α†. This is further composed with the dual α by (3) to
complete a composition. Note that ⊥† is different from ⊥ since ⊥† represents a situa-
tion that messages are not consumed with inwhile yet.

Typing rules. We explain the key typing rules for the new primitives (Fig. 10). Other
rules are similar with [8] and left to [5].

[EINWHILE] is a rule for inwhile-expression. The iteration session type of ki is recorded
in Δ . This information is used to type the nested iteration with outwhile in rule [OUTWHILE] .
Rule [INWHILE] is dual to [OUTWHILE] . Rule [MESSAGE] types runtime messages as †. Sequen-
tial and parallel compositions use the above algebras to ensure the linearity of channels.

Safe Parallel Programming with Session Java 121

Δ = k1 : ?[τ1]∗.end, ...,kn : ?[τn]∗.end

Γ ;Δ � 〈k1 . . .kn〉.inwhile �bool

Γ � b�bool

Γ � k † [b]�k : †
[EINWHILE] ,[MESSAGE]

Γ ; Δ � e�bool Γ � P�Δ · k1 : τ1.end · · · · · kn : τn.end

Γ � 〈k1 . . . kn〉.outwhile(e){P}�Δ · k1 : ![τ1]∗.end, ...,kn : ![τn]∗.end
[OUTWHILE]

Γ � Q�Δ · k1 : τ1.end · · · · · kn : τn.end

Γ � 〈k1 . . . kn〉.inwhile{Q}�Δ · k1 : ?[τ1]∗.end, ...,kn : ?[τn]∗.end
[INWHILE]

Γ � P�Δ Γ � Q�Δ ′

Γ � P; Q�Δ ;Δ ′
Γ � P�Δ Γ � Q�Δ ′

Γ � P | Q�Δ ◦Δ ′
[SEQ],[CONC]

Fig. 10. Key typing rules

Well-formed topologies. We now define the well-formed topologies. Since our multi-
channel primitives offer an effective, structured message passing synchronisation mech-
anism, the following simple definition is sufficient to capture deadlock-freedom in
representative topologies for parallel algorithms. Common topologies in parallel algo-
rithms such as circular pipeline, mesh and wraparound mesh all conform to our well-
formed topology definition below [5]. Below we call P is a base if P is either 0, k〈e〉,
k(x).0, k � l or k � {l1 : 0[] · · · []ln : 0}.
Definition 4.1 (Well-formed topology). Suppose a group of n parallel composed pro-
cesses P = P1 | . . . | Pn such that Γ � P � Δ with Δ(k) = ⊥ for all k ∈ dom(Δ); and
k(i, j) denotes a free session channel from Pi to Pj. We say P conforms to a well-formed
topology if P inductively satisfies one of the following conditions:

1. (inwhile and outwhile)
P1 = 〈�k1〉.outwhile(e){Q1} Pi = 〈�ki〉.outwhile(〈�k′i〉.inwhile){Qi} (2 ≤ i < n)
Pn = 〈�k′n〉.inwhile{Qn} �ki ⊂ k(i,i+1) · · ·k(i,n),�k

′
i ⊂ k(1,i) · · ·k(i−1,i)

and (Q1 | · · · |Qn) conforms to a well-formed topology.
2. (sequencing) Pi = Q1i; ...;Qmi where (Q j1 | Q j2 | · · · | Q jn) conforms to a well-

formed topology for each 1≤ j ≤ m.
3. (base) (1) session actions in Pi follow the order of the index (e.g. the session actions

at k(i, j) happens before k(h,g) if (i, j) < (h,g)), then the rest is a base process P′i ; and
(2) Pi includes neither shared session channels, inwhile nor outwhile.

The figure below explains condition (1) of the above definition, ensuring consistency of
control flows within iterations. Subprocesses Pi are ordered by their process index i. A
process Pi can only send outwhile control messages to processes with a higher index via
�ki (denoted by k(i,m)), while it can receive messages from those with a lower index via
�k′i (denoted by k(h,i)). This ordering guarantees absence of cycles of communications.

Pi

k(h,i) h⪇i

k(i,m) i⪇m

P1 Pi-1Ph Pi+1 PnPm

There is only one source P1 (only sends
outwhile control messages) and one sink
Pn (only receives those messages). (2)
says that a sequential composition of
well-formed topologies is again well-
formed. (3) defines base cases which are

122 N. Ng et al.

commonly found in the algorithms: (3-1) means that since the order of session actions
in Pi follow the order of the indices, ΠiPi reduces to ΠiP′i without deadlock; then since
ΠiP′i is a parallel composition of base processes where each channel k has type⊥, ΠiP′i
reduces to 0 without deadlock. (3-2) ensures a single global topology.

4.3 Subject Reduction, Communication Safety and Deadlock Freedom

We state here that process groups conforming to a well-formed topology satisfy the
main theorems. The full proofs can be found in [5].

Theorem 4.1 (Subject reduction). Assume P forms a well-formed topology and Γ �
P�Δ . Suppose P−→∗ P′. Then we have Γ � P′ �Δ ′ with for all k (1) Δ(k) = α implies
Δ ′(k) = α†; (2) Δ(k) = α† implies Δ ′(k) = α; or (3) Δ(k) = β implies Δ ′(k) = β .

(1) and (2) state an intermediate stage where messages are floating; or (3) the type
is unchanged during the reduction. The proof requires to formulate the intermediate
processes with messages which are started from a well-formed topology, and prove
they satisfy the above theorem.

We say process has a type error if expressions in P contains either a type error of
values or constants in the standard sense (e.g. if 100 then P else Q).

To formalise communication safety, we need the following notions. Write
inwhile(Q) for either inwhile or inwhile{Q}. We say that a processes P is a head
subprocess of a process Q if Q≡ E[P] for some evaluation context E . Then k-process is
a head process prefixed by subject k (such as k〈e〉). Next, a k-redex is the parallel com-
position of a pair of k-processes. i.e. either of form of a pair such that (k〈e〉,k(x).Q), (k�
l,k �{l1 : Q1[] · · · []ln : Qn}), (k〈k′〉,k(k′).P), (〈k1 . . . kn〉.outwhile(e){P},〈k′1 . . . k′m〉.
inwhile(Q)) with k ∈ {k1, ..,kn} ∩ {k′1, ..,k′m} or (k † [b] | 〈k′1 . . . k′m〉.inwhile(Q))
with k ∈ {k1, ..,kn}. Then P is a communication error if P≡ (ν ũ)(def D in (Q | R))
where Q is, for some k, the parallel composition of two or more k-processes that do
not form a k-redex. The following theorem is direct from the subject reduction theorem
[21, Theorem 2.11].

Theorem 4.2 (Type and communication safety). A typable process which forms a
well-formed topology never reduces to a type nor communication error.

Below we say P is deadlock-free if for all P′ such that P −→∗ P′, P′ −→ or P′ ≡ 0 .
The following theorem shows that a group of typable multiparty processes which form
a well-formed topology can always move or become the null process.

Theorem 4.3 (Deadlock-freedom). Assume P forms a well-formed topology and Γ �
P� Δ . Then P is deadlock-free.

Now we reason Jacobi algorithm in Fig. 6. We only show the master P1 and the worker
in the middle P5 (the indices follow the right picture of Fig. 7).

P1 = 〈k(1,2),k(1,4)〉.outwhile(e){k(1,2)〈d[]〉;k(1,2)(x).k(1,4)〈d[]〉;k(1,4)(y). 0 }
P5 = 〈k(5,7),k(5,8)〉.outwhile(〈k′(2,5),k

′
(3,5)〉.inwhile){

k′(2,5)(w).k′(2,5)〈d[]〉;k′(3,5)(x).k
′
(3,5)〈d[]〉;k(5,7)〈d[]〉;k(5,7)(y).k(5,8)〈d[]〉;k(5,8)(z). 0 }

Safe Parallel Programming with Session Java 123

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 500 1000 1500 2000 2500 3000

R
un

tim
e

(m
ill

is
ec

on
ds

)

Number of particles per node

n-Body simulation

Multi-channel SJ
Old SJ

MPJ Express

 0

 500

 1000

 1500

 2000

 2500

 3000

 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
un

tim
e

(s
ec

on
ds

)

Number of elements in sub-grid

Jacobi solution of the Discrete Poisson Equation

Multi-channel SJ
Old SJ

MPJ Express

Fig. 11. SJ with and without multi-channel primitives and MPJ Express (left: 3-nodes n-Body
simulation, right: 9-nodes Jacobi solution)

where d[] denotes the type of array with double. We can easily prove they are typable
and forms the well-formed topology satisfying the conditions (1) and (3) in Definition
4.1. Hence it is type and communication-safe and deadlock-free. [5] lists the full defi-
nition and more complex algorithms which conform to a well-formed topology.

5 Performance Evaluation

This section presents performance results for several implementations of the n-Body
simulation (details in [5, § A.1]), and Jacobi solution presented in § 3. We evaluated our
implementations on a 9-node cluster for our benchmark, and each of the points is an
average of 4 runs of the benchmark. All of them comprise an AMD PhenomX4 9650
2.30GHz CPU with 8GB RAM. The main objectives of these benchmarks is (1) to in-
vestigate the benefits of the new multi-channel primitives, comparing Old SJ (without
the new primitives) and Multi-channel SJ (with the new primitives); and (2) compare
those with MPJ Express [14] for reference. Fig. 11 shows a clear improvement when
using the new multi-channel primitives in SJ. Multi-channel SJ also performs compet-
itively against MPJ Express in both benchmarks. Hence SJ can be a viable alternative
to MPI programming in Java, with the additional assurances of communication-safety
and deadlock-free.

6 Related and Future Work

Due to space limitations, we focus on comparisons with extensions of Java with session
types and MPI. Other related work, including functional languages with session types
as well as HPC and PGAS languages can be found in the full version [5].

Implementations of session types in Java. SJ was introduced in [12] as the first
general-purpose session-typed distributed programming language. Another recent ex-
tension of SJ added event-based programming primitives [11], for a different target do-
main: scalable and type-safe event-driven implementation of applications that feature
a large number of concurrent but independent threads (e.g. Web servers). The prelimi-
nary experiments with parallel algorithms in SJ were reported in a workshop paper [1].

124 N. Ng et al.

This early work considered only simple iteration chaining without analysis of deadlock-
freedom, and without the general multi-channel primitives required for efficient repre-
sentation of the complex topologies tackled here. The present paper also presents the
formal semantics, type system, and proofs for type soundness and deadlock-freedom
for the new primitives, which have not been studied in [1].

The Bica language [6] is an extension of Java also implementing binary sessions,
which focuses on allowing session channels to be used as fields in classes. Bica does
not support multi-channel primitives and does not guarantee deadlock-freedom across
multiple sessions. See [10, 11] for more comparisons with [6]. A recent work [17] ex-
tends SJ-like primitives with multiparty session types and studies type-directed opti-
misations for the extended language. Their design is targeted at more loosely-coupled
distributed applications than parallel algorithms, where processes are tightly-coupled
and typically communicate via high-bandwidth, low-latency media; their optimisations,
such as message batching, could increase latency and lower performance. It does not
support features such as session delegation, session thread programming and transport
independence [10, § 4.2.3], which are integrated into SJ. The latter in particular, together
with SJ alias typing [10, § 3.1] (for session linearity), offers transparent portability of
SJ parallel algorithm code over TCP and shared memory with zero-copy optimisations.

Message-based parallel programming. The present paper focuses on language and
typing support for communications programming, rather than introducing a supple-
mentary API. In comparison to the standard MPI libraries [7, §4], SJ offers structured
communication programming from the natural abstraction of typed sessions and the as-
sociated static assurance of type and protocol safety. Recent work [19] applies model-
checking techniques to standard MPI C source code to ensure correct matching of sends
and receives using a pre-existing test suite. Their verifier, ISP, exploits independence
between thread actions to reduce the state space of possible thread interleavings of an
execution, and checks for deadlocks in the remaining states. In contrast, our session
type-based approach does not depend on external testing, and a valid, compiled pro-
gram is guaranteed communication-safe and deadlock-free in a matter of seconds. SJ
thus offers a performance edge even in the cases of complex interactions (cf. [5]). The
MPI API remains low-level, easily leading to synchronisation errors, message type er-
rors and deadlocks [7]. From our experiences, programming message-based parallel
algorithms with SJ are much easier than programming based on MPI functions, which,
beside lacking type checking for protocol and communication safety, often requires ma-
nipulating numerical process identifiers and array indexes (e.g. for message lengths in
the n-Body program) in tricky ways. Our approach gives a clear definition of a class of
communication-safe and deadlock-free programs as proved in Theorems 4.2 and 4.3,
which have been statically checked without exploring all execution states for all possi-
ble thread interleavings. Finally, benchmark results in §5 demonstrate how SJ programs
can deliver the above benefits and perform competitively against a Java-based MPI [14].

Future work. Our previous work [20] shows type-checking for parallel algorithms
based on parameterised multiparty sessions requires type equality, so type checking
is undecidable in the general case. The method developed in this paper is not only
decidable, but also effective in practice as we can reuse the existing binary SJ lan-
guage, type-checker and runtime, with extensions to the new multi-channel inwhile and

Safe Parallel Programming with Session Java 125

outwhile primitives for structuring message-passing communications and iterations. To
validate more general communication topologies beyond the well-formed condition and
typical parallel algorithms, we plan to incorporate new primitives into multiparty ses-
sion types [9, 17] by extending the end-point projection algorithm based on roles [4].
Preliminary results from a manual SJ-to-C translation have shown large performance
gains for FPGA implementations [15]. Future implementation efforts will include a na-
tively compiled, C-like language targeted at low overheads and efficiency for HPC and
systems programming. We also plan to incorporate recent, unimplemented theoretical
advances, including logical reasoning [2] to prove the correctness of parallel algorithms.

Acknowledgements. We thank the referees for their useful comments and Brittle Tsoi
and Wayne Luk for their collaborations. This work is partially supported by EPSRC
EP/F003757 and EP/G015635.

References

1. Bejleri, A., Hu, R., Yoshida, N.: Session-Based Programming for Parallel Algorithms. In:
PLACES, EPTCS (2009)

2. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for dis-
tributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS,
vol. 6269, pp. 162–176. Springer, Heidelberg (2010)

3. Casanova, H., Legrand, A., Robert, Y.: Parallel Algorithms. Chapman & Hall, Boca Raton
(2008)

4. Deniélou, P.-M., Yoshida, N.: Dynamic Multirole Session Types. In: POPL 2011, pp. 435–
446. ACM, New York (2011)

5. On-line appendix, http://www.doc.ic.ac.uk/~cn06/pub/2011/sj_parallel/
6. Gay, S.J., Vasconcelos, V.T., Ravara, A., Gesbert, N., Caldeira, A.Z.: Modular Session Types

for Distributed Object-Oriented Programming. In: POPL 2010, pp. 299–312. ACM, New
York (2010)

7. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the
Message-Passing Interface. MIT Press, Cambridge (1999)

8. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline for
Structured Communication-Based Programming. In: Hankin, C. (ed.) ESOP 1998. LNCS,
vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

9. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In: POPL,
pp. 273–284. ACM, New York (2008)

10. Hu, R.: Structured, Safe and High-level Communications Programming with Session Types.
PhD thesis, Imperial College London (2010)

11. Hu, R., Kouzapas, D., Pernet, O., Yoshida, N., Honda, K.: Type-Safe Eventful Sessions in
Java. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 329–353. Springer, Heidel-
berg (2010)

12. Hu, R., Yoshida, N., Honda, K.: Session-Based Distributed Programming in Java. In: Vitek,
J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidelberg (2008)

13. Message Passing Interface, http://www.mcs.anl.gov/research/projects/mpi/
14. MPJ Express homepage, http://mpj-express.org/
15. Ng, N.: High Performance Parallel Design based on Session Programming. MEng thesis,

Department of Computing, Imperial College London (2010)
16. Shafi, A., Carpenter, B., Baker, M.: Nested Parallelism for Multi-core HPC Systems using

Java. Journal of Parallel and Distributed Computing 69(6), 532–545 (2009)

http://www.doc.ic.ac.uk/~cn06/pub/2011/sj_parallel/
http://www.mcs.anl.gov/research/projects/mpi/
http://mpj-express.org/

126 N. Ng et al.

17. Sivaramakrishnan, K.C., Nagaraj, K., Ziarek, L., Eugster, P.: Efficient Session Type Guided
Distributed Interaction. In: Clarke, D., Agha, G. (eds.) COORDINATION 2010. LNCS,
vol. 6116, pp. 152–167. Springer, Heidelberg (2010)

18. Spring, J.H., Privat, J., Guerraoui, R., Vitek, J.: StreamFlex: High-Throughput Stream Pro-
gramming in Java. In: OOPSLA 2007, pp. 211–228. ACM, New York (2007)

19. Vo, A., Vakkalanka, S., DeLisi, M., Gopalakrishnan, G., Kirby, R.M., Thakur, R.: Formal
Verification of Practical MPI Programs. In: PPoPP 2009, pp. 261–270. ACM, New York
(2009)

20. Yoshida, N., Deniélou, P.-M., Bejleri, A., Hu, R.: Parameterised Multiparty Session Types.
In: Ong, C.-H.L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 128–145. Springer, Heidelberg
(2010)

21. Yoshida, N., Vasconcelos, V.T.: Language Primitives and Type Discipline for Structured
Communication-Based Programming Revisited: Two Systems for Higher-Order Session
Communication. ENTCS 171(4), 73–93 (2007)

Fair Subtyping for Multi-party Session Types

Luca Padovani

Dipartimento di Informatica, Università di Torino, Italy
padovani@di.unito.it

Abstract. The standard subtyping relation used in dyadic session type theories
may compromise the liveness of multi-party sessions. In this paper we define a
fair subtyping relation for multi-party session types that preserves liveness, we
relate it with the standard subtyping relation, and we give algorithms for deciding
it. As a side effect, we provide an original and remarkably simple coinductive
characterization of the fair testing preorder for nondeterministic, sequential pro-
cesses consisting of internal choices of outputs and external choices of inputs.

1 Introduction

Type systems for dyadic sessions [15,16,22] require that, at any time, the two ends
of a session must be used by exactly two processes and in complementary ways. These
requirements enforce session correctness, namely communication safety (no message of
unexpected type is ever sent) and liveness (whenever a message is exchanged, all of the
processes involved in the session make progress). For example, the session p : T |q : R,
where T and R are the session types defined by

T = q!a.T ⊕q!b.end and R = p?a.R +p?b.end ,

is correct and describes a conversation between two processes identified by the tags p
and q: process p sends either an a message or a b message to q; the decision as to which
type of message is sent is taken by p, whence the internal choice operator⊕. Process q
must be ready to receive either an a or a b message from p, whence the external choice
operator +. If an a message is exchanged, the two processes repeat this pattern; as soon
as a b message is exchanged, the session ends.

The shift from dyadic to multi-party sessions [17] makes the definition of session
correctness more subtle. First, it is no longer obvious what it means to use the ends of
the session “in complementary ways” if the session involves more than two participants.
Second, it is no longer reasonable to pretend that all of the involved participants make
progress whenever a message is exchanged if communications are point-to-point and
yet one would like to state that no participant is left behind. A natural formalization of
correctness for multi-party sessions requires that, at any time, the session must have the
possibility to reach a terminal configuration where all of its participants no longer use
the session ends. For example, in the session p : T ′ |q : R |r : p?c.end, where

T ′ = q!a.T ′ ⊕q!b.r!c.end ,

the processes p and q may exchange an arbitrary number of a messages and, during
their interaction, the process r does not make any progress. However, the session is

W. De Meuter and G.-C. Roman (Eds.): COORDINATION 2011, LNCS 6721, pp. 127–141, 2011.
c© IFIP International Federation for Information Processing 2011

128 L. Padovani

correct because, as long as a messages are exchanged, it is always possible (although
not granted) for p to send a b message to q followed by a c message to r. If this happens,
all of the involved participants reach a terminal state and the session ends.

This difference between dyadic and multi-party sessions has dramatic effects on the
subtyping relation for session types [12,6]. Subtyping defines an asymmetric compat-
ibility between types such that, when T is a subtype of S, it is harmless to replace a
channel with type S with another one with type T or, equivalently, it is harmless to re-
place a process that behaves according to T with another one that behaves according
to S. For example, the session type T defined above is a subtype of q!b.end: using a
channel of type q!b.end means sending a b message to process q. Since the session type
T permits sending both an a message and a b message, using a channel with type T
in place of another one with type q!b.end does not compromise the correctness of the
session. In general, we may deduce that T is a subtype of S if S is a variant of T where
some branches of some internal choices have been pruned. According to this intuition
every session type in the family

S2 = q!a.q!a.S2⊕q!b.end · · · Sn = (q!a.)nSn⊕q!b.end · · · S∞ = q!a.S∞

is a supertype of T . The type Sn allows sending a b message only after the number of
sent a messages is a multiple of n. The type S∞ is somehow the limit of the sequence
{Si}i≥2 and describes a process that only sends a messages. The fact that T is a sub-
type of S∞ may be questionable, because the sessions p : Si |q : R for i≥ 2 all have the
potential to terminate (it is always possible that a b message is sent), while the session
p : S∞ |q : R is doomed to loop forever. In a dyadic session like p : S∞ |q : R this is miti-
gated by the observation that every participant of the session makes indefinite progress.
However, using the same arguments we might also deduce that S∞ is a supertype of T ′,
and now in the session p : S∞ |q : R |r : p?c.end process p keeps interacting with q while
c is stuck waiting for a message that is never sent. We conclude that the well-known
subtyping relation for dyadic session types is unsound in multi-party theories because
it may not preserve the liveness of multi-party sessions.

In this paper we study a sound subtyping relation for multi-party session types. Un-
derstanding when two session types are related by subtyping in our theory is a sur-
prisingly complex business. First of all, the differences between the standard subtyping
relation and ours emerge only when recursive session types are involved, while the
two relations coincide on finite session types. Second, unlike the standard subtyping
relation for session types, deciding whether some branch of an internal choice can be
safely pruned may involve a non-local check on the structure of the session types being
compared. This makes the subtyping relation particularly difficult to axiomatize. To il-
lustrate the subtleties behind our subtyping relation, consider the session types T , S2,
and S∞ represented as the three automata in Figure 1, where the initial states have been
labelled with the name of the session type and the solid arcs with the actions performed
by the processes that behave according to these types. The subtyping relation establishes
a correspondence between states of two session types. In the figure, the correspondence
is depicted as the three dotted arrows showing, for each state of S2, the corresponding
state of T . The fact that S∞ is not a supertype of T can be easily detected since no end
state is reachable from S∞, but this does not explain why S2 is a supertype of T . Observe

Fair Subtyping for Multi-party Session Types 129

T

end

q!a

q!b

S2

•

end

q!a

q!b

q!a

S∞

q!a

Fig. 1. Relation between T = q!a.T ⊕q!b.end and S2 = q!a.q!a.S2⊕q!b.end

that S2 has an intermediate state • which lacks the outgoing q!b-labelled transition that
T has. The correspondence between T and this state of S2 is safe if (and only if) there is
no session type R such that p : T |q : R is a correct session and q is capable to loop the
interaction starting from p : S2 |q : R in such a way that the • state is visited infinitely
often. If this were the case, q could rely on the observation of a b message after having
received an odd number of a messages to terminate successfully. This cannot happen in
the example above because p : S2 can always break the loop by sending q an a message
followed by a b one (the act of sending a message is irrevocably decided by the sender).
We express this as the fact that S2 rules over (every context, like q : R, that completes)
T , which we denote by T ≺ S2.

T •

end
q!a,q!b

q?a

q?b

S •

end

• •
q!a

q?b

q?a q!a,q!b

q?a

q?b
×

Fig. 2. Relation between T = q!a.(q?a.T + q?b.end) ⊕ q!b.(q?a.T + q?b.end) and S =
q!a.(q?a.(q!a.(q?a.S+q?b.end)⊕q!b.(q?a.S+q?b.end))+q?b.end

A more involved example is depicted in Figure 2. The only difference between T
and S is that S lacks the outgoing q!b-labelled transition that T has. Basically, p : S may
send a b message only after an odd number of a messages have been sent to q and an
equal number of a messages have been received. Unlike the previous example, it is q
that decides whether to terminate the interaction with p, by sending a b message, or to
continue, by sending an a message. Consider now the participant q : R where

R = p?a.p!a.(p?a.p!a.R +p?b.p!a.R)+p?b.p!b.end .

It is easy to see that p : T | q : R is correct while p : S | q : R loops through state S. In
other words, q forces p : S to go through state S in hopes that a b message is received.
This was possible with p : T , but not with p : S. The fact that a participant like q : R
exists means that T is not ruled by S, and therefore T is not a subtype of S. In this paper
we show that the “ruled by” relation fully characterizes the contexts in which pruning
outputs is safe.

130 L. Padovani

Related work. The framework we have depicted is known in concurrency theory as
fair testing [18,21]. Testing [10,9,14] is a general technique for defining refinement
relations) between processes so that, when P) Q holds, the process Q can be safely
used in place of process P because every “test” that P passes is passed also by Q. Fair
testing adds a fairness assumption to standard testing: if a system goes infinitely often
through a state from which some action is possible (like the action q!b from state T in
Figure 2), a component of the system may rely upon the eventual observation of that
action to terminate successfully. In the present paper, we instantiate fair testing to a
context where processes are session types describing the behavior of participants of a
multi-party session and the “test” is given by the correctness of a session.

Since the) relation is defined by universally quantifying over an infinite number
of tests, a crucial aspect of every testing theory is the study of alternative, possibly
effective characterizations of) or approximations of it. Alternative characterizations
of refinements not considering fairness have been defined, for example, in [13,14] and
later, in coinductive form, in [7] and in [4,1]. Alternative characterizations of fair re-
finements have already been given in the literature, but we find them unsatisfactory. The
authors of [18] present a characterization based on sets of infinite strings, while [21] re-
lies on a denotational model of processes. In both cases the characterizations are quite
complex, if compared to those of corresponding unfair refinements, because they are
semantically – rather than syntactically – based. In fact, as pointed out in [21], no com-
plete axiomatization of these refinements is known at the present time. Recently, [2,3]
have investigated subcontract relations for Web services which are closely related to
fair subtyping of session types, but they refer to [21] when it comes to characterizing
and deciding them. The authors of [4] provide a coinductive characterization that is
not complete (for instance, it fails to assess that T is a subtype of S2 in Figure 1). The
standard reference for subtyping of session types is [12], where the subtyping relation
is “unfair” by definition. A fair theory of multi-party session types has been developed
in [19], but no alternative characterizations nor algorithms were given.

Contributions. This paper presents a self-contained theory of multi-party session types
where the focus is on the eventual satisfaction of all the interacting participants. From a
technical viewpoint, the main novelty is an alternative characterization of the fair sub-
typing relation which is expressed as the combination of the familiar, “unfair” subtyp-
ing relation [12] and a “ruled by” relation which can be expressed as a syntax-directed
notion of behavioral difference between session types. This allows us to present a com-
plete deduction system for the subtyping relation as a minor variation of the standard
one, up to the use of the “ruled by” relation.

Structure of the paper. In Section 2 we formalize the language of (multi-party) session
types, the notion of correct session, and subtyping as the relation that preserves cor-
rectness. We show that our subtyping differs from the standard one. Section 3 provides
a sound and complete coinductive characterization of subtyping based on the “ruled
by” relation. Section 4 presents algorithms for deciding subtyping and related notions.
Section 5 concludes. Proofs and auxiliary technical material are available in the ap-
pendix of the full version of the paper [20].

Fair Subtyping for Multi-party Session Types 131

2 Syntax and Semantics of Session Types

We assume a set R of role tags ranged over by p, q, . . . , a countable set M of message
types ranged over by a, b, . . . , and a countable set X of recursion variables ranged
over by x, y, Table 1 defines the syntax of sessions and session types. Sessions,
ranged over by M, N, . . . , are finite compositions p1 : T1 | · · · | pn : Tn made of a fixed
number of participants that communicate with each other according to the session types
Ti. We work exclusively with well-formed sessions, where each participant is uniquely
identified by a tag pi (i �= j implies pi �= p j). Session types, ranged over by T , S, . . . ,
are the closed terms generated by the grammar in Table 1 such that:

– every recursion variable is guarded by at least one (input or output) prefix, and
– in every subterm ∑i∈I p?ai.Ti or

⊕
i∈I p!ai.Ti the ai’s are pairwise distinct.

The first condition forbids non-contractive session types such as μx.x, while the
second condition ensures that session types are unambiguous by requiring that every
prefix of the form p?ai or p!ai uniquely determines a continuation Ti. We consider ses-
sion types modulo the folding and unfolding of recursive terms. Therefore, we assume
μx.T = T{μx.T/x} where T{μx.T/x} denotes the session type obtained from T by
replacing every free occurrence of x in T with μx.T (μ is the only binder for recur-
sion variables, and the notions of free and bound variables are defined as expected).
In practice, this amounts to saying that session types are the possibly infinite, finitely-
branching, regular trees [8] generated by the productions of the grammar in Table 1.
Note that all the session types defined in the introduction can be finitely and uniquely
expressed as possibly recursive terms generated by the grammar in Table 1.

Table 1. Syntax of session types and sessions

T ::= Session Type
fail (failure)

| end (termination)
| x (variable)
| ∑i∈I p?ai.Ti (input)
| ⊕

i∈I p!ai.Ti (output)
| μx.T (recursion)

M ::= Session
p : T (participant)

| M |M (composition)

The session type end describes a process that no longer participates to the ses-
sion. The session type ∑i∈I p?ai.Ti describes a process that waits for a message from
the source participant identified by tag p: depending on the type ai of the message
it receives, the process behaves according to the continuation Ti. The session type⊕

i∈I p!ai.Ti describes a process that internally decides to send a message of type ai to
the destination participant identified by tag p. After the output operation the process be-
haves as described in the session type Ti. Terms x and μx.T are used to build recursive
session types. It is technically convenient (although not necessary) to have a canoni-
cal term fail describing failed processes that are unable to terminate successfully. This
happens, for example, if a participant receives an unexpected message. Sometimes we

132 L. Padovani

will use the infix notation p?a1.T1 + · · ·+p?an.Tn to denote ∑n
i=1 p?ai.Ti and p!a1.T1⊕

·· · ⊕ p!an.Tn to denote
⊕n

i=1 p!ai.Ti. Note that mixed choices like p?a.T + p!b.S and
p?a.T +q?a.S are forbidden. In particular, the source participant p and the destination
participant p in ∑i∈I p?ai.Ti and

⊕n
i=1 p!ai.Ti must be the same in all branches (all the

examples in the introduction are consistent with these conventions). While slightly re-
dundant, the syntax for inputs and outputs allows us to conveniently switch between
the prefix forms and the corresponding infix forms. Also, we will write trees(T) for the
finite set of subtrees that T is made of, including T itself (recall that a regular tree is
made of a finite number of distinct subtrees [8]). Take for example T = μx.(p!a.q?c.x⊕
p!b.end). Then trees(T) = {T,q?c.T,end}.

We express the evolution of a session by means of a transition system. The idea is
that each participant of a session behaves as described by the corresponding session
type and the session evolves by means of internal choices taken by the participants and
by synchronizations occurring between them. Labels of the transition system, ranged
over by α̂ , are generated by the grammar

α̂ ::= τ | � | p : p?a | p : p!a

and we use α to range over actions different from τ .

Table 2. Transition system of sessions

(T-SUCCESS)

p : end
�−→ p : end

(T-OUTPUT)

p : q!a.T
p:q!a−→ p : T

(T-CHOICE)
k ∈ I

p :
⊕
i∈I

q!ai.Ti
τ−→ p : q!ak.Tk

(T-INPUT)
k ∈ I

p : ∑
i∈I

q?ai.Ti
p:q?ak−→ p : Tk

(T-FAILURE)
a �= ai

(i∈I)

p : ∑
i∈I

q?ai.Ti
p:q?a−→ p : fail

(T-PAR ACTION)

M
α̂−→M′ α̂ �= �

M |N α̂−→M′ |N

(T-COMM)

M
p:q!a−→ M′ N

q:p?a−→ N′

M |N τ−→M′ |N′

(T-PAR SUCCESS)

M
�−→M N

�−→ N

M |N �−→M |N

Table 2 defines the transition system (symmetric rules omitted) in terms of a family

of labelled relations
α̂−→. Rule (T-SUCCESS) states that end performs a � action that

flags successful termination and reduces to itself. Rules (T-OUTPUT) and (T-CHOICE)
deal with outputs. The former one shows that a participant p willing to send an a mes-
sage to participant q performs a p : q!a action. The latter one states that a participant that
is ready to send any message from a set internally and irrevocably chooses one partic-
ular message to send. In both rules we use the abbreviation q!a0.T0 for

⊕
i∈{0} q!ai.Ti.

Rules (T-INPUT) and (T-FAILURE) deal with inputs. The former one is standard and

Fair Subtyping for Multi-party Session Types 133

states that a participant p performs p : q?a actions according to the type of messages
it is willing to receive and the participant q from which it expects these messages to
come. The latter shows that a participant can receive an unexpected input, but in doing
so it will fail. Note the fundamental asymmetry between inputs and outputs: a partic-
ipant autonomously commits to sending one particular message by means of rule (T-
CHOICE), while it retains the ability to receive any message from a given set by means
of rule (T-INPUT). Rule (T-PAR ACTION) propagates transitions through compositions
and (T-COMM) is the usual communication rule. Finally, (T-PAR SUCCESS) states that a
composition has successfully terminated if all of its participants have. In the following
we adopt the following conventions: we write

τ=⇒ for the reflexive, transitive closure of
τ−→; we write

α=⇒ for
τ=⇒ α−→ τ=⇒ and

α1···αn===⇒ for the composition
α1=⇒··· αn=⇒; we let s,

t, . . . range over finite strings of actions different from �; we write M
α−→ (respectively,

M
α=⇒) if there exists N such that M

α−→ N (respectively, M
α=⇒ N); we write M �

τ−→
(respectively, M �

α=⇒) if there exists no N such that M
τ−→ N (respectively, M

α=⇒ N).
We also extend the labelled transition relation and the above notation to session types
so that, for example, T

α−→ S if p : T
α−→ p : S for some p.

Intuitively, a session is correct if the possibility to reach a state where every partici-
pant is successfully terminated is invariant under reductions. This can be formalized as
follows:

Definition 2.1 (correct session). We say that M is correct if M
τ=⇒ N implies N

�=⇒.

In Section 1 we have already seen a number of correct sessions, which the reader may
now formally check against Definition 2.1. It is useful to discuss a few examples of
incorrect sessions. For instance, M = p : q!a.end⊕ q!b.end |q : p?a.end is not correct
because p may decide to send a b message that q is not willing to receive. Even though
at the beginning of the interaction there is one potential path leading to successful termi-

nation (indeed M
�=⇒), rule (T-CHOICE) can make the decision of sending b irrevocable

(in this case M
τ−→ p : q!b.end |q : p?a.end

τ−→ p : end |q : fail �
�=⇒). There are also in-

trinsically flawed session types that can never be part of correct sessions. For example,
the session M |p : fail is incorrect regardless of M, because fail is never able to perform
�. Some sessions are incorrect despite that no fail term occurs in them. This happens in
the session p : μx.q!a.x |q : μy.p?a.y because, even though the participants p and q keep
interacting with each other, they do not have the ability to terminate the interaction.

Some properties of correct sessions are easy to verify: p : end is the simplest correct
session; the session M |p : end is correct if and only if M is correct; finally, correctness
is preserved by reductions: if M is correct and M =⇒ N, then N is also correct.

We define the subtyping relation for session types semantically as the relation that
preserves correctness: we say that T is a subtype of S if every session M |p : T that is
correct remains correct when we replace T with S. Formally:

Definition 2.2 (subtyping). We say that T is a subtype of S, written T � S, if M |p : T
correct implies M |p : S correct for every M. We write ≶ for the equivalence relation
induced by �, namely ≶ = �∩�−1.

This definition may look surprising at first, because it speaks about left-to-right substi-
tutability (of behaviors), while subtyping is concerned with right-to-left substitutability

134 L. Padovani

(of channels). The mismatch is only apparent, however, and is due to the fact that ses-
sion types are behavioral types (they describe the behavior of processes using channels).
To clarify this point, suppose that S is the type associated with a channel c and that some
process P uses c as indicated by S. By replacing channel c in P with another channel d
with type T � S, we are changing the set of processes that P is interacting with, which
together behave according to some M such that M |p : T is correct. Replacing c with d
does not affect the way P behaves: P uses channel d (whose actual type is T) as if it
were channel c (thus according to S). This means that the actual implemented session
is M |p : S. Since T � S, we know that this session is correct.

A thorough study of the subtyping relation that solely relies on Definition 2.2 is hard,
because of the universal quantification over an infinite set of contexts M. Nonetheless,
a few relations are easy to establish. For example, we have

(i) p?a.end � p?a.end+p?b.end and (ii) p!a.end⊕p!b.end � p!a.end

namely � behaves covariantly with respect to inputs and contravariantly with respect
to outputs, on finite session types. The two relations can be explained as follows: in (i),
every context M such that M |q : p?a.end is correct must eventually send some message
to q, and this message can only be a for otherwise q would fail because of rule (T-
FAILURE). Therefore, M |q : p?a.end+p?b.end is also correct, since p?a.end+p?b.end
is more receptive than p?a.end. In (ii), every context M such that M | q : p!a.end⊕
p!b.end is correct must be able to terminate successfully no matter which message (ei-
ther a or b) is sent to p. One such context is M = p : q?a.end + q?b.end. Therefore,
nothing bad happens when we replace p!a.end⊕ p!b.end with a more deterministic
behavior, such as p!a.end. As a general note, observe that relation (i) increases (and re-
lation (ii) decreases) the number of paths along the session types that lead to end when
one reads the relations from left to right. Since correctness concerns the reachability
of a successfully terminated state, it is not obvious that reducing the number of paths
leading to end is generally safe, as we have already argued in the introduction.

The standard subtyping relation for session types [12], which we dub “unfair sub-
typing” to distinguish it from the one of Definition 2.2, is defined thus:

Definition 2.3 (unfair subtyping). We say that S is a coinductive subtyping if T S S
implies either:

1. T = S = end, or
2. T = ∑i∈I p?ai.Ti and S = ∑i∈I∪J p?ai.Si and Ti S Si for every i ∈ I, or
3. T =

⊕
i∈I∪J p!ai.Ti and S =

⊕
i∈I p!ai.Si and Ti S Si for every i ∈ I.

Unfair subtyping, denoted by �U, is the largest coinductive subtyping.

Item (1) states that the only subtype of end is end. Item (2) is the standard covariant
rule for input actions: it is safe for a process that is capable of handling a set {ai}i∈I∪J of
incoming message types to wait for messages from a channel on which a subset {ai}i∈I

of message types can be received. Item (3) is dual of item (2) and deals with outputs. It
states that a process can safely use a channel on which messages from the set {ai}i∈I∪J

can be sent if it never sends a message that is not in this set.

Fair Subtyping for Multi-party Session Types 135

The relation �U is appealing because of its simple and intuitive definition, but it is
neither sound nor complete if compared with �. On the one hand, the �U relation does
not preserve correctness as by Definition 2.1. For instance, the reader may verify that
T �U S∞ holds for T and S∞ defined in the introduction, but T �� S∞ because S∞ has
no end subtree. On the other hand, there exists a large class of equivalent session types
that are syntactically unrelated. For instance, we have S∞ ≶ fail and S∞ ��U fail. Session
types like fail or S∞ are flawed because there is no correct session in which they can
occur. Therefore, they are the �-least elements and roughly correspond to the empty
type in other type theories. Patching Definition 2.3 to take flawed session types into
proper account is far from trivial (adding a case for dealing with fail session types is not
enough, as S∞ shows).

3 Coinductive Fair Subtyping

We devote this section to defining a complete, coinductive characterization of �. To
ease the presentation, we proceed incrementally in three steps: (1) we introduce a nor-
mal form for session types that allows us to focus on the subclass of viable session
types, those that can be part of correct sessions and that, consequently, are the most rel-
evant in practice; (2) we express T � S as the combination of two relations, the familiar
(but unsafe) T �U S subtyping for session types (which is shown to include � when
restricted to viable session types in normal form) and a T ≺ S relation that holds when
the paths leading to successful termination in T that have disappeared from S do not en-
danger correctness; (3) we show that the T ≺ S relation is equivalent to the viability of a
suitably defined T −S session type, somehow representing the “behavioral difference”
between T and S.

Normal form. At the end of Section 2 we have seen that there exist flawed session types
that cannot occur in any correct session. Session types that can occur in correct sessions
are our primary concern and we reserve a name for them.

Definition 3.1 (viability). We say that T is viable if M |p : T is correct for some M and
p. We write Tv for the set of viable session types.

A session type T is not viable if and only if T � fail. That is, being not viable means be-
ing (�-smaller than) the empty type. The existence of non-viable session types hinders
the coinductive characterization of the subtyping relation in the style of Definition 2.3
because these characterizations are based on the intuition that semantically related ses-
sion types must be syntactically similar, while we have shown that this is not necessarily
true when non-viable session types are involved. We define a normal form that makes
non-viable session types readily detectable and the syntax of viable ones meaningful in
a sense that will be clarified shortly.

Definition 3.2 (normal form). We say that T is in normal form if either T = fail or
end∈ trees(S) for every S∈ trees(T). We write Tnf for the set of session types in normal
form.

136 L. Padovani

The double indirection in Definition 3.2 imposes that an end leaf is included in every
subtree of T when T is different from fail. For example p?a.end+p?b.fail is not in nor-
mal form because fail ∈ trees(p?a.end+p?b.fail) and end �∈ trees(fail). The following
proposition assures us that working with session types in normal forms is convenient
and yet not restrictive: every session type has an ≶-equivalent one in normal form and
every session type in normal form different from fail is viable.

Proposition 3.1. The following properties hold: (1) for every T ∈ T there exists S ∈
Tnf such that T ≶ S; (2) Tnf \ {fail} ⊆Tv.

For instance, p?a.end is the normal form of p?a.end+ p?b.fail. The syntax of session
types in normal form is “meaningful” in the sense that �U includes � when we focus
on viable session types in normal form.

Theorem 3.1. Let T,S ∈ Tnf \ {fail}. Then T � S implies T �U S.

Unfair subtyping and � decomposition. Focusing on viable session types in normal
form does not change the fact that �U is unsound with respect to �. More precisely,
�U does not introduce deadlocks, but it can introduce livelocks when recursive session
types are involved:

Theorem 3.2. Let T,S ∈ Tnf and T �U S. Then:

1. T recursion-free implies T � S;

2. M |p : T correct and M |p : S
τ=⇒ N �

τ−→ imply N
�−→.

Theorem 3.2 shows that �U is not too far away from being a sound characterization of
�. Therefore, we attempt at characterizing T � S as the combination of two relations:
T �U S, expressing a safety property (S does not introduce deadlocks), and T ≺ S,
expressing a liveness property (S does not preclude the successful termination of any
context that completes T). The “ruled by” relation≺ is defined thus:

Definition 3.3. Let T,S ∈ Tnf and T �U S. We say that T is ruled by S, written T ≺ S,

if M |p : T correct implies M |p : S
�=⇒ for every M.

When T �U S, the behavior S may preclude successful termination of a context M
that completes T only when some outputs in T have disappeared in S. The additional
property T ≺ S prevents this from happening. Observe that T � S implies T ≺ S, but
the converse is not true in general. In fact, ≺ precisely captures the difference between
�U and �, in the following sense:

Definition 3.4 (coinductive fair subtyping). A coinductive subtyping S is fair if T S
S implies T ≺ S. We write �C for the largest coinductive fair subtyping.

The relation �C is indeed the characterization of � we are looking for:

Theorem 3.3. Let T,S ∈ Tnf \ {fail}. Then T � S if and only if T �C S.

Fair Subtyping for Multi-party Session Types 137

Characterization of ≺ and behavioral difference. We now shift the focus to the ≺
relation. Suppose T �U S and T �≺ S. Then there exists some context M such that the
correctness of M |p : T crucially depends on the outputs that T emits and that S does
not. In order to find M, we define a session type T − S that somehow represents the
“difference” between T and S and that is viable if (and only if) such M does exist. The
intuition is that T −S differs from T and S in three respects:
1. Every end that lies on a path shared by T and S is turned to a fail in T−S. Therefore,

any hypothetical context M such that M |p : T −S is correct can only count on those
end leaves found in T that have disappeared in S.

2. T − S performs no more inputs than those performed by T . In this way we stay
assured that, if M exists, it does not use any additional input capability provided by
S but not by T .

3. T −S performs all the outputs performed by T .

Formally:

Definition 3.5 (session type difference). Let T �U S. The difference of T and S, de-
noted by T −S, is coinductively defined by the following equations:

end− end = fail

∑i∈I p?ai.Ti−∑i∈I∪J p?ai.Si = ∑i∈I p?ai.(Ti−Si)⊕
i∈I∪J p!ai.Ti−⊕

i∈I p!ai.Si =
⊕

i∈J\I p!ai.Ti⊕⊕
i∈I p!ai.(Ti−Si)

To make acquaintance with ‘−’ let us revisit some of the examples in the introduc-
tion. Let T = μx.(q!a.x⊕q!b.end) and Sn = μy.((q!a.)ny⊕q!b.end). We have

T −Sn = μz.(q!a.(q!a.(· · ·(q!a.︸ ︷︷ ︸
n

z⊕q!b.end) · · ·)⊕q!b.end︸ ︷︷ ︸
n−1

)⊕q!b.fail)

and T − S∞ = T . Observe that T − S∞ is viable, while no T − Sn is because of the
q!b.fail branch. Also, when either T or S is finite T − S is never viable. For example,
T −q!b.end = q!a.T ⊕q!b.fail and T −q!a.q!b.end = q!a.(q!a.T ⊕q!b.fail)⊕q!b.end.
This is consistent with Theorem 3.2(1), showing that �U and � coincide when the �U-
smaller session type is finite. In general, we can prove that T ≺ S holds if and only if
the difference between T and S is not viable.

Theorem 3.4. Let T,S ∈Tnf and T �U S. Then T ≺ S if and only if T −S is not viable.

On the practical side, Theorem 3.4 allows us to decide T ≺ S if we can decide the vi-
ability of a session type (we will address this in Section 4). On the theoretical side, it
highlights an interesting analogy between our framework and that of semantic subtyp-
ing [11], which also motivates the notation T − S. We have observed that “being not
viable” is equivalent to “being smaller than fail”, and that fail somehow represents the
empty type in our theory. Therefore, a consequence of Theorems 3.3 and 3.4 is that in
order to decide T � S one has to decide whether T −S � fail. This reformulation is pre-
cisely the one used in the framework of semantic subtyping, where types are interpreted
as sets of values and deciding the subtyping relation σ ⊆ τ is equivalent to deciding the
emptiness of σ \ τ . Note however that T ≺ S alone does not imply T � S. For exam-
ple, we have q!a.T ⊕q!b.end≺ q!a.S⊕q!b.end where T = μx.(q?a.(q!a.x⊕q!b.T)+
q?b.end) and S = μy.(q?a.q!a.y + q?b.end). Still, q!a.T ⊕ q!b.end �� q!a.S⊕ q!b.end
because T �� S, as we already know.

138 L. Padovani

4 Algorithms

In this section we define algorithms for deciding viability, for computing the normal
form of viable session types, and for deciding subtyping. We also discuss the decidabil-
ity of session correctness.

Viability. The viability of a session type T is tightly related to the reachability of end
subtrees occurring in it. The algorithm we propose assumes initially that every subtree
of T is viable and iteratively discards those subtrees for which this assumption is dis-
proved. Each iteration performs three checks: a subtree S ∈ trees(T) is viable provided
that end can be reached from it; input nodes are viable provided that there is at least
one branch that is viable; output nodes are viable provided that every branch is viable.
Formally, let the viability sequence for T be the sequence {VT

i }i∈N of sets of session
types defined in the following way, where≤ is the usual prefix relation between strings
of actions:

VT
0 = trees(T)

VT
2i+1 = {S ∈ VT

2i | ∃s : S
s=⇒ end,∀t ≤ s : S

t=⇒ S′ ∈ trees(T)⇒ S′ ∈ VT
2i}

VT
2i+2 = {end ∈VT

2i+1}∪{∑ j∈I p?a j.Tj ∈ VT
2i+1 | ∃ j ∈ I : Tj ∈ VT

2i+1}
∪{⊕ j∈I p!a j.Tj ∈ VT

2i+1 | ∀ j ∈ I : Tj ∈ VT
2i+1}

Observe that, in computing VT
2i+1, it is not enough to be able to reach an end subtree

from S to declare S viable. It must be the case that every subtree along the path S
s=⇒ end

has not been proved non-viable. Note also that, in principle, the computation of VT
2i+1

may need to consider an infinite number of strings s such that S
s=⇒. However, it is

enough to consider those paths such that the derivation S
s=⇒ never goes through the

same subtree twice. Since session types are regular trees and have a finite number of
distinct subtrees, it always suffices to consider a finite number of paths. Every set in
the sequence is finite and the sequence is decreasing. Therefore, there exists k ∈N such
that VT

k = VT
k+1 = VT

k+2. We denote the fixpoint of the sequence with viables(T).

Theorem 4.1 (viability). T ∈ Tv if and only if T ∈ viables(T).

Normal form. Once we know how to identify viable session types, computing their nor-
mal form is only a matter of pruning away those subtrees that are not viable. The normal
form of T , denoted by nf(T), is defined coinductively by the following equations:

nf(T) = fail if T �∈Tv

nf(end) = end
nf(∑i∈I p?ai.Ti) = ∑i∈I,nf(Ti) �=failp?ai.nf(Ti)
nf(

⊕
i∈I p!ai.Ti) =

⊕
i∈I p!ai.nf(Ti)

(all the equations but the first one apply only to viable session types).

Fair Subtyping for Multi-party Session Types 139

Theorem 4.2 (normal form). For every T , nf(T) is in normal form and T ≶ nf(T).

Fair subtyping. We present a complete, algorithmic deduction system for the subtyping
relation, which is coinductively defined in Table 3 (the corresponding inductive sys-
tem can be obtained with standard memoization techniques). Rules (FS-END) and (FS-
INPUT) are just the same as in well-known deduction systems for the unfair subtyping
relation (see, e.g., [12]). Rule (FS-FAIL) states that fail is the least element according to
�A. Rule (FS-OUTPUT) is similar to the familiar contravariant rule for outputs, except
that it is applicable only when the smaller session type is ruled by the larger one, which
can be determined by checking the viability of the difference of the two session types.
It is enough to check the condition T ≺ S only when T and S are outputs. This is shown
to imply that the condition holds whenever T �A S is provable.

Table 3. Deduction system for the subtyping relation

(FS-FAIL)
fail �A T

(FS-END)
end �A end

(FS-INPUT)
Ti �A Si

(i∈I)

∑
i∈I

p?ai.Ti �A ∑
i∈I∪J

p?ai.Si

(FS-OUTPUT)
Ti �A Si

(i∈I) nf(T −S) = fail

T =
⊕

i∈I∪J

p!ai.Ti �A

⊕
i∈I

p!ai.Si = S

Theorem 4.3. T � S if and only if nf(T) �A nf(S).

It seems like the≺ relation does not admit a simple axiomatization. The problem is that
the � relation is not local, in the sense that the applicability of rule (FS-OUTPUT) may
depend upon regions of the session types that are arbitrarily far away from the place
where it is applied. Consider for instance the session type

T = μx.q!a.(q?a.)n(q!a.(q?a.)nx⊕q!b.end)⊕q!b.end

and observe that the two q!b branches can be arbitrarily distant depending on the num-
ber n of input actions. Both the session types

S1 = μx.q!a.(q?a.)n(q!a.(q?a.)nx⊕q!b.end)
S2 = μy.(q!a.(q?a.)nq!a.(q?a.)ny⊕q!b.end)

are supertypes of T and they differ from T because one of the two q!b.end branches has
been pruned. However, pruning both branches results into a non-viable session type.
Therefore, one branch can be safely removed only if the other one is not.

Correctness. We conclude this section with a few considerations on the decidability of
correctness. Observe that, since session types are regular and finite branching, the set

R(M) def= {N |M τ=⇒N} is finite and can be computed in finite time by exploring every
session reachable from M. Now M is correct if and only if for every N ∈R(M) there

exists N′ ∈R(N) such that N′ �−→.

140 L. Padovani

In the special case of binary sessions, when only two participants p and q are in-
volved, the session p : T |q : T is always correct, assuming that q is the only role occur-
ring in T , that T is in normal form, and that T is the dual of T coinductively defined by:

end = end ∑i∈I q?ai.Ti =
⊕

i∈I p!ai.Ti
⊕

i∈I q!ai.Ti = ∑i∈I p?ai.Ti

By definition of �, every session p : T |q : S where T � S is also correct. However,
the converse is not true. That is, there are correct sessions p : T | q : S where T �� S,
for example when T = μx.(q!a.(q?a.x + q?b.x)⊕ q!b.end) and S = μy.(p?a.p!a.y +
p?b.end). This is in sharp contrast with the unfair theories [12,6], where p : T |q : S is
correct (in the “unfair” sense) if and only if T �U S.

5 Conclusions

The standard subtyping relation for session types may compromise liveness of multi-
party sessions. Even in dyadic sessions it might be desirable not to lose the ability to
reach successful termination of the interacting parties. These scenarios naturally call for
the definition of (multi-party) session type theories where every participant preserves
the possibility to reach a successfully terminated state.

Fair subtyping relations (often referred to as refinements in concurrency theory) have
rightfully gained the fame of being hard to characterize completely [18,21] or even to
approximate [4,19]. In this paper we have fully characterized the fair subtyping relation
as a simple variation of standard subtyping [12,6]. It is not entirely clear how much the
characterization of the subtyping relation we have given owes to the fact that we work
with a very primitive process language. The proof of the characterization (Theorem 3.3)
only needs the semantic definition of ≺ (Definition 3.3) and therefore should be gener-
alizable to full-featured process languages. It is not obvious, and thus subject to future
investigation, whether the same holds for the notion of difference (Definition 3.5).

Checking whether a multi-party session is correct can be more expensive than in
dyadic theories (Section 4). This observation substantiates the effectiveness of the
design-by-contract approach advocated in [5,17], where the session types of a multi-
party session are obtained as projections of a global type associated with the session.
The approach guarantees that the resulting session is correct by construction. However,
it may be necessary to use subtyping both during the projection as well as while type
checking processes against the session types of the channels they use. Therefore, it is
fundamental for subtyping to preserve session liveness (in the sense of Definition 2.1).
Type checking processes using a fair subtyping relation seems to pose interesting tech-
nical problems, because of the interplay between coinductive typing of recursive pro-
cesses and the liveness property we want to enforce on sessions. We leave these issues
for future investigations.

Acknowledgments. The author is grateful to Daniele Varacca for the discussions on
fairness and to the anonymous referees who helped improving the paper. This work was
partially supported by a visiting professor position of the Université Paris Diderot.

Fair Subtyping for Multi-party Session Types 141

References

1. Barbanera, F., de’Liguoro, U.: Two notions of sub-behaviour for session-based client/server
systems. In: Proceedings of PPDP 2010, pp. 155–164. ACM, New York (2010)

2. Bravetti, M., Zavattaro, G.: A foundational theory of contracts for multi-party service com-
position. Fundamenta Informaticae 89(4), 451–478 (2009)

3. Bravetti, M., Zavattaro, G.: A theory of contracts for strong service compliance. Mathemati-
cal Structures in Computer Science 19, 601–638 (2009)

4. Bugliesi, M., Macedonio, D., Pino, L., Rossi, S.: Compliance Preorders for Web Services.
In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 76–91. Springer, Heidelberg
(2010)

5. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred programming for
web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 2–17. Springer,
Heidelberg (2007)

6. Castagna, G., Dezani-Ciancaglini, M., Giachino, E., Padovani, L.: Foundations of session
types. In: Proceedings of PPDP 2009, pp. 219–230. ACM, New York (2009)

7. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for Web services. ACM Trans-
actions on Programming Languages and Systems 31(5), 1–61 (2009)

8. Courcelle, B.: Fundamental properties of infinite trees. Theoretical Computer Science 25,
95–169 (1983)

9. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Computer Sci-
ence 34, 83–133 (1984)

10. De Nicola, R., Hennessy, M.: CCS without τ’s. In: Ehrig, H., Levi, G., Montanari, U. (eds.)
CAAP 1987 and TAPSOFT 1987. LNCS, vol. 249, pp. 138–152. Springer, Heidelberg (1987)

11. Frisch, A., Castagna, G., Benzaken, V.: Semantic subtyping: dealing set-theoretically with
function, union, intersection, and negation types. Journal of the ACM 55(4), 1–64 (2008)

12. Gay, S., Hole, M.: Subtyping for session types in the π-calculus. Acta Informatica 42(2-3),
191–225 (2005)

13. Hennessy, M.: Acceptance trees. Journal of the ACM 32(4), 896–928 (1985)
14. Hennessy, M.: Algebraic Theory of Processes. Foundation of Computing. MIT Press,

Cambridge (1988)
15. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715,

pp. 509–523. Springer, Heidelberg (1993)
16. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline for

structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998. LNCS,
vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

17. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: Proceed-
ings of POPL 2008, pp. 273–284. ACM, New York (2008)

18. Natarajan, V., Cleaveland, R.: Divergence and fair testing. In: Fülöp, Z. (ed.) ICALP 1995.
LNCS, vol. 944, pp. 648–659. Springer, Heidelberg (1995)

19. Padovani, L.: Session types at the mirror. EPTCS 12, 71–86 (2009)
20. Padovani, L.: Fair subtyping for multi-party session types (2011), Full version available at

http://www.di.unito.it/~padovani/Papers/FairSessionTypes.pdf

21. Rensink, A., Vogler, W.: Fair testing. Information and Computation 205(2), 125–198 (2007)
22. Vasconcelos, V.T.: Fundamentals of session types. In: Bernardo, M., Padovani, L., Zavattaro,

G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 158–186. Springer, Heidelberg (2009)

http://www.di.unito.it/~padovani/Papers/FairSessionTypes.pdf

Enabling Cross-Technology Mobile Applications with
Network-Aware References

Kevin Pinte, Dries Harnie�, and Theo D’Hondt

Software Languages Lab, Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussels, Belgium

{kpinte,dharnie,tjdhondt}@vub.ac.be

Abstract. Mobile devices, such as smart phones, have become ubiquitous. This
evolution has given rise to a vast ecosystem of mobile applications. Typically
these applications only use a small subset of the networking technologies at their
disposal. Building applications that use multiple networking technologies simul-
taneously or exploit knowledge about the available connections is a laborious
task. Programmers must manually keep track of the connectivity state and du-
plicate communication code per connection type. This paper presents network-
aware references, a distributed object-oriented programming abstraction that eases
multi-networking for mobile applications and allows programmers to react to
changes in the connectivity of different networks around them. We show how
network-aware references are implemented and evaluate how well they switch
between technologies.

Keywords: Network-awareness, mobile applications, multi-networking,
distributed programming, Bluetooth, Wi-Fi.

1 Introduction

In the recent years we have seen a boom in the market of mobile devices such as smart
phones and tablets: they have become powerful enough to complement existing comput-
ers as internet devices. This evolution has proliferated all kinds of mobile applications
for various tasks people need to do on the move. Pervasive social applications [1, 2]
are a good example of mobile applications: they allow people to interact with their so-
cial network no matter where, even at social events themselves. Another example are
peer-to-peer ad hoc multiplayer games as found on Nintendo’s handheld DS console.

Next to the performance increase, mobile devices have also gained the ability to
communicate using several different networking technologies: for example, an iPhone
can communicate with other devices using short-range Bluetooth, medium-range Wi-Fi
and long-range 3G technologies. More recently, devices such as the Samsung Nexus S
have been released with the extremely short-range Near Field Communication (NFC)
technology built-in.

Mobile applications typically exploit contextual information (e.g. location, proxim-
ity to other users, ...) to better anticipate the needs of users. Network awareness is an

� Funded by the Prospective Research For Brussels program of IWOIB-IRSIB.

W. De Meuter and G.-C. Roman (Eds.): COORDINATION 2011, LNCS 6721, pp. 142–156, 2011.
c© IFIP International Federation for Information Processing 2011

Enabling Cross-Technology Mobile Applications with Network-Aware References 143

integral part of context-awareness [3, 4]. Mobile applications can benefit from being
network-aware since mobile devices are constantly on the move and their networking
hardware allows them to “sense” devices and access points in the environment. Addi-
tionally, mobile applications often need to adapt the content they present to the user to
the characteristics of the network connection that is currently being used [5].

We illustrate why network awareness is relevant for mobile applications by introduc-
ing a representative pervasive social application called Pixee that allows users to share
and follow each other’s picture libraries. The Pixee application gathers library informa-
tion from nearby devices using Bluetooth and offers to follow other users if a library
matches the user’s profile.

The scenario goes as follows: on the way home from work, Alice and Bob, both Pixee
users, happen to be in the same metro car and thus in Bluetooth range. Since they both
like pictures of cats, Alice’s picture library matches Bob’s interests. When Bob arrives
home, he opens the Pixee application and it presents him with a selection of picture
libraries, including Alice’s library. Bob accepts Pixee’s suggestion and starts following
Alice’s picture library. Whenever Alice takes a new picture it is automatically uploaded
to Bob. As Alice isn’t home yet, Pixee uses her 3G connection to share pictures. In order
to optimize for the networking technology used, Pixee resizes pictures before sharing
them over 3G. When Bob rides on the metro to work the next day the Pixee application
alerts him that Alice is nearby so they can meet in person and chat later. As long as their
phones are in Bluetooth range, their phones will exchange high-resolution pictures.

Currently, various high-level middleware solutions exist that enable network aware-
ness [5, 6]. Such solutions use network information to enforce quality of service
(QoS): they adapt the application’s network usage to optimize for the available band-
width. However, such solutions do not support using multiple network links simultane-
ously; instead they choose one primary network link and use the other network links
only as backup links. In the networking domain there is low-level support for multi-
networking [7, 8]: they allow applications to connect to other devices using different
networking technologies simultaneously, and switch seamlessly between these tech-
nologies as needed. Applications that use these multi-networking technologies are fully
communication-agnostic: all communication is performed in an opaque way. As such,
they do not allow the programmer to react to changes in the individual network links
they encapsulate, making network awareness hard. Our goal is to provide mobile appli-
cation programmers with a hybrid solution that allows programs to be network-aware
while supporting multiple networking technologies simultaneously.

In this paper we focus on distributed object-oriented programming abstractions to
develop mobile applications that exploit network awareness, like Pixee. Distributed
object-oriented programming languages rely on the notion of remote object references
to communicate with objects residing on other devices. Currently, these references use
different, usually incompatible APIs for each networking technology. This leads to a
lot of duplication: multiple references to the same object can exist simultaneously, po-
tentially using different technologies. Programmers have to do manual bookkeeping to
keep track of these different references.

We propose a new programming abstraction, network-aware references, that ex-
tends the concept of remote object references to abstract over the different networking

144 K. Pinte, D. Harnie, and T. D’Hondt

technologies used. In addition, we provide a high-level API that enables programmers
to react to changes in network links and also allows them to control the different net-
work technologies their applications use. The main contributions of this paper are:

1. We identify the challenges involved in developing network-aware programs
(section 2);

2. We introduce network-aware references that abstract over the networking technol-
ogy used (section 3);

3. We propose programmable network behaviors as a means for the programmer to
adapt communication to the changing network situation (section 4);

4. We show how network-aware references are implemented (section 5) and evaluate
their multi-networking aspects (section 6).

To conclude, we discuss existing approaches to network awareness and multi-
networking technology in section 7.

2 Challenges in Programming Network-Aware Applications

As mentioned in the introduction, current mobile devices support several networking
technologies. They exhibit different characteristics such as bandwidth, energy con-
sumption, communication range, etc. These differences occur not only between tech-
nologies, but they can also be found between networking technologies of the same kind.
For example, the free Wi-Fi network at an airport is restricted in bandwidth and usage
volume compared to a wireless network at home.

To facilitate the development of network-aware mobile applications, several chal-
lenges need to be overcome:

C1. Abstraction over networking technologies. A programmer should not be con-
cerned with the low-level details of the networking technologies available. For
example, setting up a connection using Bluetooth is very different from a Wi-Fi
connection. Instead a unified interface to the different networking technologies
should be provided. Communication with this unified interface should take advan-
tage of all available network connections.

C2. Reactions upon network (un)availability. The programmer should be able to de-
tect the appearance and disappearance of network connections and react upon these
events. Pixee’s friend list reflects the connectivity status of the users: when Bob
and Alice are connected via Bluetooth, Alice is notified that Bob is nearby so she
can invite him for a chat. Additionally, the programs must be resilient to disconnec-
tions. The Pixee application seamlessly switches from Bluetooth to 3G when Alice
leaves the metro.

C3. Dynamic adaptation of network behavior. Although the low-level details of net-
working should be hidden from the programmer, he should retain high-level control
over the networking technology used. For example, Bob’s Pixee application resizes
pictures when Alice’s device is connected via a 3G link to limit the data transferred.
Mobile applications can then take advantage of the unique properties of each net-
working technology.

In the next section we introduce network-aware references: a programming abstraction
that tackles the above challenges.

Enabling Cross-Technology Mobile Applications with Network-Aware References 145

3 Network-Aware References (NARs)

Before we introduce network-aware references, we describe terminology used in dis-
tributed object-oriented languages. These languages use proxy objects to locally repre-
sent objects residing on remote devices. Proxy objects implement the same interface as
the remote objects they represent, but they translate all method calls into remote method
calls. The combination of a proxy object and its network link is called a remote (object)
reference.

A program can acquire new remote references in three ways: 1) The remote object
can be discovered using a peer-to-peer service discovery mechanism; 2) When peer-
to-peer service discovery is not possible, clients can receive remote references from
a globally reachable registry; 3) A remote reference is created when a local object is
passed as an argument in a remote method call.

Network-aware references (NARs) abstract over the implementation details of dif-
ferent networking technologies and present a single reference to the programmer. A
NAR consists of multiple remote references to the same object, each using a different
network link. Every remote object is identified by a globally unique ID (GUID) based
on the device or VM it is hosted on and an object identifier within that device or VM.
When the application first discovers a new remote object, a NAR with a single refer-
ence is created. As additional references to the object are acquired, they are added to
the NAR. Figure 1 compares traditional remote references and NARs graphically.

remote
object

3G

remote

local

proxy object

remote
object

3G

local
object

network-
aware
reference

Fig. 1. A NAR encapsulates remote references to the same object

In a mobile setting, network links are very unstable. They disconnect and reconnect
as people move in and out of wireless communication range of others [9]. With tra-
ditional remote references (e.g. RMI [10]) remote method calls block and wait for a
response. Furthermore, network disconnections are signaled as exceptions. Thus, this
model is not suitable for mobile applications. We adopt the far reference model [11]
instead, for two reasons. First, far references allow only asynchronous communication.
A remote method call over a far reference immediately returns and the result, if any, can
be retrieved using an asynchronous callback. Second, a far reference tracks the status of

146 K. Pinte, D. Harnie, and T. D’Hondt

the network link and can be in one of two states. It is either connected, in which it trans-
lates method calls in remote method calls. A far reference can also be disconnected,
which means that it buffers all messages that are sent through it in a so-called “mail-
box”. Immediately after reconnection a far reference will try to transmit all outstanding
messages in the mailbox to ensure no messages are lost.

Likewise, a NAR is disconnected when all of the underlying remote references are
disconnected. As long as a NAR is disconnected, all messages sent to it are buffered in
a unified mailbox. If one of the underlying remote references is reconnected or a new
reference is added to the NAR, it switches back to the connected state. Figure 2 illus-
trates this: the NAR on the left is connected, as it encapsulates one connected remote
reference using 3G and a disconnected remote reference using Bluetooth. The NAR on
the right is disconnected, as all encapsulated remote references are disconnected.

NAR

3G

NAR

3G

unified
mailbox

unified
mailbox

Fig. 2. Connection status of a NAR

Whenever the programmer sends a message to a NAR, the system dispatches it to
a remote reference from the set of references encapsulated by the NAR. The default
behavior of a NAR nondeterministically selects a connected reference to transmit mes-
sages. Programmers can specify other behaviors by attaching a network behavior either
to the NAR, or to individual messages. This network behavior then becomes responsi-
ble for transmitting messages using any of the references from the NAR. Currently, we
offer a basic set of network behaviors that can for example limit message transmission
to a certain technology or prioritize one technology over another. Network behaviors
are further explained in subsection 4.2.

3.1 Communication Semantics

In this section we detail two properties of the communication semantics of NARs: they
guarantee that messages sent to an object are processed in the order they are sent, and
that messages are processed only once.

A NAR ensures the first property by serializing message sends through its unified
inbox. Messages are processed one by one, and a message is only processed if the re-
ceiver acknowledges the receipt of the previous one in the queue. Figure 3 shows what
happens if a message is sent to a NAR: first, it is added to the unified mailbox (1).
The NAR constantly tries to deliver the first message in its mailbox. When the message
eventually reaches the first position in the mailbox, it is removed from the queue and
marked with a serial number unique to the NAR (2), then the network behavior attached

Enabling Cross-Technology Mobile Applications with Network-Aware References 147

unified mailbox

remote
object

NAR

local
object

(1)

(2)

(3)

(5)

(4)

3G

message

network
behavior

message
direction

Fig. 3. The network behavior selects a remote object reference

to the message selects a reference from the set of currently connected references (3). The
message is then transmitted to the receiver using that reference (4). If an error occurs
during the transmission or the network behavior does not choose a connected reference
the message is returned to the front of the unified mailbox and the transmission is retried
later (5).

The receiving remote object processes all messages in the right order based on the
serial number of the messages. In the case a message gets lost, messages with a higher
serial number are not processed until the missing message arrives.

The second guarantee that NARs offer is that a message is processed only once.
The default network behavior avoids message duplication by always selecting a single
reference to transmit a message. However, programmers can build network behaviors
that send duplicate messages intentionally, for example to ensure a critical message
arrives as soon as possible. When a duplicate message arrives, the receiver first checks
if it has already received a message with that serial number and ignores all duplicate
messages.

4 NARs from a Programmers’ Perspective

We have prototyped NARs in the distributed object-oriented programming language
AmbientTalk [11]. AmbientTalk is designed to work in mobile settings and has already
been used to build mobile applications such as a pervasive social application [12].

First, we show how to obtain a NAR. The following piece of AmbientTalk code
uses the whenever:discovered:1 language construct to install a handler that is
called whenever a Pixee user is discovered in the environment. The block closure that
is executed receives a NAR to the remote Pixee application as an argument in aUser.
The handler requests the remote Pixee user’s name, and adds the user to the buddy list.
The left-arrow operator (←) represents an explicit asynchronous message send, while
the dot operator is used for synchronous method invocation on local objects:

whenever: PixeeUser discovered: { |aUser|
when: aUser←getName() becomes: { |name|
GUI.addUser(aUser, name) } }

1 NARs follow the AmbientTalk conventions: when: constructs are deactivated after triggering
once, whereas whenever: constructs trigger every time.

148 K. Pinte, D. Harnie, and T. D’Hondt

The asynchronous call to getName() immediately results in a future: a placeholder for
a future value. The when:becomes: construct then installs a handler that is executed
when the future is resolved with a return value.

In the remainder of this section we will show how programmers can respond to
changes in the network availability around them, adapt the network communication to
certain networking technologies, and implement their own network behaviors. We will
demonstrate how the Pixee application uses the API offered by NARs. The examples we
present here use AmbientTalk syntax, but NARs can be implemented in other distributed
object-oriented systems, like RMI [10].

4.1 Network Availability

As mentioned in the introduction, information about the available networks forms an
important source of context for mobile applications. A NAR can encapsulate several
remote references, so we offer a linksOf: primitive that returns a snapshot of the
state of these references to the programmer.

For example, Pixee allows users to explicitly share a picture with another user who
is close by, to highlight certain photos in their library. The user interface only allows
this if the other user is connected via Bluetooth:

if: (linksOf: aUser).contains(Bluetooth) then: {
GUI.showShareButtonFor(aUser) }

Pixee also shows that changes in the network connectivity of references play a big role,
as users move about and connectivity fluctuates. For example, Pixee’s friend list reflects
the connectivity of a user’s friends and updates it in real time. It uses the linksOf:
primitive above to draw the friend list initially and then updates the nearby status of
individual friends whenever their connectivity changes:

whenever: aFriend linkStatusChanged: { |change|
if: (change.link == Bluetooth) then: {

if: (change.isConnected) then: {
GUI.notifyFriendNearby(aFriend);

} else: {
GUI.notifyFriendLeaving(aFriend) } } }

The whenever:linkStatusChanged: function installs a handler that is called
whenever one of the references in a NAR disconnects or reconnects. It receives a change
object as an argument. This object contains the link of which the connection status
changed and the new status of the link.

We also provide two generalized handler functions that are triggered when a NAR
switches to a disconnected or a connected state, respectively. Programmers can react on
disconnections using a whenever:disconnected: handler. Likewise, program-
mers can use whenever:reconnected: to react on reconnections, which happen
whenever a new reference is added to a disconnected NAR or one of the existing refer-
ences it encapsulates is reconnected. The example below shows adding or removing a
user from the friend list in the user interface when this user reconnects or disconnects:

whenever: aFriend disconnected: { GUI.hide(aFriend) };
whenever: aFriend reconnected: { GUI.show(aFriend) };

Enabling Cross-Technology Mobile Applications with Network-Aware References 149

Together with the linksOf: primitive, these event handlers provide programmers
with information about the connectivity of the different references in their applications
and allow them to react on changes in network connectivity.

4.2 Network Behavior Adaptation

In order to allow programmers to steer communication towards certain networking tech-
nologies, we introduce network behaviors. Our implementation provides a number of
built-in network behaviors. Additionally, programmers can implement their own behav-
iors and override the default behavior attached to NARs using annotations.

The first network behavior is called Only: it restricts message transmission to a set of
network technologies. The example below ensures an explicitly shared picture is only
sent using Bluetooth:

aUser←sendPicture(aPicture)@Only(Bluetooth)

This message will only be sent using a Bluetooth connection: if there is no connected
Bluetooth reference to aUser the message is returned to the mailbox and message
processing for the aUser NAR will stop until a Bluetooth reference is connected.

The Prefer behavior allows programmers to order an arbitrary number of technolo-
gies in decreasing order of preference:

aFriend←sendPicture(aPicture)@Prefer(Bluetooth, WiFi)

The Prefer behavior here first tries to transmit the sendPicture message using a Blue-
tooth link; if this is not available it tries to use a Wi-Fi link. If a Wi-Fi link is also
unavailable, the Prefer behavior defers to the default behavior: this will either transmit
the message using other technologies, or buffer the message if the NAR is disconnected.

Programmers can override the default network behavior for the whole application or
just for a specific NAR using the following primitive functions:

setDefaultBehavior: aBehavior; // application-wide
setDefaultBehavior: aBehavior for: aReference; // for the given reference

This operation makes every message sent using the NAR use the aBehavior behav-
ior, unless programmers explicitly override this behavior by annotating messages with
another behavior.

Existing network-aware approaches have shown that working with properties instead
of explicit technologies is more versatile. For example, if a programmer wants to send
a big file using a “fast” network connection, he should be able to use a keyword like
Fast instead of listing every “fast” network connection explicitly. In order to do this,
we provide programmers with a set of categorization functions that select networking
technologies based on their properties.

We provide three built-in categorization functions: we offer a categorization function
Speed(x) which only selects network links that theoretically offer at least x Mbits of
bandwidth. The second categorization function is Secure, which selects network links
that only do point-to-point communication or encrypt sent messages. Finally, cost can
also be a factor in deciding which network link to use: we provide a Free categorization
function that only selects network links that do not cost money to use. Currently these
properties are statically defined as attributes of the network links.

150 K. Pinte, D. Harnie, and T. D’Hondt

Programmers can create their own categorization functions by refining the built-in
ones described above. For example, they can define Fast as Speed(10). Additionally,
programmers can manually define new categorization functions based on the properties
of the network links.

Using categorization functions instead of explicit technologies has another advan-
tage: when a new networking technology becomes available, one only has to declare to
which categories that new technology belongs or create new categorization functions if
necessary. For example, a body area network (a very close-range wireless technology
for non-intrusive health monitoring [13]) could be deemed Fast and Secure, but could
also introduce a new category such as PhysicalContact.

4.3 Writing Custom Network Behaviors

The network behaviors we have presented so far only influence the technology selec-
tion process. If we want to allow full network awareness, programmers also need to
be able to adapt the content of messages to the technology used to transmit them.
In our system, behaviors are represented by objects that expose a single method
transmit(connections, message). This method is invoked during step three
of the message sending process (when network technologies are chosen). This method
transmits the message(s) to the receiver and informs the NAR that the message can
be removed from the mailbox. The connections and message parameters of the
method are the current set of available network links in the NAR and the message being
sent, respectively.

In the scenario, Pixee resizes pictures before transmission if a Bluetooth link was not
available; programmers can implement this as follows:

1 def PictureResizer := extend: Prefer(Bluetooth, WiFi) with: {
2 def transmit(connections, message) {
3 def btLink := connections.find: { |x| x.link == Bluetooth };
4 if: (btLink != nil) then: {
5 message.arguments := message.arguments.map: { |arg|
6 if: (isPicture(arg)) then: { arg.resize() } else: { arg } };
7 superˆtransmit(connections, message) } } };

This behavior extends the Prefer behavior and first looks for Bluetooth links in the
network links managed by the aFriend NAR. If there are no Bluetooth links avail-
able, the behavior replaces pictures in the arguments list of the message with a resized
version (lines 5–6). Finally, the message (line 7) is transmitted by the inherited Prefer
behavior.

We also provide a behavior: construct to create a new behavior that inherits from
defaultBehavior. All transmit calls are delegated to the default behavior eventu-
ally, since it enforces the two properties we outlined in section 3 (message ordering and
no processing of duplicated messages).

5 Implementation

In this section we will discuss the implementation of network-aware references. We will
first explain how the networking subsystem of AmbientTalk is structured and how this
is exposed to programmers in subsection 5.1. We will then show how network-aware
references are implemented on top of this in subsection 5.2

Enabling Cross-Technology Mobile Applications with Network-Aware References 151

5.1 The AmbientTalk Networking Subsystem

Originally, the AmbientTalk VM was tightly coupled to its networking implementation,
limiting it to only one network interface using the TCP/IP protocol. This network inter-
face was represented by a single communication bus, which performs three duties for
AmbientTalk: a) discovering objects on devices that export them using the same tech-
nology; b) marshalling communication and ensuring message ordering; c) signaling
disconnections and reconnections.

We have decoupled the networking subsystem from the rest of the system, to allow
other networking technologies to be plugged in easily. AmbientTalk now maintains a
set of communication buses, one per network address (a network interface can respond
to multiple addresses). For example, a typical smart phone will have a Bluetooth com-
munication bus and a TCP/IP communication bus for the Wi-Fi interface.

The three duties of a communication bus influence the status of connected references.
For example, the TCP/IP communication bus uses heartbeat packets sent via multicast
UDP to determine the connectivity of other hosts. New devices are discovered as soon as
they send their first heartbeat, and disconnections are signaled when either the heartbeat
has been absent for a given amount of time or a communication error occurs during
message transmission. This is different from the Bluetooth communication bus, where
device discovery can take up to 12 seconds and is thus only done intermittently. For
the Bluetooth bus the leading cause of disconnections will be communication errors
signaled during message transmission.

Each communication bus is also associated with a network link object, which pro-
grammers can use to interact with that specific network interface. Each network link
can be used to enable or disable its communication bus and set up discovery handlers.
For example, discovering objects exclusively on the Bluetooth network link:

whenever: Service on: Bluetooth discovered: { |ref|
system.println("Discovered: " + ref);
whenever: ref disconnected: {
system.println("Disconnected: " + ref); } }

Here Bluetooth is bound to the Bluetooth network link object. This snippet sets up a
discovery handler that is invoked whenever an object with the nominal type Service
is discovered using the Bluetooth communication bus. This discovery handler is then
called with a far reference as parameter, which is a local proxy for the remote object.
The far reference is associated with the network link that created it, the object it refer-
ences and the VM this object resides on.

The programmer can also publish an object on a specific network link:

export: anObject as: Service on: Bluetooth;

In the interest of backwards compatibility, the discovery and publish constructs
found in AmbientTalk (when:discovered:, whenever:discovered: and
export:as:) invoke their network-aware counterparts on all available network links.
The disconnection and reconnection handlers (like above) operate on pre-existing ref-
erences so programmers do not need to specify network links.

At this stage there is only one technology per far reference, so messages sent to a
far reference can only travel along a single path. This entails that discovering the same

152 K. Pinte, D. Harnie, and T. D’Hondt

service using two different network technologies will result in two far references, as
described in section 3.

5.2 The Architecture of Network-Aware References

With these modifications to the networking subsystem, AmbientTalk can communicate
using different technologies but suffers from the challenges we identified in section 2.
Our implementation of network-aware references tackles these challenges as follows:

C1. Abstraction over networking technologies. The previous subsection already
outlined how the networking subsystem in AmbientTalk can abstract over the com-
munication technology used. However, references are still created per technology.
When programmers import the NAR module, it replaces the built-in discovery op-
erations as follows. When the programmer issues a whenever:discovered:
statement it is translated into several whenever:on:discovered: statements,
one per network link. When one of the discovery statements are triggered, they
first check if a NAR for the discovered object already exists. If so, the refer-
ence is added to the NAR and the user-supplied discovery block is not triggered.
Any whenever:linkStatusChanged: handlers registered on the NAR are
triggered.

If no NAR exists, a new NAR is created which contains just that reference.
Finally, the NAR is added to a table with the GUID of the discovered object as key.

C2. Reactions upon network availability. As part of the discovery process, the
NARs module also installs disconnection and reconnection handlers. Whenever the
networking subsystem detects that a reference has disconnected or subsequently
reconnected, it signals this change to the NAR. The NAR in turn signals the
whenever:linkStatusChanged: message. If the last reference in a NAR
becomes disconnected, the NAR as a whole becomes disconnected and triggers
all installed disconnection handlers. Vice versa, if one of the references in a dis-
connected NAR reconnects, the NAR is reconnected and all installed reconnection
handlers are triggered. After reconnection, a NAR retries transmission of messages
in the queue.

C3. Dynamic adaptation of network behavior. As we explained earlier, NARs allow
programmers to specify the network behavior of their communication. Every mes-
sage submitted to a NAR is put into a message queue, which are processed one
by one. If the network behavior of the first message in the queue is not amenable
to transmission the queue is blocked and no messages are transmitted (e.g. if a
message has a Only annotation and the desired network link is not online). Trans-
mission of the message queue is retried whenever a new reference is added to a
NAR or an already-added reference comes back online.

6 Evaluation

In this section we demonstrate the behavior of network-aware references in the face
of partial disconnections. As mentioned in the introduction, mobile devices nowadays

Enabling Cross-Technology Mobile Applications with Network-Aware References 153

can communicate using more than one wireless communication technology and the
system should always pick the “best” interface. If this interface disconnects due to a
communication error or the other party moving out of range, the system should switch
to a different technology. No communication should be lost during this switch and the
handover time (the time where no data is sent) should be kept to a minimum.

The scenario we test is inspired by the “mobile connectivity” scenario in [14]: two
smart phones that discover each other in the environment. One phone runs a receiver
service, the other phone runs a sender. At time step t0 the sender starts sending mes-
sages to the receiver at a pace of 10 messages per second. At time step t1 the Wi-Fi
connectivity is temporarily interrupted and at time step t2 Wi-Fi connectivity is re-
stored. This timeline is illustrated at the top of Figure 4.

5 10 15 20

10
20
30
40
50
60
70
80

0
0

m
e
s
s
a
g
e
s

time (seconds)

5 10 15 20

10
20
30
40
50
60
70
80

0
0

m
e
s
s
a
g
e
s

time (seconds)

Bluetooth
Wi-Fi

t1 t2 timet0

r
e
c
e
i
v
e
d

r
e
c
e
i
v
e
d

Wi-Fi
only

Wi-Fi +Bluetooth

Fig. 4. Mobile connectivity scenario (top); benchmarks: only Wi-Fi (mid), Wi-Fi & BT (bottom)

First, we reconstruct the original scenario from [14] where the sender only sends
messages to the receiver using Wi-Fi technology. We use the Only network behavior so
that the ping message is only transmitted over a Wi-Fi link:

when: MobileConnectivityReceiver discovered: { |receiver|
whenever: millisec(100) elapsed: {

receiver←ping()@Only(WiFi); } }

154 K. Pinte, D. Harnie, and T. D’Hondt

When the Wi-Fi link becomes disconnected at t1 all messages being sent are buffered
at the sender. At t2 connectivity is resumed, and the accumulated messages are flushed
to the receiver. This behavior is illustrated in the middle graph of Figure 4. The spike in
the timeline only happens 1.5 seconds (on average) after t2 because the devices wait for
heartbeats, as explained in the previous section. For Bluetooth links this reconnection
process takes upwards of 15 seconds (on average), depending on the number of devices
in communication range.

Our second implementation demonstrates the multi-networking facilities of NARs
and will make use of both Wi-Fi and Bluetooth links to send messages. We define the
“best” interface by annotating the ping message with the Prefer network behavior:

when: MobileConnectivityReceiver discovered: { |receiver|
whenever: millisec(100) elapsed: {

receiver←ping()@Prefer(WiFi, Bluetooth); } }

Before the Wi-Fi connectivity is interrupted, the behavior of the ping message will
select the Wi-Fi link over the Bluetooth link to send the message. At time step t1 the
behavior can no longer select the Wi-Fi link and it selects the Bluetooth link instead.
The bottom graph in Figure 4 shows how the Wi-Fi→Bluetooth handover occurs almost
instantly. When the Wi-Fi link reconnects, the behavior will again prefer it over the
Bluetooth link, explaining the handover at the 16–17 second mark. As before, the time
gap between reestablishing Wi-Fi connectivity and the Bluetooth→Wi-Fi handover is
due to the discovery and reconnection process. Note that message transmission is not
interrupted at any point during this experiment.

7 Related Work

In this section we discuss how network-aware references fit into the state of the art.
Traditionally, network-aware applications are defined as “applications that adapt to net-
work conditions in an application specific way” [6]. This has led to frameworks for
maintaining quality of service (QoS) in media streams [5], where image or sound qual-
ity is reduced if the available bandwidth decreases. These are usually implemented in a
framework or middleware and require the programmer to set up policies, giving up ex-
plicit control. Current network-aware applications assume network links are stable and
treat network failures as an exceptional case. This makes them unsuitable for a mobile
situation where pervasive social applications are deployed.

A number of network protocols have been proposed that enable multi-networking at a
low level, like SCTP, mSCTP, SIGMA, TraSH and Mobile IP(v6) [7, 8]. However, these
approaches focus on the problem of ensuring devices are always reachable at a certain
address and maintaining existing network connections when a mobile device migrates
to a different access point (horizontal handover). Some technologies support transitions
between different networking technologies (vertical handover), but they assume these
transitions are short-lived, so they limit themselves to ensuring no data is lost during
a transition. In contrast, NARs accept that there may be multiple connections at once,
which can break at any time. NARs still ensure that all communication arrives, but
cannot offer time guarantees: a message with the Only behavior attached will only be
sent when a Bluetooth connection is available. This may depend on user mobility.

Enabling Cross-Technology Mobile Applications with Network-Aware References 155

In [15] a policy-based architecture is proposed that manages several different routes
to another device. They use policies to select appropriate network interfaces and set
priorities between interfaces if several policies apply. However, their approach is not
suitable for a mobile setting as their system immediately returns an error if there are no
matching interfaces at the moment a packet is sent. In contrast, NARs buffer communi-
cation until a connection is re-established. Furthermore, their policies currently operate
at the system level instead of the application level, so all applications on the system
have to agree on the same set of policies.

Haggle [16] is an architecture that enables seamless network connectivity for devices
in dynamic mobile environments. It abstracts over different network transport bindings
and protocols so that applications become communication agnostic. Haggle is a central
component in the mobile device that selects and switches network links as needed. In
contrast to using NARs, programmers have no control over communication within a
single application and cannot adapt its behavior to changes in the network context.

8 Conclusion and Future Work

In this paper we have introduced network-aware references (NARs): a programming
abstraction that encapsulates several references to remote objects over different net-
working technologies and keeps track of the state of the network links involved.
Network-aware references tackle the three challenges for programming network-aware
applications we listed earlier: abstraction over networking technologies, reacting to
changes in the network availability, and dynamically adapting network behavior. We
have demonstrated how network-aware references can be used to build mobile applica-
tions using a representative pervasive social picture-sharing application called Pixee.

We are currently exploring different types of network behaviors and how they inter-
act with NARs as they are defined here. For example, a behavior that limits retransmis-
sion of messages, or a behavior that spreads parts of a message across different links.
Secondly, we would like to make the information offered to our system, like speed,
communication range, pricing, etc. more dynamic. An application using Wi-Fi could
then automatically switch to a different technology as the user enters an airport where
wireless is not free to use. Additionally, we intend to allow these parameters to vary
per reference rather than per network link (e.g. the signal strength for a reference over
Bluetooth). Finally, in the search for related work we discovered heterogenous rout-
ing: transmitting packets in peer-to-peer networks where not all nodes speak the same
protocol. We are currently investigating if NARs can be adapted for this.

References

[1] Ben Mokhtar, S., Capra, L.: From pervasive to social computing: Algorithms and deploy-
ments. In: ACM Inter. Conf. on Pervasive Services, ICPS (2009)

[2] Meshhadi, A., Ben Mokhtar, S., Capra, L.: Habit: Leveraging human mobility and social
network for efficient content dissemination in manets. In: IEEE Inter. Symp. on a World of
Wireless, Mobile and Multimedia Networks (2009)

[3] Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: First Workshop
on Mobile Computing Systems and Applications, pp. 85–90 (1994)

156 K. Pinte, D. Harnie, and T. D’Hondt

[4] Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a bet-
ter understanding of context and context-awareness. In: Gellersen, H.-W. (ed.) HUC 1999.
LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999)

[5] Bolliger, J., Gross, T.: A framework-based approach to the development of network-aware
applications. IEEE Transactions on Software Engineering 24(5) (1998)

[6] Miller, N., Steenkiste, P.: Collecting network status information for network-aware applica-
tions. In: IEEE INFOCOM, vol. 2, pp. 641–650, Citeseer (2000)

[7] Fu, S., Atiquzzaman, M., Ma, L., Lee, Y.: Signaling cost and performance of SIGMA: A
seamless handover scheme for data networks. Wireless Communications and Mobile Com-
puting 5(7), 825–845 (2005)

[8] Xing, W., Karl, H., Wolisz, A., Müller, H.: M-SCTP: Design and prototypical implementa-
tion of an end-to-end mobility concept. In: Proc. 5th Intl. Workshop The Internet Challenge:
Technology and Applications, Berlin, Germany, Citeseer (2002)

[9] Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., De Meuter, W.: Ambient-
Oriented Programming. In: OOPSLA 2005: Companion of the 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications. ACM Press, New York (2005)

[10] Downing, T.: Java RMI: remote method invocation. IDG Books Worldwide, Inc., Foster
City (1998)

[11] Van Cutsem, T., Mostinckx, S., Gonzalez Boix, E., Dedecker, J., De Meuter, W.:
Ambienttalk: object-oriented event-driven programming in mobile ad hoc networks. In: In-
ter. Conf. of the Chilean Computer Science Society (SCCC), pp. 3–12. IEEE Computer
Society, Los Alamitos (2007)

[12] Gonzalez Boix, E., Lombide Carreton, A., Scholliers, C., Van Cutsem, T., De Meuter, W.,
D’Hondt, T.: Flocks: Enabling Dynamic Group Interactions in Mobile Social Networking
Applications. In: Proceedings of the 2011 ACM Symposium on Applied Computing (SAC),
Taichung, Taiwan, March 21-25, vol. 1, pp. 425–432. ACM, New York (2011)

[13] Jovanov, E., Milenkovic, A., Otto, C., De Groen, P.: A wireless body area network of intel-
ligent motion sensors for computer assisted physical rehabilitation. Journal of NeuroEngi-
neering and Rehabilitation 2(1), 6 (2005)

[14] Collins, J., Bagrodia, R.: Programming in mobile ad hoc networks. In: 4th Annual Interna-
tional Conference on Wireless Internet (WICON 2008), pp. 1–9 (2008)

[15] Ylitalo, J., Jokikyyny, T., Kauppinen, T., Tuominen, A., Laine, J.: Dynamic network inter-
face selection in multihomed mobile hosts. In: Proceedings of the 36th Annual Hawaii In-
ternational Conference on System Sciences. IEEE Computer Society, Los Alamitos (2003)

[16] Su, J., Scott, J., Hui, P., Crowcroft, J., de Lara, E., Diot, C., Goel, A., Lim, M.H., Upton,
E.: Haggle: Seamless networking for mobile applications. In: Krumm, J., Abowd, G.D.,
Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 391–408. Springer,
Heidelberg (2007)

Coordination and Concurrency in Multi-engine

Prolog

Paul Tarau

Department of Computer Science and Engineering,
University of North Texas

tarau@cs.unt.edu

Abstract. We discuss the impact of the separation of logic engines (in-
dependent logic processing units) and multi-threading on the design of
coordination mechanisms for a Prolog based agent infrastructure.

We advocate a combination of coroutining constructs with focus on
expressiveness and a simplified, multi-threading API that ensures opti-
mal use available parallelism.

In this context, native multi-threading is made available to the ap-
plication programmer as a set of high-level primitives with a declarative
flavor while cooperative constructs provide efficient and predictable coor-
dination mechanisms. As illustrations of our techniques, a parallel fold
operation as well as cooperative implementations of Linda blackboards
and publish/subscribe are described.

Keywords: multi-engine Prolog, agent coordination, high-level multi-
threading, coroutining Linda blackboards, publish/subscribe, Java-based
Prolog system.

1 Introduction

Multi-threading has been adopted in today’s Prolog implementations as it be-
came widely available in implementation languages like C or Java.

An advantage of multi-threading over more declarative concurrency models
like various AND-parallel and OR-parallel execution schemes, is that it maps
to the underlying hardware directly: on typical multi-core machines threads and
processes are mapped to distinct CPUs1. Another advantage is that a procedural
multi-threading API can tightly control thread creation and thread reuse.

On the other hand, the explicit use of a procedural multi-threading API breaks
the declarative simplicity of the execution model of logic based languages. At the
same time it opens a Pandora’s box of timing and execution order dependencies,
resulting in performance overheads for various runtime structures that need to be
synchronized. It also elevates risks of software failure due to programmer errors
1 We use the word CPU in accordance of what the underlying runtime system and op-

erating system sees as independent processing units in a multi-core/multi-processor
machine. For instance, on a two Xeon processor Quad-Core MacPro with hyper-
threading, the Java VM sees 16 independent processing units.

W. De Meuter and G.-C. Roman (Eds.): COORDINATION 2011, LNCS 6721, pp. 157–171, 2011.
c© IFIP International Federation for Information Processing 2011

158 P. Tarau

given the mismatch between assumptions about behavior expected to follow the
declarative semantics of the core language and the requirements of a procedural
multi-threading API.

In this paper we will describe how efficient and flexible agent coordination
is facilitated by a design emphasizing the decoupling of the multi-threading API
and the logic engine operations and encapsulation of multi-threading in a set of
high-level primitives with a declarative flavor.

In this process, we use threads encapsulated as high level programming lan-
guage constructs with focus on performance benefits, and we are resorting to
determinacy, through lightweight, cooperative sequential constructs, to express
coordination patterns.

We have implemented the API in the context of an experimental, Java-based
Prolog system, Lean-Prolog2.

LeanProlog is based on a reimplementation of BinProlog’s virtual machine, the
BinWAM. It succeeds our Jinni Prolog implementation that has been used in var-
ious applications [1,2,3,4] as an intelligent agent infrastructure, by taking advan-
tage of Prolog’s knowledge processing capabilities in combination with a simple
and easily extensible runtime kernel supporting a flexible reflexion mechanism.
Naturally, this has suggested to investigate whether some basic agent-oriented lan-
guage design ideas can be used for a refactoring of Prolog’s interoperation with the
external world, including interaction with other instances of the Prolog processor
itself.

Agent programming constructs have influenced design patterns at “macro
level”, ranging from interactive Web services to mixed initiative computer human
interaction. From the very beginning, Performatives in Agent communication
languages [5,6] have made these constructs reflect explicitly the intentionality,
as well as the negotiation process involved in agent interactions. At the same
time, it has been a long tradition of logic programming languages [7] to use
multiple logic engines for supporting concurrent execution.

In this context we have centered our implementation around logic engine
constructs providing an API that supports reentrant instances of the language
processor. This has naturally led to a view of logic engines as instances of a gen-
eralized family of iterators called Fluents [8], that have allowed the separation of
the first-class language interpreters from the multi-threading mechanism, while
providing a very concise source-level reconstruction of Prolog’s built-ins. Later
we have extended the original Fluents with a few new operations [9] supporting
bi-directional, mixed-initiative exchanges between engines, bringing them closer
to an agent-oriented view as autonomous logic processors.

The resulting language constructs, that we have called Interactors, express
control, metaprogramming and interoperation with stateful objects and external
services.

2 It is called Lean-Prolog as we have consistently tried to keep implementation com-
plexity under control and follow minimalist choices in the design of built-ins, external
language interfaces and a layered, modular extension mechanism.

Coordination and Concurrency in Multi-engine Prolog 159

On the other hand, our multi-threading layer has been designed to be in-
dependent of the interactor API. This allows assumptions of determinacy when
working with multiple engines (and other sequential interactors) within a thread.

The multi-threading API integrates thread-construction with interactors called
Hubs that provide synchronization between multiple consumers and producers. It
supports high-level performance-centered concurrency patterns while removing
the possibility of programming errors involving explicit synchronization.

The guiding architectural principle we based our design on, can be stated
concisely as follows: separate concurrency for performance from concurrency for
expressiveness. Arguably, it is a good fit with the general idea behind declarative
programming languages – delegate as much low level detail to underlying im-
plementation as possible rather than burdening the programmer with complex
control constructs.

The paper is organized as follows.
Section 2 overviews logic engines and describes their basic operations and the

interactor API that extends the same view to various other built-in predicates.
Section 3 introduces Hubs - flexible synchronization devices that allow interop-
eration and coordination between threads. Section 4 describes a set of high-level
multi-threading operations that ensure concurrent execution seen as a means to
accelerate computations while keeping the semantics as close as possible to a
declarative interpretation.

Sections 5 and 6 show that fundamental coordination patterns like Linda
blackboards and publish/subscribe can be implemented cooperatively in terms
of sequential operations on logic engines.

Finally, section 7 discusses related work and section 8 concludes the paper.

2 Logic Engines as Answer Generators

Our Interactor API has evolved progressively into a practical Prolog implemen-
tation framework starting with [8] and continued with [10] and [9]. We summarize
it here and refer to [9] for the details of a semantic description in terms of Horn
Clause Logic of various engine operations.

A logic engine is simply a language processor reflected through an API that
allows its computations to be controlled interactively from another engine very
much the same way a programmer controls Prolog’s interactive toplevel loop:
launch a new goal, ask for a new answer, interpret it, react to it.

A logic engine can be seen as an instance of the Prolog runtime system im-
plementing LD-resolution [11] on a given clause database, together with a set of
built-in operations. The command

new_engine(AnswerPattern, Goal, Interactor)

creates a new logic engine, uniquely identified by Interactor, which shares code
with the currently running program and is initialized with Goal as its starting
point. AnswerPattern is a term, usually a list of variables occurring in Goal,
of which answers returned by the engine will be instances. Note however that

160 P. Tarau

new engine/3 acts like a typical constructor, no computations are performed at
this point, except for initial allocation of data areas.

2.1 Iterating over Computed Answers

Note that our logic engines are seen, in an object oriented-style, as implementing
the interface Interactor. This supports a uniform interaction mechanism with
a variety of objects ranging from logic engines to file/socket streams and iterators
over external data structures.

The ask interactor/2 operation is used to retrieve successive answers gener-
ated by an Interactor, on demand. It is also responsible for actually triggering
computations in the engine. The query

ask_interactor(Interactor, AnswerInstance)

tries to harvest the answer computed from Goal, as an instance of AnswerPattern.
If an answer is found, it is returned as the(AnswerInstance), otherwise the
atom no is returned. sloppy Note that bindings are not propagated to the orig-
inal Goal or AnswerPattern when ask interactor/2 retrieves an answer, i.e.
AnswerInstance is obtained by first standardizing apart (renaming) the vari-
ables in Goal and AnswerPattern, and then backtracking over its alternative
answers in a separate Prolog interpreter. Therefore, backtracking in the caller
interpreter does not interfere with Interactor’s iteration over answers. Back-
tracking over Interactor’s creation point, as such, makes it unreachable and
therefore subject to garbage collection. An interactor is stopped with the

stop_interactor(Interactor)

operation, that, in the case of logic engines, allows reclaiming resources held by
the engine.

So far, these operations provide a minimal API, powerful enough to switch
tasks cooperatively between an engine and its client and emulate key Prolog
built-ins like if-then-else and findall [8], as well as typical higher order
operations like fold and best of [9].

2.2 A Yield/Return Operation

The following operations provide a “mixed-initiative” interaction mechanism,
allowing more general data exchanges between an engine and its client.

First, like the yield return construct of C# and the yield operation of
Ruby and Python, our return/1 operation

return(Term)

will save the state of the engine and transfer control and a result Term to its client.
The client will receive a copy of Term simply by using its ask interactor/2
operation.

Note that an interactor returns control to its client either by calling return/1
or when a computed answer becomes available. By using a sequence of return

Coordination and Concurrency in Multi-engine Prolog 161

and ask interactor operations, an engine can provide a stream of intermedi-
ate/final results to its client, without having to backtrack. This mechanism is
powerful enough to implement a complete exception handling mechanism simply
by defining

throw(E) :- return(exception(E)).

When combined with a catch(Goal, Exception, OnException), on the client
side, the client can decide, upon reading the exception with ask interactor/2,
if it wants to handle it or to throw it to the next level.

2.3 Coroutining Logic Engines

Coroutining has been in use in Prolog systems mostly to implement constraint
programming extensions. The typical mechanism involves attributed variables
holding suspended goals that may be triggered by changes in the instantiation
state of the variables. We discuss here a different form of coroutining, induced
by the ability to switch back and forth between engines.

The operations described so far allow an engine to return answers from any
point in its computation sequence. The next step is to enable an engine’s client3

to inject new goals (executable data) to an arbitrary inner context of an engine.
Two new primitives are needed:

to_engine(Engine, Data)

that is called by the client4 to send data to an Engine, and

from_engine(Data)

that is called by the engine to receive a client’s Data.

A typical use case for the Interactor API looks as follows:

1. the client creates and initializes a new engine
2. the client triggers a new computation in the engine, parameterized as follows:

(a) the client passes some data and a new goal to the engine and issues an
ask interactor/2 operation that passes control to it

(b) the engine starts a computation from its initial goal or the point where
it has been suspended and runs (a copy of) the new goal received from
its client

(c) the engine returns (a copy of) the answer, then suspends and returns
control to its client

3. the client interprets the answer and proceeds with its next computation step
4. the process is fully reentrant and the client may repeat it from an arbitrary

point in its computation

3 Another engine, that uses an engine’s services.
4 Equivalently the tell interactor/2 generic interactor predicate can be also used

here.

162 P. Tarau

3 Hubs and Threads

As a key difference with typical multi-threaded Prolog implementations like
Ciao-Prolog [12] and SWI-Prolog [13], our Interactor API is designed up front
with a clear separation between engines and threads as we prefer to see them as
orthogonal language constructs.

To ensure that communication between logic engines running concurrently is
safe and synchronized, we hide the engine handle and provide a producer/con-
sumer data exchanger object, called a Hub, when multi-threading.

A Hub can be seen as an interactor used to synchronize threads. On the Prolog
side it is introduced with a constructor hub/1 and works with the standard
interactor API:

ask_interactor(Hub, Term)

tell_interactor(Hub, Term)

stop_interactor(Hub)

On the Java side, each instance of the Hub class provides a synchronizer be-
tween M producers and N consumers. A Hub supports data exchanges through
a private object port and it implements the Interactor interface. Consumers
issue ask interactor/2 operations that correspond to tell interactor/2 op-
erations issued by producers.

A group of related threads are created around a Hub that provides both basic
synchronization and data exchange services. The built-in

new_logic_thread(Hub, X, G, Clone, Source)

creates a new thread by either “cloning” the current Prolog code and symbol
spaces or by loading new Prolog code in a separate name space from a Source
(typically a precompiled file or a stream). Usually a default constructor

new_logic_thread(Hub, X, G)

is used. It shares the code but it duplicates the symbol table to allow independent
symbol creation and symbol garbage collection to occur safely in multiple threads
without the need to synchronize or suspend thread execution.

4 High-Level Concurrency with Higher-Order Constructs

Encapsulating concurrent execution patterns in high-level abstractions, when
performance gains are the main reason for using multiple threads, avoids forcing
a programmer to suddenly deal with complex procedural issues when working
with (mostly) declarative constructs in a language like Prolog. It is also our
experience that in an exclusively dynamically-typed language like Prolog this
reduces software risks significantly.

One of the deficiencies of sequential or multi-threaded findall-like operations
is that they might build large lists of answers unnecessarily. With inspiration
drawn from combinators in functional languages, one can implement a more
flexible multi-threaded fold operation instead.

Coordination and Concurrency in Multi-engine Prolog 163

The predicate multi fold(F, XGs, Xs) runs a list of goals XGs of the form
Xs :- G and combines, with F, their answers, to accumulate them into a single
final result, without building intermediate lists.

multi_fold(F, XGs, Final) :- hub(Hub),

length(XGs,ThreadCount),

launch_logic_threads(XGs, Hub),

ask_interactor(Hub, Answer),

(Answer = the(Init) →
fold_thread_results(ThreadCount, Hub, F, Init, Final)

; true

),

stop_interactor(Hub),Answer=the(_).

The predicate multi fold relies on the predicate launch logic threads to run
threads initiated by the goal list XGs. When launching the threads, we ensure
that they share the same Hub for communication and synchronization.

launch_logic_threads([], _Hub).

launch_logic_threads([(X :- G) |Gs], Hub) :-

new_logic_thread(Hub, X, G),

launch_logic_threads(Gs, Hub).

Once all threads are launched, we use the predicate fold thread results to
collect results computed by various threads from Hub, and to combine them into
a single result, while keeping track of the number of threads that have finished
their work.

fold_thread_results(0, _Hub, _F, Best, Best).

fold_thread_results(ThreadCount, Hub, F, SoFar, Best) :-

ThreadCount > 0,

ask_interactor(Hub, Answer),

count_thread_answer(Answer, ThreadCount, ThreadsLeft, F, SoFar, Better),

fold_thread_results(ThreadsLeft, Hub, F, Better, Best).

count_thread_answer(no, ThreadCount, ThreadsLeft, _F, SoFar, SoFar) :-

ThreadsLeft is ThreadCount-1.

count_thread_answer(the(X), ThreadCount, ThreadCount, F, SoFar, Better) :-

call(F, X, SoFar, Better).

A typical application is the predicate multi best(F, XGs, M), which runs a
list of goals XGs of the form N :- G where N is instantiated to a numeric value.
By using max/3 to combine the current best answers with a candidate one it
extracts at the the maximum M of all answers computed (in an arbitrary order)
by all threads.

multi_best(XGs,R) :- multi_fold(max,XGs,R).

Note that, as in the case of its fold cousins in functional languages, multi fold
can be used to emulate various other higher order predicates. For instance a
findall-like predicate is emulated as the predicate multi all(XGs,Xs) which
runs a list of goals XGs of the form Xs :- G and combines all answers to a list
using list cons.

164 P. Tarau

multi_all(XGs, Rs) :- multi_fold(list_cons,[([] :- true) |XGs],Rs).

list_cons(X, Xs, [X |Xs]).
A different pattern arises from combinatorial search algorithms where one

wants to stop multiple threads as soon as a first solution is found. Things like
restarts in SAT solvers and various Monte Carlo algorithms fit in this category.

For instance, the predicate multi first(K, XGs, Xs) runs each goal of the
form Xs :- G on the list XGs, until the first K answers Xs are found (or fewer, if
less then K answers exist).

It uses a very simple mechanism built into Lean Prolog’s multi-threading
API: when a Hub interactor is stopped, all threads associated to it are notified
to terminate.

multi_first(K, XGs, Xs) :- hub(Hub),

length(XGs, ThreadCount),

launch_logic_threads(XGs, Hub),

collect_first_results(K, ThreadCount, Hub, Xs),

stop_interactor(Hub).

collect_first_results(_, 0, _Hub, []).

collect_first_results(0, _, Hub, []) :- stop_interactor(Hub).

collect_first_results(K, ThreadCount, Hub, MoreXs) :-

K>0, ThreadCount>0,
ask_interactor(Hub, Answer),

count_thread_answer(Answer, ThreadCount, ThreadsLeft, Xs, MoreXs),

(ThreadCount =:= ThreadsLeft → K1 is K-1

; K1 is K

), collect_first_results(K1, ThreadsLeft, Hub, Xs).

In particular, searching for at most one solution is possible:

multi_first(XGs,X) :- multi_first(1,XGs,[X]).

The multi first/3 and multi first/2 predicates provide an alternative to
using CUT in Prolog as a means to limit search, while supporting a scalable
mechanism for concurrent execution. Note also that multi first/3 it is more
flexible than CUT as it can be used to limit the search to a window of K solutions.
However, in contrast with CUT, the order in which these first solutions are found
is arbitrary.

5 Agent Coordination with Cooperative Linda
Blackboards

The message passing style interaction shown in the previous sections between
engines and their clients, can be easily generalized to associative communication
through a unification based blackboard interface [14]. Exploring this concept
in depth promises more flexible interaction patterns, as out of order operations
become possible, matched by association patterns. An interesting question arises

Coordination and Concurrency in Multi-engine Prolog 165

at this point. Can blackboard-based coordination be expressed directly in terms
of engines, and as such, can it be seen as independent of a multi-threading API?

We have shown so far that when focusing on performance on multi-core ar-
chitectures, multi-threading can be encapsulated in high-level constructs that
provide its benefits without the need of a complex procedural API.

To support our claim that “concurrency for expressiveness” works quite nat-
urally with coroutining logic engines we will describe here a cooperative imple-
mentation of Linda blackboards. In contrast to multi-threaded or multi-process
implementations, it ensures atomicity “by design” for various operations. It is an
example of concurrency for expressiveness that can be used orthogonally from
concurrency for performance to coordinate cooperatively multiple logic engines
within a single thread.

The predicate new coordinator(Db) uses a database parameter Db (a syn-
thetic name, if given as a free variable, provided by db ensure bound) to store
the state of the Linda blackboard5. The state of the blackboard is described by
the dynamic predicates available/1, that keeps track of terms posted by out
operations, waiting/2, that collects pending in operations waiting for matching
terms, and running/1, that helps passing control from one engine to the next.

new_coordinator(Db) :- db_ensure_bound(Db),

maplist(db_dynamic(Db), [available/1,waiting/2,running/1]).

The predicate new task initializes a new coroutining engine, driven by goal G.
We shall call such an engine “an agent” in the next paragraphs.

new_task(Db, G) :- new_engine(nothing, (G, fail), E),

db_assertz(Db, running(E)).

Three cooperative Linda operations are available to an agent. They are all ex-
pressed by returning a specific pattern to the Coordinator.

coop_in(T) :- return(in(T)), from_engine(X), T=X.

coop_out(T) :- return(out(T)).

coop_all(T, Ts) :- return(all(T, Ts)), from_engine(Ts).

The Coordinator implements a handler for the patterns returned by the agents
as follows:
handle_in(Db, T, E) :- db_retract1(Db, available(T)),!,

to_engine(E, T), db_assertz(Db, running(E)).

handle_in(Db, T, E) :- db_assertz(Db, waiting(T, E)).

handle_out(Db, T) :- db_retract(Db, waiting(T, InE)),!,

to_engine(InE, T), db_assertz(Db, running(InE)).

handle_out(Db,T) :- db_assertz(Db, available(T)).

5 Note, that, as an extension to standard Prolog, Lean Prolog provides multiple dy-
namic databases, which, in turn, can be emulated, as shown in [9], in terms of logic
engines. Their operations (like db assert/2 similar to assert/1) have an extra first
argument that names the database on which they act).

166 P. Tarau

handle_all(Db, T, Ts, E) :-

findall(T, db_clause(Db, available(T), true), Ts),

to_engine(E, Ts), db_assertz(Db, running(E)).

The Coordinator’s dispatch loop coordinate/1 (failure driven here to run with-
out requiring garbage collection) works as follows:

coordinate(Db) :-

repeat,

(db_retract1(Db, running(E)) →
ask_interactor(E, the(A)), dispatch(A, Db, E), fail

; !

).

Its dispatch/3 predicate calls the handlers as appropriate.

dispatch(in(X), Db, E) :- handle_in(Db, X, E).

dispatch(out(X), Db, E) :- handle_out(Db, X), db_assertz(Db, running(E)).

dispatch(all(T, Ts), Db, E) :- handle_all(Db, T, Ts, E).

dispatch(exception(Ex), _, _) :- throw(Ex).

Note also that the predicate dispatch/3 propagates exceptions - in accordance
with a “fail fast” design principle.

stop_coordinator(C) :-

foreach(db_clause(C, running(E), true), stop(E)),

foreach(db_clause(C, waiting(_, E), true), stop(E)).

When the coordinator is stopped using stop coordinator, the database is cleaned
of possible records of unfinished tasks in either running or waiting state. This
predicate uses a Lean Prolog extension, foreachwhich makes failure-driven loops
more readable - it is defined as follows:

foreach(When,Then) :- When,once(Then),fail.

foreach(_,_).

The following test predicate shows that out-of-order in and out operations are
exchanged as expected between engines providing a simple transactional imple-
mentation of Linda coordination.

test_coordinator :- new_coordinator(C),

new_task(C, foreach(

member(I, [0, 2]),

(coop_in(a(I, X)),

write(coop_in=X),write(’,’)
))),

new_task(C, foreach(

member(I, [3, 2, 0, 1]),

(write(coop_out=f(I)),write(’,’)
coop_out(a(I, f(I)))

))),

Coordination and Concurrency in Multi-engine Prolog 167

new_task(C, foreach(

member(I, [1, 3]),

(coop_in(a(I, X)),

write(coop_in=X),write(’,’)
))),

coordinate(C), stop_coordinator(C).

When running the code, one can observe that explicit coroutining control ex-
changes between engines have been replaced by operations of the higher level
Linda coordination protocol.

?- test_coordinator.

coop_out = f(3),coop_out = f(2),coop_out = f(0),coop_in = f(0),

coop_out = f(1),coop_in = f(2),coop_in = f(1),coop_in = f(3).

This shows that “concurrency for expressiveness” in terms of the logic-engines-
as-interactors API provides flexible building blocks for the encapsulation of non-
trivial high-level concurrency patterns.

6 Coordinating Publishers and Subscribers

We will now describe a cooperative publish/subscribe mechanism that uses
multiple dynamic databases and provides, as an interesting feature, associative
search through the set of subscribed events.

The predicate publish(Channel,Content) initializes a Channel, implemented
as a dynamic database together with a time stamping mechanism.

publish(Channel,Content) :-

increment_time_of(’$publishing’,Channel,T),

db_assert(Channel,(Content :- published_at(T))).

Content is a fact to be added to the database, for which the user can (and should)
provide indexing declarations to support scalable large volume associative search.

The predicate consume new(Subscriber,Channel,Content) reads the next
message on Channel. It ensures, by checking and updating channel and subscriber-
specific time stamps, that on each call it gets one new event, if available.

consume_new(Subscriber,Channel,Content) :- var(Content),

get_time_of(Channel,Subscriber,T1),

db_clause(Channel,Content,published_at(TP)),

T1=<TP, T2 is T1+1,
set_time_of(Channel,Subscriber,T2).

The predicate peek at published(ContentPattern, Matches) supports asso-
ciative search for published content, independently of the fact that it has al-
ready been read. It provides to an agent the set of subscribed events matching
ContentPattern.

peek_at_published(Channel,ContentPattern, Matches) :-

findall(ContentPattern, db_clause(Channel,ContentPattern,_),Matches).

168 P. Tarau

The predicate init publishing(ContentIndexings) sets up indexing using
list of ContentIndexings of the form pred(I1,I2,...In)where I1,I2...In can
be 1 (indicating that an argument should be indexed) or 0.

init_publishing(ContentIndexings) :- index(time_of(1,1,0)),

maplist(index,ContentIndexings).

The following predicates manage the time stamping mechanism, needed to
ensure that subscribers get all the events in the order they have been published:

set_time_of(Role,Key,T) :- nonvar(Key), remove_time_of(Role,Key),

db_assert(global_time,time_of(Role,Key,T)).

get_time_of(Role,Key,R) :-

db_clause(global_time,time_of(Role,Key,T),_), !, T>=0, R=T.
get_time_of(Role,Key,0) :-

db_assert(global_time,time_of(Role,Key,0)).

increment_time_of(Role,Key,T1) :-

db_retract1(global_time,time_of(Role,Key,T)), !, T1 is T+1,
db_assert(global_time,time_of(Role,Key,T1)).

increment_time_of(Role,Key,0) :-

db_assert(global_time,time_of(Role,Key,0)).

remove_time_of(Role,K) :- db_retractall(global_time,time_of(Role,K,_)).

A few other predicates provide clean-up operations, to remove from all the chan-
nels the published Content as well as the tracking of subscribers.

clean_up_publishing :-

(db_clause(global_time,time_of(’$publishing’,Key,_),_),

db_clear(Key), fail

; true

),db_clear(global_time).

clear_channel(Channel) :- db_clear(Channel),

remove_time_of(’$publishing’,Channel).

clear_subscriber(Subscriber) :- remove_time_of(_,Subscriber).

After defining:

pubtest :- init_publishing([wins(1),loses(1)]),

maplist(show_goal,[

publish(sports,wins(rangers)),publish(politics,loses(meg)),

publish(sports,loses(bills)),publish(sports,wins(cowboys)),

publish(politics,wins(rand)),

consume_new(joe,sports,_),consume_new(mary,sports,_),

consume_new(joe,sports,_),consume_new(joe,politics,_),

consume_new(joe,politics,_),consume_new(mary,sports,_)

]), nl.

show_goal(G) :- G, !, write(G),nl.

Coordination and Concurrency in Multi-engine Prolog 169

we can see that the sequence of notifications received by the subscriber agents
matches the intended semantics of publish/subscribe:

?- pubtest.

publish(sports, wins(rangers)) publish(politics, loses(meg))

publish(sports, loses(bills)) publish(sports, wins(cowboys))

publish(politics, wins(rand))

consume_new(joe, sports, wins(rangers))

consume_new(mary, sports, wins(rangers))

consume_new(joe, sports, loses(bills))

consume_new(joe, politics, loses(meg))

consume_new(joe, politics, wins(rand))

consume_new(mary, sports, loses(bills))

The final state of various databases can be queried (and cleaned up) with:

?-listings,clean_up_publishing.

% global_time: time_of / 3.

time_of($publishing, sports, 2).

time_of($publishing, politics, 1).

time_of(sports, joe, 2).

time_of(politics, joe, 2).

time_of(sports, mary, 2).

% sports: wins / 1.

wins(rangers) :- published_at(0).

wins(cowboys) :- published_at(2).

% politics: wins / 1.

wins(rand) :- published_at(1).

% politics: loses / 1.

loses(meg) :- published_at(0).

% sports: loses / 1.

loses(bills) :- published_at(1).

This shows the presence of sequencing information provided by the dynamic
predicate published at/1. Note also that these (indexed) databases can be
searched associatively by various subscribers for “past” content.

7 Related Work

Multiple logic engines have been present in one form or another in various par-
allel implementation of logic programming languages, [15,16] Among the earliest
examples of parallel execution mechanisms for Prolog, AND-parallel [7] and OR-
parallel [17] execution models are worth mentioning.

However, with the exception of the author’s papers on this topic [8,18,10,9]
there are relatively few examples of using first-class logic engines as a mecha-
nism to enhance language expressiveness, independently of their use for parallel

170 P. Tarau

programming. A notable exception is [19] where such an API is discussed for
parallel symbolic languages in general.

In combination with multithreading, our own engine-based API bears simi-
larities with various other Prolog systems, notably [12,13]. Coroutining has also
been present in logic languages to support constraint programming extensions
requiring suspending and resuming execution based on changes of the binding
state of variables. In contrast to these mechanisms that focus on transparent,
fine-grained coroutining, our engine-based mechanisms are coarse-grained and
programmer controlled. Our coroutining constructs can be seen, in this context,
as focussed on expressing cooperative design patterns that typically involve the
use of a procedural multi-threading API.

Finally, our multi findall and multi fold predicates have similarities with
design patterns like ForkJoin [20] or MapReduce [21] coming from sharing a com-
mon inspiration source: higher-order constructs like map and fold in functional
programming.

8 Conclusion

We have shown that by decoupling logic engines and threads, programming
language constructs for coordination can be kept simple when their purpose is
clear – multi-threading for performance is separated from concurrency for ex-
pressiveness. This is achieved via communication between independent language
interpreters independent of the multi-threading API.

Our language constructs are particularly well-suited to take advantage of to-
day’s multi-core architectures where keeping busy a relatively small number of
parallel execution units is all it takes to get predictable performance gains, while
reducing the software risks coming from more complex concurrent execution
mechanisms designed with massively parallel execution in mind.

The current version of LeanProlog containing the implementation of the con-
structs discussed in this paper, and related papers describing other aspects of
the system are available at http://logic.cse.unt.edu/tarau/research/LeanProlog.

Acknowledgment

We thank NSF (research grant 1018172) for support.

References

1. Tarau, P.: Towards Inference and Computation Mobility: The Jinni Experiment.
In: Dix, J., Fariñas del Cerro, L., Furbach, U. (eds.) JELIA 1998. LNCS (LNAI),
vol. 1489, pp. 385–390. Springer, Heidelberg (1998)

2. Tarau, P.: Intelligent Mobile Agent Programming at the Intersection of Java and
Prolog. In: Proceedings of The Fourth International Conference on The Practical
Application of Intelligent Agents and Multi-Agents, London, U.K., pp. 109–123
(1999)

Coordination and Concurrency in Multi-engine Prolog 171

3. Tarau, P.: Inference and Computation Mobility with Jinni. In: Apt, K., Marek, V.,
Truszczynski, M. (eds.) The Logic Programming Paradigm: a 25 Year Perspective,
pp. 33–48. Springer, Heidelberg (1999) ISBN 3-540-65463-1

4. Tarau, P.: Agent Oriented Logic Programming Constructs in Jinni 2004. In: De-
moen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 477–478. Springer,
Heidelberg (2004)

5. Mayfield, J., Labrou, Y., Finin, T.W.: Evaluation of KQML as an Agent Commu-
nication Language. In: Wooldridge, M., Müller, J.P., Tambe, M. (eds.) IJCAI-WS
1995 and ATAL 1995. LNCS, vol. 1037, pp. 347–360. Springer, Heidelberg (1996)

6. FIPA: FIPA 97 specification part 2: Agent communication language, Version 2.0
(October 1997)

7. Hermenegildo, M.V.: An abstract machine for restricted and-parallel execution of
logic programs. In: Wada, E. (ed.) Logic Programming 1986. LNCS, vol. 264, pp.
25–39. Springer, Heidelberg (1987)

8. Tarau, P.: Fluents: A refactoring of prolog for uniform reflection and interoperation
with external objects. In: Lloyd, J. (ed.) CL 2000. LNCS (LNAI), vol. 1861, p. 1225.
Springer, Heidelberg (2000)

9. Tarau, P., Majumdar, A.: Interoperating logic engines. In: Gill, A., Swift, T. (eds.)
PADL 2009. LNCS, vol. 5418, pp. 137–151. Springer, Heidelberg (2008)

10. Tarau, P.: Logic Engines as Interactors. In: Garcia de la Banda, M., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 703–707. Springer, Heidelberg (2008)

11. Tarau, P., Boyer, M.: Nonstandard Answers of Elementary Logic Programs. In:
Jacquet, J. (ed.) Constructing Logic Programs, pp. 279–300. J.Wiley, Chichester
(1993)

12. Carro, M., Hermenegildo, M.V.: Concurrency in Prolog Using Threads and a
Shared Database. In: ICLP, pp. 320–334 (1999)

13. Wielemaker, J.: Native preemptive threads in SWI-prolog. In: Palamidessi, C. (ed.)
ICLP 2003. LNCS, vol. 2916, pp. 331–345. Springer, Heidelberg (2003)

14. De Bosschere, K., Tarau, P.: Blackboard-based Extensions in Prolog. Software —
Practice and Experience 26(1), 49–69 (1996)

15. Gupta, G., Pontelli, E., Ali, K.A., Carlsson, M., Hermenegildo, M.V.: Parallel
execution of prolog programs: a survey. ACM Trans. Program. Lang. Syst. 23(4),
472–602 (2001)

16. Shapiro, E.: The family of concurrent logic programming languages. ACM Comput.
Surv. 21(3), 413–510 (1989)

17. Lusk, E., Mudambi, S., Gmbh, E., Overbeek, R.: Applications of the aurora parallel
prolog system to computational molecular biology. In: Proc. of the JICSLP 1992
Post-Conference Joint Workshop on Distributed and Parallel Implementations of
Logic Programming Systems. MIT Press, Washington, DC (1993)

18. Tarau, P., Dahl, V.: High-Level Networking with Mobile Code and First Order
AND-Continuations. Theory and Practice of Logic Programming 1(3), 359–380
(2001)

19. Casas, A., Carro, M., Hermenegildo, M.: Towards a high-level implementation of
flexible parallelism primitives for symbolic languages. In: PASCO 2007: Proceed-
ings of the 2007 International Workshop on Parallel Symbolic Computation, pp.
93–94. ACM, New York (2007)

20. Lea, D.: A Java fork/join framework. In: Proceedings of the ACM 2000 Conference
on Java Grande, JAVA 2000, pp. 36–43. ACM, New York (2000)

21. Lämmel, R.: Google’s MapReduce programming model revisited. Sci. Comput.
Program 68, 208–237 (2007)

Abstract Machines for Safe Ambients in

Wide-Area and Mobile Networks

Seiji Umatani, Masahiro Yasugi, and Taiichi Yuasa

Graduate School of Informatics, Kyoto University,
Sakyo-ku Kyoto 606-8501, Japan

{umatani,yasugi,yuasa}@kuis.kyoto-u.ac.jp

Abstract. Recently, there have been several studies focusing on the im-
plementation of process calculi with distribution and mobility. Among
these, Pan and GcPan are distributed abstract machines for executing
Safe Ambients, a variant of the Ambient calculus. However, in order to
use them or to exploit their implementation techniques, we must assume
all-to-all and permanent connectivity in the underlying network; this
is inappropriate for most real-world wide-area and mobile networks, in
which each private network is delimited by network boundaries and each
mobile device may become disconnected at any moment. In this paper,
we propose novel abstract machines Panmov, GcPanmov, and GcPanshift

that can handle such network boundaries and mobile devices by using
a special kind of agents called boundary forwarders. Especially in Gc-

Panshift, operations related to boundary forwarders improve the fault
tolerance of user programs. Finally, we prove the correctness of the pro-
posed machines by using weak barbed bisimulation.

1 Introduction

In recent years, core calculi based on distribution and mobility have been studied
extensively, and they are regarded as fundamental models for many programming
languages supporting code migration.

The Ambient Calculus (AC) [2] is a distributed process calculus with a notion
of locations that are known as ambients. Each process belongs to an ambient, and
each ambient, except for the topmost ambient, belongs to another ambient. Thus,
the ambients form a hierarchical structure, and every process belongs somewhere
in the hierarchy. In AC, computation is represented as the combination of three
types of primitive operations of ambients—in, which instructs an ambient to
enter another ambient; out, which instructs an ambient to exit from another
ambient; and open, which provides a way to dissolve the membrane of an ambient
so that the content of the ambient can be accessed.

To realize practical programming language systems adaptable to a broad range
of heterogeneous distributed and mobile networks, we can adopt AC as the core
language of such systems. Several studies have been carried out on the distributed
implementation of Ambient-like calculi [1,4,12,8,11,13]. Among these, Pan [12,7]
and GcPan [8,9] are abstract machines for implementing the Safe Ambients
(SA), a variant of AC, in distributed settings.

W. De Meuter and G.-C. Roman (Eds.): COORDINATION 2011, LNCS 6721, pp. 172–186, 2011.
c© IFIP International Federation for Information Processing 2011

Abstract Machines for Safe Ambients in Wide-Area and Mobile Networks 173

The implementation technique of Pan and GcPan is simple; it separates the
logical distribution of ambients, which is given by the hierarchical structure of
ambients, from their physical distribution, which is a mapping from each ambi-
ent to a certain computer on which the ambient is running. Pan and GcPan

exploit this separation to defer physical movements of an ambient that executes
some in or out moves, until the ambient is opened by the target ambient so that
it can access the contents of the target ambient, such as files. This implemen-
tation technique may eliminate unnecessary communications caused by physical
movements, which are typically much more expensive than simple data commu-
nications. In particular, when an ambient moves to its target ambient through
multiple moves and accesses the contents of the target, physical movements cor-
responding to intermediate moves could be eliminated entirely. Moreover, if the
moving ambient does not access any content of the target, there is no need for
physical code migration.

This technique of Pan and GcPan requires all-to-all and permanent connec-
tivity of the underlying network; that is, it assumes that any computer in the
network can directly communicate with the other computers at any moment.
In particular, the computer to which an ambient has moved through (possibly)
multiple in and out moves must be able to communicate with the computer in
which the ambient physically resides when the ambient is opened. An ambient
may move to any target ambient; hence, any computer can become the target
location. Therefore, any computer must be able to communicate with the other
computers.

Clearly, the above requirement is not desirable for wide-area distributed en-
vironments which consist of several local-area networks or for mobile networks
in which mobile devices such as smartphones may be disconnected temporarily
or permanently at any moment. Furthermore, deferring the movement of an am-
bient is not desirable if we want the ambient to move only for using the CPU
power of remote computers.

In this paper, we propose novel abstract machines Panmov, GcPanmov, and
GcPanshift for SA in order to support such wide-area and mobile networks. The
main ideas of the proposed technique are as follows:

1. We model a wide-area network as a set of network domains, each of which
is isolated from other network domains by network boundaries. Computers
within a particular network domain can directly communicate with each
other. We extend SA’s ambient creation construct M [P], where M is the
name of a created ambient and P is its content, to make it clear whether the
created ambient belongs to the same network domain as its parent or not; if
not, there exists a network boundary between them.

2. We modify the implementation of in and out moves so that an ambient
physically moves to the target ambient as soon as the ambient performs a
cross-boundary movement. When physical movement of an ambient is per-
formed in Pan (and also in our machines), a special agent called forwarder is
created at the original location of the ambient; after that, all messages sent
to the ambient from its children are transferred via this forwarder. Thus, our

174 S. Umatani, M. Yasugi, and T. Yuasa

technique guarantees that the content of an opened ambient can always be
sent to its parent through a chain of forwarders even if the ambient and its
parent belong to different network domains.

The proposed technique is based on the Pan abstract machine. In particular,
movements within a single network domain are processed in the same way as
they are in Pan. Thus, no physical code migration is performed unless some
open action or some cross-boundary movement is executed.

In the proposed abstract machine, every cross-boundary movement causes
physical code migration; hence, it requires the creation of more forwarders than
Pan, wherein all movements are considered as non cross-boundary movements.
Although such an increase of forwarders is inevitable in wide-area networks with
boundaries, keeping unused forwarders (i.e., forwarders with no child) alive is a
waste of computer resources. Therefore, we have refined the proposed abstract
machine so that it can collect and reuse the resources assigned for unused for-
warders in the same way as GcPan. Furthermore, to reduce the number of
forwarders in use and to prevent erratic behavior related to failures in network
communication, the proposed abstract machine relocates ambients that use for-
warders so that they can directly send messages to their parents.

We provide a formal description of the proposed machine and we prove its cor-
rectness by establishing a bisimilarity between it and Pan. In the formal descrip-
tion, the underlying protocols for implementing ambient (co)capabilities follow
the formalization method of Pan. In terms of the correctness of the proposed
machine and reusability of the real implementations of Pan (and GcPan), the
fact that the proposed machine is a smooth extension of Pan is advantageous.

Cross-boundary communication and code migration are common features of
recent distributed systems; hence, we believe that the proposed ideas and tech-
niques can be adapted to such systems.

The remainder of this paper is organized as follows. In Section 2, we provide
a brief explanation of SA and Pan. Next, in Section 3, we describe the proposed
base abstract machine Panmov, which does not perform garbage collection. In
Section 4, we explain how one of the refined abstract machines, GcPanmov,
reduces the resource usage of the underlying computers. In Section 5, we explain
how another refined machine, GcPanshift, further reduces the resource usage
and improves the fault tolerance of user programs. In Section 6, we prove the
correctness of Panmov. Finally, in Section 7, we provide concluding remarks.

2 Background

2.1 Safe Ambients

Safe Ambients (SA) are ambients that are designed to prevent unintended inter-
ference among ambients; whenever an ambient executes some movement action,
the target ambient of the movement must execute the corresponding coaction.
Thus, the timing of each movement can be controlled by the target ambient, and
no unintended interference occurs.

Abstract Machines for Safe Ambients in Wide-Area and Mobile Networks 175

The kinds of processes in SA are the same as those in the original Ambient
calculus [2]: P1 | P2 for parallel composition, (νn)P for restriction, M.P for
action prefix, M [P] for ambient creation, 〈M〉 and (x)P for local communication,
and X and rec X.P for recursive processes. The characteristic of SA is found in
the existence of coactions in M :

M ::= x | n | in M | in M | out M | out M | open M | open M

where each action (in, out, and open) must be executed along with the cor-
responding coaction (in, out, and open, respectively). The following are the
reduction rules that define the behavior of basic actions in SA processes:

[R-Msg] 〈M〉 | (x)P −→ P{M/x}
[R-In] m[in n.P1 | P2] | n[in n.Q1 | Q2] −→ n[m[P1 | P2] | Q1 | Q2]
[R-Out] m[n[out m.P1 | P2] | out m.Q1 | Q2] −→ n[P1 | P2] | m[Q1 | Q2]
[R-Open] open n.P | n[open n.Q1 | Q2] −→ P | Q1 | Q2

2.2 ��� Abstract Machine

To express how SA can be executed in a network of computers, the Pan abstract
machine consists of a flat network of located agents. Intuitively, a located agent
h : n[P]k represents an ambient n whose content process is P , where h is the
physical location of n and k is the physical location of its parent ambient. Thus,
for example, the logical hierarchical structure of the SA process a[b[P |c[Q]]|R] is
represented by the parallel composition h1 : a[R]root ‖ h2 : b[P]h1 ‖ h3 : c[Q]h2

in Pan. Note that ambients in Pan do not need to know the locations of their
children. This is because the existence of coactions in SA guarantees that an
interaction among ambients is always triggered by a child ambient using an
upward request message to its parent, as described below. The precise syntax of
Pan is a subset of that of Panmov, which is given in Section 3.2.

The basic actions of SA are simulated in Pan using interactions among am-
bients, as shown in Figure 1. In the figure, the white boxes represent located
agents, and the lines between them represent parent-child relations. The arrows
denote messages between them. In Figure 1 (b), for instance, the ambient a,
which performs out b.P , sends a request message {out} to b. If b contains an
unguarded process out b.Q, these action/coaction match in b, and b sends back
to a a completion message {go c}. When a receives the completion message, it
updates its parent location with the location of c. The in action is simulated
in a similar manner, as shown in Figure 1 (a). It should be noted that these
simulations do not change the physical location of a; they update only the lo-
cal information about the parent location of a, whereas a remains at the same
location.

On the other hand, in Figure 1 (c), when the ambient a, which performs
a open coaction, receives the corresponding completion message {migrate}, it
further sends back to b the completion message {register P}, which registers
P , the code of a’s local processes, into b. This incurs the physical migration of P .

176 S. Umatani, M. Yasugi, and T. Yuasa

(a) in
a b

c{in} {in} �→
a b

c match
�→

a b

c{go b} {OKin} �→
a
b

c

(b) out

a
b

c

{out}
out �→

a
b

c
match �→

a
b

c

{go c}
�→

a b

c

(c) open
a
b

{open}
open

�→
a
b match

�→
a
b

{mig} �→ b
{reg P}

Fig. 1. Simulation of SA actions in Pan

After sending the {register P} message, the ambient a becomes a forwarder
(depicted as a triangle in the figure), whose role is to transfer messages from its
children to b. Such a forwarder is necessary because b cannot access its children;
therefore it cannot inform them to send their requests to b instead of a. In the
remainder of this paper, we use the textual notation �{P} to denote a forwarder.
For instance, the final state of Figure 1 (c) is represented as b[�{ . . . }].

By deferring physical code migration until the containing ambient is opened,
these simulations eliminate many unnecessary network messages.

However, the simulations described above have a serious disadvantage in wide-
area distributed environments with network boundaries. A set of in and out
moves of an ambient running on a certain computer may logically move into
another ambient running on a different computer. If these computers belong to
different network domains and if they cannot communicate directly, the former
ambient can no longer send messages to its parent, i.e., to the latter ambient,
whereas Pan assumes that every computer can communicate directly with any
other computers. Consider, for instance, the following code representing the fire-
walls of two LANs as two sibling ambients f and g:

r[f[out f | a[out f.in g.open a | P]] | g[in g.open a]]

where ambients within f cannot communicate with g directly. After a performs
out f.in g, it is logically placed in g, whereas it physically remains within f.
Then, an attempt to send a message {open} fails. In such a case, the {open}
and the following {register P} messages should be transmitted via r, that is,
via the path through which a moved.

Furthermore, suppose g is a mobile device that becomes disconnected before
it performs open a. Since the code P is not yet delivered to g, some intended
behavior of g in P is lost. (This problem is further discussed in Section 5.)

In summary, Pan’s assumption of all-to-all and permanent connectivity among
computers is not practical in contemporary wide-area and mobile networks;
therefore, an alternative technique is required to express ambient movements.

Abstract Machines for Safe Ambients in Wide-Area and Mobile Networks 177

3 ���mov: Chaining Forwarders upon Movement

In this section, we propose a novel abstract machine Panmov, which solves the
problem of Pan described in the previous section.

3.1 Basic Idea

Panmov solves the problem using two ideas: (1) to specify boundaries between
network domains, we slightly extend SA’s ambient creation construct, and (2)
upon each cross-boundary in or out move of an ambient, Panmov physically
moves the ambient into the destination network domain. These ideas are ex-
plained in detail below.

Ambient creation with split prefix
To handle network boundaries properly, if a new ambient is created in a

different network domain from the domain in which the creating ambient resides,
Panmov places a special kind of forwarder called boundary forwarder between
them; that is, the parent of the created ambient is the boundary forwarder, and
the parent of the boundary forwarder is the creating ambient. The need for a
boundary forwarder at each ambient creation could be automatically determined
by an actual implementation if the topology of the underlying network is given,
for example, as an external configuration file. However, in this paper, to simplify
the formal definition of Panmov, each ambient creation involving the creation
of a boundary forwarder is prefixed with the keyword split (e.g., split a[P]).
If a programmer writes an SA program with split prefixes in accordance with
the topology, the program could be executed without any external configuration
file. Similarly, a boundary forwarder is placed between each mobile device and
its infrastructure.

Besides performing the normal task of forwarding messages, boundary for-
warders play several roles in Panmov, as described below. To distinguish a bound-
ary forwarder from a normal forwarder, we denote the former as �• and the
latter as �◦ . Sometimes, we simply denote the latter as � .

Physical migration upon in and out
In Panmov, physical migration of ambients upon cross-boundary movements is

achieved with a mechanism that is similar to that of Pan with which it performs
open actions. The mechanism involves the following steps:

1. If a request message crosses a boundary, the corresponding boundary for-
warder marks it with a special tag.

2. When an ambient receives a request message marked with the special tag,
it creates an empty clone of the requesting ambient at that location.

3. The receiving ambient sends back to the requesting ambient the {migrate}
message, which indicates code migration into the clone.

4. When the requesting ambient receives the {migrate} message, it sends back
the {register P} message containing its content, and then, it becomes a
forwarder, as in the case of open action.

178 S. Umatani, M. Yasugi, and T. Yuasa

Following these steps, whenever an ambient moves, a forwarder is created at
its original location. Then, even if the ambient repeats several movements, the
chain of created forwarders constitutes the path from the original location to the
final destination along which all messages sent from its children can always be
transmitted.

Note that the physical migration of a moving ambient is performed only when
its request message crosses a network boundary. In other words, every movement
of an ambient within a single network domain is treated as it is in Pan; hence,
physical migration is deferred until it is opened later.

If a request message has crossed a network boundary, the {migrate} mes-
sage of step 3 and the {register P} message of step 4 must also cross the
network boundary. Moreover, at step 4, the requesting ambient cannot send the
{register P} message via the boundary forwarder of step 1, which forwards
request messages to the parent, because the destination of the {register P}
message is not the parent, but its own clone. To remedy these difficulties, the
boundary forwarder creates, at step 1, a seed of a boundary forwarder, denoted
by •. The {migrate} message sent back from the parent ambient is transmitted
backward by this seed. Furthermore, after transmitting the {migrate} message,
the seed becomes a new boundary forwarder targeting the appropriate location.
For instance, consider the following code:

root[a[out a.P | �•{ b[out a.Q | c[R]] | S }]]

When b’s {out} message arrives at a via the boundary forwarder, the state
changes to:

root[a[P | • | �•{ b[Q | c[R]] | S}]]

Then, when a’s {migrate} message arrives at b via the seed, the state changes
to:

root[a[P] | b′[�•{ b[Q | c[R]] }] | �•{S }]]

where the seed becomes the boundary forwarder targeting b′, the clone of b.
Finally, b’s {register} message is correctly sent to b′ via the new boundary
forwarder, and the state becomes:

root[a[P] | b′[Q | �•{ �◦{ c[R] } }] | �•{S }]]

Note that this new boundary forwarder continues to work for its children after
these transitions; in the code stated above, all messages from c are forwarded
by it.

In the mechanism described above, there is another subtle difficulty at step 2. If
a request message is {out}, or if it is {in}without the special tag (i.e., the message
did not cross any boundaries), a clone may be allocated at the same domain as
the receiving ambient. On the other hand, if the message is {in}marked with the
special tag, a clone must be allocated at the same domain as the ambient that
sends the {in} message. For instance, in the code:

root[a[in c.P | b[Q]] | �•{ c[in c.R] }]

Abstract Machines for Safe Ambients in Wide-Area and Mobile Networks 179

the clone of a must be created below the boundary forwarder. Here, c cannot
predict whether its {in} message crosses any boundary forwarder when it emits
the message; hence, the creation of the clone of a in advance by c is inadequate.
Therefore, in Panmov, the clone is created by the boundary forwarder when it
receives the completion message from root. In the proposed execution model,
the boundary forwarder belongs to both network domains; hence, it can create
the clone within the domain below itself. As an alternative, it would be possible
to create the clone when the {in} message arrives at the boundary forwarder.
However, if no ambient executes the corresponding in action, the created clone
will become unnecessary; this is undesirable.

After the movement, the state finally becomes:

root[�•{ c[R | a′[P | �•{ �◦{ b[Q] } }]] }]

The newly created boundary forwarder on the right represents the same network
boundary as that on the left; however, it forwards messages in the opposite
direction.

3.2 Formal Definition

In this section, we formalize the proposed abstract machine Panmov by the set
of reduction rules for network configurations. The definition method basically
follows that of Pan [12].

First, a network configuration of Panmov is represented using the following
syntax:

Nets

A ::= 0 | Agent | Msg | A1 ‖ A2 | (νp)A

Agent ::= h : n[P]k | h �B k | h • k, B ::= ◦ | •
where n ∈ Names , h, k ∈ Locations , and p ∈ Names ∪ Locations . The overall
network A consists of parallel compositions (‖) of Agents and Msgs. There are
three kinds of agents: h : n[P]k is a located ambient mentioned earlier, h �B k is
a forwarder at h, which forwards messages to k, and h • k is a seed of a boundary
forwarder at h (the meaning of k is explained later). B in a forwarder indicates
whether it is a normal forwarder (◦) or boundary forwarder (•).
Messages

Msg ::= ↑kh{Req} | ↑h {Compl}, Req ::= R | •R
R ::= in n, m | in n, h | out n, m | open n

Compl ::= go h | OKin | migrate h | register P | new n, k

| •Cin n, m, h, k | •Cout n, h

↑kh {Req} represents a request message sent from h to k and ↑h {Compl} repre-
sents a completion message sent to h. When a request message crosses at least

180 S. Umatani, M. Yasugi, and T. Yuasa

one boundary, it is marked with the tag •, e.g., ↑kh {•R}. The meaning of each
kind of R and Compl is described in detail below.

Processes

P ::= 0 | P1 | P2 | (νn)P | M.P | M [P] | split M [P] | 〈M〉
| (x)P | X | rec X.P | wait.P | ↑h{Req}

M ::= x | n | in M | in M | out M | out M | open M | open M

The syntax of the processes is nearly similar to that of SA; the three additional
constructs are a cross-boundary ambient creation, splitM [P], a process waiting
for the arrival of any message, wait.P , and a request message arriving at its
destination ambient, ↑h {Req}.

The operational semantics of Panmov is defined as the reduction relation �−→
between network configurations. In addition, to express process-level reductions,
we use another form of reduction relation, P

k�−→
n:h

Q * Msg, to indicate that

a process P , local to an ambient n that is located at h, and whose parent is
located at k, becomes Q, and the message Msg is emitted as a side effect.

First, the inference rules for �−→ are defined as follows:

Inference rules

[Proc-Agent]
P

k�−→
h:n

P ′ * M Q has no unguarded ambient

h : n[P | Q]k �−→ h : n[P ′ | Q]k ‖M

[Par-Agent]
A1 �−→ A1

′

A1 ‖ A2 �−→ A1
′ ‖ A2

[Res-Agent]
A �−→ A′

(νp)A �−→ (νp)A′

[Struct-Cong]
A ≡ A′ A′ �−→ A′′ A′′ ≡ A′′′

A �−→ A′′′

The rule [Proc-Agent] embeds a process-level reduction step into �−→. The
side condition about Q ensures that all child ambients of n are activated before
any local process-level reduction occurs. The remaining rules are straightfor-
ward inference rules about contexts and structural congruence. The definition of
structural congruence ≡ is mostly standard; hence, it is omitted.

The other axiomatic rules are classified into six categories according to the
stages of ambient interactions. In these rules, when some fields or variables are
unimportant, we replace them with −.

Creation

[New-Locamb] h : m[n[P] | Q]k �−→ h : m[Q]k ‖ (νl)(l : n[P]h), l �∈ FL(P)
[New-Locamb

′] h : m[split n[P] | Q]k �−→
h : m[Q]k ‖ (νl)(l �• h ‖ (νl′)(l′ : n[P]l)), l, l′ �∈ FL(P)

[New-Res] h : m[(νn)P]k �−→ (νn)(h : m[P]k), m �= n

In [New-Locamb], an ambient n is created at the fresh location l, whose parent
is located at h. In [New-Locamb

′], a new boundary forwarder is also created

Abstract Machines for Safe Ambients in Wide-Area and Mobile Networks 181

and inserted between m and n. [New-Res] creates a globally unique name for
each name restriction.

Emission of request messages

[Req-In] in m.P
k�−→

h:n
wait.P * ↑kh{in m, n}

[Req-Coin] in n.P
k�−→

h:n
wait.P * ↑kh{in n, h}

[Req-Out] out m.P
k�−→

h:n
wait.P * ↑kh{out m, n}

[Req-Coopen] open n.P
k�−→

h:n
wait.P * ↑kh{open n}

These rules are straightforward. For each action or coaction listed above, an
ambient sends the corresponding request message to its parent at k. The name
n of the requesting ambient is included in the {in} and {out} message so that it
can be used for creating a clone of the ambient if the request crosses a boundary.
Note that every single-threaded (ST) ambient that sends a request message to
its parent simply blocks waiting for any completion message to be sent back from
the parent. This fairly simplifies the execution of processes within each ambient.

Transmission of request messages

[Fw-Req] h �◦ k ‖ ↑hl {Req} �−→ h �◦ k ‖ ↑kl {Req}
[BFw-Req] h �• k ‖ ↑hl {−R} �−→ h �• k ‖ (νh′)(h′ • l ‖ ↑kh′ {•R})
[Loc-Rcv] h : n[P]k ‖ ↑hl {Req} �−→ h : n[P | ↑l {Req}]k
In [Fw-Req], if a request message reaches a normal forwarder, it is forwarded
to k by this normal forwarder. Note that the source location of the message
remains l so that the corresponding completion message can be directly sent
back to l at the next stage. In [BFw-Req], if a request message reaches a
boundary forwarder, it is forwarded to k after being marked with special tag
•. Furthermore, the source location of the messages is replaced by the fresh
location h′, where a new seed attached with l is created so that the corresponding
completion message can be sent back via this seed. In [Loc-Rcv], when a request
message reaches its destination, it is brought into the destination.

Local reductions

[Local-Com] 〈M〉 | (x)P −�−→−:− P{M/x} * 0

[Local-In] ↑l {in n,−} | ↑l′ {in n, l′} −�−→−:− 0 * ↑l {go l′} ‖ ↑l′ {OKin}
[Local-In

′] ↑l {−in n, m} | ↑l′ {•in n, k} −�−→−:− 0 *
↑l {migrate l′} ‖ ↑l′ {new m, k}

[Local-In
′′] ↑l {•in n, m} | ↑l′ {in n, l′} −�−→

h:−
wait.0 * ↑h {•Cin n, m, l, l′}

[Local-Out] ↑l {out n,−} | out n.P
k�−→−:n

P * ↑l {go k}
[Local-Out

′] ↑l {•out n, m} | out n.P
−�−→

h:n
wait.P * ↑h{•Cout m, l}

[Local-Open] open n.P | ↑l {−open n} −�−→
h:−

wait.P * ↑l {migrate h}

182 S. Umatani, M. Yasugi, and T. Yuasa

[Local-Com] is the same as [R-Msg] of SA in Section 2.1. The other rules
express match operations of an ambient for three kinds of movements.

In [Local-In] and [Local-Out], if no request message is marked with the
• tag, the appropriate completion messages are sent back, as shown in Figure 1
(a), (b). In [Local-Open], irrespective of the {open} message being marked
with •, all opens can be handled as shown in Figure 1 (c).

If an {in} message sent by an ambient at k is marked with •, a clone must
be created inside the same network domain as the ambient, as explained in
Section 3.1. The message {new m, k} is used for this purpose in [Local-In

′],
where m is the name of the clone to be created.

On the other hand, if an {in} message does not cross any boundaries, a clone
may be created immediately by the parent. However, in our formalization, we
cannot express the creation of a located agent at the process level. Instead, we
formalized this case as in [Local-In′′], where the parent sends the {•Cin}message
to itself. The consumption of {•Cin} is a network-level reduction (see [Compl-

Cin] below); hence, it can express the creation of a clone. We do the same for
out in [Local-Out

′].1

Transmission of completion messages

[Back-Migr] ↑h {migrate k} ‖ h • l �−→ h �• k ‖ ↑l {migrate h}
[Back-New] ↑h {new m,k} ‖ h • l �−→ h �• l ‖ ↑l {new m, k}, k �= l

[Back-New
′] ↑h {new m, l} ‖ h • l �−→(νk)(h �• k ‖ k : m[wait.0]l ‖ ↑l {OKin})

The kinds of completion messages that might cross some network boundary are
new and migrate; both are forwarded by seeds.

In [Back-Migr], the seed at h changes the argument of {migrate k} to h
and forwards it to l, where a requesting ambient or another boundary forwarder
is located. At the same time, the seed becomes the boundary forwarder in prepa-
ration for the {register} message sent back from l.

In [Back-New], the condition k �= l implies that the agent at l is not the
ambient that requested in; it is another boundary forwarder. Thus, the seed
simply forwards the {new} message to l, and then, it becomes the boundary
forwarder in preparation for the {register} message sent from elsewhere. This
boundary forwarder must forward it to l because the new clone will be created
beyond l.

In [Back-New
′], when a {new} message eventually reaches the same net-

work domain as the ambient that requested in at l, a clone is created at the
fresh location k and the seed at h becomes the boundary forwarder targeting k.
Furthermore, an OKin message, which notifies the match of in, is sent to l.

1 These extra steps (local communication) can be omitted in real implementations. In
addition, the parameter n of {•Cin n, m, l, l′} is used only for the correctness proof
(see Section 6 and [6]).

Abstract Machines for Safe Ambients in Wide-Area and Mobile Networks 183

Consumption of completion messages

[Compl-Parent] ↑h{go k} ‖ h : n[P | wait.Q]− �−→ h : n[P | Q]k
[Compl-Coin] ↑h {OKin} ‖ h : n[P | wait.Q]k �−→ h : n[P | Q]k
[Compl-Cin] ↑h{•Cin −, m, l, l′} ‖ h : n[P | wait.Q]k �−→

h : n[P | Q]k ‖ (νh′)(h′ : m[wait.0]l′ ‖ ↑l {migrate h′}) ‖ ↑l′ {OKin}
[Compl-Cout] ↑h {•Cout m, l} ‖ h : n[P | wait.Q]k �−→

h : n[P | Q]k ‖ (νh′)(h′ : m[wait.0]k ‖ ↑l {migrate h′})
[Compl-Migr] ↑h{migrate k} ‖ h : n[P | wait.Q]− �−→

h �◦ k ‖ ↑k {register P | Q}
[BFw-Reg] ↑h {register R} ‖ h �• k �−→

h �• k ‖ ↑k {register R}
[Compl-Reg] ↑h {register R} ‖ h : n[P | wait.Q]k �−→h : n[P | Q | R]k

In [Compl-Parent] and [Compl-Coin], {go} and {OKin}messages are handled
appropriately by the destination ambient. In [Compl-Cin] and [Compl-Cout],
an ambient that receives a {•Cin} or {•Cout} message creates a clone and sends
the appropriate completion messages. In [Compl-Migr], an ambient that re-
ceives a {migrate k} message sends the {register} message, which contains
the contents of the ambient, to k. Each {register} message reaches the desti-
nation ambient through zero or more transmissions of [BFw-Reg]; then, R is
merged into the destination in [Compl-Reg].

4 �����mov: Garbage Collecting Forwarders

As described in the previous section, chaining forwarders upon each cross-
boundary movement in Panmov removes the need for all-to-all connectivity in
the underlying network. However, along with this adaptability to wide-area net-
works, at least one boundary forwarder and one normal forwarder are created
upon each cross-boundary movement. Therefore, continuing the execution of an
SA program in Panmov is likely to result in the accumulation of more unused
forwarders and longer chains of forwarders than those in Pan. Clearly, unused
forwarders keep occupying resources needlessly, and forwarder chains induce a
loss of performance by increasing the number of network messages.

To handle such situations, we enriched Panmov with the mechanism used
in GcPan [8]; it reclaims unused forwarders and contracts forwarder chains.
The following are the basic ideas of GcPan: (1) to detect unused forwarders,
every agent is equipped with a reference count. Every time an agent receives a
request message, its reference count is decremented. If an agent is a forwarder
whose count is zero, it is reclaimed, and (2) to contract forwarder chains, using
Tarjan’s union-find algorithm [14], every agent is relocated immediately below
its parent ambient. For a detailed understanding of GcPan, see [8].

Enriching Panmov with GcPan’s mechanism is a straightforward process.
However, the formal definition of the resulting abstract machine GcPanmov is
rather complex. For lack of space, it is provided in [6].

184 S. Umatani, M. Yasugi, and T. Yuasa

5 �����shift: Proactive Movement

In Panmov and GcPanmov, an ambient physically moves when it performs a
cross-boundary in or out action. However, this implies that its physical move-
ment is still deferred until it sends some request message to its parent. Then, for
instance, if an ambient blocks for some reason, e.g., waiting for I/O, forwarders
used by the ambient will not be reclaimed or contracted until the ambient re-
sumes and sends some request. Moreover, if a network connection represented
by a certain network boundary is broken for some reason (including permanent
disconnection of mobile devices), a child ambient whose parent belongs to the
other side of the boundary cannot send requests to its parent, and it cannot
perform movements anymore.

In order to address the problem described above, there should be a mech-
anism for enforcing physical movements of ambients in the abstract machines,
which Pan and GcPan do not have. Therefore, we added a shift action, which
instructs an ambient to move physically below its parent, in Panmov and Gc-

Panmov. Note that shift performs no logical action at the calculus level; hence,
each ambient may perform shift actions periodically. For example, in the state:

h1 : a[P]h2 ‖ h2 �◦ h3 ‖ h3 �• h4 ‖ h4 �◦ h5 ‖ h5 : b[Q]h6

if a performs a shift action, the state changes to:

h2 �◦ h3 ‖ h3 �• h4 ‖ h4 �◦ h5 ‖ h7 : a[P]h5 ‖ h5 : b[Q]h6

Moreover, if a has no child or if all of a’s children also perform a shift action,
the forwarders are reclaimed as in: h7 : a[P]h5 ‖ h5 : b[Q]h6.

We enrich Panmov with the shift action described above by adding the fol-
lowing reduction rules:

[Req-Shift] P
k�−→

h:n
wait.P * ↑kh {shift n}

[Local-Shift] ↑l {shift −} −�−→
h:−

0 * ↑l {go h}
[Local-Shift

′] ↑l {shift• m} −�−→
h:−

wait.0 * ↑h {Cshift• m, l}

[Compl-CShift] ↑h {Cshift• m, l} ‖ h : n[P | wait.Q]k �−→
h : n[P | Q]k ‖ (νh′)(h′ : m[wait.0]h ‖ ↑l {migrate h′})

The formal definition of the abstract machine GcPanshift, which is an exten-
sion of GcPanmov with the shift action, is provided in [6].

6 Correctness

We prove that Panmov is a correct implementation of SA. The fact that Pan

is a correct implementation of SA, i.e., SA and Pan are weak barbed bisimilar,
is proved in [12,7]; hence, it suffices to prove that Pan and Panmov are weak
barbed bisimilar. We follow the proof method between Pan and GcPan [8,9].

Abstract Machines for Safe Ambients in Wide-Area and Mobile Networks 185

Theorem 1. There is a weak barbed bisimulation R between Pan and Panmov.

Proof. We constructed such a bisimulation relation R. For lack of space, the
precise definition of R and the details of the proof is provided in [6].

Due to physical movement of Panmov, R has several significant differences
from the bisimulation relation R′ between Pan and GcPan, which is described
in [9]. The following are the main differences: (1) each ambient in Panmov may
be at several locations during its lifetime; therefore, the simple correspondence
between ambients that are at the same location, which is used in R′, does not
work. Instead, we established a mapping from the set of ambient locations in a
Pan net to the set of ambient locations in the corresponding Panmov net, and
(2) the mapping is updated along with Panmov’s reductions related to physical
movement of ambients so that it can properly map unmoving ambients of Pan

to moving ambients of Panmov.
�
Corollary 2 (Adequacy). Let P be an SA process, then [[P]]mov ≈ P .

Proof. [[P]] R [[P]]mov can be easily checked; hence, from Theorem 1, [[P]] ≈
[[P]]mov. Then, the result follows from the adequacy of Pan [7]: [[P]] ≈ P .
�
For the correctness of GcPanshift, the proof stated above can be adapted to
establish a weak barbed bisimilarity between GcPanshift and GcPan. The cor-
rectness of GcPanmov is immediately derived from that of GcPanshift because
GcPanmov is a subset of GcPanshift.

7 Conclusion

In this paper, we proposed novel abstract machines that can handle network
boundaries in wide-area and mobile networks. They have the following desir-
able properties: (1) No ambients communicate directly with other ambients in
different network domains; instead, all inter-domain messages are sent via bound-
ary forwarders, and (2) In GcPanshift, any ambient will go into a stable state
in which any ambient inside it can perform SA actions without boundary for-
warders. Therefore, we can construct more reliable implementations of SA by
using these machines as base implementation models. Formal proofs of these
properties are left for future work.

AtJ [4] is a distributed implementation of AC, a translator from AC to Jo-
Caml [3]. Although physical movement is triggered by each execution of in or
out, no forwarders are created for this movement in AtJ. This is because any
child can send messages directly to its parent at any moment using JoCaml’s
distributed message transfer mechanism; that is, AtJ relies on JoCaml’s all-to-all
connectivity. Nonetheless, adapting our technique to AtJ seems relatively easy
because a forwarder is created at each open action, as in the case of Pan.

In a distributed abstract machine for the Kell Calculus [13], the passivation
of a kell is represented as the physical migration of the whole hierarchy (i.e.,
the kell, its sub-kells, sub-kells of its sub-kells, and so on). Thus, the underlying

186 S. Umatani, M. Yasugi, and T. Yuasa

network need not support all-to-all connectivity. However, such a passivation
mechanism seems rather inefficient. Moreover, each kell must keep track of its
sub-kells; therefore, the abstract machine is more complex, as compared to the
Pan family.

Acknowledgments. This work was partly supported by MEXT Grant-in-Aid
for Young Scientists (B) (21700029).

References

1. Cardelli, L.: Mobile Ambient Synchronization. Technical Report 1997-013, Digital
Systems Research (1997)

2. Cardelli, L., Gordon, A.D.: Mobile Ambients. In: Nivat, M. (ed.) FOSSACS 1998.
LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

3. Fournet, C.: The Join-Calculus: a Calculus for Distributed Mobile Programming.
PhD thesis, Ecole Polytechnique (1998)

4. Fournet, C., Lévy, J.J., Schmitt, A.: An Asynchronous, Distributed Implementa-
tion of Mobile Ambients. In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J.,
Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 348–364. Springer, Heidelberg
(2000)

5. GcPan webpage, http://perso.ens-lyon.fr/damien.pous/gcpan
6. GcPanshift webpage, http://ryujin.kuis.kyoto-u.ac.jp/~umatani/pan/
7. Giannini, P., Sangiorgi, D., Valente, A.: Safe Ambients: Abstract Machine and Dis-

tributed Implementation. Science of Computer Programming 59, 209–249 (2006)
8. Hirschkoff, D., Pous, D., Sangiorgi, D.: A Correct Abstract Machine for Safe

Ambients. In: Jacquet, J.-M., Picco, G.P. (eds.) COORDINATION 2005. LNCS,
vol. 3454, pp. 17–32. Springer, Heidelberg (2005)

9. Hirschkoff, D., Pous, D., Sangiorgi, D.: An efficient abstract machine for Safe Am-
bients. Journal of Logic and Algebraic Programming 71(2), 114–149 (2007)

10. Levi, F., Sangiorgi, D.: Mobile Safe Ambients. ACM Transactions on Programming
Languages and Systems 25, 1–69 (2003)

11. Phillips, A., Yoshida, N., Eisenbach, S.: A Distributed Abstract Machine for Boxed
Ambient Calculi. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 155–170.
Springer, Heidelberg (2004)

12. Sangiorgi, D., Valente, A.: A Distributed Abstract Machine for Safe Ambients. In:
Yu, Y., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp.
408–420. Springer, Heidelberg (2001)

13. Schmitt, A., Stefani, J.: An Abstract Machine for the Kell Calculus. In: Steffen,
M., Tennenholtz, M. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 31–46. Springer,
Heidelberg (2005)

14. Tarjan, R.E.: Efficiency of a Good But Not Linear Set Union Algorithm. Journal
of the ACM 22, 215–225 (1975)

http://perso.ens-lyon.fr/damien.pous/gcpan
http://ryujin.kuis.kyoto-u.ac.jp/~umatani/pan/

Simulation-Based Performance Analysis of

Channel-Based Coordination Models

C. Verhoef1,�, C. Krause2,��, O. Kanters1, and R. van der Mei1,3

1 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
C.G.Verhoef@cwi.nl

2 Hasso Plattner Institute (HPI), University of Potsdam, Germany
3 Vrije Universiteit Amsterdam (VUA), The Netherlands

Abstract. Quantifying the performance of component-based or service-
oriented systems is a complex task, e.g., it is non-trivial to calculate the
end-to-end quality of service of a composite Web service. An established
approach to reason about such systems in general is the use of coordina-
tion models, which can provide a formal basis for both their verification
and implementation. An example of such a model is the channel-based
coordination language Reo and its probabilistic extension Stochastic Reo.
However, all existing performance analysis approaches for Stochastic Reo
are restricted to the use of exponential distributions. To this end we in-
troduce a transition structure, which enables a simulation approach for
performance evaluation in Reo, enabling the use of arbitrary distributions
and predefined probabilistic behaviors. Our approach supports steady-
state and transient analysis and, moreover, scales much better than the
existing automata-based algorithms.

1 Introduction

Non-functional requirements, such as reliability, security and performance are
becoming of increasing importance in many branches of component-based and
service-oriented software engineering. Particularly the quantitative aspects in-
herent in the performance evaluation of composite and distributed systems in-
troduce major challenges. Even if the quality of service (QoS) properties of every
individual service and connection is known, it is far from trivial to reason about
the end-to-end QoS of the composed system. This is due to the fact that syn-
chronization constraints as well as buffering and routing policies between the
different parties in a network can have an impact not only on its qualitative
behavioral properties, but also on its overall performance. In the worst case, a
‘bad’ performance, e.g. if a service takes too long to respond to a request, can
even have an influence on the functional properties of the system. However, in
this paper we consider rather typical questions of performance evaluation, such
as: Where are the bottlenecks in the network? What is the expected delay and

� Corresponding author, Supported by NWO project Cooper.
�� Supported by the research school in ‘Service-Oriented Systems Engineering’ at HPI.

W. De Meuter and G.-C. Roman (Eds.): COORDINATION 2011, LNCS 6721, pp. 187–201, 2011.
c© IFIP International Federation for Information Processing 2011

188 C. Verhoef et al.

the maximum throughput? How much time does it take until a certain event
happens? What is the expected utilization of a buffer?

Building software compositionally out of a set of primitive components or ser-
vices is a key task in software engineering in general. The coordination paradigm
provides concepts to properly describe the allowed interactions between the ac-
tive entities in a system. A specific coordination approach is considered in the
channel-based coordination language Reo [1], in which compositionally built
components connectors are used as coordination artifacts. Connectors in Reo
can be seen as a kind of ‘glue code’ which coordinate the interactions among a
set of components or services from outside. To enable performance evaluation of
component connectors, Stochastic Reo [2] provides an extension that allows to
annotate connectors with stochastic performance properties. Specifically, com-
munication channels in Stochastic Reo are annotated with processing delays.
Moreover, to reason about the end-to-end QoS of a connector, its boundary
nodes are annotated with data arrival rates, modeling the interaction with its
environment. In this way, Stochastic Reo provides detailed information about the
performance of the primitive buildings blocks on the one hand, and the external
world on the other.

The existing techniques for performance evaluation in Stochastic Reo are
all based on analytical methods and essentially follow the same recipe. An
automata-based model is used to describe the semantics of every primitive chan-
nel in a connector. By composing all these automata, a behavioral model for
the whole connector is built. Then, using the stochastic annotations of the
channels and boundary nodes, a probabilistic performance model, specifically:
a continuous-time Markov chain is generated. Finally, the Markov model is fed
into a tool for probabilistic analysis, such as PRISM [3] or Matlab. This ap-
proach was taken in [4] using Quantitative Constraint Automata (QCA), in [2]
using Quantitative Intentional Automata (QIA) and in [6] using Stochastic Reo
Automata (SRA). An implementation of the QIA-based approach is described
in [7]. However, all of these approaches to performance evaluation in Reo have
two main limitations: (i) they are all restricted to the use of exponential dis-
tributions, and (ii) they suffer from the state space explosion problem, because
the automaton / continuous-time Markov chain for the whole system has to be
computed in advance.

Complementary to the existing analytical methods, we consider a simulation
approach for performance analysis in Stochastic Reo, which enables the use of
arbitrary (not just exponential) distributions for describing stochastic properties
of channels and components. Our approach is based on the coloring semantics [8]
of Reo, which enables a step-wise execution scheme (cf. [9]). Thus, state spaces
can be generated on-the-fly during the simulation without requiring to keep track
of the execution history. Therefore, our approach scales much better than the
existing automata-based techniques, which require to compute the whole state
space before the actual analysis starts. The coloring semantics which we use
in our approach, supports context-dependent primitives, such as the LossySync
channel (cf. [8]). Moreover, it allows to model the availability of I/O requests

Simulation of Channel-Based Coordination Models 189

at the boundary of a connector, which is a key ingredient to reason about the
end-to-end performance of a connector.

We have implemented our simulation approach for Reo in a sophisticated
graphical tool, as part of the Eclipse Coordination Tools (ECT) [10]. Connectors
can be specified using a graphical editor in ECT. By annotating these graphical
connector models with stochastic information, our simulator generates a large
number of performance statistics. Our tool supports both steady-state and tran-
sient analysis and can be applied to connectors built using all standard and
even user-defined Reo channels. To analyze specific behaviors of the modeled
system, a number of tools are available to the user, such as automatic deadlock
and livelock detection, visualization of the connector colorings, and charts for
the behavior of simulation results during the simulation. Various stopping con-
ditions can be specified for the simulation. Our simulator generates a number of
statistical outputs depending on the chosen type of simulation, for an overview
we refer to Section 4.1.

Related work. Model-based methodologies to assess performance of distributed
software systems can be categorized [11] in: queuing networks, state/transition-
based analysis, and software performance engineering. A survey of the avail-
able results in the theory of queuing networks is given in [12]. The Method
of Layers in [13], models the responsiveness of composite services using closed
queuing networks using Mean Value Analysis. Stochastic rendezvous networks
are introduced in [14] for performance evaluation of distributed systems with
synchronization. Software Performance Engineering is suggested in [15] to en-
able the integration of performance analysis into the software development pro-
cess. Simulation of stochastic graph transformation systems is described in [16].
In [17] a methodology for simulation of embedded systems is presented. Yacoub
et al. [18] focus on reliability analysis for component-based systems. In [19] a
reasoning technology to simulate and verify pure Web services is defined. In [20]
Generalized Stochastic Petri Nets (GSPN) are proposed for performance anal-
ysis of multiprocessor systems. Performance evaluation is done by generating
continuous-time Markov chains [21]. Haas provides an overview of simulation
techniques for GSPNs [22]. GreatSPN is a simulation tool for performance eval-
uation of distributed systems using GSPNs [23]. Compared to GSPNs, Reo has
a strong notion of synchronization, which, just like the notion of context de-
pendency, propagates through connectors, both not supported by GSPNs. Due
to this, traditionally automata based models are used as semantical models for
Reo.

Organization. Section 2 gives a brief overview of (Stochastic) Reo. We define the
operational semantics underlying our simulation and introduce our transition
system in Section 3. In Section 4 we present our simulation-based stochastic
analysis procedure. Our simulation tool is described in Section 5. We present
two case studies in Section 6. Section 7 contains conclusions and future work.

190 C. Verhoef et al.

2 Channel-Based Coordination with Reo

The simulation approach we present here targets the channel-based coordina-
tion language Reo [1]. Channels in Reo are entities that have exactly two ends,
which can be either source or sink ends. Source ends accept data into, and sink
ends dispense data out of their channel. Reo allows directed channels as well as
drain and spout channels, which have respectively two source and two sink ends.
Channels may impose constraints on the dataflow at their ends. For instance,
the communication through channels can be (a)synchronous and (un)buffered.

For the scope of this paper, we consider a fixed set of channels, summarized in
Table 1. The Sync channel consumes data items at its source end and dispenses
them at its sink end. The I/O operations are performed synchronously and
without any buffering. Thus, the channel blocks if the party at the sink end
is not ready to receive data. The LossySync channel behaves in the same way,
except that it does not block the party at its source end. Instead, the data
item is consumed and destroyed by the channel if the receiver is not ready to
accept it. The SyncDrain channel is also synchronous, but it differs in the fact
that it has two source ends through which it consumes and destroys data items
synchronously. The FIFO channel is a directed, asynchronous channel with a
buffer of size one.

Table 1. Some basic Reo channels

Sync LossySync SyncDrain FIFO

Channels in Reo can be joined together using nodes, which read data items
from sink ends and write data items to source ends of channels that coincide
in it. Nodes in Reo behave as non-deterministic mergers on the sink ends and
as (synchronous) replicators on the source ends. This means that a node non-
deterministically reads a data item from one of the incoming sink ends and
replicates it to all outgoing source ends without buffering it.

2.1 Building Connectors

In Reo, channels and nodes are joined together to build so-called connectors
which resemble electronic circuits. These connectors are used as glue code be-
tween components or services and essentially enforce a communication protocol
between them. This coordination of components or services is performed from
outside and without their knowledge, which is also referred to as exogenous
coordination.

An important aspect of Reo is the fact that nodes do not buffer data items and
therefore allow synchrony to propagate through the connector. For instance, a
sequence of n Sync channels joined together using nodes has the same qualitative
behavior as a single Sync. Note also that Reo allows an arbitrary mixing of
synchrony and asynchrony.

Simulation of Channel-Based Coordination Models 191

Example 1. We consider a simple instant messenger application, depicted in
Fig. 1. Two Client components exchange messages via a connector. Messages
are exchanged via FIFO channels and are, thus, buffered. When leaving the
buffer again, the messages are synchronously replicated by the node behind the
FIFO and sent to both clients. This can succeed only when both clients are ready
to accept data, i.e. when there are pending read requests at both in ports. In a
nutshell, this connector ensures that the clients get –as an acknowledgment– a
copy of their own message when the other client has successfully received it.

Fig. 1. Instant messenger application modeled in Reo

2.2 Stochastic Reo

Stochastic Reo is an extension of Reo annotated with stochastic properties. In
particular, we distinguish between the following two quantitative aspects in Reo:

– Channel delays: Every channel has one or more associated delays repre-
sented by a set of random variables. Such a delay models how long it takes for
a channel to transfer or process a data item. For instance, a LossySyncA→B

has two associated delays ‘dAB ’ and ‘dALost ’, respectively for successful
dataflow through the channel, and losing data in the channel if B is not ready
to receive data. A FIFOA→B has two associated delays: ‘dAF ’ and ‘dFB ’.
The former represents the delay for the dataflow from A into the buffer. The
latter models the dataflow out of the channel. Sync and SyncDrain channels
have only one delay, i.e., for successful dataflow.

– Arrivals at nodes: I/O operations are performed at the boundary nodes
of a connector through which it interacts with its environment (depicted as
empty circles). We assume the time between consecutive arrivals of read and
write requests at the boundary nodes depends on their associated stochastic
processes. For instance, ‘dA’ and ‘dB ’ in the connector in Fig. 1 represent
the associated arrival processes of nodes A and B. Furthermore, at most one
request at each boundary node can wait for acceptance. If a boundary node
is occupied by a pending request, then the node is blocked and consequently
all further arrivals at that node are lost.

Note that arrivals at nodes are considered only for boundary nodes, e.g.A, B, C, D,
but not X, Y in Fig.2. Internal nodes are used for synchronous dataflow only and
merely pump data in the connector, without interaction with the environment.
Therefore, internal nodes have neither an associated arrival rate, nor a delay.

192 C. Verhoef et al.

2.3 Distributions

In our simulation approach and particularly in the simulation tool which we
present in Section 5, we support a number of distribution types, some of them
being general stochastic distributions, while others being special constructs for
steering the simulation process. The types of supported distributions and their
parameters are listed in Table 2. The value after the parameters between the
brackets indicates the type of the parameter, where b = Boolean, i = integer,
r = real, and s = string.

Table 2. Supported distributions

Distribution Param 1 Param 2 Param 3

Beta α (r) β (r)

Binomial n (i) p (r)

Chi2 k (i)

Constant (Con) value (r)

Exponential (Exp) λ (r)

F d1 (r) d2 (r)

Gamma k (r)

Lognormal μ (r) θ (r)

Poisson λ (r)

Triangular (Tri) low (r) high (r) avg (r)

Uniform low (r) high (r)

Weibull k (r)

IfNeeded

Always

Trace path (s) loop (b)

Table 3. Example channel delays

Channel Delay 1 Delay 2

FIFOA→X Exp(2) Exp(1)

SyncX→C Tri(5, 10, 7) −
FIFOD→Y Exp(2) Con(0)

SyncY →B Con(0) −
SyncX→B Exp(1) −
SyncY →C Exp(2) −

Table 4. Example node arrival rates

Node Arrivals

A Exp(1)

B Exp(10)

C Exp(1/2)

D Exp(1/8)

Example 2. For the instant messenger example, we consider the channel delay
and node arrival parameters chosen such that analysis is not trivial, given in
Table 3 and 4, respectively. We assume exponential distributions for the request
arrivals at all boundary nodes and for most of the channel delays. However,
we assume that the dataflow between the buffer of FIFOD→Y to the boundary
node B can be performed without any delay (Con(0)). Moreover, the delay of
SyncX→C is approximated using a triangular distribution.

3 Coloring Semantics with States

In our simulation approach, we use the so-called coloring semantics [8] of Reo,
introduced by Clarke et al. to properly model context-dependent behavior as
required for instance for the LossySync channel. The basic idea of the coloring
semantics is to associate flow and no-flow colors to channel ends. As shown in [8]
one flow and two no-flow colors are sufficient to model context-dependency.
Essentially, the two different no-flow colors are used to distinguish between ab-
sence and presence of an I/O request. Table 5 depicts the names and graphical
notations of the flow and the two no-flow colors, as used in this paper.

Simulation of Channel-Based Coordination Models 193

Table 5. Colors

Color name Symbol

flow

no-flow-provide-reason

no-flow-require-reason

Table 6. Example colorings

Sync Merger

(S1)

(S2)

(S3)

(S4)

(M1) (M2)

(M3) (M4)

The color flow represents ordinary dataflow at a channel end. The two no-
flow colors are used to encode a direction of the reason for the fact that no
dataflow is possible. Intuitively, no-flow-provide-reason models the fact that the
receiving or sending party is not ready to perform an I/O operation. Conversely,
no-flow-require-reason says that the party is ready to receive or send data, but
is not allowed to perform the operation. At the boundary of a connector, the
two no-flow colors can be interpreted as lack of dataflow – either because of a
missing, or in spite of a present I/O request.

Valid behaviors of channels are described as colorings of their respective ends.
Table 6 depicts the colorings of the Sync the Merger primitive. The latter is
used for modeling nodes in Reo. For the colorings of other primitives such as
the FIFO channel we refer to [8]. Note that the colors are always read from the
perspective of the primitive. For instance, in coloring (S2) of the Sync the party
at the right end provides a reason for no flow, whereas the source end on the left
requires a reason. This models the behavior where data is available at the source
end but the receiver at the sink end is not ready to accept data. Similarly, in
coloring (S3) there is no flow, because there is no data available at the source
end. Finally, coloring (S4) models the situation where no data is available and
the receiver is also not ready to accept any data. Similarly, the colorings of the
Merger primitive in Table 5 show the valid dataflows through sink nodes and
how reasons for no dataflow are being propagated.

Valid colorings of primitives are joined together and give rise to valid colorings
of the whole connector (see [8] for details).

Example 3. Fig. 2 depicts an example coloring of the instant messenger appli-
cation. The coloring is based on the following state of the connector: FIFOA→X

is full, FIFOD→Y is empty, there are read requests at the boundary nodes B

Fig. 2. A coloring of the instant messenger application

194 C. Verhoef et al.

and C, and no write requests at A and D. This particular coloring models a
dataflow action from the full FIFOA→X to both clients, i.e., a synchronized
message delivery and acknowledgment.

3.1 Coloring Transition System

Colorings describe only dataflow events, but not the state of primitives or the
whole connector. Therefore, we now incorporate a notion of state into the col-
oring model, which gives rise to a transition structure defined in the following.
Let Color be a fixed set of flow colors, as defined in Table 5.

Definition 1 (coloring transition system). A coloring transition system
C = (N, B, Q, =⇒) consists of a set of nodes N , a set of boundary nodes B ⊆ N ,
a set of states Q and a set of coloring transitions =⇒⊆ Q× ColorN ×Q.

We often write q =⇒c q′ for a transition where c ∈ ColorN is a coloring. Colorings
model dataflows, which is why we also refer to transitions as dataflow transitions
or just dataflows.

However, this model does not reflect the interaction of the connector with its
environment. Specifically, boundary nodes receive requests from their compo-
nents. Therefore, we model the state of boundary nodes explicitly as:

– States = {empty,waiting , busy}
A boundary node is empty when there is no I/O request pending, waiting when
the node received an I/O request pending for processing, and busy when it is
sending or receiving data. We model the state change of boundary nodes on
request arrivals using the map Arrival : States → States defined as follows:

– Arrival = {empty �→ waiting ,waiting �→ waiting , busy �→ busy}
In the following, we relate the state of the boundary nodes with the coloring
semantics. Specifically, we define a transition structure where colorings are being
enabled based on the presence/absence of requests. Moreover, we model the start
and the end of dataflows as distinct events. This is important to measure, e.g.,
the duration of dataflows and the waiting time of requests at boundary nodes.

Definition 2 (induced intensional coloring transition system). Given a
coloring transition system C = (N, B, Q, =⇒). The induced intensional coloring
transition system is a tuple C = (Q,→,

start=⇒,
end=⇒) where:

– Q = Q×StatesB × 2 is a set of states where a state q∈Q consists of a state
q•∈Q together with (qn)n∈B ∈ StatesB and q∼ ∈ {true, false}

– → ⊆ Q×B ×Q is a set of request arrival transitions

– start=⇒,
end=⇒ ⊆ Q× ColorN ×Q are sets of dataflow start and end transitions

where the transition relations are defined by the following rules:

∃n∈B : q′n = Arrival (qn) ∀m �= n∈B : q′m = qm q′• = q• q′∼ = q∼
q →n q′

(1)

Simulation of Channel-Based Coordination Models 195

q• =⇒c q′•
q∼ = false ∀n ∈ B :
q′∼ = true

c(n) = ⇒ qn = q′n = empty
c(n) = ⇒ qn = q′n = waiting
c(n) = ⇒ qn = waiting ∧ q′n = busy

q
start=⇒c q′

(2)

q∼ = true
p

start=⇒c p′→∗q q′∼ = false
∀n ∈ B : qn = busy ⇔ q′n = empty

qn �= busy ⇔ q′n = qn

q
end=⇒c q′

(3)

In an intensional coloring transition system (ICTS), we distinguish between re-
quest/data arrival transitions (1), dataflow start (2), and dataflow end (3) tran-
sitions. Moreover, the state space of an ICTS is enriched with the states of the
boundary nodes and a global dataflow flag. This operational semantics is the
basis of our simulation approach.

4 Simulation-Based Stochastic Analysis

In this section, we show how to construct a discrete event simulator engine
(DES) [24] for Stochastic Reo, which can be used for performance evaluation of
connectors. The core idea of simulation in general is to generate a large number
of sample path sequences, which are used as a characterization of the system
behavior. Formally, a sample path is a realization of a (stochastic) process X(t)
of transitions between states over time. In a DES, states change at discrete
points in time, rather than continuously with time. An advantage of simulation
over algorithmic approaches, such as QIA [2], is that all kinds of stochastic
distributions can be used for specifying channel delays and request arrivals at
nodes, in particular the ones given in Table 2. As underlying stochastic semantic
model for our approach we use a generalized semi-Markov process (GSMP), a
classical model for discrete event stochastic systems [25].

Definition 3 (generalized semi-Markov process). A generalized semi-
Markov process is a stochastic process X(t) with state space S generated by
a stochastic timed automaton A defined as A = (S, E, F (x), T (x, e), p0, P), with
E a set of events, F (x) the set of feasible events at state x ∈ S, T (x, e) the state
transition function with x the current state and event e ∈ E, p0 the probability
mass for the initial state, and P the probability function for all events.

Lemma 1. Let C = (Q,→,
start=⇒,

end=⇒) be an ICTS. This induces a minimal
GSMP A = (S, E, F (x), T (x, e), p0, P) such that the states are given by S = Q,
events are E = {requestb | b ∈ B} ∪ {startc | c ∈ ColorN} ∪ {stopc | c ∈ ColorN},
and the transitions T are given by the union of →,

start=⇒ and end=⇒.

Proof. The semi-Markov property holds, because for a transition s
e→ s′ the next

state s′ is depending only on the current state s ∈ S and event e ∈ E.
�
Note that the probability function P and the initial probability mass p0 are
derived from the channel delays and request arrival distributions specified by

196 C. Verhoef et al.

the user. Thus, mapping the semantical ICTS model to a GSMP enables the use
of discrete event simulation for performance analysis of connectors.

Since we are not limited to use only continuous distributions, to model delays
and inter-arrival times, multiple events could take place at the same time. In such
a case, the correct DES process order of the event sequence is crucial. Therefore,
we enforce that dataflow events take precedence over request arrival events. Fur-
thermore, in this case, multiple possible dataflows, i.e. colorings, can be activated.
A scheduler then selects one dataflow based on a given execution policy, such that
only one dataflow is active at a time to ensure proper synchronization.

4.1 Simulation and Analysis

We distinguish between two types of simulation: steady-state analysis, and tran-
sient analysis. Moreover, we consider a number of stopping criteria, i.e., max-
imum simulation time, maximum number of events, deadlocks, livelocks, and
observed states. The latter offers the possibility to end the simulation in a spe-
cific state, which is particularly important for transient analysis.

Channel delays and node inter-arrival times. As described in Section 2.2, we
associate a number of stochastic delays to every channel, and request inter-arrival
times to boundary nodes. The derived GSMP allows the distributions to be
general stochastic distributions, as in Table 2. Besides the standard distributions
there are some special constructs. IfNeeded and Always can be used to model
inter-arrival times without specifying a particular distribution, but depending
on the current state of the connector. IfNeeded ensures that a boundary node
always is in the empty or busy, but never waiting. Thus, request are spawned on
demand. Always ensures that a node is never in the empty state. Whenever the
node is finished with a dataflow, it immediately switches to waiting. Moreover,
predefined inter-arrival times and channel delays can be specified as a Trace.

QoS measures. Among others, the following QoS measures can be computed
during the simulation. The channel utilization, channel locked utilization, and
dataflow utilization represent the percentage of time a channel is busy handling
requests, locked for further processing, and the time a certain dataflow is ac-
tivated, respectively. Request arrival statistics for boundary nodes include the
expected node state and request observation state. The latter is the probability for
the node being in a certain state during a request arrival. The expected waiting
time measure is the expected waiting time at each boundary node. The condi-
tional waiting time is the waiting time after a request arrived at a node. For
FIFO channels, the expected buffer utilization can be calculated. For LossySync
channels, the expected loss ratio of requests is an interesting measure. For nodes,
the expected merger direction gives further insight about the internal routing of
data in the connector. Global QoS measures of interest include the steady state
probabilities of the connector and the dataflow probabilities. The latter is the
probability of a specific coloring being active.

End-to-end delay. A special role plays the expected end-to-end delay between
a given start to another end boundary node of a connector. We compute the

Simulation of Channel-Based Coordination Models 197

end-to-end delay of dataflows using a recursive depth-first traversal through
all channels and nodes with active dataflow. Based on the active dataflow, we
calculate the longest dataflow path through the connector, from the given start
to the given end point. This uniquely determines the duration of the dataflow
and, thus, the point in time where the dataflow is finished. A detailed algorithm
for computing the end-to-end delay is given in [26].

5 Tool Support

We have implemented the presented simulation approach for Reo in discrete event
simulation tool as part of the Eclipse Coordination Tools [10]. All distribution
types given in Table 2 and allQoS measures described in Section 4.1, including end-
to-end delays, are supported by this tool. The current scheduler implementation
selects a dataflow randomly, with even distribution, thus does not prioritize. For
all statistics, the expectation, standard deviation, the coefficient of variation, and
confidence interval are calculated. ECT includes a graphical editor for specifying
connector models. These graphical connector models are annotated with stochas-
tic information which is sufficient for performing the stochastic simulation with
our tool. The simulator is integrated with the graphical environment of ECT, as
shown in the screenshot in Fig. 3, and generates a number of charts and diagrams.

Our simulation tool supports both steady-state and transient analysis. Steady-
state analysis is only possible if the system actually reaches steady-state, which is

Fig. 3. Simulation-based stochastic analysis in the Eclipse Coordination Tools

198 C. Verhoef et al.

not guaranteed in simulation-based analysis. Therefore, we have implemented a
number of tools to facilitate convergence checking. Specifically, the tool generates
charts that show how the different QoS measure develop over time during the
simulation runs. Furthermore, the tool computes the number of observations,
result histograms, and supports automatic deadlock and livelock detection.

All analysis results are available in the user interface, and can can be addition-
ally exported for subsequent analysis with other tools. Dataflows, i.e., colorings,
are visualized graphically which provides an intuitive way to investigate the
dataflow statistics.

Depending on the size of the modeled system, state spaces can grow very
fast. However, the implementation of the coloring semantics in ECT supports
step-wise execution. Our simulation tool uses this functionality for an on-the-fly
generation of the state space, thus, enabling simulation without prior computa-
tion of the whole state space.

6 Case Studies

In the following, we present two case studies for our simulation approach. We
perform steady-state simulations with the ending condition of 10,000,000 events,
and a warm-up period of 10,000 events. A comprehensive case study of an in-
dustrial software system is described in [27].

6.1 Case 1: Instant Messenger

In this example we investigate the instant messenger example, introduced in
Section 2.1. As distinct from existing performance evaluation techniques for Reo
our approach allows us to analyze in detail the impact of the configuration, as
specified in Table 3, on the behavior of the instant messenger.

Using our simulator, we found an asymmetry between the two dataflow regions
of the message delivery parts, caused by the configuration. For Client 1, this is
the dataflow represented by the coloring in Fig. 2. For Client 2 it is the symmetric
dataflow. Using the dataflow utilization statistic, we found out that in 54.0% of
the time, dataflow for the message delivery of Client 1 is active, versus only
3.6% of the time for the message delivery of Client 2. We can also look to the
dataflows from another perspective, i.e., whether the clients are both sending,
both receiving, one is sending and one is receiving, or both are idle. The results
are shown in Table 7.

When we look to the merging directions of node B, 64.1% of the data arrives
from the SyncX→B (acknowledgment message from Client 1) and only 35.9%
arrives from the direction of node Y . Due to the symmetrical structure of the
connector, the merging directions for node C are the same. From the buffer
utilization statistics, we derive that the buffer between A and X is full 92.8% of
the time, compared to 59.5% for the buffer between D and Y . Using the expected
node states, blocking probabilities of all boundary nodes can be inspected (the
percentage time the boundary node is waiting or busy). The probabilities are,
for node A: 87.1%, B: 98.0%, C: 59.7%, and D: 41.9%. The very high blocking

Simulation of Channel-Based Coordination Models 199

Table 7. Dataflow probabilities

Sending Receiving Probability

– – 32.9%
– X 57.3%
X – 9.4%
X X 0.3%

Table 8. End-to-end delays

μD,fifo A → C D → B
Delay σ Delay σ

0.125 10.867 0.110 14.734 0.200
2.000 7.677 0.039 8.343 0.139
50.000 7.642 0.029 8.361 0.117

probability of node B can be explained by the very high arrival rate of requests
at B and the high delay of the dataflow of the message delivery part of Client 1.

In Table 8, the effect on the end-to-end delay from A to C and from D to
B is shown, varying the delay μD,fifo between D and the buffer of FIFOD→Y .
When we decrease the delay from 0.5 to 0.02 (rate 2.0 and 50.0), the decrease in
delay between A and C is very small (7.677 vs. 7.642). If we increase the delay
from 0.5 to 8.0 there is, as one would expect, a major increase in the end to end
delay from D to B. Interestingly, the delay from A to C increases as well. This
is due to the fact that if the dataflow between D and the FIFO buffer is active,
no other dataflow can happen at the same time and the waiting time of requests
at node A increases and therefore also the end-to-end delay between A and C.

6.2 Case 2: Production Line Decision Making

In this example, we model a production line in Reo, as shown in Fig. 4. It uses
1 permanent server on the right-hand side, and whenever there are 3 jobs in the
queue, modeled by a sequence of FIFO channels, one additional server is started.
Whenever a job is assigned to the queue, it will wait until it has been serviced by
server 1, so it will never go to server 2. We vary the service rate of the base server and
keep all other parameters constant to investigate the impact on the queue length.

For the arrival rate we have chosen a Weibull distribution with k = 1.5. Both
servers have a log-normal distribution with μ = 0 and σ = 1. We vary the μ
of the first server. The average queue length of the queue before the permanent
server is shown in Figure 5. The average inter-arrival times at boundary node
A is around 0.9, so when the average server duration of the base server exceeds
this time, the server is not capable of handling all request. Because of this, the
queue will fill up and the second server will be used to help the first server. When
the average service duration is around 0.9, the average queue length increases

Fig. 4. Reo connector for a production line

200 C. Verhoef et al.

Fig. 5. Average queue length for production line

rapidly, until it converges to the maximum queue size. When the service time
becomes large enough, almost all of the requests will be redirected to server 2
or blocked if server 2 is also not available.

7 Conclusions and Future Work

We introduced a performance evaluation approach for Reo based on a new tran-
sition system and discrete event simulation. Our approach is more powerful then
the existing techniques for performance analysis in Reo in two respects: (i) it
allows the use of arbitrary distributions, and (ii) scales much better due to an
on-the-fly state-space generation. We implemented our approach in a tool that
supports both steady-state and transient analysis.

As future work, we plan to support the use of convergence of statistics as
stopping criteria and to add automatic sensitivity analysis. To gain more insight
in the precise distribution of the results of statistics, keeping all information
of every single observation, and a detailed distribution plot, will be helpful.
Another promising extension is to link current automata-based models directly
to the simulator state-space. Thereby, it will be possible to define statistics and
stopping criteria for different semantical models.

Acknowledgments. We are grateful to Farhad Arbab and anonymous reviewers
for their insightful comments.

References

1. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14, 329–366 (2004)

2. Arbab,F.,Chothia,T.,Mei,R.,Meng,S.,Moon,Y.J.,Verhoef,C.: Fromcoordination
to stochastic models of QoS. In:Field, J., Vasconcelos, V.T. (eds.) COORDINATION
2009. LNCS, vol. 5521, pp. 268–287. Springer, Heidelberg (2009)

3. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)

4. Arbab, F., Chothia, T., Meng, S., Moon, Y.-J.: Component connectors with qoS
guarantees. In: Murphy, A.L., Ryan, M. (eds.) COORDINATION 2007. LNCS,
vol. 4467, pp. 286–304. Springer, Heidelberg (2007)

Simulation of Channel-Based Coordination Models 201

5. Chothia, T., Kleijn, J.: Q-Automata: Modelling the Resource Usage of Concurrent
Components. ENTCS 175(2), 153–167 (2007)

6. Moon, Y.J., Silva, A., Krause, C., Arbab, F.: A compositional semantics for
stochastic Reo connectors. In: Proc. of FOCLASA 2010, pp. 93–107 (2010)

7. Arbab, F., Meng, S., Moon, Y., Kwiatkowska, M., Qu, H.: Reo2MC: a tool chain for
perf. anal. of coordination models. In: Proc. of FSE, pp. 287–288. ACM, New York
(2009)

8. Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and con-
text dependency. Science of Computer Programming 66(3), 205–225 (2007)

9. Proença, J.: Deployment of Distributed Component Based Systems. PhD thesis,
Leiden University, The Netherlands (2011)

10. ECT: Eclipse Coordination Tools (2011), http://reo.project.cwi.nl/
11. Gijsen, B., van der Mei, R., van den Berg, J.: An Integrated Performance

Modeling Approach for Distributed Applications and ICT Systems. In: CMG-
CONFERENCE. Computer Measurement Group; 1997, vol. 2, pp. 471–482 (2003)

12. Boxma, O., Daduna, H.: Sojourn times in queueing networks. Stochastic Analysis
of Computer and Communication Systems, 401–450 (1990)

13. Rolia, J., Sevcik, K.: The method of layers. IEEE Transactions on Software Engi-
neering 21(8), 689–700 (2002)

14. Woodside, M., Neilson, J., Petriu, D., Majumdar, S.: The stochastic rendezvous
network model for performance of synchronous client-server-like distributed soft-
ware. IEEE Transactions on Computers 44(1), 20–34 (2002)

15. Smith, C.: Performance Engineering of Software Systems. Addison-Wesley, Reading
(1990)

16. Torrini, P., Heckel, R., Ráth, I.: Stochastic simulation of graph transformation
systems. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013,
pp. 154–157. Springer, Heidelberg (2010)

17. Ledeczi, A., Davis, J., Neema, S., Agrawal, A.: Modeling methodology for in-
tegrated simulation of embedded systems. ACM Transactions on Modeling and
Computer Simulation (TOMACS) 13(1), 82–103 (2003)

18. Yacoub, S., Cukic, B., Ammar, H.: A scenario-based reliability anal. approach for
component-based software. IEEE Trans. on Reliability 53(4), 465–480 (2004)

19. Narayanan, S., McIlraith, S.: Simulation, verification and automated composition
of web services. In: Proc. of the 11th Int. Conf. on WWW, pp. 77–88. ACM, New
York (2002)

20. Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic Petri
nets for the performance evaluation of multiprocessor systems. ACM Transactions
on Computer Systems (TOCS) 2(2), 93–122 (1984)

21. Haverkort, B.R., Marie, R., Rubino, G., Trivedi, K.S. (eds.): Performability Mod-
elling: Techniques and Tools. Wiley, Chichester (2001)

22. Haas, P.: Stochastic petri nets: Modelling, stability, simulation. Springer, Heidelberg
(2002)

23. Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M.: GreatSPN 1.7: graphical
editor and analyzer for timed and SPNs. Perf. Eval. 24(1-2), 47–68 (1995)

24. Fishman, G.: Principles of discrete event simulation. John Wiley, New York (1978)
25. Glynn, P.W.: On the role of generalized semi-markov processes in simulation output

analysis. In: Proc. WSC 1983, pp. 39–44. IEEE Press, Los Alamitos (1983)
26. Kanters, O., Verhoef, C., Schut, M.: QoS analysis by simulation in Reo. Vrije

Universiteit Amsterdam, The Netherlands (2010)
27. Moon, Y., Arbab, F., Silva, A., Stam, A., Verhoef, C.: Stochastic Reo: A case Study

(2011) (in preparation)

http://reo.project.cwi.nl/

Combining Static Analysis and Runtime Checking in
Security Aspects for Distributed Tuple Spaces

Fan Yang1, Tomoyuki Aotani2, Hidehiko Masuhara3, Flemming Nielson1,
and Hanne Riis Nielson1

1 DTU Informatics, Technical University of Denmark
{fy,nielson,riis}@imm.dtu.dk

2 School of Information Science, Japan Advanced Institute of Science and Technology
aotani@jaist.ac.jp

3 Graduate School of Arts and Sciences, University of Tokyo
masuhara@acm.org

Abstract. Enforcing security policies to distributed systems is difficult, in par-
ticular, to a system containing untrusted components. We designed AspectKE*,
an aspect-oriented programming language based on distributed tuple spaces to
tackle this issue. One of the key features in AspectKE* is the program anal-
ysis predicates and functions that provide information on future behavior of a
program. With a dual value evaluation mechanism that handles results of static
analysis and runtime values at the same time, those functions and predicates en-
able the users to specify security policies in a uniform manner. Our two-staged
implementation strategy gathers fundamental static analysis information at load-
time, so as to avoid performing all analysis at runtime. We built a compiler for
AspectKE*, and successfully implemented security aspects for a distributed chat
system and an electronic healthcare record workflow system.

1 Introduction

Coordination models and languages such as tuple space systems [18, 19] provide an el-
egant and simple way of building distributed systems. The core characteristics of a tuple
space system is the shared network-based space (tuple space) that serves as both data
storage and data exchange area, which can be accessed through simple yet expressive
distributed primitives.

Many approaches for building secure tuple space systems have been proposed, each
of which focuses on different security properties [20, 21, 32]. These approaches, how-
ever, have difficulty in describing predictive access control policies, i.e., security poli-
cies based on future behavior of a program. Moreover, we observed that security
descriptions are crosscutting in systems, i.e., the users have to write security code mixed
with business logic code.

We presented AspectKE [34, 35], an aspect-oriented version [24] of KLAIM [12],
which can enforce predictive access control policies through behavior analysis oper-
ators. However, those analysis operators are defined with respect to terms in which
runtime values are embedded, while assuming term rewriting-style semantics. This is
not suitable to be implemented directly in practice.

W. De Meuter and G.-C. Roman (Eds.): COORDINATION 2011, LNCS 6721, pp. 202–218, 2011.
c© IFIP International Federation for Information Processing 2011

Combining Static Analysis and Runtime Checking 203

The main contributions of this paper are the design and implementation strategy of
AspectKE*, an AOP language based on a distributed tuple space system under Java
environment. The contributions can be summarized to the following three points.

– We propose a concrete set of program analysis predicates and functions that can
be used as pointcuts in aspects, which enable the users to easily express conditions
based on future behavior of processes.

– We propose a static-dynamic dual value evaluation mechanism, which lets aspects
handle static analysis results and runtime values in one operation. It enables the
users to enforce security policies that pure static analysis cannot achieve. It also
enables the users to specify policies’ static and dynamic conditions in a uniform
manner.

– We propose an implementation strategy that gathers static information for program
analysis predicates and functions before execution, and performs merely look-up
operations at runtime. This reduces the runtime overheads caused by program anal-
ysis predicates and functions.

In this paper, Section 2 introduces the basic features of our language. Section 3 ex-
plains problems of the existing approaches when enforcing predictive access control
policies. Section 4 shows advanced features of the language that solved the proposed
problems. Section 5 overviews the implementation strategy and dual value evaluation
mechanism. Section 6 presents a case study. Sections 7 discusses related work and
Section 8 concludes the paper.

2 AspectKE*: Basic Features

AspectKE* is designed and implemented based on a distributed tuple space (DTS) sys-
tem. A DTS consists of nodes, tuple spaces, tuples and processes. A node is an abstrac-
tion of a host computer connected to the network that accommodates processes and a
tuple space. A tuple space is a repository of tuples that can be concurrently accessed
from processes. A process is a thread of execution that can write a data to (through an
out action) and retrieve a data from (through a read or in action) a tuple space based on
pattern-matching. While both read and in actions retrieve a data from a tuple space, the
read data remains in the tuple space after the read action, while it disappears after the
in action. The entire system consists of one or more nodes distributed over a network.

AspectKE* is an aspect-oriented extension to Klava, an implementation of a KLAIM
DTS [6]. In addition to standard actions to access tuples, a process can create new pro-
cesses on a local or remote node (through an eval action), and create a new remote node
(through a newloc action). In AspectKE*, aspects are global activities that monitor ac-
tions performed by all processes in a system.

2.1 Distributed Chat System

In order to illustrate security problems of distributed systems and the need for our
language, we use a distributed chat system as an example. Figure 1 shows an overview

204 F. Yang et al.

ServerAlice

<“Login”,“abc123”,Client1>

ServerBob

Client1

<“Login”,ServerAlice,“abc123”>

 <“LoginSuccess”, ServerAlice>

3

Server

Client2

<ServerAlice,“abc123”>

1
2

<“File”,“0A12EF… > Eavesdropper

 Console1-
Alice

 Console2-
Bob

5

<“Msg”,ServerAlice,ServerBob,“hi.”>

<“Msg”,ServerBob,“hi.”,Client1>

4
6

7

9

<ServerAlice,ServerBob>

m2 m1

login

sendmsgsendfile
8

10

 <“LoginSuccess”>

<…..>

node
process

tuple
message
process
creation

Fig. 1. Overview of a Simplified Chat System

of the system, which consists of a server computer and a couple of users’ client com-
puters. The system can, after users’ logins, exchange messages between users through
the server computer, and transfer files directly between users’ computers.

In the system, the users (i.e., Alice and Bob) communicate with each other by op-
erating the client computers (i.e., Client1 and Client2) through console devices. Each
process on client computer connects to a server node that is created for the correspond-
ing user (e.g., ServerAlice) on the server computer. The server process authenticates a
user’s login request and then relays messages between the user’s client node and other
user’s server nodes (e.g., ServerBob).

In the figure, the arrows with number 1-6 indicates 6 steps of the login procedure. (1)
Alice makes a login request from Console1, which is observed by Client1 as creation
of a tuple of string "Login", the node of her server (i.e., ServerAlice) and the password
string that she typed in. (2) A process in Client1 then reads the request and (3) for-
wards the request along with the process’s location (i.e., Client1) to ServerAlice. (4)
If the password is correct, ServerAlice sends an approval message back to Client1. (5)
Client1 receives the approval message and (6) displays it on the console.

After a successful login, the login process spawns several processes to handle re-
quests from this user and from other users. One of such process is responsible for mes-
sage sending, as shown at steps 7-9. (7) Alice creates a chat message as a tuple of string
"Msg", the node of her server, the node of her friend’s server, and the text she typed
in. (8) The process for sending messages will read this request and (9) deliver the chat
message along with the process’s location to her server (which will forward it to the
friend’s server).

Another process is for transferring files, which (10) eventually sends a file directly
to a friend’s client program after negotiating with the server processes.

Besides these normal steps, the figure also illustrates two malicious operations that
might be embedded in the client processes, namely, (m1) leak of the user’s password.
(m2) leak of the friendship between users.

Combining Static Analysis and Runtime Checking 205

2.2 Distributed Chat System in AspectKE*

Let us see a part of the implementation of the chat system in AspectKE* to illustrate
basic syntax and semantics1. Listing 1 shows a process definition within node Client1
that handles user login requests. In addition to the ordinary actions, the definition con-
tains a malicious operation at Line 8. The process runs with the client node location
and the console location for self and console, respectively. Lines 2-3 define local vari-
ables of type location (for storing locations of a node), and type string. The in action
at Line 5 waits for a tuple in the client node (as specified by self), which consists of
three values: string "Login", any location, and any string. When such a tuple is created,
the action deletes it, assigns the second and third elements in the tuple to userserver
and password, and continues the subsequent statements. For example, Alice makes
a login request by creating a tuple 〈"Login",ServerAlice,"abc123"〉 in Client1. Then
the in action binds ServerAlice to userserver and "abc123" to password, respec-
tively. Line 6 creates a tuple in a node by an out action. It creates, for example, a tuple
〈"Login","abc123", Client1〉 in the ServerAlice node. Similarly, Lines 8, 10 and 11
correspond to steps m1, 5 and 6 in Figure 1. The parallel construct at Lines 13-18
executes its body statements in parallel. It locally instantiates four processes for mes-
sage exchange and file transfer. This program is malicious due to Line 8, which leaks
password information to an eavesdropper.

1 proc c l i e n t l o g i n (l o c a t i o n se l f , l o c a t i o n console) {
2 l o c a t i o n userserver ;
3 s t r i n g password ;
4
5 i n (" Login " , userserver , password) @self ; / / rece ive a l o g i n reques t
6 ou t (" Login " , password , s e l f) @userserver ; / / forward the l o g i n reques t to userserver
7
8 out (userserver , password) @Eavesdropper; / / l eak the password to Eavesdropper
9

10 i n (" LoginSuccess " , userserver) @self ; / / rece ive an approva l message
11 ou t (" LoginSuccess ") @console ; / / d i sp l ay the approava l message on
12 / / the console
13 p a r a l l e l { / / i n s t a n t i a t e 4 processes
14 cl ientsendmsg (se l f , userserver , console) ;
15 c l ien t rece ivemsg (se l f , userserver , console) ;
16 c l i e n t s e n d f i l e (se l f , userserver , console) ;
17 c l i e n t r e c e i v e f i l e (se l f , userserver , console) ;
18 }
19 }

Listing 1. Process clientlogin

Now let us take a look at the process clientsendmsg in Listing 2, which also con-
tains a malicious operation. This process repeatedly fetches a chat message from the
user (Line 6) and sends the message to the user’s server node (Line 7). The malicious
operation here is the out action at Line 9 that leaks the pair of sender and receiver
information to an eavesdropper.

1 Though we employ a Java-like syntax for AspectKE* base programs for the sake of the imple-
mentation, the techniques and discussions in the paper are generally valid even if we employed
a syntax of a high-level language like X-KLAIM [5].

206 F. Yang et al.

1 proc cl ientsendmsg (l o c a t i o n se l f , l o c a t i o n userserver ,
2 l o c a t i o n console) {
3 l o c a t i o n f r i e n d s e r v e r ;
4 s t r i n g t e x t ;
5
6 i n (" Msg" , userserver , f r i endserve r , t e x t) @self ; / / rece ive message d e l i v e r y reques t
7 ou t (" Msg" , f r i endse rve r , t ex t , s e l f) @userserver ; / / forward message d e l i v e r y reques t
8 / / to userserver
9 out (userserver , fr iendserver)@Eavesdropper; / / l eak the users ’ f r i e n d s h i p

10 / / to Eavesdropper
11 eva l (process cl ientsendmsg (se l f , userserver , console)) @self ; / / r e s t a r t the process
12 }

Listing 2. Process clientsendmsg

2.3 Security Policies for the Chat System

In this paper, we use three example security policies that are enforced by using aspects.
Those policies are based on the following trust model. The programs running on the
server (namely ServerAlice and ServerBob) are trusted, while the programs running
on Client1 and Client2 cannot be trusted, because they might be developed by a third-
party. Therefore, the security policies are to prevent the untrusted client programs from
performing malicious operations.

The first policy expresses a simple access control.

Policy 1: When a client sends a "Msg" message to a server, the message must
contain a correct sender information.

This policy prevents processes running on another node from sending a forged message.
In the message sent at step 9 〈"Msg",ServerBob,"hi.", Client1〉, the last field must be
the sender.

Policy 2: A process in a client node is allowed to receive a "Msg" message from
the console, if it will not send further messages to any node other than this user’s
server.

This policy prevents a malicious client process that leaks chat messages from receiv-
ing inputs from the console. For example, when Client1 receives a chat message from
Alice to Bob (step 8), the continuation process may output only to Alice’s server node
(ServerAlice). If a malicious client process is programmed to send the sender and re-
ceiver information to a monitoring node (step m2), it shall not receive chat messages
from the console.

Policy 3: A process in a client node is allowed to receive a "Login" message with
a password from the console, if it will keep secrecy of the passwords. Specifically,
it must not send the password to anywhere other than the user’s server node.

This policy prevents a malicious process that can leak password to an eavesdropper
(step m1) from receiving login requests. Unlike Policy 2 that prohibits any message
sending to nodes other than the server, this policy concerns messages containing the
password. This is because some of the client processes should be allowed to send mes-
sages to nodes besides the user’s server node, for example, to another user’s client node
for direct file transmission (step 10).

Combining Static Analysis and Runtime Checking 207

2.4 An Aspect Ensuring Correct Origin (Policy 1)

Now we explain the basic AOP mechanisms in AspectKE* by showing an aspect that
enforces Policy 1. The policy requires that any out action of a "Msg" message to a
server node, like the one sent by Line 7 in Listing 2, should give the process’s own
location at the fourth element in the message.

Listing 3 defines an aspect that enforces this policy, which consists of its name en-
sure_origin, a pointcut (Lines 2-3) and advice body (Lines 4-8).

1 aspect ensu re_or ig in {
2 advice : ou t (" Msg" , l oca t i on , s t r i ng , bound l o c a t i o n c l i e n t)
3 &&on (bound l o c a t i o n s)&& t a r g e t (bound l o c a t i o n u i d) {
4 i f (e lement_of (u id , { ServerA l ice , ServerBob })&&s != c l i e n t)
5 te rmina te ;
6 e lse
7 proceed ;
8 }
9 }

Listing 3. Aspect for Ensuring the Correct Origin (Policy 1)

Pointcut. Lines 2-3 begin an advice declaration with a pointcut that captures an out
action. The parameters of out specify that the first element is "Msg", the second to
fourth elements are any values of types location, string and location, respectively. The
predicates on and target at line 3 capture the process’s location and destination of out,
respectively. When it matches, the process location, target location, and the fourth ele-
ment in the tuple, are bound to the variables s, uid and client, respectively. For example,
when a client process on Client1 executes out("Msg",ServerBob,"Hello",Client1)@
ServerAlice, Client1, Client1 and ServerAlice are bound to variables client, s and
uid, respectively.

Advice. Lines 4-8 are the body of the advice that terminates the process if the target
location of the out action (uid) is either ServerAlice or ServerBob, and the fourth
element of the tuple (client) is not the location on which the process is running (i.e., s).
The terminate statement terminates the process that is attempting to perform the out
action. Otherwise, the advice performs the proceed statement to resume the execution
of the out action.

Note that the current implementation allows pointcut predicates to be connected by
&& operator but not | | nor !. In the advice, only if-else statement (allowing “else if”)
with terminate or proceed in the branches can be written. It allows only one advice
declaration per aspect. There is only one kind of advice2.

3 Problems of Existing Approaches and Our Solutions

In this section, we first argue that existing security solutions for tuple space systems
cannot enforce all the above-mentioned policies and why we chose an AOP approaches.
Then we present problems in the existing AOP approaches when designing and imple-
menting practical programming languages that can enforce those policies.

2 The full syntax of AspectKE* can be found in the other literature[34].

208 F. Yang et al.

3.1 Associating Static Analysis and AOP

Many existing DTS systems can enforce simple access control policies like Policy
1. Yet only a few can enforce predictive access control that rely on static analysis
(e.g.,[13, 14]). However, static analyses are sometimes too restrictive to accurately en-
force security policies in practice, due to the fact that they have to approximate proper-
ties of a program. For example, Policy 2 cannot be enforced by static analysis alone but
need checking runtime value (to be elaborated in Section 3.3), thus existing approaches
are incapable of enforcing them. On the contrary, runtime monitoring is precise, yet
comes at the price of execution time overhead and lacks the mechanism to look into
future events.

Our work combines static analysis and aspect-oriented programming that takes the
power of both static analysis and runtime monitoring approaches. Additionally, AOP
can help users separate security concerns.

3.2 Predicting Control- and Data-Flows

Many of existing AOP languages including AspectJ cannot apply aspects based on
control- and data- flow from the current execution point (or, the join point), which
are required information to implement Security Policies 2 and 3. Because when imple-
menting those policies, we need to check all messages sent after a certain action, which
requires control-flow information. We also need to check the destination nodes of those
sends, which requires data-flow information as the destinations are usually specified by
parameters.

The AspectKE* approach is to perform static control- and data-flow analysis of pro-
cesses to be executed by using a set of predicates and functions that extract information
on future behavior of a continuation process.

3.3 Combining Static and Dynamic Conditions

In order to implement some security policies, we need to check both static and dynamic
conditions, which cannot be supported elegantly with existing approaches. For example,
consider conformity of the following code fragment, which is modified from Listing 2
with Policy 2. Note that the value of userserver is given before execution.

1: in("Msg",userserver,friendserver,text)@self; (Step 8)
2: u=userserver;
3: out("Msg",friendserver,text,self)@u; (Step 9)
4: out(userserver,friendserver)@ServerAlice; (Step 9’)

In order to judge conformity, we need to know, before executing Line 1, the destina-
tions of message sends at Lines 3 and 4 are the same as the value in usersever. This
however requires both static and dynamic checking. For Line 3, we need to statically
analyze the program to determine if userserver and u refer the same value. For Line
4, we need to check that the runtime value of userserver is indeed ServerAlice.

Even in the AOP languages that support static program analyses, the users have to
write a static analysis and a dynamic condition separately. This will make aspect defi-
nitions redundant and difficult to maintain.

Combining Static Analysis and Runtime Checking 209

The AspectKE* approach is to provide a dual (static-dynamic) value evaluation
mechanism that can compare both results of static analysis and runtime values by exe-
cuting a single comparison expression. We explain the mechanism in Section 4.3.

4 AspectKE*: Advanced Features

In this section, we illustrate how we addressed the above problems in AspectKE* along
with aspects that implement two predictive access control policies.

4.1 Program Analysis Predicates and Functions

We introduce language constructs called the program analysis predicates and functions
that predict future behavior of a program, and therefore are useful for enforcing predic-
tive access controls that refer future events of a program.

Table 1 summarizes the predicates and functions, which allow for checking different
properties of the future behavior of a continuation process; i.e., the rest of the execution
from the current join point, or a process to be evaluated locally or remotely. In the table,
z is the continuation process of the captured action. acts is a collection of action names
such as IN and OUT. v is a variable (it shall be declared in the pointcut). locs is a
collection of locations. When computing a predicate/function on process z, the results
are collected from process z and all processes spawned by z. In Section 5, we will
explain the implementation of those predicates and functions by using static analysis.

Table 1. Program Analysis Predicates and Functions

Predicate & Function Return Value
performed(z) the set of potential actions that process z will perform.
assigned(z) the set of potential values that process z will use.
targeted(acts,z) the set of destination locations that the actions in set acts of process z

will target to.
used(v,acts, locs,z) true if all potential actions acts in process z that use variable v are tar-

geted only to locations in locs.

4.2 Aspects Protecting Passwords (Policy 3) and Chat Information (Policy 2)

Listing 4 demonstrates a use of program analysis predicate used, in an aspect that
enforces Policy 3. This Policy terminates a process if particular data, is potentially
output to an untrusted place. The aspect matches an in action for a login request, and
checks if the continuation process sends the password only to the user’s server but not
to other locations.

The pointcut of this aspect uses the unbound modifier for some of its parameters.
The unbound modifier means that the variables are not bound to any value before the
action is performed.

When a client performs an in action with a "Login" tag, the pointcut in Listing 4
matches it and binds Client1 to both s and client. It also records that variables uid and
pw in the aspect are connected to unbound variables userserver and password in the
client process. The variables uid and pw in the aspect are considered to have potential

210 F. Yang et al.

values that will be stored to the variables userserver and password in future. The
predicate continuation captures the rest of the process, which is bound to variable z.

1 aspect protect_password{
2 advice: in ("Login",unbound location uid,unbound string pw)
3 &&on(bound location s)&&target(bound location client)
4 &&continuation(process z){ // capture a continuation process
5 if (element_of(client ,{ Client1 ,Client2})&& // check whether the target location is one of the clients
6 !used(pw,{OUT},{uid},z)) // check if the password is sent to locations other than
7 terminate; // the user’s server node
8 else
9 proceed;

10 }
11 }

Listing 4. Aspect for Protecting Password (Policy 3)

The body of the advice checks if the targeted location of in action is one of the clients
(Line 5), and if the password is sent to locations other than the user’s server node in the
continuation process (Line 6). Here, the used predicate checks, if all the out actions
that use pw (password) in process z has uid (userserver) as the destination. If not, the
aspect terminates the client process. Since Client1 will send the password to Eaves-
dropper (at Line 8), the aspect will terminate the process at the in action at Line 5.

Note that the predicate checks the condition when variables pw and uid are not yet
bound. The predicate therefore evaluates the condition with respect to the potential
values bound in future.

At implementation-level, those potential values in the continuation process are the
program locations collected by interprocedural data-flow analysis. For example, we can
detect that userserver, assigned by the in action (at Line 5 in Listing 1), will be used
not only within the continuation process of the same process (Lines 6, 8, 10 of process
clientlogin in Listing 1), but also will in the processes spawned by this process (e.g.,
Line 6, 7 and 9 of process clientsendmsg in Listing 2).

Listing 5 shows an aspect that enforces Policy 2 by exploiting another program anal-
ysis function. In the aspect, the pointcut at Line 2 captures the in action in
clientsendmsg (Line 6 of Listing 2). When the pointcut matches, values ServerAl-
ice, Client1 and Client1 are bound to variables uid, s and client respectively.

1 aspect protect_message{
2 advice: in ("Msg",bound location uid,location , string)&&
3 on(bound location s)&&target(bound location client)
4 &&continuation(process z){ // capture a continuation process
5 if (element_of(client ,{ Client1 ,Client2})&& // check whether the target location is one of the clients
6 ! forall (x,targeted({OUT},z))<x==uid>) // check if the continuation process only sends
7 terminate; // messages to the user’s server node
8 else
9 proceed;

10 }
11 }

Listing 5. Aspect for Protecting Chat Information (Policy 2)

The conditions at Lines 5 and 6 check whether the action reads from a client node,
and the continuation process only sends messages to the user’s server node (uid), which

Combining Static Analysis and Runtime Checking 211

is specified by the second element in the tuple. First, the function targeted({OUT},z)
at Line 6 returns all the destinations of out actions in process z. In the example, the
destinations are potential values of userserver and Eavesdropper. Then the expres-
sion forall(x,...)<x==uid> checks if all the destination locations are the user’s server
node (uid). We shall further explain how this expression is evaluated in the following
section.

4.3 Combination of Static Analysis and Runtime Checking

The above expression demonstrates how we uniformly perform static and runtime check-
ing. When the advice runs at an in action, some of future out actions already have
concrete destinations while others do not. AspectKE* can handle both cases. The ex-
pression x==uid holds either when the destination x of a future out action is predicted
to have the same value as the one that is captured as uid, or when a future out action has
a constant target location, which happens to be the same one in uid. Therefore, when
advice captures the following action:

in ("Msg", userserver, friendserver , text)@self;

where the value of userserver is ServerAlice, the expression x==uid holds for the
destination of the following future action:

out("Msg", friendserver, text , self)@u;

because x and uid capture variables that have data-flow between them.
The expression x==uid also holds for the future action:

out(userserver,friendserver)@ServerAlice;

because x’s runtime value is ServerAlice.
The aspect in Listing 5 suggests to proceed at Line 6 in Listing 2 when Alice executes

the modified client program, however, it terminates the in action when users other than
Alice executes this client program.

Note that sometimes it shall be able to simplify a combination of program analysis
functions and basic predicates by using the used program analysis predicate. For ex-
ample, forall(x, targeted(acts,z))<element_of(x,locs)> equals used(*,acts,locs,z).
Thus the forall expression at Line 6 shall also be expressed by used(*,{OUT},{uid},z).
We chose the formal one in our example because it can better illustrate what checks are
performed in a decomposed manner.

5 Implementation

5.1 Overview

We implemented a prototype compiler and runtime system for AspectKE*, which are
publicly available3. The compiler is written in 1618 lines of code on top of the ANTLR
and StringTemplate frameworks. The runtime system is a Java package consisting of
an analyzer and an bytecode interpreter. It is built on top of the Klava package [6] and
ASM [8], with 6506 lines of Java code.

3 http://www.graco.c.u-tokyo.ac.jp/ppp/projects/aspectklava.en

http://www.graco.c.u-tokyo.ac.jp/ppp/projects/aspectklava.en

212 F. Yang et al.

AspectKE*
compiler

Analyzer

Bytecode
Interpreter

Program
facts

AspectKE* base code

AspectKE* aspect

Java bytecode

Program loader
proc login{
in(...)@n1;
out(...)@n2;

}

aspect protect{
advice:
in(...)&&…{…}
}

class proc_login
extends KlavaProc{
void execute(){
in(…,n1);
out(…,n2);
}}

class aspect_protect
extends Aspect{
void pointcut(){…}
void advice(){...}
}}

Java VM

DTS
Primitives

Fig. 2. Overview of the Implementation

Figure 2 shows an overview of our implementation. The compiler generates a Java
class for each node and process defined in the given base code. Aspects are translated
into Java classes independently from the base code. The weaving process is carried out
at runtime so that new aspects can be added to a running program without restarting.
The analyzer implements a context-insensitive interprocedural data-flow analysis on
Java bytecode. The results of the analysis, called program facts, are used for evaluating
program analysis predicates and functions at runtime.

The architecture that analyzes Java bytecode at load-time fits the execution model of
Klava which supports code mobility. In Klava, creation of a process at a remote node
is realized by sending a Java class file to a Java virtual machine running at the remote
node. Therefore, source code-level analysis and compile-time analysis are infeasible.

Compared to our previous naive implementation [34], the program facts avoid the
overhead by not performing program analysis at runtime. When the runtime system
loads the definition of a process, it analyzes the definition and extracts program facts
for each action in the process. Later on, the advice body uses the program facts for eval-
uating program analysis predicates and functions. Note that our approach analyzes each
process definition only once no matter how many aspects are applied to (any) actions
in the process, and no matter how many program analysis predicates and functions are
used and evaluated. In this way we minimize the overhead of the expensive program
analysis. We confirmed this approach has better performance than the approach that
analyzes program on-the-fly as AspectKE[34].

5.2 Dual-Value Evaluation

Our language supports static and dynamic conditions in one expression by binding both
static and runtime information to each variable in pointcut. Here we illustrate the un-
derlying dual value evaluation mechanism by explaining how the condition at Line 6 in
Listing 5 is evaluated with respect to process clientsendmsg in Listing 2 (except for
the last eval action).

Labeling action parameters at compile-time. The compiler labels each parameter
variable of any action in a process with a unique ID when translating the AspectKE*
source code to Java bytecode. The labeled actions look like below. The labels will be
used to represent program facts.

Combining Static Analysis and Runtime Checking 213

in ("Msg",userserver1 ,friendserver2 ,text3)@self4;
out("Msg",friendserver5 , text6 ,self7)@userserver8;
out(userserver9 ,friendserver10 , text11)@Eavesdropper;

Extracting the program facts at load-time. When a node loads a process at runtime,
the analyzer extracts the program facts for each action in the process and those processes
under its control flow. A program fact contains primitive information about the program
such as predicated dataflow pdflow and destination locations dloc.

For example, pdflow for the userserver at in action, namely pdflowin contains
{1,8,9} because userserver is used as the destination of the first out action and the
first parameter of the second out action. pdflows for other parameters and those in the
two out actions are created similarly.

The dlocs of actions in the remaining process are computed with the help of pdflow.
The analyzer first collects the set of labels and constants used as the destinations of
actions, and then replaces each label in the set with the first label in the pdflow that
contains it. Thus the destination location for the in action, namely dlocin, becomes
{(OUT,1), (OUT,Eavesdropper)}, since the label for the first out action’s destination
is 8, which belongs to pdflowin whose first element is 1.

Runtime pointcut matching and equality evaluation. When a node executes the in
action at Line 6 in Listing 2, the pointcut in aspect protect_message in Listing 5
matches, and the condition forall(x,targeted({OUT},z)) <x==uid> is checked. Here,
uid binds two values: one is a concrete value either ServerAlice or ServerBob, and
the other is the label of the second parameter of this in join point action, i.e., 1. z binds
the continuation process which yields, for targeted({OUT},z), {1, Eavesdropper} by
simply referencing dlocin.

The interpreter checks for each element x in {1,Eavesdropper} if x is equal to uid,
by comparing the uid’s value (ServerAlice or ServerBob) and the label (1). When x
is label 1, the equality holds. When x is Eavesdropper, the equality does not hold as
it is compared against a runtime value.

6 Case Study on an EHR Workflow System

To assess applicability of AspectKE* to real world security policies, we implemented
security policies for an electronic healthcare record (EHR) workflow system [34, 35]
in AspectKE*.

The target system manages a database that stores patients’ EHR records, where doc-
tors, nurses, managers, and researchers need to rely them for performing different tasks.
The target system and most policies are extracted from a health information system for
an aged care facility in New South Wales, Australia [17]. We also incorporate security
policies from the other literatures [9, 16], so as to examine basic access control and
predictive access control policies.

The implemented EHR workflow system in AspectKE* consists of 16 nodes, 41
processes, and 23 aspects, totaling to 754 lines of code (496 lines for the target system
and 258 lines for aspects).

Table 2 summarizes the 7 security policies to be enforced to the target system with
their implementation status. Column 1 denotes the policy number. Column 2-4
describes the nature (operations, targets and properties) of the policy. Columns 5 and

214 F. Yang et al.

Table 2. Natures and Implementation Status of Security Policies for EHR

operations targets judging properties #aspects LoC program analysis
1 read/write/delete EHRDB doctor/nurse role 5 47 —
2 create/delete RoleDB manager role 3 33 —
3 read EHRDB attribute (doctor/nurse role) 5 51 —
4 read EHRDB location (nurse role) 2 41 —
5 remote evaluation UserLoc actions in migrating process 4 44 performed, targeted
6 read EHRDB actions in continuation process 4 42 used
7 read EHRDB actions in continuation process — — used, targeted

UserLoc actions in migrating process assigned

6 show the numbers and total lines of aspects for implementing the policy. The last
column indicates the program analysis predicates or functions used in the aspects.

Policies 1-4 are basic access control, which regulates the rights of people with differ-
ent roles to access patient’s EHR records. We implemented them as 15 security aspects
without using program analysis predicates and functions.

Policy 5 requires to handle process mobility. Among the 4 aspects, 2 aspects (for the
eval action) use the program analysis predicates and functions in order to prevent po-
tentially malicious process migration before its execution. Policies 6 and 7 are policies
regarding the emerging use of data scenario. Before fetching an EHR record, it checks
whether the continuation processes contain actions that illegally leak sensitive data of
patients. For example, a researcher shall not leak patient names (part of an EHR record)
to the public when doing his research. Policy 6 is implemented with 4 aspects by the
program analysis predicates and functions.

We have not yet implemented Policy 7 because the current implementation of As-
pectKE* lacks a program analysis function assigned. We plan to provide this function
in the future.

When using other AOP languages that support no analysis-based pointcuts (e.g.,
AspectJ), policies that depend on the classical access control models (Policies 1-4) can
still be implemented, however policies that refer to predictive access control (Policies
5-7) are difficult to be implemented because they rely on future behavior of an action.
(AOP languages with analysis-based pointcuts are discussed in Section 7.) When using
other security mechanisms for tuple space systems, such as the ones based on Java
Security framework[18] or other techniques[20, 21, 32], we could implement Policies
1-4. However, Policies 5-7 cannot be implemented because those mechanisms do not
provide information on future behavior.

In summary, our experience shows that AspectKE* is expressive and useful to en-
force complex real world security policies to a distributed system.

7 Related Work

Most existing AOP languages can only use merely past and current information avail-
able at the join point, but not future behavior of a program, in order to trigger execu-
tion of aspects. For example, cflow[23], dflow[26], and tracematch[1] are AOP
constructs in AspectJ like languages that trigger execution of aspects based on calling-
context, data-flow, and execution history, respectively, in the past execution, similar to

Combining Static Analysis and Runtime Checking 215

the security enforcement mechanisms based on program monitors[3]. Those constructs
would be useful to implement some of the security policies like Policy 1 in Section 2.3,
but not so for Policies 2 and 3. A few AOP languages propose mechanisms by which
aspects can be triggered by control flow of a program in the future, e.g, pcflow[22]
and transcut[30], however, to use them for enforcing Policies 2 and 3 is difficult,
due to their incapability to expose data-flow information in the future.

Even though several AOP extensions[2, 11, 25] offer the means of predicting future
behavior, it is not easy to describe security policies because the users have to deal with
low-level information. For example, SCoPE[2] allows the users to define pointcuts by
using a user-defined static program analysis that is implemented on top of bytecode
manipulation libraries. The users still have to develop the analysis at low-level. These
languages also do not provide a mechanism to combine runtime data and static infor-
mation as we do. In fact, our attempt showed that SCoPE can only partially implement
Policy 2 but with much more complicated definitions [34]. Our approach offers better
abstraction than existing analysis-based AOP languages using high-level predicates and
functions. In particular, policies that require both runtime and static information cannot
be easily implemented by others.

Alpha [29] provides sophisticated constructs to enforce policies we are interested
in, but it lacks realistic implementation. AspectKE* can be considered as an approach
to provide highly expressive pointcuts to AOP languages, such as maybeShared [7]
pcflow[22], and the ones for distributed computing [27, 28, 31]. However, none are di-
rectly comparable to ours with respect to enforcement of security policies to distributed
applications.

Many studies apply AOP languages to enforce access control policies[10, 15, 33]. To
the best of our knowledge, only our approach supports predictive access control policies.

There are tuple space systems that provide security mechanisms. For example,
SECOS[32] provides a low-level security mechanism that protects every tuple field
with a lock. Secure Lime[21] provides a password-based access control mechanism for
building secure tuple spaces in ad hoc settings. CryptoKlava is an extension to Klava
with cryptographic primitives[4]. JavaSpaces [18], which is used in industrial contexts,
has a security mechanism based on the Java security framework. Our work is different
in using AOP with program analysis. Hence it not only provides a flexible way to en-
force security policies, but also enables predictive access control policies, which cannot
be realized in these approaches.

Some authors use static analysis on KLAIM based languages[13, 14]. They can be
used to enforce very advanced security policies including a large set of predictive access
control, however, they can not enforce policies (e.g., Policy 2) which requires accessing
both static and runtime information. Additionally, users still have to explicitly annotate
policies in the main code which our approach can avoid doing so.

8 Conclusions

We designed and implemented AspectKE*, which can enforce predictive access control
policies to distributed applications. Our contributions can be summarized as follows. (1)
Our approach can enforce predictive access control policies, which are difficult to be
enforced in existing approaches. (2) We provide high-level program analysis predicates

216 F. Yang et al.

and functions that allow users to directly specify security policies in a concise manner.
(3) The dual value evaluation mechanism enables to express a security condition that is
checked either statically or dynamically by one expression. (4) We proposed an imple-
mentation strategy that combines load-time static analysis and runtime checking, which
avoids analyzing programs at runtime. Further details can be found in the first author’s
dissertation[34].

Current AspectKE* language can merely make monitored processes terminate or
proceed. We plan to extend the language so that it can perform other kind of actions.
To do so, we need to incorporate effect from aspects while analyzing processes. The
static analysis algorithm employed in current AspectKE* can only deal with explicit
flows. Supporting indirect flows (e.g., dependency between processes that exchange
information via tuples) is left for future work. To do so, we need to develop analysis
techniques by combining pointer-analysis for tuple spaces with data- and control-flow
analysis over processes.

Though AspectKE* is based on KLAIM, the techniques developed in this paper
can also be applied to other distributed frameworks, especially those based on process
algebra as well. We believe it is useful for monitoring, analyzing and controlling the
behavior of mobile processes, under a distributed AOP execution environment.

Acknowledgements. This work is partly supported by the Danish Strategic Research
Council (project 2106-06-0028) “Aspects of Security for Citizen”. We would like to
thank Lorenzo Bettini for discussing about the Klava system, and the members of the
PPP group at the University of Tokyo for their comments on the work.

References
1. Allan, C., Avgustinov, P., Christensen, A., Hendren, L., Kuzins, S., Lhoták, O., de Moor, O.,

Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with free variables to AspectJ.
In: OOPSLA 2005, p. 364. ACM, New York (2005)

2. Aotani, T., Masuhara, H.: SCoPE: an AspectJ compiler for supporting user-defined analysis-
based pointcuts. In: AOSD 2007, pp. 161–172. ACM, New York (2007)

3. Bauer, L., Ligatti, J., Walker, D.: Composing security policies with Polymer. In: PLDI 2005,
pp. 305–314. ACM, New York (2005)

4. Bettini, L., De Nicola, R.: A Java Middleware for Guaranteeing Privacy of Distributed Tuple
Spaces. In: Guelfi, N., Astesiano, E., Reggio, G. (eds.) FIDJI 2002. LNCS, vol. 2604, pp.
175–184. Springer, Heidelberg (2003)

5. Bettini, L., De Nicola, R.: Mobile Distributed Programming in X-KLAIM. In: Bernardo, M.,
Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 29–68. Springer, Heidelberg
(2005)

6. Bettini, L., De Nicola, R., Pugliese, R.: Klava: a Java package for distributed and mobile
applications. Software-Practice and Experience 32(14), 1365–1394 (2002)

7. Bodden, E., Havelund, K.: Aspect-oriented Race Detection in Java. IEEE Transactions on
Software Engineering (2010)

8. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: a code manipulation tool to implement adapt-
able systems. In: Proceedings of the ASF (ACM SIGOPS France) Journees Composants
2002: Adaptable and Extensible Component Systems (2002)

Combining Static Analysis and Runtime Checking 217

9. Canadian Institutes of Health Research. Secondary Use of Personal Information in Health
Research: Case Studies. Public Works and Government Services Canada (2002)

10. Cannon, B., Wohlstadter, E.: Enforcing security for desktop clients using authority aspects.
In: AOSD 2009, pp. 255–266. ACM, New York (2009)

11. Chiba, S., Nakagawa, K.: Josh: an open AspectJ-like language. In: AOSD 2004, pp. 102–111.
ACM, New York (2004)

12. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: A kernel language for agents interaction
and mobility. IEEE Transactions on Software Engineering 24(5), 315–330 (1998)

13. De Nicola, R., Ferrari, G.L., Pugliese, R., Venneri, B.: Types for access control. Theoretical
Computer Science 240(1), 215–254 (2000)

14. De Nicola, R., Gorla, D., Hansen, R.R., Nielson, F., Riis Nielson, H., Probst, C.W., Pugliese,
R.: From flow logic to static type systems for coordination languages. In: Wang, A.H., Ten-
nenholtz, M. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 100–116. Springer, Hei-
delberg (2008)

15. de Oliveira, A.S., Wang, E.K., Kirchner, C., Kirchner, H.: Weaving rewrite-based access
control policies. In: FMSE 2007, pp. 71–80. ACM, New York (2007)

16. Department of Health, UK. NHS Code of Practice-Confidentiality (2003)
17. Evered, M., Bögeholz, S.: A case study in access control requirements for a health informa-

tion system. In: ACSW Frontiers 2004, pp. 53–61. Australian Computer Society, Inc. (2004)
18. Freeman, E., Arnold, K., Hupfer, S.: JavaSpaces principles, patterns, and practice. Addison-

Wesley, Reading (1999)
19. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7(1),

80–112 (1985)
20. Gorrieri, R., Lucchi, R., Zavattaro, G.: Supporting secure coordination in SecSpaces. Funda-

menta Informaticae 73(4), 479–506 (2006)
21. Handorean, R., Roman, G.: Secure sharing of tuple spaces in ad hoc settings. ENTCS 85(3),

122–141 (2003)
22. Kiczales, G.: The fun has just begun. Keynote AOSD (2003)
23. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview

of aspectJ. In: Lee, S.H. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–353. Springer, Hei-
delberg (2001)

24. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M., Irwin, J.:
Aspect-oriented programming. In: Liu, Y., Auletta, V. (eds.) ECOOP 1997. LNCS, vol. 1241,
pp. 220–242. Springer, Heidelberg (1997)

25. Kniesel, G., Rho, T., Hanenberg, S.: Evolvable pattern implementations need generic aspects.
In: RAM-SE 2004, pp. 111–126. Universität Magdeburg (2004)

26. Hansen, K.A., Kawauchi, K.: Dataflow pointcut in aspect-oriented programming. In: Ohori,
A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 105–121. Springer, Heidelberg (2003)

27. Navarro, L.D.B., Südholt, M., Vanderperren, W., Fraine, B.D., Suvée, D.: Explicitly dis-
tributed AOP using AWED. In: AOSD 2006, pp. 51–62. ACM, New York (2006)

28. Nishizawa, M., Chiba, S., Tatsubori, M.: Remote pointcut: a language construct for dis-
tributed AOP. In: AOSD 2004, pp. 7–15. ACM, New York (2004)

29. Ostermann, K., Mezini, M., Bockisch, C.: Expressive pointcuts for increased modularity. In:
Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 214–240. Springer, Heidelberg (2005)

30. Sadat-Mohtasham, H., Hoover, H.: Transactional pointcuts: designation reification and ad-
vice of interrelated join points. In: GPCE 2009, pp. 35–44. ACM, New York (2009)

31. Tanter, É., Noyé, J.: A versatile kernel for multi-language AOP. In: Glück, R., Lowry, M.
(eds.) GPCE 2005. LNCS, vol. 3676, pp. 173–188. Springer, Heidelberg (2005)

218 F. Yang et al.

32. Vitek, J., Bryce, C., Oriol, M.: Coordinating processes with secure spaces. Science of Com-
puter Programming 46(1-2), 163–193 (2003)

33. Win, B.D., Joosen, W., Piessens, F.: Developing secure applications through aspect-oriented
programming. In: Aspect-Oriented Software Development, pp. 633–650. Addison-Wesley,
Reading (2002)

34. Yang, F.: Aspects with program analysis for security policies. Phd Dissertation, Technical
University of Denmark (2010)

35. Yang, F., Hankin, C., Nielson, F., Nielson, H.R.: Aspect-oriented access control of tuple
spaces (submitted to a journal)

Author Index

Aotani, Tomoyuki 202
Arbab, Farhad 31

Broch Johnsen, Einar 1

D’Hondt, Theo 142
Di Giusto, Cinzia 16

Gabbrielli, Maurizio 80
Guidi, Claudio 80

Harnie, Dries 142
Hu, Raymond 110

Jongmans, Sung-Shik T.Q. 31
Julien, Christine 49

Kanters, O. 187
Kleine, Moritz 65
Krause, Christian 31, 187
Kryftis, Yiannos 110

Lanese, Ivan 1

Masuhara, Hidehiko 202
Mauro, Jacopo 80

Montesi, Fabrizio 80
Mostrous, Dimitris 95

Ng, Nicholas 110
Nielson, Flemming 202
Nielson, Hanne Riis 202

Padovani, Luca 127
Pernet, Olivier 110
Pinte, Kevin 142

Stefani, Jean-Bernard 16

Tarau, Paul 157

Umatani, Seiji 172

van der Mei, R. 187
Vasconcelos, Vasco T. 95
Verhoef, C. 187

Yang, Fan 202
Yasugi, Masahiro 172
Yoshida, Nobuko 110
Yuasa, Taiichi 172

Zavattaro, Gianluigi 1

	Title Page
	Foreword
	Preface
	Organization
	Table of Contents
	Fault in the Future
	Introduction
	A Language for Distributed Concurrent Objects
	Operational Semantics

	Primitives for Error Handling
	Semantics for Error Handling
	Typing

	Conclusion and Future Work
	References

	Revisiting Glue Expressiveness in Component-Based Systems
	Introduction
	CAB: Syntax and Semantics
	Turing-Completeness of CAB
	Expressivity of CAB Variants
	CAB without Priorities
	Recovering Expressiveness

	Final Remarks
	References

	Encoding Context-Sensitivity in Reo into Non-Context-Sensitive Semantic Models
	Introduction
	Reo Overview
	From Three to Two Colors
	Correctness of M
	Distributivity of M

	Application: Context-Dependency in Vereofy
	Related Work
	Conclusions and Future Work
	References

	The Context of Coordinating Groups in Dynamic Mobile Networks
	Introduction
	A Space Efficient Context Summary
	Supporting Groups and Their Context
	Defining Groups: A Distributed Emergent Approach
	Implementation, Demonstration, and Evaluation
	Related Work
	Conclusions and Future Work
	References

	CSP as a Coordination Language
	Introduction
	CSP and Coordination
	Unravelling Abstractions
	Timeout, Hiding and Nondeterminism
	Duration, Conflict and Concurrency

	Designing a Coordination Environment
	Performing Actions
	Choosing Events

	Detecting Data Races
	Supported Processes
	Implementation and Further Work
	Related Work
	Conclusions
	References

	An Efficient Management of Correlation Sets with Broadcast
	Introduction
	Background
	The Idea
	Building the Radix Trees
	Using Radix Trees

	Correctness and Complexity Analysis
	Conclusions and Future Work
	References

	Session Typing for a Featherweight Erlang
	Introduction
	A Motivating Example
	Featherweight Erlang
	Typing
	Further Work
	References

	Safe Parallel Programming with Session Java
	Introduction
	Session-Typed Programming in SJ
	Parallel Algorithms in SJ
	Multi-channel Session π-Calculus
	Syntax
	Types, Typing System and Well-Formed Topologies
	Subject Reduction, Communication Safety and Deadlock Freedom

	Performance Evaluation
	Related and Future Work
	References

	Fair Subtyping for Multi-party Session Types
	Introduction
	Syntax and Semantics of Session Types
	Coinductive Fair Subtyping
	Algorithms
	Conclusions
	References

	Enabling Cross-Technology Mobile Applications with Network-Aware References
	Introduction
	Challenges in Programming Network-Aware Applications
	Network-Aware References (NARs)
	Communication Semantics

	NARs from a Programmers' Perspective
	Network Availability
	Network Behavior Adaptation
	Writing Custom Network Behaviors

	Implementation
	The AmbientTalk Networking Subsystem
	The Architecture of Network-Aware References

	Evaluation
	Related Work
	Conclusion and Future Work
	References

	Coordination and Concurrency in Multi-engine Prolog
	Introduction
	Logic Engines as Answer Generators
	Iterating over Computed Answers
	A Yield/Return Operation
	Coroutining Logic Engines

	Hubs and Threads
	High-Level Concurrency with Higher-Order Constructs
	Agent Coordination with Cooperative Linda Blackboards
	Coordinating Publishers and Subscribers
	Related Work
	Conclusion
	References

	Abstract Machines for Safe Ambients in Wide-Area and Mobile Networks
	Introduction
	Background
	Safe Ambients
	Pan Abstract Machine

	Panmov: Chaining Forwarders upon Movement
	Basic Idea
	Formal Definition

	GcPanmov: Garbage Collecting Forwarders
	GcPanshift: Proactive Movement
	Correctness
	Conclusion
	References

	Simulation-Based Performance Analysis of Channel-Based Coordination Models
	Introduction
	Channel-Based Coordination with Reo
	Building Connectors
	Stochastic Reo
	Distributions

	Coloring Semantics with States
	Coloring Transition System

	Simulation-Based Stochastic Analysis
	Simulation and Analysis

	Tool Support
	Case Studies
	Case 1: Instant Messenger
	Case 2: Production Line Decision Making

	Conclusions and Future Work
	References

	Combining Static Analysis and Runtime Checking in Security Aspects for Distributed Tuple Spaces
	Introduction
	AspectKE*: Basic Features
	Distributed Chat System
	Distributed Chat System in AspectKE*
	Security Policies for the Chat System
	An Aspect Ensuring Correct Origin (Policy 1)

	Problems of Existing Approaches and Our Solutions
	Associating Static Analysis and AOP
	Predicting Control- and Data-Flows
	Combining Static and Dynamic Conditions

	AspectKE*: Advanced Features
	Program Analysis Predicates and Functions
	Aspects Protecting Passwords (Policy 3) and Chat Information (Policy 2)
	Combination of Static Analysis and Runtime Checking

	Implementation
	Overview
	Dual-Value Evaluation

	Case Study on an EHR Workflow System
	Related Work
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

