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Preface

The papers contained in this volume were presented at the 22nd Annual Sympo-
sium on Combinatorial Pattern Matching (CPM 2011) held in Mondello (Palermo),
Italy, during June 27–29, 2011.

All the papers presented at the conference are original research contributions.
We received 70 submissions from 20 countries; each paper was reviewed by at
least three reviewers. The whole submission and review process was carried out
with the invaluable help of the EasyChair conference system.

The committee decided to accept 36 papers. The program also included three
invited talks by Nello Cristianini from the University of Bristol, UK, Gadi Lan-
dau from the University of Haifa, Israel, and Martin Vingron from the Max
Planck Institute for Molecular Genetics, Berlin, Germany.

The objective of the annual CPM meetings is to provide an international
forum for research in combinatorial pattern matching and related applications.
It addresses issues of searching and matching strings and more complicated pat-
terns such as trees, regular expressions, graphs, point sets, and arrays. The goal
is to derive non-trivial combinatorial properties of such structures and to exploit
these properties in order to either achieve superior performance for the corre-
sponding computational problems or pinpoint conditions under which searches
cannot be performed efficiently. The meeting also deals with problems in com-
putational biology, data compression and data mining, coding, information re-
trieval, natural language processing, and pattern recognition.

The Annual Symposium on Combinatorial Pattern Matching started in 1990,
and has since taken place every year. Previous CPM meetings were held in Paris,
London, Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Piscat-
away, Warwick, Montreal, Jerusalem, Fukuoka, Morelia, Istanbul, Jeju Island,
Barcelona, London, Ontario, Pisa, Lille, and New York.

Starting from the third meeting, proceedings of all meetings have been pub-
lished in the LNCS series, volumes 644, 684, 807, 937, 1075, 1264, 1448, 1645,
1848, 2089, 2373, 2676, 3109, 3537, 4009, 4580, 5029, 5577, and 6129.

Selected papers from the first meeting appeared in volume 92 of Theoretical
Computer Science, from the 11th meeting in volume 2 of Journal of Discrete
Algorithms, from the 12th meeting in volume 146 of Discrete Applied Mathemat-
ics, from the 14th meeting in volume 3 of Journal of Discrete Algorithms, from
the 15th meeting in volume 368 of Theoretical Computer Science, from the 16th
meeting in volume 5 of Journal of Discrete Algorithms, from the 19th meeting
in volume 410 of Theoretical Computer Science, and from the 20th meeting in
volume 9 of Journal of Discrete Algorithms.

For this year, a special issue of Theoretical Computer Science is already
planned for expanded versions of selected extended abstracts presented at the
symposium.



VI Preface

Special thanks are due to the members of the Program Committee who
worked very hard to ensure the timely review of all the submitted manuscripts,
and participated in stimulating discussions that led to the selection of the papers
for the conference.

April 2011 Raffaele Giancarlo
Giovanni Manzini



Best Student Paper Award

This year the Program Committee Co-chairs and the Local Organizing Commit-
tee sponsored a Best Student Paper Award. The award was reserved for papers
authored solely by PhD students or by researchers in their first year of a Post-Doc
assignment.

Among the 70 submissions received by the Program Committee, five of them
were eligible for the award. The committee decided unanimously to assign the
award to the paper:

Succincter Text Indexing with Wildcards

Chris Thachuk
Department of Computer Science,

University of British Columbia, Vancouver, Canada

We study the problem of indexing text with wildcard positions, moti-
vated by the challenge of aligning sequencing data to large genomes that
contain millions of single nucleotide polymorphisms (SNPs) —positions
known to differ between individuals. SNPs modeled as wildcards can
lead to more informed and biologically relevant alignments. We improve
the space complexity of previous approaches by giving a succinct index
requiring (2+o(1))n log σ+O(n)+O(d log n)+O(k log k) bits for a text
of length n over an alphabet of size σ containing d groups of k wildcards.
The new index is particularly favorable for larger alphabets and compa-
rable for smaller alphabets, such as DNA. A key to the space reduction
is a result we give showing how any compressed suffix array can be sup-
plemented with auxiliary data structures occupying O(n) + O(d log n

d )
bits to also support efficient dictionary matching queries. We present
a new query algorithm for our wildcard index that greatly reduces the
query working space to O(dm + m logn) bits, where m is the length of
the query. We note that compared to previous results this reduces the
working space by two orders of magnitude when aligning short read data
to the human genome.
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Jérémy Barbay University of Chile, Chile
Frédérique Bassino Université Paris 13, France
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Algorithms on Grammar-Compressed Strings

Gad M. Landau�

Department of Computer Science, University of Haifa, Israel
Department of Computer Science and Engineering, NYU-Poly, Brooklyn, NY, USA

landau@cs.haifa.ac.il

Grammar based compression, where one replaces a long string by a small context-
free grammar that generates the string, is a simple and powerful paradigm that
captures many of the popular compression schemes, including the Lempel-Ziv
family, Run-Length Encoding, Byte-Pair Encoding, Sequitur and Re-Pair.

Let S be a string of length N given as a grammar G(S) of size n. The random
access problem is to compactly represent G(S) while supporting fast random
access queries. That is, given an index i, report S[i] without decompressing
S. We will first present a linear space representations of G(S) that supports
O(logN) random access time. This representation extends to efficiently support
substring decompression. Namely, we can decompress any substring S[i]...S[j] in
the same complexity as a random access query and additional O(j − i) time.

Once we obtain an efficient substring decompression method, it can then serve
as a basis for a compressed version of classical pattern matching. Namely, we
can take any black-box (uncompressed) approximate pattern matching algorithm
and turn it into a corresponding algorithm over grammar compressed strings.
We will then focus on a specific algorithm for computing the edit distance of
two grammar-compressed strings. This algorithm requires O(nN) time and uses
the compression in a more complicated way (i.e., not through random access
queries)

� Partially supported by the National Science Foundation Award 0904246, Israel Sci-
ence Foundation grant 347/09, Yahoo, Grant No. 2008217 from the United States-
Israel Binational Science Foundation (BSF) and DFG.

R. Giancarlo and G. Manzini (Eds.): CPM 2011, LNCS 6661, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Automatic Discovery of Patterns in Media

Content

Nello Cristianini

Intelligent Systems Laboratory
University of Bristol

nello@support-vector.net

Abstract. The strong trend towards the automation of many aspects
of scientific enquiry and scholarship has started to affect also the social
sciences and even the humanities. Several recent articles have demon-
strated the application of pattern analysis techniques to the discovery
of non-trivial relations in various datasets that have relevance for social
and human sciences, and some have even heralded the advent of “Com-
putational Social Sciences” and “Culturomics”. In this review article I
survey the results obtained over the past 5 years at the Intelligent Sys-
tems Laboratory in Bristol, in the area of automating the analysis of
news media content. This endeavor, which we approach by combining
pattern recognition, data mining and language technologies, is tradition-
ally a part of the social sciences, and is normally performed by human
researchers on small sets of data. The analysis of news content is of cru-
cial importance due to the central role that the global news system plays
in shaping public opinion, markets and culture. It is today possible to
access freely online a large part of global news, and to devise automated
methods for large scale constant monitoring of patterns in content. The
results presented in this survey show how the automatic analysis of mil-
lions of documents in dozens of different languages can detect non-trivial
macro-patterns that could not be observed at a smaller scale, and how
the social sciences can benefit from closer interaction with the pattern
analysis, artificial intelligence and text mining research communities.

1 Introduction

As an increasing number of research tasks are automated, the nature itself of
scientific investigation is evolving, with a shift from a hypothesis-driven to a
data-driven model of enquiry [15,31,4,21,23]. While this trend is most visible
in the biological and physical sciences, it is also increasingly affecting areas of
scholarship that seemed to be beyond the reach of automated methods, such as
the humanities and the social sciences [27,38,30] .

While a hypothesis-driven approach to science involves careful design of ex-
periments, often to deliberately discriminate between two competing hypotheses,
in a data-driven approach the collection of vast amounts of data precedes the
formulation of any hypotheses. So in genomics, for example, the sequencing of
complete genomes is seen as the starting point for investigations whose details

R. Giancarlo and G. Manzini (Eds.): CPM 2011, LNCS 6661, pp. 2–13, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Automatic Discovery of Patterns in Media Content 3

are not known at the time of sequencing. Data mining and automated pattern
analysis are obviously central to this new scientific method, as are data manage-
ment aspects relative to the use of massive datasets. Statistics, data structures
and algorithms are the language of this new way of doing science [11,12].

One qualitative difference between this approach and previous ones is its focus
on “exhaustive” data: genomes, proteomes, transcriptomes are words denoting
the full set of all genes, proteins and transcribed RNA that are present in an
organism. Many more omics have been proposed, from metabolomics to interac-
tomics [14]. In biology there have also been references to the bibliome, intended
as the full set of published literature that is relevant to a given area of study [22].
Each of these approaches implies the use of automated means of data collection
and analysis.

In the social and human sciences, the collection of vast datasets was often
motivated by commercial applications. Social networks have been charted (as
a side effect of email usage or social networking websites), user behavior data
have been collected (as part of marketing efforts) and media content has been
digitized (as part of the current business model, which involves the offer of free
access to content, in return for advertising revenue) [27,38,9,8].

All of this data is ripe for social and human science research, and indeed
this has already started. An investigation of 5% of all books ever written was
published last year in Science and heralded as the start of “culturomics” an
analogous to all the omics that have appeared in the biological sciences [30] . This
investigation answered questions such as the evolution of spelling conventions,
and the first use of certain words, among other things. Similarly, studies based on
very large social networks have appeared [27]. It is not only the number of such
data-driven studies that is increasing, so is also the complexity of the relations
that can be detected by automated means. Accessing aspects of content or style,
even in multilingual text, is now possible by advanced algorithms, developed for
various applications in data mining, pattern recognition, and web technologies.

In this paper we will review a series of results that have been obtained over the
past 5 years at the Intelligent Systems Laboratory at the University of Bristol,
involving the analysis of vast amounts of news content. We call the contents
of all the media “the mediaphere” and while it is now conceivable to chart all
of it, at the present we are analyzing a large portion of it, which we believe
to be representative only for Europe and United States. This exposition is not
intended to present novel results (as all results discussed here are the fruit of
various collaborations within the ISL and have been published elsewhere), nor
to cover the entire emerging field of automated media analysis. Other projects
are under way, with similar goals to ours, most notably the Lydia project [29,6],
and the European Media Monitor [36].

The studies presented here involve the analysis of large corpora (sometimes
in the order of millions of documents) and a diverse set of techniques, to answer
questions such as: is there a gender bias in the coverage of news, and does it
depend on the topic? Is the writing style related to the topic? Is there any pat-
tern in the way the leading european outlets select the stories they publish every
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day? Can we automatically detect new memes emerging in the news stream?
Can we relate the content of textual streams to objective quantities, such as
rainfall or flu-levels in the real world? These questions traditionally fall within
the remit of the social sciences, and are addressed by methods such as “coding”
(annotation of articles by human analysts), followed by statistical analysis of
the results. The size of these studies is necessarily limited to articles appeared
in a few outlets and weeks, or to a select topic (as an example of such style of
analysis see [1]). We attack this problem by gathering large amounts of data,
with a dedicated software infrastructure, and deploying various algorithms for
pattern analysis, language technologies and data mining. Where the quality of
information extracted from each article may not be as high as that of human
analysts, we can apply our methods to millions of documents, therefore extract-
ing large scale patterns and trends that would not be accessible by conventional
methods.

As a demonstration of a diversity of approaches, in this article we will address
the analysis of multilingual data, to reconstruct some aspects of the EU media
content [18], the detection of relations between gender bias and topic[2], the
analysis of style: how readability and sentiment are related to topic and outlet
[19], and the detection of events in textual streams (both from traditional and
from social media) [34,26].

This article starts by surveying our data management infrastructure, NOAM
(News Outlets Analysis and Monitoring)[17], and then briefly describing some
of the experiments that we have mentioned above. As much more remains to
be done, we will devote the Conclusions to discuss the road ahead, and the
implications of this general line of research for scientific method in general.1

2 Data Acquisition and Management

In order for us to perform the experiments described in the next section, it was
necessary to create a scalable infrastructure for data gathering and manage-
ment. The need to access very large amounts of data also introduced constraints
on our analysis methods. Our system is called NOAM and is described in [17].
We cannot describe here the details of our infrastructure, besides mentioning
that it currently is based on 5 dedicated servers, and centered around a MySQL
database. All news-items stored in our system can be annotated by various soft-
ware modules, that can apply tags describing different aspects of the content.
These modules operate nearly independently, gradually improving the annota-
tion of existing content, but also generating new content as in the case of the
machine translation module. Wherever possible we built our modules around
open source software, as is the case for machine translation, information extrac-
tion, and support vector machines, while all the rest had to be developed within
the group.

1 We invite the readers to access the articles and Demo websites mentioned in this ar-
ticle, via our unified project website: http://mediapatterns.enm.bristol.ac.uk.
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Our system currently monitors the contents of about 1500 outlets of various
types (newspaper, magazine, broadcast), in 22 European languages, and from
193 different countries. English language news outlets represent the main part
of this set (498), the rest being formed by news outlets in different languages,
or sources of different type, such as press releases or blogs. The system checks
multiple times per day for any new content by reading the news feeds of these
online outlets, and stores in the database the basic information: title, description,
URL; as well as some tags inherited from tags hand-assigned to the feeds list
(e.g.: location, language, media type). Once in the system, these news items are
processed, augmented and annotated by our software modules.

The full textual content of the articles is retrieved, starting from the URL
provided by the RSS feed, by a “scraper module”, and stored in the same
database. If the document is not in english, a module based on the Statistical-
Machine-Translation (SMT) package Moses [25] is used to generate another
news-item, in English. We trained the SMT module using data from Europarl
[24] and JRC-Acquis Corpora, so to cover all languages of the EU [37]. Var-
ious topic classifiers based on 1-class and 2-class Support Vector Machines
[33,10,7] have been trained on Reuters [28] and New York Times [32] corpora,
producing modules that can operate on English language text to assign topic
labels, such as: “crime”, “business”, “science”, “disasters”, and so on [37]. The
system also extracts named entities (people, locations, organizations) by using
a module built around the open source tool Gate [13], augmented with various
adaptations to deal with co-reference resolution [2,19] . In this way, a database
of people is generated, along with attributes such as their gender and domain
tags (e.g.: “Barack Obama, male, politics”). Information about the style of
writing can be extracted by using standard metrics, including tools to mea-
sure the readability of a text as a function of word and sentence length [20];
and tools to measure the “sentiment” value of adjectives [16], which we have
incorporated into larger pipelines aimed at assessing the degree of “linguistic
subjectivity” of a text (details in [2,19]). All English language articles are also
indexed by a suffix tree based on words, and statistical annotation is main-
tained about the frequency of all word n-grams, so that surprising changes
in frequency are detected, and interesting n-grams are discovered [34]. Clus-
tering is used to link together all articles, from all outlets, that cover the same
events. The resulting cluster is called a “story”. Based on this software infrastruc-
ture, we performed various experiments aimed at detecting and understanding
patterns in media content. Overall, we have analysed 30 million online docu-
ments. A separate pipeline has also been used to gather twitter content, so
to experiment with it as a means to predict quantities such as flu-levels and
rainfall in the UK [26]. The term we use for this task is ’nowcasting’ as it
infers the present, rather than the future. Many other modules are currently
being developed, for user modeling, information extraction, image analysis, and
more.
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3 Experiments: Patterns in Content

As an illustration of the style of enquiry that we described above, we will present
here some of the patterns we have detected in the global news content. They
were all published in various conferences and journals, so that we will omit most
technical details, focusing instead on the findings.

3.1 News Coverage in the EU

A key question in media content analysis is: what makes news? In other words:
out of all the many stories that could be covered every day, how do outlets pick
the few stories they will feature in their main pages or feeds?

We selected the leading news outlets from each EU country (the top 10 outlets
by web traffic - as measured by Alexa ranking - where available) that also had a
RSS feed, and collected all articles from their main-feed (roughly corresponding
to first page in newspapers), over a period of 6 months. This resulted into 1.3M
news items, in 22 different languages. We machine-translated all into English,
making sure to remove all untranslated words that might survive this process.
We then clustered all articles into “stories” (sets of nearby articles in the bag-
of-words representation), and represented each news outlet as a “bag of stories”.
The question we asked was: is there any stable pattern in the stories that each
outlet chooses to cover?

The answer emerged by just linking outlets that share many stories (as mea-
sured by chi-square) and splitting the resulting network into communities (by
applying a threshold to the chi-square statistic). The outlet-communities were
found to be formed mostly by outlets from the same country, suggesting that
the key differentiator among European outlets in the choice of stories to cover
is still nationality. Once this had been established, we merged all outlets of each
country into single nodes (regarding them as super outlets) and we repeated
the exercise. What emerged now is a network showing the similarity among EU
countries in their coverage of news stories (see Figure 1).

We compared this network with three other networks, obtained by using
trade-relations data, Eurovision voting patterns, and geographic proximity. Each
of these was found to be significantly correlated to the media-content similar-
ity network. Finally, we also measured the deviation of each country from the
“average EU content”, and ranked all 27 countries by that measure. This was
shown to be statistically correlated to both the year of accession to the EU and
whether they use a national currency or the Euro. All the results in this section
have been reproduced from the article [18], where the technical details can be
found.

What is remarkable of this type of analysis, is that the macroscopic pattern
we detected emerges from multiple small independent choices made by thou-
sands of editors every day, and yet it reveals a clear structure in the european
mediasphere. These results demonstrate how millions of documents in dozens of
languages can be processed by machine, to reveal macro-patterns at the conti-
nental level that could never be observed by conventional methods of analysis.
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Fig. 1. This network represents the similarities among EU countries in the choice
of stories they cover in their leading newspapers. It was generated by analysing 1M
documents in 23 different languages, from about 200 newspapers, representing the 27
countries of the EU.

3.2 Gender, Style and Topic

Gender. Of the top 100 richest people in the world in 2011, 90 are men and
10 are women2. We call this the M/F ratio, and it is one of the most obvious
biases in many areas of society. What is less obvious is how this bias changes
with topic, or area of life.

The M/F ratio is higher in some domains and lower in others: of the top 50
richest athlets, all 50 are male3; of the top 100 “celebrities” 35 are females4. Of
the 10 richest fashion models, 10 are females5.

We asked the question: does media attention follow similar patterns? Of the
1000 most mentioned people, how many are men and how many are women?
Does this ratio also change with topic? Answering this question implies being
able to reliably detect people and their gender, as well as the topic of the articles
in which they are mentioned. By doing this on large quantities of text, one can
form the charts of the Top 1000 most mentioned people by topic, and measure the
gender bias in these lists. We used our infrastructure to do just that, processing
476,528 articles in English language. Our infrastructure included the open source
tool Gate, which we used for named entity recognition (NER), although we had

2 http://www.forbes.com/wealth/billionaires/list
3 http://sportsillustrated.cnn.com/more/specials/fortunate50/
4 http://www.forbes.com/lists/2010/53/celeb-100-10_The-Celebrity-100.

html
5 http://www.forbes.com/2010/05/12/top-earning-models-business-

entertainment-models.html

http://www.forbes.com/wealth/billionaires/list
http://sportsillustrated.cnn.com/more/specials/fortunate50/
http://www.forbes.com/lists/2010/53/celeb-100-10_The-Celebrity-100.html
http://www.forbes.com/lists/2010/53/celeb-100-10_The-Celebrity-100.html
http://www.forbes.com/2010/05/12/top-earning-models-business-entertainment-models.html
http://www.forbes.com/2010/05/12/top-earning-models-business-entertainment-models.html
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Fig. 2. The percentage of females in the 1000 most popular people, by topic, in 476,528
articles in english language, appeared between 1st Jan 2010 and 30th October 2010

to add various layers to improve the quality of annotation, by leveraging large
corpora [2,3]. This was done only on English-language documents. We obtained
the results shown in Figure 2.

It is clear that not only the same bias is present also in media coverage, but
that it varies with topic in a similar way as the income bias.

Patterns in Style. We were also interested in large scale patterns involving
writing style, namely readability and the use of “opinionated” or “judgmental”
language. The first quantity is captured by a standard measure, roughly a func-
tion of word and sentence length, which has been shown to correlate well with
ease of comprehension [20]. In order to capture the second quantity, we use the
fraction of all adjectives in the text that are “sentimentally polarized” (that is,
adjectives that express a sentiment or a judgment, according to the tool Senti-
WordNet [16]). The results showed a clear and significant dependency of style
both on topic and on news outlets (See Figure 3 for the relation between outlets
and style).

Besides observing reassuring properties, e.g. that children outlets are the most
readable, and Op/Ed articles use highly opinionated language, it is interesting
to notice that outlets that occupy similar market niches tend to have a similar
writing style (e.g., The Sun and The Daily Mirror; or The Times and the New
York Times). This kind of analysis can now be performed on a massive scale,
revealing properties of outlets that are likely to both shape and reflect the pref-
erences of their readers. These results are reproduced from the articles [2,19],
where all the technical details can be found.



Automatic Discovery of Patterns in Media Content 9

15 20 25 30
30

35

40

45

50

55

60

Chicago Tribune

Daily Mail

Daily Mirror

Daily News

Daily Star

Daily Telegraph

Independent

Los Angeles Times

New York Post
NY Times

The Guardian

The Sun

The Times

The Wall Street Journal

The Washington Post

USA Today

Linguistic Subjectivity

R
ea

da
bi

lit
y

Fig. 3. The leading US and UK newspapers plotted in a “style space”, spanned by
their readability and “linguistic subjectivity” scores

3.3 Event Discovery in Textual Streams

Another question in media studies concerns the relation between the content of
the media and events in the real world. Can we mine the content of large textual
streams, such as traditional media or user-generated media, to discover events
that are taking place in the real world?

From the point of view of pattern analysis, there are two distinct classes of
problems: one is the detection of a specific event in a textual stream (pattern
matching), while the other is the detection of “any event” of interest in the same
stream (pattern discovery). We have experimented with both settings, developing
a tool for event discovery - which we tested on the New York Times corpus [32]-
and a tool for the detection of influenza-like-illness - which we tested on the
content of Twitter.

The detection of “interesting” events in textual streams naturally depends
on what we consider to be an event. In this case, we assumed that any signif-
icant change in the statistics of the source generating the data may signal an
event, or a change in the state of the world. Under the assumption that the
textual stream can be considered as generated by a Markov source (at the level
of words), we focused on detecting significant changes in the frequency of word
n-grams. The technical challenge is obviously to be able to monitor all possible
n-grams, keeping sufficient statistics for each, in order to decide if one of them
is significantly changing its frequency. A statistically annotated suffix tree was
developed, adapted to deal with the large (and unbounded) alphabet size. While
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Fig. 4. The most surprising n-grams in a 8-years time series of 1M New York Times
articles. Among the highest peaks are n-grams like: world-trade-center; princess-diana;
sept. 11; Lewinsky.

the system is now deployed and working on daily news in our system, we have
tested it on 8 years of the New York Times corpus, obtaining the results shown
in Figure 4.

These results are based on the articles [35,34] where the technical details can
be found.

The problem of detecting a specific event in the world, by analysing a textual
stream, was addressed by using a supervised machine learning method. A time
series of all twitter posts from the UK was collected for several months, along
with a time series created by the Health Protection Agency reporting the levels
of flu in the country. The idea was to map the text into a vector space represen-
tation, and then to use a linear regression algorithm to map words to flu-levels.
We used the sparse regression method BoLasso [5], identifying a small subset
of words that are highly indicative of the flu levels in the population, and the
resulting flu-detector has shown to provide strong correlation with the actual
flu levels. The same experiment was also replicated for the prediction of rainfall
levels. These results are based on the paper [26] where the technical details can
be found.

4 Conclusions

The data revolution of the past decade is changing unexpected aspects of society,
business and also science. The data-driven approach to science may mark an
important change in scientific method, affecting not only how we do science, but
also what we consider as valid or interesting knowledge [11,12]. The humanities
and the social sciences are also starting to be affected by this. One particularly
important set of data is represented by online news, which now include most
leading global news sources. Patterns and trends in the content of this textual
stream contain valuable information for media analysts, and social scientists in
general.
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We have demonstrated how state-of-the-art tools in machine learning, infor-
mation extraction, and machine translation can today be deployed, to analyze
gender bias in news content, readability, subjectivity, and how they all relate to
the topic of an article. We have also demonstrated how the publishing choices
of news editors in different European countries reflect more general relations be-
tween these countries. While it is now possible to ask certain scientific questions
to the data, and largely automate the process of answering them, it is also true
that these questions are somewhat different from those that were asked before
in the same area of scholarship. In fact, the data-driven approach can be seen as
complementing the traditional one, rather than competing with it. Currently, we
can extract simple information, about entities and events, topics and surprising
memes. This, coupled with large amounts of data, can automatically generate
social networks, maps, or timelines, or associations between news outlets based
on their style, or choice of topics.

The interesting opportunity for pattern analysis researchers is that this fron-
tier stretches our current capabilities, inviting us to collaborate with other schol-
ars, and to work on large scale, noisy and non-trivial data streams. The appeal
for social scientists is that this approach has the potential to “extend the bound-
aries of rigorous quantitative inquiry to a wide array of new phenomena spanning
the social sciences and the humanities” as was remarked in [30].
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Abstract. Genome sequence encodes not only genes but also the regu-
latory relationships among genes. Thus, the time and spatial patterns of
gene expression are also encrypted in the DNA sequence. In order to un-
ravel this other genetic code, regulatory genomics attempts to integrate
functional genomics data with sequence data. This talk will summarize
several approaches developed in our group, starting with a biophysically
motivated method for prediction of transcription factor binding sites.
Main applications are the identification of tissue specific transcription
factors and the prediction of regulatory changes due to SNPs. Further,
the talk will describe some indications that the division of promoters into
two classes with high and low CpG contents, respectively, is of functional
importance and helps in understanding mammalian promoters. In fact,
the two classes of promoters display different features when it comes to
binding site usage and tissue specific regulation. The dichotomy is fur-
ther supported by an analysis of histone modifications in the promoters.
Taken together, we interpret this as indication that different regulatory
mechanisms govern transcription in these two classes of promoters.
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Abstract. For 30 years the Lempel-Ziv factorization of a string has
played an important role in data compression, and more recently it was
used as the basis of linear time algorithms for the detection of all maximal
repetitions (runs) in a string. In this paper, we present two new linear
time algorithms: the first one is the fastest and the second is the most
space-efficient among all LZ-factorization algorithms known so far.

1 Introduction

Let S = S[1..n] be a string of length n over an alphabet Σ. The LZ-factorization
of S is a factorization S = ω1ω2 · · ·ωm such that each ωk, 1 ≤ k ≤ m, is either

(a) a letter c ∈ Σ that does not occur in ω1ω2 · · ·ωk−1 or
(b) the longest substring of S that occurs at least twice in ω1ω2 · · ·ωk.

For example, the LZ-factorization of S = acaaacatat is ω1 = a, ω2 = c, ω3 = a,
ω4 = aa, ω5 = ca, ω6 = t, ω7 = at. The LZ-factorization can be repre-
sented by a sequence of pairs (PrevOcc1, LPS1), . . . , (PrevOccm, LPSm), where
in case (a) PrevOcck = c and LPSk = 0 and in case (b) PrevOcck is a po-
sition in ω1ω2 · · ·ωk−1 at which an occurrence of ωk starts and LPSk = |ωk|.
In our example, the LZ-factorization of S = acaaacatat can be represented by
(a, 0), (c, 0), (1, 1), (3, 2), (2, 2), (t, 0), (7, 2).

The LZ-factorization plays an important role in data compression (e.g. it is
used in gzip, WinZip, and PKZIP). Moreover, it is the basis of linear time al-
gorithms for the detection of all maximal repetitions (runs) in a string [11,14].
The key idea is that maximal repetitions within an element of the factoriza-
tion have already been detected in its previous occurrence and thus need not
be (re-)computed. The space consumption of the LZ-factorization algorithm was
identified in [19] as a bottleneck for finding tandem repeats in large DNA se-
quences. Thus, it is of importance to develop space efficient algorithms.

It is well-known that the LZ-factorization can be computed in linear time
with the help of the suffix tree of S [21]. Recently, several algorithms have been
developed that use suffix arrays instead [1,4,5,7,6]. The suffix array SA of the
string S is an array of integers in the range 1 to n specifying the lexicographic
ordering of the n suffixes of the string S. To be precise, it satisfies SSA[1] <
SSA[2] < · · · < SSA[n], where Si denotes the ith suffix S[i..n] of S. A direct linear
time construction of the suffix array is possible; see [20] for an overview. Almost
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Algorithm 1. Computation of the LZ-factorization based on LPS and PrevOcc

i← 1
while i < n do

if LPS[i] = 0 then
PrevOcc[i]← S[i]

output (PrevOcc[i], LPS[i])
i← i + max{1, LPS[i]}

all above-mentioned LZ-factorization algorithms additionally use the LCP-array:
an array containing the lengths of the longest common prefix between every pair
of consecutive suffixes in SA. We use lcp(u, v) to denote the longest common
prefix between strings u and v. The LCP-array is an array of integers in the range
1 to n+1 such that LCP[1] = 0, LCP[n+1] = 0, and LCP[i] = |lcp(SSA[i−1], SSA[i])|
for 2 ≤ i ≤ n. Given the suffix array, the LCP-array can be computed in linear
time [13,12].

2 LZ-Factorization by Peak Elimination

Algorithm 1 shows that the Lempel-Ziv factorization can easily be computed
from the arrays LPS and PrevOcc, which we define next.

The longest previous substring (LPS) is defined by LPS[1] = 0 and for k with
2 ≤ k ≤ n:

LPS[k] = max{� : 0 ≤ � ≤ n−k+1;S[k..k+�−1] is a substring of S[1..k+�−2]}

That is, LPS[k] is the length of the longest prefix of Sk that has another oc-
currence in S starting strictly before position k. If there is no � > 0 such that
S[k..k + � − 1] is a substring of S[1..k + � − 2], then LPS[k] = 0 because for
� = 0 we have S[k..k + � − 1] = ε and the empty string ε is a substring of any
other string. We are not only interested in LPS[k] but also in a position j < k at
which the longest previous substring occurred. Such a position j will be stored
in the array PrevOcc, i.e., PrevOcc[k] = j. If there is no such position, i.e., if
LPS[k] = 0, we set PrevOcc[k] = ⊥. As an example, the arrays LPS and PrevOcc
of S = acaaacatat are depicted (in suffix array order) in Fig. 1.

In order to formulate the important Lemma 1 (see [6, Eqn. (1)]), we define the
following two arrays (to deal with boundary cases, we set SA[0] = 0 = SA[n+1]).

For any index 1 ≤ i ≤ n, let

PSV[i] = max{j : 0 ≤ j < i and SA[j] < SA[i]}
NSV[i] = min{j : i < j ≤ n+ 1 and SA[j] < SA[i]}

If there is no index j with 1 ≤ j < i and SA[j] < SA[i], we have PSV[i] = 0
because 0 < i and 0 = SA[0] < SA[i]. Analogously, if there is no index j with
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i SA[i] LCP[i] SSA[i] PSV[i] NSV[i] LPS[SA[i]] PrevOcc[SA[i]]

0 0 ε

1 3 0 aaacatat 0 3 1 1

2 4 2 aacatat 1 3 2 3

3 1 1 acaaacatat 0 11 0 ⊥
4 5 3 acatat 3 7 3 1

5 9 1 at 4 6 2 7

6 7 2 atat 4 7 1 5

7 2 0 caaacatat 3 11 0 ⊥
8 6 2 catat 7 11 2 2

9 10 0 t 8 10 1 8

10 8 1 tat 8 11 0 ⊥
11 0 0 ε

Fig. 1. The suffix array of the string S = acaaacatat and additional tables

i < j ≤ n and SA[j] < SA[i], we have NSV[i] = n+1. Fig. 1 provides an example
of the auxiliary arrays PSV and NSV.

Lemma 1. For every 1 ≤ i ≤ n, the following equality holds

LPS[SA[i]] = max{|lcp(SSA[PSV[i]], SSA[i])|, |lcp(SSA[i], SSA[NSV[i]])|}
where S0 is the empty string ε.

In essence, the preceding lemma says that in order to compute LPS[SA[i]] for
a given index i, it suffices to consider the closest index j with SA[j] < SA[i]
preceding i (viz. PSV[i]) and the closest index j with SA[j] < SA[i] succeeding i
(viz. NSV[i]) in the suffix array of S.

We now recall the nice (conceptual) graph representation of SA and LCP
introduced in [5]. The graph has n + 2 nodes, each of which is labeled with
(i, SA[i]); to deal with boundary cases, the graph also contains the nodes la-
beled with (0, SA[0]) and (n + 1, SA[n + 1]). It is instructive to view each node
(i, SA[i]) as a point in the plane R2. Moreover, consecutive nodes (i, SA[i]) and
(i + 1, SA[i + 1]) are connected by an edge labeled with the value LCP[i + 1];
see Fig. 2 for an example. In the graph, |lcp(SSA[PSV[i]], SSA[i])| is the minimum
of the edge labels on the path from node (PSV[i], SA[PSV[i]]) to (i, SA[i]). Anal-
ogously, |lcp(SSA[i], SSA[NSV[i]])| is the minimum of the edge labels on the path
from (i, SA[i]) to node (NSV[i], SA[NSV[i]]). Now consider a peak in the graph,
i.e., a node (i, SA[i]) such that SA[i − 1] < SA[i] and SA[i + 1] < SA[i]. In
this case, (PSV[i], SA[PSV[i]]) = (i − 1, SA[i − 1]) and (NSV[i], SA[NSV[i]]) =
(i+1, SA[i+1]). Thus, we have LPS[SA[i]] = max{LCP[i], LCP[i+1]} by Lemma 1
(moreover, PrevOcc[SA[i]] can get the value SA[i−1] if LCP[i] ≥ LCP[i+1] and the
value SA[i+1] if LCP[i] ≤ LCP[i+1]). That is, the correct value of LPS[SA[i]] can
be computed as the maximum of the labels of the edges with end point (i, SA[i]).
The peak can be eliminated as follows: we delete node (i, SA[i]) and its edges
from the graph, and add an edge labeled with min(LCP[i], LCP[i + 1]) between
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Fig. 2. Left: The graph for the string S = acaaacatat. Right: The graph after the
elimination of the leftmost peak (yielding LPS[4] = 2 and PrevOcc[4] = 3).

nodes (i−1, SA[i−1]) and (i+1, SA[i+1]). Observe that such a peak elimination
is safe because it does not change the values PSV[j], NSV[j], SA[PSV[j]], and
SA[NSV[j]] for any index j �= i with 1 ≤ j ≤ n. In the transformed graph, for any
index j �= i with 1 ≤ j ≤ n, LPS[SA[j]] can again be computed as the maximum
of the minimum of the edge labels on the paths from node (PSV[j], SA[PSV[j])
to (j, SA[j]) and the minimum of the edge labels from node (NSV[j], SA[NSV[j])
to (j, SA[j]). This is because the label min(LCP[i], LCP[i+ 1]) of the new edge is
the length of the longest common prefix of the suffixes SSA[i−1] and SSA[i+1] of S.
Hence it is safe to remove peak by peak from the graph in this way. Obviously,
the order in which peaks are eliminated is arbitrary. Fig. 2 illustrates the removal
of the leftmost peak from the graph.

The algorithm of Crochemore and Ilie [5] scans the arrays SA and LCP from
left to right. In other words, the arrays LPS and PrevOcc are computed by
(virtually) building the graph in suffix array order and elimination of detected
peaks. The algorithm was improved by further considering the case SA[i− 1] <
SA[i] < SA[i+ 1] and LCP[i] ≥ LCP[i + 1]. In this case LPS[SA[i]] = LCP[i]; see
[7]. The next corollary stems from [5, Prop. 1].

Corollary 1. The LPS array is a permutation of the array LCP[1..n].

3 Ultra-Fast Lempel-Ziv Factorization

All LZ-factorization algorithms in [1,4,5,7,6] except for the first one in [5] and
the last two in [4] rely on the suffix array and the precomputed LCP-array. Ac-
cording to Corollary 1, if one computes the LZ-factorization via the arrays LPS
and PrevOcc, the computation of lcp-values is really necessary. In our opinion,
however, it is disadvantageous to precompute the LCP-array. Algorithm 2 in-
termingles the computation of lcp-values with the computation of the arrays
LPS and PrevOcc: it computes these arrays by (virtually) building the above-
mentioned graph in text order and peak elimination. More precisely, in the main
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Algorithm 2. Computation of LPS and PrevOcc

Main procedure
for i← 1 to n do

Φ[SA[i]]← SA[i− 1]
�← 0
for i← 1 to n do

j ← Φ[i]
while S[i + �] = S[j + �] do

�← � + 1
if i > j then

sop(i, �, j)
else

sop(j, �, i)
�← max(�− 1, 0)

Procedure sop(i, �, j)
if LPS[i] = ⊥ then

LPS[i]← �
PrevOcc[i]← j

else
if LPS[i] < � then

if PrevOcc[i] > j then
sop(PrevOcc[i], LPS[i], j)

else
sop(j, LPS[i], PrevOcc[i])

LPS[i]← �
PrevOcc[i]← j

else /* LPS[i] ≥ � */
if PrevOcc[i] > j then

sop(PrevOcc[i], �, j)
else

sop(j, �, PrevOcc[i])

procedure it computes lcp-values as in the Φ-algorithm of Kärkkäinen et al. [12].
Suppose that the algorithm has just computed the length � of the longest com-
mon prefix of some suffix Si of S and the suffix Sj that precedes Si in the suffix
array (so among all suffixes of S which are lexicographically smaller than Si, Sj

is the largest). In terms of the graph, this means that the algorithm has just
detected an edge with label � between nodes i and j; but of course it does not
build the graph. Instead it stores this edge in the arrays LPS and PrevOcc. To
be precise, if i > j, it stores � in LPS[i] and j in PrevOcc[i]. Otherwise, if i < j,
it stores � in LPS[j] and i in PrevOcc[j]. However, collisions may occur. If, for
example i > j, it may be the case that the memory cells LPS[i] and PrevOcc[i]
are occupied already; say m = LPS[i] and k = PrevOcc[i]. In terms of the graph,
this means that a peak has been detected because both k and j are smaller than
i. Consequently, the peak is eliminated by a case distinction: either (a) m < �
or (b) m ≥ �. Let us consider case (a); case (b) is similar. Since m < �, we set
LPS[i] ← � and PrevOcc[i] ← j in accordance with the peak elimination pro-
cedure described above. (It should be pointed out that the entries LPS[i] and
PrevOcc[i] are fixed from this point on.) Moreover, we have to insert a new edge
between nodes j and k with label m. As we always store an edge at the index
that is the maximum of its node labels, we further distinguish between the cases
(i) k < j and (ii) k > j. Again, we only consider the first case because the second
case can be treated similarly. If the memory cells LPS[j] and PrevOcc[j] are still
empty (i.e, LPS[j] = ⊥ and PrevOcc[j] = ⊥), then we store m in LPS[j] and k in
PrevOcc[j]. Otherwise, we have just detected another peak and we eliminate it in
the same way as described above. As an example, consider the execution of the
main procedure of Algorithm 2 for S = acaaacatat and i = 4. Fig. 3 (left) shows
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S[i] a c a a a c a t a t

i 1 2 3 4 5 6 7 8 9 10

LPS[i] 0 1 0

PrevOcc[i] 0 1 2

S[i] a c a a a c a t a t

i 1 2 3 4 5 6 7 8 9 10

LPS[i] 0 2 0

PrevOcc[i] 0 3 2
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Fig. 3. i = 4: Detection and removal of the first peak in the graph

S[i] a c a a a c a t a t

i 1 2 3 4 5 6 7 8 9 10

LPS[i] 1 2 0

PrevOcc[i] 1 3 2

S[i] a c a a a c a t a t

i 1 2 3 4 5 6 7 8 9 10

LPS[i] 0 1 2 0

PrevOcc[i] 0 1 3 2
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Fig. 4. i = 4: Detection and removal of the second peak in the graph

the point of departure. Since j = Φ[4] = 3 (cf. Fig. 1), S4 is compared with S3

and the length of the longest common prefix of S4 and S3 is 2. This results in the
procedure call sop(4, 2, 3) because i = 4 > 3 = j. Since LPS[4] = 1 < 2 = � and
PrevOcc[4] = 1 < 3 = j, there is another procedure call sop(3, 1, 1). Fig. 3 (right)
shows the situation without the effect of sop(3, 1, 1): peak node 4 is eliminated,
i.e., LPS[4] is set to � = 2 and PrevOcc[4] is set to j = 3. Let us turn to the
effect of the procedure call sop(3, 1, 1): LPS[3] = 0 < 1 and PrevOcc[3] = 0 < 1
result in another procedure call sop(1, 0, 0). The left part of Fig. 4 depicts the
situation without the effect of sop(1, 0, 0) (peak node 3 is eliminated), while the
right part shows the final situation (after the execution of the main procedure
for i = 4).

Algorithm 2 runs in linear time. This is because the main procedure without
the calls to the procedure sop takes O(n) time [12] and an amortized analysis
shows that there are at most 2n calls to the procedure sop.
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4 LZ-Factorization with Succinct Data Structures

Next, we develop a LZ-factorization algorithm that uses as low space as possi-
ble. This is of importance because the LZ-factorization is identified in [19] as
a bottleneck for finding tandem repeats in large DNA sequences, and a space
efficient solution would render the ad hoc solutions of [19] superfluous.

To explain the idea of our second algorithm, we need the following terminology.
For a substring ω of S, the ω-interval in the suffix array SA of S is the interval
[lb..rb] such that ω is a prefix of SSA[k] for all lb ≤ k ≤ rb, but ω is not a prefix
of any other suffix of S. Suppose that we have already computed the first k − 1
factors, say S[1..j] = ω1 · · ·ωk−1 and we want to compute the next factor ωk,
which is a prefix of Sj+1. To this end, we determine the S[j+1]-interval [lb1..rb1]
in SA and the rank i = ISA[j + 1] of suffix Sj+1 (where ISA denotes the inverse
of the permutation SA). Now S[j+1] has a previous occurrence in S if and only
if PSV[i] or NSV[i] (or both) lie inside the S[j + 1]-interval [lb1..rb1]. If this is
the case, SA[PSV[i]] or SA[NSV[i]] is a previous occurrence of S[j + 1]. Then we
iterate this process: we determine the S[j+1..j+ 2]-interval [lb2..rb2] and check
whether PSV[i] or NSV[i] lie in [lb2..rb2], and so on. The maximum � for which
the S[j+1..j+ �]-interval [lb�..rb�] contains PSV[i] or NSV[i] is the length of ωk.
Moreover, if PSV[i] (NSV[i]) lies in [lb�..rb�], then SA[PSV[i]] (SA[NSV[i]]) is the
start position of a previous occurrence of S[j + 1..j + �].

For example, suppose that we have already computed the first two factors
ω1 = a and ω2 = c of the LZ-factorization of the string S = acaaacatat, and we
want to compute the next factor ω3, a prefix of S3 = aaacatat. We determine
the a-interval [1..6] in SA (cf. Fig. 1) and the rank 1 = ISA[3] of suffix S3. Now
a has a previous occurrence at position SA[NSV[1]] = 1 in S because NSV[1] = 3
lies inside the a-interval [1..6]. Since neither PSV[1] = 0 nor NSV[1] = 3 lie inside
the aa-interval [1..1], it follows that ω3 = a.

This approach is similar to the algorithm CPS2 [4], but it is not space-efficient
because it uses the suffix array and its inverse. A solution to this problem is to
use backward search [8] on the string T = Srev$, where Srev is the reverse of S
and $ is a character not occurring in S ($ is smaller than any other character in
the alphabet Σ).

Let us recall the backward search technique. In what follows, SA denotes the
suffix array of T (not that of S). The Burrows and Wheeler transform transforms
T into the string BWT[1..n+ 1] defined by BWT[i] = T [SA[i] − 1] for all i with
SA[i] �= 1 and BWT[i] = $ otherwise. In virtually all cases, the Burrows-Wheeler
transformed string compresses much better than the original string; see [3]. The
permutation LF , defined by LF (i) = ISA[SA[i] − 1] for all i with SA[i] �= 1 and
LF (i) = 1 otherwise, is called LF -mapping. A compressed full-text index based
on a compressed form of the LF -mapping is commonly referred to as FM-index
[8]. The LF -mapping can be implemented by LF (i) = C[c] + Occ(c, i) where
c = BWT[i], C[c] is the overall number (of occurrences) of characters in T which
are strictly smaller than c, and Occ(c, i) is the number of occurrences of the
character c in BWT[1..i]. Ferragina and Manzini [8] showed that it is possible
to search a pattern character-by-character backwards in the suffix array SA of
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Algorithm 3. Construction of the balanced parentheses sequence
push(0) /* SA[0] =∞ */
write ’(’
for i← 1 to n + 1 do

while SA[i] > SA[top()] do
pop() and write ’)’

push(i) and write ’(’
write ’))’ /* for SA[0] =∞ and SA[n + 1] =∞ */

string T , without storing SA. Let c ∈ Σ and ω be a substring of T . Given the
ω-interval [i..j] in the suffix array SA of T , backwardSearch(c, [i..j]) returns the
cω-interval [C[c]+Occ(c, i−1)+1 . . .C[c]+Occ(c, j)] if it exists, and ⊥ otherwise.
We use a wavelet tree [10] as a space-efficient implementation of an FM-index.
With this implementation both a backward search step and the computation of
LF (i) take O(log |Σ|) time, but it is possible to reduce this to constant time.

Since we work with T = Srev$ instead of S, we have to replace PSV and NSV
with the following functions (to deal with boundary cases, we set SA[0] = ∞ =
SA[n+ 1]). For any index 1 ≤ i ≤ n, we define

PGV(i) = max{j : 0 ≤ j < i and SA[j] > SA[i]}
NGV(i) = min{j : i < j ≤ n+ 1 and SA[j] > SA[i]}

The values PGV(i) and NGV(i) can be computed in constant time on a balanced
parentheses sequence using 2n+ o(n) bits that is constructed by Algorithm 3.

– PGV(i) = rank((enclose(select((i))))
– NGV(i) = rank((findclose(select((i))) + 1

For space reasons, we refer to [17,9] for details (note that a suffix array does not
have equal entries, so the problem here is easier than the general case studied in
[17]).

Now we have all ingredients for the space-efficient LZ-factorization algorithm
4, which runs in O(n log |Σ|) time. Each execution of its outer while-loop com-
putes the next factor of the right-to-left LZ-factorization of Srev (starting at po-
sition i′) which coincides with the next factor of the left-to-right LZ-factorization
of S (starting at n + 1 − i′). Note that we do not need the inverse suffix array
because the rank of the current suffix can be determined with the help of the
LF -mapping. We still need the suffix array to determine the previous occur-
rence but only once for each factor. That is the reason why it is possible to use
a compressed suffix array, which saves even more space.

We would like to point out that the idea of replacing the binary search in the
algorithm CPS2 with the backward search in the reverse string was also used in
[15] for an alternative Lempel-Ziv parsing (called LZ-End). Furthermore, there
is another LZ-factorization algorithm that uses succinct data structures: the
online algorithm developed by Okanohara and Sadakane [18]. With the aid of
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Algorithm 4. LZ-factorization of S based on backward search on T = Srev$
i← n /* |Srev | = n */
j ← 1 /* $ appears at index 1 in SA */
while i > 1 do

i′ ← i
[sp..ep]← backwardSearch(T [i], [1..n + 1])
while NGV[LF (j)] ≤ ep or PGV[LF (j)] ≥ sp do

j ← LF (j)
[lb..rb]← [sp..ep]
i← i− 1
[sp..ep]← backwardSearch(T [i], [sp..ep])

LPS← i′ − i
if LPS = 0 then

PrevOcc← T [i]
i← i− 1

else if NGV[j] ≤ rb then
PrevOcc← n + 1− SA[NGV[j]] − (LPS− 1)

else /* PGV[j] ≥ lb */
PrevOcc← n + 1− SA[PGV[j]] − (LPS− 1)

output (PrevOcc, LPS)

rank/select operations and range minimum queries, it dynamically maintains
succinct representations of the suffix array, the LCP-array, and the BWT. Its
worst-case time complexity is O(n log3 n).

5 Experimental Results

In our experiments, programs were compiled using g++ version 4.1.2 with options
-O3 -DNDEBUG on a 64 bit Linux (Kernel 2.6.16) system equipped with a Dual-
Core AMD Opteron processor with 3 GHz and 4GB of RAM. The test cases are
described in [4].

We compared our Algorithm 2, called LZ_OG, with the currently fastest al-
gorithms [6]. It should be stressed that the latter algorithms only compute the
LPS-array (called LPF in [6]) but not the PrevOcc-array. Although this is a severe
disadvantage to our Algorithm 2, it still outperforms the other algorithms; see
Table 1. For highly repetitive strings, it is even faster than the precomputation of
the LCP-array. Algorithm 2 requires 13n bytes (the suffix array can be discarded
after the Φ-array is computed), whereas the others would take at least 17n bytes
for a LZ-factorization (including the 4n bytes for the PrevOcc-array). The space
consumption can further be reduced by streaming techniques (so that e.g. our
algorithm takes only 9n bytes), but any LZ-factorization algorithm based on the
arrays LPS and PrevOcc needs at least 8n bytes of memory.

The experiments also showed the expected space-time tradeoff. That is, our
Algorithm 4 uses much less space than the above-mentioned algorithms (includ-
ing Algorithm 2), but it is slower than these. For a fair comparison, we thus
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Table 1. Running times in seconds of (from left to right): the precomputation of the
LCP-array, the five algorithms from [6] (including LCP-array computation but without
PrevOcc-array computation), and our new fast LZ-factorization algorithm
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chr19.dna4 19.40 46.40 25.80 31.30 26.30 26.30 19.10
chr22.dna4 8.90 24.60 14.80 14.60 12.30 12.20 10.00
E.coli 0.80 2.00 1.20 1.40 1.20 1.20 0.90
bible 0.60 1.60 0.90 1.10 0.90 0.90 0.50
howto 8.10 20.60 11.80 13.40 11.60 11.50 6.70
fib_s14930352 2.20 6.90 3.40 3.80 3.30 3.30 0.80
fib_s9227465 1.40 4.20 2.30 2.40 2.10 2.10 0.50
fss10 1.70 5.60 2.80 3.00 2.70 2.70 0.70
fss9 0.40 1.10 0.60 0.70 0.60 0.60 0.20
p16Mb 3.50 8.70 5.00 5.90 4.90 4.90 3.90
p32Mb 8.50 20.60 11.60 13.90 11.60 11.60 9.70
rndA21_8Mb 1.60 4.00 2.40 2.80 2.30 2.30 1.90
rndA2_8Mb 1.50 3.90 2.20 2.60 2.20 2.20 1.50

Table 2. Comparison of the LZ-factorization algorithm CPS2 [4] with our Algorithm 4,
called LZ_bwd (space usage is measured after the construction of the BWT). To show
the effect of using a compressed suffix array, we varied the sample density of suffix array
values. The algorithm LZ_bwdx uses every x-th suffix array entry. That is, LZ_bwd1
uses a plain suffix array, whereas LZ_bwd32 uses only every 32-th suffix array entry.
Non-sampled values are recovered by applying the LF -mapping iteratively.
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fib_s14930352 6.0 4.6 2.6 1.6 1.1 0.8 0.7 2.1 14.6 15.0 14.7 14.7 14.6 14.7
fib_s9227465 6.0 4.6 2.6 1.6 1.1 0.8 0.7 1.3 8.9 9.1 8.9 8.9 9.1 8.9
fss10 6.0 4.6 2.6 1.6 1.1 0.8 0.7 1.8 11.5 11.6 11.6 11.6 11.5 11.6
fss9 6.0 4.6 2.6 1.6 1.1 0.9 0.7 0.4 2.0 2.0 2.0 2.0 2.0 2.0
p16Mb 6.0 5.0 3.0 2.0 1.5 1.3 1.2 33.7 24.8 26.3 28.5 33.8 43.7 63.9
p32Mb 6.0 5.0 3.0 2.0 1.5 1.3 1.1 73.7 52.5 54.5 59.7 69.3 88.1 126.7
rndA21_8Mb 6.0 5.1 3.1 2.1 1.6 1.3 1.2 17.6 13.0 13.9 15.6 19.0 26.2 40.6
rndA2_8Mb 6.0 4.6 2.6 1.6 1.1 0.8 0.7 11.7 6.8 6.8 6.9 7.2 7.5 8.4
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compared it with CPS2 [4], one of the most space-efficient LZ-factorization algo-
rithm that is currently available. (As a matter of fact, the online algorithm from
[18] uses even less space than CPS2, but it is not competitive in terms of time; see
the experimental results in [18,2].) Our results can be found in Table 2. Note that
the construction time of the indexes is not included. Moreover, we stress that the
space usage of our algorithm is measured after the construction of the BWT, the
compressed suffix array, and the balanced parentheses sequence. This was done
to show the effect of using compressed suffix arrays. However, the memory peak
during the construction has to be taken into account as well. In our implemen-
tation, we first construct the suffix array and then derive the above-mentioned
data structures from it. Currently, all known (in-memory) suffix array construc-
tion algorithms require at least 5n bytes; see [20,16]. Consequently, the memory
peak of Algorithm 4 is 5n bytes. It goes without saying that our algorithm will
benefit from further improvements in suffix array construction.

Algorithm 4 always uses less space than CPS2. It is faster than CPS2 for small
alphabets (|Σ| ≤ 20) except for some highly repetitive strings (Fibonacci strings
and run rich strings). In these exceptional cases, CPS2 can avoid nearly all costly
range minimum queries and therefore beats our algorithm. For larger alphabets
(e.g. |Σ| = 256), Algorithm 4 is slightly slower than CPS2. This behavior can be
attributed to the log |Σ| factor in its worst-case time complexity O(n log |Σ|).
However, our new algorithm has an advantage over CPS2. If space is extremely
tight, we can use a compressed suffix array instead of the plain suffix array. Of
course, if there are many factors in the LZ-factorization, this will slow down the
computation (usual space-time tradeoff). But highly repetitive texts have few
factors and thus the use of a compressed suffix array has little influence on the
factorization time.

Future work: We would like to point out that the ideas described in this paper
may help to improve the other algorithms.

Acknowledgment. We thank German Tischler for sharing his implementation of
the algorithms from [6] with us, and Simon J. Puglisi for his implementation of the
CPS2 algorithm (http://goanna.cs.rmit.edu.au/~sjp/lz6n.tar.gz). Special
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Abstract. We study the problem of indexing text with wildcard positions, moti-
vated by the challenge of aligning sequencing data to large genomes that contain
millions of single nucleotide polymorphisms (SNPs) —positions known to differ
between individuals. SNPs modeled as wildcards can lead to more informed and
biologically relevant alignments. We improve the space complexity of previous
approaches by giving a succinct index requiring (2 + o(1))n log σ + O(n) +
O(d log n) + O(k log k) bits for a text of length n over an alphabet of size σ
containing d groups of k wildcards. The new index is particularly favourable for
larger alphabets and comparable for smaller alphabets, such as DNA. A key to the
space reduction is a result we give showing how any compressed suffix array can
be supplemented with auxiliary data structures occupying O(n) + O(d log n

d
)

bits to also support efficient dictionary matching queries. We present a new query
algorithm for our wildcard index that greatly reduces the query working space to
O(dm+m log n) bits, where m is the length of the query. We note that compared
to previous results this reduces the working space by two orders of magnitude
when aligning short read data to the Human genome.

1 Introduction

The study of strings, their properties, and associated algorithms has played a key role
in advancing our understanding of problems in areas such as compression, text mining,
information retrieval, and pattern matching, amongst numerous others. A most basic
and widely studied question in stringology asks: given a string T (the text) how many
occurrences and in what positions does it contain a string P (the pattern) as a substring?
It is well known that this problem can be solved in time proportional to the lengths of
both strings [12]. However, it is often the case that we wish to repeat this question for
many different pattern strings and a fixed text T of length n over an alphabet of size σ.
The idea is to create a full-text index for T so that repeated queries can be answered in
time proportional to the length of P alone. It was first shown by Weiner [22] in 1973
that the suffix tree data structure could be built in linear time for exactly this purpose.
The ensuing years have seen the versatility of the suffix tree as it has been demonstrated
to solve numerous other related problems.

While suffix trees useO(n) words of space in theory, this does not translate to a space
efficient data structure in practice. For this reason, Manber and Myers [15] proposed the
suffix array data structure (see Figure 1). Though a great practical improvement over
suffix trees, the Ω(n logn) bit space requirement is often prohibitive for larger texts.
Building in part on the pioneering work of Jacobson [11] into succinct data structures,
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c© Springer-Verlag Berlin Heidelberg 2011
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two seminal papers helped usher in the study of so-called succinct full-text indexes.
Grossi and Vitter [8] proposed a compressed suffix array that occupies O(n log σ) bits;
the same space required to represent the original string T . Soon after, Ferragina and
Manzini [5] proposed the FM-index, a type of compressed suffix array that can be in-
ferred from the Burrows-Wheeler transform of the text and some auxiliary structures,
leading to a space occupancy proportional to nHk(T ) bits, where Hk(T ) denotes the
kth order empirical entropy of T . These and subsequent results have made it possible
to answer efficiently the substring question on texts as large, or larger, than the Human
genome.

We are interested in designing a succinct index to answer a generalized version of
the substring question where the text T contains k wildcard positions that can match
any character of a pattern. Our motivation arises in the context of aligning short read
data, produced by second generation sequencing technology. Typically short reads are
aligned against a so-called reference genome; however, the quantity of positions known
to differ between individuals due to single nucleotide polymorphisms (SNPs) numbers
in the millions [7]. Modeling SNPs as wildcards would yield more informed, and by
extension, more accurate alignment of short reads.

Cole, Gottlieb & Lewenstein [4] were among the first to study the problem of in-
dexing text sequences containing wildcards and proposed an index using O(n logk n)
words of space capable of answering queries in O(m + logk n log logn + occ) time,
where occ denotes the number of matching positions. This result was later improved
by Lam et al., [13] resulting in space usage of only O(n) words and a query time
no longer exponential in k. A key idea in their work was to build a type of dictio-
nary of the text segments of T = T1φ

k1T2φ
k2 . . . φkdTd+1 where each text segment

Ti contains no wildcards and φki denotes the ith wildcard group of size ki ≥ 1, for
1 ≤ i ≤ d ≤ k. The query time includes the term γ =

∑
i,j prefix(P [i..|P |], Tj) where

prefix(P [i..|P |], Tj) = 1 if Tj is a prefix of P [i..|P |] and 0 otherwise. The authors also
give a more detailed bound on γ based on prefix complexity.

Despite this improvement,O(n) words of space is prohibitive for texts as large as the
Human genome. Support for dictionary matching of text segments was also crucial in
the approach of Tam et al., [21] who proposed the first, and to our knowledge only, suc-
cinct index. They designed a dictionary structure using (2 + o(1))n log σ bits, based on
a compressed suffix array, which therefore occupies most of the space required by their
overall index. Very recently, Belazzougui [1] proposed a succincter dictionary based on
the Aho-Corasick automaton having optimal query time. The compressed space occu-
pancy was further improved by a slight modification given by Hon et al., [10]. While
these results are impressive, the wildcard matching problem benefits from an index that
can report the text segments contained in P (dictionary problem), as well as the text
segments which are prefixed by P and also fully contain P (substring problem). To
draw a distinction, we will refer to this latter type as a full-text dictionary. In our first
main contribution we show how a full-text dictionary can be built on top of any com-
pressed suffix array using an additional O(n) + O(d log n

d ) bits of space and, in turn,
how it can be used to provide a succincter index for texts containing wildcards. Our
dictionary does not require any modification of the original string T and can therefore
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be used in applications benefiting from bidirectional search—a technique where both a
forward and reverse index of T are cooperatively searched—which has been shown to
significantly speed up the alignment of sequencing data [14].

In our view, the main challenge that must be overcome for successful wildcard
matching is a reduction of the query working space. The fastest solution of Tam
et al., [21], matches our query time, if modified to use the same orthogonal range query
structure we use, but requires a query working space of O(n log d+m logn) bits. Ac-
knowledging that the first term is impractical for large texts, they give a slower solution
that reduces the working space to be proportional to the index itself. This makes the so-
lution feasible, but constraining considering the fact that p parallel queries necessarily
increase the working space by a factor of p. In our second main contribution we give an
algorithm that reduces the query working complexity significantly to O(dm+m logn)
bits. In particular, this is an improvement for any query length m < n

d log σ. For our
motivating problem, alignment of short reads (32-64 bases) to the Human genome (3
billion bases with 1-2 million SNPs), this reduces the working space by two orders
of magnitude from gigabytes to tens of megabytes. Our result for indexing text with
wildcards is summarized and compared with existing results in Table 1. Note that some
proofs have been omitted from our results due to space constraints.

Table 1. A comparison of text indexes supporting wildcard characters. k, d, d̂ is the # of wild-
cards, wildcard groups, and distinct wildcard group lengths, respectively; occ1, occ2, occ is the
# of occurrences containing no wildcard group, 1 wildcard group, and overall, respectively;
γ =

∑
i,j prefix(P [i..|P |], Tj), † = our result

Index Space Query Time Query Working Space
O(n logk n) words O(m + logk n log log n + occ) - [4]
O(n) words O(m log n + γ + occ) O(n) words [13]

(3 + o(1)) n log σ
+ O(d log n) bits

O

(
m
(
log σ + min

(
m, d̂

)
log d

)
+occ1 log n + occ2 log d + γ

)
O(n log d + m log n) bits [21]

same as above with working space reduced by increasing query time

(3 + o(1)) n log σ
+ O(d log n) bits

O

(
m
(
log σ + min

(
m, d̂

)
log d

)
+occ1 log n + occ2 log d + γ logσ d

)
O(n log σ + m log n) bits [21]

(2 + o(1))n log σ
+ O(n) + O(d log n)
+ O(k log k) bits

O

(
m
(
log σ + min

(
m, d̂

)
log k

log log k

)
+occ1 log n + occ2

log k
log log k + γ

)
O(dm + m log n) bits †

2 Preliminaries

Let T [1, n] be a string over a finite alphabet Σ of size σ. We denote its jth character
by T [j] and a substring from the ith to the jth position by T [i..j]. We assume that an
end-of-text sentinel character $ /∈ Σ has been appended to T (T [n] = $) and $ is
lexicographically smaller than any character in Σ. For any substring X we use |X |
to denote its length and X to denote its reverse sequence. The suffix array SA of T
is a permutation of the integers [1, n] giving the increasing lexicographical order of
the suffixes of T . Conceptually SA can be thought of as a matrix of all suffixes of
T that have been sorted lexicographically and where SA[i] = j means that the ith

lexicographically smallest suffix of T begins at position j.
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A string X has a suffix array (SA) range [a, b] with respect to SA if a − 1 (n − b)
suffixes of T are lexicographically smaller (larger) than X . If a > b the range is said
to be empty and X does not exist as a substring of T ; otherwise, X occurs as a pre-
fix of the b − a + 1 suffixes of T denoted by its range. The SA range for X can be
found in a compressed suffix array by backward search using the LF-mapping which
relates SA to T BWT, the Burrows-Wheeler transform of T . T BWT is also a string of length
n where T BWT[i] = T [SA[i] − 1], if SA[i] �= 1, and T BWT[i] = $ otherwise. See Figure 1
for an example. For details of backward search, the LF-mapping, existing implemen-
tations, and related topics we refer the reader to the excellent review by Navarro and
Mäkinen [17]. In this work, we assume the availability of a compressed suffix array—
such as the wavelet tree implementation of Grossi et al., [9] —meeting the following
space and time requirements, of which there are many (cf. [17]).

Lemma 1. A compressed suffix array SA for T can be represented in (1+o(1))n log σ
bits of space, such that the suffix array range of every suffix of a string X can be com-
puted in O(|X | log σ) time, and each match of X in T can be reported in an additional
O(log n) time.

In our dictionary construction, we also make use of the following well known data
structures.

Lemma 2 (Raman et al., [20]). A bit vector B of length n containing d 1 bits can be
represented in d log n

d + O(d + n log log n
log n ) bits to support the operations rank1(B, i)

giving the number of 1 bits appearing in B[1..i] and select1(B, i) giving the position
of the ith 1 in B in O(1) time.

Lemma 3 (Grossi & Vitter [8]). An array L of d integers where
∑d

i=1 L[i] = n can be
represented in d(	lg(n/d)
+2+o(1)) bits to supportO(1) time access to any element.

Lemma 4 (Munro & Raman [16]). A sequence BP of d balanced parentheses can be
represented in (2 + o(1))d bits of space to support the following operations in O(1)
time: rank((BP, i), select((BP, i), and similarly for right parentheses, as well as:

– findclose(BP, l) (findopen(BP, r)): a index of matching right (left) parenthesis
for left (right) parenthesis at position l (r)

– enclose(BP, i): indexes (l, r) of closest matching pair to enclose
(i, findclose(BP, i)) if such a pair exists and is undefined otherwise

The matching statistics for a string X with respect to SA is an array ms of tuples such
thatms[i] = (q, [a, b]) states that the longest prefix of X [i..|X |] that matches anywhere
in T has length q and suffix array range [a, b]. Very recently Ohlebusch et al., [19]
showed matching statistics can be efficiently computed with backward search if SA is
enhanced with auxiliary data structures using O(n) bits to represent so-called longest
common prefix (lcp) intervals (cf. [19]). We leverage this result in the design of our
succinct full-text dictionary and its search algorithm.

Lemma 5 (Ohlebusch et al., [19]). The matching statistics of a patternX with respect
to text T over an alphabet of size σ can be computed in O(|X | log σ) time given a
compressed enhanced suffix array of T .
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Finally, our wildcard matching algorithm makes use of an orthogonal range query data
structure.

Lemma 6 (Bose et al., [2]). A set N of points from universe M = [1..k] × [1..k],
where k = |N |, can be represented in (1 + o(1))k log k bits to support orthogonal
range reporting in O(occ log k

log log k ) time, where occ is the size of the output.

3 A Succinct Full-Text Dictionary

In the dictionary problem we are required to index a set of d text segments1 D =
{T1, T2, . . . , Td} so that we can match efficiently, in any input string P , all occurrences
of text segments belonging to D. We present a succinct full-text dictionary index that
is also capable of efficiently identifying all text segments that contain P as a prefix, or
more generally as a substring. We demonstrate the use of this additional functionality
in our solution for wildcard matching.

3.1 A Compressed Suffix Array Representation of Text Segments

Let T = φT1φT2φT3φ . . . φTd$ be the concatenation of all d text segments, each pre-
fixed by the character φ, followed by the traditional end-of-text sentinel $, having total
length n. Note that n is necessarily larger than the total number of characters in the
dictionary. We define φ to be lexicographically smaller than any c ∈ Σ and $ to be
lexicographically smaller than φ. We first build SA, the compressed suffix array for T .
Consider any text segment Tj ∈ D. There will be a contiguous range [c, d] of suffixes
in SA that are prefixed by the string Tj . Lemma 7 summarizes how we can use the SA
range of Tj and its length to determine if it is a prefix of a given text P (and vice versa).
Note that verifying the length condition is necessary in the case where P is a proper
prefix of Tj and they share a common SA range.

Lemma 7. Let SA be the compressed suffix array for T and let [a, b] and [c, d] be the
non-empty suffix array ranges in SA for a string P and a text segment Tj respectively.
Then Tj is a prefix of P if and only if c ≤ a ≤ b ≤ d and |P | ≥ |Tj |. Similarly, P is a
prefix of Tj if and only if a ≤ c ≤ d ≤ b.

3.2 Storing Text Segment Lengths

For Lemma 7 to apply, we must know both the SA range of a given text segment and also
its length. By Lemma 3 we can store the lengths of all d text segments in a compressed
integer array L using d(	log(n/d)
 + 2 + o(1)) bits ensuring constant time access. We
store the lengths in L relative to the lexicographical order of text segments.

3.3 The Text Segment Interval Tree

The SA range of one text segment Ti will enclose the SA range of another Tj if Ti is
a prefix of Tj . For instance, in the example of Figure 1 the text segment aca has SA

1 To remain consistent with the section that follows, we refer to dictionary entries (patterns) as
text segments.
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Fig. 1. A succinct full-text dictionary for the set of text segments {aa, aca, a, aa, cacc, ac}.
Shown are the sorted suffixes of the string T = φaaφacaφaφaaφcaccφac$ representing the
text segments. Text segment intervals are demarcated on the left. Three different queries (shaded
intervals) are shown with their corresponding smallest enclosing text segment interval (if any).

range [15, 15] and is enclosed by the SA range of the text segment ac ([14, 16]) and by
the text segment a ([8, 16]). In general, it is also possible that many text segments begin
at the same position, provided that they are different occurrences of the same string (e.g.,
aa). This is by design since each text segment is followed by a character not found in Σ
(either φ or $). However, our construction requires us to distinguish between different
occurrences of the same text segment string and we therefore introduce the concept of
text segment intervals. When t > 1 text segments in the dictionary share a common SA
range, we say that the text segment interval of occurrence a encloses the text segment
interval of occurrence b, 1 ≤ a �= b ≤ t, if the suffix of T beginning with occurrence a
is lexicographically smaller than the suffix beginning with occurrence b. In this way we
are able to define a total order on all d text segment intervals based on their relative lex-
icographical order in SA. We assign lex ids, a unique identifier for each text segment,
based on this lexicographical order. Consider again the example in Figure 1. The text
segment aa occurs as a prefix of T [2..n] and T [11..n]. Since the suffix T [2..n] is lexico-
graphically smaller than T [10..n], we say that the occurrence prefixing T [2..n] encloses
the other. Consequently, the text segment prefixing T [2..n] (T [11..n]) is assigned lex id
2 (3). We will refer to text segments or text segment intervals interchangeably.

In general the text segment intervals form a set of nested, non-crossing intervals
(an interval tree) and can be represented by a sequence BP of d balanced parentheses;
one pair for each text segment (see Figure 1). Conceptually, if we can identify the text
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segment interval having the largest lex id that is a prefix of P , referred to as the smallest
enclosing text segment interval of P , then we can immediately conclude that P is also
prefixed by all intervals which enclose it.

Lemma 8. Given the index pair (l, r) in BP corresponding to the smallest enclosing
text segment interval for a string P the occ number of text segments that are prefixes of
P can be counted in O(1) time and reported in an additional O(occ) time.

3.4 Finding the Smallest Enclosing Text Segment Interval

We now describe how the smallest enclosing text segment interval can be determined
given any non-empty SA range [a, b] in SA for P . We wish to determine the pair (l, r)
of indexes for the left and right parentheses in BP corresponding to this interval (or
an undefined index range if P is not prefixed by any text segment). Unfortunately, we
cannot directly infer where text segment intervals begin and end based on T BWT alone.
Therefore, we make use of a bit vector B of length n and set B[k] = 1 if and only
if one or more text segment intervals begin at position k, or end at position k − 1.
For the range [a, b], end cases occur when B[k] = 0, for all k, where a < k ≤ n
(all text segment intervals end before position a) or when B[k] = 0, for all k, where
1 ≤ k ≤ a (all text segment intervals begin after position a). Suppose otherwise and let
c = argmax1≤j≤a{B[j] = 1} and d = arg mina<j≤n{B[j] = 1}. Note that position
c marks the largest position (up to a) when one or more text segment intervals begin or
end (at c−1). Our algorithm considers two main cases: eitherB[c] marks the beginning
of one or more intervals, or it only marks the ends of intervals.

Lemma 9. Given two positions c and d of B, where c < d, B[c] = B[d] = 1 and
B[k] = 0, for all k, where c < k < d, then B[c] marks the beginning of t text segment
intervals if and only if T BWT[c..d− 1] contains t occurrences of the character φ.

Using Lemma 9 we are able to distinguish between the two main cases. If B[c] marks
the beginning of one or more text segment intervals, then Tj — the text segment interval
with the largest lex id beginning at position c — is the smallest enclosing text segment
interval, provided |Tj | ≤ |P | (by condition of Lemma 7). If |Tj | ≤ |P |, we can deter-
mine the largest lex id beginning at position c by simply counting the occurrences of the
character φ prior to position d in T BWT. For example, consider the SA range [12, 13] in
Figure 1. We have c = 12 and d = 14. We determine the lex id to be 3 by counting the
number of φ up to position d = 14 in T BWT. Conveniently and by construction, the lex id
corresponds to the rank of the left parenthesis denoting Tj in BP. It is worth noting that
when |Tj| > |P | special care is required to find the smallest enclosing text segment
interval in worst case constant time. Details are given in the proof of Lemma 10, but
the idea is to find the enclosing interval (if any) of the text segment interval having the
smallest lex id beginning at position c.

On the other hand, if B[c] only marks the end of one or more text segment intervals
(e.g., SA range [16, 16] in Figure 1) we can instead identify the right index for Tj′—the
last text segment interval to end at position c− 1. The smallest enclosing text segment
interval, if any, is therefore the one enclosing Tj′ . Unfortunately, in this case we cannot
infer how many intervals close prior to position c directly from T BWT. For this reason,
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Algorithm 1. Find smallest enclosing text segment interval
Input: a specifies the beginning of the non-empty suffix array interval for string P
Output: l, r where l (r) is the index of the left (right) parenthesis in BP corresponding to the

smallest enclosing text segment interval of P if it exists, and an undefined interval otherwise

1: c← select1(B, rank1(B, a))
2: d← select1(B, rank1(B, a) + 1)
3: if c or d is undefined then // handle end cases
4: return an undefined interval
5: lex id← rankφ(T BWT, d− 1)
6: if lex id > rankφ(T BWT, c) then // B[c] marks beginning of t.s. interval(s)
7: if L[lex id] > |P | then
8: lex id← rankφ(T BWT, c− 1) + 1
9: l← select((BP, lex id)

10: l, r ← enclose(BP, l)
11: else
12: l← select((BP, lex id)
13: r ← findclose(BP, l)
14: else // B[c] marks end of t.s. interval(s)
15: r ← select)(BP, R[rank1(B, c)])
16: l← findopen(BP, r)
17: l, r ← enclose(BP, l)
18: return l, r

we will employ another compressed integer array R to record the count of intervals that
close prior to position k, for all B[k] = 1. We determine the appropriate index for R by
simply counting the number of 1’s up to position c in B. The corresponding entry in R
gives us the rank of the right parenthesis for the last interval to close prior to position c,
from which we can find the enclosing interval (if any). The entire procedure, including
end cases, is summarized in Algorithm 1 and shown to be correct in Lemma 10.

Lemma 10. Let SA be the compressed suffix array for T and let [a, b] be the non-empty
suffix array range in SA for a string P . InO(1) time, Algorithm 1 either correctly iden-
tifies the indexes in BP corresponding to the smallest enclosing text segment interval of
P if one exists, or it returns an undefined interval when it does not.

3.5 The Overall Dictionary and Its Full-Text Capabilities

We have shown how all text segments occurring as a prefix of a string P having a non-
empty SA range in SA can be reported efficiently. By enhancing SA with lcp-interval
information usingO(n) bits, we can find the matching statistics for P in order to repeat
the previous procedure for 1 ≤ i ≤ |P | (see Lemma 5). Importantly for our results on
wildcard matching, we note that with a very minor modification, this same construction
works when text segments are separated by more than one φ character and also when the
first text segment is not preceded by a φ character. Note that the text segment interval
tree can be built in a similar manner as an lcp-interval tree. Details are left for the full
version. We have the following result.
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Theorem 1. Given a set of d text segments over an alphabet of size σ we can construct
a succinct full-text dictionary, based on an enhanced compressed suffix array, using
at most (1 + o(1))n log σ + O(n) + O(d log n

d ) bits where n is the length of T , the
text representation of the dictionary including φ characters, such that the occ1 text
segments contained in a string P can be counted in O(|P | log σ) time and reported in
an additional O(occ1) time. Furthermore, all occ2 text segments prefixed by P can be
reported in O(|P | log σ + occ2) time, and all occ3 locations in T where P occurs as a
substring can be reported in O(|P | log σ + occ3 logn) time.

4 Matching Wildcards in Succinct Texts

Let T be a string over an alphabet Σ ∪ {φ} of size σ where φ /∈ Σ and T [i] = φ if and
only if position i is a wildcard position in T . In particular, we denote the structure of
the input string as T = T1φ

k1T2φ
k2 . . . φkdTd+1 where each text segment Ti contains

no wildcards and φki denotes the ith wildcard group of size ki ≥ 1, for 1 ≤ i ≤ d.
Our goal is to create an index for the purpose of identifying all the locations in T that
exactly match any query pattern P , modulo wildcard positions. Similar to previous ap-
proaches [13,21], we classify the match into one of three cases: P contains no wildcard
group (Type 1), P contains exactly one wildcard group (Type 2), and P contains more
than one wildcard group (Type 3). Our solution for Type 2 matching is largely inspired
by previous approaches [13,21], but differs in the details. Our algorithm for Type 3
matching is novel and can result in significantly reduced working space.

4.1 Overall Design of the Index

We first build the succinct full-text dictionary of Section 3. By design, the dictionary
reports the match of a text segment Tj based on its lexicographical order (its lex id) rel-
ative to other text segments; however, in the wildcard problem we are required to report
the match based on Tj’s position in T . Therefore, we store a permutation Π mapping
the lex ids of text segments to their relative position order in T . For instance, if Tj has
lex id k, then Π [k] = j. We find it convenient to store the following information for
each text segment, in auxiliary arrays, indexed by this relative position order: length,
SA range in SA (referenced as RSA), beginning position in T , and the size of the pre-
ceding wildcard group. Note that array L of the dictionary construction can be adapted
to store lengths in this relative order with the use of Π . We also construct a compressed
suffix array SA for T , the reverse of T , and store the SA range of each Tj with respect
to SA (referenced as RSA). Note that SA does not need to support location reporting.
We use simple arrays to store SA ranges resulting in O(d log n) bits combined space
usage to store auxiliary information supporting constant time access. To support Type 2
matching we employ a range query data structure occupying (1 + o(1))k log k bits (see
next section).

Lemma 11. Given a text T of length n containing d groups of k wildcards the com-
bined space required of the above indexes is (2 + o(1))n log σ +O(n) +O(d log n) +
O(k log k) bits.



36 C. Thachuk

All three matching types make use of the matching statistics of P with respect to SA.
Types 2 and 3 matching also make use of the SA ranges of P with respect to SA. Both
can be computed in O(m log σ) time (by Lemmas 1 and 5) and requireO(m logn) bits
to store. We incorporate these times and working spaces into the results for each type.
Type 1 matching is handled by the application of Lemma 1.

4.2 Type 2 Matching

A Type 2 match occurs when the alignment of P to T contains exactly (a portion of) one
wildcard group. Specifically, we seek a pair of neighbouring text segments Tj and Tj+1,
separated by a wildcard group of size kj , where P [i..|P |] aligns to the first |P | − i+ 1
characters of Tj+1 — referred to as the suffix match (of P ) — and P [1..i − 1 − kj ]
aligns to the last i − 1 − kj characters of Tj — referred to as the prefix match. Let αj

(ωj) be the the first (last) φ character of the jth wildcard group in T . End cases occur
when the match begins or ends in T [α′

j ..ω
′
j], where α′

j (ω′
j) is the position of αj (ωj) in

T . For now, suppose this is not the case. For a fixed suffix P [i..|P |] and wildcard group
length kj our strategy will be to (i) find all potential suffix matches, (ii) record the lex id
of the candidate text segments, (iii) find all potential prefix matches, and (iv) determine
which candidate prefix matches are compatible with a lex id recorded in step (ii).

· · · φ φ · · ·Tj · · · Tj+1

αj ωj

Lemma 12. Given a non-empty SA range [a, b] in SA for a string X , the lex ids (based
on their lexicographical order) of text segments in T that contain X as a prefix will
form a contiguous (possibly empty) range [id1, id2] that can be reported in O(1) time.

By Lemma 12, we can identify the range [id1, id2] of lex ids corresponding to text seg-
ments that P [i..|P |] is a prefix of in constant time using its stored SA range with respect
to SA, completing steps (i)-(ii). Determining a range [id3, id4] of lex ids corresponding
to text segments that P [1..i− kj − 1] is a suffix of is equivalent to determining all Tt

that contain P [1..i− kj − 1] as a prefix. Again, using a stored SA range with respect
to SA this can be determined in constant time, completing step (iii). Now consider that
the lex id with respect to SA of a text segment Tj+1 is relative to the rank of ωj in
T BWT, the character which precedes it. Similarly, the relative rank of αj in T BWT deter-
mines the lex id of Tj , but in this case relative to T . We make use of a permutation H
to relate these lex ids (α and ω values). Specifically, we set H[αj ] = ωj , for 1 ≤ j ≤ k.
Therefore, we need to determine the entries in H[id3..id4] that have a value in the range
[id1, id2]. This is an orthogonal range query and by Lemma 6, H can be represented in
(1+ o(1))k log k bits to report all occ matches inO(occ log k

log log k ) time. Once a lex id ωj

has been verified, a match position can be reported inO(1) time as the location of Tj+1

with respect to T is known in addition to the length of the prefix match. This completes
step (iv).

In general, we can repeat the above procedure for every combination of suffix length
and wildcard group length bound by m. However, as pointed out by Tam et al., [21]
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the number of distinct wildcard group sizes d̂ is often a small constant, particularly in
genomic sequences. We therefore only consider at most d̂ lengths, provided they are not
larger than m.

Now, consider the case when P [i..|P |] aligns to a prefix of a wildcard group. To
contain P [i..|P |] as a prefix, the wildcard group must have a length l ≥ |P | − i + 1.
Let a be the first entry in SA denoting a suffix of T prefixed by at least l − 1 φ charac-
ters and let b be the last entry prefixed by any φ character. Then, similar to Lemma 12,
T BWT[a..b] will contain a range [id1, id2] giving ranks of φ characters in that interval.
Some sub-sequence of [id1, id2] will correspond to ω wildcards that begin groups hav-
ing length l or longer. Therefore, Type 2 matches can be determined by reporting entries
in H[id3..id4] having a value in [id1, id2], where [id3, id4] is defined as before. The case
when a prefix of P aligns as a suffix of a wildcard group can be handled similarly. Note
that the SA ranges of the at most m wildcard group lengths we are interested in can be
determined in O(m log σ) time and stored in O(m logn) bits.

Lemma 13. All Type 2 matches can be reported using O(m log n) bits of working
space in O(m(log σ + min(m, d̂) log k

log log k ) + occ2
log k

log log k ) time.

4.3 Type 3 Matching

Type 3 matches contain at least (portions of) two wildcard groups and therefore must
fully contain at least one text segment. The general idea in previous approaches and in
this paper is to consider this case as an extension of the dictionary matching problem:
text segments contained within P are candidate positions, but we must verify if they can
be extended to a full match of P . However, we execute this idea in an altogether novel
manner that greatly reduces the working space over existing approaches. The complete
details of our approach are given in Algorithm 2. We now highlight the main idea and
give the intuition behind the correctness.

First, suppose that text segment Tj matches P starting at position i. Consider the
conditions that must be satisfied to confirm that this match can be extended to a com-
plete match of P in T . We must verify that (i) P [1..i − 1] can be matched to the text
preceding Tj in T — referred to as the prefix condition — and (ii) P [i+ |Tj|..|P |] can
be matched to the text following Tj in T — referred to as the suffix condition. If both
conditions are verified, we can report that P matches T at position xj − i + 1, where
xj is the start position of Tj in T .

· · ·φ φ · · ·φ φ · · ·φ φ · · ·Tj−1 Tj Tj+1

xj−1 xj xj+1

For working space, we make use of an array W containing d+1 entries (one for each
text segment) of m bits, with all entries set to zero using the constant time initialization
technique [3]. During the course of the algorithm the ith bit of W[j] is set to 1 if the
prefix condition is true for P [1..i − 1] with respect to Tj . There are exactly m stages
of the algorithm (i = 1, . . . ,m) corresponding to the suffixes of P . In a given stage i
we consider each text segment Tj found to be a prefix of the ith suffix of P . To verify
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Algorithm 2. Report Type 3 matches

Input: a string P of length m, its matching statistics w.r.t. SA, SA ranges for all suffixes of P
w.r.t. SA

Output: positions in T matching P , modulo wildcard positions
1: for i = 1 to m do
2: let (q, [a, b]) be the matching statistics for P [i..m]
3: use Algorithm 1 to find indexes (l, r) in BP denoting smallest enclosing text segment

interval for SA range [a, b]
4: while (l, r) is a defined interval in BP do
5: lex id← rank((BP, l)
6: j ← Π [lex id]
7: [ap, bp], [as, bs]← SA range of P [1..i− 1− kj−1] w.r.t SA, SA range of P [i + lj +

kj ..m] w.r.t SA
8: [cs, ds], [cp, dp]← RSA[j − 1], RSA[j + 1]
9: if i ≤ lj−1 + kj−1 then // Case 1: P does not contain Tj−1

10: if kj−1 ≥ i− 1 or [ap, bp] encloses [cp, dp] then
11: if m− i + 1 < lj + kj + lj+1 − 1 then
12: if m− i ≤ lj + kj or [as, bs] encloses [cs, ds] then
13: print match at position xj − i + 1
14: else
15: set (i + lj + kj)

th bit of W[j + 1] to 1
16: else // Case 2: P must contain Tj−1

17: if ith bit of W[j] is set to 1 then
18: if m− i + 1 < lj + kj + lj+1 − 1 then
19: if m− i ≤ lj + kj or [as, bs] encloses [cs, ds] then
20: print match at position xj − i + 1
21: else
22: set (i + lj + kj)

th bit of W[j + 1] to 1
23: (l, r)← enclose(BP, l)

Notation: xj , lj , kj denotes the position, length and wildcard group length (which follows) the
text segment Tj

the prefix and suffix conditions for Tj we first consider (line 9 of Algorithm 2): will
P [1..i − 1] need to fully contain the previous text segment Tj−1 in order to match in
T ? This breaks our algorithm into the two main cases. If not (Case 1), we check the
prefix condition by checking whether P [1..i−1] is compatible with the wildcard group
to its left and the suffix of Tj−1 to which it must align (line 10). If the prefix condition
is satisfied, we consider (line 11): will P [i+ |Tj |..m] need to fully contain the next text
segment Tj+1 in order to match in T ? If not (Case 1a), we check whether the suffix
condition is satisfied by checking that P [i + |Tj|..m] is compatible with the wildcard
group to its right and the prefix of Tj+1 to which it must align (line 12). If indeed the
suffix condition is satisfied, we output a match (line 13). If yes (Case 1b), we set the
(i + lj + kj)th bit of entry W[j + 1] to 1, to indicate that a prefix condition holds for
P [1..i+ lj + kj − 1] with respect to Tj+1 (line 15). The key idea here is that we only
attempt to verify the suffix condition when Tj would be the last text segment to occur
in P (i.e., Case 1a) and if not (Case 1b), we record information in W stating that we
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currently have a partial match, but for it to remain viable, Tj+1 should be a prefix of
P [i+ lj + kj ..m]. Case 2 occurs when P must contain the previous text segment Tj−1

to satisfy the prefix condition (lines 16–22). Since stages of the algorithm proceed with
increasing values of i, then the prefix condition would have been previously checked
and, if satisfied, the ith bit of W[j] would be set to 1. The remaining questions are
answered as before: the suffix condition is verified if possible, and otherwise successful
partial matches are again recorded in W.

Lemma 14. All Type 3 matches can be reported inO(m log σ+γ) time usingO(dm+
m logn) bits of working space.

Combining the results for the 3 types of matching we arrive at our main result.

Theorem 2. Given a text T of length n containing d groups of k wildcards all matches
of a pattern P of length m can be reported using O(dm + m logn) bits of working
space in O(m(log σ + min(m, d̂) log k

log log k ) + occ1 logn + occ2
log k

log log k + γ) time with
an index occupying (2 + o(1))n log σ+O(n) +O(d log n) +O(k log k) bits of space.

5 Conclusions

We have presented a new succinct index for texts containing wildcard characters and
also proposed a new query algorithm that can have a substantially reduced working
space for short query patterns when compared to existing solutions. Ignoring lower
order terms, our index requires (2 + o(1))n log σ + O(n) bits in comparison to that
of Tam et al., [21]—the only other succinct index for this problem—which requires
(3 + o(1))n log σ bits. For alphabets such as proteins (σ = 20) or larger this can result
in a substantially smaller index. However, for small alphabets such as DNA (σ = 4), the
O(n) term becomes quite significant. This term arises from the need to store auxiliary
data structures for determining lcp parent intervals when computing matching statistics
of a query string. Using a solution by Fischer et al., [6] we can store the necessary
lcp information using at most 2n + o(n) bits. This would yield an index of roughly
the same size as Tam et al.,’s; however, it incurs a sublogarithmic slowdown (in n)
when computing parent intervals. Ohlebusch and Gog [18] proposed a solution that
computes parent intervals in constant time (for σ = O(1)) and has been demonstrated
to use between 3n–5n bits in practice [19]. This approach would ensure no slowdown
in query time at the expense of a larger index compared to that of Tam et al., for the
DNA alphabet. In either case, both our index and Tam et al.,’s store a compressed suffix
array for both the text and its reverse. An interesting open question is whether we can
eliminate the suffix array of the reverse text. Doing so would lead to a substantial space
reduction, regardless of alphabet size.

Acknowledgments. The author would like to thank Anne Condon for helpful discus-
sions, detailed feedback and suggestions as well as the anonymous reviewers for their
constructive suggestions to improve the presentation of this manuscript.
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Abstract. We introduce the first self-index based on the Lempel-Ziv
1977 compression format (LZ77). It is particularly competitive for highly
repetitive text collections such as sequence databases of genomes of re-
lated species, software repositories, versioned document collections, and
temporal text databases. Such collections are extremely compressible but
classical self-indexes fail to capture that source of compressibility. Our
self-index takes in practice a few times the space of the text compressed
with LZ77 (as little as 2.5 times), extracts 1–2 million characters of the
text per second, and finds patterns at a rate of 10–50 microseconds per
occurrence. It is smaller (up to one half) than the best current self-index
for repetitive collections, and faster in many cases.

1 Introduction and Related Work

Self-indexes [26] are data structures that represent a text collection in com-
pressed form, in such a way that not only random access to the text is supported,
but also indexed pattern matching. Invented in the past decade, they have been
enormously successful to drastically reduce the space burden posed by general
text indexes such as suffix trees or arrays. Their compression effectiveness is usu-
ally analyzed under the k-th order entropy model [21]: Hk(T ) is the k-th order
entropy of text T , a lower bound to the bits-per-symbol compression achievable
by any statistical compressor that models symbol probabilities as a function of
the k symbols preceding it in the text. There exist self-indexes able to represent
a text T1,n over alphabet [1, σ], within nHk(T ) + o(n log σ) bits of space for any
k ≤ α logσ n and constant α < 1 [10,7].

This k-th order entropy model is adequate for many practical text collections.
However, it is not a realistic lower bound model for a kind of collections that we
call highly repetitive. This is formed by sets of strings that are mostly near-copies
of each other. For example, versioned document collections store all the history
of modifications of the documents. Most versions consist of minor edits on a
previous version. Good examples are the Wikipedia database and the Internet
archive. Another example are software repositories, which store all the versioning
history of software pieces. Again, except for major releases, most versions are
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minor edits of previous ones. In this case the versioning has a tree structure more
than a linear sequence of versions. Yet another example comes from bioinformat-
ics. Given the sharply decreasing sequencing costs, large sequence databases of
individuals of the same or closely related species are appearing. The genomes
of two humans, for example, share 99.9% to 99.99% of their sequence. No clear
structure such as a versioning tree is apparent in the general case.

If one concatenates two identical texts, the statistical structure of the concate-
nation is almost the same as that of the pieces, and thus the k-th order entropy
does not change. As a consequence, some indexes that are exactly tailored to the
k-th order entropy model [10,7] are insensitive to the repetitiveness of the text.
Mäkinen et al. [32,20] found that even the self-indexes that can compress beyond
the k-th order entropy model [31,25] failed to capture much of the repetitiveness
of such text collections.

Note that we are not aiming simply at representing the text collections to offer
extraction of individual documents. This is relatively simple as it is a matter of
encoding the edits with respect to some close sampled version; more sophisti-
cated techniques have been however proposed for this goal [17,18,16]. Our aim
is more ambitious: self-indexing the collection means providing not only access
but indexed searching, just as if the text was available in plain form. Other
restricted goals such as compressing the inverted index (but not the text) on
natural-language text collections [12] or indexing text q-grams and thus fixing
the pattern length in advance [5] have been pursued as well.

Mäkinen et al. [32,20] demonstrated that repetitiveness in the text collections
translates into runs of equal letters in its Burrows-Wheeler transform [4] or
runs of successive values in the Ψ function [11]. Based on this property they
engineered variants of FM-indexes [7] and Compressed Suffix Arrays (CSAs)
[31] that take advantage of repetitiveness. Their best structure, the Run-Length
CSA (RLCSA) still stands as the best self-index for repetitive collections, despite
of some preliminary attempts of self-indexing based on grammar compression [5].

Still, Mäkinen et al. showed that their new self-indexes were very far (by a
factor of 10) from the space achievable by a compressor based on the Lempel-Ziv
1977 format (LZ77) [33]. They showed that the runs model is intrinsically inferior
to the LZ77 model to capture repetitions. The LZ77 compressor is particularly
able to capture repetitiveness, as it parses the text into consecutive maximal
phrases so that each phrase appears earlier in the text. A self-index based on
LZ77 was advocated as a very promising alternative approach to the problem.

Designing a self-index based on LZ77 is challenging. Even accessing LZ77-
compressed text at random is a difficult problem, which we partially solved [16]
with the design of a variant called LZ-End, which compresses only slightly less
and gives some time guarantees for the access time. There exists an early the-
oretical proposal for LZ77-based indexing by Kärkkäinen and Ukkonen [14,13],
but it requires to have the text in plain form and has never been implemented.
Although it guarantees an index whose size is of the same order of the LZ77
compressed text, the constant factors are too large to be practical. Neverthe-
less, that was the first general compressed index in the literature and is the
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predecessor of all the Lempel-Ziv indexes that followed [25,6,30]. These indexes
have used variants of the LZ78 compression format [34], which is more tractable
but still too weak to capture high repetitiveness [32].

In this paper we face the challenge of designing the first self-index based on
LZ77 compression. Our self-index can be seen as a modern variant of Kärkkäinen
and Ukkonen’s LZ77 index, which solves the problem of not having the text
at hand and also makes use of recent compressed data structures. This is not
trivial at all, and involves designing new solutions to some subproblems where
the original solution [14] was too space-consuming. Some of the solutions might
have independent interest.

The bounds obtained by our index are summarized in the following theorem.

Theorem 1. Let T1,n be a text over alphabet [1, σ], parsed into n′ phrases by
the LZ77 or LZ-End parsing. Then there exists an index occupying 2n′ logn +
n′ logn′ + 5n′ log σ+O(n′) + o(n) bits, and able to locate the occ occurrences of
a pattern p1,m in T in time O(m2h+ (m+ occ) logn′), where h is the height of
the parsing (see Def. 3). Extracting any � symbols from T takes time O(�h) on
LZ77 and O(�+h) on LZ-End. The space term o(n) can be removed at the price
of multiplying time complexities by O(log n

n′ ).

As the output of the Lempel-Ziv compressor has n′(2 logn+logσ) bits, it follows
that the index is asymptotically at most twice the size of the compressed text
(for log σ = o(log n); 3 times otherwise).

In comparison, the time complexity of RLCSA is O(m logn + occ log1+ε n),
that is, it depends less sharply onm but takes more time per occurrence reported.

We implemented our self-index over LZ77 and LZ-End parsings, and com-
pared it with the state of the art on a number of real-life repetitive collections
consisting of Wikipedia versions, versions of public software, periodic publica-
tions, and DNA sequence collections. We have left a public repository with those
repetitive collections in http://pizzachili.dcc.uchile.cl/repcorpus.html,
so that standardized comparisons are possible. Our implementations and that of
the RLCSA are also available in there.

Our experiments show that in practice the smallest-space variant of our index
takes 2.5–4.0 times the space of a LZ77-based encoding, it can extract 1–2 million
characters per second, and locate each occurrence of a pattern of length 10 in
10–50 microseconds. Compared to the state of the art (RLCSA), our self-index
always takes less space, less than a half on our DNA and Wikipedia corpus.
Searching for short patterns is faster than on the RLCSA. On longer patterns
our index offers competitive space/time trade-offs.

2 Direct Access to LZ-Compressed Texts

Let us first recall the classical LZ77 parsing [33], as well as the recent LZ-End
parsing [16]. This involves defining what is a phrase and its source, and the
number n′ of phrases.
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Definition 1 ([33]). The LZ77 parsing of text T1,n is a sequence Z[1, n′] of
phrases such that T = Z[1]Z[2] . . .Z[n′], built as follows. Assume we have already
processed T1,i−1 producing the sequence Z[1, p − 1]. Then, we find the longest
prefix Ti,i′−1 of Ti,n which occurs in T1,i−1, set Z[p] = Ti,i′ and continue with
i = i′ + 1. The occurrence in T1,i−1 of prefix Ti,i′−1 is called the source of the
phrase Z[p].

Definition 2 ([16]). The LZ-End parsing of text T1,n is a sequence Z[1, n′]
of phrases such that T = Z[1]Z[2] . . .Z[n′], built as follows. Assume we have
already processed T1,i−1 producing the sequence Z[1, p − 1]. Then, we find the
longest prefix Ti,i′−1 of Ti,n that is a suffix of Z[1] . . . Z[q] for some q < p, set
Z[p] = Ti,i′ and continue with i = i′ + 1.

We will store Z in a particular way that enables efficient extraction of any
text substring Ts,e. This is more complicated than in our previous proposal [16]
because these structures will be integrated into the self-index later. First, the
last characters of the phrases, Ti′ of Z[p] = Ti,i′ , are stored in a string L1,n′ .
Second, we set up a bitmap B1,n that will mark with a 1 the ending positions of
the phrases in T1,n (or, alternatively, the positions where the successive symbols
of L lie in T ). Third, we store a bitmap S1,n+n′ that describes the structure
of the sources in T , as follows. We traverse T left to right, from T1 to Tn. At
step i, if there are k sources starting at position Ti, we append 1k0 to S (k
may be zero). Empty sources (i.e., i = i′ in Z[p] = Ti,i′) are assumed to lie just
before T1 and appended at the beginning of S, followed by a 0. So the 0s in S
correspond to text positions, and the 1s correspond to the successive sources,
where we assume that those that start at the same point are sorted by shortest
length first. Finally, we store a permutation P [1, n′] that maps targets to sources,
that is, P [i] = j means that the source of the ith phrase starts at the position
corresponding to the jth 1 in S. Fig. 1(a) gives an example.

The bitmaps B1,n and S1,n+n′ are sparse, as they have only n′ bits set. They
are stored using a compressed representation [29] so that each takes n′ log n

n′ +
O(n′) + o(n) bits, and rank/select queries require constant time: rankb(B, i) is
the number of occurrences of bit b in B1,i, and selectb(B, j) is the position in
B of the jth occurrence of bit b (similarly for S). The o(n) term, the only one
that does not depend linearly on n′, can disappear at the cost of increasing
the time for rank to O(log n

n′ ) [27]. Finally, permutations are stored using a
representation [23] that computes P [i] in constant time and P−1[j] in time O(l),
using (1 + 1/l)n′ log n′ +O(n′) bits of space. We use parameter l = logn′. Thus
our total space is n′ logn′ + 2n′ log n

n′ + n′ log σ +O(n′) + o(n) bits.
To extract Ts,e we proceed as follows. We compute s′ = rank1(B, s − 1) + 1

and e′ = rank1(B, e) to determine that we must extract characters from phrases
s′ to e′. For all phrases except possibly e′ (where Ts,e could end before its last
position) we have their last characters in L[s′, e′]. For all the other symbols, we
must go to the source of each phrase of length more than one and recursively
extract its text: to extract the rest of phrase s′ ≤ k ≤ e′, we compute its length
as l = select1(B, k) − select1(B, k − 1) (except for k = e′, where the length is
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(a) The LZ77 parsing of the string
‘alabar a la alabarda$’, showing the
sources of each phrase on top. On the
bottom, bitmap B marks the ends of
phrases, the bitmap S marks the start-
ing positions of sources, and the permu-
tation P connects phrases to sources. We
also show array D of depths and (virtual)
array E of ending source positions (these
arrays are exclusive).

(b) Top: The sparse suffix trie. The black
node is the one we arrive at when searching
for ‘la’, and the gray leaves of its subtree
represent the phrases that start with ‘la’.
Left: The reverse trie for the string. The gray
leaf is the node at which we stop searching
for ‘a’. Bottom: The range structure for the
string. The gray dot marks the only primary
occurrence of the pattern ‘ala’ (it is the only
dot in the range defined by the gray nodes).

Fig. 1. Our self-index structure over the example text T = ‘alabar a la alabarda$’

and part of the process of searching for p = ‘ala’

l=e−select1(B, k−1)) and its starting position as t=rank0(S, select1(S, P [k]))=
select1(S, P [k])− P [k]. Thus to obtain the rest of the characters of phrase k we
recursively extract Tt,t+l−1

On LZ-End this method takes time O(e − s + 1) if e coincides with the end
of a phrase [16]. In general, a worst-case analysis [16] yields extraction time
O(e− s+ h) for LZ-End and O(h(e− s+ 1)) for LZ77, where h is a measure of
how nested the parsing is.

Definition 3. Let T = Z[1]Z[2] . . .Z[n′] be a LZ-parsing of T1,n. Then the
height of the parsing is defined as h = max1≤i≤n C[i], where C is defined as
follows. Let Z[i] = Ta,b be a phrase whose source is Tc,d. Then C[b] = 1 and
C[k] = C[(k − a) + c] + 1 for a ≤ k < b.

That is, h measures how many times a character is transitively copied in Z.
While in the worst case h can be as large as n′, it is usually a small value. It
is limited by the longest length of a phrase [15], thus on a text coming from a
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Markovian source it is O(logσ n). On our repetitive collection corpus h is between
22 and 259 for LZ-End, and between 22 and 1003 for LZ77. Its average values,
on the other hand, are 5–25 on LZ-End and 5–176 on LZ77.

Implementation considerations. As bitmaps B and S are very sparse in highly
repetitive collections, we opted for δ-encoding the distances between the consec-
utive 1s, and adding a sampling where we store the absolute values and position
in the δ-codes of every sth bit, where s is the sampling rate. So select consists
in going to the previous sample and decoding at most s δ-codes, whereas rank
requires a previous binary search over the samples.

3 Pattern Searches

Assume we have a text T of length n, which is partitioned into n′ phrases using a
LZ77-like compressor. Let p1,m be a search pattern. We call primary occurrences
of p those overlapping more than one phrase or ending at a phrase boundary;
and secondary occurrences the others. For example, in Fig. 1(a), the occurrence
of ‘lab’ starting at position 2 is primary as it spans two phrases. The second
occurrence, starting at position 14, is secondary.

We will find first the primary occurrences, and those will be used to recursively
find the secondary ones (which, in turn, will be used to find further secondary
occurrences).

3.1 Primary Occurrences

Each primary occurrence can be split as p = p1,i pi+1,m, where the left side p1,i

is a nonempty suffix of a phrase and the (possibly empty) right side pi+1,m is
the concatenation of zero or more consecutive phrases plus a prefix of the next
phrase. To find primary occurrences we partition the pattern into two in every
possible way. Then, we search for the left part in the suffixes of the phrases and
for the right part in the prefixes of the suffixes of T starting at phrase boundaries.
Then, we find which pairs of left and right occurrences are concatenated, thus
representing actual primary occurrences of p.

Finding the Right Part of the Pattern. To find the right side pi+1,m of the pattern
we use a suffix trie that indexes all the suffixes of T starting at the beginning of
a phrase. In the leaves of the trie we store the identifiers of the phrases where
the corresponding suffixes start. Conceptually, the identifiers form an array id
that stores the phrase identifiers in lexicographic order of their suffixes. As we
see later, we do not need to store id explicitly.

We represent the suffix trie as a Patricia tree [22], encoded using a succinct
representation for labeled trees called dfuds [2]. As the trie has at most 2n′ nodes,
the succinct representation requires at most 2n′ log σ + O(n′) bits. It supports
a large number of operations in constant time, such as going to a child labeled
c, going to the leftmost and rightmost descendant leaf, etc. To search for pi+1,m

we descend through the tree using the next character of the pattern, skip as
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many characters as the skip value of the child indicates, and repeat the process
until determining that pi+1,m is not in the set or reaching a node or an edge,
whose leftmost and rightmost subtree leaves define the interval in array id whose
suffixes start with pi+1,m. Fig. 1(b) shows on top this trie, shading the range
[8,9] of leaves found when searching for pi+1,m = ‘la’.

Recall that, in a Patricia tree, after searching for the positions we need to
check if they are actually a match, as some characters are not checked because
of the skips. Instead of doing the check at this point, we defer it for later, when
we connect both searches.

We do not explicitly store the skips, as they can be computed from the trie
and the text. Given a node in the trie corresponding to a string of length l, we go
to the leftmost and rightmost leaves and extract the corresponding suffixes from
their (l+ 1)th symbols. The number s of symbols they share from that position
is the skip. This takes O(sh) time for LZ77 and LZ-End, since the extraction
is from left to right and we have to extract one character at a time until they
differ. Thus, the total time for extracting the skips as we descend is O(mh).

Finding the Left Part of the Pattern. We have another Patricia trie that indexes
all the reversed phrases, stored in the same way as the suffix trie. To find the
left part of the pattern in the text we search for (p1,i)rev in this trie. The array
that stores the leaves of the trie is called rev id and is stored explicitly. The
total space is at most n′ logn′ + 2n′ log σ +O(n′) bits. Fig. 1(b) shows this trie
on the left, with the result of searching for a left part p1,i = ‘a’.

Connecting Both Searches. Actual occurrences of p are those formed by a phrase
rev id[j] = k − 1 and the following one id[i] = k, so that j and i belong to the
lexicographical intervals found with the tries. To find those we use a n′ × n′

range structure that connects the consecutive phrases in both trees. If id[i] = k
and rev id[j] = k − 1, the structure holds a point in (i, j).

The range structure is represented compactly using a wavelet tree [10,19],
which requires n′ logn′ +O(n′ log logn′) bits. This can be reduced to n′ logn′ +
O(n′) [28]. The wavelet tree stores the sequence R[1, n′] so that R[i] = j if
(i, j) is a point (note there is only one j per i value). In O(log n′) time it can
compute R[i], as well as find all the occ points in a given orthogonal range in
time O((occ+ 1) logn′). With such an orthogonal range search for the intervals
of leaves found in both trie searches, the wavelet tree gives us all the primary
occurrences. It also computes any id[i] = rev id[R[i]] + 1 in O(log n′) time, thus
we do not need to store id.

Fig. 1(b) gives an example, showing sequence R at the bottom. It also shows
how we find the only primary occurrence of p = ‘ala’ by partitioning it into
‘a’ and ‘la’.

At this stage we also verify that the answers returned by the searches in the
Patricia trees are valid. It is sufficient to extract the text of one of the occurrences
reported and compare it to p, to determine either that all or none of the answers
are valid, by the Patricia tree properties.
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Note that the structures presented up to now are sufficient to determine
whether the pattern exists in the text or not, since p cannot appear if it does
not have primary occurrences. If we have to report the occ occurrences, in-
stead, we use bitmap B: An occurrence with partition p1,i and pi+1,m found at
rev id[j] = k is to be reported at text position select1(B, k) − i+ 1.

Overall, the data structures introduced in this section add up to 2n′ logn′ +
4n′ log σ +O(n′) bits. The occ primary occurrences are found in time O(m2h+
m logn′ + occ logn′).

Implementation Considerations. As the average value for the skips is usually very
low and computing them from the text phrases is slow in practice, we actually
store the skips using Directly Addressable Codes [3]. These allow storing variable-
length codes while retaining fast direct access. In this case arrays id and rev id
are only accessed for reporting the occurrences.

We use a practical dfuds implementation [1] that binary searches for the child
labeled c, as the theoretical one [2] uses perfect hashing.

Instead of storing the tries we can do a binary search over the id or rev id
arrays. This alternative modifies the complexity of searching for a prefix/suffix
of p to O(mh log n′) for LZ77 or O((m + h) logn′) for LZ-End. Independently,
we could store explicitly array id, instead of accessing it through the wavelet
tree. Although this alternative increases the space usage of the index and does
not improve the complexity, it gives an interesting trade-off in practice.

3.2 Secondary Occurrences

Secondary occurrences are found from the primary occurrences and, recursively,
from other previously discovered secondary occurrences. The idea is to locate all
sources covering the occurrence and then finding their corresponding phrases.
Each copy found is reported and recursively analyzed for sources containing it.

For each occurrence found Ti,i+m−1, we find the position pos of the 0 cor-
responding to its starting position in bitmap S, pos = select0(S, i). Then we
consider all the 1s to the left of pos, looking for sources that start before
the occurrence. For each such S[j] = 1, j ≤ pos, the source starts in T at
t = rank0(S, j) and is the sth source, for s = rank1(S, j). Its corresponding
phrase is f = P−1[s], which starts at text position c = select(B, f − 1)+1. Now
we compute the length of the source, which is the length of its phrase minus one,
l = select1(B, f)−select1(B, f−1)−1. Finally, if Tt,t+l−1 covers the occurrence
Ti,i+m−1, then this occurrence has been copied to Tc+i−t,c+i−t+m−1, where we
report a secondary occurrence and recursively find sources covering it. The time
per occurrence reported is dominated by that of computing P−1, O(log n′).

Consider the only primary occurrence of pattern ‘la’ starting at position 2
in our example text. We find the third 0 in the bitmap of sources at position 12.
Then we consider all 1s starting from position 11 to the left. The 1 at position
11 maps to a phrase of length 2 that covers the occurrence, hence we report an
occurrence at position 10. The second 1 maps to a phrase of length 6 that also
covers the occurrence, thus we report another occurrence at position 15. The
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third 1 maps to a phrase of length 1, hence it does not cover the occurrence
and we do not report it. We proceed recursively for the occurrences found at
positions 10 and 15.

Unfortunately, stopping looking for 1s to the left in S as soon as we find
the first source not covering the occurrence works only when no source contains
another. We present now a general solution that requires just 2n′ + o(n′) extra
bits and reports the occ secondary occurrences in time O(occ log n′).1

Consider a (virtual) array E[1, n′] where E[s] is the text position where the
sth source ends. Then an occurrence Ti,i+m−1 is covered by source s if s ≤ e =
rank1(S, pos) (i.e., s starts at or before i in T ) and E[s] ≥ i+m− 1 (i.e., s ends
at or after i+m− 1 in T ). Then we must report all values E[1, e] ≥ i+m− 1.
Fig. 1(a) shows E on our running example.

A Range Maximum Query (RMQ) data structure can be built on E[1, n′] so
that it (i) occupies 2n′+o(n′) bits of space; (ii) answers in constant time queries
rmq(i, j) = arg maxi≤k≤j E[k]; (iii) it does not access E for querying [8]. We
build such a data structure on E. The array E itself is not represented; any
desired value can be computed as E[s] = t+ l− 1, using the nomenclature given
three paragraphs above, in time O(log n′) as it involves computing P−1[s].

Thus k = rmq(1, e) gives us the rightmost-ending source among those starting
at or before i. If E[k] < i+m− 1 then no source in [1, e] covers the occurrence.
Else, we report the copied occurrence within phrase P−1[k] (and process it re-
cursively), and now consider the intervals E[1, k − 1] and E[k + 1, e], which are
in turn recursively processed with rmqs until no source covering the occurrence
is found. This algorithm was already described by Muthukrishnan [24], who
showed that it takes 2 occ computations of rmq to report occ occurrences. Each
step takes us O(log n′) time due to the need to compute the E[k] values.

In practice: prevLess data structure. The best implemented rmq-based solution
requires in practice around 3n′ bits and a constant but significant number of com-
plex operations [8,9]. We present now an alternative development that, although
offering worse worst-case complexities, in practice requires 2.88–4.08n′ bits and
is faster (it takes 1–3 microseconds in total per secondary occurrence, whereas
just one rmq computation takes more than 1.5 microseconds, still ignoring the
time to compute E[k] values). It has, moreover, independent interest.

In early attempts to solve the problem of reporting secondary occurrences,
Kärkkäinen [13] introduced the concept of levels. We use it in a different way.

Definition 4. Source s1 = [l1, r1] is said to cover source s2 = [l2, r2] if l1 < l2
and r1 > r2. Let cover(s) be the set of sources covering a source s. Then the
depth of source s is defined as depth(s) = 0 if cover(s) = ∅, and depth(s) =
1 + maxs′∈cover(s) depth(s′) otherwise. We define depth(ε) = 0. Finally, we call
δ the maximum depth in the parsing.

In our example, the four sources ‘a’ and the source ‘alabar’ have depth zero,
as all of them start at the same position. Source ‘la’ has depth 1, as it is
contained by source ‘alabar’.
1 Thanks to the anonymous reviewer that suggested it.
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We traverse S leftwards from pos. When we find a source not covering the
occurrence, we look for its depth d and then consider to the left only sources
with depth d′ < d, as those at depth ≥ d are guaranteed not to contain the
occurrence. This works because sources to the left with the same depth d will
not end after the current source, and deeper sources to the left will be contained
in those of depth d. Thus for our traversal we need to solve a subproblem we
call prevLess(D, s, d): Let D[1, n′] be the array of depths of the sources; given a
position s and a depth d, we need to find the largest s′ < s such that D[s′] < d.

We represent D using a wavelet tree [10]. This time we need to explain its
internal structure. The wavelet tree is a balanced tree where each node represents
a range of the alphabet [0, δ]. The root represents the whole range and each leaf
an individual alphabet member. Each internal node has two children that split
its alphabet range by half. Hence the tree has height 	log(1 + δ)
. At the root
node, the tree stores a bitmap aligned to D, where a 0 at position i means that
D[i] is a symbol belonging to the range of the left child, and 1 that it belongs
to the right child. Recursively, each internal node stores a bitmap that refers to
the subsequence of D formed by the symbols in its range. All the bitmaps are
preprocessed for rank/select queries, needed for navigating the tree. The total
space is n′ log δ +O(n′).

We solve prevLess(D, s, d) as follows. We descend on the wavelet tree towards
the leaf that represents d − 1. If d − 1 is to the left of the current node, then
no interesting values can be stored in the right child. So we recursively continue
in the left subtree, at position s′ = rank0(V, s), where V is the bitmap of the
current node. Otherwise we descend to the right child, and the new position is
s′ = rank1(V, s). In this case, however, the answer could be at the left child. Any
value stored at the left child is < d, so we are interested in the rightmost before
position s. Hence v0 = select0(V, rank0(V, s − 1)) is the last relevant position
with a value from the left subtree. We find, recursively, the best answer v1 from
the right subtree, and return max(v0, v1). When the recursion ends at a leaf we
return with answer −1. The running time is O(log δ).

Using this operation we proceed as follows. We keep track of the smallest depth
d that cannot cover an occurrence; initially d = δ+1. We start considering source
s. Whenever s covers the occurrence, we report it, else we set d = D[s]. In both
cases we then move to s′ = prevLess(D, s, d).

In the worst case the first source is at depth δ and then we traverse level by
level, finding in each level that the previous source does not contain the occur-
rence. Therefore the overall time is O(occ(log n′ + δ log δ)) to find occ secondary
occurrences. This worst case is, however, rather unlikely. Moreover, in practice
δ is small: it is also limited by the maximum phrase length, and in our test
collections it is at most 46 and on average 1–4.

4 Experimental Evaluation

From the testbed in http://pizzachili.dcc.uchile.cl/repcorpus.html we
have chosen four real collections representative of distinct applications: Cere
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Fig. 2. Time performance on the four collections. On the left, extraction speed as a
function of the extracted snippet size (higher is better). On the right, time per located
occurrence for m = 10 as a function of the space used by the index, in percentage of
text size (lower and leftwards is better). On the right the points for RLCSA refer to
different sampling rates; for LZ77 and LZ-End the points refer to the 5 variants (LZ5

is leftmost, LZ1 is rightmost).
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Table 1. Space statistics of our texts, giving the size when each symbol is represented
with one, and compression achieved as a percentage of such representation: first public-
domain compressors, then self-indexes

Collection Cere Einstein Kernel Leaders

Size 440MB 446MB 247MB 45 MB

p7zip 1.14% 0.07% 0.81% 1.29%
repair 1.86% 0.10% 1.13% 1.78%
bzip2 2.50% 5.38% 21.86% 7.11%
ppmdi 24.09% 1.61% 18.62% 3.56%

RLCSA 7.60% 0.23% 3.78% 3.32%
RLCSA512 8.57% 1.20% 4.71% 4.20%
LZ775 3.74% 0.18% 3.31% 3.85%
LZ771 5.94% 0.30% 5.26% 6.27%
LZ-End5 6.16% 0.32% 5.12% 6.44%
LZ-End1 8.96% 0.48% 7.50% 9.63%

(37 DNA sequences of Saccharomyces Cerevisiae), Einstein (the version of the
Wikipedia article on Albert Eintein up to Jan 12, 2010), Kernel (the 36 versions
1.0.x and 1.1.x of the Linux Kernel), and Leaders (pdf files of the CIA World
Leaders report, from Jan 2003 to Dec 2009, converted with pdftotext).

We have studied 5 variants of our indexes, from most to least space consuming:
(1) with suffix and reverse trie; (2) binary search on explicit id array and reverse
trie; (3) suffix trie and binary search on rev id; (4) binary search on explicit id
array and on rev id; (5) binary search on implicit id and on rev id. In addition
we test parsings LZ77 and LZ-End, so for example LZ-End3 means variant (3)
on parsing LZ-End.

Table 1 gives statistics about the texts, with the compression ratios achieved
with a good Lempel-Ziv compressor (p7zip, www.7-zip.org), grammar com-
pressor (repair, www.cbrc.jp/~rwan/en/restore.html), Burrows-Wheeler
compressor (bzip2, www.bzip.org), and statistical high-order compressor (ppmdi,
pizzachili.dcc.uchile.cl/utils/ppmdi.tar.gz). Lempel-Ziv and grammar-
based compressors capture repetitiveness, while the Burrows-Wheeler one cap-
tures only some due to the runs, and the statistical one is blind to repetitiveness.
We also give the space required by the RLCSA alone (which can count how many
times a pattern appears in T but cannot locate the occurrences nor extract text
at random), and RLCSA using a sampling of 512 (the minimum space that gives
reasonable times for locating and extraction). Finally we show the most and
least space consuming of our variants over both parsings.

Our least-space variants take 2.5–4.0 times the space of p7zip, the best LZ77
compressor we know of and the best-performing in our dataset. They are also
always smaller than RLCSA512 (up to 6.6 times less) and even competitive with
the crippled self-index RLCSA-with-no-sampling. The case of Einstein is par-
ticularly illustrative. As it is extremely compressible, it makes obvious how the
RLCSA achieves much compression in terms of the runs of Ψ , yet it is unable to
compress the sampling despite many theoretical efforts [20]. Thus even a sparse
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sampling has a very large relative weight when the text is so repetitive. The
data our index needs for locating and extracting, instead, is proportional to the
compressed text size.

Fig. 2 shows times for extracting snippets and for locating random patterns
of length 10. We test RLCSA with various sampling rates (smaller rate requires
more space). It can be seen that our LZ-End-based index extracts text faster
than the RLCSA, while for LZ77 the results are mixed. For locating, our indexes
operate within much less space than the RLCSA, and are simultaneously faster
in several cases. See the extended version [15] for more results.

5 Conclusions

We have presented the first self-index based on LZ77 compression, showing it is
particularly effective on highly repetitive text collections, which arise in several
applications. The new indexes improve upon the state of the art in most aspects
and solve an interesting standing challenge. Our solutions to some subproblems,
such as that of prevLess, may be of independent interest.

Our construction needs 6–8 times the original text size and indexes 0.2–2.0
MB/sec. While this is usual in self-indexes and better than the RLCSA, it would
be desirable to build it within compressed space. Another important challenge
is to be able to restrict the search to a range of document numbers, that is,
within a particular version, time frame, or version subtree. Finally, dynamizing
the index, so that at least new text can be added, would be desirable.
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In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp.
122–130. Springer, Heidelberg (2009)

4. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
TRep. 124, DEC (1994)

5. Claude, F., Fariña, A., Mart́ınez-Prieto, M., Navarro, G.: Compressed q-gram in-
dexing for highly repetitive biological sequences. In: BIBE, pp. 86–91 (2010)

6. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581
(2005)
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Abstract. In genome sequencing there is a trend not to complete the sequence
of the whole genomes. Motivated by this Muñoz et al. recently studied the (one-
sided) problem of filling an incomplete multichromosomal genome (or scaffold)
H with respect to a complete target genome C such that the resulting genomic
(or double-cut-and-join, DCJ for short) distance between H ′ and C is minimized,
where H ′ is the corresponding filled scaffold. Jiang et al. recently extended this
result to both the breakpoint distance and the DCJ distance and to the (two-sided)
case when even C has some missing genes, and solved all these problems in poly-
nomial time. However, when H and C contain duplicated genes, the correspond-
ing breakpoint distance problem becomes NP-complete and there has been no
efficient approximation or FPT algorithms for it. In this paper, we mainly consider
the one-sided problem of filling scaffolds with gene repetitions so as to maximize
the number of adjacencies between the two resulting sequences; namely, given an
incomplete genome I and a complete genome G, both with gene repetitions, fill
in the missing genes to obtain I ′ such that the number of adjacencies between I ′

and G is maximized. We prove that this problem is also NP-complete and present
an efficient 1.33-approximation for the problem. The hardness result also holds
for the two-sided problem for which a trivial factor-2 approximation exists. We
also present FPT algorithms for some special cases of this problem.

1 Introduction

The recent genome sequencing technology makes it possible to sequence more or-
ganisms for genomic analysis. (Throughout this paper, we focus on unichromosomal
genomes, each is represented as a sequence of genes. On the other hand, a multichro-
mosomal genome is represented as sequences of genes.) In practice, the cost of finishing
genome sequencing has not decreased at the same rate compared with the cost of ran-
dom sequencing [2]. Consequently, many genomes released are not completely finished.
Applying these incomplete genomes (scaffolds) for genomic analysis is far from ideal,
as they could easily introduce unnecessary errors.

Hence, a natural combinatorial problem is to fill the missing genes into scaffolds. As
one must find a biologically meaningful way of filling scaffolds, it makes sense to make
use of some complete genomes (from some close species). Muñoz et al. [17] recently

R. Giancarlo and G. Manzini (Eds.): CPM 2011, LNCS 6661, pp. 55–64, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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carried out this idea to fill an incomplete multichromosomal scaffold H to have H ′,
such that the DCJ distance [19, 21] between H ′ and a given (complete) genome C is
minimized. The DCJ (double-cut-and-join) distance is also called rearrangement dis-
tance, which is the minimum number of allowed rearrangement operations transform-
ing one genome into the other. This was called the one-sided scaffold filling problem.
It was shown that the one-sided scaffold filling problem (under the DCJ distance) can
be solved in polynomial time [17].

Subsequently, Jiang et al. considered scaffold filling under the breakpoint distance
and showed that even the two-sided problem (i.e.,C is also incomplete) is polynomially
solvable [13]. With a similar idea they also solved the two-sided scaffolding filling
problem under the DCJ distance in polynomial time. However, when H and C both
have gene repetitions, they proved that even the one-sided problem under the breakpoint
distance is NP-complete [13].

In this paper, we extend our previous research on filling scaffolds with gene repeti-
tions. There are two interesting points regarding this work. First, when there are gene
repetitions, some practical way is missing to define the genomic (say breakpoint) dis-
tance between two genomes G1, G2. (The breakpoint distance for permutations was
defined in [20].) The exemplar genomic distance between G1 and G2 (loosely speak-
ing, the ‘true’ distance when the redundant genes are deleted), while biologically in-
teresting, is too hard to compute [18]. (In fact, unless P=NP, there does not exist any
polynomial time approximation for such a distance even when each gene is allowed
to repeat three times [3, 5] or even two times [1, 15].) The ‘breakpoint’ distance be-
tween G1 and G2 used in [13] is very much the minimum common string partition
between G1 and G2, for which no efficient FPT algorithm is known [6–8, 12, 14, 16].
Here we will use a different similarity measure, namely, the number of (common) ad-
jacencies between G1 and G2, which has been used before in genomic analysis [4].
Not surprisingly, we proved that even the corresponding one-sided problem using this
similarity measure is NP-complete, implying the two-sided problem to be NP-complete
as well. Second, we design a factor-1.33 approximation for the one-sided problem —
filling scaffolds with gene repetitions to maximize the number of adjacencies, improv-
ing upon a trivial factor-2 approximation for the general (two-sided) case. For genomic
problems with gene repetitions, as far as we know, this is the first one which admits
such a small approximation factor.

This paper is organized as follows. In Section 2, we give necessary definitions. In
Section 3, we show the NP-completeness proof for the one-sided scaffold filling prob-
lem when gene duplications are allowed, using the number of adjacencies as the simi-
larity measure. In Section 4, we present a factor-1.33 approximation for this problem.
In Section 5, we discuss FPT algorithms for this problem. In Section 6, we conclude
the paper.

2 Preliminaries

We first present some necessary definitions.
Given alphabet Σ, a string P is called a permutation if each element in Σ appears

exactly once in P . We also use c(P ) = Σ to denote the multiset of elements in permu-
tation P . G is a sequence on Σ if its elements form a multiset of Σ; e.g., G = abcbacd
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with Σ = {a, b, c, d} and c(G) = {a, a, b, b, c, c, d}. From now on, we focus on se-
quences with gene (letter) repetitions. An (unsigned) unichromosomal genome is just a
sequence over Σ.

A scaffold (with gene/letter repetitions) is an incomplete sequence, i.e., with some
missing elements. We use + to denote scaffold filling, e.g., for a sequence A and an
element multisetX , if A∗ is a resulting sequence after filling all the elements in X into
A, then A∗ = A+X . Given two sequencesA and B of length n, if c(A) = c(B), then
A and B are related. Given two related sequences A and B, two consecutive elements
ai and ai+1 in A form an adjacency if they are also consecutive in B (i.e., as aiai+1 or
ai+1ai), otherwise they form a breakpoint. The number of breakpoints in A, which is
equal to that of B, is the breakpoint distance between A and B, denoted as bd(A,B).
Note that our breakpoint definition and the corresponding results all work when the
letters (or genes) are possibly signed.

Given two related permutations P and Q of length n, let the number of breakpoints
in P and Q be b(P,Q) and let the number of adjacencies in P and Q be a(P,Q), then
we have

a(P,Q) + b(P,Q) = n− 1,

moreover, when a(P,Q) = n − 1 then we have P = Q or P is the reversal of Q.
However, when we are given two sequences G1, G2, over the same multiset of letters
(i.e., possibly with duplications of some or all letters), then the latter relation is not
true any more. Example. Let G1 = bcidabeb,G2 = bebcidab, then the number of
adjacencies between G1 and G2 is 7 (which is the maximum), but G1 is not equal
to G2.

The (two-sided) scaffold filling problem is defined as follows.

Scaffold Filling to Maximize the Number of (String) Adjacencies (SF-MNSA)
Input: two incomplete sequences G1 and G2 and two multisets of elements X and Y ,
where X = c(G2) − c(G1) and Y = c(G1) − c(G2).
Question: maximize the number of adjacencies a(G1 +X,G2 + Y ).

Note that if G1 and G2 were related (i.e., c(G2) = c(G2)), then we would have
X = Y = ∅. In the above definition, when either X or Y is empty, we have the one-
sided scaffold filling problem, which is formally defined as follows.

One-sided SF-MNSA
Input: an incomplete sequence I and a complete sequenceG, withX = c(G)−c(I) �=
∅ and Y = c(I) − c(G) = ∅.
Question: maximize the number of adjacencies a(I +X,G).

In the next section we show that the One-sided SF-MNSA problem is NP-complete
which implies that SF-MNSA is also NP-complete.

3 Hardness of SF-MNSA

In this section, we prove that SF-MNSA is NP-complete; in fact, even the One-sided
SF-MNSA problem is NP-complete.

It is easy to see that One-sided SF-MNSA is in NP. We try to make a reduction from
the NP-complete Exact Cover by 3-Sets (X3C) [11]. Recall that the input for X3C is a
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set of 3-sets S = {S1, S2, ..., Sm}. Each set Si contains exactly 3 elements from a base
set X = {x1, x2, ..., xn}, where n = 3q for some integer q. The problem is to decide
whether there are q 3-sets in S which cover each element in X exactly once.

The main idea of our proof is to first show that a special case of X3C, X3C-1, is
NP-complete. X3C-1 has the property that each 3-set Su can share at most one element
with any other 3-set Sv. Then we reduce X3C-1 to One-sided SF-MNSA.

Lemma 1. X3C-1 is NP-complete.

Proof. Again, it is easy to show that X3C-1 is in NP, so we focus on reducing X3C
to X3C-1. Given an X3C instance with 3q elements and m 3-sets, we construct an
instance of X3C-1 with 3q + 6m elements and 5m 3-sets. Assume that we are given a
3-set Su = {xi, xj , xk}, we construct five 3-sets as follows: S′

u = { {xi, yu,1, yu,2},
{xj , yu,3, yu,4}, {xk, yu,5, yu,6}, {yu,1, yu,3, yu,5}, {yu,2, yu,4, yu,6} }. Now in the new
set of 3-sets S′ = ∪uS

′
u for all u, we have 5m 3-sets. Obviously, any pair of 3-sets in S′

share at most one element. If Su = {xi, xj , xk} is selected for a solution for S then we
select {xi, yu,1, yu,2}, {xj , yu,3, yu,4}, and {xk, yu,5, yu,6} as a part of solution for S′.
If Su = {xi, xj , xk} is not selected for a solution for S then we select {yu,1, yu,3, yu,5}
and {yu,2, yu,4, yu,6}.

If the input X3C instance has a solution, one can easily use the selected q 3-sets
(from S) to obtain q + 2m 3-sets to cover the 3q + 6m elements contained in S′.
Now assume that S′ has an exact cover of size q + 2m. First, the base set contains
3q+ 6m elements. By the construction of S′

u, if a solution other than {{xi, yu,1, yu,2},
{xj , yu,3, yu,4}, {xk, yu,5, yu,6}} or {{yu,1, yu,3, yu,5} and {yu,2, yu,4, yu,6}} is se-
lected to cover elements yu,j , j = 1..6, then either we have to cover some elements
more than once or we fail to cover all of the 3q + 6m elements. Then, clearly the
q + 2m 3-sets selected for S′ implies an exact cover of size q for S.

Therefore, we can conclude that the given X3C instance has a solution of size q iff
the constructed X3C-1 instance has a solution of size q + 2m. It is easy to see that this
reduction takes polynomial time. So the lemma is proven. �
Theorem 1. SF-MNSA is NP-complete.

Proof. Following Lemma 1, we reduce X3C-1 to One-sided SF-MNSA. Let the in-
stance of X3C-1 be S = {S1, S2, ..., Sm}. Each set Si contains exactly 3 elements from
a base set Y = {y1, y2, ..., yn}, where n = 3q for some integer q and |Su ∩ Sv| ≤ 1
for all u, v. The problem is to decide whether there are q 3-sets in S which cover each
element in Y exactly once.

Without loss of generality, we assume that both m and 3m − 3q are even, and the
elements in each 3-set Su = {yu1, yu2, yu3} are ordered by the indices of the elements,
i.e., u1 ≤ u2 ≤ u3. Let

Tu = gufuyu1yu2yu3f
′
ug

′
u

and
Mu = g′ufuf

′
ugu.

Let yi appear in all 3-sets of S for a total of ni times (so
∑

i ni = 3m). For each i, we
map each of the ni − 1 copies of yi as a new letter zj , we hence have a total of 3m− 3q
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new zj letters. (Note that zj could be empty — if the corresponding yi appears exactly
once.) Let

Vi = pizip
′
i.

We construct two sequences G, I as follows.

G = r1r2 · · · r3m−3q−1T1T2 · · ·Tm−1TmV1V2 · · ·V3m−3q−1V3m−3q.

I=z1r1z2r2 · · · r3m−3q−1z3m−3qp1p2 · · · p3m−3q−1p3m−3qp
′
1p

′
2 · · · p′3m−3q−1p

′
3m−3q

M1M3 · · ·Mm−1M2M4 · · ·Mm.
Note that in the incomplete sequence I , each yi is missed exactly once. We claim

that there is a solution for the X3C-1 instance iff the maximum number of adjacencies
generated by inserting these missing yi’s back into I is 4q.

‘→’ It is easy to see that if X3C-1 has a solution then we can obtain 4q adjacencies
between G and I ′. To obtain 4q of adjacencies between G and I ′, we simply insert a
triple of elements (yi, yj , yk) such that they are inserted back between fu and f ′

u inMu,
with Su = {yi, yj , yk} being in the X3C-1 solution.

‘←’ Suppose that one can insert the missing yi’s back into I to obtain I ′ such that
there are 4q adjacencies betweenG and I ′, first notice that due to the construction ofG
and I , yi’s have to be inserted in Mj’s, as inserting three missing yi’s anywhere before
M1 can only generate at most 3 adjacencies. Second, due to that any pair of 3-sets have
at most one common element, we cannot insert two yi’s in some Mj and one yi in
some Mk, as that can only generate at most 3 adjacencies. Then, to insert three missing
yi’s (say (yi, yj, yk), ordered by their indices) between fl and f ′

l in Ml to generate 4
adjacencies, we must have Tl = glflyiyjykf

′
lg

′
l , or, in other words, Sl = {yi, yj , yk}.

This results in a solution for X3C-1.
It is easy to see that this construction takes polynomial time. As One-sided SF-

MNSA is a special case of SF-MNFA, the theorem is proven. �
In the next section, we present some approximation algorithms for SF-MNSA.

4 Approximation Algorithms for SF-MNSA

We first show some properties for SF-MNSA, which implies an easy 2-approximation
for SF-MNSA. Then we try to improve the approximation factor to 1.33 for the One-
Sided SF-MNSA problem.

4.1 A 2-Approximation Algorithm for SF-MNSA

Lemma 2. Suppose that k is the optimal solution value for SF-MNSA, then we need to
insert at least 	k/2
 and at most k genes into G1 and G2 when c(G1) ∩ c(G2) �= ∅.

Proof. This lemma follows from the fact that when a missing gene x is inserted intoG1

or G2, at least one adjacency and at most two adjacencies can be formed. �
From the above lemma, it is easily seen that the optimal solutions are obtained in a way,
(1) either a sequence of m missing genes z1, z2, ..., zm are inserted to obtain m+ 1 ad-
jacencies (say y1z1z2 · · · zmy2), (2) or a sequence of l missing genes x1, x2, ..., xl are
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inserted to form l adjacencies (say x1x2 · · ·xly). Note that m, l ≥ 1. We call the corre-
sponding missing genes (and the inserted substrings) type-1 and type-2 respectively.

The above lemma also implies that one can easily obtain a factor-2 approximation
— just make all missing genes type-2 and insert them into G1 and G2. We next show
how to improve this factor to 1.33 for the One-sided SF-MNSA problem.

4.2 A 1.33-Approximation Algorithm for One-Sided SF-MNSA

Recall that in the One-sided SF-MNSA problem, we have input I and G, and we need
to insert the missing genes into I . Let k1 be the number of missing genes inserted. (By
Lemma 2, 	k/2
 ≤ k1 ≤ k.) Let bi be the number of new adjacencies obtained in an
optimal solution, subtract by the total length of inserted substrings (of type-1 missing
genes) of length i. (Example, I = abcd, G = acbacd, and we need to insert two type-1
substrings of length one: a and c. Four new adjacencies are formed, so b1 = 4−2 = 2.)
Then we have,

Lemma 3. Suppose that OPT = k is the optimal solution value for One-sided SF-
MNSA, then

OPT = k1 + b1 + b2 + · · · + bq ≤ 4
3
(k1 + b1/2 + b2/4).

Proof. By definition,OPT = k1+b1+b2+· · ·+bq. As each inserted substring counted
in bj has j genes for j ≥ 3 and following Lemma 2, b3+b4+ · · · bq ≤ 1

3 (k1−b1−2b2).
Hence,

OPT ≤ 4
3
(k1 + b1/2+ b2/4). �

From Lemma 3, it is easy to see that our algorithm hinges on approximating b1/2+b2/4,
which uses a greedy idea. The algorithm goes as follows. At Step 1, for each missing
gene a to be inserted into I , we use a greedy method to scan from left to right to find a 2-
substring cd in I such that the insertion of a results in a 3-substring cad which contains
two adjacencies 〈ca〉 and 〈ad〉. At Step 2, for each pair of missing genes x, y to be
inserted into I , we scan in I , again left to right, to find whether there is a 2-substring
wz such that x, y can be inserted into it to obtain three adjacencies, i.e., either 〈wxyz〉
or 〈wyxz〉. We insert all such pairs of missing genes, in a greedy fashion, into I . At
Step 3, we insert the remaining missing genes in an arbitrary fashion into I , provided
that each inserted missing gene generates one adjacency.

We have the following lemma regarding this greedy algorithm.

Lemma 4. Let b′1, b′2 be the number of new adjacencies subtracted by the total number
of missing genes inserted at Step 1 and Step 2 of our greedy algorithm respectively.
Then b′1 + b′2 ≥ b1

2 + b2
4 .

Proof. Let k′1, k′2 be the number of missing genes inserted at Step 1 and Step 2 respec-
tively. (So b′1 = k′1 and b′2 = k′2/2.) First, note that each of the k′1 inserted missing
genes can destroy at most two type-1 adjacencies and at most two type-1 2-substrings
in an optimal solution. Let b′11 be the number of missing genes inserted at Step 1 which



Filling Scaffolds with Gene Repetitions 61

destroy exactly two type-1 adjacencies in some optimal solution. Let b′12 be the number
of missing genes inserted at Step 1 which destroy one type-1 adjacency and one type-1
2-substring in some optimal solution. Let b′13 be the number of missing genes inserted
at Step 1 which destroy exactly two type-1 2-substrings in some optimal solution. Ob-
viously,

k′1 = b′1 = b′11 + b′12 + b′13.

We show an example for a, one of the b′13 inserted missing genes that destroy two type-
1 2-substrings in OPT (i.e., counted into b2). Let G = · · ·αaβ · · · γabδ · · ·αuvβ · · ·
and let I = α · · ·αβ · · · γδ · · ·β · · · a · · ·. We need to insert a, b, u, v into I . Due to
the greedy fashion of the algorithm, a is inserted between α, β in I (destroying the
possibility of inserting uv at the same location). On the other hand, due to the insertion
of a (instead of ab), ab cannot be inserted in between γ and δ.

Next, we need to show that at Step 2, each of the inserted type-1 2-substrings can
destroy at most three type-1 2-substrings in some optimal solution. This is again easy to
see. Suppose that we need to insert xy into I to obtain three adjacencies 〈αxyβ〉. Due
to the greedy fashion something else (like uv) are inserted between α, β instead. Then
xw and yz could be destroying two other locations for the optimal insertion of type-2
2-substrings.

Now, putting all together,
b1 ≤ 2b′11 + b′12,

and
b2 ≤ 3b′2 + b′12 + 2b′13.

Then

b1
2

+
b2
4

≤ 2b′11 + b′12
2

+
3b′2 + b′12 + 2b′13

4

= (b′11 +
3b′12
4

+
b′13
2

) +
3b′2
4

≤ b′1 + b′2 �
From the above lemma, we have the following theorem.

Theorem 2. There is a greedy algorithm which approximates One-sided SF-MNSA
with a factor of 1.33.

Proof. Following the greedy algorithm and Lemma 4, we have the approximation solu-
tion value APP, which satisfies the following inequalities.

APP = k1 + b′1 + b′2

≥ k1 +
b1
2

+
b2
4

≥ 3
4
OPT

= OPT/1.33

So the theorem is proven. �
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5 Exact Algorithms for Some Variants of One-Sided SF-MNSA

In the previous section, we design a factor-2 approximation for SF-MNSA and a factor-
1.33 approximation for One-sided SF-MNSA. In practice, it might be interesting to
solve SF-MNSA with exact algorithms.

An FPT (Fixed-Parameter Tractable) algorithm for a decision problemΠ with input
parameters k1, · · · , ki is an algorithm which solves the problem in O(f(k1, · · · , ki)nc)
= O∗(f(k1, · · · , ki)) time, where f is any function only on k1, · · ·, ki, n is the input
size and c is some fixed constant not related to k1, · · · , ki. For convenience we also say
that Π is in FPT. More details on FPT algorithms can be found in [9, 10].

Unfortunately, we do not know how to design an FPT algorithm only parameterized
on k (i.e., the maximum number of adjacencies), even for the One-sided SF-MNSA prob-
lem. This makes an interesting open question. In the following, we present two simple
FPT algorithms for two practical variants of One-sided SF-MNSA. While not trying to
claim too much credits for these simple algorithms, we hope that these algorithms could
help shed light on answering the open question. On the other hand, these two variants
are closely related to computational genomics, hence are meaningful practically.

5.1 FPT Algorithm for One-Sided d-SF-MNSA

Firstly, in d-SF-MNSA each gene in G1 or G2 only appears at most d times. So for
One-sided d-SF-MNSA each gene in I,G appears at most d times. Then, let us assume
that we need to insert an x into I . Certainly, we hope to insert x into I to obtain at least
one adjacency xy (or yx). Now let us look at G, as x appears in G at most d times, x
has at most 2d neighbors (at least one of them should be y). As we have no information
on what the right y should be, we have to try over all such (at most) 2d possibilities in
I for each inserted x. Since we might have to insert a total of k letters, the running time
is

O∗(((2d) × (2d))k) = O∗((2d)2k).

Theorem 3. One-sided d-SF-MNSA can be solved in O∗((2d)2k) time.

5.2 FPT Algorithm for One-Sided SF-MNSAc

In SF-MNSAc, each gene is selected from a set of c letters Σ. For One-sided SF-
MNSAc, the algorithm is similar to that of One-sided d-SF-MNSA, with a simple twist.
Assume that one needs to insert a missing x into I to obtain some adjacency xy (or
yx), one just needs to find the neighbors of x in G. It is easy to see that if we have two
substrings xy’s in G then we can match either one of them with the intended adjacency
xy (introduced due to the insertion of x in I). As Σ contains only c letters, we could
have c choices for the intended adjacencies xy (resp. yx). When we insert x into I , we
also have c possibilities to obtain xy. Therefore, we need to try over all such (at most)
c2 possibilities for each inserted x. By Lemma 2, we need to insert at most k genes into
I , so the running time of the algorithm is

O∗(c2k).

Theorem 4. One-sided SF-MNSAc can be solved in O∗(c2k) time.
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6 Concluding Remarks

In this paper, we extend the scaffold filling problem when gene repetitions are allowed.
We use the number of adjacencies between two genomes as the similarity measure.
It is not surprising that this SF-MNSA problem is NP-complete. A very interesting
open problem is whether one can improve the factor-2 approximation for SF-MNSA.
Another open problem is whether an FPT algorithm only parameterized on k exists for
the (One-sided) SF-MNSA problem. Finally, in reality when inserting missing genes
we cannot insert them inside some important contigs (i.e., we cannot insert missing
genes anywhere as we want), but we do not know how to handle this problem. Some
algorithms in [13] have the same problem and more study is needed along this line.
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Abstract. In this paper we extend previous work on Unique Maximal
Factorization Families (UMFFs) and a total (but non-lexicographic) or-
dering of strings called V-order. We describe linear-time algorithms for
string comparison and Lyndon factorization based on V-order. We pro-
pose extensions of these algorithms to other forms of order.

1 Introduction

This paper presents algorithms for a generalization of Lyndon words known as
circ-UMFFs; that is, families of strings which permit the unique maximal factor-
ization of any given string [7,8,10]. For over half a century, both the combinatorics
and algorithmics of Lyndon words have been studied extensively [3,14,17,20].
Lyndon words have been applied in tackling a surprisingly wide range of prob-
lems: the Burrows-Wheeler Transform and data compression [2,15], musicology
[1], bioinformatics [13], cryptanalysis [18], string combinatorics [16,20], and free
Lie algebras [19]. We therefore study UMFFs as generalizations of Lyndon words
in order to extend the range of applications. UMFFs can be characterized by
the following simple lemma:

Lemma 1 ([7]). A set W of strings over an alphabet Σ with Σ ⊆ W is an
UMFF if and only if xy,yz ∈ W and y nonempty imply xyz ∈ W.

Definition 1 ([8,10]). Let x denote a string over an alphabet Σ.

∗ If for some positive integer k, x = w1w2 · · ·wk, where every (nonempty)
factor wi, 1 ≤ i ≤ k, is an element of some set W, then w1w2 · · ·wk is said
to be a factorization of x over W, written FW(x).
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∗ W is a factorization family (FF) if for every nonempty x, there exists a
factorization FW(x).

∗ An FF W is a unique maximal factorization family (UMFF) if, in the
factorization of every x, no factor wi ∈ W can be extended to left or to right
so that the extension w′

i ∈ W. That is, W satisfies Lemma 1, and thus each
factor in a factorization is maximal.

∗ An UMFF W is a circ-UMFF if it contains exactly one rotation of every
primitive x.

As shown in [7,8], for a circ-UMFF W , the factors wi of every x satisfy an
UMFF-order >W , which is a total order over all the elements of W , such that

w1 ≥W w2 ≥W · · · ≥W wk. (1)

Thus, by virtue of its defining properties, a circ-UMFF satisfies, in terms of
UMFF-order, an analogue or generalization of the Lyndon factorization theorem
[3], which guarantees that the Lyndon words L, in terms of lexicographic order
(lexorder), provide a unique maximal factorization (1) of every string x. In
other words, L is an example of a circ-UMFF W , raising the possibility that
other orderings of the strings x ∈ Σ+ may yield alternative circ-UMFFs distinct
from L (as in fact described in [7]).

In particular, we consider here the V -word circ-UMFF first introduced in [7].
Whereas Lyndon words are defined using lexorder, the V -word circ-UMFF is
defined using V -order [4,6] (see below). Hence the analogues of Lyndon words
are known as V -words, which are ordered according to a simple extension of
lexorder called lexextension, a combination of lexorder and V -order.

The Lyndon factorization for both RAM and PRAM algorithms has linear
complexity [5,12,14,20]. We match this linear complexity for sequential string
factorization over the V-word circ-UMFF. Our novel algorithm requires that
substrings u,v are compared, not in lexorder, but in V-order. We also achieve
string comparison using V-order in linear time, using a method based on the
current longest common suffix of the substrings u,v and implemented using a
simple doubly-linked list.

Hence we have distinct methods for string factorization. Once a string has
been decomposed over a circ-UMFF, say the Lyndon words, the factors are
then maximal and thus final. Given an alternative circ-UMFF, say V -words, the
Lyndon factors can be re-factored allowing for deeper burrowing into the string,
for example yielding a subsequence of V -word prefixes, suffixes or substrings of
all the Lyndon factors. Thus, in a natural way, algorithms for additional circ-
UMFFs may lead to computing further subsequences of interest.

Designing these algorithms also suggested new combinatorial results for V -
order and V -words. We compare and contrast the ordering of words in lexorder
with that of V -order. We show, for instance, that any subsequence of a string
precedes the string in V -order, but of course this is not necessarily true in lex-
order. While similar to the co-Lyndon circ-UMFF [10], the V -word alphabet is
in reverse order to that of the defining V -order.
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V -order is defined using a star tree of letter deletions as follows. Let Σ be
a totally ordered alphabet, and let u = u1u2...un be a string over Σ. Define
h ∈ {1, . . . , n} by h = 1 if u1 ≤ u2 . . . ≤ un; otherwise, by the unique value such
that uh−1 > uh ≤ uh+1 ≤ uh+2 ≤ ... ≤ un. Let u∗ = u1u2...uh−1uh+1...un,
where the star * indicates deletion of the “V” letter uh. Write us∗ for (...(u∗)∗...)∗

with s ≥ 0 stars1. Let L = max{u1, u2, ..., un} and let k = kL be the number of
occurrences of L in u. Then the sequence u,u∗,u2∗, ... ends Lk, . . . ,L2,L1,L0 =
ε. In the star tree each string u over Σ labels a vertex, and there is a directed
edge from u to u∗, with ε as the root.

Definition 2. We define the V -order ≺ between distinct strings u,v. Firstly
u � v if v is in the path u,u∗,u2∗, ..., ε. If u,v are not in a path, there are
smallest s, t with u(s+1)∗ = v(t+1)∗. Put c = us∗ and d = vt∗, then c �= d but
length c = length d = m say. Let j be the greatest i in 1 ≤ i ≤ m such that
c[i] �= d[i]. If c[j] < d[j] in Σ then u ≺ v. Clearly ≺ is a total order.

Surprisingly, although V-order is not immediately intuitive, it gives rise to V-
words which have analogous structure to Lyndon words, as shown in the following
example.

Example 1. Let Σ = {a < b < c < d}, and the string s = cbaabdcba. Then
the Lyndon factorization of s is c ≥L b ≥L aabdcb ≥L a, while the V-word
factorization is cbaab ≥V dcba.

2 String Comparison

In this section we discuss the comparison in V-order of two finite strings that, to
avoid trivialities, we suppose to be not equal. First we describe a new algorithm
to do V-order comparisons of strings in worst-case time linear in their lengths,
thus asymptotically the same as comparisons in lexorder. We then go on to
prove new combinatorial results related to the V-order comparison of strings
that suggest the possibility of an alternative linear-time V-order comparison
algorithm. We suppose throughout that x is defined on a finite ordered alphabet
Σ of size σ = |Σ|. If a string x is less than a string y in lexorder, we write x < y
and y > x; if x is less than y in V-order, we write x ≺ y and y � x.

In order to simplify the description of our algorithm, we suppose without loss
of generality that the letters λ ∈ Σ are drawn from the first σ natural numbers.
We represent strings x = x[1..n] using added sentinel positions x[0] and x[n+1]
for processing convenience. At each position i ∈ {1, . . . , n} we define a triple
(λ, left, right), where λ is the letter at position i, left = i−1, and right = i+1; for
i = 0, (λ, left, right) = (σ+1,−1, 1) and for i = n+1, (λ, left, right) = (σ+1, n, n+2).
The elements of the triple at position i are denoted x[i].λ, x[i].left, and x[i].right.
Thus we represent x as a linked list to facilitate the deletion of positions in x
required to locate parent nodes in the star tree used to define V-order. Note that
1 Note that this star operator, as defined in [6] and [7], is distinct from the Kleene

star operator.
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the linked list operations (for the left- and right-pointers) consist of increment,
decrement and read, which can be implemented in constant time.

We suppose that two unequal strings x1 and x2 are given, both defined on Σ,
of lengths n1 > 0 and n2 ≥ n1 respectively. We describe a Θ(n2)-time algorithm
to solve the following problem:

(P1) Determine whether x1 ≺ x2 or x1 � x2.

— Left-extend the suffix of nondecreasing letters, then delete.
— Position i is next right of the deleted position δ.

function delete(x, i) : x, i, δ
prev← x[i].left
while x[i].λ ≥ x[prev].λ do

i← prev; prev← x[i].left
δ ← i; i← x[δ].right
x[i].left← prev; x[prev].right← i

— Perform n2−n1 successive deletions.
function reduce(x2, n2, n1) : x2, i2
i2 ← n2+1
for j ← 1 to n2−n1 do

(x2, i2, δ)← delete(x2, i2)

Fig. 1. Reduction of x2 to n1 letters

Recall that in order to compare two strings in V-order, it is necessary first to
identify a common ancestor v (perhaps the empty string ε) in the star tree, and
then to compare the children of v. The common ancestor is found by performing
iterated deletes in the given strings according to the following rule:

Delete the letter at the rightmost position i ∈ {1, . . . , n} of x such that
x[i] ≤ x[i+1] and x[i] < x[i−1]. (Note that the sentinel positions 0 and
n+1 ensure the correct application of this rule.)

Since no comparison can be made until x2 is reduced to the same length as x1,
we begin by performing n2−n1 deletions from x2, as shown in Figure 1. Then we
continue by performing single deletions from both x1 and x2, checking at each
step to determine whether or not the current deletion has made the reduced x1

equal to the reduced x2. To facilitate this checking, we introduce the idea of
the longest matching suffix (LMS): the longest suffix of the reduced x1 that
matches a suffix of the reduced x2. Of course LMS is a subsequence (possibly
empty) of both x1 and x2; it is useful to identify the leftmost position in LMS
as LMS-�, and the position immediately to the left of LMS-� as LMS-��. Clearly,
when LMS(x1,x2) equals the length of the reduced strings, the common ancestor
of x1 and x2 in the star tree has been found (ε when LMS is empty). We make
the following observations:
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— Recompute the positions �1, �2 that define LMS-�.
function LMS(x1, �1, x2, �2) : �1, �2
i1 ← x1[�1].left; i2 ← x2[�2].left
while x1[i1].λ = x2[i2].λ and i1 > 0 do

i1 ← x1[i1].left; i2 ← x2[i2].left
�1 ← x1[i1].right; �2 ← x2[i2].right

— Determine whether or not x1 ≺ x2.
function prec(x1, n1, x2, n2) : boolean
(x2, i2)← reduce(x2, n2, n1)
(�1, �2)← LMS(x1, n1+1, x2, n2+1)
— Since x1 �= x2, x1[�1].left = 0 implies that x1 lies
— on the upward path from x2 in the star tree.

if x1[�1].left = 0 then return TRUE

i1 ← n1+1 — i2 already set by reduce(x2, n2, n1)
repeat

(x1, i1, δ1)← delete(x1, i1); (x2, i2, δ2)← delete(x2, i2)
— Remark 2: possibly LMS-� was deleted in at least
— one of x1, x2; if so, shift LMS-� right in both x1, x2.

if δ1 = �1 or δ2 = �2 then
�1 ← x1[�1].right; �2 ← x2[�2].right

— Remark 3: possibly LMS-�� was deleted in one
— of x1, x2, while LMS-� was not deleted in either.

elsif �1 = i1 or �2 = i2 then
(�1, �2)← LMS(x1, �1, x2, �2)

until x1[�1].left = 0 — (x1[�1].left = 0 ⇔ x2[�2].left = 0)
— V-order is determined by the lexorder of the last deleted letters.

if x1[δ1].λ < x2[δ2].λ then
return TRUE

else
return FALSE

Fig. 2. Match the reduced x1 and x2 to compare x1 : x2

Remark 1. A position (not LMS-�) of x1 (respectively, x2) is deleted within
LMS(x1,x2) if and only if the corresponding position (also not LMS-�) within
x2 (respectively, x1) is also deleted. In this case LMS cannot be extended to the
left, but is reduced in length by one.

Remark 2. LMS cannot be extended to the left if either LMS-� is deleted in
either x1 or x2 or positions left of LMS-�� are deleted in both x1 and x2. In
the latter case, LMS is unchanged; in the former it is reduced in length by one.

Remark 3. The LMS may possibly (but not necessarily) be extended to the left
only if either LMS-�� is deleted in both x1 and x2 or LMS-�� is deleted in x1

(respectively, x2) and a position left of LMS-�� is deleted in x2 (respectively, x1).

These are the essential facts exploited in the function prec (Figure 2) that returns
TRUE or FALSE depending on whether or not x1 ≺ x2.
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Lemma 2. Procedure prec executes in time and space linear in |x2|.

Proof. We consider the efficiency of function prec. In terms of space, prec re-
quires only three storage locations for each position in x1 and x2, namely the
triple (λ, left, right), in addition to constant space for variables and program stor-
age; thus its space requirement is Θ(n1+n2) = Θ(n2). To estimate time usage,
first consider the function delete. This function may left-extend the current suf-
fix of nondecreasing letters, but the deleted position is always at the left end of
the suffix. It follows that over all the executions of delete (at most n1 +n2 of
them), each position in x1 and x2 is visited at most twice, with constant-time
processing corresponding to each visit. These visits comprise either the scanning
of letters from right to left, or, while re-scanning from left to right, a deletion.
(Any deletions within LMS are achieved by the function delete that updates
the linked list in constant time.) Similarly, the calls to function LMS (at most
n1 altogether) go from right to left without backtracking, and so each position
is visited at most once, each with constant-time processing. We conclude that
the time requirement for prec is Θ(n1+n2); that is, linear in the lengths of the
compared strings. �

In order to describe our combinatorial results, we let L denote the largest letter
of Σ that actually appears in a string x, and suppose that L occurs in x with
frequency k > 0. The V-form of x is then defined as

Vk(x) = x = x0Lx1L · · ·xk−1Lxk, (2)

for possibly empty xi, i = 0, 1, . . . , k. Observe that if L1 is the second largest
letter in x, then V-form can be recursively (and independently) applied to each
xi that includes L1 with frequency k1 > 0:

Vk1 (xi) = xi,0L1xi,1 · · ·xi,k1−1L1xi,k1 .

Denote by AT (x) the set of ancestors of x in the star tree, and by Aj(x) the
jth ancestor, 0 ≤ j ≤ |x| (the zeroth ancestor is x itself, the |x|th ancestor is
the empty string ε).

Lemma 3. If Vk(x) = x0Lx1L · · ·xk−1Lxk, then

Atj (x) = xT
0 LxT

1 · · ·xT
k−1LxT

k ,

where j ∈ 0..k, tj = |xj |+|xj+1|+· · ·+|xk|, and

xT
h = xh for 0 ≤ h < j,

= ε for j ≤ h ≤ k.

Thus At0(x) = Lk, while for j ≥ 1, Atj (x) has suffix Lk−j+1 and Atj−1 (x) =
A|xj−1|(Atj (x)).
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The next lemma is an extension of result (C) in [7, Section 4], stated but not
explicitly proved. It provides the interesting insight that if v is any proper sub-
sequence of x, then v ≺ x.

Lemma 4. Given a string x of length n, let v = x[i1]x[i2] · · ·x[ir] for 1 ≤ i1 <
i2 < · · · < ir, 0 ≤ r < n. Then v ≺ x.

Proof. Write Vk(x) as in (2) and observe that if v includes j occurrences of L,
0 ≤ j < k, then v must have ancestor Lj in the star tree but no ancestor Lk.
Thus in this case v ≺ x.

Suppose then that j = k and write Vk(v) = v0Lv1L · · ·vk−1Lvk, also in V-
form (2). Since |v| < |x|, it follows that there is some least integer k′ ∈ 0..k such
that |vk′ | < |xk′ |, hence that v has ancestor

Ask′ (v) = xT
0 LxT

1 L · · ·xT
k−1LxT

k , (3)

where sk′ = |vk′ |+|vk′+1|+· · ·+|vk|, and

xT
h = xh for 0 ≤ h < k′,

= ε for k′ ≤ h ≤ k.

Then Ask′ (v) = zLk−k′
for some string z that either is empty or has suffix L.

On the other hand, we know from Lemma 3 that x has ancestor

Atk′ (x) = xT
0 LxT

1 L · · ·xT
k−1LxT

k , (4)

where tk′ = |xk′ |+|xk′+1|+· · ·+|xk| > sk′ . Comparing (3) and (4), we see that
Ask′ (v) = Atk′ (x) is a common ancestor of v and x, whereas v = Ask′−|vk′ | =
zvk′Lk−k′

and x = Atk′−|xk′ | = zxk′Lk−k′
are distinct. It follows that v ≺ x

(with |v| < |x| and largest letter L) if and only if vk′ ≺ xk′ (with |vk′ | < |xk′ |
and largest letter L1 < L), and so to prove the lemma we need only consider
the proper substrings vk′ and xk′ . We can therefore continue recursively, at each
stage replacing v/x-strings by proper v/x-substrings in which every letter is less
than the largest letter occurring in the preceding stage. Since x is finite, and
since the v-substring is always shorter than the x-substring, it must at some
stage be true that the occurrences of the current largest letter in the v-substring
are fewer than its occurrences in the x-substring. Hence v ≺ x, as required. �

We conclude this section by stating a lemma from [7] which we apply in the
design of the V-word factorization algorithm VF.

Lemma 5. Given distinct strings v and x with corresponding V-forms

v = v0Lvv1Lv · · ·vj−1Lvvj , x = x0Lxx1Lx · · ·xk−1Lxxk,

let h ∈ 0..max(j, k) denote the least integer such that vh �= xh. Then v ≺ x
(respectively, v � x) if and only if one of the following conditions holds:
(a) Lv < Lx (respectively, Lv > Lx);
(b) Lv = Lx and j < k (respectively, j > k);
(c) Lv = Lx and j = k and vh ≺ xh (respectively, vh � xh).
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3 Lyndon-Like Factorization

If a string x = uv, then vu is said to be a rotation (cyclic shift) of x, specifically
the | u |th rotation R|u|(x), where | u |∈ {0, . . . , | x |}. Note that R0(x) =
R|x|(x). Then a string x of length n is a V-word iff x ≺ Ri(x) for every i ∈
{1, . . . , n− 1}; that is, iff x is the unique minimum in V-order over all rotations
of x. Clearly no V-word can be a repetition. For given x, not a repetition, we
write VW(x) to denote the rotation of x that is its V-word. Notice that the
V-form (2) of a V-word x must, by the properties of V-order, begin with the
largest letter L in x. Thus in (2) x0 = ε, and VW(x) must take the form

Lx1 · · ·Lxk−1Lxk. (5)

Accordingly the k rotations of (5) (those commencing Lx1,Lx2, . . . ,Lxk) are the
only ones that need to be considered in order to determine VW(x). This means
that we seek the minimum rotation of X = x1x2 · · ·xk, say Z = z1z2 · · · zk,
where the individual components xi and zi, 1 ≤ i ≤ k, are compared in V-
order, while X and Z are compared in the lexorder of the components. (For this
comparison we need to interpret xi = ε as a least string in V-order.) As noted
in the introduction, this hybrid order is called the lexextension of V-order ≺,
here denoted by <V . More formally:

Definition 3 ([7]). Let u1,u2, ...,um and v1,v2, ...,vn be given strings over
Σ, and let u = u1u2...um and v = v1v2...vn. Then the lexicographic extension
≺LEX order is defined as:
u ≺LEX v if either u is a proper prefix of v, that is ui = vi for 1 ≤ i ≤ m < n,
or ui = vi for 1 ≤ i < m and ui+1 ≺ vi+1.

In other words u1u2...um ≺ v1v2...vn in the lexicographic order of strings,
using not < but ≺.

Hence, as shown in [7]:

Lemma 6. (a) The string (5) is a V-word iff x1x2 · · ·xk is a Lyndon word
under lexextension; (b) The V-words form a circ-UMFF V.

Example 2. If Σ = {1 < 2 < 3 < 4}, then the V -ordering of all rotations of the
string 13142 is 42131 ≺ 14213 ≺ 31421 ≺ 13142 ≺ 21314. Hence 13142 is not a
V -word, while 42131 is a V -word.

Example 3. Consider the string s = 55542131514213531421621314613142. From
Definition 3 and Example 2, the factorization of s into V-words is
55542131514213531421≥V 621314 ≥V 613142.

Thus, denoting by VF(x) the factorization of x into V-words, we have

(P2) Given a nonempty string x on a finite ordered alphabet Σ, compute
VF(x).
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In the remainder of the paper we consider the computational problem (P2).
In order to compute VF(x), we need to identify the unique subset of V-words
wj , j = 1, 2, ..., J , such that x = w1w2 · · ·wJ and wj ≥V wj+1 for every
j ∈ {1, . . . , J−1}. The following lemmas make clear that the order <V is not
always the same as V-order ≺:

Lemma 7 ([7]). Given letters λ, μ ∈ Σ, λ ≺ μ⇐⇒ μ >V λ.

Lemma 8. For any strings u and v ≺ w defined on Σ, all with maximum letter
less than L, Luv <V Luw.

Proof. By Lemma 6 both Luv and Luw are V-words. The result is immediate
for u = ε, and for v = ε it follows from the corresponding result for prefixes of
general circ-UMFFs [8]. It suffices therefore to show that uv ≺ uw for nonempty
u and v. The proof is by induction. Suppose first that u is a single letter λ < L,
and consider the sequence of deletions in the star tree that yields a common
ancestor z of λv and λw. Three outcomes are possible: z has prefix μ > λ,
z = ε, and z has prefix λ. In the first of these cases, the prefix λ has been
deleted on both upward paths (from λv and from λw) in the star tree, and so
therefore at some point λ was the strictly least letter remaining in each of the
reduced strings. Thus apart from the deletion of λ, the deletions from λv and λw
are the same as they would have been from v and w, and so λv ≺ λw. Consider
the second case. Since z = ε, the previous deletions were from strings consisting
of single letters, α, β say, where distinct α, β are maximal letters in λv, λw
respectively. Suppose that one of α, β is equal to λ, for otherwise the previous
argument applies. If β = λ, then α > λ contradicting v ≺ w. If α = λ, then
β ≥ λ, and due to distinctness, α < β as required. In the third case, z = λz∗,
where z∗ is the root for v and w, and therefore at the deciding positions on
the two paths below the root, the same letters determine λv ≺ λw that also
determine v ≺ w. Thus the lemma holds for a single letter λ.

Suppose now that the lemma holds for every prefix u of length � ≥ 1, and
consider a prefix u of length �+1. Here there are two cases to consider: either
the common ancestor z of uv and uw has prefix u, or not. If so, then u has
played no role in the decision, and v ≺ w =⇒ uv ≺ uw. If not, there exist an-
cestors u′v∗ and u′′w∗ of uv and uw, respectively, such that |u′| = |u′′| = �.
In fact, since the first letter deleted from u must be the same in both cases, we
see moreover that u′ = u′′, and we can conclude therefore from the inductive
assumption that u′v ≺ u′w, hence that uv ≺ uw, as required. �

Figure 3 gives pseudocode for a linear-time algorithm VF to solve (P2), based
on Duval’s Lyndon factorization algorithm [14] as presented in [20]. Algorithm
VF essentially considers two adjacent substrings of x[1..n]: a lefthand one u
(that may be a repetition repeated rep times, and whose positions are tracked
by i) of length rep× �1 with a prefix of k1 L’s; and a righthand one v (tracked
by j) of length �2 with a prefix of k2 L’s. At each step of the algorithm j is
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procedure VF(x)
— Given the input string x$, output in ascending sequence

the rightmost positions of every V-word in VF(x)
h← 0 — the total length of VF already output
while h < n do — continue as long as total VF < n

RESET
while x[j] ≤ L do

if x[i] = x[j] = L then
— Extend the L-prefix of either u or v.

if j−i = k1 then k1 ← k1+1; rep← rep+1; �1 ← �1+1
else

if i−h ≤ k1 then k2 ← k2+1
�2 ← �2+1; i← i+1

elsif x[j] = L then
— The copy v of u truncated by a mismatched L:

output urep and restart u ← v.
output (h, rep, �1); RESET; j ← j−1

elsif x[i] = L then
— u contains a mismatched L: if k2 = 0, continue u

by incrementing �1; otherwise, concatenate u ← urepv.
if j = k1+1 then �1 ← k1+1
else �1 ← (rep× �1)+1
rep← 1; i← h+1
if k2 > 0 then �1 ← �1+�2; k2, �2 ← 0

elsif x[i] = x[j] then
— Corresponding non-L positions in u & v are equal.

�2 ← �2+1
if �2 = �1 then rep← rep+1; k2, �2 ← 0; i← h+1
else i← i+1

else
— Unequal non-L positions: compare u & extended v.

j′ ← j; while x[j+1] < L do j ← j+1
— If u 
 v, output urep; otherwise, concatenate u ← urepv.

if not prec(x[h+1..h+�1], �1, x[j′−�2..j], j−j′+�2+1) then
output (h, rep, �1)

�1 ← j−h; rep← 1; k2, �2 ← 0; i← h+1
j ← j+1

output (h, rep, �1); output (h, 1, �2)

Fig. 3. Compute VF(x)

incremented by one, and then tests are performed to determine whether as a
result urep and v should be concatenated into a single V-word, or whether each
of rep occurrences of u (and perhaps also v, if L has increased) should be output
as the current V-word(s), or whether no decision can currently be taken. The
variable h gives the rightmost position of the last V-word output (thus one less
than the starting position of u). VF invokes three other routines: the function
prec of Section 2, an initialization procedure RESET:



String Comparison and Lyndon-Like Factorization Using V-Order 75

i← h+1; j ← h+2; L ← x[i]
k1, �1, rep ← 1; k2, �2 ← 0

and a procedure output (h, rep, �) that for � > 0 outputs the rightmost positions
h of V-word prefixes of urepv (and updates the global variable h). For processing
convenience, the input string to procedure VF is actually x$, where $ is a sentinel
letter greater than any letter of Σ.

Lemma 9. Procedure VF(x) executes correctly in time and space linear in |x|.

Proof. Analogous to Lyndon factorization, V-word factorization maintains cur-
rent candidates for factors (corresponding to the current maximum letter L) in
the form urepv, subject to the following rules:

∗ u = Lk1u∗, where u∗ contains no letter λ > L and no substring Lk, k ≥ k1;
∗ v = Lk2 , 0 ≤ k2 < k1, or v = Lk1v∗, where v∗ is a proper prefix of u∗;
∗ if it becomes true that v∗ = u∗, set rep← rep+1, v ← ε.

Only in the case that distinct letters λ1 < L and λ2 < L are found at corre-
sponding positions i in u and j in v, respectively, does it become necessary to
call prec to determine whether or not u ≺ v — with v first extended to the right
until some letter λ ≥ L (possibly the sentinel $) is found. We remark that this
case can occur only if k2 = k1, with the current �2 < �1.

To establish the linearity of VF’s execution time, note first that all the outputs
taken together require at most O(n) time. Also, the restarts that occur when
x[j] = L �= x[i] can total at most O(n) time. Otherwise, all operations performed
at each increment of j require only constant time except for the call to prec.
Observe that the total number of positions tested in prec over all calls is at most
the sum of all the terms j−j′+�1+�2+1. If a call to prec in procedure VF yields
u � v, then an output occurs, and u ← v; if not, however, then u ← uv. In
the latter case, u necessarily increases in size, so that the next call to prec, if
it occurs, requires that correspondingly more positions need to be tested. We
see that repeated consecutive invocations of prec, without output, must yield a
worst case for total time, since each call must include all the positions already
tested in previous calls. Note however that the result u ≺ v can occur only if
the number of L’s in v is at least equal to the number of L’s in u, subject to
the constraint noted above that k2 = k1; thus the lengths of both u and v must
approximately double at each step, as in the example

x = L1L2 L1L3 L1L2L1L4 · · · ,

where we first find L1 ≺ L2, then L1L2 ≺ L1L3, L1L2L1L3 ≺ L1L2L1L4, and so
on. This example in fact must constitute a worst case for the number of positions
tested in prec; assuming without loss of generality that |x| = 2m, we find that
the total number of positions tested will be

2m+2m−1+· · ·+2 = 2(|x|−1). �
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Abstract. We present an approach to the problem of maximum num-
ber of distinct squares in a string which underlines the importance of
considering as key variables both the length n and n− d where d is the
size of the alphabet. We conjecture that a string of length n and con-
taining d distinct symbols has no more than n−d distinct squares, show
the critical role played by strings satisfying n = 2d, and present some
properties satisfied by strings of length bounded by a constant times the
size of the alphabet.
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1 Introduction

The problem of the number of distinct squares when the types of the squares
in a string are counted rather than the occurrences, was first introduced by
Fraenkel and Simpson [3] showing that the number of distinct squares in a string
of length n is bounded from above by 2n and giving a lower bound of n −
o(n) asymptomatically approaching n from below for primitively rooted squares.
Let us remark that a primitively rooted square is a square whose generator is
primitive, i.e. not a repetition. Later, Ilie [4] provided a simpler proof of the
main lemma of [3] and slightly improved the upper bound to 2n − Θ(log n) in
[5]. It is believed, that the number of distinct squares is bounded by the length
of the string.

In this paper we investigate the problem of primitively rooted distinct squares
in relationship to the alphabet of the string. Let us denote by σd(n) the maxi-
mum number of primitively rooted distinct squares over all strings of length n
containing exactly d distinct symbols. We conjecture that σd(n) ≤ n − d, and
point to possible avenues for investigating the conjecture.
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n − d
1 2 3 4 5 6 7 8 9 10 11

d

1 1 1 1 1 1 1 1 1 1 1 ·
2 1 2 2 3 3 4 5 6 7 7 ·
3 1 2 3 3 4 4 5 6 7 8 ·
4 1 2 3 4 4 5 5 6 7 8 ·
5 1 2 3 4 5 5 6 6 7 8 ·
6 1 2 3 4 5 6 6 7 7 8 ·
7 1 2 3 4 5 6 7 7 8 8 ·
8 1 2 3 4 5 6 7 8 8 9 ·
9 1 2 3 4 5 6 7 8 9 9 ·
10 1 2 3 4 5 6 7 8 9 10 ·
11 · · · · · · · · · · ·

Fig. 1. (d,n−d) table: entries computed for σd(n) with 1 ≤ d ≤ 10 and 1 ≤ n−d ≤ 10

Similarly as in [2], which was dealing with the maximum number of runs
in a string with respect to the string’s alphabet, we present some elementary
structures of the entries for σd(n) presented in a so-called (d,n− d) table whose
rows are indexed by d and columns are indexed by n− d, and point to ways of
applying reductions to the problem of distinct squares. A fragment of the table
for d ≤ 10 and n− d ≤ 10 is shown in Fig. 1.

Several regularities can be observed in the fragment of the (d,n − d) table:
first observe that σd(n) ≤ n − d is satisfied by all known entries. There are
several other regularities that can be observed in the table; some are proven
analytically in section 2, some are shown to be equivalent with the conjectured
upper bound for σd(n), some are shown to lead to a slightly stronger upper
bound – see section 3. In section 4 we investigate the structure of relatively short
square-maximal strings on the main diagonal. In section 5, we discuss possible
ways to investigate the conjectured upper bound using the methods and insight
presented in section 4.

First we introduce the notation used in this paper. Sd(n) denotes the set of
strings of length n with exactly d distinct symbols; s(x) denotes the number
of primitively rooted distinct squares in a string x; σd(n) = max{ s(x) | x ∈
Sd(n) }. A(x) denotes the alphabet set of a string x; a singleton of x refers to
a symbol in a string x that occurs exactly once, a pair refers to a symbol that
occurs exactly twice, a triple refers to a symbol that occurs exactly three times,
and in general an k-tuple (k times).

2 Some Basic Properties of the (d,n − d) Table

The following auxiliary lemma will be used later to investigate the structure of
square-maximal strings.
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Lemma 1. Let x be a square-maximal string of length n with exactly d symbols,
and let every symbol of x occur at most 3 times. Then every pair in x must be
adjacent.

Proof. Let x ∈ Sd(n) be square-maximal. Let us assume that x has a non-
adjacent pair of C’s. Case (i): if the pair does not occur in any square, then
we can create a string y by moving the C’s to the end. This will not destroy
any square of x, but we gain a new square CC, which contradicts the square-
maximality of x. Case (ii): if the pair occurs in at least one square, let us move
the two C’s to the end of the string. For every square uCvuCv of x destroyed
by the removal of the C’s, we gain a new square uvuv: if uvuv already existed
in some other part of x, every symbol of uv would have to occur in x at least 4
times, which is not possible. Thus every destroyed square uCvuCv is replaced
by a new square uvuv, in addition we gain a new square CC. This contradicts
the square-maximality of x. �

The next proposition summarizes basic properties of the (d,n− d) table.

Proposition 1. For any 2 ≤ d ≤ n:

(a) σd(n) ≤ σd(n+ 1), i.e. the values are non-decreasing when moving left-to-
right along a row.

(b) σd(n) ≤ σd+1(n+ 1), i.e. the values are non-decreasing when moving top-
to-bottom along a column.

(c) σd(n) < σd+1(n + 2), i.e. the values are strictly increasing when moving
left-to-right and top-to-bottom along descending diagonals.

(d) σd(2d) = σd(n) = σd+1(n + 1) for n ≤ 2d, i.e. the values under and on
the main diagonal along a column are constant.

(e) σd(n) ≥ n− d for n ≤ 2d, i.e. the values under and on the main diagonal
are at least as big as conjectured; σd(2d+ 1) ≥ d and σd(2d+ 2) ≥ d+ 1.

(f) σd(2d) − σd−1(2d − 1) ≤ 1, i.e. the difference between the value on the
main diagonal and the value immediately above it is no more than 1.

Proof. (a) Let x ∈ Sd(n) be square-maximal. Let y be x appended with a
symbol a ∈ A(x). Then y ∈ Sd(n + 1), and σd(n + 1) ≥ s(y) ≥ s(x) =
σd(n).

(b) Let x ∈ Sd(n) be square-maximal. Let y be x appended with a symbol
a /∈ A(x). Then y ∈ Sd+1(n+ 1), and σd+1(n+ 1) ≥ s(y) = s(x) = σd(n).

(c) Let x ∈ Sd(n) be square-maximal, let a /∈ A(x). Define a new string y as
x concatenated with aa. Then y ∈ Sd+1(n+2), and σd+1(n+2) ≥ s(y) =
s(x) + 1 > s(x) = σd(n).

(d) Let n ≤ 2d and let x ∈ Sd+1(n+ 1) be square-maximal. Since 2(d+ 1) ≥
n+ 2 > n+ 1, x has a singleton. Let y be x with the singleton removed.
Then y ∈ Sd(n) and s(y) ≥ s(x) as no square can be destroyed while some
squares can be created. Thus, σd(n) ≥ s(y) ≥ s(x) = σd+1(n+1). By (b),
σd(n) ≤ σd+1(n+ 1), so σd(n) = σd+1(n+ 1) for n ≤ 2d.
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(e) Let n ≤ 2d and consider the string x = aabbcc . . . consisting of n − d
adjacent pairs. Then x ∈ Sn−d(2n−2d) and s(x) = n−d. By (d), σd(n) =
σn−d(2n − 2d) ≥ s(x) = n − d. Let consider the strings y = aaabbcc . . .
consisting of d− 1 adjacent pairs except for the first 3 entries being aaa,
and z = aababaccdd . . . consisting of d−2 adjacent pairs except for the first
6 entries being aababa. We have σd(2d+ 1) ≥ s(y) = d and σd(2d+ 2) ≥
s(z) = d+ 1.

(f) Let x ∈ Sd(2d) be square-maximal. Case (i): if x has a singleton, let y
be x with the singleton removed, then y ∈ Sd−1(2d− 1) and s(y) ≥ s(x).
It follows that σd(2d) = s(x) ≤ s(y) ≤ σd−1(2d − 1), and since σd(2d) ≥
σd−1(2d − 1) by (b), therefore we get σd(2d) = σd−1(2d − 1). Case (ii):
if x does not have a singleton, then x consists of pairs, and by Lemma 1,
x consists of adjacent pairs, and thus σd(2d) = s(x) = d. Consider the
string z = aaabbcc . . . consisting of d−2 adjacent pairs except for the first
3 entries being aaa. We have σd−1(2d − 1) ≥ s(z) = d − 1 = σd(2d) − 1,
i.e., σd(2d) − σd−1(2d− 1) ≤ 1. �

3 Main Results

This sections contains several propositions that are equivalent with the conjec-
tured upper bound for σd(n). We also present conditions that lead to a slightly
stronger upper bound in Theorems 3 and 4. It can be observed in the (d,n− d)
table, that the known values on the main diagonal are identities, i.e. σd(2d) = d
– which is equivalent to σd(2d) ≤ d by Proposition 1(e). The next theorem
shows that, indeed, this observation is equivalent with the conjectured bound.
In essence, the theorem shows that if the upper bound is violated, then there
must be a violation on the main diagonal.

Theorem 1. The conjectured upper bound σd(n) ≤ n − d holding true for all
strings is equivalent with the statement: σd(2d) ≤ d for every d ≥ 2.

Proof. Let n ≥ d ≥ 2, σd(n) ≤ n− d clearly implies that σd(2d) ≤ d; that is, by
Proposition 1(e), σd(2d) = d. To prove the other direction, we consider case (i)
2d > n: by Proposition 1(d) we have σd(n) = σn−d(2n− 2d) ≤ n− d, and case
(ii) n > 2d: by Proposition 1(b) we have σd(n) ≤ σn−d(2n− 2d) ≤ n− d. �

Another observation of the (d,n− d) table given in Figure 1 is that the value on
the main diagonal and the value of its right neighbour are identical. Theorem 2
shows that the inequality is equivalent with the conjectured upper bound, while
the equality gives rise to a slightly stronger upper bound given in Theorem 4.

Theorem 2. The conjectured upper bound σd(n) ≤ n − d holding true for all
strings is equivalent with the statement: σd(2d+1)−σd(2d) ≤ 1 for every d ≥ 2.

Proof. The statement follows from the conjectured upper bound is clear. Let
us, thus prove the opposite direction. We shall prove by contradiction that



A d-Step Approach for Distinct Squares in Strings 81

σd(2d) ≤ d for d ≥ 2. Let d ≥ 2 be the least such that σd(2d) > d. From
the computed values of the (d, n−d) table it follows that d > 10. Let x ∈ Sd(2d)
be square-maximal. If x does not have a singleton, then n = 2d and x consists
of pairs, and thus by Lemma 1, x consists of adjacent pairs and σd(2d) = d, a
contradiction. Thus, x must have a singleton. Let y be x with the a singleton
removed. Then y ∈ Sd−1(2d− 1) and s(y) ≥ s(x). Thus, σd−1(2d− 1) ≥ s(y) ≥
s(x) = σd(2d). Moreover, σd−1(2d−1) ≤ σd−1(2d−2)+1 ≤ d−1+1 = d. Thus,
d ≥ σd−1(2d− 1) = σd(2d) > d, a contradiction. Therefore, σd(2d) ≤ d for every
d ≥ 2 and the conjectured upper bound follows by applying Theorem 1. �

Another observation of the (d,n − d) table given in Figure 1 is that not only
σd(2d) is bounded by d, but also it is true for σd(2d+ 1). Theorem 3 shows that
this property implies a slightly stronger upper bound.

Theorem 3. If σd(2d + 1) ≤ d for every d ≥ 2, then σd(n) ≤ n − d − 1 for
n > 2d ≥ 4 and σd(n) = n− d for n ≤ 2d.

Proof. We have d ≤ σd(2d) ≤ σd(2d+ 1) ≤ d and so σd(2d) = σd(2d+ 1) = d. It
implies that σd(n) = n− d for n ≤ 2d. For n > 2d we have, by Proposition 1(b),
σd(n) ≤ σn−d−1(2n− 2d− 1) ≤ n− d− 1. �

Theorem 4. If σd(2d) = σd(2d+1) for every d ≥ 2, then σd(n) ≤ n− d− 1 for
n > 2d ≥ 4 and σd(n) = n− d for n ≤ 2d.

Proof. The results follow from Theorem 3 and the fact that σd(2d) = σd(2d +
1) = d for every d ≥ 2. To show that σd(2d) = σd(2d + 1) = d for ev-
ery d ≥ 2, let us argue by contradiction. Let d be the smallest such that
σd(2d) = σd(2d+1) > d. From the values in the (d,n−d) table calculated so far,
we know that d > 10. Thus d − 1 = σd−1(2d − 2) = σd−1(2d− 1). However, by
Proposition 1(f), σd−1(2d− 1) + 1 ≥ σd(2d). It follows that d− 1 ≥ σd(2d) − 1.
i.e. d ≥ σd(2d), a contradiction. �

4 Structure of Relatively Short Square-Maximal Strings

In this section we investigate square-maximal strings that are short relative to
the size of their alphabets. The main goal of this investigation is to either find a
counterexample on the main diagonal if there is one, or to show that there are
no counterexamples on the main diagonal, as this would prove the conjectured
upper bound for all strings. We show that a square-maximal string from the
main diagonal either complies with the conjectured upper bound or has to have
many singletons based on the facts that such string (a) cannot contain pairs,
see Lemma 4, and (b) if it contains a triple, it is must be a very special triple,
implying the existence of a symbol occurring at least 6 times, see Lemma 8.
We hope that it might be possible to show that counterexamples on the main
diagonal do not exist by showing that their structure would be impossible. We
discuss this in Conclusion.
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Lemma 2 shows the structure of the square-maximal strings on the main
diagonal if they are in compliance with the conjectured upper bond and they
are identical with the value of its right neighbour.

Lemma 2. If σd(2d) = σd(2d + 1) for every d ≥ 2, then for any d ≥ 2, x ∈
Sd(2d) square-maximal, x is up to relabeling of the alphabet, unique and equal
to x = (aabbcc . . . ).

Proof. If x contains only pairs, by Lemma 1 all these pairs have to be adjacent. If
x did not consist only of pairs, then it would have to have a singleton. Let y be a
string obtained from x by removing a singleton. y ∈ Sd−1(2d−1) and s(y) ≥ s(x).
Thus d − 1 = σd−1(2d − 2) = σd−1(2d − 1) ≥ s(y) ≥ s(x) = σd(2d) = d which
is contradiction. Therefore x contains only pairs and is up to relabeling, unique
and equal to x = (aabbcc . . . ). �

Auxiliary Lemma 3 will be used to estimate the number of squares that span
from one part of a string to the other part and relies on the result of Fraenkel
and Simpson [3].

Lemma 3. Consider non-empty strings w, u, and v. The number of distinct
squares of the string wuv that start in w and end in v is at most |w|+ |v| where
|w|, respectively |v|, denotes the length of w, respectively v.

Proof. We discuss two cases: Case (i) |w| ≤ |v|: we count the rightmost occur-
rences of squares. By Fraenkel-Simpson [3], there are at most two such squares
starting at the same position. Thus, there are at most 2|w| squares that start
in w, and 2|w| ≤ |w| + |v|. Case (ii) |w| > |v|: let x denote the reversal of the
string x. By the previous argument, there are at most 2|v| squares of the string
wuv = v u w starting in v. It follows that there are at most 2|v| squares of wuv
that end in v and 2|v| < |w| + |v|. �

Lemma 4 shows that the square-maximal strings in first unknown position on
the main diagonal either comply with the conjectured upper bound or cannot
contain a pair.

Lemma 4. Let σd′(2d′) ≤ d′ where d′ < d. Let x ∈ Sd(2d) be square-maximal.
Then either s(x) = σd(2d) = d or x does not contain a pair.

Proof. Let assume that s(x) = σd(2d) > d and x contains a pair of C’s at posi-
tions i0 and i1, so x[i0] = x[i1] = C. If the pair occurs in at most 1 square, then
we can replace the first C with a new symbol Ĉ /∈ A(x). Let y be x with x[i0]
replaced by Ĉ. Then y ∈ Sd+1(2d) and σd+1(2d) ≥ s(y) = s(x)−1 = σd(2d)−1.
Since 2d − (d + 1) < d, we get 2d − (d + 1) ≥ σd+1(2d) ≥ σd(2d) − 1, i.e.
d− 1 ≥ s(x) − 1, and so d ≥ s(x), a contradiction. Therefore, the pair must oc-
cur in at least two squares, in fact in a non-trivial run x = · · ·uvCwuvCwu · · · ,
where |u| ≥ 1. Let us form a new string y by removing all the symbols between
the C’s: y = · · ·uvCCwu · · · . By doing this, we may have destroyed |u| + 1
squares – uvCwuvCw and its |u| rotations. The type of any square of u is pre-
served, as y has u as a substring. The same is true for w, v, wu, and uv. Thus,
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we may have destroyed the squares of wuv that start in w and end in v. By
Lemma 3, we may have destroyed at most |w| + |v| squares. So, altogether, we
may have destroyed at most |w| + |u| + |v| + 1 squares, but we created a new
one: CC. Thus s(y) ≥ s(x) − (|w| + |u| + |v|). Clearly, A(y) = A(x), and so
y ∈ Sd(2d − k) where k = |w| + |u| + |v|. By the assumption of this lemma as
2d− k− d = d− k < d, we have d− k ≥ σd(2d− k) ≥ s(y) ≥ s(x)− k, and thus
d ≥ s(x), a contradiction. �

Lemmas 5 and 6 use the same scenario investigating the square-maximal strings
in the first unknown position on the main diagonal and showing that they either
comply with the conjectured upper bound or may contain only very specific
triples.

Lemma 5. Let σd′(2d′) ≤ d′ where d′ < d. Let x ∈ Sd(2d) be square-maximal.
Then either s(x) = σd(2d) = d or if x contains a triple, then the triple has to
occur in two distinct runs.

Proof. Let assume that s(x) = σd(2d) > d. Let x[i0] = x[i1] = x[i2] = C be
a triple in x. We first show all three symbols occur in some runs. Assume that
x[i0] does not occur in any run. Let Ĉ be a symbol /∈ A(x). Let y be x with x[i0]
replaced by Ĉ. Then y ∈ Sd+1(2d) and σd+1(2d) ≥ s(y) = s(x) = σd(2d). Since
2d− (d + 1) < d, we get 2d− (d + 1) ≥ σd+1(2d) ≥ σd(2d), i.e. d − 1 ≥ σd(2d),
a contradiction. For x[i2] not occurring in any run, the proof is the same. If
x[i1] does not occur in any run, then none of the elements of the triple occur in
any run. Then we can remove x[i1] forming a string y ∈ Sd(2d − 1) such that
d − 1 ≥ σd(2d − 1) ≥ s(y) ≥ s(x) = σd(2d), a contradiction. We then show the
three symbols cannot occur in the same run. Assume they do occur in the run
uvCwuvCwuvCwu. We can proceed as in the proof of Lemma 4 and remove
wuv between the first and second C. �

Lemma 6. Let σd′(2d′) ≤ d′ where d′ < d. Let x ∈ Sd(2d) be square-maximal.
Then either s(x) = σd(2d) = d, or if x has a triple x[i0] = x[i1] = x[i2] = C
occurring in two distinct runs u1v1x[i0]w1u1v1x[i1]w1u1 = u1v1Cw1u1v1Cw1u1

and u2v2x[i1]w2u2v2x[i2]w2u2 = u2v2Cw2u2v2Cw2u2, then |u1| ≥ 1 and |u2| ≥ 1
and either u2v2 is not a suffix of u1v1 or w1u1 is not a prefix of w2u2.

Proof. Let us assume that s(x) = σd(2d) > d. If |u1| = 0, then x[i0] occurs in a
single square v1Cw1v1Cw1. Let Ĉ be a symbol /∈ A(x) and let y be x with x[i0]
replaced by Ĉ. Then y ∈ Sd+1(2d) and σd+1(2d) ≥ s(y) = s(x)−1 = σd(2d)−1.
Since 2d − (d + 1) < d, we get 2d − (d + 1) ≥ σd+1(2d) ≥ σd(2d) − 1, i.e.
d−1 ≥ σd(2d)−1, and so d ≥ σd(2d), a contradiction. It follows that |u1| ≥ 1. For
|u2| = 0, the proof is the same. Thus, |u1| ≥ 1 and |u2| ≥ 1. Let us assume that
both u2v2 is a suffix of u1v1 and w1u1 a prefix of w2u2. Let us form a new string y
from x by removingw1u1v1 between x[i0] and x[i1] and removingw2u2v2 between
x[i1] and x[i2], that is y = x[1..i0]x[i1]x[i2..2d] = x[1..i0 − 1]CCCx[i2 + 1..2d]. It
follows that y ∈ Sd(2d−k) where k = |w1|+|u1|+|v1|+|w2|+|u2|+|v2|. How many
squares we might have destroyed? We might have destroyed |u1| + 1 squares of
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u1v1Cw1u1v1Cw1u1 and |u2|+ 1 squares of u2v2Cw2u2v2Cw2u2. From w1u1v1,
u1v1 has been preserved, w1u1 is a prefix of w2u2 that was preserved, so the only
squares we might have destroyed are the ones starting in w1 and ending in v1,
and by Lemma 3 there are at most |w1|+|v1| of them. Similarly for w2u2v2. Thus
we might have destroyed at most |w1|+ |u1|+ |v1|+ |w2|+ |u2|+ |v2|+2 = k+2
squares, and we gained one (CCC). It follows that s(y) ≥ s(x)−k−1. Replace the
first C in y by a new symbol Ĉ /∈ A(x) to form a string z. Then z ∈ Sd+1(2d−k)
and s(z) = s(y). Thus σd+1(2d−k) ≥ s(z) = s(y) ≥ s(x)−k−1 = σd(2d)−k−1.
Since 2d− k − d− 1 = 2d− |w1| − |u1| − |v1| − |w2| − |u2| − |v2| − d− 1 < d, we
have 2d−k−d−1 ≥ σd+1(2d−k) ≥ s(x)−k−1, so 2d−k−d−1 ≥ s(x)−k−1
and so d ≥ s(x), a contradiction. It follows that either u2v2 is not a suffix of
u1v1, in which case u1v1 is a suffix of u2v2, or w1u1 is not a prefix of w2u2, in
which case w2u2 is a prefix of w1u1. �

Lemma 7 shows that the square-maximal strings cannot contain parallel k-tuples.
A k-tuple of C’s occurring at positions {i1, · · · ik} and a k-tuple of D’s occurring
at positions {j1, · · · jk} are parallel if i1 < j1 < i2 < j2 < · · · < ik < jk.

Lemma 7. Let x ∈ Sd(2d) be square-maximal. Then x cannot contain two par-
allel k-tuples for any k ≥ 2.

Proof. Let us assume that x contains two parallel k-tuples of C’s and D’s. Let
us move all D’s to the end of the string x, forming a new string y ∈ Sd(2d). Any
primitively rooted square that containsm of the D’s must also contain at least m
of the C’s. If we remove the D’s from the square, we create a new square. Since
it contains the C’s and since the original square was primitively rooted, the new
square also must be primitively rooted. For illustration: [uCvDw][uCvDw] will
become [uCvw][uCvw]. Moving the D’s to the end creates a new square DD
and so s(y) > s(x), a contradiction with the square-maximality of x. �

Lemma 8 utilizes the previous lemmas and shows that any square-maximal string
in the first unknown position on the main diagonal either complies with the
conjectured upper bound, or if if it contains a triple, it must be a very specific
one giving rise to a symbol that must occur at least 6 times. Thus, each triple
occurring must be balanced by an existence of a unique set of 5 occurrences of
a certain symbol. Though the symbol may not be unique to a particular triple,
the set of occurrences are mutually disjoint. Thus, every triple with its assigned
set of 5 occurrences is balanced by an existence of at least 4 singletons unique
to the triple and its assigned set.

Lemma 8. Let σd′(2d′) ≤ d′ where d′ < d. Let x ∈ Sd(2d) be square-maximal.
Then either s(x) = σd(2d) = d or x has at least 	 2d

3 
 singletons.

Proof. Let us assume that s(x) = σd(2d) > d. From Lemma 4 it follows, that x
does not have any pair. From Lemmas 5 and 6, any triple x[i0] = x[i1] = x[i2] =
C of x must be special, i.e. it must satisfy
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1. x[i0] and x[i1] occur in a run r1 = u1v1Cw1u1v1Cw1u1, where |u1| ≥ 1,
2. x[i1] and x[i2] occur in a run r2 = u2v2Cw2u2v2Cw2u2, where |u2| ≥ 1, and

where i1 − i0 �= i2 − i1 as otherwise the two runs would merge into a single
one,

3. either u1v1 is a proper suffix of u2v2, or w2u2 is a proper prefix of w1u1.

Let us discuss the case when u1v1 is a proper suffix of u2v2; the case of w2u2

being a proper prefix of w1u1 is the same just argued from the opposite direction.
Let the run r1 = u1v1Cw1u1v1Cw1u1 start at position t of x. Consider a = x[t].
If there is no occurrence of a in x[t+1..i0−1], then we can replace all occurrences
of a in x[1..i0−1] with a new symbol, forming a string y, while destroying a single
square u1v1Cw1u1v1Cw1 of x. Thus y ∈ Sd+1(2d), 2d−d−1 ≥ σd+1(2d) ≥ s(y) =
s(x)−1 = σd(2d)−1, so d ≥ σd(2d), a contradiction. Thus a occurs at least twice
in x[t..i0−1] = u1v1. Since u1v1 is a suffix of u2v2, a occurs at least 4 more times –
twice in each occurrence of u2v2. Thus, x[t] occurs in x at least six times, the last
occurrence before the last C. We assign to the triple the sequence of positions
of the 5 first occurrences of a after the position t and denote it by As(C) =
〈j0, j1, j2, j3, j4〉, where t < j0 < j1 < j2 < j3 < j4 < i2 and j0 < i0 and t is the
start of the run r1 and x[t] = x[j0] = x[j1] = x[j2] = x[j3] = x[j4]. Of course,
if the short appendix used was w2u2, then As(C) = 〈j0, j1, j2, j3, j4〉, where
i0 < j4 < j3 < j2 < j1 < j0 < t and i2 < j0 and t is the end of the run r2
and x[t] = x[j0] = x[j1] = x[j2] = x[j3] = x[j4]. Below, we will show that such
assignments are mutually disjoint, i.e. if C’s and D’s are different triples, then
As(C) ∩As(D) = ∅.

Now we can estimate the number of singletons in x. Let m0 be the number of
triples in x. Let m1 be the number of multiply occurring symbols that are not
assigned to triples – since there are no pairs, it follows that such symbols occur
at least 4 times. Finally, let m2 be the number of singletons in x. The following
2 inequalities must hold: 2d ≥ 8m0 + 4m1 +m2 and d ≤ 2m0 +m1 +m2 which
clearly yields 3m2 ≥ 2d and so m2 ≥ 	2d

3 
.
A proof of the claim that the assignments are mutually disjoint: Let As(C) =

〈j0, j1, j2, j3, j4〉 and letAs(D) = 〈k0, k1, k2, k3, k4〉. If x[j0] �= x[k0], thenAs(C)∩
As(D) = ∅. Bellow, we discuss the case when x[j0] = x[k0] = a.

In Lemma 6 it is shown that a triple of C’s can exist in x only if it occurs
in two distinct non-trivial runs u1v1Cw1u1v1Cw1u1 and u2v2Cw2u2v2Cw2u2.
We refer to u1v1 and w2u2 as the appendices, and we say that u1v1 is a short
appendix if u1v1 is a proper suffix of u2v2, similarly we say that w2u2 is a short
appendix if it is a proper prefix of w1u1. Thus, Lemma 6 also stipulates that at
least one of the appendices must be short.

Let us consider two different triples, one of C’s and one of D’s and let us
assume that the first C precedes the first D. We must discuss all the possible
configurations of the two triples. For better readability, we will denote by C1 the
first occurrence of C, by C2 the second occurrence of C etc. Similarly for D’s.

The C’s occur in two non-trivial runs r1 = u1v1C1w1u1v1C2w1u1 and
r2 = u2v2C2w2u2v2C3w2u2, while the D’s occur in two non-trivial runs
r3 = u3v3D1w3u3v3D2w3u3 and r4 = u4v4D2w4u4v4D3w4u4.
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1. C3 occurs beforeD1, i.e. the triples do not interleave (schematically C1 C2 C3

D1 D2 D3).
(a) First we consider the case when the appendix determining As(C) and

the appendix determining As(D) are on the opposite sides.
Thus, the short appendix determining As(C) is on the left and the
short appendix determining As(D) is on the right. Then we are guar-
antied the following pattern of occurrences of a in x (for the C’s, the
a’s are shown in bold, for the D’s, the a’s are shown underscored):
x = · · ·a a C1 a a C2 a a C3 D1 a a D2 a a D3 a a · · · , so x[j4]
occurs before C3, while the x[k4] occurs after D1. Therefore j4 < k4 and
so As(C) ∩As(D) = ∅.

(b) Next we consider the case when the appendix determining As(C) and
the appendix determining As(D) are facing each other.
Thus, for the C’s we are using the right appendix, for the D’s the left
appendix. Then we are guarantied the following pattern of occurrences
of a in x (for the C’s, the a’s are shown in bold, for the D’s, the a’s are
shown underscored):
x = · · ·C1 a a C2 a a C3 a a D1 a a D2 a a D3 · · · , and thus x[j0]
occurs at or to the left of a (shown in bold), while x[k0] occurs at or to
the right of a (shown underscored). It is possible that two a’s between C3

and D1 are the same. However, since we do not take the first occurrence
of a for the assignments, As(C) ∩As(D) = ∅.

(c) Here we consider the case when the appendix determining As(C) and
the appendix determining As(D) are on the same side.
Without loss of generality, we can assume that both appendices used are
on the left. Then we are guarantied the following pattern of occurrences
of a in x (for the C’s, the a’s are shown in bold, for the D’s, the a’s are
shown underscored):
x = · · ·a a C1 a a C2 a a C3 a a D1 a a D2 a a D3 · · · .Why cannot the
first two a’s be the same as the last two a’s? If it were the case, then C
would be in the appendix for the D’s, i.e. a part of the run r3 and hence
repeat later. So, again As(C) ∩As(D) = ∅.

2. Case x = · · ·C1 D1 D2 C2 · · · is not possible.
If either D1 or D2 occurred in u1v1, then there would be a D preceding C1.
Thus both D1 and D2 occur in w1, but then D occurs at least 4 times, a
contradiction.

3. Case x = · · ·C1 D1 C2 D2 D3 C3 · · · is not possible.
As in the previous case, D1 must occur in w1 and D2 together with D3 must
occur in v2, hence D must occur at least 4 times, a contradiction.

4. Case x = · · ·C1 D1 C2 D2 C3 D3 · · · .
This case is not possible by Lemma 7 as the triples of C’s and D’s are
parallel.

5. Case x = · · ·C1 C2 D1 C3 D2 D3 · · · .
We denote by w(1)

2 the first occurrence of w2 in x, by w(2)
2 the second occur-

rence of w2 in x, etc.
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If D1 occurred in (u2v2)(2), there would be a D preceding C2. Hence D1

must occur in w
(1)
2 and hence D2 occurs in w

(2)
2 . Since the distance be-

tween C2 and C3 is the period of r2, and the distance between D1 and D2

is the period of r3, and the distances are equal, it follows that r2 = r3 =
u2v2C2w

′
2D1w

′′
2u2v2C3w

′
2D2w

′′
2u2 (note that u3 = u2 and v3 = v2Cw

′
2

and w3 = w′′
2.)

Schematically:
r1 : u1v1C1w1u1v1C2w1u1

r2 = r3 : u2v2C2w
′
2D1w

′′
2u2v2C3w

′
2D2w

′′
2u2

r4 : u4v4D2w4u4v4D3w4u4

Now consider the two runs r1 and r2. Since D1 cannot occur in (w1u1)(2),
it follows that the w1u1 is a prefix of w′

2 and hence of w′
2D1w

′′
2u2, and so

the appendix w′
2D2w

′′
2u2 is long and by Lemma 6, u1v1 must be a short

appendix and is used to determine As(C).
Now consider the two runs r3 and r4. Since C3 cannot occur in (u4v4)(1), u4v4
is a suffix of w′

2 and hence of u2v2C3w
′
2, and so the appendix u2v2C2w

′
2 is

long. By Lemma 6, w4u4 must be a short appendix and is used to determine
As(D).

(a) Let a occur twice in u1 and in twice in u4 (the dots indicate the occur-
rences).

·· ·· ··
r1 : u1v1C1w1u1v1C2w1u1
r2 = r3 : u2v2C2w

′
2D1w

′′
2u2v2C3w

′
2D2w

′′
2u2

r4 : u4v4D2w4u4v4D3w4u4·· ·· ··
Then a occurs twice in each occurrence of u1 and hence x[j4] occurs in or
before u(3)

1 . Similarly, a occurs twice in each occurrence of u4 and hence
x[k4] occurs in or after u(1)

4 . Thus As(C) ∩As(D) = ∅.
(b) Let a occur only once in u1 and twice in u4.

· · · · ·
r1 : u1v1C1w1u1v1C2w1u1

· ·
r2 = r3 : u2v2C2w

′
2D1w

′′
2u2v2C3w

′
2D2w

′′
2u2

r4 : u4v4D2w4u4v4D3w4u4·· ·· ··

Then a must occur in v1. Since u1v1 is a suffix of u2v2 and since w1u1 is
a prefix of w′

2, we have 7 occurrences of a from the left and 6 occurrences
of a from the right, so again As(C) ∩As(D) = ∅.

(c) Let a occur twice in u1 and only once in u4.
This is symmetric to the previous case, we will have 6 occurrences of a
from the left, and 7 occurrences of a from the right.

(d) Let a occur in u1 only once and in u4 also only once.
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· · · · ·
r1 : u1v1C1w1u1v1C2w1u1

· · ·
r2 = r3 : u2v2C2w

′
2D1w

′′
2u2v2C3w

′
2D2w

′′
2u2

· · ·
r4 : u4v4D2w4u4v4D3w4u4· · · · ·
From the left there are 8 occurrences of a: a must occur in v1 and since
u1v1 is a suffix of u2v2, it must occur twice in (u2v2)(2), and since u1

is a substring of w′
2, a must occur in all occurrences of w′

2. Similarly,
there are 8 occurrences of a from the right. Even though it is possible
the the last four occurrences from the left and the last four occurrences
from the right are the same, the first 6 occurrences from the left and 6
occurrences from the right are disjoint, and so As(C) ∩As(D) = ∅. �

Theorem 5 stresses the fact that the first position on the main diagonal violating
the conjectured upper bound implies an existence of a counterexample higher
up. Similarly as Theorems 1 and 2, this is yet another reformulation of the
conjectured upper bound.

Theorem 5. The conjectured upper bound σd(n) ≤ n − d holding true for all
strings is equivalent with the statement: σd(4d) ≤ 3d for every d ≥ 2.

Proof. The statement clearly follows from the conjectured upper bound. We
shall prove the opposite direction by contradiction. Let us assume that the con-
jectured upper bound does not hold. By Theorem 1, it follows that there is a
counterexample x on the main diagonal, i.e. a square-maximal x ∈ Sd(2d) with
s(x) = σd(2d) > d. Let us consider the first column d of the table in which the
counterexample occurs, from the table as computed so far, we know that d > 10.
By Lemma 8, x has at least 	 2d

3 
 singletons. If we remove 	 2d
3 
 singletons from

x, we get a string y ∈ Sd′(n′) such that s(y) ≥ s(x) > d where d′ = d−	 2d
3 
 and

n′ = 2d− 	 2d
3 
. Moreover, 4d′ = 4(d− 	 2d

3 
) = 4d− 4 · 	2d
3 
 = 4d− 2d− 	 2d

3 
 =
2d− 	 2d

3 
 = n′, thus n′ = 4d′. So we have σd′(4d′) ≥ s(y) ≥ s(x) = σd(2d) > d

and since 3d′ = 4d′ − d′ = n′ − d′ = (2d−	 2d
3 
)− (d−	 2d

3 
) = d, σd′(4d′) > 3d′.
Thus, we have a counterexample from Sd′(4d′). �

5 Conclusions

The methods used in section 4 illustrate two possible approaches to investigate
the conjectured upper bound for all strings. One is to show that the first coun-
terexample on the main diagonal cannot have a pair, a triple, a quadruple, ... or
an k-tuple, i.e. it cannot exist. This approach is represented by Lemma 4. The
other approach is to show that if the first counterexample on the main diagonal
contains a k-tuple, then it must contain a symbol with a frequency > k. This
also leads to the conclusion that a counterexample cannot exist. This approach
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is represented by the proof of Lemma 8. Thus, Lemmas 4 and 8 illustrate the
usefulness of investigating the more orderly world of the strings on the main
diagonal.

Let us just remark that our approach was inspired by a similar (d,n−d) table
used for investigating the Hirsch bound for the diameter of bounded polytopes.
The associated Hirsch (d,n−d) table exhibits similar regularities as the (d,n−d)
table considered in this paper. The Conjecture of Hirsch was recently disproved
by Santos [7] exhibiting a violation on the main diagonal with d = 43 which
was further improved to d = 20, see [6]. Similarly, we hope that the structure
of square-maximal strings is richer for n = 2d and therefore this could be the
focus of investigation for tackling the conjectured upper bound. For instance,
while for known values there is only essentially a single square-maximal string
on the main diagonal and it has a well-described structure, the further up from
the diagonal, the more irregular and unpredictable the set of square-maximal
strings and their structures are.

An analogue of Theorem 5 for the maximal number of runs given in [1] shows
that the conjectured upper bound of n− d for the number of runs holding true
for all strings equivalent with the upper bound of 8d for strings in Sd(9d) for
every d ≥ 2.

References

1. Baker, A., Deza, A., Franek, F.: On the structure of relatively short run-maximal
strings, AdvOL Technical Report 2011/02, Department of Computing and Software,
McMaster University, Hamilton, Ontario, Canada

2. Deza, A., Franek, F.: A d-step analogue for runs on strings, AdvOL Technical Report
2010/02, Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

3. Fraenkel, A.S., Simpson, J.: How Many Squares Can a String Contain? Journal of
Combinatorial Theory Series A 82(1), 112–120 (1998)

4. Ilie, L.: A simple proof that a word of length n has at most 2n distinct squares.
Journal of Combinatorial Theory Series A 112(1), 163–164 (2005)

5. Ilie, L.: A note on the number of squares in a word. Theoretical Computer Sci-
ence 380(3), 373–376 (2007)

6. Matschke, B., Santos, F., Weibel, C.: The width of 5-prismatoids and smaller non-
Hirsch polytopes (2011), http://www.cs.dartmouth.edu/~weibel/hirsch.php

7. Santos, F.: A counterexample to the Hirsch conjecture, arXiv:1006.2814v1 (2010)

http://www.cs.dartmouth.edu/~weibel/hirsch.php


Tractability Results for the Consecutive-Ones

Property with Multiplicity
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Abstract. A binary matrix has the Consecutive-Ones Property (C1P)
if its columns can be ordered in such a way that all 1’s in each row are
consecutive. We consider here a variant of the C1P where columns can
appear multiple times in the ordering. Although the general problem of
deciding the C1P with multiplicity is NP-complete, we present here a
case of interest in comparative genomics that is tractable.

1 Introduction

A binary matrix M has the Consecutive-Ones Property (C1P) if there exists a
permutation of its columns such that all 1’s in each row are consecutive. Deciding
if a matrix has the C1P can be done in linear-time and space [3,5,11,9,10].
This problem has been considered in genomics, for problems such as physical
mapping [2,7] or ancestral genome reconstruction [1,4,8].

Recently, Wittler and Stoye in [12], motivated by handling duplicated genes in
reconstructing ancestral gene clusters, introduced a generalized problem: Given
several sets of genes and a maximum multiplicity for each gene, decide whether
there exists a sequence of genes which meets the multiplicity constraint for each
gene and in which each set of genes occurs consecutively. This can be phrased in
terms of a binary matrix, where a column corresponds to a gene and a set of genes
is represented by a row containing a 1 for each gene in the set in the respective
column and 0’s in all other columns. Now each column c of the matrix is given a
multiplicity threshold m(c): M satisfies the mC1P (for C1P with multiplicity)
if there is a sequence S of columns of M , in which at most m(c) occurrences
of column c can appear, and for each row r of M , the columns containing 1
in r appear consecutively somewhere in S. The sequence S corresponds then
to a valid gene order. Deciding if a binary matrix M with multiplicity satisfies
the mC1P is tractable if every row of M contains at most two entries 1 (which
corresponds in gene clusters models to gene adjacencies) [12], but the problem
is NP-complete if M contains rows with at most three entries 1 [13]. The mC1P
can also be related to gene proximity analysis with duplicated genes [6].

In this work, we present a tractability result for a restricted mC1P decision
problem. After some technical preliminaries (Section 2), we give in Section 3 a

R. Giancarlo and G. Manzini (Eds.): CPM 2011, LNCS 6661, pp. 90–103, 2011.
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tractability result for a family of matrices where every row of M has (i) at most
one entry 1 in columns with multiplicity greater than one, or (ii) exactly two
entries 1 in columns with multiplicity greater than one and no other entries. This
result is motivated by handling telomeres in ancestral gene order reconstruction
(described in Appendix A). Our proofs rely on two classical concepts: PQ-trees
and Eulerian cycles in graphs. We conclude by discussing future work.

2 Preliminaries

Let M be a binary matrix, with m rows R = {r1, . . . , rm}, n columns C =
{c1, . . . , cn} and � entries 1. We represent a row r of M as a subset of C, defined
as the set of ci such that M [r, ci] = 1. A multiplicity vector m for M is a
sequence of positive integers [m(c1), . . . ,m(cn)]: m(ci) is called the multiplicity
of column ci. A column c with multiplicity m(c) > 1 is called a multicolumn
and a row r containing a multicolumn (i.e., M [r, c] = 1 for some column c
with m(c) > 1) is called a multirow. A multirow that does not contain any other
multirow is called minimal. We say a binary matrixM with multiplicity vector m
has matched multirows if, for every multirow r ⊆ C that contains at least two
entries 1 in non-multicolumns, there exists a row r̂ which is a copy of r where
all entries in multicolumns have been discarded (i.e., switched from 1 to 0). We
denote by M̂ the binary matrix obtained fromM by discarding all multicolumns.
In this work, we assume that all matrices we deal with have matched multirows
unless otherwise stated. Figure 1 illustrates the above definitions.

M 1 2 3 4 5 a b

r1 1 1 0 0 0 1 1

r̂1 1 1 0 0 0 0 0

r2 1 1 1 0 0 0 0

r3 0 0 1 1 1 0 1

r̂3 0 0 1 1 1 0 0

r4 0 0 0 1 1 0 1

r̂4 0 0 0 1 1 0 0

r5 1 0 0 1 1 0 0

M̂ 1 2 3 4 5

r1 1 1 0 0 0

r2 1 1 1 0 0

r3 0 0 1 1 1

r4 0 0 0 1 1

r5 1 0 0 1 1

Fig. 1. Left: Binary matrix M , with matched multirows. Let m(1) = · · · = m(5) = 1
and m(a) = m(b) = 2: a and b are multicolumns and r1, r3 and r4 are multirows.
Row r3 is not minimal, because it contains r4. Right: The corresponding matrix M̂ .
Since in M̂ , by definition r̂i = ri for all multirows ri, the matched multirows are
discarded.

Definition 1. Matrix M has the Consecutive-Ones Property with multiplicity
(mC1P) for multiplicity vector m if there exists a sequence S = s1 . . . sp on the
alphabet C such that it meets

(1) the consecutivity requirement: for each row r of M there are two integers
j, k, with j < k such that r = {sj , sj+1, . . . , sk} (the columns in r are con-
secutive in S), and

(2) the multiplicity requirement: each ci appears at most m(ci) times.
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The sequence S is then called an mC1P-ordering of M .

Given row {1, 2, 3, 4}, an example of a sequence that satisfies condition (1) of
the above definition is the sequence 5142435, since {1, 2, 3, 4} = {1, 4, 2, 4, 3}.

The mC1P generalizes the classical Consecutive-Ones Property (C1P), where
m(ci) = 1 for every ci. Lemma 1 below, whose proof is straightforward, relates
both problems.

Lemma 1. Every mC1P-ordering of M with multiplicity vector m contains a
C1P-ordering of M̂ as a subsequence. As a consequence, if a binary matrix M
has the mC1P, then M̂ has the C1P.

This lemma suggests that, to decide if M has the mC1P for a given multiplicity
vector m, we can first check if M̂ has the C1P, and then extend a C1P-ordering
of M̂ into an mC1P-ordering of M by adding copies of multicolumns. Note that
the matrix M̂ in Figure 1 does not have C1P, and hence, M does not have mC1P.
However, if we omit column r5, then 12345 is a C1P ordering of M̂ , which can be
extended to the following mC1P-ordering ofM : ab12345b. To account for the fact
that there can be an exponential number of C1P-orderings of M̂ , we use PQ-trees,
a linear size structure that can describe all C1P-orderings of M̂ , defined below.
For a more complete treatment of PQ-trees, we refer the reader to [3,9].

Definition 2. A PQ-tree on C is a rooted ordered tree with leaves labeled by C
and two kinds of internal nodes, P-nodes and Q-nodes. Each P-node has at least
two children and each Q-node has at least three children.

The frontier F (T ) of a PQ-tree T is the sequence of C obtained by reading
the labels of its leaves from left to right. The frontier of a node N in T is the
frontier of the subtree rooted at N . Let {F (N)} be the set of elements appearing
in the sequence F (N).

Two PQ-trees are equivalent if one can be obtained from the other by applying
a sequence of the following transformation rules: (RP) arbitrarily permute the
children of a P-node; (RQ) reverse the order of the children of a Q-node.

Theorem 1. [3] If a binary matrix M has the C1P, there exists a unique equiv-
alence class PQM of PQ-trees with the property that there is a one-to-one cor-
respondence between the C1P-orderings of M and the frontiers of the PQ-trees
of PQM , and a PQ-tree belonging to PQM can be constructed in linear time.

Each PQ-tree in the equivalence class PQM satisfies the following properties
(that are implicitly given in [3,9]) which we will use in this paper.

Property 1. Let M be a binary matrix that has C1P with rows R and T a
PQ-tree in the equivalence class PQM . Then

1. for every row r ∈ R, there is a node N in T such that either {F (N)} = r, if
N is a P-node, or r is consecutive in F (N), if N is a Q-node;

2. for every node N different from the root of T , there is a row r ∈ R such that
{F (N)} ⊆ r; and

3. for every Q-node N , and every two consecutive children N1 and N2 of N ,
there is a row r ∈ R such that {F (N1)} ∪ {F (N2)} ⊆ r.
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Finally, we recall briefly the technique used to prove that matrices with two
entries 1 per row (usually called matrices of degree 2) form a class of tractable
instances for deciding the mC1P as we will use it to prove our main result. Such
matrices can be naturally represented as a collection of adjacency constraints
A = {{ai, bi}}m

i=1 on the set C, where ai �= bi and the collection is a set (no
duplicate elements). Collection A is consistent with respect to m if there is a
sequence S on C such that each adjacency is consecutive in S. We will refer to this
sequence as a consistency sequence of A and m. Note that an mC1P-ordering
of M is a consistency sequence of the corresponding collection A and m, and
vice versa, and hence, M has the mC1P for m if and only if A is consistent with
respect to m. Given a collection of adjacencies A, we define the graph GA with
vertex set C and edges given by adjacencies.

Theorem 2. [12] A collection of adjacencies A is consistent with respect to
a multiplicity vector m if and only if for all ci ∈ C, degreeGA(ci) ≤ 2m(ci)
and for each connected component B ⊆ C of GA, for at least one ci ∈ B,
degreeGA(ci) < 2m(ci).

The above theorem relies on the fact that the graph GA satisfying the above
conditions can be extended to a multigraph on C ∪ {c0} that has an Eulerian
cycle. It can be easily seen that the proof presented in [12] applies to generalized
adjacencies, where we allow ai = bi and the collection to be a multiset, and we
require that each adjacency in A appears in S in a unique position. Note that
GA is now a multigraph with self-loops. We have the following corollary.

Corollary 1. A collection of generalized adjacencies A is consistent with respect
to a multiplicity vector m if and only if for all ci ∈ C, degreeGA(ci) ≤ 2m(ci)
and for each connected component B ⊆ C of GA, for at least one ci ∈ B,
degreeGA(ci) < 2m(ci).

3 A Tractable Case of the mC1P Decision Problem

Our main result is that deciding the mC1P is tractable for a large family of
matrices with constraints on the maximum number of entries 1 in multicolumns
a row can have. The motivation for studying this particular family of matri-
ces arises from incorporating information on telomeres in ancestral gene order
reconstruction (Appendix A).

Theorem 3. Let M be a binary matrix and m a multiplicity vector such that
(1) M has matched multirows, and (2) each row contains either (i) at most one
entry 1 in multicolumns, or (ii) two entries 1 in multicolumns and no other
entries. Deciding if M has the mC1P for m can be done in polynomial time and
space.

We split the proof into two parts. In Section 3.1, we consider the case (2i) where
M with multiplicity vector m contains a single multicolumn, and we show that
deciding if M has the mC1P for m can be done efficiently using PQ-trees.
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Then, in Section 3.2, we show how to handle the general case using Corollary 1
which relies on Eulerian cycles. Finally, in Section 3.3, we give an algorithm for
building a PQ-tree which describes all sequences that satisfy the consecutivity
requirement (condition (1) of Definition 1).

3.1 The Case of a Single Multicolumn

We assume that the multiplicity vector m defines only one multicolumn denoted
by c′. According to Lemma 1,M satisfies the mC1P only if M̂ has the C1P, which
can be checked in linear time (Theorem 1). Assume that M̂ has the C1P and let
T be a PQ-tree from the equivalence class PQM̂ . We then aim at finding a PQ-
tree from PQM̂ (by applying operations (RP) and (RQ) on T ) whose frontier
can be extended to a valid mC1P-ordering by inserting copies of c′. We say that
inserting a copy of c′ into F (T ) breaks a row r of M̂ if r is not consecutive in
the resulting sequence. An example is given in Figure 2.

1 2 3 4 5 6 7 8 9 c′

r1 1 1 0 0 0 0 0 0 0 1

r̂1 1 1 0 0 0 0 0 0 0 0

r2 1 1 1 0 0 0 0 0 0 0

r3 0 0 1 1 0 0 0 0 0 1

r̂3 0 0 1 1 0 0 0 0 0 0

r4 0 0 0 0 0 0 1 1 0 1

r̂4 0 0 0 0 0 0 1 1 0 0

r5 0 0 0 0 0 0 0 1 1 0

r6 0 0 0 0 1 1 0 0 0 0

Fig. 2. Left: Binary matrix M , with matched multirows. Let m(c′) = 2. Right: PQ-
tree belonging to the equivalence class PQM̂ . P-nodes are represented by circular
nodes and Q-nodes by rectangular nodes. An example of a valid mC1P-ordering is
c′ 1 2 3 4 c′ 7 8 9 5 6 which is obtained by taking the equivalent PQ-tree with frontier
1 2 3 4 7 8 9 5 6 and inserting two copies of c′ into the corresponding positions. Notice
that inserting c′ between 2 and 3 would break row r2.
Illustration of Algorithm 1. LCA(r̂1) and the respective segments of LCA(r̂3,4) are
highlighted in gray and the respective paths are depicted by dashed lines. The upper
left edge is contained in two paths. Here, K1 = 1 and K2 = 1, thus K = 2 ≤m(c′) = 2.

Recall that rows are subsets of C. As M has matched multirows, all rows in
M̂ are also rows in M . Since the consecutivity of the 1’s in each row of M̂ in
the frontier F (T ) has to be maintained when inserting copies of c′, no c′ can
be inserted into a position where it breaks any row of M̂ . Lemma 2 below is a
consequence of this observation.

Lemma 2. Let M be a binary matrix with matched multirows, and m be a
multiplicity vector defining exactly one multicolumn c′. Assume that M has the
mC1P, and let T be a PQ-tree from PQM̂ and T ′ an extension of T whose
frontier F (T ′) is an mC1P-ordering of M .
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1. If the root of T is a P-node, then, for each child node N of the root, c′ can
only appear as the first or last element of the frontier F (N) in T ′.

2. If the root of T is a Q-node, the copies of c′ in T ′ can only appear as the
first and/or last element of the frontier F (T ′).

Proof. It follows by Property 1.2 that for every child N of the root of T , any
pair of consecutive leaves in F (N) belongs to a row of M̂ , and hence, inserting
c′ between these leaves breaks this row.

In addition, if the root of T is a Q-node, then by Property 1.3, for any two
consecutive children N1 and N2 of the root, there is a row of M̂ that contains
elements of F (N1) and of F (N2). This prevents the insertion of c′ into root
between N1 and N2 as this would break such a row. Hence c′ can appear only
at the extremities of F (T ′). ��

Lemma 2 rules out many positions in F (T ) where to insert copies of c′: indeed,
copies of c′ can only be inserted at extremities of the subsequences of F (T )
formed by children of the root (and only at the extremities of F (T ), if the root
is a Q-node). On the other hand, each multirow specifies a position where a copy
of c′ must be inserted. These two constraints give rise to a polynomial algorithm
which we describe in the following.

Algorithm 1 starts with a PQ-tree for M̂ and works in two stages. First
(Step 3), based on Lemma 2, it checks if there is a way to permute nodes in the
subtrees rooted at each child of the root such that for each multirow r = r̂∪{c′},
rows in r̂ appear as a prefix or a suffix of the frontier of some child. To satisfy
the consecutivity requirement for each multirow r it is enough to add copies of
c′ to F (T ) before or after the frontier of the child of the root containing r̂. To
satisfy the multiplicity requirement, we need to permute the children of the root
and possibly reverse the order of the frontier of some children. The basic idea is
that we can save one copy of c′ if a child requiring a copy of c′ on the right is
followed by a child requiring a copy of c′ on the left. Whether enough copies of
c′ can be saved to satisfy the multiplicity requirement is checked in Steps 4–5.

Let r = r̂ ∪ {c′} be a multirow. By Property 1.1, there is in T either a P-
node that contains exactly the columns in r̂ in its subtree, or a Q-node with a
segment of two or more consecutive children which together contain exactly the
columns in r̂ in their subtrees. This node is the least common ancestor in T of
the columns in r̂, and hence, will be denoted by LCA(r̂).

Now to argue that Algorithm 1 is correct. If condition 3.c.i applies, r would
require the insertion of a copy of c′ within F (U) in any PQ-tree of PQM̂ , which
contradicts Lemma 2.

The paths indicate positions where copies of c′ have to be added to the frontier
so that the consecutivity requirement is satisfied. Following Lemma 2, we have
to verify whether we can transform T such that all paths lie on the outside of
the subtree of a child of the root of T . If conditions 3.c.ii–3.c.iv apply, there are
two or more competing multirows, and we cannot transform T such that all of
the corresponding paths lie on the outside of the subtree of a child of the root of
T . Paths that are sub-paths of one another are excluded by not considering any
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Algorithm 1. Deciding the mC1P for a matrix M with matched multirows and
a multiplicity vector m defining a single multicolumn c′.
1. Check if M̂ has the C1P.
2. If not, return false, else let T be a PQ-tree from PQM̂ .
3. For each minimal multirow r = r̂ ∪ {c′} in M do

a. Locate N := LCA(r̂).
b. Let Pr be the path from N to the root of T .
c. For each edge e = {U, V } in Pr, where U is the parent of V do

i. If U is a Q-node and V is neither its first nor its last child, return false;
ii. If the root of T is a Q-node and e also belongs to the path Pr′ defined by

another minimal multirow r′, return false;
iii. If U is not the root of T and e also belongs to the path defined by another

minimal multirow, return false;
iv. If U is the root of T and e also belongs to the paths defined by at least two

other minimal multirows, return false.
4. If the root of T is a Q-node, return true.
5. If the root of T is a P-node:

a. Let K1 and K2 be the number of children of the root of T belonging to exactly
one or two paths defined by minimal multirows, respectively.

b. K :=
⌈

K1
2

⌉
+ K2 +

{
1 if K1 = 0 and K2 > 0,
0 otherwise.

c. Return K ≤m(c′)

multirow r = r̂ ∪ {c′} which contains another multirow r′ = r̂′ ∪ {c′} (line 3).
These rows do not need to be considered at this stage, because in any ordering
with c′ adjacent to the elements in r̂′, since r̂′ ⊆ r̂, c′ is also adjacent to the
elements in r̂. If the root of T is a P-node, we have to consider the children of
the root node separately: We could insert a copy of c′ on both sides of a frontier
of a child of the root, i.e., at most two paths can join above such a child node. In
levels below the root, only one path can be moved to the border of the subtree,
i.e., no two edges can join.

If conditions 3.c.i–iv do not apply for a multirow r, there is a way to transform
T (with rules (RP) and (RQ)) in the nodes on the path Pr (excluding the root)
so that the frontier of N = LCA(r̂) appears as a prefix or suffix of the frontier of
N ′, where N ′ is a child of the root lying on the path Pr. Next, we will show that
all these transformations can be performed simultaneously without any conflict.
Obviously, the conflicts could only occur if the paths Pr share vertices other than
root. Condition 3.c.iv guarantees that there are never three or more minimal
multirows in the same subtree rooted at a child N ′ of the root. Condition 3.c.iii
guarantees that if there are two minimal multirows in the same subtree rooted
at a child N ′ of the root, their paths must meet only in N ′, and hence, one can
appear as a prefix and one as a suffix of the frontier of N ′. However, if the root
is a Q-node, by Lemma 2, column c′ can be attached only on one side of the
frontier of N ′, and hence, only one minimal multirow can appear in the subtree
rooted at N ′, which is checked in condition 3.c.ii.
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Hence, if Step 3 succeeds for all rows, there is a PQ-tree in PQM̂ from which
we can obtain a sequence of the columns fulfilling the consecutivity requirement
of M by inserting copies of c′ into its frontier at positions indicated by the paths
of multirows. Steps 4–5 check if the multiplicity constraint imposed by m can be
satisfied. Note, that if the root of T is a Q-node (Step 4), then the multiplicity
constraint is satisfied since m(c′) ≥ 2.

In Step 5, we count the number of copies of c′ required to satisfy all multirows.
The position where to insert these copies are given by the paths. Since the root
of T is a P-node, we can rearrange the children of the root such that one copy
of c′ would coincide with two paths (from neighboring children). For instance,
we can greedily pair nodes with one path each, using 
K1/2� copies and then
include nodes with two paths (one path on each side) in-between, requiring one
further copy each, K2 in total. If K1 = 0 and K2 > 0, chaining the two-path
nodes results in K2 + 1 copies of c′. It is easy to see that this joining process is
optimal.

If the number of required copies of c′ does not exceed the given maximum
multiplicity m(c′), the given matrixM with multiplicity vector m has the mC1P.
Finally, to complete the proof of the correctness of the algorithm, we only need
to notice that the result of Algorithm 1 does not depend on the choice of the PQ-
tree T of PQM̂ , as the LCAs and paths are invariant under the transformation
rules (RQ) and (RP).

The analysis of the time and space complexity of Algorithm 1 is as follows.
First, Steps 1 and 2 can be completed in O(m+n+ �) time and space using the
algorithm described in [9]; note that T can then be encoded in O(n) space. Next,
Step 3 is composed of at most m iterations, each of them requiring time O(n),
the maximum length of a path from N to the root of T , as each path is obviously
processed in time linear in its length. This gives an O(mn) time complexity for
Step 3. For similar reasons, Step 4 can be achieved in time O(mn), which gives
an overall worst-case time complexity of O(mn). This completes the proof of the
case of a single multicolumn in Theorem 3.

3.2 Completing the Proof of Theorem 3

Proof (Proof of Theorem 3). Given matrix M with multiplicity vector m and
having matched multirows, let C′ be its set of multicolumns. A multirow con-
taining multicolumn c′ ∈ C′, will be called a c′-multirow. Algorithm 2 works in
the same two stages as Algorithm 1. However, the second stage is more complex.
It requires building the collection of generalized adjacencies A on set C′ ∪ {c0}
by replacing each child of the root of the PQ-tree T for M̂ by an adjacency and
then applying Corollary 1.

Correctness of Step 1 follows from the correctness of the first stage of Algo-
rithm 1. If Step 1 succeeds, we can assume that the root of T is a P-node (the
case when the root is a Q-node is handled in Step 1), and hence, it is enough
to satisfy the multiplicity requirement by permuting the children of the root
and possibly reversing the order of the frontiers of some children. Let π be this
order of children of the root. In Step 2, the algorithm constructs the multiset of
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Algorithm 2. Deciding the mC1P for a matrix M with matched multirows and
a multiplicity vector m.
1. Run the first 4 steps of Algorithm 1, where c′ is any element of C′.
2. Construct a multiset of generalized adjacencies A on set C′ ∪ {c0} as follows. For

every child N of the root of T do
a. If N belongs to exactly one path defined by multirows, say by a c′-multirow,

add adjacency {c′, c0} to A;
b. If N belongs to two paths defined by multirows, say by a c′-multirow and a

d′-multirow (c′ and d′ may be equal), add adjacency {c′, d′} to A.
3. Report if A is consistent with respect to m (use Corollary 1).

generalized adjacencies A whose consistency sequence (produced in Step 3) de-
scribes the way to do this as follows. Children that belong to zero paths defined
by multirows will not introduce any adjacency constraints and can be placed at
the end of π in any order and orientation. For any other child of the root, we
have a unique position in the consistency sequence, hence we can order and orient
these children based on these positions. Next, we insert copies of multicolumns
as follows. For each subsequence c1c2c3 of the consistency sequence, where ad-
jacency {c1, c2} corresponds to child N1 and {c2, c3} to N2, if c2 �= c0, we insert
a copy of c2 between the frontiers of N1 and N2 in F (T ). Hence, the number
of copies of a multicolumn c′ ∈ C′ is equal to the number of its occurrences in
the consistency sequence. Therefore, the frontier F (T ) with all required copies
of multicolumns inserted satisfies the multiplicity requirement given by m. It is
easy to see that if there is an mC1P ordering of M , then we can extract from it
an ordering of the children of the root which gives this consistency sequence.

The analysis of the time complexity is as follows. The first stage of the algo-
rithm is a subroutine of Algorithm 1, and hence, has a time and space complexity
of order O(mn). Since the number of children of the root of T that belong to at
least one path defined by multirows is at most m, the number of adjacencies in
A is at most m, and hence, building A takes time O(m). Finally, checking the
degree conditions (applying Corollary 1) takes time O(n). Hence, the total time
and space complexity of the algorithm is O(mn).

Finally, Algorithm 2 can also be easily extended to the case when the matrix
also contains rows of degree 2 containing two multicolumns, as follows. First,
we run Steps 1 and 2 where we ignore multirows containing two multicolumns.
Then, we add to A also an adjacency for every such multirow. Finally, we run
Step 3 of the algorithm on this new collection A. It is easy to see that the time
complexity of this new algorithm is still O(mn). Hence, the theorem holds. ��

3.3 Building a PQ-Tree Which Describes All Sequences That
Satisfy the Consecutivity Requirement

Here, we describe how a given PQ-tree T ∈ PQM̂ can be augmented to a PQ-
tree T ′ which represents the set of all sequences S, up to “pumping” occurrences
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Fig. 3. Augmented PQ-tree T ′ for the matrix given in Figure 2. (In fact, to get an
augmented PQ-tree from the original PQ-tree shown in Figure 2, no modifications are
necessary other than attaching leaf nodes labeled c′ at appropriate locations.) Only
the trees in the equivalence class of T ′ where the left side of the right Q-node is
placed adjacent to the left Q-node have shortened frontiers that meet the multiplicity
requirement (m(c′) = 2), for example, c′ 1 2 3 4 c′ 7 8 9 5 6.

of multicolumns, that satisfy the consecutivity requirement (condition (1) of
Definition 1) in that the frontier of any tree in the equivalence class of T ′ is
such a sequence S. However, not all frontiers meet the multiplicity requirement
(condition (2) of Definition 1). For some trees in the equivalence class of T ′,
the respective frontier contains pairs of adjacent occurrences of a multicolumn
c′, each of which can be replaced by one occurrence of c′ without breaking any
row of M (violating the consecutivity requirement). This reduces the number of
used copies of the multicolumns. Only such shortened frontiers which meet the
multiplicity requirement are valid mC1P orderings, and, in fact, the set of such
shortented frontiers is exactly the set of valid mC1P orderings of M . Figure 3
shows an example.

To construct an augmented PQ-tree T ′, we process the original tree T in a
bottom-up fashion along the paths Pr defined in Algorithm 1, starting with the
LCAs. We replace an LCA by a new Q-node which has a copy of its corresponding

⇒ ⇒

⇒ ⇒

Fig. 4. Transformation rules for the LCAs to construct an augmented PQ-tree. An
LCA and its parent node are replaced by the nodes shown on the right. The LCA (or
the segment of an LCA, respectively) are highlighted in gray.
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⇒
c' VV2 t

...
UU2 k

... ⇒

Fig. 5. Transformation rules for bottom-up iteration to construct an augmented PQ-
tree. A newly created Q-node and its parent node are replaced by the nodes shown on
the right.

⇒

⇒

Fig. 6. Special transformation rules for bottom-up iteration to construct an augmented
PQ-tree. A newly created Q-node two levels below the root node and its parent node
are replaced by the nodes shown on the right.

multicolum c′ as its first child and further children, depending on whether the
LCA itself and its parent are P or Q-nodes. These intuitive transformation rules
are detailed in Figure 4.

Then, any parent node of a newly obtained Q-node is refined to a new Q-node,
moving up the copy of c′, as shown in Figure 5.

This process is iterated until we reach the root node. Since a node that is a
child of the root can be contained in two paths, separate (but similar) rules are
required, illustrated in Figure 6.

Further specific rules which apply if an LCA is a child of the root of T or if
the root node is a Q-node are straightforward. In some cases, after generating
the tree as described above, simplifications can be carried out, such as replacing
a P-node with a single child by a direct edge or substituting a Q-node with two
children by a P-node.

Analogously to Algorithm 1, that only checks if a matrix has the mC1P, the
above construction of an augmented PQ-tree T ′ can be carried out in O(mn)
time.
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4 Conclusion

In the present work, we extend the domain of tractable instances of deciding
the C1P with multiplicity for binary matrices. Our approach relies on previ-
ously used techniques to decide the C1P and simpler instances of the mC1P,
and answers a natural problem in reconstructing ancestral gene orders. Several
questions remain open. Naturally, one can ask to relax the condition that M
has matched multirows, which is crucial in our proofs. It seems however that the
problem becomes hard in this case, and some less rigid constraints on M would
then have to be introduced to recover tractability. Also it is open to exhibit an
extension of the notion of the PQ-tree that could encode all mC1P-orderings of
a binary matrix that satisfies this property. Even for the case of a matrix with
matched multirows, our techniques lead to a data structure which only captures
the consecutivity requirement but not the multiplicity requirement. From an
algorithmic complexity point of view, our algorithm has an O(mn) time com-
plexity, and it remains open to see if this case can be solved in O(m + n + �)
time.
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Appendix A Ancestral Gene Orders and Telomeres

In the context of ancestral genome reconstruction as approached in [4], C is
an alphabet of genomic markers that are believed to appear uniquely in the
extinct ancestral genome. An ancestral synteny is a set of markers that are be-
lieved to have been consecutive along a chromosome of the ancestor. A set of
ancestral syntenies can then be represented by a binary matrix M : columns rep-
resent markers and the 1 entries of a given row define an ancestral synteny. If all
ancestral syntenies are true positives (i.e., represent sets of markers that were
consecutive in the ancestor), then M has the C1P. Otherwise, some ancestral
syntenies are false positives, and a general approach to handle such conflicts is
to remove from M some rows (optimizing some criterion) such that the result-
ing matrix M ′ has the C1P. Each subtree rooted at a child of the root of the
resulting PQ-tree represents a set of markers that are believed to have been con-
tiguous in the ancestral genome (with partial information regarding the order of
the markers along this segment), called a CAR (Contiguous Ancestral Region)
following [8].

A CAR is an ancestral chromosomal segment, but it is not guaranteed to
be a complete ancestral chromosome. In fact, it is common that the number of
CARs obtained is larger than the expected number of ancestral chromosomes.
This raises the following natural question: which CARs are believed to form
complete ancestral chromosomes, or more generally, to contain an extremity
of an ancestral chromosome (an ancestral telomere)? Indeed, a CAR with two
ancestral telomeres is in fact a complete ancestral chromosome. Moreover, when
CARs are grouped into syntenic sets, that is, sets of CARs that are believed to
belong to the same ancestral chromosome, each such syntenic set of CARs can
contain only two ancestral telomeres.

We address this question as follows. A column c′ with multiplicity (bounded,
for example, by twice the maximum expected number of ancestral chromosomes,
or more generally with infinite multiplicity) can then be used to represent telom-
eres, that is, virtual extremities of ancestral chromosomes. Then any ancestral
synteny that contains putatively a marker that is an extremity of an ancestral
chromosome (for example because the ancestral synteny is telomeric in two ex-
tant descendants of the considered ancestor) can be represented by two rows in
M : a row representing the ancestral synteny, plus a copy of this row with an ad-
ditional entry 1 in column c′ (hence M has matched multirows). This structure,
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as seen earlier, ensures that if M has the mC1P, then the occurrences of c are
located at the extremities of the CARs. Otherwise (M does not have the mC1P),
some rows can be discarded to result in a matrix M ′ that has the mC1P, with the
same property. The assumption that M has matched multirows is fundamental
to leave open the possibility for any ancestral synteny to be at the extremity of
a CAR or to be embedded inside a CAR.

Considering several columns with multiplicity can be used to model more
precise knowledge about possible ancestral telomeres, provided that the funda-
mental assumption that the matrixM has matched multirows is maintained, and
that any ancestral synteny (i.e., row) contains at most one putative ancestral
telomere, which are the assumptions of our main result.
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Abstract. We present two enhancements to Jiang’s tree alignment algo-
rithm, motivated by experience with its use for RNA structure alignment.
One enhancement is the introduction of an affine gap model, which can
be accommodated with a runtime increase by a constant factor. The sec-
ond enhancement is a speed-up of the alignment algorithm when certain
nodes in the trees are pre-aligned by a so-called anchoring. Both enhance-
ments are included in a new implementation of the tool RNAforester.
We also argue that tree alignment should be parameterized by a user-
described set of edit operations, generalizing over the traditional, atomic
edit operations.

Keywords: RNA structure alignment, forest alignment, affine gap costs,
anchored alignment.

1 Introduction and Motivation

Classical Tree Alignment and its use in RNA Structure Comparison. Tree align-
ment methods have a wide variety of applications when it comes to comparing
objects that are represented as ordered labeled trees. For example, text docu-
ments or physical objects composed recursively from smaller constituents have a
natural tree representation. In bioinformatics, RNA secondary structure is con-
veniently expressed as a tree, incorporating the relationships of adjacency and
embedding between structural components. Tree alignment [10] is the general-
ization of sequence alignment from sequences to trees. It has been implemented
in the tool RNAforester [7,8], which is widely distributed with the Vienna RNA
package [9] and has performed well in large scale studies such as [14], in spite of
high computational cost of the tree alignment algorithm compared to simpler,
competing methods.

A particular virtue of tree alignments, and an advantage compared to alter-
native methods such as tree edit distance based on node mappings [20], is that
they can be used to infer a structural alignment of the leaf sequences of the
trees, i.e. the underlying RNA sequences in the RNA application. These derived
sequence alignments have been shown, in another large study, to be helpful in
determining structural conservation with other sequence based methods [3].

However, two shortcomings of the present method have become apparent: (1)
The tree alignment sometimes leads to a rather scattered sequence alignment,
using a large number of small gaps. A good alignment may be available, which
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may be more plausible by using fewer but larger gaps, but the algorithm is not
aware of this criterion. (2) The high computational cost of the algorithm is an
obstacle for its use in many cases, and this is particularly annoying when we need
to compare structures in the aforementioned search of structure conservation. In
this situation, structures are pre-selected and are only compared when they are
known to have a similar overall shape. It should be possible to make use of such
knowledge for improved efficiency, without compromising alignment quality.

Contributions of this Article. The main contributions of this work are threefold:

(1) We generalize the tree alignment algorithm to accommodate an affine gap
model : Gaps are scored with a (large) gap opening penalty, and a moderate
penalty that grows linearly with the size of the gap. We show that this can be
achieved with a constant runtime factor ≈ 7 compared to the previous model.
(2) We define the notion of an anchoring as a partial bijection between two
trees, and construct alignments consistent with these anchorings, with a speed-
up depending on the number of anchors. (3) In applying these improvements to
RNA structure comparison, we observe that the classical tree alignment model
– based on the operations of matching, deletion and insertion of tree nodes – is
too atomic in a real-world scenario such as ours. We propose - as a new research
problem – a model of tree alignment based on a set of general tree rewrite rules.

These ideas and further variants of tree alignment algorithms, such as a local
tree similarity and multiple tree alignment, have been implemented and evalu-
ated in the first author’s PhD thesis [16], but space does not permit to describe
these variants in the present paper.

Structure of this Article. The next section gives a short review of related work,
recalls the definitions and gives a graphical explanation of the original tree align-
ment algorithm. Thereafter, we describe our new techniques of affine gap model-
ing and of anchored tree alignment. These two sections are actually independent,
as both contributions are orthogonal to each other. We then discuss asymptotic
efficiency and report from the evaluation of the bioinformatics tool. Finally, we
discuss the cases where the present tree alignment model is insufficient, and
propose a generalization.

2 State of the Art

Tree Edit Distance. The most widely studied model of tree matching and com-
parison is the tree edit distance model [17,20], which is based on partial bijective
mappings between two trees, where the mappings preserve ancestorship, and also
sibling order in the case of ordered trees. A mapping is scored by summing indi-
vidual scores based on the label pairs of the mapped nodes. Unmapped nodes are
considered deleted or inserted, and do not contribute to the score. The mapping
of maximal score defines the edit distance between the two trees. Under a unit
cost model, the tree edit distance leads to the largest common subtree of two
trees. Ideas similar to our contribution to the tree alignment distance have been
developed for the tree edit distance [18,19].
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The tree edit distance does not produce tree alignments, although some au-
thors use “tree alignment” as a synonym for “mapping”. The unmapped nodes
are not brought into any particular, tree-like arrangement, and there is no ovious
way to transform the maximal common subtree into a common super-tree, given
an arbitrary scoring function. Our definition of tree alignment corresponds to a
topological embedding in the terminology of [15].

In the domain of RNA structure analysis, the leaves of the trees carry the RNA
sequence information, and the inner nodes represent structure. In this context, it
is often desired to derive a sequence alignment from a structure (tree) alignment,
and hence, the following approach is more adequate.

Tree Alignment Distance. The tree alignment algorithm by Jiang et al. in [10] is
the foundation for the method described in this work. Formal definitions will be
given below. Tree alignment seeks a tree in which both trees can be embedded
homeomorphically. Run with unit cost scoring, it leads to the smallest common
super-tree of two input trees. Insertions and deletions are explicitly embedded
in the super-tree, allowing a richer set of scoring schemes. We will make use of
this property when introducing composite gaps with affine gap scoring.

Each tree alignment indicates a mapping in the sense of the tree edit distance
model, but not vice versa. Hence, the search space of the tree alignment dis-
tance is smaller than for the tree edit distance. The algorithm for ordered trees
presented in [10] has time complexity O(|T1| · |T2| · (deg(T1) + deg(T2))2), where
|Ti| is the number of nodes in tree Ti and deg(Ti) is the degree of tree Ti, so the
algorithm is faster than all known ones for the tree edit distance, if the degrees
are smaller than the depths of the trees.

In [7], Hoechsmann et al. extend the tree alignment algorithm to compute
local forest alignments of forests F1 and F2 with a time complexity of O(|F1| ·
|F2| · deg(F1) · deg(F2) · (deg(F1) + deg(F2))). The algorithm uses a dense two-
dimensional dynamic programming table, and considerably reduces the space
requirements compared to previous versions of the algorithm with sparse, four-
dimensional tables.

Based on the forest alignment model for the alignment of two trees, a multi-
ple alignment model is developed by Hoechsmann et al. in [8]. This is done with
the profile alignment method, which can be transferred from strings to trees
and forests. A forest profile representation for RNA secondary structure align-
ments is presented together with an algorithm to compute the profile alignment,
implemented in the tool RNAforester.

Seeded mappings. An interesting cross-breed of mapping and alignment is the
method of seeded tree alignment [11], which, in spite of its name, computes
mappings rather than alignments. These mappings can be constrained by seed
mappings (a set of node pairs required to map onto each other) which preserve
the lowest common ancestor relationship. Such preservation, where enforced, se-
lects a specific common super-tree structure and makes the mappings compatible
with, while still more abstract than, tree alignments. On the other hand, it re-
quires the lowest common ancestor nodes of two seed nodes to be mapped onto
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each other, which is more restrictive than requiring the existence of a compatible
super-tree. Hence, this approach is incomparable to our use of anchors explained
below, which does not require preservation of lowest common ancestors.

Arc Annotated Sequences. With a particular focus on the RNA structure prob-
lem, the alignment problem has been reformulated in terms of arc annotated se-
quences. See [2] for a review. Recent contributions present alignment algorithms
that include pseudo-knotted structures [12,1], which cannot be represented as
trees. Neither of these approaches considers affine gaps or anchorings.

3 Forest Alignment Algorithm

RNA Molecules as Trees and Forests. An RNA sequence or primary structure is
represented as a string on the alphabet {A,C,G,U}. For secondary structures,
we have to take sequence and basepairings into account.

We represent a secondary structure as a rooted ordered forest, where the
sequence is at the leaves. This forest is defined on the above alphabet. Addi-
tionally, we introduce P-nodes, labeled with P , to represent the base pair bond.
Such a node always has two or more child nodes, because the outmost nodes
are leaves representing the paired bases. In between, there may be an arbitrary
number of P -nodes and bases, according to the nested substructure that is en-
closed by this basepair. Thus, our representation is a forest on the alphabet
A = {A,C,G,U, P} . See Fig. 1 for examples. The forest alignment algorithm
to be presented is not restricted to RNA structure comparison, but can be used
to compare arbitrary trees and forests.

P

a P

a a c c

((.....))

c u u

u

P

a P

a P

u c c

(((...)))

c a

u

u(P,P)

(a,a) (-,P)

(-,a) (P,P)

(a,u) (a,-) (c,c) (c,c)

(-(.....)-)
(((-...-)))

(c,c) (u,-) (u,a)

(-,u)

(u,u)

Fig. 1. An example for the forest alignment model. Left and right, there are two hairpin
structures and their forest representations. As closed structures, they are forests of
length one. In the middle, there is one possible alignment forest. Under each forest, we
indicate the encoded structure or structural alignment in dot-bracket notation.
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Tree and Forest Alignment. The notion of tree alignment is best introduced by
the analogy to sequence alignment. An alignment of two sequences of characters
can be seen as a sequence of character pairs, now allowing for a gap character
“−”. These character pairs in turn are interpreted as the edit operations Replace,
Delete, and Insert. Transferring this analogy to trees, an alignment of two node-
labeled trees is a tree whose nodes carry label pairs.

Definition 1. An alignment tree is a tree labeled with pairs from the alphabet
{A ∪ {−} × A ∪ {−}}/{(−,−)}.
A tree alignment of trees F and G is an alignment tree A, which can be trans-
formed (1) to F by projecting the pair node labels to their left component and
contracting the resulting tree to remove all gaps (nodes labeled “−”)from it, and
(2) to G in the same way after projecting the pair node labels to their right
component.

The tree alignment definition can be extended to the alignment of forests by
seeing a forest as a tree with a fictitious root. With the use of tuples rather than
pairs, the definition generalizes to multiple forest alignments. An example forest
alignment of two RNA hairpin structures is shown in Fig. 1.

Input: a1 < a1 . . . > a2 . . . b1 < b1 . . . > b2 . . .

R: (a1, b1)

a1 . . . b1 . . .

a2 . . . b2 . . . D: (a1,−)

a1 . . . b1...k

a2 . . . bk+1 . . . I: (−, b1)

a1...k b1 . . .

ak+1 . . . b2 . . .

Fig. 2. Graphical explanation for the forest alignment algorithm. Here, a1 < a1 . . . >
a2 . . . denotes a forest whose first tree has root label a1 and subtrees a1 . . ., and k
splits a forest at all possible points. On top are the two forests that we want to align,
underneath are three cases corresponding to the edit operations. We indicate one node
of the alignment forest, and the resulting subforests who are to be aligned to become
children (below) and sibling (right) alignment forest.

Figure 2 explains the structural recursion of the forest alignment algorithm.
The algorithm’s other ingredients are a dynamic programming table, indexed by
sub-forests, and a scoring function σ : A ∪ {−} × A ∪ {−} → � . This function
defines the local score contribution of the edit operations, and the score σ(A) of
an alignment is the score sum of its edit operations.

The optimal similarity score of the forest alignment of forests F and G is the
maximum score over all possible alignments

σFA(F,G) = max{σ(A)| A is an alignment of F and G }.
In a concrete application, it is sometimes meaningless to align certain node

labels. In this case, one may choose a score of −∞ to exclude this situation from
optimal alignments, or else incorporate such restrictions into the recurrence. The
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latter way is more difficult technically, but preserves the capability to derive
meaningful statistics about the search space, such as number of alignments and
score average.

With RNA, we score five different cases of edit operations, where indel is
either insertion or deletion: single base match, single base replacement, single
base indel, pair match, and pair indel. If base indels, base matches and base
replacements are scored 0, the alignment becomes independent of the concrete
sequence content of the two RNA molecules. Such purely structural alignments
are helpful in searching for conservation of structure in sequences with a large
evolutionary distance. Should we present two sequences without any base pairs
– represented by forests consisting of leaves only – to our algorithm, it reverts
to straightforward sequence alignment, based on the scoring of base matches,
replacements and indels.

4 Forest Alignment with Affine Gap Costs

The forest alignment algorithm inserts gaps in the input forests to construct an
alignment forest.

Definition 2. A singleton gap is a single node in a forest, which is labeled with
the gap symbol “−”.

In the above forest alignment algorithm, each singleton gap adds a contribution
to the score according to the cost function. That means, for adjacent gaps, the
score function is linear in the number of singleton gaps. This procedure can lead
to many small gaps, and a scattered alignment, which is not reasonable.

From a biological point of view, it is much more unlikely to open a new gap
than to extend an existing one. We need to consider a series of adjacent gaps as
one large unit.

We will use “singleton” for single nodes labeled “−” and reserve the term
“gap” for larger units:

Definition 3. A gap in a tree is a set of nodes labeled “−”, which is maximal
and connected under the union of the parent-child and direct-sibling relations.
A gap in an alignment A of F and G is a gap in either the left or right projection
of A.

Note that a gap in the tree alignment can appear as several gaps in the derived
sequence alignment. For example, when several successive base pairs are deleted
in F , this will be one gap in the tree alignment, but show as two gaps in the
derived sequence alignment. This is exactly what we want.

For composite gaps, we suggest an affine gap cost model. In this model, we
have high gap opening costs, whereas the costs for gap extension are low. The
cost function can be written as w(l) = wopen + (l − 1) · wextend, where l is
the number of singletons in the composite gap. If we build up the score in a
structurally recursive fashion, we do not know gap size l in advance and have to



110 S. Schirmer and R. Giegerich

compute the score in multiple steps. To be able to do so, we have to keep track
in the recurrences whether we opened a gap before and are in gap mode already.

When aligning sequences rather than forests, this leads to three modes, for
each of which the three edit operations may be computed: Starting in normal
mode (no gap mode), we stay in this mode if we begin the alignment with a
replacement. If we start the alignment with an insertion, we open a gap in the
first sequence, and the first sequence enters gap mode. Similarly, if we begin
the alignment with a deletion, we open a gap in the second sequence, and the
second sequence enters gap mode. All three cases, the original (no gap) and the
two additional cases (left sequence gap mode and right sequence gap mode) each
contain our usual case distinction for the three edit operations. This is known
as Gotoh’s algorithm in bioinformatics [6].

In a forest alignment A of forests F and G, we do not only have to align the
rest of the sequence of trees (over), but also the forest of children trees of the
aligned nodes (down). This two dimensional recursion causes two directions in
which we traverse the forest, and two types of gap modes. A deletion at the
start of the alignment, for example, introduces a gap in the first tree of G. For
the rest of the forests of F and G, we may say that the latter has now entered
(left) sibling gap mode, because its left sibling already opened a gap and paid
the opening costs. For the forests consisting of children trees of F and G, we
may say that the latter has now entered parent gap mode, because its parent has
already opened a gap. In this way, we can score gap openings and gap extensions
differently.

The modes of F and G combine in seven different ways, which leads to an
algorithm running seven “copies” of the original one. Figure 3 explains the case
analysis, using the graphical conventions of Fig. 2.

Case 1:

Input: a1 < a1 . . . > a2 . . . b1 < b1 . . . > b2 . . .

R: (a1, b1)

a1 . . . b1 . . .

a2 . . . b2 . . . D: (a1,−)

a1 . . . b1...k

a2 . . . bk+1 . . . I: (−, b1)

a1...k b1 . . .

ak+1 . . . b2 . . .

Case 2:

Input: a1 < a1 . . . > a2 . . . b1 < b1 . . . > b2 . . .

R: (a1, b1)

a1 . . . b1 . . .

a2 . . . b2 . . . D: (a1,−)

a1 . . . b1...k

a2 . . . bk+1 . . . I: (−, b1)

a1...k b1 . . .

ak+1 . . . b2 . . .

Fig. 3. Case distinction for the tree alignment algorithm with affine gap costs. No-
gap-mode is blue , parent gap mode is yellow and sibling gap mode green . We have
seven cases for each reasonable combination of gap modes. Compare also Fig. 2. Figure
continued on next page.
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Case 3:

Input: a1 < a1 . . . > a2 . . . b1 < b1 . . . > b2 . . .

R: (a1, b1)

a1 . . . b1 . . .

a2 . . . b2 . . . D: (a1,−)

a1 . . . b1...k

a2 . . . bk+1 . . . I: (−, b1)

a1...k b1 . . .

ak+1 . . . b2 . . .

Case 4:

Input: a1 < a1 . . . > a2 . . . b1 < b1 . . . > b2 . . .

R: (a1, b1)

a1 . . . b1 . . .

a2 . . . b2 . . . D: (a1,−)

a1 . . . b1...k

a2 . . . bk+1 . . . I: (−, b1)

a1...k b1 . . .

ak+1 . . . b2 . . .

Case 5:

Input: a1 < a1 . . . > a2 . . . b1 < b1 . . . > b2 . . .

R: (a1, b1)

a1 . . . b1 . . .

a2 . . . b2 . . . D: (a1,−)

a1 . . . b1...k

a2 . . . bk+1 . . . I: (−, b1)

a1...k b1 . . .

ak+1 . . . b2 . . .

Case 6:

Input: a1 < a1 . . . > a2 . . . b1 < b1 . . . > b2 . . .

R: (a1, b1)

a1 . . . b1 . . .

a2 . . . b2 . . . D: (a1,−)

a1 . . . b1...k

a2 . . . bk+1 . . . I: (−, b1)

a1...k b1 . . .

ak+1 . . . b2 . . .

Case 7:

Input: a1 < a1 . . . > a2 . . . b1 < b1 . . . > b2 . . .

R: (a1, b1)

a1 . . . b1 . . .

a2 . . . b2 . . . D: (a1,−)

a1 . . . b1...k

a2 . . . bk+1 . . . I: (−, b1)

a1...k b1 . . .

ak+1 . . . b2 . . .

Fig. 4. Remaining cases of Fig. 3

From these recurrences, variants of the algorithm used with sequence align-
ment can be carried over. One may restrict the search space further by enforcing
an insert-before-delete convention for adjacent indels. One may also allow for
“oscillating” gaps, scoring a switch from delete to insert mode or vice versa as a
gap extension rather than a new gap opening. We remark without proof that this
merges cases {2, 4, 5, 7} as well as {3, 6}, leaving us with 3 dynamic programming
tables to compute rather than 7.
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5 Speed-Up by Anchoring

Often, structures to be aligned come from the same RNA family with a con-
served abstract shape [4]. Simply said, abstract shapes record the (tree-like)
arrangement of RNA helices, but abstract from their size and from unpaired
regions. A shape like “[[][][]]” indicates a clover-leaf structure for sequences
of any length. This should be reflected in the resulting alignment, and may also
be exploited to speed up the algorithm.

The idea is to use the shape “brackets” to determine anchor points in the
structures. The corresponding anchor nodes must be aligned with each other.
This constrains the alignment algorithm, and only substructures between the
anchor points have to be aligned by our usual algorithm. In contrast to the
approach of [11] discussed earlier, our anchors do not imply that lowest com-
mon ancestors of anchors are matched – they are still candidates for deletion or
insertion.

It is not essential that the anchoring is derived from abstract shapes. It can
be provided, for example, by expert annotation – if it satisfies the following
definition.

Definition 4. An anchoring is a partial mapping function between the nodes of
two forests, with the following constraints: 1) it is a bijection, 2) it preserves the
ancestor relation, 3) it preserves the sibling ordering relation.

Figure 5 gives an example of an anchoring. By Definition 3 and 4, no gap can con-
tain an anchor, which is why affine gaps and anchoring are orthogonal concepts
that work well in cooperation.

Definition 5. The anchored alignment of forest F with n anchors ai, and G
with n anchors bi, 0 ≤ i ≤ n is the best alignment of F and G, with nodes (ai, bi)
for 0 ≤ i ≤ n.

Fig. 5. Anchored alignment input trees with constraints

In the anchoring variant of the algorithm, we align two forests F and G, such
that anchor ai in F is aligned to bi in G for all n anchors of the common shape of
F and G, 0 ≤ i ≤ n. To prune unsuccessful alignments, we make sure that, after
each alignment step, we have the same anchors in both remaining substructures
of the down/over alignment to ensure correct parent-sibling relation. In fact – it
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suffices to check for the same number of anchors, because the anchors must
have a consistent tree-like arrangement in both forests due to Definition 4. If in
the match case, the subtree rooted at the matched node of the first tree has α
anchors, the number of anchors in the subtree rooted at the matched node of
the second tree, α′, must be the same. For the insertion or deletion case, the
running index k is restricted, as in the substructures for the down alignment,
the correct number of anchors has to be present. This, again, has to be the same
number of anchors in the first and the second component of the alignment.

With this straightforward idea, a challenge had to be faced during implemen-
tation: The anchored variant of this algorithm is naturally described in a top
down fashion. In the unanchored alignment, the recurrences have been translated
into a bottom up computation method, as common in dynamic programming. To
overcome this problem, we also implemented a top down variant of the previous
algorithm. Based on this, the anchoring was incorporated.

6 Computational Complexity and Performance

For n = |F | = |G| and d = deg(F ) = deg(G), the time complexity for align-
ment of F and G is O(n2d2) [7,10]. This remains asymptotically the same with
affine gap scoring, but a constant factor ≈ 7 is expected. In our current im-
plementation, we measured an average runtime factor of 8.02 for alignments of
folded sequences of ≈ 100 nucleotides in length, and 7.79 for those of ≈ 200 nu-
cleotides in length. Allowing gaps to oscillate between F and G without opening
penalty, as explained above, would merge cases and reduce the constant factor
further.

Using k − 1 evenly placed anchors, such that both F and G are split into k
parts of about equal size, n is divided by k in the complexity expression. The
complexity is thus reduced from n2 to k(n

k )2. In general, d may also be reduced,
but with RNA structure trees, we tend to have d ≤ 30 anyway. Efficiency with
k − 1 anchors is then O(n2

k d
2). Space is reduced in the same way as in [7].

Table 1. Speed-up factor gained by shape anchoring, for ten members of each of the
above Rfam families, folded by RNAcast [13]

RNA Family Common Shape Anchors Avg. Speed-up by Anchoring

5S rRNA (RF00001) [[][]] 3 1.27

Spot 42 (RF00021) [][][] 3 3.30

Cobalamin (RF00174) [[][[][[][]]]] 7 2.96

T-box (RF00230) [[[][]][[][]]] 7 3.23

As intended, affine gap scoring helps to improve structure alignments. We
show excerpts from three alignments of two introns of Arabidopsis thaliana. See
Figs. 6, 7, 8 and the explanation given there.
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global optimal score: -9
Intron_7 GUCUGUUACACGCCGAGAUCGGACUCCGAGUGAUAUCCUC-GA-CGGAUCUGU--
Intron_8 GUCUGUUACACGAGAGAUCGGUCUCCCGGAUCGAGCCCUCGACGGAUCUGAUUCC

Intron_7 UCCGAUCUUGUGUUUCUCUGUUACUUGAU-UCGAUUACUCUGUUACUAUUCUCGU
Intron_8 GAUCUGUUUCUCUGU-UACUUGAUUCGAUUACUGUUACUAUGUU-C----UCUCU

Intron_7 UCUUUGUUACUACUACUACUACUA
Intron_8 -CG-U--U-CU--U--UG-U--UA

Intron_7 ((..((.(((...((((((((((...(((((((((.....-((-((((.....--
Intron_8 .........((((((((.((((....(((((((((.....((((((((.......

Intron_7 )))).))...........))))))))).)-))))...............))))).
Intron_8 )))))))).......-..)))))))))...))))..........-.----)))))

Intron_7 ....))).)).))...........
Intron_8 -))-)--.-..--.--..-.--..

Fig. 6. Example of a tree alignment, which is scattered due to the original, linear gap
score model and the default score parameters of RNAforester. This alignment has 24
matched basepairs and 23 singleton gaps, which appear as 15 composite gaps. Scoring
type: global similarity; Scoring parameters: pair match: 10; pair indel: -5; base match:
1; base replacement: 0; base indel: -10;

global optimal score: -125
Intron_7 GUCUGUUACACGCCGAGAUCGGACUCCGAGUGAUAUCCU-C-GACGGAUCUGU--
Intron_8 GUCUGUUACACGAGAGAUCGGUCUCCCGGAUCGAGCCCUCGACGGAUCUGAUUCC

Intron_7 UCCGAUCUUGUGUUUCUCUGUUACUUGAU-UCGAUUACUCUGUUACUAUUCUCGU
Intron_8 GAUC-UGUUUCUCUGUUACUUGAUUCGAUUACUGUUACUAUGUU-C----UCUCU

Intron_7 UCUUUGUUACUACUACUACUACUA
Intron_8 CG--U--U-CU-------UUGUUA

Intron_7 ((..((.(((...((((((((((...(((((((((....-.-((((((.....--
Intron_8 .........((((((((.((((....(((((((((.....((((((((.......

Intron_7 )))).))...........))))))))).)-))))...............))))).
Intron_8 ))))-)))).........)))))))))...))))..........-.----)))))

Intron_7 ....))).)).))...........
Intron_8 ))--)--.-..-------......

Fig. 7. Choosing the affine gap score model and a higher gap opening penalty for pair
and base indels, the gaps are contracted to longer composite gaps. This alignment has
also 24 matched basepairs, but only 11 composite gaps. Scoring type: affine global
similarity; Scoring parameters: pair match: 10; pair indel open: -20; pair indel: -5; base
match: 1; base replacement: 0; base indel: -10; base indel open: -20;
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global optimal score: -161
Intron_7 GUCUGUU--ACACGCCGAGA-UCGGACUCCGAGUGAUAUCCU-C-GACGGAUCUG
Intron_8 GUCUGUUACACG---AGAGAUCGGUCUCCCGGAUCGAGCCCUCGACGGAUCUGAU

Intron_7 U--UCCGAUCUUGUGUUUCUCUGUUACUUGAU-UCGAUUACUCUGUUACUAUUCU
Intron_8 UCCGAUC-UGUUUCUCUGUUACUUGAUUCGAUUACUGUUACUAUGUUC----UCU

Intron_7 CGUUCUUUGUUACUACUACUACUACUA
Intron_8 CU-----CGUU-CU-------UUGUUA

Intron_7 ((..((.--(((...(((((-(((((...(((((((((....-.-((((((....
Intron_8 .........(((---(((((.((((....(((((((((.....((((((((....

Intron_7 .--)))).))...........))))))))).)-))))...............)))
Intron_8 ...))))-)))).........)))))))))...))))...........----)))

Intron_7 )).....))).)).))...........
Intron_8 ))-----))).-..-------......

Fig. 8. Choosing an even higher gap opening penalty for pair indels also contracts gaps
between brackets/basepairs. This alignment now has 27 matched base pairs, and also
11 composite gaps, in positions different from those of the previous alignment. Scoring
type: affine global similarity; Scoring parameters: pair match: 10; pair indel open: -30;
pair indel: -5; base match: 1; base replacement: 0; base indel: -10; base indel open: -20;

7 Towards a Generalized Model of Forest Alignment

Semantically, a P-node and its two outmost children constitute a unit of RNA
structure. The alignment model allows to break up this unit and recode it am-
biguously in many different forms, because the pairing bases can be “removed”
from their P-node by intervening gaps. See Fig. 9. Such semantic ambiguity [5]
precludes the use of probabilistic scoring schemes, as the most likely alignment
tree is not the most likely alignment.

(-,P)

(a,b) (-,c)

(-,P)

(-,b)

(a,-)

(-,c)

(-,P)

(a,-)

(-,b)

(-,c)

Fig. 9. Three alignment trees of the trees F = a and G = P(b,c), where the middle and
right “mean” the same. The right one is considered artefactual, as the b is removed
from its P-node.

As a generalization, we want to be able to describe meaningful, non-atomic
edit operations explicitly, depending on the meaning of the trees to be aligned.
Then, a generalized tree alignment algorithm should be based on these edit
operations.
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The above case could be described by two edit rules

(1) x <-> P(x,y) (2) z <-> P(x,y)

Rule 1 says that, in the example of Fig. 9, x binds to a in F and to b in G,
and implies the leftmost alignment. Rule 2 says that a and b are not matched,
and the implied alignment is the middle one, where b stays with its P-node,
while a becomes a (a,−) (or (a, c), which also makes sense). Explicit rules would
also allow us to rule out alignment nodes such as (a, P ), which are legal in the
general tree edit model, but meaningless in our semantically richer application
context. Our present implementation avoids this situation in an ad-hoc manner.
As a general model, tree alignment parameterized by explicit matching rules
appears a well-motivated challenge for future research in combinatorial pattern
matching.
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Abstract. The problem of constructing alternative local multiple se-
quence alignments from a collection of local pairwise alignments arises
naturally in phylogenetic footprinting, a technique used to identify regu-
latory elements by comparative sequence analysis. Based on a theoretical
discussion of the problem we devise an efficient heuristic and introduce
the software tool tracker2 for this task. Tests on both biological and
random data demonstrated the heuristic yields excellent results at very
short runtimes.

Keywords: alignment consistency, phylogenetic footprinting, combina-
torial optimization, tracker2.

1 Introduction

The discovery of functional sequence elements in genomic DNA data is an im-
portant research topic in bioinformatics [1]. Most individual binding motifs,
in particular transcription factor binding sites (TFBS) are short and gapless.
Their overrepresentation in the surrounding of co-regulated genes makes them
detectable by motif discovery approaches such as meme [2] and footprinter [3].
Regulatory sequence elements are often (but not always) subject to stabilizing
selection and hence evolve much more slowly than adjacent non-functional DNA.
Such phylogenetic footprints are therefore detectable by comparative sequence
analysis. This task is frequently referred to as phylogenetic footprinting. A large
class of tools combines pattern search with the explicit analysis of conservation,
see e.g. [4–7]. However, pattern discovery approaches usually fail when not only
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small promoter-proximal regions but large intergenic regions are under investi-
gation. Techniques based on global or local sequence alignments are successfully
employed in such cases [8, 9].

As an alternative to the analysis of a single global alignment it has been
suggested to start from local alignments between all pairs of sequences of interest
[10]. This is appealing in particular when large stretches of orthologous sequences
need to be analyzed. This approach leads, however, to contradictory signals of
sequence similarity that require a sophisticated post-processing. Since regulatory
modules need not be co-linear, the construction of alternative clusters of pairwise
alignments has been suggested. Here we revisit the approach of [10]. We discuss
its theoretical foundation, starting with ideas from [11] on the consistency of
alignments, see also [12]. An efficient heuristic for the assembly of maximal local
multiple sequence alignments from local pairwise alignments is implemented in
the software tool tracker2.

2 Theory

Definitions and Basic Properties. Following [11, 13] we consider sequence align-
ments as vertex-labeled, undirected graphs. Each position of an input sequence
corresponds to a vertex. The so-called alignment edges, that is, matches or mis-
matches between sequence positions, form the edges of the graph.

We formalize this picture as follows: Consider a set X of m sequences xa,
1 ≤ a ≤ m, with not necessarily equal lengths |xa| over a common alphabet
Σ. The symbol xai, 1 ≤ i ≤ |xa| refers to the i-th letter of the a-th sequence
and the site space S(X) of X comprises all indices refering to letters in X , i.e.,
S(X) = {(a, i)|1 ≤ i ≤ |xa|, 1 ≤ a ≤ m}.
Definition 1. A multiple alignment of X is a undirected graph Γ (S(X)) over
the site space of X with vertex set V = S(X), vertex labels x : V → Σ, (a, i) �→
xai, and an edge set A satisfying the following three conditions:

1. The connected components of (V, A) are complete graphs. These complete
graphs correspond to the alignment columns.

2. If (a, i) and (a, j) are contained in the same connected component, then i =
j. Thus, every alignment column contains at most one position from each
sequence.

3. There is a partial order � on the set of connected components so that for
any two components P and Q containing vertices (a, i) ∈ P and (a, j) ∈ Q
the ordering i ≤ j along the sequence implies P � Q. Alignment columns
therefore never cross each other.

We note that alignments can be stored and manipulated more efficiently in e.g.
as a partially ordered sets of alignment columns, a point of view that we will
adopt later in this contribution. The graph structure introduced here, however,
appears more convenient for theoretical analysis, in particular when starting
from collections of pairwise alignments whose union in general does not form an
alignment.
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Given a set X of m sequences, whose lengths are bounded by n, and a set of
edges E over V, it can be decided in O(n2m2) time whether G = (V, E) is an
alignment. This is done by first inserting directed edges ((a, i), (a, j)) for all nodes
(a, i) and (a, j) with i < j, corresponding to the order of letters in the strings, in
O(n2m2) time and finding the strongly connected components of G [14] in linear
time to the number of edges in G which is in O(nm2). If these components are
complete graphs and have at most one position from each sequence, which can
be checked in O(nm2), also the partial order � is well defined for all pairs of
components.

Lemma 1. Let Γ (S(X)) be an alignment of a set of strings X, and let Y ⊆
S(X) be a subset of the sitespace of X. Then Γ (S(X))[Y ], i.e., the subgraph of
Γ (S(X)) induced by Y , is an alignment.

Proof. By construction, the vertex set V′ = Y is a subset of the vertex set
V = S(X). Furthermore, the label x : V′ → Σ satisfies (a, i) �→ xai. The
subgraph of Γ (S(X)) defined by Y thus equals the induced subgraph Γ (S(X)[Y ].
Every induced subgraph of a complete graph is again complete, thus property
(i) is satisfied. The other two properties are satisfied for all subgraphs.

Note that Y not only represents the sitespace of single subsequences of a subset
of X but of an arbitrary number of subsequences for each sequence in X and
that this subsequences do not have to be consecutive.

For simplicity we write from now on Γ (X) for Γ (S(X)) and Γ [Y ] or, if nec-
essary, Γ (X)[Y ] to denote the restriction of an alignment of X to the site space
Y of a subset of subsequences of X .

In particular every pair of sequences xa, xb gives rise to a pairwise alignment
as an induced subgraph Γ (X)[{xa, xb}]. Similarly, every individual subset of
alignment edges of Γ (X) can also be interpreted as an alignment.

Definition 2. Let X be a set of sequences and let C = {Γ (Yk)} be a collection
of alignments with Yk ⊆ S(X). We say that C is consistent if there is an align-
ment Γ (X) so that Γ (X)[Yk] = Γ (Yk), i.e., the given alignments Γ (Yk) are the
restrictions of Γ (X) to the subset of subsequences Yk.

Given a set X of sequences and a collection C = {Γ (Yk)} of alignments we write⋃{C} to denote the union of the sets of all alignment edges in each of the Γ (Yk).

Lemma 2. Let X be a collection of sequences and let V be the site space of
X. A collection C of alignments on X is consistent if and only if the transitive
closure of the graph (V,

⋃{C}) is an alignment.

Proof. An alignment graph is transitive since, by definition, it is a disjoint union
of complete graphs. Consistency of C, on the other hand, implies that (V,

⋃{C})
is a subgraph of an alignment Γ . In particular the connected components of
Γ contain at most one vertex from each sequence, and hence the connected
components of (V,

⋃{C}) also contain at most one vertex from each sequence.
Now observe that the transitive closure of a graph equals the disjoint union of
the transitive closures of its connected components. Thus, the transitive closure
of (V,

⋃{C}) is a transitive subgraph of Γ , and thus itself an alignment.
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Finally, β denotes a weighting function that assigns each alignment Γ the
weight β(Γ ). Note that β does not have to be additive in terms of the align-
ment edges. In fact, the weight of each input alignment Γ (Yk) can be assigned
arbitrarily in our setting.

Combinatorial Optimization Problem. Based on Lemma 2, we can now formalize
the combinatorial optimization problem.

Definition 3 (Maximal Consistent Alignment Subset Problem). Given
a set of strings X and a collection C = {Γ (Yk)} of alignments of subsequences
of the elements of X, the Maximal Consistent Alignment Subset Problem is to
find a maximum sub-collection C′ ⊆ C that is consistent.

Here, maximality can be defined either in terms of cardinality or in terms of
the weights β(Γ (Yk)). Note that as an alternative one might want to optimize
the sum-of-pair score of the multiple alignment M formed by combining the
alignment edges of the members of C′.

In practice, this is of particular interest in two settings:

1. All Γ (Yk) are individual alignment edges. This version of our problem is
the problem faced by consistency-based alignment procedures. For exam-
ple, T-coffee [15] takes a “library” of alignment edges and then employs a
heuristic approach to extract a collection of alignment edges consistent with
a multiple alignment of maximal score. In practice, the pairwise alignment
edges are often computed from pairwise alignments.

2. All Γ (Yk) are local pairwise sequence alignments. This has been a starting
point for footprinting tool tracker [10].

Instead of the maximum consistent subset we are interested in the collection of
all maximal consistent subsets of C in particular in the context of phylogenetic
footprinting.

Clearly, consistency is hereditary, i.e., the consistent subsets of C form an
independence system [16]. Collections of alignments do not form a matroid or
greedoid, however. Distinct maximal consistent subsets of C therefore may have
different cardinalities. The canonical greedy algorithm, furthermore, is not guar-
anteed to find an optimally scoring consistent subset of C [17]. In fact, our
problem is NP-complete in general, because the multiple alignment problem is
the special case with C being the collection of all possible alignment edges on X .
Hardness results for multiple sequence alignment are proved in [18].

Concatenation of Alignments. The construction of the transitive closure outlined
above has an alternative interpretation as a concatenation or transfer operation
between pairwise alignments. Consider two pairwise alignments P and Q on the
site space V with edge sets E(P ) and E(Q). If P and Q have no sites in common,
or if P and Q are inconsistent, we set P •Q = ∅. If P and Q overlap in exactly
one sequence, then {(x, i), (z, k)} is an edge in the concatenated alignment P •Q
if and only if there is a vertex (y, j) ∈ V such that {(x, i), (y, j)} is an alignment
edge in P and {(y, j), (z, k)} is an alignment edge in Q, and a �= c. The vertex
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Fig. 1. Concatenation of pairwise alignments

set belonging to P •Q is the minimal subset of vertices form P and Q so that
all edges in A are supported. It will be convenient, furthermore, to set P •Q =
(V, E(P ) ∩ E(Q)) for any pair of consistent pairwise alignments of the same
sequences, to ensure that the •-operation is well-defined for any pair of pairwise
alignments.

Note that the edge set E(P • Q) is the relational composition E(P ) ◦ E(Q)
if P and Q have exactly one sequence in common [11]: P • Q is the pairwise
alignment of sequences a and c that is implied by the alignment edges of P and
Q. By construction, furthermore, {P,Q, P •Q} is consistent provided {P,Q} is
consistent. Examples for the concatenation of pairwise alignments are shown in
Fig. 1.

We observe that the • operation is commutative and idempotent by definition.
It is not associative, however. If the alignments have both or no sequences in
common, the repeated application of the operation will not produce any addi-
tional alignments. Otherwise, we observe that P •(P •Q) is a non-trivial subset of
alignment edges of Q: To see this just note that {(i, a), (j, b)} ∈ P concatenated
with {(i, a), (k, c)} ∈ P •Q yields the edge {(j, b), (k, c)}, which by construction
of P •Q is contained already in Q. Analogously, Q • (P •Q) ⊆ P . Further con-
catenations do not lead to additional distinct alignments, see Fig. 1. For instance
we have (P •Q) • (P • (P •Q)) = Q • (P •Q).

For a collection of pairwise alignments C the transitive closure w.r.t. the •
operation, T(C) is well defined as the collection of all pairwise alignments that
can be generated from C by repeated application of the • operator. By construc-
tion, the union of the alignment edges in all pairwise alignments of T(C) equals
the transitive closure of (V,

⋃{C}). A set C of pairwise alignments is therefore
consistent if and only if the set of pairwise alignments generated by • from C is
consistent.

Differences of alignments are also well-defined in terms of their graphs. For
example, P \ (Q • (P • Q)) specifies the part of P in Fig. 1 which cannot be
extended to an alignment of all three sequences. In this way, it is possible to
refer to specific parts of the transitive closure of any consistent collection of
pairwise alignments.

Alignments as paired intervals. In [10] local alignments were treated as matches
(or pairings) between two sequence intervals, disregarding the exact position
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Fig. 2. Construction of additional boundaries when alignments are concatenated

of the individual alignment edges within the intervals. In the present formal-
ism developed above this can be implemented by representing only the delimit-
ing edges, i.e. the left- and rightmost edge w.r.t. to the alignment’s position
on the sequences it contains. More formally, a pairwise alignment Γ (X) =
(V, A) over the two sequences X = {x, y} is then specified by the two edges
([x, bx], [y, by]) and ([x, ex], [y, ey]), where bx = min{ix|([x, ix], [y, iy]) ∈ A},
ex = max{ix|([x, ix], [y, iy]) ∈ A}, and by and ey is defined analogously. It will be
convenient in to following to specify an interval on sequence x as a triple [x, b, e]
where b and e are the begin an end coordinates. Pairwise alignments are then
defined as unordered pairs of intervals Γ (X) = {[x, bx, ex], [y, by, ey]}.

Clearly, the reduction of an whole alignment to its outer edges only, is an
approximation. In order to construct the concatenation P •Q of two alignments
P and Q, we would need also the inner alignment edges to determine the begin
and end, denoted by g and h in the example of Fig. 1, of the new alignment
P •Q. Since the exact edges are not available in this interval approximation, we
compute them using a linear interpolation scheme [10]. For instance, in the first
case in Fig. 2 with k ≤ p ≤ l ≤ q, we compute

g = i+ (p− k)
j − i

l − k
and h = r + (l − p)

s− r

q − p
(1)

Analogous equations are easily derived for the other three cases in Fig. 2.
In the interval approximation model it also makes sense to relax the consis-

tency conditions for alignments: For example, we may want to require that two
vertices of the form (a, i) and (a, j) in the same connected component satisfy
|i− j| ≤ ε. Analogously, for two edges with {(a, i), (b, j)} and {(a, k), (b, l)} with
i < k − ε we require j < l + ε. Consistency as defined above is recovered as the
special case ε = 0.

3 Heuristic Algorithm

The structure of the collection C of alignments is an independence system. This
suggests to explore greedy-like heuristics. We therefore construct a multiple
alignment M iteratively by adding one pairwise alignment P ∈ C after the other
so that the sum of the scores β(P ) of the incorporated pairwise alignments is
maximized at the end.
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Since it will be ensured by the construction procedure that M is an alignment,
we can represent it as a partially ordered list of alignment columns, each of which
corresponds to one connected components in Definition 1. Since we know that
these are complete subgraphs, there is no need to store the alignment edges
explicitly. The insertion of the pairwise alignments into the growing multiple
alignment M and the subsequent consistency checks can therefore be performed
very efficiently in the interval approximation. In this setting it is convenient to
combine the columns in M that are consecutive and involve the same sequences
to thick columns. In analogy to pairwise alignments, a thick column is represented
as a set of intervals of the form [z, bcz, e

c
z], one for each involved sequence z.

The quality of the final multiple alignment M depends crucially on the order
in which the pairwise alignments from C are inserted. Intuitively, the optimal
collection C′ will contain in particular all those alignments that are “biologically
correct”. These are unknown in real life, of course. However, partial alignments
that are supported by many other alignments are at least good candidates. We
therefore adopt the idea, which proved successful in T-coffee [15], namely to
introduce an extended score σ(Γ ) that consists of to the basis score β(Γ ) of an
alignment Γ and “bonus contributions” that are added when Γ is well-supported
by other alignments.

Extended Scores. A pairwise alignment A ∈ C is supported by B ∈ C if A and B
align the same regions, i.e., if A ∩ B �= ∅. Similarly, B and C together support
A if A ∩ (B • C) �= ∅. Bonus scores are computed from all pairs and triples of
alignments and in each case, the extended score of σ(A) is increased by βA(X)
which is the fraction of score of X ∈ {A ∩ B,A ∩ (B • C)} proportional to the
relative size of overlapping region of X and A, i.e., βA(X) = |X |/|A| × β(A).
The extended score is then defined as

σ(A) = β(A) +
∑
B

βA(A ∩B) +
∑
B,C

βA(A ∩ (B • C)) (2)

We remark that there is no a priori theoretical reason for this particular form
of the extended score.

Greedy Heuristic. We order C by the extended alignment scores σ and treat it
as a queue. If alignments have the same extended score σ, we sort them by the
basis score γ and if also γ is equal, we use the input order. In the beginning
C′ = ∅ and the multiple alignment M is the graph with vertex V without any
edges. In each insertion step, we remove the top-scoring alignment A from the
queue C, and check whether C′∪{A} is consistent. If so, we add A to C′, insert A
into the graph M, and compute its transitive closure, i.e., we update the thick
columns of which M is composed.

In practice, the consistency test and the insertion of a candidate alignment
A = {[x, bAx , eA

x ], [y, bAy , eA
y ]} into M is performed simultaneous, investigating one

thick column c = {[z, bcz, ec
z]} of M at a time. We assume that the columns c

in M are ordered relative to �, so that e.g. the left-most column c in M that
intersects A can be determined efficiently.
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Fig. 3. Possible locations of columns relative
to the entries in alignment A. Column c1 is a
prefix in both species S2 and S3, while c7 is
a suffix, c4 is independent, and c5 overlaps in
both species. The remaining columns c2 (prefix
in S2), c3 (overlap in S3) and c6 (suffix in S3)
touch A in only one species.

There are four possibilities for the relative positioning of the sequence intervals
[x, bAx , e

A
x ] and [y, bAy , e

A
y ] of the pairwise alignment A and the thick column c that

need to be distinguished, see Fig. 3:

independence: c contains no entry [i, bci , e
c
i ] with i ∈ {x, y}. In this case we

have no information about the �-order of A and c at sequence i.
overlap: c contains an entry [i, bci , e

c
i ] and we have [i, bAi , e

A
i ] ∩ [i, bci , e

c
i ] �= ∅ for

one sequence i ∈ {x, y}. Thus c can be extended by the information of A
about the other sequence {x, y} \ {i}.

prefix: c contains an entry [i, bci , e
c
i ] and we have ec

i < bAi . Here, c is in front
of A for sequence i. This information is important to maintain the partial
order � and we have to remember the column c as the closest prefix pi of A
for sequence i detected so far.

suffix: c contains an entry [i, bci , e
c
i ] and we have bci > eA

i . In this case c is
behind A for sequence i. If c is the first column following A on sequence i
we remember, we have to remember, analogously, c as the closest suffix si of
A at i.

An update of c is only necessary if the column overlaps with at least one
sequence. Otherwise, only the prefix, suffix, or order information needs to be
updated: If c is a prefix for one sequence and we already know a prefix c′ from
a earlier stage of the algorithm and there is a closest suffix column s for the
other sequence of A, then A provides additional information about the order of
s and c. In this case we need to update the partial order of the columns: we
have to move c and columns c′ with c′ � c between s and c to the front of s.
Also, we may detect that A cannot be inserted into M at this stage: if s � c
or if c is prefix and suffix at the same time, the insertion of A would create an
inconsistency in form of a crossing, see Fig. 4. In this case A is rejected.

A second special case arises if c is the first suffix to be encountered for both
sequences or, if it is the first suffix for one sequence and there is a column c′ � c
that is the currently closest suffix for the other sequence. Then we can stop
the column check since all subsequent columns must be also suffix columns or
independent.

If A and c overlap we assume, without loss of generality, that the overlap
is at sequence x and denote the overlapping interval by [x, b̄x, ēx]. To update
c and A we additional need to determine the corresponding overlap [y, b̄y, ēy]
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have c � A and A � s. Thus we move c and
all columns c′ with c′ � c infront of s. In the
second case we also have s � c so that insertion
of A would lead to a contradiction.

at sequence y of A and the corresponding overlap [w, b̄w, ēw] for all other en-
tries [w, bw, ew] in the thick colum c. Note that this amounts to computing
A • {[x, bx, ex], [w, bw, ew]} and A • {[y, by, ey], [w, bw, ew]} by means of the linear
interpolation described in equation 1.

The update of A and the thick column itself then consists out of three steps:
First, we separate the part in front of the overlap from the alignment or the
column. This part is then inserted as a new column c′ in front of c: If A starts
before c the new column c′ is the prefix {[x, bAx , b̄x−1], [y, bAy , b̄y−1]} of A. In this
case A is replaced by the remaining part {[x, b̄x, eA

x ], [y, b̄y, eA
y ]}. Otherwise if c

starts before of A we insert the prefix part c′ = {[w, bcw, b̄w − 1] : [w, bcw, e
c
w] ∈ c}

of the column c and replace c by the remainder {[w, b̄w, ec
w] : [w, bcw, e

c
w] ∈ c}.

Second, the overhanging suffix is separated from A or c. If A ends behind c
we shorten A to {[x, b̄x, ēx], [y, b̄y, ēy]} and save the remaining part {[x, ēx +
1, eA

x ], [y, ēy +1, eA
y ]} as A′; this rest must then be checked in the following steps

against the following thick columns of M. If c ends behind A we append the
prefix part c′ = {[w, ēw + 1, ec

w] : [w, bcw, e
c
w] ∈ c} as a new column behind c and

set c to {[w, b̄w, ēw] : [w, bw, ew] ∈ c}. Third, if A contains additional information
about column c, i.e., if c has no entry for sequence y, we expand the thick column
c by the new entry [y, b̄y, ēy]. These three cases are represented graphically in
Fig 5.
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Fig. 5. Update of a column c by an alignment A. Given the overlap at sequence x
beginning in b̄x and ending in ēx and the corresponding overlaps at w and y determined
by linear interpolation (labeled with a bar) together with the begin and end values of
A and c, the first two figures represent the splitting of the alignment or the column
in a prefix part c′, that is inserted in front of c, and the remaining overlap part of A
and c. The last two figures show the splitting at the overlap end where the suffix part
A′ of A is used for the update of the next column or the suffix part c′ of c is inserted
behind c.
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Fig. 6. Determination of the alignment overlap. The figures illustrate the special cases
that affect the assumed overlap: (a) determination of the contradiction rate, (b) overlap
in case of contradictions, (c) order information by former column, (d) order information
by later column, (e) merge of columns and (f) overlap end correction. For more details
see text.

It is important to note that the start and end positions of the overlap, b̄x and
ēx, do not always coincide with the start and end positions of the intersection
of A and c, which we denote by b̂x and end êx. There are three special cases to
consider:

1. The first complication arises when the thick column c already includes an in-
terval [y, bcy, ec

y] for the second sequence y ofA. In this case, there are two ways
to compute the boundaries of the overlap, namely using A or using c to esti-
mate the coordinates. We denote the two estimates by b̄Ay , ēA

y and b̄cy and ēc
y,

resp. If A is consistent with c then the two estimates are the same and corre-
spond to the real intersection b̂y and êy. Otherwise, A causes a contradiction
with c and the maximum of the values δb = |b̄Ay − b̄cy| and δe = |ēA

y − ēc
y| mea-

sures the size δ of this contradiction, see Fig. 6(a). If δ > ε we regard A as
incompatible and reject it. Otherwise, i.e., if δ ≤ ε, the contradiction is small
enough to ignore it and we update c. Since c already has an entry at sequence
y that is created by an earlier alignment, i.e., an more trustworthy alignment
with higher extended score, we do not update the overlapping part. Hence it
remains to insert the prefix part c′ of A in front of the overlap, and to insert
the remaining part A′ of A behind the overlap. See Fig. 6(b).
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2. The second special case occurs when A overlaps with c at sequence x and is
independent at sequence y but we already have found a closest suffix sy at y
in a previous column update. Then A provides additional information about
the order of sy and c and we have to move c and all columns c′ with c′ � c
between s and to the front of s. If s ≺ c the insertion of A would create an
inconsistency in form of a crossing and we therefore reject A. Otherwise we
update c, as normal with b̄x = b̂x and ēx = êx. See also Fig. 6(c).

3. A overlaps with c at sequence x, A is independent of c for sequence y and
we have not found a suffix for y so far. We then check the columns behind
c for the first column d � c that overlaps A in y. If no such column exists,
c is updated as normal with b̄x = b̂x and ēx = êx. Otherwise, we have
three subcases depending on the position of b̂x and the position b̄Ax of the
intersection start b̂y of A and d on sequence x.
(a) If b̄x < b̂x, see Fig. 6(d), A tells us that d � c and hence we have to move
d and all columns d′ with d′ � d between c and d to the front of c. If we have,
in addition, c � d, then the insertion of A would create an inconsistency in
form of a crossing and we reject A. Otherwise we stop the update of c and
continue with the update of d.
(b) If b̄x = b̂x, see Fig. 6(e), then A connects the column c with d and we
move d and all columns d′ with d′ � d between c and d to the front of c. In
addition, we merge the columns c and d along the overlap. Beginning at b̄x,
the overlap ends at ēA

x = min{êx, ē
A
x }, where ēA

x is the position of the end
êy of the intersection of A and d on sequence x.
(c) If b̄x > b̂x, see Fig. 6(f), A and c are updated as normal except that b̄Ax ,
i.e. the position b̂y of the begin of the intersection of A and d on sequence
x, is the first position that has to be merged with c. Therefore we set the
end of the overlap to ēA

x = min{êx, b̄
A
x − 1}. The prefix and suffix parts of A

and c are separated and inserted as in the case of a normal update described
above.

The steps outlined above reduceA to the the remaining partA′. In the followin
step, we attempt to merge A′ with the column following after c in M. This
process is interated either until A′, and hence the complete alignment A, is
rejected as incompatible, or until A′ is empty, in which case the insertion is
complete. If A′ is not empty after we have checked and updated all columns
in M we append A′ as new column following the closest prefix of the current
columns. In no closest prefix has yet been determined, we insert A′ as first
column in M.

The procedure outlines above ensures that after the successful insertion of
a single alignment A, all thick columns of M are still transitive closures, have
at most on entry per sequence and obey the partial order �. Hence M is still
a multiple alignment, composed now of C ∪ {A}. If the insertion of A was not
successful and M remains unchanged. In both cases the necessary conditions for
the insertion of the next pairwise alignment are satisfied. After all alignments in
the queue C has been processed, the algorithm returns the set C′ of consistent
alignments and the corresponding multiple alignment M.
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Alternative Solutions. The greedy procedure above can be repeated on the set
C\C′ of pairwise alignment that are inconsistent with the approximately optimal
solution found in the first pass. After having extracted a maximal consistent set
from C \ C′ we try to add additional alignments from C′. This yields another
maximal consistent subset of C. The procedure is iterated by initially removing
all alignments from C that have already been incorporated in a previous solution.
We stop when every pairwise alignment is included in at least one consistent
subset. In the worst case, therefore, we obtain O(|C|) solutions each comprising
O(|C|) consistent alignments.

Complexity. The complexity depends on the number m = |X | of sequences, on
the upper bound n for the length of these sequences and on the number c = |C| of
alignments in the collection C. The calculation of the extended scores considers
all pairs and and triple of alignments in C and requires O(c3) time in the interval
approximation. The subsequent assembly depends on the update of columns by
alignments in C. Let mi be the number of sequences represented in column i
of the multiple alignment M. The update of a single (thick) column takes a
constant number of operations for each entry and hence is in O(mi) for the
entire column. On the other hand we have

∑
imi ≤ mn. Therefore the effort for

inserting a complete (local) alignment A ∈ C is bounded by O(nm). The greedy
heuristic thus produces a solution in O(c3 + cnm) time and the determination
of all alternative solutions requires O(c3 + c2nm) time. In practice, however, the
number of columns of M intersected by an alignment A is much smaller than
the theoretical upper bound of O(nm), and this number is further reduced by
using thick columns. For datasets of practical interest we observe that the effort
required to compute a set of maximal consistent alignments that cover all input
alignments at least once is dominated by computation of the extended alignment
scores. The amount of memory required in addition to storing the input collection
C of pairwise alignments is determined by the size of the multiple alignment M
and hence is in O(nm).

Quality of the solutions. The greedy algorithm employed here cannot be guaran-
teed to produce optimal solutions. We have not attempted to investigate rigor-
ously whether it can guarantee e.g. a constant-factor approximation. It appears,
however, that this is not the case if the collection C of input alignments is arbi-
trary. On the other hand, we are mostly interested in the biologically relevant
instances, in which C consists of locally optimal (or at least nearly optimal)
alignments. In order to test how well the greedy heuristics works on such data
sets we used about 30 multiple alignments of different classes of ncRNAs com-
prising of 5-11 sequences with average lengths about 120 bases and low pairwise
similarity provided in BRaliBase [19] as source of homologous sequence sets.
For each set we computed pairwise local blast-alignments. These instances are
small enough to compute the optimal maximum compatible set by exhaustive
enumeration, i.e., an exponential-time algorithm. We used only sets of pairwise
alignments that contained at least four different maximal consistent subsets. In
all cases, our heuristic returned the correct optimal solution. Interestingly, these
solution also agree very well with the manually curated reference alignments.
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In order to test the efficiency of our approach, we constructed 5000 random
alignments with an average length of 50nt in 100 sequences with an average
length of 200nt. On a 2.66GHz Quad Core CPU tracker2 determined all max-
imal consistent subsets in the entire test set in only 27 seconds.

Availability. The source code of tracker2 is available at
http://www.bioinf.uni-leipzig.de/Software/tracker2/.
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Abstract. We answer, in the affirmative, the following question pro-
posed by Mike Steel as a $100 challenge: “Is the following problem NP -
hard? Given a ternary1 phylogenetic X-tree T and a collection Q of
quartet subtrees on X, is T the only tree that displays Q?” [28, 29] As a
particular consequence of this, we show that the unique chordal sandwich
problem is also NP -hard.

1 Introduction

One of the major efforts in molecular biology has been the computation of phy-
logenetic trees, or phylogenies, which describe the evolution of a set of species
from a common ancestor. A phylogenetic tree for a set of species is a tree in
which the leaves represent the species from the set and the internal nodes repre-
sent the (hypothetical) ancestral species. One standard model for describing the
species is in terms of characters, where a character is an equivalence relation on
the species set, partitioning it into different character states. In this model, we
also assign character states to the (hypothetical) ancestral species. The desired
property is that for each state of each character, the set of nodes in the tree
having that character state forms a connected subgraph. When a phylogeny has
this property, we say it is perfect. The Perfect Phylogeny problem [18] then asks
for a given set of characters defining a species set, does there exist a perfect
phylogeny? Note that we allow that states of some characters are unknown for
some species; we call such characters partial, otherwise we speak of full char-
acters. This approach to constructing phylogenies has been studied since the
1960s [7, 23–25, 32] and was given a precise mathematical formulation in the
1970s [10–13]. In particular, Buneman [6] showed that the Perfect Phylogeny
problem reduces to a specific graph-theoretic problem, the problem of finding a
chordal completion of a graph that respects a prescribed colouring. In fact, the
two problems are polynomially equivalent [21]. Thus, using this formulation, it
has been proved that the Perfect Phylogeny problem is NP -hard in [3] and inde-
pendently in [30]. These two results rely on the fact that the input may contain

1 Some formulations of this question use the term “binary”, as in “rooted binary tree”.
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partial characters. In fact, the characters in these constructions only have two
states. If we insist on full characters, the situation is different as for any fixed
number r of character states, the problem can be solved in time polynomial
[1] in the size of the input (and exponential in r). In particular, for r = 2 (or
r = 3), the solution exists if and only if it exists for every pair (or triple) of
characters [13, 22]. Also, when the number of characters is k (even if there are
partial characters), the complexity [26] is polynomial in the number of species
(and exponential in k).

Another common formulation of this problem is the problem of a consensus
tree [9, 17, 30], where a collection of subtrees with labelled leaves is given (for
instance, the leaves correspond to species of a partial character). Here, we ask
for a (phylogenetic) tree such that each of the input subtrees can be obtained
by contracting edges of the tree (we say that the tree displays the subtree). The
problem does not change [28] if we only allow particular input subtrees, the so-
called quartet trees, which have exactly six vertices and four leaves. This follows
from the fact that every ternary phylogenetic tree can be uniquely described by
a collection of quartet trees [28]. However, a collection of quartet trees does not
necessarily uniquely describe a ternary phylogenetic tree.

This leads to a natural question: what is the complexity of deciding whether or
not a collection of quartet trees uniquely describes a (ternary) phylogenetic tree?
This question was first posed in 1992 in [30], later conjectured to be NP -hard
[28] and listed on M. Steel’s personal webpage [29] where he offers $100 for the
first proof of NP -hardness.

In this paper, we are the first to answer this question by showing that the
problem is indeed NP -hard. That is, we prove the following theorem.

Theorem 1. It is NP -hard to determine, given a ternary phylogenetic X-tree
T and a collection Q of quartet subtrees on X, whether or not T is the only
phylogenetic tree that displays Q.

(We note that an alternative proof of this theorem recently appeared on arxiv [4].
The proof uses different techniques and extends the hardness result of [30].)

In light of this, we note that there are special cases of the problem that are
known to be solvable in polynomial time. For instance, this is so if the collection
Q contains a subcollection Q′ with the same set L of labels of leaves and with
|Q′| = |L|−3. However, finding such a subcollection is known to beNP -complete.
For these and similar results, we refer the reader to [2].

We prove Theorem 1 by describing a polynomial-time reduction from the
uniqueness problem for one-in-three-3sat, which is NP -hard by [20].2

Theorem 2. [20] It is NP -hard to decide, given an instance I to one-in-

three-3sat, and a truth assignment σ that satisfies I, whether or not σ is
the unique satisfying truth assignment for I.
2 We extract this from [20] by encoding the problem as the relation {001, 010, 100}.

We check that this relation is not: 0-valid, 1-valid, Horn, anti-Horn, affine, 2SAT, or
complementive. Then the uniqueness of the satisfiability problem corresponding to
this relation is CoNP -hard by [20] and thus NP -hard (assuming Turing reductions).
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Our construction in the reduction is essentially a modification of the construc-
tion of [3] which proves NP -hardness of the Perfect Phylogeny problem. Recall
that the construction of [3] produces instances Q that have a perfect phylogeny
if and only if a particular boolean formula Φ is satisfiable. We immediately ob-
served that these instances Q have, in addition, the property that Φ has a unique
satisfying assignment if and only if there is a unique minimal restricted chordal
completion of the partial partition intersection graph of Q (for definitions see
Section 2). This is precisely one of the two necessary conditions for uniqueness
of perfect phylogeny as proved by Semple and Steel in [27] (see Theorem 4).
Thus by modifying the construction of [3] to also satisfy the other condition
of uniqueness of [27], we obtained the construction that we present in this pa-
per. Note that, however, unlike [3] which uses 3sat, we had to use a different
NP -hard problem in order for the construction to work correctly. Also, to prove
that the construction is correct, we employ a variant of the characterization of
[27] that uses the more general chordal sandwich problem [15] instead of the
restricted chordal completion problem (see Theorem 7). In fact, by way of The-
orems 5 and 6, we establish a direct connection between the problem of perfect
phylogeny and the chordal sandwich problem, which apparently has not been
yet observed. (Note that the connection to the (restricted) chordal completion
problem of coloured graphs as mentioned above [6, 21] is a special case of this.)

Finally, as a corollary, we obtain the following result using [8].

Corollary 1. The Unique chordal sandwich problem is NP -hard. Counting the
number of minimal chordal sandwiches is #P -complete.

The paper is structured as follows. In Section 2, we introduce definitions and
some preliminary work. In Sections 3 and 4, we present our hardness reduction,
first informally and then formally. Then we sketch the proof of one of the main
theorems (Theorem 8) in Section 5, and conclude with some open questions.

2 Preliminaries

We mostly follow the terminology of [27, 28] and graph-theoretical notions of [31].
Let X be a non-empty set. An X-tree is a pair (T, φ) where T is tree and

φ : X → V (T ) is a mapping such that φ−1(v) �= ∅ for all vertices v ∈ V (T )
of degree at most two. An X-tree (T, φ) is ternary if all internal vertices of T
have degree three. Two X-trees (T1, φ1), (T2, φ2) are isomorphic if there exists
an isomorphism ψ : V (T1) → V (T2) between T1 and T2 that satisfies φ2 = ψ◦φ1.

An X-tree (T, φ) is a phylogenetic X-tree (or a free X-free in [27]) if φ is
a bijection between X and the set of leaves of T . A partial partition of X is
a partition of a non-empty subset of X into at least two sets. If A1, A2, . . . ,
At are these sets, we call them cells of this partition, and denote the partition
A1|A2| . . . |At. If t = 2, we call the partition a partial split. A partial split A1|A2

is trivial if |A1| = 1 or |A2| = 1. A quartet tree is a ternary phylogenetic tree with
a label set of size four, that is, a ternary tree T with 6 vertices, 4 leaves labelled
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Fig. 1. a) quartet trees Q, b) and c) two X-trees displaying Q and distinguished by Q,
d) the graph int∗(Q); the dotted lines represent the edges of forb(Q)

a, b, c, d, and with only one non-trivial partial split {a, b}|{c, d} that it displays.
Note that such a tree is unambiguously defined by this partial split. Thus, in the
subsequent text, we identify the quartet tree T with the partial split {a, b}|{c, d},
that is, we say that {a, b}|{c, d} is both a quartet tree and a partial split.

Let T = (T, φ) be an X-tree, and let π = A1|A2| . . . |At be a partial partition
of X . Let F ⊆ E(T ) be a set of edges of T . We say that F displays π in T if for
all distinct i, j ∈ {1 . . . t}, the sets φ(Ai) and φ(Aj) are subsets of the vertex sets
of different connected components of T −F . We say that T displays π if there is
a set of edges that displays π in T . Further, an edge e of T is distinguished by π
if every set of edges that displays π in T contains e.

Let Q be a collection of partial partitions of X . An X-tree T displays Q if
it displays every partial partition in Q. An X-tree T = (T, φ) is distinguished
by Q if every internal edge of T is distinguished by some partial partition in Q;
we also say that Q distinguishes T . The set Q defines T if T displays Q, and
all other X-trees that display Q are isomorphic to T . Note that if Q defines T ,
then T is necessarily a ternary phylogenetic X-tree, since otherwise “resolving”
any vertex either of degree four or more, or with multiple labels results in a
non-isomorphic X-tree that also displays Q (also, see Proposition 2.6 in [27]).
See Figure 1 for an illustration of these concepts.

The partial partition intersection graph of Q, denoted by int(Q), is a graph
whose vertex set is {(A, π) | where A is a cell of π ∈ Q} and two vertices (A, π),
(A′, π′) are adjacent just if the intersection of A and A′ is non-empty.

A graph is chordal if it contains no induced cycle of length four or more. A
chordal completion of a graph G = (V,E) is a chordal graph G′ = (V,E′) with
E ⊆ E′. A restricted chordal completion of int(Q) is a chordal completion G′

of int(Q) with the property that if A1,A2 are cells of π ∈ Q, then (A1, π) is
not adjacent to (A2, π) in G′. A restricted chordal completion G′ of int(Q) is
minimal if no proper subgraph of G′ is a restricted chordal completion of int(Q).

The problem of perfect phylogeny is equivalent to the problem of determining
the existence of anX-tree that display the given collection Q of partial partitions.
In [6], it was given the following graph-theoretical characterization.
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Theorem 3. [6, 28, 30] Let Q be a set of partial partitions of a set X. Then
there exists an X-tree that displays Q if and only if there exists a restricted
chordal completion of int(Q).

Of course, the X-tree in the above theorem might not be unique. For the prob-
lem of uniqueness, Semple and Steel [27, 28] describe necessary and sufficient
conditions for when a collection of partial partitions defines an X-tree.

Theorem 4. [27] Let Q be a collection of partial partitions of a set X. Let T
be a ternary phylogenetic X-tree. Then Q defines T if and only if:

(i) T displays Q and is distinguished by Q, and
(ii) there is a unique minimal restricted chordal completion of int(Q).

In order to simplify our proof of Theorem 1, we now describe a variant of the
above theorem that, instead, deals with the notion of chordal sandwich [15].

Let G = (V,E) and H = (V, F ) be two graphs on the same set of vertices
with E ∩ F = ∅. A chordal sandwich of (G,H) is a chordal graph G′ = (V,E′)
with E ⊆ E′ and E′ ∩F = ∅.3 A chordal sandwich G′ of (G,H) is minimal if no
proper subgraph of G′ is a chordal sandwich of (G,H).

The cell intersection graph of Q, denoted by int∗(Q), is the graph whose vertex
set is {A | where A is a cell of π ∈ Q} and two vertices A, A′ are adjacent just if
the intersection of A and A′ is non-empty. Let forb(Q) denote the graph whose
vertex set is that of int∗(Q) in which there is an edge between A and A′ just if
A,A′ are cells of some π ∈ Q. See Figure 1d for an example.

The correspondence between the partial partition intersection graph and the
cell intersection graph is captured by the following theorem.

Theorem 5. Let Q be a collection of partial partitions of a set X. There is a
one-to-one mapping between the minimal restricted chordal completions of int(Q)
and the minimal chordal sandwiches of (int∗(Q), forb(Q)).

The proof of this theorem follows easily from the following lemma.

Lemma 1. Let G be a graph, and let G+ be a graph obtained from G by substi-
tuting complete graphs 4 for the vertices of G. Then there is a one-to-one mapping
between minimal chordal completions of G and G+.

This combined with Theorem 3 yields that there is a phylogenetic X-tree that
displays Q if and only if there exists a chordal sandwich of (int∗(Q), forb(Q)).
Conversely, we can express every instance to the chordal sandwich problem as a
corresponding instance to the problem of perfect phylogeny as follows.

Theorem 6. Let (G,H) be an instance to the chordal sandwich problem. Then
there is a collection Q of partial splits such that there is a one-to-one mapping
between the minimal chordal sandwiches of (G,H) and the minimal restricted
chordal completions of int(Q). In particular, there exists a chordal sandwich for
(G,H) if and only if there exists a phylogenetic tree that displays Q.
3 We say that E are the forced edges and F are the forbidden edges.
4 Replacing v by a complete graph K and adding edges {ux | x ∈ V (K)∧uv ∈ E(G)}.
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Proof. (Sketch) Without loss of generality, we may assume that each connected
component of G has at least three vertices. As usual, G = (V,E) and H = (V, F )
where E ∩ F = ∅. The collection Q satisfying the claim is defined as follows:
for every edge xy ∈ F , we construct the partial split Dx|Dy, where Dx are the
edges of E incident to x, and Dy are the edges of E incident to y. �

As a corollary, we obtain the following desired characterization.

Theorem 7. Let Q be a collection of partial partitions of a set X. Let T be a
ternary phylogenetic X-tree. Then Q defines T if and only if:

(i) T displays Q and is distinguished by Q, and
(ii) there is a unique minimal chordal sandwich of

(
int∗(Q), forb(Q)

)
.

The main technical advantage of this theorem over Theorem 4 is that it is less
restrictive; it allows us to construct instances with arbitrary sets of forbidden
edges rather than just with forbidden edges between vertices of the same colour.
This makes our proof of Theorem 1 much simpler and more manageable.

3 Construction

Consider an instance I to one-in-three-3sat. The instance I consists of n
variables v1, . . . , vn and m clauses C1, . . . , Cm each of which is a disjunction of
exactly three literals (i.e., variables vi or their negations vi).

To simplify the presentation, we shall denote literals by capital letters X , Y ,
etc., and indicate their negations by X, Y , etc. (For instance, if X = vi then
X = vi, and if X = vi then X = vi.)

By standard arguments, we may assume that no variable appears twice in the
same clause. First, we discuss how to find a collection QI of quartet trees arising
from the instance I that satisfies the following theorem.

Theorem 8. There is a one-to-one mapping between the satisfying assignments
of the instance I and the minimal chordal sandwiches of (int∗(QI), forb(QI)).

Before describing the collection QI , let us briefly review the construction from [3]
that proves NP -hardness of the Perfect Phylogeny problem. For convenience, we
describe it in terms of the chordal sandwich problem whose input is a graph with
(forced) edges and forbidden edges. In the construction from [3], one similarly
considers a collection C1, . . . , Cm of 3-literal clauses, and treats it as an instance
of 3-satisfiability. From this instance, one constructs a graph where each
variable vi corresponds to two shoulders Svi and Svi

, and where each literal W
in a clause Cj corresponds to a pair of knees Kj

W and Kj

W
. In addition, there are

two special vertices the head H and the foot F . All shoulders are adjacent to the
head while all knees are adjacent to the foot. Further, if vi occurs in the clause
Cj (positively or negatively), then the vertices H , Svi , K

j
vi

, F , Kj
vi

, Svi form an
induced 6-cycle (see Figure 2a). Also, if Cj = X ∨ Y ∨ Z, then the vertices Kj

X ,



138 M. Habib and J. Stacho

a)

H

F

Svi Svi

Kj
vi

Kj
vi

H

F

Svi Svi

Kj
vi

Kj
vi

Mark
of

Zorro

b)

Kj
X

Kj

X

Kj
Y

Kj

Y

Kj
Z

Kj

Z

c)

Ai

Dj
p Dj

p+1

Sj
W

Sj

W

HW HW

F j

B

Kj
W

Lj
W

Kj

W

d)

Kj

X

Kj

Y

Kj

Z

Lj
X

Kj
X

Lj
Y

Kj
Y

Lj
Z

Kj
Z

Fig. 2. a) and b) configurations from [3], c) and d) configurations from our construction
(note that in c) the literal W is either vi or vi, and is the p-th literal of the clause Cj)

Kj
Y , Kj

Z induce a triangle with pendant edges Kj
XK

j

Y
, Kj

YK
j

Z
, and Kj

ZK
j

X
(we

call this the clause gadget, see Figure 2b).
Finally, the edge between H and F is forbidden in the desired chordal sand-

wich, and so is the edge between Svi and Svi
, and between Kj

vi
and Kj

vi
for all

meaningful indices i and j (the dotted edges in Figure 2).
The main idea of this construction is that each of the 6-cycles allows only two

possible chordal sandwiches: either the path H,Kj
vi
, Svi , F is added, or the path

H,Kj
vi
, Svi , F is added (the authors of [3] call this path the “Mark of Zorro”).

These two choices correspond to assigning vi the value true or false, respectively,
and the construction ensures that this choice is consistent over all clauses. This
only produces satisfying assignments to 3-satisfiability, since we notice that
no chordal sandwich adds a triangle on Kj

X
,Kj

Y
,Kj

Z
.

We can try to use this construction to prove Theorem 1. We immediately ob-
serve that the truth assignments satisfying the clauses C1, . . . , Cm are in one-to-
one correspondence with the minimal chordal sandwiches of the above graph G.
This is a little technical to prove. To do this, one first observes that different as-
signments add a different mark of Zorro to at least one 6-cycle. For the converse,
one needs to find out which edges are forced in the sandwich after the marks
of Zorro are added according to a satisfying assignment. It turns out that these
edges yield a chordal sandwich, and thus a minimal chordal sandwich.

From G, using Theorems 5 and 6, one can construct a collection Q of partial
splits (phylogenetic trees) such that the satisfying assignments of the clauses
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C1, . . . , Cm are in one-to-one correspondence with the minimal chordal sand-
wiches of (int∗(Q), forb(Q)). In particular, this collection Q satisfies the con-
dition (ii) of Theorem 7 if and only if the clauses C1, . . . , Cm have a unique
satisfying assignment. Since this is NP -hard to determine [20], it would seem
like we almost have a proof of Theorem 1. Unfortunately, we are missing a crucial
piece which is the phylogenetic tree T satisfying the condition (i) of Theorem 7
for the collection Q. A straightforward construction of such a tree based on [27]
yields a phylogenetic tree that is distinguished by Q, but whose internal nodes
may have degree higher than three. If we try to fix this (by “resolving” the high-
degree nodes in order to get a ternary tree), the resulting tree may no longer be
distinguished by Q. Moreover, the collection Q may not consist of quartet trees
only. For all these reasons, we need to modify the construction of G.

First, we discuss how to modify G so that it corresponds to a collection of
quartet trees. To do this, we must ensure that the neighbourhood of each vertex
consists of two cliques (with possibly edges between them). We construct a new
graph GI by modifying G as follows. Instead of one head H , we now have, for
each variable vi, two heads Hvi , Hvi , and an auxiliary head Ai. For a literal W
in the clause Cj , we now have two shoulders Sj

W and Sj

W
, and, as before, two

knees Kj
W and Kj

W
, but also an additional auxiliary knee Lj

W . Further, for each
clause Cj , we have a foot F j and three auxiliary feet Dj

1, D
j
2, and Dj

3. Finally, we
have one additional vertex B known as the backbone. The resulting modifications
to the 6-cycles and the clause gadgets can be seen in Figures 2c and 2d. (The
forbidden edges are again indicated by dotted lines.) Note that, unlike in the case
of G, this is not a complete description of GI as we need to add some additional
(forced) edges and forbidden edges not shown in these diagrams in order to make
the reduction work. This is rather technical and we omit this for brevity.

From the construction, we conclude that, just like in G, the “6-cycles” of GI

(Figure 2c) admit only two possible kinds of sandwiches, and this is consistent
over different clauses. However, unlike in G, the chordal sandwiches of GI no
longer correspond to satisfying assignments of 3-satisfiability but rather to
satisfying assignments of one-in-three-3-sat. Fortunately, this problem is also
NP -hard as is its uniqueness variant as previously discussed (see Theorem 2).

Now, from GI , we construct a collection QI of quartet trees. To do this, we
cannot just use Theorem 6 as before, since this may create partial partitions
that do not correspond to quartet trees. Moreover, even if we use [28] to replace
these partitions by an equivalent collection of quartet trees, this process may
not preserve the number of solutions. We need a more careful construction.

We recall that the each vertex v of GI belongs to two cliques that completely
cover its neighbourhood; we assign greek letters to these two cliques (to distin-
guish them from vertices), and associate them with v.

In particular, we use the following symbols: αW , βj
W , γj

1 , γ
j
2 , γ

j
3, λ

j , δ, μ where
W is a literal and j ∈ {1 . . .m}. They define specific cliques of GI as follows.
The letter αW defines the clique of GI consisting of all heads and shoulders
of W . The letter βj

W corresponds to the clique formed by the shoulder Sj
W and

the knees Kj

W
, Lj

W
(if exists). Further, λj yields a clique on F j , Dj

1, D
j
2, D

j
3,
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Kj
X , Kj

Y , Kj
Z where Cj = X∨Y ∨Z, while the clique for γj

p where p ∈ {1, 2, 3} is
formed by Dj

p, K
j

W
, Lj

U where W and U are the p-th and (p− 1)-th (modulo 3)
literals of Cj . Finally, δ corresponds to the clique containing B and all heads HW

whereas μ correspond to the clique with B and all feet F j .
From this, we construct the collection QI by considering every forbidden edge

uv of GI and by constructing a partial partition with two cells in which one cell
is the set of cliques assigned to u and the other is the set of cliques assigned to v.
Since we assign to each vertex of GI exactly two cliques, this yields partitions
corresponding to quartet trees. For instance, in Figure 2d, we have a forbidden
edge Kj

XK
j

X
where Kj

X is assigned cliques βj

X
, λj and Kj

X
is assigned βj

X , γ
j
1 .

This yields a quartet tree {βj

X
, λj}|{βj

X , γ
j
1}. The complete definition of QI can

be found in Section 4. Finally, since by construction every vertex ofGI is incident
to at least one forbidden edge, we conclude that GI = int∗(QI).

This completes the overview of the proof of Theorem 8. Its actual proof is quite
technical and involved, but it is along the same lines as the uniqueness property
we discussed for G, i.e., one describes the edges forced by an assignment and
proves that this yields a chordal sandwich. (We sketch this in Section 5.)

To complete the result, we need to explain how to construct a phylogenetic
tree corresponding to a satisfying assignment for C1, . . . , Cm (as an instance of
one-in-three-3sat) and show that it displays and is distinguished by the trees
in QI . Instead of giving a formal definition here, we discuss a small example.
(The complete description is rather technical and is presented in Section 4.)

The example instance I+ consists of four variables v1, v2, v3, v4 and three
clauses C1 = v1 ∨ v2 ∨ v3, C2 = v1 ∨ v2 ∨ v4, and C3 = v3 ∨ v2 ∨ v4. The unique
satisfying assignment assigns true to v1, v4 and false to v2, v3. The corresponding
phylogenetic tree T = (T, φ) is shown in Figure 3.

β1
v1

β2
v1

αv1

αv1

β1
v2

β2
v2

β3
v2

αv2

αv2

β1
v3

β3
v3

αv3

αv3

β2
v4

β3
v4

αv4

αv4

γ1
1

γ1
3

γ1
2

γ2
3

γ2
2

γ2
1

γ3
2

γ3
1

γ3
3

λ1 λ2 λ3

β1
v1

β1
v2

β1
v3

β2
v4

β2
v1

β2
v2

β3
v2

β3
v4

β3
v3

δ μ

Fig. 3. The phylogenetic tree for the example instance I+

For instance, one of the quartet trees in QI+ is π = {αv1 , β
1
v1
}|{αv1 , β

1
v1
} rep-

resenting the forbidden edge of GI+ between S1
v1

and S1
v1

. It is easy to verify T
displays π. Another example from QI+ is π′ = {β1

v1
, λ1}|{β1

v1
, γ1

1} representing
the forbidden edgeK1

v1
K1

v1
. Again, it is displayed by T , but this time one internal
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edge of T is contained in every set of edges of T that displays π′ in T ; hence,
this edge is distinguished by π′. This way we can verify all other quartet trees
in QI+ and conclude that they are displayed by T and they distinguish T .

Now, with the help of Theorem 7, this allows us to prove that given an in-
stance I to one-in-three-3sat and a satisfying assignment ϕ for I, one can
in polynomial time construct a phylogenetic tree T and a collection of quartet
trees Q such that T is the unique tree defined by Q if and only if ϕ is the unique
satisfying assignment for I. Combined with Theorem 2, this proves Theorem 1.

That concludes this section. In the next sections, we formally describe the
above constructions and sketch some proofs. For full details of proofs, we invite
the reader to see our arxiv version of this paper [19].

4 Formal Description

Let I be an instance to one-in-three-3sat consisting of variables v1, . . . , vn

and clauses C1, . . . , Cm. A truth assignment σ assigns to each variable vi a truth
value true or false; we indicate this by writing vi = 1 or vi = 0, respectively, and
extend this notation to literals. A truth assignment σ is a satisfying assignment
for I if in each clause Cj exactly one the three literals evaluates to true.

For each i ∈ {1 . . . n}, we let Δi denote all indices j such that vi or vi appears
in the clause Cj. Let XI be the set consisting of the elements:

a) αvi , αvi
for each i ∈ {1 . . . n},

b) βj
vi

, βj
vi

for each i ∈ {1 . . . n} and each j ∈ Δi,
c) γj

1 , γ
j
2 , γ

j
3, λ

j for each j ∈ {1 . . .m}, and
d) δ and μ.

Consider the following collection of 2-element subsets of XI :

a) B =
{
μ, δ
}

, b) for each i ∈ {1, . . . , n}:
Hvi={αvi , δ

}
, Hvi

={αvi
, δ
}

, Ai =
{
αvi , αvi

}
,

Sj
vi

=
{
αvi , β

j
vi

}
, Sj

vi
=
{
αvi , β

j
vi

}
for all j ∈ Δi,

c) for each j ∈ {1 . . .m} where Cj = X ∨ Y ∨ Z:

Kj

X
=
{
βj

X , γ
j
1

}
, Kj

Y
=
{
βj

Y , γ
j
2

}
, Kj

Z
=
{
βj

Z , γ
j
3

}
,

Kj
X =

{
βj

X
, λj
}

, Kj
Y =

{
βj

Y
, λj
}
, Kj

Z =
{
βj

Z
, λj
}
,

Lj
X =

{
βj

X
, γj

2

}
, Lj

Y =
{
βj

Y
, γj

3

}
, Lj

Z =
{
βj

Z
, γj

1

}
,

Dj
1 =

{
γj
1 , λ

j
}
, Dj

2 =
{
γj
2 , λ

j
}
, Dj

3 =
{
γj
3 , λ

j
}

, F j =
{
λj , μ

}
.

The collection QI of quartet trees is defined as follows:

QI =
⋃

i∈{1...n}

{
Ai|B

}
∪

⋃
j∈{1...m}

{
Dj

1|B,Dj
2|B,Dj

3|B
}
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∪
⋃

i∈{1...n}
j,j′∈Δi

{
Sj

vi
|Sj′

vi

}
∪

⋃
i∈{1...n}

j,j′∈Δi and j<j′

{
Sj

vi
|Kj′

vi
, Sj

vi
|Kj′

vi

}
∪

⋃
i∈{1...n}

j∈Δi and j<j′≤m

{
Kj

vi
|F j′ ,Kj

vi
|F j′
}

∪
⋃

1≤i′<i≤n
j∈Δi

{
Hvi′ |Sj

vi
, Hvi′ |Sj

vi
, Hvi′ |Sj

vi
, Hvi′ |Sj

vi

}
∪

⋃
i∈{1...n}
j∈{1...m}

{
Hvi

|F j , Hvi |F j
}

∪
⋃

j∈{1...m}
where Cj=X∨Y ∨Z

{
Kj

X
|Kj

X , Kj

Y
|Kj

Y , Kj

Z
|Kj

Z , Kj

X
|Lj

X , Kj

Y
|Lj

Y , Kj

Z
|Lj

Z

Sj
Y |Kj

X , Sj
Z |Kj

Y , Sj
X |Kj

Z , Sj
Z |Lj

X , Sj
X |Lj

Y , Sj
Y |Lj

Z

}

Let TI be the tree defined as follows:

V (TI) =
{
y0, y1, y

′
1, . . . , yn, y

′
n

}
∪
{
a1, a

′
1, . . . , an, a

′
n

}
∪
{
u0, u1, . . . , um

}
∪
{
xj

1, x
j
2, x

j
3, x

j
4, x

j
5, x

j
6, b

j
1, b

j
2, b

j
3, g

j
1, g

j
2, g

j
3, �

j
}m

j=1
∪
{
cji , z

j
i | j ∈ Δi

}n

i=1

E(TI) =
{
y1y

′
1, y2y

′
2, . . . , yny

′
n

}
∪
{
a1y

′
1, a2y

′
2, . . . any

′
n

}
∪
{
cjiz

j
i | j ∈ Δi

}n

i=1

∪
{
y0y1, y1y2, y2y3, . . . , yn−1yn

}
∪
{
ynu1, u1u2, u2u3, . . . , um−1um, umu0

}
∪
{
ujx

j
1, x

j
1x

j
2, x

j
2x

j
3, x

j
2x

j
4, x

j
4x

j
5, x

j
4x

j
6, b

j
1x

j
6, b

j
2x

j
3, b

j
3x

j
5, g

j
1x

j
6, g

j
2x

j
1, g

j
3x

j
3, �

jxj
5

}m

j=1

∪
{
a′iz

j1
i , z

j1
i z

j2
i , . . . , z

jt−1
i zjt

i , z
jt

i y
′
i

∣∣∣ j1 < j2 < . . . < jt are elements of Δi

}n

i=1

Let σ be a satisfying assignment for the instance I, and let φσ be the mapping
of XI to V (TI) defined as follows:

a) for each i ∈ {1 . . . n}:
if vi = 1, then φσ(αvi) = ai, φσ(αvi) = a′i, φσ(βj

vi
) = cji for all j ∈ Δi,

if vi = 0, then φσ(αvi) = ai, φσ(αvi) = a′i, φσ(βj
vi

) = cji for all j ∈ Δi,
b) for each j ∈ {1 . . .m} where Cj = X ∨ Y ∨ Z:

if X = 1, then φσ(βj
X) = bj1, φσ(βj

Y
) = bj2, φσ(βj

Z
) = bj3,

φσ(γj
1) = gj

1, φσ(γj
2) = gj

2, φσ(γj
3) = gj

3, φσ(λj) = �j ,
if Y = 1, then φσ(βj

Y ) = bj1, φσ(βj

Z
) = bj2, φσ(βj

X
) = bj3,

φσ(γj
2) = gj

1, φσ(γj
3) = gj

2, φσ(γj
1) = gj

3, φσ(λj) = �j ,
if Z = 1, then φσ(βj

Z) = bj1, φσ(βj

X
) = bj2, φσ(βj

Y
) = bj3,

φσ(γj
3) = gj

1, φσ(γj
1) = gj

2, φσ(γj
2) = gj

3, φσ(λj) = �j ,
c) φσ(δ) = y0 and φσ(μ) = u0.

Theorem 9. If σ is a satisfying assignment for I, then Tσ = (TI , φσ) is a
ternary phylogenetic XI-tree that displays QI and is distinguished by QI .

5 Proof of Theorem 8

To explain the proof, we need the following naming convention adopted from [3].
If W is a literal in the clause Cj, we say that Sj

W is a shoulder of the clause Cj
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as well as a shoulder of the literal W . It is a a true shoulder if W = 1; otherwise,
a false shoulder. Similarly, the vertex Kj

W and Lj
W (if exists) are knees of the

clause Cj as well as knees of the literal W . A knee of W is a true knee if W = 1;
otherwise, a false knee. The vertices Ai, Dj

p, HW , F j for all meaningful choices of
indices are respectively called A-vertices, D-vertices, H-vertices, and F -vertices.

Let Gσ be the graph constructed from int∗(QI) by performing the following.

(i) make B adjacent to all true knees and true shoulders.

Let G′
σ be constructed from Gσ by performing the following steps.

(ii) make {true knees, true shoulders} into a complete graph,
(iii) for all i ∈ {1 . . . n}, make Ai adjacent to all true knees of the literals vi,vi,
(iv) for all 1 ≤ i′ ≤ i ≤ n, make Hvi , Hvi

adjacent to all true knees and true
shoulders of the literals vi′ , vi′ ,

(v) for all 1 ≤ j ≤ j′ ≤ m, make F j adjacent to all true knees and true
shoulders of the clause Cj′ ,

(vi) for all 1 ≤ i ≤ n and all j, j′ ∈ Δi such that j ≤ j′:
a) if vi = 1, make Sj′

vi
adjacent to Kj

vi
, Lj

vi
(if exists),

b) if vi = 0, make Sj′
vi

adjacent to Kj
vi

, Lj
vi

(if exists).

Finally, let G∗
σ be constructed from G′

σ by adding the following edges.

(vii) for all j ∈ {1 . . .m} where Cj = X ∨ Y ∨ Z:

a) if X = 1, then add edges F jLj
Z , Kj

XL
j
Z , Kj

YK
j

Z
, Dj

2K
j

Z
, Dj

2S
j

Y
, Dj

3S
j

Y

and make {Dj
1, D

j
2, D

j
3, S

j
X , Sj

Z
, Lj

Z , Kj
Y } into a complete graph,

b) if Y = 1, then add edges F jLj
X , Kj

Y L
j
X , Kj

ZK
j

X
, Dj

3K
j

X
, Dj

3S
j

Z
, Dj

1S
j

Z

and make {Dj
1, D

j
2, D

j
3, S

j
Y , Sj

X
, Lj

X , Kj
Z} into a complete graph,

c) if Z = 1, then add edges F jLj
Y , Kj

ZL
j
Y , Kj

XK
j

Y
, Dj

1K
j

Y
, Dj

1S
j

X
, Dj

2S
j

X

and make {Dj
1, D

j
2, D

j
3, S

j
Z , Sj

Y
, Lj

Y , Kj
X} into a complete graph.

Lemma 2. G′
σ is a subgraph of every chordal sandwich of (Gσ , forb(QI)).

Lemma 3. If σ is a satisfying assignment for I, then G∗
σ is a subgraph of every

chordal sandwich of (Gσ, forb(QI)).

Lemma 4. For every chordal sandwich G′ of (int∗(QI), forb(QI)), there is σ
such that Gσ is a subgraph of G′, and such that σ is a satisfying assignment for I.

Lemma 5. If σ is a satisfying assignment for I, then G∗
σ is chordal.

Proof. (Sketch) Assume that σ is a satisfying assignment for I, i.e., in each
clause Cj exactly one literal evaluates to 1 by the assignment.

Consider the partition V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 of V (G∗
σ) where V1 = {false

knees, D-vertices}, V2 = {false shoulders}, V3 = {A-vertices}, V4 = {H-vertices,
F -vertices}, and V5 = {true knees, true shoulders, the vertex B}.
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Let π be an enumeration of V (G∗
σ) constructed by listing the elements of V1,

V2, V3, V4, V5 in this order such that:

(•) the elements of V1 are listed by considering each clause Cj = X ∨ Y ∨Z and
listing vertices (based on the truth assignment) as follows:
a) if X = 1, then list Kj

X
, Kj

Z , Lj
Y , Lj

Z , Dj
1, K

j
Y , Dj

3, D
j
2 in this order,

b) if Y = 1, then list Kj

Y
, Kj

X , Lj
Z , Lj

X , Dj
2, K

j
Z , Dj

1, D
j
3 in this order,

c) if Z = 1, then list Kj

Z
, Kj

Y , Lj
X , Lj

Y , Dj
3, K

j
X , Dj

2, D
j
1 in this order,

(•) the elements of V2 (the false shoulders) are listed by listing the false shoulders
of the clauses C1, C2, . . . , Cm in this order,

(•) the elements of V4 are listed as follows: first Hv1 , Hv1 , Hv2 , Hv2 , . . .Hvn ,
Hvn in this order, then Fm, Fm−1, . . . , F 1 in this order,

(•) the elements of V3 and V5 are listed in any order.

A simple but tedious analysis shows that π is a perfect elimination ordering
of the vertices of G∗

σ. This proves that G∗
σ is indeed a chordal graph (see [14]). �

Proof of Theorem 8. Let G′ be a minimal chordal sandwich of (int∗(QI),
forb(QI)). By Lemma 4, there exists σ, a satisfying assignment for I, such that
Gσ is a subgraph fo G′. Thus, G′ is also a chordal sandwich of (Gσ , forb(QI)),
and hence, G∗

σ is a subgraph of G′ by Lemma 3. But by Lemma 5, G∗
σ is chordal,

and so G′ is isomorphic to G∗
σ by the minimality of G′.

Conversely, if σ is a satisfying assignment for I, then the graph G∗
σ is chordal

by Lemma 5. Moreover, int∗(QI) is a subgraph of G∗
σ, by definition, and G∗

σ

contains no edges of forb(QI), also by definition. Thus, G∗
σ is a chordal sandwich

of (int∗(QI), forb(QI)), and it is minimal by Lemma 3.
This proves that by mapping each satisfying assignment σ to the graph G∗

σ,
we obtain the required bijection. That concludes the proof. �

6 Conclusion

In this paper, we have shown that determining whether a given phylogenetic tree
represents the unique evolution of given species is an NP -hard problem. This
implies that the problem is actually CoNP -complete, as it can be defined by
the formula “for every pair of trees, if they are solutions, they are isomorphic”.
Moreover, the problem clearly remains NP -hard even if the tree is not provided
and we only want to test whether there is a unique solution. (For this, note that
isomorphism of trees and testing if a tree is a solution takes polynomial time.)

In addition, we proved that the unique chordal sandwich problem is NP -hard.
Following this direction, it would be interesting to consider the complexity of
uniqueness of other sandwich problems, for instance, interval sandwich (DNA
physical mapping) or cograph sandwich (genome comparison); the decision prob-
lem for the former is NP -hard [16] while it is polynomial for the latter [5, 15].
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Abstract. We present a quartet-based phylogeny algorithm that re-
turns the correct topology for n taxa in O(n log n) time with high prob-
ability, assuming each quartet is inconsistent with the true tree topology
with constant probability, independent of other quartets. Our incremen-
tal algorithm relies upon a search tree structure for the phylogeny that
is balanced, with high probability, no matter the true topology. In exper-
iments, our prototype was as fast as the fastest heuristics, but because
real data do not typically satisfy our probabilistic assumptions, its overall
performance is not as good as our theoretical results predict.

1 Introduction

Incremental phylogenetic reconstruction algorithms add new taxa to a topol-
ogy until all n taxa have been added. In our algorithm, each insertion requires
O(log n) runtime with high probability. The probability that the algorithm makes
any mistakes is o(1) in a simple error model. Thus, our randomized algorithm
has runtime O(n log n) and returns the true topology, both with high probability
(regardless of the true topology). We believe it is the first O(npoly logn)-runtime
algorithm with such guarantees. An o(n logn)-runtime algorithm cannot return
all topologies, so our algorithm is asymptotically optimal.

Our error-tolerant algorithms offer the possibility of producing a phyloge-
netic tree in runtime smaller than that of producing even the input matrix to
a distance method like neighbour joining, while still having high probability of
reconstructing the true tree.

2 Related Work

Phylogenetic quartet methods reconstruct trees from sets of four taxa and com-
bine these phylogenies into the overall tree. Quartet puzzling [21] is one of the
first algorithms in this line of research. Many heuristic algorithms also operate
on this principle (e.g. [18,19]).

Some quartet algorithms find the correct phylogeny with high probability
under a certain model of evolution. Erdös et al. [8] give an O(n4 logn) algo-
rithm that reconstructs the phylogeny with high probability, assuming that the
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sequences evolve according to the Cavender-Farris model of evolution, for suffi-
ciently long sequences. The runtime of their algorithm is O(n2) for most trees.
Csűros [5] provided a practical O(n2) algorithm with similar performance guar-
antees. Recent papers [11,6] give similar algorithms to identify parts of the tree
that can be reconstructed. These approaches choose queries so that, in the as-
sumed model of evolution, all queried quartets are correct with high probability.
The only sub-quadratic time algorithm with guarantees on reconstruction accu-
racy is by King et al. [16]; its running time is O(n2 log log n

log n ) provided that the
sequences are long enough.

Wu et al. [22] gave a simple error model where each quartet query indepen-
dently errs with fixed probability p. They gave an O(n4 logn) algorithm that
errs with constant probability under this model. This model has also been used
for evaluating algorithms for maximum quartet consistency [23].

We improve on Wu et al. in runtime and accuracy with an O(n log n) algo-
rithm that errs with probability o(1). To our knowledge, it is the first provably
error-tolerant, substantially sub-quadratic time algorithm for phylogenetic re-
construction. (Recently, a heuristic algorithm has been proposed with a claimed
runtime of O(n1.5 logn) [17].)

Fast algorithms have been proposed for error-free data. Kannan et al. [13]
use error-free rooted triples in an O(n logn) algorithm. Rooted triples reduce to
quartets if we pick one taxon as an outgroup and always ask quartet queries for
sets with that taxon, so that algorithm works for error-free quartets.

Our algorithm uses ideas from work on noisy binary search in which compar-
isons have fixed error probability, by Feige et al. [9] and Karp and Kleinberg [15].

The data structure used here appears similar to one used by Brodal et al. [3]
for computing quartet distance between two phylogenies. While both structures
represent a partition of the tree into hierarchically nested sets, the goal of their
data structure is to aid enumerating certain sets of quartets for a given tree.
Our structure is dynamic and supports different queries. Some ideas used in the
proofs in this paper are similar to the results of Kao et al. [14] on randomized
tree splitting.

3 Definitions

We begin with definitions about the two trees we will focus on: the phylogeny
we are reconstructing and the search tree that allows us to do the insertions
efficiently.

A phylogeny T is an unrooted binary tree with n leaves in 1-to-1 correspon-
dence with a set S of terminal taxa. Removing internal node v, and its incident
edges, from a phylogeny yields three subtrees, ti(T, v) for i = 1, 2, 3. The tree
ti(T, v) joined with its edge to v is the child subtree ci(T, v). Phylogeny T ′ is
consistent with T if its taxa are a subset of those of T , and T ′ is the union of
all paths in T between taxa in T ′, with internal nodes of degree 2 removed. A
border node of subtree T ′ in T is any internal node of T that is a leaf in T ′.

A quartet is a phylogeny of four taxa. A quartet query q(a, b, c, d), returns
one of three possible quartet topologies: ab|cd, ac|bd and ad|bc: in ab|cd, if we
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remove the internal edge, we disconnect {a, b} from {c, d}. We assume a quartet
query can be done in O(1) time. In Section 5 our error model considers how
often quartet queries for four taxa of T are inconsistent with T . A node query
N(T, v, x) for internal node v of phylogeny T and new taxon x is a quartet
query q(x, a1, a2, a3), where ai is a leaf of T in ti(T, v). Such a query identifies
the ci(T, v) where taxon x belongs, if it is consistent with the true topology.

3.1 Search Tree

A natural algorithm to add taxon x to phylogeny T begins at an internal node
v and uses node query N(T, v, x) to identify the ti(T, v) where taxon x belongs.
We move to the neighbour of v in that subtree, and repeat the process until
the subtree into which x is to be placed is only one edge e, which we break
into two edges and hang x onto; see Figure 1. We follow the path from v to
an endpoint of e and identify the other endpoint with one more query. The
number of node queries equals this path length plus one. For a balanced tree
with diameter Θ(log n), this gives a Θ(n log n) incremental phylogeny algorithm.
For trees with Θ(n) diameter, this algorithm requires Θ(n2) queries. We give a

π1 π2 π3π4π5 π6 π1 π2 π3π4π5 π6π7

Fig. 1. Natural incremental algorithm: start at root and search to find place for new
taxon π7 by asking queries down the path. Break an edge to insert the new taxon.

search tree structure to manage the expected number of queries on the search
path, regardless of the underlying tree topology.

Definition 1. A search tree Y (T ) for a phylogeny T is a rooted ternary tree
satisfying the following conditions:

1. Each node y in Y (T ) is associated with a distinct subtree r(y) of T .
2. The root of Y (T ) is associated with the full tree T .
3. For each internal node y in Y (T ), there exists an internal node s(y) in T

such that the three subtrees associated with the children of y are the child
subtrees ci(r(y), s(y)). There are also three nonempty lists �i(y) stored at
each internal node y; each element of �i(y) is a terminal taxon in ti(T, y).

4. For each node y in Y (T ), r(y) has at most two border nodes in T .

Y (T ) is complete if each leaf in Y (T ) is associated with a single edge of T ,
and each edge of T has a corresponding leaf in Y (T ). For a given node y in
the search tree, its associated node s(y) in T may be picked so the three child
subtrees are balanced; this gives expected O(log n) insertion time. See Figure 2
for an example.
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π1

π2
π3

π4

π5
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π7

A

B
C

D
E

e1
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e1

r(B) r(C)

Fig. 2. A phylogeny and a corresponding search tree. Internal nodes of the search tree
correspond to subphylogenies: two, for r(B) and r(C), are indicated. Leaves of the
search tree correspond to edges of the phylogeny.

4 An Algorithm for Error-Free Data

Using our search tree structure gives a straightforward incremental phylogeny
algorithm if quartets are all consistent with T , the true topology.

We pick a random permutation π of the taxa, and start with the unique
topology T3 for {π1, π2, π3}, and a search tree Y (T3) with four nodes: a root w
with r(w) = T3 and s(w) the internal node of T3, and with one leaf for each
edge of T3. We also store �i(w) = {πi}; we also use �i(w) to represent the unique
member of this set. This fits our requirements for a complete search tree of T3.

Now, assuming Ti is consistent with T , and Y (Ti) is a valid search tree for
Ti, we add πi+1, to produce Ti+1 and Y (Ti+1). We start at the root w of Y (Ti)
and ask the node query N(Ti, s(w), πi+1) using the quartet q(πi+1, �1(w), �2(w),
�3(w)); this tells us which child of w we should move to next. We continue until
we reach a leaf y of Y (Ti); this corresponds to the edge e of Ti where the new
taxon πi+1 belongs. We break edge e into two parts, creating a new node u and
a new edge from u to the new leaf πi+1. The new tree is Ti+1.

To update Y (Ti), we create three edges from y to a new node for each of the
three newly created edges and let �1(y) be {πi+1}, and set �2(y) and �3(y) to
contain the taxon closest to πi+1 in the final quartet query and one of the two
taxa that was not closest to πi+1 in that query. Since node y was a leaf in Y (Ti),
these nodes are in proper configuration with respect to y in Ti+1. See Figure 3.
Assuming the quartet queries all are consistent with the true topology T , we
discover in this way the proper place in the tree to insert each new taxon and
maintain the invariants required for a complete search tree. In particular, the
only subtrees whose border nodes need to be considered are those created by
the new node addition, and as they are all either single edges or derived from a
single edge in Y (Ti), they continue to have at most two border nodes.
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D
E

D
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π8F

F

e2 e3 e4

e4e3

e2

Fig. 3. Inserting into a phylogeny. To insert π8 into the phylogeny from Figure 2, we
follow the path through the search tree indicated with bold lines. We find the correct
edge to break to add π8 to the tree, and modify the search tree locally to accommodate
the change.

Theorem 1. If all quartet queries made by this algorithm are consistent with T ,
then this algorithm returns T . Its runtime is O(n log n) with probability 1−o(1).

Proof. We have seen that the algorithm returns T . In the next subsection, we
show that inserting taxon πi requiresO(log n) queries with high probability. Each
query requires O(1) time, and the work to create a new edge requires constant
time. The overall runtime is O(n log n) with high probability.

4.1 The Height of the Search Tree

To prove Theorem 1, we need to know the height of the search tree Y (T ). We
now show that this tree is almost surely balanced.

Lemma 1. For any phylogeny T , with n taxa, there exist two disjoint child
subtrees A and B of the form ci(T, v) and cj(T, u) with at least n/6 and at most
n/3 taxa.

Proof. We first show there exists a node u where all ti(T, u) have at most n/2
taxa. Pick an internal node u in T ; if all ti(T, u) have at most n/2 taxa, we are
done. Otherwise, move to the its neighbour in the ti(T, u) with the most taxa.
This process terminates at a node u satisfying the property. Let n1 ≥ n2 ≥ n3

be the numbers of taxa in the trees ti(T, u) at some step. Call the largest of
these trees T1. If n1 >

n
2 , we move to the neighbour u∗ of u in T1; trees ti(T, u∗)

have n11, n12 and n2 + n3 taxa respectively where n11, n12 are the numbers of
taxa in the subtrees T11, T12 of T1 created by removing u∗. Since n2 + n3 <

n
2 ,

the only components that can have size over n
2 must be either T11 or T12, which

have fewer taxa than T1 since they are its subtrees. Thus the number of taxa in
the largest component decreases at each step of the process, which proves the
claim.
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Now, consider the node u we have found by this process, and let t1 and t2
be the two largest ti(T, u) subtrees, both of which have between n/4 and n/2
taxa. If t1 has more than n/3 taxa, consider the three child subtrees in t1 of the
neighbour of u in t1; the subtree that contains u has zero taxa, so the largest
of the subtrees three must have at least n/6 taxa. If this tree has at most n/3
taxa, we have found our subtree A; if not, we move one step more away from
u in the direction of the subtree having the most taxa until we find a subtree
small enough. We analogously find B as a subtree of t2.

Lemma 2. The number of node queries asked by the phylogeny algorithm to
assign taxon πi+1 to its place in the tree is at most 37(log6/5 i) ≈ 203 ln i, with
probability 1 − o(1/i4), and at most 37(log6/5 n) with probability 1 − o(1/n4).

Proof. Consider the process of adding πi+1 to the tree. We consider a sequence
y1 . . . yk of nodes in the search tree Y , each corresponding to a subtree r(yj)
of the existing phylogeny. We divide the yj into phases: phase t corresponds to
the period in which r(yj) contains between 5

6

t
i and 5

6

t−1
i leaves; after log6/5 i

phases, the algorithm has found where to put πi. We show that the distribution
of the length of each phase is bounded above by the sum of three geometrically-
distributed random variables.

Each phase corresponds to taking a subtree and shrinking it by a factor of
5/6. This happens either if the largest of the three subtrees of the phylogeny
descendant from the current search tree node yj has at most 5/6 of the number
of taxa we had at the beginning of the current phase, or earlier if πi belongs in
a tree with fewer than that many taxa. We concern ourselves only with the first
of these ways of ending a phase, so we upper bound the length of a phase.

Let A and B be the subtrees of r(yj) satisfying Lemma 1. The queries asked
include taxa found in r(yj), in the order that they occur in permutation π. In
particular, we will ask a node query including a node of A with probability at
least 1/6 at step, independently, until we finally do ask a query of a node from
A. (Since our queries always include at least 5/6 of the taxa, and we have not
queried any members of A, we always have all members of A available.) After
querying a member of A, for the phase to continue, we must choose the subtree
containing all of B. Now, we ask queries corresponding to the current subtree,
until we see a taxon from B, which will happen with probability 1/6 or greater at
each step. Now, we arrive in a state where the current subtree of the phylogeny
includes border nodes inside A and B, since we must have cut off parts of A and
of B, but cannot have cut off all of either without ending the phase. Now, we ask
queries until we see a node from neither A nor B; this happens with probability
at least 1/3 at each step. Then, the current search tree node yj must correspond
to a node on the path from A to B in the phylogeny, since otherwise one of its
subtrees would have three border nodes.

Thus, the length of a phase is at most the sum of three geometric random
variables, with expectations 6, 6 and 3; we then move to a new tree with at most
5/6n taxa. However, it may have two border nodes as well; we label these with a
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taxon from their neighbouring subtrees (thereby adding two taxa to the current
subtree) and perform a single quartet query (removing at least two taxa). This
gives a new subtree in which we can perform the next phase.

Thus, if G(i) are independent geometric random variables with mean i, then
the length of one phase is bounded above by G(6) + G(6) + G(3) + 1, and the
expected total number of queries is at most 19(log6/5 i)+1, where for simplicity,
we let the G(i) all have mean 6.

Moreover, this variable is rarely above 37 log6/5 i. In particular, let Q(n, r) be
the negative binomial random variable that is the sum of n geometrically dis-
tributed variables with mean r. Then Pr[Q(n, r) > knr] = Pr[B(knr, 1/r) <
n], where B(n, p) is a binomial random variable that results from the sum
of n independent Bernoulli trials, each with mean p. By standard Chernoff
methods ([7], p. 6), this probability is bounded above by exp(−kn(1−1/k)2

2 ). So,
Pr[Q(3 log6/5 i, 6) > 36 log6/5 i] ≤ i−4, meaning that the probability we use more
than 37 log6/5 i queries for taxon πi+1 is o(1/i4); similarly, the probability that
we use more than 37 log6/5 n queries for taxon πi+1 is o(1/n4).

We emphasize: Y (T ) is almost surely balanced regardless of the topology of
T . Even if the diameter of T is Θ(n), its search tree almost surely has height
O(log n). We expect that the actual values of the constants are much smaller
than in the above lemma.

5 Accounting for Errors

Our search tree algorithm adapts to the case of error-prone quartets where each
quartet query independently errs with probability p > 0. We assume that (1 −
p)3 > 0.5 + ε for some ε > 0; we relax this assumption at the end of the section.

5.1 Random Walk in the Search Tree

Let Y (T ′) be a complete search tree for T ′ and let x be a taxon not in T ′. We
will perform a random walk on Y (T ′) to place x into its proper place in T ′,
where each step of the random walk is determined by at most 3 quartet queries.

Let yi be the location of the random walk after i steps, with y0 the root of
Y (T ′). If y(i) is not a leaf node, query the border nodes of r(yi). If any border
node queries gives answer x /∈ r(yi), go to the parent node of yi. If all border
nodes give answers consistent with x ∈ r(yi), query the node yi and descend to
the child of yi indicated.

If yi is a leaf, corresponding to an edge of T ′, let it have counter variable c
initially set to 0. Query its border nodes as before; if each is consistent with
x ∈ r(y), increment c. Otherwise, decrement it if it is greater than 0; if c = 0,
move to the parent node of y. After a number of queries we will soon compute,
we are at a node in Y (T ′): if it is a leaf, add x to that node of the search tree
as for the insertion algorithm with error-free data. If not, signal failure.

The algorithm finds the proper place in the tree with high probability. Let yx

be the leaf in the search tree where we should insert taxon x. After i steps in
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the random walk, let the random variable di be the distance in the search tree
between yi and yx. Let the random variable gi have value −c if yx = yi, di + c
if yx �= yi and yi is a leaf of Y (T ′), and di if yi is not a leaf. If gi ≤ 0, then the
current node of the random walk is the correct place to put x. The following
simple observation is essential to proving the correctness of our algorithm.

Lemma 3. Consider the random variables gi defined above.

1. E[gi] ≤ d0 + (1 − 2(1 − p)3)i.
2. If i > −d0

1−2(1−p)3 , then Pr[yi �= yx] < exp(−(d0+i(1−2(1−p)3)2

2i )

Proof. At each step of the random walk, there are at most two border nodes, so
at most three queries. If each gives a correct answer, gi decreases by 1; if any
incorrect queries occur gi increases by at most one, though it might still decrease
by 1. In the worst case, the probability that gi decreases is at least (1 − p)3, so
E[g(i+ 1)− g(i)] ≤ −(1− p)3 + (1− (1− p)3) = 1− 2(1− p)3. The result follows
from linearity of expectation, since g0 = d0. The second claim follows from the
Chernoff bound, as the queries are independent.

Now, we have a straightforward taxon insertion algorithm. For each taxon πi+1,
we run the random walk long enough to handle the case that g0 = 203 ln i.
To make the error probability at most (1/i2), we require that the random walk
have j steps, where exp(−(203 ln i+j(1−2(1−p)3))2

2j ) ≤ 1
i2 . The minimum value of j to

make this guarantee is j ≥ k lnn, for k = −203(1−2(1−p)3)+2+2
√

1−203((1−2(1−p)3)

(1−2(1−p)3)2 .
We can now state the taxon insertion procedure in detail. Assuming that the

Algorithm 1. InsertTaxon(x, T, Y (T ))
Initialize the random walk at the root of Y (T ).
for i = 1 to k log n do

Simulate the next step of the random walk.
end for
Let yk log n be the current node of the random walk.
if yk log n is a leaf then

Attach x to r(yk log n) in T and update Y (T ).
else

return Failure.
end if

tree Ti−1 is correct, then, this algorithm adds a new taxon in O(log i) queries,
with error or failure probability O(1/i2).

5.2 Finding Quartets to Ask

We must ensure that we can always find a quartet that has not been queried
before in O(1) time. This requires two separate conditions to hold: first, that
enough such quartets exist, and second, that we can find them in O(1) time per
query.



Fast Error-Tolerant Quartet Phylogeny Algorithms 155

The first of these is easy if we start with a constant-sized guide tree TS on a set
S of at least m taxa, where m is the smallest number such that k logm < m−2,
with k equal to the multiple of log i found using the formula in the previous
section. In each insertion, we use at most k log i quartets at any node of the
search tree; the extreme case is where the three child subtrees of the current tree
T have 1, 1, and i− 2 taxa in them.

The latter is more complicated. Assume that for each node y in Y , �j(y) is
the list of all taxa in the child subtree tj(r(y), s(y)) (for j = 1, 2, 3). To find
the next quartet in O(1) time, we must fetch the next taxon in tj(T, s(y)) in
O(1) time. We first enumerate taxa in �j(y). Once all taxa in �j(y) have been
used, we pick the border node bj(y) of y in tj(T, s(y)) (if it exists). The node
bj(y) is associated with some ancestor y1 of y and we have r(y) ⊆ ti(r(y1), bj(y))
for some i. Taxa in �(i+1)mod3(y1) ∪ �(i+2)mod3(y1) are also in tj(T, s(y)) so we
enumerate them. Once they have been used, we find border nodes of r(y1) such
that two of their taxa lists contain taxa in tj(T, s(y)) that have not been used
so far. Once all taxa from a node yi have been used, we look at border nodes of
r(yi). This process can be thought of as breadth first search on a directed graph
where an arc denotes the relationship of being a border node.

Now, we give the complete algorithm. First, pick a constant-sized set S0 ⊂ S
of m taxa and find the phylogeny for S0 consistent with the most quartets. Then
iteratively add taxa to the tree using the procedure InsertTaxon described above.
The running time of this algorithm is O(n log n) with high probability. The error

Algorithm 2. Reconstruct(S,m)
Pick a subset S0 ⊂ S with m taxa
Find phylogeny T on S0 consistent with the most quartets by exhaustive search.
Build a search tree Y (T ) for T .
for all s ∈ S\S0 do

insertTaxon(s,T,Y(T))
end for

probability can be bounded by μ(m) +
∑n

i=m
1
i2 , where μ(m) is the probability

that the maximum quartet compatibility tree on a random set of m taxa is not
consistent with T . This quantity is constant for constant m; in the next section
we show how to make the total error probability o(1) as n grows.

The remaining case where (1 − p)3 ≤ 1
2 can be solved by redefining node

queries. Each node query is now implemented by asking cp queries and returning
the majority direction, with constants cp and m chosen appropriately. We defer
details to the longer version of this paper.

6 Shrinking the Error Probability to o(1)

The algorithm presented in the previous section errs with constant probability,
since it starts with a constant-sized tree that may have errors, and since the
additions to this tree also have constant probability of error.
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If we start with a non-constant-sized guide tree, we can reduce the error
probability.

Theorem 2. The algorithm Reconstruct(S,max(�log logn�,m)) both returns the
correct tree and runs in O(n logn) time with probability 1 − o(1).

Proof. The exhaustive search step requires enumerating all O((log logn)4) quar-
tets, on all O((log logn)! logn) topologies on log logn taxa; the product of these
is O((log logn)4+log log n logn), which is sublinear in n. We have already shown
that the rest of the algorithm requires O(n log n) time with high probability.

We will show below that μ(log log n), the failure probability of the guide tree
algorithm, is o(1). The failure probability of the insertion procedure is at most∑n

i=log log n
1
i2 , which is O( 1

log log n ), and so o(1). As such, the overall failure
probability is o(1).

We note that the guide tree could have more or fewer than log logn taxa; we
merely require that the brute-force guide tree construction requires O(n log n)
time and has o(1) error probability.

6.1 Maximum Quartet Consistency Is Consistent

Here, we show that the maximum quartet consistency approach is consistent for
our error model. This result (which may be of independent interest, as our error
model has been studied before [23]), shows that μ(n) → 0 as n grows.

Theorem 3. Let Tmqc be the phylogeny compatible with the most quartet queries
for a set of n taxa and let T ∗ be the true phylogeny. If each quartet query errs
independently with probability p, then μ(n) = Pr[Tmqc �= T ∗] = o(1) as n→ ∞.

To prove this theorem, we first show a few properties of quartets.

Definition 2. The quartet distance dQ(T, T ′) of phylogenies T and T ′ on the
same set of taxa is the number of quartets on which T and T ′ differ.

This distance was studied in [3,4] among others.

Lemma 4. The quartet distance between distinct phylogenies is at least n− 3.

Proof. Let T and T ′ be distinct phylogenies. Let (S1, S2) be a split in T not
present in T ′. Let (S′

1, S
′
2) be a split in T ′ not present in T where none of the

sets A = S1 ∩ S′
1, B = S1 ∩ S′

2, C = S2 ∩ S′
1, D = S2 ∩ S′

2 is empty; such a split
exists since T and T ′ are distinct. Choose taxa a, b, c, d from sets A,B,C,D,
respectively. The quartet induced by T is ab|cd, whereas in T ′ it is ac|bd. This
gives φ = |A||B||C||D| conflicting quartets; φ is at least n−3 since |A|+|B|+|C|+
|D| = n, and the product is minimized when |A| = n−3 and |B| = |C| = |D| = 1.

The number of trees with small quartet distance from a fixed tree T is small.

Definition 3. A taxon reinsertion (TR) operation consists of deleting a taxon
from a phylogeny and attaching it to a remaining edge, creating three new edges.
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Lemma 5. Let T and T ′ be phylogenies such that dQ(T, T ′) < n log2 n. The
number of TR operations required to transform T into T ′ is at most c log4 n for
some constant c.

Proof. Let (S1, S2) be a split of T not present in T ′. Let (S′
1, S

′
2) be some split

in T ′ that is not present in T that minimizes φ = |A||B||C||D| as defined earlier.
Without loss of generality, assume that A is the largest of the sets. Observe that
each of the sets B,C,D must have at most log2 n taxa: otherwise φ > n log2 n,
so dQ(T, T ′) > n log2 n. We delete all taxa in B and C from both T and T ′ to
create trees T (1) and T ′(1). By Lemma 4, this erases at least n − 3 conflicting
quartets. We pick splits (S1, S2) and (S′

1, S
′
2) in T (1) and T ′(1) as we previously

did for the original trees and repeat the process to obtain trees T (2) and T ′(2),
this time removing at least n− 2 log2 n− 3 discordant quartets.

We iterate the process until T (i) = T ′(i) for some i, which is O(log2 n) since
the total number of conflicting quartets is at most n log2 n, and each iteration
erases Ω(n). The sets B and C have at most log2 n taxa at each step of the
algorithm. Therefore, at most O(log4 n) taxa are deleted from both trees.

Let R be the taxa removed. The restrictions of both T and T ′ to S − R are
the same. To transform T to T ′, we move all nodes in R to a new side of the tree
T , and then move each to the proper place in T ′ in O(log4 n) TR operations.

Corollary 1. For any phylogeny T , the number of phylogenies T ′ such that
dQ(T, T ′) < n log2 n is at most nb log4 n for a large enough constant b.

Proof. Each T ′ with distance from T at most n log2 n can be obtained from T
by c log4 n TR operations. For any tree, the number of ways to perform a TR
operation is less than 2n2 since we can choose any of the n taxa and reinsert it at
any of the 2n− 5 edges other than the one at which it was before the operation.
This gives fewer than (2n2)c log4 n phylogenies that can be created by repeating
the operation c log4 n times. Taking b = 4c finishes the proof.

Now we can prove the maximum quartet compatibility consistency theorem.

Proof. Suppose some tree T ′ is consistent with more quartets than T ∗, and
dQ(T ′, T ∗) = q. At least half of the q quartets where T ∗ and T ′ differ must
be erroneous; since they are independent errors, this has probability at most
exp(−q( (1−2p)2

2 )) by the Chernoff bound.
Let T0 be the set of all incorrect phylogenies with quartet distance from T ∗

less than n log2 n . Then |T 0| ≤ nb log4 n, and for trees in T0, Lemma 4 gives that
q ≥ n − 3. The probability that any tree in T0 is consistent with more queries
than T ∗ is bounded by nb log4 n exp(−(n− 3)( (1−2p)2

2 )), which is o(1) as n grows.
Now, consider the incorrect phylogenies T1 that are not in T0. There are fewer

than 2nn! < 2n(1+log n) such topologies, and for each, dq(T, T ∗) ≥ n log2 n. The
probability that any tree in T 1 is consistent with more quartets than T ∗ is
bounded above by 2n(1+log n) exp(−n log2 n( (1−2p)2

2 )), which is o(1) as n grows.
So the probability that any incorrect tree is consistent with more quartets

than T ∗ converges to 0 as n grows.
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The following corollary, which may be of independent interest, is a consequence
of Theorem 2 and Theorem 3.

Corollary 2. For the error model assumed above, the algorithm
Reconstruct(S,max(�log logn�,m)) reconstructs the maximum quartet consis-
tency tree with probability 1 − o(1).

Finding the maximum quartet consistency tree is NP-hard in general [2], though
polynomial-time approximation schemes exist [12].

7 Experiments

We have developed a prototype implementation of our algorithm to investigate
its running time and accuracy. We have tested the algorithm in four scenarios.
First, we tested the performance of the algorithm for the case with no errors.
Second, we tested the performance of the random walk algorithm when the data
was generated according to the model with independent errors. Third, we ran the
random walk algorithm on real biological datasets to observe the running times.
Finally, we repeatedly ran the algorithm on a simulated alignment to investigate
its reconstruction accuracy where ground truth is known.

The tree topologies used in the synthetic data sets were chosen at random
from the uniform distribution. In the iid error case, we perturbed every quartet
query to give one of the two possible wrong answers with probability p. We
supplied the algorithm with the correct initial guide tree of 150 taxa - only the
insertion phase was performed. In our experiments, we set p = 0.1.

The algorithm for error-free data is very fast even for reasonably large phy-
logenies. For data sets having 104 taxa or less, constructing the tree takes less
than a second. For 2 · 104 taxa, it takes roughly 2 seconds.

The random walk algorithm is roughly 5 times slower than the algorithm
for error-free data. Constructing a tree having 104 taxa takes about 5 seconds,
whereas a tree with 2 · 104 taxa requires 9 seconds. In all experiments on the iid
error data set, our algorithm managed to reconstruct the correct tree.

Table 1. The running times of the algorithm for the error-free and iid data sets

Algorithm 1000 5000 10000 20000

Error-free < 1s < 1s < 1s 2s

Random walk < 1s 2s 5s 9s

We ran the algorithm on several protein families from the Pfam database [1].
Quartet queries were answered with the Four-Point method [10] based on esti-
mated evolutionary distances between sequences. Distances were estimated based
on pairwise BLOSUM62 scores using a method by Sonnhammer and Hollich [20].
We used neighbor-joining trees on a subset of 150 sequences (chosen at random
from the whole set of sequences) as our initial guide trees. Our prototype imple-
mentation was able to process a dataset of around 12000 sequences in about 16
minutes (see Table 2).
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Table 2. The running times of the algorithm for several Pfam families

Protein family Sequences Average length running time

Maf(PF02545) 1980 189.60 38s

2Oxoacid dh(PF00198) 3701 225.10 1m49s

PALP(PF00291) 11815 294.40 15m42s

7.1 Accuracy on Simulated Alignments

To test the accuracy of the topologies inferred by our algorithm, we used one
of the simulated alignments developed by the authors of FastTree [17]. The
COG840 alignment has 1250 protein sequences of average length 347 amino
acids, with a known true topology. For this alignment, we randomly sampled
200 sequences and computed the neighbour joining tree for this set. We then
ran the random walk algorithm starting with this guide tree. For the resulting
tree, we calculated the proportion of splits that are present in the true tree. We
repeated the procedure 100 times.

The results are shown in Table 3. The random walk often did not end at a
leaf of the search tree, which prevents the algorithm from inserting the taxon
into the phylogeny. This occured in roughly half of the insertions, so the trees
produced by our algorithm only contain around 700 taxa. This suggests that
for quartets inferred from sequences, the distribution of errors might be very
different from the one assumed in our model. The accuracy of the trees produced
by the algorithm is lower than that of neighbour joining on the full data set.

The accuracy of neighbour joining trees for subsets of taxa is lower than for
that of the NJ tree for the full data set (49.8% vs. 62.6%). This explains some
of the difficulty for the random walk algorithm since it has to insert taxa into
an already highly erroneous guide tree. To investigate this issue, we ran the
algorithm again using the true topology of randomly chosen 200 taxa as the
guide tree. This produced trees whose accuracy was about 3.1% higher. This
suggests that guide tree errors have modest impact on the quality of the overall
tree. Neighbour joining trees inferred for the taxa that were present in the trees
from the above experiment had an average accuracy of 66.2%.

Table 3. Performance of the random walk algorithm on the synthetic alignment

method taxa inserted guide accuracy overall accuracy

RW+NJ guide tree (200 taxa) 704 ± 31 49.8 ± 4.4 46.3 ± 4.6

RW+true guide tree (200 taxa) 716 ± 26 100 49.4 ± 5.0

NJ 1250 n/a 62.6

In all our experiments, the height of search trees constructed by the algorithm
was less than 40. This supports our view that the constants in Lemma 2 can be
improved.
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8 Conclusion

We have presented a fast algorithm that is guaranteed to reconstruct the cor-
rect phylogeny with high probability under an error model where each quartet
query errs with a fixed probability, independently of others. The algorithm runs
in O(n log n) time, which is the lower bound for any phylogeny reconstruction
algorithm. Our prototype implementation seems reasonably fast on both real
and simulated datasets, but its accuracy is lower than neighbour joining, and it
produces a phylogeny with only a fraction of the input taxa. The experimental
results on a simulated alignment suggest that the characteristics of errors in
quartet trees inferred from aligned sequences may be quite different from the iid
model assumed here.

It remains to be seen whether the algorithm can be improved to yield better
practical performance. Our implementation does not use any form of quartet
weighting, which greatly improves the performance of many quartet methods
used in practice (e.g. [21,19]). This would enable the algorithm to distinguish
between more and less credible queries, which may lead to an overall performance
improvement. Another way to improve our algorithm would be to allow several
rounds of taxa reinsertions. We plan to investigate these directions in the near
future.

From a theoretical perspective, it is interesting whether there exist fast al-
gorithms that offer similar performance guarantees under commonly studied
models of sequence evolution, such as Jukes-Cantor or Cavender-Farris.
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Abstract. This paper presents a real-time randomized streaming string
matching algorithm that uses O(log m) space. The algorithm only makes
one-sided small probability false-positive errors, possibly reporting phan-
tom occurrences of the pattern, but never misses an actual occurrence.

1 Introduction

The string-matching problem is concerned with finding all exact occurrences of
a pattern string P [1..m] in a text string T [1..n]. Numerous algorithms exist,
including algorithms that solve the problem in linear time, in real time, and
even using only constant auxiliary space in addition to the input strings [3,5,6,7].
However, all these algorithms, including the on-line algorithms, require repeated
access to the pattern or the text. In fact, if the pattern is considered part of
the streamed input, without sufficient state space to remember the pattern or
associated information, it is impossible to precisely identify occurrences of the
pattern in the text.

The string matching problem is often viewed as a candidate elimination prob-
lem where initially all text positions are candidate occurrences of the pattern and
an algorithm’s task is to eliminate candidates and to verify which of the remain-
ing text positions are actual occurrences. The classical Knuth-Morris-Pratt [7]
algorithm proceeds by scanning the text and matching subsequent text symbols
against the pattern. If a mismatch occurs, then the algorithm shifts the pattern
ahead to the next viable text occurrence candidate. The shift is the smallest
number of text positions that would align the pattern prefix that was matched
thus far with the text, with another matching pattern prefix, skipping candidate
occurrences that can be ruled out by the transitivity of the pattern’s prefix self-
overlap (also called period). The lengths of all such shifts are pre-computed in
the pattern preprocessing phase and take up O(m) space.

The Karp-Rabin [6] randomized string-matching algorithm deploys an entirely
different approach. The algorithm computes a so-called fingerprint of a sliding
text window of size m, the same length as the pattern, and compares this finger-
print to the fingerprint of the pattern, eliminating candidate occurrences with
different fingerprints than the pattern’s fingerprint. Their algorithm, however,
requires access to the last m text symbols to slide the fingerprint window along
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the text. While the fingerprint functions always identify equal strings, different
strings are usually mapped to different fingerprints, but with small probability,
to identical fingerprints, possibly introducing erroneous false-positive phantom
occurrences. Such phantom occurrences can be later verified against the text if
both the pattern and text are readily accessible in memory.

Porat and Porat [8] recently gave a streaming-model string-matching algo-
rithm that uses a combination of both the periodicity and the fingerprint ap-
proaches. Their one-pass streaming algorithm takes O(logm) time per symbol,
or O(n logm) time overall, and uses only O(logm) space. Throughout this paper
space refers to the number of O(log n) bit registers and neither the pattern nor
any text segment is accessible after appearing in the input stream.

In addition to possibly reporting false-positive phantom occurrences inherent
in fingerprinting, Porat and Porat’s [8] algorithm may also commit with small
probability false-negative errors, omitting actual occurrences of the pattern in
the text (two-sided errors). Their algorithm also requires the period lengths and
period fingerprints of the pattern and various pattern prefixes to be computed in
the pattern preprocessing phase. However, no details were provided about how
this information is computed. Note that while period lengths are often com-
puted via straighforward application of string matching algorithms to match the
pattern against itself, the streaming model’s limitations present some obstacles.

In fact, independently of our work, Ergun, Jowhari and Salgan [1] recently
studied the problem of computing the period length of a string in the stream-
ing model. They describe an O(m logm) time one-pass streaming algorithm to
compute the period length of a string using O(logm) space. Their algorithm,
that finds the period only if the input string is periodic (the period is no longer
than half of the string’s length), builds on a simplified streaming string-matching
algorithm with simpler pattern preprocessing requirements than Porat and Po-
rat’s [8] algorithm (still two-sided errors). Moreover, Ergun, Jowhari and Salgan
[1] prove that Ω(m) space is required by any one-pass streaming algorithm that
computes the period length of non-periodic strings, but two-passes suffice to re-
duce the space to O(logm). They also prove that Ω(logm) space is required by
any streaming string-matching algorithm, for certain choices of the pattern and
text lengths.

We present two streaming string-matching algorithms. The first, like Porat
and Porat’s [8] algorithm, takes O(logm) time per symbol and uses O(logm)
space, but is conceptually much simpler and has two important advantages: (1)
the algorithm only commits small probability false-positive errors and no false-
negative errors; in particular it never misses an occurrence (one-sided errors),
and, (2) the pattern preprocessing phase is a trivial real-time streaming algo-
rithm that does not compute period lengths. The second algorithm is a real-time
algorithm, namely worst-case constant-time per symbol, using the same O(logm)
space, while maintaining the one-sided error and the simple real-time streaming
pattern preprocessing. Our techniques can be used to speed up Ergun, Jowhari
and Salgan’s [1] periodicity streaming algorithm to O(m) time.
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The paper starts by reviewing some basic properties of fingerprint arithmetic
and periodic strings needed to describe the algorithms. The following sections
describe each of the two algorithms and the pattern preprocessing. The next
section shows how a slightly more complicated preprocessing that still preserves
the properties above can avoid the second kind of errors. The paper concludes
with a discussion and open problems.

2 Fingerprints and Periods

Porat and Porat [8] used Karp and Rabin’s [6] fingerprints, defining for a prime
p, a random integer r ∈ Fp, and a string s = s1s2 · · · sl over the alphabet Fp (Fp

is the field of integers modulo the prime p) the fingerprint function φr,p(s) =∑l
i=1 sir

i mod p. The error probability, the probability that two different strings
share the same fingerprint, can be bounded as follows.

Theorem 1. Let u and v be two different strings of length l, where l ≤ n and
p ∈ Θ(n2+α), for some α ≥ 0. Then, the probability that fingerprints φr,p(u) =
φr,p(v), for a random r ∈ Fp, is smaller than 1

n1+α .

The fingerprint function can be arithmetically manipulated to compute the fin-
gerprint of two concatenated strings, requiring only the fingerprints and string
lengths and not the concatenated strings themselves. (The powers rk and r−k

can be maintained together with the corresponding fingerprints and updated
with the fingerprint operations, and do not need to be computed every time.)

Lemma 1. One can compute the fingerprint of the concatenated strings u and
v as:

φr,p(uv) = φr,p(u) + rkφr,p(v) mod p uv = u1u2 · · ·ukv1v2 · · · vl. (1)

The last Lemma can be used to cancel out the fingerprint of the prefix u from the
fingerprint of the concatenated string uv to obtain the fingerprint of v = u−1(uv),
an operation referred to as sliding by Porat and Porat [8]. Similarly, one can also
cancel out the fingerprint of the suffix v to get the fingerprint of u = (uv)v−1.

Corollary 1. To extract the fingerprints of u or v from the fingerprint of uv:

φr,p(v) = r−k(φr,p(uv) − φr,p(u)) mod p. (2)

φr,p(u) = φr,p(uv) − rkφr,p(v) mod p. (3)

The formulae above will be used to maintain the running fingerprints of multiple
text blocks starting at various locations of interest and ending at the current text
symbol, without having to update all such fingerprints with every text symbol.
Instead, the algorithm will maintain one running fingerprint for the text prefix
from the very beginning of the text and up to the current text symbol, and only
update this one fingerprint with each input text symbol. Now, by keeping for each
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location of interest the static fingerprint for the text prefix up to that location,
the algorithm can obtain the running fingerprint of the text block starting at
that location up to and including the current text symbol:

Lemma 2. The fingerprint of the text block starting at some location of interest
and ending at the current text symbol can be computed in constant time whenever
needed.

Properties of periodic strings are often used in efficient string algorithms. A
string u is a period of a string w if w is a prefix of uk for some k, or equivalently
if w is a prefix of uw. The shortest period of w is called the period of w and w is
called periodic if it is at least twice as long as its period. Consider prefixes of the
pattern of increasing length. If u is a prefix and v is a longer prefix, the period
of u is said to continue in v if u and v have the same period and otherwise the
period of u terminates in v. The following Theorem is due to Fine and Wilf [2].

Theorem 2. If a string u has periods of length p and q, and its length |u| ≥
p+ q − gcd(p, q), then u also has a period of length gcd(p, q).

3 The O(n log m) Time Algorithm

In this section we describe the O(n logm) time on-line streaming string-matching
algorithm, introducing the basic concepts which are refined in the next section to
obtain a real-time algorithm. The algorithm runs �log2m� simultaneous stages
that filter the remaining viable occurrences. Each stage requires constant space,
and takes constant time per input symbol, adding up to O(logm) time per
input symbol, O(n logm) time overall, and O(logm) total space. The pattern
preprocessing is trivial. It computes a sequence Pi of �log2m� increasing prefixes
of the pattern P [1..m], and records their fingerprints, where |Pi| = 2i, and if m
is not a power of 2, adding the last Pk = P [1..m], k = �log2m�. The �log2m�
fingerprints are stored in O(logm) space.

The algorithm maintains and updates viable occurrences of the pattern while
the text is being streamed on-line. A viable occurrence (VO) is a position in
the text where an occurrence has not been ruled out. The block of the VO is the
block that starts at the VO and ends at the currently last symbol of the text.
Each VO belongs to some stage number i, such that the algorithm has verified
earlier that the fingerprint of the text block of length |Pi| starting at the VO
is equal to the fingerprint of pattern prefix Pi, but there are insufficient text
symbols yet to verify if this VO belongs to stage number i+ 1. As soon as there
are sufficient text symbols, |Pi+1| to be precise, to promote a VO to the next
stage (always the first, longest VO in the stage), the fingerprint of the block of
the VO is compared to the pre-computed fingerprint of the pattern prefix Pi+1

and the VO either gets promoted to the next stage or is eliminated. Clearly, an
occurrence of each of the pattern prefixes Pi must start at each occurrence of
the pattern and VOs eliminated this way cannot be occurrences of the whole
pattern.
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When the algorithm maintains a VO it maintains the position and the finger-
print of the block of the VO. The O(n logm) algorithm maintains this fingerprint
directly. The real-time algorithm will maintain the fingerprint of the prefix of
the text up to the VO. This fingerprint is the running fingerprint of the text
when this position was reached. When needed the real-time algorithm gets the
fingerprint of the block of the VO from the running fingerprint of the text and
the static fingerprint of the VO using Corollary 1.

Each text position is initially considered a VO. As soon as the next position
is reached, the one text symbol fingerprint is verified against the fingerprint of
the pattern prefix P0, before the new VO may enter stage number 0. Note that
VOs that start earlier in the text always correspond to longer text blocks, and
therefore belong to the same or higher numbered stages. One can envision the
VOs climbing the stage ladder from one stage to the next or falling off the lad-
der in case of fingerprint mismatch, up to the ultimate stage that verifies the
fingerprint of the full pattern Pk = P [1..m]. Since all text positions are consid-
ered VOs and are only eliminated as a consequence of fingerprint mismatch, the
algorithm commits no false-negative errors.

Similarly to Galil’s [4] parallel string-matching algorithm, multiple VOs that
get too crowded in some stage imply that there must be a periodic pattern pre-
fix. Specifically, if there are at least three VOs at the same stage number i, then
the pattern prefix Pi must be periodic, all the VOs in this stage must form an
arithmetic progression whose difference is the period length of Pi, and these
VOs can be represented compactly and processed efficiently. However, there is
one important caveat requiring more caution. The streaming algorithm compares
fingerprints and not actual strings, and therefore different strings may be iden-
tified by the same fingerprint, conflicting with the periodicity implied by string
equality. The algorithm may conclude that some fingerprint false-match error
must have occurred since the periodicity properties have been violated, without
precisely identifying the culprit fingerprint error.

Note that the algorithm only uses periodicity to facilitate the space efficient
representation and never to eliminate any VO. In case that the algorithm discov-
ers such low probability false-positive error, it must make some hard choices to
remain within its strict space bounds while making sure that only false-positive
errors are reported and no actual occurrences are omitted. The algorithm will
discard some VOs that can not be compactly represented via the periodic arith-
metic progression, essentially throwing them off the stage ladder. However, the
algorithm will report all these discarded VOs as occurrences of the pattern so
that no occurrences are missed. Note that by allowing extra space to store more
individual VOs or arithmetic progressions, the algorithm could continue to ex-
amine these VOs. The expected space would still be O(logm).

Recall that the offending VO that revealed the fingerprint-periodicity in-
consistency is in the process of being promoted from some stage to the next.
To simplify the presentation and avoid cascading the effects of discarded VOs
on higher numbered stages, the algorithm will discard and report all earlier
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1. Extend the fingerprints of the blocks of the VOs by the current text symbol. (There
is sufficient time to do this directly without Lemma 2.)

2. If the block of the first, longest, VO in the stage has precisely |Pi+1| text symbols,
then remove this VO from stage number i, and compare the fingerprint of its block
to the fingerprint of the pattern prefix Pi+1 as candidate for stage number i + 1.
The next VO in stage number i, if any, becomes the first VO in the stage.

– If the fingerprints match, promote the VO to stage number i + 1.
– VOs that get promoted to the ultimate stage matched the fingerprint of the

whole pattern and are reported as occurrences of the whole pattern. They do
not need to be stored.

3. To initialize, each text symbol’s fingerprint that is equal to the fingerprint of P0

adds to stage number 0 a new VO starting at that text position.

Fig. 1. Stage number i of the O(n log m) algorithm

VOs (in equal or higher numbered stages), excluding the offending VO and
the last VO in the arithmetic progression, and keep all VOs beyond these two
since the limiting factor here is the algorithm’s ability to compactly store and
process all the VOs. The up to O(logm) discarded arithmetic progressions will be
compactly written to the output rather than spelled out individually to remain
within the O(logm) bounds.

Thus, the algorithm might now report two classes of erroneous pattern occur-
rences, those phantom occurrences that passed through the entire stage ladder
and eventually had their fingerprint verified against the fingerprint of the whole
pattern, and those VOs that were thrown off the stage ladder due to some
non-specific fingerprint false-match errors conflicting with the implied periodic-
ity and keeping the algorithm from compactly representing crowded VOs. The
error probability in both cases is small, since it is either due to fingerprint false-
match of the whole pattern (and some stage prefixes) or a detected fingerprint-
periodicity conflict that must be due to fingerprint false-match of some pattern
prefix. The algorithm is summarized in Figure 1 where all stages are executed
in increasing order for each input symbol.

Lemma 3. Let u and v be strings such that v contains at least three occurrences
of u. Let t1 < t2 < . . . < th be the locations of all occurrences u in v, and assume
that ti+2− ti ≤ |u|, for i = 1, · · · , h−2 and h ≥ 3. Then this sequence must form
an arithmetic progression with difference d = ti+1 − ti, for i = 1, . . . , h− 1, that
is equal to the period length of u.

To get the required time and space bounds one has to compactly represent and
efficiently process the multiple VOs that might accumulate in the same stage.
Multiple VOs imply periodicity, and periodicity properties are used to represent
the VOs and their associated information. The following Lemma follows from
Lemma 3.
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Lemma 4. Suppose that there are at least three VOs in stage number i. If these
are actual occurrences of the pattern prefix Pi, then these VOs must form an
arithmetic progression with difference equal to the period length of Pi.

If there are one or two VOs in a stage, these VOs are stored directly (the po-
sition and the fingerprint). If there are three or more, these VOs should form
an arithmetic progression. The algorithm stores the first and last VO, the dif-
ference between the positions of the first and second VOs (the difference of the
arithmetic progression) and the fingerprint of the block between these two po-
sitions (which should be equal to the period of Pi), altogether constant space.
The locations and the fingerprints of the middle of the arithmetic progression
can be verified and reconstructed as follows:

Lemma 5. Let t1, t2, . . . , th be all the VOs in stage number i, and assume that
these are all actual occurrences of Pi. Then it is possible to represent the locations
and fingerprints of all the text blocks starting at each of these VOs up to the
current position by the location and fingerprints of the first and last VOs and
the length and the fingerprint of the block between the first and second VOs.

A progression is generated when a third VO joins the stage. Note that the data
maintained for the progression can be easily computed. The only computation
needed is to compute the fingerprint of the block between the first and the second
VOs using Corollary 1. We can easily maintain the data related to the arithmetic
progression in constant time: If a new VO joins the progression when promoted
to stage i, it simply replaces the last one. When the first VO of the progression
is promoted to stage i+ 1, the second one becomes the first and if there remain
only two VOs in the progression, the progression stops to exist.

Recall that the algorithm did not compare actual symbols, but only finger-
prints of the pattern prefixes Pi, and there might be spurious VOs resulting from
false-positive fingerprint errors. The algorithm only uses periodicity properties
to verify the validity of the compact representation in stage number i when new
VOs are added to the representation to ensure that the full representation can
be faithfully reconstructed. There are two factors that need to be verified: (1)
The VOs must form an arithmetic progression, and (2) the fingerprints can be
reconstructed by Corollary 1. These properties are verified as soon as the third
VO is added and every time another VO is added. If there are any problems
during the verification, the algorithm concludes that some of the VOs are not
actual occurrences due to small probability false-positive errors of some finger-
prints. To stay within the time and space bounds, the algorithm will discard
some of the VOs as outlined above, and to err only on the false-positive side,
the algorithm will report the discarded VOs as actual occurrences.

1. The algorithm verifies that the VOs form an arithmetic progression. The
difference of the arithmetic progression, the implied period length of Pi, is set
to the difference between the the first two VOs and verified against the rest.
Normally one should expect the implied period length to be equal to the real
period length of Pi, but the algorithm does not know the real period length
of Pi and only verifies that the VOs fall into some arithmetic progression.
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2. The algorithm verifies that the text block that starts at the last VO in the
stage and ends at the newly added VO has the same fingerprint of the text
block between the first and the second VOs in the arithmetic progression,
the implied period fingerprint which we maintain. This is required so that
the algorithm does not introduce false-negative errors when extracting fin-
gerprints from the compact representation via sliding by the implied period
fingerprint. Note that these text block fingerprints are extracted using either
Equation 2 or 3 in Corollary 1 depending on whether VO fingerprints are
maintained for text prefixes up to the VOs or for the blocks of the VOs.

Theorem 3. The algorithm described above reports all occurrences of the pat-
tern in the text in O(logm) time per text symbol using total O(logm) space. The
algorithm may report false occurrences, and on occasions even detects that it had
fingerprint errors, with probability at most 1/nα′

for α′ < α.

Proof. Each stage number i, whether it has at most two VOs or more, takes
constant-time to update one or two fingerprints with the current text symbol,
and to discard or promote to stage number i + 1 at most one VO. The space
requirement for each stage is constant. Multiplying by O(logm) stages we get the
desired bounds. The error probability is bounded by multiplying the probability
of fingerprint comparison error by the up to O(n logm) comparisons made.

4 The Real-Time Algorithm

Observe that in the O(n logm) algorithm above, fingerprints were only used in
stage number i when the length of the first (longest) block of a VO in the stage
was equal to the length of the next stage’s pattern prefix |Pi+1|, to verify whether
the VO may be promoted to the next stage or eliminated. The key to the real
time implementation is in (1) eliminating repetitive verification due to small
highly repetitive pattern prefixes (e.g. aa · · · aaa), and, (2) evenly spreading the
VO stage promotion verification to avoid contentious text locations that might
require up to �log2m� verifications. Both problems are solved by using additional
O(logm) space.

Galil’s [3] real-time implementation of the Knuth-Morris-Pratt [7] algorithm
will be used. Let f = �log2 log2m�+ 1 and consider the pattern prefix Pf , such
that 2 log2m < |Pf | ≤ 4 log2m. The pattern preprocessing of the Knuth-Morris-
Pratt [7] real-time variant will start as the pattern appears in the input stream,
and will be stopped after the pattern prefix Pf was processed, having used only
|Pf | = O(logm) extra space.

Lemma 6. Let u and v be prefixes of a string w, such that |u| < |v|, u is periodic
and v is the shortest prefix of w such that the periodicity of u terminates in v.
Then the period length of v > |v| − the period length of u, and v is not periodic.

The failure function of the Knuth-Morris-Pratt [7] algorithm and of Galil’s [3]
real-time implementation consists of the period of each prefix of the pattern. In
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the preprocessing we compute the period of each prefix of Pf . If Pf is periodic,
the preprocessing will examine further symbols of P until either the periodicity
ends or the pattern ends. In case the periodicity ends, let π be the prefix up
to and including the symbol where the periodicity ends. For each proper prefix
of π that is longer than Pf , its period is equal to that of Pf . Since π can be
compressed, its period can be easily computed by Galil’s algorithm without using
any additional space. If the pattern ends, i.e. the period of Pf is the period of
P , then Galil’s [3] real-time string-matching algorithm can solve the streaming
string-matching problem deterministically without any errors using O(logm)
space.

The real-time string matching algorithm will then be used to match in real-
time using O(logm) space occurrences of either a non-periodic Pf or π, which is
non-periodic by Lemma 6. Let f̂ be the largest integer such that Pf̂ is contained
in this non-periodic pattern prefix (if Pf is not periodic f = f̂). The occurrences
found must be spaced by more than |Pf̂ |/2 ≥ log2m text positions apart, must
start with Pf̂ , and will be reported before sufficient symbols are available to
verify Pf̂+1. These occurrences will be introduced at stage number f̂ of the
randomized O(n logm) algorithm in the previous section, skipping all the prior
stages. Observe that no arithmetic progressions are forming at stage number f̂
because of the spacing between the VOs.

Thus, the randomized real-time algorithm has two parts that are run along-
side each other. Galil’s [3] real-time string-matching algorithm that feeds stage
number f̂ of the following real-time adaptation of the O(n logm) algorithm from
the previous section.

The real-time adaptation simulates the O(n logm) algorithm by maintaining
a cyclic buffer FP [t] of size s = �log2m� that gives the running fingerprints
of the last s text prefixes of locations up to and including t. Specifically, the
fingerprints for positions t, t−1, . . . , t−s+1 are stored at FP [t mod s]. The round
robin algorithm rotates through the stages numbered i = f̂ , · · · , �log2m�− 2, in
increasing order, processing one stage at each text location using the buffer for
the correct fingerprints. Note that the stage processing is delayed by less than s
steps and the fingerprint needed to test whether to promote the VO to the next
stage is available in the buffer FP . The following concerns need attention:

1. The simulated action may happen out of order with respect to the O(n logm)
algorithm, and even in different order depending on the text location. Note
that since VOs in the same stage are at least log2m apart and the delay in
the test for promotion is less than log2m, the order of tests for promotion
is maintained inside each stage. The only case that the different order will
lead to a non temporary different computation is the following: Assume in
the real-time algorithm x, y are the first and second VOs in stage i and z
was just promoted from stage i − 1 to stage i as the third VO in the stage
and it reveals an inconsistency with the periodicity. It is possible that in the
O(n logm) algorithm x is promoted from stage i to stage i + 1 before z is
promoted to stage i and therefore in that algorithm y and z are the only
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VOs in stage i and there is no inconsistency. We can easily fix the order in
such case to be the same by deleting x from stage i first, since stage i will be
considered immediately after stage i− 1 in the round robin algorithm and x
can be promoted then. But in fact, this is not necessary since the algorithm
is still correct with the different order.

2. The real-time on-line algorithm has to output the pattern occurrences im-
mediately at their end, and delayed promotions to the last stage number
are not acceptable. Such delays will be avoided by examining the last stage
(number �log2m� − 1) at every text location. In case P is longer than the
Pi of the next to last stage by less than log2m, then this stage too receives
the same treatment.

3. Discarding and reporting VOs when some fingerprint-periodicity conflict is
detected can take time. The simplest solution is to continue the rotation to
larger number stages and discard the VOs in each stage until the last stage
number �log2m� − 1. Discarded arithmetic progressions will be compactly
written to the output rather than spelled out individually to remain within
the real-time bounds.

Theorem 4. The algorithm described above reports all occurrences of the pat-
tern in the text in constant time per text symbol using total O(logm) space. The
algorithm may report false occurrences, and on occasion it even detects that it
had fingerprint errors with probability at most 1/nα.

Proof. The algorithm updates the running fingerprint buffer with the current
text symbol in constant time. Each delayed stage action can be properly done
since the �log2m� fingerprint history is available in the buffer FP . The space
requirement for each stage is constant or O(logm) over all stages, and the overall
space required for the Galil’s [3] real-time string matching algorithm and for
the buffer FP is O(logm). The error probability is bounded by multiplying the
probability of fingerprint comparison error by the up to O(n) comparisons made.

5 The Pattern Preprocessing

The O(n logm) time algorithm only requires the trivial preprocessing storing the
fingerprints of the pattern prefixes Pi. The real-time algorithm needs in addition
to store either the short pattern prefix Pf and its failure function or (if Pf is
periodic) the compressed versions of the longer prefix π and its failure function.
The real-time algorithm will need to know the length of the pattern m or its
order of magnitude.

Additional pattern preprocessing can be advantageous, though, to try to ob-
tain a “better” fingerprint function that does not cause any fingerprint-periodicity
conflict while matching the given pattern with a text string that is exactly equal
to the pattern. (Conflicts would repeat in every occurrence of the pattern.) Such
fingerprint function can be obtained by trying out several random seeds, either
simultaneously while the pattern is streamed in or sequentially if the pattern is
available for additional re-processing (i.e. in a nonstreaming fashion).
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Theorem 5. Given the fingerprint function and the pattern, if the pattern is
fingerprint-periodicity conflict free, then when the streaming algorithm discards
VOs in the text due to fingerprint-periodicity conflict, the discarded VOs do not
need to be reported as potential occurrences.
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Abstract. We use a simple observation about the locations of critical
factorizations to derive a real-time variation of the Crochemore-Perrin
constant-space string matching algorithm. The real-time variation has a
simple and efficient control structure.

1 Introduction

Numerous string matching algorithms have been published. The classical algo-
rithm by Knuth, Morris and Pratt [24] takes O(n + m) time and uses O(m)
auxiliary space, where n and m are the lengths of the text and the pattern,
respectively. The algorithm is also on-line in the sense that it reports if an oc-
currence of the pattern ends at any given text location before moving on to
examine the next text symbol. In comparison, the “naive” string matching al-
gorithm works on-line and uses only constant auxiliary space, but takes up to
O(nm) time.

In some application, it is not sufficient that the output is produced on-line
with an average amortized constant number of steps spent at each text location,
but it is required that the output is produced in real-time, that is, worst case
constant time spent at each text location (thus giving O(m + n) time). The
Knuth-Morris-Pratt algorithm has certain run-time “hiccups” that prevent real-
time execution, spending up to O(logm) time at some text locations. Karp
and Rabin’s [23] linear-time randomized string matching algorithm requires only
constant auxiliary space, but it comes in various randomized flavors and its real-
time version may report false occurrences of the pattern with low probability.

In the early 1980s, two intriguing open question about the feasibility of string
matching algorithms under certain conditions were settled when (a) Galil [15]
derived a real-time variation of the Knuth-Morris-Pratt [24] algorithm and de-
scribed a predictability condition allowing to transform a compliant on-line al-
gorithms to real-time, and (b) Galil and Seiferas [18] discovered a linear-time
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string matching algorithms that requires only constant auxiliary space in addi-
tion to the read-only input storage; in earlier attempts Galil and Seiferas [16]
first reduced the space requirements in variations of the Knuth-Morris-Pratt al-
gorithm to O(logm) space and then further to constant space, but temporarily
“borrowing” and later “restoring” parts of the writable input storage [17]. Galil
and Seiferas [18] point out that using their constant-space string matching al-
gorithm, their earlier work [15,29] on real-time Turing machine algorithms for
string matching, for recognition of squares and palindromes, and for a number of
generalization of these problems can be adapted to use constant-space and even
to two-way multi-head finite automata in real-time. Jiang and Li [22] proved that
one-way multi-head finite automata cannot solve the string matching problem.

Several other linear-time constant-space string matching algorithms were pub-
lished [2,6,7,8,9,10,11,20,21,28] later using various combinatorial properties of
words. The simplest and most elegant of these, perhaps, is the algorithm by
Crochemore and Perrin [7] that relies on the Critical Factorization Theorem
[5,25,26]. More recently, Gasieniec and Kolpakov [19] studied the auxiliary space
utilization in real-time string matching algorithms and derived a real-time vari-
ation of the constant-space algorithm by Gasieniec, Plandowski and Rytter [20],
that is based on the partial representation of the “next function,” using only
O(mε) auxiliary space, for any fixed constant ε > 0.

In this paper we revisit the Crochemore-Perrin [7] two-way constant-space
string matching algorithm and its use of critical factorizations. We observe that
if instead of verifying the pattern suffix in the algorithm’s forward scan and only
then verifying the remaining pattern prefix in the algorithm’s back fill, we embark
on the back fill simultaneously and at the same rate as the forward scan, then
for most patterns the algorithm completes the back fill by the time the forward
scan is done. We then prove that by deploying a second instance of the algo-
rithm to match some pattern substring and by carefully choosing which critical
factorizations are used in both instances, the two instances together can verify
complementary parts of the pattern, and therefore, we can match the whole pat-
tern in real-time. Thus, we derive a real-time variation of the Crochemore-Perrin
algorithm circumventing the authors’ conclusion that the very nature of their
two-way algorithm would not allow it to operate in real-time. The new real-time
algorithm has a very simple and efficient control structure, maintaining only
three synchronized text pointers that move one way in tandem and induce ho-
mologous positions on the pattern, making the variation a good candidate for
efficient hardware implementation in deep packet inspection network intrusion
detection systems (e.g. [1]) and in other applications. Our observations about
the choices of critical factorizations might be of independent interest. Breslauer,
Jiang and Jiang [4] also use critical factorizations in the first half of the rotation
of a periodic string to obtain better approximation algorithms for the shortest
superstring problem. It is perhaps worthwhile to emphasis that this paper is con-
cerned with the auxiliary space utilization where the input pattern and text are
accessible in read-only memory, which is very different from the streaming model
where space is too scarce to even store the whole inputs. In the streaming model
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Breslauer and Galil [3] recently described a randomized real-time string match-
ing algorithm using overall O(logm) space, improving on previous streaming
algorithms [14,27] that take O(n logm) time.

We start by reviewing critical factorizations and give the basic real-time vari-
ation of the Crochemore-Perrin algorithm in Section 2. We then show in Section
3 how to use two instances of the basic algorithm to match any pattern and
describe the pattern preprocessing in Section 4. We conclude with some remarks
and open questions in Section 5.

2 Basic Real-Time Algorithm

We need the following definitions. A string u is a period of a string x if x is a
prefix of uk for some integer k, or equivalently if x is a prefix of ux. The shortest
period of x is called the period of x and its length is denoted by π(x). A substring
or a factor of a string x is a contiguous block of symbols u, such that x = x′ux′′

for two strings x′ and x′′. A factorization of x is a way to break x into a number
of factors. We consider factorizations (u, v) of a string x = uv into two factors: a
prefix u and a suffix v. Such a factorization can be represented by a single integer
and is non-trivial if neither of the two factors is equal to the empty string.

Given a factorization (u, v), a local period of the factorization is defined as
a non-empty string z that is consistent with both sides u and v. Namely, (i) z
is a suffix of u or u is a suffix of z, and (ii) z is a prefix of v or v is a prefix
of z. The shortest local period of a factorization is called the local period and its
length is denoted by μ(u, v). A non-trivial factorization (u, v) of a string x = uv
is called a critical factorization if the local period of the factorization is of the
same length as the period of x, i.e. μ(u, v) = π(uv). See Figure 1.

After the preprocessing to find a critical factorization (u, v) of the pattern x,
the Crochemore-Perrin algorithm [7] first verifies the suffix v in the what we
call the forward scan and then verifies the prefix u in what we call the back fill.
The key to the algorithm is that the algorithm always advances in the forward
scan while verifying the suffix v and never needs to back up. The celebrated
Critical Factorization Theorem is the basis for the Crochemore-Perrin two-way
constant-space string matching algorithm.

Theorem 1. (Critical Factorization Theorem, Cesari and Vincent [5,25]) Given
any |π(x)| − 1 consecutive non-trivial factorizations of a string x, at least one is
a critical factorization.

a | b a a a b a

b a b a

(a)

a b | a a a b a

a a a b a a a b

(b)

a b a | a a b a

a a

(c)

Fig. 1. The local periods at the first three non-trivial factorizations of string abaaaba.
In some cases the local period overflows on either side; this happens when the lo-
cal period is longer than either of the two factors. The factorization (b) is a critical
factorization with (local) period aaab.
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We introduce the basic algorithm and assume throughout this section that
all the critical factorizations and period lengths that are used were produced in
the pattern preprocessing step. The basic idea is to find candidate occurrences
of the pattern in real-time by repeatedly interleaving the comparisons in the
(Crochemore-Perrin) back fill simultaneously with the comparisons in the for-
ward scan. Note that the basic algorithm might interrupt some of these back fills
before they come to completion (while the forward scans are always completed).
As a result, the basic algorithm never misses an occurrence of the pattern, but
might not fully verify that the produced candidates are real occurrences of the
whole pattern, as stated below.

Lemma 1. Given a pattern x with critical factorization (u, v), there exists a
real-time constant-space algorithm that finds candidate occurrences of x = uv
such that:

1. The actual occurrences of the pattern x are never missed.
2. Candidate occurrences end with an occurrence of the pattern suffix v.
3. Candidate occurrences contain a specified substring of the pattern prefix u of

length up to |v|.
We now prove Lemma 1. Let x = uv be the pattern with period of length π(x)
and critical factorization (u, v), such that |u| < π(x). Such critical factorization
always exists by Theorem 1. The basic algorithm aligns the pattern starting at
the left end of the text and tries to verify the pattern suffix v (forward scan)
and simultaneously also some other specified part of the skipped prefix u (back
fill), advancing one location in each step.

Suppose that the algorithm has successfully verified some prefix z of v and
some part of u, but failed to verify the next symbols, either in the suffix v or
in the substring of u. The key observation in the Crochemore-Perrin algorithm
is that the pattern may be shifted ahead by |z| + 1 text location, thus always
moving forward in the text past the prefix of v that has been compared so far.
To see this we must convince ourselves that any shorter shift can be ruled out
as an occurrence of the pattern. We need the following lemma in our proof.

Lemma 2. (Crochemore and Perrin [7]) Let (u, v) be a critical factorization
of the pattern x = uv and let z be any local period at this factorization, such
that |z| ≤ max(|u|, |v|). Then |z| is a multiple of π(x), the period length of the
pattern.

Since (u, v) is a critical factorization, by Lemma 2, any shift by |z| or fewer
symbols cannot align the pattern with occurrence in the text unless the shift
is by a multiple of the period length π(x). If the comparison that failed was
verifying the suffix v, then shifts by the period length π(x) can be ruled are
since any pattern symbol π(x) locations apart are identical. If the comparison
that failed was verifying the prefix u, recalling that |u| < π(x), there can be no
such multiples of π(x). In either case, the pattern may be shifted ahead with
respect to the text by |z| + 1 locations without missing any occurrences. See
Figure 2.



Simple Real-Time Constant-Space String Matching 177

u v

u
v

�

local period z′

z

Fig. 2. If z is a prefix of v verified in the forward scan, and z′ is a prefix of z and a
suffix of u, then the critical factorization (u, v) should have a local period z′ shorter
than the period π(x), which gives a contradiction

If the algorithm has finished verifying the whole suffix v, then it has also
verified a substring of u of up to the same length, and therefore, if |u| ≤ |v|
and the algorithm has started at the beginning of u, it has matched the whole
pattern x = uv. However, if |u| > |v|, then the algorithm has only verified the
some substring of u of length at most |v|, but has not verified the remainder
of the pattern (unfortunately, some patterns, e.g. aa · · · aaab, only have critical
factorizations close to their right end).

By Lemma 2, subsequent overlapping occurrences of the pattern must be at
locations that are multiple of π(x) locations apart, allowing the algorithm to
shift the pattern ahead by π(x) locations using the pattern periodicity to avoid
going back. Observe that since |u| < π(x), there is no need to go back to verify
the substring of the prefix u after shifting the pattern ahead by π(x) locations.
To simplify the exposition, we give up on this optimization that was discussed
by Crochemore and Perrin [7] and further optimized in [2].

We have therefore demonstrated that the algorithm has not missed occur-
rences of the pattern, and has verified that the candidate occurrences it produced
end with v and contained an occurrence of a specified substring of u of length
up to |v|. Also, after the last symbol of a pattern occurrence is read, it takes just
O(1) time to report an occurrence candidate, so the basic algorithm is real-time;
the fact it uses O(1) additional space, derives from [7]. The reason we specified
a substring of u rather then a prefix of u will become apparent later, where two
instances of the algorithm will be used to cover complementary parts of u and
one of the instances does not even require the substring of u. This completes the
proof of Lemma 1.

3 Real-Time Variation

Consider the basic algorithm from Lemma 1 that finds candidate occurrences
of the pattern x = uv with critical factorization (u, v). As mentioned in the
proof of Lemma 1, when |u| ≤ |v|, the basic algorithm is able to verify all
the actual occurrences of x. What if |u| > |v|? We have to refine the basic
algorithm and consider the pattern as x = uvw: the main idea to obtain the
real-time constant-space variation of the Crochemore-Perrin algorithm is to use
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two aligned instances (see case (2) of Lemma 3 below). When taken together, the
complementary parts in x that are verified by the two instances cover the whole
pattern occurrences, thus identifying the actual occurrences of x. The variation
relies on the following observation about the locations of critical factorizations.

Lemma 3. Given any string x = uvw, there either exists:

1. a critical factorization (uv, w) such that |uv| ≤ |w|, or
2. a critical factorization (uv, w) and another critical factorization (u, vv′) of

a prefix uvv′ of x, such that |u| ≤ |vv′|.
Proof. Let (uv, w) be the leftmost critical factorization of x = uvw. If |uv| ≤ |w|,
then we have proved case (1). Otherwise, consider all factorizations (u, vw) to
the left of (uv, w) that further satisfy the condition that |u| ≤ μ(u, vw). If
also |vw| ≤ μ(u, vw), then the local period covers both extremes and (u, vw)
is a critical factorization, contradicting that (uv, w) was the leftmost critical
factorization. Therefore, μ(u, vw) < |vw|. By Theorem 1, let (u, v) be a critical
factorization of uv, such that |u| ≤ π(uv) = μ(u, v), and let vv′ be the prefix
of vw whose length is max(|v|, μ(u, vw)) < |vw| (in fact, vv′ can be chosen such
that uvv′ is the longest prefix with period length μ(u, vw)). But then (u, vv′) is a
critical factorization of uvv′ and |u| ≤ μ(u, v) ≤ μ(u, vv′) = μ(u, vw) ≤ |vv′|. ��
Note that case (1) of Lemma 3 holds for most patterns strings: as previously
mentioned, one instance of the basic real-time algorithm in Lemma 1 solves
the string matching problem. The second instance of the basic algorithm is only
required in case (2). There are many different ways to divide up the work between
the two instances. We discuss a simple one.

Theorem 2. There exists a real-time constant-space string matching algorithm
that identifies all the occurrences of a pattern x, and uses only two instances of
the basic algorithm mentioned in Lemma 1.

To prove Theorem 2, let the first instance use the critical factorization (uv, w)
of the whole pattern x = uvw (see Lemma 3) and verify only the suffix w in
the forward scan (no back fill). Let the second instance match occurrences of the
pattern prefix uvv′ (case (2) of Lemma 3) using the critical factorization (u, vv′).
The correctness of the algorithm follows from the observation that aligned oc-
currences of w (partially) overlapping with occurrences of uvv′ ending |w| − |v′|
text locations earlier, identify occurrences of the whole pattern x = uvw. The
complexity is twice that of the basic algorithm, and the resulting algorithm is
real-time since we repeatedly interleave O(1) steps of the two instances. The
variation makes fewer than 3n−m symbol comparisons.

We give the pseudocode of the real-time constant-space algorithm in Figure 3,
where we focus on the case of the two factorizations mentioned in case (2) of
Lemma 3 (since one factorization is straigthforward). We denote the pattern by
x ≡ x[0..m−1] and its two factorizations by (u, vv′) ≡ (x[0..a−1], x[a, c−1]) and
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for (t = 0, p = t-m+c-a, q = t-b; t < n; t++) {

s = t-m+c;

is_pref = false; /* prefix instance */

if (T[s]==x[s-p] && T[s-a]==x[s-p-a]) {

if (s==p+c-1) {

is_pref = true;

p += pi_pref;

}

} else

p = s-a+1;

is_pat = false; /* pattern instance */

if (T[t]==x[t-q]) {

if (t==q+m-1) {

is_pat = true;

q += pi_pat;

}

} else

q = t-b+1;

if (is_pref && is_pat)

report an occurrence ending at text position t;

}

Fig. 3. The real-time constant-space variation of the Crochemore-Perrin algorithm for
a pattern x, where u ≡ x[0..a− 1], v ≡ x[a..b− 1], v′ ≡ x[b..c− 1], and w ≡ x[b..m− 1]

(uv, w) ≡ (x[0..b − 1], x[b,m − 1]), whose periods π(uvv′) ≡ π(x[0..c − 1]) and
π(x) ≡ π(x[0..m − 1]) are precomputed during the pattern preprocessing (see
Section 4). We denote these periods by pi_pref and pi_pat respectively. (Note
that the two factorizations are displaced each other by |v| = b− a positions.)

We denote the text by T [0..n− 1] and the location of the current text symbol
by t, where s = t−m+ c is the end of the text as perceived by the independent
prefix instance matching uvv′. The algorithm has a very simple control structure
using only three aligned text position s− a < s < t that advance in tandem.

Consider the prefix instance (u, vv′) ≡ (x[0..a−1], x[a, c−1]): the text position
for the current candidate occurrence of vv′ is denoted by p (and so the candidate
position for u is p − a). We apply the forward scan to vv′ ≡ x[a, c− 1] and the
back fill to u ≡ x[0..a − 1] in the first half of the for loop, so we try to match
one symbol from vv′ and one from u.

Consider the pattern instance (uv, w) ≡ (x[0..b − 1], x[b,m − 1]): the text
position for the current candidate occurrence of w ≡ x[b,m − 1] is denoted by
q. We just apply the forward scan to w = x[b,m − 1], since uv ≡ x[0..b − 1] is
covered by the prefix instance. We just need to check for the occurrences of w,
and we try to match one symbol of it in the second half of the for loop.

As it can be verified in Figure 3, we report an occurrence of pattern x ending
at position t after O(1) time and we use just O(1) additional memory words.
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4 Pattern Preprocessing

We now describe the pattern preprocessing, where the task is that of comput-
ing at most two critical factorizations and the corresponding periods. Namely,
given a pattern x, the pattern preprocessing finds at most two factorizations
(uv, w) and (u, vv′) (if needed) as stated in Lemma 3, where x = uvw, and the
corresponding period lengths π(x) and π(uvv′).

We build upon the Crochemore-Perrin preprocessing algorithms [7] for the
above task. Consider the computation of the periods. Crochemore and Perrin
gave a pattern preprocessing algorithm that computes the length of the period
π(x), when the pattern x is periodic (π(x) ≤ |x|/2), and gave a variation of their
algorithm that works when the period is longer than half the pattern length.
Other authors have shown how to compute the period length exactly when the
period is longer than half of the pattern length [2,8,10]. Our real-time variation
can use either approach and either compute the period lengths precisely, or use
half the pattern length as an approximation for the period length (i.e. if the
period is longer than |x|/2, then shift the pattern x by |x|/2 positions instead
of shifting pattern by the unknown long period length).

Consider now the computation of critical factorizations. Crochemore and Per-
rin gave a novel constructive proof of the Critical Factorization Theorem (Theo-
rem 1) using properties of lexicographically maximal suffixes and Lyndon words,
and a variation of an algorithm by Duval [13] to find the lexicographically maxi-
mal suffix of a string. Their proof shows that given any arbitrary order ≤ on the
input alphabet and its reverse order ≤R, the shorter between the lexicograph-
ically maximal suffix of the pattern x by ≤ and the lexicographically maximal
suffix of x by ≤R, provides a critical factorization in the first π(x)− 1 positions.
The readers are referred to the original paper [7] for the elegant proof.

We will only use the fact that critical factorizations of growing prefixes of the
pattern x, within their first period, can be efficiently computed on-line. Before
going on, we need a few more definitions and properties of critical factorizations.
A factorization (u, v) of a string x = uv is left external if |u| ≤ μ(u, v) and
similarly, right external if |v| ≤ μ(u, v). A factorization is called external if it is
both left and right external, and internal if it is neither left or right external. Any
external factorization has a local period length that is equal to the global period
length, i.e. μ(u, v) = π(uv), and is therefore critical. Any internal factorization
has a square centered at the factorization.

We define the set of all the left external non-trivial factorizations L(x) =
{(u, v)‖ x = uv and 1 ≤ |u| ≤ μ(u, v) and 1 ≤ |v|}. This set is not empty since
it always contains the first factorization (a, v), where a is an alphabet symbol,
and it also contains at least one critical factorization by Theorem 1. We now
give two properties to characterize L(x), the first of which can also be partially
found in [25, Ch.8].

Lemma 4. Let (u1, v1) and (u2, v2) be two factorizations in L(x), such that
|u1| ≤ |u2|. Then the local period lengths satisfy μ(u1, v1) ≤ μ(u2, v2).
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Proof. Let x′ be a prefix of x = u1v1 = u2v2 of length |x′| = min(|x|, |u1| +
μ(u1, v1), |u2|+μ(u2, v2)). Then, x′ has periods of lengths μ(u1, v1) and μ(u2, v2).
Assuming by contradiction that μ(u1, v1) > μ(u2, v2), then the shorter prefix of
length |u1| + μ(u2, v2) has a period of length μ(u2, v2) and therefore (u1, v1)
has a local period of length at most μ(u2, v2) < μ(u1, v1), establishing that
μ(u1, v1) ≤ μ(u2, v2). ��
Lemma 5. Let (u, v) be a factorization in L(x). Then, there exist a prefix x′ of
x and a left external critical factorization (u0, v0) of x′, such that x′ = u0v0 and
μ(u0, v0) = μ(u, v).

Proof. If (u, v) is a critical factorization of x = uv then simply take (u0, v0) =
(u, v). Otherwise, (u, v) cannot be right external. Let x′ be the prefix of x of length
|u| + μ(u, v) < |x|. Then x′ has period length π(x′) = μ(u, v) and left external
critical factorization (u0, v0), such that μ(u0, v0) = π(u0v0) = μ(u, v). ��
Given any on-line algorithm that computes left external critical factorizations
of growing prefixes of the pattern x (e.g. the Crochemore-Perrin pattern pre-
processing algorithm), consider the factorizations induced in x by the critical
factorizations of the pattern prefixes. By Lemma 4, the local period lengths of
such factorizations are non-decreasing for increasing lengths prefixes, and by
Lemma 5, all local period lengths in L(x) are represented. The constuctive algo-
rithm for finding the factorization in Lemma 3 boils down to the prefix critical
factorizations that are representative of the largest two local period lengths in
L(x). We can now describe how to obtain the pattern preprocessing.

Theorem 3. There exist an on-line constant-space pattern preprocessing algo-
rithm that produces the critical factorizations required in Lemma 3 and the cor-
responding periods.

Proof. We already discussed how to find the periods at the beginning of this
section. As for the desired critical factorizations, take any on-line constant-space
algorithm that computes the left external critical factorizations of growing pre-
fixes of the pattern x and record the last two different critical factorizations
(u0, v0) and (u1, v1) of the pattern prefixes x0 = u0v0 and x1 = u1v1, such that
|x0| < |x1| and |u0| < |u1| and stop when x1 is the first critical factorization
in the second half of the pattern x, such that |u1| ≥ |x|/2, or when the end of
the pattern is reached. Since any left external critical factorization in the second
half of x is also right external in x and therefore a critical factorization, the last
prefix critical factorization x1 that was found is critical for the whole pattern x.
If either of these last two prefix critical factorizations is a critical factorization
of the whole pattern x in the first half of x, then we found one critical factor-
ization satisfying case (1) in Lemma 3. Otherwise, (u0, v0) induces a non-critical
factorization (u0, v0v

′) of u0v0v
′, where u0v0v

′ is the longest prefix of x having
period μ(u0, v0) and v0 is a prefix of v0v′. Notice that since above prefix critical
factorization (u0, v0) is left external then |u0| ≤ |v0| ≤ |v0v′|. The second fac-
torization (u1, v1) induces a critical factorization in the whole pattern x = u1v1
since |u1| ≥ |x|/2. Letting u = u0, u1 = u0v and x = uvw, we get the desired
three way factorization satisfying case (2) of Lemma 3. ��
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While the Crochemore-Perrin preprocessing algorithm is works in constant space
and in linear time, it does not poroduce the period lengths and critical factoriza-
tions in real time. However, the O(m) time preprocessing results of Theorem 3
are produced in time so that the ensuing text scanning works in real-time.

5 Concluding Remarks

We have shown that the Crochemore-Perrin constant-space algorithm [7] can be
directly transformed into a real-time string matching algorithm by interleaving
its back fill with its forward scan. Other on-line constant-space string matching
algorithms can be transformed into real-time algorithms as well, provided that
they report the locations of pattern occurrences in increasing order of their
locations and no later than cm locations after the end the occurrence, for some
fixed constant c and any length m pattern. The general transformation searches
for occurrences of a pattern prefix and uses such occurrences as an anchor while
catching up with the remaining pattern suffix, utilizing periodicity properties to
count highly repetitive pattern prefixes.

The pattern preprocessing of the Crochemore-Perrin algorithm [2,7] computes
periods and critical factorizations using symbol comparisons that test for the
relative order of symbols under an arbitrary alphabet order. It is an interesting
open question to find a critical factorization in linear-time using only equality
comparisons without an alphabet order, even if more space is allowed. Duval et
al. [12] find all local periods of a string and therefore, also all critical factoriza-
tions, in linear time over integer alphabets, but require super-linear time if only
symbol comparisons are used.
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Abstract. We present space lower bounds for online pattern match-
ing under a number of different distance measures. Given a pattern of
length m and a text that arrives one character at a time, the online
pattern matching problem is to report the distance between the pattern
and a sliding window of the text as soon as the new character arrives.
We require that the correct answer is given at each position with con-
stant probability. We give Ω(m) bit space lower bounds for L1, L2, L∞,
Hamming, edit and swap distances as well as for any algorithm that
computes the cross-correlation/convolution. We then show a dichotomy
between distance functions that have wildcard-like properties and those
that do not. In the former case which includes, as an example, pattern
matching with character classes, we give Ω(m) bit space lower bounds.
For other distance functions, we show that there exist space bounds of
Ω(log m) and O(log2 m) bits. Finally we discuss space lower bounds for
non-binary inputs and show how in some cases they can be improved.

1 Introduction

We combine existing results with new observations to present an overview of
space lower bounds for online pattern matching. Given a pattern that is provided
in advance and a text that arrives one character at a time, the online pattern
matching problem is to report the distance between the pattern and a sliding
window of the text as soon as the new character arrives. In this formulation, the
pattern is processed before the first text character arrives and once processed,
the pattern is no longer available to the algorithm unless a copy is explicitly
made.

This problem has recently gained a great deal of interest with breakthrough
results given for exact matching and pattern matching under bounded Hamming
distance (k-mismatch) [13]. For both problems it was shown that space sublin-
ear in the size of the pattern is sufficient to give the correct answer at every
alignment with high probability. These remarkable results immediately raise a
number of significant unresolved questions. The first is for which other distance
measures between strings might sublinear space randomised online algorithms
be achievable and it is this question which we address here.

Our presentation is divided between what we term local and non-local online
pattern matching problems. In the former case the distance function between
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a pattern P of length m and an m-length substring of the text T , starting at
position i, is defined by

LocalPM(⊕,Δ)(P, T ) =
m−1⊕
j=0

Δ(P [j], T [i+ j]) ,

where ⊕ and Δ are both binary operators. In Section 4 we show Ω(m) bit
space lower bounds for online pattern matching for the local problems of L1, L2,
and Hamming distance as well as for any algorithm that computes the cross-
correlation/convolution.

We then go on to show in Section 5 a space dichotomy for local online pattern
matching problems of the form d(i) =

∧m−1
j=0 Δ(P [j], T [i+ j]) where the range of

Δ is {True,False}. Where the distance function Δ has wildcard-like properties
(qv. Section 5), we give an Ω(m) space lower bound. Where it does not, we have
Ω(logm) and O(log2m) space bounds. This implies, for example, that online
pattern matching with character classes [8] requires linear space.

In Section 6 we go on to consider all eight possible binary Boolean associative
operators and give a complete classification in terms of their known upper and
lower space bounds. One consequence is that determining if there is an exact
“non-match”, where the Hamming distance is the same as the pattern length,
requires linear space in our online model. This bound also holds if, for example,
only the parity of the Hamming distance is required. In Section 7 we then show
how our techniques can be used to give linear space lower bounds for L∞ online
pattern matching. In Section 8 we discuss a possible approach to space lower
bounds for inputs with large alphabets, focussing on the Hamming distance
problem. Finally, in Section 9 we explore non-local problems and show Ω(m) bit
space lower bounds for both online edit and swap distance.

2 Preliminaries and Related Work

Let ΣP and ΣT denote the pattern and text alphabet, respectively. We say that
LocalPM(⊕,Δ) is text independent with respect to the pattern P if the value
of LocalPM(⊕,Δ) is a constant independent of T . We say that LocalPM(⊕,Δ)

is pattern independent with respect to a pattern P if there is a function Δ′ such
that Δ(x, y) = Δ′(y) for all (x, y) ∈ P ×ΣT.

Example 1. Let ΣP = {x, y, z}, ΣT = {a, b, c}, ⊕ be the Boolean AND-operator
and Δ be defined according to the table in Fig. 1, where 1 is True and 0 is
False. We can see that LocalPM(∧,Δ) is text independent with respect to the
pattern P = xxyyxzxx as it always outputs 0. It is also pattern independent with
respect to P = yyzyyzzy as Δ(y, α) = Δ(z, α) for all α ∈ ΣT. In fact, for this
particular definition of Δ, LocalPM(∧,Δ) is either text or pattern independent
with respect to any pattern P .

Suppose that LocalPM(⊕,Δ) is text independent with respect to a pattern P .
Then any algorithm for LocalPM(⊕,Δ) on P requires at most O(1) space after
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Δ a b c

x 0 0 0
y 0 1 1
z 0 1 1

Fig. 1. An example of Δ such that LocalPM(∧,Δ) is invalid (either text or pattern
independent with respect to any pattern P )

preprocessing P . If LocalPM(⊕,Δ) is pattern independent with respect to P
then LocalPM(⊕,Δ) does not depend on the pattern and is outside the scope
of this paper.

We say that LocalPM(⊕,Δ) is invalid if, for every pattern P , it is either text
or pattern independent with respect to P . LocalPM(⊕,Δ) is valid if it is not
invalid. The problem LocalPM(∧,Δ) in the previous example is therefore invalid.
We will only consider from this point pattern matching problems LocalPM(⊕,Δ)

which are valid, and ignore patterns for which LocalPM(⊕,Δ) is pattern or text
independent.

Our focus is on online pattern matching algorithms which output correct an-
swers with constant probability. We are not aware of previous work that considers
randomised lower bounds for this specific type of problem. There is however now
a considerable literature on communication complexity and on streaming algo-
rithms for single input streams, including those that process a sliding window
of the input (see e.g. [4])). This previous streaming work has typically focussed
on deterministic or randomised bounds for finding approximate rather than ex-
act solutions. Quantum lower and classical upper bounds for the communication
complexity of Hamming distance in more general models than we consider were
given previously [5]. A linear lower bound for the randomised communication
complexity of the inner product of two binary vectors is given in [3]. The di-
chotomy presented in Section 5 and in particular the concept of a matching re-
lation that includes wildcard matching, although in a different setting and with
different terminology, is similar to a time complexity dichotomy given previously
by Muthukrishnan and Ramesh [9]. On the topic of swap matching in Section 9,
we note that in [1], the existence of a reduction for time rather than space, from
Boolean convolutions to string matching with swaps is claimed without proof.

3 Communication Complexity Problems

Our results are based on reductions from various one-way randomised commu-
nication complexity problems with known lower bounds. We list the relevant
problems below. In a one-way randomised communication model, only Alice can
send messages to Bob and Bob must output the correct answer with probability
at least 2/3. Note that the value 2/3 is inconsequential: any probability strictly
greater than 1/2 can be amplified to a constant arbitrary close to 1. We assume
private randomness.
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Definition 1. The Equality problem in one-way communication complexity
is defined as follows. Alice has a string X ∈ {0, 1}m and Bob has a string Y ∈
{0, 1}m. Bob must determine whether X = Y . The communication complexity
is Θ(logm) bits [14].

Definition 2. The Indexing problem in one-way communication complexity
is defined as follows. Alice has a string X ∈ {0, 1}m and Bob has an index
n ∈ {0, . . .m− 1}. Bob must find X [n]. The problem is known to have an Ω(m)
bit lower bound (see [6] for an elementary proof).

4 Addition

In this section we consider the problem LocalPM(+,Δ), where + is standard
addition and the range of Δ is a subset of the integers. That is, the distance
function is

d(i) =
m−1∑
j=0

Δ(P [j], T [i+ j]) .

Theorem 1. LocalPM(+,Δ) requires Ω(m) bits of space.

Proof. Since LocalPM(+,Δ) is not text independent, there must exist characters
x ∈ ΣP and a, b ∈ ΣT such that Δ(x, a) �= Δ(x, b). We reduce from Indexing:
Alice has a string T = {a, b}m and Bob has an index n. Alice initialises a pattern
matching algorithm A on the pattern P = {x}m and feeds in her string T . Then
she sends the internal state of A to Bob, who feeds in n copies of the symbol a.
Let d be the output after those as. Bob then feeds in another a. Let d′ be the
output. If d = d′ then A[n] = a. If d �= d′ then A[n] = b. If the probability of
error per output is bounded by a constant c < 1/4, then the union bound for
error on two outputs is 2c, giving the Indexing problem an error probability of
at most 2c < 1/2. ��
Corollary 1. Computing the L1, L2 and Hamming distances, as well as the
cross-correlation/convolution, require Ω(m) bits of space.

5 Conjunction

In this section we consider LocalPM(∧,Δ), where ∧ is the Boolean AND-
operator and the range of Δ is {0, 1} (where 0 denotes False and 1 denotes
True). There are several natural pattern matching problems that fall under
this category, for example, exact matching, matching with wildcards and exact
matching with character classes.

The function Δ can be represented with a 0/1-matrix MΔ, where the rows
and columns correspond to the symbols in ΣP and ΣT, respectively. Thus, the
entry (i, j) = Δ(i, j). The 2×2 matrix in Fig. 2 will play an important role, and
we call it the wildcard matrix.
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[
1 1
1 0

] [
0 0
0 1

]

Fig. 2. The wildcard matrix (left) and
negated wildcard matrix (right)

Δ a b

� 1 1
x 1 0

.

Fig. 3. Δ in the proof of
Theorem 2

MΔ a b c d e f

v 0 1 0 1 1 0
w 0 0 0 0 0 0
x 1 0 1 0 0 0
y 0 1 0 1 1 0
z 1 0 1 0 0 0

M ′
Δ a b c d e f

v 0 1 − − − −
w − − − − − −
x 1 0 − − − −
y − − − − − −
z − − − − − −

Id. a b

x 1 0
v 0 1

Fig. 4. An illustration of Lemma 1

We say that MΔ contains the wildcard matrix if it is a submatrix ofMΔ under
some permutation of the rows and columns.

We demonstrate the following dichotomy for LocalPM(∧,Δ). If MΔ contains
the wildcard matrix, then LocalPM(∧,Δ) is solvable in Θ̃(m) bits of space, oth-
erwise it is solvable in Θ̃(1) bits of space. The first class is equivalent to pattern
matching with wildcards, and the second class is equivalent to exact matching.
Note that both dichotomies are decidable due to the simple characteristic of the
function Δ.

Theorem 2. If MΔ contains the wildcard matrix, then LocalPM(∧,Δ) requires
Ω(m) bits of space.

Proof. Suppose that 	, x ∈ ΣP (	 represents a wildcard symbol) and a, b ∈ ΣT

such that Δ is specified according to Fig. 3. We reduce from the Indexing

problem, in which Alice has an m-length bit string X ∈ {	, x}m and Bob has
an index n ∈ {0, . . .m − 1}. Let the pattern P be the string X . Let A be any
algorithm that solves LocalPM(∧,Δ) on the pattern P . Alice sends the internal
state of A to Bob, who feeds the algorithm with the m-length string that has
the symbol a at every position except for at position n where the symbol is b.
The output is True iff X [n] = 	. ��
The following lemma will be useful for the next two theorems (see Fig. 4).

Lemma 1. Let M ′
Δ be the matrix obtained from MΔ by first removing copies of

identical rows and columns, keeping only rows and columns that are distinct in
MΔ, and then removing any row or column that contains only zeros. If MΔ does
not contain the wildcard matrix, then M ′

Δ is the identity matrix, under some
permutation of rows and columns.

Proof. Suppose that MΔ does not contain the wildcard matrix. Let M ′
Δ be ob-

tained from MΔ according to the statement of the lemma. We will show that
every column and every row of M ′

Δ contains exactly one 1.



Space Lower Bounds for Online Pattern Matching 189

Δ a b

x 1 0
y 0 1

Fig. 5. Δ in the proof of Theorem 3

First we show that every row of M ′
Δ must contain at least one 1. Suppose that

some row r of M ′
Δ contains only 0s. Since zero-rows of MΔ were removed and

one copy of each column remains after the removal process, it is not possible that
all columns in which row r is 1 were removed. We now show that M ′

Δ cannot
contain a row r with two or more 1s. Without loss of generality, assume that
there is a 1 in columns i and j of row r. Since MΔ does not contain a wildcard
matrix, the elements of columns i and j must both be either 0 or 1 in every row.
Thus, columns i and j are identical, and one of them must have been removed,
contradicting the fact that there are two 1s in row r of M ′

Δ. In order to show that
every column of M ′

Δ contains exactly one 1, we use the exact same argument as
for the rows. Thus, M ′

Δ is the identity matrix, under some permutation of rows
and columns. (See Fig. 4 for an illustration of the lemma). ��
Theorem 3. If MΔ does not contain the wildcard matrix, then
LocalPM(∧,Δ) requires Ω(logm) bits of space.

Proof. We reduce from the Equality problem, where Alice has a string X ∈
{0, 1}m and Bob has a bit string Y ∈ {0, 1}m. Since MΔ doesn’t contain the
wildcard matrix and as we only consider problems LocalPM(∧,Δ) that are valid,
it follows from Lemma 1 that there must exist x, y ∈ ΣP and a, b ∈ ΣT such
that Δ is according to Fig. 5. Let P be the m-length pattern obtained from
X by replacing every 0 with x and every 1 with y. The m-length text T is
obtained similarly from Y by replacing every 0 with a and every 1 with b. For
any algorithm A that solves LocalPM(∧,Δ) on the pattern P , Alice sends the
internal state of A on pattern P to Bob, who feeds A with T . The output is
True iff X = Y . ��

Theorem 4. If MΔ does not contain the wildcard matrix, then
LocalPM(∧,Δ) can be solved in O(log2m) bits of space.

Proof. We will describe an algorithm for solving LocalPM(∧,Δ) which uses the
exact matching algorithm by Porat and Porat [13], which runs in space O(logm)
words, which is O(log2m) bits of space (under the word-RAM model). In order
to use the exact matching algorithm (as a “black box”) we must ensure that we
do not feed it with distinct symbols that are identical under Δ. In other words,
we can think of Δ specifying character classes, and for each class we want to use
one representative symbol. We formalise this below.

We make the very reasonable assumption that the alphabets ΣP and ΣT are
both enumerable and that we can iterate through every symbol of ΣP and ΣT,
respectively, in no more than O(logm) bits of space. Let the order by which we
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iterate through the alphabets describe an ordering of the symbols in ΣP and
ΣT. We say that the symbol x ∈ ΣP is smaller than y ∈ ΣP if x appears before
y when iterating through ΣP. We use the same notation for the symbols of ΣT.
We say that two symbols x, y ∈ ΣP are equivalent if Δ(x, a) = Δ(y, a) for all
a ∈ ΣT. Similarly, a, b ∈ ΣT are equivalent if Δ(x, a) = Δ(x, b) for all x ∈ ΣP.
We define the smallest equivalent symbol of x ∈ ΣP to be the symbol y ∈ ΣP

such that y is equivalent to x and no other symbol equivalent to x is smaller
than y. The notion of smallest equivalent symbol is defined similarly on ΣT.

Let Σ′
P ⊆ ΣP be the set of all symbols x ∈ ΣP such that the smallest equiv-

alent symbol of x is x itself. We do not include any symbol x in Σ′
P such that

Δ(x, a) = 0 for all a ∈ ΣT. Similarly, let Σ′
T ⊆ ΣT be the set of all symbols

a ∈ ΣT such that the smallest equivalent symbol of a is a itself. We do not
include any symbol a in Σ′

T such that Δ(x, a) = 0 for all x ∈ ΣP. By Lemma 1
we have that Δ on Σ′

P and Σ′
T is represented by an identity matrix under some

permutation of the rows and columns. In the example of Fig. 4, Σ′
P = {x, v} and

Σ′
T = {a, b}. We will ensure that we use the exact matching algorithm of [13]

only on Σ′
P and Σ′

T (i.e., normal exact pattern matching).
Given a symbol x ∈ ΣP, we can find its smallest equivalent symbol by iterating

through every symbol y ∈ ΣP and for each y, we iterate through all a ∈ ΣT to
check whether Δ(x, a) = Δ(y, a). Similarly we can find the smallest equivalent
symbol of any symbol in ΣT.

Let P be the pattern. We may assume that P does not contain a symbol x
for which Δ(x, a) = 0 for all a ∈ ΣT. If it does, the output is always 0. Before
we preprocess the pattern, we replace every symbol with its smallest equivalent
symbol. Then we preprocess the pattern using the fingerprint technique described
in [13]. Now we run the exact matching algorithm with the following additional
step. When a new symbol a arrives, we replace it with its smallest equivalent
symbol. The only caveat we must take care of is the situation when Δ(x, a) = 0
for all x ∈ ΣP. We can detect this case by iterating through the symbols of ΣP.
As long as a is present in the last m characters of the stream, the output is zero.
We use a flag to keep track of this. ��
We now show how these results can be applied to a specific pattern matching
problem that has not been considered in the online setting before. The pattern
matching with character classes problem allows a set of characters to be defined
for each position in the pattern [8]. A character in the text matches a set at
a pattern position if it is contained within it. This is a generalisation of exact
matching where each set would contain only one character. Using Theorems 2, 3
and 4 we can determine precisely when this problem can and cannot be solved
online in sublinear space.

Corollary 2. Online pattern matching with character classes requires Ω(m) bits
of space in the worst case. However, where the character classes define a match-
ing relation Δ which does not contain the wildcard matrix (see the example in
Fig. 4), O(log2m) bits suffice.
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6 Other Boolean Operators

In the previous section we demonstrated a dichotomy for LocalPM(⊕,Δ), where
⊕ is the AND-operator. Here we will complete the classification of Boolean
operators. There are eight associative Boolean operators a⊕ b:

1. True 2. False 3. a 4. b 5. a ∧ b 6. a ∨ b 7. a = b 8. a �= b

The operators True and False are trivial; the output is either always True

or False. The operator a⊕b = b is also easy; the output is always Δ(P [m−1], t),
where t is the last received symbol of the text stream.

The operator a ⊕ b = a is on the other hand more demanding. Here the
output is Δ(P [0], t), where t is themth last symbol received from the text stream.
The pattern matching algorithm must therefore remember m received characters
of the stream. More precisely, we see that Ω(m) bits of space is necessary by
reducing from the Indexing problem: Alice first feeds her array (text) into the
pattern matching algorithm, for which P [0] is a character that can distinguish
between the characters of Alice’s array. She then sends the internal state to Bob,
who feeds in n symbols in order to determine the value at index n of Alice’s array.

The OR-operator ∨ is equivalent to ∧ under De Morgan’s laws: negate the
outputs from Δ and negate the output from the pattern matching algorithm.
Thus, the dichotomy for ∧ applies to ∨ as well, only that we characterise the
classes with the wildcard matrix in which each element has been negated. This
is called the negated wildcard matrix (see Fig. 2).

We now show that the equality operator “=” requires Ω(m) bits of space.
First note that the output from the pattern matching algorithm is 0 if and
only if Δ([P [j], T [i+ j]) = 0 for an odd number of positions j. For example, if
MΔ is the identity matrix, LocalPM(=,Δ) gives us the parity of the Hamming
distance.

Since LocalPM(=,Δ) is valid, there are x ∈ ΣP, a, b ∈ ΣT such that Δ(x, a) =
0 and Δ(x, b) = 1. We reduce from the Indexing problem, where Alice has a
string in {a, b}m and Bob has an index n. Alice initialises a pattern matching
algorithm on the pattern P = {x}m and feeds it with her string. She sends the
internal state to Bob, who feeds the algorithm with n copies of the symbol a.
The first position of P is now aligned with the nth character of Alice’s string.
Suppose the output from the algorithm is d. Bob now feeds in another a. Let d′

be the new output. If d = d′ then the character at position n of Alice’s string
must have been a. If d �= d′ then the character must have been b.

The operator “ �=” is similar to “=” and also requires Ω(m) bits of space. To
see this, note that the output from the pattern matching algorithm is 0 if and

Δ 2 3

1 1 2
0 2 3

Δ′ 2 3

1 1 1
0 1 0

Fig. 6. Δ and Δ′ in the proof of Theorem 5
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only if Δ([P [j], T [i+j]) = 1 for an even number of positions j. We may therefore
prove the lower bound using a reduction from the Indexing problem similar to
above.

7 The L∞ Distance

In this section we consider the L∞ distance problem which can be defined as
LocalPM(max,Δ), where Δ(x, y) = |x − y| and max(a, b) is the maximum of a
and b. In this section we assume that the pattern and text are integer valued.
Here the distance function is the maximum Δ(P [j], T [i+ j]) over all j, that is

d(i) = max
j∈{0,...,m−1}

Δ(P [j], T [i+ j]) .

Theorem 5. The L∞ distance problem requires Ω(m) bits of space.

Proof. Let ΣP = {0, 1} and ΣT = {2, 3}. Therefore Δ is specified according to
Fig. 6. Let Δ′(x, y) = 1 if Δ(x, y) < 3, otherwise Δ′(x, y) = 0. Therefore MΔ′

contains the wildcard matrix and hence by Theorem 2, LocalPM(∧,Δ′) requires
Ω(m) space.

Let d′(i) be the distance under LocalPM(∧,Δ′). If d′(i) = 1 then for all
j, Δ′(P [j], T [i + j]) = 1, implying that Δ(P [j], T [i + j]) < 3 for all j. Hence
d(i) < 3. If d′(i) = 0 then there exists a j such that Δ′(P [j], T [i + j]) = 0,
implying that Δ(P [j], T [i+j]) = 3 and hence d(i) = 3. Therefore, if we can solve
LocalPM(max,Δ), we can solve LocalPM(∧,Δ′). ��

8 Non-binary Alphabets

The space lower bounds we have given so far have been either Ω(logm) or Ω(m)
bits. When the pattern or text alphabet is drawn from a large universe, the ques-
tion arises as to whether even more space is required to perform online pattern
matching. We show by way of another different reduction a method that may
be applicable to a wider range of pattern matching problems than we consider
here. Our approach is to show a reduction from the communication complexity
problem Disjointness [7] to the Hamming distance problem. In Disjointness

Alice and Bob both have sets of m elements each chosen from a universe of size
U and Bob wants to determine if their intersection is empty. The lower bound for
the space complexity of the Hamming distance problem will then be determined
by lower bounds for the one-way randomised communication complexity of the
Disjointness problem with private coins. A result regarded as folklore shows
that this complexity is Ω(m logm+ log logU) when U is Ω(m1+ε) [11,12]. This
in turn implies a superlinear lower bound for the space complexity of the online
Hamming distance problem with large alphabets.
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For an integer n, we write [n] to denote the set {0, . . . , n − 1}. Alice has a
set A ⊆ [U ] and Bob has a set B ⊆ [U ], and |A| = |B| = m. The reduction
performs the following steps. We assume for the moment that Alice and Bob
both have a shared source of randomness and show later how this assumption
can be removed.

1. Alice creates a pairwise independent hash function h : [U ] → [cm], for some
constant integer c > 1 and creates a pattern P of length cm where each
element is initialised to be some unique symbol $ /∈ [U ]. She then sets
P [h(x)] = x for all x ∈ A by going through A in some arbitrary order.
If a position of P is written to multiple times, only the last write is stored.

2. Alice starts the Hamming distance algorithm up until the point at which it
has processed the pattern P but none of the text (which is created later)
and sends the internal state of the algorithm to Bob.

3. Bob performs the same hashing operation using the same hash function but
this time on set B, creating a text T of length cm. Bob uses a different
unique symbol $′ /∈ [U ] for the initialisation of the text.

4. Bob feeds the Hamming distance algorithm with the whole text T . Bob
concludes that A and B are disjoint iff the output is cm.

Theorem 6. Any randomised algorithm for Hamming distance where the sym-
bols are chosen from a universe of size Ω(m1+ε) uses Ω(m logm+log logU) bits
of space.

Proof. Considering the reduction above, if A and B are disjoint, then a deter-
ministic Hamming distance algorithm will always output cm. If A and B are not
disjoint then a necessary condition for a deterministic Hamming distance algo-
rithm to output cm is if at least two elements are hashed to the same location by
either Alice or Bob. We can see that the probability of incorrectly outputting cm
is maximised when A and B share exactly one element. Therefore, suppose that
A∩B = {x}. The element x is hashed to position h(x). By the union bound and
the pairwise independence of the hash function, the probability that some other
element in either A or B is mapped to h(x) is at most 1/(cm) ·m ·2 = 2/c. If we
assume our randomised Hamming distance algorithm is correct with probability
at least 2/3, then the overall process falsely reports disjointness with probability
at most 2/c + 1/3 (union bound). The space complexity of Hamming distance
is therefore lower bounded by the communication complexity of the disjointness
problem if Alice and Bob have a shared source of random bits to select their
common hash function. By Newman’s Theorem [10] the cost of transforming
the protocol to work with only private coins is at most an additive O(log logU)
factor in the asymptotic complexity. Assuming that U grows polynomially in m
and so log logU is O(logm), the overall lower bound for the space complexity of
the Hamming distance problem is therefore Ω(m logm− logm) = Ω(m logm).
To finish the proof for larger U , we observe first that a lower bound for smaller
universes must still hold for larger ones. The final additive Ω(log logU) term is
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derived by simply setting m = 1 and follows directly from the randomised lower
bound for Equality. Therefore the overall lower bound is Ω(m logm+log logU)
as required. ��

9 Non-local Pattern Matching

So far we have focused only on local pattern matching where each position in the
alignment contributes to the distance independently of the other positions. Here
we take a brief look at space lower bounds for two non-local distance measures:
edit distance and swap matching.

In online pattern matching, we define the edit distance as the minimum num-
ber of single character edit operations (insert, delete and replace) required to
transform P into the last m characters of the streamed text. This implies that
the number of insertions and deletions are equal.

We show that for binary ΣP = ΣT = {0, 1}, the online edit distance problem
requires Ω(m) bits of space. For non-binary inputs there is a reduction from
the Hamming distance problem [2]. The reduction we give covers the binary
alphabet case as well and follows directly from Indexing, where Alice has a
string P ∈ {0, 1}m and Bob has an index n. Alice initialises a pattern matching
algorithm on the pattern P and sends the internal state to Bob, who first feeds
in m zeros. Let d be the output and note that d is the number of ones in P . Bob
then feeds in the m-length string that consists of zeros at every position except
for at position n where it is one. Let d′ be the output. Bob can now decide the
value of P [n] by comparing d with d′: P [n] = 1 if d′ < d, and P [n] = 0 if d′ � d.
The probability of error is therefore upper bounded by the union bound on d
and d′ being wrong.

Given a string S, a swap at position i means that the characters S[i] and
S[i+ 1] swap positions. We say there is a swap match if and only if the pattern
P can be transformed into the last m characters of the streamed text through a
set of swaps. Each S[i] is swapped at most once.

We show that the online swap distance problem requires Ω(m) space. Our
proof is based on the techniques we have presented in this paper. Specifically, we
demonstrate a reduction from LocalPM(∧,Δ) where MΔ contains the wildcard
matrix, hence the space lower bound is Ω(m). Suppose we have Δ as in Fig. 7.
Let P ∈ {	, x}m and ΣT = {a, b}. From P we obtain P ′ ∈ {0, 1}5m such that
every 	 in P is replaced with 00100 and every x is replaced with 00010. When
we receive characters from the text, we replace a with 00010 and b with 01000.
It follows, under the transformation of the symbols, that there is a swap match
if and only if LocalPM(∧,Δ) outputs True for the original (non-transformed)
strings. To see this, note that both a and b, under the transformation, swap
match 	, but b does not swap match x (see Fig. 7). The transformation of the
symbols does not allow swaps between adjacent characters; every possible swap
will take place “within” the binary encoding of a symbol. Thus, a swap match
directly corresponds to a match under LocalPM(∧,Δ).
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Δ a b

� 1 1
x 1 0

a : 00010
� : 00100

b : 01000
� : 00100

b : 01000
x : 00010

Fig. 7. Δ and alignments under swaps

10 Open Problems

We have considered space lower bounds and discussed how they can be derived
from known communication complexity lower bounds. Upper bounds can also
be directly derived from existing online pattern matching algorithms. For all
the problems we have discussed there is at most a log factor gap between these
upper and lower bounds. However, where the known lower bound is sublinear,
as is the case for exact matching for example, this gap may still be considered
significant. Further, for bounded Hamming distance where the distance is only
to be given if it is at most some constant k, the best known randomised online
space upper bound is O(k3polylog m) [13]). The best known lower bound, on
the other hand, is very different at Ω(k) [5]. Further, it is known that the lower
bounds can not be increased to match the known upper bounds using the one-
way communication complexity of the functions between two strings of the same
length. Either more space efficient algorithms exist for these problems or novel
techniques will be needed to improve the lower bounds.

References

1. Amir, A., Aumann, Y., Landau, G., Lewenstein, M., Lewenstein, N.: Pattern
Matching with Swaps. Journal of Algorithms 37, 247–266 (2000)

2. Bar-Yossef, Z., Jayram, T.S., Krauthgamer, R., Kumar, R.: Approximating edit
distance efficiently. In: FOCS 2004: Proc. 45th Annual Symp. Foundations of Com-
puter Science, pp. 550–559 (2004)

3. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. SIAM Journal on Computing 17(2), 230–261
(1988)

4. Datar, M., Gionis, A., Inkyk, P., Motwani, R.: Maintaining stream statistics over
sliding windows. SIAM Journal on computing 31(6), 1794–1813 (2002)

5. Huang, W., Shi, Y., Zhang, S., Zhu, Y.: The communication complexity of the
Hamming distance problem. Information Processing Letters 99(4), 149–153 (2006)

6. Jayram, T.S., Kumar, R., Sivakumar, D.: The one-way communication complexity
of hamming distance. Theory of Computing 4(1), 129–135 (2008)

7. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University
Press, Cambridge (1997)

8. Linhart, C., Shamir, R.: Faster pattern matching with character classes using prime
number encoding. Journal of Computer and System Sciences 75(3), 155–162 (2009)

9. Muthukrishnan, S., Ramesh, H.: String matching under a general matching rela-
tion. Inf. Comput. 122(1), 140–148 (1995)

10. Newman, I.: Private vs. common random bits in communication complexity. Infor-
mation Processing Letters 39(2), 67–71 (1991)



196 R. Clifford et al.

11. Nisan, N.: Personal communication (2011)
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Abstract. Motivated by the problem of counting unique visitors to a
website, we consider how to preprocess a string s[1..n] such that later,
given a substring’s endpoints, we can quickly count how many distinct
characters that substring contains. The smallest reasonably fast previous
data structure for this problem takes n log σ+O(n log log n) bits and an-
swers queries in O(log n) time. We give a data structure for this problem
that takes nH0(s)+O(n)+ o(nH0(s)) bits, where H0(s) is the 0th-order
empirical entropy of s, and answers queries in O(log �) time, where � is
the length of the query substring. As far as we know, this is the first
data structure, where the query time depends only on � and not on n.
We also show how our data structure can be made partially dynamic.

1 Introduction

Imagine you are in charge of web analytics at a company and your boss has
asked you to write an interface to the log files that, given an arbitrary time
period, returns the number of unique visitors in that period. This task can be
broken into two subtasks: find the first and last entries in the logfiles from that
time period, and then count the unique visitors between those entries. The first
subtask is an instance of the well-studied predecessor problem (see, e.g., [13]),
so you concentrate on the second subtask. Counting the unique visitors in a
consecutive subset of entries is a special case of coloured range counting, an
important problem with applications in, e.g., computational geometry, database
research and bioinformatics.

For the general coloured range counting, we are asked to store a set of n
coloured points in Rd such that later, given an axis-aligned box, we can quickly
count the distinct colours it contains. Most papers on this problem have focused
on d ≥ 2 dimensions (see, e.g., [6]), whereas counting unique visitors is a one-
dimensional problem. The best solution known for general static one-dimensional
coloured range counting is an O(n)-word data structure by Bozanis, Kitsios,
Makris and Tsakalidis [1] from 1995 that answers queries in O(logn) time. The
best dynamic solutions known [7] take, for queries and updates, either O(n logn)
words and O(log n) time or O(n) words and O(log2 n

)
time. Recently, however,

Gagie, Navarro and Puglisi [3] considered the special case in which the coloured
points are the integers 1, . . . , n. Storing these points is equivalent to storing a
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string s[1..n] over an alphabet whose size σ is the number of distinct colours,
such that later, given a substring’s endpoints, we can quickly count how many
distinct characters that substring contains.

Gagie et al. gave a static data structure that takes n log σ+O(n log logn) bits
and answers queries in O(logn) time. (In this paper log means log2.) As far as we
know, Gagie et al.’s is the smallest and fastest previously known data structure
that can be used for counting unique visitors, in which case s is the sequence of
visitors recorded in the log files in chronological order, n is the number of visits
recorded, and σ is the number of unique visitors recorded. Nevertheless, since n
and σ are likely to be very large for a busy website, it is not clear their solution
is small enough. In this paper we describe a new data structure for counting
colours in strings, one that takes only nH0(s) + O(n) + o(nH0(s)) bits, where
H0(s) is the 0th-order empirical entropy of s. Furthermore, we simultaneouly
reduce the query time to O(log �) time, where � is the size of the query range.
As far as we know, no other data structure for coloured range counting has a
non-trivial upper bound depending only on �.

Gagie et al.’s solution is built on work by Muthukrishnan [12] about coloured
range queries in strings. Muthukrishnan defined C[1..n] to be the array in which
each cell C[q] stores the largest value p < q such that s[p] = s[q] (or 0 if no such
p exists). He observed that s[q] is the first occurrence of that distinct character
in s[i..j] if and only if i ≤ q ≤ j and C[q] < i. Therefore, the number of distinct
characters in s[i..j] is the number of values in C[i..j] strictly less than i. Notice
that C could quite reasonably be much more compressible than s. For example,
if most visitors are unique, then s becomes less compressible but C becomes
more compressible, as it consists mostly of 0s. Gagie et al. pointed out that, if
we store C in a wavelet tree [5], which takes n logn+o(n logn) bits, then we can
count all such values in O(log n) time; for details, see [10]. This is already a slight
improvement over the bounds we achieve with Bozanis et al.’s data structure [1],
but Gagie et al. showed it can be reduced to n logσ+O(n log logn) by modifying
the wavelet tree. Our own work also uses the C array and wavelet trees, but
we achieve compression by modifying the representation of C rather than the
wavelet trees. Apart from counting the unique visitors, both Gagie et al.’s data
structure and our own can support other interesting queries. For example, we can
easily count the first-time visitors in an interval s[i..j] by counting the number
of 0s in C[i..j]. More generally, we can easily count the visitors in an interval
s[i..j] whose last visit was in another interval s[i′..j′], by counting the number
of values in C[i..j] that are between i′ and j′. Finally, we can use three instances
of our data structure so that we can count the visitors that visit exactly once
in s[i..j] (i.e., the number of unique visitors whose visits are unique, as well).
To do this, we build the first instance normally, we build the second instance
replacing even occurrences of each character by a special filler character #,
and we build the third instance replacing odd occurrences of each character by
this filler; e.g., if s = abracadabra, then the three instances are for abracadabra,
abr#cad###a and ###a###abr#, respectively. (Since the second and third
instances are for complementary strings, we could merge them fairly easily; we
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consider them separately for the sake of simplicity.) Given s[i..j], we use the first
instance to find the total number dall of distinct characters in s[i..j], we use the
second instance to find the number dodd of distinct characters that have an odd
occurrence in s[i..j], and we use the third instance to find the number deven of
distinct characters that have an even occurrence in s[i..j]; the number of distinct
characters that have both an odd and an even occurrence is dodd + deven − dall,
so the number of characters that have only an odd or only an even occurrence
— i.e., exactly one occurrence — is 2dall − dodd − deven.

Muthukrishnan and Gagie et al. were motivated by problems in document
retrieval. Given a collection of documents, they build the suffix array for the
documents’ concatenation and then an array indicating in which document each
suffix begins. To compute the document frequency of a given pattern — i.e.,
how many documents contain it — they find the interval in the suffix array
corresponding to that pattern, then count the distinct documents in the same
interval in the document array. We note that Sadakane [14] gave a faster and
more space-efficient data structure for computing the document frequencies of
single patterns, but his solution cannot be used for coloured range counting
in arbitrary strings. As Gagie et al. pointed out, their approach can be used
in some cases where Sadakane’s cannot; e.g., when we want to compute the
total document frequency of patterns in a lexicographic range. Our own data
structures are functionally equivalent to Gagie et al.’s and, thus, can also be
used in such cases.

In Section 2 we describe a simple data structure that achieves essentially the
same bound as Gagie et al.’s. In Section 3 we extend the ideas from Section 2 to
build a data structure that takes nH0(s) + O(n) + o(nH0(s)) bits and answers
queries in O(α(n) log n log logn) time, where α is the inverse Ackermann func-
tion. We adjust our data structure and analysis slightly in Section 4, so that our
time bounds are in terms of �, the length of the substring whose distinct colours
we are counting, rather than in terms of n. In Section 5, we reorganize our data
structure and improve query time to O(log �). For this result, we need a couple of
simple but non-standard tricks in implementing wavelet trees; previous sections
use standard wavelet trees as black box. In Section 6 we show how our data struc-
ture can be made partially dynamic. Specifically, we first show how to achieve
the same time bound for querying and a space bound of O(n(H0(s) + 1)) bits
while supporting an O(logn)-time append operation, which is the most natural
update when, e.g., maintaining log files. We then show how to support colour
substitutions and deletions, at the cost of using O(log2 n

)
time for both queries

and updates. For the current version of this paper, in both cases we ignore the
resources needed to perform a constant number of rank/select queries on s.

2 Simple Blocking

In this section we give a simple proof that, using two normal wavelet trees and
a straightforward encoding of C, we need store only (1+o(1))(n log σ+n log logn)
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Fig. 1. The array s, with lines above indicating blocks and arcs indicating characters’
previous occurrences; our representation of the C array overlaid on the bitvector, with
white indicating intra-block pointers and grey indicating inter-block pointers; and the
contents of the two wavelet trees — intra-block pointers in one and inter-block pointers
in the other. Notice that, since both copies of b are contained within one block, the
distance 3 is measured from the beginning of that block.

bits to answer queries in O(logn) time. Without loss of generality, assume σ =
o(n/ logn); otherwise, we achieve our desired bound by simply storing C in a
single, normal wavelet tree. Our idea is to break s into blocks of length b =
σ logn and encode the entry C[q] differently depending on whether the previous
occurrence s[p] of the character s[q] is contained in the same block. If s[p] is
contained in the same block as s[q], then we write C[q] as the �log b�-bit offset of
p within the block; otherwise, we write it as the �logn�-bit binary representation
of p. Notice that, for each block, there are at most σ entries of C encoded as
�logn�-bit numbers.

We build a bitvector indicating how each entry of C is encoded, which takes
n + o(n) bits. We build one wavelet tree storing all the �log b�-bit encodings,
which takes at most n log b+o(n log b) = (1+o(1))(n logσ+n log logn) bits, and
another storing all the �logn�-bit encodings, which takes at most σ�n/b� logn+
o(σ�n/b� logn) = n + o(n) bits. This is illustrated in Figure 1. Notice that,
if s[q] is the first occurrence of that distinct character in s[i..j] and C[q] is
encoded in �log b� bits, then s[q] must be between s[i] and the end of the block
containing s[i]. This is because, if s[q] were in a later block, then C[q] < i would
be encoded using �logn� bits. We can count all such characters in O(log b) =
O(log σ + log logn) time using the bitvector and the first wavelet tree. We can
count all the other first occurrences in O(logn) time using the bitvector and the
second wavelet tree.

Theorem 1. Given a string s[1..n], we can build a data structure that takes
(1+o(1))(n logσ+n log logn) bits such that later, given a substring’s endpoints,
in O(logn) time we can count how many distinct characters it contains.
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Notice that, if σ ≥ logn, then Gagie et al.’s data structure is within a constant
factor of being succinct and the data structure we just presented is within a factor
of 2 of being succinct. If σ < logn, then we can store s in a multiary wavelet
tree [2], which takes nH0(s)+o(n) bits, and answer any query by enumerating the
characters in the alphabet and, for each one, using two O(1)-time rank queries
to see whether it occurs in the given substring.

Corollary 1. Given a string s[1..n], we can build a data structure that takes
2n logσ+o(n log σ) bits such that later, given a substring’s endpoints, in O(logn)
time we can count how many distinct characters it contains.

3 Multi-size Blocking

In this section we extend our idea from the previous section so that, instead of
encoding entries of C differently for only two block sizes — i.e., σ logn and n —
we use many block sizes. In particular, we use O(log logn/ log(1 + δ)) different
block sizes,

21+δ, 2max((1+δ)2,2), 2max((1+δ)3,3), 2max((1+δ)4,4), . . . , n ,

where δ ∈ (0, 1] is a value we will specify later. Also, for each block size b, we
consider s to consist of about 2n/b evenly overlapping blocks,

s[1..b], s[b/2..3b/2], s[b+ 1..2b], s[3b/2 + 1..5b/2], . . . , s[n− b+ 1, n] .

If C[q] = p and the smallest block containing both s[p] and s[q] has size b, then
we write C[q] as the �log b�-bit offset of p within the lefthand block of size b
containing s[q] (there are at most two such blocks and, if there are two, then
they overlap). Since

2max((1+δ)i−1,i−1)−1 < q − p+ 1 ≤ b = 2max((1+δ)i,i) ,

we have �log b� < (1 + δ) log(q − p+ 1) + 3. In other words, if s[p] and s[q] are
occurrences of a character a that does not occur in s[p+ 1..q − 1], then we use
fewer than (1+δ) log(q−p+1)+3 bits to store C[q]. By Jensen’s Inequality, since
the logarithm is concave, the total number of bits we use to store the offsets for
occurrences of a is maximized when those occurrences are evenly spaced and,
thus, at most

(1 + δ)
∑

a

occ(a, s) log
(

n

occ(a, s)
+ 1
)

+ 3n = (1 + δ)nH0(s) + O(n) ,

where occ(a, s) is the number of occurrences of a in s.
Let t be a string indicating whether each entry of C[q] is 0 and, if not, the

block size used for it. We build a multiary wavelet tree [2] storing t. Notice we
can always encode a block size b = 2max((1+δ)i,i) in O(log i) = O(log log b) bits.
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. . . . . .

Fig. 2. The array s, with lines above indicating the overlapping block structure (with
blocks of three different sizes, in this case) and arcs indicating characters’ previous
occurrences; our representation of the C array overlaid on the string t, with shades
of grey indicating which encoding length is used for each pointer (black for 0s); and
the contents of the three wavelet trees — pointers contained in short blocks, pointers
contained in medium-length blocks, and pointers contained in long blocks. Notice that,
although 9 is larger than 5, the pointer with value 9 has a shorter encoding because
both copies of b are contained within the same medium-length block, while the two
copies of a are not contained in any single block except the one long block, which
contains the whole string.

By the calculations in the paragraph above and another application of Jensen’s
Inequality, H0(t) = O(log(H0(s) + 1)). It follows that, if H0(s) grows without
bound as n goes to infinity, then the size of the tree is o(nH0(s)) bits; otherwise,
it is O(n) bits. Using the tree, in O(1) time we can count all the characters
whose first appearance in s is in s[i..j].

For each block size b, we build a wavelet tree storing all the �log b�-bit en-
codings. By the same calculation as before, these wavelet trees take a total of
(1+δ)nH0(s)+O(n)+o(nH0(s)) bits. This is illustrated in Figure 2. Notice that,
for any block size b, if s[q] is the first occurrence of that distinct character in
s[i..j] and C[q] is encoded in �log b� bits, then s[q] must be between s[i] and the
end of the righthand block of size b containing s[i]. Using the multiary wavelet
tree and the wavelet tree for block size b, in O(log b) time we can count all such
characters in the right halves of both the lefthand and the righthand blocks of
size b containing s[i]. Since these are the only blocks of size b containing s[i] and
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the right half of the lefthand block is the left half of the righthand block, the
sum is the total number of such characters. That is, in O(log b) time, we can
count all the first occurrences s[q] of distinct characters in s[i..j] such that C[q]
is encoded in �log b� bits. Repeating this for each of the O(log logn/ log(1 + δ))
block sizes, in O(logn log logn/ log(1 + δ)) = O(logn log logn/δ) time we can
count the distinct characters in s[i..j]. Choosing δ = 1/α(n), for example,
where α is the inverse Ackermann function, yields the a space bound of (1 +
1/α(n))nH0(s) + O(n) + o(nH0(s)) = nH0(s) + O(n) + o(nH0(s)) and a time
bound of O(α(n) log n log logn).

Theorem 2. Given a string s[1..n], we can build a data structure that takes
nH0(s) + O(n) + o(nH0(s)) bits such that later, given a substring’s endpoints,
in O(α(n) log n log logn) time we can count how many distinct characters it
contains.

4 Time Independent of n

Suppose we are to count the distinct colours in s[i..j] using the data structure
from Section 3, and let � = j − i+ 1. Notice that, if C[q] = p is encoded using a
block size larger than the size bmax of the smallest block that completely contains
s[i..j], then p < i or q > j. Therefore, any such entries in C[i..j] indicates the
first occurrence of some distinct character in s[i..j]. We can compute how many
such entries there are by using the multiary wavelet tree to count all the entries
in C[i..j] that are encoded with block sizes at most bmax, then subtracting from
�. Since there are O(log log bmax/ log(1 + δ)) = O(α(n) log log(�+ 1)) block sizes
up to bmax, this takes O(α(n) log log(�+ 1)) time. Also notice that, using the
technique described in the last paragraph of Section 3, we can count the entries
C[q] < i there are in C[i..j] that are encoded using a block size at most bmax.
Therefore, we can replace the O(α(n) log n log logn) time bound in Theorem 2
by O(α(n) log � log log(�+ 1)). Since α(n) grows very, very slowly as n increases,
our time bound is now almost independent of n.

To make our time bound completely independent of n, we adjust our block
sizes: the first block size b1 is 2; for i ≥ 2, the kth block size is

bk = 2max(∏k−1
h=1(1+1/α(bh)),k) .

If the smallest block containing both s[p] and s[q] has size bk then, since

2max(∏k−2
h=1(1+1/α(bh)),k−1)−1 < q − p+ 1 ≤ 2max(∏k−1

h=1(1+1/α(bh)),k) ,

we have log(q − p + 1) < �log bk� < (1 + 1/α(bk−1)) log(q − p + 1) + 3. Also
notice that, since bk−1 can be bounded from below in terms of bk and bk can
be bounded from below in terms of q − p, α(bk−1) increases without bound
(albeit very, very slowly) as q − p goes to infinity. Therefore, we use fewer than
log(q − p + 1) + o(log(q − p + 1)) bits to store C[q]. By calculations similar to
those in Section 3, we still use nH0(s) + O(n) + o(nH0(s)) bits in total. Now,
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however, since α(b1) ≤ · · · ≤ α(bk), more calculation shows that the number of
block sizes up to bk is O(log log bk/ log(1 + 1/α(bk))), from which it follows that
our new time bound is O(α(�) log � log log(�+ 1)).

Theorem 3. Given a string s[1..n], we can build a data structure that takes
nH0(s)+O(n)+o(nH0(s)) bits such that later, given a substring’s endpoints i and
j, in O(α(�) log � log log(�+ 1)) time we can count how many distinct characters
it contains, where � = j − i+ 1.

5 Improving Time

We now modify the data structure so that instead of having one wavelet tree for
each block size, we have a separate wavelet tree for each block. If C[q] = p is
encoded using a block size b then one or two blocks of size b contain both p and
q, and we store the encoding in the wavelet tree of the leftmost block. Notice
that q is always in the second half of the block. The total number of bits in the
encodings does not change.

A standard wavelet tree implementation technique is to represent each level of
a wavelet tree with a single bitvector, which is the concatenation of the bitvectors
for individual nodes over that level [2,9]. Here we can similarly use a single
bitvector to represent a level over all wavelet trees for a given block size. As in
the standard case, given the location of the bitvector for a node, we can easily
locate the bitvectors for the children. For each block size bk, we provide two
additional bitvectors to directly locate nodes, one for the root level and one for
the level at height k (with leafs at height 0). The size of such a bitvector is
nk + v + o(nk + v), where nk is the length of the level bitvector, which equals
the number of entries encoded with block size bk, and v is the number of nodes
on the given level. Since v = O(n/2k

)
for height k and less or equal for the root

level, the size of the locating bitvectors for block size bk is O(nk + n/2k
)
, which

is O(n) over all block sizes.
When counting the number of distinct colors in s[i..j], we handle block sizes

larger than bmax as before using the multiary wavelet tree in O(α(�) log log(�+ 1))
time. For each block size b ≤ bmax, we need to query the wavelet trees for the two
blocks that contain i. For block size bmax we do this as before in O(log bmax) =
O(log �) time. Block sizes smaller than bmax are handled differently.

If B is a block of size bk < bmax that contains i, it does not contain j. If
C[q] = p is stored in the wavelet tree for B, then q < j. We want to count an
entry C[q] = p in B if (i) q ≥ i and (ii) p < i. Since p < q, both conditions
cannot be violated simultaneously. Thus we count entries that violate (i) and
entries that violate (ii) and subtract the sum from the total number of entries
for block B. Notice that this does not work for larger block sizes because we
need an additional condition q ≤ j. Using the multiary wavelet tree we can
count in constant time all entries C[q] = p that are encoded using block size
bk and have q in a given range. This is sufficient to count all entries in B as
well as those that violate (i). Counting (ii) can be done by locating the leaf that
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represents the position i in the wavelet tree for block B, which we do by locating
its ancestor at height k in constant time and traversing down in O(k) time. Thus
block size bk can be processed in O(k) time and all block sizes smaller than bmax

in O((α(�) log log(� + 1))2
)

time.

Theorem 4. Given a string s[1..n], we can build a data structure that takes
nH0(s) + O(n) + o(nH0(s)) bits such that later, given a substring’s endpoints i
and j, in O(log �) time we can count how many distinct characters it contains,
where � = j − i+ 1.

6 Partial Dynamism

Suppose we want to append a character s[n+ 1] to s. To maintain C, we must
append C[n + 1] = p to it, where p is the position of the last occurrence of
s[n + 1] in s[1..n], or 0 if there is no such occurrence. In the current version
of this paper, we do not worry about how we find p (which can be done with,
say, one rank query and one select query on s; a visitor to a website might also
provide p directly via, e.g., a cookie) and focus only on how to append C[n+ 1]
to our representation of C stored in the data structure we gave in Section 3 (as
appending it to the data structure from Section 2 is similar and simpler).

Our first concern is to append to the string t a character indicating whether
p is 0 and, if not, the block size used for it. Instead of storing t with a multiary
wavelet tree, we now store it with a Huffman-shaped binary wavelet tree [8],
with the bitvectors at the internal nodes stored separated from each other (i.e.,
not concatenated, as is usual). As long as these bitvectors are each stored with
at most linear redundancy, they take a total of at most O(n(H0(t) + 1)) ⊆
O(n log(H0(s) + 1) + n) bits. Also, since t is over an alphabet of size
O(log logn/ log(1 + δ)), which is O((log logn)2

)
with our choice of δ = 1/α(n),

we can store the shape of the tree using O(logn)-bit pointers at each internal
node without increasing our overall space bound.

To append a character to t, we append a bit to each bitvector on the path from
the root of the wavelet tree to the leaf labelled with the character we append
(we create this leaf if it does not already exist). Each bit indicates whether
the next node on the path is the current node’s left child or its right child.
Many implementations of bitvectors are based on breaking them into blocks
(see, e.g., [10] for more discussion) and, thus, make appending relatively easy.
Since we allow ourselves linear redundancy, whenever a bitvector outgrows the
space allocated to it, we double that space; we use background processing to copy
the bitvector into its new location, so that our time bounds are still worst-case.
Appending to t takes a total of O(log log logn) time.

Our other concern is to append C[n+1] to a sequence of values encoded with
the same block size b, all of which are stored in a wavelet tree. We use essen-
tially the same approach as when appending a character to t. One complication is
that the sequence of values is no longer guaranteed to be over a small alphabet, so
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it is not immediately clear how we can use O(logn)-bit pointers at the internal
nodes. If b is small, at most n/ logn, then, as with t, there is no problem: cal-
culation shows that using pointers in all the wavelet trees for small block sizes
increases our space bound by at most O(n). For the case when b > n/ logn,
we replace the standard trie shape of wavelet trees with a Patricia trie shape.
From the standard wavelet tree, we remove all nodes associated with an empty
sequence. If any remaining node has exactly one child, the associated bitvector
is all 0s or all 1s and can be encoded with a single bit stored in the closest
existing decendant of the node. The resulting wavelet tree shape is a Patricia
trie [11], where the number of internal nodes is less than the number of leaves,
which is equal to the number of distinct values in the sequence and, thus, at
most the length of the sequence. Recall that, if we use log b bits for each value
stored in the wavelet tree for block size b, for every b, then we use a total of
(1 + δ)nH0(s) +O(n) + o(nH0(s)) bits. Therefore, if we use O(logn) ⊆ O(log b)
bits for pointers at each internal node, then we use O(n(H0(s) + 1)) bits alto-
gether. Appending to the sequence stored in a wavelet tree for a block size takes
O(logn) time.

Theorem 5. We can modify the data structure from Theorem 2 such that we
achieve the same time bound for querying and a space bound of O(n(H0(s) + 1))
bits while supporting an O(logn)-time append operation.

If we modify the data structure from Section 3 by replacing all the wavelet
trees (including the multiary wavelet tree) with dynamic wavelet trees [4], which
support queries, insertions and deletions in O(log2 n

)
time, then we still use

nH0(s) + O(n) + o(nH0(s)) bits, but O(log2 n log logn
)

time for queries and
appends. This data structure can also support colour substitutions and deletions
in O(log2 n log logn

)
time. In order to replace a character s[q] = a by a′, we

find the last occurrences s[p] and s[p′] of a and a′ strictly before s[q], and the
first occurrences s[r] and s[r′] of a and a′ strictly after s[q]. Again, these can
be found using a constant number of rank and select queries on s. We can
also find p and r using the wavelet trees, and p′ given r′ (or vice versa), in
O(log2 n log logn

)
time. We update C such that C[q] = p′, C[r] = p and C[r′] =

q, again using O(log2 n log logn
)

time. To delete a character from s, we replace
it with a special null character not in the alphabet (which we search for and
exclude when performing queries).

Theorem 6. We can modify the data structure from Theorem 2 such that it
again takes nH0(s)+O(n)+o(nH0(s)) bits, but supports queries, appends, colour
substitutions and deletions in O(log2 n log logn

)
time.
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Abstract. The wavelet tree is a compact data structure allowing fast
rank, select, access and other queries on non binary sequences. It has
many applications in indexed pattern matching and data compression.
In contrast to applications of wavelet trees their construction has so far
been paid little attention. In this paper we discuss time and space efficient
algorithms for constructing wavelet trees.

1 Introduction

The wavelet tree was introduced by Grossi, Gupta and Vitter in 2003 (cf. [5]).
Augmented with binary rank and select dictionaries it allows rank, select and
access queries on strings over an alphabet of size σ in time O(log σ). Such queries
are used in many compressed index structures such as the compressed suffix array
(cf. [5]) and FM type indexes (cf. [2]). The space required by the uncompressed
wavelet tree is the same as the space required for the input string. Note that this
statement refers only to the tree itself. Additional space is necessary for the rank
and select dictionaries. We neglect this space in this paper, as these dictionaries
are not required for the construction of the tree. Apart from rank, select and
access queries, wavelet trees also efficiently support orthogonal range queries
(counting and enumerating points in a given rectangle on the plane, cf. [9])
and range quantile queries (finding the k’th smallest element in a subinterval
of a sequence, cf. [4]). Furthermore, wavelet trees facilitate data compression
(cf. e.g. [1]). While many papers discuss functionality and applications of the
wavelet tree, the construction of wavelet trees has so far gotten little attention.
It is simple to set up an algorithm for constructing the wavelet tree in time
O(n log σ) which is linear in the size of the number of bits in the output, but
such a straight-forward algorithm will require at least an amount of memory
which is three times as large as the size of the input. For a large input this may
be prohibitive. In this paper we discuss algorithms for producing the wavelet tree
of a string with various time and space bounds. We mainly focus on balanced
wavelet trees. Most of our approaches can be translated to Huffman shaped
wavelet trees. We omit most details about Huffman shaped wavelet trees though
due to lack of space. Throughout this paper we assume a word RAM model with
a word size of w bits and log denotes the base 2 logarithm.
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The paper is structured as follows. In Section 2 we present efficient algorithms
for sorting integers with respect to one of their bits. In Section 3 we present
several algorithms for the generation of wavelet trees from strings. We conclude
the paper in Section 4, where we give some open problems.

2 Stable Sorting of Bit Key Sequences

It is well known that a finite sequence of length m can be sorted stably and in
place in time O(m logm) in the comparison model (cf. [10]). In the following
we provide simple and practical algorithms for the case of binary keys in the
word RAM model. By binary keys we mean that we are sorting integers of
k ∈ O(w) bits (not necessarily binaries), but for the comparison of two numbers
only a certain single bit of the binary representation of the integers is relevant.
In particular the keys are part of the integers. The length m of the sequence is
assumed to be such that logm ∈ O(w)

The following observation is derived from the permutation operation by Kro-
nrod (cf. [8]). In its formulation we consider sequences of binaries, the generali-
sation to bit key sequences is straight forward.

Observation 1. Let X and Y be sorted bit sequences of length |X | and |Y |
concatenated in a sequence Z of length |Z| = |X | + |Y |. More precisely let X =
0x01x1, Y = 0y01y1 and Z = XY . Then X and Y can be merged stably and in
place in time O(|X | + |Y |) = O(|Z|).
Proof. The stably merged sequence is obtained by computing

X [0 . . x0 − 1]((X [x0 . . x0 + x1 − 1])R(Y [0 . . y0 − 1])R)RY [y0 . . y0 + y1 − 1]

where R denotes the reversal operator. As reversal can be implemented in place
in linear time, we obtain the given runtime bound.

An O(m logm) time stable in-place sorting algorithm for binary keys can be ob-
tained by implementing a common merge sort approach while using the method
given in the proof of Observation 1 for merging. Note that this approach requires
only a constant number of words of additional memory. A pseudo-code version
of the algorithm is shown in Algorithm 1. The parameter l denotes the length
of pre sorted sub arrays, i.e. we would set it to 1 for an array we have no further
information about. For l > 1 the algorithm works on the assumption that the
portions A[il . .min((i+1)l,m)− 1] are already sorted for i = 0, 1, . . . (if the left
bound is larger than the right bound this notation denotes an empty sub array).

An interesting and important feature of this sorting algorithm consists in the
fact that it still works if we do not move the bits we sort by in the reversal op-
erations. This means we can sort the information attached to the sorted bits by
the bits while keeping the keys in their original place. We name this algorithm
working without moving the keys bitmergesortkeys. To see why this works
note that the values bl and or computed in line 4 and 5 of the algorithm remain
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Algorithm 1. Bit comparison based merge sort algorithm
bitmergesort(A,m, b, l)

1 while l < m do
2 for i← 0 to �m

2l � − 1 do
3 (ll, rl, lr, rr) ← (2il, (2i + 1)l), (2i + 1)l,min(2(i + 1)l,m))
4 bl ← |{j | ll ≤ j < rl and A[j]&b = b}|
5 or ← |{j | lr ≤ j < rr and A[j]&b 
= b}|
6 reverse(A[rl − bl . . rl − 1])
7 reverse(A[lr . . lr + or − 1])
8 reverse(A[rl − bl . . lr + or − 1])
9 l ← 2l

the same even if we do not move the keys. This is due to the fact that for
the counting of the zeroes and ones it is unimportant where they are in the
considered interval. The considered intervals though remain the same, as they
do not depend on the sorted data.

If we are given another stable bit key sorting algorithm A sorting portions of
length m

c in time t(m
c ) (with or without moving the keys), then we can obtain a

bit key sorting algorithm (with or without moving the keys respectively) running
in time O(ct(m

c ) + m log c) and requiring the same space as A by first sorting
portions of length m

c and finally merging the portions using log c merging stages
based on Observation 1.

Another interesting property of the algorithm bitmergesortkeys consists
in the fact that it can easily be modified to perform the reverse operation,
i.e. restoring the unsorted from the sorted sequence while keeping the keys in
place. For this purpose we only need to reverse the order of lines 6–8 and let l
run from its maximal value down to 1 in the while loop. In fact this reversibility
holds for the whole wavelet tree construction process such that we can obtain
algorithms transforming a wavelet tree to the string it represents satisfying the
same time and space constraints as in the string to wavelet tree direction. We
omit the details due to lack of space.

The translation of the algorithm bitmergesortkeys to the case of a Huffman
coded sequence is not quite as simple as the algorithm for the case of block
code. We need to know each bit of the Huffman code of a symbol to be able
to determine the length of the code. We thus switch from an iterative bottom
up formulation of the recursive structure of the algorithm to a traversal of the
recursion tree in depth first order. We use a stack for the control of the recursion
tree traversal. The algorithm thus requires O(log n) additional words of memory
instead of a constant number of words. During the depth first traversal of the
recursion tree we visit each node twice, first while descending into the tree and
second while returning from the bottom of the tree. During the first visit we
need to determine the code length assigned to the left and right child, as we
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need to pass on the relevant information for the handling of the respective child
nodes. During the second visit we merge the partial results produced for the
child nodes. Whenever we have finished handling a node we need to return the
number of relevant zero and one bits used for sorting.

The algorithms bitmergesort and bitmergesortkeys can be used in com-
bination with other sorting approaches. More precisely they can be used to com-
bine partial results produced by other stable bit key sorting algorithms. The
algorithm bitmergesort can be combined with a bucket sorting approach in
a recursive scheme which produces free space within the array by compressing
sorted portions as in [3]. This yields an O(m log k) time stable in place bit key
sorting algorithm moving the keys. We omit the details here because this algo-
rithm is in this form not suitable for our application of wavelet tree construction
as we want the keys to stay in place while we sort. The algorithm may be in-
teresting in it’s own right though. Here we consider two approaches, where only
the first one seems easily translatable to the case of sorting Huffman encoded
sequences.

The first approach we consider is a combination of the algorithm bitmerge-

sortkeys and bucket sorting. It requires (k−1)m
c bits of additional space where

c ≥ 1. We can choose c as a function of m. For values of about c > m
2 the

algorithm turns into a pure run of bitmergesortkeys, as we do not have suf-
ficient space to sort more than one element using bucket sort. Assume we have
d(k − 1) bits of additional space, where d = �m

c � > 1. Then we sort each sub
array A[id . .min((i+1)d,m)−1] using bucket sort. Note that there is no need to
copy the key bits to the buckets, we just leave them where they are while we first
copy the attached information to the correct of the two buckets and then copy
it back in sorted order (i.e. first the bucket for zero, then the bucket for one).
After all the sub arrays have been handled, we merge the partial results via the
algorithm bitmergesortkeys using l = d. We call this algorithm bitbucket-

sortkeys. It takes time O(m log c), i.e. by choosing the amount of additional
memory we provide we can get any runtime between O(m) and O(m logm).
The linear time version requires additional space within a constant of m(k − 1)
bits, the O(m logm) time version requires only a constant number of additional
memory words, i.e. O(logm) additional bits.

The second approach uses the sorting method proposed in appendix B of [7].
It uses additional space in the order of O(

√
m(logm + k)) additional bits to

stably sort a sequence of k bit numbers of length m according to binary keys in
time O(m). As in the simpler approach bitbucketsortkeys, there is no need
to move the keys during the procedure. The algorithm works in two phases.
In the first phase, the integers are sorted into buckets, where each bucket is
represented as a list of blocks. Each block has space for O(

√
m) elements, i.e. it

requires O(
√
mk) bits. In the case of binary keys we need O(1) blocks in addition

to the array to be sorted. These blocks are called the external buffer. The array
is scanned from left to right and elements are distributed to the buckets. This
effectively means they are copied to the external buffer. As soon as a block in
the external buffer is full, it is copied to some free block in the original array.
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Due to the allocation strategy of the algorithm it is guaranteed that such a free
block exists. The block is not necessarily copied into the right position of the
array, thus we need to note where it should be. This is stored in an additional
array of size O(

√
m log

√
m) = O(

√
m logm) bits. In the second phase the blocks

are permuted to obtain the sorted sequence. This is done by following cycles in
the permutation stored in the additional array. The interested reader can find
more details in [7]. We call the variant of this algorithm leaving the keys in place
ksbbitbucketsortkeys.

The algorithm bitbucketsortkeys can be translated to the case of a Huff-
man coded array. Like for the translation of the algorithm bitmergesortkeys

we use a stack facilitating a depth first traversal of the recursion tree. When we
have reached a sufficient depth at which the code length of the considered sub
array is reduced enough we switch to bucket sorting and truncate the recursion
tree. From the bucket sorting we need to return the number of 0 and 1 key bits
found as if we would return from a recursive call to bitmergesortkeys. It is
unclear, whether the approach used in ksbbitbucketsortkeys can easily be
applied to Huffman coded sequences.

A simple modification of bitmergesort allows us to transform a sequence
A = a0, b0, a1, b1, . . . , bm−1 such that the ai are bits and the bi numbers of k− 1
bits in place in time O(m logm) to the sequence B = a0, a1, a2, . . . , am−1, b0,
b1, . . . , bm−1. For this purpose we may imagine the ai are assigned key 0, the bi
key 1 and we perform the sorting procedure according to these keys. The reversal
operations are easily modified for taking into account that the elements of the
sequence do not all have the same length in this case. We name this algorithm
transposek.

If we are given another method which is able to transpose sequences of length
m
c for some c ≥ 1 in time O(t(m

c )), then we can use an adapted version of
transposek and this other method to transpose an array in time O(ct(m

c ) +
m log c) by first transposing portions of length m

c and finally merging the portions
using the adapted version of transposek.

As for sorting we can consider several methods for transposition using addi-
tional space. A first simple method for transposing a sequence of length m

c in
time O(m

c ) can be implemented easily if we have m
c additional bits of space.

We first copy the bits moved to the front to the additional space, move the
other numbers into place by copying them to the back and copy the bits from
the additional space back to the front. A second method can be based on the
sorting scheme used in ksbbitbucketsortkeys. The only adaption necessary
here is to make sure we fill blocks of a fixed size, i.e. O(

√
m(δ − 1)) single bits

make one block and O(
√
m) integers (the rest of the integers without the keys)

make one block, so the second stage can handle blocks of equal size in bits. As
above the justification for describing the first simpler method is that it can easily
be applied to Huffman coded sequences, while this is not clear for the second
method.

In the presence of available additional memory we will mean these hybrid
approaches instead of the pure merge sort based variant below if we use the name
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transposek (i.e. using the second method similiar to ksbbitbucketsortkeys

for block code and the first method for Huffman code).
As the transposition method given is an adaption of the sorting method, the

translation to the Huffman code case can formulated analogously.

3 Generating Wavelet Trees

3.1 Definitions

Let Σ be a finite alphabet equipped with an injective function r : Σ �→ N as-
signing a rank to each symbol. We assume that |Σ| ≥ 2, otherwise all problems
handled in the following become trivial. Let σ = max{r(a)|a ∈ Σ} be the maxi-
mal rank of a symbol in the alphabet. Each rank and thus each alphabet symbol
can be represented in δ = �log2(σ + 1)� bits. We assume that δ ∈ O(w), i.e. our
word RAM can access the representation of each symbol in constant time.

Let b : Σ × N �→ {0, 1} be defined by b(a, i) = 1 iff the i’th least significant
bit in r(a) is 1, i.e. r(a) =

∑δ−1
i=0 b(a, i)2

i.
Throughout this section we consider an input sequence S ∈ Σn of length

n ∈ N, which we assume is given as a bit sequence

B = b(S[0], δ − 1)b(S[0], δ − 2) . . . b(S[0], 0)b(S[1], δ− 1) . . . b(S[n− 1], 0)

of length |B| = nδ, where we assume logn ∈ O(w). We identify the symbol S[i]
with the block of bits B[δi] . . . B[δ(i+ 1) − 1] in B.

Let Bk for 0 ≤ k < δ denote the subsequence given by

Bk = b(S[0], δ − k − 1)b(S[0], δ − k − 2) . . . b(S[0], 0)
b(S[1], δ − k − 1) . . . b(S[n− 1], 0) ,

i.e. the k most significant bits are masked from each symbol.
In analogy to S and B we define for 0 ≤ k < δ the sequence Sk of length n

by setting Sk[i] = Bk[i(δ − k)] . . . Bk[(i + 1)(δ − k) − 1]. Let S(i,k) denote the
subsequence of S containing exactly those symbols a such that

∑k−1
j=0 b(a, δ −

j − 1)2k−j−1 = i, i.e. the binary interpretation of the top k bits is i. We use Si
k

as a more convenient notation for (S(i,k))k below and use Si as a short form of
S(i,1).

The balanced wavelet tree of the string S is a binary tree such that the root
of the tree contains the bit sequence B[0], B[δ], B[2δ], . . . , B[(n − 1)δ], i.e. the
most significant bit of each character’s rank. If δ = 1, then the root of the bal-
anced wavelet tree is a leaf. Otherwise, if δ > 1, then the left child of the root is
the balanced wavelet tree of the subsequence S0

1 (i.e. the subsequence S0 with
the most significant bit removed. Accordingly we substitute δ by δ − 1 in the
construction.) and the right child is the balanced wavelet tree of S1

1 . The tree
is represented by the concatenation of the bit-vectors found in the tree nodes
traversed in breadth first order. The motivation for storing the nodes in breadth
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Fig. 1. Wavelet tree for the string wavelet represented by 101000000101000110110

first order is that this representation augmented with a rank dictionary allows
us to navigate in the tree without using pointers, as the start of the left child
of a node always equals the start of a node plus n bits and the start of the
right child can be determined by the start of the left child plus the number of 0
bits assigned to the node. The width of a left (right) child is determined by the
number of zero (one) bits in its parent node.

For the computation of the rank, select, access, etc. functions using the bal-
anced wavelet tree the reader is referred to the respective literature (cf. [4,5,9]).

As an example consider the string T = wavelet over the alphabet Γ =
{a, e, l, t, v, w} equipped with the rank function given by the pairs (a, 0 = 000),
(e, 1 = 001), (l, 2 = 010), (t, 3 = 011), (v, 4 = 100) and (w, 5 = 101). The bal-
anced wavelet tree of T is shown in Figure 1. The tree only consists of the bit
sequences shown with a grey background, the letters are provided for demon-
stration purposes only.

For a precise definition of Huffman shaped wavelet trees the reader is referred
to the literature (cf. [2]). In short the balanced structure of the block code based
wavelet tree is replaced by a tree structure based on the tree of a Huffman code
(cf. [6]) derived from the input sequence. This reduces the space used from δn
bits to Mn bits, where M denotes the average code length used by the code
per symbol for the complete input sequence. In contrast to the balanced wavelet
tree navigation in the Huffman shaped wavelet tree is not easily done without
pointers between the nodes. We consider the pre order depth first concatenation
of the nodes’ binary sequences as the representation of the tree. For the con-
struction of Huffman shaped wavelet trees we assume that the input sequence is
Huffman coded and we have supporting data structures allowing fast encoding
and decoding of the underlying code.

3.2 Wavelet Tree Construction Algorithms

The algorithms we will present generate the tree top down. They are based
on the sorting schemes ksbbitbucketsortkeys in the balanced case (where
we assume we have 0 ≤ O(

√
n(δ+log n)

c ) ≤ O(
√
n(δ + logn)) free bits) and

bitbucketsortkeys in the Huffman case (where we assume we have 0 ≤
n(M−1)

c ≤ n(M − 1) free bits).
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We first discuss the case of balanced wavelet trees. We consider one breadth
and one depth first approach. The first algorithm which we call WtBfs is based
on a breadth first traversal, i.e. it generates the tree level per level, while it
uses only a constant number of words of additional space for the control of
the tree traversal. It consists of δ − 1 repetitions of two phases. Consider iter-
ation k, where 0 ≤ k < δ − 1. The first phase sorts 2k arrays of total length n

using the algorithm ksbbitbucketsortkeys. These arrays are S0
k, . . . , S

2k−1
k ,

i.e. the data relevant for the levels k to δ − 1 of the tree. The second phase
uses the algorithm transposek to move the bits corresponding to the k’th level
into place. Both phases take O(n log c) time while we have δ − 1 such phases,
thus the overall time for the sort and transposition operations is O(δn log c).
As an example consider the string wavelet represented by 5041213 which is
(101)(000)(100)(001)(010)(001)(011) in binary where δ = 3 (the parentheses are
inserted to improve readability). We first sort by the most significant bit while
keeping the keys in place. This yields (100)(001)(110)(001)(011)(001)(000). The
first bit in each triple is still the same. The second and third bit of each triple
is obtained by taking the second and third bit of the original sequence sorted
by the first bit (which would be (000)(001)(010)(001)(011)(101)(100), this se-
quence is however not computed explicitly). Then we apply transpose3 to
(100)(001)(110)(001)(011)(001)(000), which yields the intermediate result
(1010000)((00)(01)(10)(01)(11)(01)(00)). The first n = 7 bits are the first n
bits of the output. The rest is the concatenation of the sequences S0

1 and S1
1 .

Subsequently for level k > 0 below the root we are confronted with the prob-
lem of determining where the sequences Si

k for 0 ≤ i < 2k start and end in
the bit sequence starting from index kδ. To find the number of symbols in the
input which equal i in the k most significant bits, we use a top down scan of
the existing output. The starting point of the sequence Si

k is obtained by ac-
cumulating the number of symbols assigned to sequences Sj

k for j < i. These
operations can be performed in time O(σδn) using a constant number of addi-
tional words of memory for one level. The overall runtime of the algorithm is
thus O(δn log c+ δσδn) = O(δn(log c+ σδ)). Consider for instance our example
above. We have produced the output for the first level of the tree. The next
level has two inner nodes. We consider them from low to high value. For i = 0
there is no smaller value, thus the left bound is 0. The number of values which
equal i = 0 is 5 (the number of zero bits on the first level). Thus the range of
S0

1 extends from bit 1 · n + 0 · (3 − 1) to 1 · n + (0 + 5) · (3 − 1) (where 1 · n
denotes the start of the input to be processed (we have processed one level,
thus the 1) and 3 = δ). The range for S1

1 extends from the right bound of S1−1
1

to 1 · n+ (0 + 5 + 2) · (3 − 1) (where the 2 denotes the number of 1 bits on the
first level).

The second algorithm which we call WtDfs performs the sorting along a
pre order depth first traversal of the tree using a stack of depth O(δ), where
each stack element consists of an index interval and a depth and thus requires
O(log n+log δ) bits. In the beginning the stack contains the pair ([0, n), 0) repre-
senting the root of the tree. All the transposition operations are postponed until
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the end of the algorithm. A slight adaption of the sorting algorithm is required
due to the fact that the sorted data is not contiguous (i.e. when we perform the
sorting for the lower levels, the bits corresponding to the levels above will still be
between the bits relevant for sorting), this however does not change the runtime
of the algorithm. The algorithm uses O(δ) additional words of memory and has
a runtime of O(δn log c). During the stack based traversal we need to take care
not to push empty intervals onto the stack, otherwise the term n log c in the run-
time of the algorithm is replaced by max{n log c, σ}. As an example again con-
sider the string wavelet represented by (101)(000)(100)(001)(010)(001)(011).
On the stack we find ([0, 7), 0). We first sort the interval [0, 7) at level 0 by
the most significant bit while keeping the keys in place. As above this yields
(1(00))(0(01))(1(10))(0(01))(0(11))(0(01))(0(00)). Now we count the number of
zeroes found in the most significant bits. This number is 5. Thus we push the
tuples ([5, 7), 1) and ([0, 5), 1) onto the stack as to be handled after we have
popped the tuple ([0, 7), 0). The interval [0, 5) denotes the left child node, [5, 7)
the right child node and the final 1 denotes the depth of the respective child
nodes. The next node handled is the left child of the root denoted by ([0, 5), 1).
We sort the subsequence (00)(01)(10)(01)(11) (the interval [0, 5) without the
output for level zero of the tree) by the most significant bit while keeping the
keys in place. This yields (00)(01)(11)(00)(11) and the global bit string becomes
(1(00))(0(01))(1(11))(0(00))(0(11))(0(01))(0(00)). The node has no children, so
we push no elements onto the stack. The next node handled is ([5, 7), 1). We sort
(01)(00) by the most significant bit while leaving the keys in place and obtain
(01)(00). Globally we obtain (1(00))(0(01))(1(11))(0(00))(0(11))(0(01))(0(00)).
The node has no children, so we push no elements onto the stack. The stack is
now empty. It remains to perform the postponed transpositions. We first per-
form transpose3 and then transpose2, where transpose3 handles all the
bits and transpose2 does not touch the front n bits. This gives us our final
result (1010000)(0010100)(0110110).

The following table shows a comparison of the two algorithms.

algorithm runtime additional space (bits)
WtBfs O(σδ2n+ δn log c) O(

√
n(δ+log n)

c ) +O(log n)
WtDfs O(δn log c) O(

√
n(δ+log n)

c ) +O(δ(log n+ log δ))

For the generation of Huffman shaped wavelet trees we use a pre order depth
first traversal of the tree and perform the transposition operations directly after
a node has been handled. For the sorting we use an additional space of (M−1)n

c +
O(log2 n) bits for some c ≥ 1 which may be a function of n. As above M denotes
the average code length used by the Huffman code per symbol for the complete
input sequence. The term (M−1)n

c may be reduced to zero by using a pure merge
sort approach. The O(log2 n) term stems from the stack of depth log n used for
sorting. Letm denote the maximum code length of the Huffman code used. Then
we need a stack of size O(m) to facilitate the depth first traversal through the
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wavelet tree during construction. The elements on the stack consist of the left
and right bound of the relevant sub array (each stored using O(log(Mn)) bits)
and the code prefix assigned to the represented node (which has a length of up
to m bits. Each stack element stores only a single bit of the prefix though). Thus
we need O(m log(Mn)) bits for the stack. Overall the space required for the
algorithm thus is (M−1)n

c +O(log2 n) +m log(Mn) bits. Assuming the encoding
and decoding routines for the Huffman code are fast enough, we can expect the
algorithm to run in time O(Mn log c).

4 Conclusion

In this paper we have discussed time and space efficient algorithms for con-
structing wavelet trees from strings. We have given algorithms which can be
parametrised by the amount of additional space they are allowed to use for both
balanced and Huffman shaped wavelet trees. For the case of balanced wavelet
trees this additional space can be between constant additional space (a fixed
number of words or O(log n) additional bits) and O(

√
n(δ + logn)) bits. On

the assumption of a constant sized alphabet we can get any runtime between
O(n) and O(n log n). Interesting problems include whether the O(n log n) time
bound can be broken, if we do not allow an algorithm to use additional memory
and if we can obtain a linear runtime in O(δn) using an additional space of
o(
√
n(δ + logn)) bits.

The author would like to thank the anonymous reviewers for helpful com-
ments and Juha Kärkkäinen and Roberto Grossi for interesting discussions on
the topic of this paper, in particular concerning the hint to the linear time sorting
algorithm given by Kärkkäinen et al. in [7].
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trees. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721,
pp. 1–6. Springer, Heidelberg (2009)

5. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: SODA, pp. 841–850 (2003)

6. Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proceedings of the Institute of Radio Engineers 40(9), 1098–1101 (1952)



218 G. Tischler
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Abstract. A modern DNA sequencing machine can generate a billion or
more sequence fragments in a matter of days. The many uses of the BWT
in compression and indexing are well known, but the computational de-
mands of creating the BWT of datasets this large have prevented its
applications from being widely explored in this context.

We address this obstacle by presenting two algorithms capable of com-
puting the BWT of very large string collections. The algorithms are
lightweight in that the first needs O(m log m) bits of memory to process
m strings and the memory requirements of the second are constant with
respect to m.

We evaluate our algorithms on collections of up to 1 billion strings
and compare their performance to other approaches on smaller datasets.
Although our tests were on collections of DNA sequences of uniform
length, the algorithms themselves apply to any string collection over any
alphabet.

Keywords: BWT, text indexes, next-generation sequencing.

1 Introduction

We consider the problem of computing the Burrows-Wheeler transform (BWT)
of very large datasets. Our interest in this topic arises from DNA sequencing,
a field that has been transformed by the advent of ‘next-generation’ sequencing
technologies [15]. Whole-genome sequencing of human DNA may sample the 3
billion base-pairs of the human genome to 30× redundancy or higher. A modern
DNA sequencing machine can produce this quantity of data in just a few days
and datasets of 100Gbases or larger have therefore become commonplace.

The BWT of such a dataset would be useful to have for the purposes of data
compression or for creating self-indexing data structures such as the FM-index
[4]. However, generating the BWT for datasets on this scale is the challenge that
we address in this paper.

Computing the BWT of a string from its suffix array (SA) is simple and fast,
and much effort has been devoted to devising algorithms for SA construction that
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are efficient in both space and CPU time [9–11]. However, all share the need for
the entire SA to be held in RAM, which becomes problematic for datasets of
the size in which we are interested. For instance, Simpson and Durbin [19] ex-
trapolate from their experiences with a variant of the SA construction algorithm
by Nong et al. [16] to estimate 700Gbytes of RAM would be necessary to build
the FM-index of a 20× oversampling of the human genome (60Gbases) by this
route.

A divide-and-conquer approach is one way to address this bottleneck: aim-
ing to compute the compressed suffix array (CSA) of large collections of texts,
Sirén [20] divides the collection into batches, computes the BWT of each in a
distributed fashion and then merges the results to obtain the BWT of the en-
tire collection. Nevertheless, the RAM requirements of the final merge remain
considerable - Sirén quotes 32Gbytes to index 42.03Gbytes of English text if 8
parallel threads are used, and double that if 16 threads are used.

Some studies [8, 18] showed that one can compute the BWT without a SA by
implicitly adding suffixes from the shortest ones to longest ones. However, these
algorithms are slow due to the large constant factor.

External memory algorithms are an alternative way of tackling large datasets.
Ferragina et al. [3] show how to build the BWT of a large string T by logically
partitioning it into r blocks Tr · · ·T1. Working from right to left in T , r passes
through the data are made. At pass h, the suffix array of Th+1 is used to update
bwt(Th · · ·T1) to give bwt(Th+1 · · ·T1), following the idea of [7]. At any point, the
RAM usage is dominated by the suffix array of the block Th+1 being merged, so
r can be adjusted to ‘tune’ the RAM usage of the algorithm to fit the memory
available.

In this paper, we present two lightweight algorithms for constructing the BWT
in external memory. With our application to DNA data in mind, our algorithms
assume the BWT is to be generated from a dataset comprising a large collection
of short strings.1 We therefore need to consider how the notion of the BWT
should be extended from a single string to a collection of strings. Mantaci et al.
[12] gave the first such generalization (cf. also [13, 14]), but this can be defined
in more than one way, the differences centering around how string comparisons
across text boundaries are handled. Here we follow the approach taken by Sirén
and others, assuming each string is appended with a unique terminating char-
acter ordered lexicographically so as to match the ordering of the strings in the
collection.

For a collection of m strings of length k, our algorithms are lightweight in
the sense that one uses only O(m log(mk)) bits of space and O(k sort(m)) time,
where sort(m) is the time taken to sort m integers, and the other works almost
entirely in external memory, takingO(km) time with RAM usage that is constant
for collections of any size, dependent only on the alphabet size and therefore
negligible for DNA data. The overall I/O volume is O(k2m). Our algorithms are

1 In addition, our implementations expect each string in the collection to be of equal
size, since many sequencing technologies produce data that is of this form. However
this limitation is not intrinsic to the algorithms themselves.
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scan-based in the sense that all files are accessed in a manner that is entirely
sequential and either wholly read-only or wholly write-only.

We carry out computational experiments to compare our code to the Sirén and
Ferragina et al. algorithms and to assess how the performance of our algorithms
scales to string collections as large as one billion 100-mers. Our experiments raise
some interesting points about the behaviour of external memory algorithms in
practice and suggest areas for future improvement.

2 Preliminaries

Let Σ = {c1, c2, . . . , cσ} be a finite ordered alphabet with c1 < c2 < . . . < cσ,
where < denotes the standard lexicographic order. Given a finite string w =
w0w1 · · ·wk−1 with each wi ∈ Σ, a substring of a string w is written as w[i, j] =
wi · · ·wj . A substring of type w[0, j] is called a prefix, while a substring of type
w[i, k−1] is called a suffix. We denote by j-suffix the suffix of w that has length
j. The concatenation of two words w and v, written wv, is simply the string
consisting of the symbols of w followed by the symbols of v.

Let S = {S1, S2, . . . , Sm} be a collection of m strings, each comprising k
symbols drawn from Σ. Each Si can be imagined to have appended to it an
end marker symbol $ that satisfies $ < c1. We define lexicographic order among
the strings in the usual way, except that each end marker $ is considered a
different symbol, so that every suffix of every string is unique in the collection.
The (implicit) end marker is in position k, i.e. Si[k] = Sj [k] = $, and we define
Si[k] < Sj [k], if i < j.

We define the 0-suffix as the suffix that contains only the end marker $.
The suffix array SA of a string w is the permutation of integers giving the

starting positions of the suffixes of w in lexicographical order. The BWT of w
is a permutation of its symbols such that the i-th element of the BWT is the
symbol preceding the first symbol of the suffix starting at position SA[i] in w,
for i = 0, 1, ..., k (we assume that the symbol preceding the suffix starting at the
position 0 is $). We refer interested readers to [17] and [1] for further reading on
suffix arrays and the Burrows-Wheeler Transform respectively.

3 Lightweight BWT Construction for a Collection of
Strings

In this section we describe two algorithms, inspired by [3, 12], that compute the
BWT of a collection of strings without concatenating the strings and without
needing to compute their suffix array. We assume that j = 1, 2, . . . , k and i =
1, 2, . . . ,m.

Our algorithms compute the BWT of the collection S incrementally via k
iterations. At each of the iterations j = 1, 2, . . . , k−1, the algorithms compute a
partial BWT string bwtj(S) by inserting the symbols preceding the j-suffixes of S
at their correct positions into bwtj−1(S). Each iteration j simulates the insertion
of the j-suffixes in the SA. The string bwtj(S) is a ‘partial BWT’ in the sense
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that the addition of m end markers in their correct positions would make it the
BWT of the collection {S1[k − j − 1, k], S2[k − j − 1, k], . . . , Sm[k − j − 1, k]}.

A trivial ‘iteration 0’ sets the initial value of the partial BWT by simulating
the insertion of the end markers $ in the SA. Since their ordering is entirely
determined by the position in S of the string they belong to, bwt0(S) is just the
concatenation of the last non-$ symbol of each string, that is S1[k − 1]S2[k −
1] · · ·Sm[k − 1].

Finally, iteration k inserts m end markers into bwtk−1(S) at their correct
positions. This simulates the insertion of the suffixes corresponding to the entire
strings into the SA.

Like in [3], the fundamental observation is that going from bwtj−1(S) to
bwtj(S) at iteration j requires only that we insert m new symbols and does
not affect the relative order of the symbols already in bwtj−1(S). We can think
of bwtj(S) as being partitioned into σ + 1 strings Bj(0), Bj(1), . . . , Bj(σ), with
the symbols in Bj(h) being those that are associated with the suffixes of S that
are of length j or less and begin with c0 = $ and ch ∈ Σ, for h = 1, . . . , σ. We
note that Bj(0) is constant for all j and, at each iteration j, we store Bj(h) in
σ + 1 external files that are sequentially read one-by-one.

During the iteration j = 1, . . . , k, we must insert the symbol associated with
the new suffix Si[k − j, k] of each string Si ∈ S (this symbol is Si[k − j − 1]
for j < k, or $ at the final iteration) into the BWT segment Bj(z), where
cz = Si[k− j] (we recall that Bj(z) contains all symbols associated with suffixes
starting with the symbol cz). Our main idea is that the position in Bj(z) where
this symbol needs to be inserted can be computed from the position r where,
in the previous step, the symbol cz has been inserted into the BWT segment
Bj−1(v), where cv = Si[k− (j− 1)] (we recall that Bj−1(v) contains all symbols
associated with suffixes that have already been inserted and that start with the
symbol cv).

To do this, we need to retain the BWT segments Bj−1(h), for 0 ≤ h ≤ σ, and
keep track of the positions within them of the symbols that correspond to the
(j−1)-suffixes of S, which we do by associating to each Bj−1(h) an array Pj−1(h)
of integers that stores the absolute positions of the (j − 1)-suffixes starting with
ch. Each Pj−1(h) is in turn associated with an array Nj−1(h) that has the same
number of entries and is such that Nj−1(h)[q] stores i, the original position in S
of the string Si whose (j−1)-suffix is pointed to by Pj−1(h)[q]. Here q is a generic
subscript of the array Nj−1(h) or (equivalently, since their number of entries is
the same) Pj−1(h). The maximum value of q is determined by the number of
(j − 1)-suffixes starting with ch and will therefore vary with both h and j.

Stated formally, at the start of iteration j, we assume the following structures
are available for each h = 0, . . . , σ, where c0 = $ and cn ∈ Σ, for n = 1, . . . , σ,
and the maximum value of q depends on the number of the (j − 1)-suffixes
starting with ch:

Bj−1(h) is a segment of the partial BWT.
Nj−1(h) is an array of integers such that Nj−1(h)[q] is associated with the

(j − 1)-suffix of the string Si ∈ S, where i = Nj−1(h)[q].
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Pj−1(h) is an array of integers such that Pj−1(h)[q] is the absolute position of
the symbol Si[k − j], associated with the (j − 1)-suffix of Si, in Bj−1(h),
where i = Nj−1(h)[q].

Hence, at the end of the iteration j − 1, for each element in Nj−1 and Pj−1, we
have that the symbol cz = Si[k − j], with i = Nj−1(v)[q], has been inserted in
the position Pj−1(v)[q] in Bj−1(v), where cv = Si[k − (j − 1)].

During the iteration j, we have to update these structures for each string
Si ∈ S. The crucial point is to insert the new symbol associated with the j-
suffix of Si into Bj−1(z), where cz = Si[k − j], for some z = 1, . . . , σ, at its
correct position in order to obtain Bj(z). Hence, our task is to compute Pj(h)
by considering how many suffixes of S that are of length j or less are smaller
than each suffix of length j.

The following lemma (similar to [3, Lemma 1]) is the key to this point and
it is based on a function called LF-mapping [5] that is also used extensively in
compressed self-indexes. This method is based on the count of symbols, from
first position to the position of the last inserted symbol of Si in bwtj−1(S), that
are smaller than cz = Si[k − j]. It is equivalent to count the number of symbols
that are associated with suffixes smaller than Si[k− j, k]. We observe that we do
not need to do exactly this, because the suffixes starting with a symbol smaller
than cz are associated with symbols in Bj−1(r) for r = 0, . . . , z− 1. So, we only
need to count how many suffixes of length j or less starting with the symbol cz
are smaller than the suffix Si[k − j, k].

Lemma 1. For any iteration j = 1, 2, . . . , k, given a symbol ch, with 0 ≤ h ≤ σ,
let q be an index that depends on the number of the (j − 1)-suffixes starting
with ch. For each string Si ∈ S, with i = Nj−1(h)[q], we assume that the suffix
Si[k− (j − 1), k] is lexicographically larger than precisely r = Pj−1(v)[q] suffixes
of length 0, 1, . . . , j − 1 that begin with the symbol cv = Si[k − (j − 1)]. Now,
we fix cz = Si[k − j]. Then the new suffix Si[k − j, k] = czSi[k − (j − 1), k]
is lexicographically larger than precisely r′ suffixes of length 0, 1, . . . , j, where
r′ = rank(cz , r, cv) and rank(cz, r, cv) denotes the number of occurrences of cz in
Bj−1(0) · · · Bj−1(v − 1)Bj−1(v)[0, r − 1].

Proof. The proof is similar to that of Ferragina et al. in [3]. By hypothesis
cz = Si[k − j] and cv = Si[k − (j − 1)]. Clearly, Si[k − j, k] is larger than
the suffixes starting with a symbol smaller than cz (they are associated with
the symbols in Bj−1(0), . . . , Bj−1(z − 1)), and is smaller than all suffixes start-
ing with a symbol greater than cz (they are associated with the symbols in
Bj−1(z+1), . . . , Bj−1(σ)). Since the suffixes starting with cz are associated with
the symbols in Bj−1(z), the correct position of the symbol associated with the
suffix Si[k − j, k] is in Bj−1(z). Now, the crucial point is to compute how many
suffixes of length j or less starting with cz are smaller than Si[k−j, k]. The sorting
of the rows in BWT implies that counting how many suffixes starting with cz in
{S1[k−j, k], S2[k−j, k], . . . , Sm[k−j, k]} that are smaller than Si[k−j, k] is equiv-
alent to counting the number of occurrences of cz in Bj−1(0), . . . , Bj−1(v − 1)
and in Bj−1(v)[0, r − 1]. This is precisely rank(cz , r, cv). ��
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The positions of each j-suffix Si[k−j, k] are computed using Lemma 1 and stored
in Pj according to the symbol Si[k − j]. In other words, if cz = Si[k − j], the
computed position r′ is stored into Pj(z) and i is stored into Nj(z). Moreover,
the value r′ corresponds to the absolute position in Bj(z) where we have to insert
the new symbol associated with Si[k − j, k] starting with cz. This means that,
for each symbol ch, with 0 ≤ h ≤ σ, we consider, in the computation of the new
positions, all new j-suffixes in S that begin with ch. Hence, if Sr[k−j] = Ss[k−j]
and Sr[k − (j − 1), k] < Ss[k − (j − 1), k], for some 1 ≤ r, s ≤ m, it follows
that Sr[k − j, k] < Ss[k − j, k]. For this reason and since each Bj(h) is stored
in an external file, we have to sort each Pj(h) (respectively Nj(h)) and insert
the new symbols according to the value of their position, from the smallest
to the largest. Given this information, we can build Bj(1), . . . , Bj(σ) by using
the current files Bj−1(1), . . . , Bj−1(σ). The idea is very simple; we read —in a
sequential way— each external file associated with each Bj(h) once and insert
all symbols associated with the j-suffixes starting with the symbol ch. Once
all the symbols are read and copied, Bj−1(0) · · ·Bj−1(σ) form Bj(0) · · ·Bj(σ)
respectively, i.e. the partial BWT string required by the next iteration. Since
we no longer need Pj−1(h) and Bj−1(h), we can write Pj(h) and Bj(h) over the
already processed Pj−1(h) and Bj−1(h).

The counts for Bj−1(d), cd < S[k − j], are dealt with by keeping a count
of the number of occurrences of each symbol for all Bj−1(h) in memory, which
takes O(σ2 log(mk)) bits of space. For Bj−1(z), cz = S[k− j], the pointer value
corresponding to S—which we read from Pj−1(h)—tells us how far along the
count needs to proceed in Bj−1(z). So for each Bj−1 we need O(σ log(mk)) bits
of space: a trivial amount for DNA data, although potentially an issue for very
large alphabets.

We can summarize the steps at the iteration j in the following way:

1. For each symbol cv, with 0 ≤ v ≤ σ and for each element q (we observe
that the maximum value of q depends on the number of the (j − 1)-suffixes
starting with cv), we know:
– The number of the sequence i = Nj−1(v)[q] (clearly Si[k− (j−1)] = cv).
– r = Pj−1(v)[q] (it means that cz = Si[k − j] has been inserted in the

position r of Bj−1(v) at the end of the previous step).
– By using cz , r and cv, we compute r′ = rank(cz , r, cv) (see Lemma 1),

i.e. the position where we have to insert the new symbol in Bj(z). We
store r into Pj(z).

– We store i into Nj(z).
– We observe that we do not need to store cz, because we can read the

symbol cz from Bj−1(v) when we compute the new position.
2. For each symbol cz, with 0 ≤ z ≤ σ, we sort the pair (Pj(z), Nj(z)) in

ascending order, where Pj(z) is the primary key.
3. For each symbol cz, with 0 ≤ z ≤ σ, and for each element q (where the

maximum value of q depends on the number of the j-suffixes starting with
cz), we insert the new symbol associated with j-suffix of the string Si, where
i = Nj(z)[q], into Bj(z) in the position Pj(z)[q].

4. Return Bj , Pj , Nj .
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Now, we are ready to describe our algorithms. Both are based on the above
description, but they differ mainly in the data structures used. In particular,
the first algorithm uses more internal memory and less time, whereas for small
alphabets the second algorithm uses almost no memory at all.

Algorithm 1 - BCR. In the above description, we used Pj(h) and Nj(h)
for each symbol ch, with 0 ≤ h ≤ σ, whereas in the implementation of the
first algorithm, for each iteration j, we allocate a unique array Pj for all Pj(h)
and a unique array Nj for all Nj(h) in internal memory. We observe that Pj

and Nj contain exactly one integer for each sequence in the collection, Pj uses
O(m log(mk)) bits of workspace and Nj uses O(m logm) bits of workspace. Since
Pj [q], for some q, denotes the position into Bj(z) of the new symbol associated
with the j-suffix Si[k − j, k] starting with cz = Si[k − j] and i = Nj [q], we
need another array Qj, setting Qj[q] = z. It uses O(m log σ) bits of workspace.
We do not want to read the σ external files containing the BWT segments Bj

more than once and since the values in Pj are absolute positions (see the above
description), we need to sort the values in Pj before inserting the new symbols.
The first, second and third keys of the sort are the values in Qj, Pj and Nj

respectively. We do not need to store the associated suffixes in memory, so this
algorithm uses O(m log(mk)) bits of workspace and O(k sort(m)) of time, where
sort(m) is the time needed to sort Qj , Pj and Nj . We can observe that if we
store Qj, Pj , Nj in external files and use an external sorting algorithm, we could
significantly reduce the workspace.

Algorithm 2 - BCRext. Our second algorithm is based on least-significant-
digit radix sort. For this variant, sorting of arrays is not required because the
sequences themselves are sorted externally. At the start of iteration j, the el-
ements of S are assumed to be ordered by (j − 1)-suffix, this ordering being
partitioned into external files Tj−1(1), . . . , Tj−1(σ) according to the first char-
acters of the (j − 1)-suffixes. Files Pj−1(1), . . . , Pj−1(σ) are such that Pj−1(h)
contains the positions of the (j − 1)-suffixes in Bj−1(h), ordered the same way.

All files are assumed to be accessed sequentially via read-only R() or write-
only W() file streams. In the order h = 1, . . . , σ, we open read-only file streams
to each of Tj−1(h) and Pj−1(h), while two read-only file streams R1(Bj−1(h))
and R2(Bj−1(h)) reading from each segment of the partial BWT remain open
throughout the iteration.

Reading a string S ∈ S from R(Tj−1(h)) and its associated pointer P (which
points to the position of its (j − 1)-suffix in Bj−1(h)) from R(Pj−1(h))), each S
is then placed into one of σ distinct output files Tj(1), . . . , Tj(σ) according to
the value of S[k − j]. Once all the sequences are processed, reading these files
in the order Tj(1) . . . Tj(σ) forms the j-suffix ordering of the collection S that is
needed for the next iteration.

The key observation here is that since the strings of S are presented in (j−1)-
suffix order, so also must be the subset whose (j − 1)-suffixes share a common
first symbol ch. Thus we use R1(Bj−1(h)) to count the number of occurrences
of each symbol seen so far in Bj−1(h), keeping track of how far into Bj−1(h) we
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have read so far. We then read forward to the position pointed to by P , updating
the counts as we go. Since the strings are processed in (j − 1)-suffix order, we
never need to backtrack.

Having determined where to put the new BWT symbol S[k−j−1] in Bj−1(z),
where cz = S[k− j], we use R2(Bj−1(z)) to read up to that position, then write
those symbols plus the appended S[k− j − 1] to W(Bj(z)). All strings S′ whose
symbols need to be inserted into Bj−1(z) arrive in (j − 1)-suffix order and also
satisfy S′[k − j] = cz . They are therefore j-suffix ordered so, again, we never
need to backtrack.

Finally, we must write to W(Pj(z)) the entry that corresponds to S. To do this,
we need to keep count of the number of additional symbols that have so far been
inserted between the symbols from Bj−1(z) and sent to W(Bj(z)). This provides
an offset that must be added to the number of symbols read from R2(Bj−1(z))
so far to create the value we need.

Once the last element of Tj−1(σ) has been read, we update the cumulative
count values to reflect any symbols not yet read from each R1(Bj−1(h)) and send
any symbols not yet read from R2(Bj−1(h)) to W(Bj(h)).

Figure 1 uses a simple example to illustrate how the data structures associated
with both variants of the algorithm are updated during an iteration.

4 Computational Experiments

We tested our approach on subsets of a collection of one billion human DNA
sequences, each one 100 bases long, sequenced from a well-studied African male
individual [2] (available from the Sequence Read Archive [6] using the accession
number ERA0157432). To prove the low resource needs of our algorithms, all
tests were carried out on one of two identical machines, each having 16Gbytes
memory and two Intel Xeon X5450 (Quad-core) 3GHz processors (we only used
one processor for our tests). Each machine was directly connected to its own array
of 146Gbytes SAS disks in RAID6 configuration, each array having a Hewlett-
Packard P6000 RAID controller with 512Mbytes cache. We had exclusive access
to both test machines and their associated disk arrays for the duration of our
experiments.

We developed prototypical implementations BCR and BCRext of the two algo-
rithms described in Section 3. The code is available upon request from the authors.

For smaller input instances, we compared these programs to bwte from the
bwtdisk toolkit (version 0.9.03), which implements the blockwise BWT con-
struction algorithm described in [3]. Since bwte constructs the BWT of a single
string, we concatenated our string collections into this form using 0 as a delim-
iter, choosing 0 because it is lexicographically smaller than any A, C, G, T, or N.
An entirely like-for-like comparison would use a different end marker for each
string, however the bwte implementation does not support the many millions of
distinct end marker symbols this would require.
2 Available at ftp://ftp.sra.ebi.ac.uk/vol1/ERA015/ERA015743/srf/
3 Available at http://people.unipmn.it/manzini/bwtdisk/

ftp://ftp.sra.ebi.ac.uk/vol1/ERA015/ERA015743/srf/
http://people.unipmn.it/manzini/bwtdisk/
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B5(0) Suffixes
0 C $1
1 C $2
2 T $3

B5(1) Suffixes
0 C AAC$1
1 A AC$1
2 G AGCTC$2

B5(2) Suffixes
0 A C$1
1 T C$2
2 C CAAC$1
3 G CCAAC$1
4 T CGCTT$3
5 G CTC$2
6 G CTT$3

B5(3) Suffixes
0 A GCTC$2
1 C GCTT$3

B5(4) Suffixes
0 T T$3
1 C TC$2
2 C TT$3

BCR :
Read in sequences
in Q and P order

P5 = [2, 3, 4] P6 = [0, 1, 2]
N5 = [2, 1, 3] ⇒ N6 = [2, 1, 3]
Q5 = [1, 2, 2] Q6 = [3, 3, 4]

⇒

BCRext :
Read in sequences
in 5-suffix order

P5(0) = [ ] P6(0) = [ ]
P5(1) = [2] P6(1) = [ ]
P5(2) = [3, 4] ⇒ P6(2) = [ ]
P5(3) = [ ] P6(3) = [0, 1]
P5(4) = [ ] P6(4) = [2]

B6(0) Suffixes
0 C $1
1 C $2
2 T $3

B6(1) Suffixes
0 C AAC$1
1 A AC$1
2 G AGCTC$2

B6(2) Suffixes
0 A C$1
1 T C$2
2 C CAAC$1
3 G CCAAC$1
4 T CGCTT$3
5 G CTC$2
6 G CTT$3

B6(3) Suffixes
0 T GAGCTC$2
1 A GCCAAC$1
2 A GCTC$2
3 C GCTT$3

B6(4) Suffixes
0 T T$3
1 C TC$2
2 G TCGCTT$3
3 C TT$3

Fig. 1. Iteration 6 of the computation of the BWT of the collection S = {TGCCAAC,
AGAGCTC,GTCGCTT} on the alphabet {A, C, G, T}. The two columns represent
the partial BWT before and after the iteration and, in between, we see how the auxiliary
data stored by the two variants of the algorithm changes during the iteration. The
positions of the new symbols corresponding to the 6-suffixes (shown in bold on the
right) are computed from the positions of the 5-suffixes (in bold on the left), which
were retained in the arrays P after the previous iteration. For clarity, we give distinct
subscripts to the end markers of each of the sequences in the collection.

Intuitively, the BWT is more work to compute for a string of size km than for
a collection of m strings of length k, since the number of symbol comparisons
needed to decide the order of two suffixes is not bounded by k. In our particular
case, however, the periodic nature of the concatenated string means that 99 out
of 100 suffix/suffix comparisons will still terminate within 100 symbols, because
one suffix will hit 0 but the other will not, the only exception being the case
where both suffixes start at the same position in different strings. The problem
bwte is being asked to solve is therefore of comparable complexity to ours. We ran
bwte using 4Gbytes of memory, the maximum amount of memory the program
allowed us to specify.

We also constructed the compressed suffix array (CSA) on smaller instances
using Sirén’s program rlcsa [20]4. On those input instances rlcsa poses an in-
teresting alternative, especially since this algorithm is geared towards indexing

4 Available at http://www.cs.helsinki.fi/group/suds/rlcsa/rlcsa.tgz, version
tested was downloaded on 8th December 2010.

http://www.cs.helsinki.fi/group/suds/rlcsa/rlcsa.tgz
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text collections as well. We split the input data into 10 batches, constructing a
separate index for each batch then merging the indexes afterwards. With increas-
ing data volumes, however, the computational requirements for constructing the
CSA become prohibitive on our testing environment. In [20, Section 6], 8 threads
and up to 36−37Gbytes of memory are used to construct the CSA of a text col-
lection 41.48Gbytes in size, although we note the author describes other variants
of the algorithm that would use less RAM than this.

Table 1 gives the results for all the input instances that we generated. The
first two (0043M and 0085M) were sized to match the largest datasets considered
in [3]. We created the latter three to show the effectiveness of our approach on
very large string collections. rlcsa and bwte show efficiency (defined as user
CPU time plus system CPU time as a fraction of wallclock time) approaching
100% in all our experiments (not only on our test machines, but on other servers
as well), whereas both BCR and BCRext exhibit a drop in efficiency for large
datasets. Even so, BCR and BCRext are both able to process the 1000M dataset
at a rate that exceeds the performance of bwte on the 0085M dataset, which is
less than one tenth of the size. This efficiency loss, which we believe is due to the
internal cache of the disk controller becoming saturated, starts to manifest itself
on smaller datasets for BCRext than for BCR, which is likely to be a consequence
of the greater I/O demands of BCRext . Since the I/O of BCRext is dominated by
the repeated copying of the input sequences during the radix sort, we modified
BCRext to minimise the data read to and from disk during this activity.

In initial experiments with the zlib5 library, the CPU overhead of on-the-
fly compression and decompression of the input sequences to and from gzip
format more than outweighed any possible efficiency gain that could arise from
the reduced file sizes. We had more success by using a 4-bits-per-base encoding
and by observing that, during a given iteration, we do not need to copy the
entire input sequences but only the prefixes that still remain to be sorted in
future iterations. The resulting new version BCRext++ was otherwise identical to
BCRext but reduced the processing time for the 1 billion read dataset by 47%,
with even greater gains on the smaller datasets.

To see how performance scales with respect to sequence length, we concate-
nated pairs of sequences from our collection of 100 million 100-mers to create
a set of 50 million 200-mers. While this collection contains the same number
of bases, BCRext and BCRext++ both needed a similar proportion of additional
time to create the BWT (69% and 67% respectively), whereas the time needed
by BCR was only 29% more than was required for the original collection. The
likely explanation for the difference is that the radix sort performed by BCRext
and BCRext++ requires twice as much I/O for the 200-mer dataset than for the
original collection.

To look further at the relationship between disk hardware and efficiency, we
also performed some tests on a machine whose CPU was identical to those used
for our previous tests but that was also equipped with a solid state hard drive

5 Available at http://www.zlib.net

http://www.zlib.net
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Table 1. The input string collections were generated on an Illumina GAIIx sequencer,
all reads are 100 bases long. We chose the first two instances to have data sets com-
parable in size to the largest ones tested in [3]. Size is the input size in gigabytes, wall
clock time—the amount of time that elapsed from the start to the completion of the
instance—is given as microseconds per input base, and memory denotes the maximal
amount of memory (in gigabytes) used during execution. BCRext and BCRext++ need to
store only a constant and (for the DNA alphabet) negligibly small number of integers
in RAM regardless of the size of the input data, we therefore state a -. The efficiency
column gives the CPU efficiency values, i.e. the proportion of time for which the CPU
was occupied and not waiting for I/O operations to finish, as taken from the output
of the /usr/bin/time command. Some of the tests were repeated on a solid-state hard
drive (SSD), the results from these are shown last. For all tests, the best wall clock
time achieved is marked in bold.

instance size program wall clock efficiency memory

0043M 4.00 bwte 5.00 0.99 4.00
4.00 rlcsa 2.21 0.99 7.10
4.00 BCR 0.99 0.84 0.57
4.00 BCRext 2.15 0.58 −
4.00 BCRext++ 0.93 0.66 −

0085M 8.00 bwte 7.99 0.99 4.00
8.00 rlcsa 2.44 0.99 13.40
8.00 BCR 1.01 0.83 1.10
8.00 BCRext 4.75 0.27 −
8.00 BCRext++ 0.95 0.69 −

0100M 9.31 BCR 1.05 0.81 1.35
9.31 BCRext 4.6 0.28 −
9.31 BCRext++ 1.16 0.61 −

0800M 74.51 BCR 2.25 0.46 10.40
74.51 BCRext 5.61 0.22 −
74.51 BCRext++ 2.85 0.29 −

1000M 93.13 BCR 5.74 0.19 13.00
93.13 BCRext 5.89 0.21 −
93.13 BCRext++ 3.17 0.26 −

0085M 8.00 bwte 8.11 0.99 4.00
(SSD) 8.00 rlcsa 2.48 0.99 13.40

8.00 BCR 0.78 0.99 1.10
8.00 BCRext 0.89 0.99 −
8.00 BCRext++ 0.58 0.99 −

1000M 93.13 BCR 0.98 0.91 13.00
(SSD) 93.13 BCRext++ 1.24 0.64 −

(SSD)6. Since both rlcsa and bwte already operate at close to maximum ef-
ficiency, we would not expect the run time of these programs to benefit from
the faster disk access speed of the SSD and their performance when the 0085M
dataset was stored on the SSD was in line with this expectation. However the
6 We used an OCZ Technology R2 p88 Z-Drive with 1Tbyte capacity and a claimed

maximum data transfer rate of 1.4Gbytes per second.
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SSD greatly improved the efficiency of our algorithms, reducing the run times
of BCRext and BCRext++ on the 1000M dataset by more than 5-fold and 2-fold
respectively, meaning that the BWT of 1 billion 100-mers was created in just
over 27 hours using BCR, or 34.5 hours with BCRext++.

5 Discussion

The algorithms we describe here represent a step towards making the BWT a
practical tool for processing of the vast collections of strings that are gener-
ated by modern DNA sequencers. Their effectiveness on very large datasets was
discussed in Section 4, but a further aspect of practical relevance is that our
transformations are reversible: the inversion procedure closely follows that of
the original BWT and that in [13]. This is especially important if one wants to
use the (compressed) BWT as an archival format that allows us to extract the
original strings. The idea is to define a permutation π on bwt(S) and F , that
is the symbols of bwt(S) in lexicographic order. We are able to decompose the
permutation π into disjoint cycles: π = π1π2 · · ·πm. Each cycle πi corresponds
to a conjugacy class of a string in S.

Following the same reasoning, we can delete any string S in S and obtain the
BWT of S \ {S}. Adding new strings to an existing BWT is feasible as well. We
simply use Lemma 1 and obtain the BWT of S∪ {S}. In both cases, there is no
need to construct the BWT from scratch.

Finally, note that BCR allows a certain degree of parallelization. The computa-
tion of the new positions is independent of each other and is thus easily paralleliz-
able. Inserting the new symbols into the partial BWTs can be done in parallel
as well. This allows us to use multiple processors on multi-core servers that are
commonplace nowadays while keeping the computational requirements low.
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Abstract. A palindrome is a string that reads the same forward and
backward. For a string x, let Pals(x) be the set of all maximal palin-
dromes of x, where each maximal palindrome in Pals(x) is encoded by a
pair (c, r) of its center c and its radius r. Given a text t of length n and
a pattern p of length m, the palindrome pattern matching problem is to
compute all positions i of t such that Pals(p) = Pals(t[i : i + m − 1]).
We present linear-time algorithms to solve this problem.

1 Introduction

A palindrome is a symmetric string that reads the same forward and backward.
Namely, a string w is a palindrome if w = xaxR where x is a string, xR is a
reversal of x, and a is either a single character or the empty string.

Recently, palindromic structures in strings have been extensively studied: A
string of length n is called palindromic rich (or simply rich) if it contains n+ 1
distinct palindromes (including the empty string). It is known that any string of
length n can contain at most n+ 1 distinct palindromes [6]. A unified study of
palindromic richness of finite and infinite strings was initiated in [7]. A close re-
lationship between palindromic richness and the Burrows-Wheeler transform [5]
was recently discovered in [16]. Another concept regarding palindromic struc-
tures is palindrome complexity [1,4,2] of a string, which is the number of palin-
dromic substrings of a given length in the string.

There exist several efficient algorithms that solve interesting problems on
palindromes: A linear-time algorithm to check if a given string is palindromic rich
or not, is presented in [8]. One can compute the set of all maximal palindromes of
a given string in linear time [13]. The reverse engineering problem of computing
a string from a given set of maximal palindromes is solvable in linear time [11],
and its closely related problem is also considered in [14].

In this paper, we introduce a new paradigm of pattern matching based
on palindromes in strings. Two strings of same length m are said to be pal-
equivalent iff the length of the maximal palindrome at every center in the strings
is equal [11]. Given a text string t and a pattern string p, we are interested in
finding all text positions i (1 ≤ i ≤ n) such that p and t[i : i + m − 1] are

R. Giancarlo and G. Manzini (Eds.): CPM 2011, LNCS 6661, pp. 232–245, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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pal-equivalent, where n and m are text and pattern lengths, respectively. This
problem is called the palindrome pattern matching.

It is not difficult to see that the palindrome pattern matching problem can
be solved in O(nm) time: We pre-compute all maximal palindromes for t and
p using linear time algorithms [13,9]. For every text position i, we compare the
length of the maximal palindromes of t at position i + j − 1 and that of p at
position j for every 1 ≤ j ≤ m. If a maximal palindrome of the text “goes over”
the interval [i : i+j−1], then the left and right arms of the maximal palindrome
are trimmed accordingly for comparison.

There exists a linear-time algorithm for small alphabets. In [11] it was shown
that if the alphabet size is at most 3, then two strings are pal-equivalent iff those
strings parameterized match [3]. Hence the palindrome pattern matching can be
solved in O(n+m) time for ternary and smaller alphabets.

In this paper, we present efficient solutions for larger alphabets. Firstly, we
present an algorithm which solves the problem in O(n+m) time for arbitrary al-
phabets. This algorithm is a palindrome-pattern-matching version of the Morris-
Pratt [15] pattern matching algorithm. Secondly, we propose another algorithm
that uses a new text indexing structure called the palindrome suffix trees. We
show that palindrome suffix trees can be constructed in O(n log σ) time, where σ
is the alphabet size. Using the palindrome suffix tree, we can solve the problem
in O(m log σ + r) time, where r is the number of text positions to report.

The algorithms of this paper are applicable to several practical problems, e.g.,
in bioinformatics. For instance, similar palindromic sequences often need to be
identified in DNA and RNA sequence analysis [9]. Sequences having similar palin-
dromic structures may code for similar 3-D structures of the respective molecules,
leading to possible functional interpretation of the identified sequences. Due to
the size of genomes, efficiency of search methods is of great importance.

2 Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of
a string w is denoted by |w|. The empty string ε is a string of length 0, that
is, |ε| = 0. Let Σ+ = Σ∗ − {ε}. For a string w = xyz, x, y and z are called a
prefix, substring, and suffix of w, respectively. The i-th character of a string w
is denoted by w[i] for 1 ≤ i ≤ |w|, and the substring of a string w that begins
at position i and ends at position j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|.
For convenience, let w[i : j] = ε if j < i.

For any string w, let wR denote the reversed string of w, that is, wR =
w[|w|] · · ·w[2]w[1]. A string w is called a palindrome if w = wR. If |w| is even,
then w is called an even palindrome, that is, w = xxR for some x ∈ Σ∗. If |w|
is odd, then w is called an odd palindrome, that is, w = xaxR for some x ∈ Σ∗

and a ∈ Σ. The radius of a palindrome w is |w|
2 .

The center of a palindromic substring w[i : j] of a string w is i+j
2 . A palin-

dromic substring w[i : j] is called the maximal palindrome at the center i+j
2 if
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no other palindromes at the center i+j
2 have a larger radius than w[i : j], i.e.,

if w[i − 1] �= w[j + 1], i = 1, or j = |w|. In particular, a maximal palindrome
w[i : |w|] is called a suffix palindrome of w.

Let Pals(w) be the set of all center-distinct maximal palindromes where each
element is encoded by a pair of its center and radius, namely,

Pals(w) =
{
(c, r)

∣∣∣ w[c− r + 0.5 : c+ r − 0.5] is a maximal palindrome
at center c = 1, 1.5, 2, . . . , n

}
,

Also, let

SPals(w) = {(c, r) | (c, r) ∈ Pals(w), c + r − 0.5 = |w|},
namely, SPals(w) represents the set of all suffix palindromes of w.

For example, let w = abbacabbba. Then

Pals(w) = {(1, 0.5), (1.5, 0), (2, 0.5), (2.5, 2), (3, 0.5), (3.5, 0), (4, 0.5), (4.5, 0),
(5, 3.5), (5.5, 0), (6, 0.5), (6.5, 0), (7, 0.5), (7.5, 1), (8, 2.5), (8.5, 1),
(9, 0.5), (9.5, 0), (10, 0.5)} and

SPals(w) = {(8, 2.5), (10, 0.5)}.
Theorem 1 ([13]). For any string w of length m, Pals(w) can be computed in
O(m) time.

Throughout this paper, we assume that the elements of Pals(w) are sorted in in-
creasing order of centers c. Actually, the algorithm of [13] computes the elements
of Pals(w) in this order.

In this paper, we tackle the following problem.

Problem 1 (Palindrome pattern matching, pal-matching in short). Given a text
string t of length n and a pattern string p of length m, compute all positions i
of t such that Pals(p) = Pals(t[i : i+m− 1]).

3 Linear-Time Palindrome Pattern Matching Algorithm

To achieve a linear time solution to Problem 1, we design a pal-matching version
of the Morris-Pratt algorithm [15].

Definition 1. A palindrome border (pal-border in short) of a string p of length
m is any integer j s.t. 0 ≤ j < m and Pals(p[1 : j]) = Pals(p[m− j + 1 : m]).

For example, the set of pal-borders of string p = aabcdaacdbcc, is {7, 2, 1, 0},
since Pals(aabcdaa) = Pals(aacdbcc), Pals(aa) = Pals(cc), Pals(a) = Pals(c),
and Pals(ε) = Pals(ε).

Let N be the set of non-negative integers. For any string p of length m,
let Pal Borderp : N → N be the function such that Pal Borderp(m) equals
the largest pal-border of string p. When clear from the context, we abbrevi-
ate Pal Borderp as Pal Border . Since Pal Border (m) is strictly smaller than m,
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we finally obtain 0 by iteratively applying the function Pal Border to m. For
any function f : N → N and any m, k ∈ N , we define fk(m) as follows:
fk(m) = f(m) if k = 1, and fk(m) = f(fk−1(m)) if k ≥ 2. Similar to a
standard border of a string [15], the following lemma holds.

Lemma 1. For any string p of length m, let k be the smallest integer such that
Pal Borderk(m) = 0. Then

Pal Border (m),Pal Border2(m), . . . ,Pal Borderk(m)

are all the pal-borders of p with m > Pal Border (m) > Pal Border2(m) > · · · >
Pal Borderk(m) = 0.

Definition 2. The palindrome border array (pal-border array) βp of a string p
of length m is an integer array of length m such that βp[i] = Pal Borderp[1:i](i)
for each 1 ≤ i ≤ m.

For example, for string p = aabbaa, we have βp = [0, 1, 1, 2, 3, 4]. When it is
clear from the context, we abbreviate βp as β.

In what follows, we present how to compute the pal-border array βp of a given
string p in linear time.

For any string w of length m ≥ 1, let Lpalw be an integer array of length m
such that

Lpalw[i] = max{i− k + 1 | w[k : i] = w[k : i]R, 1 ≤ k ≤ i}.
That is, the value of Lpalw[i] is equal to the length of the longest palindrome that
ends at position i in w, for every 1 ≤ i ≤ m1. Note that the above palindrome
w[k : i] is not necessarily a maximal palindrome at center k+i

2 in w.
For example, for string w = abbacabbba, Lpalw = 1 1 2 4 1 3 5 7 3 5.
The following lemma is a key to solve Problem 1 of pal-matching.

Lemma 2. For any strings w, z ∈ Σ+, Pals(w) = Pals(z) iff Lpalw = Lpalz.

Proof. (=⇒) We prove the claim by contradiction. Assume for contrary that
Lpalw �= Lpal z. Then there exists position i such that Lpalw[i] �= Lpal z[i]. As-
sume w.l.o.g. that Lpalw[i] < Lpalz [i]. Let k = (Lpal z[i])/2. The radius of the
maximal palindrome centered at position i − k + 0.5 of w is less than k, how-
ever, that of the maximal palindrome centered at position i − k + 0.5 of z is
at least k. This contradicts the assumption that Pals(w) = Pals(z). Hence if
Pals(w) = Pals(z), then Lpalw = Lpalz .

(⇐=) We prove the claim by contradiction and infinite descent. Assume for
contrary that Pals(w) �= Pals(z). Then there exists center c such that (c, r) ∈
Pals(w), (c, u) ∈ Pals(z), and r �= u. Assume w.l.o.g. that r < u.

In what follows, we consider position j = �c+ u� − 1.

1. When Lpalw[j] < 2u. Since (c, u) ∈ Pals(z), Lpal z[j] ≥ 2u. This contradicts
the assumption that Lpalw = Lpalz .

1 The notion of Lpalw[i] was previously introduced in [8], denoted LPS[i] therein.
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Fig. 1. Illustration for infinite descent in the proof of Lemma 2

2. When Lpalw[j] ≥ 2u. Let k = (Lpalw[j])/2. Then clearly w has a palindrome
that is centered at j−k+0.5 and is of radius k. Also z has a palindrome that
is centered at j−k+0.5 and is of radius k, since otherwise it contradicts the
assumption that Lpalw = Lpal z. Then there exists center c′ < c such that
(c′, r) ∈ Pals(w), (c′, u) ∈ Pals(z), and r < u. (See also Fig. 1.)
The same must hold for those smaller centers, ad infinitum. However, this is
impossible since w and z are finite strings.

Hence if Lpalw = Lpalz, then Pals(w) = Pals(z). ��
It is shown in [8] that Lpalw can be computed in linear time from Pals(w). The
following lemma is essentially the same as what is claimed in [8], but is more
specifically tailored for our needs.

Lemma 3. Let w be any string of length m. Given Pals(w), Lpalw can be com-
puted in O(m) time, in an on-line fasion, from Lpalw[1] to Lpalw[m].

Proof. For any position i of w with 1 ≤ i ≤ m, the value of Lpalw[i] is equal to
2(i−c)+1 where c is the smallest center of a maximal palindrome (c, r) ∈ Pals(w)
such that c+ r ≥ i. Hence we process the given string w from left to right.

Assume that we have computed Lpalw[1 : i] and let (c, r) ∈ Pals(w) with
Lpalw[i] = 2(i − c) + 1. Now we compute Lpalw[i + 1]. If c + r ≥ i + 1, then
Lpalw[1:i+1] = 2((i+ 1) − c) + 1. Otherwise, we increment the value of c by 0.5
until satisfying c + r ≥ i + 1, where r is the radius of the maximal palindrome
with the updated center c.

A pseudo-code of the algorithm is shown in Algorithm 1. The correctness
should be clear from the above arguments. Note that the value of c does not
decrease and does not exceed the value of i. Also, (c, r) can be picked up from
Pals(w) in constant time at each step, since Pals(w) is sorted in increasing order
of c. Consequently the time complexity is linear in m. ��
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Algorithm 1. On-line algorithm to compute Lpalw of w
Input: String w of length m.
Output: Lpalw[1 : m].
compute Pals(w);1

c← 1; let (c, r) ∈ Pals(w);2

for i← 1 to m do3

while c + r < i do4

c← c + 0.5; let (c, r) ∈ Pals(w);5

Lpalw[i]← 2(i− c) + 1;6

return Lpalw[1 : m];7

w
s i

c

(s+i)/2

1

c2

c3

Fig. 2. If (c3, r3) is the maximal palindrome in Pals(w) such that c3 is the smallest
center satisfying c3 ≥ (s + i)/2 and c3 + r3 ≥ i, c3 is the active center for s and i, and
Lpalw[s:i][i − s + 1] = 2(i − c3) + 1. Note that c1 is not the active center for s and i
since c1 < (s + i)/2.

Let w be any string of length m, and let s and i be any integers with 1 ≤ s ≤
i ≤ m. Here we consider computing Lpalw[s:i][i − s + 1] from Pals(w). By the
definition of Lpal , the value of Lpalw[s:i][i− s+ 1] is equal to 2(i− c) + 1, where
(c, r) is the maximal palindrome in Pals(w) such that c is the smallest center
satisfying c ≥ (s + i)/2 and c + r ≥ i (See also Fig. 2). We call this center c
the active center for s and i w.r.t. w, and denote it by ACw(s, i). It holds that
Lpalw[s:i][i− s+ 1] = 2(i− ACw(s, i)) + 1.

Lemma 4. Let w be any string of length m. For any integers s, i, s′, i′ with
1 ≤ s ≤ i ≤ m and 1 ≤ s′ ≤ i′ ≤ m, if s ≤ s′ and i ≤ i′, then ACw(s, i) ≤
ACw(s′, i′).

Proof. Assume for contrary that ACw(s, i) > ACw(s′, i′). Since ACw(s, i) ≤ i,
ACw(s′, i′) < i. Let (ACw(s′, i′), r) ∈ Pals(w). It follows from ACw(s′, i′) ≥
(s′ + i′)/2 ≥ (s+ i)/2 and ACw(s′, i′) + r ≥ i′ ≥ i that ACw(s′, i′) ≥ (s+ i)/2
and ACw(s′, i′) + r ≥ i. However this contradicts that ACw(s, i) is the active
center for s and i w.r.t. w. ��
In the algorithms which follow, we will need to know the value of Lpalw[s:i][i−
s + 1] for some s and i. It seems difficult to compute Lpalw[s:i][i − s + 1] in
constant time for “randomly” chosen s and i, with O(m)-time preprocessing.
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Algorithm 2. Algorithm to compute βp of a given string p
Input: String p of length m.
Output: Pal-border array βp[1 : m].
compute Pals(p) and Lpalp[1 : m];1

βp[1]← 0;2

j ← 0; c← 0;3

for i← 2 to m do4

while true do5

c← max{c, i− j/2}; let (c, r) ∈ Pals(p);6

while c + r < i do /* Shift c to AC p(i− j, i). */7

c← c + 0.5; let (c, r) ∈ Pals(p);8

/* 2(i− c) + 1 = Lpalp[i−j:i][j + 1]. */

if Lpalp[j + 1] = 2(i− c) + 1 then break;9

j ← βp[j];10

j ← j + 1;11

βp[i]← j;12

return βp[1 : m];13

Nevertheless, Lemma 4 suggests that, if s and i monotonically increase from
1 to m, then the total cost for computing Lpalw[s:i][i − s + 1] for all s and i
never exceeds the number of the centers in w, which is 2m − 1. The point is
that all the following algorithms only require to compute Lpalw[s:i][i− s+ 1] for
monotonically increasing positions s and i, with 1 ≤ s ≤ i ≤ m.

Lemma 5. For any string p of length m, βp can be computed in O(m) time.

Proof. Algorithm 2 describes our algorithm. This algorithm is mostly the same as
the linear-time algorithm for computing a standard border array of a string [15],
except that we match the values of Lpal instead of characters.

We firstly compute Pals(p) and Lpalp[1 : m]. This takes O(m) time by The-
orem 1 and Lemma 3. Then we compute βp[1 : m] in ascending order. Consider
the i-th iteration of the for loop of Line 2. Here we have computed βp[1 : i− 1],
and variable j is set to be βp[i−1]. Next we compute Lpalp[i−j:i][j+1] by shifting
the current center c right to AC p(i − j, i). If Lpalp[j + 1] = Lpalp[i−j:i][j + 1],
βp[i] = j + 1. Otherwise, we set j to be βp[j] and check again if Lpalp[j + 1] =
Lpalp[i−j:i][j + 1] or not. The above procedure is repeated until j, such that
Lpalp[j + 1] = Lpalp[i−j:i][j + 1], is found. Note that we break this loop at the
latest when j = 0, since Lpalp[1] = Lpalp[i:i][1] = 1.

In each iteration of the for loop of Line 2, the value of j increases by at most
1. Since each execution of the while loop of Line 2 decreases the value of j at
least 1 and j ≥ 0, the while loop of Line 2 is executed at most m times in total.
Moreover, since the value of c does not decrease and does not exceed the value
of i, the total cost of the while loop of Line 2 is O(m). Therefore Algorithm 2
runs in time linear in m. ��
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Algorithm 3. Algorithm to solve pal-matching problem in linear time
Input: Text string t of length n and pattern string p of length m.
Output: All positions i of t such that t[i : i + m− 1] pal-matches p.
compute Pals(t), Lpalp[1 : m], and βp[1 : m];1

j ← 0; c← 0;2

for i← 1 to n do3

while true do4

c← max{c, i− j/2}; let (c, r) ∈ Pals(t);5

while c + r < i do /* Shift c to AC t(i− j, i). */6

c← c + 0.5; let (c, r) ∈ Pals(t);7

/* 2(i− c) + 1 = Lpal t[i−j:i][j + 1]. */

if Lpalp[j + 1] = 2(i− c) + 1 then break;8

j ← βp[j];9

j ← j + 1;10

if j = m then11

j ← βp[j]; report i−m + 1;12

Theorem 2. The pal-matching problem (Problem 1) can be solved in O(n+m)
time.

Proof. Algorithm 3 describes our algorithm. This algorithm is a pal-matching
version of the Morris-Pratt algorithm [15].

We firstly compute Pals(p) by Algorithm 1 and Lpalp[1 : m] by Algorithm 2
in O(m) time, and Pals(t) in O(n) time. Consider the i-th iteration of the for
loop of Line 3. Here variable j represents an integer such that p[1 : j] and
t[i − j : i − 1] pal-match. Next we compute Lpal t[i−j:i][j + 1] by shifting the
current center c right to AC t(i − j, i). If Lpalp[j + 1] = Lpal t[i−j:i][j + 1], we
break the while loop of Line 3. Otherwise, we set j to be βp[j] and check again
if Lpalp[j + 1] = Lpal t[i−j:i][j + 1] or not. The above procedure is repeated until
j, such that Lpalp[j + 1] = Lpal t[i−j:i][j + 1], is found. Note that we break this
loop at the latest when j = 0, since Lpalp[1] = Lpal t[i:i][1] = 1. After breaking
the while loop of Line 3, we increment j by 1, and if j becomes m, the algorithm
reports that t[i−m+ 1 : i] and p[1 : m] pal-match.

In each iteration of the for loop of Line 3, the value of j increases by at most
1. Since each execution of the while loop of Line 3 decreases the value of j at
least 1 and j ≥ 0, the while loop of Line 3 is executed at most n times in total.
Moreover, since the value of c does not decrease and does not exceed the value
of i, the total cost of the while loop of Line 3 is O(n). Therefore Algorithm 3
runs in O(n+m) time. ��

4 Palindrome Suffix Trees

In this section, we consider an indexing structure for pal-matching. We propose
a new data structure called palindrome suffix trees (pal-suffix trees in short).
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t = a b b a b b c b c

Lpal t[1:9][1 : 9] = 1 1 2 4 3 5 1 3 3

Lpal t[2:9][1 : 8] = 1 2 1 3 5 1 3 3

Lpal t[3:9][1 : 7] = 1 1 3 2 1 3 3

Lpal t[4:9][1 : 6] = 1 1 2 1 3 3

Lpal t[5:9][1 : 5] = 1 2 1 3 3

Lpal t[6:9][1 : 4] = 1 1 3 3

Lpal t[7:9][1 : 3] = 1 1 3

Lpal t[8:9][1 : 2] = 1 1

Lpal t[9:9][1 : 1] = 1

1

1

1 4

2 3

3

7

2$

$

$ 2

1

3

3 5
1
3
3

5
1
3
3

33
3

1
3
3

9 8 4 1 3 6 5 2
$

$

$

$

$

$

Fig. 3. Illustration of Pal ST (t) for string t = abbabbcbc. The solid arrows represent
the edges, and the broken arrows do the suffix links. The path from the root to each
leaf s spells out Lpal t[s:9][1 : s]$.

The pal-suffix tree of a string t, denoted Pal ST (t), is a compacted trie which
represents Lpal t[s:n][1 : n − s + 1] for all the suffixes t[s : n] of t, where n is
the length of t and 1 ≤ s ≤ n. Each internal node of Pal ST (t) has at least
two children, and the labels of two distinct out-going edges of each internal
node must start with distinct non-negative integers. Moreover, for Pal ST (t) to
have exactly n leaves, we use the following convention: Each leaf of Pal ST (t) is
uniquely labeled with integer s (1 ≤ s ≤ n) in such a way that the path from the
root to leaf s spells out Lpal t[s:n][1 : n− s+1]$, where $ is a special end-marker.
The length of a node v, denoted len(v), is the length of Lpal represented by v.
Fig. 3 illustrates Pal ST (abbabbcbc).

Notice that there are O(n) distinct values for the elements of Lpal t[1 : n]. For
instance, consider t = (ab)

n
2 . Then Lpal t[1 : n] = 1 1 3 3 · · ·n−1 n−1. This

suggests that an internal node of Pal ST (t) might have O(n) children. However,
the following lemma holds.

Lemma 6. For any string t, each node of Pal ST (t) has at most σ children,
where σ is the alphabet size.

Proof. For any string w, let S (w) = SPals(w) ∪ {(|w| + 0.5, 0)} − {(|w|/2 +
0.5, |w|/2)}. To show the lemma, we consider the following claim.

Claim. Let w and z be any strings of length i s.t. Pals(w) = Pals(z). For any
integers j, k with 1 ≤ j ≤ i, 1 ≤ k ≤ i and ( i+j+1

2 , i−j
2 ), ( i+k+1

2 , i−k
2 ) ∈ S (w), if

w[j] = w[k] then z[j] = z[k].
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w
ij k

i+j+1
2

i+k+1
2

a

a

a a

Fig. 4. Illustration for the proof of Claim in Lemma 6

Proof of Claim. When j = k, it is clear the claim holds. Then we consider the
case j �= k. Assume w.l.o.g. that j < k. Since w[j+1 : i+ j−k] = wR[k+1 : i] =
w[k+ 1 : i] = wR[j + 1 : i+ j − k], w[j + 1 : i+ j − k] is a palindrome. It follows
from w[j] = w[k] and w[j+1 : i] = wR[j+1 : i] that w[j] = w[k] = w[i+j+1−k].
Putting w[j + 1 : i+ j − k] = wR[j + 1 : i+ j − k] and w[j] = w[i + j + 1 − k]
together, we get w[j : i + j + 1 − k] is a palindrome (See also Fig. 4). Since
Pals(w) = Pals(z), z[j : i+ j + 1− k] and z[j + 1 : i] are palindromes, and thus
z[j] = z[i+ j + 1 − k] = z[k]. Hence the claim holds.

Consider any substring w of length i of t. We introduce an equivalence relation
on S (w) such that

(
i+ j + 1

2
,
i− j

2
) ≡ (

i+ k + 1
2

,
i− k

2
) ⇐⇒ w[j] = w[k],

where 1 ≤ j ≤ i, 1 ≤ k ≤ i, and ( i+j+1
2 , i−j

2 ), ( i+k+1
2 , i−k

2 ) ∈ S (w). By definition,
there are at most σ equivalence classes w.r.t. ≡. Consider any substring z of t
with Pals(z) = Pals(w). Due to the above claim, the equivalence classes on S (z)
are identical to those on S (w).

Let v be any node of Pal ST (t), and assume that the path from the root
to v spells out Lpalw. Note that every substring z of t that pal-matches w is
represented by the same node v in Pal ST (t), since it has the same Lpal values
as w, i.e., Lpalw = Lpalz. Therefore, the number of children of v is at most d+1,
where d is the number of equivalence classes on S (w), which is bounded by σ.
Hence the lemma holds. ��
In order to implement Pal ST (t) with O(n) space, we encode the label of each
edge as follows. Assume that there is an edge of Pal ST (t) labeled with x,
where x is a sequence of positive integers. We encode x by a triple (x[1], q, |x|),
where x[1] is the first element of x, q is a position of text t such that x =
Lpal t[s:n][q−s+1 : q−s+|x|] for some 1 ≤ s ≤ n, and |x| is the length of the edge
label. See Fig. 3 and focus on the edge which is labeled with 2 1 3. Choosing s = 2,
the label is encoded by (2, 3, 3) as q = 3, |x| = 3, and Lpal t[2:9][2 : 4] = 2 1 3. In
Fig. 3, the first element of each edge label is shown underlined.

Theorem 3. Provided that Pal ST (t) and Pals(t) are already computed, the
pal-matching problem (Problem 1) can be solved in O(m log σ+ r) time, where r
is the output size.
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Proof. We compute Lpalp using Algorithm 1 in O(m) time. Then we search
Pal ST (t) for Lpalp[1 : m]. Assume that Lpalp[1 : j] matches the label of an out-
going edge of the root node of Pal ST (t), with some 1 ≤ j < m. Assume the edge
label is encoded as (Lpal t[q:n][1], q, j), where Lpal t[q:n][1 : j] = Lpalp[1 : j]. Let v
be the node that represents Lpal t[q:n][1 : j]. Assume that there is an out-going
edge of v, which is labeled with (Lpal t[q′−j:n][j+1], q′, j′), where Lpal t[q′−j:n][j+
1] = Lpalp[j+1] and j′ ≥ 2. This edge can be found inO(log σ) time by Lemma 6.
Now we have to check whether Lpal t[q′−j:n][j + 2] = Lpalp[j + 2]. Although q′ is
not necessarily equal to q+j, we can compute Lpal t[q′−j:n][j+2] as follows: By the
definition of Pal ST (t) it holds that Lpal t[q′−j:n][1 : j + 1] = Lpal t[q:n][1 : j + 1],
which implies that AC t(q′ − j, q′) = AC t(q, q+ j) + q′ − (q+ j). As described in
Section 3, we can compute Lpal t[q′−j:n][j+2] by shifting the current center from
AC t(q′− j, q′) to AC t(q′− j, q′ +1). Moreover, Lpal t[q′−j:n][j+2] = Lpalp[j+2]
iff AC t(q′− j, q′+1)−AC t(q′− j, q′) = AC p(1, j+2)−ACp(1, j+1). In light of
this, the total cost for computing such values of Lpal is bounded by the cost for
computing Lpalp, which is O(m). We continue the above procedure until either
we find Lpalp in Pal ST (t) or we find a mismatch. This takes O(m log σ) time.
If Lpalp is found, then we traverse the sub-tree rooted at the (possibly implicit)
node that represents Lpalp, and report the id of the leaves in the sub-tree, in
O(r) time. ��

4.1 Constructing Palindrome Suffix Trees

We employ Ukkonen’s on-line construction techniques for suffix trees [17]. Here
let us briefly review the behavior of the Ukkonen’s algorithm. The algorithm
processes the characters of a given string t of length n in ascending order. After
processing the (i− 1)-th character of t, the algorithm has constructed the suffix
tree of t[1 : i − 1]. Now the algorithm waits for the next i-th character on the
location which represents the longest suffix t[s : i−1] of t[1 : i−1] that matches a
substring of t[1 : i−2], with some 2 ≤ s ≤ i. Let us call this location on the path
the active point for i−1. Next the algorithm obtains the i-th character t[i]. If we
can transit from the active point for i− 1 with t[i], then the active point for i is
the location that represents t[s : i]. Otherwise, the algorithm creates a new edge
from the active point for i−1 leading to a new leaf node, with edge label t[i : n].
After that, the algorithm finds the location which represents t[s + 1 : i − 1] by
using a suffix link, in amortized constant time. The above procedure is repeated
until the active point for i is found. Readers are referred to [17] for more details
of the Ukkonen algorithm.

In the sequel, we show main technical issues of our algorithm to construct
Pal ST (t).

Suffix Links. Let v be any node of Pal ST (t), and assume that the path from
the root to v spells out Lpalw for some substring w of t. The suffix link of node
v is an auxiliary edge from node v to node u, such that the path from the root
to u spells out Lpalw[2:|w|]. For example, see Fig. 3, and focus on the node which
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s-1

v

u

u'

q{l {l

s

y

Fig. 5. Illustration of maintenance of the active point. u is the active point for i − 1,
and y is a candidate for the active point for i.

represents 1 2 1 3. The suffix link of this node points to the node which represents
1 1 3. This is because there exists a substring bbab with Lpalbbab = 1 2 1 3, and
Lpalbab = 1 1 3.

Unlike the case of suffix trees, the node u, which is to be pointed by the suffix
link of some node v, is not always explicit in Pal ST (t). For example, see Fig 3.
The suffix link of the node which represents 1 1 2 is illustrated to point to the
implicit node which represents 1 2. In such a case, we set the suffix link of node
v to the child node u′ of implicit node u, and record the length of the partial
edge label from u to u′. This way we can access from node v to the location
for u in constant time. In the above example, the suffix link of node 1 1 2 is
implemented to point to node 1 2 1 3, with auxiliary value 2 which is the length
of the partial label from implicit node 1 2 to node 1 2 1 3. The same technique
was used in [3] to implement the suffix links of parameterized suffix trees.

Maintaining Active Point. Assume that we have constructed Pal ST (t[1 :
i − 1]) for given string t, for some 1 ≤ i ≤ n. Assume that the active point for
i− 1 is on an implicit node u. Let v be the explicit parent node of u, and let u′

be the explicit child node of v, i.e., u is on the edge from v to u′. Let x be the
label of the edge from v to u′, and let � be the length of the partial edge label
from v to u. Then, the active point for i− 1, the implicit node u, is represented
by (v, x[1], s − 1 + len(v), �), where x[1] is the first element of x and s − 1 is a
position of t such that Lpal t[s−1:n][len(v) + 1 : len(v) + �] = x[1 : �].

Similarly to construction of suffix trees, we look for the active point for i
from the active point for i− 1, i.e., the implicit node u. See Fig. 5. In so doing,
we use the suffix link of node v. Consider any leaf s − 1 in the subtree rooted
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at v. Let q be the node we have reached by the suffix link of node v. Now
we want to look for a (possibly implicit) child y of q such that the subtree
rooted at y has leaf s and len(y) = len(u) − 1 = len(q) + �. The difficulty we
face is that x[1 : �] = Lpal t[s−1:n][len(v) + 1 : len(v) + �] may not be equal to
Lpal t[s:n][len(q) + 1 : len(q) + �]. This happens when there exists an integer k,
len(v)+1 ≤ k ≤ len(v)+ �, such that Lpal t[s−1:n][k] = k. For example, see Fig 3.
The edge leading to leaf 2 is labeled with 5 1 3 3 $, while the edge leading to
leaf 3 is labeled with 2 1 3 3 $. This is because Lpal t[2:9][5] = 5.

Nevertheless, we can efficiently locate y starting from q, as follows. Since
x[1] = Lpal t[s−1:n][len(v) + 1], we can calculate AC t(s − 1, s − 1 + len(v)) in
constant time. Since len(q) = len(v) − 1, we can compute Lpal t[s:n][len(q) + 1 :
len(q)+ �] in O(AC t(s, s+ len(q))−AC t(s−1, s+ len(q))+�) time, as described
in Section 3. Then we can find y in O(� log σ) time, since there can be at most
� − 1 explicit nodes in the path from q to y. We check whether y is the active
point for i or not, and if not, we repeat the above procedure until the active
point for i is found. The total cost of the above operations, after constructing
Pal ST (t), is O(n log σ).

Consequently, we obtain the following result.

Theorem 4. For any string t of length n, Pal ST (t) can be constructed in
O(n log σ) time, where σ is the alphabet size.

5 Conclusions and Future Work

Palindromes in strings have widely been studied both in theoretical and practical
contexts, such as in word combinatorics and in bioinformatics. In this paper, we
presented linear-time algorithms to solve a new problem called the palindrome
pattern matching problem. The first algorithm is a Morris-Pratt type algorithm,
and the second one is a suffix-tree type algorithm.

In practical applications such as DNA and RNA sequence analysis, it is de-
sired to cope with gapped palindromes which have a spacer between the left
and right arms of the palindromes. Several versions of gapped palindromes have
been introduced and studied [9,12,10]. Our future work includes development
of efficient solutions to a gapped-palindromes version of the palindrome pattern
matching problem.
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from a fixed palindromic length sequence. Proc. TCS 2008. IFIP 273, 101–114
(2008)

15. Morris, J.H., Pratt, V.R.: A linear pattern-matching algorithm. Tech. Rep. 40,
University of California, Berkeley (1970)

16. Restivo, A., Rosone, G.: Burrows-Wheeler transform and palindromic richness.
Theoretical Computer Science 410(30–32), 3018–3026 (2009)

17. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)



Sparse and Truncated Suffix Trees on

Variable-Length Codes

Takashi Uemura and Hiroki Arimura

Graduate School of Information Science and Technology, Hokkaido University
Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814 Japan

{tue,arim}@ist.hokudai.ac.jp

Abstract. The sparse suffix trees (SST), introduced by (Kärkkäinen
and Ukkonen, COCOON 1996), is the suffix tree for a subset of all suf-
fixes of an input text T of length n. In this paper, we study a special
case that an input string is a sequence of k codewords drawn from a
regular prefix code Δ ⊆ Σ+ recognized by a finite automaton, and index
points locate on the code boundaries. In this case, we present an online
algorithm that constructs the sparse suffix tree for an input string T on
any variable-length regular prefix code, called the code suffix tree (CST),
in O(n+m) time and O(k) additional space for a fixed base alphabet Σ,
where m is the size of an automaton for Δ. Furthermore, we present a
modified algorithm for �-truncated version of code suffix trees that runs
in the same time and space complexities. Hence, these results generalize
the previous results (Inenaga and Takeda, CPM 2006) for word suffix
trees and (Na, Apostolico, Iliopoulos, and Park, Theor. Comp. Sci., 304,
2003) for truncated suffix trees on arbitrary variable-length regular prefix
codes, such as Huffman codes and multi-byte codes (e.g. UTF-8).

1 Introduction

Backgrounds. The sparse suffix trees (SST), introduced by Kärkkäinen and
Ukkonen [11] in 1996, is the suffix tree (ST) [6, 13, 17] for storing a subset
consisting of k suffixes in an input text T of length n on a base alphabet Σ,
where k ≤ n. In its most general form, the set I = {i1, . . . , ik} ⊆ {1, . . . , n} of
index points is given as an arbitrary subset of all n text positions. We denote by
SSTI(T ) the sparse suffix tree for T with respect to the set I of index points.
[11] showed that a sparse suffix tree on a k-evenly indexed string in O(n) worst-
case time and O(k) space. Although a sparse suffix tree for a string with an
arbitrary index set is well-defined in any sense, interestingly enough, it is still
open since its introduction whether a sparse suffix tree for arbitrary set I of k
index positions can be constructed in O(n) time and O(k) additional space.

For the problem, recently, a collection of word-based suffix indexes have been
introduced [3, 5, 8–10]. To formalize this notion, we introduce the set ΔI(T ) ⊆
Σ+ of words, called the induced code, obtained by partitioning an input text T
by the index positions in I. Then, a suffix index is called word-based if the set
ΔI(T ) is restricted to a set of words in Σ+W , where W is a finite set of symbols,

R. Giancarlo and G. Manzini (Eds.): CPM 2011, LNCS 6661, pp. 246–260, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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called word delimiters, such that W ∩Σ = ∅. In 1999, Andersson, Larsson, and
Swanson [3] introduced a word-suffix tree as a SSTI(T ) on a word alphabet,
and presented a construction algorithm in O(n) average time and O(k) space.
In 2006, Inenaga and Takeda [8] presented the first construction algorithm that
runs in O(n) worst-case time and O(k) space by modifying Ukkonen’s linear time
online construction algorithm for full suffix trees [17]. Their work is most closely
related to this work. Ferragina and Fischer [5] introduced word-suffix arrays and
presented a construction algorithm with O(n) worst-case time and O(k) space.

Our Contribution. In this paper, we study the sparse suffix tree construction in
more general setting than that of the word-based suffix trees [3, 8]. In particular,
we consider the sparse suffix tree for a string on an arbitrary regular prefix code
Δ ⊆ Σ+ which is recognized by a finite deterministic automaton. The sparse
suffix tree of this type is called the code suffix tree (CST), and can be regarded
as a natural generalization of word suffix trees [3, 8]. As a main result of this
paper, we show that the code suffix tree for an input string T of length n on a
prefix code Δ can be constructed in O(n +m) worst-case time and O(k) space
for a fixed base alphabet Σ, where k is the number of words in T and m is
the size of the automaton for Δ (Theorem 2). Thus, the CST can be linearly
constructed for texts on regular prefix codes such as Huffman codes or UTF-8.

Key Techniques. To show this, we propose a modified version of Ukkonen’s
online suffix tree construction algorithm [17] augmented with a DFA, called a
code automaton, for recognizing Δ, which is similar to the construction in [8].
However, the proofs for correctness and time complexity are not straightforward
due to the complex behavior of the algorithm when it traverses inside of a code
automaton. To overcome this difficulty, we introduce an extended domain of
strings augmented with the erasing element ⊥, which is the inverse of any code-
word in Δ and acting from left. Using ⊥, we give a general definition of suffix
links, and show that most properties of full suffix trees [17], including the exis-
tence lemma for suffix links, still remains valid when Δ is a prefix code. Hence,
Theorem 2 above gives a partial answer to a natural question: what is the largest
class of codes for which the approach of Ukkonen’s linear-time construction al-
gorithm [17] is sufficient for constructing sparse suffix trees on a code?

An Extension. For every � ≥ 1, an �-truncated suffix tree (�-TST) for T is a
variation of suffix trees that stores all factors of T with length �. Na et al. [14]
introduced �-TST and presented an online construction algorithm for �-TST in
O(n) time and space. Generalizing �-TSTs for regular prefix codes, we introduce
the �-truncated code suffix trees (�-TCST) that stores all factors of T consisting
of at most � codewords. Based on our algorithm for CST, we present a modified
version of the algorithm that constructs �-TCST for a text on Δ in O(n) worst-
case time and O(k) space, where k is the number of words in T (Theorem 3).
Finally, we ran experiments on real datasets to evaluate the usefulness of the
proposed methods. For example, CSTs are 3 to 5 times smaller than STs on
English and UTF-8 texts as shown in Section 5.
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Fig. 1. The code automata for prefix codes Δ1, Δ2, Δ3, Δ4, and Δ5 in Example 1,
where ⊥ and ε are the initial and the final states, respectively, and labels with wildcard
x ∈ {0, 1}, e.g., 0x00− 0x7f , represent sets of the corresponding multiple edges

Organization of this Paper. In Sec. 2, we give basic definitions. In Sec. 3,
we present our linear-time construction algorithm ConstructCST for code suffix
trees. In Sec. 4, we extend the algorithm for �-truncated code suffix trees. In
Sec. 5, we show experimental results, and in Sec. 6, we conclude this paper.

2 Preliminaries

Basic Definitions. We introduce basic definitions on suffix trees according
to [4, 6, 11, 14, 17]. We assume that the reader has basic knowledge of the linear
time construction algorithm by Ukkonen [17]. Let Σ be an alphabet of base
letters . We denote by ε the empty string . Let Σ∗ and Σ+ denote the sets of
all possibly empty finite strings and non-empty finite strings on Σ. For a string
T , if T = xyz for some x, y, z ∈ Σ∗, then we call x, y, and z a prefix , a factor
(substring), and a suffix of T , respectively. Let T = a1 · · ·an ∈ Σ∗ be a string
on Σ of length |T |Σ = |T | = n, where T [i] = ai ∈ Σ is the i-th letter for every
i = 1, . . . , n. For any 1 ≤ i ≤ j ≤ n, we denote by T [i..j] = ai · · · aj the factor
from i to j of T . If i > j then we define T [i..j] = ε. For a set S ⊆ Σ∗ of strings,
the sets of the prefixes and proper prefixes of all strings in S are denoted by
Pre(S) and by PropPre(S), respectively. |S| and ||S|| denote the cardinality and
the total size of S. For strings x, y, we denote by lcp(x, y) the longest common
prefix of x and y.

Prefix Codes. A code is a set Δ ⊆ Σ+, where each w ∈ Δ is a non-empty
string, called a codeword (or word , for short) of Δ. A preword is any prefix
u ∈ Pre(Δ) and a proper preword is any proper prefix u ∈ PropPre(Δ) of a word
in Δ. A code Δ is either infinite or finite. Δ is a prefix code if it is prefix-free,
that is, any codeword is not a prefix of some other codeword of Δ.

Example 1. Let Σ be a letter alphabet and B = {1, 0} be a binary alphabet. A
trivial prefix code Δ1 = Σ and the ASCII code Δ2 = [0x00 − 0x7f ] ⊆ B8 are
prefix codes of fixed-length. For a word delimitor 	 �∈ Σ, a word alphabet Δ3 =
Σ+	 is an example of prefix-codes of variable-length ([3, 5, 8–10]). A Huffman
code Δ4 = {00, 01, 1} for the set of symbols {A,B,C} with probabilities p(A)=
1/4, p(B)=1/4, p(C)=1/2 ([4]), and the code Δ5 =(10B1)∪(110B2)∪(1110B3),
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called the three-byte fragment of UTF-8 ([7]), are also examples of prefix-codes
of variable-length. As seen later, all of these prefix codes are regular (Fig. 1).

Codeword Strings. A word string on Δ (or Δ-string) is a string T ∈ Δ∗.
Then, an input string or a prestring of letter length n ≥ 0 is any prefix T =
T [1] · · ·T [n] ∈ Pre(Δ∗) of a word string on Δ, where T [i] ∈ Σ for i = 1, . . . , n.
Since Δ is a prefix code and thus Pre(Δ∗) = Δ∗PropPre(Δ), we have the unique
Δ-factoring T = w1 · · ·wkwk+1 ∈ Pre(Σ∗) of T , where w1, . . . , wk ∈ Δ and
wk+1 ∈ PropPre(Δ). Then, the proper preword wk+1 is called the tail of T .
Clearly, T is a complete word string if and only if the tail wk+1 is emtpy. We
define the word length of T by |T |Δ = k, and the letter length by |T |Σ = |T | = n.
where n =

∑k+1
i=1 |wi|.

In this paper, construction of a CST is done in online manner through the
stage i = 0, . . . , n as in [15, 17]. At stage i, we define the current input T i =
T [1] · · ·T [i] = w1 · · ·wkwk+1, where k ≥ 0, wj ∈ Δ, and wk+1 ∈ PropPre(Δ).
Let j = 1, . . . , k+1 be any index. The j-th Δ-suffix of T is defined as the suffix of
T starting at the j-th word boundary, i.e., sufΔj (T ) = wj · · ·wkwk+1. For � ≥ 1,
the j-th (Δ, �)-factor of T is defined as the factor facΔ,	

j (T ) = wj · · ·wh of T ,
where h = min{j + �− 1, k+ 1}. We denote by SufΔ(T ) and FacΔ(T, �) the sets
of all Δ-suffixes and all (Δ, �)-factors of T , respectively.

Code Suffix Trees. A code suffix tree (CST, for short) for an input string
T ∈ Pre(Δ∗) w.r.t. a prefix code Δ, denoted by CSTΔ(T ), is a compacted trie [6]
that represents all Δ-suffixes of T . Formally, the CST for T is a rooted tree S =
CSTΔ(T ) = (V, child, root , Label(·), SL(·)) that satisfies the following properties.
V is a finite set of tree nodes (or nodes). Each directed edge e = (u, v) is labeled
with a factor of T , Label(v) ∈ Σ+, stored in v. Every internal node except
the root is branching, i.e., it has at least two children. For every base letter
a ∈ Σ, each internal node v has at most one directed edge from v to the a-
child , u = child(v, a), whose label starts with a. SL(·) is a suffix link function,
which will be defined later in Section 3. For each v, we denote by L(v) the string
represented by v, that is, the string obtained by concatenating all labels on the
path from the root to v. All the suffixes are represented by the leaves of CSTΔ(T )
when T ends with the unique marker T [n] that does not appear elsewhere. All
the factors in T that start at word boundaries are represented as the prefixes
of all leaves, that is, the elements of the set Pre(SufΔ(T )). We give the naming
function [·] below. For any α ∈ Pre(SufΔ(T )), we define the locus of α, denoted
by [α], to be the unique tree node v ∈ Q such that L(v) = α. This mapping [·]
is one-one.

Clearly, CSTΔ(T ) has at most k leaves and k− 1 internal nodes [11]. To save
the space, we represent Label(v) by a pair 〈j, i〉 ∈ N2 of the starting and ending
positions of the label in T such that T [j..i] = Label(v), while ε is represented
by 〈i+ 1, i〉 for some i. Assuming this, CSTΔ(T ) occupies only O(k) space. For
any factor α of T that starts at a word boundary, we represent its location in
CSTΔ(T ) by a triple p = 〈v, j, i〉 ∈ V ×N2, called a pointer (or a reference) to
α, such that α = L(v)·T [j..i] if it exists. A pointer 〈v, j, i〉 is canonical if T [j..i]
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Fig. 2. Examples of (a) an ordinary suffix tree for string S = ABABC on alphabet
{A, B, C}, and (b) a code suffix tree for coded string T = 000100011 on prefix code
Δ = {A/00, B/01, C/1}

is shortest. The locus of a factor α is the canonical pointer for α, and denoted
by loc(α). We often call p a virtual node if j ≤ i, i.e., T [j..i] �= ε, and real node
if j > i, i.e., T [j..i] = ε.

3 A Linear-Time Online Algorithm for Code Suffix Trees

In this section, we show our algorithm ConstructCST for constructing a code
suffix tree CSTΔ(T ) on a prefix code Δ, which is based on Ukkonen’s online
construction algorithm for suffix trees [17]. The only difference is that it is aug-
mented with a code automaton and code suffix links explained below. Let us fix
an input string T = w1 · · ·wkwk+1 ∈ Pre(Δ∗) on a prefix code Δ ⊆ Σ+ with
letter length n and word length k.

3.1 Code Automata and Code Suffix Links

Code Automata. In our problem setting, a prefix code Δ ⊆ Σ+ on Σ is
regular if Δ is recognized by a finite automaton. A code automaton for a pre-
fix code Δ ⊆ Σ+ is a possibly cyclic deterministic finite automaton (DFA)
A = (Σ,Q, child, ⊥̂, root) on a base alphabet Σ, where Q is a finite set of code
nodes (or nodes). ⊥̂ and root are the unique initial and final states, called the
source and sink , respectively. The function child : Q×Σ → Q is a transition
function such that for every u, v ∈ Q and a ∈ Σ, child(u, a) = v if and only if
there exists an a-edge from u to v labeled with a. We extend child to a map-
ping child∗ : Q×Σ∗ → Q in a standard way [4]. If it is clear from context, we
refer to the code automaton A for Δ as DFA(Δ). In the treatment of this paper,
DFA(Δ) need not be minimal in general. As a related work, Takeda, Miyamoto et
al. [15] used code automata to extend Aho-Corasick pattern matching machines
on a prefix code. In Fig. 1, we show the code automata for codes Δ1, Δ2, Δ3, Δ4,
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and Δ5 of Example 1, respectively. It is not hard to see that the automata for
Δ1 and Δ3 are exactly those automata that are employed by the linear-time
construction algorithms of Ukkonen [17] and Inenaga et al. [8].

Now, we give the naming function [·] from strings to nodes as follows. We
introduce a special element ⊥ �∈ Σ as the inverse of any word of Δ, i.e., ⊥w = ε
for every w ∈ Δ. We define ⊥wα = εα = α if w ∈ Δ and α ∈ Σ∗. For a proper
preword α ∈ PropPre(Δ), ⊥α is a special element different from α. For any
preword α ∈ Pre(Δ), we define the locus of α, denoted by [⊥α], to be the unique
code node v ∈ Q such that child∗(⊥̂, α) = v. For set S, let ⊥S = {⊥α |α ∈ S }.
Note that the mapping [·] is many-one and naturally induces an equivalence
relation ≡ on the set Pre(Δ). Since DFA(Δ) has the unique final state root = [ε],
we see that [⊥α] = [⊥β] = [ε] holds for any codewords α, β ∈ Δ. We also
note that [⊥α] �= [α] for any string α since the former and the latter are the
nodes reachable from ⊥̂ in DFA(Δ) and from root in CSTΔ(T ), resp. The above
notations are just for analysis of our algorithm, and do not affect the behavior
and complexity of the algorithm.

By the above encoding, we can represent DFA(Δ) as follows: The node set is
Q = { [⊥α] |α ∈ PropPre(Δ)}. The transition function is given by child([α], a) =
[αa] for every α ∈ PropPre(Δ) and a ∈ Σ. The source and the sink are [⊥] and
[ε], respectively. If [α] is either a tree node or a code node and a ∈ Σ is any letter,
then we define [α] · a = [α · a]. We define the domains dom(code) = Q − {[ε]} =
{[⊥α] |α ∈ PropPre(Δ)} of all code nodes , dom(tree) = {[α] |α ∈ Pre(SufΔ(T))}
of all tree nodes , and dom(pre) = { [α] |α ∈ PropPre(Δ) } ⊆ dom(tree), of all
prenodes . By definition, [ε] ∈ dom(tree) but [ε] �∈ dom(code). In what follows,
we often use α and [α] interchangeably if no confusion arises.

Code Suffix Links. Next, we introduce the suffix links for CSTΔ(T ) as follows.
Similarly to Ukkonen’s algorithm, each internal node v = [α] in the CST has the
suffix link of v, denoted by SLΔ(v), which is a pointer from v to the internal node
u such that SLΔ([α]) = [⊥·α], where α ∈ Pre(SufΔ(T )). Equivalently, if v = [wβ]
for some w ∈ Δ,β ∈ ⊥PropPre(Δ) ∪ Pre(SufΔ(T )) then SLΔ([wβ]) = [β]. Any
code node v ∈ dom(code) does not have a suffix link. The next lemma is crucial
to the correctness of our algorithm.

Lemma 1 (existence lemma for code suffix links). Let Δ ⊆ Σ+ be a
prefix-free code and T be any prestring on Δ. Then, (i) any tree node v in
CSTΔ(T ) has the suffix link SLΔ(v) pointing to a branching internal node u in
either CSTΔ(T ) or DFA(Δ). Furthermore, (ii) v is a preword node if and only
if SLΔ(v) is a code node in DFA(Δ), and (iii) v is not a preword node if and
only if SLΔ(v) is a tree node in CSTΔ(T ).

Proof. There are two cases on the domain of v. (1) If v = [α] ∈ dom(pre)
is a prenode, then SLΔ(v) = [⊥α] belongs to dom(code) by the definition of
DFA(Δ). (2) Suppose that = [wα] ∈ dom(tree)\dom(pre) for some w ∈ Δ,α ∈
Σ∗. It is shown in [11] that a SST has a branching node v if and only if
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Algorithm ConstructCST:
input: A preword string T = w1 · · ·wk ∈ Pre(Δ∗) on a prefix code Δ ⊆ Σ;
output: The sparse suffix tree CSTΔ(T ) for t w.r.t. Δ. ;

1: { global variables: Θ, Θ′: word counters //for �-TCST }
2: Create an empty tree CSTΔ with the root node root = [ε];
3: Build DFA(Δ) for Δ with the source ⊥̂ = [⊥] and the sink root = [ε];
4: SLΔ(root) = ⊥̂;
5: φ← 〈root , 1, 0〉; ψ ← 〈root , 1, 0〉;
6: { Reset(Θ); Reset(Θ′) //for �-TCST }
7: for i = 1, . . . , n do //Stage i
8: φ← Extend(φ, i);

{ψ ← Terminate(ψ, i); //for �-TCST}
9: end for

10: return CSTΔ;

Fig. 3. A construction algorithm for a code suffix tree CSTΔ(T ) for a text T on a prefix
code Δ ⊆ Σ+

L(v) = lcp(sufΔi (T ), sufΔj (T )) for some indexes i and j. Since Δ is prefix-free
and v = [wα], we know that both of sufΔi (T ) and sufΔj (T ) start with w, and
thus, we have α = lcp(sufΔi+1(T ), sufΔj+1(T )). From the above claim, the lemma
follows. ��

3.2 Main Algorithm

In Fig. 3, we show the algorithm ConstructCST, and in Fig. 4, the subprocedures
Extend and Terminate. The only difference between our algorithm and Ukkonen’s
algorithm is lines 3 and 4 of ConstructCST that attaches DFA(Δ) to the CST.
For an input string T = T [1] · · ·T [n] = w1 · · ·wkwk+1 ∈ Pre(Δ∗) on Δ ⊆ Σ+,
the algorithm constructs the CST for Ti = T [1..i] in an online manner for every
stage i = 1, . . . , n. At stage 0, the CST consists only of the root node root = [ε]
and DFA(Δ). Let T i = T [1..i] be the current input text and CSTΔ(T i) be the
code suffix tree for T i obtained at the end of stage i. At each step i, the algorithm
extends α to the new suffixes αai by appending the current base letter ai = T [i]
for all Δ-suffixes in CSTΔ(T i).

This extension process is based on the following idea. Let SΔ(i) = SufΔ(T i)
be the set of all Δ-suffixes in T i. For every stage i = 0, . . . , n, we define the set
BdΔ(i) ⊆ dom(tree) ∪ dom(code), the border , by the following recurrence:

• BdΔ(0) = {⊥, ε},
• BdΔ(i) = (BdΔ(i− 1)·ai) ∪ {⊥} if ε ∈ (BdΔ(i− 1)·ai),
• BdΔ(i) = BdΔ(i− 1)·ai otherwise,

where S · a = { αa |α ∈ S } for any set S ⊆ Σ∗ and a ∈ Σ. Then, we have the
following lemma. Recall that dom(tree) is the domain of tree nodes in CSTΔ(T i).
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procedure Extend(φ = 〈s, j, i− 1〉, i):
1: last← NULL; //oldp

2: while (child(φ, T [i]) is not defined) do

3: if j ≤ i then begin

4: φ← Split(φ);

5: if last �= NULL then begin

6: SLΔ(φ)← last;

7: last← φ; end

8: end

9: create a leaf q with label(q)← 〈i,∞〉;
10: child(φ, T [i])← q;

11: φ← Canonize(〈SLΔ(s), j, i− 1〉);
12: {Decrement(Θ) //for �-TST}
13: end while

14: φ← Canonize(〈s, j, i〉);

15: {ChildTrans(Θ, T [i]); //for �-TST}}
16: {if toClose(Θ) then SuffixTrans(Θ, φ);

//for �-TST}
17: return φ; {End of Extend}

procedure Canonize(φ = 〈s, j, i〉):
1: while j ≤ i do begin

2: u← child(s, T [j]);

3: 〈q, p〉 ← label(u);

4: if p− q > i− j then

5: break;

6: j ← j + (p− q + 1);

7: s← u;

8: end

9: return 〈s, j, i〉; {End of Canonize}

Fig. 4. The subprocedures Extend and Canonize for the code suffix tree construction

Lemma 2. For every i = 0, . . . , n, SΔ(i) = BdΔ(i) ∩ dom(tree).

Proof. From a similar argument to [15, 17], the following recurrence holds:

(i) SΔ(0) = {ε},
(ii) SΔ(i) = (SΔ(i− 1)·ai) ∪ {ε} if T i = T [1..i] is a complete word string (*),
(iii) SΔ(i) = SΔ(i− 1)·ai otherwise,

By induction on i ≥ 0, we then can show that the condition (*) holds iff w ∈
SΔ(i− 1) ·ai for some w ∈ Δ iff ε ∈ BdΔ(i− 1) ·ai holds. Furthermore, ⊥α ∈
BdΔ(i) iff α ∈ SΔ(i) for any α ∈ Pre(Δ). Thus, the result follows. ��
We call each suffix α in BdΔ(i) the extension point at stage i. Next, we consider
how we can efficiently find the extension points and extend them. The detection
of ε is also crucial to the synchronization of word boundaries. We use a pointer
φ to keep track to extension points in BdΔ(i) from longer to shorter. Let actΔi
be the active point at stage i as the pointer φ such that L(φ) is the longest suffix
of T i−1 that occurs at least twice in T i. For i = 1, . . . , n, the maintenance of
BdΔ(i) proceeds in the following way for all extension points φ = [αai] of three
types 1–3. Let BdΔ(0) = {⊥, ε}.
• type 1: If α occurs only at the end of T i−1, then, α is represented by a

leaf, and thus so is αai. As in Ukkonen [17], by representing α as an open
leaf 〈j,∞〉, ∞ is interpreted as the current index i, the extension point α
is automatically extended without any management. This correctly extends
all extension points α of type 1.

• type 2: If α occurs at least twice in T i−1, but αai does not occur, then by in-
duction on i, we can show that actΔi is the first node of type 2 satisfying this
condition. Then, we create the new node for αai extending α by appending
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Input string Ti
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Code suffix tree CSTΔ(Ti)

SL

word boundary

Fig. 5. Proof sketch for the time complexity in the case of cyclic code automata

a to the tail of α, while the parent α is materialized by procedure Split if α
is virtual. Repeat this process until we reach the first node φ of type 3. This
correctly extends all extension points α of type 2.

• type 3: If α occurs at least twice in T i−1, and αai also occurs, then we can
show as in Ukkonen [17] that all extension points on the suffix links from
α to some node in dom(code) ∪ {[ε]}, the end of the border, are already
contained in T i−1. Therefore, these extension points are correctly extended
in CSTΔ(T i) without any explicit extension.

The procedure Extend in Fig. 4 implements the above incremental computa-
tion of BdΔ(i). From the discussion above, we have the next lemma.

Lemma 3. For every stage i = 1, . . . , n, The procedure Extend in Fig. 4 correctly
computes the border BdΔ(i) from BdΔ(i− 1) and ai = T [i].

Proof. It is easy to see that Extend correctly implements the extensions of suffixes
in BdΔ(i) mentioned above. Then, the most part is shown in a similar way to
Ukkonen [17]. For extension of all three types, the above procedure correctly
extends the original suffix [α] ∈ BdΔ(i− 1) to obtain [αai] ∈ BdΔ(i). Remaining
thing is to show the while-loop from lines 2 to 13 of Extend eventually terminates.
If the while-loop is executed repeatedly, the depth of the extension pointer φ
become smaller, and finally, either it ends with extension of type 3 or it enters
the domain dom(code). In the former case, the proof is done. In the latter case,
φ enters dom(code), and thus immediately ends with extension of type 3, too
since DFA(Δ) accepts any preword. This completes the proof. ��
From Lemma 2 and Lemma 3, we show the following theorem.

Theorem 1 (correctness). For every stage i = 1, . . . , n, the algorithm Con-
structCST in Fig. 3 correctly constructs CSTΔ(T i).

3.3 Time Complexity

The remaining task is to estimate the time complexity of ConstructCST in Fig. 3.
Let Ntree and Ncode be the numbers of tree and code edges traversed during the
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computation, respectively. Let N = Ntree + Ncode. In a special case that Δ is
finite and thus DFA(Δ) is acyclic, the linear time complexity of ConstructCST
can be easily proved by applying the telescope argument on the changes of the
depth D(φ) of φ as used in [17] with a little twist that D(φ) is defined by the
number of the code and tree nodes on the path from [⊥] to φ.

In the general case that DFA(Δ) = A is possibly cyclic, and consequently
Δ is infinite, however, it is not straightforward to show a linear bound of N =
Ntree+Ncode because the extension pointer φ can move inside a cycle in dom(tree)
many times without monotonically increasing the depth parameter D(φ), and
thus, it is not sufficient to linearly bound Ncode for dom(code). To overcome this
difficulty, we bound the number Ncode by the total number of letters consumed
during the traversal on dom(code). We have the main theorem of this paper.

Theorem 2 (linear time construction of code suffix trees). Let Δ ⊆ Σ∗

be any regular prefix code on Σ recognized by a code automaton A = DFA(Δ).
Then, the algorithm ConstructCST in Fig. 3 constructs CSTΔ(T ) for an input
text T ∈ Pre(Δ∗) in O(n log |Σ| + m) time and O(k) space in online manner,
where n = |T |Σ is the total text size, k = |T |Δ is the number of codewords, and
m = ||A|| is the size of the code automaton A.

Proof. We show that the number N = Ntree + Ncode is bounded by i = |T i|
for every stage i. We can show that the number Ntree in dom(tree) is linearly
bounded by i = |T i|. Therefore, we estimate the total number Ncode of all child
and suffix links that the algorithm traverses in dom(code) through all stages. Let
i = 1, . . . , n be any stage, and let T i = T [1] · · ·T [i] = w1 · · ·wkuk+1 ∈ Pre(Δ∗)
be the current input string. At stage i, we denote by ∂N i

code the number of suffix
and child edge traversals added to Ncode. Then, there are three cases below when
φ traverses inside dom(code): (a) The case that at stage i−1, the extension ends
at node φ in dom(code) such that φ �= [ε]. From the construction of DFA(Δ) and
Lemma 3, the algorithm executes exactly one extension of type 3 in dom(code) by
going down a child edge. Thus, ∂N i

code ≤ 1 is immediate. (b) Otherwise, at stage
i−1, the extension ends at node φ �∈ dom(code). This implies that φ ∈ dom(tree).
In this case, the algorithm repeats extensions of type 2 in the while-loop from
lines 2 to 13 of Extend by traversing suffix links in BdΔ(i− 1), and terminates
with extension of type 3. Let φ = [β] be the final extension point of type 2.
Then, we have two subclasses below on φ: (b.1) The case that φ ∈ dom(tree).
Since all the preceding extension for BdΔ(i− 1) were done in dom(tree), we have
∂N i

code = 0. (b.2) The case that φ �∈ dom(tree). Then, φ = [β] ∈ dom(code) for a
preword β. Let φ = 〈s, j, i− 1〉 be the canonical pointer of [β]. From Lemma 3,
we can show that β = uk+1 holds, that is, the string label β = L(φ) coincides
the current tail preword uk+1 of T i being scanned. In Extend, we then move from
φ = [β] to SLΔ(β) = [⊥β] by firstly following one suffix link from the real node
s to SLΔ(s), and by successively going down at most |β| child edges by applying
Canonize(SLΔ(s), j, i − 1) at line 11 (See Fig. 5). Therefore, ∂N i

code is at most
|β| + 1. On the other hand, suppose that we are scanning a prefix β = uk+1 of
some complete word wk+1 ∈ Δ. Then, it is not hard to show that the extension
in the case (b.2), where a jump from dom(tree) into dom(code) is performed, can
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occur at most once per complete codeword wk+1 during the whole scan, because
once the case (b.2) occurs, only the case (b.3) can occurs iteratively in successive
stages until φ reaches dom(tree). Thus, we can amortize the cost for the case
(b.2) over the whole computation. Combining the above arguments, we have the
number of edge traversals bounded by:

Ncode ≤
n∑

i=0

∂N i
code ≤ (

n∑
i=0

1) + (
k+1∑
j=0

|wj |) ≤ 2n,

where we used the equality
∑k+1

j=0 |wj | = |T | = n. From similar arguments as in
[17], we can show the remaining part that Ntree ≤ 2n. Hence, the total number of
edge traversals is given by N = Ntree +Ncode ≤ 4n. Space complexity is obvious
since CSTΔ(T ) has at most O(n) real nodes. For the total time complexity, the
algorithm takes O(m) time for the preprocessing A = DFA(Δ). It takes O(1)
time per suffix link traversal and O(log |Σ|) time per child edge traversal with
an appropriate dictionary structure. Hence, we have the result. ��
From Theorem 2, the algorithm runs in O(n + m) time and O(k) space for a
fixed base alphabet Σ.

4 Application to Truncated Code Suffix Trees

Let T ∈ Pre(Δ∗) T = T [1] · · ·T [n] = w1 · · ·wkwk+1 ∈ Pre(Δ∗) be an input
prestring on Δ and � > 0 be a fixed integer. Then, the �-truncated code suffix
tree (�-TCST) of T on Δ, denoted by �-TCSTΔ(T ), is a compacted trie that
represents the set FacΔ(T, �) of all (Δ, �)-factors of T . It is easy to see that the
number of nodes in �-TCSTΔ(T ) is linear in the number k′ = |FacΔ(T, �)| of
unique (Δ, �)-factors of T . Since k′ is smaller than k = |SufΔ(T )| in real data
sets, we expect that �-TCST is more space efficient than CST for small values
of �.

The modified algorithm ConstructTCST for �-TCST is obtained from the origi-
nal ConstructCST of Fig. 3 by inserting Terminate in Fig. 6 after Extend of line 8.
The main difference of the new algorithm from the old one is the use of the
termination pointer ψ for closing suffixes in addition to the extension pointer
φ for opening suffixes. At every stage i = 1, . . . , n, Extend first extends each
φ = α of type 2 in T i−1 to αai by attaching the i-th letter ai = T [i] ∈ Σ. At
the same time, Terminate keeps track of termination point ψ, which is an open
leaf ψ = 〈j,∞〉 with word depth at most � − 1, and terminates it whenever φ
reaches the depth � by replacing 〈j,∞〉 with 〈j, i〉, where i is the current index.
A key observation is that there exists at most one open leaf to be closed at every
stage i.

To implement this idea, we have to count the length of the open suffixes in
the number of codewords to detect when |L(ψ)| exceeds the limit �. To do this
we use a data structure Θ = 〈η, wc〉, where Θ.η = η ∈ dom(code) is a boundary
pointer to a code node and Θ.wc = wc ∈ N is a word counter , with the following
operations, where a ∈ Σ:
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Algorithm Terminate(ψ = 〈s, j, i− 1〉, i):
Input: A terminating point ψ and i ≥ 0;

1: ψ ← Canonize(〈s, j, i〉); {type 1 extension by letter ai}
2: ChildTrans(Θ′, T [i]);
3: if toClose(Θ′) then
4: v := child(s, T [j]);
5: if label(v) = 〈j,∞〉 then label(v)← 〈j, i〉;
6: SuffixTrans(Θ′, ψ);
7: return ψ;

Fig. 6. Terminating truncated word suffix trees

• Reset(Θ) ≡ begin Θ.η ← [⊥]; Θ.wc ← 0; end.
• Decrement(Θ) ≡ Θ.wc ← Θ.wc − 1;
• ChildTrans(Θ, a) ≡

1: Θ.η ← childDFA(Δ)(Θ.η, a);
2: if Θ.η = [ε] then begin Θ.η ← ⊥; Θ.wc ← Θ.wc+ 1 end;

• SuffixTrans(Θ, φ = 〈s, j, i〉) ≡
1: Θ.wc ← Θ.wc− 1; φ←Canonize(〈SLΔ(s), j, i〉); return φ;

• toClose(Θ) ≡
1: return Θ.wc = k and Θ.η = [ε];

The meaning of the above operations will be easily understood. Using these
operations, we modify the algorithm ConstructCST and procedures Extend and
Canonize by adding comment lines with “for �-TCST.” In Canonize, we replace
the sentence “if p− q > i− j then” at line 4 with “if p− q > i− j or u is a leaf
then.” For time complexity, ChildTrans takes O(log |Σ|) time, and all the other
operations except SuffixTrans take constant time. By analysis similar to one in
the previous section, we can show that SuffixTrans requires amortized constant
time per operation. From a similar discussion in Sec. 3 and in Na et al. [14], we
have the following theorem.

Theorem 3 (linear time construction of a TCST on prefix code). If Δ is
a fixed, possibly infinite prefix code, then the modified algorithm ConstructTCST
constructs a truncated code suffix tree �-TCSTΔ(T ) for an input text T in O(n)
time and O(k) space in online manner, where k = |T |Δ and n = |T |Σ.

5 Experimental Results

We ran experiments on real datasets. Input data were an English text from the
Pizza & Chili Corpus1, where the delimiters are spaces SPC and LF, and a UTF-
8 text from the Mainichi Newspaper Corpus 1991 in Japanese2. The length of
1 http://pizzachili.dcc.uchile.cl/
2 http://www.nichigai.co.jp/sales/corpus.html

http://pizzachili.dcc.uchile.cl/
http://www.nichigai.co.jp/sales/corpus.html
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Table 1. Node count (106 nodes), where � is the length of code factors

Data ST CST IST HST IHST � TST TCST TIST THST TIHST

2 28 3.6 2.6 39 4.9
English 87 17 14 105 20 5 56 11 8.3 74 14

10 58 11 8.7 76 14

2 2.5 0.43 0.35 4.0 0.70
UTF-8 85 29 25 105 35 5 43 13 11 58 17

10 70 23 20 89 30

Table 2. Query time (microseconds per query)

Data ST CST IST HST IHST � TST TCST TIST THST TIHST

1.03 0.827 0.686 1.295 0.624 2 0.889 0.718 0.577 1.139 0.546
English 1.233 0.952 0.827 1.497 0.733 5 1.170 0.905 0.764 1.435 0.718

1.263 0.952 0.827 1.514 0.749 10 1.185 0.904 0.827 1.467 0.718

0.537 0.47 0.441 0.787 0.434 2 0.421 0.341 0.305 0.608 0.304
UTF-8 0.88 0.772 0.803 1.138 0.718 5 0.827 0.72 0.684 1.077 0.677

0.886 0.774 0.767 1.138 0.723 10 0.858 0.755 0.787 1.108 0.705

each text was 50MB. The English text has 336,578 different words of the average
length 5.20 (byte). The UTF-8 text has 4054 different codes of the average length
2.96 (byte).

We implemented several types of sparse and truncated suffix trees. ST is the
suffix tree, CST is the code suffix tree in Chapter 3, IST is the suffix tree over the
code alphabet Δ using four-byte integers as base letters, HST is the code suffix
tree over the (letter-based) Huffman code, and IHST is the code suffix tree over
the word-based Huffman code for Δ. TST, TCST, TIST, THST and TIHST
are their truncated versions with the factor length � = 2, 5, and 10 (words).
These programs were written in C++ and compiled by Microsoft Visual Studio
2010. We ran the programs on an Intel Core i7 920 and 12GB of RAM, running
Windows 7 Professional 64bit.

Tables 1 and 2 show the node counts of the suffix trees and the average
query time for 106 strings of the code lengths � = 2, 5, and 10 (words), respec-
tively. In the experiments, we observed that the sparse suffix trees were more
space-efficient and faster than their non-sparse versions, roughly, by the factor
of O(n/k). Truncated suffix trees also improved space efficiency and query time
in both full and truncated versions. IHST was the fastest in the algorithms,
even though HST was slowest. CST was slightly slower than IST, however, it is
comparable because it does not need any additional space and preprocessing.

6 Conclusion

In this paper, we presented an online construction algorithm for CSTs and �-
TCSTs on regular, variable-length prefix codes that runs in O(n+m) time and
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O(k) space, where n is the total text size, k is the number of codewords, and m
is the size of a code automaton.

As future works, extensions of this approach to other suffix indexes, e.g.,
DAWG [9], CDAWG [10], and suffix arrays [5], and application to enhanced
suffix arrays [1, 12] and property suffix trees [2, 16] would be interesting. Also, it
would be an interesting future problem to study lowerbounds of the worst case
time complexity of construction of sparse suffix trees with an arbitrary index set
of size k when O(k) space is allowed.
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Abstract. The weak-prefix search problem asks for the strings in a dic-
tionary S that are prefixed by a pattern P [1, p], if any, otherwise it admits
any answer. Strings in S have average length �, are n in number, and
are given in advance to be preprocessed, whereas pattern P is provided
on-line. In this paper we solve this problem in the cache-oblivious model
by using the optimal O(n log �) bits of space and O(p/B + logB n) I/Os.
The searching algorithm is of Monte-Carlo type, so its answer is correct
with high probability. We also extend our algorithmic scheme to the case
in which a probability distribution over the queried prefixes is known,
and eventually address the deterministic case too.

1 Introduction

Searching for a pattern P [1, p] as a prefix of a set S of n strings of average
length � is a classic problem in the string-matching field, with plenty of solutions
available. (See e.g. [9] for a survey and a discussion of the literature.) All known
solutions require O(n�) bits in the worst case, because they need to store the
set S. Recently [1] introduced the weak variant of the problem that asks for a
one-side answer, which is requested to be correct only in the case that P prefixes
some of the strings in S; otherwise, it leaves to the algorithm the possibility to
return an un-meaningful answer. Formally,

Problem 1 (Bellazougui et al. 2010). Let S = {s1, s2, . . . , sn} be a prefix-free set
of binary strings which have variable length and are sorted alphabetically. Each
string consists of at most L bits, and it has average length �. The weak prefix-
search problem requires, given a binary query-string P [1, p], to return the range
of strings of S having P as prefix. The range is expressed in terms of string-ids,
and it may be any range if P does not prefix any string of S.

The weak-feature allowed [1] to reduce the space occupancy to O(n log �) bits,
and indeed they proved that this is a space lower-bound. Their solution takes
O(p/w+ log2 p) memory transfers for searching in a RAM model with memory-
word of w bits. The key issue here is not to store the string set S, but use an
index just taking O(log �) bits per string. This improvement is significant for
very-large string sets, and we refer the reader to [1] for applications.

� Supported by PRIN MadWeb 2008 and FIRB Linguistica 2006.

R. Giancarlo and G. Manzini (Eds.): CPM 2011, LNCS 6661, pp. 261–272, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In the large-set setting it is more appropriate to evaluate algorithms in the
External-Memory model in which B is the disk-page size and M is the size of
the internal memory [13]. In this context the above result can be rephrased as
O(p/B + log2 p) I/Os, by setting w = B, still within the optimal O(n log �) bits
of space occupancy. Noteworthy the I/O-bound holds also in the more powerful
Cache-Oblivious model where the two model’s parametersM andB are unknown
to the running algorithm (see e.g. [10]).

The best known result for the classic prefix-search problem [3,8,9] uses O(n�)
bits of space and O(p/B+logB n) I/Os. This is always worse in space than what
is obtained for the weak prefix-search, but it is faster whenever logB n < log2 p.
This latter inequality is realistic in practice even for moderate pattern’s lengths,
given that it corresponds to n < plog2 B ≈ p15. In this paper, we provide a
(randomized) solution to the weak-prefix search problem which matches the best
of the two solutions above by obtaining O(p/B + logB n) I/Os within O(n log �)
bits of space occupancy (see Theorem 2). The searching algorithm is of Monte-
Carlo type, so its answer is correct with high probability. Our solution has the
nice feature of being algorithmically simpler than [1], and thus worth to be
implemented. Eventually we will extend our algorithmic scheme to the case in
which a probability distribution over the queried prefixes is known (see Theorem
3), and then address the deterministic case too.

We conclude this section by noticing that our results are stated in terms
of binary strings but they generalize easily to strings drawn from an arbitrary
alphabet Σ. This is obvious for a constant-sized alphabet, whereas the case of
a larger alphabet can be managed by re-mapping its symbols occurring in S’s
strings to the range [0, n�− 1], the second extreme denoting the total length of
the strings in S.

2 Background

A compacted trie TS built on the string set S is a tree in which the root may be
unary, but all other internal nodes are binary. TS consists of n leaves (one per
string in S) and no more than n internal nodes, hence O(n) nodes in total. Each
edge e = (u, v) is labeled with a substring s(e) of the strings in S, each leaf l
is labeled with an integer in the range [1, n] denoting the rank of its associated
string in S, and each internal node u is labeled with an integer denoting the
length of the string spelled out by the root-to-u path in TS . We denote that
spelled string by s(u), and observe that in the case u is a leaf it is s(u) ∈ S.

A Patricia trie PTS is derived from the compacted trie TS by substituting
each substring labeling a tree edge with its first character, commonly called
branching character. Figure 1 shows an example. In the following we will use
PTS in combination with a special prefix-search procedure introduced in [8] and
called blind search. The key idea is to search for the lexicographic position of
P in S by percolating a root-to-leaf path in PTS , matching only the available
branching characters. Two cases may occur: (i) either P is exhausted and a
node u is reached (possibly a leaf); or (ii) a mismatch occurred when branching
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Fig. 1. An example of compacted trie and its Patricia’s variant built over a set S of
12 binary strings. Bits between brackets are the part of an edge-label that has been
dropped when turning the compacted trie into the corresponding Patricia trie. In this
example, this dropping occurs just twice.

out from a node u. In both cases, the authors in [8] suggest to take any leaf l
descending from u, and they prove that s(l) is one of the strings in S sharing the
longest common prefix with P [8, Lemma 1, pag 253]. This lcp-value together
with another percolation of PTS was used in [8] to find P ’s position in S. The
nice fact was that just one string of S was compared.

This single string-comparison is not possible in our weak-prefix search problem
because S is not available. Nevertheless that result can be rephrased in our
problem as follows: case (ii) immediately leads us to say that P does not prefix
any string of S; if we are in case (i), then either the string s(u) has prefix P or P
does not prefix any string in S. As an example take P = 0010, the blind search
over the Patricia Trie in Figure 1 reaches the node v which is not the correct
locus for the string P because there is a mismatch at the third bit that was not
catched by the blind search since that bit was missing in the corresponding edge
label. Anyway, this is not a problem because P is not a prefix of any string in
S, and so the answer to the weak-prefix search can be arbitrary. On the other
hand if P = 0000 then the blind search stops again at the node v, but this is
now correct since P prefixes all 9 strings descending from v.

The advantage of using the combination between blind search and PTS , with
respect to the classical approach over compacted tries, is that the blind search
identifies one single node in PTS whose spelled string is the unique candidate
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for being prefixed by P , and this node can be found by deploying only the
information available in PTS , thus without any access to the string set S.1

On the other hand, there are two shortcomings in adopting this scheme to
solve our weak-prefix search problem over S. The first one is that the overall
space is Ω(n logn) bits, which is possibly ω(n log �); the second one is that the
packing of PTS into pages of size B is a difficult problem in its generality, as
shown in [6]. We address the first issue in the next Section 3, and the second issue
in Section 4 where we will propose a solution tailored to deploy the specialities
of the blind-search procedure over Patricia tries.

3 A 2-Level Indexing Scheme for RAM

Our first step is to propose a 2-level indexing scheme whose goal is to reduce
the space occupancy of the classic Patricia trie’s approach from O(n log n) to
O(n log �) bits. Of course it is � = Ω(log2 n) because all n strings are distinct.

A proper sampling of S. Recall that the strings in S are lexicographically
sorted. For the sake of presentation we assume that s1 = 0+ and sn = 1+, so
that P is lexicographically included in S, and let n be a multiple of logn.

We partition S into g = n/ logn groups of (contiguous) strings defined as
follows: Si = {s1+i log n, s2+i log n, . . . , s(i+1) log n} for i = 0, 1, 2, . . . , g − 1. We
then construct a subset of S, call it S′, that consists of 2g strings obtained by
taking the smallest (first) and the largest (last) string in each of those groups.
In some sense this sampling process recalls the one adopted to design the String
B-tree [8] but it is restricted to just two levels and assumes that the block size
is logn. Subtly we cannot prefix-search as done in String B-trees because we
do not have the strings of S available, and thus we cannot compute the lcp’s
between P and one of those strings when needed by the blind search. Hence we
need to devise some further properties about Patricia Tries and blind searches,
in order to implement an efficient weak prefix search over this 2-level index.

The data structures. For the sake of presentation, let us forget the I/O-issues
and concentrate on the design of a solution for the RAM model. We denote by
[sl, sr] the two strings in S which delimit the range of strings prefixed by P and
thus the integer-pair (l, r) is the solution to the weak-prefix search problem. We
recall that these two strings are arbitrary in the case that P does not prefix any
string of S. Given our notation we construct two types of Patricia Tries:

– PT ′ is the Patricia Trie built over the strings in S′ with the speciality that
we store in each node u of PT ′ a fingerprint of O(log n) bits computed for
the string-prefix s(u) (spelled by the root-to-u path). Since PT ′ consists
of O(n/ logn) nodes, this additional information needs O(n) bits overall
and can be efficiently computed by using the Karp-Rabin-scheme [5] which
ensures distinct substrings collide with polynomially small probability.

1 The compacted trie needs to access S ’s strings to resolve the edge labels during a
string search.
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– For each edge e = (u, v) of PT ′ we build the Patricia trie PTe which indexes
a group of O(log n) strings defined as follows. Assume that each node v
of PT ′ points to its leftmost/rightmost descending leaves, denoted by L(v)
and R(v). We denote by SL(v) and SR(v) the two groups of strings, from the
grouping above, that contain sL(v) and sR(v). The Patricia trie PTe is built on
the string set SL(v)∪SR(v). Since the strings in SL(v) or SR(v) are contiguous
in S we can encode their string-ids relatively to the first string-id of each
group, and thus use O(log n+ (logn) × (log logn)) bits. Each node encodes
the string-len info within O(log �) bits on average, thus O((log n) × (log �))
average bits overall. Since � = Ω(log2 n) (see above) and since the number
of edges of PT ′ is O(n/ log n), all Patricia tries PTes take O(n log �) bits.

Lemma 1. The data structures PT ′ and PTe, for all edges e in PT ′, occupy a
total of O(n log �) bits.

Few useful properties. Let us start with a property that can be easily derived
from [8] and has been sketched in Section 2.

Fact 1. Let PTX be the Patricia trie built on a string set X . The execution of
the blind search for a pattern P over PT X stops at a node u such that either the
string s(u) is prefixed by P , or P does not prefix any string in X .

The impact of this Fact cannot be overestimated, in the sense that it can be used
in the second-level of our data structure to perform a weak-prefix search over the
(contiguous) groups of strings indexed by some PTe; but it cannot be used over
the first-level Patricia trie PT ′ to determine the lexicographic position of P in
S′, as it was done originally in [8]. This is because the set S′ is unavailable. An
example is given in Figure 2 for a pattern P = 01001. The classic blind-search
procedure would reach the right child of node w, thus identifying the group of
strings S3. This is not correct since P ∈ S4.

We circumvent this drawback by devising a new structural property of Patricia
Tries.

Fact 2. If P prefixes some of the strings in S, then it does exist an edge e =
(u, v) in PT ′ such that sl and sr can be identified by looking at SL(v) ∪ SR(v).

Proof. For ease of exposition we denote by sL(i) and sR(i) the leftmost and
rightmost strings sampled from Si. We consider two cases: (a) P does not prefix
anyone of the strings in S′, and (b) P prefixes at least one string of S′. Case (a)
implies that the solution-range [sl, sr], if not empty, is totally included in one
group Si, so sL(i) < sl ≤ sr < sR(i). Case (b) implies that the solution-range
[sl, sr] spans one or more groups, say Sx,Sx+1, . . . ,Sy.

The Fact is trivially true in Case (a) because it is enough to take as edge
e the one incident into the leaf v = sL(i) (or equivalently, v = sR(i)) so that
SL(v) = SR(v). For Case (b), we have that sl ∈ Sx and sr ∈ Sy, with x ≤ y.
Given that P prefixes all strings in [sl, sr], it prefixes the leftmost/rightmost
strings of Sx+1, . . . ,Sy−1 as well as it prefixes sR(x) (which lies on the right of sl,



266 P. Ferragina

Fig. 2. The Patricia Trie built on the subset S ′, in which each group is formed by 3
strings. On the left it is shown PTe, where e is the edge incident into v, with its leaves
encoded relatively to the first two string-ids of groups S1 and S4, namely 1 and 10.
The figure also indicates the leftmost sL(w) and the rightmost sR(w) strings descending
from node w.

possibly it is equal) and sL(y) (which lies on the left of sr, possibly it is equal). In
addition, if sl = sL(x), then P also prefixes that string; similarly for sr = sR(y).
We now concentrate on sl because the proof for sr is symmetric; and we prove
that sl ∈ SL(v) for some node v by distinguishing two sub-cases: (b.1) sL(x) < sl

and so P does not prefix sL(x), (b.2) sL(x) = sl and thus P prefixes sL(x).
Case (b.1) implies that lcp(sL(x), sl) < p, and since we know that P prefixes

sR(x), the blind search over PT ′ will exhaust P stopping at a node v such that
|s(v)| ≥ p. Moreover we have that sR(x) descends from v but its adjacent string
on-the-left in S′, namely sL(x), does not. Therefore the leftmost string in S′

descending from v is sR(x). So we can conclude that sl ∈ SL(v).
Case (b.2) follows a similar argument to prove that sL(x) = sl descends from

v but its adjacent string on-the-left in S′, namely sR(x−1), does not (given that
P does not prefix it). So the leftmost string in S′ descending from v is sL(x) = sl,
and thus again sl ∈ SL(v).

As we mentioned above, the proof for sr follows similar lines hinging on the
same vertex v, and shows that sr ∈ SR(v). ��

Fact 2 relaxes the requirement that PT ′ can identify the lexicographic position
of P in S′, and aims for an approximate solution of it: namely, it shows that the
position of P in the original set S can be determined within a distance O(log n).
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It is the second round of the weak-prefix search procedure, executed on PTe, to
resolve the ambiguity thanks to Fact 1.

As an illustrative example, refer to Figure 2 and consider a pattern P = 0100
which prefixes the single string s11 internal into S4 (Case a). The edge identified
by Fact 2 is the one incident in sL(4) = s10, so the candidate group of strings
to be searched for sl, sr is S4. On the hand, assume that P = 00 which prefixes
[s1, s10] (Case b). The edge e is the one connecting the root of PT ′ to v. It
identifies the groups S1 ∪ S4 and indeed s1 ∈ S1 and s10 ∈ S4. Both groups are
indexed by the Patricia Trie PTe shown in the figure. We observe that, if we blind
search P in PTe, we identify the node z such that sL(z) = s1 and sR(z) = s10 as
stated in Fact 1.

The algorithmic solution. Now we are left with the problem of showing how
the Patricia Trie PT ′ can be used to efficiently identify the edge e characterized
by Fact 2, and how the search proceeds in PTe to detect sl, sr among the strings
of SL(v) ∪ SR(v) (Fact 1).

Subtly enough, the identification of edge e specified in Fact 2 is not immediate.
As an example let us assume that P does not prefix any string in S′, but it
prefixes one string in some sub-group Si. Given that the Patricia trie PT ′ is
built over S′, the blind search could lead to a node which is completely far away
from the leaf sL(i) we are searching for (because it points to Si). The problem
here arises because PT ′ contains a “reduced” set of branching nodes (wrt PT S),
which are indeed the lowest-common-ancestors of the leaves associated to the
sampled strings of S′. So the path leading to sL(i) is surely followed by the
blind-search procedure up to the first lcp(P, sL(i)) < p characters, but then it
may diverge from that path when matching the pattern’s characters following
lcp(P, sL(i)). Figure 2 shows this dangerous case for P = 0100. Here P prefixes
s11 ∈ S4 but no string in S′ is prefixed by P . The path followed by the blind
search in PT ′ leads to the node w and thus the application of Fact 2 would lead
to search in S1 ∪S3, which is incorrect. The problem here is that the mismatch-
bit between P and the first traversed edge resides at position lcp(P, s(v)) = 1
which is internal into the edge-label and thus has not been compared by the blind
search. The next compared bit, namely P [4], matches the branching bit leading
to w and thus drives the search far from node v, and thus far from R(v) ∈ S4.

In order to circumvent this problem we have to empower the blind-search pro-
cedure for detecting the edge of the mismatch bit. The pseudo-code in Figure 3
details our approach, which hinges on the deployment of the fingerprints f(u)
available at each node u of PT ′. These fingerprints maintain a succinct encoding
of the substrings s(u), taking O(log n) bits each. We highlight that, for efficiency
reasons, f(u) does not represent the label of the edge leading to u, but it rather
represents the entire string-prefix s(u), as spelled out by the root-to-u path. This
way, we need to compute and store only O(p) fingerprints for P , which can be
done in linear time according to the Karp-Rabin’s scheme.

It is evident in the pseudo-code of Figure 3 that fingerprints will be equal for
all the ancestors a of v (and thus for all pattern prefixes of length ≤ |s(a)|), after
that they’ll be different with high probability. The crucial twist here is that we
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1. Compute the Karp-Rabin’s fingerprint of all prefixes of the pattern P , according
to the function f() used for the nodes in PT ′.

2. Execute a blind search for P over the Patricia trie PT ′. Each time a node v is
reached, we check whether f(v) equals the fingerprint of the corresponding pattern
prefix f(P [1, |s(v)|]). If the two fingerprints match and |s(v)| < p, the blind search
proceeds branching out of v with the bit P [|s(v)|+ 1], otherwise we stop at v and
call e the edge of PT ′ entering into v.

3. Repeat the blind-search procedure over PTe and call v′ the node where it stops.
Return sl = L(v′) and sr = R(v′).

Fig. 3. The weak-prefix search algorithm

are not able to identify the position of the mismatching bit, but we are able to
identify the edge e = (u, v) containing that mismatching bit. This is enough to
conclude that P lies lexicographically either to the left of the subtree descending
from v (hence to the left of L(v)) or to its right (hence to the right of R(v)).
This is what has been stated in Fact 2 and implemented in Step 2. Finally,
Fact 1 guarantees that Step 3 correctly identifies sl and sr among the strings of
SL(v) ∪ SR(v) as the leftmost/rightmost descendants of node v′ in PTe.

Theorem 1. The combination of PT ′ and the set of PTe solves the weak-prefix
search problem in O(n log �) bits. The search for a binary pattern P [1, p] perco-
lates two downward paths of length at most p, and uses local information stored
at each node in O(log n + log �) = O(w) bits. The search is correct with high
probability because of the use of the Karp-Rabin’s fingerprintings.

4 I/O-Packing of the Patricia Tries

Packing trees of t nodes into pages of size B is difficult if there is no additional
restriction either on the tree structure or the type of tree traversals. Surprisingly
enough, even if we restrict the tree traversals to root-to-leaf paths of length L,
the type of I/O-bounds we are aiming for— namely O(L/B + logB t)— cannot
be guaranteed in general [6]. In particular, when the path length is L = O(log t)
then the bound L

log B = O(logB t) I/Os is possible. But in order to extend this
I/O-bound to all other p, we need to dig into the structural properties of tries
and prefix searches as we do next.2

The centroid tree. We resort a known decomposition of trees proposed in [2]
for the static cache-oblivious String B-tree. We apply it to our Patricia Trie PT ′,
and then modify accordingly the blind-search procedure of Figure 3. This will
be enough to get our final I/O-bounds because the other Patricia Tries PTe have
size O(log n), thus their depth is L = O(log n), and hence they can be searched
in O(logB n) I/Os as observed above.
2 For other cache-oblivious or I/O-efficient mappings of tries please have a look at

[3,4,11,12].
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Fig. 4. The centroid tree of the Patricia Trie PT ′ of Fig.2

So let us recall how to pack PT ′. The key idea is that there is a centroid
node z in PT ′ that has at least t/3 and at most 2t/3 descendants, where t =
|PT ′| = O(n/ logn). The centroid tree of PT ′ is obtained by making z the root
and attaching as z’s children the recursively defined centroid trees of z’s up and
down tries. At every level of the recursion we eliminate a constant fraction of
trie nodes from consideration, so the centroid tree has depth O(log n). Thus,
as observed above [6], there exists a packing for which any root-to-leaf path
traverses O(logB n) disk pages (hence I/Os). By packing we mean not only the
tree-structure of the centroid tree, but also the fingerprinting information that
is associated to the nodes of PT ′.

Figure 4 shows an example of centroid tree computed for the Patricia Trie
of Figure 1. Each internal node is labeled with a string s, and has a solid edge
linking it to the root of its down trie (the leaves of which have s as a prefix),
and a dotted edge linking it to the root of its up trie (the leaves of which do
not have s as a prefix). Each internal node maintains a pointer to the leftmost
and rightmost descending leaf from the entire PT ′ (not shown in the picture).
In Figure 4 we use circles to denote internal nodes of PT ′ and squares to denote
leaves of PT ′. Notice that leaves of PT ′ can become internal nodes of the centroid
tree, and vice versa.

Prefix-searching over the centroid tree. We are left with showing how
Step 2 of Figure 3 is implemented (recall that Step 3 acts on PTe which takes
O(logB n) I/Os to be percolated). Let z be the node of the centroid tree currently
visited, initially z is the root. We determine whether s(z) is a prefix of P by
comparing the corresponding fingerprints. If it does, then we follow the solid
edge, otherwise we follow the dotted edge. The ratio is that, in the case of a
match, the prefix search must proceed in the subtrie of PT ′ that descends from
z (previously called down-trie) and containing all strings of S′ that have s(z) as
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a prefix; otherwise, the prefix search does not pass through z but lies into its up-
trie. It should be evident that we are doing a sort of binary search over the entire
structure of PT ′ which eventually identifies the deepest node u whose fingerprint
f(u) equals the fingerprint of the corresponding pattern prefix f(P [1, |s(u)|]).
Now if |s(u)| < p, we take v as the child of u in PT ′ whose branching bit equals
P [|s(u)|+1]; otherwise it is |s(u)| = p and thus we can set v = u. This node v is
exactly the one identified in Step 2 of the pseudo-code of Figure 3. We remind
the reader that false-positive matches between Karp-Rabin’s fingerprints occur
with small probability.

As an illustrative example, take P = 0100 and start matching the centroid-
tree’s nodes in Figure 4. We percolate the leftmost downward path up to node
u, since its ancestors have longer labeling substrings which therefore do not
prefix-match P (so dotted edges are followed). Since s(u) is the empty string, it
prefix-matches P ; but its solid child w does not prefix P . Given that u has not
dotted outgoing edges, u is the deepest node in PT ′ whose label prefix-matches
P . So we jump3 on u’s “copy” in PT ′ and take the child whose branching bit is
P [1] = 0. This is correctly the node v of Figure 2.

Theorem 2. The weak-prefix search problem can be solved in the cache-oblivious
model by using O(n log �) bits of space and O(p/B+logB n) I/Os. The correctness
holds with high probability.

We conclude the paper by observing that our algorithmic scheme can be turned
into a query-distribution aware approach that changes the term O(logB n) into a
term that depends on the probability of querying the pattern P . This improve-
ment can be significant in the case that some patterns are more frequent than
others. One (common) way to proceed is to start from a probability distribution
over the strings of S (and thus over the leaves of PT S), and then derive a distri-
bution over their prefixes: for every node v ∈ PT S , we define ℘(v) as the sum of
the probabilities of the descending leaves (i.e. strings having prefix s(v)). Then,
we can adapt the centroid decomposition to work on the probability mass of the
nodes in PT S rather than on the number of their descending leaves. Actually, to
avoid the limiting cases of very rare strings s such that ℘(s) < 1/n, we divide the
nodes of PT S into two subsets: one composed by rare nodes whose probability is
< 1/n, and the other set formed by the rest. It is clear that the rare nodes form
subtrees of PT S that we store using the scheme which is distribution’s UNaware,
and thus get the I/O-bound O(p/B+logB n) for searches into them. Conversely,
for the former set which forms a single trie, we proceed by adding to it all roots
of the rare subtries, possibly splitting some edges, and then storing the overall
trie using the distribution-aware approach.

The search starts in this latter trie, and identifies an edge (u, v) taking
O(|s(u)|/B+logB 1/℘(u)) I/Os. Since s(u) prefixes P it is |s(u)| ≤ p and ℘(u) ≥
℘(P ). Now, two situations may occur. Either v is not rare, and thus the search
stops at this edge and the above bound can be written as O(p/B + logB

1
℘(P ) ).

3 Clearly the “jump” is logical in that v can bring the two pointers within its occur-
rence in the centroid tree, thus saving one I/O, and the duplicate storage of PT ′.
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Or v is rare, and if the prefix of P matches s(v), then the search continues in the
rare subtrie descending from v, using the distribution UN-aware scheme. This
second search takes O(p/B+logB n) I/Os. Overall this second case (which actu-
ally refers to a rare P ) takes O(p/B+ logB 1/℘(u)+ logB n) = O(p/B+ logB n)
I/Os, where the second bound derives from the fact that u is not rare.

If we apply the above query-distribution aware approach to the entire trie
PT S , we would get the aimed I/O-bound but with an overall space occupancy
of O(n�) bits. To get the following theorem we just use the 2-level indexing
scheme of Section 3 and apply the query-distribution aware approach to both
PT ′ and to all PTe.

Theorem 3. The weighted weak-prefix search problem, for which a query-
distribution is known in advance, can be solved in the cache-oblivious model using
O(n log �) bits of space and O(p/B + logB min{n, 1

℘(P )}) I/Os. The correctness
holds with high probability.

As a conclusive note we point out that our algorithms can be changed from Mon-
tecarlo’s to deterministic ones in the reasonable applicative scenario (mentioned
in [1]) that the strings reside on disk and the weak-prefix-search data structure
is stored in internal memory. In this case, our approach needs only to store on
disk the sampled set S′ and uses just one additional disk I/O to determine v
in Step 2 (in practice we argue that p/B ≤ 1). Conversely the String B-tree [8]
requires the same number of I/Os but with a storage cost of Ω(n log n) bits in
internal memory, and the need to keep the whole string set S on disk.

As a future research we would like to deploy our algorithms and data struc-
tures in order to address the energy-issues raised in [7].

Acknowledgements. I thank Djamal Belazzougui and the anonymous referees
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Abstract. In the minimum common string partition problem one is
given two strings S and T with the same character statistics and one
seeks the smallest partition of S into substrings so that T can also be
partitioned into the same substring multiset. The problem is fundamen-
tal in several variants of edit distance with block operations, e.g. signed
reversal distance with duplicates and edit distance with moves.

The minimum common string partition problem is known to be NP-
complete and the best approximation known is of order O(log n log∗ n).
Since this problem is of utmost practical importance one seeks a heuristic
that will (1) usually have a low approximation factor and (2) will run
fast.

A simple greedy algorithm is known and it has been well-studied from
an approximation point of view. It has been shown to have a bad worst
case approximation factor. However, all the bad approximation factors
presented so far stem from complicated recursive construction. In prac-
tice the greedy algorithm seems to have small approximation factors.
However, the best current implementation of greedy runs in quadratic
time.

We propose a novel method to implement greedy in linear time.

1 Introduction

The classical edit distance is the number of edit operations, insertions, deletions,
character exchanges and (sometimes) swaps, needed to transform one string
into another. All the edit operations work on single characters, besides swap
which operates on two. Motivation for block operations has stimulated a large
collection of new problems, some of which have a completely different flavor than
the original edit distance problem.

Kruskal and Sankoff [12] and Tichy [16] were first to deal with block opera-
tions together with simple character operations. Lopresti and Tomkins [13] gave
several distance measures for block operations in the same spirit as they were
defined for the case of single characters. The subject of block edit distance gained
an increasing interest in the last decade especially due to its important impact
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on the computational biology field. In the research of the homology of struc-
tures there is an interest in finding organisms’ characteristics that are derived
from a common ancestor. The task of identifying the orthologs, especially direct
descendants of ancestral genes in current species is a fundamental problem in
computational biology. A promising approach to solving this problem is to take
into account not only local mutations but also global genome rearrangements
events. This approach is strongly connected to the area of edit distance where
block operations are allowed, since those genes can be represented as sequences
of characters with block operations applied to them.

1.1 Sorting by Reversals and MCSP

Chen et al. [1] studied the problem of signed reversal distance with duplicates
(SRDD) which is a slight extension of the sorting by reversals (SBR) problem.
They showed that this problem is NP-hard even for k = 2 (it is worth noting
that in the unsigned case the problem is NP-hard even if k = 1. However, for
the signed case there is a polynomial algorithm for solving SBR for k = 1,
see [7]). Moreover, they pointed out that this problem is closely related to the
minimum common string partition problem (MCSP). In the MCSP we are given
two strings S and T and we need to find a partition of each of these strings to
substrings, so that we can match all of S’s parts to those of T .

1.2 Edit Distance with Moves and MCSP

The problem of edit distance with moves was studied by Cormode and Muthukr-
ishnan [4]. In this variant of the classical edit distance, moving a substring is
allowed in addition to deleting and inserting single characters. They showed the
problem to be NP-Complete and suggested and approximation algorithm with
an approximation factor of O(log n log∗ n) and running time O(n log∗ n). This is
still the best approximation algorithm given for the problem.

Shapira and Storer [15] observed that the problem, while recursive, can be
transformed into a non- recursive version with a constant-factor cost in the
approximation. Moreover, they showed that the problem can be transformed
into a version in which moves only are allowed. It has been observed that this is
in essence is a reduction to the MCSP problem, although not specifically noted so
in the paper. Using Shapira and Storer’s observations one can use Cormode and
Muthukrishnan [4] approximation algorithm for MCSP as well. This is currently
the best known approximation.

1.3 Restricted Versions of MCSP

Goldstein et al. [6] proved that even the simple case of 2-MCSP in which each
character occurs at most twice is NP-hard. Moreover, they showed that it is APX-
hard. They also gave an 1.1037-approximation algorithm for this problem which
improved the 1.5 ratio showed by Chen et al. [1]. For 3-MCSP a 4-approximation
algorithm was given. Kolman [10] found an O(k2)-approximation algorithm for
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k-MCSP with O(nk) running time for general k, where each symbol can occur
at most k times. Kolman and Walen [11] improved this result and gave an O(k)-
approximation algorithm with O(n) running time.

Due to the close relation between the MCSP problem and the SBR prob-
lem (as shown by Chen et al. [1]) the approximation factor for these restricted
versions of MCSP also applies to parallel restricted versions of SBR with just
a constant factor penalty. Instead of restricting the problem by the number of
each symbol occurrences, the MCSP problem and the related problem of SBR
could be also restricted by the alphabet size. Unsigned SBR for unary alphabet
could be solved trivially. However, Christie and Irving [2] showed that for bi-
nary alphabet unsigned SBR becomes NP-hard. Similar NP-hardness results for
MCSP incorporating alphabet sizes greater than 1 were given by Jiang et al. [8].

1.4 MCSP and the GREEDY Algorithm

A simple greedy algorithm, to be denoted by GREEDY, was first examined by
Shapira and Storer [15]. They showed that for many inputs the algorithms has
a logarithmic approximation factor.

Chrobak et al. [3] demonstrated that in the general case the approximation
ratio of GREEDY for the MCSP is not better than Ω(n0.43). In addition, for the
special case of 4-MCSP it was found that it is at least Ω(logn). Nevertheless,
they showed it has anO(n0.69) approximation factor for the general case, and a 3-
approximation factor for 2-MCSP. The lower bound on GREEDY’s performance
for the general case was later increased to Ω(n0.46) by Kaplan and Shafrir [9].

1.5 Our Results

Since the edit distance with moves and the signed reversal distance with dupli-
cates are used in practice it is of interest to construct an algorithm for MCSP
that also (1) gives good approximation factors and (2) runs fast.

The approximation algorithm of [4] is the best in the worst-case sense, but the
approximation factor is inherent in the method. On the other hand, GREEDY,
while it can be bad in the approximation factor sense, as mentioned above,
the worst-case examples are constructed from recursive definitions. In practice,
GREEDY seems to do quite well in practice.

Shapira and Storer presented an implementation of Greedy that runs in O(n2)
time. We will show a novel algorithm for implementing the greedy that runs in
O(n) time.

2 Problem Definitions and Preliminaries

2.1 Preliminary Definitions and Notations

Given a string S, |S| is the length of S. Throughout this paper we denote n = |S|.
An integer i is a location or a position in S if i = 1, . . . , |S|. The substring S[i . . j]
of S, for any two positions i ≤ j, is the substring of S that begins at index i and
ends at index j. The suffix Si of S is the substring S[i . . n].
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The suffix tree [5,14,17,18] of a string S, denoted ST(S), is a compact trie of
all the suffixes of S$, i.e. S concatenated with a delimiter symbol $ �∈ Σ. ST(S)
requires O(n) space. Algorithms for the construction of a suffix tree enable O(n)
preprocessing time when |Σ| is constant (where Σ is the alphabet set), and
O(n log min(n, |Σ|)) time when |Σ| is not. A more sophisticated construction of
the suffix tree can be constructed in linear time even for alphabets drawn from
a polynomially-sized range, see [5].

Let the longest common substring, for short LCS, of S and T be denoted by
LCS(S, T ). Moreover, if x = LCS(S, T ) appears at location i of S and location
j of T then we say that it appears at (i, j).

We say that two strings S and T over alphabet Σ are equi-statistic if for every
σ ∈ Σ the number of appearances of σ in S and T is the same. Clearly, this
implies that |S| = |T |.

A partition of a string S = s1, · · · , sn is a sequence of strings R1, R2, · · · , Rk

such that S = R1 ·R2 · · · · ·Rk, where · denotes concatenation. A common string
partition of two strings S and T is a partition R1, R2, · · · , Rk of S such that
there is a permutation π{1, · · · , k} → {1, · · · , k} such that Rπ[1], · · · , Rπ[k] is a
partition of T . Note that if S and T are equi-statistic there is a simple common
string partition of S and T ; that is Ri = si for every 1 ≤ i ≤ n. Moreover, for
any two strings that have a common string partition it is easy to verify that
they are equi-statistic. Nevertheless, for equi-statistic strings S and T there may
be various different common string partitions. The minimum common string
partition problem is defined as follows.

Input: Two equi-statistic strings S and T .
Output: A common string partition R1, · · · , Rk such that k is minimized.

The greedy algorithm for the minimum common string partition problem is
presented below. We assume that the input strings S and T are equi-statistic.

Algorithm GREEDY(S,T)

– Set P and Q to be the initial (empty) partition
– Initially all letters in S and T are unmarked and P, Q are empty.
– while there are unmarked letters in T do

• LCST ← longest common substring of S and T that does not contain
marked letters.

• LCSTS, LCSTT ← occurrences of LCST in S and T , respectively.
• Designate LCSTS as a block of P in S and LCSTT as a block of Q in
T .

• Mark all letters in LCSTS and LCSTT .
– output (P,Q)

3 Algorithm Outline

When solving the GREEDY method it is natural to use suffix trees. Specifically,
start by constructing a generalized suffix tree for S and T , or in other words a
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suffix tree for S#T $, where #, $ /∈ Σ. To find the LCS of S and T seek for the
deepest node v which contains leaves in its subtree which represent suffixes from
both S and T . This can be done by a traversal of the suffix tree in inorder. The
substring which node v represents is the LCS.

Once the LCS is found one can reiterate the process, but beforehand x needs
to be removed. One way to handle this is to replace x (in both S and T ) with a
new symbol not in the alphabet and to start from scratch. The time this process
takes is O(n2) because in each round the suffix tree needs to be built from
scratch and there can be O(n) rounds. In essence this is the implementation of
the greedy method in [15].

Since we desire to reduce the time to have a more efficient implementation
we do not want to construct such a suffix tree from scratch. Rather we want
to fix the given suffix tree to reflect the changes that have been made. This is
challenging. We now give the outline of how we shall do this.

Let x = LCS(S, T ) and assume that it appears at (i, j). More specifically,
S = S[1 · · · i − 1] · x · S[i + |x| · · ·n] and T = T [1 · · · j − 1] · x · T [j + |x| · · ·n]
or, in suffix terms, x is the prefix of suffix Si and x is also the prefix of Tj .
Once x is found it is necessary to update the suffix tree to reflect the fact that
the appearances of x cannot be used again, not x itself and not any part of it.
This means that we need to create a generalized suffix tree for S = S[1 · · · i −
1], S[i+ |x| · · ·n]T [1 · · · j− 1], T [j+ |x| · · ·n]. However, the problem is that when
transforming the generalized suffix tree for S and T into the generalized suffix
tree for S = S[1 · · · i−1], S[i+|x| · · ·n]T [1 · · · j−1], T [j+|x| · · ·n], all the suffixes
S1, · · · , Si−1 and T1, · · · , Tj−1 are affected. This means that the transformation
can be too costly, namely O(n) which is the same as reconstructing the suffix
tree from scratch.

Nevertheless, it turns out that the number of suffixes that affect the future
runs of GREEDY can be bounded by the following lemma.

Lemma 1. Let x = LCS(S, T ) be such that k = |x|. Assume that x appears at
(i, j). Let y be any other common substring of S and T . Say, y appears at (i′, j′).
If i′ /∈ [i− k + 1, i+ k − 1] then the appearances of y and x do not intersect in
S. Likewise, if j′ /∈ [j − k + 1, j + k − 1] then the appearances of y and x do not
intersect in T .

Proof. The correctness of the proof follows from the fact that |y| ≤ k = |x|
because x = LCS(S, T ). ��
It follows from the lemma that if the LCSx appears at (i, j) and is of length
k = |x| then the first i−k suffixes of S and the first j−k suffixes of T , while they
technically should be shortened because of the removal of x, they need not be
shortened because they will not affect the GREEDY method. Therefore, when
preparing the generalized suffix tree for the next step it is sufficient to take care
of the 2k − 1 suffixes from S in the range [i − k + 1, i + k − 1] and the 2k − 1
suffixes from T in the range [j − k + 1, j + k − 1].
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The suffixes of S in the range [i, i+ k− 1] need to be removed completely, as
they overlap the x removed and the suffixes of S in the range [i − k + 1, i− 1]
need to be shortened. Each Sr, where r ∈ [i− k+1; i− 1] needs to be shortened
to length i− r. Likewise, the suffixes of T in the range [j, j + k − 1] need to be
removed completely and the suffixes of T in the range [j − k + 1; j − 1] need to
be shortened appropriately.

Note that while the discussion until here has been about transforming the
generalized suffix tree after finding the LCS in S and T all discussed holds
for the next rounds as well. In other words, in the next round we will find an
LCSy in the generalized suffix tree for S[1 · · · i−1], S[i+ |x|, n], T [1 · · · j−1] and
T [j + |x|, n], which will, once again, be the deepest node v with suffixes from
S and T in its subtree. The string represented by v, y will be the LCS (in the
2nd round) and will appear at (i′, j′) if the leaf representing Si′ is in the subtree
of v and the leaf representing Tj′ is also in the subtree of v. Removing y will
split S[1 · · · i − 1], S[i+ |x|, n], T [1 · · · j − 1] and T [j + |x|, n] into (at most) six
substrings, (at most) three from S and (at most) three from T . We say “at most”
because y splits a fragment into two only if it is in the middle of a fragment.
Otherwise, if y is at the end, or beginning there will still only be one fragment
after removing y. If y is the whole fragment then there is one fragment less.
The suffix tree will need to be updated again. Obviously, Lemma 1 holds also
here. This process is repeated iteratively and in round rS and T will each be
fragmented into (at most) r substrings and we will need to find the LCS that
appears both in the fragments of S and the fragments of T . We denote the LCS
in round r with LCS[r]. We point out that Σr|LCS[r]| = n. Hence, if we can
solve each round r in time O(|LCS[r]|) then we will have overall time O(n).

In lieu of the above define the four distinct sets of suffixes described above to
be handled in round r of the GREEDY procedure.

1. Delete(T ) : all Ti such that i is one of the |LCS[r]| locations where LCS[r]

appears in T .
2. Affects(T ) : all Ti such that i is one of the |LCS[r]| locations preceeding

the appearance of LCS[r] in T .
3. Delete(S) : all Si such that i is one of the |LCS[r]| locations where LCS[r]

appears in S.
4. Affects(S) : all Si such that i is one of the |LCS[r]| locations preceeding

the appearance of LCS[r] in S.

Now we are left with two major tasks. First, we need to update the suffix
tree to reflect the changes described for the four above mentioned groups of
suffixes. Second, in each round we will need to find LCS[r]. The challenging part
for the first problem is to fix the suffix tree for Affects(T ) and Affects(S)
since it requires putting those suffixes in new places within the suffix tree. The
challenging part of the second problem is to find LCS[r] in the limited time
we have, namely in O(|LCS[r]|) time. This will require a data structure, for
otherwise we will need to restart from scratch every time. The data structure
needs to adapt according to the changes in the suffix tree.



Quick Greedy Computation for Minimum Common String Partitions 279

4 Transforming the Suffix Tree in Round Change

Say we are in round r and moving to round r + 1. Currently S and T are each
fragmented into at most r substrings and removing LCS[r] fragments the text
further into, at most, one more fragment for each of S and T . The task at hand is
to update the suffix tree to reflect this situation. Recall, that we will be updating
only the suffixes from the four previously described suffix sets.

For any suffix in any of these sets we will need to remove it from the suffix
tree. We will later need to reposition those from Affects(S) and Affects(T ).
Removing a suffix is actually quite straightforward, albeit a bit technical. We
reach the appropriate leaf v representing the suffix by a pointer from an array
representing the string (S or T ). v’s parent is then checked whether it has two
children or more. If it has more it is sufficient to remove v and the edge connecting
it to it’s parent. If v’s parent has only two sons, one of which is v, in order to
maintain the suffix tree in it’s compressed format one needs to phase out the
parent of v by putting an edge between the grandparent and sibling of v. The
labeling of the new edge needs to be fixed, which is easily done from the current
labels.

So, what really needs to be handled is entering the truncated suffixes of
Affects(S) and Affects(T ) into the suffix tree. We treat Affects(T ) and
Affects(S) in the same manner but separately. The update we will do is done
concurrently for all the members of Affects(T ).

We will refer to the suffix tree construction of Weiner [18]. Weiner con-
structs the suffix tree from the shortest suffix to the longest. Say the process
is done on string Q of length q. Then the suffixes are entered into the com-
pressed trie of suffixes (which will become a suffix tree) in the order of suffixes
$, Q[q]$, Q[q−1 · · ·q]$, · · · , Q[2 · · · q]$, Q$. The suffixes are inserted with the help
of suffix pointers, which point from node v representing x to node v′ which rep-
resent ax, if such a node exists. Weiner shows that the whole process is linear
using an amortized argument that goes along the following lines. The amortized
process assumes that we have just entered suffix x and need to enter suffix ax.
x may not be represented by a node, but then x′, the longest prefix of x which
is represented by a node is the current parent of the suffix x that was entered.
If x′ has a pointer to ax′ then we use it and we enter the suffix ax as its child.
If not, then we walk up the path of root-to-leaf-representing-x until we reach a
node v representing x′ a prefix of x for which there is a pointer to ax′ and do
as mentioned before. The argument is that the overall walk is linear in length of
the number of suffixes = the length of Q = q.

This suits our purpose well. Since we have just found LCS[r] we are allowed
to spend k = |LCS[r]| time in work for reinserting all the suffixes in Affects(T ).
If x = LCS[r] then y = y1, · · · , yk−1 the substring (of length k− 1) that appears
just before x in T is what Affects(T ) is constructed from. Hence, the suffixes
of Affects(T ), after being truncated, are yk−1, yk−2yk−1, yk−3yk−2yk−1, · · · , y.
We traverse the suffix tree and enter these suffix in the described order using the
Weiner scheme. The time arguments of Weiner shows that this all these suffixes
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can be inserted in O(|LCS[r]|) time. We do the same for Affects(S). Therefore,
in O(|LCS[r]|) time we can update the suffix tree. What still needs to be done
is to actually find the LCS[r]. We will do so in the next section.

5 Maintaining Data Structures to Quickly Find the
Current Round LCS

Therefore the question that remains open is how to do the updates fast enough
so we can find the LCS[r] in time which is at most O(|LCS[r]|). Obviously, even
if we would manage to keep the nodes of the suffix tree marked as we did in the
beginning this would require us to traverse the whole suffix tree to find them.
One approach is to save these nodes in some data structure ordered by their
length and to deduce the deepest node from these. An example would be to
maintain them in a heap ordered by node depth. However, even if this could be
done, and it is not all obvious how to do so dynamically, then one would need to
extract suffixes (leaves) Si and Tj from it’s subtree (within the above described
time bounds). This can be really difficult. Another option is to save all the (i, j)’s
and to update them dynamically, but there may be O(n2) of these pairs.

Our approach is to do it in a skewed manner. We will treat S and T asym-
metrically. S will be our guide in initially finding an appropriate length and a
substring for which we will know where it appears in S. Then we will need to
work to find a counterpart from T . To this end we define LP (i) to be the length
of the longest prefix of Si that appears in T . If we maintain the LP ()s in some
data structure, say a heap, ordered by their value then we can find the desired
rather quickly. We will actually use a more efficient data structure than a heap.
However, the two main challenges here are:

1. Maintain the pairs under the dynamic changes of the suffix tree.
2. Find a substring in T that is equal to the LP (Si)-length prefix of Si.

5.1 Maintaining LP() Dynamically

We are interested in maintaining the values LP (i) for each i which is an original
location of S and belongs to one of the fragments. LP (i) needs to be maintained
in a way that we can quickly access i∗ where LP (i∗) is maximal over all i. An
array of length n(= |S| = |T |) called LPB[] (for LP Buckets) maintains all the
i’s that belong to fragments of S. In each cell � of the array LPB[�] contains all
i’s such that LP (i) = �. These will be saved in a linked list. Since we will return
i∗ where LP (i∗) is maximal, we also maintain a special “maximal”-pointer. This
pointer is initialized to n and when seeking a maximum LP () value scans the
array in a decreasing manner, i.e. moves from cell n to n − 1 etc. Since the
LP (i) values can only decrease (by being in Affects(S) or by changes in T )
or disappear (by being in Deleted(S) or by being chosen for an LCS[r]) the
“maximal”-pointer will never increase and hence, the “maximal”-pointer scan
will spend, over the whole algorithm, O(n) time.
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The problem with maintaining this data structure is that a small change
may lead to many changes in the values of LP (i) and this may be costly. For
example, if in round r we choose a substring in T , say x, it may be that for many
suffixes Si the longest prefix y which appears in T intersects x and, hence, LP (i)
will need to be decreased. Updating the LP (i)s means moving them from one
cell (bucket) of the array to a smaller one. Other changes in T can also affect
the LP (i)s, for example if a suffix of T belongs to Affects(T ). Nevertheless,
the following observation will help to reduce the amount of work necessary to
update these changes.

Observation 1. Let i and j be two locations in S such that they both belong to
fragments of S. If LP (i) = LP (j) and the LP (i)-length prefix of Si and Sj is
the same then after any changes in T (removals, shortenings, etc.) it holds that
LP (i) = LP (j) (even if LP (i) has changed).

Proof. LP (i), by definition, is the length of the longest prefix of Si that appears
in T . Since this prefix, say x, is also the prefix of Sj then a change in T affects
the longest prefix of Si that appears in T iff it affects the longest prefix of Sj

that appears in T , since it is the same prefix. ��
This leads us to a further refinement that we will make on the linked lists of
LPB[�]. We will group the values i in LPB[�] as follows. If i and i′ are both in
LPB[�] then they will be in the same group if the �-length prefix of Si and Si′

is the same, say x. We will implement this by maintaining, for LPB[�], a linked
list of representatives of groups. Each group will also be represented by a linked
list. Actually, it is easy to see that the groups are represented by nodes. A group
in which all i’s have x as the prefix of their suffix are represented by the locus
of x.

5.2 Detailed Data Structure Maintenance

This requires careful handling of the data within the suffix tree. We will outline
how this is done.

Initially, at the beginning of the algorithm, we sweep the suffix tree and mark
each node if it has leaves (in its subtree) which represent S only, which represent
T only, or which represent both. We call nodes essential if their subtree contains
leaves that represent both. We will create, from the suffix tree, a skeleton tree
by retaining all the essential nodes (note that if a node is essential then so are
all its ancestors). Each essential node will be the parent of all its children who
are essential. Moreover, we will create two special new children nodes for every
essential node. One for S, which we will call an S-node, and one for T , which
we will call a T -node. Each suffix represented by leaf u in the original tree will
belong to exactly one special node. Let v be the lowest ancestor of u which is an
essential node. The leaf u will belong to the T -node of v if the suffix is from T
and it will belong to the S-node of v if the suffix is from S.

This grouping needs to be maintained under the various changes to the suffix
tree implemented in Section 4. Here is how it is done.
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Consider the changes that happen because of a suffix removed (completely or
shortened) from T . Changes because of suffixes of S will be done similarly.

Say we have removed a node v that represents a suffix from T . As described
in the beginning of Section 4 besides removing the suffix we may need to also
remove its parent and to create a new label for the new edge. We’ll call this
“parent compression”.

In the skeleton tree node v will belong to a T -node which may represent
several suffixes. Therefore, we (carefully) make changes as follows:

If there are other suffixes in the T -node then we need to do nothing more than
remove the suffix. Otherwise, the T -node needs to be removed. If the T -node’s
parent u has another 2 children (either an S-node and an essential node or 2 or
more essential nodes) then we need to remove the T -node and are done. If u has
only one other child then there are 2 cases. (1) the other child is an essential
node, (2) the other child is an S-node. If the other child is an essential node then
the T -node is removed and parent compression is done as described in Section
4. If the other child is an S-node then u was essential up till now and has now
become non-essential. This requires a special process done as follows.

Assume w is the parent of u. u will be removed. If w did not have a child S-
node then the S-node of u becomes the S-node of w and we are done (because in
this situation w must have another child, either a T -node or a different essential
node). If w had an S-node then if there is another child of w beside the S-node
then we merge the S-nodes (by chaining the linked lists of the S-nodes). If w’s
only children were the S-node and u (which is being removed) then we merge
the S-nodes and now need to remove w. We repeat the process.

If we do not need to do “parent compression” then the time is O(1). If parent
compression was done then the time is proportional to the number of parent
compressions done. Since there are O(n) nodes to start off with and the nodes
added, described in Section 4, are at most O(n) it follows that the number of
parent compressions done overall in the whole process is O(n), as a node is
compressed (and disappears) each time.

What still needs to be done is to update the relevant LP s in the data structure.
When removing a suffix Si (completely or by shortening it) it only affect the

one value of LP (i) that represents it. Therefore, the update takes O(1) time,
for taking the LP (i) value out of its current location in the data structure and
moving it to the new value if necessary. On the other hand, the removal of a
suffix Tj may affect several LP values. Nevertheless, all these LP values will end
up in one group at the end and the time it takes to group them is proportional
to the number of parent compressions. Therefore, it will be overall O(n) as well.

5.3 Finding a Matching T-Suffix

Once one has an LP (i) that is maximal and, from it (previous section), a node
in the suffix tree v which represents x which is the LP(i)-length prefix of Si.
By definition of LP (i)x appears in T and, hence, there is at least one suffix of
T, Tj, that has prefix x. This Tj must also be a child of v. Of course, v is essential
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because i of S and j of T are leaves in its subtree. However, v has no essential
children. Otherwise, there would be an i′ with higher LP (i′). Therefore, v only
has the two special children and it is immediate to choose a Tj .

6 Putting It All Together

Putting all the pieces together the whole algorithm could be sketched by the
following procedure:

FAST-GREEDY(S,T)

1. Initialization
(a) Construct a suffix tree ST (S, T ) of the unified string S#T $.
(b) Traverse the tree and mark each node whether it has suffixes (in its

subtree) from S, T or both (an essential node).
(c) Create the skeleton tree from the essential nodes.
(d) Allocate an empty array of pointers of size n,LPB[].
(e) Traverse the tree again and fill LPB[�] with all i such that LP (i) = �.

The data is saved in LPB[�] with a linked list, where each elements in
the list represents a group of i’s such that the Sis have a common prefix
of length �.

2. Initialize i to 0.
3. Repeat until both string become empty:

(a) Find LCS[r] using the maximum-pointer in the data structure LPB[�].
(b) Delete the occurrences of LCS[r] from both S and T after outputting

the indices of both occurrences.
(c) Update the values of the LP (Si)s in the data structure by making the

changes needed for each of the following groups:
Delete(T ), Affects(T ), Delete(S), Affects(S).

(d) Increase i by 1.

From the discussion throughout this paper it follows that:

Theorem 1. The GREEDY algorithm for the Minimum Common String Par-
tition problem can be implemented in O(n) time for strings S and T of length n
each.
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Abstract. LRM-Trees are an elegant way to partition a sequence of
values into sorted consecutive blocks, and to express the relative position
of the first element of each block within a previous block. They were used
to encode ordinal trees and to index integer arrays in order to support
range minimum queries on them. We describe how they yield many other
convenient results in a variety of areas: compressed succinct indices for
range minimum queries on partially sorted arrays; a new adaptive sorting
algorithm; and a compressed succinct data structure for permutations
supporting direct and inverse application in time inversely proportional
to the permutation’s compressibility.

1 Introduction

Introduced by Fischer [9] as an indexing data structure which supports Range
Minimum Queries (RMQs) in constant time with no access to the main data,
and by Sadakane and Navarro [26] to support navigation operators on ordinal
trees, Left-to-Right-Minima Trees (LRM-Trees) are an elegant way to partition
a sequence of values into sorted consecutive blocks, and to express the relative
position of the first element of each block within a previous block.

We describe how the use of LRM-Trees and variants yields many other con-
venient results in the design of data structures and algorithms:

1. We define three compressed succinct indices supporting RMQs, which use
less space when the indexed array is partially sorted, improving in those cases
on the 2n+o(n) bits usual space [9], and on other techniques of compression
for RMQs such as taking advantage of repetitions in the input [10].

2. Based on LRM-Trees, we define a new measure of presortedness for permu-
tations. It combines some of the advantages of two well-known measures,
runs and shuffled up-sequences: the new measure is computable in linear
time (like the former), but considers sorted sub-sequences (instead of only
contiguous sub-arrays) in the input (similar, yet distinct, to the latter).
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3. Based on this measure, we propose a new sorting algorithm and its adaptive
analysis, asymptotically superior to sorting algorithms based on runs [2], and
on many instances faster than sorting algorithms based on subsequences [19].

4. We design a compressed succinct data structure for permutations based on
this measure, which supports the access operator and its inverse in time in-
versely proportional to the permutation’s presortedness, improving on pre-
vious similar results [2].

All our results are in the word RAM model, where it is assumed that we
can do arithmetic and logical operations on w-bit wide words in O(1) time, and
w = Ω(lg n). In our algorithms and data structures, we distinguish between the
work performed in the input (often called “data complexity” in the literature)
and the accesses to the internal data structures (“index complexity”). This is
important in cases where the input is large and cannot be stored in main memory,
whereas the index is potentially small enough to be kept in fast main memory.
For instance, in the context of compressed indexes like our RMQ structures,
given a fixed limited amount of local memory, this additional precision permits
identifying the instances whose compressed index fits in it while the main data
does not. On these instances, between two data structures that support operators
with the same total asymptotic complexity but distinct index complexity, the
one with the lowest index complexity is more desirable.

2 Previous Work and Concepts

2.1 Left-to-Right-Minima Trees

LRM-Trees partition a sequence of values into sorted consecutive blocks, and
express the relative position of the first element of each block within a previous
block. They were introduced under this name as an internal tool for basic navi-
gational operations in ordinal trees [26], and, under the name “2d-Min Heaps,”
to index integer arrays in order to support range minimum queries on them [9].

Let A[1, n] be an integer array. For technical reasons, we define A[0] = −∞
as the “artificial” overall minimum of the array.

Definition 1 (Fischer [9]; Sadakane and Navarro [26]). For 1 ≤ i ≤ n,
let psvA(i) = max{j ∈ [0..i − 1] : A[j] < A[i]} denote the previous smaller
value of position i. The Left-to-Right-Minima Tree (LRM-Tree) TA of A is an
ordered labeled tree with n+1 vertices each labeled uniquely from {0, . . . , n}. For
1 ≤ i ≤ n, psvA(i) is the parent node of i. The children of each node are ordered
in increasing order from left to right.

See Fig. 1 for an example of LRM-Trees. Fischer [9] gave a (complicated) linear-
time construction algorithm with advantages that are not relevant for this paper.
The following lemma shows a simpler way to construct the LRM-Tree in at most
2(n−1) comparisons within the array and overall linear time, which will be used
in Thms. 4 and 5.
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A[i] 15 8 13 7 11 16 1 10 9 14 2 12 3 6 5 4

−∞

15(1) 8(2)

13(3)

7(4)

11(5)

16(6)

1(7)

10(8) 9(9)

14(10)

2(11)

12(12) 3(13)

6(14) 5(15) 4(16)

Fig. 1. An example of an array and its LRM-Tree

Lemma 1. Given an array A[1, n] of totally ordered objects, there is an algo-
rithm computing its LRM-Tree in at most 2(n − 1) comparisons within A and
O(n) total time.

Proof. The computation of the LRM-Tree corresponds to a simple scan over
the input array, starting at A[0] = −∞, building down iteratively the current
rightmost branch of the tree with increasing elements of the sequence until an
element x smaller than its predecessor is encountered. At this point one climbs
the rightmost branch up to the first node v holding a value smaller than x, and
starts a new branch with a rightmost child of v of value x. As the root of the
tree has value A[0] = −∞ (smaller than all elements), the algorithm always
terminates.

The construction algorithm performs at most 2(n− 1) comparisons: the first
two elements A[0] and A[1] can be inserted without any comparison as a simple
path of two nodes (soA[1] will be charged only once). For the remaining elements,
we charge the last comparison performed during the insertion of an element x to
the node of value x itself, and all previous comparisons to the elements already
in the LRM-Tree. Thus, each element (apart from A[1] and A[n]) is charged at
most twice: once when it is inserted into the tree, and once when scanning it
while searching for a smaller value on the rightmost branch. As in the latter case
all scanned elements are removed from the rightmost path, this second charging
occurs at most once for each element. Finally, the last element A[n] is charged
only once, as it will never be scanned: hence the total number of comparisons of
2n− 2 = 2(n− 1). Since the number of comparisons within the array dominates
the number of other operations, the overall time is also in O(n). ��
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2.2 Range Minimum Queries

We consider the following queries on a static array A[1, n] (parameters i and j
with 1 ≤ i ≤ j ≤ n):

Definition 2 (Range Minimum Queries). rmqA(i, j) = position of a min-
imum in A[i, j].

RMQs have a wide range of applications for various data structures and algo-
rithms, including text indexing [11], pattern matching [7], and more elaborate
kinds of range queries [6].

For two given nodes i and j in a tree T , let lcaT (i, j) denote their Lowest
Common Ancestor (LCA), that is, the deepest node that is an ancestor of both
i and j. Now let TA be the LRM-Tree of A. For arbitrary nodes i and j in TA,
1 ≤ i < j ≤ n, let � = lcaTA(i, j). Then if � = i, rmqA(i, j) is i, otherwise,
rmqA(i, j) is given by the child of � that is on the path from � to j [9].

Since there are succinct data structures supporting the LCA operator [9, 17].
in succinctly encoded trees in constant time, this yields a succinct index (which
we improve with Thms. 1 and 3).

Lemma 2 (Fischer [9]). Given an array A[1, n] of totally ordered objects, there
is a succinct index using 2n + o(n) bits and supporting RMQs in zero accesses
to A and O(1) accesses to the index. This index can be built in O(n) time.

2.3 Adaptive Sorting and Compression of Permutations

Sorting a permutation in the comparison model requires Θ(n lg n) comparisons
in the worst case over permutations of n elements. Yet, better results can be
achieved for some parameterized classes of permutations. For a fixed permutation
π, Knuth [18] considered Runs (contiguous ascending subsequences), counted by
|Runs| = 1 + |{i : 1 ≤ i < n, πi+1 < πi}|; Levcopoulos and Petersson [19]
introduced Shuffled Up-Sequences and its generalization Shuffled Monotone Se-
quences, respectively counted by |SUS| = min{k : π is covered by k increasing
subsequences}, and |SMS| = min{k : π is covered by k monotone subsequences}.
Barbay and Navarro [2] introduced strict variants of some of those concepts,
namely Strict Runs and Strict Shuffled Up-Sequences, where sorted subsequences
are composed of consecutive integers (e.g., (2,3,4, 1, 5 , 6 , 7 , 8 ) has two runs but
three strict runs), counted by |SRuns| and |SSUS|, respectively. For any of those
five measures of disorder X, there is a variant of the merge-sort algorithm which
sorts a permutation π, of size n and of measure of presortedness X, in time
O(n(1 + lg X)), which is within a constant factor of optimal in the worst case
among instances of fixed size n and fixed values of X (this is not necessarily true
for other measures of disorder).

As the merging cost induced by a subsequence is increasing with its length,
the sorting time of a permutation can be improved by rebalancing the merging
tree [2]. The complexity can then be expressed more precisely as a function of
the entropy of the relative sizes of the sorted subsequences identified, where
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the entropy H(Seq) of a sequence Seq = 〈n1, n2, . . . , nr〉 of r positive integers
adding up to n is defined as H(Seq) =

∑r
i=1

ni

n lg n
ni

. This entropy satisfies
(r − 1) lgn ≤ nH(Seq) ≤ n lg r by concavity of the logarithm, a formula which
we will use later.

Barbay and Navarro [2] observed that each adaptive sorting algorithm in the
comparison model also describes an encoding of the permutation π that it sorts,
so that it can be used to compress permutations from specific classes to less than
the information-theoretic lower bound of n lgn bits. Furthermore they used the
similarity of the execution of the merge-sort algorithm with a Wavelet Tree [14],
to support the application of π() and its inverse π−1() in time logarithmic in the
disorder of the permutation π (as measured by |Runs|, |SRuns|, |SUS|, |SSUS| or
|SMS|) in the worst case. We summarize their technique in Lemma 3 below, in a
way independent of the partition chosen for the permutation, and focusing only
on the merging part of the sorting.

Lemma 3 (Barbay and Navarro [2]). Given a partition of an array π of
n totally ordered objects into |Seq| sorted subsequences of respective lengths
Seq = 〈n1, n2, . . . , n|Seq|〉, these subsequences can be merged with n(1 + H(Seq))
comparisons on π and O(n(1+H(Seq))) total running time. This merging can be
encoded using at most (1 +H(Seq))(n+ o(n)) +O(|Seq| lg n) bits so that it sup-
ports the computation of π(i) and π−1(i) in time O(1+lg |Seq|) in the worst case
∀i ∈ [1..n], and in time O(1 + H(Seq)) on average when i is chosen uniformly
at random in [1..n].

3 Compressed Succinct Indexes for Range Minima

We now explain how to improve on the result of Lemma 2 for permutations
that are partially ordered. We consider only the case where the input A is a
permutation of [1..n]: if this is not the case, we can sort the elements in A by
rank, considering earlier occurrences of equal elements as smaller. Our first and
simplest compressed data structure for RMQs uses an amount of space which is
a function of |SRuns|, the number of strict runs in π. Beside its simplicity, its
interest resides in that it uses a total space within o(n) bits on permutations
where |SRuns| ∈ o(n), and introduces techniques which we will use in Thms. 2
and 3.

Theorem 1. Given an array A[1, n] of totally ordered objects, composed of
|SRuns| strict runs, there is a compressed succinct index using �lg ( n

|SRuns|
)� +

2|SRuns| + o(n) bits which supports RMQs in zero accesses to A and O(1) ac-
cesses to the index.

Proof. We mark the beginnings of the runs in A with a 1 in a bit-vector B[1, n],
and represent B with the compressed succinct data structure from Raman et
al. [24], using �lg ( n

|SRuns|
)�+ o(n) bits. Further, we define A′ as the (conceptual)

array consisting of the heads of A’s runs (A′[i] = A[select1(B, i)]). We build the
LRM-Tree from Lemma 2 on A′ using 2|SRuns|(1+o(1)) bits. To answer a query
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rmqA(i, j), we compute x = rank1(B, i) and y = rank1(B, j), then compute
m′ = rmqA′(x, y) as the minimum of the heads of those runs that overlap the
query interval, and map it back to its position in A by m = select1(B,m′). Then
if m < i, we return i as the final answer to rmqA(i, j), otherwise we return m.
The correctness of this algorithm follows from the fact that only i and the heads
that are contained in the query interval can be the range minimum. Because the
runs are strict, the former occurs if and only if the head of the run containing i
is smaller than all other heads in the query range. ��
The same idea as in Thm. 1 applied to more general runs yields another com-
pressed succinct index for RMQs, potentially smaller but this time requiring to
compare two elements from the input to answer RMQs.

Theorem 2. Given an array A[1, n] of totally ordered objects, composed of
|Runs| runs, there is a compressed succinct index using 2|Runs|+�lg ( n

|Runs|
)�+o(n)

bits and supporting RMQs in 1 comparison within A and O(1) accesses to the
index.

Proof. We build the same data structures as in Thm. 1, using 2|Runs|+�lg ( n
|Runs|

)�
+o(n) bits. To answer a query rmqA(i, j), we compute x = rank1(B, i) and y =
rank1(B, j). If x = y, return i. Otherwise, compute m′ = rmqA′(x + 1, y), and
map it back to its position in A by m = select1(B,m′). The final answer is i if
A[i] < A[m], and m otherwise. ��
To achieve a compressed succinct index which never accesses the array and
whose space usage is a function of |Runs|, we need more space and a more heavy
machinery, as shown next. The main idea is that a permutation with few runs
results in a compressible LRM-Tree, where many nodes have out-degree 1.

Theorem 3. Given an array A[1, n] of totally ordered objects, composed of
|Runs| runs, there is a compressed succinct index using 2|Runs| lg n + o(n) bits,
and supporting RMQs in zero accesses to A and O(1) accesses to the index.

Proof. We build the LRM-Tree TA from Sect. 2.1 directly on A, and then
compress it with the tree representation of Jansson et al. [17].

To see that this results in the claimed space, let nk denote the number of nodes
in TA with out-degree k ≥ 0. Let (i1, j1), . . . , (i|Runs|, j|Runs|) be an encoding of
the runs in A as (start, end), and look at a pair (ix, jx). We have psvA(k) = k−1
for all k ∈ [ix + 1..jx], and so the nodes in [ix..jx] form a path in TA, possibly
interrupted by branches stemming from heads iy of other runs y > x with
psvA(iy) ∈ [ix..jx − 1]. Hence n0 = |Runs|, and n1 ≥ n− |Runs| − (|Runs| − 1) >
n− 2|Runs|, as in the worst case the values psvA(iy) for iy ∈ {i2, i3, . . . , i|Runs|}
are all different.

As an illustrative example, look again at the tree in Fig. 1. It has n0 = 9
leaves, corresponding to the runs 〈15〉, 〈8, 13〉, 〈7, 11, 16〉, 〈1, 10〉, 〈9, 14〉, 〈2, 12〉,
〈3, 6〉, 〈5〉, and 〈4〉 in A. The first four runs have a PSV of A[0] = −∞ for their
corresponding head elements, the next two head-PSVs point to A[7] = 1, the
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next one to A[11] = 2, and the last two to A[13] = 3. Hence, the heads of the
runs “destroy” exactly four of the n − n0 + 1 potential degree-1 nodes in the
tree, so n1 = n− n0 − 4 + 1 = 16 − 9 − 3 = 4.

Now TA, with degree-distribution n0, . . . , nn−1, is compressed into nH∗(TA)+
O
(

n(lg lg n)2

lg n

)
bits [17], where

nH∗(TA) = lg
(

1
n

(
n

n0, n1, . . . , nn−1

))

is the so-called tree entropy [17] of TA. This representation supports all navi-
gational operations in TA in constant time, and in particular those required for
Lemma 2. A rough inequality yields a bound on the number of possible such
LRM-Trees:(

n

n0, n1, . . . , nn−1

)
=

n!
n0!n1! . . . nn−1!

≤ n!
n1!

≤ n!
(n− 2|Runs|)! ≤ n2|Runs| ,

from which one easily bounds the space usage of the compressed succinct index:

nH∗(TA) ≤ lg
(

1
n
n2|Runs|

)
= lg

(
n2|Runs|−1

)
= (2|Runs| − 1) lgn < 2|Runs| lgn .

Adding the space required to index the structure of Jansson et al. [17] yields the
claimed space bound. ��

4 Sorting Permutations

Barbay and Navarro [2] showed how to use the decomposition of a permutation
π into |Runs| ascending consecutive runs of respective lengths Runs to sort adap-
tively to their entropy H(Runs). Those runs entirely partition the LRM-Tree of
π: one can easily draw the partition corresponding to the runs considered by
Barbay and Navarro [2] by iteratively tagging the leftmost maximal untagged
leaf-to-root path of the LRM-Tree. For instance, the permutation of Figure 1 has
nine runs (〈15〉, 〈8, 13〉, 〈7, 11, 16〉, 〈1, 10〉, 〈9, 14〉, 〈2, 12〉, 〈3, 6〉, 〈5〉, and 〈4〉), of
respective sizes given by the vector < 1, 2, 3, 2, 2, 2, 2, 1, 1>.

But any partition of the LRM-Tree into branches (such that the values tra-
versed by the path are increasing) can be used to sort π, and a partition of
smaller entropy yields a faster merging phase. To continue with the previous
example, the nodes of the LRM-Tree of Figure 1 can be partitioned differently,
so that the vector formed by the sizes of the increasing subsequences it de-
scribes has lower entropy. One such partition would be 〈15〉, 〈8, 13〉, 〈7, 11, 16〉,
〈1,2,3,4〉, 〈10〉, 〈9, 14〉, 〈12〉, 〈6〉, and 〈5〉, of respective sizes given by the vector
< 1, 2, 3,4,1, 2,1, 1, 1 >.

Definition 3 (LRM-Partition). An LRM-Partition P of an LRM-Tree T for
an array A is a partition of the nodes of T into |LRM| down-paths, i.e. paths
starting at some branching node of the tree, and ending at a leaf. The entropy of
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P is H(P ) = H(r1, . . . , r|LRM|), where r1, . . . , r|LRM| are the lengths of the down-
paths in P . P is optimal if its entropy is minimal among all the LRM-partitions
of T . The entropy of this optimal partition is the LRM-entropy of the LRM-Tree
T and, by extension, the LRM-entropy of the array A.

Note that since there are exactly |Runs| leaves in the LRM-Tree, there will always
be |Runs| down-paths in the LRM-partition; hence |LRM| = |Runs|. We first
define a particular LRM-partition and prove that its entropy is minimal. Then
we show how it can be computed in linear time.

Definition 4 (Left-Most Spinal LRM-Partition). Given an LRM-Tree T ,
the left-most spinal chord of T is the leftmost path among the longest root-to-
leaf paths in T ; and the left-most spinal LRM-partition is defined recursively
as follows. Removing the left-most spinal chord of T leaves a forest of shallower
trees, which are partitioned recursively. The left-most spinal partition is obtained
by concatenating all resulting LRM-partitions in arbitrary order. LRM denotes
the vector formed by the |LRM| lengths of the subsequences in the partition.

For instance, the left-most spinal LRM-partition of the LRM-tree given in Fig-
ure 1 is quite easy to build: the first left-most spinal chord is −∞, 1, 2, 3, 6, which
removal leaves a forest of simple branches. The resulting partition is 〈15〉, 〈8, 13〉,
〈7, 11, 16〉, 〈1, 2, 3, 6〉, 〈10〉, 〈9, 14〉, 〈12〉, 〈5〉, and 〈4〉, of respective sizes given by
the vector < 1, 2, 3, 4, 1, 2, 1, 1, 1>.

The LRM-partition, by successively extracting increasing subsequences of
maximal length, actually yields a partition of minimal entropy, as shown in
the following lemma.

Lemma 4. The entropy of the left-most spinal LRM-partition is minimal among
all LRM-partitions.

Proof. Given an LRM-Tree T , consider the leftmost leaf L0 among the leaves
of maximal depth in T . We prove that there is always an optimal LRM-partition
which contains the down-path (−∞, L0). Applying this property recursively in
the trees produced by removing the nodes of (−∞, L0) from T yields the opti-
mality of the leftmost LRM-partition.

R

M

N0

L0

N1

L1

Fig. 2. Consider an arbitrary LRM-partition P and the
down-path (N0, L0) in P finishing at L0. If N0 �= −∞ (that
is, N0 is not the root), then consider the parent M of N0 and
the down-path (R, L1) which contains M and finishes at a
leaf L1. Call N1 the child of M on the path to L1.

Consider an arbitrary LRM-partition P and the nodes R, M , N0, N1 and L1

as described in Figure 2. Call r the number of nodes in (R,M), d0 the number
of nodes in (N0, L0), and d1 the number of nodes in (N1, L1). Note that d1 ≤ d0
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because L0 is one of the deepest leaves. Thus the LRM-partition P has a down-
path (N0, L0) of length d0 and another (R,L1) of length r+ d1. We build a new
LRM-partition P ′ by switching some parts of the down-paths, so that one goes
from R to L0 and the other from N1 to L1, with new down-path lengths r + d0

and d1, respectively.
Let 〈n1, n2, . . . , n|LRM|〉 be the down-path lengths in P , such that H(P ) =

H(n1, n2, . . . , n|LRM|) = n lgn −∑|LRM|
i=1 ni lg ni. Without loss of generality (the

entropy is invariant to the order of the parameters), assume that n1 = d0 and
n2 = r + d1 are the down-paths we have considered: they are replaced in P ′

by down-paths of length n′
1 = r + d0 and n′

2 = d1. The variation in entropy
is [(r + d1) lg(r + d1) + d0 lg d0] − [(r + d0) lg(r + d0) + d1 lg d1], which can be
rewritten as f(d1) − f(d0) with f(x) = (r + x) lg(r + x) − x lg x. Since the
function f(x) = (r+x) lg(r+x)−x lg x has positive derivative and d1 ≤ d0, the
difference is non-positive (and strictly negative if d1 < d0, which would imply
that P was not optimal). Iterating this argument until the path of the LRM-
partition containing L0 is rooted in −∞ yields an LRM-partition of entropy no
larger than that of the LRM-partition P , and one which contains the down-path
(−∞, L0).

Applying this argument to an optimal LRM-partition demonstrates that there
is always an LRM-partition which contains the down-path (−∞, L0). This, in
turn, applied recursively to the subtrees obtained by removing the nodes from
the path (−∞, L0) from T , shows the minimality of the entropy of the left-most
spinal LRM-partition. ��
While the definition of the left-most spinal LRM-partition is constructive, build-
ing this partition in linear time requires some sophistication, described in the
following lemma:

Lemma 5. Given an LRM-Tree T , there is an algorithm which computes its
left-most spinal LRM-partition in linear overall time (without accessing the orig-
inal array).

Proof. Given an LRM-Tree T (and potentially no access to the array from
which it originated), we first set up an array D containing the depths of the
nodes in T , listed in preorder. We then index D for range maximum queries in
linear time using Lemma 2. Since D contains only internal data, the number of
accesses to it matters only to the running time of the algorithm (they are dis-
tinct from accesses to the array at the construction of T ). Now the deepest node
in T can be found by a range maximum query over the whole array, supported
in constant time. From this node, we follow the path to the root, and save the
corresponding nodes as the first subsequence. This divides A into disconnected
subsequences, which can be processed recursively using the same algorithm, as
the nodes in any subtree of T form an interval in D. We do so until all elements
in A have been assigned to a subsequence. Note that, in the recursive steps,
the numbers in D are not anymore the depths of the corresponding nodes in the
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remaining subtrees. Yet, as all depths listed in D differ by the same offset from
their depths in any connected subtree, this does not affect the result of the range
maximum queries. ��
Note that the left-most spinal LRM-partition is not much more expensive to
compute than the partition into ascending consecutive runs [2]: at most 2(n−1)
comparisons between elements of the array for the LRM-partition instead of n−1
for the Runs-Partition. Note also that H(LRM) ≤ H(Runs), since the partition
of π into consecutive ascending runs is just one LRM-partition among many.
The concept of LRM-partitions yields a new adaptive sorting algorithm:

Theorem 4. Let π be a permutation of size n, and of LRM-Entropy H(LRM).
The LRM-Sorting algorithm sorts π in a total of at most n(3 + H(LRM)) −
2 comparisons between elements of π and in total running time of O(n(1 +
H(LRM))).

Proof. Obtaining the left-most optimal LRM-partition P composed of runs of
respective lengths LRM through Lemma 5 uses at most 2(n − 1) comparisons
between elements of π and O(n) total running time. Now sorting π is just a
matter of applying Lemma 3: it merges the subsequences of P in n(1+H(LRM))
additional comparisons between elements of π and O(|LRM| lg |LRM|) additional
internal operations. The sum of those complexities yields n(3 + H(LRM)) − 2
data comparisons, and since |LRM| lg |LRM| < nH(LRM)+lg |LRM| by concavity
of the logarithm, the total time complexity is in O(n(1 + H(LRM))). ��
On instances where H(LRM) = H(Runs), LRM-Sorting can actually perform
n− 1 more comparisons than Runs-Sorting, due to the cost of the construction
of the LRM-Tree. Yet, the entropy of the LRM-partition is never larger than the
entropy of the Runs partition (H(LRM) ≤ H(Runs)), which ensures that LRM-
sorting’s asymptotical performance is never worse than Runs-sorting’s perfor-
mance [2]. Furthermore, LRM-Sorting is arbitrarily faster than Runs-Sorting on
permutations with few consecutive inversions, as the lower entropy of the LRM-
partition more than compensates for the additional cost of computing the LRM-
Tree. For instance, for n > 2 odd and π = 1, 3, 2, 5, 4, . . . , 2i+ 1, 2i, . . . , n, n− 1,
|Runs| = |LRM| = n/2, Runs = 〈2, . . . , 2〉 and LRM = 〈n/2 + 1, 1, . . . , 1〉, so that
the entropy of LRM is arbitrarily smaller than the one of Runs.

When H(LRM) is much larger than H(SUS), the merging of the LRM-partition
can actually require many more comparisons than the merging of the SUS par-
tition produced by Levcopoulos and Petersson’s algorithm [19]. For instance, for
n > 2 even and π = 1 , n/2+1, 2 , n/2+2, . . . , n/2 , n, |LRM| = |Runs| = n/2 and
H(LRM) = lg n

2 , whereas |SUS| = 2 and H(SUS) = lg 2.
Yet, the high cost of computing the SUS partition (up to n(1 + H(SUS))

additional comparisons within the array, as opposed to only 2(n−1) for the LRM-
partition) means that on instances where H(LRM) ∈ [H(SUS), 2H(SUS) − 1],
LRM-Sorting actually performs fewer comparisons within the array than SUS-
Sorting (if only potentially half, given that H(SUS) ≤ H(LRM)). Consider for
instance, for n > 2 multiple of 3, π = 1, 2, n, 3, 4, n− 1, 5, 6, n− 2, . . . 2n/3 + 1:
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there LRM = SUS = 〈2n/3 + 1, 1, . . . , 1〉, so that LRM and SUS have the same
entropy, and LRM-sorting outperforms SUS-sorting. A similar reasoning applies
to the comparison of the worst-case performances of LRM-Sorting and SMS-
Sorting.

Another major advantage of LRM-Sorting over SUS and SMS sorting is that
the optimal partition can be computed in linear time, whereas no such linear
time algorithm is known to compute the partition of minimal entropy of π into
Shuffled Up-Sequences or Shuffled Monotone Sequences; the notation H(SUS) is
defined only as the entropy of the partition of π produced by Levcopoulos and
Petersson’s algorithm [19], which only promises the smallest number of Shuffled
Up-Sequences [2].

LRM-Sorting generally improves on both Runs-Sorting and SUS-Sorting in
the number of comparisons performed within the input array. As mentioned in
the Introduction, this is important in cases where the internal data structures
used by the algorithm do fit in main memory, but not the input itself. Further-
more, we show in the next section that this difference in performance implies an
even more meaningful difference in the size of the compressed data structures
for permutations corresponding to those sorting algorithms.

5 Compressing Permutations

As shown by Barbay and Navarro [2], sorting opportunistically in the comparison
model yields a compression scheme for permutations, and with some more work
a compressed succinct data structure supporting the direct and inverse operators
in time logarithmic on the disorder of the permutation. We show that the sorting
algorithm of Thm. 4 corresponds to a compressed succinct data structure for
permutations which supports the direct and reverse operators in time logarithmic
on its LRM-Entropy (defined in the previous section), while often using less
space than previous solutions. The essential component of our solution is a data
structure for encoding an LRM-partition P . In order to apply Lemma 3, our
data structure must efficiently support two operators:

– the operator map(i) indicates, for each position i ∈ [1..n] in the input per-
mutation π, the corresponding subsequence s of P , and the relative position
p of i in this subsequence;

– the operator unmap(s, p) is the reverse of map(): given a subsequence s ∈
[1..|LRM|] of P and a position p ∈ [1..ns] in s, it indicates the corresponding
position i in π.

We obviously cannot afford to rewrite the numbers of π in the order described
by the partition, which would use n lgn bits. A naive solution would be to
encode this partition as a string S over alphabet [1..|LRM|], using a succinct data
structure supporting the access, rank and select operators on it. This solution is
not suitable as it would require at the very least nH(Runs) bits only to encode the
LRM-partition, making this encoding worse than the |Runs| compressed succinct
data structure [2]. We describe a more complex data structure which uses less
space, and which supports the desired operators in constant time.
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Lemma 6. Let P be an LRM-partition consisting of |LRM| subsequences of re-
spective lengths given by the vector LRM, summing to n. There is a succinct data
structure using 2|LRM| lgn+O(|LRM|) + o(n) bits which supports the operators
map and unmap on P in constant time (without accessing the original array).

Proof. The main idea of the data structure is that the subsequences of an LRM-
partition P for a permutation π are not as general as, say, the subsequences of a
partition into |SUS| up-sequences. For each pair of subsequences (u, v), either the
positions of u and v belong to disjoint intervals of π, or the values corresponding
to u (resp. v) all fall between two values from v (resp. u).

As such, the subsequences in P can be organized into a forest of ordinal trees,
where (1) the internal nodes of the trees correspond to the |LRM| subsequences
of P , organized so that the node u is the parent of the node v if the positions
of the subsequence corresponding to v are contained between two positions of
the subsequence corresponding to u, (2) the children of a node are ordered in
the same order as their corresponding subsequences in the permutation, and
(3) the leaves of the trees correspond to the n positions in π, children of the
internal node u corresponding to the subsequence they belong to.

For instance in Figure 3, the permutation π = (4, 5, 9, 6, 8, 1, 3, 7, 2) has the
LRM-partition 〈4, 5, 6, 8〉, 〈9〉, 〈1, 3, 7〉, 〈2〉, whose encoding can be visualized by
the expression (45(9)68)(137)(2) and encoded by the balanced parenthesis ex-
pression (()()(())()())(()()())(()) (note that this is a forest, not a tree, hence the
excess of ’(’s versus ’)’s is going to zero several times inside the expression).

〈4, 5, 6, 8〉

〈9〉

〈1, 3, 7〉 〈2〉

Fig. 3. Given a permutation π = (4, 5, 9, 6, 8, 1, 3, 7, 2), its LRM-partition
〈4, 5, 6, 8〉, 〈9〉, 〈1, 3, 7〉, 〈2〉 can be visualized by the expression (45(9)68)(137)(2) and
encoded as a forest

Given a position i ∈ [1..n] in π, the corresponding subsequence s of P is
simply obtained by finding the parent of the i-th leaf, and returning its preorder
rank among internal nodes. The relative position p of i in this subsequence is
given by the number of its left siblings which are leaves. Conversely, given the
rank s ∈ [1..|LRM|] of a subsequence in P and a position p ∈ [1..ns] in this
subsequence, the corresponding position i in π is computed by finding the s-th
internal node in preorder, selecting its p-th child which is a leaf, and computing
the preorder rank of this node among all the leaves of the tree.

We represent such a forest using the structure of Jansson et al. [17] by adding
a fake root node to the forest. The only operation it does not support is counting
the number of leaf siblings to the left of a node, and finding the p-th leaf child of
a node. Jansson et al.’s structure [17] encodes a DFUDS representation [4] of the
tree, where each node with d children is represented as d opening parentheses
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followed by a closing parenthesis: “(· · · ()”. Thus we set up an additional bitmap,
of the same length and aligned to the parentheses string of Jansson et al.’s
structure, where we mark with a one each opening parenthesis that corresponds
to an internal node (the remaining parentheses, opening or closing, are set to
zero). Then the operations are easily carried out using rank and select on this
bitmap and the one from Jansson et al.’s structure.

Since the forest has n leaves and |LRM| internal nodes, Jansson et al.’s struc-
ture [17] takes spaceH∗+o(n) bits, whereH∗ = lg

(
n+|LRM|

n,n1,...,nn−1

) ≤ lg (n+|LRM|)!
n! ≤

lg
(
(n+ |LRM|)|LRM|) = |LRM| lg(n + |LRM|) = |LRM| lg n + O(|LRM|). On the

other hand, the bitmap that we added is of length 2(n + |LRM|) ≤ 4n and has
exactly |LRM| 1s, and thus a compressed representation [24] requires |LRM| lg n+
O(|LRM|) + o(n) additional bits. ��
Given the data structure for LRM-partitions from Lemma 6, and applying the
merging data structure from Lemma 3 immediately yields a compressed succinct
data structure for permutations. Note that the index and the data are interwoven
in a single data structure (i.e., this encoding is not a succinct index [1]), so
we express the complexity of its operators as a single measure (as opposed to
previous ones, for which we distinguished data and index complexity).

Theorem 5. Let π be a permutation of size n, such that it has an optimal LRM-
partition of size |LRM| and entropy H(LRM). There is a compressed succinct
data structure using (1 + H(LRM))(n + o(n)) + O(|LRM| lgn) bits, supporting
the computation of π(i) and π−1(i) in time O(1 + lg |LRM|) in the worst case
∀i ∈ [1..n], and in time O(1+H(LRM)) on average when i is chosen uniformly at
random in [1..n]. It can be computed in at most n(3+H(LRM))− 2 comparisons
in π and total running time of O(n(1 + H(LRM))).

Proof. Lemma 6 yields a data structure for an optimal LRM-partition of π
using 2|LRM| lg n + O(|LRM|) + o(n) bits, and supports the map and unmap
operators in constant time. The merging data structure from Lemma 3 requires
(1 + H(LRM))(n + o(n)) + O(|LRM| lg n) bits, and supports the operators π()
and π−1() in the time described, through the additional calls to the operators
map() and unmap(). The latter space is asymptotically dominant. ��
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Abstract. We revisit various string indexing problems with range re-
porting features, namely, position-restricted substring searching, index-
ing substrings with gaps, and indexing substrings with intervals. We
obtain the following main results.

– We give efficient reductions for each of the above problems to a new
problem, which we call substring range reporting. Hence, we unify
the previous work by showing that we may restrict our attention to
a single problem rather than studying each of the above problems
individually.

– We show how to solve substring range reporting with optimal query
time and little space. Combined with our reductions this leads to
significantly improved time-space trade-offs for the above problems.
In particular, for each problem we obtain the first solutions with
optimal time query and O(n logO(1) n) space, where n is the length
of the indexed string.

Our bounds for substring range reporting are based on a novel combina-
tion of suffix trees and range reporting data structures. The reductions
are simple and general and may apply to other combinations of string
indexing with range reporting.

1 Introduction

Given a string S of length n the string indexing problem is to preprocess S
into a compact representation that efficiently supports substring queries, that
is, given another string P of length m report all occurrences of substrings in S
that match P . Combining the classic suffix tree data structure [13] with perfect
hashing [12] leads to an optimal time-space trade-off for string indexing, i.e., an
O(n) space representation that supports queries in O(m+ occ) time, where occ
is the number of occurrences of P in S.

In recent years, several extensions of string indexing problems that add range
reporting features have been proposed. For instance, Mäkinen and Navarro pro-
posed the position-restricted substring searching problem [17, 18]. Here, queries
take an additional range [a, b] of positions in S and the goal is to report the
occurrences of P within S[a, b]. For such extensions of string indexing no opti-
mal time-space trade-off is known. For instance, for position-restricted substring
searching one can either get O(n logε n) space (for any constant ε > 0) and
O(m + log logn + occ) query time or O(n1+ε) space with O(m + occ) query
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time [17, 18, 7]. Hence, removing the log logn term in the query comes at the
cost of significantly increasing the space.

In this paper, we revisit a number string indexing problems with range report-
ing features, namely position-restricted substring searching, indexing substrings
with gaps, and indexing substrings with intervals. We achieve the following re-
sults.

– We give efficient reductions for each of the above problems to a new problem,
which we call substring range reporting. Hence, we unify the previous work
by showing that we may restrict our attention to a single problem rather
than studying each of the above problems individually.

– We show how to solve substring range reporting with optimal query time
and little space. Combined with our reductions this leads to significantly
improved time-space trade-offs for all of the above problems. For instance,
we show how to solve position-restricted substring searching in O(n logε n)
space and O(m + occ) query time.

Our bounds for substring range reporting are based on a novel combination
of suffix trees and range reporting data structures. The reductions are simple
and general and may apply to other combinations of string indexing with range
reporting.

1.1 Substring Range Reporting

Let S be a string where each position is associated with a integer value in the
range [0, u]. The integer associated with position i in S is the label of position
i, denoted label(i), and we call S a labeled string. Given a labeled string S, the
substring range reporting problem is to compactly represent S while supporting
substring range reporting queries, that is, given a string P and a pair of integers
a and b, 0 ≤ a ≤ b ≤ u, report all starting positions in S that match P and
whose labels are in the range [a, b].

We assume a standard unit-cost RAM model with word size w and a standard
instruction set including arithmetic operations, bitwise boolean operations, and
shifts. We assume that a label can be stored in a constant number of words and
therefore w = Θ(log u). The space complexity is the number of words used by
the algorithm. All bounds mentioned in this paper are valid in this model of
computation.

To solve substring range reporting a basic approach is to combine a suffix tree
with a 2D range reporting data structure. A query for a pattern P and range
[a, b] consists of a search in the suffix tree and then a 2D range reporting query
with [a, b] and the lexicographic range of suffixes defined P . This is essentially
the overall approach used in the known solutions for position-restricted substring
searching [17, 18, 7, 8, 22, 4], which is a special case of substring range reporting
(see the next section).

Depending on the choice of the 2D range reporting data structure this ap-
proach leads to different trade-offs. In particular, if we plug in the 2D range
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reporting data structure of Alstrup et al. [2], we get a solution with O(n logε n)
space and O(m+ log log u+occ) query time (see Mäkinen and Navarro [17,18]).
The log log u term in the query time is from the range reporting query. Alterna-
tively, if we use a fast data structure for the range successor problem [7, 22] to
do the range reporting, we get optimal O(m+ occ) query time but increase the
space to at least Ω(n1+ε). Indeed, since any 2D range reporting data structure
with O(n logO(1) n) space must use Ω(log log u) query time [20], we cannot hope
to avoid this blowup in space with this approach.

Our first main contribution is a new and simple technique that overcomes the
inherent problem of the previous approach. We show the following result.

Theorem 1. Let S be a labeled string of length n with labels in the range
[0, u]. For any constants ε, δ > 0, we can solve substring range reporting us-
ing O(n(logε n + log log u)) space, O(n(log n + logδ u)) expected preprocessing
time, and O(m + occ) query time, for a pattern string of length m.

Compared to the previous results we achieve optimal query time with an addi-
tional O(n log log u) term in the space. For the applications considered here, we
have that u = O(n) and therefore the space bound simplifies to O(n(logε n +
log log u)) = O(n logε n). Hence, in this case there is no asymptotic space over-
head.

The key idea to obtain Theorem 1 is a new and simple combination of suffix
trees with multiple range reporting data structures for both 1 and 2 dimensions.
Our solution handles queries differently depending on the length of the input
pattern such that the overall query is optimized accordingly.

Interestingly, the idea of using different query algorithms depending on the
length of the pattern is closely related to the concept of filtering search intro-
duced for the standard range reporting problem by Chazelle as early as 1986 [5].
Our new results show that this idea is also useful in combinatorial pattern
matching.

1.2 Applications

Our second main contribution is to show that substring range reporting actually
captures several other string indexing problems. In particular, we show how to
reduce the following problems to substring range reporting.

• Position-restricted substring searching: Given a string S of length n, con-
struct a data structure supporting the following query: Given a string P and
query interval [a, b], with 1 ≤ a ≤ b ≤ n, return the positions of substrings
in S matching P whose positions are in the interval [a, b].

• Indexing substrings with intervals: Given a string S of length n, and a set of
intervals π = {[s1, f1], [s2, f2], . . . , [s|π|, f|π|]} such that si, fi ∈ [1, n] and si ≤
fi, for all 1 ≤ i ≤ |π|, construct a data structure supporting the following
query: Given a string P and query interval [a, b], with 1 ≤ a ≤ b ≤ n, return
the positions of substrings in S matching P whose positions are in [a, b] and
in one of the intervals in π.
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• Indexing substrings with gaps: Given a string S of length n and an integer d,
the problem is to construct a data structure supporting the following query:
Given two strings P1 and P2 return all positions of substrings in S matching
P1 ◦ 
d ◦ P2. Here ◦ denotes concatenation and 
 is a wildcard matching all
characters in the alphabet.

Previous results. Let m be the length of P . Mäkinen and Navarro [17, 18]
introduced the position-restricted substring searching problem. Their fastest
solution uses O(n logε n) space, O(n log n) expected preprocessing time, and
O(m+log logn+occ) query time. Crochemore et al. [7] proposed another solution
using O(n1+ε) space, O(n1+ε) preprocessing time, and O(m + occ) query time
(see also Section 1.1). Using techniques from range non-overlapping indexing [6]
it is possible to improve these bounds for small alphabet sizes [21]. Several suc-
cinct versions of the problem have also been proposed [17,18,22,4]. All of these
have significantly worse query time since they require superconstant time per
reported occurrence. Finally, Crochemore et al. [9] studied a restricted version
of the problem with a = 1 or b = n.

For the indexing substrings with intervals problem, Crochemore et al. [7, 8]
gave a solution with O(n log2 n) space, O(|π| + n log3 n) expected preprocessing
time, and O(m + log logn+ occ) query time. They also showed how to achieve
O(n1+ε) space, O(n1+ε + |π|) preprocessing time, and O(m + occ) query time.
Several papers [3, 14, 16] have studied the property matching problem, which is
similar to the indexing substrings with intervals problem, but where both start
and end point of the match must be in the same interval.

Iliopoulos and Rahman [15] studied the problem of indexing substrings with
gaps. They gave a solution using O(n logε n) space, O(n log n) expected prepro-
cessing time, and O(m + loglogn + occ) query time, where m is the length of
the two input strings. Crochemore and Tischler recently proposed a variant of
the problem [10].

Our results. We reduce position-restricted substring searching, indexing sub-
strings with intervals, and indexing substrings with gaps to substring range re-
porting. Applying Theorem 1 with our new reductions, we get the following
result.

Theorem 2. Let S be a string of length n and let m be the length of the query.
For any constant ε > 0, we can solve

(i) Position-restricted substring searching using O(n logε n) space, O(n log n)
expected preprocessing time, and O(m + occ) query time.

(ii) Indexing substrings with intervals using O(n logε n) space, O(|π|+ n logn)
expected preprocessing time, and O(m + occ) query time.

(iii) Indexing substrings with gaps using O(n logε n) space, O(n log n) expected
preprocessing time, and O(m + occ) query time (m is the size of the two
input strings).

This improves the best known time-space trade-offs for all three problems, that
all suffer from the trade-off inherent in 2D range reporting.
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The reductions are simple and general and may apply to other combinations
of string indexing with range reporting.

2 Basic Concepts

2.1 Strings and Suffix Trees

Throughout the section we will let S be a labeled string of length |S| = n with
labels in [0, u]. We denote the character at position i by S[i] and the substrings
from position i to j by S[i, j]. The substrings S[1, j] and S[i, n] are the prefixes
and suffixes of S, respectively. The reverse of S is SR. We denote the label
of position i by labelS(i). The order of suffix S[i, n], denoted orderS(i), is the
lexicographic order of S[i, n] among the suffixes of S.

The suffix tree for S, denoted TS , is the compacted trie storing all suffixes of
S [13]. The depth of a node v in TS is the number of edges on the path from
v to the root. Each of the edges in TS is associated with some substring of S.
The children of each node are sorted from left to right in increasing alphabetic
order of the first character of the substring associated with the edge leading to
them. The concatenation of substrings from the root to v is denoted strS(v).
The string depth of v, denoted strdepthS(v), is the length of strS(v). The locus
of a string P , denoted locusS(P ), is the minimum depth node v such that P is
a prefix of strS(v). If P is not a prefix of a substring in S we define locusS(P )
to be ⊥.

Each leaf � in TS uniquely corresponds to a suffix in S, namely, the suffix
strS(�). Hence, we will use labelS(�) and orderS(�) to refer to the label and
order of the corresponding suffix. For an internal node v we extend the notation
such that

labelS(v) = {labelS(�) | � is a descendant leaf of v}
orderS(v) = {orderS(�) | � is a descendant leaf of v}.

Since children of a node are sorted, the left to right order of the leaves in TS

corresponds to the lexicographic order of the suffixes of S. Hence, for any node
v, orderS(v) is an interval. We denote the left and right endpoints of this interval
by lv and rv. When the underlying string S is clear from the context we will
often drop the subscript S for brevity.

The suffix tree for S uses O(n) space and can be constructed in O(sort(n))
time, where sort(n) is the time for sorting n values in the model of computa-
tion [11]. For our results we only need a comparison-based O(n log n) sorting
algorithm. Let P be a string of length m. If locusS(P ) = ⊥ then P does not
occur as a substring in S. Otherwise, the substrings in S that match P are the
suffixes in orderS(locusS(P )). Hence, we can compute all occurrences of P in S
by traversing the suffix tree from the root to locusS(P ) and then report all suf-
fixes stored in the subtree. Using perfect hashing [12] to represent the outgoing
edges of each node in TS we achieve an O(n) solution to string indexing that
supports queries in O(m+occ) time (here occ is the total number of occurrences
of P in S).
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2.2 Range Reporting

Let X ⊆ {0, . . . , u}d be a set of points in a d-dimensional grid. The range
reporting problem in d-dimensions is to compactly represent X while supporting
range reporting queries, that is, given a rectangle R = [a1, b1]×· · ·×[ad, bd] report
all points in the set R∩X . We use the following results for range reporting in 1
and 2 dimensions.

Lemma 1 (Alstrup et al. [1], Mortensen et al. [19]). For a set of n points
in [0, u] and any constant γ > 0, we can solve 1D range reporting using O(n)
space, O(n logγ u) expected preprocessing time and O(1 + occ) query time.

Lemma 2 (Alstrup et al. [2]). For a set of n points in [0, u] × [0, u] and
any constant ε > 0, we can solve 2D range reporting using O(n logε n) space,
O(n log n) expected preprocessing time, and O(log log u+ occ) query time.

3 Substring Range Reporting

We now show Theorem 1. Recall that S is a labeled string of length n with labels
from [0, u].

3.1 The Data Structure

Our substring range reporting data structure consists of the following compo-
nents.

– The suffix tree TS for S. For each node v in TS we also store lv and rv.
We partition TS into a top tree and a number of bottom trees. The top tree
consists of all nodes in TS whose string depth is at most log log u and all
their children. The trees induced by the remaining nodes are the forest of
bottom trees.

– A2D range reporting data structure on the set of points{(orderS(i), labelS(i)) |
i ∈ {1, . . . , n}}.

– For each node v in the top tree, a 1D range reporting data structure on the
set {labelS(i) | i ∈ orderS(v)}.

We analyze the space and preprocessing time for the data structure. We use
the range reporting data structures from Lemmas 1 and 2. The space for the
suffix tree is O(n) and the space for the 2D range reporting data structure is
O(n logε n), for any constant ε > 0. We bound the space for the (potentially
Ω(n)) 1D range reporting data structures stored for the top tree. Let Vd be
the set of nodes in the top tree with depth d. Since the sets orderS(v), v ∈ Vd,
partition the set of descendant leaves of nodes in Vd, the total size of these sets is
as most n. Hence, the total size of the 1D range reporting data structures for the
nodes in Vd is therefore O(n). Since there are at most log log u+ 1 levels in the
top tree, the space for all 1D range reporting data structures is O(n log log u).
Hence, the total space for the data structure is O(n(logε n+ log log u)).
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We can construct the suffix tree in O(sort(n)) time and the 2D range reporting
data structure in O(n logn) expected time. For any constant γ > 0, the expected
preprocessing time for all 1D range reporting data structures is

O

⎛
⎝ ∑

v in top tree

|orderS(v)| logγ u

⎞
⎠ = O(n log log u logγ u) = O(n log2γ u).

Setting δ = 2γ we use O(n(log n+ logδ u)) expected preprocessing time in total.

3.2 Substring Range Queries

Let P be a string of length m, and let a and b be a pair of integers, 0 ≤
a ≤ b ≤ u. To answer a substring range query we want to compute the set of
starting positions for P whose labels are in [a, b]. First, we compute the node
v = locusS(P ). If v = ⊥ then P is not a substring of S, and we return the empty
set. Otherwise, we compute the set of descendant leaves of v with labels in [a, b].
There are two cases to consider.

(i) If v is in the top tree we query the 1D range reporting data structure for
v with the interval [a, b].

(ii) If v is in a bottom tree, we query the 2D range reporting data with the
rectangle [lv, rv] × [a, b].

Given the points returned by the range reporting data structures, we output the
corresponding starting positions of the corresponding suffixes. From the defini-
tion of the data structure it follows that these are precisely the occurrences of
P within the range [a, b]. Next consider the time complexity. We find locusS(P )
in O(m) time (see Section 2). In case (i) we use O(1 + occ) time to compute the
result by Lemma 1. Hence, the total time for a substring range query for case (i)
is O(m + occ). In case (ii) we use O(log log u+ occ) time to compute the result
by Lemma 2. We have that v = locusS(P ) is in a bottom tree and therefore
m ≥ strdepth(parent(locusS(v))) > log log u. Hence, the total time to answer a
substring range query in case (ii) is O(m+ log log u+ occ) = O(m+ occ). Thus,
in both cases we use O(m+ occ) time.

Summing up, our solution uses O(n(logε n + log log u) space, O(n(log n +
logδ u)) expected preprocessing time, and O(m+occ) query time. This completes
the proof of Theorem 1.

4 Applications

In this section we show how to improve the results for the three problems
position-restricted substring searching, indexing substrings with intervals, and
indexing gapped substrings, using our data structure for substring range report-
ing. Let reportS(P, a, b) denote a substring range reporting query on string S
with parameters P , a, and b.
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4.1 Position-Restricted Substring Searching

We can reduce position-restricted substring searching to substring range report-
ing by setting label(i) = i for all i = 1, . . . , n. To answer a query we return the
result of the substring range query reportS(P, a, b). Since each label is equal
to the position, it follows that the solution to the substring range reporting in-
stance immediately gives a solution to position-restricted substring searching.
Applying Theorem 1 with u = n, this proves Theorem 2(i).

4.2 Indexing Substrings with Intervals

We can reduce indexing substrings with intervals to substring range reporting
by setting

label(i) =

{
i if i ∈ ϕ for some ϕ ∈ π,

0 otherwise.

To answer a query we return the result of the substring range reporting query
reportS(P, a, b). Let I be the solution to the indexing substrings with intervals
instance and let I ′ be the solution to the substring range reporting instance
derived by the above reduction. Then i ∈ I ⇔ i ∈ I ′.

To prove this assume i ∈ I. Then i ∈ ϕ for some ϕ ∈ π and i ∈ [a, b].
From i ∈ ϕ and the definition of label(i) it follows that label(i) = i. Thus,
label(i) = i ∈ [a, b] and thus i ∈ I ′. Assume i ∈ I ′. Then label(i) ∈ [a, b]. Since
a > 0 also label(i) > 0, and it follows that label(i) = i. By the reduction this
means that i ∈ ϕ for some ϕ ∈ π. Since i = label(i), we have i ∈ [a, b] and
therefore i ∈ I.

We can construct the labeling in O(n + |π|) if the intervals are sorted by
startpoint or endpoint. Otherwise additional time for sorting is needed. A similar
approach is used in the solution by Crochemore et al. [7].

Applying Theorem 1 with u = n, this proves Theorem 2(ii).

4.3 Indexing Substrings with Gaps

We can reduce the indexing substrings with gaps problem to substring range
reporting as follows. Construct the suffix tree of the reverse of S, i.e., the suffix
tree TSR for SR. For each node v in TSR also store lv and rv. Set

labelS(i) =

{
orderSR(n− i+ d+ 2) for i ≥ d+ 2,
0 otherwise.

To answer a query find the locus node v of PR
1 in TSR . Then use the substring

range reporting data structure to return all positions of substrings in S match-
ing P2 whose labels are in the range [lv, rv]. For each position i returned by
reportS(P2, lv, rv), return i− |P1| − d. See Fig. 1 for an example.
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cababa$ cababa$cabcababa$ aba$

a cab

b

a

a

b
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cababa$

ba$ $

ba$ $

6 8

3

1 10

7 9

4 25
v

lv rv

7
a a abb c ab c a
1 2 3 4 5 6 8 9 107

4 9 83610 0 0
S =

Fig. 1. A string S, the labeling for d = 2 (below the string), and the suffix tree of TSR .
Given a query P1 = ab and P2 = bac we find v = locusSR(ba) (marked in the suffix
tree). We have lv = 6 and rv = 7 from the left-to-right-order in the TSR . The substring
range reporting query reports(P2, 6, 7) returns 7. Hence, we report the occurrence at
position 7− 2− 2 = 3.

Correctness of the reduction. We will now show that the reduction is correct.
Let I be the solution to the indexing substrings with gaps instance and let I ′

be the solution to the substring range reporting instance derived by the above
reduction. We will show i ∈ I ⇔ i ∈ I ′. Let mi = |Pi| for i = 1, 2.

If i ∈ I then there is an occurrence of P1 at position i in S and an occurrence of
P2 at position i′ = i+m1+d in S. It follows directly, that there is an occurrence
of PR

1 at position i′′ = n− (i+m1) + 2 in SR. By definition,

labelS(i′) = labelS(i+m1+d) = orderSR(n−(i+m1+d)+d+2) = orderSR(i′′),

where the second equality follows from the fact that i+m1+d ≥ d+2. Since there
is an occurrence of PR

1 at position i′′ in SR, we have labelS(i′) = orderSR(i′′) ∈
orderSR(locusSR(PR

1 )). Thus, labelS(i′) ∈ [lv, rv], and since there is an occur-
rence of P2 at position i′ in S, we have i′ −m1 − d = i ∈ I ′.

If i ∈ I ′ then there is an occurrence of P2 at position i′ = i + m1 + d with
label(i′) in the range [lv, rv], where v = locusSR(PR

1 ). We need to show that this
implies that there is an occurrence of P1 at position i in S. By definition,

labelS(i′) = orderSR(n− i′ + d+ 2) = orderSR(n− i−m1 + 2).

Let i′′ = n − i − m1 + 2. Since orderSR(i′′) = labelS(i′) ∈ [lv, rv], there is
an occurrence of PR

1 at position i′′ in SR. It follows directly, that there is an
occurrence of P1 at position n− i′′ −m1 +2 = n− (n− i−m1 +2)−m1 +2 = i
in S. Therefore, i ∈ I.

Complexity. Construction of the suffix tree TSR takes time O(n log n) and the
labeling can be constructed in time O(n). Both use space O(n). It takes O(m1)
time to find the locus nodes of PR

1 in TSR . The substring range reporting query
takes time O(m2 + occ). Thus the total query time is O(m+ occ).

Applying Theorem 1 with u = n, this completes the proof of Theorem 2(iii).
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Abstract. Subsequence pattern matching problems on compressed text
were first considered by Cégielski et al. (Window Subsequence Problems
for Compressed Texts, Proc. CSR 2006, LNCS 3967, pp. 127–136), where
the principal problem is: given a string T represented as a straight line
program (SLP) T of size n, a string P of size m, compute the number
of minimal subsequence occurrences of P in T . We present an O(nm)
time algorithm for solving all variations of the problem introduced by
Cégielski et al.. This improves the previous best known algorithm of
Tiskin (Towards approximate matching in compressed strings: Local sub-
sequence recognition, Proc. CSR 2011), which runs in O(nm log m) time.
We further show that our algorithms can be modified to solve a wider
range of problems in the same O(nm) time complexity, and present the
first matching algorithms for patterns containing VLDC (variable length
don’t care) symbols, as well as for patterns containing FLDC (fixed
length don’t care) symbols, on SLP compressed texts.

1 Introduction

A straight-line program (SLP) [6] is a context free grammar in the Chomsky nor-
mal form that derives a single string. SLPs are a widely accepted abstract model
of various text compression schemes, since texts compressed by any grammar-
based compression algorithm (e.g. [12,8]) can be represented as SLPs, and those
compressed by the LZ-family (e.g., [16,17]) can be quickly transformed to SLPs.
An SLP of a string of size N can be as small as O(logN). SLPs are a promising
representation of a given string, not only for reducing the storage size of the
data, but for efficiently conducting various string processing operations [13,5].
Recently, self indices based on SLPs have also appeared [4].

Subsequence pattern matching [1] and its related problems have extensively
been studied. Window subsequences are also known as serial episodes in data
mining applications [10]. Now our interest is: Can we efficiently solve subsequence
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c© Springer-Verlag Berlin Heidelberg 2011



310 T. Yamamoto et al.

matching problems on compressed strings? When both text and pattern are given
as SLPs, subsequence matching is NP-hard [9]. Therefore, in the sequel we only
consider the case where the text is given as an SLP, while the pattern is given
as an uncompressed string.

Subsequence problems on SLP-compressed texts were first considered in [3].
The principal problem considered is to compute the number of minimal subse-
quence occurrences of P in T . They presented O(nm2 logm) time algorithms
for solving the problems for an SLP of size n and subsequence pattern of length
m. Later, an improved algorithm running in time O(nm1.5) was presented by
Tiskin [14]. Later, Tiskin improved the running time to O(nm logm) [15]. In this
paper, we further reduce the time complexities to O(nm).

The contribution of this paper is twofold. Firstly, we improve the algorithm
for building the L and R arrays of [3], from O(nm2 logm) to O(nm), therefore
reducing the overall time complexity of the algorithms for the subsequence pat-
tern matching problems to O(nm). Following the ideas of [3], we give a simpler
presentation of these algorithms.

Secondly, we show that the algorithm can be extended to cope with patterns
that contain don’t care symbols, and give O(nm)-time matching algorithms for
patterns containing VLDC (variable length don’t care) symbols, as well as an
O(nm)-time matching algorithm for patterns containing FLDC (fixed length
don’t care) symbols. There has been work on pattern matching for patterns con-
taining FLDC symbols on a compressed representation of Sturmian words [2].
On the other hand, our algorithms can search arbitrary SLPs for patterns con-
taining don’t cares, and hence are applicable to more practical compressed
texts.

2 Preliminaries

2.1 Strings

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of a
string T is denoted by |T |. The empty string ε is a string of length 0, namely,
|ε| = 0. For a string T = XY Z, X , Y and Z are called a prefix, substring, and
suffix of T , respectively. The i-th character of a string T is denoted by T [i] for
0 ≤ i ≤ |T | − 1, and the substring of a string T that begins at position i and
ends at position j is denoted by T [i : j] for 0 ≤ i ≤ j ≤ |T |− 1. For convenience,
let T [i : j] = ε if j < i.

A string P of length m is a subsequence of string T , if there exist indices
0 ≤ i0 < · · · < im−1 ≤ |T | − 1 such that P [0] = T [i0], . . . , P [m − 1] = T [im−1].
The pair (i0, im−1) is called an occurrence of subsequence P in T . Let Occ(T, P )
denote the set of all occurrences of subsequence P in T . An occurrence (u, v) ∈
Occ(T, P ) is minimal if P is not a subsequence of T [u+ 1 : v] nor T [u : v − 1].
For strings X , Y , if an occurrence (u, v) ∈ Occ(XY,P ) satisfies 0 ≤ u < |X | and
|X | ≤ v < |XY |, we say that this occurrence crosses X and Y .
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2.2 Straight Line Programs

In this paper, we treat strings described in terms of straight line programs
(SLPs). A straight line program T is a sequence of assignments such that
X1 = expr1, X2 = expr2, . . . , Xn = exprn, where each Xi is a variable and each
expri is an expression, where expri = a (a ∈ Σ), or expri = X�Xr (�, r < i).

a a a b a a a b a b

X7

X6X5

X3 X4 X5

X1 X1 X1 X2 X4

X1 X2

X4

X1 X2X3

X1 X1

Fig. 1. An example of an SLP X1 = a,
X2 = b, X3 = X1X1, X4 = X1X2, X5 =
X3X4, X6 = X5X4, X7 = X5X6, that de-
rives string aaabaaabab

Denote by T the string derived
from the last variable Xn of the pro-
gram T . The size of the program T
is the number n of assignments in T .
Note that |T | = O(2n).

Let val(Xi) represent the string de-
rived from Xi. When it is not con-
fusing, we identify a variable Xi with
val(Xi). Then, |Xi| denotes the length
of the string Xi derives. For assign-
ment Xi = X�Xr, if an occurrence
(u, v) of subsequence P in val (Xi)
crosses val(X�) and val (Xr), we say
that (u, v) is a crossing subsequence
occurrence of P in Xi.

3 Subsequence Matching Problems on Compressed Texts

This section is organized as follows: We first review an O(nm) time algorithm for
calculating tables QL and QR, which can determine whether a string P of length
m is a subsequence of the string derived from an SLP T of size n (Subsequence
Recognition). A brief description of the algorithm appears in [14], where it is
noted that the algorithm “has been known in folklore”, which was pointed out
by Y. Lifshits. We then describe how to efficiently compute auxiliary tables
L and R using QL and QR. Following the ideas in [3], we use L and R to give
straightforward descriptions of O(nm) time algorithms for solving the problem of
finding all minimal subsequence occurrences of a pattern in a SLP-compressed
text (Subsequence Matching), and its window-accumulated version (Window
Subsequence Matching).

3.1 Subsequence Recognition

For i = 1, . . . , n, j = 0, . . . ,m, let QL(i, j) denote the length of the longest prefix
of P [j : m− 1] which is a subsequence of Xi. We have that P is a subsequence
of T , if and only if QL(n, 0) = m.

Lemma 1 ([14]). Given a pattern P of length m and an SLP T of size n
representing text T , QL(i, j) for i = 1, . . . , n, j = 0, . . . ,m can be calculated in
O(nm) time and space.
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Proof. QL(i, j) can be defined recursively, as follows. For the base case, if Xi = a
for some a ∈ Σ, then

QL(i, j) =

{
1 if j < m and P [j] = a,

0 otherwise.
(1)

If Xi = X�Xr, then

QL(i, j) = QL(�, j) +QL(r, j′) (2)

where j′ = j + QL(�, j), because P [j : j + QL(�, j) − 1] is the longest prefix
of P [j : m − 1] that is a subsequence of X�, and the rest is the longest prefix
of P [j +QL(�, j) : m − 1] that is a subsequence of Xr. Since each QL(i, j) can
be calculated in constant time, QL(i, j) for i = 1, . . . , n, j = 0, . . . ,m can be
calculated in O(nm) time and space. ��

P[ j: j + QL(ℓ, j) – 1]  is 
a subsequence of Xℓ

P[ j’ : j’ + QL(r, j’) – 1]  is 
a subsequence of Xr

Xi

Xℓ Xr

Fig. 2. Lemma 1. QL(i, j) = QL(�, j) +
QL(r, j′) where j′ = j + QL(�, j). QL(�, j)
is the length of the prefix of P [j : m − 1]
which is a subsequence of X�, and QL(r, j′)
is the length of the prefix of the rest of it.

Thus we can test whether a pattern
P is a subsequence of an SLP T in
O(nm) time.

We similarly define QR(i, j) as the
length of the longest suffix of P [0 :
m−j−1] that is a subsequence of Xi,
which can also be calculated inO(nm)
time and space.

3.2 Subsequence Matching

Auxiliary Tables. We next define L(i, j) and R(i, j) that are central to the
algorithm presented in [3]. We define L(i, j) as the length of the shortest prefix
of Xi, for which P [j : m − 1] is a subsequence. When there is no such prefix
of Xi, L(i, j) is defined as ∞. We similarly define R(i, j) as the length of the
shortest suffix of Xi, for which P [0 : m − j − 1] is a subsequence. When there
is no such suffix of Xi, R(i, j) is defined as ∞. Only these values for L (resp.
R) corresponding to suffixes (resp. prefixes) of P are required in the algorithms
which follow. However, the algorithm presented in [3] required the values for L
and R corresponding to all substrings of P to compute these values, therefore
making the running time of the algorithm O(nm2 logm). We improve their algo-
rithm by showing that we can calculate L(i, j) (resp. R(i, j)) using only values
corresponding to suffixes (resp. prefixes) of P with support from QL(i, j) (resp.
QR(i, j)), and reduce the running time to O(nm).

Lemma 2. Given a pattern P of length m, an SLP T of size n representing
text T , and QL(i, j) (resp. QR(i, j)) for i = 1, . . . , n, j = 0, . . . ,m, L(i, j) (resp.
R(i, j)) for all i = 1, . . . , n, j = 0, . . . ,m can be calculated in O(nm) time and
space.
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Proof. We shall only describe how to calculate L(i, j) using QL(i, j), since the
case for R(i, j) and QR(i, j) is essentially the same. L(i, j) can be defined recur-
sively as follows: For the base case, if Xi = a for some a ∈ Σ, then

L(i, j) =

⎧⎪⎨
⎪⎩

0 if j = m,

1 if j = m− 1 and P [j : m− 1] = a,

∞ otherwise.

If Xi = X�Xr, then

L(i, j) =

{
L(�, j) if L(�, j) �= ∞,

|X�| + L(r, j′) if L(�, j) = ∞,

where j′ = j + QL(�, j). This is because: When L(�, j) �= ∞, P [j : m − 1] is
a subsequence of X�, and L(�, j) is the length of the shortest prefix of X� for
which P [j : m− 1] is a subsequence. Since X� is a prefix of Xi, the length of the
shortest prefix of Xi = X�Xr for which P [j : m− 1] is a subsequence is clearly
equal to L(�, j). When L(�, j) = ∞, P [j : m − 1] is not a subsequence of X�.
This implies that the value of L(i, j) is at least |X�|. The exact value of L(i, j)
can be efficiently computed from QL(�, j), as follows. Since L(i, j)− |X�| equals
to the shortest prefix of Xr for which P [j′ : m − 1] is a subsequence, we have
L(i, j) − |X�| = L(r, j′) where j′ = j +QL(�, j).

Therefore, given the QL table, each L(i, j) can be computed in constant time.
Hence L(i, j) for all i = 1, . . . , n, j = 0, . . . ,m can be computed in O(nm) time
and space. ��

Counting Minimal Occurrences. For text T represented by an SLP T of size
n, we show how to calculate the number of minimal occurrences of subsequence
P of length m in T in time O(nm), using L(i, j) and R(i, j). Let Mi denote the
number of minimal occurrences of P in val (Xi). Since val(Xn) = T , the desired
output is the value of Mn.

Our algorithm is based essentially on the same ideas as described in [3]. How-
ever, we note that they did not provide a rigorous proof of correctness, and the
pseudo-code shown in their paper seems to contain some errors. Below, we give
a simple presentation of the algorithm and a proof of correctness.

For any variable Xi = X�Xr, let C(�, r) denote the number of minimal occur-
rences of P in Xi that cross X� and Xr.

Lemma 3. Given a pattern P of length m, an SLP T of size n, and C(�, r) for
all variables of form Xi = X�Xr, the values Mi for i = 1, . . . , n can be calculated
in O(n) time.

Proof. Mi is recursively computable as follows. For the base case, if Xi = a for
some a ∈ Σ, then Mi = 0 if P �= a and Mi = 1 if P = a. If Xi = X�Xr,
then Mi = M� + Mr + C(�, r). Hence we can compute Mi for all i = 1, . . . , n
recursively, in total of O(n) time. ��
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What remains is how to calculate C(�, r) for all variables of type Xi = X�Xr.
For k = 0, . . . ,m, consider the following pairs (uk, vk) where uk is the beginning
position in Xi, of the shortest suffix of Xl for which P [0 : m − 1 − k] is a
subsequence (or −∞ if such a suffix does not exist), and vk is the ending position
in Xi, of the shortest prefix of Xr for which P [m− k : m− 1] is a subsequence
(or ∞ if such a prefix does not exist), i.e., uk = |X�| −R(�, k) and vk = |X�| +
L(r,m − k) − 1 (see also Fig. 3 (Left)). Clearly uk and vk are monotonically
non-decreasing, that is, uk−1 ≤ uk < |X�| = um, and v0 = |X�| − 1 < vk ≤ vk+1

for k = 1, . . . ,m − 1. When both 0 ≤ uk < |X�| and |X�| ≤ vk < |Xi| hold,
then (uk, vk) is a crossing subsequence occurrence of P in Xi. Note that neither
(u0, v0) nor (um, vm) are crossing occurrences. Let OccSS (�, r) = {(uk, vk) | k =
1, . . . ,m−1}. It is easy to see that every minimal crossing subsequence occurrence
of P in Xi must be an element of OccSS (�, r), and it remains to identify them.

Lemma 4. (uk, vk) ∈ OccSS (�, r) is a minimal occurrence if and only if �k′ ∈
{0, . . . ,m} s.t. (uk, vk) �= (uk′ , vk′ ), and uk ≤ uk′ and vk′ ≤ vk.

Proof. (=⇒) If for some k′ ∈ {0, . . . ,m} s.t. (uk′ , vk′) �= (uk, vk) we have uk ≤
uk′ and vk′ ≤ vk, then (uk, vk) cannot be a minimal occurrence by definition.

(⇐=) We show the contraposition. Assume (uk, vk) is not a minimal occur-
rence. If uk = −∞ (or resp. vk = ∞), then uk ≤ u0 = −∞ (resp. vm ≤ vk = ∞)
and from the monotonicity of uks and vks, we can choose k′ = 0 (resp. k′ = m).
If uk �= −∞ and vk �= ∞, there exist some occurrence (u, v) �= (uk, vk) s.t.
uk ≤ u and v ≤ vk. If (u, v) is a crossing occurrence, then a minimal occurrence
(uk′ , vk′) can be chosen from OccSS (�, r) s.t. u ≤ uk′ and vk′ ≤ v. If it is not,
then v ≤ |Xl| − 1 or u ≥ |Xl|, and we can choose (u0, v0) or (um, vm). ��
Lemma 5. Consider (uk, vk) ∈ OccSS (�, r), and let K = {k′ | (uk, vk) =
(uk′ , vk′), k′ = 1, . . . ,m − 1}, ks = minK and ke = maxK. Then, (uk, vk)
is minimal if and only if uks−1 < uk and vk < vke+1.

Proof. From the monotonicity of uk and vk, and from Lemma 4, we have that
(uk, vk) is minimal if and only if

�k′ ∈ {0, . . . ,m} s.t. (uk, vk) �= (uk′ , vk′ ), (uk ≤ uk′) ∧ (vk′ ≤ vk)
⇐⇒ ∀k′ ∈ {0, . . . ,m} s.t. (uk′ , vk′ ) �= (uk, vk), (uk′ < uk) ∨ (vk < vk′)
⇐⇒ ((uks−1 < uk) ∨ (vk < vks−1)) ∧ ((uke+1 < uk) ∨ (vk < vke+1))
⇐⇒ (uks−1 < uk) ∧ (vk < vke+1). ��

Lemma 6. Given a pattern P of length m, an SLP T of size n, and L(i, j),
R(i, j) for i = 1, . . . , n, j = 0, . . . ,m, C(�, r) for all variables of form Xi = X�Xr,
can be computed in total of O(nm) time.

Proof. A pseudo-code of our algorithm which computes C(�, r) is shown in Al-
gorithm 1 (see also Fig. 3 (Right)). The time complexity is clearly O(m) for each
Xi = X�Xr, and hence O(nm) in total. The correctness is due to Lemma 5. ��
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R(ℓ, k)

Xi

Xℓ Xr

L(r, m k)

R(ℓ, k)

Xi

Xℓ Xr

L(r, m k)

rmin

L(r, m k

Fig. 3. (Left) If R(�, k) �= ∞ and L(r, m − k) �= ∞, there is a crossing subsequence
occurrence of P . P [0 : k− 1] is a subsequence of X�[|X�| −R(�, k) : |X�| − 1], and P [k :
m− 1] is a subsequence of Xr[0 : L(r, m− k)− 1]. (Right) Illustration of Algorithm 1.
When rmin > R(�, k) and L(r, m− k) < L(r,m − k − 1), then (|X�| − R(�, k), |X�|+
L(r, m− k)− 1) is a crossing minimal occurrence. We then update rmin← R(�, k) to
find the next crossing minimal occurrence.

Algorithm 1. Counting Minimal Crossing Subsequence Occurrences.
Input: SLP variable Xi = X�Xr, pattern P , auxiliary tables L, R.
Output: The number of minimal crossing subsequence occurrences C(�, r).

1 C ← 0 ; rmin ← R(�, 0) ;
2 for k← 1 to m− 1 do
3 if rmin > R(�, k) and L(r, m− k) < L(r, m− k − 1) then
4 C ← C + 1; rmin ← R(�, k) ;

5 return C ;

Finally, we obtain the main result of this section.

Theorem 1. Given a pattern P of length m and an SLP T of size n represent-
ing text T , the number of minimal subsequence occurrences of P in T can be
calculated in O(nm) time.

Window Subsequence Matching. Cégielski et al. [3] introduced several
window-accumulated variants of subsequence pattern matching on compressed
texts. The principal problem is: Given an SLP T generating text T , a pattern
P , and non-negative integer w, count the number of minimal subsequence oc-
currences (u, v) of P in T such that v − u+ 1 ≤ w.

Our algorithm for counting minimal occurrences can readily be extended to
this window-accumulated variant. See Algorithm 1. By simply adding “R(�, k)+
L(r,m − k) ≤ w” in the if-condition of line 3, we can solve the problem in the
same complexity O(nm). We remark that the other variants considered in [3]
can also be solved in the same complexity. Details are omitted due to lack of
space.
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4 Don’t-Care Pattern Matching Problems on Compressed
Texts

In this section we show that the ideas of Section 3 can be extended to solve
pattern matching problems for patterns with fixed length don’t care (FLDC)
and variable length don’t care (VLDC) symbols, in the same complexity O(nm).

4.1 FLDC Pattern Matching on Compressed Texts

We can find substrings of Xi matching P , the same way as counting minimal
subsequence occurrences. If a subsequence P of T occurs in (i0, im−1) and im−1−
i0 + 1 = m, obviously the substring T [i0 : im−1], is equal to P .

The above idea can be extended to a pattern matching problem where the
pattern includes fixed length don’t care (FLDC ) symbols. Let the symbol ‘◦’
denote a don’t care character that can match an arbitrary character in Σ. We
call P ∈ (Σ ∪ {◦})∗ an FLDC pattern. An FLDC pattern P of length m occurs
in string T at position i0, if T [i0 + i] = P [i] or P [i] = ◦ for all 0 ≤ i ≤ m− 1.

To count the occurrences of an FLDC pattern P using our window subse-
quence matching algorithms, we only need to count minimal subsequence oc-
currences of P that fit in a window of size |P | with the exception that ◦ can
match any single character. We can do this by simply modifying the base cases
of QL(i, j) and L(i, j) as follows: If Xi = a for some a ∈ Σ, then

QL(i, j) =

{
1 if j < m and (P [j] = a or P [j] = ◦),
0 otherwise.

L(i, j) =

⎧⎪⎨
⎪⎩

0 if j = m,

1 if j = m− 1 and (P [j : m− 1] = a or P [j : m− 1] = ◦),
∞ otherwise.

The base cases of QR(i, j) and R(i, j) should be modified similarly as well.

4.2 VLDC Pattern Matching on Compressed Texts

Let the symbol ‘�’ denote a variable-length don’t care character that can match
an arbitrary string in Σ∗. We call P ∈ (Σ ∪ {�})∗ a variable-length don’t care
(VLDC) pattern. In the sequel, we only consider VLDC patterns that start and
end with �, and the �’s do not occur consecutively. Consider any VLDC pattern
P = �s1 � s2 � · · · � sm′�, where each sj ∈ Σ+. The length of P is m =

∑m′

j=1 |sj |.
Each sj is called the j-th segment of P . VLDC pattern P is said to match a
string T ∈ Σ∗ if there exist indices 0 ≤ i0 < i0 + |s1| ≤ i1 < i1 + |s2| ≤ · · · <
im′−1 + |sm′ | ≤ |T | − 1 such that s1 = T [i0 : i0 + |s1| − 1], . . . , sm′ = T [im′−1 :
im′−1 + |sm′ | − 1]. The pair (i0, im′−1 + |sm′ | − 1) is called an occurrence of
VLDC pattern P in T . An occurrence (u, v) of VLDC pattern P in T is minimal
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if neither (u + 1, v) nor (u, v − 1) is an occurrence of P in T . Note that if each
segment is a single character, then the above notion is equivalent to that of
subsequences.

In what follows, we present how to compute minimal occurrences of a VLDC
pattern in an SLP-compressed text. We will extend the notion of the auxiliary
tables L, R, QL, and QR to cope with VLDC pattern matching. In so doing, we
firstly introduce some new notion.

For any Xi = X�Xr and sj , let

Occ‡(Xi, sj) ={
k

∣∣∣∣∣ X�[|X�| − k : |X�| − 1] = sj [0 : k − 1],
Xr[0 : |sj| − k − 1] = sj[k : |sj | − 1], k = 1, . . . ,min{|sj | − 1, |X�|}

}
.

Namely, values in Occ‡(Xi, sj) correspond to lengths of overlap with X�, for
all crossing substring occurrences of sj in Xi. We can compute Occ‡(Xi, sj) for
all i = 1, . . . , n, j = 1, . . . ,m′ in total of O(nm) time and space, as follows:
Let h be the length of the longest segment of P . We decompress the prefix and
suffix of length h of each variable Xi, i.e., we compute strings Ai = Xi[|Xi| −
min{h, |Xi|} : |Xi| − 1] and Bi = Xi[0 : min{h, |Xi|} − 1]. This can be done
in total of O(nm) time and space. Let Xi = X�Xr. We can then compute
Occ‡(Xi, sj) in O(|sj |)-time by using any standard linear-time pattern matching
algorithm (e.g. [7]) for text A�Br and pattern sj . Moreover, Occ‡(Xi, sj) forms
a single arithmetic progression [11], and can thus be represented as the first
element, the last element, and the number of elements, which require only O(1)
space. Overall it takes O(nm) time and space to compute Occ‡(Xi, sj) for all
i = 1, . . . , n, j = 1, . . . ,m′.

LCP(Xr, sj, k + |Xℓ|)k

Xi

Xℓ
Xr

sj

|Xℓ|

LCP(Xi, sj, k)

Fig. 4. Illustration of the recursion for
LCP(Xi, sj , k). If LCP(�, j, k) = |X�|, then
LCP(i, j, k) = |X�|+ LCP(r, j, k + |X�|).

Let LCP(Xi, sj , k) denote the
length of the longest common pre-
fix of Xi and sj [k : |sj | − 1]. We
can also compute LCP (Xi, sj , k) in
O(nm) time and space for all i =
1, . . . , n, j = 1, . . . ,m′, k = 0, . . . , |sj |,
by the following recursion: For the
base case, if Xi = a for some a ∈ Σ,
then LCP (Xi, sj , k) = 0 if Xi �= sj [k],
and LCP(Xi, sj , k) = 1 if Xi = sj [k].
If Xi = X�Xr, then

LCP(Xi, sj , k) =

{
|X�| + LCP(Xr, sj , k + |X�|) if LCP(X�, sj , k) = |X�|,
LCP (X�, sj, k) otherwise.

Let LCS (Xi, sj , k) denote the length of the longest common suffix of Xi and
sj [0 : |sj|−k−1]. LCS (Xi, sj , k) can also be computed similarly in O(nm) time
and space.
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For any VLDC pattern P = �s1 � s2 � · · · � sm′�, we define a sub-pattern
segsubL(P, j, k, q) of P , for j = 1, . . . ,m′ + 1, k = 0, . . . , |sj | − 1, q = 0, . . . ,m′ −
j + 1, as follows:

segsubL(P, j, k, q) =

⎧⎪⎨
⎪⎩
ε if q = 0 or j > m′,
�sj � · · · � sj+q−1� if q > 0, j ≤ m′, k = 0,
sj [k : |sj | − 1] � · · · � sj+q−1� if q > 0, j ≤ m′, k > 0.

Let QL(i, j, k) denote the maximum number of segments in the sub-patterns
segsubL(P, j, k, q) that match val(Xi), i.e.,

QL(i, j, k) = max{q | segsubL(P, j, k, q) matches val(Xi)}.
Also, we define L(i, j, k) as the length of the shortest prefix of val(Xi) that
matches the sub-pattern giving QL(i, j, k), i.e.,

L(i, j, k) = min{p | segsubL(P, j, k,QL(i, j, k)) matches Xi[0 : p− 1]}
We defineQR(i, j, k) andR(i, j, k) similarly, but be careful that segsubR(P, j, k, q)
for j = 0, . . . ,m′, k = 0, . . . , |sj | − 1, q = 0, . . . , j is defined as follows:

segsubR(P, j, k, q) =

⎧⎪⎨
⎪⎩
ε if q = 0 or j = 0,
�sj−q+1 � · · · � sj� if q > 0, j > 0, k = 0,
�sj−q+1 � · · · � sj [0 : |sj |−k−1] if q > 0, j > 0, k > 0.

Lemma 7. Given an SLP T and VLDC pattern P = �s1 � · · ·�sm′�, QL(i, j, k)
(resp. QR(i, j, k)) and L(i, j, k) (resp. R(i, j, k)) can be also computed in O(nm)
time and space for all i = 1, . . . , n, j = 1, . . . ,m′ + 1 (resp. j = 0, . . . ,m′) and
k = 0, . . . , |sj| − 1.

Proof. QL(i, j, k) and L(i, j, k) can be defined recursively as follows. For the base
case, Xi = a, (a ∈ Σ), then

QL(i, j, k) =

{
1 if 1 ≤ j ≤ m′ and k = |sj | − 1 and sj [|sj | − 1] = a,

0 otherwise.

L(i, j, k) =

{
1 if QL(i, j, k) > 0,
0 otherwise.

If Xi = X�Xr, |sj | − k > |X�| and k > 0, then

QL(i, j, k) =

{
QL(r, j, k + |X�|) if LCP (X�, sj , k) = |X�|,
0 if LCP (X�, sj , k) < |X�|.

(3)

L(i, j, k) =

{
|X�| + L(r, j, k + |X�|) if QL(i, j, k) > 0,
0 if QL(i, j, k) = 0.

(4)

(See also Fig 5 (Left).)
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k |Xℓ|

Xi

Xℓ
Xr

sj

segsubL(P, j, k + |Xℓ|, QL(r, j, k + |Xℓ|)) 
matches Xr

    

Occ (i, )segsubL(P, j, k, QL(ℓ, j, k)) 
matches Xℓ

segsubL(P, , , QL(r, , )) 
matches Xr

k

Xi

Xℓ Xr

sj sj
L(ℓ, j, k) L(r, , )

Fig. 5. (Left) Illustration of Equations (3) and (4) of Lemma 7. If |sj | − k > |X�|
and LCP(i, j, k) = |X�|, then QL(i, j, k) = QL(r, j, k + |X�|) and L(i, j, k) = |X�| +
L(r, j, k + |X�|). (Right) Illustration of Equation (5) of Lemma 7. j′ and k′ can be
computed in O(1) time. Then, QL(i, j, k) and L(i, j, k) can be also computed in O(1)
time. Since sj′ and sj′−1 cannot overlap, k′ must satisfy k′ + L(�, j, k) ≤ |X�|.

If Xi = X�Xr and, |sj | − k ≤ |X�| or k = 0, then let j′ = j + QL(�, j, k)
and k′ = max{x | x ∈ Occ‡(Xi, sj′) ∪ {0}, x + L(�, j, k) ≤ |X�|}. QL(i, j, k)
and L(i, j, k) can be computed as follows: If k = 0 or QL(�, j, k) > 0, then
QL(i, j, k) = QL(�, j, k) +QL(r, j′, k′) and

L(i, j, k) =

{
|X�| + L(r, j′, k′) if QL(r, j′, k′) > 0,
L(�, j, k) if QL(r, j′, k′) = 0.

(5)

(See also Fig 5 (Right).)
Otherwise (k > 0 and QL(�, j, k) = 0), QL(i, j, k) = 0 and L(i, j, k) = 0.
j′ and k′ can be computed inO(1) time ifQL(�, j, k),L(�, j, k) and Occ‡(Xi, sj′)

are already computed, and Occ‡ is represented as an arithmetic progression.
Hence QL(i, j, k) and L(i, j, k) for all i = 1, . . . , n, j = 1, . . . ,m′, and k =
0, . . . , |sj |−1 can be computed in O(nm) time and space.QR(i, j, k) andR(i, j, k)
can be computed similarly using LCS (Xi, sj, k). ��
An occurrence (u, v) of VLDC pattern P is a crossing occurrence in Xi = X�Xr

if 0 ≤ u < |X�| and |X�| ≤ v < |Xi|. Let Mi and C(�, r) denote the number of
minimal occurrences and the number of minimal crossing occurrences of VLDC
pattern P in Xi = X�Xr, respectively.

Lemma 8. Given a VLDC pattern P of length m, an SLP T of size n, and
C(�, r) for all variables of form Xi = X�Xr, the values Mi for i = 1, . . . , n can
be calculated in O(n) time.

Proof. Mi can be defined recursively as follows. For the base case (Xi = a ∈
Σ), if P = �a� then Mi = 1, otherwise Mi = 0. For the case Xi = X�Xr,
Mi = M� + Mr +C(�, r). Thus Mi can be computed for all i = 1, . . . , n, in O(n)
total time and space, if C(�, r) for all variables of form Xi = X�Xr are already
computed.
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In what follows we describe how to compute C(�, r) for each Xi = X�Xr

in O(m) time. Algorithm 2 shows a pseudo-code of our algorithm to compute
C(�, r). For convenience, for i = 1, . . . , n, j = 0, . . . ,m′ and k ∈ Occ‡(Xi, sj) ∪
{0}, let

L(i, j, k) =

⎧⎪⎨
⎪⎩

0 if j = 0,
L(i, j, k) if j > 0 and QL(i, j, k) = m′ − j + 1,
∞ otherwise.

R(i, j, k) =

⎧⎪⎨
⎪⎩

0 if j = 0,
R(i, j, k) if j > 0 and QR(i, j, k) = j,

∞ otherwise.

Note that conceptually, the tables L and R for subsequences correspond to L
and R defined above, and when segsubL(P, j, k,m′ − j + 1) does not match
Xi, then L(i, j, k) = ∞, and when segsubR(P, j, k, j) does not match Xi, then
R(i, j, k) = ∞. Hence we can compute the number of crossing VLDC pattern
occurrences in a similar way to the case of subsequence patterns.

Care is taken for possible crossing occurrences when a segment is crossing Xi.
For any j and k > 0, only occurrences (|X�|−R(�, j, |sj |−k), |X�|+L(r, j, k)−1)
for which k ∈ Occ‡(Xi, sj) can be crossing occurrences of P in Xi (see also Fig. 6
(Left)). For j = 2, . . . ,m′ and k = 0, occurrences (|X�| − R(�, j − 1, 0), |X�| +
L(r, j, 0) − 1) can be crossing occurrences of P in Xi (see also Fig. 6 (Right)).
By checking these possible crossing occurrences in decreasing order of j and
k, we can compute the number of crossing occurrences as described in Algo-
rithm 2. Since the number of candidates is d = Σm′

j=1|Occ‡(Xi, sj)| + m′ + 1 =
O(m), we can compute all the crossing occurrences in a total of O(nm) time
and space. ��

Occ (i, j)
R(ℓ, j, |sj| - k) L(r, j, k)

sjs1 sm

k
Xℓ Xr

|sj k

Xi

R(ℓ, j L(r, j, 0)

sjs1 smsj

Xi

Xℓ Xr

Fig. 6. Illustration of Algorithm 2. (Left) If k ∈ Occ‡(Xi, sj), R(�, j, |sj | − k) �= ∞
and L(r, j, k) �=∞, then (|X�| −R(�, j, |sj | − k), |X�|+ L(r, j, k)− 1) is a candidate of
a crossing occurrence. (Right) If k = 0, R(�, j − 1, 0) �= ∞ and L(r, j, 0) �= ∞, then
(|X� −R(�, j − 1, 0), |X�|+ L(r, j, 0)− 1) is a candidate of a crossing occurrence.
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Algorithm 2. Counting Minimal Crossing VLDC Occurrences.
Input: SLP variable Xi = X�Xr, pattern P , auxiliary tables L(i, j, k), R(i, j, k).
Output: The number of minimal crossing VLDC occurrences C(�, r).

1 d← 0 ; (R[0], L[0]) ← (R(�, m′, 0), 0) ;
2 for j ← m′ to 1 do

3 forall the k ∈ Occ‡(Xi, sj) in descending order do
4 d← d + 1; (R[d], L[d])← (R(�, j, |sj | − k),L(r, j, k)) ;

5 d← d + 1; (R[d], L[d])← (R(�, j − 1, 0), L(r, j, 0)) ;

6 C ← 0; rmin ← R[0] ;
7 for d′ ← 1 to d− 1 do
8 if rmin > R[d′] and L[d′] < L[d′ + 1] then
9 C ← C + 1; rmin ← R[d′] ;

10 return C ;

Consequently, we obtain the main result of this section:

Theorem 2. Given a VLDC pattern P of length m and an SLP T of size n rep-
resenting text T , the number of minimal occurrences of P in T can be calculated
in O(nm) time.

Window VLDC Pattern Matching. This algorithm for VLDC patterns
can be also extended to window-accumulated problems by adding the condition
“R[d′] + L[d′] ≤ w”.

5 Conclusion

All algorithms we presented in this paper run in O(nm) time and space. A nat-
ural open problem is if this can be reduced further. Other open problems are
mixing variable and fixed length don’t care symbols, and constraining the min-
imum and maximum lengths of strings that variable-length don’t care symbols
can match.
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Abstract. Phyllotaxis is the geometric arrangement of organs in plants,
and is known to be highly regular. However, experimental data (from
Arabidopsis thaliana) show that this regularity is in fact subject to spe-
cific patterns of permutations. In this paper we introduce a model for
these patterns, as well as algorithms designed to identify these patterns
in noisy experimental data. These algorithms thus incorporate a denois-
ing step which is based on Gaussian-like distributions for circular data
for which a common dispersion parameter has been previously estimated.
The application of the proposed algorithms allows us to confirm the plau-
sibility of the proposed model, and to characterize the patterns observed
in a specific mutant. The algorithms are available in the OpenAlea soft-
ware platform for plant modelling [10].

1 Introduction

Vascular plants produce new organs at the tip of the stem in a highly organ-
ised fashion. This patterning process occurs in small groups of stem cells, the
so-called shoot apical meristem (SAM), and generates regular patterns called
phyllotaxis [6]. The phyllotaxis of the model plant Arabidopsis thaliana follows
a spiral, where single organs are initiated successively at an approximately con-
stant divergence angle from the previous organ. The most frequent angle found
in nature is the golden angle, close to 137.5◦, and leads to the so-called Fibonacci
phyllotaxis.

The geometric regularity of this phenomenon has impelled scientists to use
mathematical approaches since early studies, two centuries ago. However a com-
plete understanding of the biological processes that drive phyllotaxis is still far
from complete. Most models are mechanistic, and allow for an explanation of
the occurrence of a limited number of theoretical divergence angles (including
137.5◦), as well as constrained transitions between successive angles in a given
plant, see e.g. [1,3]. One leading principle of these models is based on the SAM
functioning, where the appearance of new organs – called primordia – is supposed
� Corresponding author.

R. Giancarlo and G. Manzini (Eds.): CPM 2011, LNCS 6661, pp. 323–335, 2011.
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to be precluded both in the center of the SAM and in the vicinity of previously
formed primordia. This is explained in terms of an inhibitory field surrounding
existing primordia.

In this paper, we are interested in the variations of angles between consecutive
organs in real plants. These angles may be subject to noise and perturbations.
Only few studies have been devoted to this problem. For instance, statistical
tests have been proposed to distinguish between random and regular phyllotac-
tic patterns, or combinations thereof [4,5]. Perturbations in the phyllotactic pat-
terns have also been observed in a study about transitions between different
phyllotactic modes in real plants [2]. It was suggested that these perturbations
might result from permutations in the order of appearance of organs along the
phyllotactic spiral.

In this paper, we build up further on this initial idea. We first considered both
reference (wild-type) plants with spiral phyllotaxis (model plant Arabidopsis
thaliana) and mutant plants that were markedly perturbed in their phyllotaxy.
We developed a combinatorial model for the type of perturbations observed in
spiral phyllotaxis. Uncertainty is taken into account by assuming that each mea-
sured angle can correspond to several theoretical angles among those predicted
by the model. Algorithms are proposed to detect such patterns in sequences of
angles, and generate all candidate sequences from noisy data. For a given theo-
retical angle, the corresponding observed angles are modeled by a Gaussian-like
distribution for circular data. For each candidate theoretical angle, the posterior
probability of the measured angle is computed and compared to a threshold.
This allows to reduce the set of candidate sequences.

2 Model Formulation

The exploratory analysis of our measured angles highlighted two characteristics
of the measured divergence angle sequences. For a given plant, let α denote the
canonical divergence angle:

• The measured divergence angles covered almost all the possible values (be-
tween 0 and 360◦) with highest frequencies around the canonical Fibonacci
angle of 137.5◦. At least four classes of divergence angles were apparent but
they were not unambiguously separated.

• Short segments (i.e. sub-sequences) of non-canonical divergence angles were
identified along measured sequences and were more frequent in the mutant.
They seemed to follow constrained patterns, or motifs.

In particular, a motif corresponding approximately to (2α, −α, 2α) was fre-
quently observed in wild-type and even more often in mutants (see Figure 1).
This motif, which was already observed in [2], can be simply explained by a per-
mutation of two consecutive organs on the stem,without changing their angular
positions. This led us to hypothesize that the segments of non-canonical angles
could be explained by permutations involving 2 or even 3 organs (the most re-
alistic numbers given the structure of the SAM). Let us now formulate this idea
in more precise terms.
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Fig. 1. Identification of M-shaped motifs corresponding to isolated 2-permutations.
The perturbed segments cannot be easily explained on the mutant individual.

An ideal sequence would simply be a repetition of the canonical angle, of
the form (α, α, ..., α). Since we assume that permutations occur, all terms in
a sequence S = (μ1, ..., μ�) of divergence angle will in fact verify μj ∈ αZ∗ =
{iα | i ∈ Z, i �= 0}. We define the corresponding absolute angles as follows:

v0 = 0, vi =
i∑

j=1

μj , V (S) = (v0, ..., v�), i ∈ {0, ..., �}. (1)

From V we define a series containing the order of appearance of organs if the
first is 0. We name it order index series of S, denoted U(S), or simply U =
(u0, u1, ..., u�) when S is clear from the context:

ui =
1
α

(vi − vJ ), 0 ≤ i ≤ � where J = arg min
j∈{0···�}

vj . (2)

From the definition it is clear that if J > 0 then vJ < 0 since v0 = 0. This
may occur when the sequence starts with permuted angles, a fact related to the
left truncation of observed sequence with respect to complete sequences. If the
sequence S follows a spiral phyllotaxis we have

ui = i, ∀i ∈ {0, ..., �}.
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We call the sequence S n-admissible if a finite number of permutations, applied
to disjoint blocks of at most n successive organs, results in an ordered sequence.

Definition 1. A sequence S = (μ1, ..., μ�) ∈ (αZ∗)� is n-admissible, for some
n ∈ {1, ..., �}, if and only if its associated order index series U satisfies:
∀i ∈ {1, 2, ..., �}, ui �= i ⇒ ∃j, k ∈ {0, 1, ..., �}, j ≤ i ≤ k, k − j + 1 ≤ n,
(uj , ..., uk) is a permutation of (j, ..., k), i.e. their underlying sets are equal:
{uj, ..., uk} = {j, ..., k}.
Such a (uj , ..., uk), of length in {1, ..., n}, is called a shuffled block.

Property 1. If S is n-admissible, then U is a permutation of (0, ..., �). In general,
the converse holds only for a certain n ∈ {2, ..., �}.
U is a permutation of (0, ..., �) ⇐⇒ ∃n ∈ {1, ..., �} s.t. S is n-admissible.

Example 1. The sequence S = (−α, 2α, 3α,−α,−α, 3α) is 3-admissible, but not
2-admissible. Indeed, its absolute angles are V = (0,−α, α, 4α, 3α, 2α, 5α).
Hence vJ = v1 = −α, and U = (1, 0, 2, 5, 4, 3, 6). Then, (u0, u1) = (1, 0) and
(u3, u4, u5) = (5, 4, 3) are shuffled blocks of length at most 3, and suffice to
reconstruct the canonical sequence (0, 1, 2, 3, 4, 5, 6).

For n-admissible sequences, the μi only belong to a finite subset of αZ:

Property 2. The divergence angles of an n-admissible sequence, take values in:

Dn = {iα | (1 − n) ≤ i ≤ (2n− 1), i �= 0} .
Proof. Let μi be a divergence angle in an n-admissible sequence, , we know
from Eq. (1)-(2) that μi = (ui − ui−1)α. In other words, note that, up to the
multiplicative constant α, S is the first-order differenced sequence of U . There
are four possible cases for ui−1 and ui:

1. Neither ui−1 nor ui are in any shuffled block, so ui−1 = (i − 1), ui = i and
μi = α.

2. ui−1 is in a shuffled block but ui is not in a shuffled block, so ui = i, and
ui−1 ∈ {(i− n), ..., (i− 2)} then μi ∈ {2α, ..., nα}.

3. ui−1 is not in a shuffled block but ui is in a shuffled block, so ui−1 = (i− 1)
and ui ∈ {i+ 1, ..., (i+ n− 1)} then μi ∈ {2α, ..., nα}.

4. Both ui−1 and ui are in a shuffled block.
– ui−1 and ui are in the same shuffled block so ui, ui−1 ∈ {j, ..., (n+j−1)},

for some j < i− 1. Hence μi ∈ {(1 − n)α, ..., (n− 1)α}\{0}.
– ui−1 and ui are in two different but chained shuffled blocks so ui−1 ∈

{(i−n), ..., (i−2)}, ui ∈ {i+1, ..., (i+n−1)} then μi ∈ {3α, ..., (2n−1)α}.
��

In general, the concatenation of two n-admissible sequences is not n-admissible.
However this can be true after translating only the first angle of the second
sequence. As we show now after two preliminary observations.

Proposition 1. Let S = (μ1, ..., μ�) be n-admissible and V (S) and U(S) be the
sequence of absolute angles and the order index series respectively. Then J < n
and 0 ≤ −vJ < nα, where J is defined as in (1).
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Proof. First we prove that J < n. By construction of order index series we know
that uJ = (vJ − vJ)/α = 0.
If J = 0 then J < n. We suppose that J �= 0, therefore uJ �= J and by Definition
1, ∃j, k ∈ {0, 1, ..., �}, j ≤ J ≤ k, k − j + 1 ≤ n, uJ = 0 ∈ {uj...uk} = {j...k}.
Thus j = 0, and k − j + 1 = k + 1 ≤ n. Hence J ≤ k < n.
Now we prove 0 ≤ −vJ < nα. Since u0 = −vJ/α ≥ 0 by definition, this amounts
to 0 ≤ u0 < n, in which only the second part remains to be proved. It holds
obviously for u0 = 0. Otherwise, u0 is part of a shuffled block {uj...uk} = {j...k},
where j = 0, and k < n, whence u0 < n. ��
The order index series of two concatenated sequences does not always begin
with the order index series of the first sequence. However, this is true if the first
sequence is long enough.

Proposition 2. Let S = (μ1, ..., μi), P = (μi+1, ..., μi+k). If i ≥ n, then U(S)
is subsequence of U(S ·P ) where S ·P = (μ1, ..., μi+k) denotes the concatenation
of S and P .

Proof. V (S) is subsequence of V (S · P ). Therefore U(S) is a subsequence of
U(S · P ) iff vJ = vJ′ where J and J ′ are defined as in Eq. (2) for S and S · P
respectively. Since J < n, J ′ < n from Proposition 1, the minimal element of V
and V ′ appears among their first n− 1 elements, which they share if i ≥ n. ��
Proposition 3. Let S = (μ1, ..., μi), i ≥ n, and P = (μi+1, ..., μi+k). Let
U(S) = (u0, ..., ui) and U(P ) = (u′0, u

′
1, ..., u

′
k) be the order index series of S

and P respectively. Suppose that S is n-admissible.
Then, the concatenated sequence S · P = (μ1, ..., μi+k) is n-admissible iff

P |ui

.=
(
μi+1+(ui − i)α, μi+2, ..., μi+k

)
is n-admissible and u′0 = 0. (3)

Proof. We use again the identity μi = α(ui − ui−1).
Let U = U(S ·P ) = (u0, ..., ui+k) denote the order index series S ·P . Since from
Proposition 2 we know that U(S) is a subsequence of U(S · P ), we can easily
show that U(S · P ) = U(S) · (u′0 + i, u′1 + i, ..., u′k + i). From Property 1 we
know that {u0, ...ui} = {0, ..., i}. Since S is n-admissible and u′0 = 0 then it is
clear that S ·P is n-admissible if and only if (ui+1, ..., ui+k) is a permutation of
(i + 1, ..., i + k) that can be decomposed into disjoint shuffled blocks of length
≤ n, or equivalently for (ui+1 − i, ..., ui+k − i) and (1, ..., k). In other words,
S · P is n-admissible iff (ui+1 − i, ..., ui+k − i) is the order index series of an
n-admissible sequence. From the initial remark, the divergence angle sequence
leading to this order index series can be written as

α
(
ui+1 − i, (ui+2 − i) − (ui+1 − i), ..., (ui+k − i) − (ui+k−1 − i)

)
= α
(
ui+1 − i, ui+2 − ui+1,..., ui+k − ui+k−1

)
,

where the multiplication by α is applied to each component. Then, the same
remark again shows that this sequence is exactly P |ui . ��
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It will be useful in the last section to scan sequences backwards. One shall
then rely on reversibility of the n-admissible property:

Property 3. Let S = (μ1, ..., μ�) be a sequence of divergence angles. S in n-
admissible iff the reversed sequence S′ = (μ�, ..., μ1) is n-admissible.

Proof. Let U(S) = (u0, u1, ..., u�) be the order index series of S, we know that
S = ((u1 − u0)α, ..., (u� − u�−1)α) and S′ = ((u� − u�−1)α, ..., (u1 − u0)α).
Moreover, V (S) and V (S′) obviously have the same minimum, say vJ . Then,

U(S′) = (−vJ , (u� − u�−1) − vJ , (u� − u�−2) − vJ , ..., (u� − u0) − vJ)
= u� − vJ − (U(S))′,

where (U(S))′ = (u�, ..., u0) is the reversed order index sequence of S. It is clear
that the latter can be decomposed into shuffled blocks of length ≤ n iff U(S)
itself can. Since U(S′) is seen above to be a translation of this reversed sequence
it also shares this property. ��
Property 2 defines the theoretical angles that may occur in an n-admissible
sequence, but the measured angles are never exactly in Dn, and could correspond
to two or more of these theoretical angles. This may lead to several n-admissible
sequences. This will later be stored as a suffix tree.

Definition 2. A labelled tree T = (V,E, L), where L : V → Dn, is called an
n-admissible tree if all leaves have a common depth � ∈ N, and every path from
the root to a leaf is labelled by an n-admissible sequence.

Let Γ be a mapping that for each measured angle proposes candidate theoretical
angles among those in Dn

Γ : [0, 360◦) −→ 2Dn

xi �−→ Ci = {μi1, μi2, , ..., μik} ⊂ Dn
(4)

We also consider a function ω : [0, 360◦)×Dn → [0, 1] that returns a confidence
level ω(xi, μq) – typically a probability – for each (xi, μq).

3 Detecting n-Admissibility in Noisy Sequences

3.1 Problems

Given the Γ function above, a set of measured angles will generate a possibly
high number of candidate sequences.

Problem 1. Let x = (x1, ..., x�) ∈ [0, 360◦)� be measured angles, and C =∏�
i=1 Ci ⊂ D�

n where Ci = Γ (xi). The task is to find all n-admissible S =
(μ1, μ2, ..., μ�) in C.

In order to deal with this problem we first need to know whether a given
sequence of divergence angles is n-admissible.
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Problem 2. Given a sequence S of divergence angles, the task is to determine
whether S is n-admissible.

The following is a straightforward observation which is a special case of lemma
10.3 in [8]. It will be used to recognise n-admissible sequences.

Lemma 1. Let U be a permutation of {1, ..., �}. Then for all 1 ≤ i < j ≤ �,
{uj, ..., uk} = {j, ..., k} iff min{uj, ..., uk} = j and max{uj, ..., uk} = k.

3.2 Algorithms

First we propose an algorithm to solve Problem 2. In order to use Lemma 1,
it first checks whether {u0, ..., u�} �= {0, 1, ..., �} in linear time, using a Parikh
mapping [8]. Then, it determines whether an input sequence is n-admissible by
a single scan of the sequence from left to right. The time complexity of the
algorithm is O(�) where � is length of the input sequence.

n-admissible algorithm:
input: n, S # S: a sequence of length � a priori composed of theoretical divergence angles
output: Boolean (true or false)
Begin
if S0 not in Dn:

return False # since (μi+1+(ui − i)α in P |ui in proposition 3 could be not in Dn

Construct the order index series U(S)

if {u0, ..., u�} �= {0, 1, ..., �} : return False # using Parikh mapping
i:=0
while i ≤ � :

if ui �= i : lo:=ui; up:=ui; j:=i+1
while true:

if j > � : return false
if j - i > n - 1: return false
lo:=min(uj , lo); up:=max(uj , up)
if (lo = i) & (up = j): i:=j+1 ; break # (ui, ..., uj) shuffled block
j:=j+1

else: i:=i+1
return true # the order index series U(S) can also be returned if needed
End

Remark 1. The notion of shuffled block can be seen as a special case of interval
[8], Ch. 10. However, because it is much more specific, existing interval extrac-
tion algorithms would return invalid subsequences, whence the need for a new
algorithm as above.

Now we can deal with Problem 1. A naive algorithm would construct all candi-
date sequences S = μ1, μ2, ..., μ�, and then apply the n-admissible algorithm.
The number of candidate sequences equals

∏�
i=1 |Ci|, where the |Ci| is the car-

dinality of Ci. Since Ci are typically not singletons, |C| increases exponentially
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with �. Therefore we propose a lookahead algorithm to explore the search space
avoiding non necessary paths, as sketched below. The source code is available
for more details [10].

n-admissible tree algorithm:
input: Γ, n, (x1, ..., x�) # a sequence of measured divergence angles of length �
output: n-admissible tree
# with nodes labelled by both divergence angles μi and order indices ui

Begin
T:= {root} ; μ(root):= 0 ; u(root):= 0
find:= false
while True:

nLeaves:= nonterminal_leaves(T ) # leaves of depth < �
if nLeaves is empty: return T
for leaf in nLeaves:

d:=depth(leaf) ; m:=min(n, �− d);
for k ∈ {1, ..., m}:

for P ∈ Γ (xd+1)× ...× Γ (xd+k):
Compute P |u(leaf) # cf. (3), Proposition 3
if n-admissible(P |u(leaf)): # also returns μ and u for nodes in P

append all nodes on P to leaf
End

Thanks to the use of Proposition 3, n-admissibility can be tested on subse-
quences only. The time complexity of the n-admissible tree algorithm increases
exponentially with the lookahead limit n. When the returned tree contains only
one n-admissible sequence (as was generally the case in practice), it is more
precisely O(l × (k)n) where k = max(|Ci|).
Proposition 4. Let us call An(C) the set of n-admissible sequences in C, and
π(T ) the set of all (labels of) paths in T , from the root to the leaves. Then
π(T ) = An(C), i.e. the tree built in the n-admissible tree algorithm contains
exactly the n-admissible sequences in C.

Proof. The inclusion π(T ) ⊂ An(C) is clear, since in the 2nd for loop only paths
which are n-admissible can be added, thanks to Proposition 3.
To see that the converse holds, it suffices to remark that given an n-admissible
sequence (μ1, ..., μ�), one of the n subsequences

(μ1, ..., μ�−1), (μ1, ..., μ�−2) · · · (μ1, ..., μ�−n)

must be n-admissible as well, as follows from the definition. Because all these
subsequences are tested in the for loop, there cannot be an n-admissible se-
quence that is not detected by the algorithm, and thus π(T ) ⊃ An(C). ��
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Further Pruning.
In the case where An(C) is large, one may use the weights ω(xi, μj) to sort
the sequences according to a confidence level. Actually, to a given path with
labels μ1, ..., μ� in the computed n-admissible tree, one may naturally assign the
weight

∏
j ω(xj , μj). Then, all paths in the tree can be ordered according to their

weight.
These weights can also be used to limit the size of the constructed tree, by

ruling out all candidate paths whose weight is below a certain threshold. Since the
weight of each node is lower than 1, the weight of a path can only be lower than
that of any of its subpaths. Hence, it is possible in the for loop of the algorithm
to prune not only the non admissible paths, but also those having a weight
below a threshold. This is how we have actually implemented the algorithm,
using posterior probabilities for weights, and adding a threshold as an input to
the algorithm, as explained in the next section.

4 Results

4.1 Assignment of Measured Angles to Theoretical Angles

We have used the proposed algorithms to analyse the sequences of measured an-
gles. The Γ function was parametrised using a statistical model. In a first step,
a hidden Markov chain was estimated on the basis of the pooled wild-type +
mutant measured divergence angle sequences in order to estimate an angle mea-
surement uncertainty parameter; see more details in [9]. In this hidden Markov
chain, the states of the non-observable Markov chain represents “theoretical” di-
vergence angles while the von Mises observation distributions attached to each
state of the non-observable Markov chain represents measurement uncertainty.
The von Mises distribution [7], also known as the circular Gaussian distribution,
is a univariate Gaussian-like periodic distribution for a variable x ∈ [0, 360◦).
Let g (x;μq, κ) denote the probability density function of the von Mises distribu-
tion, with parameters μq (mean direction) and κ (concentration parameter). The
main output of this first step of analysis was the estimated common concentra-
tion parameter (inverse variance) κ. This parameter corresponds to a standard
deviation of approximately σ = 18◦ (for our set of measured angles). Using this
standard deviation, the Γ mapping (4) for our data is defined as follows:

Γ (xi) = {μq ∈ Dn | μq − ρσ ≤ xi ≤ μq + ρσ}
The intervals defined by parameters ρ and σ correspond typically to a cumu-

lative probability of 0.9975 with respect to the angle distribution centered at μq.
For each possible theoretical angle of index q, the posterior probability

ω(xi, γ) =
g (xi;μq, κ)∑

μr∈Dn
g (xi;μr, κ)

was calculated and compared with a predefined threshold (typical value 0.05)
to decide whether this angle should be kept or rejected for the labelling of the
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Fig. 2. The estimated von Mises distributions used for the Γ mapping

sequence in the n-admissible tree algorithm. The implicit underlying hy-
pothesis was that the theoretical angles were a priori equally probable.

4.2 Interpretation on Our Dataset

We applied the modeling approach to our data set, see Figure 3 for an example
where the predicted divergence angle sequence is in close agreement with the
measured divergence angle sequence. For some sequences however, there was no
n-admissible sequence in C as defined in Problem 1. This was often due to either
some error in the measurement of divergence angles, or to too large deviations
between an observed angle and any predicted angle corresponding to a valid
prediction. A single measured angle xi is non-explained, if no theoretical angle
in Γ (xi) leads to a non-empty output of the n-admissible tree algorithm. Due
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Fig. 3. Mutant individual: prediction of the of divergence angle sequence (continuous
line) and labelling of the divergence angles within the permuted segments

to the dependencies induced by the permutation patterns, the angle at which the
algorithm fails may in fact result from an isolated error, earlier in the sequence.
Hence, all shuffled blocks preceding a non-explained angle should be marked as
not valid. To achieve this goal, we define splitting points. The notion of splitting
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point can be viewed as a deterministic analogue of a regeneration point for a
stochastic process. A regeneration point is a time instant at which the future of
the process depends only of its state at that instant and is thus independent of
its past before that instant. The process is thus reborn at a regeneration point.

Definition 3. Let S be a sequence of divergence angles and U(S) be the order
index series of S, ui is a splitting point iff ui = i and ui is not in a shuffled
block.

Using the notion of splitting point, we implemented a procedure which was
applied after the n-admissible tree algorithm. It consisted in a backtracking
starting at the non-explained angle and progressing towards a splitting point.
This allowed us to automatically invalidate blocks of angles preceding a value at
which the algorithm failed.

To refine this analysis, we used reversibility (Property 3), and applied the
whole procedure to both measured sequences and their reverse. Then, the inter-
section of angles invalidated on a sequence and its reverse, was often reduced
to a single angle. Moreover these angles were likely due to measurement errors,
typically the omission of one angle in the series, leading to an isolated 2α in a
sequence of canonical angles α, see Figure 4. An expert investigation of these
automatically detected subsequences enabled us to find with increased accuracy
those angles which were not explained by our model. The proposed modeling
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Fig. 4. Analysis of the sequence in both directions to detect segments that are invalid
with respect to the permutation assumption. The invalid segments are delimited by
dashed lines. The continuous line corresponds to the predicted divergence angles.
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approach allows to explain a very large proportion of the non-canonical di-
vergence angles despite the relatively high standard deviation (approx. 18◦) of
the estimated von Mises distributions. This indicates that the proposed model
correctly describes the phyllotactic patterns of Arabidopsis thaliana. Wild-type
plants were characterized by relatively frequent occurrences of 2-permutations
generally isolated while mutants were characterized by the frequent occurrences
of both 2- and 3-permutations whose succession generates highly complex mo-
tifs, see Figure 3 for an example. A summary of the results is shown in Table 1,
with more precise counts of patterns in Table 2.

Table 1. Summary of the permutation patterns observed in both wild type and mutant
plants

Wild-type plant Mutant
# sequences/# organs 82/2405 89/ 2815
% of non-canonical angles 15% 37%
% of unexplained angles 2% 5%
# individuals, Lucas phyllotaxis 2 2
# 2-permutations 123 297
# 3-permutations 3 53

The term Lucas phyllotaxis refers to a spiral phyllotaxis were the canonical
divergence angle α is 99.5◦. Although rarer than the Fibonacci spiral (α =
137.5◦), it is known to occur in nature, and was able to explain two wild-type
and two mutant sequences, for which 137.5◦ failed.

Table 2. Permuted segments up to length 5. These segments are delimited by two split-
ting points. The divergence angle sequence is the first-order differenced organ sequence.
By convention, the origin of the organ sequence is 0 (not indicated).

organ order divergence angles wild-type mutant
2-permutation 2 1 3 2 -1 2 90 193

3 2 1 4 3 -1 -1 3 1 11
3-permutation 3 1 2 4 3 -2 1 2 1 9

2 3 1 4 2 1 -2 3 13
total 2 33
2 2-permutations 2 1 4 3 5 2 -1 3 -1 2 16 32
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Abstract. An essential task in comparative genomics is usually to de-
compose two or more genomes into synteny blocks, that is, segments of
chromosomes with similar contents. In this paper, we study the Maxi-

mal Strip Recovery problem (MSR) [Zheng et al. 07], which aims at
finding an optimal decomposition of a set of genomes into synteny blocks,
amidst possible noise and ambiguities. We present a panel of new or im-
proved FPT and approximation algorithms for the MSR problem and its
variants. Our main results include the first FPT algorithm for the vari-
ant δ-gap-MSR-d, an FPT algorithm for CMSR-d and δ-gap-CMSR-d
running in time O(2.360kpoly(nd)), where k is the number of markers or
genes considered as erroneous, and a (d + 1.5)-approximation algorithm
for CMSR-d and δ-gap-CMSR-d.

1 Introduction

An essential task in comparative genomics is usually to decompose two or more
genomes into synteny blocks, that is, segments of chromosomes with similar
contents. This task is non-trivial when the genomic maps contain noise and
ambiguities, which need to be removed before we can give a precise synteny
block decomposition. This is the objective of the Maximal Strip Recovery

problem (MSR) [10]: to delete a set of markers (genes) from the genomic maps
until the remaining markers can be partitioned into a set of strips (synteny
blocks) of maximum total length.

We review some definitions. A genome consists of one or more chromosomes;
each chromosome is a sequence of genes. Correspondingly, a genomic map con-
sists of one or more sequences of gene markers. Each marker is a signed integer
representing a gene: the absolute value of the integer represents the family of the
gene; the sign of the integer represents the orientation. A marker has duplicates
if it is contained more than once in some genomic map, possibly in different ori-
entations. A strip of d ≥ 2 genomic maps is a sequence of at least two markers
appearing consecutively in each map, such that the order of the markers and the
orientation of each marker are either both preserved or both reversed. The re-
versed opposite of a sequence s = 〈x1, . . . , xh〉 is −s = 〈−xh, . . . ,−x1〉. The MSR
problem on d input maps is the following maximization problem MSR-d [2,10]:

R. Giancarlo and G. Manzini (Eds.): CPM 2011, LNCS 6661, pp. 336–349, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Problem MSR-d
Input: d genomic maps G1, . . . , Gd each containing n markers without dupli-
cates.
Solution: d subsequences G′

1, . . . , G
′
d of G1, . . . , Gd respectively, each contain-

ing the same � markers, such that all the markers in G′
1, . . . , G

′
d can be parti-

tioned into strips.
Parameter: the number � of selected markers.

The maximization problem MSR-d that maximizes the parameter �, the num-
ber of selected markers, has a complement minimization problem called
CMSR-d [9,8] that minimizes the parameter k = n − �, the number of deleted
markers. For genomic maps of close species with few errors, k can be much
smaller than �, thus approximation and FPT algorithms are sometimes more
relevant for CMSR than for MSR. We refer to Figure 1 for an example.

Given d subsequences G′
1, . . . , G

′
d of d genomic maps G1, . . . , Gd, respectively,

the gap between two consecutive markers a and b of G′
i is the number of markers

appearing between a and b in Gi, a and b excluded. The gap of a strip s is the
maximum gap between any two consecutive markers of s in any map G′

i. The
deleted markers between markers of a strip correspond to noise and ambiguities,
which occur infrequently. A synteny block is a segment of chromosomes that
remain undisrupted by genome rearrangements during evolution. Consecutive
elements of a synteny block can only be separated in a dataset due to noise
and ambiguities. Thus a strip having a large gap is unlikely to correspond to
a synteny block; see [3] for an empirical analysis. This leads to the following
gap-constrained variant of MSR-d [1]:

Problem δ-gap-MSR-d
Input: d genomic maps G1, . . . , Gd each containing n markers without dupli-
cates.
Solution: d subsequences G′

1, . . . , G
′
d of G1, . . . , Gd respectively, each contain-

ing the same � markers, such that all the markers in G′
1, . . . , G

′
d can be parti-

tioned into strips, and such that each strip has gap at most δ.
Parameter: the number � of selected markers.

No doubt that MSR-d is a more elegant problem from a theoretical perspec-
tive, but δ-gap-MSR-d could be more relevant in biological applications. The
gap-constrained variant of CMSR-d, denoted δ-gap-CMSR-d, can be similarly
defined. Similarly to MSR-d and CMSR-d, the parameter for δ-gap-MSR-d is �,

G1 = 1 5 −3 2 6 4 8 7 G′
1 = 1 5 −3 6 8

G2 = 1 5 −3 −8 7 −6 2 4 G′
2 = 1 5 −3 −8 −6

G3 = −8 2 7 −6 −4 3 −5 −1 G′
3 = −8 −6 3 −5 −1

Fig. 1. Three genomic maps G1, G2, G3, and an optimal solution G′
1, G′

2, G′
3 for

MSR-3. The markers 2, 4, 7 are deleted; the markers 1, 3, 5, 6, 8 are selected in two
strips 〈1, 5,−3〉 and 〈6, 8〉 of G′

1, G′
2, G′

3. The gap of the strip 〈1, 5,−3〉 is 0; the gap
of the strip 〈6, 8〉 is 2, since there are 2 markers between −8 and −6 in G3.
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and the parameter for δ-gap-CMSR-d is k. In most cases, δ and d are assumed
to be constants, although our FPT algorithm in Theorem 3 does not depend on
this assumption and can take δ and d as parameters besides �. There is no known
direct reduction from δ-gap-MSR-d to MSR-d or vice versa. Although the gap
constraint appears to be an additional burden that the algorithm has to take
care of, it also limits the set of candidate strips and their intersection pattern,
especially when δ is small, which may make the problem easier to handle.

For the four variants of the maximal strip recovery problem, MSR-d, CMSR-
d, δ-gap-MSR-d, and δ-gap-CMSR-d, several hardness results have been ob-
tained [2,9,6,1,7,8], and a variety of algorithms have been developed, including
heuristics [10], approximation algorithms [2,1,5], and FPT algorithms [9,5]. For
example, it is known that MSR-d admits a 2d-approximation algorithm for any
d ≥ 2 [2,8], and that δ-gap-MSR-d admits a 2d-approximation algorithm for any
d ≥ 2 and δ ≥ 1 and a 1.8-approximation algorithm for d = 2 and δ = 1 [1]. Refer
also to [11,5] for some very recent development on the CMSR problem parallel
to our work. The following two theorems summarize some basic hardness results
regarding these problems:

Theorem 1. [6,1,8] MSR-d, CMSR-d, δ-gap-MSR-d, and δ-gap-CMSR-d are
APX-hard for any d ≥ 2 and δ ≥ 2, even if all markers appear in positive
orientation in all genomic maps; 1-gap-MSR-d and 1-gap-CMSR-d are NP-hard
for any d ≥ 2.

Theorem 2. [7] MSR-d is W[1]-hard for any d ≥ 4, even if all markers appear
in positive orientation in all genomic maps.

In this paper, we present a panel of new or improved FPT and approximation
algorithms. Our positive results, together with some previous results, are summa-
rized in Table 1. Due to space constraints, we present only three main results in
this extended abstract. These results are (i) an FPT algorithm for δ-gap-MSR-d
running in time 2O(dδ�)n, (ii) an FPT algorithm for CMSR-d and δ-gap-CMSR-d,
running in time O(2.360kpoly(nd)), and (iii) a (d+1.5)-approximation algorithm
for CMSR-d and δ-gap-CMSR-d.

Preliminaries. Given a set of genomic maps (either the set of d original maps
given as input or some set of reduced maps during the execution of a recursive
algorithm), if a maximal sequence of markers form a strip in these maps, then
these markers are either all selected or all deleted in any optimal solution. This
is because any solution that includes only a subset of the markers in a strip can
be extended to a better solution that includes all markers in that strip. Hence,
these markers can be treated as an atomic unit, and called a super-marker, whose
size is the number of markers it contains. Note that the size of a super-marker is
always at least 2. A marker that does not belong to any super-marker is a single-
marker. We use the term single-super-marker to refer to either a single-marker
or a super-marker. A common step of our algorithms is to partition the markers
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Table 1. Positive results for variants of MSR

Problem Best FPT algorithm (running time)

δ-gap-MSR-d O(2ttdδ2 + ndδ) [Theorem 3, Section 2]
with t = �(1 + 3

2
dδ)

CMSR-d O(2.360kpoly(nd)) [Theorem 4, Section 3]
δ-gap-CMSR-d (δ ≥ 2) O(2.360kpoly(nd)) [Theorem 4, Section 3]

1-gap-CMSR-d O(2kpoly(nd)) [See full version]

Problem Best approximation ratio

MSR-d 2d [2,8]
δ-gap-MSR-d (δ ≥ 4) 2d [1]
1-gap-MSR-d (d ≥ 3) 0.75d + 0.75 + ε [See full version]
1-gap-MSR-2 1.8 [1]
2-gap-MSR-d 1.5d + ε [See full version]
3-gap-MSR-d 1.5d + 0.75 + ε [See full version]

CMSR-d (d ≥ 3) d + 1.5 [Theorem 5, Section 4]
CMSR-2 3 [5]

δ-gap-CMSR-d d + 1.5 [Theorem 5, Section 4]
1-gap-CMSR-2 2.778 [See full version]

into single-super-markers. If a set of genomic maps contains only super-markers,
then we have a straightforward decomposition into strips, without deleting any
marker.

For two markers or two single-super-markers u and v, denote by gap(u, v)
the set of markers that appear between u and v in at least one of the maps;
clearly gap(u, v) = gap(v, u). We call v a candidate successor (resp. candidate
predecessor) of u, and write v % u (resp. v ≺ u), if the following two conditions
are satisfied: (1) 〈u, v〉 (resp. 〈v, u〉) is a strip (satisfying the δ-gap constraint, if
necessary) in the reduced maps with all markers in gap(u, v) deleted, (2) 〈u, x, v〉
(resp. 〈v, x, u〉) cannot be a strip for any x ∈ gap(u, v). The relation ≺ always
refers to two markers of the original map, even if we temporarily work with
reduced maps. Note that v is a candidate successor of u if and only if u is a
candidate predecessor of v. In the example of Figure 1, we have 6 ≺ 8, and
gap(6, 8) = {2, 4, 7}. The following lemma gives some basic properties of the
function gap:

Lemma 1. (a) Let u, v, w be three markers or single-super-markers. If u and
v are two candidate successors of w with u �= v, then u ∈ gap(w, v) and v ∈
gap(w, u). (b) Let u and v be two single-super-markers. If u ≺ v or u % v, then
gap(u, v) �= ∅.

2 An FPT Algorithm for δ-gap-MSR-d

In this section, we present the first FPT algorithm for δ-gap-MSR-d with the
parameter �. Recall that without the gap constraint, MSR-d with the parameter
� is W[1]-hard for any d ≥ 4. In sharp contrast to the W[1]-hardness of MSR-d,
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we obtain a somewhat surprising result that δ-gap-MSR-d is in FPT, where �
is the parameter, and δ and d are constants. In fact, our FPT algorithm for
δ-gap-MSR-d works even if d and δ are not constants: δ-gap-MSR-d is in FPT
even with three combined parameters d, δ and �.

Theorem 3. Algorithm 1 finds an optimal solution for δ-gap-MSR-d for any
d ≥ 2 and δ ≥ 1, in time O(2ttdδ2 + ndδ), where t = �(1 + 3

2dδ).

Algorithm 1. FPT algorithm for δ-gap-MSR-d
1: Gather all pairs of markers (u, v) such that u ≺ v. Such pairs are called candidate

pairs.
2: For each marker u, create a boolean variable xu.
3: For each candidate pair (u, v), create a conjunctive boolean formula fu,v = xu ∧

xv ∧ ¬xg1 ∧ . . . ∧ ¬xgs , where g1, . . . , gs are the markers in gap(u, v).
4: Delete the variables that do not appear in any formula or appear only in negative

form in the formulas.
5: Enumerate all possible assignments to the remaining variables to find an optimal

assignment that maximizes the number of variables appearing in positive form in
at least one satisfied formula. Delete all markers whose variables are not assigned
true values.

6: Return the resulting genomic maps.

Our algorithm is based on a simple idea: create a boolean variable for each
marker (where true means the marker is selected in a solution, false that it
is unselected), then test all possible assignments to find an optimal solution.
To reduce the time complexity of this brute-force approach, we add a pruning
step (line 4) to delete certain variables whose markers cannot appear in any
optimal solution. The remaining variables form a “kernel” on which we can find
an optimal solution in FPT time.

Given an optimal solution, which selects � markers, we call a marker active if
it appears within distance at most δ from a selected marker in some map. Then
each map contains at most �δ + �

2δ unselected active markers: at most δ after
each selected marker, and at most δ before the first marker of each strip (note
that the number of strips of this optimal solution is at most �/2). The total
number of active markers is at most �+ d(�δ + �

2δ) = �(1 + 3
2dδ).

The pruning step in line 4 depends on the crucial observation that a non-
active marker can never appear in positive form. Suppose for contradiction that
a non-active marker u appears in a candidate pair with some marker v. Then u
is at distance at most δ+1 from v in each map. Since u, as a non-active marker,
must be at distance at least δ + 1 from the selected markers in all maps, no
selected markers can appear between u and v in any map, thus we can extend
the optimal solution by selecting both u and v, a contradtiction.

Note that in line 4 the variables appearing at least once in positive form are
never deleted, hence no formula becomes empty after deleting the variables that
appear only in negative form. After line 4, the number of remaining variables is
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at most the number of active markers, which is at most t = �(1 + 3
2dδ). Corres-

pondingly, the number of formulas is at most t(δ+1), because any candidate pair
consists of an active marker and one of the δ+ 1 markers immediately following
it in the first map. Each formula contains at most dδ + 2 variables.

The time complexity of line 1 is O(ndδ). In lines 2 and 3, the variables can be
created in time O(n), and the formulas can be created in time O(t(δ + 1)(dδ +
2)) = O(tdδ2). Similarly, line 4 can be executed in time O(n + tdδ2). Finally,
line 5 can be executed in time O(2tt(δ + 1)(dδ + 2)) = O(2ttdδ2), so the overall
time complexity is O(2ttdδ2 + ndδ).

3 An FPT Algorithm for CMSR-d and δ-gap-CMSR-d

In this section, we design an FPT algorithm for CMSR-d and δ-gap-CMSR-d,
where the parameter is k, the number of deleted markers in the optimal solution.

Since super-markers are already strips in the input genomic maps, one may
naturally be tempted to come up with the following algorithm. First, find all
super-markers, and add them to the solution. Then, delete a subset of single-
markers until all markers in the resulting maps can be partitioned into strips.
The correctness of this algorithm on finding an exact solution, however, depends
on the assumption that in some optimal solution no super-marker needs to be
deleted, which is false as can be seen in the following counter-example:

G1 = 4 1 2 3 5 6 7
G2 = 6 −3 −2 −1 7 4 5

Here 〈1, 2, 3〉 forms a super-marker, but the optimal solution deletes 〈1, 2, 3〉 and
selects 〈4, 5〉 and 〈6, 7〉 instead. An easy generalization of this counter-example
shows that any super-marker of size strictly less than 2d is not guaranteed to be
always selected in some optimal solution.

We observe that an FPT algorithm for CMSR-d and δ-gap-CMSR-d can be
easily obtained using the bounded search tree method. In any feasible solution
for the two problems, a single-marker x must be either deleted or selected. If
x is selected, then at least one of its neighbors must be deleted. Since x has
at most 2d neighbors (at most two in each map), this leads to a very simple
algorithm running in time O((2d + 1)kpoly(nd)). Parallel to our work, Jiang et
al. [5] presented an FPT algorithm running in time O(3kpoly(nd)). We next
describe a carefully tuned FPT algorithm running in time O(2.360kpoly(nd)).
For convenience, we consider the decision problem associated with CMSR-d and
δ-gap-CMSR-d, for which the parameter k is part of the input.

Theorem 4. Algorithm 2 finds an exact solution for the decision problems as-
sociated with CMSR-d and δ-gap-CMSR-d, for any δ ≥ 1 and d ≥ 2, in time
O(ckpoly(nd)), where c < 2.360 is the unique real root of the equation 2c−1 +
2c−3 = 1.

It is interesting to note that although the two problems MSR-d and δ-gap-MSR-
d have very different complexities when parameterized by �, their complements
CMSR-d and δ-gap-CMSR-d are both tractable when parameterized by k.
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The efficiency of Algorithm 2 is made possible by several optimizations jus-
tified by the following lemmas. These lemmas are all based on very simple ob-
servations. Note that although we consider the decision problem for simplicity,
Algorithm 2 can be adapted to directly return the actual solution, instead of
“true”, when the input instance indeed has a solution of size k. Recall that the
relation ≺ in lines 14-15 is defined for markers in the original maps — it remains
unchanged through recursive calls, and can be precomputed.
Lemma 2. Let x be a single-marker and w a super-marker. If x is selected in an
optimal solution, and w is a candidate successor or predecessor of x with exactly
one marker in gap(x,w), then there is an optimal solution where the marker in
gap(x,w) is deleted.

Algorithm 2. FPT algorithm for δ-gap-CMSR-d and CMSR-d
Input: d genomic maps G1, . . . , Gd each containing n markers without duplicates, and
two parameters k ∈ N, δ ∈ N ∪ {∞}
1: return recurse(G1, . . . , Gd, k, δ, false)

Function recurse(G1, . . . , Gd, k, δ, skip step 2b): boolean

1: if k < 0 then
2: return false
3: Partition the markers into single-super-markers.
4: if there exists at least one single-marker in G1 then
5: x← the left-most single-marker in G1

6: else
7: return true
8: s← the first single-super-marker following x in G1

9: // 1: Assume x is deleted in the optimal solution
10: Create G′

1, . . . , G
′
d by removing x from G1, . . . , Gd.

11: if recurse(G′
1, . . . , G

′
d, k − 1, δ, false) then

12: return true
13: // 2: Assume x is part of a strip in the optimal solution
14: Y ← { single-super-marker y | x ≺ y} // the set of candidate successors
15: Z ← { super-marker z | z ≺ x} // the set of candidate predecessors
16: if ∃w0 ∈ Y ∪ Z a super-marker s.t. (x, w0) satisfies the conditions of Lemma 2

then
17: Create G′

1, . . . , G
′
d by removing all markers in gap(x, w0) from G1, . . . , Gd.

18: return recurse(G′
1, . . . , G

′
d, k − 1, δ, false)

19: if ∃s0 a single-marker s.t. (x, s0) satisfies the conditions of Lemma 3 then
20: Create G′

1, . . . , G
′
d by removing s0 from G1, . . . , Gd.

21: return recurse(G′
1, . . . , G

′
d, k − 1, δ, false)

22: // 2.a: Assume x is not at the end of its strip
23: if Y �= ∅ then
24: if recurse 2a(Y, x,G1, . . . , Gd, k, δ) then
25: return true
26: // 2.b: Assume x is at the end of its strip
27: if Z �= ∅ and skip step 2b=false then
28: if recurse 2b(Z, x, s, G1, . . . , Gd, k, δ) then
29: return true
30: return false
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Algorithm 2 (continued)
Function recurse 2a(Y, x, G1, . . . , Gd, k, δ): boolean

1: if ∃y0 ∈ Y s.t. y0 satisfies the conditions of Lemma 4 then
2: if δ ∈ N and y0 is a single-marker then
3: Replace y0 by the unspecified marker [y0 | Y ].
4: Y0 ← {y0}
5: else
6: Y0 ← Y
7: for all y ∈ Y0 do
8: Create G′

1, . . . , G
′
d by removing all markers in gap(x, y) from G1, . . . , Gd.

9: if recurse(G′
1, . . . , G

′
d, k − |gap(x, y)|, δ, false) then

10: return true
11: return false

Function recurse 2b(Z, x, s, G1, . . . , Gd, k, δ): boolean

1: if ∃z0 ∈ Z s.t. z0 satisfies the conditions of Lemma 5 then
2: Z0 ← {z0}
3: else
4: Z0 ← Z
5: for all z ∈ Z0 do
6: if z ends with an unspecified marker [y0 | Y ] and ∃y1 ∈ Y s.t. y1 ≺ x then
7: Replace the unspecified marker [y0 | Y ] by y1.
8: Create G′

1, . . . , G
′
d by removing all markers in gap(x, z) from G1, . . . , Gd.

9: skip next step 2b ← s exists and s is a single-marker and s /∈ gap(x, z)
10: if recurse(G′

1, . . . , G
′
d, k − |gap(x, z)|, δ, skip next step 2b) then

11: return true
12: return false

Lemma 3. Let x be a single-marker and s a single-super-marker. If s appears
in gap(x,w) for each w that is a candidate successor or predecessor of x, then
s itself cannot be a candidate successor or predecessor of x, and any solution
selecting x deletes s.

Lemma 4. (In this lemma we assume there is no gap constraint.) Let x be a
single-marker and y a candidate successor of x such that all markers in gap(x, y)
are single-markers and candidate successors of x. If x is part of some strip in
an optimal solution, but not at the end of this strip, then there is an optimal
solution where 〈x, y〉 is part of some strip.

Lemma 5. Let x be the first single-marker in G′
1. Let z be a candidate pre-

decessor of x such that all markers in gap(x, z) are size-2 super-markers and
candidate predecessors of x. If x appears at the end of a strip in an optimal
solution, then there is an optimal solution where 〈z, x〉 is at the end of some
strip.

In addition to these four optimizations, we also use a “delayed commitment”
optimization which is the equivalent of Lemma 4 when we need to observe a gap
constraint. We consider the case where x is part, but not at the end, of some
strip in the optimal solution, and where y is a single-marker and a candidate
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successor of x such that all markers in gap(x, y) are single-markers and candidate
successors of x. In this case we delete all markers in gap(x, y) to make 〈x, y〉 a
strip, but keep the possibility of replacing y by any marker y1 ∈ gap(x, y), should
necessity arise. We denote this unspecified marker by [y | gap(x, y)].

To prove the correctness of Algorithm 2, we need the following easy lemma
from [10]:

Lemma 6. [10, Proposition 2] We can decompose the strips of any optimal solu-
tion in such a way that (1) each strip contains at most 3 single-super-markers and
(2) each strip containing 3 single-super-markers starts and ends with a single-
marker.

Let OPT be any optimal solution, and let us decompose the strips of OPT as in
the above lemma. We show by induction that the solution found by Algorithm 2
has the same size as OPT. Let x be the left-most single-marker in G1, then
exactly one of the following three cases is true:

1: x is deleted in OPT,
2.a: There exists a single-super-marker y such that 〈x, y〉 is part of a strip in

OPT,
2.b: There exists a super-marker z such that 〈z, x〉 is a strip in OPT.

Note that in case 2.b, z cannot be a single-marker since it is to the left of x
in G1. By our choice of x, case 2.a can be split into the following two subcases:

2.a.i: There exists a single-super-marker y such that 〈x, y〉 is a strip in OPT,
2.a.ii: There exists a single-super-marker y and a single-marker y′ such that

〈x, y, y′〉 is a strip in OPT.

Refer to Algorithm 2. In case 1, a solution is found in lines 9–12 of the function
recurse. In case 2, i.e. in the case where x is part of an optimal solution, if either
Lemma 2 or Lemma 3 can be applied, then again a solution is found. Otherwise,
we are in case 2.a or 2.b.

Suppose we are in case 2.a. If y ∈ Y0, then the function recurse 2a tests a
branch in which 〈x, y〉 becomes part of some strip. Otherwise, there exists some
y0 ∈ Y satisfying the conditions of Lemma 4. If there is no gap constraint, y is
replaced by y0, which does not change the size of the solution. If there is a gap
constraint, y is replaced by the unspecified marker u = [y0 | Y ], and we look
further in case 2.a.i or 2.a.ii.

In case 2.a.i, we can replace y by y0 since gap(x, y0) has no more markers than
gap(x, y). In case 2.a.ii, we can replace y by any y1 such that x ≺ y1 ≺ y′, since
gap(x, y)∪{y}∪ gap(y, y′) is the same set as gap(x, y1)∪{y1}∪ gap(y1, y′). This
is what happens in case 2.b of a subsequent recursive call in which y′ becomes
the left-most single-marker in G1.

Suppose we are in case 2.b. If z ∈ Z0, then the function recurse 2b tests a
branch in which 〈z, x〉 becomes a strip. Otherwise, Lemma 5 can be applied,
which leaves the size of the optimal solution unchanged. In line 9 of recurse 2b,
if s becomes the left-most single-marker in G1 in the next recursive call of recurse,
it cannot be at the end of a strip because x is already at the end of a strip.
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Algorithm 3. (d+ 1.5)-approximation for δ-gap-CMSR-d and CMSR-d
1: X ← { triples of markers (z, x, y) | z ≺ y and gap(z, y) = {x} }
2: Partition the markers into single-super-markers.
3: for all (z, x, y) ∈ X do
4: if x, y and z are not deleted and y or z is a single-marker then
5: Delete x.
6: Re-create all super-markers.
7: Delete all remaining single-markers.
8: Return the resulting genomic maps.

This completes the correctness proof. An anonymous reviewer of an earlier
version of this paper commented that perhaps some further properties of the
optimal solution, besides those already described in our lemmas, might be used
to improve the time complexity further. This may be true, but we believe that
such improvement would require significantly different ideas.

4 An Approximation Algorithm for CMSR-d and
δ-gap-CMSR-d

In this section, we present a (d+1.5)-approximation algorithm for the two min-
imization problems CMSR-d and δ-gap-CMSR-d. Recall that 2d-approximation
algorithms [2,8,1] were known for the two maximization problems MSR-d and
δ-gap-MSR-d.

Theorem 5. Algorithm 3 finds a (d + 1.5)-approximation for CMSR-d and δ-
gap-CMSR-d for any d ≥ 2 and δ ≥ 1.

Let k be the number of deleted markers in an optimal solution. Then the number
of single-markers in the input maps is at most (2d + 1)k because each single-
marker is either deleted or adjacent to a deleted marker. This immediately yields
a (2d+ 1)-approximation algorithm: simply delete all single-markers.

We refer to Figure 2 for a tight example for the (2d+ 1)-approximation algo-
rithm. Observe that after one single-marker is deleted, many other single-markers
may be merged into strips. Algorithm 3 first identifies (line 1) all triples of mark-
ers (z, x, y) such that z and y can be merged into a strip 〈z, y〉 after x is deleted,
then successively deletes (lines 2–6) “cost-efficient” single-markers x that can
reduce at least one other single-marker y or z, and finally removes (line 7) the
remaining single-markers.

Lemma 7. For each triple (z, x, y) in the set X in Algorithm 3, at least one of
the three markers x, y, z must be deleted in any feasible solution.

Proof. We prove the lemma by contradiction. Suppose that all three markers
x, y, z are selected in a solution. Assume wlog that the sequence 〈z, x, y〉 appears
in some map. Then x must be in the same strip as z or y. Assume wlog that
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G1 = zdyd · · · z3y3 z2y2 z1 x y1

G2 = z1y1 z2 x y2 z3y3 · · · zdyd

G3 = z1y1 z2y2 z3 x y3 · · · zdyd

· · · · · · · · · · · · · · · · · ·
Gd = z1y1 z2y2 z3y3 · · · zd x yd

Fig. 2. A tight example for the (2d+1)-approximation algorithm. The optimal solution
deletes one single-marker x instead of all 2d + 1 single-markers.

〈z, x〉 is part of some strip. Then z ≺ x. Recall that z ≺ y. Thus x and y are
both candidate successors of z. By Lemma 1a, we have y ∈ gap(z, x), thus y
must be deleted: a contradiction. ��
We next prove the approximation ratio of Algorithm 3. Let O be the set of
deleted markers in an optimal solution; |O| = k. For each marker x /∈ O, we
define two sets Γsucc(x) and Γpred(x) as follows. If x is followed by a marker y
in a strip of O, Γsucc(x) = gap(x, y); otherwise x is the last marker of its strip,
Γsucc(x) = ∅. If x is preceded by a marker z in a strip of O, Γpred(x) = gap(z, x);
otherwise x is the first marker of its strip, Γpred(x) = ∅. Then, for each marker
x /∈ O, define γ(x) = |Γsucc(x)| + |Γpred(x)|, and for each marker x ∈ O, define
γ(x) = 0.

Refer to Algorithm 3. Let D be the set of markers deleted in line 5, let S be
the set of single-markers that are merged into super-markers in line 6, and let
R be the set of markers deleted in line 7. Let R1 = {r ∈ R | γ(r) = 1} and
R2 = {r ∈ R | γ(r) ≥ 2}. Note that if x is a single-marker at the beginning of
the algorithm, then γ(x) = 0 if and only if x ∈ O. Thus we have a partition
R = (R ∩ O) ∪ R1 ∪ R2. Also note that each marker x ∈ O is counted by γ at
most twice in each map: at most once in some Γpred(y), and at most once in
some Γsucc(z). Thus we have the following inequality:∑

x single-marker

γ(x) ≤ 2dk. (1)

Each marker x ∈ D has a corresponding triple (z, x, y) ∈ X , where z or y is
a single-marker. After x is deleted in line 5, z and y are merged into the same
super-marker in line 6. Thus we have the following inequality:

|D| ≤ |S|. (2)

For each marker x ∈ D−O, let φ(x) be an arbitrary marker in the non-empty
set {z, x, y} ∩ O (see Lemma 7). Obviously φ(x) �= x, thus φ(x) ∈ O − D. We
show that at most two markers in D−O can have the same image by φ. Suppose
that φ(x1) = φ(x2) = φ for two different markers x1, x2 ∈ D − O, where x1 is
deleted before x2 in Algorithm 3. Then the marker φ is merged into a super-
marker after x1 is deleted, and again merged into a larger super-marker after
x2 is deleted. Since a marker has at most two neighbors in a super-marker, φ
is necessarily a single-marker before x1 is deleted, so it belongs to S, indeed



Tractability and Approximability of Maximal Strip Recovery 347

S ∩O. Moreover, after x2 is deleted and φ is merged into a larger super-marker,
φ cannot be adjacent to any other single-marker, say x3. Therefore

|D −O| ≤ |O −D| + |S ∩O|. (3)

Let u be a marker such that γ(u) = 1. Then u belongs to some strip in the
optimal solution, and it has a neighbor v = ψ(u) in the same strip such that
gap(u, v) contains only one marker, say x. Note that u, v /∈ O and x ∈ O. We
claim that if u is a single-marker at the beginning of the algorithm, then either
u ∈ D∪S or v ∈ D. This claim is clearly true if u or v is deleted by the algorithm
in line 5. Otherwise, with (v, x, u) ∈ X or (u, x, v) ∈ X , either x is not deleted
because u is merged into a super-marker, or x is deleted: in both cases u ∈ S.
This proves the claim. So for each u ∈ R1, we have v ∈ D, indeed v ∈ D − O.
Note that there can be at most two markers u1 and u2 with the same image v
by ψ: the two neighbors of v in some strip in the optimal solution. Thus we have
|R1| ≤ 2|D − O|. Moreover, if there are two markers u1 and u2 with the same
image v, then γ(v) ≥ 2. Therefore

|R1| ≤
∑

v∈D−O

γ(v). (4)

Combining inequalities (1), (2), (3), and (4), the calculation in the following
shows that the number of deleted markers, |D| + |R|, is at most (d + 1.5)k.
Thus Algorithm 3 indeed finds a (d+1.5)-approximation for δ-gap-CMSR-d and
CMSR-d.

2dk ≥
∑

x single-marker

γ(x) by (1)

=
∑

x∈D−O

γ(x) +
∑

x∈S−O

γ(x) +
∑

x∈R1

γ(x) +
∑

x∈R2

γ(x)

≥
∑

x∈D−O

γ(x) + |S −O| + |R1| + 2|R2|

≥ |S −O| + 2|R1| + 2|R2| by (4).

|D| + |R| = |D| + |R1| + |R2| + |R ∩O|
≤ |D| + dk − 1

2 |S −O| + |R ∩O|
= |D| + dk − 1

2 (|S| − |S ∩O|) + |R ∩O|
≤ |D| + dk − 1

2 |D| + 1
2 |S ∩O| + |R ∩O| by (2)

= 1
2 (|D| + |S ∩O|) + |R ∩O| + dk

= 1
2 (|D ∩O| + |D −O| + |S ∩O|) + |R ∩O| + dk

≤ 1
2 (|D ∩O| + (|O −D| + |S ∩O|) + |S ∩O|) + |R ∩O| + dk by (3)

= 1
2 |O| + (|S ∩O| + |R ∩O|) + dk

≤ 1
2k + k + dk

=
(
d+ 3

2

)
k.
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After our initial submission of this paper for publication, we learned from
an anonymous reviewer that Jiang et al. [5] have very recently designed a 3-
approximation algorithm for CMSR-2 based on a similar greedy approach. Their
algorithm does not work for the gap-constrained variant, although it seems that
the algorithm might be extended to a (d+ 1)-approximation for CMSR-d for all
d ≥ 2. Our solution gives uniform results on both variants.

G1 = zdyd · · · z3y3 z2y2 z1 vu y1

G2 = z1y1 z2 uv y2 z3y3 · · · zdyd

G3 = z1y1 z2y2 z3 uv y3 · · · zdyd

· · · · · · · · · · · · · · · · · ·
Gd = z1y1 z2y2 z3y3 · · · zd uv yd

G1 = zdyd · · · z3y3 z2y2 z1−v−u y1

G2 = z1y1 z2 uv y2 z3y3 · · · zdyd

G3 = z1y1 z2y2 z3 uv y3 · · · zdyd

· · · · · · · · · · · · · · · · · ·
Gd = z1y1 z2y2 z3y3 · · · zd uv yd

Fig. 3. Upper: an almost-tight example for the (d+1.5)-approximation algorithm show-
ing that its approximation ratio cannot be better than d+1; the optimal solution deletes
the two single-markers u and v instead of all 2d + 2 single-markers. Lower: an example
showing that no algorithm deleting only single-markers can achieve an approximation
ratio better than d; the optimal solution deletes one super-marker 〈u, v〉 instead of 2d
single-markers zi and yi, 1 ≤ i ≤ d.

We refer to Figure 3 for two examples: the first example gives a lower bound
of d+ 1 on the approximation ratio of Algorithm 3; the second example gives a
lower bound of d on the approximation ratio of any algorithm for δ-gap-CMSR-d
and CMSR-d that deletes only single-markers. Note that both our Algorithm 3
and the algorithm in [5] delete only single-markers.

Compared to the approximation upper bound of 2d [2,1,8] for the two max-
imization problems MSR-d and δ-gap-MSR-d, which almost matches (at least
asymptotically) the current best lower bound of Ω(d/ log d) [8], our upper bound
of d+1.5 for the two minimization problems CMSR-d and δ-gap-CMSR-d is still
far away from the constant lower bound in [8]. It is an intriguing question whether
CMSR-d and δ-gap-CMSR-d admit approximation algorithms with constant ra-
tios independent of d.
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Abstract. The notion of the cover is a generalization of a period of a
string, and there are linear time algorithms for finding the shortest cover.
The seed is a more complicated generalization of periodicity, it is a cover
of a superstring of a given string, and the shortest seed problem is of
much higher algorithmic difficulty. The problem is not well understood,
no linear time algorithm is known. In the paper we give linear time al-
gorithms for some of its versions — computing shortest left-seed array,
longest left-seed array and checking for seeds of a given length. The algo-
rithm for the last problem is used to compute the seed array of a string
(i.e., the shortest seeds for all the prefixes of the string) in O(n2) time.
We describe also a simpler alternative algorithm computing efficiently
the shortest seeds. As a by-product we obtain an O(n log (n/m)) time
algorithm checking if the shortest seed has length at least m and finding
the corresponding seed. We also correct some important details missing
in the previously known shortest-seed algorithm (Iliopoulos et al., 1996).

1 Introduction

The notion of periodicity in strings is widely used in many fields, such as com-
binatorics on words, pattern matching, data compression and automata theory
(see [13,14]). It is of paramount importance in several applications, not to talk
about its theoretical aspects. The concept of quasiperiodicity is a generaliza-
tion of the notion of periodicity, and was defined by Apostolico and Ehrenfeucht
in [2]. In a periodic repetition the occurrences of the period do not overlap. In
contrast, the quasiperiods of a quasiperiodic string may overlap.
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We consider words (strings) over a finite alphabet Σ, u ∈ Σ∗; the empty
word is denoted by ε; the positions in u are numbered from 1 to |u|. By Σn we
denote the set of words of length n. By uR we denote the reverse of the string
u. For u = u1u2 . . . un, let us denote by u[i . . j] a factor of u equal to ui . . . uj

(in particular u[i] = u[i . . i]). Words u[1 . . i] are called prefixes of u, and words
u[i . . n] are called suffixes of u. Words that are both prefixes and suffixes of u
are called borders of u. By border(u) we denote the length of the longest border
of u that is shorter than u. We say that a positive integer p is the (shortest)
period of a word u = u1 . . . un (notation: p = per(u)) if p is the smallest positive
number, such that ui = ui+p, for i = 1, . . . , n − p. It is a known fact [6,8] that,
for any string u, per(u) + border(u) = |u|.

We say that a string s covers the string u if every letter of u is contained in
some occurrence of s as a factor of u. Then s is called a cover of u. We say that
a string s is: a seed of u if s is a factor of u and u is a factor of some string w
covered by s; a left seed of u if s is both a prefix and a seed of u; a right seed of
u if s is both a suffix and a seed of u (equivalently, sR is a left seed of uR). Seeds
were first defined and studied by Iliopoulos, Moore and Park [11], who gave an
O(n log n) time algorithm computing all the seeds of a given string u ∈ Σn, in
particular, the shortest seed of u.

By cover(u), seed(u), lseed(u) and rseed(u) we denote the length of the short-
est: cover, seed, left seed and right seed of u, respectively. By covermax(u) and
lseedmax(u) we denote the length of the longest cover and the longest left seed
of u that is shorter than u, or 0 if none.

For a string u ∈ Σn, we define its: period array P[1 . . n], border array B[1 . . n],
suffix period array P′[1 . . n], cover array C[1 . . n], longest cover array CM [1 . . n],
seed array Seed[1 . . n], left-seed array LSeed[1 . . n], and longest left-seed array
LSeedM [1 . . n] as follows:

P[i] = per(u[1 . . i]), B[i] = border(u[1 . . i]),
P′[i] = per(u[i . . n]), C[i] = cover(u[1 . . i]),

CM [i] = covermax(u[1 . . i]), Seed[i] = seed(u[1 . . i]),
LSeed[i] = lseed(u[1 . . i]), LSeedM [i] = lseedmax(u[1 . . i]).

Table 1. An example string together with its periodic and quasiperiodic arrays. Note
that the left-seed array and the seed array are non-decreasing.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

u[i] a b a a b a a a b b a a b a a b

P[i] 1 2 2 3 3 3 3 7 7 10 10 11 11 11 11 11
B[i] 0 0 1 1 2 3 4 1 2 0 1 1 2 3 4 5
C[i] 1 2 3 4 5 3 4 8 9 10 11 12 13 14 15 16

CM [i] 0 0 0 0 0 3 4 0 0 0 0 0 0 0 0 0
LSeed[i] 1 2 2 3 3 3 3 4 4 10 10 11 11 11 11 11

LSeedM [i] 0 0 2 3 4 5 6 7 8 0 10 11 12 13 14 15
Seed[i] 1 2 2 3 3 3 3 4 4 8 8 8 8 8 8 11
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The border array, suffix border array and period array can be computed in O(n)
time [6,8]. Apostolico and Breslauer [1,4] gave an on-line O(n) time algorithm
computing the cover array C[1 . . n] of a string. Li and Smyth [12] provided an
algorithm, having the same characteristics, for computing the longest cover ar-
ray CM [1 . . n] of a given string. Note that the array CM enables computing all
covers of all prefixes of the string, same property holds for the border array B.
Unfortunately, the LSeedM array does not share this property.

Table 1 shows the above defined arrays for u = abaabaaabbaabaab. For
example, for the prefix u[1 . . 13] the period equals 11, the border is ab, the
cover is abaabaaabbaab, the left seed is abaabaaabba, the longest left seed is
abaabaaabbaa, and the seed is baabaaab.

We list here several useful (though obvious) properties of covers and seeds.

Observation 1

(a) A cover of a cover of u is also a cover of u.
(b) A cover of a left (right) seed of u is also a left (right) seed of u.
(c) A cover of a seed of u is also a seed of u.
(d) If u is a factor of v then seed(u) ≤ seed(v).
(e) If u is a prefix of v then lseed(u) ≤ lseed(v).
(f) If s and s′ are two covers of a string u, |s′| < |s|, then s′ is a cover of s.
(g) If s is the shortest cover or the shortest left seed or the shortest seed of a
string u then per(s) > |s|/2.
For a set X of positive integers, let us define the maxgap of X as:

maxgap(X) = max{b− a : a, b are consecutive numbers in X} or 0 if |X | ≤ 1.

For example maxgap({1, 3, 8, 13, 17}) = 5.
For a factor v of u, let us define Occ(v, u) as the set of starting positions of

all occurrences of v in u. By first(v) and last(v) we denote min Occ(v, u) and
maxOcc(v, u) respectively. For the sake of simplicity, we will abuse the notation,
and denote maxgap(v) = maxgap(Occ(v, u)).

� � � � � � � � � � � � � � �

� � � � � � � �

w1 w2 w3

Fig. 1. The word s = abaa is a border seed of u = aabaababaabaaba

Assume s is a factor of u. Let us decompose the word u into w1w2w3, where w2

is the longest factor of u for which s is a border, i.e., w2 = u[first(s) . . (last(s)+
|s| − 1)]. Then we say that s is a border seed of u if s is a seed of w1 · s ·w3, see
Fig. 1. The following fact is a corollary of Lemma 4, proved in Section 2.
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Fact 2. Let s be a factor of u ∈ Σ∗. The word s is a border seed of u if and
only if |s| ≥ max(P [first(s) + |s| − 1], P′[last(s)]).

Notions of maxgaps and border seeds provide a useful characterization of seeds.

Observation 3. Let s be a factor of u ∈ Σ∗. The word s is a seed of u if and
only if |s| ≥ maxgap(s) and s is a border seed of u.

Several new and efficient algorithms related to seeds in strings are presented in
this paper. Linear time algorithms computing left-seed array and longest left-seed
array are given in Section 2. In Section 3 we show a linear time algorithm finding
seed-of-a-given-length and apply it to computing the seed array of a string in
O(n2) time. Finally, in Section 4 we describe an alternative simple O(n log n)
time computation of the shortest seed, from which we obtain an O(n log (n/m))
time algorithm checking if the shortest seed has length at least m (described in
Section 5).

2 Computing Left-Seed Arrays

In this section we show two O(n) time algorithms for computing the left-seed
array and an O(n) time algorithm for computing the longest left-seed array of a
given string u ∈ Σn. We start by a simple characterization of the length of the
shortest left seed of the whole string u — see Lemma 5. In its proof we utilize the
following auxiliary lemma which shows a correspondence between the shortest
left seed of u and shortest covers of all prefixes of u.

Lemma 4. Let s be a prefix of u, and let j be the length of the longest prefix of
u covered by s. Then s is a left seed of u if and only if j ≥ per(u).

In particular, the shortest left seed s of u is the shortest cover of the corre-
sponding prefix u[1 . . j].

Proof. (⇒) If s is a left seed of u then there exists a prefix p of s of length at
least n− j which is a suffix of u (see Fig. 2). We use here the fact, that u[1 . . j] is
the longest prefix of u covered by s. Hence, p is a border of u, and consequently
border(u) ≥ |p| ≥ n− j. Thus we obtain the desired inequality j ≥ per(u).

u

s s s p

1 j n

Fig. 2. Illustration of part (⇒) of Lemma 4

(⇐) The inequality j ≥ per(u) implies that v = u[1 . . j] is a left seed of u (see
Fig. 3). Hence, by Observation 1b, the word s, which is a cover of v, is also a
left seed of u.
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v v v

s

���(u)

1 j n

Fig. 3. Illustration of part (⇐) of Lemma 4

Finally, the “in particular” part is a consequence of Observation 1, parts b
and f. ��

Lemma 5. Let u ∈ Σn and let C[1 . . n] be its cover array. Then:

lseed(u) = min{C[j] : j ≥ per(u)}. (1)

Proof. By Lemma 4, the length of the shortest left seed of u can be found
among the values C[per(u)], . . . ,C[n]. And conversely, for each of the values C[j]
for per(u) ≤ j ≤ n, there exists a left seed of u of length C[j]. Thus lseed(u)
equals the minimum of these values, which yields the formula (1). ��
Clearly, the formula (1) provides an O(n) time algorithm for computing the
shortest left seed of the whole string u. We show that, employing some algorith-
mic techniques, one can use this formula to compute shortest left seeds for all
prefixes of u, i.e., computing the left-seed array of u, also in O(n) time.

Theorem 1. For u ∈ Σn, its left-seed array can be computed in O(n) time.

Proof. Applying (1) to all prefixes of u, we obtain:

LSeed[i] = min{C[j] : P[i] ≤ j ≤ i}. (2)

Recall that both the period array P[1 . . n] and the cover array C[1 . . n] of u can
be computed in O(n) time [1,4,6,8].

The minimum in the formula (2) could be computed by data structures for
Range-Minimum-Queries [9,15], however in this particular case we can apply a
much simpler algorithm. Note that P[i− 1] ≤ P[i], therefore the intervals of the
form [P[i], i] behave like a sliding window, i.e., both their endpoints are non-
decreasing. We use a bidirectional queue Q which stores left-minimal elements
in the current interval [P[i], i] (w.r.t. the value C[j]). In other words, elements
of Q are increasing and if Q during the step i contains an element j then j ∈
[P[i], i] and C[j] < C[j′] for all j < j′ ≤ i. We obtain an O(n) time algorithm
ComputeLeftSeedArray. ��
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ALGORITHM ComputeLeftSeedArray(u)

1: P[1 . . n] := period array of u; C[1 . . n] := cover array of u;
2: Q := emptyBidirectionalQueue ;
3: for i := 1 to n do
4: while (not empty(Q)) and (front(Q) < P[i]) do popFront(Q);
5: while (not empty(Q)) and (C[back(Q)] ≥ C[i]) do popBack(Q);
6: pushBack (Q, i);
7: LSeed[i] := C[front(Q)];
8: { Q stores left-minimal elements of the interval [P[i], i] }
9: return LSeed[1 . . n];

Now we proceed to an alternative algorithm computing the left-seed array, which
also utilizes the criterion from Lemma 4. We start with an auxiliary algorithm
ComputeR-Array. It computes an array R[1 . . n] which stores, as R[i], the length
of the longest prefix of u for which u[1 . . i] is the shortest cover, 0 if none.

ALGORITHM ComputeR-Array(u)

1: C[1 . . n] := cover array of u;
2: for i := 1 to n do R[i] := 0;
3: for i := 1 to n do R[C[i]] := i;
4: return R[1 . . n];

The algorithm Alternative-ComputeLeftSeedArray computes the array LSeed
from left to right. The current value of LSeed[i] is stored in the variable ls , note
that this value never decreases (by Observation 1e). Equivalently, for each i we
have LSeed[i− 1] ≤ LSeed[i] ≤ i.

The particular value of LSeed[i] is obtained using the necessary and sufficient
condition from Lemma 4: LSeed[i] = ls if ls is the smallest number such that
|w| ≥ per(u[1 . . i]) = P[i], where w is the longest prefix of u[1 . . i] that is covered
by u[1 . . ls ]. We slightly modify this condition, substituting w with the longest
prefix w′ of the very word u that is covered by u[1 . . ls]. Thus we obtain the
condition R[ls ] ≥ P[i] utilized in the pseudocode below.

ALGORITHM Alternative-ComputeLeftSeedArray(u)

1: P[1 . . n] := period array of u; R[1 . . n] := ComputeR-Array(u);
2: LSeed[0] := 0; ls := 0;
3: for i := 1 to n do
4: { An invariant of the loop: ls = LSeed[i− 1]. }
5: while R[ls ] < P[i] do ls := ls + 1;
6: LSeed[i] := ls;
7: return LSeed[1 . . n];

Theorem 2. Algorithm Alternative-ComputeLeftSeedArray runs in linear time.
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Proof. Recall that the arrays P[1 . . n] and C[1 . . n] can be computed in linear
time [1,4,6,8]. The array R[1 . . n] is obviously also computed in linear time.

It suffices to prove that the total number of steps of the while-loop in the
algorithm Alternative-ComputeLeftSeedArray is linear in terms of n. In each
step of the loop, the value of ls increases by one; this variable never decreases
and it cannot exceed n. Hence, the while-loop performs at most n steps and the
whole algorithm runs in O(n) time. ��

Concluding this section, we describe a linear-time algorithm computing the
longest left-seed array, LSeedM [1 . . n], of the string u ∈ Σn. The following lemma
gives a simple characterization of the length of the longest left seed of the whole
string u.

Lemma 6. Let u ∈ Σn. If per(u) < n then lseedmax(u) = n − 1, otherwise
lseedmax(u) = 0.

Proof. First consider the case per(u) = n. We show that lseed(u) = n, conse-
quently lseedmax(u) equals 0. Assume to the contrary that lseed(u) < n. Then,
a non-empty prefix of the minimal left seed of u, say w, is a suffix of u (consider
the occurrence of the left seed that covers u[n]). Hence, n− |w| is a period of u,
a contradiction.

Assume now that per(u) < n. Then u is a prefix of the word u[1 . . per(u)] ·
u[1 . . n− 1] which is covered by u[1 . . n− 1]. Therefore u[1 . . n− 1] is a left seed
of u, lseedmax(u) ≥ n− 1, consequently lseedmax(u) = n− 1. ��
Using Lemma 6 we obtain LSeedM [i] = i − 1 or LSeedM [i] = 0 for every i,
depending on whether P[i] < i or not. We obtain the following result.

Theorem 3. Longest left-seed array of u ∈ Σn can be computed in O(n) time.

3 Computing Seeds of Given Length and Seed Array

In this section we show an O(n2) time algorithm computing the seed array
Seed[1 . . n] of a given string u ∈ Σn, note that a trivial approach — computing
the shortest seed for every prefix of u — yields O(n2 logn) time complexity. In
our solution we utilize a subroutine: testing whether u has a seed of a given
length k. The following theorem shows that this test can be performed in O(n)
time.

Theorem 4. It can be checked whether a given string u ∈ Σn has a seed of a
given length k in O(n) time.

Proof. Assume we have already computed in O(n) time the suffix array SUF and
the LCP array of longest common prefixes, see [6]. In the algorithm we start by
dividing all factors of u of length k into groups corresponding to equal words.
Every such group can be described as a maximal interval [i . . j] in the suffix
array SUF, such that each of the values LCP[i + 1], LCP[i + 2], . . . , LCP[j] is at
least k. The collection of such intervals can be constructed in O(n) time by a
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single traversal of the LCP and SUF arrays (lines 1–9 of Algorithm SeedsOfA-
GivenLength). Moreover, using Bucket Sort, we can transform this representa-
tion into a collection of lists, each of which describes the set Occ(v, u) for some
factor v of u, v ∈ Σk (lines 10–11 of the algorithm). This can be done in linear
time, provided that we use the same set of buckets in each sorting and initialize
them just once.

Now we process each of the lists separately, checking the conditions from
Observation 3: in lines 14–18 of the algorithm we check the “maxgap” condition,
and in line 19 the “border seed” condition, employing Fact 2.

Thus, having computed the arrays SUF and LCP, and the period arrays
P[1 . . n] and P′[1 . . n] of u, we can find all seeds of u of length k in O(n) total
time. ��

ALGORITHM SeedsOfAGivenLength(u, k)

1: P[1 . . n] := period array of u; P′[1 . . n] := suffix period array of u;
2: SUF[1 . . n] := suffix array of u; LCP[1 . . n] := lcp array of u;
3: Lists := emptyList ;
4: j := 1;
5: while j ≤ n do
6: List := {SUF[j]};
7: while j < n and LCP[j + 1] ≥ k do
8: j := j + 1; List := append(List , SUF[j]);
9: j := j + 1; Lists := append(Lists, List);

10: for all List in Lists do
11: BucketSort(List); { using the same set of buckets }
12: for all List in Lists do
13: first := prev := n; last := 1; covers := true;
14: for all i in List do
15: first := min(first , i); last := max(last , i);
16: if i > prev + k then
17: covers := false;
18: prev := i;
19: if covers and (k ≥ max(P[first + k − 1], P′[last ])) then
20: print “u[first . . (first + k − 1)] is a seed of u”;

We compute the elements of the seed array Seed[1 . . n] from left to right, i.e., in
the order of increasing lengths of prefixes of u. Note that Seed[i + 1] ≥ Seed[i]
for any 1 ≤ i ≤ n − 1, this is due to Observation 1d. If Seed[i + 1] > Seed[i]
then we increase the current length of the seed by one letter at a time, in total
at most n− 1 such operations are performed. Each time we query for existence
of a seed of a given length using the algorithm from Theorem 4. Thus we obtain
O(n2) time complexity.

Theorem 5. The seed array of a string u ∈ Σn can be computed in O(n2) time.
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4 Alternative Algorithm for Shortest Seeds

In this section we present a new approach to shortest seeds computation based
on very simple independent processing of disjoint chains in the suffix tree. It
simplifies the computation of shortest seeds considerably.

Our algorithm is also based on a slightly modified version of Observation 3,
formulated below as Lemma 7, which allows to relax the definition of maxgaps.
We discuss an algorithmically easier version of maxgaps, called prefix maxgaps,
and show that it can substitute maxgap values when looking for the shortest
seed.

We start by analyzing the “border seed” condition. We introduce somewhat
more abstract representation of sets of factors of u, called prefix families, and
show how to find in them the shortest border seeds of u. Afterwards the key
algorithm for computing prefix maxgaps is presented. Finally, both techniques
are utilized to compute the shortest seed.

Let us fix the input string u ∈ Σn. For v ∈ Σ∗, by PREF (v) we denote the
set of all prefixes of v and by PREF (v, k) we denote PREF (v) ∩ΣkΣ∗ (limited
prefix subset).

Let F be a family of limited prefix subsets of some factors of u, we call F
a prefix family. Every element PREF (v, k) ∈ F can be represented in a canon-
ical form, by a tuple of integers: (first(v), last(v), k, |v|). Such a representation
requires only constant space per element. By bseed(u,F) we denote the shortest
border seed of u contained in some element of F .

Example 1. Let u = aabaababaabaaba be the example word from Fig. 1. Let:

F = {PREF (abaab, 4), PREF (babaa, 4)} = {(2, 10, 4, 5), (6, 6, 4, 5)}.
Note that

⋃F = {abaa, abaab, baba, babaa}. Then bseed(u,F) = abaa.

The proof of the following fact is present implicitly in [11] (type-A and type-B
seeds).

Theorem 6. Let u ∈ Σn and let F be a prefix family given in a canonical form.
Then bseed(u,F) can be computed in linear time.

Alternative proof of Theorem 6. There is an alternative algorithm for
computing bseed(u,F), based on a special version of Find-Union data structure.
Recall that B[1 . . n] is the border-array of u. Denote by FirstGE(I, c) (first-
greater-equal) a query:

FirstGE(I, c) = min{i : i ∈ I, B[i] ≥ c},
where I is a subinterval of [1 . . n]. We assume that min ∅ = +∞. A sequence of
linear number of such queries, sorted according to non-decreasing values of c, can
be easily answered in linear time, using an interval version of Find-Union data
structure, see [7,10]. The following algorithm applies the condition for border
seed from Fact 2 to every element of F , with P[first(s) + |s| − 1] substituted by
first(s) + |s| − 1 − B[first(s) + |s| − 1]. We omit the details. ��
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ALGORITHM ComputeBorderSeed(u, F)

1: bseed := +∞;
2: for all (first(v), last(v), k, |v|) in F , in non-decreasing order of first(v) do
3: k := max(P′[last(v)], k);
4: I := [first(v) + k − 1, first(v) + |v| − 1];
5: pos := FirstGE(I, first(v)− 1);
6: bseed := min(bseed , pos − first(v) + 1);
7: return bseed ;

Computation of the shortest seeds via prefix maxgaps. Let T (u) be
the suffix tree of u, recall that it can be constructed in O(n) time [6,8]. By
Nodes(u) we denote the set of factors of u corresponding to explicit nodes of
T (u), for simplicity we identify the nodes with the strings they represent. For
v ∈ Nodes(u), the set Occ(v, u) corresponds to leaf list of the node v (i.e., the
set of values of leaves in the subtree rooted at v), denoted as LL(v). Note that
first(v) = min LL(v) and last(v) = maxLL(v), and such values can be computed
for all v ∈ Nodes(u) in O(n) time. For v ∈ Nodes(u), we define the prefix maxgap
of v as:

Δ(v) = max{maxgap(w) : w ∈ PREF (v)}.
Equivalently, Δ(v) is the maximum of maxgap values on the path from v to the
root of T (u). We introduce an auxiliary problem:

Prefix Maxgap Problem:
given a word u ∈ Σn, compute Δ(v) for all v ∈ Nodes(u).

The following lemma (an alternative formulation of Observation 3) shows that
prefix maxgaps can be used instead of maxgaps in searching for seeds. This is
important since computation of prefix maxgaps Δ(v) is simple, in comparison
with maxgap(v) — this is due to the fact that the Δ(v) values on each path
down the suffix tree T (u) are non-decreasing. Efficient computation of maxgap(v)
requires using augmented height-balanced trees [5] or other rather sophisticated
techniques [3]. The shortest-seed algorithm in [11] also computes prefix maxgaps
instead of maxgaps, however this observation is missing in [11].

Lemma 7. Let s be a factor of u ∈ Σ∗ and let w be the shortest element of
Nodes(u) such that s ∈ PREF(w). The word s is a seed of u if and only if
|s| ≥ Δ(w) and s is a border seed of u.

Proof. If s corresponds to an element of Nodes(u), then s = w. Otherwise,
s corresponds to an implicit node in an edge in the suffix tree, and w is the
lower end of the edge. Note that in both cases we have Δ(w) ≥ maxgap(w) =
maxgap(s). By Observation 3, this implies part (⇐) of the conclusion. As for the
part (⇒), it suffices to show that |s| ≥ Δ(w).
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Assume, to the contrary, that |s| < Δ(w). Let v ∈ PREF (w) ∩ Nodes(u) be
the word for which maxgap(v) = Δ(w), and let a, b be consecutive elements of
the set Occ(v, u) for which a+ maxgap(v) = b.

Let us note that no occurrence of s starts at any of the positions a+1, . . . , b−1.
Moreover, none of the suffixes of the form u[i . . n], for a + 1 ≤ i ≤ b − 1, is a
prefix of s. Indeed, v is a prefix of s of length at most n − b + 1, and such an
occurrence of s (or its prefix) would imply an extra occurrence of v. Note that
at most |s| ≤ b − a− 1 first positions in the interval [a, b] can be covered by an
occurrence of s in u (at position a or earlier) or by a suffix of s which is a prefix
of u. Hence, position b− 1 is not covered by s at all, a contradiction. ��
By Lemma 7, to complete the shortest seed algorithm it suffices to solve the
Prefix Maxgap Problem (this is further clarified in the ComputeShortestSeed
algorithm below). For this, we consider the following problem. By SORT(X) we
denote the sorted sequence of elements of X ⊆ {1, 2, . . . , n}.

Chain Prefix Maxgap Problem
Input: a family of disjoint sets X1, X2, . . . , Xk ⊆ {1, 2, . . . , n}

together with SORT(X1 ∪X2 ∪ . . . ∪Xk).
The size of the input is m =

∑ |Xi|.
Output: the numbers Δi = maxj≤i maxgap(Xj ∪Xj+1 ∪ . . . ∪Xk).

Theorem 7. The Chain Prefix Maxgap Problem can be solved in O(m) time
using an auxiliary array of size n.

Proof. Initially we have the list L = SORT(X1 ∪X2 ∪ . . . ∪Xk). Let pred and
suc denote the predecessor and successor of an element of L. The elements of
L store a Boolean flag marked , initially set to false. In the algorithm we use an
auxiliary array pos [1 . . n] such that pos [i] is a pointer to the element of value i in
L, if there is no such element then the value of pos [i] can be arbitrary. Obviously
the algorithm takes O(m) time. ��

ALGORITHM ChainPrefixMaxgap(L)

1: Δ1 := maxgap(L); { naive computation }
2: for j := 2 to k do
3: Δj := Δj−1;
4: for all i in Xj−1 do marked(pos [i]) := true;
5: for all i in Xj−1 do
6: p := pred(pos[i]); q := suc(pos [i]);
7: if (p �= nil) and (q �= nil) and (not marked(p))

and (not marked(q)) then
8: Δj := max(Δj , value(q)− value(p));
9: delete(L, pos[i]);

Theorem 8. The Prefix Maxgap Problem can be reduced to a collection of Chain
Prefix Maxgap Problems of total size O(n logn).
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Proof. We solve a more abstract version of the Prefix Maxgap Problem. We are
given an arbitrary tree T with n leaves annotated with distinct integers from
the interval [1, n], and we need to compute the values Δ(v) for all v ∈ Nodes(T ),
defined as follows: maxgap(v) = maxgap(LL(v)), where LL(v) is the leaf list of
v, and Δ(v) is the maximum of the values maxgap on the path from v to the
root of T . We start by sorting LL(root(T )), which can be done in O(n) time.
Throughout the algorithm we store a global auxiliary array pos [1 . . n], required
in the ChainPrefixMaxgap algorithm.

Let us find a heaviest path P in T , i.e., a path from the root down to a leaf,
such that all hanging subtrees are of size at most |T |/2 each. The values of Δ(v)
for v ∈ P can all be computed in O(n) time, using a reduction to the Chain
Prefix Maxgap Problem (see Fig. 4).

X1

X2

X3

X4

Fig. 4. A tree with an example heaviest path P (in bold). The values Δ(v) for v ∈ P
can be computed using a reduction to the Chain Prefix Maxgap Problem with the sets
X1 through X4.

Then we perform the computation recursively for the hanging subtrees, pre-
viously sorting LL(T ′) for each hanging subtree T ′. Such sorting operations can
be performed in O(n) total time for all hanging subtrees.

At each level of recursion we need a linear amount of time, and the depth of
recursion is logarithmic. Hence, the total size of invoked Chain Prefix Maxgap
Problems is O(n logn). ��
Now we proceed to the shortest seed computation. In the algorithm we consider
all factors of u, dividing them into groups corresponding to elements of Nodes(u).
Let w ∈ Nodes(u) and let v be its parent. Let s ∈ PREF (w) be a word containing
v as a proper prefix, i.e., s ∈ PREF (w, |v| + 1). By Lemma 7, the word s is a
seed of u if and only if |s| ≥ Δ(w) and s is a border seed of u.
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Using the previously described reductions (Theorems 6–8), we obtain the fol-
lowing algorithm:

ALGORITHM ComputeShortestSeed(u)

1: Construct the suffix tree T (u) for the input string u;
2: Solve the Prefix Maxgap Problem for T (u) using the ChainPrefixMaxgap
3: algorithm — in O(n log n) total time (Theorems 7 and 8);
4: F := { PREF (w, max(|v|+ 1, Δ(w))) : (v, w) is an edge in T (u) };
5: return bseed(u,F); { Theorem 6 }

Observe that the workhorse of the algorithm is the chain version of the Pre-
fix Maxgap Problem, which has a fairly simple linear time solution. The main
problem is of a structural nature, we have a collection of very simple problems
each computable in linear time but the total size is not linear. This identifies the
bottleneck of the algorithm from the complexity point of view.

5 Long Seeds

Note that the most time-expensive part of the ComputeShortestSeed algorithm is
the computation of prefix maxgaps, all the remaining operations are performed
in O(n) time. Using this observation we can show a more efficient algorithm
computing the shortest seed provided that its length m is sufficiently large. For
example if m = Θ(n) then we obtain an O(n) time algorithm for the shortest
seed.

Theorem 9. One can check if the shortest seed of a given string u has length at
least m in O(n log (n/m)) time, where n = |u|. If so, a corresponding seed can
be reported within the same time complexity.

Proof. We show how to modify the ComputeShortestSeed algorithm. Denote by
s the shortest seed of u, |s| = m.

By Observation 1g, the longest overlap between consecutive occurrences of s
in u is at most m

2 , therefore the number of occurrences of s in u is at most 2n
m .

Hence, searching for the shortest seed of length at least m, it suffices to consider
nodes v of the suffix tree T (u) for which: |v| ≥ m and |LL(v)| ≤ 2n

m .
Thus, we are only interested in prefix maxgaps for nodes in several subtrees

of T (u), each of which contains O(n/m) nodes. Thanks to the small size of each
subtree, the algorithm ComputeShortestSeed finds all such prefix maxgaps in
O(n log (n/m)) time. Please note that using this algorithm for each node we
obtain a prefix maxgap only in its subtree (not necessarily in the whole tree),
however Lemma 7 can be simply adjusted to such a modified definition of prefix
maxgaps. ��
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Abstract. Inversions are a class of chromosomal mutations, widely re-
garded as one of the major mechanisms for reorganizing the genome.

In this paper we present a new algorithm for the approximate string
matching problem allowing for non-overlapping inversions which runs in
O(nm) worst-case time and O(m2)-space, for a character sequence of size
n and pattern of size m. This improves upon a previous O(nm2)-time
algorithm.

1 Introduction

Retrieving information and teasing out the meaning of biological sequences are
central problems in modern biology. Generally, basic biological information is
stored in strings of nucleic acids (DNA, RNA) or amino acids (proteins). Align-
ing sequences helps in revealing their shared characteristics, while matching se-
quences can infer useful information from them. With the availability of large
amounts of DNA data, matching of nucleotide sequences has become an impor-
tant application and there is an increasing demand for fast computer methods
for data analysis and retrieval.

Approximate string matching is a fundamental problem in text processing. It
consists in finding approximate matches of a pattern in a text. The precision
of a match is measured in terms of the sum of the costs of the edit operations
necessary to convert the string into an exact match.

Most classical models, as for instance the Levenshtein or Damerau edit dis-
tance, assume that changes between strings occur only locally (for an in-depth
survey on approximate string matching, see [7]). However, evidence shows that
large scale changes, like duplications, translocations, and inversions, are com-
mon events in genetic evolution [4]. For instance, chromosomal inversions are
rearrangements in which a segment of a chromosome is reversed end to end.
Notice that inversions do not involve any loss of genetic information, but simply
rearrange the linear gene sequence.

In this paper we are interested in the approximate string matching problem
allowing for non-overlapping inversions. Much work has been made for the closely
� This work has been partly supported by G.N.C.S., Istituto Nazionale di Alta Matem-

atica “Francesco Severi”.

R. Giancarlo and G. Manzini (Eds.): CPM 2011, LNCS 6661, pp. 364–375, 2011.
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related sequence alignment problem with inversions. Although the latter problem
does not have a known polynomial algorithm in its full generality, when restricted
to non-overlapping inversions it admits polynomial solutions. A first solution was
proposed by Schöniger and Waterman [8]. Their algorithm, based on dynamic
programming, runs in O(n2m2)-time and O(n2m2)-space on input sequences of
length n and m. Later, Gao et al. [2] developed a space-efficient variant which
requires only O(nm)-space (and still O(n2m2)-time). More recently, Vellozo et
al. [9] proposed a O(nm2)-time and O(nm)-space algorithm, within the more
general framework of an edit graph.

Although proposed for the sequence alignment problem, the algorithm by Vel-
lozo et al. could also be adapted to the approximate string matching problem
with non-overlapping inversions, yielding a O(nm3)-time and O(m2)-space solu-
tion to the latter problem. A more efficient solution, which runs in O(nm2)-time
and O(m2)-space, was presented by Cantone et al. [1]. They actually addressed
a slightly more general problem, allowing also for translocations of equal length
adjacent factors besides non-overlapping inversions. A very recent algorithm by
Grabowski et al. [5] solves the same matching problem, i.e., when translocations
and non-overlapping inversions are allowed, in O(nm2)-time and O(m)-space,
obtaining better performances in practical cases.

In this paper we present an algorithm for the approximate string matching
problem with non-overlapping inversions which runs in O(nm) worst-case time
and O(m2)-space.

The paper is organized as follows. In Section 2 we provide the basic termi-
nology and definitions. Next, in Section 3 we present a general O(nm2)-time
and O(m2)-space algorithm for the approximate matching problem with non-
overlapping inversions, based on the dynamic programming approach. Such algo-
rithm will then be refined in Section 4, yielding a O(nm)-time and O(m2)-space
algorithm which constitutes the main result of the paper. Finally we draw our
conclusions in Section 5.

2 Basic Notions and Properties

A string p of length m ≥ 0 is represented as a finite array p[0 ..m− 1]. In such a
case we also write |p| = m. In particular, for m = 0 we obtain the empty string,
denoted by ε. The concatenation of strings p and q is denoted as p.q or, more
simply, as pq. We denote with pR the reversal of p, i.e., string p written in reverse
order. Notice that |p| = |pR| and (pR)R = p. Moreover, for any two strings p and
q, we have that (p.q)R = (qR.pR).

Given a nonempty string p and an integer i, we denote by p[i] the (i + 1)st
symbol of p from left to right, if 0 ≤ i < |p|, otherwise we consider p[i] as
undefined.1 Likewise, we denote with p[i .. j] the substring of p contained between
the (i+ 1)st and the (j + 1)st symbol of p (both inclusive), for 0 ≤ i ≤ j < |p|.
Moreover, we put pj = p[0 .. j], for 0 ≤ j < |p|.
1 When p[i] is undefined, the condition p[i] = c, for any character symbol c, will be

regarded as false, whereas the condition p[i] �= c will be regarded as true.
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We say that p is a prefix (resp., suffix ) of q, and write p ' q (resp., p ( q), if
there is a string s such that q = p.s (resp., q = s.p). A string p is a border of q if
both p ' q and p ( q hold. The set of the borders of p is denoted by borders(p).

For a set S of strings, we denote by ‖S‖ the collection of the lengths of the
strings belonging to S, i.e, ‖S‖ = {|p| : p ∈ S}.

For strings p and q, we denote by 〈p, q〉 the set of all suffixes s of p such that
sR is a suffix of q, i.e., 〈p, q〉 = {s : s ( p and sR ( q} .

The following lemma states useful properties of the set of borders of two
strings.

Lemma 1. For all strings p, q, v, w, and z, and every alphabet symbol c, the
following facts hold:

(a) if v, w ∈ 〈p, q〉, then either v ∈ borders(w) or w ∈ borders(v);
(b) if v, w ∈ 〈p, q〉 and |v| ≥ |w|, then w ∈ borders(v);
(c) if v ∈ 〈p, q〉 and w ∈ borders(v), then w ∈ 〈p, q〉;
(d) if z is the longest string belonging to 〈p, q〉, then 〈p, q〉 = borders(z);
(e) 〈p, q.c〉 = {c.s : s ∈ 〈p, q〉 and c.s ( p} ∪ {ε};
(f) ‖〈p, q.c〉‖ = {�+ 1 : � ∈ ‖〈p, q〉‖ and p[|p| − 1 − �] = c} ∪ {0}.
Proof. First of all we notice that (b) and (f) are immediate consequences of (a)
and (e), respectively; similarly, (d) follows plainly from (b) and (c). Thus, we
only need to prove (a), (c), and (e).

We begin with (a). Let v, w ∈ 〈p, q〉. By the very definition of 〈p, q〉 we have

v ( p , vR ( q , w ( p , and wR ( q .

Without loss of generality, let us assume that |v| ≤ |w|. Then, from v ( p and
w ( p we have v ( w; likewise, from vR ( q and wR ( q we have vR ( wR. The
latter implies v ' w, which, together the previously established relation v ( w,
yields v ∈ borders(w), proving (a).

Concerning (c), let v ∈ 〈p, q〉 and w ∈ borders(v). Then we have v ( p and
w ( v, so that w ( p. Likewise, we have vR ( q and w ' v. The latter is
equivalent to wR ( vR, so that wR ( q. From w ( p and wR ( q it follows that
w ∈ 〈p, q〉, proving (c).

Finally, we turn to the proof of (e). Let v ∈ 〈p, q.c〉, where c is a character.
Then v ( p and vR ( q.c . If v �= ε, then v = c.s, for a string s such that s ' qR.
But then s ( (qR)R = q, which, together with s ( p, implies

〈p, q.c〉 ⊆ {c.s : s ∈ 〈p, q〉 and c.s ( p} ∪ {ε} .
To show the converse inclusion, we observe preliminarily that ε ∈ 〈p, q.c〉. Let

s ∈ 〈p, q〉 such that c.s ( p. Then sR ( q, which implies (c.s)R = sR.c ( q.c .
The latter, together with c.s ( p, implies c.s ∈ 〈p, q.c〉. Thus

{c.s : s ∈ 〈p, q〉 and c.s ( p} ∪ {ε} ⊆ 〈p, q.c〉 ,
which together with the previously established inclusion proves (e). ��
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Given two strings p and q of the same length m, an inverted decomposition of
p and q is a sequence (�1, �2, . . . , �k) of lengths such that:

(a) 1 ≤ �i ≤ m, for 1 ≤ i ≤ k;
(b)
∑k

i=1 �i = m;
(c) p[Lj .. Lj+1] = (q[Lj .. Lj+1])

R, for 0 ≤ j < k, and where Lj =
∑j

i=1 �i (so
that L0 = 0).

When p and q admit an inverted decomposition, we write p �� q.
Observe that an inverted decomposition (�1, �2, . . . , �k) of p and q induces a

sequence of strings (s1, s2, . . . , sk) such that s1s2 · · · sk = p and sR1s
R
2 · · · sRk =

q, and conversely. Thus, we plainly have that p �� q iff q �� p. Additionally, the
following property can be easily proved.

Lemma 2. For all strings p and q, we have that p �� q holds iff (exactly) one of
the following two conditions holds:

(a) p = q = ε, or
(b) p = v.z and q = w.zR, for a string z �= ε and strings v and w such that

v ��w. ��
Given a text t of length n, a pattern p of length m is said to match with non-
overlapping inversions (or to have an occurrence with non-overlapping inver-
sions) at location i of t if p �� t[i .. i + m − 1], i.e., if there exists an inverted
decomposition of p and t[i .. i+m− 1].

The approximate matching problem with non-overlapping inversions is to find
all locations i in a given text t at which a given pattern p matches with non-
overlapping inversions.

For the sake of simplicity, in the rest of the paper we will refer to non-
overlapping inversions simply as inversions, since this will generate no confusion.

3 A General Dynamic Programming Approach

In this section we present a general dynamic programming algorithm for the
pattern matching problem with inversions. Our algorithm, which will be named
DPInversionMatcher, is characterized by a O(nm2)-time and a O(m2)-space com-
plexity, where m and n are the length of the pattern and text, respectively. In
the next section we will then show how it can be refined so as to improve its
time complexity to O(nm).

As above, let t be a text of length n and p a pattern of lengthm. The algorithm
DPInversionMatcher solves the matching problem with inversions by computing
the occurrences of all prefixes of the pattern in continuously increasing prefixes
of the text using a dynamic programming approach. That is, during its (i+1)st
iteration, for i = 0, 1, . . . , n−m, our algorithm establishes whether pj �� t[i .. i+j],
for each j = 0, 1, . . . ,m − 1, exploiting information gathered during previous
iterations.
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To begin with, we denote by M(j, i) the set of all integral values k, with
0 ≤ k ≤ j, such that the prefix pk has an occurrence with inversions at location
i of the text, or more formally

M(j, i) =

{
{0 ≤ k ≤ j : pk �� t[i .. i+ k]} ∪ {−1} if i ≥ 0 and j ≥ 0
{−1} otherwise,

for −m ≤ i ≤ n−m and 0 ≤ j < m.
Then notice that pj �� t[i .. i+ j] iff j ∈M(j, i) and hence p �� t[i .. i+m−1] iff

m− 1 ∈M(m− 1, i). Thus the matching problem with inversions can be solved
by computing the sets M(m− 1, i), for increasing values of i.

We also define R(j, i) as the set of the lengths of all strings s such that s ( pj

and sR ( ti+j , or more formally

R(j, i) =

{
‖〈pj , ti+j〉‖ if 0 ≤ j < m and 0 ≤ i ≤ m− n

{0} otherwise.

By Lemma 2, we obtain the following recursive relation

M(j, i) =

{
M(j − 1, i) ∪ {j} if j − � ∈M(j − 1, i), for some � ∈ R(j, i)
M(j − 1, i) otherwise ,

where 0 ≤ j < m and −m ≤ i ≤ n−m, which allows to reduce the computation
of the set M(j, i) to that of the sets M(j − 1, i) and R(j, i).

Likewise, the sets R(j, i) can be computed by the recursive relation

R(j, i) = {0} ∪ {�+ 1 : � ∈ R(j, i− 1) and p[j − �] = t[i+ j]} ,
with 0 ≤ j < m and 0 < i ≤ n−m, which follows from Lemma 1(f).

The above considerations translate directly into the algorithm DPInversion-
Matcher in Fig. 1. Sets R(j, i) are maintained by an array R of dimensionm; more
precisely, just after iteration i of the for-loop at line 3, we have that R[j] = R(j, i).
Similarly, sets M(j, i) are maintained by a single set(-variable) M, which is ini-
tialized to {−1} at the beginning of iteration i of the for-loop at line 3 (this
corresponds to the set M(−1, i)). Then, during the execution of the subsequent
for-loop at line 5, the set M is expanded so as to take in sequence the relevant el-
ements M(0, i),M(1, i), . . . ,M(m−1, i); more precisely, just after the execution
of iteration j of the for-loop at line 5 we have that M = M(j, i).

The set M can be implemented as a linear array A of length m+1 of Boolean
values such that

A[j] =

{
true, if j − 1 ∈ M

false, otherwise ,

for 0 ≤ j ≤ m. Likewise, each set R[j] can be implemented as a linked list
(or possibly as an array of length m + 1 of Boolean values, as well). Then it
follows easily that the algorithm DPInversionMatcher in Fig. 1 has a O(m2)-
space complexity and a O(nm2)-time complexity. Indeed, the computation of
the set R[j] at line 6 and the conditional test at line 7 require O(j)-time, for
0 ≤ j < m.
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DPInversionMatcher(p,m, t, n)
1. for j := 0 to m− 1 do
2. R[j] := {0}
3. for i := −m + 1 to n−m do
4. M := {−1}
5. for j = max(−i, 0) to m− 1 do
6. R[j] := {0} ∪ {� + 1 : � ∈ R[j] \ {j + 1} and p[j − �] = t[i + j]}
7. if (∃� ∈ R[j] : j − � ∈ M) then
8. M := M ∪ {j}
9. if (m− 1 ∈ M) then

10. output(i)

Fig. 1. The algorithm DPInversionMatcher for the matching problem with inversions

4 The Algorithm InversionSampling

In this section we present a refinement of the algorithm DPInversionMatcher pre-
sented before. The new algorithm, named InversionSampling, achieves a O(nm)
worst-case time complexity and, as before, requires O(m2) additional space.

The main idea upon which the new algorithm is based is that we do not need
to maintain explicitly the whole set R(j, i) to evaluate the conditional test at
line 7. In particular we show that by efficiently computing the values in the set
R(j, i), each conditional test at line 7 can be performed in amortized O(1)-time.

Specifically, as will be proved in Lemma 5 below, during each iteration of the
algorithm DPInversionMatcher, just before the execution of the conditional test
at line 7, the following condition holds

either {� ∈ R(j, i) : j − � ∈M(j − 1, i)} = ∅ (when the test is false),
or {� ∈ R(j, i) : j − � ∈M(j − 1, i)} = R(j, i) \ {0} . (1)

Thus it follows that, for each 0 < j < m and −m ≤ i ≤ n−m, if max(R(j, i)) ∈
M(j − 1, i) then {� ∈ R(j, i) : j − � ∈M(j − 1, i)} = R(j, i) \ {0}.

Since just before the execution of the conditional test at line 7 of the algorithm
DPInversionMatcher we have that j /∈M(j−1, i), the condition ‘(∃� ∈ R[j] : j−� ∈
M)’ at line 7 can be replaced by the condition ‘j− e(R[j]) ∈ M’, for any function
e(·) such that e(R[j]) ∈ (R[j] \ {0}) ∪ {max(R[j])} holds, without affecting the
correctness of the algorithm. In particular, we choose e(·) ≡ max(·) and describe
an efficient way to compute the value max(R(j, i)), which allows to reduce the
time complexity of the searching-phase of the algorithm to O(nm).

Recalling that R(j, i) = ‖〈pj , ti+j〉‖, it turns out that the maximum of the
set R(j, i), for −m < i ≤ n − m and 0 ≤ j < m, can be computed from the
maximum of the set R(j, i−1), without any need to compute explicitly the whole
set R(j, i). This can be done by using the following relation:

max(‖〈pj , ti+j〉‖) = max{�+ 1 : � ∈ 〈pj , ti+j−1〉 and p[j − �] = t[i+ j]} , (2)
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procMPT(p, m)
1. for k := 0 do m− 1 do
2. i := 0
3. j := W[k, k] := −1
4. while (i < (m− k)) do
5. while ((j > −1) and

(p[i + k] �= p[j + k])) do
6. j := W[k, k + j]
7. i := i + 1
8. j := j + 1
9. W[k, k + i] := j

10. return(W)

InversionSampling(p,m, t, n)
1. W := procMPT(p, m)
2. for j := 0 to m− 1 do
3. K[j] := 0
4. for i = −m + 1 to n−m do
5. M = {−1}
6. for j := max(−i, 0) to m− 1 do
7. while ((K[j] > 0)

and (p[j − K[j]] �= t[i + j])) do
8. K[j] := W[j + 1− K[j], j + 1]
9. if p[j − K[j]] = t[i + j] then

10. K[j] := K[j] + 1
11. if (j − K[j] ∈ M) then
12. M := M ∪ {j}
13. if (m− 1) ∈ M then
14. output(i)

Fig. 2. (On the left) the procedure for computing the table W, and (on the right) the
variant InversionSampling of the algorithm DPInversionMatcher

which will be proved in Lemma 6 below.
Let ‖〈pj , ti+j−1〉‖ be the set {�1, �2, . . . , �k}, with �i > �i+1, for all 0 < i < k,

and �k = 0. For the computation of the set max(‖〈pj , ti+j〉‖) we start from
the value �1 = max(‖〈pj , ti+j−1〉‖), and examine in sequence the items �1, �2,
. . . , �k until we find a value �i such that p[j − �i] = t[i + m − 1] or we reach
�k = 0. If � is the value obtained by such scanning process, we check whether
p[j − �] = t[i+ j] and, in this case, we conclude that max(‖〈pj , ti+j〉‖) = �+ 1;
otherwise we conclude that max(‖〈pj , ti+j〉‖) = 0.

The above procedure requires to know in advance the set ‖〈pj , ti+j−1〉‖. To
this purpose let us put

π(pj , h) =

{
max(‖borders(p[h .. j]) \ {p[h .. j]}‖) if 0 ≤ h ≤ j

−1 otherwise.

For i = 1, . . . , k, let us also put vi = p[j+1− �i .. j]. Then, since vi+1 is a border
of vi (by Lemma 1(b)), we have that �i+1 = π(pj , j + 1 − �i), for 0 < i < k.

Such values can be precomputed and collected into a table W of dimensions
(m+ 1)× (m+ 1), where W[0, 0] = −1 and W[h, k] = π(pk−1, h), for 0 < k ≤ m
and 0 ≤ h ≤ k (the values of the remaining entries of W are not relevant).

Table W can be computed in O(m2)-time and space by means of the procedure
procMPT in Fig. 2, which is a generalization of the procedure used by the Morris-
Pratt algorithm [6] for computing the length of the longest proper border of
s[0 .. j], for a given string s with 0 ≤ j < |s| (see also [3], where this function is
called the prefix function of the pattern).



Efficient Macthing of Biological Sequences 371

p︷ ︸︸ ︷ qR︷ ︸︸ ︷
z

︸ ︷︷ ︸
p

Case 1: |p| ≤ |q|

p︷ ︸︸ ︷
v w z

qR︷ ︸︸ ︷

v w z︸ ︷︷ ︸
p

Case 2: |q| < |p| ≤ 2|q|

p︷ ︸︸ ︷
v w︸ ︷︷ ︸

p′

z

qR︷ ︸︸ ︷

v w z︸ ︷︷ ︸
p

Case 3: 2|q| < |p|

Fig. 3. The three cases considered in Lemma 3

The resulting algorithm, InversionSampling, is presented in Fig. 2. Notice that
the part of the code from line 7 up to line 10 implements the assignment K[j] :=
max(R(j, i)).

4.1 Correctness Issues

In this section we prove the validity of (1) and (2), upon which the correctness
of the algorithm InversionSampling is based. In particular, they will be direct
consequences of Lemmas 5 and 6, respectively.

We first state and prove two useful properties related to the suffixes of inverted
strings, which will be used in our main results.

Lemma 3. Let p and q be strings such that p ( p.qR. Then there exist two
strings q1 and q2 such that (a) q = q1.q2 and (b) p.qR = qR

1 .q
R
2 .p . ��

Proof. Let p ( p.qR. To begin with, notice that if |q| = 0, the lemma follows
trivially. So, let us suppose that |q| > 0 and assume inductively that the lemma
holds for any pair p′, q′ of strings such that |p′| < |p| and p′ ( p′.q′R.

We distinguish the following three cases (see Fig. 3 for a pictorial illustration).
Case 1: |p| ≤ |q|. From p ( p.qR and |p| ≤ |q|, it follows that p ( qR, so
that qR = z.p, for some string z. Putting q1 = pR and q2 = zR, we have then
q1.q2 = pR.zR = (z.p)R = (qR)R = q, and p.qR = p.z.p = (pR)R

.(zR)R
.p = qR

1 .q
R
2 .p

and therefore (a) and (b) are both satisfied in the present case.
Case 2: |q| < |p| ≤ 2|q|. Let z be the suffix of p such that |z| = |p| − |q| ≤ |q|.
Observe that 2|z| ≤ |z| + |q| = |p|, so that |z| ≤ �|p|/2�. Therefore p can be
decomposed as p = v.w.z, with |v| = |z| and |w.z| = |q|. But since p ( p.qR,
we have v = z and qR = w.z. If we put q1 = zR and q2 = wR, so that z = qR

1

and w = qR
2 , we have q = (qR)R = (w.z)R = (qR

2 .q
R
1 )R = (qR

1 )R
.(qR

2 )R = q1.q2 and
p.qR = (z.w.z).(w.z) = (z.w).(z.w.z) = z.w.p = qR

1 .q
R
2 .p, proving (a) and (b) in

the present case.
Case 3: 2|q| < |p|. Let v and z be, respectively, the prefix and the suffix of
p such that |v| = |z| = |q|. Plainly, z = qR, as p ( p.qR. In addition, since
|v| + |z| = 2|q| < |p|, it follows that p = v.w.z, for a nonempty string w. Let
us put p′ = v.w, so that p = p′.z. Observe that |p′| = |p| − |q| < |p|, since
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p︷ ︸︸ ︷
s1 s2

z︷ ︸︸ ︷
︸ ︷︷ ︸

w

sR1 sR2︸ ︷︷ ︸
q

︸ ︷︷ ︸
zR

Case 1: |z| ≤ |w|

p︷ ︸︸ ︷ z︷ ︸︸ ︷
s1 s2 w

︸ ︷︷ ︸
q

sR1 sR2 w︸ ︷︷ ︸
zR

Case 2: |w| < |z|

Fig. 4. The two cases considered in Lemma 4

|q| > 0. We have also p′ ( p′.z, so by induction zR = q1.q2 (i.e., q = q1.q2)
and p′.z = qR

1 .q
R
2 .p

′, for some strings q1 and q2. Hence, p.qR = (v.w.z).qR =
(p′.z).qR = (qR

1 .q
R
2 .p

′).qR = qR
1 .q

R
2 .(p

′.qR) = qR
1 .q

R
2 .(p

′.z) = qR
1 .q

R
2 .p, so that (a)

and (b) hold in this last case too, completing the proof of the lemma. ��
Lemma 4. Let p and q be strings of the same length. Then we have p.z �� q.zR

if and only if p �� q, for every string z.

Proof. To begin with, notice that if p �� q then, plainly, p.z �� q.zR. Thus, it is
enough to prove the converse implication, namely that p.z �� q.zR implies p �� q.
So, let p, q, and z be nonempty strings such that p.z �� q.zR and assume induc-
tively that the lemma is true for all triplets p′, q′, z′, with |z′| < |z|, such that
p′.z′ �� q′.z′R. By Lemma 2, there are strings u, v, and w �= ε such that u ��v,
p.z = u.w, and q.zR = v.wR.

We consider first the case in which |z| ≤ |w| (this is illustrated in Fig. 4, on
the left). Since z ( u.w and zR ( v.wR, we have that z ( w and zR ( wR. Let
s be the string such that w = s.z . Then, zR ( wR = (s.z)R = zR.sR and hence,
by Lemma 3, there are strings s1 and s2 such that s1.s2 = s (which implies
that w = s1.s2.z) and zR.sR = sR1 .s

R
2 .z

R, i.e., wR = sR1 .s
R
2 .z

R . Therefore, we have
that p.z = u.s1.s2.z and q.zR = v.sR1 .s

R
2 .z

R . These equalities imply, respectively,
that p = u.s1.s2 and q = v.sR1 .s

R
2 , and hence, as u ��v, by a double application

of Lemma 2, we get p �� q.
Let us consider next the case in which |w| < |z| (this is illustrated in Fig. 4,

on the right). Since w ( p.z and wR ( q.zR, in this case we have that w ( z

and wR ( zR. Let s be the string such that z = s.w. Then, wR ( zR = (s.w)R =
wR.sR, and hence, by Lemma 3, there are strings s1 and s2 such that s1.s2 = s
(which implies that z = s1.s2.w) and wR.sR = sR1 .s

R
2 .w

R, i.e., zR = sR1 .s
R
2 .w

R.
Therefore, we have that p.z = p.s1.s2.w and q.zR = q.sR1 .s

R
2 .w

R , which imply,
respectively, that u.w = p.s1.s2.w and v.wR = q.sR1 .s

R
2 .w

R , so that u = p.s1.s2
and v = q.sR1 .s

R
2 . Since |s2| < |z|, by induction we deduce p.s1 �� q.s

R
1 from

p.s1.s2 = u �� v = q.sR1 .s
R
2 . Likewise, since |s1| < |z|, again by induction we

deduce p �� q from p.s1 �� q.s
R
1 . Thus, p �� q holds even when |w| < |z|, concluding

the proof of the lemma. ��
Correctness of (1) is a direct consequence of the following lemma.
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Lemma 5. Let D(j, i) = {� ∈ R(j, i) : j − � ∈ M(j − 1, i)}, for 0 < j < m and
−m ≤ i ≤ n−m. Then we have either D(j, i) = ∅ or D(j, i) = R(j, i) \ {0}.
Proof. First of all, note that if D(j, i) �= ∅ then j ∈M(j, i), i.e., pj �� t[i .. i+ j],
so that by Lemma 4, we must have pj−k �� t[i .. i+ j− k] for all k ∈ R(j, i) \ {0}.
But pj−k �� t[i .. i + j − k], with k �= 0, implies that j − k ∈ M(j − 1, i), and
thus R(j, i)\ {0} ⊆ D(j, i). The converse implication, i.e., D(j, i) ⊆ R(j, i)\ {0},
holds trivially, since j /∈M(j − 1, i). ��
Finally, relation (2), which allows to compute the maximum of the set R(j, i)
from the maximum of the set R(j, i− 1), is established in the following lemma.

Lemma 6. Given two strings p and q, with |p| = m, and a character c, we have

max(‖〈p, q.c〉‖) = max{|v| + 1 : v ∈ 〈p, q〉 and p[m− 1 − |v|] = c} .

Proof. Let z be the longest string belonging to 〈p, q〉, so that |z| = max(‖〈p, q〉‖),
and let v1, v2, . . . , vk be the borders of z, ordered by their decreasing lengths.
Observe that if v, w ∈ 〈p, q〉, then v ( p and w ( p, so that if v and w have
the same length they must coincide. Hence, the set 〈p, q〉 cannot contain any
two distinct strings of the same length. It also follows that the longest string
belonging to 〈p, q〉 is well (and uniquely) defined. Also, note that a string z
cannot have two distinct borders of the same length. Thus we have

|v1| > |v2| > · · · > |vk| ,

with v1 = z and vk = ε. Then, from Lemma 1(d) it follows that 〈p, q〉 =
{v1, v2, . . . , vk} which, by Lemma 1(d), yields

‖〈p, q.c〉‖ = {|v| + 1 : v ∈ {v1, . . . , vk} and p[m− 1 − |v|] = c} ∪ {0} ,

completing the proof of the lemma. ��

4.2 Worst-Case Time Analysis

We show now that the worst-case time complexity T (n,m) of the algorithm
InversionSampling reported in Fig. 2 is O(nm), for an input text t of length n
and pattern p of length m.

To begin with, we observe that the preprocessing phase of the algorithm re-
quires O(m2)-time (and space), due to the computation of the table W and
the initialization at line 2. Next we evaluate the complexity of the searching
phase, namely of the for-loop at line 4. Let us denote by A the set of pairs
{−m + 1, . . . , n −m} × {0 . . . ,m − 1}. For each pair (i, j) ∈ A, we let C1(i, j)
be the number of times that the while-loop at line 7 is executed during itera-
tion i of the for-loop at line 4, and we let K(i, j) be the value contained in K[j]
just after the termination of such iteration; in addition, we put C2(i, j) = 1, if the
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assignment instruction at line 10 is executed during iteration i, otherwise we put
C2(i, j) = 0. Plainly, we have that

T (n,m) = O
⎛
⎝ n−m∑

i=−m+1

m−1∑
j=0

(
C1(i, j) + 1

)⎞⎠ , (3)

and therefore it is enough to prove that the double summation in (3) is asymp-
totically bounded above by the product nm.

Since C2(i, j) ≤ 1 for each (i, j) ∈ A, we have that, for 0 ≤ j < m,

n−m∑
i=−m+1

C2(i, j) ≤ n . (4)

On the other hand, we have also that

K(i+ 1, j) − C2(i+ 1, j) ≤ K(i, j) − C1(i+ 1, j) , (5)

for all (i, j) ∈ A such that i < n − m. Indeed, during iteration i, the value
contained in K[j] just after the execution of the while-loop at line 7 (i.e., K(i+
1, j)− C2(i+ 1, j)) can never exceed the value contained in K[j] just before this
execution minus the number of times that the while-loop iterates (i.e., K(i, j)−
C1(i+ 1, j)), since K[j] is decremented at least by one unit during each iteration
of the while-loop at line 7. Thus it follows that

0 ≤ K(h, j) ≤
h∑

i=−m+1

C2(i, j) −
h∑

i=−m+1

C1(i, j) , (6)

for all (h, j) ∈ A, as can be verified by induction on h, using (5). From (6) it
follows that

m−1∑
j=0

n−m∑
i=−m+1

(
C1(i, j) + 1

) ≤ m−1∑
j=0

n−m∑
i=−m+1

(
C2(i, j) + 1

)
,

and thus, using (4), we finally obtain that

m−1∑
j=0

n−m∑
i=−m+1

(
C1(i, j) + 1

) ≤ (n+ 1)m,

which in turn, by (3), yields T (n,m) = O(nm).

5 Conclusions and Future Work

In this paper we have presented an algorithm to solve the pattern matching
problem under a string distance which allows inversions of non-overlapping fac-
tors. The algorithm, named InversionSampling, has worst case O(nm)-time and
O(m2)-space complexity, where m and n are the length of the pattern and the
length of the text, respectively. We are currently working on an efficient variant
of the present algorithm with a linear average time complexity.
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Abstract. The Hidden Markov Model (HMM) is a probabilistic model
used widely in the fields of Bioinformatics and Speech Recognition. Effi-
cient algorithms for solving the most common problems are well known,
yet they all have a running time that is quadratic in the number of hidden
states, which can be problematic for models with very large state spaces.
The Viterbi algorithm is used to find the maximum likelihood hidden
state sequence, and it has earlier been shown that a coarse-to-fine mod-
ification can significantly speed up this algorithm on some models. We
propose combining work on a k-best version of Viterbi algorithm with
the coarse-to-fine framework. This algorithm may be used to approxi-
mate the total likelihood of the model, or to evaluate the goodness of
the Viterbi path on very large models.

Keywords: coarse-to-fine; k-best; Viterbi; Hidden Markov Models.

1 Introduction

A Hidden Markov Model (HMM) [16] is a probabilistic model, in which there is
a series of hidden states evolving through time, each state depending only on the
previous state. At each time-step the current hidden state emits an observable
symbol, with the hidden state determining the probability of a given observ-
able symbol being emitted. HMMs are used widely in many fields, particularly
Bioinformatics [1, 5–7, 9, 13, 14, 18, 19, 21], and Speech Recognition [4, 15, 20].

One of the reasons for the success of the HMM framework is probably the
existence of simple and efficient algorithms for solving the most common prob-
lems associated with HMMs. The Viterbi algorithm computes the maximum
likelihood sequence of hidden states given the model and observed symbols; the
forward algorithm computes the total likelihood of the observed symbols given
the model; the backward algorithm, used together with the forward algorithm,
can give the total likelihood of a given hidden state at a given point in time; and
this again can be used by the Baum-Welch algorithm to learn the probabilities
in the model from data.

The Viterbi, forward, and backward algorithms are all similar and all have an
execution time that is linear in the product of the number of time-steps and the
number of possible transitions between hidden states. For most use cases this is

R. Giancarlo and G. Manzini (Eds.): CPM 2011, LNCS 6661, pp. 376–387, 2011.
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good enough, but if the transition matrix is dense the number of transitions is
quadratic in the number of states, and if the number of states is large this can
be a problem.

To achieve fast execution of the Viterbi algorithm on HMMs with a large
number of hidden states a coarse-to-fine framework has been proposed and used
successfully [2, 10, 17]. The idea is to approximate the desired HMM by a se-
ries of coarse HMMs with increasingly fewer states, each of the coarse states
corresponding to several states in the previous, finer, HMM. Next, the Viterbi
algorithm is used to find the maximally likely path through the coarse HMM
and replace all states in this path with the states represented by it in the finer
HMM. This is repeated until you find a path containing only states from the
original HMM. If the coarse HMMs are constructed correctly this will be the
exact maximum likelihood path in your original HMM.

Another extension to the Viterbi algorithm is a k-best version [11]. Instead
of only finding the single most likely path the k most likely ones are found. In
this paper we propose to combine the coarse-to-fine technique with the k-best
Viterbi algorithm, giving a k-best Viterbi algorithm that is fast on very large
HMMs.

A coarse-to-fine k-best Viterbi algorithm has also been proposed in [3], but
that article does, strictly speaking, not use HMMs, and the way they use coarse-
to-fine means that they only get an approximate solution.

2 Methods

We will use a notation similar to that in [16]. Let the set of N distinct hidden
states be denoted by S = {S1, S2, ..., SN}, and letQ = q1q2 · · · qT be the sequence
of T actual hidden states. Such a sequence of states we will also call a path.
Similarly let V = {V1, V2, ..., VM} be the set of M distinct observable symbols,
and O = O1O2 · · ·OT the sequence of T actual observations. Formally, an HMM
is a three-tuple λ = (A,B, π), where A = {aij}, aij = P(qt = j | qt−1 = i),
with i, j ∈ S, is the transition matrix, B = {bj(o)}, bj(o) = P(Ot = o | qt = j),
with j ∈ S and o ∈ V , is the distribution of observable symbols, and finally
πi = P(q1 = i), for i ∈ S, is the initial distribution vector.

The probability of a given sequence of hidden states Q and observed symbols
O is then:

P(O,Q |λ) = P(O |Q, λ) P(Q |λ)
=
(∏T

t=1 P(Ot | qt, λ)
)(

P(q1 |λ)
∏T

t=2 P(qt | qt−1, λ)
)

=
(∏T

t=1 bqt(Ot)
)(

πq1

∏T
t=2 aqt−1qt

)
.

In most real-world scenarios we would not know the path of actual hidden
states Q. We are going to assume that only the observations O and the model
parameters λ are known, in this article.
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2.1 The Viterbi Algorithm

The classical way to estimate Q is to find the maximum likelihood Q using the
Viterbi algorithm [16]. We want to maximize

P(Q |O, λ) ∝ P(Q,O |λ) .

This is done by defining δt(i) to be the likelihood of the most likely sequence of
states from time 1 to time t and ending in state i

δt(i) = max
q1,q2,...,qt−1

{P(q1q2 · · · qt−1, qt = i, O1O2 · · ·Ot |λ)} ,

which can be computed efficiently using dynamic programming

δt(i) =

{
πibi(O1) if t = 1
max
j∈S

{δt−1(j)aji} bi(Ot) otherwise .

The above technically only gives rise to the likelihood of the path, but the actual
path can be found by backtracking which entries gave rise to the result of each
max operation.

The above algorithm has an execution time of O
(
N2T

)
. This is fast enough

for many practical purposes, but due to the N2 term the algorithm may be
inadequate if N is big.

2.2 Coarse-to-Fine

In the case of large N , a coarse-to-fine approach may be used [17]. Let T be a
tree with hidden states S as leaves. Let R(T ) be the root of T . Finally, let c(i)
be the set of immediate children of node i, where i is any node in T . If i is a leaf
in T , that is if i ∈ S, we set c(i) = {i} for mathematical convenience.

The nodes in T are going to be the hidden states in a new HMM, so we
also need to define the probabilities in this new HMM. The probabilities for an
internal node in the tree is simply going to be the maximum over the probabilities
for all the children

aTij =

{
aij if i and j are leaves

max
i′∈c(i),j′∈c(j)

{aTi′j′} otherwise ,

bTj (k) =

{
bj(k) if j is a leaf

max
j′∈c(j)

{bTj′(k)} otherwise ,

and

πT
i =

{
πi if i is a leaf

max
i′∈c(i)

{πT
i′ } otherwise .

Strictly speaking λT = (AT , BT , πT ) is not an HMM, because AT , BT , and πT

no longer define probabilities, since they do not necessarily sum to one. Also, it
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turns out that we do not actually need to compute the exact max, but that any
upper bound will work, though a tighter bound should give a better execution
time. We need to modify the Viterbi algorithm, such that it allows a different set
of states for each time-step, thus let viterbi(O,S1n, ..., STn, λT ) compute Qn =
qn
1 q

n
2 · · · qn

T , the most likely sequence of states, emitting the observed symbols,
constrained to qn

t ∈ Stn. If that Viterbi algorithm finds a path that only contains
states that are leaves in T , we will call it a true solution, since it is also a solution
in the original HMM. Otherwise it is an estimate. The algorithm proposed by [17]
is to start by setting St1 = c(R(T )), repeatedly use the above Viterbi algorithm
to find the most likely path Qn and replace all states on that path by their
children St(n+1) = (Stn \ {qn

t }) ∪ c(qn
t ), until a true solution is found. During

the execution, the algorithm can visit several states that are not associated with
the final true solution, but [17] shows that once a true solution is found, it will
also be the maximally likely path Q in the original HMM. This runs the Viterbi
algorithm several times, but with a very small state space, and may therefore
be faster than the original Viterbi algorithm on the full state space. The speed
depends very much upon finding the true solution Q in few iterations, and not
spending time visiting states unrelated to Q. How well this succeeds depends on
the concrete model, and how T is built.

2.3 k-Best

Our work is based on the work of Huang and Chiang. In [11] they suggest
four different algorithms for computing k-best Viterbi paths, numbered zero
through three. The first algorithm is too inefficient to warrant our attention,
and the second algorithm is an optimization that is not relevant to this work.
We are going to use their algorithms two and three, and refer them as HC2
and HC3 respectively. Define δk

t (i) to be the likelihood of the kth most likely
path from time 1 to time t ending in state i, thus δ1t (i) = δt(i). In the original
Viterbi algorithm, we create a table of δt(i) for all (t, i) combinations. The HC2
algorithm simply extends this to storing a list of length k, instead of a single
entry in this table. The observation for HC3 is that the majority of the cells will
not be involved in all of the k most likely paths, so we will delay the computation
of δk

t (i) until δk−1
t (i) has actually been used in a path.

To explain how HC3 works in the framework of this article, define ht(i) to
be a heap associated with state i at time t. ht(i) contains values of the form
δl
t−1(j)aji, and is used to determine where to get the solution for the next δk

t (i)
from. j refers to the source state the solution is from, and l indicates the rank of
the solution from j. Obviously, the first column t = 1 does not have a previous
column to get solutions from. For the first column the only path ending at a given
state is the path containing only that state. Therefore we set δ11(i) = πibi(O1)
and do not use heaps for that column. For the remaining columns the heaps
are initially built from {δ1t−1(j)aji}j∈S , remembering δ1t−1(j) can be found from
δt−1(j).

To compute δk
t (i), define two functions: processTop(t, i) which is a utility

function that processes the top of the heap ht(i), and getSolution(t, i, k) which
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actually finds and returns δk
t (i). processTop(t, i) simply pops the top δl

t−1(j)aji

from ht(i), and computes the next δk+1
t (i) = δl

t−1(j)ajibi(Ot). If one more solu-
tion δl+1

t−1(j) from the source state j exists, it is pushed on to ht(i) to replaced
the item that was just popped. Such a solution will not exist if there simply are
not enough paths from time 1 ending in state i, at time t. For example δ21(i) does
not exist, and neither does δk

2 (i) for k larger than the total number of states N .
getSolution(t, i, k) starts by checking if δk

t (i) has already been computed. If
it has, then we simply return it. Otherwise it repeatedly calls processTop until
δk−1
t (i) has been computed. At this point δk

t (i) can be computed by peeking at
the top of the heap. We do not call processTop, as that would pop the value off
the heap and require us to push a new value. This new value might not actually
be needed, and by deferring the computation of it we can save a significant
amount of work.

To actually get the k best paths for the entire HMM greedily consume and
replace the best solution from the last column in the dynamic programming
table, corresponding to t = T . This can be done efficiently, using a heap similarly
to above: Build the heap from {δ1T (i)}i∈S . Next, repeatedly pop the best solution
δl
T (i) off the stack, return it to the user, and insert the next candidate solution
δl+1
T (i), from the source state i, if such a solution exists. Since you do not need

to know k before the algorithm is run, but can keep pulling new solutions until
any arbitrary condition is satisfied, this is an on-line algorithm.

2.4 Coarse-to-Fine k-Best

The contribution of this paper is to combine the above k-best algorithms with
the coarse-to-fine framework. For the HC2 algorithm this is relatively straight-
forward. The algorithm is the same as the coarse-to-fine Viterbi algorithm, except
we find the k best paths in each iteration, using the HC2 algorithm, and split all
states involved in any of these. We refer to this as the C2FHC2 algorithm. One
may note that since the states near the root of the tree represent many leaves
they may have a significant fraction of the k best paths passing through them.
We have experimented with a version that counts the number of possible paths
passing through a state and only split the minimal amount of nodes, necessary
to find k paths in the final iteration. It performed significantly worse than the
naive approach, and therefore it is the naive version that is presented in this
paper. There may exist a better strategy for deciding how many nodes to split
in each iteration.

Extending the HC3 algorithm to C2FHC3 is more involved. We propose keep-
ing the same basic structure as the HC3 algorithm, but updating processTop and
getSolution to also handle the splitting of nodes into its children. Care is needed
with the value returned by getSolution as we need to know whether it is an
estimate or a true solution. Furthermore we introduce the concept of a level of
an estimate which is used in a heuristic to help make sure that the splitting
of states is distributed evenly over all the time-steps, so that any local optima
are discovered to be such, as early as possible. Define the level of an estimate to
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be the depth in T of the highest non-simple state on the solution path. We are
going to produce estimates of increasing levels, so we will at some point reach
the leaves of T , and thus have a true solution. Intuitively we start by asking
getSolution to give us a solution at level 0. Next, repeatedly poll for solutions
that are at one level deeper than the solution previously returned, thus pushing
the path toward the leaves, until a true solution is returned.

Previously we used the k parameter in the getSolution(t, i, k) function and
δk
t (i) to indicate the rank of a solution. We now allow these to take the value of

est(m), to denote an estimate at level m. Thus getSolution(t, i, est(m)) requests
the computation of an estimate at level m, while getSolution(t, i, k) still requests
the computation of the kth best true solution. If an estimate at level m is re-
quested getSolution is allowed to return a solution at a deeper level or the first
true solution δ1t (i).

processTop still starts by popping the most promising value δl
t−1(j)a

T
ji from

ht(i). If this is an estimate at some level l = est(m), we want to improve this
estimate. If the source state j is already deeper than the level m, or j cannot
be split, because it is a simple state, we obtain this better estimate by calling
getSolution(t − 1, j, est(m + 1)) and getting an estimate at a higher level from
j. If, instead, j is a candidate for splitting, a better solution can be obtained by
doing that. If l is not an estimate we can use it to compute the next true solution
for this state δk+1

t (i) = δl
t−1(j)a

T
jib

T
i (Ot), pushing the next solution δl+1

t−1(j)a
T
ji

on to ht(i), if it exists.
Finally, getSolution(t, i, k) also needs to be updated. First it checks whether

an acceptable solution has already been computed, remembering that δ1t (i) is an
acceptable solution if k is an estimate. If no such solution is found processTop is
called until one is found, possibly on the heap.

The above does leave out the details of the base cases. processTop refers to
the previous time-step, which is still not well-defined for the first column. As
in the original HC3 algorithm we do not use any heap for the first column, set
δ11(i) = πT

i b
T
i (O1), and initialize the remaining heaps from the first estimate of

the preceding states {getSolution(t− 1, j, est(0))}j∈c(R(T )).

2.5 Building T
The tree T is irrelevant for the correctness of the result, but it can have a very
large impact on the execution time of the algorithm. There are many different
ways to build T , but for our experiments we built it bottom-up, based on a cost
functionK(T ). Start out with each state q ∈ S being a small tree containing only
itself as root. Now build the tree by repeatedly joining the two trees giving the
cheapest result according to the cost function K until only one tree remains. The
motivation for the cost function K is to minimize the expected number of states
visited. To define the cost function we first find the a priori probability of the
hidden states P(q) from the stationary distribution of the transition matrix. From
this we can also find the probability of a subtree as the sum of the probabilities
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of the children P(T ) =
∑

T ′∈c(R(T )) P(T ′), and the probability of an observable
symbol o ∈ V as P(o) =

∑
q∈S P(o | q) P(q). Furthermore define

R(o | T ) =

{
P(o | q) if T is a single state q

max
T ′∈c(R(T ))

{R(o | T ′)} otherwise ,

and R(T | o) = R(o | T )P(T )
P(o) . Using this we also define

K(T | o) =

{
R(T | o) if T is a single state q
R(T | o)

(
1 +
∑

T ′∈c(R(T ))K(T ′ | o)
)

otherwise ,

and finally K(T ) =
∑

o∈V K(T | o)P(o). If we cache R(o | T ) and K(T | o) for
the children of T , we can compute K(T ) in time O(M), and the entire tree can
be built in O

(
N2M

)
, using a quad-tree [8], if we ignore the time it takes to find

the stationary distribution of the transition matrix. In our implementation that
distribution is approximated by multiplying the transition matrix to the initial
probability vector 25 times, which is O

(
N2
)
.

3 Results

The model parameters λ are important for the tree T and the running time
of the algorithm. Therefore we have experimented with four different ways to
generate them. The first is to set the emission probabilities to the uniform distri-
bution, while the transition probabilities have been randomly drawn. Thus the
emissions are ignored by the HMM and the most likely path is determined only
by the transition matrix. Similarly we have used an HMM where the transition
probabilities are the uniform distribution, while the emission probabilities are
randomly chosen. This gives an HMM where the most likely path is determined
only by the observed sequence. The third parameter set was built randomly based
on a tree, with states clustered closely in the tree also resembling each other, to
give a random HMM that is guaranteed to have some structure the clustering
algorithm can exploit. Finally, we have used a completely random HMM, where
both the transition and emission probabilities were randomly drawn.

Only the sum of the likelihood of the found Viterbi paths are computed and
timed, thus no backtracking is performed. The shown values include both the
time to build T and the time to run the algorithm, but not the time to read
input from disk. All experiments were run on three different HMMs and the lines
in the plot follows the averages of them. The experiments were run on a MacPro
with two Intel quad-core Xeon processors running at 2.26GHz and with 8GB of
main memory. All the benchmarks were run on using our own implementations
of the algorithms.

In the experiments shown in Fig. 1 we have benchmarked the execution time
of the algorithm against the number of states N . The execution time of neither
the HC2 nor the HC3 algorithms changes significantly between different HMMs,
which was expected. The HC3 method is good for small state spaces, while the
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Number of hidden states versus execution time
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Fig. 1. Results from experiments testing execution time as a function of state space
size. k = 1000, M = 10 and T = 100. Plotted are the running time divided by the
number of states squared and the sequence length. Each experiment was repeated on
three different models, with the line showing the average.

HC2 method performs better for larger state spaces. The models without emis-
sion probabilities are generally worst-cases for the coarse-to-fine methods and
the models without transitions are best-cases. Without transitions it is trivial
to find the most likely path and for those models profiling show that the time
to build T dominates for N > 27. Without that time included the coarse-to-fine
methods can be several orders of magnitude faster than the non-coarse-to-fine
methods. Note how well the C2FHC3 performs for those models, although it
generally is slow. The hierarchical and random models show the methods under
more realistic conditions, and we see that all the coarse-to-fine methods perform
badly when the state space is small, but that C2FHC2 can be somewhat faster
than the competing algorithms when N is sufficiently large.

In Fig. 2 we show results from benchmarks of the impact of the k parameter.
What we see from these graphs is that the speed of HC2 versus HC3 depends
very much on the k parameter. HC3 might take a long time to build the heaps,
but getting the next solution is extremely cheap, once they are built. HC2 is
more sensitive to a large k.
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Number of solutions k versus execution time
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Fig. 2. Results from experiments testing execution time as a function of k. N = 2000,
M = 10 and T = 100. HC2 and C2FHC2 were stopped early due to excessive memory
usage. Each experiment was repeated on three different models, with the line showing
the average.

We have also applied our methods to the technique presented in [21]. The
topic of that paper is to jointly estimate genetic crossover and gene conversion
rates, which they do using a hill-climbing method to find the maximum likeli-
hood parameter set, with the likelihood of a given set of parameters computed
using a number of HMMs. In the article the forward method [16] is used to
compute the exact P(Q |λ), but since we are only interested in the shape of the
fitness landscape, and not the actual values, the result from a k-best Viterbi
algorithm might be a good approximation. We ran our experiment on data with
40 sequences of length 35 generated by the ms program [12]. The method of
Yin et al. generates several different HMMs of increasing complexity, with the
biggest having a number of states that is cubic in the number of input sequences.
The generated HMMs have a structure such that we can build T in time O(N),
using a domain-specific algorithm, and that the transition probabilities can be
computed on-demand in time O(1). However, the structure also allows the for-
ward algorithm, that normally runs in time O

(
N2T

)
, to be computed in time
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Table 1. Running times for algorithms using an HMM to estimate the likelihood of
data given parameters on genetic crossover and gene conversion rates. Many different
HMMs are generated, but in the worst case the parameters are N = 65640, M =
2, T = 35, and we set k = 1000. The method of Yin et al. is based on a modified
forward algorithm, using domain-specific knowledge, running in time O(NT ).

Method Time
HC2 34669 s
HC3 8858 s
C2FHC2 831 s
C2FHC3 55.3s
Forward 137 s
Yin et al. 15.2s

O(NT ). For the timing of the O(NT ) forward algorithm the implementation of
Yin et al. was used. For comparison we have also implemented a straightforward
O
(
N2T

)
forward algorithm.

The results are shown in Table 1. We may notice that C2FHC3 is surprisingly
fast compared to the previous experiments. The generated HMMs have only 16
distinct transition probabilities, and since there are many thousands of states the
most relevant of our previous experiments would likely be the one with uniform
transition probabilities. However, in that experiment our methods were limited
by the time it took to construct the tree T , and that is less of an issue in this
application.

4 Conclusion

We have shown how the coarse-to-fine heuristic can be combined with a k-best
Viterbi algorithm in a way that can achieve a significant speed-up for HMMs
with large state spaces in cases where the model has a suitable structure.

Remembering that the total likelihood of the data is the sum of the likelihood
of all paths through all hidden states this may be used to approximate the
forward algorithm for HMMs where the state space is so large that it is infeasible
to run the traditional algorithm. Alternatively it may be used in its own right to
find the k-best paths or as an extension to the Viterbi algorithm that will also
give an informal sense of the variance and reliability of the result.

Building the tree and predicting whether this approach will work well for a
given model remains an unsolved problem although the algorithm for building
trees suggested in this paper seems to work well in general. The goal of this
method is primarily to be faster than quadratic in the number hidden states.
However building the transition matrix is quadratic in the number of hidden
states, so this method might be especially suitable to models that have enough
structure that the tree and all probabilities can be computed efficiently on de-
mand, without storing them.

Source code can be downloaded from www.birc.dk/~jn/c2flib.

www.birc.dk/~jn/c2flib
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Università degli Studi di Bergamo, Via Donizetti 3, 24129 Bergamo - Italy

riccardo.dondi@unimib.it
2 Laboratoire d’Informatique de Nantes-Atlantique (LINA), UMR CNRS 6241
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Abstract. One of the emerging topics in the analysis of biological
networks is the inference of motifs inside a network. In the context
of metabolic network analysis, a recent approach introduced in [14],
represents the network as a vertex-colored graph, while a motifM is rep-
resented as a multiset of colors. An occurrence of a motifM in a vertex-
colored graph G is a connected induced subgraph of G whose vertex set is
colored exactly asM. We investigate three different variants of the initial
problem. The first two variants, Min-Add and Min-Substitute, deal
with approximate occurrences of a motif in the graph, while the third
variant, Constrained Graph Motif (or CGM for short), constrains
the motif to contain a given set of vertices. We investigate the classical
and parameterized complexity of the three problems. We show that Min-

Add and Min-Substitute are NP-hard, even whenM is a set, and the
graph is a tree of degree bounded by 4 in which each color appears at
most twice. Moreover, we show that Min-Substitute is in FPT when
parameterized by the size of M. Finally, we consider the parameterized
complexity of the CGM problem, and we give a fixed-parameter algo-
rithm for graphs of bounded treewidth, while we show that the problem
is W [2]-hard, even if the input graph has diameter 2.

1 Introduction

The problem of analyzing biological networks such as protein-protein interaction
networks and metabolic networks has become increasingly relevant in Computa-
tional Biology (see for example [5, 12, 13, 17–19]). While the classical approach is
based on graph-theoretical topology of the motif, a recent approach introduced
in [14] aims at discovering functional motifs that do not rely on the conservation
of the topology, but that are simply connected components of the network. This
approach has been formalized as a graph problem (named Graph Motif), in
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which given a vertex-colored graph G = (V,E) and a multiset M of colors, the
goal is to find a subset V ′ ⊆ V which is connected and whose vertex set is colored
exactly as M.

The Graph Motif problem has been widely studied, and some variants have
been introduced. The original problem is known to be NP-complete [14], even if
the input graph is a tree with maximum degree 3 and the motif is a set [10], and
if the input graph is a bipartite graph with maximum degree 4 and the motif is
built over two colors only [10]. It is easy to see that Graph Motif admits a
polynomial time algorithm when the input graph is a tree and each color occurs
at most twice in the input tree. The Graph Motif problem is known to be in
FPT, when parameterized by the size of the motif [4, 10, 11], while it is W[1]-
hard when parameterized by the number of distinct colors in the motif, even in
the case the input graph is a tree [10]. Recently, the kernelization complexity of
the problem has also been considered [1].

Different variants of the Graph Motif problem have been introduced. Such
variants either modify the requirement of connectedness [7], or look for approx-
imate occurrences of the motif, where some colors are allowed to be inserted
or deleted in an occurrence of the motif [5, 8, 11]. Following this direction, we
consider three variants of the Graph Motif problem. In the first two variants,
we relax the constraint that each color of M must appear in an occurrence of
the motif, and we allow for the adding (Min-Add) or the substitution (Min-

Substitute) of some colors. These two problems are motivated by the fact that,
due to experimental errors, there may not exist an exact occurrence of the mo-
tif M in the graph G. In the third variant, Constrained Graph Motif (or
CGM, for short), we strengthen the requirement of connectedness, constraining
some vertices of the input graph to be part of an occurrence of a motif M. This
is motivated by the fact that, due to a previous knowledge on the structure of the
network, we may require some of the vertices to be contained in any occurrence
of M.

The rest of the paper is organized as follows. In Section 2, we give some
preliminary definitions and we formally define the problems. In Section 3, we
show that Min-Substitute and Min-Add are NP-hard, even when M is a
set, the input graph is a tree T of degree bounded by 4 and each color has at
most two occurrences in T . Notice that under the same hypotheses, the Graph

Motif problem admits a polynomial time algorithm. In Section 4, we give an
FPT algorithm for Min-Substitute. In Section 5, we discuss the parameterized
complexity of the CGM problem, when the parameter is the number of colors
not belonging to mandatory vertices ; in Section 5.1, we show that CGM is
fixed-parameter tractable for graphs of bounded treewidth, while in Section 5.2
we show that CGM is W [2]-hard, even if the diameter of the input graph is
bounded by 2. Some of the proofs are omitted due to space constraints.

2 Preliminaries

In this section, we recall basic notations used in the rest of the paper. Given a
graph G = (V,E) and V ′ ⊆ V , we denote by G[V ′] the subgraph of G induced
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by V ′, that is G[V ′] = (V ′, E′) and {u, v} ∈ E′ iff u, v ∈ V ′ and {u, v} ∈ E.
Given a vertex v ∈ V , we denote by N(v) the set of vertices in G adjacent to v.
We recall that a graph is cubic when each vertex has degree 3.

Let G be a connected graph, where every vertex u ∈ V (G) is assigned a color
c(u) from a set C of colors. For any subset V ′ of V , let C(V ′) be the multiset
of colors assigned to the vertices in V ′. Let M be a multiset of colors, whose
colors are taken from the set C. Given a colored graph G and a subset of vertices
V ′ ⊆ V (G), C(V ′) is said to match a multiset of colors M if C(V ′) is equal
to M. In this case, by abuse of notation, we say that V ′ matches M. Given a
subset of vertices V ′ ⊆ V (G) such that V ′ matches M and G[V ′] is connected,
then V ′ is called an occurrence of M in G. A motif M is said colorful when M
is a set of colors (rather than a multiset).

In this paper, we consider three variants of the Graph Motif problem. For
two of them, Min-Add and Min-Substitute, we look for a vertex set V ′ of
G = (V,E), such that G[V ′] is connected and C(V ′) is not necessarily equal
to M. Furthermore, we consider a constrained variant of the Graph Motif

problem, CGM, where the input consists of a vertex colored graph and a set of
mandatory vertices that must belong to any occurrence of motif M.

Let us introduce the first two variants of Graph Motif problem.

Min-Add (decision version)
Input : A multiset of colors M, a vertex-colored graph G = (V,E), an integer p.
Question : Is there a subset V ′ ⊆ V , such that G[V ′] is connected, C(V ′) ⊇ M
and |C(V ′) \M| ≤ p ?

Min-Substitute (decision version)
Input : A multiset of colors M, a vertex-colored graph G = (V,E), an integer p.
Question : Is there a subset V ′ ⊆ V , such that G[V ′] is connected and C(V ′)
can be obtained with at most p substitutions from M?

Notice that, in case p = 0, both Min-Add and Min-Substitute are equiv-
alent to the Graph Motif problem. As a consequence, Min-Add and Min-

Substitute are both NP-hard when the motif is colorful, the input graph
consists of a tree T and each color has at most 3 occurrences in T [10]. Fur-
thermore, Min-Add (resp. Min-Substitute) cannot be approximated within
any approximation factor, and does not admit any fixed-parameter tractable al-
gorithm, when the parameter is the number of added colors (resp. the number
of substitutions). Notice that Min-Add is in FPT, when parameterized by |M|.
Indeed, in [11], a variant of Graph Motif, called Multiset Graph Motif With
Gaps (MGMG), is considered: given an input graph G and a motif M, we look
for an occurrence of M that is allowed to contain gaps. Note that this is precisely
Min-Add, where the gaps represent colors to be added to M. As in [11] it is
shown that MGMG is in FPT when parameterized by |M|, we can conclude that
the Min-Add problem is in FPT. Furthermore, in case the motif is colorful, a
fixed-parameter algorithm for Min-Add has been given in [5].
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Let us now consider a different variant of the Graph Motif problem, called
Constrained Graph Motif (CGM).

Constrained Graph Motif (CGM)
Input : A multiset of colors M, a vertex-colored graph G = (V,E), a set of
mandatory vertices VM ⊆ V .
Question : Is there a subset V ′ ⊆ V , such that G[V ′] is connected, C(V ′) = M
and VM ⊆ V ′?

Given an instance of CGM, define the optional occurrences Co as Co = M \
C(VM ).

The CGM problem is NP-complete, since the Graph Motif problem is NP-
complete [10, 14]. It is easy to see that CGM is fixed-parameter tractable, when
the parameter is the size of the motif. Indeed, recall that Graph Motif is
fixed-parameter tractable. By recoloring the graph, assigning a unique color to
each vertex in VM , and by modifying accordingly M, we can conclude that each
occurrence of M in G must include all the vertices in VM .

In Section 5, we investigate the parameterized complexity of the CGM prob-
lem, when the parameter is the number of optional occurrences. Notice that the
Minimum (Unweighted) Steiner Tree problem is a restriction of the CGM prob-
lem, where the non mandatory vertices in the Steiner Tree problem correspond
to optional occurrences in CGM. As the Minimum (Unweighted) Steiner Tree
problem is W[2]-hard when parameterized by the number of non mandatory ver-
tices [6], it follows that the CGM problem is W[2]-hard when parameterized by
the number of optional occurrences.

In Section 5.1, we will consider the case where the input graph has bounded
treewidth and we will use a tree decomposition of the graph. Let us recall the
definition of tree decomposition of a graph [9, 15]. Given a graph G = (V,E), a
tree decomposition of G is a pair 〈{Xi : i ∈ I}, T 〉, such that each Xi is called a
bag, and T is a tree having as vertices the elements of I and such that:

1. ∪i∈IXi = V ;
2. for each edge {u, v} ∈ E, there is a bag Xi with u, v ∈ Xi;
3. for each i, j, k in V , if j is on the path from i to k in G, then Xi ∩Xk ⊆ Xj .

The width of 〈{Xi : i ∈ I}, T 〉 is equal to max{|Xi| : i ∈ I} − 1 and the
treewidth of a graph G is equal to the minimum δ such that G has a tree
decomposition of width δ. A tree decomposition 〈{Xi, i ∈ {1, . . . , p}}, T 〉 of a
graph G is nice (see [15]) when, given a vertex i of the tree decomposition, i has
at most two children and the following conditions hold:

1. if i has two children j and k, then Xi = Xj = Xk;
2. if i has exactly one child j, then one of the following conditions holds:

(a) |Xi| = |Xj | + 1, and then Xj ⊂ Xi; or
(b) |Xi| = |Xj | − 1, and then Xj ⊃ Xi.
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In the rest of the paper, in order to extend some results from the case when
M is colorful to the general case, we use the recoloring technique introduced
in [4], based on the color-coding technique [3]. The recoloring technique starts
from a general motif M and computes a colorful motif C, recoloring accordingly
the vertices of the input graph G. Let V ′ be an occurrence of M in the graph
G, then V ′ achieves a colorful recoloring if C(V ′) is colorful after the recoloring
of M and G. In [4], the following result was shown:

Lemma 1 (Betzler et al. [4]). Given a motif M, the number of trials to
achieve a colorful recoloring of M with an error probability of ε is | ln(ε)| ·
O(e|M|).

3 NP-Hardness of Min-Substitute and Min-Add

In this section, we show that Min-Substitute and Min-Add are NP-hard,
even if the input graph is a tree, the motif is colorful and each color has at most
two occurrences in the input tree. Recall that, under the same hypotheses, the
Graph Motif problem admits a polynomial time algorithm.

Theorem 1. The Min-Substitute problem is NP-hard, even when the input
graph is a tree of maximum degree 4, each color occurs at most twice in the input
graph and the motif is colorful.

Proof. We give a reduction from the Minimum Vertex-Cover on Cubic
Graphs problem (Min-VCC). Let G = (V,E) be a cubic graph with
V = {v1, v2, . . . , vn}, the Min-VCC problem asks for a subset V ′ ⊆ V of size at
most p, such that for each {vi, vj} ∈ E at least one of vi, vj is in V ′. Min-VCC

is known to be NP-hard [2]. Starting from G, we construct an instance of the
Min-Substitute problem which consists of a tree T and a set of colors M. For
any vertex vi ∈ V , let ei,j , 1 ≤ j ≤ 3, be its 3 incident edges, ordered arbitrarily.
The tree T = (VT , ET ) is defined as follows (see Figure 1):

– VT = {li, ai,1, ai,2 : 1 ≤ i ≤ n}∪{si : 1 ≤ i ≤ p}∪{ti : 1 ≤ i ≤ n+1}∪{ei,j :
1 ≤ i ≤ n ∧ 1 ≤ j ≤ 3};

– ET = {{li, li+1} : 1 ≤ i < n} ∪ {{si, si+1} : 1 ≤ i < p} ∪ {{ti, ti+1} :
1 ≤ i < n + 1} ∪ {{ln, t1}} ∪ {{tn+1, s1}} ∪ {{li, ai,1}, {ai,1, ai,2} : 1 ≤ i ≤
n} ∪ {{ai,2, ei,j} : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ 3}.

Clearly, this construction gives us a tree of maximum degree 4. Let us describe
the colors assigned to each vertex of V (G). Each vertex li, 1 ≤ i ≤ n, is assigned
a unique color c(li), each vertex si, 1 ≤ i ≤ p, is assigned a unique color c(si),
and each each vertex ti, 1 ≤ i ≤ n + 1, is assigned a unique color c(ti). The
two vertices ai,1, ai,2, 1 ≤ i ≤ n, are assigned the same color c(vi). Finally, each
vertex ei,x in VT , 1 ≤ i ≤ n and 1 ≤ x ≤ 3, associated to an edge ei,j = {vi, vj}
in E, is assigned color c(ei,j). Each color occurs at most twice in T , as each color
c(ei,j) is associated to two vertices of T , while each color c(vi) is associated to
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Fig. 1. Illustration of the reduction from Min-VCC to Min-Substitute

vertices ai,1, ai,2. M is a set of colors defined as follows: M = {c(li) : 1 ≤ i ≤
n}∪ {c(si) : 1 ≤ i ≤ p}∪ {c(vi) : 1 ≤ i ≤ n}∪ {c(ei,j) : ei,j ∈ E}. Notice that no
occurrence of a color c(ti), 1 ≤ i ≤ n+ 1, belongs to M.

Starting from a vertex cover V ′ ⊆ V of G of size at most p, a solution VT ′

of Min-Substitute, that substitutes p colors from M, is obtained as follows.
Given an edge ei,j = {vi, vj}, define emin

i,j = min{i, j}. The vertex set VT ′ defined
as follows:
VT ′ = {li, ai,1 : 1 ≤ i ≤ n} ∪ {ti : 1 ≤ i ≤ p − |V ′|} ∪ {ai,2 : vi ∈ V ′} ∪ {ei,x :
c(ei,x) = c(ei,j) ∧ i = emin

i,j }.
By construction and since V ′ is a vertex cover, VT ′ induces a subtree of T .

It is easy to see that, given C(VT ′) = M′, M′ can be obtained from M by p
substitutions.

Let us consider now a solution VT ′ of Min-Substitute, where C(VT ′ ) = M′,
|M′| = |M|, and M′ can be obtained from M with at most p substitutions. First,
we show that VT ′ does not contain a vertex of the set {si : 1 ≤ i ≤ p}. Indeed,
assume that a vertex si is part of VT ′ ; by construction the set of vertices {tj :
1 ≤ j ≤ n + 1} must belong to VT ′ , and since M does not contain occurrences
of any color c(tj), 1 ≤ j ≤ n + 1, it follows that M′ requires at least n + 1
substitutions. Notice that n + 1 > p, as each vertex cover V ′ of G has size at
most n. Hence, we can assume that VT ′ does not contain any vertex in the set
{si : 1 ≤ i ≤ p}. It follows that all the colors c(si), 1 ≤ i ≤ p, in M must be
substituted, and, since by hypothesis M′ can be obtained from M with at most
p substitutions, it follows that only the colors c(si), 1 ≤ i ≤ p, are substituted.
Hence {li, ai,1 : 1 ≤ i ≤ n} ⊆ VT ′ and M′ ⊇ {c(ei,j) : ei,j ∈ E}. Since T [VT ′ ]
must be connected, it follows that each vertex colored c(ei,j) must be connected
to some vertex ai,2 ∈ VT ′ colored by c(vi). Define V ′ = {vi : ai,2 ∈ VT ′} ; then
V ′ is a cover of G of size at most p, which completes the proof. ��
Theorem 2. The Min-Add problem is NP-hard, even when the input graph is
a tree of maximum degree 4, each color occurs at most twice in the input graph
and the motif is colorful.

Proof. (Sketch) The result follows from a reduction from Min-VCC similar to
that of Theorem 1. Given an instance of Min-VCC, an instance (T,M) of Min-

Add is constructed as follows. T = (VT , ET ) is defined as follows (see Fig. 2):
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– VT = {li, ai,1, ai,2 : 1 ≤ i ≤ n} ∪ {ei,j : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ 3};
– ET = {{li, li+1} : 1 ≤ i < n} ∪ {{li, ai,1}, {ai,1, ai,2} : 1 ≤ i ≤
n} ∪ {{ai,2, ei,j} : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ 3}.

T
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Fig. 2. Illustration of the reduction from Min-VCC to Min-Add

Each vertex li, 1 ≤ i ≤ n, is assigned a unique color c(li), 1 ≤ i ≤ n. The
two vertices ai,1, ai,2, 1 ≤ i ≤ n, are assigned the same color c(vi). Finally,
each vertex ei,x in VT , 1 ≤ i ≤ n and 1 ≤ x ≤ 3, associated to an edge
ei,j = {vi, vj} in E, is assigned color c(ei,j). M is a set of colors defined as
follows: M = {c(li) : 1 ≤ i ≤ n} ∪ {c(vi) : 1 ≤ i ≤ n} ∪ {c(ei,j) : ei,j ∈ E}.

It can be proved that starting from a vertex cover V ′ ⊆ V of G, we can
compute in polynomial time a solution VT ′ of Min-Add such that C(VT ′ ) ⊇ M
and |C(VT ′)| ≤ |M|+ |V ′|. Conversely, starting from a solution VT ′ of Min-Add

such that C(VT ′ ) ⊇ M and |C(VT ′ )| ≤ |M|+ p, we can compute a vertex cover
V ′ of G such that |V ′| ≤ p. ��

4 Parameterized Complexity of Min-Substitute

In this section, we discuss the parameterized complexity of Min-Substitute,
when parameterized by |M|. We recall that Min-Substitute is not in FPT, as
discussed in Section 2, when parameterized by the the size of the solution (i.e.,
the number of substituted colors).

Let us first consider the case where the motif M is colorful (i.e., M is a set).
The algorithm is based on dynamic programming. Let (G = (V,E),M) be an
instance of Min-Substitute. Instead of computing directly a solution for Min-

Substitute, we compute a solution for a slightly different problem, where we
visit the vertices of a connected component of G, allowing to visit some vertices
more than once. Let v be a vertex of the input graph G, let C ⊆ M be a subset
of colors, let k be the number of vertices of the solution of Min-Substitute we
are looking for, and define S[v, C, k] as the minimum value z required by a visit
of a connected set VT of vertices of G such that:
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1. v ∈ VT ;
2. exactly k visits of vertices in VT are done;
3. C(VT ) matches q colors of C, where z = k − q.

Notice that a vertex of VT may be visited more than once, while the overall num-
ber of visits must be k. Now, let us define the dynamic programming recurrence
to compute S[v, C, k].

S[v, C, k] = min
C′⊆C,u∈N(v),k1+k2=k

{
S[v, C′, k1] + S[u,C \ C′, k2]

}
. (1)

For the base cases: S[u,C′, 1] = 0, when c(u) ∈ C′, for each C′ ⊆ C and
u ∈ V , and S[u,C′, 1] = 1 when c(u) /∈ C′. Now, let us prove the correctness of
Recurrence (1).

Lemma 2. Let (G,M) be an instance of Min-Substitute, let v be a vertex of
G, and let C be a subset of M. There is a visit of a connected vertex set VT of
G, such that v ∈ VT , the vertices of VT are visited k times, and C(VT ) matches
q colors of C, iff there exists an entry S[v, C, k] = z, where z = k − q.

An optimal solution for the Min-Substitute problem can be found as follows.
We look for the minimal value z in the entries S[v,M, |M|], with v ∈ V . Notice
that this value may be associated to a visit of a connected vertex set VT , where
some of the vertices may be visited repeatedly. Each repeated visit of a vertex
represents a color to be substituted, since M is colorful. It follows that we can
compute a feasible solution for Min-Substitute by replacing these repeated
visits by some connected components adjacent to VT without increasing the
number of substitutions.

The time complexity of the algorithm is O∗(3|M|), as we have to consider all
possible subsets C ⊆ M and for each subset C we have to consider all possibile
bipartitions of C. Indeed, there are O(3|M|) possible bipartitions of all possible
subsets C of M. In order to extend the results to a multiset, we apply the
recoloring technique described in [4]. Combining Lemma 2 with Lemma 1, and
we get that Min-Substitute, parameterized by |M|, can be solved in time
O∗((3e)O(|M|)).

5 Parameterized Complexity of CGM

In this section, we consider the parameterized complexity of CGM, where the
parameter is the number k of optional occurrences Co, that is k = |Co|, where
Co = M\ C(VM ). First, in Section 5.1, we show that CGM is fixed-parameter
tractable, when the input graph is of bounded treewidth ; then, in Section 5.2,
we prove that CGM is W[2]-hard, even when the input graph is of diameter 2.

5.1 An FPT Algorithm for Graphs of Bounded Treewidth

Here, we describe a fixed-parameter algorithm for CGM for graphs of bounded
treewidth. Let (G = (V,E),M, VM ) be an instance of CGM, and let us first
consider the case where the motif M is colorful.
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Denote by k the number of optional occurrences and by δ the treewidth of
graph G. The algorithm is based on a nice tree decomposition of G (see Section 2
for the definition of nice tree decomposition of a graph). We also consider a
slightly more general problem, where instead of requiring that an occurrence of
a motif consists of a single connected component, we may have an occurrence
consisting of at most δ+1 connected components, where the different connected
components are induced by a partition of a bagXi of the nice tree decomposition.
Given a vertex i of the tree decomposition of G, denote by T [i] the subtree of
the nice tree decomposition rooted at i and let V (T [i]) = {u ∈ Xj : j ∈ T [i]}.

Now, consider a set Xi, 1 ≤ i ≤ p, of the nice tree decomposition 〈{Xi, i ∈
{1, . . . , p}}, T 〉. From the definition of treewidth, it follows that |Xi| ≤ δ + 1.
Now, let us define a mapping function fi associated to the vertices of Xi, as
follows.

Definition 1. Let Xi be a bag of the nice tree decomposition of G. A mapping
function fi from Xi to {0, 1, . . . , δ + 1} is feasible when

1. fi(v) �= 0 for each mandatory vertex v in Xi;
2. for each pair of vertices u, v ∈ Xi such that c(u) = c(v), then fi(u) = 0 or

fi(v) = 0;
3. define X l

i = {v ∈ Xi : f(vi) = l}, l ∈ {1, . . . , δ + 1}, and X ′
i = ∪lX

l
i , then

X l
i is a maximal connected component of G[X ′

i].

A feasible mapping fi represents a partition of a subset X ′
i ⊆ Xi in at most δ+1

connected components, where fi(v) = p �= 0 implies that v belongs to the p-th
connected component, while fi(v) = 0 implies that v does not belong to X ′

i.

Definition 2. Let W be a set of vertices of V (T [i]), consisting of the connected
components W1,W2, . . . ,Wz. Let fi be a feasible mapping of Xi in {0, 1, . . . δ+1},
then W is mapped (or partitioned) according to fi if:

1. for each p, 1 ≤ p ≤ z, Wp ∩Xi �= ∅, and there exists exactly one l, 1 ≤ l ≤
δ + 1, such that Wp ∩Xi = X l

i

2. for each l, 1 ≤ l ≤ δ + 1, such that X l
i �= ∅, there exists exactly one p,

1 ≤ p ≤ z, such that X l
i = Wp ∩Xi.

Notice that by Definition 2, if a vertex u of W is not in Xi, then there exists a
vertex v in W ∩Xi such that v and u are in the same connected component Wx

of W , v is assigned some label l �= 0, and all the vertices of Wx ∩Xi are assigned
the same label l.

Given two sets Xi and Xj of a nice tree decomposition, and two feasible
mappings fi : Xi → {0, . . . , δ + 1} and fj : Xj → {0, . . . , δ + 1}, then fi and fj

are consistent if, for each v ∈ Xi ∩Xj , fi(v) = fj(v).
Let i be a vertex of the nice tree decomposition, with exactly one child j, such

that |Xi| = |Xj | + 1 and Xj ⊂ Xi, with v ∈ Xi \Xj . Then, a feasible mapping
fi is an extension of a feasible mapping fj, when either:
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1. fi(v) = 0; or
2. fi(v) = l, l ∈ {1, . . . , δ + 1}, fi(u) �= l for each u ∈ Xi ∩Xj , and fi, fj are

consistent; or
3. there exists a value l ∈ {1, . . . , δ + 1} such that

(a) fi(v) = l;
(b) if fj(z) = 0, then fi(z) = 0, for z ∈ Xi ∩Xj ;
(c) if fi(z) �= fj(z), for z ∈ Xi and fj(z) �= 0, then fi(z) = l.

Given a feasible mapping fi of Xi in {0, 1, . . . δ + 1}, define c(Xi, fi) = {c ∈
Co : ∃v ∈ Xi, c(v) = c ∧ fi(v) �= 0}.

Let us define the value S[i, fi, C
′], where i is a vertex of the nice tree decom-

position of G, fi is a feasible mapping function of the set Xi in {0, 1, . . . δ + 1}
and C′ ⊆ Co be a subset of the set of optional occurrences. S[i, fi, C

′] = 1
when there exists a set W of vertices in the nice tree decomposition rooted at i,
such that the vertices of W can be partitioned according to fi, each mandatory
vertex of T [i] is in W , and the set of optional occurrences of c(W ) is C′ ; else
S[i, fi, C

′] = 0. Next, we describe how to compute S[i, fi, C
′] by dynamic pro-

gramming, depending on the three different cases of a nice tree decomposition.

Case 1) Assume that vertex i has two children j and k (recall that Xi = Xj =
Xk), then

S[i, fi, C
′] =

∨
fj ,fk,Cj,Ck

S[j, fj , Cj ] ∧ S[k, fk, Ck],

where fi, fj , fk are all feasible and consistent, C′ = (Cj ∪ Ck) and
c(Xi, fi) = Cj ∩Ck.

Case 2) Assume that i has exactly one child j, such that Xi = Xj ∪ {v}, then

S[i, fi, C
′] =

∨
fj ,Cj

S[j, fj, Cj ],

where fi and fj are feasible, fi is an extension of fj, C′ = Cj ∪ {c(v)} and
c(v) /∈ Cj , when fi(v) �= 0 and v /∈ VM , and C′ = Cj when fi(v) = 0 or
v ∈ VM .

Case 3) Assume that Xi has exactly one child Xj , such that Xi = Xj \ {v},
then

S[i, fi, C
′] =

∨
fj

S[j, fj, C
′],

where fi and fj are feasible and consistent, and there is a vertex z ∈ Xi∩Xj ,
such that fj(z) = fj(v), with v ∈ Xj \Xi, when fj(v) �= 0.

For the base cases (when Xi is a leaf of the nice tree decomposition), define
S[i, fi, C

′] = 1 when there is a partition of the vertices of Xi according to the
feasible function fi, and c(Xi, fi) = C′ ; else S[i, fi, C

′] = 0.
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First, we prove the correctness of the above recurrences, then we discuss the
time complexity of the algorithm.

Lemma 3. Let fi be a feasible mapping function of Xi, and let W be a set of
vertices in V (T [i]), such that W contains all the mandatory vertices in V (T [i]),
W can be mapped according to fi and C′ is the set of optional occurrences in
c(W ). Then S[i, fi, C

′] = 1.

Lemma 4. Let S[i, fi, C
′] = 1 for a feasible mapping function fi of Xi in

{0, 1, . . . , δ+1}, then there exists a set W of vertices in V (T [i]) such that the set
of optional occurrences in c(W ) is C′, W contains all the mandatory vertices in
V (T [i]) and the vertices of W can be mapped according to fi.

Theorem 3 shows how the values S[i, fi, C
′] are used to compute the existence

of a feasible solution for CGM.

Theorem 3. Let (G = (V,E),M, VM ) be an instance of the CGM problem.
Then there is a solution W of CGM over instance of (G,M, VM ) iff there is a
vertex i of the nice tree decomposition and a feasible function fi that maps Xi in
{0, x}, with x ∈ {1, . . . , δ+1}, such that S[i, fi, Co] = 1 and such VM ⊆ V (T [i]).

Proof. Assume that there is a vertex i of the nice tree decomposition and a
feasible function fi that maps Xi in {0, x}, with x ∈ {1, . . . , δ + 1}, such that
S[i, fi, Co] = 1 and all the mandatory vertices of G are in T [i]. By Lemma 4, it
follows that there is a set of verticesW in V (T [i]) that contains all the mandatory
vertices of G, such that the set of optional occurrences in c(W ) is Co and such
that the vertices of W can be mapped according to fi. Furthermore, notice that
W consists of a single connected component. Hence W is a solution of CGM.

Consider the case where there is a solution W of CGM over instance (G =
(V,E),M, VM ). Consider a vertex i of the tree decomposition of G such that
all the vertices of W are contained in V (T [i]). By Lemma 3, it follows that
S[i, fi, Co] = 1 for some feasible function fi that maps Xi in {0, x}, with x ∈
{1, . . . , δ + 1}. ��
Now, we discuss the time complexity of the above algorithm. Denote by n the size
of V . Given a vertex i and the associated set Xi of the nice tree decomposition,
the number of possible mapping functions of Xi into {0, . . . , δ+1} is O(δδ). The
number of possible subsets C′ is O(2k). Since the number of vertices of a nice
tree decomposition is O(n), it follows that we have O(δδn2k) entries S[i, fi, C].
Given a mapping function fi of Xi into {0, . . . , δ + 1}, computing an entry
S[i, fi, C], given the entries of the children (or the child) of i, requires time at
most O(δ2δ22k) (notice that the worst case occurs when i has two children).
Hence the total time complexity is O(δ3δn23k).

When a motif is a multiset of colors, we apply the recoloring technique pre-
sented in Lemma 1. As a consequence, CGM can be solved with error probability
ε in time O(| ln(ε)|δ3δn24.4427k), for graphs of treewidth δ.
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Fig. 3. Illustration of the reduction from Min-SC to CGM ; notice that element uj ∈ Si

5.2 Hardness of Parameterization

The CGM problem parameterized by the number of optional occurrences is
W [2]-hard, as stated in Section 2. Here we strengthen the result, showing that
the problem is W [2]-hard even when the input graph is of diameter 2.

Theorem 4. The CGM problem, parameterized by the number of optional oc-
currences, is W [2]-hard, even when the input graph is of diameter 2.

Proof. (Sketch) We give a parameterized preserving reduction from Minimum
Set Cover (Min-SC). Given a universe U = {u1, . . . , un} and a collection of sets
S = {S1, . . . , Sm} over U , CGM asks for a collection S′ of at most k sets of S,
such that

⋃
S′

i∈S′ S′
i = U . Min-SC is known to be W [2]-hard [16]. Let (U,S) be

an instance of Min-SC, we define a corresponding instance (G = (V,E),M, VM )
of the CGM problem (see Fig. 3). The graphG of diameter 2 is defined as follows:

– V = {r} ∪ {r′} ∪ {vS,i : 1 ≤ i ≤ m} ∪ {vu,j : 1 ≤ j ≤ n};

– E = {{r, r′}} ∪ {{r, vS,i} : 1 ≤ i ≤ m} ∪ {{r′, vS,i} : 1 ≤ i ≤ m} ∪
{{vS,i, vu,j} : 1 ≤ i ≤ m ∧ uj ∈ Si} ∪ {{r′, vu,j} : 1 ≤ j ≤ n}.

Vertex r and vertex r′ are both colored by c(r), vertex vS,i is colored by c(S),
1 ≤ i ≤ m, and vertex vu,j is colored by c(uj), 1 ≤ j ≤ n. The motif M
is a multiset containing one occurrence of color c(r), one occurrence of each
color c(uj), 1 ≤ j ≤ n, and k occurrences of color c(S). Finally, VM = V \
({vS,i : 1 ≤ i ≤ m} ∪ {r′}).

Then, it is possible to show that, given a solution of Min-SC of size at most
k, we can compute in polynomial time a solution of CGM over instance (G =
(V,E),M, VM ). Similarly, it is possible to show that given an occurrence VT

of motif M in G, we can compute in polynomial time a solution of Min-SC

of size at most k. By construction, a solution of CGM over instance (G =
(V,E),M, VM ) contains exactly k optional occurrences. Hence the reduction is
parameter preserving, thus implying that CGM is W [2]-hard. ��
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Abstract. Zhang and Jiang (1994) have shown that the problem of
finding an edit distance between unordered trees is MAX SNP-hard. In
this paper, we show that this problem is MAX SNP-hard, even if (1) the
height of trees is 2, (2) the degree of trees is 2, (3) the height of trees is
3 under a unit cost, and (4) the degree of trees is 2 under a unit cost.

1 Introduction

It is one of the important tasks for data mining from tree-structured data such as
HTML and XML data for web mining or DNA and glycan data for bioinformatics
to formulate such data as rooted labeled trees (trees , for short) and then compare
them based on a distance measure between trees. The most famous distance
measure between trees is an edit distance [1,7,9]. The edit distance is formulated
as the minimum cost to transform from a tree to another tree by applying edit
operations of a substitution, a deletion, and an insertion to trees.

After the algorithm to compute the edit distance for ordered trees has been
proposed [7], the time complexity of it has been improved as O(n3) time [2] so
far, where n is the maximum number of nodes in given two trees. On the other
hand, the problem of finding an edit distance for unordered trees is intractable,
that is, NP-hard [10] and MAX SNP-hard [8]. Here, the NP-hardness [10] has
been shown in the case that trees are binary under a unit cost , where a unit cost
is a cost assigning every edit operation to 1. Also the NP-hardness holds in the
case that the height of trees is 2 under a unit cost (cf., [11]).

On the other hand, the MAX SNP-hardness [8] has been shown just in the
case that the height of trees is 7 and the degrees of trees are unbounded under
an indel unit cost , not a unit cost. Here, an indel unit cost is a cost assigning
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a substitution to 2 and both a deletion and an insertion to 1. In particular, we
cannot apply this proof to showing that the problem of finding an edit distance
under a unit cost between unordered trees is MAX SNP-hard.

In this paper, as the improved MAX SNP-hard results, we show that the
problem of finding an edit distance between unordered trees is MAX SNP-hard,
even if (1) the height of trees is 2, (2) the degree of trees is 2, (3) the height of
trees is 3 under a unit cost, and (4) the degree of trees is 2 under a unit cost.
As the corollaries, we also show that the problem of finding the largest common
embedded tree (called the largest common sub-tree in [8]) between unordered
trees is MAX SNP-hard, even if (1) the height of trees is 2 and (2) the degree
of trees is 2.

2 Edit Distance and Mapping

A tree is a connected graph without cycles. For a tree T = (V,E), we denote
V and E by V (T ) and E(T ), respectively. We sometimes denote v ∈ V (T ) by
v ∈ T . A rooted tree is a tree with one node r chosen as its root .

For each node v in a rooted tree with the root r, let UPr(v) be the unique
path from v to r. The parent of v(�= r) is its adjacent node on UPr(v) and the
ancestors of v(�= r) are the nodes on UPr(v) − {v}. We denote u ≤ v if v is an
ancestor of u or u = v. The parent and the ancestors of the root r are undefined.
We say that u is a child of v if v is the parent of u, and u is a descendant of v
if v is an ancestor of u. A leaf is a node having no children.

Let T be a rooted tree and v ∈ T . The degree of v is the number of the
children of v, and the degree d(T ) of T is the maximum degree for every node
in T . The height of v is the number of edges in UPr(v), and the height h(T ) of
T is the maximum height for every node in T .

We say that a rooted tree is ordered if a left-to-right order among siblings is
given; Unordered otherwise. Also we say that a tree is labeled if each node is
assigned a symbol from a fixed finite alphabet Σ, where we denote the label of
a node v by l(v), and sometimes identify v with l(v). In this paper, we call a
rooted unordered labeled tree a tree, simply.

Let T be a tree. Then, we call the following three operations edit operations .
Also see Figure 1.

1. Substitution: Change the label of the node v in T (from l1 to l2).
2. Deletion: Delete a non-root node v in T (labeled by l1) with a parent v′

(labeled by l′), making the children of v become the children of v′. The
children are inserted in the place of v as a subset of the children of v′.

3. Insertion: The complement of deletion. Insert a node v (labeled by l2) as a
child of v′ (labeled by l′) in T making v the parent of a subset of the children
of v′.

For a special blank symbol ε �∈ Σ, let Σε = Σ ∪ {ε}. Then, we represent each
edit operation by l1 �→ l2, where (l1, l2) ∈ (Σε ×Σε − {(ε, ε)}). The operation is
a substitution if l1 �= ε and l2 �= ε, a deletion if l2 = ε, and an insertion if l1 = ε.
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Substitution l1 �→ l2

��

�→
��

Deletion l1 �→ ε

�
�

��

�→
�
�

Insertion ε �→ l2

�
�

�→

�
�

��

Fig. 1. Edit operations for trees

We define a cost γ : (Σε ×Σε −{(ε, ε)}) �→ R on pairs of labels. We constrain
a cost γ to be a metric, that is, γ(l1, l2) ≥ 0, γ(l1, l1) = 0, γ(l1, l2) = γ(l2, l1)
and γ(l1, l3) ≤ γ(l1, l2) + γ(l2, l3). In particular, we use the following two costs:

1. A unit cost μ [10,11]: μ(l1, l2) = 1 if l1 �= l2 and l1, l2 ∈ Σε.
2. An indel unit cost ιμ [3,8]: For l1, l2 ∈ Σ, ιμ(l1, ε) = ιμ(ε, l2) = 1, and
ιμ(l1, l2) = 2 if l1 �= l2.

For a cost γ, we define the cost of an edit operation by setting γ(l1 �→ l2) =
γ(l1, l2). The cost of a sequence S = s1, . . . , sk of edit operations is given by
γ(S) =

∑k
i=1 γ(si). Then, an edit distance τ(T1, T2) between trees T1 and T2 are

defined as min{γ(S) | S is a sequence of edit operations transforming T1 to T2}.
For trees T1 and T2, we say that the triple (M,T1, T2) is a mapping between

T1 and T2 if M ⊆ V (T1) × V (T2) and every pair (v1, w1) and (v2, w2) in M
satisfies the following conditions.

1. v1 = v2 iff w1 = w2 (one-to-one condition).
2. v1 ≤ v2 iff w1 ≤ w2 (ancestor condition).

We will use M instead of (M,T1, T2) when there is no confusion.
Let M be a mapping between T1 and T2. Also let I1 (resp., I2) be the set

of nodes in T1 (resp., T2) but not in M . Then, the cost γ(M) of M is given as∑
(v,w)∈M γ(l(v), l(w)) +

∑
v∈I1

γ(l(v), ε) +
∑

w∈I2
γ(ε, l(w)). Tai [7] has shown

that τ(T1, T2) = min{γ(M) |M is a mapping between T1 and T2}.
Finally, we introduce the least common embedded tree [8]. Let T1 and T2 be

two trees. A mapping f between T1 and T2 is an embedding of T1 into T2 if
l(u) = l(f(u)). We say that T1 is an embedded tree of T2 if there exists an
embedding of T1 into T2. A common embedded tree of T1 and T2 is any embedded
tree of both T1 and T2, and the largest common embedded tree of T1 and T2 is a
common embedded tree of T1 and T2 whose size is largest.
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3 MAX SNP-Hard Results

Suppose that Π1 and Π2 are two optimization problems. Then, we say that Π1

L-reduces to Π2 [5] if there exist polynomial-time algorithms f, g and constants
α, β > 0 satisfying the following statements for an instance I of Π1:

1. opt(f(I)) ≤ α · opt(I).
2. For a solution of f(I) with weight s2, the algorithm g produces in polynomial

time a solution of I with weight s1 such that |s1−opt(I)| ≤ β·|s2−opt(f(I))|.

If Π1 L-reduces to Π2 and Π2 can be approximated in polynomial
time within a factor of 1 + ε, then Π1 can be approximated within the fac-
tor 1 + αβε. If Π2 has a polynomial time approximation scheme (PTAS), then
so does Π1 [5].

A problem is MAX SNP-hard if every problem in MAX SNP can be L-reduced
to it. Since the composition of two L-reductions is also an L-reduction, a problem
is MAX SNP-hard if a MAX SNP-hard problem can be L-reduced to it. It is
known that if any MAX SNP-hard problem has a PTAS, then P=NP. Hence, it
is very unlikely for a MAX SNP-hard problem to have a PTAS [5].

In the remainder of this section, we use the L-reduction from the following
MAX SNP-hard problem MAX 3SC-3:

Maximum Bounded Covering by 3-Sets (MAX 3SC-3) [4]
Instance: A finite set S and a collection C of 3-elements subset of S,
where every element of S occurs at most three of the subsets in C.
Solution: Find the largest covering C′ ⊆ C of S, where a covering is a
collection of mutually disjoint sets.

Throughout of this paper, for an instance of the MAX 3SC-3 problem, let S =
{s1, . . . , sm} and C = {C1, . . . , Cn}. Also let Ci = {si1, si2, si3}, where sij ∈ S.
Furthermore, let C∗ be the largest covering of C.

In this paper, we investigate the following two optimization problems,
where h = max{h(T1), h(T2)} and d = max{d(T1), d(T2)}. If both h and d
are bounded by constants c1 and c2, then the maximum number of leaves is
also bounded by cc2

1 , which implies that the problem of UTED(c1, c2, γ) is
tractable [6]. Hence, we pay our attention that either h or d is unbounded,
denoted by ∗.

Unordered Tree Edit Distance with (h, d, γ) (UTED(h, d, γ))
Instance: Two unordered trees T1 and T2 and a cost γ.
Solution: Find an edit distance between T1 and T2 under a cost γ.

Largest Common Embedded Tree with (h, d) (LCET(h, d))
Instance: Two unordered trees T1 and T2.
Solution: Find the largest common embedded tree of T1 and T2.
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Fig. 2. Trees T1 and T2 [8]

3.1 The Problem of UTED(2, ∗, ιµ)

Zhang and Jiang [8] have shown that the problems of both UTED(7, ∗, ιμ)
and LCET(7, ∗) are MAX SNP-hard, by using trees T1 and T2 in Figure 2.
In this section, we show that the problems of UTED(2, ∗, ιμ) and LCET(2, ∗)
are MAX SNP-hard.

First, we construct two trees T3 and T4 with height 2 in Figure 3, which
are same trees given in [11] for proving NP-hardness of an unordered tree edit
distance. We call the i-th child of r in T3 a subtree of Ci, where 1 ≤ i ≤ n and
Ci ∈ C. Also we call the first m leaves in T4 left leaves of T4, and the last n
children of r in T4 dummy subtrees of T4. We call this transformation from an
instance of MAX 3SC-3 to unordered trees T3 and T4 f1.

�

� �

��� ��� ���

�

��� ��� ���

�

�� � �� � �

� � �

�

� � �

T3 T4

Fig. 3. Trees T3 and T4 (cf. [11])

Lemma 1. τ(T3, T4) = 6n+m− 4|C∗|.
Proof. Let M be the minimum cost mapping between T3 and T4, and k = |C∗|.
Then, without loss of generality, we can assume that (r, r) ∈M .

For every C ∈ C∗, M maps all of the leaves of a subtree of C in T3 to three
left leaves in T4. In this case, M does not touch a node labeled by s in T3. Then,
the cost of M concerned with C∗ is k. On the other hand, for every C ∈ C − C∗,
M maps every subtree of C to some dummy subtree of T4. Then, the cost of M
concerned with C − C∗ is 6(n− k).
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Since M does not touch m − 3k nodes labeled by s and n − (n − k) = k
dummy subtrees in T4, this cost of M is m− 3k + 4k = m+ k. Hence, it holds
that τ(T3, T4) = ιμ(M) = k + 6(n− k) +m+ k = 6n+m− 4k. ��
For an arbitrary mapping M between T3 and T4, let M ′ be a mapping between
T3 and T4 such that {(u, v) ∈ M | l(u) = l(v)}. By the definition of ιμ, it holds
that ιμ(M) = ιμ(M ′). Furthermore, let C′ be a covering of C obtained fromM ′ as
follows: If M ′ contains (u1, v1), (u2, v2) and (u3, v3) such that l(uj) = l(vj) = sij

(j = 1, 2, 3) for 1 ≤ i ≤ n, then add Ci to C′. We call the algorithm to construct
from M to C′ g1, which is the same algorithm introduced by [8].

Theorem 1. The problem of UTED(2, ∗, ιμ) is MAX SNP-hard.

Proof. Let I be an instance of MAX 3SC-3. By using the same discussion in
the proof of Theorem 7 in [8], it holds that n/7 ≤ opt(I). Then, by Lemma 1
and since m ≤ 3n, the following two inequalities hold.

opt(f1(I)) = 6n+m− 4 · opt(I) ≤ 9n− 4 · opt(I) ≤ 59 · opt(I),
s2 − opt(f1(I)) = ιμ(M) − τ(T3, T4) = ιμ(M ′) − τ(T3, T4)

≥ 6n+m− 4|C′| − (6n+m− 4 · opt(I)) = 4(opt(I) − s1).

Hence, (f1, g1) is an L-reduction from MAX 3SC-3 to UTED(2, ∗, ιμ). ��
Corollary 1. The problem of LCET(2, ∗) is MAX SNP-hard.

Proof. Consider the same algorithm f1 in the proof of Theorem 1. Let T ∗ be
the largest common embedded tree of T3 and T4 in Figure 3. Then, it holds that
|T ∗| = 1 + 3|C∗| + (n− |C∗|) = 1 + n+ 2|C∗|.

Consider the same algorithm g2 introduced by [8] to construct a covering C′

of C from a common embedded tree T ′ of T3 and T4 as follows. If all of the leaves
of v1, v2 and v3 such that l(vj) = sij (j = 1, 2, 3) are in T ′, then add Ci to C′. It
is obvious that |T ′| ≤ 1+n+2|C′|, that is, s2 ≤ 1+n+2s1. Since n/7 ≤ opt(I),
we obtain the following two inequalities.

opt(f1(I)) = 1 + n+ 2 · opt(I) ≤ 2n+ 2 · opt(I) ≤ 16 · opt(I),
2(opt(I) − s1) = (1 + n+ 2 · opt(I)) − (1 + n+ 2s1) ≤ opt(f1(I)) − s2.

Hence, (f1, g2) is an L-reduction from MAX 3SC-3 to LCET(2, ∗). ��

3.2 The Problem of UTED(∗, 2, ιµ)

In this section, we show that the problem of UTED(∗, 2, ιμ) is MAX SNP-hard.
First, we construct two trees T5 and T6 in Figure 4. We call the subtree of the

form s(si1, s(si2, si3)) a subtree of Ci, where 1 ≤ i ≤ n and Ci ∈ C. Also we call
m leaves labeled by sj in T6 left leaves of T6, where 1 ≤ j ≤ m, and the children
of the form s(s) of r2 in T6 dummy subtrees of T6. We call this transformation
from an instance of MAX 3SC-3 to unordered binary trees T5 and T6 f2.

Lemma 2. τ(T5, T6) = 7n+ 3m− 2|C∗| − 4.
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Fig. 4. Trees T5 and T6

Proof. Let M be the minimum cost mapping between T5 and T6, and k = |C∗|.
Without loss of generality, we can assume that (r, r) ∈ M but M does not
contain a pair (u, v) such that l(u) = r1 and l(v) = r2.

For every C ∈ C∗, M maps all of the leaves of a subtree of C in T5 to three
left leaves in T6. In this case, M does not touch nodes labeled by s in T5. Then,
the cost of M concerned with C∗ is 2k. On the other hand, for every C ∈ C −C∗,
M maps every subtree of C to some dummy subtree of T6. Then, the cost of M
concerned with C − C∗ is 3(n− k).

Furthermore, M does not touch m−3k left leaves and n−(n−k) = k dummy
subtrees in T6. Also M does not touch the nodes labeled by r1 in T5 and by r2 in
T6. Then, this cost of M is m−3k+2k+2(n−1+m+n−1) = 3m+4n−k−4.
Hence, it holds that τ(T5, T6) = ιμ(M) = 2k + 3(n − k) + 3m + 4n − k − 4 =
7n+ 3m− 2k − 2. ��
Theorem 2. The problem of UTED(∗, 2, ιμ) is MAX SNP-hard.

Proof. By Lemma 2 and since n/7 ≤ opt(I) [8] and m ≤ 3n, the following two
inequalities hold for an instance I of MAX 3SC-3 and the same algorithm g1
in Theorem 1.

opt(f2(I)) = 7n+ 3m− 2 · opt(I) − 4 ≤ 16n− 2 · opt(I) ≤ 110 · opt(I),
s2 − opt(f2(I)) = ιμ(M) − τ(T5, T6) = ιμ(M ′) − τ(T5, T6)

≥ 7n+ 3m− 2|C′| − 4 − (7n+ 3m− 2 · opt(I) − 4)
= 2(opt(I) − s1).

Hence, (f2, g1) is an L-reduction from MAX 3SC-3 to UTED(∗, 2, ιμ). ��
Corollary 2. The problem of LCET(∗, 2) is MAX SNP-hard.

Proof. Consider the same algorithm f2 in the proof of Theorem 2. Let T ∗ be
the largest common embedded tree of T5 and T6 in Figure 4. Then, it holds that
|T ∗| = 1 + 3|C∗| + 2(n − |C∗|) = 1 + 2n + |C∗|. Also, for a common embedded
tree T ′ of T5 and T6, consider the same algorithm g2 in Corollary 1. It is obvious
that |T ′| ≤ 1+2n+ |C′|, that is, s2 ≤ 1+2n+ s1. Since n/7 ≤ opt(I), we obtain
the following two inequalities.
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opt(f2(I)) = 1 + 2n+ opt(I) ≤ 3n+ opt(I) ≤ 22 · opt(I),
opt(I) − s1 = (1 + 2n+ opt(I)) − (1 + 2n+ s1) ≤ opt(f2(I)) − s2.

Hence, (f2, g2) is an L-reduction from MAX 3SC-3 to LCET(∗, 2). ��

3.3 The Problem of UTED(3, ∗, μ)

In this section, we show that the problem of UTED(3, ∗, μ) is MAX SNP-hard.
First, we construct two trees T7 and T8 in Figure 5. We call the i-th child of

r in T7 a subtree of Ci, where 1 ≤ i ≤ n and Ci ∈ C, the first m children of
r in T8 left subtrees of T8 and the last n children of r in T8 dummy subtrees of
T8. We call this transformation from an instance of MAX 3SC-3 to unordered
trees T7 and T8 f3.
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Fig. 5. Trees T7 and T8

Lemma 3. τ(T7, T8) = 3n+ 2m− 4|C∗|.
Proof. Let M be the minimum cost mapping between T7 and T8, and k = |C∗|.
Without loss of generality, we can assume that (r, r) ∈M .

For every C ∈ C∗, M maps all of the nodes of a subtree of C except the root
labeled by s in T7 to three left subtrees in T8. In this case, M does not touch
a node labeled by s. Then, the cost of M concerned with C∗ is k. On the other
hand, for every C ∈ C−C∗, M maps every subtree of C to some dummy subtree
of T8. In this case, M contains (u, v) such that l(u) = l(v) = s or l(u) = l(v) = λ
but not l(u) = sj and l(v) = λ, because M is the minimum cost. Then, the cost
of M concerned with C − C∗ is 3(n− k).

Since M does not touch m − 3k left subtrees and n − (n − k) = k dummy
subtrees in T8, this cost of M is 2(m− 3k)+ 4k = 2m− 2k. Hence, it holds that
τ(T7, T8) = μ(M) = |C∗| + 3(n− |C∗|) + 2m− 2|C∗| = 3n+ 2m− 4|C∗|. ��
In contrast to the previous sections, we cannot use the algorithm g1 [8] to con-
struct a mapping M ′ = {(u, v) ∈ M | l(u) = l(v)} from an arbitrary mapping
M , because such an M ′ satisfies that μ(M) ≤ μ(M ′), not μ(M) ≥ μ(M ′), for a
unit cost μ, while it holds that ιμ(M) = ιμ(M ′) for an indel unit cost ιμ. Hence,
in this paper, we introduce a mapping rearrangement of M .

Let M be an arbitrary mapping between T7 and T8. Note first that, if M
contains either (r, v) or (u, r), where r is the root but u and v are not roots,
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then we can construct a new M1 from M such that μ(M) ≥ μ(M1), by deleting
(r, v) or (u, r) from M and adding (r, r) to M1. Hence, we can assume that
(r, r) ∈M .

After setting a mapping M ′ = {(u, v) ∈ M | l(u) = l(v)}, we apply the
following mapping rearrangement of M . (See Figure 6.)
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Fig. 6. A mapping rearrangement between T7 and T8

1. For a pair (u, v) ∈ M such that l(u) = si and l(v) = λ, add (u′, v) to M ′,
where u′ is the unique child of u labeled by λ and not touched by M .

2. For a pair (u, v) ∈ M such that l(u) = λ and l(v) = si or l(v) = s, add
(u, v′) to M ′, where v′ is a child of v labeled by λ and not touched by M .

3. For a pair (u, v) ∈ M such that l(u) = si and l(v) = s, add (u′, v) to M ′,
where u′ is the parent of u labeled by s and not touched by M .

4. For a pair (u, v) ∈M such that l(u) = s and l(v) = si, first select a dummy
subtree not touched by M or M ′, and then add (u, v0), (u1, v1), (u2, v2) and
(u3, v3) to M ′, where ui is the leaf of the subtree rooted by u, v0 is the root
of the dummy subtree and vi is the leaf of the dummy subtree for i = 1, 2, 3.

Lemma 4. μ(M) ≥ μ(M ′).

Proof. Since mapping rearrangements for Cases 1, 2 and 3 change (u, v) ∈ M
such that l(u) �= l(v) to (u′, v′) ∈ M ′ such that l(u′) �= l(v′), it is obvious that
μ(M) ≥ μ(M ′).

For Case 4, note that there always exists a dummy subtree not touched by
M ′. Then, for subsets S ⊆M and S′ ⊆M ′ concerned with Case 4, it holds that
10 = 6 + 4 ≤ μ(S) ≤ 8 + 4 = 12 and μ(S′) = 3 + 2 = 5, which implies that
μ(S) ≥ μ(S′). Hence, it holds that μ(M) ≥ μ(M ′). ��
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Let C′ be a covering of C obtained fromM ′ as same as g1. We call the algorithm
to construct from M to C′ g3.

Theorem 3. The problem of UTED(3, ∗, μ) is MAX SNP-hard.

Proof. By Lemma 3 and 4, and since n/7 ≤ opt(I) [8] and m ≤ 3n, the following
two inequalities hold for an instance I of MAX 3SC-3.

opt(f3(I)) = 3n+ 2m− 4 · opt(I) ≤ 9n− 4 · opt(I) = 59 · opt(I),
s2 − opt(f3(I)) = μ(M) − τ(T7, T8) ≥ μ(M ′) − τ(T7, T8)

≥ 3n+ 2m− 4|C′| − (3n+ 2m− 4 · opt(I)) = 4(opt(I) − s1).

Hence, (f3, g3) is an L-reduction from MAX 3SC-3 to UTED(3, ∗, μ). ��

3.4 The Problem of UTED(∗, 2, μ)

In this section, we show that the problem of UTED(∗, 2, μ) is MAX SNP-hard.
First, we construct two trees T9 and T10 in Figure 7, where the number of

nodes labeled by ρ in T9 and T10 (enclosed by a solid line) is 8n+ 2m+ 2, and
we call it a ρ-subtree. We call the left child of q with height i in T9 a subtree of
Ci, where 1 ≤ i ≤ n and Ci ∈ C. Also we call the left child of q with height j in
T10 a subtree of sj , where 1 ≤ j ≤ m and sj ∈ S, and the left child of q with
height k in T10 dummy subtrees of T10, where m+ 1 ≤ k ≤ n+m. We call this
transformation from an instance of MAX 3SC-3 to unordered trees T9 and T10

f4. In particular, let M0 be the mapping between ρ-subtrees of T9 and T10 that
touches all of the nodes labeled by ρ.
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Fig. 7. Trees T9 and T10

Lemma 5. Every mapping M between T9 and T10 that does not touch ρ-subtrees
of T9 and T10 satisfies that μ(M) > μ(M0).

Proof. For M0, it holds that μ(M0) is the total number of nodes in T9 and T10

except ρ-subtrees, that is, (9n + 1) + (6n + 3m + 2) = 15n + 3m + 3. On the
other hand, for every mapping M between T9 and T10 that does not touch ρ-
subtrees of T9 and T10, it holds that μ(M) ≥ 2(8n+ 2m+ 2) = 16n+ 4m+ 4 >
15n+ 3m+ 3 = μ(M0). ��
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Lemma 6. τ(T1, T2) = 5n+ 3m− 2|C∗|.
Proof. Let M be the minimum cost mapping between T9 and T10, and k = |C∗|.
Without loss of generality, we can assume that (r, r) ∈ M . Also, since it holds
that M0 ⊆M by Lemma 5, M touches no nodes labeled by q in T9 and T10.

For every C ∈ C∗, M maps all of the nodes of a subtree of C except the
nodes labeled by s and t in T9 to three subtrees of si, sj and sk in T10, where
1 ≤ i, j, k ≤ m. In this case,M does not touch the nodes labeled by s and t. Then,
the cost of M concerned with C∗ is 2k. On the other hand, for every C ∈ C −C∗,
M maps every subtree of C to some dummy subtree of T8. In this case, M
contains (u, v) such that l(u) = l(v) = s, l(u) = l(v) = t or l(u) = l(v) = λ but
not l(u) = sj and l(v) = λ, because M is the minimum cost. Then, the cost of
M concerned with C − C∗ is 3(n− k).

Furthermore, M does not touch n nodes labeled by q in T9 and n+m nodes
labeled by q in T10. Also M does not touch m − 3k subtrees of si in T10 and
n − (n − k) = k dummy subtrees in T10. Then, this cost of M is n + n + m +
2(m − 3k) + 5k = 2n + 3m − k. Hence, it holds that τ(T9, T10) = μ(M) =
2|C∗| + 3(n− |C∗|) + 2n+ 3m− |C∗| = 5n+ 3m− 2|C∗|. ��
Let M be an arbitrary mapping between T9 and T10. Without loss of generality,
we can assume that (r, r) ∈ M . Then, we start a mapping rearrangement of M
by constructing the following mapping M∗ from M :

M∗ = (M − (M1 ∪M2 ∪M3)) ∪M0, M2 = {(u, v) ∈M | l(u) = ρ},
M1 = {(u, v) ∈M | l(u) = l(v) = q}, M3 = {(u, v) ∈M | l(v) = ρ}.

Lemma 7. μ(M) > μ(M∗).

Proof. If (u, v) ∈ M such that l(u) = l(v) = q, then M contains no pair (u′, v′)
such that l(u′) = l(v′) = ρ, which implies that μ(M) > μ(M0) ≥ μ((M −M1) ∪
M0) by Lemma 5.

If (u, v) ∈ M such that l(u) = ρ and l(v) �= ρ, then there exists a node v′

in T10 such that l(v′) = ρ and M does not touch v′ for such a node u, which
implies that μ(M) ≥ μ((M −M2) ∪M0).

If (u, v) ∈ M such that l(u) �= ρ and l(v) = ρ, then there exists a node u′ in
T9 such that l(u′) = ρ and M does not touch u′ for such a node v, which implies
that μ(M) ≥ μ((M −M3) ∪M0). ��
After setting a mappingM ′ = {(u, v) ∈M∗ | l(u) = l(v)}, we apply the following
mapping rearrangement of M through M∗. (See Figure 8 and 9.)

1. For a pair (u, v) ∈ M∗ such that l(u) = si and l(v) = λ, add (u′, v) to M ′,
where u′ is the unique child of u labeled by λ and not touched by M∗.

2. For a pair (u, v) ∈M∗ such that l(u) = λ and l(v) = si, l(v) = t or l(v) = s,
add (u, v′) to M ′, where v′ is a descendant of v labeled by λ and not touched
by M∗.

3. For a pair (u, v) ∈ M∗ such that l(u) = si and l(v) = s, add (u′, v) to M ′,
where u′ is the ancestor of u such that l(u′) = s and not touched by M∗.
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Case 1.
M∗ M ′ M∗ M ′
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M∗ M ′ M∗ M ′
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Case 3.
M∗ M ′ M∗ M ′
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Fig. 8. A mapping rearrangement between T9 and T10 (1)

4. Consider a pair (u, v) ∈M∗ such that l(u) = si and l(v) = t.
Suppose that the label of the parent u1 of u is t. If (u1, v1) ∈M∗ such that
v1 is a parent of v labeled by s, then M∗ does not touch the parent u2 of
u1, so add (u2, v1) and (u1, v) to M ′. Otherwise, add (u1, v) to M ′ simply.
Suppose that the label of the parent u1 of u is s. If (u2, v

′) ∈M∗ such that
u2 is a sibling of u1 labeled by t and v′ is some node in T9, then add (u2, v)
and (u3, v1) to M ′, where u3 is the unique child of u labeled by λ and v1 is
a sibling of v labeled by λ. Otherwise, add (u2, v) to M ′ simply.

5. For a pair (u, v) ∈ M∗ such that l(u) = s and l(v) = si, first select a
dummy subtree not touched by M∗ or M ′ and rooted by v0, and then add
(u, v0), (u1, v1), (u2, v2), (u3, v3) and (u4, v4) to M ′, where ui is the leaf of
the subtree rooted by u, vi is the leaf of the dummy subtree (i = 1, 2, 3), u4

is the child of u labeled by t and v4 is the child of v0 labeled by t.
6. For a pair (u, v) ∈M∗ such that l(u) = t and l(v) = si, first select a dummy

subtree not touched by M∗ or M ′ and rooted by v0, and then add (u, v1),
(u1, v0), (u2, v2), (u3, v3) and (u4, v4), where v1 is the child of v0 labeled by
t, u1 is the parent of u, u2 and u3 are the leaves of the subtree rooted by u,
v2 and v3 are the leaves of the right subtree of the dummy subtree, u4 is the
leaf of the left child of u3, and v4 is the left child of v3.

Lemma 8. μ(M∗) ≥ μ(M ′).
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Case 4.
M∗ M ′ M∗ M ′
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Case 5. Case 6.
M∗ M ′ M∗ M ′
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Fig. 9. A mapping rearrangement between T9 and T10 (2)

Proof. Since mapping rearrangements for Cases 1, 2 and 3 change (u, v) ∈ M∗

such that l(u) �= l(v) to (u′, v′) ∈ M ′ such that l(u′) = l(v′), it is obvious that
μ(M∗) ≥ μ(M ′). Since a mapping rearrangement for Case 4 changes (u, v) ∈M∗

such that l(u) �= l(v) to (u′, v′) ∈ M ′ such that l(u′) = l(v′) and possibly adds
(u′′, v′′) ∈M ′ such that l(u′′) = l(v′′) to M ′, it holds that μ(M∗) ≥ μ(M ′).

For Cases 5 and 6, note that there always exists a dummy subtree not touched
by M ′. Then, for subsets S∗ ⊆ M∗ and S′ ⊆ M ′ concerned with Cases 5 or 6,
it holds that 12 = 7 + 5 ≤ μ(S∗) ≤ 9 + 5 = 14 and μ(S′) = 3 + 2 = 5, which
implies that μ(S∗) ≥ μ(S′). Hence, it holds that μ(M∗) ≥ μ(M ′). ��

Let C′ be a covering of C obtained fromM ′ as same as g1. We call the algorithm
to construct from M to C′ through M∗ g4.

Theorem 4. The problem of UTED(∗, 2, μ) is MAX SNP-hard.

Proof. By Lemma 6, 7 and 8, and since n/7 ≤ opt(I) [8] and m ≤ 3n, the
following two inequalities hold for an instance I of MAX 3SC-3.

opt(f4(I)) = 5n+ 3m− 2 · opt(I) ≤ 14n− 2 · opt(I) = 96 · opt(I),
s2 − opt(f4(I)) = μ(M) − τ(T9, T10) ≥ μ(M ′) − τ(T9, T10)

≥ 5n+ 3m− 2|C′| − (5n+ 3m− 2 · opt(I)) = 2(opt(I) − s1).

Hence, (f4, g4) is an L-reduction from MAX 3SC-3 to UTED(∗, 2, μ). ��

4 Conclusion

In this paper, for two unordered trees with the maximum height h and the maxi-
mum degree d, we have investigated two optimization problems of UTED(h, d, μ)
to find an edit distance between given trees under a cost γ and LCET(h, d) to
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find the largest common embedded tree of given trees. Then, we have shown that
UTED(2, ∗, ιμ), LCET(2, ∗), UTED(∗, 2, ιμ), LCET(∗, 2), UTED(3, ∗, μ) and
UTED(∗, 2, μ) are MAX SNP-hard, where ιμ and μ are an indel unit cost and
an unit cost, respectively.

Concerned with an edit distance for unordered trees, Jiang et al. [3] have
shown that the problem of finding an alignment between unordered trees is
MAX SNP-hard under an indel unit cost ιμ, even if one tree is binary. It is a
future work to discuss whether or not this problem is MAX SNP-hard under a
unit cost μ.

References

1. Bille, P.: A survey on tree edit distance and related problems. Theoret. Comput.
Sci. 337, 217–239 (2005)

2. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition
algorithm for tree edit distance. ACM Trans. Algorithms 6 (2009)

3. Jiang, T., Wang, L., Zhang, K.: Alignment of trees – an alternative to tree edit.
Theoret. Comput. Sci. 143, 137–148 (1995)

4. Kann, V.: Maximum bounded 3-demensional matching is MAX SNP-complete.
Inform. Process. Let. 37, 27–35 (1991)

5. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation and complex-
ity. J. Comput. System Sci. 43, 425–440 (1991)

6. Shasha, D., Wang, J.T.-L., Zhang, K., Shih, F.Y.: Exact and approximate algo-
rithms for unordered tree matching. IEEE Trans. Sys. Man. and Cybernet. 24,
668–678 (1994)

7. Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26, 422–433 (1979)
8. Zhang, K., Jiang, T.: Some MAX SNP-hard results concerning unordered labeled

trees. Inform. Process. Let. 49, 249–254 (1994)
9. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between

trees and related problems. SIAM J. Comput. 18, 1245–1262 (1989)
10. Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered

labeled trees. Inform. Process. Let. 42, 133–139 (1992)
11. Zhang, K., Wang, J., Shasha, D.: On the editing distance between undirected

acyclic graphs. Int. J. Found. Comput. Sci. 7, 43–58 (1995)



Approximation Algorithms for

Orienting Mixed Graphs

Michael Elberfeld1,�, Danny Segev2,�, Colin R. Davidson3,
Dana Silverbush4, and Roded Sharan4

1 Institute of Theoretical Computer Science,
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Abstract. Graph orientation is a fundamental problem in graph theory
that has recently arisen in the study of signaling-regulatory pathways in
protein networks. Given a graph and a list of ordered source-target ver-
tex pairs, it calls for assigning directions to the edges of the graph so as
to maximize the number of pairs that admit a directed source-to-target
path. When the input graph is undirected, a sub-logarithmic approxi-
mation is known for the problem. However, the approximability of the
biologically-relevant variant, in which the input graph has both directed
and undirected edges, was left open. Here we give the first approximation
algorithm to this problem. Our algorithm provides a sub-linear guarantee
in the general case, and logarithmic guarantees for structured instances.

Keywords: protein-protein interaction network, mixed graph, graph ori-
entation, approximation algorithm.

1 Introduction

Protein-protein interactions (ppis) form the skeleton of signal transduction in
the cell. While many of these interactions carry directed signaling information,
current ppi measurement technologies, such as yeast two hybrid [10] and co-
immunoprecipitation [14], cannot reveal the direction in which the signal flows.
The problem of inferring this hidden directionality information is fundamental
to our understanding of how these networks function. Previous work on this
problem has relied on information from perturbation experiments [23], in which
a gene is perturbed (cause) and as a result other genes change their expression
levels (effects), to guide the orientation inference. Specifically, it is assumed that
for an effect to take place, there must be a directed path in the network from
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the causal gene to the affected gene. The arising combinatorial problem is to
orient the edges of the network such that a maximum number of cause-effect
pairs admit a directed path from the causal to the affected gene. When studying
a ppi network in isolation, the input network is undirected. However, the more
biologically relevant variant considers also protein-dna interactions as these are
necessary to explain the expression changes. Moreover, the directionality of some
ppis, like kinase-substrate interactions, is known in advance. Thus, in general,
the input network is a mixed graph containing both directed and undirected
edges.

The optimization problem that we study draws its recent interest from appli-
cations in network biology, but is rooted at practical applications from already a
century ago: In 1939, Robbins [20], who was motivated by applications in street
network design, showed that an undirected graph has a strongly connected ori-
entation if and only if it has no bridge edge. The corresponding decision problem
can be solved in linear time [22]. The characterization of Robbins was extended
to mixed graphs by Boesch et al. [5]; linear time algorithms for deciding whether
a mixed graph admits a strongly connected orientation were presented by Chung
et al. [7]. Hakimi et al. [15] presented a polynomial algorithm for the problem
of orienting an undirected graph so as to maximize the number of source-target
pairs out of all possible ordered vertex pairs that admit a directed source-to-
target path. A recent work by Dorn et al. [9] studies the parameterized complex-
ity of orienting graphs. We refer to the textbook of Bang-Jensen and Gutin [3]
for a comprehensive discussion of various graph orientation problems.

More recently, the problem of network orientation has been motivated by
applications in network biology. Medvedovsky et al. [18] who formulated the
problem that we study here, focused on restricted instances where the input
graph is undirected, providing a logarithmic approximation algorithm for the
problem. The approximation guarantee was later improved to Ω(log logn/ logn)
by Gamzu et al. [13], where n denotes the number of vertices in the input graph.
Gamzu et al. also showed that the orientation problem on mixed graphs can be
approximated to within a poly-logarithmic ratio of Ω(1/ logl n) where l is the
maximum number of alternations between undirected and directed edges on a
source-to-target path. Silverbush et al. [21] developed an ilp-based algorithm to
optimally orient mixed networks, but the approximability of the problem (for
non-constant l) was left open.

In this work, we study the approximability of the orientation problem on
mixed graphs. We show that the problem is NP-hard to approximate to within a
factor of 7/8. We then reduce the problem to orienting acyclic mixed graphs. We
provide logarithmic approximation guarantees for tree-like reduced instances and
use those to develop a sub-linear approximation algorithm for general instances.

The paper is organized as follows: In the next section we formally define the
orientation problem, discuss its complexity and describe a generic reduction to
acyclic mixed graphs. In Section 3 we present logarithmic factor approximation
algorithms for tree-like instances. Section 4 presents the sub-linear approxima-
tion algorithm for the general case.
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2 Preliminaries

Notation and terminology. We focus on simple graphs with no loops or parallel
edges. A mixed graph is a triple G = (V,EU, ED) that consists of a vertex set
V , a set of undirected edges EU ⊆ {e ⊆ V | |e| = 2}, and a set of directed edges
ED ⊆ V × V . We assume that every pair of vertices is either connected by a
single edge of a specific type (directed or undirected) or not connected at all.
We also write V (G), EU(G), and ED(G) to refer to the sets V , EU, and ED,
respectively. When G is clear from the context, we will denote n = |V |.

Let G1 and G2 be two mixed graphs. The graph G1 is a subgraph of G2 when
the relations V (G1) ⊆ V (G2), EU(G1) ⊆ EU(G2), and ED(G1) ⊆ ED(G2) hold.
A path of length � in a mixed graph G is a sequence p = 〈v1, v2, . . . , v�, v�+1〉
of distinct vertices such that for every 1 ≤ i ≤ �, we have {vi, vi+1} ∈ EU (G)
or (vi, vi+1) ∈ ED(G). It crosses a vertex v ∈ V (G) when v = vi for some
i ∈ {1, . . . , �+ 1}. It is a cycle when v1 = v�+1. Given s ∈ V (G) and t ∈ V (G),
we say that t is reachable from s when there exists a path in G that goes from s
to t. In this case we also say that G satisfies the pair (s, t). A mixed graph with
no cycles is called a mixed acyclic graph (mag).

Let G be a mixed graph. An orientation of G is a directed graph over the
same vertex set, whose edge set contains all the directed edges of G and a single
directed instance of every undirected edge, but nothing more. When only a subset
of the undirected edges have been oriented, we obtain a partial orientation.

Problem statement. The maximum-mixed-graph-orientation problem is de-
fined as follows:

Input: A mixed graph G, and a collection of source-target vertex pairs P ⊆
V (G) × V (G).

Output: An orientation of G that satisfies a maximum number of pairs from P .

Hardness result. Arkin and Hassin [1] showed that it is NP-complete to decide
whether, for a given mixed graph G and a collection of source-target pairs P ,
the graph G can be oriented to satisfy all pairs in P . Their reduction, based on
the 3-satisfiability problem, guarantees that for every k ∈ N there exists an
assignment with k satisfied clauses if and only if there exists an orientation with k
satisfied pairs. Thus, the inapproximability of maximum-3-satisfiability [16]
directly transfers to maximum-mixed-graph-orientation, implying that it is
NP-hard to approximate it to within a factor of 7/8. We note that this bound is
slightly lower than the 12/13-bound known for the special case where the input
graph is undirected [18].

Reduction to mixed acyclic graphs. Given an orientation instance (G,P ), we can
orient the undirected edges of any mixed cycle in a consistent direction without
affecting the maximum number of source-target pairs that are satisfied by an
optimal orientation. This observation gives rise to a polynomial-time reduction
from mixed graphs to mags: First, we iteratively orient mixed cycles in the input
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graph. Then, we contract strongly connected components into single vertices, and
connect two components by an undirected (directed) edge when some vertex in
the first component is connected by such an edge to a vertex in the second
component (note that there cannot be more than one edge type as otherwise the
two strongly connected components would have been merged). The pairs from
P are adjusted accordingly from vertices of G to component vertices. A formal
correctness proof of this reduction is given by Silverbush et al. [21].

Given a mag G, the components of the undirected graph (V (G), EU(G)) are
called the undirected components of G; they must be trees that are connected
by directed edges from ED(G) without producing cycles. The graph of undi-
rected components of G is the directed acyclic graph Gucc with V (Gucc) = {Gi |
Gi is an undirected component of G}, and there is a directed edge from a node
Gi to a node Gj when there is an edge from some vertex v ∈ Gi to some vertex
w ∈ Gj .

By the reduction above, we may focus our attention on treating mags. In
addition, we may assume that each of the input pairs can be satisfied by some
orientation; otherwise, it can be eliminated without affecting the optimum so-
lution. Thus, throughout the paper, all instances considered will be assumed to
satisfy these two properties.

3 Logarithmic Approximations for Tree-Like Instances

In this section we provide logarithmic approximations that apply to orientation
instances where the graph is “similar” to a tree, as formally defined in the sequel.
In the remainder of this section, we make use of the following result about
orienting undirected trees due to Medvedovsky et al. [18]:

Lemma 3.1. Let (G,P ) be an orientation instance where G is an undirected
tree. There is a polynomial-time algorithm that computes an orientation satisfy-
ing at least |P |/(4�logn�) pairs.

3.1 Orienting Mixed Trees

The above lemma guarantees that a logarithmic fraction of the input pairs
can always be satisfied, and since it is constructive, we immediately derive
an Ω(1/ logn) approximation algorithm for undirected trees. The following se-
quences of claims are of similar nature: We prove the existence of orientations
satisfying a certain fraction of all input pairs, and this leads to approximation
algorithms with the corresponding ratio. We start with orientations for mixed
trees.

Lemma 3.2. Let (G,P ) be an orientation instance with a mixed tree G. There
is a polynomial-time algorithm that computes an orientation satisfying at least
|P |/(4�logn�) of the pairs.
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Proof. First contract all directed edges of the tree into single vertices and update
the end vertices of the input pairs accordingly. The resulting graph is an undi-
rected tree with source-to-target paths for every pair in P . By Lemma 3.1, there
exists a polynomial-time algorithm that finds an orientation of the resulting tree
satisfying at least 1/(4�logn�) of the pairs. Carrying over the edge directions
to the initial mixed tree produces an orientation that satisfies exactly the same
collection of pairs in the original orientation instance. ��

3.2 Crossings through a Junction Component

Let (G,P ) be an orientation instance and let T1, T2, . . . be the undirected com-
ponents of G. We construct a subgraph of G, called the skeleton S = S(G) of G
by deleting all but one directed edge between any pair of trees Ti and Tj. Note
that the exact structure of a skeleton graph depends on the (polynomial-time)
procedure used for its construction; we choose any fixed procedure to define S
unambiguously. It is not difficult to verify that the skeleton S contains source-
to-target paths for the pairs P , and that every orientation of S satisfying certain
pairs directly translates into an orientation for G satisfying at least the same
pairs. Figure 1 shows an example of a graph G and a skeleton for it. Note that
for any mag G and its skeleton S = S(G), we have Gucc = Succ.

G S

Fig. 1. An example mag G and a skeleton S of it

The next lemma is crucial to establish the remaining results of this section,
as well as the sub-linear approximation algorithm described in Section 4.

Lemma 3.3. Let (G,P ) be an orientation instance and T be an undirected com-
ponent of G. If each pair in P admits a source-to-target path that crosses a vertex
from T then there is a polynomial-time algorithm that computes an orientation
satisfying at least |P |/(4�logn�) of the pairs.

Proof. Since the skeleton S = S(G) is a mag and, therefore, Succ is a directed
acyclic graph, for every undirected component T ′ �= T of Succ, exactly one
of the following options holds: (1) T ′ is reachable from T in Succ; (2) T is
reachable from T ′ in Succ; or (3) there is no path between T and T ′ in either
direction. Consequently, we can consider two subtrees that are rooted at T : The
first subtree spans the vertices of Succ that are reachable from T , and the second
subtree spans the vertices of Succ that can reach T . We merge both subtrees at
T and call the resulting directed tree Tucc. To compute an orientation for G, we
consider the subtree of S that is constructed by taking all undirected components
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from Tucc, and connect two vertices in different components by a directed edge
if this edge is already present in S and the components are connected in Tucc.
This subtree of S contains a source-to-target path for each pair in P . Therefore,
by Lemma 3.2, we can construct (in polynomial time) an orientation satisfying
at least |P |/(4�logn�) pairs in S and, thus, also in the original graph G. ��
Lemma 3.3 implies an Ω(1/ logn) approximation for a special case of the ori-
entation problem, which we call maximum-junction-tree-orientation. In
Section 4 we shall apply the algorithm to instances where all pairs have source-
to-target paths crossing a distinguished vertex r.

3.3 Orientations for Small Feedback Vertex Sets or Treewidth

We end this section by providing logarithmic approximations to the orientation
problem on tree-like instances. Precisely, we consider two graph parameters:
feedback vertex number and treewidth, showing that whenever either one of these
is bounded by a constant, it is possible to compute an orientation that satisfies
a poly-logarithmic fraction of the input pairs.

Lemma 3.4. Let (G,P ) be an orientation instance where the underlying undi-
rected subgraph of Gucc can be turned into a tree by deleting at most k vertices.
There is a polynomial-time algorithm that computes an orientation satisfying at
least |P |/(4(2k + 1)�logn�) pairs.

Proof. We begin by detecting a small-sized feedback vertex set F = {T1, . . . , T�},
consisting of � vertices whose removal turns the underlying undirected subgraph
of Gucc into a tree. Even though finding a minimum cardinality vertex set of
this type is NP-hard [17], this problem can be approximated to within a factor
of 2 in undirected graphs [2], implying that we can assume � ≤ 2k. We now
partition P into two subsets, the collection of pairs P+ for which we can find
source-to-target paths in G that cross undirected components from F , and the
collection P− = P \ P+. We further partition P+ into � subsets P+

1 , . . . , P
+
� ,

where a pair (s, t) ∈ P+ lies in P+
i if i is the minimal index for which there exists

a source-to-target path for this pair that crosses the undirected component Ti.
With these definitions at hand, note that by deleting the undirected components
F from G, we can use Lemma 3.2 to efficiently compute an orientation of G
satisfying at least |P−|/(4�logn�) pairs; after deleting F the skeleton of the
resulting graph is a tree and all pairs in P− remain connected since they are
only connected through paths that not visit vertices from F . On the other hand,
for each collection P+

i we can satisfy at least |P+
i |/(4�logn�) pairs by applying

Lemma 3.3. Picking the option that generates the highest number of satisfied
pairs results in an orientation satisfying at least |P |/(4(2k + 1)�logn�) of the
pairs in P . ��
We note that the above approximation result can be improved by a factor of 2
if the feedback vertex set has bounded size. For such instances we can invoke an
exact fixed parameter algorithm [6] to find an optimal feedback set, rather than
using the 2-approximation algorithm.
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Lemma 3.5. Let (G,P ) be an orientation instance where the underlying undi-
rected subgraph of Gucc has treewidth k. There is a polynomial-time algorithm
that computes an orientation satisfying at least |P |/(4(k + 1)�logn�2) pairs.

Proof. We first compute a tree decomposition of width k for the undirected
underlying graph of Gucc. A tree decomposition (T , {Bt}t∈V (T )) consists of a
tree T whose nodes are labeled with possibly-overlapping subsets Bt of vertices,
called bags, such that: (1) the incident vertices of every edge are both contained
in some bag; and (2) for every original vertex, the nodes of the bags that contain
it make up a connected subtree. Its width is defined as the maximum number of
vertices in a bag minus 1. For a comprehensive discussion on tree decompositions
and their polynomial-time computability in the case of bounded tree width, we
refer to the book of Flum and Grohe [11].

Based on the tree decomposition (T , {Bt}t∈V (T )), we partition P into subsets
P1, P2, . . . , PL with L ≤ �logn� such that for every subset we can efficiently
find an orientation that satisfies a fraction of at least 1/(4(k + 1)�logn�) of its
pairs. By picking the largest subset of pairs and its corresponding orientation,
we obtain an orientation satisfying at least |P |/(4(k + 1)�logn�2) pairs.

For the purpose of constructing P1, consider a centroid node t of T whose
removal breaks this tree into subtrees of cardinality at most |V (T )|/2, noting
that any tree necessarily contains a centroid (see, for instance, [12]). Let P1 be
the pairs in P with source-to-target paths that cross vertices from undirected
components of Bt = {T1, . . . , Tl}, where l ≤ k + 1. We further partition P1 into
l collections P 1

1 , . . . , P
l
1 such that a pair (s, t) ∈ P1 lies in P 1

i if there exists an
s-t path that crosses vertices from Ti but no s-t paths that cross vertices from
components Tj with j < i. By Lemma 3.3, we can compute an orientation that
satisfies at least |P i

1|/(4�logn�) of the pairs in P i
1, for every 1 ≤ i ≤ l. By taking

the largest collection, we can satisfy at least |P1|/(4(k + 1)�logn�) pairs in P1.
To construct P2, we proceed with the pair collection P \ P1 that contains

exactly the pairs from P with no source-to-target paths that cross vertices from
the components of P1. We delete the node t from T , as well as the components
in Bt from G. This results in a graph that contains source-to-target paths for all
pairs from P \P1 and a forest of tree decompositions for the graph. For each tree
decomposition we compute a centroid bag and, in the same way as above, the
collection P2 of pairs in P \P1 with source-to-target paths that cross components
from these centroid bags. Using the same arguments as above, we can compute
an orientation that satisfies at least |P2|/(4(k+1)�logn�) of the pairs in P2. We
proceed recursively in the same way to construct P3, P4, . . . , PL as long as each
tree decomposition (and the corresponding subgraph of G) is not empty. Since
the maximal size of a subtree decreases by a factor of at least 2 in each level of
the recursion, this process terminates within �logn� steps. ��

4 Sub-linear Approximations for General Instances

In what follows, we focus our attention on approximating the orientation prob-
lem in its utmost generality, that is, without making simplifying structural
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assumptions on the underlying (mixed-acyclic) graph G and on the collection of
input pairs P . The main result of this section can be briefly stated as follows.

Theorem 4.1. The maximum-mixed-graph-orientation problem can be ap-
proximated within a factor of Ω(1/(M1/

√
2 logn)), where M = max{n, |P |}.

In addition, we provide an improved approximation guarantee for input instances
with bounded-distance pairs. This result is described in Section 4.3.

4.1 The Algorithm

For each pair (si, ti) ∈ P , let pi be a shortest path from si to ti in G, and let P be
the set of all shortest paths, i.e., P = {pi : (si, ti) ∈ P}. Our algorithm is based
on a greedy framework where paths in P are oriented (from source to target)
one after the other, trying not to interfere with future orientations of too many
other paths by picking the shortest path in each step. Somewhat informally, this
process concludes as soon as one of the following termination conditions is met:

The greedy step. At any point in time, we will be holding a partial orientation
G� of G and a subset P� ⊆ P of shortest paths, where these sets are indexed
according to the step number that has just been completed. In other words, at
the conclusion of step � we have G� and P�, where initially G0 = G and P0 = P .
Now, as long as none of the termination conditions described below is met, we
proceed as follows:

1. Let p̂ =< s, . . . , t > be a shortest path in P�.
2. Orient p̂ in the direction from s to t to obtain G�+1.
3. Discard from P� the path p̂ as well as any path that has a non-empty edge

intersection with p̂. This way, we obtain P�+1.

Termination conditions. There are two conditions that will cause the greedy
iterations to terminate. For now, we state both conditions in terms of two pa-
rameters α ≥ 0 and β ≥ 0, whose values will be optimized later on.

Condition 1: |P�| ≤ nα. In this case, we will orient an arbitrary path from
P�, and update the current orientation to G�, as in the preceding greedy
iterations. We then complete the orientation by arbitrarily orienting all yet-
unoriented edges.

Condition 2: There exists a vertex r such that at least |P�|β paths in P�

go through r. We construct a maximum-junction-tree-orientation in-
stance with input graph G�, junction vertex r, and pairs {(si, ti) : pi ∈
P� goes through r}. We then apply the algorithm described in Section 3.2
for this special case, and return its output as our final orientation.

4.2 Analysis

To establish a lower bound on the number of satisfied pairs, we break the analy-
sis into two cases, depending on the condition that caused the greedy iterations to
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terminate. In the remainder of this section, we assume that L greedy iterations
have been completed prior to satisfying one of the termination conditions.

Connections due to condition 1: In this case we satisfy a single pair out of
{(si, ti) : pi ∈ PL}, noting that |PL| ≤ nα.

Connections due to condition 2: Following Lemma 3.3, the number of pairs
satisfied out of {(si, ti) : pi ∈ PL} is Ω(1/ logn) · |PL|β .

We proceed by arguing that an Ω(1/n1−α(1−2β)) fraction of the pairs in
{(si, ti) : pi /∈ PL} are already satisfied by the partial orientation GL. To this
end, note that in each iteration 1 ≤ � ≤ L we satisfy a single pair by orienting
the shortest path p̂ ∈ P�−1, and eliminating several others to obtain P�. To
prove the claim above, it is sufficient to show that the number of eliminated
paths satisfies |P�−1 \ P�| ≤ n1−α(1−2β). Denote by E(p) the set of edges of
a path p, so that |E(p)| is its length. We begin by observing that, since con-
dition 2 has not been met in iteration �, each edge can have at most |P�−1|β
paths from P�−1 going through it, implying that |P�−1 \ P�| ≤ |E(p̂)| · |P�−1|β .
Since |E(p̂)| is upper bounded by the average length of the paths in P�−1,
we have

|E(p̂)| ≤ 1
|P�−1|

∑
pi∈P�−1

|E(pi)| ≤ 1
|P�−1|

∑
pi∈P�−1

|V (pi)|

=
1

|P�−1|
∑
v∈V

|{pi ∈ P�−1 : v ∈ V (pi)}|

≤ 1
|P�−1| · n · |P�−1|β =

n

|P�−1|1−β
,

where the third inequality holds since condition 2 has not been met. Hence,

|P�−1 \ P�| ≤ n

|P�−1|1−2β
≤ n

nα(1−2β)
= n1−α(1−2β) ,

where the second inequality follows from |P�−1| > nα, as condition 1 has not
been met.

Putting it all together. Based on the above discussion, it follows that the number
of satisfied pairs when we terminate the algorithm due to condition 1 is

Ω

(
1

n1−α(1−2β)

)
(|P | − |PL|) + 1 = Ω

(
1

n1−α(1−2β)

)
(|P | − nα) +

1
nα
nα

= Ω

(
1

max{n1−α(1−2β), nα}
)
|P |

= Ω

(
1

nmax{1−α(1−2β),α}

)
|P | .
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Similarly, the number of satisfied pairs when the algorithm is terminated due to
condition 2 is

Ω

(
1

n1−α(1−2β)

)
(|P | − |PL|) +Ω

(
1

logn

)
|PL|β

= Ω

(
1

n1−α(1−2β)

)
(|P | − |PL|) +Ω

(
1

|PL|1−β logn

)
|PL|

= Ω

(
1

max{n1−α(1−2β), |P |1−β logn}
)
|P |

= Ω

(
1

Mmax{1−α(1−2β),1−β}

)
1

logn
|P | .

To obtain the best-possible performance guarantee, we pick values for α and β
so as to minimize max{α, 1 − β, 1 − α(1 − 2β)}. As explained below, the last
term is optimized for α∗ =

√
1/2 and β∗ =

√
1/2/(2

√
1/2 + 1) = 1 −√1/2, in

which case its value is
√

1/2 ≈ 0.707.

Optimizing α and β. Suppose we know the value of α∗. In this case, β∗ should be
picked so as to minimize max{1−β, 1−α∗(1− 2β)}. Since 1− β is a decreasing
linear function of β and 1 − α∗(1 − 2β) is an increasing linear function, this
minimum is attained when 1 − β = 1 − α∗(1 − 2β), that is, β∗ = α∗/(2α∗ + 1).
For this value, we have min max {1 − β, 1 − α∗(1 − 2β)} = (α∗ + 1)/(2α∗ + 1).
It remains to find a value of α that minimizes max{α, (α+ 1)/(2α+ 1)}. Using
similar arguments, it is not difficult to verify that the right value to pick is
α∗ =

√
1/2.

4.3 An Improved Approximation for Bounded-Distance Pairs

In practice, the diameter of biological networks is sub-logarithmic due to their
scale-free property [4,8,19]. For example, in the yeast physical network described
in [21], the maximum source-target distance is 14. This motivates examining
the approximation guarantee in terms of the maximum length of a shortest
source-target path in the reduced mixed acyclic graph, which we denote by
Δ = Δ(G,P ). In the following we present an Ω(1/

√
Δ|P | logn) approximation

to the orientation problem.
Our algorithm remains essentially unchanged, except for its termination con-

ditions. Unlike the more general procedure, we ignore condition 1, and terminate
the greedy iterations as soon as condition 2 is met, i.e., when there exists a ver-
tex r ∈ V such that at least |P�|β paths in P� go through r. In this case, we
construct a maximum-junction-tree-orientation instance as before, with
input graph G�, junction vertex r, and pairs {(si, ti) : pi ∈ P� goes through r}.
Our logarithmic approximation for this particular setting is then applied.

Similarly to the analysis in Section 4.2, we can prove the next two claims:

Connections due to termination condition 2: The number of pairs satis-
fied out of {(si, ti) : pi ∈ PL} is Ω(1/ logn) · |PL|β .
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Connections due to greedy iterations: A fraction of Ω(1/(Δ|P |β)) of the
pairs in {(si, ti) : pi /∈ PL} are already satisfied by the partial orientation
GL. This follows by observing that the number of paths that are eliminated
from P�−1 in iteration � is at most Δ|P�−1|β ≤ Δ|P |β .

Consequently, the number of satisfied pairs upon termination is:

Ω

(
1

Δ|P |β
)

(|P | − |PL|) +Ω

(
1

logn

)
|PL|β

= Ω

(
1

Δ|P |β
)

(|P | − |PL|) +Ω

(
1

|PL|1−β logn

)
|PL|

= Ω

(
1

max{Δ|P |β , |P |1−β logn}
)
|P | .

By choosing β = 1
2 (1 + log|P |(

log n
Δ )), we obtain an approximation ratio of

Ω(1/
√
Δ|P | log n).

In this section we used the usual definition of path lengths: the length of
a path is the number of its edges. The above analyses work in a similar way
if we measure the length of a path by the number of its undirected edges or
even by the number of undirected components the path visits. This yields the
same asymptotic bounds with respect to the size of the input, but highlights the
increasing performance of the algorithm for structured inputs where these path
length measures are small.

5 Conclusions

In this paper we presented approximation algorithms for the maximum-mixed-

graph-orientation problem, which has recently arisen in the study of biolog-
ical networks. We first showed that tree-like instances admit orientations (that
can be computed in polynomial time) satisfying a poly-logarithmic fraction of
the input pairs. Then we extended these algorithms to develop the first approx-
imation algorithm for the problem whose ratio depends only on the size of the
input instance, where no structural properties are assumed. The algorithm has
a sub-linear approximation ratio, which can be improved when the input pairs
are connected by short paths. The known upper and lower bounds for the ap-
proximation ratio of maximum-mixed-graph-orientation are far from being
tight. Closing this gap, both in the undirected and mixed cases, remains an open
problem.
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Abstract. Combinatorial maps are nice data structures for modeling
the topology of nD objects subdivided in cells (e.g., vertices, edges, faces,
volumes, ...) by means of incidence and adjacency relationships between
these cells. In particular, they can be used to model the topology of
plane graphs. In this paper, we describe an algorithm, called mSpan, for
extracting patterns which occur frequently in a database of maps. We
experimentally compare mSpan with gSpan on a synthetic database of
randomly generated 2D and 3D maps. We show that gSpan does not
extract the same patterns, as it only considers adjacency relationships
between cells. We also show that mSpan exhibits nicer scale-up properties
when increasing map sizes or when decreasing frequency.

1 Introduction

Combinatorial maps are nice data structures for modeling the topology of nD
objects subdivided in cells (e.g., vertices, edges, faces, volumes, ...) by means of
incidence and adjacency relationships between these cells. First defined in 2D
[9,19,12,4], they have been extended to nD [2,14,15]. Combinatorial maps are
often used to model the partition of an image in regions and to describe the
topology of this partition (e.g., [1] for 2D images and [5] for 3D images). There
exist efficient image processing algorithms using this topological information.
However, there exist few algorithms for analyzing or comparing combinatorial
maps, which are key issues in image processing.

In this paper, we describe an algorithm for extracting patterns which occur
frequently in a database of maps. This algorithm is a first step for analyzing and
characterizing sets of maps. Finding frequent patterns in databases is a classical
data mining problem, the tractability of which highly depends on the existency
of efficient algorithms for deciding if two patterns are actually different or if
they are two occurrences of a same object. Hence, if finding frequent subgraphs
is intractable in the general case, it may be solved in incremental polynomial
time when considering classes of graphs for which subgraph isomorphism may
be solved in polynomial time, such as trees [3] or outerplanar graphs [11]. We
have introduced efficient polynomial-time algorithms to decide of submap iso-
morphism in [7], and to search for a map into a database of maps in [10]. These
algorithms allow us to design an incremental polynomial time algorithm for ex-
tracting frequent patterns from a database of maps.
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Outline. Basic definitions on combinatorial maps are recalled in section 2. The
algorithm for extracting frequent submaps from 2D maps is described in section
3, and its extension to nD maps is described in section 4. First experimental
results on a synthetic database of randomly generated 2D and 3D maps and on
a database of maps extracted from images are reported in section 5 and 6.

2 Recalls on Combinatorial Maps

Combinatorial maps describe the subdivision of nD objects into cells of dimen-
sions lower or equal to n (0D vertices, 1D edges, 2D faces, 3D volumes, ...),
and describe the topology of these cells by means of incidence and adjacency
relationships between these cells. For sake of simplicity, we first introduce maps
in 2D and describe our algorithm within this 2D context. The extension to nD
maps is rather straightforward and is described in section 4.

In 2D, a combinatorial map models a plane graph i.e., the embedding of a
planar graph into a plane, as illustrated in Fig. 1. It is defined by a set of darts
and two functions β1 and β2 as follows.

Definition 1 (Combinatorial map [15]). A 2D combinatorial map (or map)
is defined by a tuple M = (D, β1, β2) where D is a finite set of darts; β1 is a
permutation on D (i.e., a one-to-one mapping from D to D); and β2 is an
involution on D (i.e., a one-to-one mapping from D to D such that β2 = β−1

2 ).

A dart d is said to be i-sewn with another dart d′ if d′ = βi(d). β1 is a permutation
which models dart successions when turning around faces with respect to some
given order. β2 models adjacency relations between faces.

In some cases, it may be useful to allow some βi to be partially defined, thus
leading to open combinatorial maps. The basic idea is to add a new element
ε to the set of darts, and to allow darts to be i-sewn with ε. By definition,
β1(ε) = β2(ε) = ε. Fig. 2 gives an example of open map (see [8,17] for precise
definitions).

In this paper, we extract patterns from maps, where patterns are maps which
are isomorphic to submaps of these maps. More precisely, map isomorphism has
been defined e.g. in [16] as follows.

Definition 2 (Map isomorphism). Two maps M = (D, β1, β2) and M ′ =
(D′, β′

1, β
′
2) are isomorphic if there exists a bijection f : D → D′ such that

∀d ∈ D, f(β1(d)) = β′
1(f(d)) and f(β2(d)) = β′

2(f(d)).

This definition has been extended to open maps in [7] by adding that f(ε) = ε,
thus enforcing that, when a dart is i-sewn with ε, then the dart matched to it
by f is i-sewn with ε. Submap isomorphism simply derives from the definition
of map isomorphism: there is a submap isomorphism from a map M to a map
M ′ if there exists a submap of M ′ which is isomorphic to M ′, where a submap
is basically obtained by removing some darts (and free-ing darts that were i-sewn
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G = M =

Face F4 F2 F1 F3

Dart 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

β1 2 3 4 5 6 7 1 9 10 11 8 13 14 15 12 17 18 16
β2 15 14 18 17 10 9 8 7 6 5 12 11 16 2 1 13 4 3

Fig. 1. The map M describes the topology of the plane graph G. Darts are represented
by numbered arrows. 1-sewn darts are drawn consecutively, and 2-sewn darts are con-
currently drawn and in reverse orientation, with a little grey segment between the two
darts. Darts 1 to 7 correspond to face F4, darts 8 to 11 to face F2 and so on.

with the removed darts). For example, there is a submap isomorphism from the
map of Fig. 2 to the map of Fig. 1 as it is isomorphic to the submap of Fig. 1
obtained by removing darts 1 to 11.

In [7], we have described an algorithm which decides of submap isomorphism
from a map M = (D, β1, β2) to a map M ′ = (D′, β′

1, β
′
2) in O(|D|·|D′|), provided

that M is connected, i.e., there must exist a path of sewn darts between every
pair of darts of M .

In [10], we have introduced a signature which allows us to efficiently search
for a map M in a database B containing k maps such that the largest map has t
darts: the time complexity for building the signature of the database is O(k · t2);
the space complexity of this signature is O(k · t), and the time complexity of
searching for all maps of B which are isomorphic to M is O(n · t2).

3 Frequent Submap Discovery

When considering 2D maps, the basic cell is the face. Therefore, a pattern is
a connected set of faces. We can then define the problem of frequent submap

F1 F2

f

a

b

d

g

c e

Face F1 F2

Dart a b c d e f g

β1 b c d a f g e
β2 ε ε e ε c ε ε

Fig. 2. Open combinatorial map example. Darts a, b, d, f and g are not 2-sewn.
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Algorithm 1. mSpan(S,σ)

Input: a set of maps S and a real number σ ∈]0; 1]
Output: the set F of all maps which are submaps of at least σ · |S| maps of S
F1 ← all patterns composed of 1 face and occurring in at least σ · |S| maps of S1

F ← F12

while F1 �= ∅ do3

choose a pattern f in F14

Cand← {f}5

while Cand �= ∅ do6

remove a pattern p from Cand7

Fp ← grow(p,F1)8

Cand← Cand ∪ Fp9

F ← F ∪ Fp10

/* All frequent patterns which contain face f belong to F */

remove f from F111

return F12

discovery in a similar way as [13] has defined the problem of frequent subgraph
discovery: given a set of maps S and a parameter σ such that 0 < σ ≤ 1, the
goal is to find all patterns M such that freq(M,S) ≥ σ · |S|, where freq(M,S)
is the frequency of M in S, i.e., the number of maps M ′ ∈ S such that there is
(at least) one submap isomorphism from M to M ′.

A map may have an exponential number of different submaps so that a naive
representation of the search space for this problem has exponential size in the
length of the input. To reduce the set of candidate patterns to be explored, we
exploit the fact that the frequency constraint is anti-monotone with respect to
the submap isomorphism partial order relation: if a pattern p is not frequent,
then any pattern p′ such that p is subisomorphic to p′ cannot be frequent.

Algorithm 1 describes our frequent submap mining algorithm, called mSpan
for Map-based Substructure Pattern mining. mSpan follows the same basic prin-
ciple as gSpan [20] which extracts frequent subgraphs: it constructs patterns with
a depth-first search algorithm and exploits the frequency constraint to prune
parts of the search space which do not contain frequent patterns.

More precisely, we first compute the set F1 of all frequent patterns composed
of a single face, and we initialize the set F of all frequent patterns with F1. Then,
for each face f of F1, we build all frequent patterns which contain f plus some
faces of F1 and we add these frequent patterns to F (lines 4-10). Finally, we
remove f from F1 (line 11) in order to prevent us from re-building frequent pat-
terns containing f in the next iterations of the while loop of lines 3-11. The set
of all frequent patterns which contain f plus some faces of F1 is built iteratively
by using a set Cand of frequent patterns which are candidate to be extended by
sewing to them one face of F1: at each iteration (lines 6-10), we remove a pattern
p from Cand (line 7) and the grow function computes all frequent patterns that
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Algorithm 2. grow(p,F1)

Input: a frequent pattern p and a set of frequent 1-face patterns F1

Output: a set Fp of all frequent patterns built by adding a face of F1 to p
Lp ← ∅1

for each occurrence o of the pattern p in a map of S do2

for each dart d which belongs to the boundary of this occurrence o of p do3

if β2(d) �= ε so that there exists a face which is 2-sewn with d then4

let f be the face 2-sewn with d5

if f ∈ F1 then6

let pf be the pattern obtained by 2-sewing face f to dart d of o7

if pf �∈ Lp then add pf to Lp and initialize freq(pf ) to 18

else update freq(pf )9

return {pi ∈ Lp | freq(pi) ≥ σ · |S|}10

may be built by sewing a face of F1 to p (line 8); these frequent patterns are
added to the set Cand (line 9) in order to further build new patterns which
contain them.

The grow function is described in algorithm 2. Given a frequent pattern p and
a set of frequent 1-face patterns F1, it returns all frequent patterns obtained by
sewing one face of F1 to p. This is done by traversing the boundary of every
occurrence o of p in a map of S: for each dart d of this boundary, if the face
which is 2-sewn to d belongs to F1 then the pattern pf obtained by 2-sewing
this face to dart d of o is a candidate frequent pattern which is added to Lp if
it does not already belong to it (line 8). Once all candidate patterns have been
computed in Lp, we return all patterns of Lp which are frequent (line 10).

Data structure used to memorize pattern occurrences (line 2 of Algo. 2). When
trying to grow pattern p by adding a new face to it, we do not compute all
occurrences of p in a map of S. This information is incrementally stored: each
time an occurrence of a pattern pf is found (line 7), we keep track of it in an
occurrence list occ(pf ) which contains one dart for every pattern occurrence of
pf as illustrated in Fig. 3.

Traversing the boundary of a pattern occurrence (line 3 of Algo. 2). The darts
which belong to the boundary of an occurrence o of a pattern p are found by
performing a traversal of o, guided by the pattern p, starting in parallel from
dart 1 of p and from the initial dart associated with o in the occurrence list
occ(p), as illustrated in Fig. 3 (see [8] for more details). This is done in linear
time with respect to the number of darts of the pattern p.

Data structure used to decide if a pattern pf belongs to Lp (line 8 of Algo. 2).
Each time a new pattern pf is found (line 7), we compute its signature and
we add this signature to a signature tree. If the pattern pf has k darts, then
the space complexity of the signature of pf is O(k) and the time complexity to
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M =

7

4

3

1 2

6 5

M ′ =

c
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f
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d
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t
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n

j
h

i

b

Fig. 3. Example of pattern occurrence list. Pattern M occurs 5 times in map M ′. For
each occurrence o, we memorize the dart of M ′ which corresponds to dart 1 of pattern
M . Hence, the occurrence list associated with pattern M in map M ′ is occ(M) =<
q, a, j, p, i >. To find the boundary of an occurrence of M , we search for the darts of
M ′ which correspond to the 2-free darts of M (i.e., 1, 6, 7, 5, 2). For example, the
boundary of the occurrence of M which starts at dart q contains darts q, k, m, l, p.

compute the signature and to add it to the signature tree is O(k2) in the worst
case. Using this tree signature allows us to check if pf already belongs to Lp

(line 8) in O(k), whatever the size of Lp is (see [10] for more details).

Frequency update (line 9 of Algo. 2). A pattern may appear several times in the
same map, however, its frequency is increased by 1 at most once for each map.
We explore occurrences map by map, so it is sufficient to use a flag to know if
the frequency of a pattern for a given map has already been increased.

4 Generalization to nD Combinatorial Maps

For sake of simplicity, we have described our frequent submap mining algorithm
for 2D combinatorial maps. However, it can be extended to nD maps in a very
straightforward way. Actually, we have implemented it for the nD case and we
report experimental results on 2D and 3D maps in the next section.

If 2D maps are described by two functions β1 and β2 which respectively
describe adjacency relations between edges and faces, nD maps are described by
n functions, β1 to βn, such that each βi function describes adjacency relations
between cells of dimension i, called i-cells (1-cells are edges, 2-cells faces, 3-cells
volumes, ...). We have extended submap isomorphism to nD maps in [8].

In nD, mined patterns are connected n-cells (i.e., connected faces in 2D,
connected volumes in 3D, ...). Algorithms 1 and 2 are extended to the nD case
by replacing faces with n-cells: we first search for all frequent patterns composed
of one n-cell and, for each of these patterns, we iteratively compute all frequent
patterns which contain it. The grow function builds new frequent patterns by
n-sewing a frequent n-cell with a frequent pattern.
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Map Primal graph Dual labeled graph

Fig. 4. Example of primal graph and dual labeled graph associated with a map

5 Experimental Evaluation on Synthetic Databases

Using synthetic databases allows us to evaluate scale-up properties when de-
creasing the frequency threshold σ, and when increasing the size of the maps,
i.e., the number of faces in 2D and the number of volumes in 3D.

Considered datasets. We have generated different databases. Each database
D(n, k) contains 1000 connected maps such that n ∈ {2, 3} corresponds to the
dimension of the map, and k to the number of n-cells (faces for n = 2 and
volumes for n = 3). Maps are randomly generated in such a way that they are
connected and their faces (resp. volumes) have degrees varying between 3 and
10 (resp. 4 and 10). When n = 2 (resp. n = 3), each n-map is generated by
first building k closed n-cells such that the degree of each n-cell is randomly
chosen within [3; 10] (resp. [4; 10]) according to a uniform distribution, and then
randomly n-sewing these n-cells until we obtain a connected map. Note that
generated maps may have holes and do not have outer (infinite) n-cell.

Maps vs graphs. We compare mSpan with gSpan1, which is a state-of-the-art
algorithm for extracting frequent connected subgraphs from a database of graphs
[20]. Let us first note that mSpan and gSpan solve different problems which
have different theoretical complexities: if submap isomorphism has a polynomial-
time complexity, subgraph isomorphism is NP-complete. Therefore, it is not
surprising if gSpan and mSpan exhibit different scale-up properties. Given a
2D map, we can generate a primal graph in a very straightforward way (see
Fig. 4). However, mining the primal graph is not really meaningful and the
extracted patterns cannot be compared with those extracted by mSpan. Indeed,
mSpan extracts connected sets of faces whereas patterns extracted by gSpan are
connected subgraphs which may not correspond to connected sets of faces at all
(e.g., trees). For a fair comparison, we consider the dual graph which associates
a vertex with every face of the 2D map and which connects two vertices iff
the corresponding faces in the map are adjacent. We also label each vertex of
the dual graph with the degree of the corresponding face (i.e., its number of
edges). Patterns extracted by gSpan from the labeled dual graph are connected

1 Implementation found in http://www.cs.ucsb.edu/~xyan/software/gSpan.htm

http://www.cs.ucsb.edu/~xyan/software/gSpan.htm
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Fig. 5. Two different submaps which correspond to the same dual labeled graph

subgraphs and, therefore, correspond to connected sets of faces in the 2D map.
Labels associated with vertices allow gSpan to discriminate faces which have
different degrees and greatly improve performances of gSpan. However, gSpan
does not consider the topology of the graph (i.e., the order in which faces are
encountered when turning around one face) so that two different submaps may
correspond to the same subgraph in the dual labeled graph, as illustrated in
Fig. 5. Therefore, mSpan and gSpan do not extract the same frequent patterns.

For 3D maps, we also generate dual labeled graphs: we associate a vertex
with every volume of the 3D map; we connect two vertices iff the corresponding
volumes are adjacent; and we label each vertex with the degree of the correspond-
ing volume. This way, connected subgraphs of dual labeled graphs correspond
to connected sets of volumes. However, like in 2D, different connected sets of
volumes may correspond to a same connected graph.

Note that labeled dual graphs are much smaller than the corresponding maps:
a 2D (resp. 3D) map which has 350 faces (resp. 80 volumes) has 1800 (resp. 1200)
darts or so, whereas the corresponding dual graph has 800 (resp. 160) edges or
so and 350 (resp. 80) vertices.

Scale-up properties when increasing map sizes. Top and middle curves of Fig. 6
display results of mSpan and gSpan on D(n, k) databases with σ = 0.9 when
increasing the number of faces k from 4 to 350 for n = 2, and when increasing
the number of volumes k from 2 to 80 for n = 3. Each run has been limited to
3600 seconds of CPU time. mSpan is able to extract all frequent patterns within
this time limit, even for the largest values of k. gSpan is faster than mSpan when
k < 50 in 2D, and when k < 30 in 3D. However, for larger values of k it becomes
slower, and it is not able to compute all frequent patterns within the CPU time
limit of 3600 seconds when k > 120 in 2D and when k > 50 in 3D. Actually,
gSpan extracts much more frequent patterns than mSpan, and the greater k,
the larger the difference. This comes from the fact that graphs do not model the
topology so that different map patterns (which may not be frequent) correspond
to the same graph pattern (which may become frequent).

Scale-up properties when increasing σ. Bottom curves of Fig. 6 displays results
of mSpan and gSpan on the D(2, 60) database when increasing the frequency
threshold from 0.1 to 1. It shows us that gSpan is faster than mSpan when
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Comparison of scale-up properties for D(2, k) databases
when increasing the number k of faces (σ = 0.9):
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Comparison of scale-up properties for D(3, k) databases
when increasing the number k of volumes (σ = 0.9):
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Comparison of scale-up properties for the D(2, 60) database when increasing σ:

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(i
n

s)

sigma

mSpan
gSpan

1

10

100

1000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#
F
re

q
u
en

t
P
a
tt

er
n
s

sigma

mSpan
gSpan

Fig. 6. Comparison of mSpan (bold lines) and gSpan (dashed lines) scale-up properties:
curves on the left (resp. right) plot the evolution of CPU-time in seconds (resp. number
of extracted patterns).

σ > 0.9, but for smaller values of σ, mSpan becomes faster and gSpan is not
able to compute all frequent patterns within the CPU time limit of 3600 seconds
when σ < 0.7. Actually, the number of extracted patterns grows much quicker
for gSpan than for mSpan when decreasing the frequency threshold σ. We have
performed similar experiments on 3D maps, and observed very similar results.
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6 Application to Image Classification

The goal of this section is not to define a new approach for classifying images,
but to show that frequent patterns may be used to describe images by numerical
vectors, thus allowing one to use the numerous tools defined on vector spaces for
searching, classifying or clustering purposes. We have considered a supervised
classification problem, which involves deciding the class of a new image know-
ing the classes of a sample learning set of images, and we have used the C4.5
classification method [18].

We have considered a database of 4 classes of images such that each class
contains 40 images (see a sample in Table 1). Each image of the database has
been segmented into a 2D combinatorial map, using the algorithm described
in[6]. These maps have 98 faces on average (minimum 10 and maximum 253).

Table 1. Sample of the database composed of 4 classes with 40 images per classe

Cherry

Football

Sea

Greenland

We have considered a leave-k-out experimental protocol, with k = 10%: we
have selected 10 different learning sets, such that each learning set contains 144
images (36 images of each class) and, for each of these learning sets, we have
classified the 16 remaining images; we report average results obtained over the
10 different learning sets.

For each learning set, we have used mSpan to extract frequent patterns with
the frequency threshold σ set to 0.1. On average over the 10 learning sets,
mSpan has extracted 854 frequent patterns, whose sizes are ranging between
1 and 8 faces, in less than one second of CPU-time on an Intel Core 2 Duo with
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Table 2. Confusion Matrix. Each cell on line i and column j gives the percentage of
images which belong to class i and have been classified in class j.

�����������real class
classified as

Cherry Football Sea Greenland

Cherry 77.5 5 5 12.5

Football 2.5 80 17.5 0

Sea 0 15 85 0

GreenLand 2.5 0 15 82.5

4GB RAM. Then, each image i has been represented by a numerical vector Vi

whose dimension is equal to the number of frequent patterns and such that the
jth element of Vi is equal to the number of occurrences of the jth frequent pattern
in the map associated with i.

Table 2 displays the confusion matrix of a C4.5 classification of these numerical
vectors. The average classification rate is equal to 81% or so. This result is very
promising as it has been obtained with frequent patterns only. Indeed, this kind
of topological information is only a small part of the information contained in
an image, and it could be easily combined with any other classical features such
as colour or texture to improve the classification process, thus bridging the gap
between traditional pattern recognition techniques based on feature vectors, and
structural pattern recognition techniques based on structured representations of
images such as graphs.

7 Conclusion

We have introduced an algorithm called mSpan for extracting frequent patterns
from combinatorial maps. This algorithm uses efficient polynomial time proce-
dures for deciding of submap isomorphism [7], and for searching for isomorphic
occurrences of a given map in the signature of a base of maps [10].

Combinatorial maps model the topology of nD objects subdivided in cells
(e.g., vertices, edges, faces, volumes, ...) by means of incidence and adjacency
relationships between these cells. We have shown that we can use dual labeled
graphs to model adjacency relationships between cells, but these graphs do not
model the topology of these cells (i.e., the order in which they are encountered
when turning around a given cell). Therefore, different map patterns (which
may not be frequent) may be modeled by a same dual labeled graph (which may
become frequent) so that a graph mining algorithm extracts much more patterns.
Of course, the relevancy of extracted patterns depends on the application. We
have already applied mSpan to an aperiodic tiling application, the goal of which
is to find the largest pattern occurring frequently in a given aperiodic tiling.
Clearly, on this kind of application, the topology is of uppermost importance
and patterns extracted from dual labeled graphs are not relevant.
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Abstract. In this paper, we propose three algorithms for the problem of
string edit distance with duplication and contraction operations, which
improve the time complexity of previous algorithms for this problem.
These include a faster algorithm for the general case of the problem, and
two improvements which apply under certain assumptions on the cost
function. The general algorithm is based on fast min-plus multiplication

of square matrices, and obtains the running time of O
(

|Σ|n3 log3 log n

log2 n

)
,

where n is the length of the input strings and |Σ| is the alphabet size.
This algorithm is further accelerated, under some assumption on the cost

function, to O
(
|Σ|
(
n2 + nn′2 log3 log n′

log2 n′

))
time, where n′ is the length of

the run-length encoding of the input. Another improvement is based on a
new fast matrix-vector min-plus multiplication under a certain discrete-

ness assumption, and yields an O
(
|Σ| n3

log2 n

)
time algorithm. Further-

more, this algorithm is online, in the sense that one of the strings may be
given letter by letter. As part of this algorithm we present the currently
fastest online algorithm for weighted CFG parsing for discrete weighted
grammars. This result is useful on its own.

1 Introduction

Comparing strings is a well-studied problem in computer science as well as in
bioinformatics. In this paper we address the problem of string edit distance,
with the additional operations of duplication and contraction. Such algorithms
are motivated by the study of minisatellites and their comparisons in the context
of population genetics [11].

Traditionally, string similarity is measured in terms of edit distance, which
reflects the minimum-cost edit of one string to the other based on the edit op-
erations of substitutions (including matches) and deletions/insertions (indels).
However, in comparing minisatellite maps, one has to also consider that regions
of the map have arisen as a result of duplication events from the neighboring
units. A minisatellite is a section of DNA that consists of tandem repetitions
of short (6–100 bp) sequence motifs spanning 0.5 kilobases to several kilobases.
The repeated motifs also vary in sequence through base substitutions. A min-
isatellite map represents a minisatellite region, where each motif (denoted unit)
is encoded by a character and handled as one entity. For one minisatellite locus,

R. Giancarlo and G. Manzini (Eds.): CPM 2011, LNCS 6661, pp. 441–454, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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both the type and the number of units in the map vary between individuals in a
population. Therefore, pairwise comparisons of minisatellite maps are typically
applied in studying the evolution of populations.

The single copy duplication model, where only one unit can duplicate at a
time, is the most popular, and its biological validation was asserted for the
MSY1 minisatellites [8,11]. According to this model, one unit can mutate into
another unit via a mutation of a single nucleotide within it. Also, a unit can be
duplicated, that is, an additional copy of the unit may appear next to the original
one in one of the strings (tandem repeat). Thus, when comparing minisatellite
maps, two additional operations are considered: duplication and contraction. As
we assume the single copy duplication model, duplications (and contractions)
add (and subtract, respectively) a single letter at a time.

The problem of comparing two minisatellite maps under the single copy du-
plication model was first defined and studied by Bérard and Rivals [8]. Bérard
and Rivals suggested an O(n4) time and O(n3) space algorithm, where n is the
length of the two input strings (for the sake of simplicity, we assume that both
strings are of the same length). This was followed by the work of Behzadi and
Steyaert [5], who gave an O(|Σ|n3) time and O(|Σ|n2) space algorithm for the
problem, where |Σ| is the alphabet size (typically a few tens of unique units).
Behzadi and Steyaert [5] improved the running time of their algorithm based
on run length encoding, to O(n2 + |Σ|nn′2), where n′ is the length of the run-
length encoding of the input strings [4]. Run length encoding was also used by
Bérard et al. [7], who presented an O(n3 + |Σ|n′3) time algorithm. Recently,
Abouelhoda et al. [1] presented an alphabet-independent algorithm, with time
complexity O(n2 + nn′2). The algorithms mentioned above need some restric-
tions on the edit scripts they consider in order to guarantee the optimality of
the solution. For example, the algorithm of Behzadi and Steyaert [5] cannot find
an optimal edit script from s = ab to t = cd if the unique optimal script is
ab → bb → b → d → dd → cd. The algorithm of Abouelhoda et al. [1] works
correctly on the instance above, but it cannot find an optimal edit script from
s = a to t = bc if the unique optimal script is a→ d→ dd→ bd→ bc. It is easy
to design cost functions in which the example scripts are optimal. Thus, the two
algorithms above are correct only when the cost function forbids such scripts
from being optimal. Therefore, the algorithms presented in this paper are cur-
rently the fastest algorithms for the problem under general cost functions, even
though their time complexity contains a |Σ| factor.

1.1 Our Contribution and Roadmap

We propose three algorithms for the problem of edit distance with duplications
and contractions, based on fast matrix multiplication. We start, in Section 2,
with the problem definition and its basic solution.

In Section 3, we present an algorithm for general cost functions that is based
on min-plus square matrix multiplication. Using the matrix multiplication algo-
rithm of Chan [9], this algorithm runs in O

(
|Σ|n3 log3 log n

log2 n

)
time.
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In Section 4, we extend our approach to the algorithm given in [4] which
exploits run length encodings of the input strings, assuming some restrictions
on the cost functions. This yields an O

(
n2 + |Σ|nn′2 log3 log n′

log2 n′

)
time algorithm.

In Section 5, we describe another improvement to the general algorithm for
the case of discrete cost functions. This algorithm is based on fast min-plus
matrix-vector multiplication and is online, in the sense that one of the strings
may be given letter by letter. For this purpose, we adapt Williams’ matrix-vector
multiplication algorithm over a finite semiring [14], and modify it to efficiently
handle the min-plus matrix-vector multiplication, for the case where the differ-
ences between adjacent cells are taken from a finite integer interval. This yields
an overall time complexity of O

(
|Σ|n3

log2 n

)
. An additional result obtained along

the way is the adaptation of the algorithm for weighted context-free grammar
(CFG) parsing under discrete cost functions to be online as well.

Due to space restrictions, additional materials, including proofs, figures and
algorithm details, are on the Internet at
http://www.cs.bgu.ac.il/~negevcb/publications.php.

2 Edit Distance with Duplications and Contractions

In this section, we define the Edit Distance with Duplications and Contractions
(EDDC) problem, show some of its properties and give a basic solution for it.

2.1 Problem Definition

In the edit distance model, one is given a source string s and a target string
t, and it is assumed that t was obtained by applying a sequence of local edit
operations, called an edit script, over s. We denote such a script by s = u0 →
u1 → u2 → . . . → ul = t, where each intermediate string uk is obtained by
applying a single edit operation on uk−1. Each edit operation has a cost, and the
cost of an edit script is defined as the sum of costs of its operations. The edit
distance from s to t, denoted by ed (s, t), is the minimum cost of an edit script
from s into t. The goal of the problem is to compute the edit distance between
the two given strings. An edit script whose cost is equal to the edit distance is
called an optimal script from s into t.

In the standard problem definition [8], the allowed edit operations include
insertion (inserting a letter in some position in the string), deletion (deleting
a letter from some position in the string), and mutation (replacing one letter
in the string by another). The EDDC variant adds two operations: duplication
and contraction [8]. The duplication operation replaces a single-letter substring
α with the substring αα, where contraction is its symmetric operation.

Throughout the rest of this paper, fix the following entities. Let Σ be a finite
alphabet. For a letter α ∈ Σ, denote by ins(α), dup(α), and del(α) the costs of
the insertion, duplication, and deletion operations applied on α, respectively, by

http://www.cs.bgu.ac.il/~negevcb/publications.php
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cont(α) the cost of contracting a string of the form αα into α, and by mut(α, β)
the cost of mutating α into some letter β ∈ Σ. We assume that all operation
costs are nonnegative. Denote by si the ith letter in the string s, starting at 0.
We denote si,j the substring sisi+1 . . . sj−1 of s.

2.2 The Basic Recursion

We next show how to solve the EDDC problem recursively. It is possible to
show that there is an optimal edit script from s into t of the following form:
s is first transformed into a string w = w0w1 . . . wr (the common ancestor
of s and t), where each letter wi is obtained by reducing some substring si

of s, and s = s0s1 . . . sr. Then, w is transformed into t, where every letter wi

generates some substring ti of t through the application of some edit script, and
t = t0t1 . . . tr. This is expressed in the following recursive formula:

ed (s0,i, t0,j) = min
0≤k<i,
0≤l<j,
α∈Σ

{ed (s0,k, t0,l) + ed (sk,i, α) + ed (α, tl,j)} , (2.1)

with the boundary cases ed (s0,i, t0,0) = ed (s0,0, t0,j) = ∞ for i, j > 0, and
ed (s0,0, t0,0) = 0.

In previous works [5,1], the EDDC between a letter and a string, ed (sk,i, α)
and ed (α, tl,j), was computed separately preceding the computation of the re-
cursive formula above. We keep this approach and show, in the next section,
how to compute these values by applying a CFG parsing algorithm. While being
slightly different, our recursive formula resembles previous formulations [5,1].
Thus, we defer the assertion of its correctness to the supplementary materials.

2.3 Context-Free Grammar Representation

An optimal generating edit script is an edit script that contains only insertion,
duplication and mutation operations. Consider the application of a generating
edit script to a single-letter string s = γ that results in some target string t. Such
a script may be described in terms of weighted CFG parsing, as follows. The set
of terminals in the grammar is Σ. The set of non-terminals is N = {α̃ : α ∈ Σ}∪
{I}, where I is a unique non-terminal, representing a letter insertion placeholder.
The start non-terminal is γ̃, corresponding to the source letter γ. The parse rules
are:

1. Mutations: ∀α̃, β̃ ∈ N , α̃→ β̃. The cost of such rules is mut(α, β).
2. Duplications: ∀α̃ ∈ N , α̃→ α̃α̃. The cost of such rules is dup(α).
3. Elongations (a preliminary step to allow insertions): ∀α̃ ∈ N , α̃ → α̃I and
α̃ → Iα̃. The cost of such rules is 0 (note that an application of such rules
must be followed by an application of an insertion rule of type 4).

4. Insertions: ∀α̃ ∈ N , I → α̃. The cost of such rules is ins(α).
5. Terminal achievement: ∀α̃ ∈ N , α̃→ α, where α is the terminal correspond-

ing to non-terminal α̃. The cost of such rules is 0.
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A generating edit script from a letter γ into t corresponds to a minimal cost
parse tree of t via the grammar above, which can we achieved by applying the
CKY algorithm [12,10,2]. A similar grammar can be used to generate a single
letter string from a non-empty string using contraction and deletion operations.

2.4 A Basic Dynamic Programming Algorithm for EDDC

In this section we describe a dynamic programming (DP) algorithm that imple-
ments the recursion of Eq. 2.1. The algorithm consists of two stages. Given a pair
of strings s and t, the first stage of the algorithm computes all letter-to-substring
edit distances ed (si,j , α) and ed (α, ti,j). In the second stage, all prefix-to-prefix
edit distances ed (s0,i, t0,j), and in particular the edit distance between the two
complete strings, are computed. The algorithm maintains the following matrices:

– Matrices Sα, for every α ∈ Σ. An entry Sα
i,j holds the value ed (si,j , α).

– Matrices Tα, for every α ∈ Σ. An entry Tα
i,j holds the value ed (α, ti,j).

– Matrices TDα, for every α ∈ Σ. An entry TDα
i,j holds the minimum of

ed (s0,i, t0,l) + ed (α, tl,j), for 0 ≤ l < j.
– A matrix TD, where an entry TDi,j holds the value ed (s0,i, t0,j).

Stage 1. In this stage the matrices Sα and Tα, for all α ∈ Σ, are computed using
a weighted CFG parsing algorithm [12,10,2], as explained in Section 2.3.

Stage 2. This stage takes as input the matrices Sα and Tα which were computed
in the first stage, in addition to the strings s and t, and computes the matrix
TD according to Eq. 2.1. We point out that a naive implementation of Eq. 2.1
would yield an O(|Σ|n4) running time. However, as done in [1], it is possible
to split the computation into two independent parts by replacing Eq. 2.1 with
the two interleaved recursions (Eq. 2.2 and Eq. 2.3 below), in order to obtain
a more efficient, O(|Σ|n3) algorithm. This is achieved by utilizing the auxiliary
matrices TDα:

TDα
k,j = min

0≤l<j
{TDk,l + Tα

l,j}, (2.2)

TDi,j = min
0≤k<i
α∈Σ

{TDα
k,j + Sα

k,i}. (2.3)

The algorithm interleaves the simultaneous computation of matrices of the form
TDα (Eq. 2.2), with the computation of the matrix TD (Eq. 2.3), by com-
puting their entries column by column (ordered by increasing column indices),
alternating between the matrices. Note that the computation of Eq. 2.2 requires
values TDk,l for l < j, which were already computed in TD due to the column-
by-column interleaved computation order, and similarly for the computation of
Eq. 2.3. All queried values of the form Tα

l,j and Sα
k,i, for any α, were already

computed in the first stage and are available via direct lookup.

Time Complexity Analysis. As explained in Section 2.3, the computation
of all tables Sα and Tα can be implemented by running a CFG parsing algo-
rithm over s and t, with respect to a grammar with O(|Σ|) non-terminals and
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derivation rules. The CKY algorithm for this problem takes O(|Σ|n3) running
time [12,10,2]. The second stage also takes O(|Σ|n3) time. Thus, the overall
running time of the basic algorithm is O(|Σ|n3).

3 Accelerating the Algorithm Using Fast Square Matrix
Multiplication

In this section, we show how to accelerate the basic algorithm which was pre-
sented in the previous section. Stage 1 of the basic algorithm, is accelerated using
Valiant’s algorithm for CFG parsing [13,6]. The DP algorithm of Stage 2 of the
basic algorithm, is accelerated as follows.

The key observation utilized here is that the computations in Eq. 2.2 and
Eq. 2.3 can be expressed in terms of min-plus vector multiplications. While
naively, the running time for computing the min-plus multiplication of a pair
of vectors is linear in the length of the vectors, there are fast algorithms for min-
plus matrix multiplications which perform vector multiplications in sub-linear
(amortized) time [9]. We adapt and utilize such algorithms here to improve the
worst-case bounds of EDDC. For this we need some notations and observations,
which we give in the next section.

3.1 Matrix Multiplication Preliminaries

We use the notation An×m to imply that the matrix A has n rows and m
columns, where indices start at 0. For matrices An×m and Bn×m, the entry-
wise min operation A ⊕ B yields a matrix Cn×m, where the entries of C are
defined by Ci,j = min {Ai,j , Bi,j}. For matrices An×k and Bk×m, the min-plus
multiplication operation A⊗B yields a matrix Cn×m, where the entries of C are
defined by Ci,j = min0≤r<k {Ai,r +Br,j}.

An entry Ai′,j′ in A is said to be adjacent to an entry Ai,j if either i′ = i and
j′ = j + 1, or i′ = i+ 1 and j′ = j.

Denote by D = [a, b] the interval of integers a, a + 1, . . . , b, and by |D| the
number of integers contained in D. Say that a matrix A is a D-discrete matrix
if for every pair of adjacent entries Ai,j and Ai′,j′ in A, the value Ai′,j′ −Ai,j is
in D.

For a subset of row indices I and a subset of column indices J , define AI,J to
be the submatrix of A which is induced by the rows in I and the columns in J .
When I contains a single row i or J contains a single column j, we simplify the
notation and write Ai,J or AI,j .

A matrix consisting of a single column is called a vector. For a vector x, denote
by xi the ith entry of x, and by xI the sub-vector of x induced by the row indices
I.

The following observation is immediately implied by the min-plus multiplica-
tion definition and it generalizes the notion of computing a single entry in the
multiplication result matrix to that of computing a complete sub-matrix.
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Observation 1. Let An×k, Bk×m and Cn×m be matrices such that C = A⊗B.
Let K = [0, k− 1], and let K1,K2, . . . ,Kr be a partition of K into sub-intervals.
Then, for every subset I of [0, n − 1] and every subset J of [0,m − 1], CI,J =
AI,K ⊗BK,J = (AI,K1 ⊗BK1,J ) ⊕ (AI,K2 ⊗BK2,J) ⊕ · · · ⊕ (AI,Kr ⊗BKr,J).

3.2 The General Case Algorithm

Observe that it is possible to formulate Eqs. 2.2 and 2.3 in terms of min-plus
vector multiplications, as follows:

TDα
k,j = TDk,[0,j−1] ⊗ Tα

[0,j−1],j (3.1)

TDi,j = min
α∈Σ

{(Sα)T
i,[0,i−1] ⊗ TDα

[0,i−1],j} (3.2)

where (Sα)T denotes the transposed matrix Sα.
Our algorithm is based on a general framework presented in [15], which im-

proves the time complexity of the computation. This framework generalizes
Valiant’s algorithm for CFG parsing [13] to a family of algorithms, and organizes
the computations of vector multiplications in a way that allows to exploit fast
square matrix multiplication algorithms. It is simple to verify that the computa-
tion of Eqs. 3.1 and 3.2 can be done efficiently, using the techniques of [15]. This
yields an O

(
|Σ|n3 log3 log n

log2 n

)
time algorithm. While we do not give here a detailed

description of the algorithm, it will become evident in the next section, where
we describe its extension to exploit run-length encoding of the input. Also, the
reader is referred to the supplementary materials for a detailed description of
the algorithm.

4 Fast Square Matrix Multiplication on Top of Run
Length Encoding

In this section we extend the recursive fast-matrix multiplication approach of
Section 3 to the algorithm given in [4], which exploits run length encodings of
the maps, assuming some restrictions on the cost function.

4.1 Sparsifying the Computation Using Run Length Encoding

A Run Length Encoding (RLE) of a string is a representation of the string, in
which each maximal substring, composed of r repeats of the same letter α, is
encoded by the letter α and the number r (denoted αr). For example, the RLE
of the string aaabbacccc is a3b2a1c4. Such a maximal single-lettered substring is
called a run, and the length of an RLE is the number of runs in the encoding (e.g.
the length of the RLE in the previous example is 4). In [4], RLE was used in order
to accelerate the computation of the EDDC problem, under certain restrictions
to the cost function. Specifically, it was required that the costs of duplications
and contractions are less than the costs of all other operations. Actually, this
requirement can be relaxed, and the following assumption suffices:
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Assumption 1. For every α, β ∈ Σ: dup(α) ≤ min{dup(β)+mut(β, α), ins(α)},
and cont(α) ≤ min{mut(α, β) + cont(β), del(α)}.
Under the assumption above, it is possible to show the following observation:

Observation 2 (Fact 1 in [4]). There exists an optimal generating script of
a string t from a letter α, in which for every run of size k > 1 in t, the k − 1
right letters of the run are generated by duplications of the leftmost letter of the
run. This property holds symmetrically for reducing scripts from a string s into
a letter α, replacing duplications by contractions.

Due to Obs. 2, the edit distance between a letter and a string, required by Stage
1 of the basic algorithm, can be directly computed as follows. We compute the
edit distance between the letter and the run length encoded string, considering
each run as a single letter. Then, we add the cost of k−1 duplications dup(α) for
every run αk. Let n′ denote the RLE length of the input strings (we assume for
simplicity that both input strings have the same RLE length). The complexity
of this algorithm is dominated by the complexity of CFG parsing on a string of
length n′. This gives the time complexity of O

(
|Σ|n′3 log3 log n′

log2 n′

)
for computing

all matrices Sα and Tα [15].
Also, regarding Stage 2 of the basic algorithm, and due to Obs. 2, it was

noted in [4] that some operations in the recursive computation of ed (s, t) are
redundant. In general, instead of examining O(|Σ|n) solutions to sub-problems
(as implied by Eq. 2.3 here), it is sufficient to examine onlyO(|Σ|n′) expressions.
We next adopt the refined computation due to this observation, with respect to
our formulation of the recurrence. The proof of correctness is similar to that
presented in [4]. Denote the following subsets of indices in a string w:

– El(w) is the set of all indices that are the start of a run in w.
– Er(w) is the set of all indices that are the end of a run in w.
– E(w, i) = {j < i|j = i− 1 or j ∈ El(w) ∪ Er(w)}.

Then, Eqs. 2.2 and 2.3 can be refined as follows.

TDα
k,j = min

l∈E(t,j)
{TDk,l + Tα

l,j} (4.1)

TDi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
k∈E(s,i),α∈Σ

(
TDα

k,j + Sα
k,i

)
, if i ∈ El(s), j ∈ El(t),

min

(
TDi,j−1 + dup(tj−1),

min
k∈E(s,i),α∈Σ

(
TDk,j−1 + Sα

k,i + Tα
j−1,j

))
, if i ∈ El(s), j /∈ El(t),

min

(
TDi−1,j + cont(si−1),

min
l∈E(t,j),α∈Σ

(
TDi−1,l + Tα

l,j + Sα
i−1,i

))
, if i /∈ El(s), j ∈ El(t),

min

⎛
⎜⎝ TDi,j−1 + dup(tj−1),

TDi−1,j + cont(si−1),
min
α∈Σ

(
TDi−1,j−1 + Sα

i−1,i + Tα
j−1,j

)
⎞
⎟⎠ , otherwise.

(4.2)
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The TDα
k,j entries are computed only for k ∈ E(s, n) and j ∈ El(t). An illustra-

tion of the four cases of Eq.4.2 can be found in the supplementary materials.

4.2 The Algorithm

The algorithm is based on forward dynamic programming: during the compu-
tation, each TDi,j or TDα

i,j entry is either in a finished or active state. Each
finished entry contains the correct value (namely, TDi,j = ed (s0,i, t0,j)). The
value of an active entry TDi,j is updated according to some TDk,l and TDα

k,l

entries it depends on, as described in Eq. 4.2, and each of these entries is in
a finished state. After the state of TDk,l changes from active to finished, the
algorithm updates the TDi,j and TDα

i,j entries whose values depend on TDk,l.
The algorithm works using a recursion, similarly to Valiant’s algorithm [13]

(see also [15]). The recursive procedure COMPUTE(R) receives a region R =
[i1, i2]× [j1, j2], where i1 ∈ El(s) and j1 ∈ El(t), and computes the entries TDi,j

and TDα
i,j for (i, j) ∈ R. When COMPUTE(R) is called, each entry TDi,j (or

TDα
i,j) for (i, j) ∈ R is already updated with the intermediate results obtained

by the application of Eqs. 4.1 and 4.2 with respect to all entries that are outside
of the region R. If there is only one index pair i, j in the region in which both
i and j start a run (e.g. |El(s) ∩ [i1, i2]| = 1 and |El(t) ∩ [j1, j2]| = 1), then the
entries inside the region R are computed directly by applying Eqs. 4.1 and 4.2.
Otherwise, procedure COMPUTE performs the following steps.

1. Partition the region R into 2 disjoint regions R1 and R2.
2. Call COMPUTE(R1).
3. Update the TDi,j and TDα

i,j entries for (i, j) ∈ R2 using entries inside the
region R1 of the TD and TDα matrices that were computed in step 3.

4. Call COMPUTE(R2).

Partition stage The partitioning of R into subregions is done as follows. The pro-
cedure alternates between partitioning R vertically and horizontally, depending
on the recursion level (on odd levels the partition is vertical, and on even levels
the partition is horizontal). When the region cannot be partitioned vertically
(this occurs when |El(s) ∩ [i1, i2]| = 1), all following partitions are performed
horizontally, and vice versa.

To partition R = [i1, i2] × [j1, j2] vertically, the procedure finds the index
i3 ∈ El(s)∩ [i1, i2] such that |El(s)∩ [i1, i3−1]| = �|El(s)∩ [i1, i2]|/2�. Then, the
subregions are R1 = [i1, i3−1]× [j1, j2] and R2 = [i3, i2]× [j1, j2]. The horizontal
partitioning is performed analogously.

Update stage After a recursive call COMPUTE(R1) for a subregionR1 = [i1, i3−
1] × [j1, j2], procedure COMPUTE updates values in the region R2 = [i3, i2] ×
[j1, j2]. By Eq. 4.2, the following updates need to be performed.

1. For every (i, j) ∈ R2 with i ∈ El(s) and j ∈ El(t), the value of TDi,j is
changed to the minimum of its current value, and

min
k∈E(s,i)∩[i1,i3−1],α∈Σ

(
TDα

k,j + Sα
k,i

)
.
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2. For every (i, j) ∈ R2 with i ∈ El(s) and j /∈ El(t), the value of TDi,j is
changed to the minimum of its current value, and

min
k∈E(s,i)∩[i1,i3−1],α∈Σ

(
TDk,j−1 + Sα

k,i + Tα
j−1,j

)
.

The first update above is done by performing for every α ∈ Σ, a min-plus
multiplication of sub-matrices of Sα and TDα: the sub-matrix of Sα is induced
by the rows in E(s, i) ∩ [i1, i3 − 1] and the columns in El(s) ∩ [i3, i2] (this sub-
matrix is transposed when performing the multiplication), and the sub-matrix of
TDα is induced by the rows inE(s, i)∩[i1, i3−1] and the columns in El(t)∩[j1, j2].
The second update is also done using min-plus matrix multiplication. In addition,
in the update stage we handle updates to adjacent cells according to Eq. 4.2.

The update above applies to vertical partitioning. Symmetrically, a similar
update is applied to horizontal partitioning (here, the update is done on the TD
matrix and the TDα matrices).

Time Complexity Analysis. Applying min-plus square matrix multiplication
to run-length encoded EDDC yields an O

(
|Σ|
(
n2 + nn′2(log3 log n′)

log2 n′

))
time al-

gorithm. A detailed proof appears in the supplementary materials.

5 A Faster, Online Algorithm Using Fast Matrix-Vector
Multiplication

In this section we describe another acceleration of the general algorithm pre-
sented in Section 3.2, intended for cost functions in which all operation costs
are integers1. Furthermore, this algorithm is online in the sense that one of the
strings may be given letter by letter.

5.1 A High-Level Overview of the Algorithm

Consider the case where all edit operation costs are integers. Observe that for
a = maxα∈Σ(del(α)), b = maxα∈Σ(ins(α)), and D = [−a, b], all matrices used
by the algorithm (i.e. Tα, Sα, TDα and TD) can be regarded as D-discrete
matrices (see supplementary materials). This observation is exploited here, as it
allows fast min-plus D-discrete matrix-vector multiplications, by employing an
algorithm which is described in Section 5.2.

We first sketch a high-level overview of a faster EDDC algorithm for discrete
cost functions. Based on Obs. 1 in Section 3.1, complete columns of TDα and
TD can be computed via matrix-vector min-plus multiplications:

TDα
[0,n−1],j = TD[0,n−1],[0,j−1] ⊗ Tα

[0,j−1],j (5.1)

TD[0,n−1],j = ⊕α∈Σ{(Sα)T
[0,n−1],[0,n−1] ⊗ TDα

[0,n−1],j} (5.2)

1 Costs which are rational numbers can be scaled to integers in a straightforward
manner.
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Let s be the string that is known in advance and let t be the string which is
received online, letter by letter. The algorithm starts by computing Sα for every
non-terminal α̃, using Valiant’s algorithm for CFG parsing [13], as in Section 3.
The algorithm continues by updating all other matrices incrementally column
by column, as additional letters of t are received. For the jth letter of t, the jth
columns in all matrices Tα, TDα and TD, are computed as follows.

First, we apply our algorithm for online weighted CFG parsing with discrete
weights, to fill the added column in matrices Tα for every α ∈ Σ. This algorithm
is explained in the next paragraph. Second, the new columns in matrices TDα

and TD are computed according to Eq. 5.1 and Eq. 5.2, respectively. Note that all
column computations are of the form of min-plus matrix-vector multiplications,
which are achieved via the matrix-vector multiplication algorithm described in
Section 5.2.

We give here a short description of our algorithm for online weighted CFG
parsing with discrete weights: The algorithm computes a DP table column-by-
column, using min-plus vector multiplications, in a similar manner to the formu-
lations given in Eqs 5.1 and 5.2 and [15]. It applies the algorithm of Section 5.2,
in an increasing order of the result sub-vectors. Thus, each of the O(n) columns
in the DP tables is computed in O( n2

log2 n
) time. The details of the algorithm

appear in the supplementary materials.

Time Complexity Analysis. The online weighted CFG parsing algorithm (de-
scribed above) is first executed once on the string s of size n and on the grammar
G with O(|Σ|) non terminals and rules. Then, the same algorithm is incremen-
tally applied again for each of the n letter increments in the accumulating string
t, yielding altogether an overall time complexity ofO

(
|Σ|n3

log2 n

)
. Summing the work

of computing new columns of TDα and TD over all n iterations, the algorithm
performs O(|Σ|n) fast matrix-vector min-plus multiplications (see Section 5.2),
each taking O

(
n2

log2 n

)
time, and computes the minimum of |Σ| n-length vec-

tors, for each column in the matrix TD. Hence, the total time complexity of the
algorithm is O

(
|Σ|n3

log2 n

)
.

5.2 Fast D-discrete Matrix-Vector Multiplication

We now turn to describe an algorithm for min-plus D-discrete matrix-vector
multiplication, whose running time is O( n2

log2 n
) (after preprocessing the ma-

trix), under the RAM computational model assumptions. Our algorithm is based
on Williams’ algorithm [14] for finite semiring matrix-vector multiplications.
The main acceleration technique follows the concept of the Four-Russians algo-
rithm [3], i.e. pre-computing reoccurring computations, tabulating their results
in lookup tables, and querying these tables in order to efficiently retrieve re-
quired results. The following lemma implies that the set of D-discrete matrices
is closed under the ⊗ and ⊕ operations.
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Lemma 1. Let X and Y be two D-discrete matrices. Then, if the operations
X⊗Y and X⊕Y are defined for the dimensions of X and Y , then their results are
also D-discrete matrices. (The proof appears in the supplementary materials.)

We use the following representation for D-discrete vectors. A Δ-encoding of a
D-discrete vector x is a pair (x0, Δ (x)), where x0 is the value of the first entry
in x and Δ (x) is the sequence of differences between adjacent entries in x. The
notation x = (x0, Δ (x)) is used to imply that (x0, Δ (x)) is the Δ-encoding of
x. Call a vector of the form x = (0, Δ (x)) a canonical D-discrete vector.

Let q be an integer whose exact value will be determined later (where q =
O(log n)). We apply Δ-encodings on q-length D-discrete vectors. Note that in
such encodings (x0, Δ (x)), the sequence of differences Δ (x) contains q − 1 ele-
ments from D. Therefore, we can index all possible sequences Δ (x) by integers
between 0 and |D|q−1 − 1, and assume that the Δ (x) element in Δ-encodings is
represented by the corresponding integer in this range.

The algorithm tabulates results of two kinds of computations: matrix-vector
min-plus multiplications B ⊗ x, and vector entry-wise min x⊕ y.

1. Tabulation for efficient matrix-vector ⊗ computations. Due to Lemma 1,
the result of a D-discrete matrix-vector min-plus multiplication is a D-discrete
vector. The next observation states an additional property of such a multiplica-
tion.

Observation 3. Let B be a matrix, x = (0, Δ (x)) a canonical vector, and y =
(y0, Δ (y)) = B⊗x. Then, for any vector x′ = (x′0, Δ (x)), the vector y′ = B⊗x′
satisfies y′ = (y0 + x′0, Δ (y)).

Obs. 3 implies that matrices Bq×q can be processed as follows. A lookup table
MULB is computed, containing the results of all multiplications of the form
B ⊗ x, where x is a canonical q-length D-discrete vector. The results in the
table are represented by their Δ-encodings. Let x′ = (x′0, Δ (x′)) be a q-length
D-discrete vector, for which we wish to compute the value of B ⊗ x′. One could
alternatively retrieve the result (y0, Δ (y)) of the multiplication between B and
the corresponding canonical vector (0, Δ (x′)), and return the result of the op-
eration B ⊗ x′ by the Δ-encoding (y0 + x′0, Δ (y)).

2. Tabulation for efficient vector ⊕ computations. The following lemma
implies that when the absolute difference between the first entries of a given pair
of q-length D-discrete vectors x and y is sufficiently large, one of the vectors can
be immediately taken as the result of the x⊕ y operation.

Lemma 2. Let x = (x0, Δ (x)) and y = (y0, Δ (y)) be two D-discrete vectors of
length q. If y0 −x0 ≥ (|D| − 1)(q− 1), then x⊕ y = x. (The proof appears in the
supplementary materials.)

The next observation explains how to apply constant shifts in order to use a
canonical representation of one of the vectors when computing ⊕ operations.
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Observation 4. Let x = (x0, Δ (x)) and y = (y0, Δ (y)) be two vectors of the
same length, and let z = (z0, Δ (z)) = x ⊕ y. For every number μ, it holds that
(z0 + μ,Δ (z)) = (x0 + μ,Δ (x)) ⊕ (y0 + μ,Δ (y)).

In order to efficiently compute ⊕ operations on q-length D-discrete vectors,
the algorithm computes a lookup table MIN . For every pair of (q − 1)-length
difference sequences Δ (x) and Δ (y) and for every integer y0 in the interval
[−(|D| − 1)(q − 1) + 1, (|D| − 1)(q − 1) − 1], the table MIN stores the Δ-
encoding of the result of (0, Δ (x)) ⊕ (y0, Δ (y)). Due to Lemma 2 and Obs. 4,
we get the following routine for computing x⊕ y for q-length D-discrete vectors
x = (x0, Δ (x)) and y = (y0, Δ (y)):

case 1: if y0 − x0 ≥ (|D| − 1)(q − 1) return x.
case 2: if x0 − y0 ≥ (|D| − 1)(q − 1) return y.
case 3: else let (z0, Δ (z)) =MIN [Δ (x) , Δ (y) , y0−x0], return (z0 + x0, Δ (z)).

We next show how to process the input matrix A using the two kinds of
tabulation techniques presented above, and how to utilize the obtained lookup
tables to efficiently compute operations of the form A⊗ x.

1. Processing the input matrix. For an integer r, let Qr denote the interval
Qr = [rq, (r + 1)q− 1] of length q. The algorithm decomposes the matrix An×m

into blocks of the form B = AQi,Qj . Each block B is processed independently by
computing the lookup table MULB. In addition, the algorithm constructs the
lookup table MIN , as described above.

2. Computing matrix-vector multiplications. Given anm-lengthD-discrete
vector x, the algorithm computes the Δ-encoding of all sub-vectors xQj , for
0 ≤ j < m/q. Then, the algorithm computes y = A ⊗ x by independently
computing all sub-vectors yQi of y, for 0 ≤ i < n/q, according to Obs. 1:

yQi = (AQi,Q0 ⊗ xQ0 ) ⊕ (AQi,Q1 ⊗ xQ1 ) ⊕ · · · ⊕ (AQi,Qm/q−1 ⊗ xQm/q−1

)
.

Each one of the computations of the form AQi,Qj ⊗ xQj is implemented as
follows. Let xQj = (x0, Δ (x)), and let B = AQi,Qj . The algorithm performs a
single query to the table MULB with the canonical vector (0, Δ (x)). For the
query result (y0, Δ (y)), the algorithm returns (y0 + x0, Δ (y)). Then, the algo-
rithm performs the efficient ⊕ computations required for yQi . All intermediate
vectors, of this computation are q-length D-discrete vectors (by Lemma 1).

Time Complexity Analysis. A D-discrete matrix An×m can be processed in
O(mn1.5) time so that min-plus multiplications A ⊗ x, where x is an m-length
D-discrete vector, take O( nm

log2 n
) time. Details appear in the supplementary

materials.
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Abstract. We deal with a variant of the well-known Longest Com-
mon Subsequence (LCS) problem for weighted sequences. A (biological)
weighted sequence determines the probability for each symbol to occur at
a given position of the sequence (such sequences are also called Position
Weighted Matrices, PWM). Two possible such versions of the problem
were proposed by (Amir et al., 2009 and 2010), they are called LCWS
and LCWS2 (Longest Common Weighted Subsequence 1 and 2 Problem).
We solve an open problem, stated in conclusions of the paper by Amir et
al., of the tractability of a log-probability version of LCWS2 problem for
bounded alphabets, showing that it is NP-hard already for an alphabet
of size 2. We also improve the (1/|Σ|)-approximation algorithm given by
Amir et al. (where Σ is the alphabet): we show a polynomial-time ap-
proximation scheme (PTAS) for the LCWS2 problem using O(n5) space.
We also give a simpler (1/2)-approximation algorithm for the same prob-
lem using only O(n2) space.

1 Introduction

We consider (biological) weighted sequences, in which for each position we know
the probability of an occurrence of any symbol from the alphabet Σ (more formal
definition follows). Weighted sequences are also referred to in the literature as
p-weighted sequences or Position Weighted Matrices (PWM) [2,16]. The notion
of weighted sequence was introduced as a tool for motif discovery and local align-
ment, and is extensively used in computational molecular biology. In particular,
binding sites, profiles of protein families and complete chromosome sequences,
that have been obtained using a whole-genome shotgun strategy [15,17] can be
modelled as weighted sequences [10].
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Multiple algorithmic results related to combinatorics of weighted sequences,
i.e., repetitions, regularities and pattern matching, have already been presented.
The basic concepts (including pattern matching, repeats discovery and cover
computation) were studied using three different approaches: weighted suffix trees
[11], Crochemore partition [7] utilized in [13] and Karp-Miller-Rabin algorithm
[8] utilized in [6]. There are also results dealing with: approximate and gapped
pattern matching [3,20], property matching [1], swapped matching [19], all-covers
and all-seeds problem [18,21], and extracting motifs (repeated motifs, common
motifs and all maximal pairs) from weighted sequences [14]. On the practical
side, there are recent results concerning massive exact and approximate pattern
matching for mapping short weighted sequences to a reference genome [4], also
in the parallel setting [12].

Recently Amir et al. [2] extended another well-known string problem, the
Longest Common Subsequence problem [5], to weighted sequences. They in-
troduced two versions of the Longest Common Weighted Subsequence problem,
LCWS and LCWS2. Despite their similarity the complexity status of these prob-
lems is dramatically different, the first has a polynomial time solution, while the
latter one is NP-hard. The results from [1,3] are also related to the LCS problem
for weighted sequences, however none of the papers considers the LCS prob-
lem explicitly (the first one defines and considers weighted Hamming and edit
distances, while the second considers a general property matching setting). More-
over, all these papers are limited by the assumption that patterns are ordinary
strings.

The main problem considered in this paper is LCWS2. We solve an open
problem stated by Amir et al. [2] and show that a log-probability version of
LCWS2 is NP-hard for a bounded alphabet, moreover, even for alphabet of
size 2 — the proof can be found in Section 3. We also improve the (1/|Σ|)-
approximation algorithm for LCWS2 proposed in [2] by providing a polynomial-
time approximation scheme (PTAS) for LCWS2. Note that obtaining a fully
polynomial-time approximation scheme (FPTAS) for the LCWS2 problem is
not possible, since this would imply tractability of LCWS2. Additionally we give
a simpler (1/2)-approximation algorithm with smaller space requirements — it
uses O(n2) space instead of O(n5) space needed by PTAS. Both algorithms are
described in Section 4. We start by recalling the definitions of the respective
problems, for which we propose a novel, more abstract formulation.

2 Preliminaries

Let Σ be a finite alphabet, Σ = {σ1, σ2, . . . , σK}. We will be assuming for
simplicity, as in most applications, that K = |Σ| = O(1). By Σ∗ we denote the
set of all words over Σ. By Σd we denote the set of words of length d.

Definition 1 (Weighted sequence). A weighted sequence X = x1x2 . . . xn of
length |X | = n over an alphabet Σ = {σ1, σ2, . . . , σK} is a sequence of sets of
pairs of the form:

xi = {(σj , p
(X)
i (σj)) : j = 1, 2, . . . ,K}.
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x1 x2 x3 x4

p1(a) = 1/3 p2(a) = 1 p3(a) = 0 p4(a) = 1/2
p1(b) = 1/3 p2(b) = 0 p3(b) = 1/2 p4(b) = 1/4
p1(c) = 1/3 p2(c) = 0 p3(c) = 1/2 p4(c) = 1/4

Fig. 1. A weighted sequence X = x1x2x3x4 over the alphabet Σ = {a, b, c}

If the considered weighted sequence is unambiguous, we will write pi instead of
p
(X)
i . Here pi(σj) is the occurrence probability of the character σj at the position
i, these values are non-negative and sum up to 1 for a given i.
By WS(Σ) we denote the set of all weighted sequences over the alphabet Σ.

Now we recall the definitions of two versions of the Longest Common Weighted
Subsequence problem [2]. We simplify their formulation by introducing an aux-
iliary notion of α-subsequence.

Let X ∈ WS(Σ). Let Seq|X|
d be the set of all increasing sequences of d posi-

tions in X . For a string s ∈ Σd and π ∈ Seq|X|
d , define PX(π, s) as the probability

that the substring on positions corresponding to π in X equals s. More formally,
if π = (i1, i2, . . . , id) then

PX(π, s) =
d∏

k=1

p
(X)
ik

(sk). (1)

Denote SUBS (X,α) =
{
s ∈ Σ∗ : ∃

(
π ∈ Seq|X|

|s|
)

PX(π, s) ≥ α
}
. (2)

In other words SUBS (X,α) is the set of deterministic strings which match a
subsequence of X with probability at least α. Every s ∈ SUBS (X,α) is called
an α-subsequence of X . An α-subsequence of length d is also called an (α, d)-
subsequence.

Example 1. Consider the weighted sequence from Fig. 1. The string a is its α-
subsequence for any α ∈ (0, 1], the string aba is its 1

4 -subsequence, while the
string aaaa is not its α-subsequence for any α > 0.

Definition 2 (α-LCWS problem)
Input: Two weighted sequences X,Y ∈ WS(Σ) and a cut-off probability α.
Output: The longest string s ∈ Σ∗ such that

∃
(
π ∈ Seq|X|

|s| , π
′ ∈ Seq|Y |

|s|
)

PX(π, s) · PY (π′, s) ≥ α.

Equivalently, s is the longest string in SUBS (X,α1) ∩ SUBS(Y, α2) for some
α1 · α2 ≥ α.

Definition 3 ((α1, α2)-LCWS2 problem)
Input: Two weighted sequences X,Y and two cut-off probabilities α1, α2.
Output: The longest string s ∈ SUBS(X,α1) ∩ SUBS(Y, α2).
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The complexity status of these problems is dramatically different, the α-LCWS
problem has a polynomial time solution, while a log-probability version of the
(α1, α2)-LCWS2 problem is NP-hard.

Theorem 1. [2]
(a) The α-LCWS problem can be solved in O(n3) time and O(n2) space. If we are
only interested in the length of the output, the problem can be solved in O(Ln2)
time, where L is the length of the solution.
(b) The log-probability version of the (α1, α2)-LCWS2 problem is NP-hard over
unbounded alphabets and admits a (1/|Σ|)-approximation algorithm (thus the
problem itself admits the same approximation algorithm).

The main problem considered in this paper is LCWS2 (however, we also utilize
the polynomial time solution of LCWS problem). We tackle its version with
a single cut-off probability, stated in the following Definition 4, which is, by
Lemma 1, equivalent to the general version with two parameters.

Definition 4 (α-LCWS2 problem)
Input: Two weighted sequences X,Y ∈ WS(Σ) and a cut-off probability α.
Output: The longest string s ∈ SUBS(X,α) ∩ SUBS (Y, α).

The following lemma shows that the (α1, α2)-LCWS2 and α-LCWS2 problems
are equivalent.

Lemma 1. The (α1, α2)-LCWS2 problem can be reduced in linear time to the
min(α1, α2)-LCWS2 problem.

Lemma 1 is a consequence of the following claim.

Claim 2. Let X,Y ∈ WS(Σ) and let α1, α2 ∈ (0, 1], α1 < α2. Then there exist
X ′, Y ′ ∈ WS(Σ′), where Σ′ = Σ ∪ {#} is the original alphabet extended by a
symbol # /∈ Σ, such that for any string s:

s is a solution to the (α1, α2)-LCWS2 problem for X and Y ⇔
s is a solution to the α1-LCWS2 problem for X ′ and Y ′.

In particular, no solution to the α1-LCWS2 problem for X ′ and Y ′ contains the
symbol #.

Moreover, |X ′| = |X |, |Y ′| = |Y | and both weighted sequences can be con-
structed from X and Y in O(n) time.

Proof. First assume that α2 < 1. Let γ = logα2
α1. Recall thatΣ = {σ1, . . . , σK}.

We define weighted sequences X ′ and Y ′ over Σ′ by the following probabilities:

p
(X′)
i (σj) = p

(X)
i (σj), p

(X′)
i (#) = 0

p
(Y ′)
i (σj) = p

(Y )
i (σj)γ , p

(Y ′)
i (#) = 1 −

k∑
j=1

p
(Y ′)
i (σj).
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It is easy to see that the conditions on the probabilities imposed by Definition 1
are satisfied — observe that γ > 1 (since 1 > α2 ≥ α1). We will prove that the
following equality holds for this definition of X ′ and Y ′:

SUBS (X,α1) ∩ SUBS(Y, α2) = SUBS(X ′, α1) ∩ SUBS(Y ′, α1). (3)

Note that the left side of the equality (3) is a subset of Σ∗, while the right side
is a subset of (Σ′)∗. We prove (3) by showing two inclusions.

(⊆) Let s ∈ SUBS(X,α1) ∩ SUBS(Y, α2), s = s1s2 . . . sd. Then obviously
s ∈ SUBS (X ′, α1). Let π ∈ Seq|Y |

d , π = (i1, i2, . . . , id), be a sequence of positions
for which PY (π, s) ≥ α2. Then the same sequence of positions shows that s ∈
SUBS(Y ′, α1):

PY ′(π, s) =
d∏

j=1

p
(Y )
ij

(sj)γ = PY (π, s)γ ≥ αγ
2 = α1.

(⊇) Let s ∈ SUBS(X ′, α1) ∩ SUBS (Y ′, α1), s = s1s2 . . . sd. First note that
s ∈ Σ∗, otherwise s would not be an α1-subsequence of X ′ (since p(X′)

i (#) = 0
for all i). Hence, s ∈ SUBS (X,α1). Let π ∈ Seq|Y ′|

d , π = (i1, i2, . . . , id), be
a sequence of positions for which PY ′(π, s) ≥ α1. Then the same sequence of
positions shows that s ∈ SUBS(Y, α2):

PY (π, s) =
d∏

j=1

p
(Y ′)
ij

(sj)1/γ = PY ′(π, s)1/γ ≥ α2.

We are left with the case α2 = 1. If a string s ∈ Σ∗ is a 1-subsequence of the
sequence Y , it cannot use any position ij for a letter σj such that p(Y )

ij
(sj) < 1,

hence we set:

p
(X′)
i (σj) = p

(X)
i (σj), p

(X′)
i (#) = 0,

p
(Y ′)
i (σj) = 1 for p(Y )

i (σj) = 1 and p(Y ′)
i (σj) = 0 otherwise,

p
(Y ′)
i (#) = 1 −

k∑
j=1

p
(Y ′)
i (σj).

It is easy to check that s ∈ Σ∗ is a 1-subsequence of the sequence Y iff s is an
α1-subsequence of the sequence Y ′. This concludes the proof of the claim. ��

3 Integer LCWS2 over a Bounded Alphabet Is NP-Hard

We recall the definition of the integer log-probability version of the LCWS2
problem as given by Amir et al. [2]. Define an I-weighted sequence X over the
alphabet Σ = {σ1, σ2, . . . , σK} as a sequence of sets of pairs of the form:

xi = {(σj , w
(X)
i (σj)) : j = 1, 2, . . . ,K}, where w(X)

i (σj) ∈ Z+.
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Let us introduce notations similar to (1) and (2). For an I-weighted sequence
X and s ∈ Σd, define:

WX(π, s) =
d∑

k=1

w
(X)
ik

(sk) for π = (i1, . . . , id) ∈ Seq|X|
d .

For an I-weighted sequence X and α ∈ Z+, denote:

SUBS(X,α) =
{
s ∈ Σ∗ : ∃

(
π ∈ Seq|X|

|s|
)

WX(π, s) ≤ α
}
.

Using these notations, the LCIWS2 problem can be stated as follows:

Definition 5 (α-LCIWS2 problem)
Input: Two I-weighted sequences X,Y and a cut-off value α ∈ Z+.
Output: The longest string s ∈ SUBS(X,α) ∩ SUBS (Y, α).

The previously known proof [2] of NP-hardness of the α-LCIWS2 problem de-
pended on the assumption of an unbounded alphabet Σ. We show NP-hardness
of α-LCIWS2 over the alphabet Σ = {a, b}.

For this, we perform a reduction of α-LCIWS2 to the following NP-complete
problem [9] (the same NP-complete problem was utilized in [2]).

Definition 6 (Partition problem)
Input: A finite set S, S ⊆ Z+.
Binary output: Is there a subset S′ ⊆ S such that

∑
S′ =

∑
S \ S′.

We make the reduction from the Partition problem to the LCIWS2 problem as
follows. Let S = {q1, q2, . . . , qn} be an instance of the Partition problem. We
construct I-weighted sequences X = x1x2 . . . xn and Y = y1y2 . . . yn over the
alphabet Σ = {a, b} with the following weights of letters from Σ:

w
(X)
i (a) = qi + c, w

(X)
i (b) = c, w

(Y )
i (a) = c, w

(Y )
i (b) = qi + c.

Here c > 0 is an arbitrary positive integer. Finally let α = 1
2

∑
S + nc.

Lemma 3. The Partition problem for an instance S has a positive answer iff
the length of the solution to α-LCIWS2 for X and Y is n.

Proof. (⇒) Let π = (i1, i2, . . . , ik) be an increasing sequence of positions such
that S′ = {qi1 , qi2 , . . . , qik

} is a solution to the Partition problem for S, let
π′ = (i′1, i

′
2, . . . , i

′
n−k) be the sequence of all remaining positions in S. Then the

string s ∈ Σn such that sij = a for ij in π and si′j = b for i′j in π′ is a solution
to the α-LCIWS2 problem for X and Y . Indeed, let idn = (1, 2, . . . , n). Then:

WX(idn, s) =
∑

i

w
(X)
i (si) =

∑
ij

(qij + c) +
∑
i′j

c =
∑

S′ + nc = α,

WY (idn, s) =
∑

i

w
(Y )
i (si) =

∑
ij

c+
∑
i′j

(qi′j + c) =
∑

(S \ S′) + nc = α,
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thus s ∈ SUBS (X,α) ∩ SUBS (Y, α). Hence, s is a solution to the α-LCIWS2
problem for X and Y , since it is the longest string in this set.

(⇐) Let s ∈ Σn be a solution to α-LCIWS2 problem for X and Y . De-
note by π = (i1, i2, . . . , ik) and π′ = (i′1, i

′
2, . . . , i

′
n−k) the increasing sequences

of positions within s containing letters a and b respectively. Then, for idn =
(1, 2, . . . , n), the following inequalities must hold:

α ≥ WX(idn, s) =
∑

i

w
(X)
i (si) =

∑
ij

(qij + c) +
∑
i′j

c =
∑
ij

qij + nc,

α ≥ WY (idn, s) =
∑

i

w
(Y )
i (si) =

∑
ij

c+
∑
i′j

(qi′j + c) =
∑
i′j

qi′j + nc.

By recalling the definition of α and reducing equal addends, we obtain

∑
ij

qij ≤ 1
2

∑
S and

∑
i′j

qi′j ≤ 1
2

∑
S. (4)

Note that both left sides of the inequalities (4) are non-negative and sum up to∑
S. Hence, both inequalities (4) are equalities, and therefore the set S′ defined

as S′ = {qi1 , qi2 , . . . , qik
} is a solution to the Partition problem for the set S. ��

Due to Lemma 3, we have a reduction from the Partition problem to the LCIWS2
problem, and even more, to a decision version of LCIWS2 (asking whether there
exists a common subsequence of a given length). We conclude that the decision
version of LCIWS2 problem is NP-complete, and moreover:

Theorem 2. LCIWS2 problem over a binary alphabet is NP-hard.

4 Approximating LCWS2

Previous work on the α-LCWS2 problem [2] contained a (1/|Σ|)-approximation
algorithm. We start this section by presenting a (1/2)-approximation algorithm
for α-LCWS2 and then proceed to a polynomial-time approximation scheme
(PTAS) for this problem. The first algorithm is more space-efficient than the
presented general approximation scheme.

4.1 (1/2)-Approximation Algorithm for LCWS2

Let X,Y ∈ WS(Σ), n = max(|X |, |Y |), and α ∈ (0, 1]. By OPT(X,Y, α) we
denote the length of the solution to the α-LCWS2 problem for X and Y . In case
the length of the solution to α2-LCWS problem for X , Y is even, we obtain a
(1/2)-approximation of OPT(X,Y, α) simply by taking one half of the solution
to the α2-LCWS problem. In the case of odd length, we need to use the solutions
to the α′-LCWS problem for all prefixes of X and Y , for different values of α′,
as shown in the proof of the following theorem.
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Theorem 3
(a) We can compute a solution to the α-LCWS2 problem for X,Y ∈ WS(Σ) of
length at least �OPT(X,Y, α)/2� in O(n3) time and O(n2) space.
(b) There exists a (1/2)-approximation algorithm for the α-LCWS2 problem
which runs in O(n5) time and O(n2) space.

Proof (a) Let L be the size of the solution to the α-LCWS2 problem for X and
Y and let d be the size of the solution to the α2-LCWS problem for X and Y .
We will show that

⌊
d
2

⌋ ≤ L ≤ d. This suffices to prove point (a), since d can be
computed in O(n3) time and O(n2) space, see Theorem 1.

The inequality d ≥ L is a consequence of the following trivial inclusion:

SUBS (X,α) ∩ SUBS (Y, α) ⊆ {SUBS(X,α1) ∩ SUBS (Y, α2) : α1 · α2 ≥ α2},

in which the left side is the set of candidates for the solution of α-LCWS2 prob-
lem, while the right side are candidates for the solution to α2-LCWS problem,
both for the weighted sequences X and Y .

As for the other inequality, L ≥ ⌊d
2

⌋
, let π ∈ Seq|X|

d , π = (i1, . . . , id), and
π′ ∈ Seq|Y |

d , π′ = (i′1, . . . , i
′
d), be the sequences of positions corresponding to the

solution s = s1 . . . sd of α2-LCWS. Thus s satisfies:

PX(π, s) · PY (π′, s) =
d∏

j=1

p
(X)
ij

(sj) ·
d∏

j=1

p
(Y )
i′j

(sj) ≥ α2. (5)

Let g =
⌊

d
2

⌋
. The left side of the inequality (5) can be written asA·B·C·D, where:

A =
g∏

j=1

p
(X)
ij

(sj), B =
g∏

j=1

p
(Y )
i′j

(sj), C =
d∏

j=g+1

p
(X)
ij

(sj), D =
d∏

j=g+1

p
(Y )
i′j

(sj).

Note that at most one of the numbers A,B,C,D can be less than α. Indeed,
otherwise the product of these numbers would certainly be less than α2, since
all of them are at most 1. Hence:

(A ≥ α ∧ B ≥ α) ∨ (C ≥ α ∧ D ≥ α).

Consequently, at least one of the strings s1 . . . sg or sg+1 . . . sd is a solution to
the α-LCWS2 problem, therefore L ≥ ⌊ d

2

⌋
.

(b) If d is odd we need to additionally check if L ≥ ⌈d
2

⌉
. For this, we iterate

over all possibilities of the last positions of the α-subsequence of length L within
X and Y and all letters that could be the last letter of the resulting string.
For every such choice we obtain an instance of the (α1, α2)-LCWS2 problem for
some α1, α2, which we transform into an instance with a single cut-off probability
using Lemma 1. Recall that the alphabet is of a constant size. We have O(n2)
pairs of last positions, so the complexity grows by a quadratic factor. ��
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4.2 Polynomial-Time Approximation Scheme for LCWS2

Let X,Y ∈ WS(Σ), n = max(|X |, |Y |), and α ∈ (0, 1]. We say that an instance
(X,Y, α) of the α-LCWS2 problem is a (γ, T )-power if all the weights in the
sequence X are powers of γ, where 0 < γ < 1 and γT−1 ≥ α > γT .

Lemma 4. The α-LCWS2 problem for (γ, T )-power instances can be solved in
O(n3T ) time and space.

Proof. Without the loss of generality, we can assume, that m = |Y | ≤ |X | = n.
We use the dynamic programming technique. Our approach is a generalisation
of the standard LCS algorithm. We have O(n3T ) states, each described by a
tuple (a, b, �, t), where:

– a is the position in the sequence X , 1 ≤ a ≤ n;
– b is the position in the sequence Y , 1 ≤ b ≤ m;
– � is the length of the subsequence already chosen, 0 ≤ � ≤ m;
– t is a γ-based logarithm of the product of pi(σj) values of the chosen subse-

quence of X ; by the definition of the (γ, T )-power, we only consider integral
values of t from the interval [0, T − 1].

For a state (a, b, �, t) we store, as val(a, b, �, t), the greatest value β such that there
exists a string z = z1z2 . . . z� ∈ Σ� that is a (β, �)-subsequence of y1, . . . , yb, and
there exists a sequence of positions π ∈ Seqa

� for which

logγ PX(π, z) = t.

If no such (β, �)-subsequence exists, we set val(a, b, �, t) = 0.
Intuitively, in a state (a, b, �, t) besides two positions a, b used in the classical

LCS algorithm we control the length of the subsequence using the parameter �
and with the parameter t we count the number of times the value γ is multiplied
in the product of probabilities used in the subsequence of the sequence X .

When computing the value for a state (a, b, �, t), it suffices to consider three
options: either drop the a-th position in the sequenceX , or drop the b-th position
in the sequence Y , or use one of the |Σ| letters at the positions a, b in the sequence
X and Y respectively. Formally, we have the following recursive formula:

val(a, b, �, t)= max
(
val(a−1, b, �, t), val(a, b− 1, �, t),

max
j

{
p
(Y )
b (σj) · val(a− 1, b− 1, �− 1, t− logγ(p(X)

a (σj)))
})
.

We set val(a, b, 0, t) = 1, and for all remaining border cases val(a, b, �, t) = 0.
Thus we compute all the values val(a, b, �, t) in O(n3T ) time.

After computing values for all states we look for the greatest value of d for
which there exists t ∈ [0, T − 1] such that val(|X |, |Y |, d, t) ≥ α. By extending
the dynamic programming algorithm in a standard manner we can construct a
string s ∈ Σd and two sequences of positions π ∈ Seq|X|

d , π′ ∈ Seq|Y |
d such that

PX(π, s),PY (π′, s) ≥ α. ��
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Lemma 5. For any ε > 0 we can compute in O(n4/ε) time and space a string
which is an α1+ε-subsequence of X and an α-subsequence of Y of length at least
OPT(X,Y, α).

Proof. We assume that α < 1, if α = 1 we can solve the problem using a
reduction to the standard LCS problem in O(n2) time and space.

We start by scaling and rounding probability distributions of the weighted
sequence X . Let T = n

ε and γ = α1/T . For all i, j we set:

p′i(σj) = γ�logγ(p
(X)
i (σj))�.

Observe that:

p
(X)
i (σj) = γlogγ(p

(X)
i (σj)), p′i(σj) ≥ p

(X)
i (σj) ≥ p′i(σj)αε/n.

Hence, p′i(σj) is greater than p
(X)
i (σj) at most by a factor of α−ε/n. Now the

conclusion follows from Lemma 4, since with the new weight p′ for the sequence
X the instance (X,Y, α) is a (γ, T )-power and multiplication of at most n weights
differs from α by at most a factor of αε. Note that the new weight p′ is not a
probability distribution, as it does not satisfy the equality

∑K
j=1 p

′(σj) = 1,
however the algorithm from Lemma 4 does not use this assumption. ��
Lemma 6. Let (X,Y, α) be an instance of the LCWS2 problem. In O(n5) time
and space one can find a string s which is an (α, d − 1)-subsequence of both X
and Y such that no (α, d+ 1)-subsequence of both X and Y exists.

Proof. We set ε = 1/n and use the algorithm from Lemma 5 for the instance
(X,Y, α, ε). Thus in O(n5) time and space we obtain a string z ∈ Σd which
is an (α1+1/n, d)-subsequence of X and an (α, d)-subsequence of Y . Note that
no (α, d + 1)-subsequence of both X and Y exists. Now we remove exactly one
character of the string z which has the smallest value of p(X)

ik
(zk). Thus we obtain

the final string s ∈ Σd−1 which is an (α, d − 1)-subsequence of both X and Y ,
since:

α(1+1/n)(1−1/d) ≥ α(1+1/n)(1−1/n) = α1−1/n2 ≥ α. ��
Theorem 4. For any real value ε ∈ (0, 1] there exists a (1 − ε)-approximation
algorithm for the LCWS2 problem which runs in polynomial time and uses O(n5)
space. Consequently the LCWS2 problem admits a PTAS.

Proof. The algorithm works as follows. Using the algorithm from Lemma 6 we
find a positive integer d and an (α, d− 1)-subsequence.

If d ≥ 1/ε then we are done since in that case we have (d−1)/d = 1−1/d ≥ 1−ε
which means that we have found a (1 − ε)-approximation.

If d < 1/ε then we search for an (α, d)-subsequence using a brute-force ap-
proach, i.e., we try all

(|X|
d

)
,
(|Y |

d

)
subsets of positions in each sequence and all

|Σ|d possible strings of length d, which leads to nO(1/ε) running time. If we find
an (α, d)-subsequence we simply return it as the final answer. Otherwise we re-
turn the (α, d − 1)-subsequence found by the algorithm from Lemma 6. Either
way when d < 1/ε our answer is optimal. ��
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Abstract. The shortest common superstring and the shortest common
supersequence are two well studied problems having a wide range of
applications. In this paper we consider both problems with resource
constraints, denoted as the Restricted Common Superstring (shortly
RCSstr) problem and the Restricted Common Supersequence (shortly
RCSseq). In the RCSstr (RCSseq) problem we are given a set S of
n strings, s1, s2, . . . , sn, and a multiset t = {t1, t2, . . . , tm}, and the
goal is to find a permutation π : {1, . . . , m} → {1, . . . , m} to maxi-
mize the number of strings in S that are substrings (subsequences) of
π(t) = tπ(1)tπ(2) · · · tπ(m) (we call this ordering of the multiset, π(t), a
permutation of t). We first show that in its most general setting the RC-
Sstr problem is NP-complete and hard to approximate within a factor of
n1−ε, for any ε > 0, unless P = NP. Afterwards, we present two separate
reductions to show that the RCSstr problem remains NP-Hard even in
the case where the elements of t are drawn from a binary alphabet or
for the case where all input strings are of length two. We then present
some approximation results for several variants of the RCSstr problem.
In the second part of this paper, we turn to the RCSseq problem, where
we present some hardness results, tight lower bounds and approximation
algorithms.

1 Introduction

1.1 Motivation

In AI planning research it is very important to exploit the interactions between
different parts of plans. This was observed early in the area [21,26,30]. One very
important type of interaction is the merging of different actions to make the
total plan more efficient.

In the general setting we have a set of goals (or tasks) which have to be
accomplished and we want to find the most cost efficient plan which achieves
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all the goals. This problem is also known as the shortest common superstring in
the case that every goal has to be done continuously or the shortest common
supersequence if we can abandon a task and resume its process later. In both
problems we assume that we have an unlimited set of resources and we want to
achieve all our goals. Of course, in real life this is never the case: our resources
are always limited.

Therefore, a more realistic question is: given a fixed set of resources, how
many goals can be achieved (continuously or not)?

It seems that most of the applications of the shortest common superstring
and the shortest common supersequence problem, are more suitable for the case
of limited resources. The main challenge for such applications is to find the best
arrangement that will lead us to accomplish the maximum number of goals.

As an example, Wilensky [29] gives the scenario where John is planning to go
camping for a week. He goes to the supermarket to buy a week’s worth of groceries.
John has to achieve a set of goals (i.e., to buy food for meals during the camping
weekend) and he is able to merge some goals (i.e., to buy different products during
a single trip to a supermarket) in order to make the plan more efficient.

Another application, from the computational biology area, is the case where
only the set of amino acids can be determined and not their precise ordering.
Here we want to know which ordering would maximize the number of short
strings which can be substrings or subsequences of some ordering of the symbols
in a given text.

1.2 Previous Work

In the shortest common supersequence we are given a set S of n strings, s1, s2,
. . . , sn and we want to find the shortest string that is a supersequence of ev-
ery string in S. For arbitrary n the problem is known to be NP-Hard [14] even
in the case of a binary alphabet [19]. However for fixed n a dynamic program-
ming approach takes polynomial time and space. The shortest common super-
sequence problem has been studied extensively both from a theoretical point
of view [9,12,15,18,20,27], from an experimental point of view [1,6] and from
the perspective of its wide range of applications in data compression [24], query
optimization in database systems [23] and text editing [22].

In the shortest common superstring problem we are given a set S of n strings,
s1, s2, . . . , sn and we want to find the shortest string that is a superstring of
every string in S. For arbitrary n the problem is known to be NP-Complete [8]
and APX-hard [4]. Even for the case of binary alphabet Ott [16] presented lower
bounds for the achievable approximation ratio. The best known approximation
ratio so far is 2.5 [13,25]. In [10], we considered two variants of the Restricted
Common Superstring problem with swap permutations.

1.3 Our Contributions

We consider the complexity and the approximability of two problems which
are closely related to the well-known shortest common superstring and shortest
common supersequence problems.



Restricted Common Superstring and Restricted Common Supersequence 469

Problem 1. (Restricted Common Superstring (Supersequence)) The input con-
sists of a set S = {s1, s2, . . . , sn} of n strings over an alphabet Σ and a multiset
t = {t1, t2, . . . , tm} over the same alphabet. The goal is to find an
ordering of the multiset t that maximizes the number of strings in S that are
a substring (subsequence) of the ordered multiset. We denote this ordering by
π(t) = tπ(1)tπ(2) · · · tπ(m) (and we say that π(t) is a permutation of t). If all
the strings in S have length at most �, we refer to the problem as RCSstr[�]
(RCSseq[�]). For simplicity of presentation, we assume throughout that all the
input strings are distinct and every string si ∈ S is a substring of at least one
permutation π(t).

Example 1. Let multiset t = {a, a, b, b, c, c} and set S = {abb, bbc, cba, aca} be
an instance of RCSstr (and also of RCSstr[3]). In this example the maximum
number of strings from S that can be a substring of a permutation of t is 3. One
such possible permutation is π(t) = acabbc which contains the strings aca, abb,
bbc as substrings.

Example 2. Let multiset t = {a, a, b, c} and set S = {ab, bc, cb, ca} be an instance
of RCSseq and also RCSseq[2]. In this example the maximum number of strings
from S that can be a subsequence of a permutation of t is 3. One such possible
permutation is π(t) = abca which contains the strings ab, bc, ca as a subsequence.

The paper is organized as follows. In Section 2.1 we study the hardness of the
RCSstr problem. We show first that in its most general setting the RCS problem
is NP-complete and hard to approximate within a factor of less than n1−ε, for
any ε > 0, unless P = NP. Then, we show that even if all input strings are of
length two (RCSstr[2]) and t is a set, i.e. no symbols are repeated, then the
RCSstr problem is APX-Hard. Afterwards, we prove that the RCSstr problem
remains NP-Hard even in the case of a binary alphabet.

In Section 2.2, we design approximation algorithms for several restricted vari-
ants of the RCSstr problem. We first present a 3/4 approximation algorithm for
the RCSstr[2] problem where t is a set. Moreover, we give a 1/(�(�(�+1)/2−1))-
approximation algorithm for RCSstr[�], when � is the length of the longest input
string.

The RCSseq problem is studied in Section 3. In Section 3.1 we show that
the hardness results for RCSstr hold also for RCSseq. Moreover, we show an
approximation lower bound of 1/�! when � is the length of the longest input
string.

In Section 3.2, we present approximation algorithms for two variants of the
RCSseq problem. The first is a (1 + Ω(1/

√
Δ))/2 approximation algorithm for

RCSstr[2], where Δ is the number of occurrences of the most frequent character
in S. Then, for RCSseq we show that a selection of an arbitrary permutation,
π(t), yields a 1/�! randomized approximation algorithm, thus matching the lower
bound presented in Section 3.1.
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2 RCSstr

2.1 Hardness of the RCSstr

In this section we present hardness results for several variants of the RCSstr
problem.

We show here that RCSstr problem is NP-complete and hard to approximate
within a factor better than n1−ε, for any ε > 0, unless P = NP. To do so,
we present an approximation-preserving reduction from the classical maximum
clique problem.

Definition 1. (Maximum Clique) Given an undirected graph G = (V,E) the
maximum clique problem is to find a vertex set V ′ ⊆ V of maximum cardinality,
such that for every two vertices in V ′, there exists an edge connecting the two.

The following seminal hardness result will be useful.

Theorem 1. [31] The maximum clique problem does not have an n1−ε approx-
imation, for any ε > 0, unless P = NP.

We can now present our main hardness result of the RCSstr problem.

Theorem 2. RCSstr is NP-complete and hard to approximate within a factor
of n1−ε, for any ε > 0, unless P = NP.

Proof. We present an approximation-preserving reduction from the maximum
clique problem to the RCSstr problem. Given an undirected graph G = (V,E),
where V = {v1, v2, . . . , vn}, we construct an instance (S, t) of the RCSstr prob-
lem in the following way.

Set t to be {vn
1 , v

n
2 , . . . , v

n
n} and for each vertex vi ∈ V define a string si ∈ S

as follows. Set d(vi) to be the ordered sequence of the vertices not adjacent to
vi. Set si to be vn

i · d(vi), where · denotes concatenation.
We now prove that the optimal solution of the RCSstr instance (S, t) has size

x if and only if the optimal solution of maximum clique problem on the graph
G has size x.

Let π be a permutation on the multiset t and let A ⊆ S be all the strings that
are substrings of π(t). Denote by A′ the set of vertices in G corresponding to the
set of strings A. We prove that the vertices in A′ form a clique. Suppose that
this is not true and there exist two vertices vi, vj ∈ A′ such that (vi, vj) /∈ E.
Note that, in any common superstring of the strings si and sj either vi or vj

must have at least n + 1 occurrences, since vi is not present in the neighbors
list of vj and vice versa. This is a contradiction since the multiset t has only n
copies of each character. Therefore the set of vertices A′ forms a clique.

On the other hand, let A′ = {v1, . . . , vk} ⊆ V be a clique and let A =
{s1, . . . , sk} ⊆ S be the set of corresponding strings. We can find a permutation
of t which contains all the strings in A as a substring by concatenating s1, . . . , sk
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and appending the remaining characters arbitrarily at the end. No character is
used more than n times since the vertices from A′ form a clique and, therefore,
vi /∈ d(vj) for any vi, vj ∈ A′.

Thus, the RCSstr problem is NP-complete and hard to approximate within a
factor n1−ε, for any ε > 0, unless P = NP. ��
We now show that the RCSstr[2] problem is APX-Hard even if t is a set, i.e. each
character in t is unique. To do so, we present an approximation-preserving reduc-
tion from the classical Asymmetric maximum TSP problem with edge weights
of 0 and 1.

Definition 2. (Maximum Asymmetric Travelling Salesman Problem)
Given a complete weighted directed graph G = (V,E) the Maximum Travelling
Salesman Problem is to find a closed tour of maximum weight visiting all vertices
exactly once.

Theorem 3. [7] For any constant ε > 0, it is NP-Hard to approximate the Max-
imum Asymmetric Travelling Salesman with 0, 1 edge weights within 320/321+ε.

The hardness result for the RCSstr[2] problem is stated in the following theorem.

Theorem 4. There exists a constant β > 0, such that the RCSstr problem is
NP-Hard to approximate within a factor of 1 − β, even if all the strings in S
have length two and t is a set.

Proof. We present a gap-preserving reduction from the maximum asymmetric
TSP to the RCSstr[2] problem where t is a set.

Given a complete directed graph G = (V,E), with |V | = n, |E| = n(n − 1)
and edge weights of 0 and 1, we construct an instance (S, t) of the RCSstr[2]
problem in the following way.

Set t = V and for each arc (a, b) ∈ E with weight 1 set a string ab in S. Let
OPT (G) be the length of the optimal tour on the graph G and let OPT (S, t) be
the maximum number of strings from S which can be substrings of a permutation
of t. In order to have an inapproximability factor less than 1, we also assume
that n > 322.

We now prove that the reduction presented is a gap-preserving reduction.
Specifically, we prove that:

OPT (G) = n⇒ OPT (S, t) = n− 1

OPT (G) < (1 − α)n⇒ OPT (S, t) < (1 − β)(n − 1)

where α > 0 and β > 0 are constants which are defined later. The permutation
v1v2 . . . vn corresponding to a tour of length n contains n− 1 strings from S as
substrings: v1v2, v2v3, . . . , vn−1vn. Therefore, the first implication is true.

Suppose now that OPT (G) < (1 − α)n. Then, OPT (S, t) < (1− α)n, since a
permutation of t defines a path in the graph, which is shorter than a tour. We
want to find a constant β such that (1 − α)n ≤ (1 − β)(n − 1). The following
inequality gives the desired.
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β ≤ 1 − 1 − α

1 − 1
n

Therefore, if the maximum ATSP problem does not admit a 1 − α approx-
imation, then the RCSstr[2] problem (even in case that t is a set) does not
admit a 1 − β approximation (the reader may refer to [28] for a more detailed
argument of this claim). From Theorem 3, we know that is hard to approximate
the Maximum Asymmetric Travelling Salesman with 0, 1 edge weights within
320/321 + ε, for any ε > 0. Therefore, our problem is inapproximable within 1 -
β ≥ n(320/321 + ε)/(n− 1), for any ε > 0.

��
We now show that even over a binary alphabet the RCSstr problem remains
NP-Hard.

Theorem 5. If |Σ| = 2, then the RCSstr problem is NP-Hard.

Proof. Let Σ = {0, 1}. We prove that if we can solve the RCSstr problem on
the alphabet Σ in polynomial time, then we can solve in polynomial time the
shortest common superstring problem on the alphabet Σ.

Consider a shortest common superstring instance S, where the longest string
has length �. It is easy to see that s1 · s2 · · · · · sn is a superstring of all the
strings in S. Hence, the solution is no longer than n�. We show that O(n2�2)
calls to RCSstr are sufficient to find the shortest common superstring of the
given strings.

We name an RCSstr instance (S, t) complete, if all the strings of S are sub-
strings of the optimal solution π(t).

Note that there exists a string x with i 0’s and j 1’s that is a common su-
perstring of all the strings in S if and only if the RCSstr instance (S, 0i1j) is
complete. Therefore, we want to find the shortest string t such that the RCSstr
instance (S, t) is complete. The shortest common superstring is given by the per-
mutation π(t) returned by calling the RCSstr on the instance (S, t). The number
of multisets 0i1j where i+ j ≤ n� is O(n2�2). Therefore we can call the RCSstr
on all of them and we can find the shortest common superstring on the given
strings in polynomial time (note that this time can be improved somewhat by
employing a binary search). The shortest common superstring problem is NP-
Hard and the theorem follows. ��

2.2 Approximating RCSstr

In this section we present approximation algorithms for two variants of the RC-
Sstr problem.

We first present a 3/4-approximation algorithm for the RCSstr[2] problem
where each character of t is unique. Our algorithm follows immediately from the
NP-Hardness reduction presented in the previous section. Since each character in
t is unique we can construct a complete directed graph G = (V,E), with V = Σ
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as in the proof of Theorem 4. We then apply the 3/4 approximation algorithm
for the Maximum ATSP [3] and we obtain a cycle tπ(1), tπ(2), . . . , tπ(n), tπ(1) of
total weight k, where π : {1, . . . , n} → {1, . . . , n} is a permutation.

If, for some i < n, tπ(i)tπ(i+1) /∈ S, we output tπ(i+1)tπ(i+2) · · · tπ(n−1)tπ(n)tπ(1)

· · · tπ(i), that contains k strings from S as substrings (and yields an approxima-
tion ratio of 3/4). Otherwise, we output tπ(1)tπ(2) . . . tπ(n−1)tπ(n) that contains
exactly n− 1 strings from S as substrings, which is optimal.

Here we present a simple 1/(�(�(� + 1)/2 − 1))-approximation algorithm for
RCSstr[�].

The idea is output a concatenation of a maximal collection of strings from S.
One can observe that each of the � characters of a string in our solution cannot
be used by more than �(�+ 1)/2 − 1 strings in the optimal solution. Therefore,
the algorithm yields a 1/(�(�(� + 1)/2 − 1))-approximation ratio. Formally, the
algorithm is presented below.

Algorithm 1. A 1/(�(�(� + 1)/2 − 1)) approximation algorithm for RCSstr[�]

Find a maximal subset S′ = s′1, s
′
2, . . . , s

′
q ⊂ S of strings under the following

constraint: there exists a permutation π(t) of the multiset such that
s′1 · s′2 · · · · · s′q is a prefix of π(t).
Output: π(t)

Theorem 6. Algorithm 1 is a 1/(�(�(�+1)/2−1))-approximation algorithm for
RCSstr[�].

Proof. Note that, a single character can be used simultaneously in at most �(�+
1)/2 − 1 non-unit-length strings of the optimal solution. Since for every si ∈ S,
|si| ≤ �, we can conclude that a single string in our solution can cause at most
�(�(�+1)/2−1) other strings of the optimal solution not to be chosen. Thus, the
size of the optimal solution is at most q(�(�(�+1)/2−1)) and the approximation
ratio follows. ��
One tight example for the above analysis of Algorithm 1 is the following: t =
{a, b, c, q, q, q, z, z, z, w, w,w, x, x, x}, and S = {abc, qa, az, wqa, qaz, azx, qb, bz,
wqb, qbz, bzx, qc, cz, wqc, qcz, czx}. If we first select into the maximal collection
the string abc, then we cannot add any other string to our solution. The optimal
solution has size 15 and consists of all the other strings.

Observation 1. Given an RCSstr[�] instance, if for every si ∈ S, si is not a
substring of any other sj ∈ S, then Algorithm 1 is an �2-approximation algo-
rithm.

Proof. Note that, a single character can be used simultaneously in at most �
strings of the optimal solution, thus, a single string in our solution can stop at
most �2 other strings of the optimal solution from being placed. ��
One can notice that, in case that all input strings are of length � the above
observation must holds.
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3 RCSseq

We now turn to the RCSseq problem. We first present hardness results and
lower bound for several variants of the RCSseq problem and then we present
two approximation algorithms.

3.1 Hardness of the RCSseq problem

In the following theorem we show that the hardness result for the general RCSstr
holds also to the RCSseq.

Theorem 7. RCSseq is NP-complete and hard to approximate within a factor
n1−ε, for any ε > 0, unless P = NP.

Proof. Omitted (similar to the proof of Theorem 2).

Moreover, we state that even over a binary alphabet the RCSseq problem remains
NP-Hard.

Theorem 8. If |Σ| = 2, then the RCSseq problem is NP-Hard.

Proof. Omitted (similar to the proof of Theorem 5).

We now prove that RCSseq is APX-Hard even if all the input strings are of
length two and t is a set. To do so, we present an approximation-preserving
reduction from the classical maximum acyclic subgraph problem.

Definition 3. (Maximum Acyclic Subgraph) Given a directed graph G = (V,E)
the maximum acyclic subgraph problem is to find a subset A of the arcs such
that G′ = (V,A) is acyclic and A has maximum cardinality.

Theorem 9. [17] The Maximum Acyclic Subgraph problem is APX-Complete.

We can now present our hardness result.

Theorem 10. RCSseq is APX-Hard even if all the strings in S have length two
and t is a set.

Proof. We present an approximation-preserving reduction from the maximum
acyclic subgraph problem. Given a directed graph G = (V,E) we construct an
instance (S, t) of the RCSseq problem as follows. Set t = V and for every arc
(a, b) ∈ E we add a string ab to S.

Let π be a permutation of the set t and let A ⊆ S be all the strings that are
subsequences of π(t). The corresponding edge set A defines an acyclic subgraph of
G. On the other hand, let A ⊆ E be an acyclic subgraph. Consider a topological
ordering of (V,A). All strings corresponding to edges A are subsequences of π(t)
that corresponds to the topological ordering.

Note that the optimal solution of the RCSseq instance (S, t) has size x if and
only if the optimal solution of maximum acyclic subgraph problem on the graph
G has size x. Thus, the RCSseq problem is APX-Hard. ��
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In [11] the following result is proven.

Theorem 11. The maximum acyclic subgraph problem is Unique-Games hard
to approximate within a factor better than the trivial 1/2 achieved by a random
ordering.

The maximum acyclic subgraph is a special case of permutation constraint satis-
faction problem (permCSP). A permCSP of arity k is specified by a subset S of
permutations on {1, 2, . . . , k}. An instance of such a permCSP consists of a set
of variables V and a collection of constraints each of which is an ordered k-tuple
of V . The objective is to find a global ordering σ of the variables that maximizes
the number of constraint tuples whose ordering (under σ) follows a permutation
in S. In [5] Charikar, Guruswami and Manokaran prove the following result.

Theorem 12. For every permCSP of arity 3, beating the random ordering is
Unique-Games hard.

Our problem corresponds a permCSP where S contains only the identical per-
mutation. Therefore we can conclude the following.

Theorem 13. RCSseq[2] is Unique-Games hard to approximate within a factor
better than 1/2.

Theorem 14. RCSseq[3] is Unique-Games hard to approximate within a factor
better than 1/6.

Currently there is an unpublished result by Charikar, H̊astad and Guruswami
stating that every k-ary permCSP is approximation resistant. This implies that
RCSseq[�] cannot have an approximation algorithm better than 1/�!.

3.2 Approximating RCSseq

In this subsection we present a (1+Ω(1/
√
Δ))/2 approximation algorithm for the

RCSseq[2] problem where Δ is the number of occurrences of the most frequent
character in S. We also present a simple randomized approximation algorithm
which achieves an approximation ratio of 1/�!.

Theorem 15. [2] The maximum acyclic subgraph problem is approximable
within (1 + Ω(1/

√
Δ))/2, where Δ is the maximum degree of a node in the

graph.

Given a multiset t, let P ′ be the set of characters that have a single occurrence
in t and let P be Σ\P ′, where Σ is the alphabet of t. We define Q to be the
following multiset. For every σ ∈ P , if σ has r occurrences in t, then σ has r− 2
occurrences Q.

Figure 1 is an example of Algorithm 2. In the first stage we construct a graph
according to the first two steps, note that P = {e}, P ′ = {a, b, c, d} and Q = ∅.
Then we present an acyclic directed subgraph and we output F · F ′ · F · F ′′,
where F = e and F ′ = cadb.
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Algorithm 2. A (1 + Ω(1/
√

Δ))/2 approximation algorithm for RCSseq[2]

1. Given a multiset t, construct a graph G = (V, E) such that:
vi ∈ V iff vi ∈ P ′ and (a, b) ∈ E iff a, b ∈ P ′ and ab ∈ S.

2. Apply the (1 + Ω(1/
√

Δ))/2 approximation algorithm for the maximum acyclic
subgraph to the graph G.
Denote the output subgraph by G′(V, E′).

3. Let F ′ be a topological order of the vertices of G′.
Let F and F ′′ be an arbitrary ordering of P and Q respectively.

4. Output F · F ′ · F · F ′′.

s 2

1s

s 3

ab=

= bc

ca=

t= abcdee

be=

= ee

= ea

8s

7s

9s

s 6= ec

db=5s

s 4 cd=

ba

dc c d

a b

t=ecadbe

Fig. 1. Algorithm 2 example

Theorem 16. Algorithm 2 is a (1 +Ω(1/
√
Δ))/2 approximation algorithm for

the RCSseq[2] problem, where Δ is the maximum number of occurrences of a
character in the set S.

Proof. Given a string ab ∈ S. If a ∈ P or b ∈ P (or both), then ab is always a
subsequence of F ·F ′ ·F . Otherwise, if both a and b appear only once in t, then
ab is a subsequence of F ·F ′ ·F if only if the edge (a, b) is selected in the arc set of
the maximum acyclic subgraph. Since the maximum acyclic subgraph problem
has an approximation ratio of (1 +Ω(1/

√
Δ))/2, the same approximation ratio

holds for RCSseq[2] problem. ��
We now deal with RCSseq[�] instances. We show that selecting an arbitrary
permutation π(t) achieves an expected approximation ratio of 1

�! .
We define by P (si, π(t)) the probability that a string si ∈ S is a subsequence

of a permutation π(t).

Note that, P (si, π(t)) ≥ (|t|
� )(|t|−�)!

|t|! = 1
�! . Therefore, the expected number of

strings from S to be subsequences of an arbitrary permutation π(t) ≥ |S|
�! . Thus,

selecting an arbitrary permutation π(t) achieves an expected approximation ratio
of at least |S|

|S|�! = 1
�! .
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