

Lecture Notes in Computer Science 6659
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Marco Bernardo Valérie Issarny (Eds.)

Formal Methods
for Eternal Networked
Software Systems

11th International School on Formal Methods
for the Design of Computer, Communication
and Software Systems, SFM 2011
Bertinoro, Italy, June 13-18, 2011
Advanced Lectures

13

Volume Editors

Marco Bernardo
Università di Urbino “Carlo Bo”
Dipartimento di Scienze di Base e Fondamenti
Piazza della Repubblica 13, 61029 Urbino, Italy
E-mail: bernardo@sti.uniurb.it

Valérie Issarny
INRIA Paris - Rocquencourt
Domaine de Voluceau, B.P. 105
78153 Le Chesnay, France
E-mail: valerie.issarny@inria.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-21454-7 e-ISBN 978-3-642-21455-4
DOI 10.1007/978-3-642-21455-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011928397

CR Subject Classification (1998): D.2.4, D.3.1, F.3-4, C.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume presents a set of papers accompanying the lectures of the 11th Inter-
national School on Formal Methods for the Design of Computer, Communication
and Software Systems (SFM).

This series of schools addresses the use of formal methods in computer science
as a prominent approach to the rigorous design of the above-mentioned systems.
The main aim of the SFM series is to offer a good spectrum of current research
in foundations as well as applications of formal methods, which can be of help
for graduate students and young researchers who intend to approach the field.

SFM 2011 was devoted to formal methods for eternal networked software
systems and covered several topics including formal foundations for the inter-
operability of software systems, application-layer and middleware-layer dynamic
connector synthesis, interaction behavior monitoring and learning, and quality
assurance of connected systems. The school was held in collaboration with the
researchers of the EU-funded projects Connect and EternalS.

This volume comprises 15 articles organized into six parts: (i) architecture
and interoperability, (ii) formal foundations for connectors, (iii) connector syn-
thesis, (iv) learning and monitoring, (v) dependability assurance, and (vi) trust-
worthy eternal systems via evolving software.

The paper by Blair, Paolucci, Grace, and Georgantas examines the issue
of interoperability in complex distributed systems by focussing on middleware
solutions that are intrinsically based on semantic meaning and advocates a dy-
namic approach to interoperability based on the concept of emergent middleware.
Grace, Georgantas, Bennaceur, Blair, Chauvel, Issarny, Paolucci, Saadi, Souville,
and Sykes illustrate how the Connect architecture tackles the interoperability
problem for heterogeneous systems by observing the networked systems in ac-
tion, learning their behavior, and then dynamically generating mediator software
that will connect the systems.

The paper by Forejt, Kwiatkowska, Norman, and Parker provides an intro-
duction to probabilistic model checking of Markov decision processes and its
applications to performance and dependability analysis of networked systems,
communication protocols, and randomized distributed algorithms. Baier, Klein,
and Klüppelholz present an overview of the modeling concepts for components
and connectors using the exogenous coordination languages Reo together with
the underlying constraint automata framework for property verification.

The paper by Inverardi, Spalazzese, and Tivoli reports on how to automati-
cally achieve protocol interoperability via connector synthesis by distinguishing
between two notions of application-layer connectors: coordinators and mediators.
Giannakopoulou and Păsăreanu review techniques for generating component in-
terfaces automatically in order to cope with the fact that the satisfaction of
certain properties may depend on the context in which a component will be

VI Preface

dynamically introduced. The paper by Issarny, Bennaceur, and Bromberg deals
with middleware interoperability by discussing an approach to the dynamic syn-
thesis of emergent connectors that mediate the interaction protocols executed
by networked systems from application down to middleware layers.

Steffen, Howar, and Merten give an introduction to active learning of Mealy
machines, which is characterized by the alternation of an exploration phase –
during which membership queries are used to construct hypothesis models of a
system under test – and a testing phase – during which equivalence queries are
used to compare hypothesis models with the actual system – until a valid model
of the target system is produced. The paper by Tretmans’s presents model-based
testing, in which test cases are algorithmically generated from a model specifying
the required behavior of a system, and test-based modeling or automata learn-
ing, which aims at automatically generating a model from test observations, and
shows that test coverage in model-based testing and precision of learned models
turn out to be two sides of the same coin. Jonsson’s paper is about generating
models of communication system components from observations of their exter-
nal behavior and illustrates how to adapt existing techniques to include data
parameters in messages and states.

The paper by Bertolino, Calabró, Di Giandomenico, and Nostro deals with
the dependability and performance evaluation of dynamic and evolving systems
by means of a framework that can be used off-line for system design and on-
line for continuously monitoring system behavior and detecting possible issues
arising at run time. Costa, Issarny, Martinelli, Matteucci, and Saadi investigate
security and trust as two complementary perspectives on the problem of the
correct interaction among software components and propose an approach called
security by contract with trust, in which the level of trust measures the adherence
of the application to its contract.

The paper by Clarke, Diakov, Hähnle, Johnsen, Schaefer, Schäfer, Schlatte,
and Wong describes HATS, an abstract behavioral modeling language for highly
configurable distributed systems that supports spatial and temporal variabil-
ity. Moschitti’s paper introduces kernel methods designed within the statis-
tical learning theory in order to overcome the concrete limitations of logic/
rule-based approaches to the semantic modeling of the behavior of complex sys-
tems. Jürjens, Ochoa, Schmidt, Marchal, Houmb, and Islam recall the UMLsec
approach to model-based security, which supports the system specification and
design phases as well as maintaining the needed levels of security even through
later software evolution.

We believe that this book offers a useful view of what has been done and what
is going on worldwide in the field of eternal networked software systems. We wish
to thank all the speakers and all the participants for a lively and fruitful school.
We also wish to thank the entire staff of the University Residential Center of
Bertinoro for the organizational and administrative support.

June 2011 Marco Bernardo
Valérie Issarny

Table of Contents

Part I: Architecture and Interoperability

Interoperability in Complex Distributed Systems . 1
Gordon S. Blair, Massimo Paolucci, Paul Grace, and
Nikolaos Georgantas

The CONNECT Architecture . 27
Paul Grace, Nikolaos Georgantas, Amel Bennaceur, Gordon S. Blair,
Franck Chauvel, Valérie Issarny, Massimo Paolucci, Rachid Saadi,
Betrand Souville, and Daniel Sykes

Part II: Formal Foundations for Connectors

Automated Verification Techniques for Probabilistic Systems 53
Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, and
David Parker

Modeling and Verification of Components and Connectors 114
Christel Baier, Joachim Klein, and Sascha Klüppelholz

Part III: Connector Synthesis

Application-Layer Connector Synthesis . 148
Paola Inverardi, Romina Spalazzese, and Massimo Tivoli

Context Synthesis . 191
Dimitra Giannakopoulou and Corina S. Păsăreanu

Middleware-Layer Connector Synthesis: Beyond State of the Art in
Middleware Interoperability . 217

Valérie Issarny, Amel Bennaceur, and Yérom-David Bromberg

Part IV: Learning and Monitoring

Introduction to Active Automata Learning from a Practical
Perspective . 256

Bernhard Steffen, Falk Howar, and Maik Merten

Model-Based Testing and Some Steps towards Test-Based Modelling . . . 297
Jan Tretmans

Learning of Automata Models Extended with Data 327
Bengt Jonsson

VIII Table of Contents

Part V: Dependability Assurance

Dependability and Performance Assessment of Dynamic CONNECTed
Systems . 350

Antonia Bertolino, Antonello Calabró,
Felicita Di Giandomenico, and Nicola Nostro

Security and Trust . 393
Gabriele Costa, Valérie Issarny, Fabio Martinelli,
Ilaria Matteucci, and Rachid Saadi

Part VI: Trustworthy Eternal Systems via Evolving
Software

Modeling Spatial and Temporal Variability with the HATS Abstract
Behavioral Modeling Language . 417

Dave Clarke, Nikolay Diakov, Reiner Hähnle, Einar Broch Johnsen,
Ina Schaefer, Jan Schäfer, Rudolf Schlatte, and Peter Y.H. Wong

Kernel-Based Machines for Abstract and Easy Modeling of Automatic
Learning . 458

Alessandro Moschitti

Modelling Secure Systems Evolution: Abstract and Concrete Change
Specifications . 504

Jan Jürjens, Mart́ın Ochoa, Holger Schmidt, Löıc Marchal,
Siv Hilde Houmb, and Shareeful Islam

Author Index . 527

M. Bernardo and V. Issarny (Eds.): SFM 2011, LNCS 6659, pp. 1–26, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Interoperability in Complex Distributed Systems

Gordon S. Blair1, Massimo Paolucci2, Paul Grace1, and Nikolaos Georgantas3

1 School of Computing and Communications, Lancaster University, UK
{gordon,gracep}@comp.lancs.ac.uk

2 Laboratories Europe GmbH, Munich, Germany
paolucci@docomolab-euro.com

3 INRIA, CRI Paris-Rocquencourt, France
nikolaos.georgantas@inria.fr

Abstract. Distributed systems are becoming more complex in terms of both the
level of heterogeneity encountered coupled with a high level of dynamism of such
systems. Taken together, this makes it very difficult to achieve the crucial
property of interoperability that is enabling two arbitrary systems to work together
relying only on their declared service specification. This chapter examines this
issue of interoperability in considerable detail, looking initially at the problem
space, and in particular the key barriers to interoperability, and then moving on to
the solution space, focusing on research in the middleware and semantic
interoperability communities. We argue that existing approaches are simply
unable to meet the demands of the complex distributed systems of today and that
the lack of integration between the work on middleware and semantic
interoperability is a clear impediment to progress in this area. We outline a
roadmap towards meeting the challenges of interoperability including the need for
integration across these two communities, resulting in middleware solutions that
are intrinsically based on semantic meaning. We also advocate a dynamic
approach to interoperability based on the concept of emergent middleware.

Keywords: Interoperability, complex distributed systems, heterogeneity,
adaptive distributed systems, middleware, semantic interoperability.

1 Introduction

Complex pervasive systems are replacing the traditional view of homogenous
distributed systems, where domain-specific applications are individually designed and
developed upon domain-specific platforms and middleware, for example, Grid
applications, Mobile Ad-hoc Network applications, enterprise systems and sensor
networks. Instead, these technology-dependent islands are themselves dynamically
composed and connected together to create richer interconnected structures, often
referred to as systems of systems. While there are many challenges to engineering
such complex distributed systems, a central one is ‘interoperability’, i.e., the ability
for one or more systems to: connect, understand and exchange data with one another
for a given purpose. When considering interoperability there are two key properties to
deal with:

2 G.S. Blair et al.

⎯ Extreme heterogeneity. Pervasive sensors, embedded devices, PCs, mobile
phones, and supercomputers are connected using a range of networking
solutions, network protocols, middleware protocols, and application protocols
and data types. Each of these can be seen to add to the plethora of technology
islands, i.e., systems that cannot interoperate.

⎯ Dynamic and spontaneous communication. Connections between systems are
not made until runtime; no design or deployment decision, e.g., the choice of
middleware, can inform the interoperability solution.

We highlight in this chapter the important dimensions that act as a barrier to
interoperability; these consist of differences in: the data formats and content, the
application protocols, the middleware protocols and the non-functional properties. We
then investigate state-of-the-art solutions to interoperability from the middleware and
the semantic web community. This highlights that the approaches so far are not fit for
purpose, and importantly that the two communities are disjoint from one another.
Hence, we advocate that the two fields embrace each other’s results, and that from
this, fundamentally different solutions will emerge in order to drop the
interoperability barrier.

2 Interoperability Barriers: Dimensions of Heterogeneity

2.1 Data Heterogeneity

Different systems choose to represent data in different ways, and such data
representation heterogeneity is typically manifested at two levels. The simplest form
of data interoperability is at the syntactic level where two different systems may use
two very different formats to express the same information. Consider a vendor
application for the sale of goods; one vendor may price an item using XML, while
another may serialize its data using a Java-like syntax. So the simple information that
the item costs £1 may result in the two different representations as shown in Fig. 1(a).

<price>
 <value> 1 </value>
 <currency> GBP </currency>
</price>

 price(1,GBP)

a) Representing price in XML and tuple data

<price>
 <value> 1 </value>
 <currency> GBP </currency>
</price>

<cost>
 <amount> 1 </ amount >
 <denomination> £</ denomination >
</cost>

b) Heterogeneous Currency Data

Fig. 1. Examples of Data Heterogeneity

 Interoperability in Complex Distributed Systems 3

Aside from the syntactic level interoperability, there is a greater problem with the
“meaning” of the tokens in the messages. Even if the two components use the same
syntax, say XML, there is no guarantee that the two systems recognize all the nodes in
the parsing trees or even that the two systems interpret all these nodes in a consistent
way. Consider the two XML structures in the example in Fig. 1(b). Both structures are
in XML and they (intuitively) carry the same meaning. Any system that recognizes
the first structure will also be able to parse the second one, but will fail to recognize
the similarity between them unless the system realizes that price≡cost, that
value≡amount, that currency≡denomination and of course that GBP≡£ (where ≡
means equivalent). The net result of using XML is that both systems will be in the
awkward situation of parsing each other’s message, but not knowing what to do with
the information that they just received.

The deeper problem of data heterogeneity is the semantic interoperability problem
whereby all systems provide the same interpretation to data. The examples provided
above, show one aspect of data interoperability, namely the recognition that two
different labels represent the same object. This is in the general case an extremely
difficult problem which is under active research [1], though in many cases it can
receive a simple pragmatic solution by forcing the existence of a shared dictionary.
But the semantic interoperability problem goes beyond the recognition that two labels
refer to the same entity. Ultimately, the data interoperation problem is to guarantee
that all components of the system share the same understanding of the data
transmitted, where the same understanding means that they have consistent semantic
representations of the data.

2.2 Middleware Heterogeneity

Developers can choose to implement their distributed applications and services upon a
wide range of middleware solutions that are now currently available. In particular,
these consist of heterogeneous discovery protocols which are used to locate or
advertise the services in use, and heterogeneous interaction protocols which perform
the direct communication between the services. Fig. 2 illustrates a collection
implemented upon these different technologies. Application 1 is a mobile sport news
application, whereby news stories of interest are presented to the user based on their
current location. Application 2 is a jukebox application that allows users to select and
play music on an audio output device at that location. Finally, application 3 is a chat
application that allows two mobile users to interact with one another. In two locations
(a coffee bar and a public house) the same application services are available to the
user, but their middleware implementations differ. For example, the Sport News
service is implemented as a publish-subscribe channel at the coffee bar and as a
SOAP service in the pubic house. Similarly, the chat applications and jukebox
services are implemented using different middleware types. The service discovery
protocols are also heterogeneous, i.e., the services available at the public house are
discoverable using SLP and the services at the coffee bar can be found using both
UPnP and SLP. For example, at the coffee bar the jukebox application must first find
its corresponding service using UPnP and then use SOAP to control functionality.
When it moves to the public house, SLP and CORBA must be used.

4 G.S. Blair et al.

Fig. 2. Legacy services implemented using heterogeneous middleware

2.3 Application Heterogeneity

Interoperability challenges at the application level might arise due to the different
ways the application developers might choose to implement the program
functionality, including different use of the underlying middleware. As a specific
example, a merchant application could be implemented using one of two approaches
for the consumer to obtain information about his wares:

⎯ A single GetInfo() remote method, which returns the information about the
product price and quantity available needed by the consumer.

⎯ Two separate remote methods GetPrice(), and GetQuantity()
returning the same information.

A client developer can then code the consumer using either one of the approaches
described above, and this would lead to different sequences of messages between the
consumer and merchant. Additionally, application level heterogeneity can also be
caused due to the differences between the underlying middlewares. For example,
when using a Tuple Space, the programmer can use the rich search semantics
provided by it, which are not available in other types of middleware, e.g., for RPC
middleware a Naming Service or discovery protocol must then be used for equivalent
capabilities.

2.4 Non-functional Heterogeneity

Distributed systems have non-functional properties that must also be considered if
interoperability is to be achieved. That is, two systems may be able to overcome all of
the three prior barriers and functionally interoperate, but if the solution does not
satisfy the non-functional requirements of each of the endpoints then it cannot be
considered to have achieved full interoperability. For example, peers may have
different requirements for the latency of message delivery; if the client requires that
messages be delivered within 5ms and the server can only achieve delivery in 10ms
then interoperability is not satisfying the solution. Similarly, two systems may employ

 Interoperability in Complex Distributed Systems 5

different security protocols; the interoperability solution must ensure that the security
requirements of both systems are maintained.

3 Middleware Solutions to Interoperability

3.1 Introduction

Tanenbaum and Van Steen define interoperability as:

“the extent by which two implementations of systems or components from different
manufacturers can co-exist and work together by merely relying on each other's
services as specified by a common standard.” [2].

Achieving such interoperability between independently developed systems has been
one of the fundamental goals of middleware researchers and developers. This section
traces these efforts looking at traditional middleware that seek a common standard/
platform for the entire distributed system (section 3.2), interoperability platforms that
recognize that middleware heterogeneity is inevitable and hence allows clients to
communicate with a given middleware as dynamically encountered (section 3.3),
software bridges that support the two-way translation between different middleware
platforms (section 3.4), transparent interoperability solutions that go beyond
interoperability platforms by allowing two legacy applications to transparently
communicate without any change to these applications (section 3.5), and finally the
logical mobility approach that overcomes heterogeneity by migrating applications and
services to the local environment, assuming that environment has the mechanisms to
interpret this code, e.g. through an appropriate virtual machine.

3.2 Traditional Middleware

The traditional approach to resolving interoperability using middleware standards and
platforms is to advocate that all systems are implemented upon the same middleware
technology; this pattern is illustrated in Fig. 3 and is equivalent to native spoken
language interoperability where the speakers agree in advance upon one language to
speak. There are many different middleware styles that follow this pattern of
interoperability, and it is important to highlight that these actually contribute to the
interoperability problem, i.e., the different styles and specific implementations do not
interoperate; to illustrate this point the following is a list of the most commonly used
solution types:

⎯ RPC/Distributed Objects. Distributed Objects (e.g. CORBA [3] and DCOM [4])
are a communication abstraction where a distributed application is decomposed
into objects that are remotely deployed and communicate and co-ordinate with
one another. The abstraction is closely related to the well-established
methodology of object orientation, but rather than method invocations between
local objects, distributed objects communicate using remote method invocations;
where a method call and parameters are marshalled and sent across the network
and the result of the method is returned synchronously to the caller. This is

6 G.S. Blair et al.

similar to the style of communication employed in remote procedure calls (RPC)
e.g. SunRPC [5].

⎯ Message-based. Messaging applications differ from RPC in that they provide a
one-way, asynchronous exchange of data. This can either be i) direct between
two endpoints e.g. SOAP messaging, or ii) involve an intermediary element such
as a message queue that allows the sender and receiver to be decoupled in time
and space i.e. both do not need to be connected directly or at the same time.
Examples of message queue middleware are MSMQ [6] and the Java Messaging
Service (JMS)1.

⎯ Publish-Subscribe is an alternative messaging abstraction where the producers
and consumers of messages are anonymous from one another. Consumers
subscribe for content by publishing a subscription (this can be topic-based, i.e.,
based upon the type of the message, or content-based i.e. the filter is fine-grained
towards the content of each message); and publishers then send out
messages/events. Brokers are intermediary systems that are deployed in the
network or at the edge which match messages to subscriptions. A match then
requires the event to be delivered to the application. Notable examples of
Publish-Subscribe middleware are SIENA [7] and JMS.

⎯ Tuple Spaces. The Linda platform [8] originated the concept of tuple spaces as a
shared-memory approach for the coordination of systems. Clients can write and
read data tuples into a shared space, where a tuple is a data element much like a
database record. Tuple space middleware often differ in how the tuple space is
deployed e.g. enterprise solutions, such as TSpaces [9], use a central enterprise
server to host the tuple space for clients to connect to, while L2imbo [10] and
LiME[11] distribute the tuple space evenly among peers.

Fig. 3. Interoperability pattern utilised by traditional middleware

These technologies resolve interoperability challenges to different extents, the
majority focusing on interoperation between systems and machines with
heterogeneous hardware and operating systems, and applications written in different
programming languages. Hence, this pattern works well for distributed systems where
the parties and technologies are known in advance and can be implemented using a
common middleware choice. However, for pervasive and dynamic environments
where systems interact spontaneously this approach is infeasible (every application
would be required to be implemented upon the same middleware). In the more
general sense of achieving universal interoperability and dynamic interoperability
between spontaneous communicating systems they have failed. Within the field of

1 http://www.oracle.com/technetwork/java/jms/index.html

 Interoperability in Complex Distributed Systems 7

distributed software systems, any approach that assumes a common middleware or
standard is destined to fail due to the following reasons:

1. A one size fits all standard/middleware cannot cope with the extreme
heterogeneity of distributed systems, e.g. from small scale sensor applications
through to large scale Internet applications. CORBA and Web Services [12]
both present a common communication abstraction i.e. distributed objects or
service orientation. However, the list of diverse middleware types already
illustrates the need for heterogeneous abstractions.

2. New distributed systems and application emerge fast, while standards
development is a slow, incremental process. Hence, it is likely that new
technologies will appear that will make a pre-existing interoperability standard
obsolete, c.f. CORBA versus Web Services (neither can talk to the other).

3. Legacy platforms remain useful. Indeed, CORBA applications remain widely
in use today. However, new standards do not typically embrace this legacy
issue; this in turn leads to immediate interoperability problems.

3.3 Interoperability Platforms

Fig. 4 illustrates the pattern employed by interoperability platforms, which can be
seen to follow the spoken language translation approach of the person speaking
another person's language. Interoperability platforms provide a middleware-agnostic
technology for client, server, or peer applications to be implemented directly upon in
order to guarantee that the application can interoperate with all services irrespective
of the middleware technologies they employ. First, the interoperability platform
presents an API for developing applications with. Secondly, it provides a substitution
mechanism where the implementation of the protocol to be translated to, is deployed
locally by the middleware to allow communication directly with the legacy peers
(which are simply legacy applications and their middleware). Thirdly, the API calls
are translated to the substituted middleware protocol. A key feature of this approach is
that it does not require reliance on interoperability software located elsewhere, e.g., a
remote bridge, an infra-structure server, or the corresponding endpoint; this makes it
ideal for infra-structureless environments. For the particular use case, where you want
a client application to interoperate with everyone else, interoperability platforms are a
powerful approach. These solutions rely upon a design time choice to develop
applications upon the interoperability platforms; therefore, they are unsuited to other
interoperability cases, e.g., when two applications developed upon different legacy
middleware want to interoperate spontaneously at runtime. We now discuss three key
examples of interoperability platforms.

Fig. 4. Interoperability pattern utilised by interoperability platforms

8 G.S. Blair et al.

Universally Interoperable Core (UIC) [13] was an early solution to the
middleware interoperability problem; in particular it was an adaptive middleware
whose goal was to support interactions from a mobile client system to one or more
types of distributed object solutions at the server side, e.g., CORBA, SOAP and Java
RMI. The UIC implementation was based upon the architectural strategy pattern of
the dynamicTAO system [14]; namely, a skeleton of abstract components that form
the base architecture is then specialised to the specific properties of particular
middleware platforms by adding middleware specific components to it (e.g. a
CORBA message marshaller and demarshaller).

ReMMoC [15] is an adaptive middleware developed to ensure interoperability
between mobile device applications and the available services in their local
environment. Here, two phases of interoperability are important: i) discovery of
available services in the environment, and ii) interaction with a chosen service. The
solution is a middleware architecture that is employed on the client device for
applications to be developed upon. It consists of two core frameworks. A service
discovery framework is configured to use different service discovery protocols in
order to discover services advertised by those protocols; a complete implementation
of each protocol is plugged into the framework. Similarly, a binding framework
allows the interaction between services by plugging-in different binding type
implementations, e.g., an IIOP client, a publisher, a SOAP client, etc.

The Web Services Invocation Framework (WSIF) [16] is a Java API, originating
at IBM and now an Apache release, for invoking Web Services irrespective of how
and where these services are provided. Its fundamental goal is to achieve a solution to
better client and Web Service interoperability by freeing the Web Services
Architecture from the restrictions of the SOAP messaging format. WSIF utilises the
benefits of discovery and description of services in WSDL, but applied to a wider
domain of middleware, not just SOAP and XML messages. The structure of WSDL
allows the same abstract interface to be implemented by multiple message binding
formats, e.g., IIOP and SOAP; to support this, the WSDL schema is extended to
understand each format. The core of the framework is a pluggable architecture into
which providers can be placed. A provider is a piece of code that supports each
specific binding extension to the WSDL description, i.e., the provider uses the
specification to map an invoked abstract operation to the correct message format for
the underlying middleware.

3.4 Software Bridges

Software bridges enable communication between different middleware environments.
Hence, clients in one middleware domain can interoperate with servers in another
middleware domain. The bridge acts as a one-to-one mapping between domains; it
will take messages from a client in one format and then marshal this to the format of
the server middleware; the response is then mapped to the original message format.
Fig. 5 illustrates this pattern, which can be seen as equivalent to employing a
translator to communicate between native speakers. Many bridging solutions have
been produced between established commercial platforms The OMG has created the
DCOM/CORBA Inter-working specification [17] that defines the bi-directional
mapping between DCOM and CORBA and the locations of the bridge in the process.

 Interoperability in Complex Distributed Systems 9

SOAP2CORBA2 is an open source implementation of a fully functional bi-directional
SOAP to CORBA Bridge. While a recognised solution to interoperability, bridging is
infeasible in the long term as the number of middleware systems grow, i.e., due to the
effort required to build direct bridges between all of the different middleware
protocols.

Fig. 5. Interoperability pattern utilised by Software Bridges

Enterprise Service Buses (ESB) can be seen as a special type of software bridge;
they specify a service-oriented middleware with a message-oriented abstraction layer
atop different messaging protocols (e.g., SOAP, JMS, SMTP). Rather than provide a
direct one-to-one mapping between two messaging protocols, a service bus offers an
intermediary message bus. Each service (e.g. a legacy database, JMS queue, Web
Service etc.) maps its own message onto the bus using a piece of code, to connect and
map, deployed on the peer device. The bus then transmits the intermediary messages
to the corresponding endpoints that reverse the translation from the intermediary to
the local message type. Hence traditional bridges offer a 1-1 mapping; ESBs offer an
N-1-M mapping. Example ESBs are Artix3 and IBM Websphere Message Broker4.

Bridging solutions have shown techniques whereby two protocols can be mapped
onto one another. These can either use a one-to-one mapping or an intermediary
bridge; the latter allowing a range of protocols to easily bridge between one another.
This is one of the fundamental techniques to achieve interoperability. Furthermore,
the bridge is usually a known element that each of the end systems must be aware of
and connect to in advance-again this limits the potential for two legacy-based
applications to interoperate.

3.5 Transparent Interoperability

In transparent interoperability neither legacy implementation is aware of the
encountered heterogeneity, and hence legacy applications can be made to
communicate with one another. Fig. 6 shows the key elements of the approach. Here,
the protocol specific messages, behaviour and data are captured by the
interoperability framework and then translated to an intermediary representation (note
the special case of a one-to-one mapping, or bridge is where the intermediary is the
corresponding protocol); a subsequent mapper then translates from the intermediary
to the specific legacy middleware to interoperate with. The use of an intermediary
means that one middleware can be mapped to any other by developing these two
elements only (i.e. a direct mapping to every other protocol is not required). Another

2 http://soap2corba.sourceforge.net
3 http://web.progress.com/en/sonic/artix-index.html
4 http://www-01.ibm.com/software/integration/wbimessagebroker/

10 G.S. Blair et al.

difference to bridging is that the peers are unaware of the translators (and no software
is required to connect to them, as opposed to connecting applications to 'bridges').
There are a number of variations of this approach, in particular where the two parts of
the translation process are deployed. They could be deployed separately or together
on one or more of the peers (but in separate processes transparent to the application);
however, they are commonly deployed across one or more infrastructure servers.

Fig. 6. Interoperability pattern utilised by Transparent Interoperability Solutions

There are four important examples of transparent interoperability solutions:

⎯ The INteroperable DIscovery System for networked Services (INDISS) system
[18] is a service discovery middleware based on event-based parsing techniques
to provide service discovery interoperability in home networked environments.
INDISS subscribes to several SDP multicast groups and listens to their respective
ports. To then process the incoming raw data flow INDISS uses protocol specific
parsers, which are responsible for translating the data into a specific message
syntax (e.g. SLP) and then extracting semantic concepts (e.g. a lookup request)
into an intermediary event format. Events are then delivered to composers that
translate this event to the protocol specific message of (e.g. UPnP) the protocol to
interoperate with.

⎯ uMiddle [19] is a distributed middleware infrastructure that ties devices from
different discovery domains into a shared domain where they can communicate
with one another through uMiddle's common protocol. To achieve
interoperability uMiddle makes use of mappers and translators. Mappers function
as service-level and transport-level bridges. That is, they serve as bridges that
connect service discovery (e.g. SLP) and binding (e.g. SOAP) protocols to
uMiddle's common semantic space. Translators project service-specific semantics
into the common semantic space, act as a proxy for that service and embody any
protocol and semantics that are native to the associated service.

⎯ The Open Service Discovery Architecture (OSDA) [20] is a scalable and
programmable middleware for cross-domain discovery over wide-area networks
(where a domain represents a particular discovery protocol. Its motivation is the
need to integrate consumers and providers across different domains irrespective
of the network they belong to. OSDA assumes that discovery agents (i.e. the
service registry, service consumer and service provider) are already in place. To
enable cross-domain service discovery, OSDA utilizes service brokers and a peer
to peer indexing overlay. Service brokers function as interfaces between the
OSDA inter-domain space and the different discovery systems and are
responsible for handling and processing cross-domain service registrations and
requests.

 Interoperability in Complex Distributed Systems 11

⎯ SeDiM [21] is a component framework that self-configures its behaviour to
match the interoperability requirements of deployed discovery protocols, i.e., if it
detects SLP and UPnP in use, it creates a connector between the two. It can be
deployed as either an interoperability platform (i.e. it presents an API to develop
applications that will interoperate with all discovery protocols cf. ReMMoC), or
it can be utilised as a transparent interoperability solution, i.e., it can be deployed
in the infrastructure, or any available device in the network and it will translate
discovery functions between the protocols in the environment. SeDiM provides a
skeleton abstraction for implementing discovery protocols which can then be
specialised with concrete middleware. These configurations can then be
‘substituted’ in an interoperability platform or utilised as one side of a bridge.

Transparent interoperability solutions allow interoperability to be achieved between
two legacy-based platforms; and in this sense they meet the requirements for
spontaneous interoperability. However, the fundamental problem with these
approaches is the Greatest Common Divisor (GCD) problem; you must identify a
subset of functionality between all protocols where they match. However, as the
number of protocols increases this set becomes smaller and smaller restricting what is
possible.

3.6 Logical Mobility

Logical mobility is characterised by mobile code being transferred from one device
and executed on another. The approach to resolve interoperability is therefore
straightforward; a service advertises its behaviour and also the code to interact with it.
When a client discovers the service it will download this software and then use it.
Note, such an approach relies on the code being useful somewhere, i.e., it could fit
into a middleware as in the substitution approach, provide a library API for the
application to call, or it could provide a complete application with GUI to be used by
the user. The overall pattern is shown in Fig. 7. The use of logical mobility provides
an elegant solution to the problem of heterogeneity; applications do not need to know
in advance the implementation details of the services they will interoperate with,
rather they simply use code that is dynamically available to them at run-time.
However, there are fewer examples of systems that employ logical mobility to resolve
interoperability because logical mobility is the weakest of the interoperability
approaches; it relies on all applications conforming to the common platform for
executable software to be deployed. We now discuss two of these examples.

Fig. 7. Interoperability pattern utilised by Logical Mobility Solutions

12 G.S. Blair et al.

SATIN [22] is a low footprint component based middleware that composes
applications and the middleware itself into a set of deployable capabilities (a unit of
functionality), for example, a discovery mechanism or compression algorithm. At the
heart of SATIN is the ability to advertise and middleware capabilities. For example, a
host uses SATIN to lookup the required application services; the interaction
capabilities are then downloaded to allow the client to talk to the service.

Jini [23] is a Java based service discovery platform that provides an infrastructure for
delivering services and creating spontaneous interactions between clients and services
regardless of their hardware or software implementation. New services can be added to
the network, old services removed and clients can discover available services all without
external network administration. When an application discovers the required service, the
service proxy is downloaded to their virtual machine so that it can then use this service.
A proxy may take a number of forms: i) the proxy object may encapsulate the entire
service (this strategy is useful for software services requiring no external resources); ii)
the downloaded object is a Java RMI stub, for invoking methods on the remote service;
and iii) the proxy uses a private communication protocol to interact with the service's
functionality. Therefore, the Jini architecture allows applications to use services in the
network without knowing anything about the wire protocol that the service uses or how
the service is implemented.

4 Semantics-Based Interoperability Solutions

4.1 Introduction

The previous middleware-based solutions support interoperation by abstract protocols
and language specifications. But, by and large they ignore the data heterogeneity
dimension. As highlighted in Section 2.1, for two parties to interoperate it is not
enough to guarantee that the data flows across, but that they both build a semantic
representation of the data that is consistent across the components boundaries. The
data problem has been defined in Hammer and McLeod [24] as:

“variations in the manner in which data is specified and structured in
different components. Semantic heterogeneity is a natural consequence of
the independent creation and evolution of autonomous databases which are
tailored to the requirements of the application system they serve”.

Historically the problem has been well known in the database community where there
is often the need to access information on different database which do not share the
same data schema. More recently, with the advent of the open architectures, such as
Web Services, the problem is to guarantee interoperability at all levels. We now look
at semantics-based solutions to achieving interoperability: first, the Semantic Web
Services efforts, second their application to middleware solutions, and third the
database approaches.

4.2 Semantic Web Services

The problem of data interoperability is crucial to address the problem of service
composition since, for two services to work together, they need to share a consistent

 Interoperability in Complex Distributed Systems 13

interpretation of the data that they exchange. To this extent a number of efforts, which
are generically known as Semantic Web Services, attempt to enrich the Web Services
description languages with a description of the semantics of the data exchanged in the
input and output messages of the operations performed by services. The result of
these efforts are a set of languages that describe both the orchestration of the services'
operations, in the sense of the possible sequences of messages that the services can
exchange as well as the meanings of these messages with respect to some reference
ontology.

Fig. 8. OWL-S Upper Level Structure

OWL-S [26] and its predecessor DAML-S [25] have been the first efforts to
exploit Semantic Web ontologies to enrich descriptions of services. The scope of
OWL-S is quite broad, with the intention to support both service discovery through a
representation of the capabilities of services, as well as service composition and
invocation through a representation of the semantics of the operations and the
messages of the service. As shown in Fig. 8, services in OWL-S are described at three
different levels. The Profile describes the capabilities of the service in terms of the
information transformation produced by the service, as well as the state
transformation that the service produces; the Process (Model) that describes the
workflow of the operations performed by the service, as well as the semantics of these
operations, and the Grounding that grounds the abstract process descriptions to the
concrete operation descriptions in WSDL.

In more detail, the information transformation described in the Profile is
represented by the set of inputs that the service expects and outputs that it is expected
to produce, while the state transformation is represented by a set of conditions
(preconditions) that need to hold for the service to execute correctly and the results
that follow the execution of the service. For example, a credit card registration
service may produce an information transformation that takes personal information as
input, and returns the issued credit card number as output; while the state
transformation may list a number of (pre)conditions that the requester needs to satisfy,
and produce the effect that the requester is issued the credit card corresponding to the
number reported in output.

14 G.S. Blair et al.

The Process Model and Grounding relate more closely to the invocation of the
service and therefore address more directly the problem of data interoperability. The
description of processes in OWL-S is quite complicated, but in a nutshell they
represent a transformation very similar to the transformation described by the Profile
in the sense that they have inputs, outputs, preconditions and results that describe the
information transformation as well as the state transformation which results from the
execution of the process. Furthermore, processes are divided into two categories:
atomic processes that describe atomic actions that the service can perform, and
composite processes that describe the workflow control structure.

Fig. 9. The structure of the OWL-S process grounding

In turn atomic processes “ground” into WSDL operations as shown in Fig. 9 by
mapping the abstract semantic descriptions of inputs and outputs of process into the
WSDL message structures. In more detail, the grounding specifies which operations
correspond to an atomic process, and how the abstract semantic representation is
transformed in the input messages of the service or derived from the output messages.
One important aspect of the Grounding is that it separates the OWL-S description of
the service from the actual implementation of the service, and therefore, every service
which can be expressed in WSDL, can be represented in OWL-S. As a result of the
service description provided by OWL-S the client service would always know how to
derive the message semantics from the input/output messages of the service. Ideally
therefore, the client may represent its own information at the semantic level, and then
ground it to into the messages exchanged by the services.

Analysis of OWL-S. OWL-S provides a mechanism for addressing the data
semantics; however it has failed in a number of aspects. First, many aspects of the
service representation are problematic; for example, it is not clear what is the relation
between the data representation of the atomic processes and the input/output
representation of the complex (control flow) processes. Second, OWL-S is limited to
a strict client/server model, as supported by WSDL, as a consequence it is quite

 Interoperability in Complex Distributed Systems 15

unclear how OWL-S can be used to derive interoperability connectors in other types
of systems. Third, OWL-S assumes the existence of an ontology that is shared
between the client and server; this pushes the interoperability problem one level up.
Of course the next data interoperability question is ``what if there is not such a shared
ontology?''

SA-WSDL. Semantic Web Services reached the standardization level with SA-
WSDL [27], which defines a minimal semantic extension of WSDL. SA-WSDL
builds on the WSDL distinction between the abstract description of the service, which
includes the WSDL 2.0 attributes Element Declaration, Type Definition and Interface,
and the concrete description that includes Binding and Service attributes which
directly link to the protocol and the port of the service. The objective of SA-WSDL is
to provide an annotation mechanism for abstract WSDL. To this extent it extends
WSDL with new attributes:

1. modelReference, to specify the association between a WSDL or XML Schema
component and a concept in some semantic model;

2. liftingSchemaMapping and loweringSchemaMapping, that are added to XML
Schema element declarations and type definitions for specifying mappings
between semantic data and XML.

The modelReference attribute has the goal of defining the semantic type of the WSDL
attribute to which it applies; the lifting and lowering schema mappings have a role
similar to the mappings in OWL-S since their goal is to map the abstract semantic to
the concrete WSDL specification. For example, when applied to an input message, the
model reference would provide the semantic type of the message, while the
loweringSchemaMapping would describe how the ontological type is transformed into
the input message.

A number of important design decisions were made with SA-WSDL to increase its
applicability. First, rather than defining a language that spans across the different
levels of the WS stack, the authors of SA-WSDL have limited their scope to
augmenting WSDL, which considerably simplifies the task of providing a semantic
representation of services (but also limits expressiveness). Specifically, there is no
intention in SA-WSDL to support the orchestration of operations. Second, there is a
deliberate lack of commitment to the use of OWL [28] as an ontology language or to
any other particular semantic representation technology. Instead, SAWSDL provides
a very general annotation mechanism that can be used to refer to any form of semantic
markup. The annotation referents could be expressed in OWL, in UML, or in any
other suitable language. Third, an attempt has been made to maximize the use of
available XML technology from XML schema, to XML scripts, to XPath, with the
attempt to lower the entrance barrier to early adopters.

Analysis of SA-WSDL. Despite these design decisions that seem to suggest a sharp
distinction from OWL-S, SA-WSDL shares features with OWL-S' WSDL grounding.
In particular, both approaches provide semantic annotation attributes for WSDL,
which are meant to be used in similar ways. It is therefore natural to expect that
SAWSDL may facilitate the specification of the Grounding of OWL-S Web Services,
a proposal in this direction has been put forward in [29]. The apparent simplicity of
the approach is somewhat deceiving. First, SA-WSDL requires a solution to the two

16 G.S. Blair et al.

main problems of the semantic representation of Web Services: namely the generation
and exploitation of ontologies, and the mapping between the ontology and the XML
data that is transmitted through the wire. Both processes are very time consuming.
Second, there is no obligation what-so-ever to define a modelReference or a
schemaMapping for any of the attributes of the abstract WSDL, with the awkward
result that it is possible to define the modelReference of a message but not how such
model maps to the message, therefore it is impossible to map the abstract input
description to the message to send to the service, or given the message of the service
to derive its semantic representation. Conversely, when schemaMapping is given, but
not the modelReference, the mapping is know but not the expected semantics of the
message, with the result that it is very difficult to reason on the type of data to send or
to expect from a service.

Web Service Modelling Ontology (WSMO) aims at providing a comprehensive
framework for the representation and execution of services based on semantic
information. Indeed, WSMO has been defined in conjunction with WSML (Web
Service Modelling Language) [30], which provides the formal language for service
representation, and WSMX (Web Service Modelling eXecution environment) [31]
which provides a reference implementation for WSMO. WSMO adopts a very
different approach to the modelling of Web Services than OWL-S and in general the
rest of the WS community. Whereas the Web Service Representation Framework
concentrates on the support of the different operations that can be done with Web
Services, namely discovery with the Service Profile as well as UDDI [32],
composition with the Process Model as well as BPEL4WS [33] and WS-CDL [34],
and invocation with the Service Grounding, WSDL or SA-WSDL, WSMO provides a
general framework for the representation of services that can be utilized to support the
operations listed above, but more generally to reason about services and
interoperability. To this extent it identifies four core elements:

⎯ Web Services: which are the computational entities that provide access to the
services. In turn their description needs to specify their capabilities,
interfaces and internal mechanisms.

⎯ Goals: that model the user view in the Web Service usage process.
⎯ Ontologies provide the terminology used to describe Web Services and Goals

in a machine processable way that allow other components and applications
to take actual meaning into account.

⎯ Mediators: that handle interoperability problems between different WSMO
elements. We envision mediators as the core concept to resolve
incompatibilities on the data, process and protocol level.

What is striking about WSMO with respect to the rest of the WS efforts (semantic and
not) is the representation of goals and mediators as “first class citizens”. Both goals
and mediators are represented as ``by product'' by the rest of the WS community.
Specifically, in other efforts the users' goals are never specified, rather they are
manifested through the requests that are provided to a service registry such as UDDI
or to a service composition engine; on the other side mediators are either a type of
service and therefore indistinguishable from other services, or generated on the fly
through service composition to deal with interoperability problems. Ontologies are
also an interesting concept in WSMO, because WSMO does not limit itself to use

 Interoperability in Complex Distributed Systems 17

existing ontology languages, as in the case of OWL-S that is closely tied to OWL, nor
it is completely agnostic as in the case of SA-WSDL. Rather WSMO relies on
WSML which defines a family of ontological languages which are distinguished by
logic assumptions and expressivity constraints. The result is that some WSML sub-
languages are consistent (to some degree) with OWL, while others are inconsistent
with OWL and relate instead to the DL family of logics.

Despite these differences, the description of Web Services has strong relations to
other Web Services efforts. In this direction, WSMO grounds on the SA-WSDL
effort (indeed SA-WSDL has been strongly supported by the WSMO initiative).
Furthermore, the capabilities of a Web Service are defined by the state and
information transformation produced by the execution of the Web Service, as was the
case in OWL-S. The Interface of a Web Service is defined by providing a
specification of its choreography which defines how to communicate with the Web
Service in order to use its functions; and by the orchestration that reveals how the
functionality of the service is achieved by the cooperation of more elementary Web
Service providers. Of particular interest to addressing interoperability problems,
WSMO defines three types of mediators:

1. Data Level Mediation - mediation between heterogeneous data sources, they
are mainly concerned with ontology integration.

2. Protocol Level Mediation - mediation between heterogeneous communication
protocols, they relate to choreographies of Web Services that ought to interact.

3. Process Level Mediation - mediation between heterogeneous business
processes; this is concerned with mismatch handling on the business logic
level of Web Services and they relate to the orchestration of Web Services.

Analysis of WSMO. WSMO put a strong emphasis on mediation and, as discussed
above, it defines mediation as a "first class" citizen. The problem with WSMO is that
that the WSMO project proposed an execution semantics for mediators [31] [35] but
so far no theory or algorithm on how to construct mediators automatically has been
proposed by the project. Somehow, it is curious that mediation is one of the
fundamental elements of the approach while choreography is left to a secondary role
within the specification of service definitions. Essentially it moves service
composition to a secondary role in the theory.

4.3 Semantic Middleware

A number of research efforts have investigated middleware that support semantic
specification of services for pervasive computing. These solutions mainly focus on
providing middleware functionalities enabling semantic service discovery and
composition as surveyed hereafter. The Task Computing project [36] is an effort for
ontology-based dynamic service composition in pervasive computing environments. It
relies on the UPnP service discovery protocol, enriched with semantic service
descriptions given in OWL-S. Each user of the pervasive environment carries a
service composition tool on his/her device that discovers on the fly available services
in the user's vicinity and suggests to the user a set of possible compositions of these
services. The user may then select the right composition among the suggested ones.

18 G.S. Blair et al.

IGPF (Integrated Global Pervasive Computing Framework) [37] introduces a
semantic Web Services-based middleware for pervasive computing. This middleware
builds on top of the semantic Web paradigm to share knowledge between the
heterogeneous devices that populate pervasive environments. The idea behind this
framework is that information about the pervasive environments (i.e., context
information) is stored in knowledge bases on the Web. This allows different pervasive
environments to be semantically connected and to seamlessly pass user information
(e.g., files/contact information), which allows users to receive relevant services.
Based on these knowledge bases, the middleware supports the dynamic composition
of pervasive services modelled as Web Services. These composite services are then
shared across various pervasive environments via the Web.

The Ebiquity group describes a semantic service discovery and composition
protocol for pervasive computing. The service discovery protocol, called GSD
(Group-based Service Discovery) [38], groups service advertisements using an
ontology of service functionalities. In this protocol, service advertisements are
broadcasted to the network and cached by the networked nodes. Then, service
discovery requests are selectively forwarded to some nodes of the network using the
group information propagated with service advertisements. Based on the GSD service
discovery protocol, the authors define a service composition functionality for
infrastructure-less mobile environments [39]. Composition requests are sent to one of
the composition managers of the environment, which performs a distributed discovery
of the required component services.

The combined work in [40] and [41] introduces an efficient, semantic, QoS-aware
service-oriented middleware for pervasive computing. The authors propose a
semantic service model to support interoperability between existing semantic but also
plain syntactic service description languages. The model further supports formal
specification of service conversations as finite state automata, which enables
automated reasoning about service behaviour independently of the underlying
conversation specification language. Moreover, the model supports the specification
of service non-functional properties to meet the specific requirements of pervasive
applications. The authors further propose an efficient semantic service registry. This
registry supports a set of conformance relations for matching both syntactic and rich
semantic service descriptions, including non-functional properties. Conformance
relations evaluate the semantic distance between service descriptions and rate services
with respect to their suitability for a specific client request, so that selection can be
made among them. Additionally, the registry supports efficient reasoning on semantic
service descriptions by semantically organizing such descriptions and minimizing
recourse to ontology-based reasoning, which makes it applicable to highly interactive
pervasive environments. Lastly, the authors propose flexible QoS-aware service
composition towards the realization of user-centric tasks abstractly described on the
user's handheld. Flexibility is enabled by a set of composition algorithms that may be
run alternatively according to the current resource constraints of the user's device.
These algorithms support integration of services with complex behaviours into tasks
also specified with a complex behaviour; and this is done efficiently relying on
efficient formal techniques. The algorithms further support the fulfilment of the QoS
requirements of user tasks by aggregating the QoS provided by the composed
networked services.

 Interoperability in Complex Distributed Systems 19

The above surveyed solutions are indicative of how ontologies have been
integrated into middleware for describing semantics of services in pervasive
environments. Semantics of services, users and the environment are put into semantic
descriptions, matched for service discovery, and composed for achieving service
compositions. Focus is mainly on functional properties, while non-functional ones
have been less investigated. Then, efficiency is a key issue for the resource-
constrained pervasive environments, as reasoning based on ontologies is costly in
terms of computation.

4.4 Beyond Web Services: DB Federation

The problem of data interoperation is by no means restricted to Web Services and
middleware, rather it has been looked at the DB community for a long time. In this
context, the data problem has been widely studied by the DB community while
addressing the task of DB federation. Despite of the importance of the information
stored in DBs, because of the way DBs and organizations evolve, the information
stored on different databases is often very difficult to integrate. In this context
"Database federation is one approach to data integration in which middleware,
consisting of a relational database management system, provides uniform access to a
number of heterogeneous data sources" [42]. Federated Data sources have a lot in
common with the heterogeneous systems to be connected. They need to federate
autonomous databases which are autonomously maintained, therefore they need to
support a high degree of heterogeneity both at the architectural level, in the sense that
they should host different version of databases made by different vendors as well
support data heterogeneity because different nodes may follow different data schema.

The standard solution to the problem of data interoperability is to provide Table
User Defined Functions (T-UDF) [42] which reformat the data from one database
and present it in a format that is consistent with the format of a different data-base.
For example, if one database provides address book information, a programmer may
define a T-UDF addressbook()which reformats the data in the appropriate way, and
then retrieve the data by using the SQL command FROM TABLE addressbook() in
the query. T-UDF hardly provides a solution to the problem of data interoperability
since they require a programmer that reformats the data from one data-schema to
another.

Since the definition of translation functions as the T-UDF functions above is a very
expensive process a considerable effort has been put into learning the translation
between data-base schemata. Examples of these translations are provided in [43] [44].
They exploit a combination of machine learning, statistical processing and natural
language lexical semantics to "guess" how two data-base schemata correspond. In
Section 5.4 similar tools for ontology matching are analyzed more in detail.

The results of these mapping processes are mappings between data schemata that
are correct up to a degree of confidence. The user should then find a way to deal with
the reduced confidence in the results. One proposal in this direction has been provided
by Trio [45], a data-base management system that extends the traditional data model
to include data accuracy and lineage. Within Trio it is possible to express queries of
the sort "find all values of X with approximation with confidence greater than K".

20 G.S. Blair et al.

The approaches above ignore the most important information that is required for
data mapping namely the explicit annotation of data semantics. Above, we discussed
T-UDT as a mechanism for data translation mappings, but the problem with any form
of mapping is that it makes assumptions on the semantics of the schemata that it is
mapping across. There is therefore neither guarantee that these mappings are correct
[46] nor that they will generalize if and when the schemata are modified. The
automatic mapping mechanisms above, try to circumvent the problem of explicit
semantics by using learning inference. But they assume semantics in the form of
background knowledge such as lexical semantics without any guarantee that the
background knowledge is relevant for the specific transformation. Essentially, the
lack of explicit semantics emerges as an error in the accuracy of the transformation.

The development of ontologies, in the sense of shared data structures, is an
alternative to the methods produced above. Essentially, instead of mapping all
schemata directly in a hardcoded way as suggested by the T-UDT methods or try to
guess the relation between schemata as suggested by the learning mechanisms,
schemata are mapped to a unique "global" schema, indeed an ontology, from which
direct mappings are derived. In this model the ontology provides the reference
semantic for all schemata. The advantage of this model is that the DB provider could
in principle provide the mapping to the ontology possibly removing the
misinterpretation problem.

There are a number of problems of this approach. First, the ontology should be
expressive enough to express all information within all the schemata in the federated
databases. This implicitly requires a mechanism for extensible ontologies since
adding new databases may require an extension of the ontology. Second, the
derivation of mapping rules is proven to have an NP worst case computational
complexity [47].

4.5 Raising Interoperability One Level Up

The discussion about ontologies above immediately raises the question of whether
and to what extent ontologies just push the interoperability problem somewhere else.
Ultimately, what guarantees that the interoperability problems that we observe at the
data structure level do not appear again at the ontology level? Suppose that different
middlewares refer to different ontologies, how can they interoperate?

The ideal way to address this problem is to construct an alignment ontology, such
as SUMO5, which provide a way to relate concepts in the different ontologies.
Essentially, the alignment ontology provides a mapping that translates one ontology
into the other. Of course, the creation of alignment ontologies not only requires
efforts, but more importantly, it requires a commitment so that the aligning ontology
is consistent with all ontologies to be aligned.

Such alignment ontologies, when possible, are very difficult to build and very
expensive. To address this problem, in the context of the semantic web there is a very
active subfield that goes under the label of Ontology Matching [48][49] which
develops algorithms and heuristics to infer the relation between concepts in different

5 SUMO stands for: Suggested Upper Merged Ontology. It is available at:

http://www.ontologyportal.org/

 Interoperability in Complex Distributed Systems 21

ontologies. The result of an ontology matcher is a set of relations between concepts in
different ontologies, and a level of confidence that that these relations hold. For
example, an ontology matcher may infer that the concept Price in one ontology is
equivalent to Cost in another ontology with a confidence of 0.95. In a sense, the
confidence value assigned by the ontology matcher is a measure of the quality of the
relations specified.

Ontology matching provides a way to address the problem of using different
ontologies without pushing the data interoperability problem somewhere else. But
this solution comes at a cost of the confidence on the on the interoperability solution
adopted and ultimately on the overall system.

5 Analysis

The results of the state of the art investigation in Sections 3 and 4 shows two
important things; first, there is a clear disconnect between the main stream
middleware work and the work on application, data, and semantic interoperability;
second, none of the current solutions addresses all of the requirements of dynamic
pervasive systems as highlighted in the interoperability barriers in Section 2.

With respect to the first problem, it is clear that two different communities evolved
independently. The first one, addressing the problems of middleware, has made a
great deal of progress toward middleware that support sophisticated discovery and
interaction between services and components. The second one, addressing the
problem of semantic interoperability between services, however, inflexibly assuming
Web Services as the underlying middleware; or the problem of semantic
interoperability between data intensive components such as databases. The section on
semantic middleware shows that ultimately the two communities are coming together,
but a great deal of work is still required to merge the richness of the work performed
on both sides.

With respect to the second problem, namely addressing the interoperability barriers
from Section 2 we pointed out that in such systems endpoints are required to
spontaneously discover and interact with one another and therefore these three
fundamental dimensions are used to evaluate the different solutions:

1. Does the approach resolve (or attempt to resolve) differences between discovery
protocols employed to advertise the heterogeneous systems? [Discovery
column]

2. Does the approach resolve (or attempt to resolve) differences between
interaction protocols employed to allow communication with a system?
[Interaction column]

3. Does the approach resolve (or attempt to resolve) data differences between the
heterogeneous systems? [Data column]

4. Does the approach resolve (or attempt to resolve) the differences in terms of
application behaviour and operations? [Application column]

5. Does the approach resolve (or attempt to resolve) the differences in terms of
non-functional properties of the heterogeneous system? [Non-functional
column]

22 G.S. Blair et al.

Table 1. Evaluation summary of effectiveness of interoperability solutions against each of the
interoperability barriers

 SD = Discovery
I = Interaction
D= Data
A = Application
N=Non-functional

 SD I D A N Transparency
CORBA X CORBA for all
Web Services X WSDL & SOAP for all
ReMMoC X X Client-side middleware
UIC X Client-side middleware
WSIF X Client-side middleware
MDA X Platform Independent models
UniFrame X Platform Specific models
ESB X Bridge connector
MUSDAC X Connection to middleware
INDISS X Yes
uMiddle X X Yes
OSDA X Yes
SeDiM X X Yes
SATIN X X Choice of SATIN for all
Jini X Choice of Jini for all
Semantic
Middleware

 X X Choice of same semantic
middleware for all

Semantic Web
Services

 X X X WSDL for all plus commitment
on a semantic framework and
ontologies

The summary of this evaluation is in Table 1 (an x indicates: resolves or attempts

to). This shows that no solution attempts to resolve all five dimensions of
interoperability. Those that concentrate on application and data e.g. Semantic Web
Services rely upon a common standard (WSDL) and conformance by all parties to use
this with semantic technologies. Hence, transparent interoperability between
dynamically communicating parties cannot be guaranteed. Semantic Web Services
have a very broad scope, including discovery interaction and data interoperability, but
these provide only a primitive support and languages to express the data dimension in
the context of middleware solutions.

The transparency column shows that only the transparent interoperability solutions
achieve interoperability transparency between all parties (however only for a subset of
the dimensions). The other entries show the extent to which the application endpoint
(client, server, peer, etc.) sees the interoperability solution. ReMMoC, UIC and WSIF
rely on clients building the applications on top of the interoperability middleware; the
remainder rely on all parties in the distributed system committing to a particular
middleware or approach.

 Interoperability in Complex Distributed Systems 23

6 Conclusions and Future Work

This chapter has investigated the problem of interoperability in the complex
distributed systems of today, with the added complexity stemming from the extreme
level heterogeneity encountered in such systems coupled with the increasing level of
dynamism of such systems which results in the need for spontaneous communication.
The chapter highlights the key barriers to interoperability coupled with a discussion of
solutions to interoperability featuring the research in the middleware community and
related research on semantic interoperability. The most striking aspect of this study is
that, while both communities focus on key interoperability problems, research efforts
have to a large extent been disjoint. The other striking feature is that, despite
considerable research efforts into interoperability dating back to the early 1980s, this
remains a poorly understood area and currently solutions simply do not meet the
needs on the complex distributed systems of today, particularly in terms of the levels
of heterogeneity and dynamism as mentioned above.

The CONNECT project, an initiative funded under the Future and Emerging
Technologies programme within the ICT theme of the European Commission’s
Framework programme, is taking a novel approach to the study of interoperability in
complex distributed systems, going back to basics, and taking input from a variety of
sub-disciplines including the middleware and semantic web communities, but also
looking at supportive areas such as formal semantics of distributed systems, learning
and synthesis technologies and support for dependable distributed systems. We
propose an approach that:

• places semantic understanding of concepts at the heart of achieving
interoperability,

• seeks a dynamic approach to interoperability where appropriate infrastructure
is generated on-the-fly for the current context (emergent middleware), and this
involves enabling technologies such as learning and synthesis of run-time
connectors,

• grounds itself in formal semantics enabling validation and verification to be
carried out,

• addresses the dependability requirements of modern distributed systems,
including meeting the associated non-functional requirements in highly
heterogeneous environments,

• supports dynamism allowing currently deployed solutions to be constantly
monitored and adapted to changing context.

The rest of the book unfolds this story in more detail with chapter 2 providing an
overview of the Connect architecture and other chapters unfolding key enabling
technologies behind this approach.

References

1. Bouquet, P., Stoermer, H., Niederee, C., Mana, A.: Entity Name System: The Backbone of
an Open and Scalable Web of Data. In: Proceedings of the IEEE International Conference
on Semantic Computing (ICSC 2008), pp. 554–561 (2008)

24 G.S. Blair et al.

2. Van Steen, M., Tanenbaum, A.: Distributed Systems: Principles and Paradigms. Prentice-
Hall, Englewood Cliffs (2001)

3. Object Management Group.: The common object request broker: Architecture and
specification Version 2.0. OMG Technical Report (1995)

4. Microsoft Corporation.: Distributed Component Object Model (DCOM) Remote Protocol
Specification, http://msdn.microsoft.com/en-gb/library/cc201989%
28PROT.10%29.aspx

5. Srinivasan. R.: RPC: Remote Procedure Call Protocol Specification Version 2. Network
Working Group RFC1831 (1995), http://tools.ietf.org/html/rfc1831

6. Microsoft Corporation.: Microsoft Message Queuing, http://www.microsoft
.com/windowsserver2003/technologies/msmq/

7. Carzaniga, A., Rosenblum, D., Wolf, A.: Design and Evaluation of a Wide-Area Event
Notification Service. ACM Transactions on Computer Systems 19(3), 332–383 (2001)

8. Gelernter, D.: Generative communication in Linda. ACM Transactions on Programming
Language and Systems 7(1), 80–112 (1985)

9. Wyckoff, P., McLaughry, S., Lehman, T., Ford, D.: Tspaces. IBM Systems Journal 37(3),
454–474 (1998)

10. Davies, N., Friday, A., Wade, S., Blair, G.: L2imbo: A Distributed Systems Platform for
Mobile Computing. ACM Mobile Networks and Applications (MONET) 3(2), 143–156
(1998)

11. Murphy, A., Picco, G., Roman, G.: LIME: A Middleware for logical and Physical
Mobility. In: 21st International Conference on Distributed Computing Systems (ICDCS-
21), pp. 524–533 (2001)

12. Booth D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D.:
Web Services Architecture. W3C Working Group Note (2004), http://www.w3
.org/TR/ws-arch/

13. Roman, M., Kon, F., Campbell, R.: Reflective Middleware: From Your Desk to Your
Hand. IEEE Distributed Systems Online 2(5) (2001)

14. Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., Magalhães, L., Campbell, R.:
Monitoring, security, and dynamic configuration with the dynamicTAO reflective ORB. In:
Coulson, G., Sventek, J. (eds.) Middleware 2000. LNCS, vol. 1795, pp. 121–143. Springer,
Heidelberg (2000)

15. Grace, P., Blair, G., Samuel, S.: A Reflective Framework for Discovery and Interaction in
Heterogeneous Mobile Environments. ACM SIGMOBILE Mobile Computing and
Communications Review 9(1), 2–14 (2005)

16. Duftler, M., Mukhi, N., Slominski, S., Weerawarana, S.: Web Services Invocation
Framework (WSIF). In: Proceedings of OOPSLA 2001 Workshop on Object Oriented
Web Services, Tampa, Florida (2001)

17. Object Management Group.: COM/CORBA Interworking Specification Part A & B. OMG
Technical Report orbos/97-09-07 (1997)

18. Bromberg, Y., Issarny, V.: INDISS: Interoperable Discovery System for Networked
Services. In: Alonso, G. (ed.) Middleware 2005. LNCS, vol. 3790, pp. 164–183. Springer,
Heidelberg (2005)

19. Nakazawa, J., Tokuda, H., Edwards, W., Ramachandran, U.: A Bridging Framework for
Universal Interoperability in Pervasive Systems. In: Proceedings of 26th IEEE
International Conference on Distributed Computing Systems (ICDCS 2006), Lisbon,
Portuga, (2006)

 Interoperability in Complex Distributed Systems 25

20. Limam, N., Ziembicki, J., Ahmed, R., Iraqi, Y., Li, D., Boutaba, R., Cuervo, F.: OSDA:
Open service discovery architecture for efficient cross-domain service provisioning.
Computer Communications 30(3), 546–563 (2007)

21. Flores, C., Grace, P., Blair, G.: SeDiM: A Middleware Framework for Interoperable
Service Discovery in Heterogeneous Networks. ACM Transactions on Autonomous and
Adaptive Systems 6(1), article 6 (2011)

22. Zachariadis, S., Mascolo, C., Emmerich, W.: Satin: A Component Model for Mobile Self-
Organisation. In: Meersman, R., Tari, Z. (eds.) OTM 2004. LNCS, vol. 3291, pp. 1303–
1321. Springer, Heidelberg (2004)

23. Arnold, K., O’Sullivan, B., Scheifler, R., Waldo, J., Wollrath, A.: The Jini Specification.
Addison Wesley, Reading (1999)

24. Hammer, J., McLeod, D.: An approach to resolving semantic heterogenity in a federation
of autonomous, heterogeneous database systems. Int. J. Cooperative Inf. Syst 2(1), 51–83
(1993)

25. Burstein, M., Hobbs, J., Lassila, O., Martin, D., McDermott, D., McIlraith, S., Narayanan,
S., Paolucci, M., Payne, T., Sycara, K.: DAML-S: Web service description for the
semantic web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 348–
363. Springer, Heidelberg (2002)

26. Martin, D., Burstein, M., Mcdermott, D., Mcilraith, S., Paolucci, M., Sycara, K.,
Mcguinness, D., Sirin, E., Srinivasan, N.: Bringing Semantics to Web Services: The OWL-
S Approach. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 26–
42. Springer, Heidelberg (2005)

27. Farrell J., Lausen, H.: Semantic Annotations for WSDL and XML Schema. W3C
Recommendation (2007), http://www.w3.org/TR/sawsdl/

28. McGuinness D., Harmelen, F.: OWL Web Ontology Language. W3C recommendation
(2004), http://www.w3.org/TR/owl-features/

29. Martin, D., Paolucci, M., Wagner, M.: Bringing Semantic Annotations to Web Services:
OWL-S from the SAWSDL Perspective. In: Aberer, K., Choi, K.-S., Noy, N., Allemang,
D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R.,
Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825,
pp. 340–352. Springer, Heidelberg (2007)

30. de Bruijn, J., Lausen, H., Krummenacher, R., Polleres, A., Predoiu, L.: The Web Service
Modeling Language WSML (2005), http://www.wsmo.org/TR/d16/d16.1
/v0.21/

31. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX - a semantic service-
oriented architecture. In: Proceedings of the International Conference on Web Services
(ICWS 2005), Orlando, Florida, pp. 321–328 (2005)

32. OASIS: Univeral Description, Discovery and Integration of Web Services (2002),
http://www.uddi.org

33. Jordan D., Evdemon, J.: Web Services Business Process Execution Language (WSBPEL)
Version 2.0. (2007), http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel
-v2.0-OS.html

34. Kavantzas N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.: Web Services
Choreography Description Language Version 1.0. (2005), http://www.w3.org/TR/
ws-cdl-10/

35. Cimpian, E., Mocan, A.: WSMX Process Mediation Based on Choreographies. In: Bussler,
C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 130–143. Springer, Heidelberg
(2006)

26 G.S. Blair et al.

36. Masuoka, R., Parsia, B., Labrou, Y.: Task Computing – the Semantic Web Meets
Pervasive Computing. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, pp. 866–881. Springer, Heidelberg (2003)

37. Singh, S., Puradkar, S., Lee, Y.: Ubiquitous Computing: Connecting Pervasive Computing
Through Semantic Web. Information Systems and e-Business Management Journal 4(4),
421–439 (2005)

38. Chakraborty, D., Joshi, A., Finin, T.: Toward Distributed Service Discovery in Pervasive
Computing Environments. IEEE Transactions on Mobile Computing 5(2), 97–112 (2006)

39. Chakraborty, D., Joshi, A., Finin, T., Yesha, Y.: Service Composition for Mobile
Environments. Journal on Mobile Networking and Applications, Special Issue on Mobile
Services 10(4), 435–451 (2005)

40. Ben Mokhtar, S., Georgantas, N., Issarny, V.: COCOA: COnversation-based Service
Composition in PervAsive Computing Environments with QoS Support. Journal of
Systems and Software, Special Issue on ICPS 2006 80(12), 1941–1955 (2007)

41. Ben Mokhtar, S., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: EASY:
Efficient SemAntic Service DiscoverY in Pervasive Computing Environments with QoS
and Context Support. Journal of Systems and Software, Special Issue on Web Services
Modelling and Testing 81(5), 785–808 (2008)

42. Haas, M., Lin, E., Roth, M.: Data integration through database federation. IBM Systems
Journal 41(4), 578–596 (2002)

43. Jung, J.: Taxonomy alignment for interoperability between heterogeneous virtual
organizations. Expert Systems with Applications 34(4), 2721–2731 (2008)

44. Berlin, J., Motro, A.: Database schema matching using machine learning with feature
selection. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002.
LNCS, vol. 2348, pp. 452–466. Springer, Heidelberg (2002)

45. Widom, J.: Trio: A System for Integrated Management of Data, Accuracy, and Lineage.
In: Second Biennial Conference on Innovative Data Systems Research (CIDR 2005),
Pacific Grove, California (2005)

46. Vetere, G., Lenzerini, M.: Models for semantic interoperability in service-oriented
architectures. IBM Systems Journal 44(4), 887–904 (2005)

47. Fagin, P., Kolaitis, P., Popa, L.: Data Exchange, Getting to the Core. In: Symposium of
Principles of Database Systems, pp. 90–101. ACM, New York (2003)

48. Euzena, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
49. Shvaiko, P., Euzenat J., Giunchiglia F., Stuckenschmidt H., Mao, M. Cruz, I.: Proceedings

of the 5th International Workshop on Ontology Matching (OM 2010). CEUR (2010)

The CONNECT Architecture

Paul Grace1, Nikolaos Georgantas2, Amel Bennaceur2, Gordon S. Blair1,
Franck Chauvel3, Valérie Issarny2, Massimo Paolucci4, Rachid Saadi2,

Betrand Souville4, and Daniel Sykes2

1 School of Computing and Communications, Lancaster University, UK
p.grace@lancaster.ac.uk

2 INRIA, CRI Paris-Rocquencourt, France
{nikolaos.georgantas,amel.bennaceur,valerie.issarny,

rachid.saadi,daniel.sykes}@inria.fr
3 School of Electronics Engineering and Computer Science, Peking University, China

franck.chauvel@sei.pku.edu.cn
4 Laboratories Europe GmbH, Munich, Germany

{paolucci,souville}@docomolab-euro.com

Abstract. Current solutions to interoperability remain limited with re-
spect to highly dynamic and heterogeneous environments, where sys-
tems encounter one another spontaneously. In this chapter, we introduce
the Connect architecture, which puts forward a fundamentally differ-
ent method to tackle the interoperability problem. The philosophy is
to observe networked systems in action, learn their behaviour and then
dynamically generate mediator software which will connect two heteroge-
neous systems. We present a high-level overview of how Connect oper-
ates in practice and subsequently provide a simple example to illustrate
the architecture in action.

Keywords: Interoperability, emergent middleware, modelling, synthe-
sis, middleware, protocol.

1 Introduction

1.1 Motivation: The Interoperability Problem

Interoperability is a measure of the ability of systems to connect,understand
and exchange data with one another. As such, it reveals one of the fundamental
problems in computer science. Indeed, the world wide budget for Interoperability
is estimated to be in excess of $1 Trillion [7]). In the chapter ‘Interoperability
in Complex Distributed Systems’ of this book that surveys the interoperabil-
ity problems and state of the art solutions [5], the important barriers to fully
achieving interoperability are identified as:

– Data heterogeneity. Applications may use data that is represented in different
ways and/or have different meanings.

M. Bernardo and V. Issarny (Eds.): SFM 2011, LNCS 6659, pp. 27–52, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

28 P. Grace et al.

– Middleware heterogeneity. Different protocols are used to advertise and search
for services, e.g., Service Location Protocol (SLP), Jini, Universal Plug and
Play (UPnP), and Lightweight Directory Access Protocol (LDAP). Fur-
ther, services use different protocols to exchange and use data, e.g., Remote
Method Invocation protocols such as SOAP, Java RMI and IIOP; or differ-
ent messaging protocols such as Java Message Service (JMS) or Microsoft
Message Queuing (MSMQ).

– Application heterogeneity. The application interfaces may be different in
terms of the descriptions of operations, e.g., the behaviour provided by one
operation in one interface may be provided by multiple operations in the
other interface. Interfaces may also be heterogeneous in terms of the order
in which operations must/should be called.

– Heterogeneity of non-functional properties. Systems may have particular
non-functional properties, e.g., latency of message delivery, dependability
measures and security requirements that must be resolved with respect to
the connected system.

As a traditional solution to this problem, middleware-based standards (e.g. Web
Services [6] or CORBA [26]) allow systems to be designed in advance in order to
interoperate with each other. However, where environments are heterogeneous
and dynamic (e.g. pervasive computing) such standards cannot be agreed upon
in advance, nor can they deal with the heterogeneity of the networked systems
in these environments. Interoperability platforms and transparent interoperabil-
ity solutions offer more dynamic approaches. Interoperability platforms such as
ReMMoC [16] and UIC [30], allow clients to be developed transparently from the
heterogeneous middleware that may be spontaneously encountered in the future;
these plug-in software at runtime that can communicate with the encountered
protocol. While suitable for systems that know they will need to interoperate
with heterogeneous protocol, this approach cannot this cannot solve the problem
of two legacy platforms required to interoperate with one another; INDISS [8]
and uMiddle [24] are examples of transparent interoperability solutions that
dynamically translate through an intermediary language to achieve this require-
ment. However, in all of these cases, only a subset of the above four barriers are
attempted to be resolved; see [5] for a detailed analysis of the state of the art
which illustrates this observation.

Therefore, we advocate that new approaches are required to tackle interoper-
ability in a fundamentally different way to achieve the objective of universal and
long-lived interoperability. This goal is akin to the ideas of universal translation,
a common device often appearing in science fiction; for example, the Babel Fish
in “The Hitchhikers Guide to the Galaxy” [1] offers universal translation to allow
native speech to be automatically and transparently translated to the language
of any of the listeners, i.e., everyone speaks and hears their own language.

1.2 The CONNECT Approach

The approach of Connect is to produce emergent middleware, i.e., rather than
create another middleware technology that is destined to be yet another legacy

The CONNECT Architecture 29

platform that in turn adds to the interoperability problem, we propose the novel
approach of generating the required middleware at runtime, i.e., we synthesize the
necessary software to connect (translate between) two end-systems. For example,
if a client application developed using SOAP [17] encounters a CORBA server
then the framework generates a Connector that resolves the heterogeneity of
the data exchanged, the application behaviour, and the lower level middleware
and network communication protocols.

To underpin the creation of emergent middleware, the Connect architecture
performs the following important phases of system behaviour.

– Discovering the functionality of networked systems and applications adver-
tised by legacy discovery protocols, e.g., Service Location Protocol (SLP)
and Simple Service Discovery Protocol (SSDP). Then, transforming this
discovered information to a rich intermediary description (the Connect
Networked System Model) that can then be used to syntactically and se-
mantically match heterogeneous services.

– Using learning algorithms to dynamically determine the interaction behaviour
of a networked system from its intermediary representation and producing a
model of this behaviour in the form of a labelled transition system (LTS). A
full description of how learning is enabled in Connect is provided in [19].

– Dynamically synthesizing a software mediator. Taking as input the Net-
worked System model and the learned LTS of two networked systems, Con-
nect uses a formal approach to match the application behaviour of these
systems and then map them onto one another to form the application me-
diator (to resolve the application behaviour differences); more detailed in-
formation about this method is provided in the chapter ‘Application-layer
Connector Synthesis’ [28]. Further, the differences in the middleware proto-
cols are resolved through a similar formal method for matching and mapping
of middleware protocols to produce middleware mediation methods; this is
presented in the chapter ‘Middleware-layer Connector Synthesis’ [20]. The
combination of the synthesized application-level and middleware-level medi-
ators form the Connector mediator.

– Deployment in the network environment. The Connector mediator is made
concrete by deploying it upon appropriate listeners and actuators that can
communicate directly with networked systems using their legacy protocols.

– Verification & validation of the Connector is performed by enablers during
mediator synthesis phase and also after deployment to ensure the correctness
of the Connector and the running Connected system with respect to the
requirements (and importantly the non-functional requirements) and intents
of the involved networked systems. This process ensures the long-lived nature
of a Connect solution. The methods to perform verification and validation
are provided in the chapter ‘Dependability and Performance Assessment of
Dynamic Connected Systems’ [3]

30 P. Grace et al.

1.3 Structure of the Chapter

This chapter first provides a broad overview of the Connect architecture, iden-
tifying the key functions and principles, and then a simple example is utilised
to illustrate how the overall architecture operates. Only a subset of the tech-
nical details are introduced, instead the chapter points the interested reader to
other publications (including further chapters of this book) in order to discover
the richer details and formal methods. The chapter is organised as follows. The
overall Connect architecture is presented in Section 2; in particular this high-
lights how networked systems are first discovered and modelled, and then how
the emergent Connectors between them are realised. To illustrate an important
feature of the architecture, a description of the technologies employed to deploy
Connectors is given in Section 3, here the methods to dynamically generate
middleware protocol listeners and actuators are discussed. We then present a case
study showing how a CORBA-based networked system achieves interoperability
with a SOAP asynchronous messaging networked system using the Connect
architecture in Section 4. Finally, in Section 5 we offer conclusions about the
architecture and then pinpoint areas of interest for future research.

2 A Framework for Interoperability

2.1 CONNECT Actors

Before exploring the details of the Connect architecture we first introduce the
key actors that are involved in the Connect process. These are central to the
underlying architectural principles:

– Networked systems are systems that manifest the will to connect to other
systems for fulfilling some intent identified by their users and the applications
executing upon them.

– Enablers are networked entities in the environment of networked systems
that incorporate all the intelligence and logic offered by Connect for en-
abling connection between heterogeneous networked systems. Enablers con-
stitute the Connect enabling architecture.

– Connectors are the emergent connectors produced by the action of enablers.
– Connected systems are the outcome of the successful creation and deploy-

ment of Connectors.

A high-level view of these actors is shown in Figure 1. It can be seen that net-
worked systems manifest their will to connect. This will, along with information
about the networked systems, is communicated in the form of some input to
the enablers. One or more enablers collaborate to synthesize and deploy a Con-
nector that enables networked systems to connect and fulfill their individual
intents.

The CONNECT Architecture 31

Fig. 1. Actors in the Connect architecture

2.2 Networked System Model

Connect seeks to observe, learn and model the external interaction behaviour
of a networked system. This model, termed the Networked System Model is
central to the Connect architecture and contains the information required by
the enablers to produce the Connectors that ensure heterogeneous networked
systems interoperate. There are two levels of interaction that must be considered
by the model:

– Middleware-layer interaction. This includes information about the interac-
tion protocol and the underlying network transport: what are the messages,
their data content and format, and their sequence? The middleware se-
mantics will also be covered, i.e., is this client-server, peer-to-peer, etc? Is
the communication paradigm message-based or event-based, synchronous or
asynchronous?

– Application-layer interaction. The application component describes: an in-
tent, what external behaviour it requires, and what external behaviour it
provides. The essential feature here is the interface, that is, a description
of the set of functionalities of the component made accessible to (but also
required from) its environment. Typically, this description comes in the form
of a set of data inputs and associated outputs following a specific data type
system. The application-layer will also describe its behaviour in terms of the
sequence of application operations, and also the associated non-functional
requirements of this behaviour.

The Connect Networked System model takes these abstract elements that are
typically spread across different service descriptions, and the corresponding lan-
guages (e.g. Interface descriptions in WSDL [10], semantic annotations in SA-
WSDL [12], and behaviour in BPEL), and integrates them into a uniform model

32 P. Grace et al.

Interface Networked System

Affordance Behaviour

Functionality Input Output

0..n0..n1

1

0..n

1

Fig. 2. Overview of the Networked System Model

that can be shared, understood and processed by the enablers. A high-level
overview of this model is shown in Figure 2 and importantly highlights the key
features of the model:

– The affordance is a macroscopic view, or the quality of a feature, of a net-
worked system. Essentially the affordance describes the high-level roles a
networked system plays, e.g., ‘prints a document’, or ‘sends an e-mail’. This
allows semantically equivalent action-relationships/interactions with another
networked system to be matched; in short, they are complementarily pro-
viding/requesting the same thing.

– Interfaces provide a refined or a microscopic view of the system by specifying
finer actions or methods that can be performed by/on the networked system,
and used to implement its affordances. Each networked system is associated
with a unique interface. The non-functional requirements of the interface
operations are also described.

– The behaviour description documents the application behaviour in terms
of how the actions of the interface are co-ordinated to achieve the system’s
affordance, and in particular how these are related to the underlying middle-
ware functions. A BPEL-based specification language is employed to specify
this behaviour.

2.3 The CONNECT Enabler Architecture

As previously identified, it is the Connect enablers whose role is to co-ordinate
in order to produce a Connector that will ensure two legacy applications can
interact. These enablers follow an important sequence of behaviour that we now
identify:

– Discovery enables networked systems to manifest their will to connect to
other networked systems and to discover mutually interested networked sys-
tems, while at the same time allows the Connect enabling architecture to
retrieve initial information on likely-to-be-associated networked systems.

The CONNECT Architecture 33

– Learning is performed by enablers upon networked systems for completing
the initial information about the latter provided by discovery. The outcome
of combined discovery and learning should be a sufficiently good Networked
System Model of a networked system.

– Synthesis & deployment is performed by enablers for generating and deploy-
ing an appropriate Connector that will successfully bridge the heteroge-
neous systems and establish a Connected system.

– Verification & validation is performed by enablers during and after the syn-
thesis phase for ensuring the correctness of the Connector and the running
Connected system with respect to the requirements and intents of the in-
volved networked systems.

These phases of behaviour are then split into software components each respon-
sible for a particular role; hence this software component becomes a Connect
enabler. The Enabler architecture is then the configuration of these enabler com-
ponents which are deployed in the network environment and remotely commu-
nicate with each other. Figure 3 illustrates how these combine to achieve the
particular goal of Connect, i.e., to take two networked systems whose hetero-
geneity denies them from interoperating with one another, learn their behaviour,
identify a solution to ensure they interoperate, and then synthesize and deploy
the required Connector. We discuss the individual enablers in turn and describe
how they communicate.

The Discovery Enabler. The discovery enabler leverages existing service dis-
covery protocols such as SLP [18], UPnP [15], and WS-Discovery [25] in order
to initially find out what networked systems are operating in the environment,
what their intent and requirements for connection are, and whether other net-
worked systems match these requirements. The discovery enabler receives both
the advertisement messages and lookup request messages that are sent within
the network environment by listening on known multicast addresses (used by
legacy discovery protocols). These messages are then processed and their infor-
mation from the legacy messages is extracted to form a partial networked system
model for each of the networked systems, where the partial model consists of
the affordance, and the application interface as shown in Figure 2. Further the
discovery enabler can also extract information about the middleware protocols
employed to provide initial input to the model of behaviour in Figure 2; for ex-
ample, this information could be extracted from the WSDL binding element [10]
in the case of WS-Discovery, or by parsing the protocol part of the URL returned
by a discovery protocol (as in th case of SLP [18] and Bonjour1).

Initial matching is performed between discovered systems to determine whether
two networked systems are candidates to have a Connector generated between.
The matching method examines the affordances of the two systems and employs
ontology-based matching to identify if the two are a good match. On a match,
the Connect process is initiated; first the current partial Networked System
Model of each system is sent to the learning enabler, which then adds to the
1 http://developer.apple.com/networking/bonjour/specs.html

34 P. Grace et al.

k d N t k dNetworked NetworkedNetworked Networked
System 1 System 2System 1 System 2

MMessageMessage
Queue

Di L i
Queue

Discovery LearningDiscovery Learning
Enabler EnablerEnabler Enabler

MessageMessage
QueueQueue

MessageMessage
QueueQueue

Synthesis D l t Networked NetworkedSynthesis Deployment Networked NetworkedCONNECTor
Enabler

p y
E bl System 1 System 2

CONNECTor
Enabler Enabler System 1 System 2Enabler

MMessageg
Ch lChannelChannel

Dependability andDependability and
Performance Analysis MessagePerformance Analysis

M
Messagey

E blMessage
g

QEnablerMessage QueueEnabler
Queue

Q

Monitoring
Queue

Monitoringg
E blEnablerSecurity and TrustSecurity and Trust

EnablerEnabler

Fig. 3. The Connect Enabler architecture

behaviour description to the model to complete a richer view of the system’s
behaviour. On the completion of the Networked System Model, the discovery
enabler sends this model to the synthesis enabler.

The Learning Enabler. The learning enabler uses active learning algorithms
to dynamically determine the interaction behaviour of a networked system from
its intermediary representation and produces a model of this behaviour in the
form of a Labeled Transition System (LTS); this employs methods based on mon-
itoring and model-based testing of the networked systems to elicit their interac-
tion behaviour. The implementation of the enabler is built upon the LearnLib
tool [29]. The learning method utilises two inputs: i) the interface description in
the Networked System Model, and ii) the semantic annotations (that annotate
the interface) which provide richer meanings to the tool. The learning enabler
produces an LTS describing the interaction behaviour; this added to the be-
haviour section of the Networked System Model, and the outcome is a complete
- as far as possible - instantiated networked system model. This is sent back to
the discovery enabler to complete the discovery of the description of networked
systems.

Synthesis Enabler. The role of the synthesis enabler is to take the Networked
System Models of two systems and then synthesize the mediator component
that is employed by the Connector to co-ordinate the interaction between the

The CONNECT Architecture 35

two. Here, the synthesis enabler creates a mediator to resolve: i) application-
level interoperability, and ii) middleware level interoperability. The LTS received
from the discovery and learning phase is middleware specific, i.e., the transitions
are strongly correlated to the behaviour of the middleware protocol. The first
step is to abstract the behaviour of the system in a middleware-agnostic way
to capture the application behaviour. This mapping is underpinned by a set of
middleware rules and domain ontologies that describe how middleware behaviour
can be abstracted towards a common representation of application behaviour–
the middleware agnostic LTS). The methods to create middleware agnostic LTS
are described in [20].

The next step is to create a common (application-level) abstraction of the
networked systems. This method takes into account the ontology-based specifi-
cation of each networked system and the common ontology specification for the
application domain to produce corresponding abstract LTS for the middleware-
agnostic LTS. Once complete, the two LTS can be matched and mapped to
create the mediator. First, the existence of common traces in the LTS that lead
the two systems to achieve a common goal is automatically checked; if there is
a match and at least one common trace is found (which leads to achieve the
specified common goal), the mapping between the two LTSs, over the common
traces, is automatically performed and producing an abstract LTS that models
the interaction behavior of the mediator. This is only a brief overview of this
method and further information can be found in [28].;

Finally, the abstract LTS is made concrete by reapplying the middleware-
specific information that was abstracted upon earlier in the method; this
produces the concrete Connector LTS that can be synthesized to create the
software that can be directly deployed in the Connectors between the two
legacy networked systems. From this the software The synthesis enabler can
then output two alternative software types (depending upon the style of Con-
nector in use):

– Mediator code. The synthesis enabler generates the Java executable code
that can be deployed directly as part of a Connector configuration.

– An ‘executable’ LTS model. The concrete LTS model can be sent directly, in
order for it to be used by the mediation engine of a Connector.

Either of these two outputs is sent to the deployment enabler in order to complete
the construction of the Connector.

Deployment Enabler. The Deployment Enabler receives as input the medi-
ator code (or the LTS model) and the original Networked System Models; its
objective is to finalise and then deploy the Connector in each case. In order to
do this, the enabler executes two important roles:

– It composes the required functionality to ensure that Connectors will com-
municate with the legacy networked systems, i.e., it will add the listeners and
actuators to the mediator generated by the Synthesis Enabler. We discuss
how the listeners and actuators are realised in Section 3.

36 P. Grace et al.

– It deploys and manages the executable code (or the LTS model) of the Con-
nectors in the network. For this, the enabler utilises OSGi2 techniques; that
is, the components that form the Connectors are bundled into OSGi com-
ponents this allows them to be automatically deployed and executed upon
network hosts running an OSGi platform (after being downloaded to the
appropriate location); that is, the components that form the Connectors
are bundled into OSGi components this allows them to be automatically
deployed and executed upon network hosts running an OSGi platform (after
being downloaded to the appropriate location).

Dependability and Performance Analysis/Security and Trust (SXT)
Enabler. Once a Connector specification has been produced by the synthe-
sis enabler it sends it to the dependability and performance analysis enabler
to determine if the non-functional requirements (as described in the Networked
System Model of each networked system) are satisfied. If so, the enabler tells the
synthesis enabler to go ahead and deploy; otherwise, the dependability enabler
enhances the initial LTS in order that it better meets the requirements of the
connection; these enhanced models are returned to the synthesis enabler. The de-
pendability enabler also continuously determines if the Connector maintains its
non-functional requirements (as identified in the networked system’s interface).
It receives monitoring data from the monitoring enabler and in the case where
there is no longer compliance, the dependability enabler sends a new specifica-
tion to the synthesis enabler to initiate redeployment of a suitable Connector
in the current conditions.

Monitoring Enabler. The monitoring enabler receives requests concerning
which Connectors to monitor and then collects raw information about the Con-
nectors by monitoring data that this Connector publishes to the monitoring
channel. The derived data is passed to the dependability enabler to determine
if the original non-functional requirements are being matched.

The Connect Message Bus. The enablers and Connectors use a simple
message-based communication model to exchange information with one another.
A Java Messaging Service (JMS) implementation3 is used to implement the
Message Bus. The reason for this choice of communication model is that two
styles of communication are important in the Connect enabler architecture
and are both provided by the technology:

– Point-to-Point exchange between enablers. As described earlier, the enablers
send content (e.g., models and code) to be processed by a specific party, e.g.,
the discovery and learning enabler communicating to build the Networked
System Model. JMS allows the behaviour to be achieved using a message
queue as illustrated in Figure 3.

2 http://www.osgi.org
3 http://www.oracle.com/technetwork/java/index-jsp-142945.html

The CONNECT Architecture 37

– Publish-Subscribe communication regarding Connector behaviour. The
Connectors produce events in order for them to be monitored; enablers
can subscribe to the channels that the Connectors publish these events to.
For example, in Figure 3 the monitoring enabler subscribes to this channel
in order to monitor Connector events.

2.4 CONNECTors

We now introduce the software elements that make up an individual Connector
and also how they interact in order to achieve interoperability. This Connector
architecture is illustrated in Figure 4. The software elements are described as
follows:

– A Listener receives network messages (from the network engine) in the form
of data packets and parses them according to the message format employed
by the protocol that this message is specified by. Hence, each Listener parses
messages from a single protocol, e.g., the SOAP listener parses SOAP mes-
sages. A listener produces an Abstract Message (see Section 3 for more in-
formation about abstract messages) that contains the information found in
the original data packet, providing a uniform representation that can be
manipulated and understood by the other elements in the Connector ar-
chitecture. The API of the listener in Java is shown in Figure 5, the packet
in a byte array is passed to the MessageParse method and a Java Object
(AbstractMessage) representing the Abstract Message is produced.

– An Actuator performs the reverse role of a listener, i.e., it composes net-
work messages according to a given middleware protocol, e.g., the SOAP
Actuator creates SOAP messages. Actuators receive the Abstract Message
and translate this into the data packet to be sent on the network via the
network engine. The API of the actuator in Java is shown in Figure 5, a
byte array is produced when the AbstractMessage object is passed to the
MessageCompose method.

Fig. 4. The Connector Architecture

38 P. Grace et al.

– The Mediator forms the central co-ordination element of a generated Con-
nector. Its role is to translate the content received from one protocol (using
Abstract Message) into the content required to send to the corresponding
protocol. The mediator therefore addresses the the challenges of mapping
between: different message content and formats, and different protocol be-
haviour, e.g., sequence of messages.

– The Network Engine provides a library of transport protocols with a common
uniform interface to send and receive messages. Hence, it is possible to receive
messages and send messages from multicast (e.g. IP multicast), broadcast
and unicast transport protocols (e.g. UDP and TCP). The uniform interface
provided by the network engine is similar to network programming libraries
provided.

– The Mediator engine in the figure is an optional element of the architec-
ture depending upon the implementation approach taken for mediators. The
behaviour of the mediator is determined by a high-level model determining
the operations to take. In the case where this model is turned directly into
code there is no need for a mediation engine. In the case where the mediator
model is an executable model (e.g., a BPEL specification, or an alternative
Connect mediator model) then it is the mediation engine which executes
these scripts. This flexibility in the intermediary architecture allows us to
investigate the benefits of the two approaches, i.e., to investigate the perfor-
mance gains of direct code generation, versus the ability to easily adapt the
behaviour of the Connector at runtime when it is a model executed on the
mediation engine..

Fig. 5. Listeners and Actuators API

2.5 Summary

This section has introduced the overall Connect architecture that puts the
philosophy of discovery, learning and synthesis of Connectors into practice.
Further information about the behaviour of Connect enablers can be found in
chapters of this book [3] [20] [28]. We will now look more closely at the problem
of communicating with networked systems, i.e., how the software mediators can

The CONNECT Architecture 39

send and receive messages in the protocols that are utilised. For example, if the
networked systems use SOAP and IIOP how can the mediator send and receive
SOAP and IIOP messages.

3 Communicating with Legacy Protocols

Connectors work by taking the concrete messages of legacy protocols and then
creating an abstract representation of this data (the abstract message) such that
it can be used to translate to one or more messages of a different legacy pro-
tocol. The translated abstract message then being composed into the concrete
message format of the destination protocol. To illustrate this, consider Figure 6
which shows two protocol messages broken down into their field content; the
message on the left is an SLP lookup message, whereas the message on the right
is an SSDP lookup message. Both are performing the same function searching
for a service of a given service type (this is the data contained in the SrvType
string field of SLP and the Service Target field of SSDP). To achieve inter-
operability between them we need to extract data from the original concrete
message, translate this, and then compose new concrete messages. This is a key
underlying principle of the Connect architecture and in this section we discuss
techniques to manipulate network messages. We first introduce the concept of
abstract message, and then present solutions to marshall and unmarshall legacy
protocol messages to/from this representation.

Fig. 6. Message formats of heterogeneous protocols–SLP and SSDP

3.1 Abstract Messages

A network message (as employed by a legacy communication protocol) is typ-
ically organized as a sequence of text lines for text-based protocols, or of bits,
for a binary protocol. Messages are composed of fields. A Connector must
extract relevant fields from the received message and use them to create one
or more messages according to the target protocols. Similarly, it must extract

40 P. Grace et al.

relevant fields from the received responses and ultimately create a response ac-
cording to the source protocol. Hence, the design of Connectors is based upon
these message-based events; and the key design principle is to derive information
from network messages and then describe them in a protocol independent man-
ner. We term this protocol independent description of a message: the Abstract
Message. Received network messages are converted to an Abstract Message,
correspondingly the Abstract Message is used to build the network message that
must be sent.

<xsd:schema>
<xsd : e l ement name=” F i e l d”>

<xsd:complexType>
<xsd : sequence>

<xsd : e l ement name=” l a b e l ” type=” x sd : s t r i n g ”/>
<xsd : e l ement name=” length ” type=” x sd : i n t e g e r ”/>
<xsd : e l ement name=” type ” type=” x s d : s t r i n g ”/>
<xsd : e l ement name=”mandatory ” type=” xsd :boo lean ”/>
<xsd : e l ement name=”value” type=”xsd:any ”/>
<xsd :e l ement r e f=” F i e l d” minOccurs=”0” maxOccurs=”unbounded”/>

</ xsd : sequence>
</xsd:complexType>

</ xsd : e l ement>

<xsd : e l ement name=”AbstractMessage”>
<xsd:complexType>

<xsd : sequence>
<xsd : e l ement name=”Name” type=” x s d : s t r i n g ”/>
<xsd :e l ement r e f=” F i e l d” minOccurs=”0” maxOccurs=”unbounded”/>

</ xsd : sequence>
</xsd:complexType>

</ xsd : e l ement>
</xsd:schema>

Fig. 7. The Abstract Message Schema

The schema for the Abstract Message content is illustrated in Figure 7. This
shows that an Abstract Message consists of a set of fields; a field can be either
primitive or structured. A primitive field is composed of a label naming the field,
a type describing the type of the data content, a length defining the length in
bits of the field, a boolean stating if this is a mandatory or optional field, and
the value of the field, i.e., the data content. A structured field is composed of
multiple primitive fields. For example, a URL field is composed of four primitive
fields: the protocol, the address, the port, and the resource location.

Abstract Messages then represent the interface between the Listeners, Actu-
ators and the Mediator, and the underlying network messages themselves. In
order to achieve interoperability dynamically, the Connector receives network
messages from a networked system (in the format of the protocol employed by
this legacy system). This event will trigger the execution of the Mediator, whose
behaviour will determine the sequence of actions that manipulate the listeners
and actuators. For example, it may receive one or more messages in the Ab-
stract Message format and it may send one or more messages by composing a
new Abstract Message and sending this to an Actuator to be delivered to the
target networked system.

The CONNECT Architecture 41

3.2 From Abstract Message to Concrete Message

To form a Connector the mediator must be able to communicate with the net-
worked systems using their legacy protocol. Hence, the mediator is composed
with Listeners and Actuators as described earlier in the vision of the Con-
nect architecture (see Section 2.4). Within Connect, the general philosophy
employed for the deployment of Listeners and Actuators is to utilise DSLs to
describe protocol messages. These high-level descriptions are then used to create
the software components that will be deployed in the Connectors. A Message
Description Language (MDL) is the language used to describe a message for-
mat; the MDL specification for a particular protocol then describes its set of
messages only. Message composers and parsers are implemented as general in-
terpreters that execute the message description language specifications that are
loaded. For example, a parser that interprets an SLP MDL instance will only
parse SLP messages into the abstract message representation, i.e., it interprets
the incoming message based upon the specification. Hence parsers are specialised
to a particular protocol by associating the protocol specification to produce the
Listener. Actuators are created using the same process to specialise generic mes-
sage composers for text and binary protocols. An overview of this specialisation
process is illustrated in Figure 8.

Fig. 8. The approach for generating Listeners and Actuators

There are a number of languages that can be used to parse network messages
or parse data files. We investigated each of these as potential languages to be used
in Connect; the results of this are seen in Table 1. It can be seen that a number
of the tools focus solely on generating software to parse only data and messages,
i.e., BinPac, Datascript and PacketTypes; therefore, these are unsuitable as it is
equally important to be able to generate the composer part of the Connector.
Similarly, a number of the languages only consider binary data (i.e., all except
PADS and ASN1.0); however, Connect requires the parsing of heterogeneous
protocols which may use text or XML. In the example in Figure 6 SLP is a
binary message, whereas SSDP is a text message. Hence, the only potential
solutions are: i) PADS which offers the additional benefit of being able to infer
data descriptions from received data [14], or ii)ASN 1.0. The drawback of these
two are that they are not specifically designed for network packets, and we found
when creating descriptions of example packet formats for SLP and GIOP that
we were unable to successfully create the correct parsers and composers. Given

42 P. Grace et al.

Table 1. Comparison of Data and Message Description Languages

Tool Langauge Generate Generate Domain
Parser Composer

ASN 1.0 [31] Java/C x x Many encodings: binary, text, xml
BinPAC [27] C++ x Binary data and network packets
Datascript [2] Java x Binary data
PADS [13] C/ML x x Binary or Text data
PacketTypes [23] ML x Binary network packets
Melange [22] ML x x Binary network packets

the results of this investigation, Connect proposes new Message Description
Languages along with their corresponding tools in order to first provide a simple
mechanism to parse and compose network packets.

Connect is flexible to allow different types of language to be used to spec-
ify message formats; each language is termed an MDL. This flexibility better
supports the parsing and composing of a wide range of protocols. For example,
specialised languages for binary messages, text messages and XML messages can
be utilised. To illustrate the approach we present a language for binary messages,
and then a language for text messages. It is important to identify here that the
role of these languages is to extract the information into a representation that is
usable within Connect; the languages themselves do not seek to understand the
content of the message, nor are they concerned with the application semantics of
the message. Take for example an RPC request message invoking an operation
Foo, these languages can extract the value ’Foo’ for the label ‘operation’ but
cannot determine its purpose.

Binary MDL. For conciseness we consider one protocol, the Internet Inter-
ORB Protocol (IIOP). This example also serves to illustrate in general how
communication with any protocol can be achieved from a high-level specification
of the message format. Figure 9 shows the specified message format of the IIOP
protocol, which is a General Inter-ORB Protocol (GIOP) message as identified
by4 transported over a TCP connection. In this specification there are three
important constructs that are employed to describe the general outline of the
messages for one protocol:

– <Types> list the types of each individual field type, e.g., the VersionMajor
field type is an integer value. Types are separated from the message specifi-
cation in order for field types to be reusable across multiple messages.

– <Header> includes the message format of the header for the binary protocol
messages. If a header specification is present this is common to every message
in the protocol (only one Header can be defined). In this GIOP message both
messages: GIOPRequest and GIOPReply have the defined header GIOP.

– <Message> describes the packet format for the body of a particular message.
Each protocol will typically contain multiple message bodies, for example the

4 http://www.omg.org/spec/CORBAe/20080201/GIOP.idl

The CONNECT Architecture 43

<Types>
<Pro t o co l : S t r i ng [GIOP]><Ver s i onMajo r : In tege r [1]>
<Vers ionMinor : Integer [2]><Rese rv ed :nu l l>
<Frag:Boolean><Endian:Boolean [f−Endian]>
<MessageType:Integer [f−MsgType]><Request ID: Intege r [f−UniqueID]>
<MessageLength : Integer [f−MsgLength]><Response :Boolean [t rue]>
<ObjectKeyLength:Integer><ObjectKey:Octets>
<ParameterArray:CORBAParameters>
<EndTypes>

<Header:GIOP>
<Protoco l : 32><VersionMajor:8><VersionMinor:8>
<Reserved :8><MessageType:8><MessageLength:32>
<End:Header>

<Message:GIOPRequest>
<Rule:MessageType=0>
<RequestID:32><Response :8><Reserved :24>
<TargetAddress:32><ObjectKeyLength:32>
<ObjectKey:ObjectKeyLength><a l i g n : 3 2>
<OperationLength:32><Operation:OperationLength>
<a l i g n : 3 2><ContextLi stLength:32>
<Serv iceContext :ContextL i stLength><a l i g n : 6 4>
<ParameterArray:eof>
<End:Message>

<Message:GIOPReply>
<Rule:MessageType=1>
<RequestID:32><ReplyStatus :32><ContextL i stLength:32>
<Serv iceContext :ContextL i stLength><a l i g n : 6 4>
<ParameterArray:eof>
<End:Message>

Fig. 9. Partial view of the GIOP message description

IIOP protocol here contains message bodies for two GIOP messages: a GIOP
request message, and a GIOP reply message.

Hence, <Header> and <Message> specify the content of the message head-
ers and bodies. The information specified within these then describes the fine-
grained field content. To do this, both headers and bodies are composed of
<label:size> entries for each field in the message. The size is the length of
the field content in bits. There is one special label: <rule:field=value>; this
is used to relate the correct message body with the header. For example, the
GIOP GIOPRequest message applies when the value of the MessageType field in
the header equals zero.

Other interesting features of the <Types> specifications are functions and
constant values. Functions can be defined on types using the [f-method()]
construct, e.g., [f-MsgLength] in Figure 9 is a built in function to return the
length of the composed message. They are generally useful for calculating values
that must be composed when creating a message (rather than parsing), i.e., the
named f-method is executed by the marshaller to get the value that must be
written. Similarly, constants are values that can be composed directly by the
marshaller with the given value, e.g., <Protocol:String[GIOP]> states the
the Protocol field is always the value ’GIOP’.

44 P. Grace et al.

Text MDL. Text based protocols are different from binary protocols and there-
fore, a new MDL is required to generate the Listeners and Actuators. We again
use one example specification to highlight the features of the Text MDL; a subset
of the messages within SSDP is specified in Figure 10. Like the binary approach
there is a list of field labels with their corresponding types in the <Types>
section and again <Header> and <Body> are used to describe the individual
messages. The key difference in this language is that we utilise field delimina-
tors rather than bit lengths to distinguish the length of the fields. For example
in the <Header>, <Method:32> means that the field is terminated by the ‘32’
ASCII character, i.e., a space. In the case where multiple characters are used
to delimit we employ commas to list the character values e.g. <Version:13,10>
is a backslash r followed by a backslash n.

Another important feature of text protocols is that they are typically self-
describing, i.e., the field label as well as the value will form the content of the
message. For example, a HTTP message may contain “Host:www.lancs.ac.uk”;
this defines a field with a label Host and a value www.lancs.ac.uk. Hence, text
protocols are not rigidly defined in terms of the fields and their order. To support
this property we employ the <Fields: > construct; this will parse/compose a list
of free form self-describing fields into their label, size and values. For example,
<Fields:13,10:58> splits fields using the 13,10 delimitor, then it uses the 58
value (a colon) to split the field into its label and value. The label must relate
to a type specified in the <Types> section.

<Types>
<Method:Str ing>

<URI:Str ing>
<HTTP Ver s i on :S t r i ng>
<MX:Integer>
<MAN:String>
. . .

<EndTypes>

<Header:SSDP>
<Method:32>
<URI:32>
<Vers ion :13 , 10>
<F i e l d s : 13 , 10 : 58>

<End:Header>

<Message:SSDP Search>
<Rule:Method=M−SEARCH>

<End:Message>

<Message:SSDP Response>
<Rule:Method=HTTP/1.1>

<End:Message>

<Message:SSDP Notify>
<Rule:Method=NOTIFY>

<End:Message>

Fig. 10. Partial SSDP Message Description

The CONNECT Architecture 45

4 CONNECT in Action

To demonstrate the potential of the Connect architecture we consider a sin-
gle case within a distributed marketplace scenario. Consider a stadium where
vendors are selling products such as popcorn, hot dogs, beer and memorabilia,
and consumers can search for products and place an order with a vendor. Both
merchants and consumers use mobile devices with wireless networks deployed in
the stadium. Merchants publish product info which the consumers can browse
through. When a consumer requests a product, the merchant gets a notification
of the amount ordered and the location of the consumer, to which he can re-
spond with a yes/no. Given the scale of the scenario there are many potential
interoperability issues (e.g. due to the unpredictable application and middleware
technologies employed by both vendors consumers), hence we look at just one
particular vendor and consumer case:

The client consumer application uses UPnP to perform lookup requests for
nearby vendors, and then a message-based communication protocol (in this case
SOAP) to interact with the found vendor, while the service merchant advertises
their services using SLP and then employs an RPC-based protocol for commu-
nication with client (in this case CORBA, more specifically the IIOP protocol).

We apply the Connect architecture to build a Connector that allows the
consumer to interact with the vendor in the face of this heterogeneity.

4.1 Phase 1: Discovery

The discovery enabler first monitors the running systems, and receives the UPnP
lookup requests that describe the consumer application’s requirements. It also
receives the notification messages from the vendor in SLP that advertise the
provided interface. The two plug-ins for the discovery enabler (SLP and UPnP
plug-ins) listen on the appropriate multicast addresses: 239.255.255.253 port 427
for SLP, and 239.255.255.250 port 1900 for UPnP. These plug-ins then transform
the content of the messages into both the affordance and interface descriptions
(WSDL specifications) of the two networked systems as per the requirements of
the Networked System Model. From this, the initial matchmaking is performed
and given the similarity of application and operations provided– the two systems
are determined to match, and it is now the objective to build a Connector that
will allow the two to interact. A partial view of the two WSDL descriptions is
shown in Figure 11. It is important to observe here that the two share the same
data schema and thus we don’t investigate here how Connect resolves data
heterogeneity problem.

The discovery process also determines how these abstract operations are
bound to concrete middleware protocols. In the consumer case they are bound
to the SOAP asynchronous message protocol; here each of the messages that
form an operation are sent asynchronously, point to point between the peers,
e.g., the buyProductRequest of the buyProduct operation is sent as a SOAP
message to the vendor. In the vendor case, the abstract operations are bound
to the IIOP synchronous RPC protocol; here, the two messages that form the

46 P. Grace et al.

Fig. 11. WSDL interfaces for consumer (left) and vendor (right) marketplace
applications

input and output of the operation are synchronously sent on the same transport
connection, e.g., the getPriceRequest is received by the vendor who responds
synchronously with the getPriceResponse.

4.2 Phase 2: Learning

The WSDL of the client and vendor in Figure 11 illustrate the heterogeneity
of the two interfaces; they offer the same functionality, but do so with different
behaviour. The next step in the Connect architecture is to learn the behaviours
of these two systems. The learning enabler receives the WSDL documents from
the discovery enabler and then interacts with a deployed instance of the CORBA
vendor application in order to create the behaviour models for both the consumer
and the vendor in this case. These are produced as LTS models and are illustrated
for the SOAP consumer in Figure 12 and for the IIOP vendor in Figure 13. Here
we can see that a vendor and consumer behaviour differs due to the heterogeneity
of operations available from the interfaces. At this point we now have a completed
Networked System Model (a description of the interface and behaviour of the

Fig. 12. LTS describing the behaviour of the SOAP consumer application

The CONNECT Architecture 47

Fig. 13. LTS describing the behaviour of the IIOP vendor application

system) for each of the two networked systems and can proceed to enable their
interoperation.

4.3 Phase 3: Synthesis of a Mediator

The final step in the Connect process is to create the Connector that will
mediate between the consumer’s request and the merchant’s response. To com-
plete this the two LTS models are passed to the synthesis enabler. This performs
two tasks:

– Behaviour matching. An ontology is provided for the domain that states
where sequences of operations are equivalent, e.g., that the getInfo oper-
ation of the consumer and the getPrice combined with getUnsold of the
vendor are equivalent. Further information about how the ontology-based
behavioural matching is given in [4] [28].

– Model synthesis. The enabler produces an LTS that will mediate between
the two systems; this LTS is shown in Figure 14. Here you can see how the
interoperation is co-ordinated; the application differences and middleware
differences are resolved as the mediator executes through each of the states of
the LTS. Note, the transitions correspond to a message sent via a particular
middleware protocol, i.e., either SOAP or IIOP as indicated by the dashed
line here.

A Connector is then realised by using a model to code transformation to gener-
ate an executable mediator that can be deployed in the network between the two
networked systems. The mediator for the SOAP and IIOP applications is seen in
Figure 14. Here, the protocol messages are sent or received as per the protocol
specification (the dotted line indicates that these are IIOP message, while the
complete line indicates it is the SOAP protocol). Hence, the use of appropriate
listeners and actuators (specific to the protocol) as described in Section 2.4 over-
comes the problem of middleware heterogeneity, whereas the mediated sequence
of application messages overcomes the application heterogeneity.

48 P. Grace et al.

Fig. 14. LTS describing the mediated interaction between the two systems

5 Conclusions and Future Perspectives

5.1 Concluding Remarks

The overall aim of Connect is to bridge the interoperability gap that results
from the use of different data and protocols by the different entities involved
in the software stack such as applications, middleware, platforms, etc. This aim
is particularly targeted at heterogeneous, dynamic environments where systems
must interact spontaneously, i.e., they only discover each other at runtime. This
chapter has presented the Connect architecture to meet this particular objec-
tive; here we have seen how software enablers co-ordinate to create Connectors
that translate between the heterogeneous legacy protocols.

This chapter has examined the problem of communicating with legacy proto-
cols in further detail, and has shown how domain specific languages that describe
message formats (MDLs) can be used to generate the required middleware dy-
namically. These listeners and actuators can receive and send messages that
correspond to the protocol specification and therefore are able to address the
heterogeneity of middleware protocols. Subsequently the generated software me-
diators that co-ordinate the operation of listeners and actuators are able to han-
dle the variations in application operations (as shown in Section 4). For deeper
insight into how these mediators are specified and created, the interested reader
is pointed to following:

– [19] offers a comprehensive description of how Connect leverages active
learning to determine the behaviour of a networked system.

– [4] examines the generation of Connectors in greater detail, illustrating the
matching and mapping of networked system models and also describing the
code generation techniques utilised.

We now discuss interesting directions for future research. Some of these are being
actively pursued within the Connect project, whereas some are more general
areas of research that can add to the understanding of interoperability solutions.

The CONNECT Architecture 49

5.2 Future Research Direction: Advanced Learning of Middleware
Protocols

In terms of advanced learning, we envisage further investigation of the role learn-
ing occupies within the architecture. At present, learning is focused solely on the
behaviour model from the networked system model; that is, it aims to identify
the application behaviour of a system. While this is important to the automa-
tion of Connectors, it only focuses on part of the behaviour. At present, the
middleware protocol behaviour and their corresponding message formats must
be defined (and be known by Connect) in advance. If a new system employs
a novel protocol then Connect is unable to resolve the interoperability, hence
the approach is not future proof. Rather it is required that we equally apply
learning approaches at the middleware level; this would not be executed as fre-
quently (e.g. within the flow of the Connect process) because a new protocol
need only be learned once. There has been interesting work in the learning of
message formats and communication protocol sequences for the purpose of net-
work security, examples include: Polyglot [9], Tupni [11], and Autoformat [21]
which employ binary analysis techniques to extract information about the pro-
tocols by observing the binary executables in action; these have the potential to
form the basis of the learning the MDL specifications automatically. However,
they remain limited to understanding the content of a message, what it does
and what the purpose of the individual fields are–they can only deduce the field
boundaries; hence, further research could look at the automated understanding
of protocol content (which is potentially very important to understand if two
protocols are compatible for interoperation).

5.3 Future Research Direction: The Role of Ontologies in
Interoperability Frameworks

While only briefly discussed here, ontologies have an important role in the Con-
nect architecture. Ontologies have been successfully employed within Web 2.0
applications, however these have only really considered the top level concerns
such as discovering semantically similar systems. Connect is pushing the role of
ontologies further, and is investigating going deep with the use of ontologies, i.e.,
using them at both the middleware and application level. Hence, to achieve bet-
ter interoperability solutions ontologies cross-cut all of the Connect functions
and enablers. This work is in the initial stages: this chapter has introduced the
role of ontologies in the discovery, matching, and synthesis of Connectors rather
than explain the methods; here, ontologies feature in the networked model and
are employed in discovery and matching of affordances and descriptions, while
matching of systems (including alignment based upon ontologies) leads to the
synthesis of Connectors. In this domain an exciting area of future work is the
application of ontologies to the lowest level of the Connect architecture, i.e.
the interoperation between middleware protocols; ontologies can be applied to
classify (discover the behaviour of) new network protocols and then use this to
determine the low-level interoperability bridges (i.e., the matching and mapping

50 P. Grace et al.

of data field content between protocol messages, for example the matching of
the ’methodName’ field in XML-RPC with the operation field in IIOP and the
subsequent translation of the data between the two–one is a null terminated
string, the other isn’t).

5.4 Future Research Direction: Interoperability Considering
Non-functional Requirements

Networked systems also have non-functional properties and requirements which
must be considered in order to ensure correct interoperation between networked
systems. Future work should place equal importance on these requirements. To
underpin this, this will first involve extracting the non-functional requirements
from networked systems and adding these to the interface description in the
Networked System Model. This will involve extending the discovery process to
discover non-functional descriptions of the systems which are also published
using discovery protocols. Finally, the Connectors must maintain particular
non-functional requirements, e.g., dependability, security and trust are impor-
tant and diverse properties within networked systems that must be maintained
by an interoperability solution (and are particularly important in pervasive envi-
ronments). Future research in this direction must consider solutions to correctly
ensure that the interoperability solutions meets any of these domain require-
ments.

References

1. Adams, D.: The Hitchhiker’s Guide To The Galaxy. Pan Books (1979)

2. Back, G.: Datascript - a specification and scripting language for binary data. In:
Batory, D., Blum, A., Taha, W. (eds.) GPCE 2002. LNCS, vol. 2487, pp. 66–77.
Springer, Heidelberg (2002)

3. Bertolino, A., Calabro, A., Di Giandomenico, F., Nostro, N.: Dependability and
Performance Assessment of Dynamic CONNECTed Systems. In: Bernardo, M.,
Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 350–392. Springer, Heidelberg
(2011)

4. Bertolino, A., Inverardi, P., Issarny, V., Sabetta, A., Spalazzese, R.: On-the-fly
interoperability through automated mediator synthesis and monitoring. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 251–262.
Springer, Heidelberg (2010)

5. Blair, G., Paolucci, M., Grace, P., Georgantas, N.: Interoperability in Complex Dis-
tributed Systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659,
pp. 350–392. Springer, Heidelberg (2011)

6. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Or-
chard, D.: Web services architecture. In: W3C (February 2004),
http://www.w3.org/TR/sawsdl/

7. Brodie, M.: The long and winding road to industrial strength semantic web services.
In: Proceedings of the 2nd International Semantic Web Conference (ISWC 2003)
(October 2003)

http://www.w3.org/TR/sawsdl/

The CONNECT Architecture 51

8. Bromberg, Y.-D., Issarny, V.: INDISS: Interoperable discovery system for net-
worked services. In: Alonso, G. (ed.) Middleware 2005. LNCS, vol. 3790, pp. 164–
183. Springer, Heidelberg (2005)

9. Caballero, J., Yin, H., Liang, Z., Song, D.: Polyglot: automatic extraction of pro-
tocol message format using dynamic binary analysis. In: Proceedings of the 14th
ACM Conference on Computer and Communications Security, CCS 2007, pp. 317–
329. ACM, New York (2007)

10. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services descrip-
tion language (wsdl) 1.1 (March 2001), http://www.w3.org/TR/wsdl

11. Cui, W., Peinado, M., Chen, K., Wang, H.J., Irun-Briz, L.: Tupni: automatic re-
verse engineering of input formats. In: Proceedings of the 15th ACM Conference
on Computer and Communications Security, CCS 2008, pp. 391–402. ACM, New
York (2008)

12. Farrell, J., Lausen, H.: Semantic annotations for wsdl and xml schema (August
2007), http://www.w3.org/TR/sawsdl/

13. Fisher, K., Mandelbaum, Y., Walker, D.: The next 700 data description languages.
In: Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2006, pp. 2–15. ACM, New York (2006)

14. Fisher, K., Walker, D., Zhu, K.Q., White, P.: From dirt to shovels: fully au-
tomatic tool generation from ad hoc data. In: Proceedings of the 35th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, pp. 421–434. ACM, New York (2008)

15. UPnP Forum. Upnp device architecture version 1.0. (October 2008),
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf

16. Grace, P., Blair, G., Samuel, S.: A reflective framework for discovery and interaction
in heterogeneous mobile environments. ACM SIGMOBILE Mobile Computing and
Communications Review 9(1), 2–14 (2005)

17. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J., Frystyk Nielsen, H., Kar-
markar, A., Lafon, Y.: Soap version 1.2 part 1: Messaging framework (April 2001),
http://www.w3.org/TR/soap12-part1

18. Guttman, E., Perkins, C., Veizades, J.: Service location protocol version 2, IETF
RFC 2608 (June 1999), http://www.ietf.org/rfc/rfc2608.txt

19. Howar, F., Jonsson, B., Merten, M., Steffen, B., Cassel, S.: On handling data in
automata learning - considerations from the connect perspective. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 221–235. Springer, Heidelberg
(2010)

20. Issarny, V., Bennaceur, A., Bromberg, Y.-D.: Middleware-layer Connector Syn-
thesis. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 350–392.
Springer, Heidelberg (2011)

21. Lin, Z., Jiang, X., Xu, D., Zhang, X.: Automatic protocol format reverse engineer-
ing through conectect-aware monitored execution. In: 15th Symposium on Network
and Distributed System Security (NDSS) (2008)

22. Madhavapeddy, A., Ho, A., Deegan, T., Scott, D., Sohan, R.: Melange: creating a
”functional” internet. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, EuroSys 2007, pp. 101–114. ACM, New
York (2007)

23. McCann, P.J., Chandra, S.: Packet types: abstract specification of network pro-
tocol messages. In: Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, SIGCOMM 2000, pp.
321–333. ACM, New York (2000)

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/sawsdl/
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf
http://www.w3.org/TR/soap12-part1
http://www.ietf.org/rfc/rfc2608.txt

52 P. Grace et al.

24. Nakazawa, J., Tokuda, H., Edwards, W.K., Ramachandran, U.: A bridging frame-
work for universal interoperability in pervasive systems. In: Proceedings of the 26th
IEEE International Conference on Distributed Computing Systems, ICDCS 2006.
IEEE Computer Society, Washington, DC, USA (2006)

25. OASIS. Web services dynamic discovery (wsdiscovery) version 1.1. (July 2009),
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/

wsdd-discovery-1.1-spec-os.pdf

26. OMG. The common object request broker: Architecture and specification version
2.0. Technical report, Object Management Group (1995)

27. Pang, R., Paxson, V., Sommer, R., Peterson, L.: binpac: a yacc for writing appli-
cation protocol parsers. In: Proceedings of the 6th ACM SIGCOMM Conference
on Internet Measurement, IMC 2006, pp. 289–300. ACM, New York (2006)

28. Spalazzese, R., Inverardi, P., Tivoli, M.: Application-layer Connector Synthesis.
In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 350–392.
Springer, Heidelberg (2011)

29. Raffelt, H., Steffen, B.: LearnLib: A library for automata learning and experimen-
tation. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 377–380.
Springer, Heidelberg (2006)

30. Roman, M., Kon, F., Campbell, R.H.: Reflective middleware: From your desk to
your hand. IEEE Distributed Systems Online 2 (May 2001)

31. Tantiprasut, D., Neil, J., Farrell, C.: Asn.1 protocol specification for use with ar-
bitrary encoding schemes. IEEE/ACM Trans. Netw. 5, 502–513 (1997)

http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf

Automated Verification Techniques

for Probabilistic Systems

Vojtěch Forejt1, Marta Kwiatkowska1, Gethin Norman2, and David Parker1

1 Oxford University Computing Laboratory, Parks Road, Oxford, OX1 3QD, UK
2 School of Computing Science, University of Glasgow, Glasgow, G12 8RZ, UK

Abstract. This tutorial provides an introduction to probabilistic model
checking, a technique for automatically verifying quantitative properties
of probabilistic systems. We focus on Markov decision processes (MDPs),
which model both stochastic and nondeterministic behaviour. We de-
scribe methods to analyse a wide range of their properties, including
specifications in the temporal logics PCTL and LTL, probabilistic safety
properties and cost- or reward-based measures. We also discuss multi-
objective probabilistic model checking, used to analyse trade-offs between
several different quantitative properties. Applications of the techniques
in this tutorial include performance and dependability analysis of net-
worked systems, communication protocols and randomised distributed
algorithms. Since such systems often comprise several components oper-
ating in parallel, we also cover techniques for compositional modelling
and verification of multi-component probabilistic systems. Finally, we
describe three large case studies which illustrate practical applications
of the various methods discussed in the tutorial.

1 Introduction

Many computerised systems exhibit probabilistic behaviour. Messages transmit-
ted across wireless networks, for example, may be susceptible to losses and delays,
or system components may be prone to failure. In both cases, probability is a
valuable tool for the modelling and analysis of such systems. Another source of
stochastic behaviour is the use of randomisation, for example to break symme-
try or prevent flooding in communication networks. This is an integral part of
wireless communication protocols such as Bluetooth or Zigbee. Randomisation
is also a useful tool in security protocols, for example to guarantee anonymity,
and in the construction of dynamic power management schemes.

Formal verification is a systematic approach that applies mathematical rea-
soning to obtain guarantees about the correctness of a system. One successful
method in this domain is model checking. This is based on the construction and
analysis of a system model, usually in the form of a finite state automaton, in
which states represent the possible configurations of the system and transitions
between states capture the ways that the system can evolve over time. Desired
properties such as “no two threads obtain a lock simultaneously” or “the system
always eventually delivers an acknowledgement to a request” are then expressed

M. Bernardo and V. Issarny (Eds.): SFM 2011, LNCS 6659, pp. 53–113, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

54 V. Forejt et al.

in temporal logic and the model is analysed in an automatic fashion to determine
whether or not the model satisfies the properties.

There is increasing interest in the development of quantitative verification
techniques, which take into account probabilistic and timed aspects of a system.
Probabilistic model checking, for example, is a generalisation of model checking
that builds and analyses probabilistic models such as Markov chains and Markov
decision processes. A wide range of quantitative properties of these systems can
be expressed in probabilistic extensions of temporal logic and systematically
analysed against the constructed model. These properties can capture many
different aspects of system behaviour, from reliability, e.g. “the probability of an
airbag failing to deploy on demand”, to performance, e.g. “the expected time for
a network protocol to successfully send a message packet”.

This tutorial gives an introduction to probabilistic model checking for Markov
decision processes, a commonly used formalism for modelling systems that ex-
hibit a combination of probabilistic and nondeterministic behaviour. It covers the
underlying theory, discusses probabilistic model checking algorithms and their
implementation, and gives an illustration of the application of these techniques
to some large case studies. The tutorial is intended to complement [67], which fo-
cuses on probabilistic model checking for discrete- and continuous-time Markov
chains, rather than Markov decision processes. There is also an accompanying
website [91], providing models for the PRISM probabilistic model checker [56]
that correspond to the various running examples used throughout and to the
case studies in Section 10.

There are many other good references relating to the material covered in
this tutorial and we provide pointers throughout. In particular, Chapter 10 of
[11] covers some of the MDP model checking techniques presented here, but in
greater depth, with additional focus on the underlying theory and proofs. We
also recommend the theses by Segala [80], de Alfaro [1] and Baier [7], which
provide a wealth of in-depth material on a variety of topics relating to MDPs,
along with detailed pointers to other relevant literature. Finally, although not
focusing on verification, [76] is an excellent general reference on MDPs.

Outline. The tutorial is structured as follows. We begin, in Section 2, with
background material on probability theory and discrete-time Markov chains.
In Section 3, we introduce the model of Markov decision processes. Section 4
describes the computation of a key property of MDPs, probabilistic reachability,
and Section 5 covers reward-based properties. Section 6 concerns how to formally
specify properties of MDPs using the probabilistic temporal logic PCTL, and
shows how the techniques introduced in the previous sections can be used to
perform model checking. Section 7 describes how to verify MDPs against safety
properties and the logic LTL using automata-based techniques. Two advanced
topics, namely multi-objective probabilistic model checking and compositional
probabilistic verification, are the focus of Sections 8 and 9. In Section 10, we
list some of the software tools available for model checking MDPs and describe
three illustrative case studies. Section 11 concludes by discussing active research
areas and suggesting further reading.

Automated Verification Techniques for Probabilistic Systems 55

2 Background Material

2.1 Probability Distributions and Measures

We begin by briefly summarising some definitions and notations relating to prob-
ability distributions and measures. We assume that the reader has some famil-
iarity with basic probability theory. Good introductory texts include [19,42].

Definition 1 (Probability distribution). A (discrete) probability distribu-
tion over a countable set S is a function μ : S → [0, 1] satisfying

∑
s∈S μ(s)=1.

We use [s0 �→x0, . . . , sn �→xn] to denote the distribution that chooses si with
probability xi for all 0�i�n and Dist(S) for the set of distributions over S.
The point distribution on s ∈ S, denoted [s �→1], is the distribution that assigns
probability 1 to s. Given two distributions μ1 ∈ Dist(S1) and μ2 ∈ Dist(S2),
the product distribution μ1×μ2 ∈ Dist(S1×S2) is defined by μ1×μ2((s1, s2)) =
μ1(s1)·μ2(s2).

Definition 2 (Probability space). A probability space over a sample space
Ω is a triple (Ω,F ,Pr), where F ⊆ 2Ω is a σ-algebra over Ω, i.e.

– ∅, Ω ∈ F ;
– if A ∈ F , then Ω \ A ∈ F ;
– if Ai ∈ F for all i ∈ N, then ∪i∈NAi ∈ F

and Pr : F → [0, 1] is a probability measure over (Ω,F), i.e.

– Pr(∅) = 0 and Pr(Ω) = 1;
– Pr(∪i∈NAi) =

∑
i∈N

Pr(Ai) for all countable pairwise disjoint sequences
A1, A2, . . . of F .

Sets contained in the σ-algebra F are said to be measurable. A (non-negative)
random variable over a probability space (Ω,F ,Pr) is a measurable function
X : Ω → R�0, i.e. a function such that X−1([0, r]) ∈ F for all r ∈ R�0. The
expected value of X with respect to Pr is given by the following integral:

E[X] def=
∫

ω∈Ω
X(ω) dPr .

2.2 Discrete-Time Markov Chains

Next, we introduce the model of discrete-time Markov chains (DTMCs). We
provide just a brief overview of DTMCs, as required for the remainder of this
tutorial. For more in-depth coverage of the topic, we recommend the textbooks
by Stewart [83] and Kulkarni [65]. For a tutorial on probabilistic model checking
for Markov chains, see for example [67].

Definition 3 (Discrete-time Markov chain). A discrete-time Markov chain
(DTMC) is a tuple D = (S, s,P, L) where S is a (countable) set of states, s ∈ S
is an initial state, P : S×S → [0, 1] is a transition probability matrix such that∑

s′∈S P(s, s′) = 1 for all s ∈ S, and L : S → 2AP is a labelling function
mapping each state to a set of atomic propositions taken from a set AP.

56 V. Forejt et al.

s0

{init}
s1 s2

{succ}
1

0.7 0.3

0.5 0.5

P =

⎛
⎝ 0 1 0

0.7 0 0.3
0.5 0 0.5

⎞
⎠

Fig. 1. An example DTMC and its transition probability matrix P

One way to view a DTMC D=(S, s,P, L) is as a state-transition system in
which transitions are augmented with probabilities indicating their likelihood.
From each state s ∈ S, the probability of a transition to s′ occurring is P(s, s′).

A path represents one possible execution of D. Formally, a (finite or infinite)
path of D is a sequence of states s0s1s2 . . . such that P(si, si+1)>0 for all i�0.
We use FPathD,s and IPathD,s, respectively, to denote the set of all finite and
infinite paths starting from state s of D.

In order to reason formally about the behaviour of D, we need to determine
the probability that certain paths are taken. We proceed by constructing, for
each state s ∈ S, a probability space over the set of infinite paths IPathD,s.
This is outlined below and for further details see [64]. The basis of the con-
struction is the probability of individual finite paths induced by the transition
probability matrix P. More precisely, the probability of the path ρ=s0 . . . sn is
given by P(ρ) def=

∏n−1
i=0 P(si, si+1). We begin by defining, for each finite path

ρ ∈ FPathD,s, the basic cylinder Cρ that consists of all infinite paths start-
ing with ρ. Using properties of cylinders, we can then construct the probability
space (IPathD,s,FD,s,PrD,s) where FD,s is the smallest σ-algebra generated by
the basic cylinders {Cρ | ρ ∈ FPathD,s} and PrD,s is the unique measure such
that PrD,s(Cρ) = P(ρ) for all ρ ∈ FPathD,s.

Example 1. Consider the 3-state DTMC D=(S, s,P, L) of Figure 1. Here,
S={s0, s1, s2}, s=s0, the transition probability matrix P is shown in Figure 1,
L(s0)={init}, L(s1)=∅ and L(s2)={succ}. We have, for example:

– PrD,s0({π starts s0s1s2s0}) = 1·0.3·0.5 = 0.15;
– PrD,s0({(s0s1s2)

ω}) = limn→∞ PrD,s0({π starts (s0s1s2)
n})

= limn→∞ 1·0.3·(0.5·1·0.3)n−1 = 0;
– PrD,s0({π contains s2}) =

∑∞
n=1 PrD,s0({π starts (s0s1)

ns2})
=
∑∞

n=1 1·(0.7·1)n−1·0.3 = 1. �

3 Markov Decision Processes

This tutorial focuses on the model of Markov decision processes (MDPs), which
are a widely used formalism for modelling systems that exhibit both probabilistic
and nondeterministic behaviour. From the point of view of applying quantita-
tive verification, nondeterminism is an essential tool to capture several different
aspects of system behaviour:

– unknown environment : if the system interacts with other components whose
behaviour is unknown, this can be modelled with nondeterminism;

Automated Verification Techniques for Probabilistic Systems 57

– concurrency: in a distributed system comprising multiple components oper-
ating in parallel, nondeterminism is used to represent the different possible
interleavings of the executions of the components;

– underspecification: if certain parts of a system are either unknown or too
complex to be modelled efficiently, these can be abstracted away using non-
determinism.

Alternatively, we can use nondeterminism to capture the possible ways that a
controller can influence the behaviour of the system. The multi-objective tech-
niques that we describe in Section 8 can be seen as a way of performing controller
synthesis. In a similar vein, MDPs are also widely used in domains such as plan-
ning and robotics. Formally, we define an MDP as follows.

Definition 4 (Markov decision process). A Markov decision process (MDP)
is a tuple M=(S, s, αM, δM, L) where S is a finite set of states, s ∈ S is an initial
state, αM is a finite alphabet, δM : S×αM → Dist(S) is a (partial) probabilistic
transition function and L : S → 2AP is a labelling function mapping each state
to a set of atomic propositions taken from a set AP.

Transitions between states in an MDP M occur in two steps. First, a choice
between one or more actions from the alphabet αM is made. The set of available
actions in a state s is given by A(s) def= {a ∈ αM | δM(s, a) is defined}. To
prevent deadlocks, we assume that A(s) is non-empty for all s ∈ S. The selection
of an action a ∈ A(s) is nondeterministic. Secondly, a successor state s′ is chosen
randomly, according to the probability distribution δM(s, a), i.e. the probability
that a transition to s′ occurs equals δM(s, a)(s′).

An infinite path through an MDP is a sequence π = s0
a0−→s1

a1−→· · · (occasion-
ally written as s0a0s1a1 . . .) where si ∈ S, ai ∈ A(si) and δM(si, ai)(si+1)>0
for all i ∈ N. A finite path ρ = s0

a0−→s1
a1−→· · · an−1−−−→sn is a prefix of an infinite

path ending in a state. We denote by FPathM,s and IPathM,s, respectively, the
set of all finite and infinite paths starting from state s of M. We use FPathM
and IPathM for the sets of all such paths in the MDP. Where the context is
clear, we will drop the subscript M. For a finite path ρ = s0

a0−→s1
a1−→· · · an−1−−−→sn,

|ρ| = n denotes its length and last(ρ) = sn its last state. For a (finite or infi-
nite) path π = s0

a0−→s1
a1−→· · · , its (i+1)th state si is denoted π(i) and its trace,

tr(π), is the sequence of actions a0a1 . . . When, in later parts of this tutorial,
we formalise ways to define properties of MDPs, we will use both action-based
properties, based on path traces, and state-based properties, using the atomic
propositions assigned to each state by the labelling function L.

A reward structure on an MDP is useful for representing quantitative informa-
tion about the system the MDP represents, for example, the power consumption,
number of packets sent, size of a queue or the number of lost requests. Formally,
we define rewards on both the states and actions of an MDP as follows.

Definition 5 (Reward structure). A reward structure for an MDP M =
(S, s, αM, δM, L) is a tuple r=(rstate , raction) comprising a state reward function
rstate : S → R�0 and an action reward function raction : S×αM → R�0.

58 V. Forejt et al.

s0

{init}, 1
s1

2

s2

{succ}, 0

s3

{fail}, 0

go, 1 1

safe, 1

0.7 0.3

risk , 4
0.5

0.5

finish, 0

1

stop, 0

1reset , 51

Fig. 2. A running example: an MDP, annotated with a reward structure

We consistently use the terminology rewards but, often, these will be used to
model costs. The action rewards in a reward structure are also referred to else-
where as transition rewards, impulse rewards or state-action rewards.

We next introduce the notion of end components which, informally, are parts
of the MDP in which it possible to remain forever once entered.

Definition 6 (End component). Let M = (S, s, αM, δM, L) be an MDP. An
end component (EC) of M is a pair (S′, δ′) comprising a subset S′⊆S of states
and partial probabilistic transition function δ′ : S′×αM → Dist(S) satisfying the
following conditions:

– (S′, δ′) defines a sub-MDP of M, i.e. for all s′ ∈ S′ and a ∈ αM , if δ′(s′, a)
is defined, then δ′(s′, a)=δ(s′, a) and δ′(s′, a)(s′′)>0 only for states s′′ ∈ S′;

– the underlying graph of (S′, δ′) is strongly connected.

An EC (S′, δ′) is maximal if there is no distinct EC (S′′, δ′′) such that for any
s ∈ S and a ∈ αM, if δ′(s, a) is defined, then so is δ′′(s, a).

Algorithms to detect end components can be found in [1,11].

Example 2. Consider the MDP M=(S, s, αM, δM, L) from Figure 2. Here,
S={s0, s1, s2, s3}, s=s0 and αM={go, risk , safe,finish, stop, reset}. Considering
the probabilistic transition function, for example, from state s1 we have:

δM(s1, risk) = [s2 �→0.5, s3 �→0.5]
δM(s1, safe) = [s0 �→0.7, s2 �→0.3]

and δ(s1, a) is undefined if a ∈ {go,finish, stop, reset}, i.e. A(s1)={risk , safe}.
The labelling of e.g. states s1 and s2 is given by L(s1)=∅ and L(s2)={succ}.

The MDP models a system that aims to execute a task. After some routine
initialisation (captured by the action go), there are two possibilities: it can either
perform the task using a safe procedure, in which case the probability of finishing
the task successfully is 0.3, but with probability 0.7 the system restarts; or, it
can perform the task by a risky procedure, in which case the probability of
finishing the task is higher (0.5), but there is a 50% chance of complete failure,
after which the system can only be restarted using the action reset .

State and action reward functions rstate and raction are also depicted in the
figure where the rewards are the underlined numbers next to states or action

Automated Verification Techniques for Probabilistic Systems 59

labels, e.g. rstate(s1)=2 and raction(s1, risk)=4. An example of a finite path is
ρ = s0

go−→s1
risk−−→s3 and an example of an infinite path is:

π = s0
go−→s1

safe−−→s0
go−→s1

safe−−→s0
go−→· · ·

The MDP contains two end components, namely ({s2}, {(s2, stop)�→[s2 �→1]})
and ({s3}, {(s3, stop)�→[s3 �→1]}). Both are maximal. �

Adversaries. To reason formally about MDPs, in the way described for DTMCs
in Section 2.2, we need a probability space over infinite paths. However, a prob-
ability space can only be constructed once all the nondeterminism present has
been resolved. Each possible resolution of nondeterminism is represented by an
adversary, which is responsible for choosing an action in each state of the MDP,
based on the history of its execution so far. Adversaries are, depending on the
context, often referred to by a variety of other names, including strategies, sched-
ulers and policies.

Definition 7 (Adversary). An adversary of an MDP M = (S, s, αM, δM, L)
is a function σ : FPathM→Dist(αM) such that σ(ρ)(a)>0 only if a ∈ A(last(ρ)).

In general, the choice of an action can be made randomly and depend on the full
history of the MDP, but is limited to the actions available in the current state.
The set of all adversaries of M is AdvM. There are several important classes of
adversaries that we will now summarise. An adversary σ is deterministic if σ(ρ)
is a point distribution for all ρ ∈ FPathM, and randomised otherwise.

Definition 8 (Memoryless adversary). An adversary σ is memoryless if
σ(ρ) depends only on last(ρ), that is, for any ρ, ρ′ ∈ FPathM such that last(ρ) =
last(ρ′), we have σ(ρ) = σ(ρ′).

Definition 9 (Finite-memory adversary). An adversary σ is finite-memory
if there exists a tuple (Q, q, σu, σs) comprising:

– a finite set of modes Q;
– an initial mode q ∈ Q;
– a mode update function σu : Q×αM×S → Q;
– an action selection function σs : Q×S → Dist(αM)

such that σ(ρ)=σs(σ̂u(ρ), last(ρ)) for all ρ ∈ FPathM, where σ̂u : FPathM → Q
is the function determined by σ̂u(s)=q and σ̂u(ρas)=σu(σ̂u(ρ), a, s) for all ρ ∈
FPathM, a ∈ αM, and s ∈ S.

Notice that a memoryless adversary is a finite-memory adversary with one mode.
Under a particular adversary σ, the behaviour of an MDP M is fully proba-

bilistic and can be captured by a (countably infinite-state) discrete-time Markov
chain, denoted Mσ, each state of which is a finite path of M.

Definition 10 (Induced DTMC). For an MDP M = (S, s, αM, δM, L) and
adversary σ ∈ AdvM, the induced DTMC is Mσ = (T, s,P, L′) where:

60 V. Forejt et al.

– T = FPathM;
– for any ρ, ρ′ ∈ FPathM:

P(ρ, ρ′) =
{

σ(ρ)(a) · δM(last(ρ), a)(s) if ρ′ = ρas, a ∈ A(ρ) and s ∈ S
0 otherwise;

– L′(ρ) = L(last(ρ)) for all ρ ∈ FPathM.

The induced DTMC Mσ has an infinite number of states. However, in the case
of finite-memory adversaries (and hence also the subclass of memoryless adver-
saries), we can also construct a finite-state quotient DTMC. More precisely, if
the finite-memory adversary is defined by the tuple (Q, q, σu, σs), then we stipu-
late two paths ρ and ρ′ to be equivalent whenever they get mapped to the same
mode, i.e. σ̂u(ρ)=σ̂u(ρ′), and the last action and state of ρ and ρ′ are the same.
It follows that we can classify equivalence classes of paths by tuples of the form
(q, a, s), where q is the mode that paths of the equivalence class get mapped to
and a and s are the last action and state of these paths. Formally, the finite-state
quotient can be defined as follows (since the path consisting of just the initial
state does not have a “last” action, we introduce a new symbol ⊥).

Definition 11 (Quotient DTMC). The quotient DTMC for an MDP M =
(S, s, αM, δM, L) and finite-memory adversary σ defined by the tuple (Q, q, σu,
σs) is the finite-state DTMC Mq

σ = (T, s′,P, L′) where:

– T = (Q×αM×S) ∪ {(q,⊥, s)};
– s′ = (q,⊥, s);
– P((q, a, s), (q′, a′, s′)) = σs(q, s)(a′) · δM(s, a′)(s′) whenever q′ = σu(q, a′, s′)

and equals 0 otherwise;
– L′((q, a, s)) = L(s).

Probability Spaces. For a given (general) adversary σ, we associate the infinite
paths in M and Mσ by defining the following bijection f :

f(s0
a0−→ s1

a1−→ s2
a2−→ · · ·) def= (s0) (s0a0s1) (s0a0s1a1s2) . . .

for all infinite paths s0
a0−→ s1

a1−→ s2
a2−→ · · · ∈ IPathM. Now, for any state s of

M, using this function and the probability measure PrMσ ,s given in Section 2.2
for the DTMC Mσ, we can define a probability measure Prσ

M,s over IPathM,s

capturing the behaviour of M from state s under adversary σ. Furthermore, for
a random variable X : IPathM,s → R�0, we can compute the expected value of
X from state s in M under adversary σ, which we denote by E

σ
M,s(X).

In practice, we are mainly interested in minimising or maximising either the
probability of a certain set of paths, or the expected value of some random
variable. Therefore, for any measurable set of paths Ω ⊆ IPathM,s and random
variable X : IPathM,s → R�0, we define:

Prmin
M,s(Ω) def= infσ∈AdvM Prσ

M,s(Ω)
Prmax

M,s(Ω) def= supσ∈AdvM Prσ
M,s(Ω)

E
min
M,s(X) def= infσ∈AdvM E

σ
M,s(X)

E
max
M,s(X) def= supσ∈AdvM E

σ
M,s(X)

Automated Verification Techniques for Probabilistic Systems 61

s0 ρ

ρ safe s0

ρ safe s2

ρ risk s2

ρ risk s3

ρ′

ρ′ safe s2

ρ′safe s0 ρ′ safe s0 go s1

ρ′ safe s0 go s1 safe s2

ρ′ safe s0 go s1 safe s0

ρ risk s3 reset s0

ρ′′
ρ safe s0

ρ′′ safe s2

ρ′′ safe s0 go s1

ρ′′ safe s0 go s1 safe s0

ρ′′ safe s0 go s1 safe s2

1

0.6·0.7=0.42

0.6·0.3=0.18

0.4·0.5=0.2

0.4·0.5=0.2

1
0.7

0.3

1
0.7

0.3

1 1

0.7

0.3

1 0.7

0.3

Fig. 3. Fragment of the induced DTMC Mσ (where ρ = s0 go s1, ρ′ = ρ safe s0 go s1

and ρ′′ = ρ risk s3 reset s0 go s1)

When using an MDP to model and verify quantitative properties of a system,
this equates to evaluating the best- or worst-case behaviour that can arise; for
example, we may be interested in “the minimum probability of a message being
delivered” or “the maximum expected time for a task to be completed”.

Although not every subset of IPathM is measurable, all the sets we will con-
sider in this tutorial are measurable, so we can use the above notation freely
without stressing the need of the measurability every time.

Example 3. Consider again the example MDP from Figure 2. Let σ be the
adversary such that, for any finite path ρ:

σ(ρ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[go �→1] if last(ρ)=s0

[risk �→0.4, safe �→0.6] if ρ = s0
go−→s1

[safe �→1] if last(ρ)=s1 and ρ �= s0
go−→s1

[finish �→1] if last(ρ)=s2

[reset �→1] if last(ρ)=s3 .

Part of the induced DTMC Mσ is depicted in Figure 3. The adversary σ is
neither memoryless, nor deterministic, but is finite-memory. More precisely, σ is
defined by the tuple (Q, q, σu, σs) where Q = {q0, q1}, q = q0 and, for any q ∈ Q,
a ∈ αM and s ∈ S:

σu(q, a, s) =

⎧⎨
⎩

q1 if q=q0 and a ∈ {risk , safe}
q0 if q=q0 and a �∈ {risk , safe}
q1 otherwise

and:

σs(q, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[go �→1] if s=s0

[risk �→0.4, safe �→0.6] if q=q0 and s=s1

[safe �→1] if q=q1 and s=s1

[finish �→1] if s=s2

[reset �→1] if s=s3 .

62 V. Forejt et al.

(q0,⊥, s0) (q0, go, s1)

(q1, safe, s0)

(q1, safe, s2)

(q1, risk , s2)

(q1, risk , s3) (q1, reset , s0)

(q1, go, s1)

(q1,finish, s2)
1

0.42
0.18

0.2
0.2

1

0.7

1

1

1

1

0.3

1

Fig. 4. The quotient DTMC Mq
σ

The quotient DTMC Mq
σ is depicted in Figure 4.

Returning to the finite path ρ = s0
go−→s1

risk−−→s3 from Example 2, we have
Prσ

M,s0
({π | ρ is a prefix of π}) = (1·1)·(0.4·0.5) = 0.2. �

Related Models. We conclude this section by briefly surveying models that are
closely related to MDPs and clarifying certain differences in terminology used
elsewhere. Our definition of MDPs in this tutorial essentially coincides with the
classical definitions (see e.g. [14,57,76]), although there are notational differ-
ences. Also commonly used in probabilistic verification is the model of (simple)
probabilistic automata (PAs), due to Segala [80,81]. These permit multiple dis-
tributions labelled with the same action to be enabled from a state (i.e. δM is a
relation δM ⊆ S×αM×Dist(S)), thus strictly generalising MDPs. This model is
particularly well suited to compositional modelling and analysis of probabilistic
systems, a topic that we will discuss further in Section 9. The names are some-
times used interchangeably, for example, the PRISM model checker [56] supports
both PAs and MDPs, but refers to them simply as MDPs.

Confusingly, there is an alternative model called probabilistic automata, due
to Rabin [78], which is also well known. From a syntactic point of view, these
are essentially the same as MDPs, but are typically used in a language-theoretic
setting, rather than for modelling and verification. An exception is [72], which
uses Rabin’s probabilistic automata to build a game-theoretic framework for ver-
ifying probabilistic programs. Another approach is to use “alternating” models,
which distinguish between states that offer a probabilistic choice and those that
offer a nondeterministic choice. Examples include the model of Hansson [53] and
the concurrent Markov chains of [34,84]. We do not attempt a complete survey
of MDP-like models here. See [48] for a classification scheme of such models, [82]
for a thorough comparison and [80,1,7] for further references and discussion.

4 Probabilistic Reachability

In the remainder of this tutorial, we will introduce a variety of properties of
MDPs and describe the corresponding methods to perform probabilistic model
checking. We begin with the simple, yet fundamental, property of probabilistic

Automated Verification Techniques for Probabilistic Systems 63

reachability. This refers to the minimum or maximum probability, when starting
from a given state s, of reaching a set of target states T ⊆ S. To formalise this,
let reachs(T) be the set of all paths that start from state s and contain a state
from T . More precisely, we have:

reachs(T) def= {π ∈ IPathM,s | π(i) ∈ T for some i ∈ N}
and, when s is clear from the context, we will write reach(T) instead of reachs(T).
The measurability of reachs(T) follows from the fact that reachs(T) = ∪ρ∈I{π ∈
IPathM,s | π has prefix ρ}, where I is the (countable) set of all finite paths from
s ending in T , and each element of this union is measurable. We then aim to
compute one or both of the following probability bounds:

Prmin
M,s(reachs(T)) def= infσ∈AdvM Prσ

M,s(reachs(T))
Prmax

M,s(reachs(T)) def= supσ∈AdvM Prσ
M,s(reachs(T)) .

In the remainder of this section, we will first consider the special case of qualita-
tive reachability, that is, finding those states for which the probability is either
0 or 1. Next, we consider the general quantitative case and discuss several dif-
ferent approaches that can be used to either compute or approximate minimum
and maximum reachability probabilities. Finally, we describe how to generate
adversaries which achieve the reachability probability of interest. Further de-
tails about many of the methods described in this section can be found in [76].
One important fact that we use is that there always exist deterministic and
memoryless adversaries that achieve the minimum and maximum probabilities
of reaching a target T .

4.1 Qualitative Reachability

In this section, we will present methods for finding the sets of states for which the
minimum or maximum reachability probability is either 0 or 1. More precisely,
we will be concerned with constructing the following sets of states:

S0
min

def= {s ∈ S | Prmin
s (reachs(T))=0}

S1
min

def= {s ∈ S | Prmin
s (reachs(T))=1}

S0
max

def= {s ∈ S | Prmax
s (reachs(T))=0}

S1
max

def= {s ∈ S | Prmax
s (reachs(T))=1} .

The probability 0 cases are often required as input to the algorithms for quan-
titative reachability, while using both can reduce round-off errors and yield a
speed-up in verification time. The gains are attributed to the fact that, to per-
form qualitative analysis, it is sufficient to know whether transitions are possible,
not their precise probabilities. Hence, the analysis can be performed using graph-
based, rather than numerical, computation.

Algorithms 1–4 give a formal description of how to compute the above sets;
examples of executing these algorithms are presented in Section 4.2. For further
details, see [18,1].

64 V. Forejt et al.

Input: MDP M = (S, s, αM, δM, L), target set T ⊆ S
Output: the set S0

min = {s ∈ S | Prmin
s (reach(T))=0}

R := T ;1

do2

R′ := R;3

R := R′ ∪ { s ∈ S | ∀a ∈ A(s). (∃s′ ∈ R′. δM(s, a)(s′)>0)
}
;4

while R �= R′ ;5

return S \ R;6

Algorithm 1. Computation of S0
min

Input: MDP M = (S, s, αM, δM, L), set S0
min

Output: the set S1
min = {s ∈ S | Prmin

s (reach(T))=1}
R := S \ S0

min;1

do2

R′ := R;3

R := R′ \ { s ∈ R′ | ∃a ∈ A(s).
(∃s′ ∈ S. (δM(s, a)(s′)>0 ∧ s′ �∈ R′)

) }
;4

while R �= R′ ;5

return R;6

Algorithm 2. Computation of S1
min

4.2 Quantitative Reachability

Before we introduce the actual algorithms for computing minimum and maxi-
mum reachability probabilities, we present the Bellman equations that describe
these probabilities. It should be apparent that, if xs = Prmin

s (reach(T)) for all
s ∈ S, then the following equations are satisfied:

xs = 1 if s ∈ S1
min

xs = 0 if s ∈ S0
min

xs = mina∈A(s)

∑
s′∈S δM(s, a)(s′) · xs′ otherwise.

When solving these equations, we in fact find the probability Prmin
s (reach(T))

for all states s of the MDP, rather than just a specific state of interest. From
the results presented in [17,16] (since the problem of finding minimum reacha-
bility probabilities is a special case of the stochastic shortest path problem), the
equations above have a unique solution. Furthermore, it is actually sufficient to
just compute S0

min and replace S1
min with T in the above. Below, we will discuss

various methods to solve these equations.
Similarly, if xs = Prmax

s (reach(T)), then the following equations are satisfied:

xs = 1 if s ∈ S1
max

xs = 0 if s ∈ S0
max

xs = maxa∈A(s)

∑
s′∈S δM(s, a)(s′) · xs′ otherwise.

In this case, from the results of [17,1], it follows that the maximum reachabil-
ity probabilities are the least solution to these equations. Again, like for the
minimum case, it suffices to just compute S0

max and replace S1
max with T .

Automated Verification Techniques for Probabilistic Systems 65

Input: MDP M = (S, s, αM, δM, L), target set T ⊆ S
Output: the set S0

max = {s ∈ S | Prmax
s (reach(T))=0}

R := T ;1

do2

R′ := R;3

R := R′ ∪ { s ∈ S | ∃a ∈ A(s). (∃s′ ∈ R′. δM(s, a)(s′)>0)
}
;4

while R �= R′ ;5

return S \ R;6

Algorithm 3. Computation of S0
max

Input: MDP M = (S, s, αM, δM, L), target set T ⊆ S
Output: S1

max = {s ∈ S | Prmax
s (reach(T))=1}

R := S;1

do2

R′ := R;3

R := T ;4

do5

R′′ := R;6

R := R′′ ∪ {s ∈ S | ∃a ∈ A(s).7 (∀s′ ∈ S. (δM(s, a)(s′)>0 → s′ ∈ R′)
) ∧ (∃s′ ∈ R′′. δM(s, a)(s′)>0

)}
;8

while R �= R′′ ;9

while R �= R′ ;10

return R;11

Algorithm 4. Computation of S1
max

Linear Programming. One approach to computing the minimum and max-
imum reachability probabilities is to construct and solve a linear programming
(LP) problem. In the case of minimum probabilities Prmin

s (reach(T)), it has been
demonstrated [17,35,1] that the following linear program:

maximise
∑

s∈S xs subject to the constraints:
xs = 1 for all s ∈ S1

min

xs = 0 for all s ∈ S0
min

xs �
∑

s′∈S δM(s, a)(s′) · xs′ for all s �∈ S1
min ∪ S0

min and a ∈ A(s)

has a unique solution satisfying xs = Prmin
s (reach(T)).

Example 4. Consider again the example from Figure 2 and let us compute
Prmin

s (reach({s2})) for all s ∈ S. We first need to execute Algorithm 1, starting
with R = {s2}, and changing R to {s1, s2} and to {s0, s1, s2} in two consecutive
iterations of the do-while loop. This is a fixed point, so the returned set S0

min is
S\{s0, s1, s2} = {s3}. Next, we execute Algorithm 2, starting with R={s0, s1, s2}
and then consecutively change R to {s0, s2} and {s2}, which is the fixed point,
so S1

min = {s2}. Using these sets, we obtain the linear program:

66 V. Forejt et al.

maximise xs0+xs1+xs2+xs3 subject to:
xs2 = 1
xs3 = 0
xs0 � xs1

xs1 � 0.5·xs2 + 0.5·xs3

xs1 � 0.7·xs0 + 0.3·xs2

which has the unique solution xs0=0.5, xs1=0.5, xs2=1 and xs3=0. Hence, the
vector of values for Prmin

s (reach({s2})) is (0.5, 0.5, 1, 0). �

In the case of maximum probabilities, the situation is similar [35,1], and we have
the following the linear program:

minimise
∑

s∈S xs subject to the constraints:
xs = 1 for all s ∈ S1

max

xs = 0 for all s ∈ S0
max

xs �
∑

s′∈S δ(s, a)(s′) · xs′ for all s �∈ S1
max ∪ S0

max and a ∈ A(s)

which yields a unique solution satisfying xs = Prmax
s (reach(T)).

Example 5. We will illustrate the computation of maximum reachability prob-
abilities using the MDP from Figure 2 and the target set {s3}. We first run Al-
gorithm 3, initialising the set R to {s3}. After the first iteration of the do-while
loop, we get R={s1, s3}, and after the second we get R={s0, s1, s3}, which is the
fixed point, so the returned set is S0

max={s2}. Then, we execute Algorithm 4.
In the outer do-while loop (lines 2–10), we start with R′=S and R={s3}. The
first execution of the inner loop (lines 5–9) yields R={s0, s1, s3} and the second
yields R={s3}. The latter is the fixed point, so we return S1

max={s3}. Setting
up the linear program, we get:

minimise xs0+xs1+xs2+xs3 subject to:
xs3 = 1
xs2 = 0
xs0 � xs1

xs1 � 0.5·xs2 + 0.5·xs3

xs1 � 0.7·xs0 + 0.3·xs2

which has the unique solution xs0=0.5, xs1=0.5, xs2=0 and xs3=1, giving the
vector of values (0.5, 0.5, 0, 1) for Prmax

s (reach({s3})). �

The benefit of the linear programming approach is that it can be used to compute
exact answers. The drawback, however, is that its scalability to large models is
limited. Despite a wide range of LP solution methods being available, in practice
models used in probabilistic verification become too large to solve in this way.

Value Iteration. An alternative method is value iteration, which offers better
scalability than linear programming, but at the expense of accuracy. Instead of
computing a precise solution to the set of linear equations for Prmin

s (reach(T)),

Automated Verification Techniques for Probabilistic Systems 67

Input: MDP M = (S, s, αM, δM, L), sets S0
min, S1

min and convergence criterion ε
Output: (approximation of) Prmin

s (reach(T)) for all s ∈ S

foreach s ∈ S do xs :=

{
1 if s ∈ S1

min

0 otherwise
;

1
do2

foreach s ∈ S\(S0
min ∪ S1

min) do3

x′
s := mina∈A(s)

∑
s′∈S δM(s, a)(s′) · xs′ ;4

end5

δ := maxs∈S (x′
s − xs);6

foreach s ∈ S\(S0
min ∪ S1

min) do xs := x′
s;7

while δ > ε ;8

return (x′
s)s∈S9

Algorithm 5. Value iteration for Prmin
s (reach(T))

it computes the probability of reaching T within n steps. For large enough n,
this yields a good enough approximation in practice.

Formally, we introduce variables xn
s for s ∈ S and n ∈ N and equations:

xn
s =

⎧⎪⎪⎨
⎪⎪⎩

1 if s ∈ S1
min

0 if s ∈ S0
min

0 if s �∈ (S1
min ∪ S0

min) and n=0
mina∈A(s)

∑
s′∈S δM(s, a)(s′) · xn−1

s′ otherwise.

It can be shown [76,1,7] that limn→∞ xn
s = Prmin

s (reach(T)). We can thus
approximate Prmin

s (reach(T)) by computing xn
s for sufficiently large n. Further-

more, we can compute the maximum probabilities Prmax
s (reach(T)) in near-

identical fashion, by replacing “min” with “max” in the above.
Typically, a suitable value of n is not decided in advance, but rather deter-

mined on-the-fly, based on the convergence of the values xn
s . A simple but ef-

fective scheme is to terminate the computation when maxs∈S(xn
s − xn−1

s) drops
below a specified threshold ε. In cases where the probability values are very
small, the maximum relative difference, i.e. maxs∈S((xn

s − xn−1
s)/xn−1

s) may be
a more reliable criterion. It is important to stress, however, that these tests do
not guarantee that the resulting values are within ε of the true answer. In the-
ory, it is possible to make certain guarantees on the precision obtained, based
on the denominators of the (rational) transition probabilities [27]. However, it is
unclear whether these are practically applicable.

An illustration of how value iteration can be implemented is given in Algo-
rithm 5. In practice, there is no need to store all vectors xn; just two (x and x′

in the algorithm) are required.

Example 6. To illustrate value iteration, we will slightly modify the running
example from Figure 2: let us suppose that the action reset is not available in s3,
and that the action safe is not completely reliable, but results in a failure with
probability 0.1 and leads to s0 only with probability 0.6. The modified MDP
is depicted in Figure 5. Suppose we want to compute Prmax

s0
(reach({s2})). By

68 V. Forejt et al.

s0

{init}, 1
s1

2

s2

{succ}, 0

s3

{fail}, 0

go, 1 1

safe, 1

0.6 0.3

risk , 4 0.5

0.5

finish, 0

1

stop, 0

1

0.1

Fig. 5. A modified version of the running example from Figure 2

executing Algorithms 3 and 4, we obtain S0
max={s3} and S1

max={s2}, yielding
the following equations for value iteration:

xn
s2 = 1 for n�0

xn
s3 = 0 for n�0

x0
si

= 0 for i ∈ {0, 1}
xn

s0 = xn−1
s1 for n>0

xn
s1 = max{0.6·xn−1

s0 + 0.1·xn−1
s3 + 0.3·xn−1

s2 , 0.5·xn−1
s2 + 0.5·xn−1

s3 } for n>0

Below, are the vectors xn = (xn
s0

, xn
s1

, xn
s2

, xn
s3

), shown up to a precision of 5
decimal places, for increasing n, terminating with ε=0.001.

x0 = (0.0, 0.0, 1.0, 0.0) x7 = (0.66, 0.696, 1.0, 0.0)
x1 = (0.0, 0.5, 1.0, 0.0) x8 = (0.696, 0.696, 1.0, 0.0)
x2 = (0.5, 0.5, 1.0, 0.0) x9 = (0.696, 0.7176, 1.0, 0.0)
x3 = (0.5, 0.6, 1.0, 0.0) x10 = (0.7176, 0.7176, 1.0, 0.0)
x4 = (0.6, 0.6, 1.0, 0.0) · · ·
x5 = (0.6, 0.66, 1.0, 0.0) x22 = (0.74849, 0.74849, 1.0, 0.0)
x6 = (0.66, 0.66, 1.0, 0.0) x23 = (0.74849, 0.74909, 1.0, 0.0)

The exact values for Prmax
s (reach({s2})) are (0.75, 0.75, 1, 0), which differ from

x23 by up to 0.00151 (for state s0). �

Gauss-Seidel Value Iteration. Several variants of value iteration exist that
improve its efficiency. One such variant is Gauss-Seidel value iteration. Intu-
itively, this method exhibits faster convergence by using the most up-to-date
probability values available for each state within each iteration of the computa-
tion. This has the added benefit that only a single vector of probabilities needs
to be stored, since new values are written directly to the vector. Algorithm 6
shows the algorithm for the case of minimum reachability probabilities. Notice
that it uses only a single vector x.

Policy Iteration. An alternative class of algorithms for computing reachability
probabilities is policy iteration (recall that “policy” is alternative terminology
for “adversary”). Whereas value iteration steps through vectors of values, policy
iteration generates a sequence of adversaries. We start with an arbitrary, deter-
ministic and memoryless adversary, and then repeatedly construct an improved
(deterministic and memoryless) adversary by computing the corresponding prob-
abilities and changing the actions taken so that the probability of reaching T is

Automated Verification Techniques for Probabilistic Systems 69

Input: MDP M = (S, s, αM, δM, L), sets S0
min, S1

min and convergence criterion ε
Output: (approximation of) Prmin

s (reach(T)) for all s ∈ S

foreach s ∈ S do xs :=

{
1 if s ∈ S1

min

0 otherwise
;

1
do2

δ := 0;3

foreach s ∈ S\(S0
min ∪ S1

min) do4

xnew := mina∈A(s)

∑
s′∈S δM(s, a)(s′) · xs′ ;5

δ := max(δ, xnew − xs);6

xs := xnew ;7

end8

while δ > ε ;9

return (xs)s∈S10

Algorithm 6. Gauss-Seidel value iteration for Prmin
s (reach(T))

decreased or increased (depending on whether minimum or maximum probabil-
ities are being computed). The existence of deterministic and memoryless ad-
versaries exhibiting minimum and maximum reachability probabilities, together
with properties of the reachability problem, implies that this method will return
the correct result (assuming it terminates). Termination is guaranteed by the
fact that there are only finitely many such adversaries.

Algorithm 7 describes policy iteration for computing Prmin
s (reach(T)); the

case for maximum values is similar. Notice that, since the adversary is both
deterministic and memoryless, we can describe it simply as a mapping σ from
states to actions. Computing the probabilities Prσ

s (reach(T)) for each adversary
σ is relatively straightforward and is done by computing reachability probabil-
ities for the corresponding quotient DTMC Mq

σ. Since Mq
σ is finite-state, this

can be done either by treating it as a (finite-state) MDP and using the other
methods described in this section, or by solving a linear equation system [67].
We remark also that, to ensure termination of the algorithm, the action assigned
to σ(s) when improving the policy should only be changed when there is a strict
improvement in the probability for s.

Input: MDP M = (S, s, αM, δM, L), target set T ⊆ S
Output: Prmin

s (reach(T)) for all s ∈ S
Pick arbitrary adversary σ;1

do2

Compute ps := Prσ
s (reach(T)) for all s ∈ S;3

foreach s ∈ S do σ(s) := arg mina∈A(s)

∑
s′∈S δM(s, a)(s′) · ps′4

while σ has changed ;5

return (ps)s∈S6

Algorithm 7. Policy iteration for Prmin
s (reach(T))

70 V. Forejt et al.

Example 7. To demonstrate the policy iteration method, let us modify the
MDP from Figure 2 by adding a self-loop on s0 labelled with a new action wait
(i.e. δM(s0,wait) = [s0 �→1]). Note that there are 23=8 different deterministic
and memoryless adversaries in the new MDP. Let us maximise the probability of
reaching {s2}. We start with the adversary σ that picks wait , safe and stop in s0,
s1 and s3, respectively. The vector of probabilities of reaching the state s2 under
σ is (0, 0.3, 1, 0). We then change the decision of σ in s0 to go, and the decision
in s1 to risk . Recomputing the values ps, we get (0.5, 0.5, 1, 0) and subsequently
change the decision of σ in s1 back to safe and in s3 to reset . Computing the
values of ps then yields (1, 1, 1, 1), which cannot be further improved, so these
probabilities are returned. �

Method Comparison. To give an idea of the relative performance of the com-
putation methods described in this section, we provide a small set of results,
using models from the PRISM benchmark suite [89]. Table 1 shows results for
8 model checking problems on 6 different models. The models, and associated
parameters, are: consensus (N=4, K=16), firewire dl (delay=36, deadline=800),
csma (N=3, K=4), wlan (BOFF=5,COL=6), zeroconf (N=1000, K=8, reset=f),
zeroconf dl (N=1000, K=2, reset=f, bound=30); see [89] for further details.

We show the model sizes (number of states) and, for each of three methods
(value iteration, Gauss-Seidel, policy iteration), the number of iterations needed
and the total solution time (in seconds), running on a 2.53 GHz machine with
8 GB RAM. For policy iteration, we use Gauss-Seidel to analyse each adversary
and, for all iterative methods, we terminate when the maximum absolute dif-
ference is below ε=10−6. Results are omitted for linear programming since this
approach does not scale to these model sizes. We see that Gauss-Seidel is al-
ways faster than standard value iteration and often gives a significant speed-up,
thanks to its faster convergence. It is likely that further gains could be made by
re-ordering the state space. Policy iteration, in most cases, needs to examine a
relatively small number of adversaries. However, it does not (on this benchmark
set, at least) offer any improvement over Gauss-Seidel value iteration and on
some models can be considerably slower than standard value iteration.

4.3 Adversary Generation

As stated earlier in this section, for MDP M and target set T , there are always
deterministic and memoryless adversaries, say σmin and σmax, exhibiting the
minimum and maximum probabilities of reaching T , respectively. So far, we
have described how to compute the values of these probability bounds. Here we
discuss how to generate adversaries σmin and σmax that achieve these bounds.
As for policy iteration discussed earlier, since the adversaries are deterministic
and memoryless, we can describe them as a mapping from states to actions.

For the case of minimum probabilities, this is straightforward. Regardless of
the method used for computation of the minimum probabilities Prmin

s (reach(T)),
we define, for each state s ∈ S:

σmin(s) def= argmina∈A(s)

(∑
s′∈S δM(s, a)(s′) · Prmin

s′ (reach(T))
)
.

Automated Verification Techniques for Probabilistic Systems 71

Table 1. Comparison of the methods for computing reachability probabilities

Model Property Size Value iter. Gauss-Seidel Policy iteration

(states) Iter.s Time Iter.s Time Adv.s Iter.s Time

consensus c2 166,016 70,681 368.8 35,403 190.1 6 35,687 196.1

consensus disagree 166,016 90,861 637.6 45,432 336.5 52 83,775 533.3

firewire dl deadline 530,965 621 5.74 614 5.67 1 614 5.69

csma all before 1,460,287 118 3.53 87 2.44 2 161 5.68

csma some before 1,460,287 59 0.25 45 0.14 2 76 0.58

wlan collisions 1,591,710 825 2.34 323 0.97 4 788 2.58

zeroconf correct 1,870,338 345 16.6 259 14.4 4 581 24.8

zeroconf dl deadline 666,378 122 1.09 81 0.76 18 758 6.86

For the case of maximum probabilities, more care is required [1]. There are sev-
eral solutions, depending on the probability computation method used. If policy
iteration was applied, for example, the process is trivial since adversaries are
explicitly constructed and solved during the algorithm’s execution. We will now
demonstrate how to adapt the value iteration algorithm to compute an opti-
mal adversary as it proceeds. The idea is essentially the same as for minimum
probabilities above, but we perform this at every step of the computation and,
crucially, only update the adversary for a state s if the probability is strictly bet-
ter in that state. The adapted algorithm is shown in Algorithm 8. An additional
caveat of this version of the algorithm is that we skip the (optional) computation
of S1

max in order to correctly determine optimal choices for those states. For the
states in S0

max, by definition the reachability probability is 0 for all adversaries,
and hence we can choose arbitrary actions in these states.

5 Reward-Based Properties

Reward structures are a powerful mechanism for reasoning about various quanti-
tative properties of models. As mentioned earlier, reward structures can be used
to model system characteristics such as power consumption, the cost or time to
execute a task and the size of a queue. In this tutorial, we discuss expected reward
properties, focussing on two particular classes: instantaneous reward and cumu-
lative reward. Instantaneous reward allows reasoning about the expected reward
associated with the state of an MDP after a particular number of steps. Cumula-
tive reward is useful in situations where we are interested in the sum of rewards
accumulated up to a certain point. There are also various other reward-based
properties for MDPs, of which two of the most prominent are:

– Discounted reward, in which reward is accumulated step by step, but the
reward gained in the nth step is multiplied by a factor λn for some λ < 1,
thus giving preference to rewards gained earlier in time;

– Expected long-run average reward, in which the average reward gained per
state or transition is considered.

72 V. Forejt et al.

Input: MDP M, target T , set S0
max and convergence criterion ε

Output: (approximation of) Prmax
s (reach(T)) for all s ∈ S, optimal adversary

foreach s ∈ S\(S0
max ∪ T) do1

xs :=

{
1 if s ∈ T
0 otherwise

;
2

σmax(s) := ⊥;3

end4

do5

foreach s ∈ S\(S0
max ∪ T) do6

x′
s := maxa∈A(s)

∑
s′∈S δM(s, a)(s′) · xs′ ;7

if σmax(s) = ⊥ or x′
s > xs then8

σmax(s) := arg maxa∈A(s)

∑
s′∈S δM(s, a)(s′) · xs′ ’;9

end10

δ := maxs∈S (x′
s − xs);11

foreach s ∈ S\(S0
max ∪ T) do xs := x′

s;12

end13

while δ > ε ;14

return (x′
s)s∈S, σmax

15

Algorithm 8. Value iteration/adversary generation for Prmax
s (reach(T))

The reader is refered to [76] for a more comprehensive review of these and other
such properties.

5.1 Instantaneous Rewards

One of the simplest MDP reward properties is instantaneous reward, which is
defined as the expected reward of the state entered after k steps, for a given
reward structure and step k ∈ N. For example, if the MDP models a system
equipped with a queue and the reward structure assigns the current queue size to
each state, then instantaneous reward properties allow us to formalise questions
such as “what is the maximum expected size of the queue after 200 steps?”.

Formally, given an MDP M = (S, s, αM, δM, L), state reward function rstate
for M, state s ∈ S and step k, we define a random variable I=k

rstate
: IPaths → R�0

such that I=k
rstate

(π) def= rstate(π(k)) for all infinite paths π ∈ IPaths. The value
of interest is then either E

min
s (I=k

rstate
) or E

max
s (I=k

rstate
), i.e. either the minimum or

maximum expected reward at step k when starting from state s.
It is easy to see that memoryless adversaries do not suffice for minimising or

maximising instantaneous reward. For example, consider the MDP from Figure 6
and the value of E

max
s0

(I=3
rstate

). The optimal behaviour is to take self-loop b0 twice
and then the action a0, which yields expected instantaneous reward of 2, which
no memoryless adversary can achieve. Intuitively, the adversary may need to
“wait” in some states until the time comes to take a step towards states in
which the reward is large (or small if we consider the minimising case).

Automated Verification Techniques for Probabilistic Systems 73

s0

1

s1

2

s2

0

a0, 0 1 a1, 0 1

b0, 0

1

a2, 0

1

Fig. 6. An example MDP for which optimal memoryless adversaries do not exist

The values E
min
s (I=k

rstate
) are computed through the following equations, which

exploit the relation between instantaneous reward in the �th and (�−1)th steps:

x�
s =

{
rstate(s) if �=0
mina∈A(s)

(∑
s′∈S δM(s, a)(s′)·x�−1

s′
)

otherwise

We set E
min
s (I=k

rstate
) equal to xk

s . It is also straightforward to extend this to com-
pute an optimal adversary σmin on-the-fly by remembering the action:

a�
s = argmina∈A(s)

(∑
s′∈S δM(s, a)(s′)·x�−1

s′
)

for all 1���k and s ∈ S, and setting σmin(ρ) = [aρ �→1] where aρ = a
k−|ρ|
last(ρ) for

all ρ ∈ FPath such that |ρ|�k−1. The choices for paths longer than k−1 can be
arbitrary as these do not influence the expected reward.

The equations for computing E
max
s (I=k

rstate
) and σmax can be obtained by re-

placing “min” with “max” in those above for E
min
s (I=k

rstate
).

Example 8. Let us compute the maximum instantaneous reward after 4 steps in
the MDP from Figure 2. This amounts to finding the solution to the equations:

x0
s0 = 1

x0
s1 = 2

x0
s2 = 0

x0
s3 = 0

x�
s0 = x�−1

s1

x�
s1 = max{0.7·x�−1

s0 + 0.3·x�−1
s2 , 0.5·x�−1

s2 + 0.5·x�−1
s3 }

x�
s2 = x�−1

s2

x�
s3 = max{x�−1

s3 , x�−1
s0 }

for 1���4. The following are the values xi = (xi
s0

, xi
s1

, xi
s2

, xi
s3

):

x1 = (2, 0.7, 0, 1)
x2 = (0.7, 1.4, 0, 2)
x3 = (1.4, 1, 0, 2)
x4 = (1, 1, 0, 2)

So, e.g., E
max
s0

(I=4
rstate

) = 1. The associated optimal adversary σmax satisfies:

– if last(ρ)=s1, then σmax(ρ)=[risk �→1] when |ρ|�1 and [safe �→1] otherwise;

– if last(ρ)=s3, then σmax(ρ)=[stop �→1] when |ρ|�1 and [reset �→1] otherwise. �

74 V. Forejt et al.

5.2 Step-Bounded Cumulative Reward

Rather than computing the expected reward gained at the kth step, it may be
useful to compute the expected reward accumulated up to the kth step. Formally,
given an MDP M=(S, s, αM, δM, L), reward structure r=(rstate , raction), state
s and step bound k, we define the random variable C�k

r : IPaths → R�0 where:

C�k
r (π) def=

∑k−1
i=0

(
rstate(si) + raction(si, ai)

)
for all infinite paths π = s0

a0−→ s1
a1−→ · · · ∈ IPaths and consider either

E
min
s (C�k

r) or E
max
s (C�k

r). For example, if the MDP models a system in which
energy is consumed at each step, and the reward structure assigns energy values
to actions, then step-bounded cumulative reward can be used to reason about
properties such as “the expected energy consumption of the system within the
first 1000 time-units of operation”.

As for the previous case, there may not exist a memoryless optimal adversary.
For example, consider E

min
s0

(C�3
r) for the MDP from Figure 6. The optimal

behaviour is to take the self-loop b0 once and then the actions a0 and a1, which
yields cumulated reward 5. This is not achievable by any memoryless adversary.

The value of E
min
s (C�k

r) is computed in a similar way to instantaneous rewards
through the following equations:

x�
s =

{
0 if �=0

rstate(s) + mina∈A(s)

(
raction(s, a) +

∑
s′∈S δM(s, a)(s′)·x�−1

s′
)

otherwise

Like for the instantaneous case, an optimal adversary can be constructed on-
the-fly by remembering the action:

a�
s = arg mina∈A(s)

(
raction(s, a) +

∑
s′∈S δM(s, a)(s′)·x�−1

s′
)

for all 1���k and s ∈ S, and setting σ(ρ) = [aρ �→1] where aρ = a
k−|ρ|
last(ρ) for all

ρ ∈ FPath such that |ρ|�k−1. The choices for paths longer than k−1 can be
arbitrary as these do not influence the expected reward.

When considering maximum rewards, the corresponding equations can be
obtained by replacing “min” with “max” in those above.

Example 9. Let us compute the maximum expected reward accumulated within
4 steps in the MDP from Figure 2. In order to do this, we need to solve the
following equations (cf. Example 8):

x0
s0 = 0

x0
s1 = 0

x0
s2 = 0

x0
s3 = 0

x�
s0 = 1 + 1 + x�−1

s1

x�
s1 = 2 + max{1 + 0.7·x�−1

s0 + 0.3·x�−1
s2 , 4 + 0.5·x�−1

s2 + 0.5·x�−1
s3 }

x�
s2 = x�−1

s2

x�
s3 = max{x�−1

s3 , 5 + x�−1
s0 }

Automated Verification Techniques for Probabilistic Systems 75

for 1���4. The following are the values xi = (xi
s0

, xi
s1

, xi
s2

, xi
s3

):

x1 = (2, 6, 0, 5)
x2 = (8, 8.5, 0, 7)
x3 = (10.5, 9.5, 0, 13)
x4 = (11.5, 12.5, 0, 15.5)

So, e.g., E
max
s0

(C�4
r) = 11.5. The computed optimal adversary σmax is in fact

memoryless and satisfies σmax(s1) = [risk �→1] and σmax(s3) = [reset �→1]. �

5.3 Cumulative Reward to Reach a Target

Sometimes it is more useful to consider the cumulative reward gained before
some set of target states is reached, rather than within a time bound. This could
be used, for example, to compute “the expected cost of completing a task” or
“the total expected energy consumption during a system’s lifetime”.

Let M=(S, s, αM, δM, L) be an MDP, r=(rstate , raction) a reward structure,
s ∈ S and T ⊆ S a set of target states. We aim to compute E

min
s (FT

r) or
E

max
s (FT

r) where FT
r : IPaths → R�0 is the random variable such that, for any

path π = s0
a0−→ s1

a1−→ · · · ∈ IPaths:

FT
r (π) def=

{
∞ if si �∈ T for all i ∈ N∑kT

π −1
i=0 (rstate(si) + raction(si, ai)) otherwise

where kT
π = min{k | sk ∈ T }. As for probabilistic reachability, there are always

deterministic and memoryless adversaries exhibiting the minimum and maxi-
mum expected cumulative reward of reaching a target T .

Let us first consider the case E
min
s (FT

r). By definition, the value of E
min
s (FT

r) is
infinite if and only if, for all adversaries, when starting in state s, the probability
of reaching T is strictly less than 1. Using the methods presented in Section 4,
we can compute S1

max, i.e. the set of states for which the probability of reaching
T equals 1 for some adversary. Hence, E

min
s (FT

r) is infinite if and only if s �∈
S1

max, and it remains to compute the values for the states in s ∈ S1
max. Let

CT
r : IPaths → R�0 be the random variable such that for any path π = s0

a0−→
s1

a1−→ · · · ∈ IPaths:

CT
r (π) def=

∑lTπ −1
i=0 (rstate(si) + raction(si, ai))

where lTπ = ∞ if si �∈ T for all i ∈ N and equals min{k | sk ∈ T } otherwise.
Now, using [1,17], if there exists a proper adversary that achieves the minimum
expected value of CT

r , i.e. an adversary σ such that:

Prσ
s (reach(T)) = 1 and E

σ
s (CT

r) = E
min
s (CT

r) for all s ∈ S1
max,

then the values E
min
s (FT

r) are the unique solution to the following equations:

xs =

{
0 if s ∈ T

rstate(s) + mina∈A(s)

(
raction(s, a) +

∑
s′∈S δM(s, a)(s′)·xs′

)
otherwise.

76 V. Forejt et al.

As for probabilistic reachability in Section 4, techniques such as linear program-
ming, value iteration or policy iteration can be used to compute the value. How-
ever, there still remains the problem of checking for the existence of such a proper
adversary or dealing with the case when no such proper adversary exists. The
solution is to use the techniques presented in [1], and perform a transformation
of the MDP, by essentially removing end components with only zero rewards, to
guarantee that such a proper adversary exists.

For the maximum case, by definition, the value E
max
s (FT

r) is infinite if and
only if there is an adversary under which T is reached from s with probability
strictly less than 1. Again, using the methods presented in Section 4, we can
compute S1

min, i.e. the set of states for which no such adversary exists. Hence,
S1

min identifies precisely those states for which the maximum expected reward is
finite. For such states s, the values E

max
s (FT

r) satisfy the follow equations:

xs =

{
0 if s ∈ T

rstate(s) + maxa∈A(s)

(
raction(s, a) +

∑
s′∈S δM(s, a)(s′)·xs′

)
otherwise

and are in this case the least solution [1]. We can again use techniques such as
those described in Section 4 to find this solution.

Example 10. Let us consider the MDP from Figure 5, and compute the mini-
mum expected reward to reach {s2, s3}. Since S1

max=S, we obtain the equations:

xs2 = 0
xs3 = 0
xs0 = 1 + 1 + xs1

xs1 = 2 + min{4 + 0.5·xs2 + 0.5·xs3 , 1 + 0.3·xs2 + 0.1·xs3 + 0.6·xs0}

The unique solution is the vector (8, 6, 0, 0) and, e.g., E
min
s0

(F {s2,s3}
r) = 8. �

A careful reader may have noticed that both properties considered earlier in
this section, i.e. instantaneous reward at the kth step and cumulative reward
up to the kth step, can be reduced to the cumulative reward to reach a tar-
get set. More precisely, for an MDP M = (S, s, αM, δM, L) and reward struc-
ture r=(rstate , raction), we can construct an MDP M′ = (S′, s′, δM′ , L′), reward
structure r′=(r ′

state , r
′
action) and target T ′ where in both cases:

– S′ = S×{0, . . . , k+1} and s′ = (s, 0);
– for any s, s′ ∈ S, a ∈ αM and i�k we have δM′((s, i), a)((s′, i+1)) =

δM(s, a)(s′) and δM′((s, k+1), a)((s′, k+1)) = δM(s, a)(s′).

In the instantaneous case, T ′ = S×{k+1} and, for any s ∈ S, 0�i�k+1
and a ∈ αM, we set r ′

state(s, i) to rstate(s) if i=k and to 0 otherwise, and
r ′
action((s, i), a)=0. We then have that E

min
(s,0)(F

T ′
r ′) (respectively E

max
(s,0)(F

T ′
r ′)) in

M′ equals E
min
s (I=k

rstate
) (respectively E

max
s (I=k

rstate
)) in M.

For cumulative rewards, T ′ = S×{k}, r ′
state(s, i)=rstate(s) for all s ∈ S and

0�i�k+1, and r ′
action((s, i), a)=raction(s, a) for all s ∈ S, 1�i�k+1, and a ∈

αM. In this case, we have that E
min
(s,0)(F

T ′
r ′) (respectively E

max
(s,0)(F

T ′
r ′)) in M′

equals E
min
s (C�k

r) (respectively E
max
s (C�k

r)) in M.

Automated Verification Techniques for Probabilistic Systems 77

6 PCTL Model Checking

In this section, we discuss the use of temporal logic to express and verify more
complex properties of systems than just reachability or reward-based properties.
We then show how the techniques introduced in Sections 4 and 5 can be used to
perform model checking of these properties.

6.1 The Logic PCTL

PCTL (Probabilistic Computational Tree Logic) [54,6] is a probabilistic exten-
sion of the temporal logic CTL [33]. PCTL is used to express properties of both
DTMCs [54] and MDPs [6]. Here, we focus on MDPs. In the last part of this
section, we will extend PCTL to reward-based properties and, in Section 7, we
will discuss the alternative temporal logic LTL (linear temporal logic).

Definition 12 (PCTL syntax). The syntax of PCTL is as follows:

φ ::= true
∣∣ c

∣∣ φ ∧ φ
∣∣ ¬φ

∣∣ P�	 p[ψ]
ψ ::= Xφ

∣∣ φ U�k φ
∣∣ φ U φ

where c is an atomic proposition, �� ∈ {�, <, �, >}, p ∈ [0, 1] and k ∈ N.

PCTL formulas are interpreted over an MDP and we assume that the atomic
propositions c are taken from the set AP used to label its states.

In the syntax above, we distinguish between state formulas φ and path for-
mulas ψ, which are evaluated over states and paths, respectively. A property of
a model will always be expressed as a state formula; path formulas only occur
as the parameter of the probabilistic path operator P�	 p[ψ]. Intuitively, a state s
satisfies P�	 p[ψ] if, under any adversary, the probability of taking a path from s
satisfying path formula ψ is in the interval specified by �� p.

As path formulas, we allow the X (next), U�k (bounded until) and U (until)
operators, which are standard in temporal logics. Intuitively: Xφ is true if φ is
satisfied in the next state; φ1 U�k φ2 is true if φ2 is satisfied within k time-steps
and φ1 holds up until that point; and φ1 U φ2 is true if φ2 is satisfied at some
point in the future and φ1 holds up until then.

Semantics. To give the semantics of PCTL, we must first specify a class of
adversaries Adv . More precisely, the satisfaction relation is parameterised by
Adv and a PCTL formula is satisfied in a state s if it is satisfied under all
adversaries σ ∈ Adv . In practice, Adv is usually taken to be the set AdvM of all
adversaries. The formal semantics of PCTL is as follows.

Definition 13 (PCTL semantics). Let M = (S, s, αM, δM, L) be an MDP,
Adv a class of adversaries of M and s ∈ S. The satisfaction relation |=Adv of
PCTL is defined inductively by:

s |=Adv true always
s |=Adv c ⇐⇒ c ∈ L(s)
s |=Adv φ1 ∧ φ2 ⇐⇒ s |=Adv φ1 ∧ s |=Adv φ2

s |=Adv ¬φ ⇐⇒ s �|=Adv φ
s |=Adv P�	 p[ψ] ⇐⇒ Prσ

M,s({π ∈ IPathM,s | π |= Advψ}) �� p for all σ ∈ Adv

78 V. Forejt et al.

where, for any π ∈ IPathM:

π |=Adv Xφ ⇐⇒ π(1) |=Adv φ
π |=Adv φ1 U�k φ2 ⇐⇒ ∃i � k .

(
π(i) |=Adv φ2 ∧ π(j) |=Adv φ1 ∀j < i

)
π |=Adv φ1 U φ2 ⇐⇒ ∃k � 0 . π |=Adv φ1 U�k φ2 .

As for probabilistic reachability in Section 4, it is straightforward to show that
the set of paths satisfying any PCTL path formula ψ is measurable [84,11].

With slight abuse of notation, we will use Prσ
M,Adv ,s(ψ) to denote the prob-

ability that a path from s satisfies path formula ψ under adversary σ:

Prσ
M,Adv ,s(ψ) def= Prσ

M,s({π ∈ IPathM,s | π |=Adv ψ})
and define the minimum and maximum probabilities of satisfying the formula
under the adversaries Adv for a starting state s:

Prmin
M,Adv ,s(ψ) def= infσ∈Adv Prσ

M,Adv ,s(ψ)
Prmax

M,Adv ,s(ψ) def= supσ∈Adv Prσ
M,Adv ,s(ψ).

Where clear from the context, we will omit the subscripts M and/or Adv .

Additional Operators. From the basic PCTL syntax, we can derive several
other useful operators. Among these are the well known logical equivalences:

false ≡ ¬true
φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2)

φ1 → φ2 ≡ ¬φ1 ∨ φ2

We also allow path formulas to contain the F (future) operator (often written
as ♦), which is common in temporal logics. Intuitively, F φ means that φ is
eventually satisfied, and its bounded variant F�k φ means that φ is satisfied
within k steps. These can be expressed in terms of the PCTL until and bounded
until operators as follows:

F φ ≡ true U φ and F�k φ ≡ true U�k φ .

Similarly, we add a G (globally) operator (often written as �), where G φ intu-
itively means that φ is always satisfied. It too has a bounded variant G�k φ,
which means that φ is continuously satisfied for k steps. These operators can be
expressed using the equivalences:

G φ ≡ ¬(F ¬φ) and G�k φ ≡ ¬(F�k ¬φ) .

Strictly speaking, the G and G�k operators cannot be derived from the basic
syntax of PCTL since we do not allow negation in path formulas. However, it
can be shown that, for example:

P�p[G φ] ≡ P�1−p[F ¬φ]

See Section 7.2 (page 87) for an explanation of the above equivalence.

Automated Verification Techniques for Probabilistic Systems 79

Examples. Some examples of PCTL formulas, taken from case studies, are:

– P<0.05[F (sensor fail1∧sensor fail 2)] – “the probability of simultaneous fail-
ures occurring in both sensors is less than 0.05”;

– P�0.8[F�k ackn] – “the probability that the sender has received n acknowl-
edgements within k clock-ticks is at least 0.8”;

– P<0.4[¬failA U failB] – “the probability that component B fails before com-
ponent A is less than 0.4”;

– ¬oper → P�1[F (P>0.99[G�100 oper])] – “if the system is not operational, it
almost surely reaches a state from which it has a greater than 0.99 chance
of staying operational for 100 time units”.

Extensions of PCTL. A commonly used extension of PCTL, which derives
from the PRISM model checker [56], is the addition of quantitative versions of
the P operator. Rather than stating that the probability of some path formula
ψ being satisfied is always above or below a threshold, quantitative properties
simply ask: “what is the minimum/maximum probability of ψ holding?”. For
this, we add the operators Pmin=?[ψ] and Pmax=?[ψ] and, adapting the examples
from above, we can express:

– Pmin=?[F�k ackn] - “what is the minimum probability that the sender has
received n acknowledgements within k clock-ticks?”;

– Pmax=?[¬failA U failB] - “what is the maximum probability that component
B fails before component A?”.

Of course, these operators cannot be nested within PCTL formulas, like in the
fourth example from the earlier list. Thus, in the two examples above, Pmin=?[ψ]
or Pmax=?[ψ] is the outermost operator of the formula. As will be seen in the next
section, the process of model checking a PCTL formula P�	 p[ψ] requires compu-
tation of the probabilities Prmin

s (ψ) or Prmax
s (ψ) anyway, so these quantitative

properties are no more expensive to analyse.
In addition, when writing specifications for MDPs in PCTL, it may sometimes

be useful to consider the existence of an adversary that satisfies a particular
property, rather than stating that all adversaries satisfy it. For simple formulas,
this can be done via translation to a dual property. For example, verifying that
“there exists an adversary σ for which, from state s, the probability of satisfying
ψ is at least p” is equivalent to model checking the PCTL formula ¬P<p[ψ], which
states “it is not the case that under all adversaries the probability of satisfying
ψ from state s is less than p”. Later, in Section 8, we will discuss the feasibility
of checking the existence of adversaries satisfying more complex formulas.

6.2 PCTL Model Checking

Model checking a PCTL formula φ on an MDP M amounts to checking which
states of M satisfy φ. The basic structure of the algorithm for PCTL model
checking [54,18] is similar to the model checking algorithm for the temporal
logic CTL [33]. First, we construct a parse tree of the formula φ. Each node of

80 V. Forejt et al.

P<0.5[X¬P�1[a U (b ∧ c)]]

¬P�1[a U (b ∧ c)]

P�1[a U (b ∧ c)]

a b ∧ c

b c

Fig. 7. The parse tree for a formula P<0.5[X¬P�1[a U (b ∧ c)]]

the tree is labelled with a subformula of φ, the root is labelled with φ itself and
the leaves are labelled with either true or atomic propositions (an example parse
tree is depicted in Figure 7). Working upwards towards the root, we recursively
compute the set of states satisfying each subformula, and at the end we have
determined the set of states satisfying φ. For a given class of adversaries Adv , let
SatAdv (φ) denote the set {s ∈ S | s |=Adv φ} of all states satisfying the formula
φ under the class of adversaries Adv . Letting � ∈ {�, >} and � ∈ {�, <}, the
algorithm for PCTL formulas can be summarised as follows:

SatAdv (true) = S

SatAdv (c) = {s | c ∈ L(s)}
SatAdv (¬φ) = S\SatAdv (Φ)

SatAdv (φ1 ∧ φ2) = SatAdv (φ1) ∩ SatAdv (φ2)
SatAdv (P�p[ψ]) = {s ∈ S |Prmin

Adv ,s(ψ) � p}
SatAdv (P�p[ψ]) = {s ∈ S |Prmax

Adv ,s(ψ) � p} .

Obviously, the most difficult part in the above algorithm is the computation of
the probability bounds Prmin

Adv ,s(ψ) and Prmax
Adv ,s(ψ). In what follows, we describe

how to compute these probability bounds for the different possible path formulas
ψ when Adv is the set AdvM of all adversaries of the MDP, and therefore omit
Adv from the subscript. An alternative would be to consider the class of fair
adversaries. We do not discuss the issue of fairness when model checking MDPs
in this tutorial; for details, see e.g. [2,8,12].

The “Next” Operator. If ψ = Xφ, then it follows that:

Prmin
s (Xφ) = mina∈A(s)

∑
s′∈Sat(φ)δM(s, a)(s′)

Prmax
s (Xφ) = maxa∈A(s)

∑
s′∈Sat(φ)δM(s, a)(s′)

both of which can be computed easily. An optimal memoryless adversary σ can
be constructed by putting σ(s) = [a �→1] where a is an action that minimises (or
maximises)

∑
s′∈Sat(φ) δM(s, a)(s′).

Automated Verification Techniques for Probabilistic Systems 81

The “Bounded Until” Operator. Consider the case ψ = φ1 U�k φ2 for
minimum probabilities, i.e. computation of Prmin

s (φ1 U�k φ2) for all states s.
These can be computed by solving the following equations:

x�
s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if s ∈ Sat(φ2)
0 if s �∈ (Sat(φ1) ∪ Sat(φ2))
0 if s ∈ (Sat(φ1)\Sat(φ2)) and �=0
mina∈A(s)

∑
s′∈S δM(s, a)(s′) · x�−1

s′ otherwise

and setting Prmin
s (φ1 U�k φ2) = xk

s . Like for reward-based properties, an optimal
adversary can be constructed on-the-fly by remembering the action:

a�
s = arg mina∈A(s)

∑
s′∈S δM(s, a)(s′) · x�−1

s′

for all 0���k and s ∈ S, and setting σ(ρ) = [aρ �→1] where aρ = a
k−|ρ|
last(ρ) for all

ρ ∈ FPath such that |ρ|�k−1. For maximum probabilities, we simply replace
“min” with “max” in the equations above.

The “Unbounded Until” Operator. It remains to give a procedure that
computes the minimum and maximum probabilities when ψ = φ1 U φ2. The ap-
proach is based on the probabilistic reachability computation given in Section 4
for the target T=Sat(φ2). However, here, we also need to ensure that φ1 holds
before satisfying φ2. Thus, we restrict attention to paths that remain in the set of
states Sat(φ1) before reaching the target. Formally, this can be done by prepro-
cessing the MDP in the following way. For each state s ∈ S\Sat(φ1) and action
a ∈ A(s) we change δM(s, a) to [s �→1]. It then follows that Prmin

s (φ1 U φ2) (re-
spectively, Prmax

s (φ1 U φ2)) in the original MDP equals Prmin
s (reach(Sat(φ2)))

(respectively, Prmax
s (reach(Sat(φ2)))) in the preprocessed MDP. The solution

methods such as value iteration or policy iteration presented in Section 4 can
therefore be applied, as well as the adversary generation.

Example 11. Consider again the example MDP from Figure 2, together with
the formula P<1[X (P�0.5[¬fail U init])]. We start with the analysis of the inner-
most subformulas and obtain Sat(fail)={s3} and Sat(init)={s0}. Then, we pro-
ceed with ¬fail and find Sat(¬fail)={s0, s1, s2}. Next, considering the formula
P�0.5[¬fail U init], we modify the MDP so that in s3 we loop on action reset , and
then compute the minimum probability of reaching {s0}. Computing S0

min and
S1

min yields S0
min={s1, s2, s3} and S1

min={s0}, which gives values for all states,
and hence Sat(P�0.5[¬fail U init]) = {s0}. Finally, for P<1[X (P�0.5[¬fail U init])],
we compute Prmax

s (X (P�0.5[¬fail U init])) for s ∈ {s0, s1, s2, s3}, and obtain the
values (0, max{0.7·1 + 0.3·0, 0.5·0 + 0.5·0}, 0, max{0, 1}) = (0, 0.7, 0, 1), yielding
Sat(P<1[X (P�0.5[¬fail U init])]) = {s0, s1, s2}. �

6.3 Extending PCTL with Rewards

We can extend the definition of PCTL to include the reward-related properties
introduced in Section 5. Here, we present the extension of PCTL used in PRISM.

82 V. Forejt et al.

More expressive logics for reward-based properties of MDPs can be found in [1].
The syntax for state formulas of PCTL becomes:

φ ::= true
∣∣ c
∣∣ φ ∧ φ

∣∣ ¬φ
∣∣ P�	 p[ψ]

∣∣ Rr
�	 x[I=k]

∣∣ Rr
�	 x[C�k]

∣∣ Rr
�	 x[F φ]

where c is an atomic proposition, �� ∈ {�, <, �, >}, p ∈ [0, 1], r is a reward
structure, x ∈ R�0 and k ∈ N. The semantics of the previously introduced
operators remains unchanged (see Definition 13), while the semantics of the new
operators is defined as follows:

s |=Adv R
r
�	 x[I=k] ⇐⇒ E

σ
M,s(I

=k
rstate

) �� x for all σ ∈ Adv , where r=(rstate , raction)

s |=Adv R
r
�	 x[C�k] ⇐⇒ E

σ
M,s(C

�k
r) �� x for all σ ∈ Adv

s |=Adv R
r
�	 x[F φ] ⇐⇒ E

σ
M,s(F

SatAdv (φ)
r) �� x for all σ ∈ Adv .

We can reuse the basic model checking algorithm from above, but we need to
extend it to deal with the new operators. Letting � ∈ {�, >} and � ∈ {�, <},
we have to compute the following sets:

SatAdv (Rr
�x[I=k]) = {s ∈ S | infσ∈Adv E

σ
s (I=k

rstate
) � x}

SatAdv (Rr
�x[I=k]) = {s ∈ S | supσ∈Adv E

σ
s (I=k

rstate
) � x}

SatAdv (Rr
�x[C�k]) = {s ∈ S | infσ∈Adv E

σ
s (C�k

r) � x}
SatAdv (Rr

�x[C�k]) = {s ∈ S | supσ∈Adv E
σ
s (C�k

r) � x}
SatAdv (Rr

�x[F φ]) = {s ∈ S | infσ∈Adv E
σ
s (FSatAdv (φ)

r) � x}
SatAdv (Rr

�x[F φ]) = {s ∈ S | supσ∈Adv E
σ
s (FSatAdv (φ)

r) � x} .

Hence, if Adv is the set of all adversaries of M, then we need to compute the
minimum and maximum expected values of the random variables I=k

rstate
, C�k

r and
FSatAdv (φ)

r , which can be achieved using the algorithms of Section 5. Like for the
P operator, we can also consider quantitative versions Rr

min=?[·] and Rr
max=?[·] of R

which ask: “what is the minimum/maximum expected reward?”.

6.4 Complexity

The model checking algorithms for PCTL on MDPs [35,18] are polynomial in
the size of the model and linear in the size of the formula, where the sizes of
the parameters are defined as follows. The size of an MDP M, denoted |M|,
equals the total number of nondeterministic choices (since we require A(s) to
be non-empty for all states s, it is always the case that this is greater than the
number of states). The size of a formula φ, denoted |φ|, equals the number of
logical connectives and temporal operators in the formula plus the sum of the
sizes of the temporal operators.

Due to the recursive nature of the model checking algorithm, we perform
model checking for each of the |φ| operators of φ individually. The most expensive
cases concern computation of minimum and maximum reachability probabilities

Automated Verification Techniques for Probabilistic Systems 83

or expected cumulative reward to reach a target, for which we must solve a linear
optimisation problem of size |M|. Using, for example, the ellipsoid method, this
can be performed in polynomial time.

Generally, to simplify the complexity analysis, we will ignore issues regarding
number representations, e.g. of probabilities in the MDP or constants in a PCTL
formula. If, for example, we took the size of the formula to also include the binary
encoding of the numbers k in the bounded until operators, the complexity of
model checking algorithm would be exponential in the size of the formula.

7 Linear-Time Probabilistic Model Checking

The logic PCTL described in the previous section is a branching-time logic.
Notice that, when referring to the probability of an event occurring (using the
P operator), only a single temporal operator (such as U , F or G) can be used.
The only way to combine temporal operators is to use a nested formula, such as
P<0.2[F P�0.9[G a]]. However, the meaning of such formulas can be subtle as each
appearance of the P operator has a separate quantification over adversaries.

In this section, we consider linear-time properties for MDPs, in which the
probability of more complex events can be expressed. We will discuss two dis-
tinct classes: probabilistic safety properties and properties expressed in linear
temporal logic (LTL), which are in fact a special case of ω-regular properties.
In each case, computing the required probabilities can be acheived through the
use of automata: either finite automata, for probabilistic safety properties, or
ω-automata such as Rabin automata, for LTL and ω-regular properties.

Another important point to make is that, in this section, we will consider
linear-time properties expressed in terms of the actions that label the transi-
tions of an MDP, rather than the atomic propositions labelling its states, as was
done for PCTL in the previous section. In fact, either approach can be taken
and the model checking process is very similar. In this presentation, we opt for
action-based properties since these are required for the compositional proba-
bilistic model checking techniques that we discuss in Section 9. See, for example,
[35,11,32] for details of the state-based approach.

7.1 Probabilistic Safety Properties

To define probabilistic safety properties, we first recall the definitions of deter-
ministic finite automata and regular safety properties.

Definition 14 (Deterministic finite automaton). A deterministic finite au-
tomaton (DFA) is a tuple A = (Q, q, αA, δA, F), comprising a finite set of states
Q, initial state q ∈ Q, finite alphabet αA, transition function δA : Q×αA → Q
and accepting states F ⊆ Q.

We say that A is complete (or total) if the transition function δA is total. A DFA
A defines the regular language L(A) ⊆ (αA)∗ where a0 . . . ak ∈ L(A) if and only
if q

a0−→ q1
a1−→ · · · ak−→ qk+1 is a path of A (i.e. δA(q, a0)=q1 and δA(qi, ai)=qi+1

for all 1�i�k) and qk+1 ∈ F .

84 V. Forejt et al.

q0

q1 q2

warn shutdown

warn, shutdown warn, shutdown

Fig. 8. DFA Aerr
A for the regular safety property ΦA in Example 12

Definition 15 (Regular safety property). A regular safety property ΦP rep-
resents a set of infinite words L(ΦP) ⊆ (αP)ω over an alphabet αP , which is
characterised by a regular language of “bad prefixes”, i.e. finite words of which
any extension is not in L(ΦP). We represent ΦP by an error automaton Aerr

P :
a (complete) DFA over αP that stores these bad prefixes. Formally:

L(ΦP) def= {w ∈ (αP)ω | no prefix of w is in L(Aerr
P)} .

Regular safety properties can capture properties such as:

– “event A always occurs before event B”;
– “a system failure never occurs”;
– “termination occurs within at most k steps”.

Example 12. Consider the regular safety property ΦA with the meaning “warn
occurs before shutdown” for a model whose alphabet includes warn and shut-
down. Figure 8 shows the corresponding DFA Aerr

A where accepting states are
shaded. The “bad prefixes” are the finite words that do not begin with warn. �

To determine the probability that a safety property ΦP is satisfied, we look at
the set of paths whose traces, when restricted to αP , are in L(ΦP). Consider an
MDP M and regular safety property ΦP with αP ⊆ αM. For any adversary σ
and state s of M, we define the probability, under σ, of ΦP being satisfied when
starting from s as:

Prσ
M,s(ΦP) def= Prσ

M,s({π ∈ IPathM,s | tr(π)	αP ∈ L(ΦP) ∪ L∗(ΦP)})
where w	α is the projection of word w onto the alphabet α and L∗(ΦP) =
{w ∈ (αP)∗ | no prefix of w is in L(Aerr

P)}. The inclusion of L∗(ΦP) is required
because the projection can return finite words. As stated earlier, the set of paths
that satisfy ΦP is always measurable, so the notation is well-defined. As for other
classes of property, we also define:

Prmin
M,s(ΦP) def= infσ∈AdvM Prσ

M,s(ΦP)

Prmax
M,s(ΦP) def= supσ∈AdvM Prσ

M,s(ΦP) .

We can now introduce, using the probability bound operator P�p[·], the class of
probabilistic safety properties.

Automated Verification Techniques for Probabilistic Systems 85

Definition 16 (Probabilistic safety property). A probabilistic safety prop-
erty P�p[ΦP] comprises a regular safety property ΦP and a (lower) probabil-
ity bound p ∈ (0, 1]. A state s of an MDP M satisfies the property, denoted
s |= P�p[ΦP], if the probability of satisfying ΦP is at least p for all adversaries:

s |= P�p[ΦP] ⇐⇒ ∀σ∈AdvM . Prσ
M,s(ΦP) � p

⇐⇒ Prmin
M,s(ΦP) � p .

Probabilistic safety properties can be used to capture a variety of useful prop-
erties of MDPs; for example:

– “event A always occurs before event B with probability at least 0.9”;
– “the probability of a system failure occurring is at most 0.02”;
– “the probability of terminating within k time-units is at least 0.75”.

Notice that, in the second example above, we express the property in terms of
the maximum probability of the safety property not holding, rather than the
(equivalent) minimum probability that it does hold. This equivalence is also
used when model checking a probabilistic safety property P�p[ΦP]. We reduce
the problem of computing the probability Prmin

M,s(ΦP) for each state s of an MDP
to the problem of computing maximum reachability probabilities in the product
M⊗Aerr

P of the MDP M and an error automaton Aerr
P for ΦP .

Definition 17 (MDP-DFA product). If M=(S, s, αM, δM, LM) is an MDP,
ΦP is a regular safety property with αP ⊆ αM and Aerr

P =(Q, q, αP , δP , F) is an
error automaton for ΦP , then the product MDP, denoted M⊗Aerr

P , is given by
(S×Q, (s, q), αM, δM⊗Aerr

P
, LM⊗Aerr

P
) where, for each (s, q) ∈ S×Q and a ∈ αM:

– δM⊗Aerr
P

((s, q), a) =

⎧⎨
⎩

δM(s, a)×[δP (q, a)�→1] if a ∈ A(s) ∩ αP

δM(s, a)×[q �→1] if a ∈ A(s)\αP

undefined otherwise

– LM⊗Aerr
P

(s, q) =
{

LM(s) ∪ {errP } if q ∈ F
LM(s) otherwise.

Intuitively, the product records both the state of the MDP M and the state of
the DFA Aerr

P , based on the actions seen so far in the history of M. The labelling
is also modified by marking states corresponding to accepting states of Aerr

P with
the new atomic proposition errP (we will use this later in Section 9). Crucially,
because the automaton is deterministic, each path through M⊗Aerr

P corresponds
to a unique path in each of M and Aerr

P . Consequently: (i) the probability
of events in M is preserved in M⊗Aerr

P ; and (ii) each path of M⊗Aerr
P that

corresponds to a path of M that violates ΦP contains a state in S×F .

Proposition 1 ([69]). If M=(S, s, αM, δM, LM) is an MDP, s ∈ S, ΦP is a
safety property such that αP ⊆ αM, and Aerr

P is an error automaton for ΦP with
accepting states F , then:

Prmin
M,s(ΦP) = 1 − Prmax

M⊗Aerr
P ,(s,q)(reach(S×F)) .

86 V. Forejt et al.

s0

s1 s2

s3

detect

0.8

0.2

warn 1

shutdown

1

off

1

(a) M1

s0 q0

s1 q0

s2 q0

s2 q1

s3 q2

{errA}

s3 q1

detect 0.8

0.2

warn 1

shutdown 1
off

1

shutdown 1

off 1

(b) M1⊗Aerr
A

Fig. 9. An MDP M1 and the product M1⊗Aerr
A with the DFA Aerr

A from Figure 8

Thus, checking satisfaction of P�p[ΦP] on MDP M can be achieved by applying
the techniques of Section 4 to the product MDP M⊗Aerr

P .

Example 13. Consider the MDP M1 in Figure 9(a) and probabilistic safety
property P�0.8[ΦA] where ΦA is the regular safety property “warn occurs be-
fore shutdown” from Example 12, represented by the DFA Aerr

A of Figure 8.
The product M1⊗Aerr

A is shown in Figure 9(b) and, using the techniques of
Section 4, we find that Prmax

M1⊗Aerr
A ,(s0,q0)(reach(S×{q2}))=0.2. Therefore, using

Proposition 1, we have Prmin
M1,s0

(ΦA)=1−0.2=0.8, yielding s0 |= P�0.8[ΦA]. �

7.2 LTL and ω-Regular Properties

LTL (linear temporal logic) [75] is a widely used temporal logic that is partic-
ularly well suited for expressing long-run properties of systems. As discussed
above, in this presentation, we use LTL to define properties of MDPs in terms
of their action labels. For the remainder of this section, we assume an MDP M
with the alphabet of action labels αM.

Definition 18 (LTL syntax). The syntax of LTL is defined by the grammar:

ψ ::= true | a | ψ ∧ ψ | ¬ψ | Xψ | ψ U ψ

where a ∈ αM.

As for PCTL (see Section 6), we can derive additional operators ∨, →, F and G.
The satisfaction of an LTL formula ψ is given in terms of infinite words over

the alphabet αM. To give the semantics, we require some additional notation
regarding words. For any infinite word w = a0a1a2 . . ., let w[i] denote the (i+1)th
element ai of w and let w[i . . .] denote the suffix aiai+1 . . . of w.

Definition 19 (LTL semantics). Let w be an infinite word over the alphabet
αM. The satisfaction relation |= for LTL is defined inductively by:

w |= true always
w |= a ⇐⇒ w[0] = a
w |= ψ1 ∧ ψ2 ⇐⇒ w |=ψ1 ∧ w |=ψ2

w |=¬ψ ⇐⇒ w �|=ψ
w |= Xψ ⇐⇒ w[1 . . .] |= ψ
w |= ψ1 U ψ2 ⇐⇒ ∃i ∈ N .

(
w[i . . .] |=ψ2 ∧ (∀j<i . w[j . . .] |= ψ1)

)
.

Automated Verification Techniques for Probabilistic Systems 87

Using this definition, the satisfaction of an LTL formula ψ by an infinite path π
of the MDP M can be defined in terms of the trace of the path as follows:

π |= ψ ⇐⇒ tr(π) |= ψ.

Example 14. Let us consider the following paths from the MDP in Figure 2:

π1 = s0

(go−→ s1
risk−−→ s3

reset−−−→ s0

)ω

π2 = s0
go−→ s1

risk−−→ s3
reset−−−→ s0

go−→ s1
safe−−→ s2

(finish−−−→ s2

)ω

The formula F (reset ∧ (X F reset)), which intuitively means that reset occurs
at least twice in a path, is true in π1, but not true in π2. On the other hand,
the formula F G finish, which says that, from some point on, we will only take
the action finish, is true in π2, but not in π1. Other examples are the formula
X X (¬risk U finish), which is satisfied in π2, but not in π1, and the formula
G (go → X risk), which is satisfied in π1 but not in π2. �

It is now straightforward to define the probability of satisfying an LTL formula
ψ when starting in a state s under an adversary σ of the MDP M:

Prσ
M,s(ψ) def= Prσ

M,s({π ∈ IPathM,s | π |= ψ}) .

The set of paths satisfying an LTL formula ψ is always measurable [84,11]. As
usual, we define the minimum and maximum probability of satisfaction over all
adversaries of the MDP:

Prmin
M,s(ψ) def= infσ∈AdvM Prσ

M,s(ψ)

Prmax
M,s(ψ) def= supσ∈AdvM Prσ

M,s(ψ).

Definition 20 (Probabilistic LTL specification). A probabilistic LTL spec-
ification is a formula P�	 p[ψ] where �� ∈ {�, <, �, >}, p ∈ [0, 1] and ψ is an LTL
formula. We say that the probabilistic LTL specification is satisfied in a state s
of an MDP M if and only if Prσ

M,s(ψ) �� p for all adversaries σ ∈ AdvM.

In order to model check an MDP M and probabilistic LTL specification P�	 p[ψ],
we need to compute Prmin

M,s(ψ) if �� ∈ {�, >} or Prmax
M,s(ψ) if �� ∈ {�, <}. Because

every path either satisfies ψ or ¬ψ, the problem of computing the minimum
probability of satisfying ψ is easily reducible to the computation of the maximum
probability of satisfying ¬ψ. More precisely, by definition:

Prmin
M,s(ψ) = infσ∈AdvM Prσ

M,s({π |π |=ψ})
= infσ∈AdvM

(
1 − Prσ

M,s({π |π �|= ψ})) since Prσ
M,s is a probability measure

= infσ∈AdvM
(
1 − Prσ

M,s({π |π|=¬ψ})) by definition of |=
= 1 − supσ∈AdvM Prσ

M,s({π |π |= ¬ψ}) rearranging

= 1 − Prmax
M,s(¬ψ) by definition.

88 V. Forejt et al.

q0 q1

go

αM\{go}αM\{go} go

Fig. 10. A DRA for F G go with Acc = {({q0}, {q1})} (see Example 15)

Like for probabilistic safety properties in the previous section, LTL model
checking is based on the use of automata. However, since the satisfaction of LTL
formulas is defined over infinite words, we use ω-automata, rather than finite au-
tomata. In particular, as proposed in [1], we use deterministic Rabin automata.
An alternative, which we do not discuss here, is to use partially determinised
Büchi automata [34,35].

Definition 21 (Deterministic Rabin automaton). A deterministic Rabin
automaton (DRA) is a tuple A = (Q, q, αA, δA, Acc) of finitely many states Q,
initial state q ∈ Q, finite alphabet αA, transition function δA : Q×αA→Q and
acceptance condition Acc={(Li, Ki)}k

i=1 where k ∈ N and Li, Ki ⊆ Q for 1�i�k.

For a DRA A = (Q, q, αA, δA, Acc), since the transition function is deterministic
and total, for any infinite word w = a0a1a2 . . . over αA there is a corresponding
unique path q

a0−→ q1
a1−→ q2

a2−→ · · · of A (where the path of A is defined as
for DFAs). Using this fact, we say that A accepts an infinite word w if the
corresponding path contains finitely many states from Li and infinitely many
from Ki for some 1�i�k. The language L(A) of the DRA A is given by the set
of infinite words that the automaton accepts.

Now, for any LTL formula ψ, we can construct a DRA, say Aψ, over αM that
accepts precisely the words satisfying ψ, i.e. for any infinite word w:

w |= ψ ⇐⇒ w ∈ L(Aψ)

The construction of the DRA Aψ from the formula ψ is beyond the scope of this
tutorial; for details see e.g. [85,36,11].

In fact, the set of properties that can be captured by a DRA is a strict superset
of those expressible as LTL formulas, known as ω-regular properties. The same
class of properties can also be captured with nondeterministic Büchi automata.
However, the model checking process for MDPs requires deterministic automata
and deterministic Büchi automata are not sufficiently expressive (e.g. the LTL
formula F G a cannot be represented by a deterministic Büchi automaton).

Example 15. Consider again the running example of Figure 2, together with the
DRA A = (Q, q0, αM, δM,Acc) given in Figure 10, i.e. Q = {q0, q1}, δA(q, go) =
q1 and δA(q, a) = q0 for all q ∈ Q and a ∈ αM\{go}, and Acc is a singleton set
containing ({q0}, {q1}). The property specified by the automaton is “eventually
we will only take the action go”, which is equivalent to the LTL formula F G go.
This holds with probability 0 under all adversaries, since, for any adversary,
almost all paths eventually reach and stay in either s2 or s3. �

Automated Verification Techniques for Probabilistic Systems 89

7.3 Model Checking LTL and ω-Regular Properties

We now describe the process of computing the maximum probabilities, in an
MDP M = (S, s, αM, δM, L), for an ω-regular property given in the form of
a DRA A. As mentioned earlier, this subsumes the problem of computing the
probabilities for an LTL formula. This is done by constructing the product of M
and A, and then identifying accepting end components. To ease presentation, for
the remainder of the section we omit the labelling function from MDPs.

Definition 22 (MDP-DRA product). The product M⊗A of an MDP M =
(S, s, αM, δM) and DRA A = (Q, q, αM, δA, {(Li, Ki)}k

i=1) is given by the MDP
(S×Q, (s, q), αM, δM⊗A) where, for any (s, q) ∈ S×Q and a ∈ αM:

– δM⊗A((s, q), a) =
{

δM(s, a)×[δA(q, a)�→1] if a ∈ A(s)
undefined otherwise.

For an MDP M and DRA A with acceptance condition {(Li, Ki)}k
i=1, an accept-

ing path of M⊗A is an infinite path such that, when projecting its states onto
Q, there are finitely many states from Li and infinitely many from Ki for some
1�i�k. Furthermore, an accepting EC (recall the definition of end components
from Definition 6) of M⊗A is an EC (S′, δ′) for which there exists an 1�i�k
such that the set of states S′, when projected onto Q, contains some state from
Ki, but no states from Li. A key property of the product M⊗A is that, for every
state s and adversary σ in M, there is an adversary σ′ in M⊗A such that:

Prσ
M,s({π ∈ IPathM,s | tr(π) ∈ L(A)})
= Prσ′

M⊗A,(s,q)({π′ ∈ IPathM⊗A,(s,q) |π′ is an accepting path})

and vice versa. Using this property, together with properties of end components
[1], we can further show that the following proposition holds.

Proposition 2. For any MDP M = (S, s, αM, δM), state s ∈ S and DRA
A = (Q, q, αM, δA, {(Li, Ki)}k

i=1), we have:

Prmax
M,s({π ∈ IPathM,s | tr(π) ∈ L(A)}) = Prmax

M⊗A,(s,q)(reach(T))

where (s′, q′) ∈ T if and only if (s′, q′) appears in some accepting EC of M⊗A.

We have therefore reduced the problem of model checking LTL and ω-regular
properties to the detection of end components in a product MDP and the compu-
tation of maximum reachability probabilities. The latter is covered in Section 4,
while [1,11] describes computation of end components. Furthermore, [11] shows
how to optimise model checking by considering only maximal ECs.

For a given MDP M and DRA A = (Q, q, αM, δA, {(Li, Ki)}k
i=1), suppose

that we have obtained (for example through the techniques of Section 4), a
memoryless adversary σmax that maximises the probability of reaching a state
in an accepting EC of the product. We can then construct a finite-memory
adversary for M that maximises the probability of satisfying the corresponding

90 V. Forejt et al.

q0 q1 q2

αM \ {risk}

risk

finish

αM \ {finish}
αM \ {finish}

finish

Fig. 11. A DRA for (F G finish)∧ (F risk) with Acc = {({q1}, {q2})} (see Example 16)

s0 q0 s1 q0

s2 q0

s3 q1

s2 q1 s2 q2

s0 q1 s1 q1

go 1

safe

0.7 0.3

risk

0.5

0.5

finish

1

stop

1reset1

go 1

safe0.7 0.3

risk

0.5

0.5

finish 1
finish

1

Fig. 12. The product MDP M⊗A for Example 16

ω-regular property. This adversary is specified by the tuple (Q, q, σu, σs) (see
Definition 9) where σu(q, a, s)=δA(q, a) and σs(q, s)=σmax((s, q)) for all q ∈ Q,
s ∈ S and a ∈ αM .

Example 16. Let us return to the running example of Figure 2 and compute
the maximum probability that ψ = (F G finish)∧(F risk) is satisfied. Intuitively,
this means maximising the probability of eventually reaching and staying in the
“finished” state, while at the same time taking a risky decision at least once. A
DRA A that accepts precisely the words satisfying ψ is depicted in Figure 11.

To compute the maximum probability, we first construct the product M⊗A.
Restricting the MDP to states that are reachable from (s0, q0) yields the MDP
in Figure 12. It has three end components, which are denoted in the figure
as follows: the (single) accepting end component is represented by a dashed
box, the remaining two by dotted boxes. From Proposition 2, Prmax

M,s0
(ψ) equals

Prmax
M⊗A,(s0,q0)(reach({(s2, q2)})), which we now proceed to compute using the

methods from Section 4. First, using Algorithm 3 and Algorithm 4, we find the
sets S0

max={(s2, q0)} and S1
max=S\S0

max. This gives us the probabilities for all
states and, since (s0, q0) ∈ S1

max, we have Prmax
M,s0

(ψ)=1.
An example optimal adversary σ′ in M⊗A is the one that satisfies σ′(ρ) =

[reset �→1] for all ρ ending in (s3, q1), and σ′(ρ) = [risk �→1] for all ρ ending in
(s1, q) for any q. This in fact transfers directly to a memoryless optimal adversary
σ in M satisfying σ(s3) = [reset �→1] and σ(s1) = [risk �→1]. �

Automated Verification Techniques for Probabilistic Systems 91

Complexity. We now discuss the complexity of the algorithm above. Starting
with LTL formula ψ and MDP M, we first construct a DRA Aψ. In the worst
case, the size |Aψ | (number of states) of the smallest DRA Aψ can be doubly
exponential in |ψ|, and the time complexity of the computation is doubly expo-
nential as well. In practice, though, both ψ and Aψ are much smaller than M.

After computing Aψ , we construct the product M⊗Aψ , which can be done
in time polynomial in |M| and |Aψ |. Then, we identify the end components and
compute reachability probabilities, both in time polynomial in the size of the
product. Overall, we get that the algorithm runs in time polynomial in |M| and
doubly exponential in |ψ|.

8 Multi-objective Probabilistic Model Checking

In this section, we consider multi-objective verification techniques for MDPs [40].
These permit the analysis of trade-offs between several linear-time objectives, for
example “the probability of reaching a good state is at least 0.98 and, with prob-
ability at most 0.3, it will be reached in more than 10 steps”. These techniques
will also be used, in Section 9, to perform compositional verification of MDPs.
We begin with the problem of multiple probabilistic reachability objectives, and
then describe how to generalise this to multiple ω-regular objectives.

Definition 23 (Multi-objective reachability query). For an MDP M, tar-
get sets T1, . . . , Tn ⊆ S, relational operators �1, . . . , �n∈ {>, �} and bounds
p1 . . . , pn ∈ [0, 1], a multi-objective reachability query asks whether there exists
an adversary σ ∈ AdvM such that Prσ

M,s(reach(Ti)) �i pi for all 1�i�n.

Observe two key differences between this type of query and the verification
problems we have considered so far in this tutorial: firstly, the quantification
over adversaries is existential, not universal; and secondly, we are concerned
only with the probability from the initial state s of M.

For technical reasons, we assume that all states in the target sets Ti are ab-
sorbing, i.e. the only available transitions are self-loops. This restriction is lifted
in the generalised version of the problem that we discuss subsequently. Letting
T = ∪n

i=1Ti, we also compute the states from which no s′ ∈ T is reachable. These
states can be identified by computing the set S0

max from Section 4. Supposing
that s �∈ S0

max ∪T (as otherwise the solution is trivial), it can be shown [40] that
there exists an adversary σ such that Prσ

M,s(reach(Ti)) �i pi for all 1�i�n if
and only if the set of inequalities L(M) in Figure 13 has a solution.

Furthermore, it turns out that a solution to the inequalities L(M) yields a
memoryless randomised adversary σ under which Prσ

M,s(reach(Ti)) �i pi for
all 1�i�n. The adversary σ is defined by σ(s)(a) = y(s,a)/(

∑
a′∈A(s) y(s,a′))

whenever the denominator is non-zero, and arbitrarily for all other states s (such
states are not reachable from s under σ). The intuition behind the solution to
L(M) is that, the variables y(s,a) represent the expected number of times, under
adversary σ, that a is taken in s, when starting in s. This is ensured by the
equations on the first and last lines of L(M), which intuitively state that the

92 V. Forejt et al.

in(s) +
∑

s′∈U

∑
a∈A(s′)

δ(s′, a)(s)·y(s′,a) =
∑

a∈A(s)

y(s,a) for all s ∈ U∑
s∈Ti

∑
s′∈U

∑
a∈A(s′)

δ(s′, a)(s)·y(s′,a) �i pi for all 1�i�n

y(s,a) � 0 for all s ∈ U and a ∈ A(s)

where U = S\(T ∪ S0
max) and in(s) = 1 if s = s and equals 0 otherwise.

Fig. 13. The linear inequalities L(M) for multi-objective reachability

number of times we enter a state must be equal to the number of times we
leave it. The equations on the second line capture the conditions imposed on the
probabilities of reaching each target set Ti. Since the target states are absorbing
and their outgoing self-loops are omitted from L(M), the expected number of
times to enter a target state equals the probability of reaching it.

Multi-objective LTL Queries. We now generalise these multi-objective tech-
niques to the case of ω-regular properties. For simplicity, our presentation will
be in terms of LTL formulas.

Definition 24 (Multi-objective LTL query). A multi-objective LTL query
is a formula generated by the following grammar:

θ ::= P�	p[ψ] | ¬θ | θ ∧ θ

where ψ is an LTL formula, �� ∈ {<, �, �, >}, and p ∈ [0, 1].

As before, we allow the use of connectives θ1 ∨ θ2 and θ1 → θ2 as abbreviations
for ¬(¬θ1∧¬θ2) and ¬θ1∨θ2, respectively. The semantics of multi-objective LTL
queries is defined with respect to both a state s and a specific adversary σ. As
above, the verification problem is existential : we need to decide, given an MDP
M and multi-objective LTL query θ, whether θ is satisfied in the initial state s
for some adversary σ of M. Formally, the semantics is defined as follows.

Definition 25 (Multi-objective LTL semantics). Let M=(S, s, αM, δM)
be an MDP, s ∈ S a state and σ an adversary of M. The satisfaction of a
multi-objective LTL query θ is defined inductively by:

σ, s |= P�	p[ψ] ⇐⇒ Prσ
M,s(ψ) �� p

σ, s |= ¬θ ⇐⇒ σ, s �|= θ
σ, s |= θ1 ∧ θ2 ⇐⇒ σ, s |= θ1 and σ, s |= θ2

The result of the query θ is true in M if and only if σ, s |= θ for some σ ∈ AdvM.

Note the following difference in the semantics from PCTL (see Section 6) in
the way it quantifies over adversaries. In the PCTL semantics, we quantify over

Automated Verification Techniques for Probabilistic Systems 93

adversaries every time we evaluate a formula P�	 p[ψ], while in the case of multi-
objective queries we evaluate the whole formula under one fixed adversary.

As the first step towards the solution of multi-objective problems, we em-
ploy well-established results of propositional logic and transform a given multi-
objective query θ to an equivalent query θ′ in disjunctive normal form, i.e. θ′ is
a disjunction of conjunctions of literals of the form P�	p[ψ] or ¬P�	p[ψ]. We can
further remove negations by replacing P�	p[ψ] with P�̄	p[ψ] where �̄� is chosen
appropriately, e.g. �̄=>. Finally, we can ensure that no comparison operators �
or < occur in the formula, by replacing P<p[ψ] with P>1−p[¬ψ], and P�p[ψ] with
P�1−p[¬ψ]. We obtain a formula which is a disjunction of clauses of the form:

P�1p1 [ψ1] ∧ . . . ∧ P�npn [ψn]

where each �i is � or >. We can then analyse each clause separately, concluding
that the formula is true if and only if at least one clause is true. For this reason,
for the remainder of this section, we can assume that the multi-objective query
θ is a conjunction of propositions P�ipi [ψi] for �i ∈ {�, >}.

The next step of the solution is similar to standard (single-objective) LTL
model checking (see Section 7): we convert each LTL formula ψi to a DRA
Ai such that w |=ψi ⇐⇒ w ∈ L(Ai) and then construct the product MDP
M′ = (· · · ((M⊗A1)⊗A2) · · ·)⊗An. Next, for each subset X ⊆ {1, . . . , n} we
identify the end components of M′ that are accepting for all A ∈ {Ai | i ∈ X}.
As in Section 7, an end component is accepting for A if its acceptance condition
contains some (Lj , Kj) such that the states of the EC, when projected onto the
states of A, contain some state from Kj , but no states from Lj .

It can then be shown that the multi-objective LTL query θ is satisfied for some
adversary of M if and only if there exists an adversary of M′ which ensures that,
from initial state (s, q1, . . . , qn) of M′, the probability of eventually reaching and
staying in end components that are accepting for Ai satisfies �i pi for 1�i�n. To
determine whether such an adversary exists, we reduce the problem to a multi-
objective reachability problem, which can then be solved via the inequalities
presented earlier in Figure 13. The reduction involves the construction, based on
M′ = (S′, s′, αM, δ′M), of another MDP M′′ = (S′′, s′′, α′′

M, δ′′M) where:

– S′′ = S′ ∪ {sX | X⊆{1, . . . , n}} and s′′=s′;
– α′′

M = αM ∪ {aX | X ⊆ {1, . . . , n}};
– δ′′M is created from the probabilistic transition function of M′ by adding

transitions δ′′M(s, aX) = [sX �→1] for every s and X ⊆ {1, . . . , n} such that s
is in an end component that is accepting for all A ∈ {Ai | i ∈ X}.

The following statement captures the correspondence between M′ and M′′.

Proposition 3. For any 1�i�n, there is an adversary of M′ under which, from
s′, the probability of reaching and staying in end components that are accepting
for Ai satisfies �i pi, if and only if there is an adversary of M′′ under which,
from s′′, set Ti={sX | X ⊆ {1, . . . , n}∧ i ∈ X} is reached with probability �i pi.

Thus, we have a method to check a multi-objective LTL query on an MDP M,
via multi-objective reachability on M′′. We conclude by describing how, when

94 V. Forejt et al.

a satisfying adversary of M is shown to exist, it can be constructed from the
adversary σ′′ of M′′ obtained via multi-objective reachability. First, we construct
the adversary σ′ of M′ which follows the decisions of σ′′ except that, instead
of taking actions aX , it “switches” its mode and starts mimicking an adversary
that stays in end components that are accepting for all A ∈ {Ai | i ∈ X} and
visits all its states infinitely often. The adversary σ can then be constructed from
σ′ using the techniques presented in Section 7.

Example 17. Consider the MDP M of Figure 14(a) and the multi-objective
query P�0.6[F b1] ∧ P�0.3[G b2]. The formula is already a conjunction of propo-
sitions and contains only the comparison operator �, so we proceed with con-
struction of the equivalent DRAs A1 and A2 for the formulas F b1 and G b2,
respectively. The automata are depicted in Figures 14(b)–(c) and the accepting
tuples are Acc1 = {(∅, {q1})} and Acc2 = {(∅, {q2})}.

We next construct the product MDP M′=M⊗A1⊗A2 = (S′, s′, αM, δ′M),
where S′=S×{q0, q1}×{q2, q3}, s′=(t0, q0, q2), and the structure of the part of
M′ reachable from s′ is exactly the same as the structure of M, except that
t0, t1 and t2 are replaced with (t0, q0, q2), (t1, q1, q3) and (t2, q0, q2), respec-
tively. The MDP has 2 end components C1 = ({(t1, q1, q3)}, δ1) and C2 =
({(t0, q0, q2)(t2, q0, q2)}, δ2) where δ1 and δ2 are uniquely determined by the set
of states contained in the end component. We next construct the MDP M′′
according to the definition introduced earlier on page 93. The part of M′′ reach-
able from (t0, q0, q2) is depicted in Figure 15. Our target sets for multi-objective
reachability in M′′ are T1 = {s{1}} and T2 = {s{2}}. We then get the following
set of inequalities L(M′′):

1 + y((t2,q0,q2),b2) + 0.5·y((t0,q0,q2),b2) = y((t0,q0,q2),b1) + y((t0,q0,q2),b2) + y((t0,q0,q2),a{2})

y((t0,q0,q2),b1) + y((t1,q1,q3),b1) = y((t1,q1,q3),b1) + y((t1,q1,q3),a{1})

0.5·y((t0,q0,q2),b2) = y((t2,q0,q2),b2) + y((t2,q0,q2),a{2})

y((t1,q1,q3),a{1}) � 0.6

y((t0,q0,q2),a{2}) + y((t2,q0,q2),a{2}) � 0.3

These equations do have (infinitely many) solutions and we can pick an arbitrary
one, e.g. the solution with non-zero values:

y((t0,q0,q2),b1) = 0.6
y((t0,q0,q2),b2) = 0.8

y((t1,q1,q3),a{1}) = 0.6

y((t2,q0,q2),a{2}) = 0.4 .

This gives adversary σ′′ which, in (t0, q0, q2), picks b1 or b2 with probabil-
ity 0.6/(0.6+0.8)=3

7 or 0.8/(0.6+0.8)=4
7 , respectively, and in (t1, q1, q3) and

(t2, q0, q2) chooses a{1} and a{2} deterministically. The induced adversary σ′

of M′ is both randomised and history dependent: if only (t0, q0, q2) is in the his-
tory, it selects [b1 �→ 3

7 , b2 �→ 4
7]; for all other paths ending in (t0, q0, q2), it selects

[b2 �→1]. The adversary σ′ maps naturally to an adversary σ of M that satisfies
the query P�0.6[F b1] ∧ P�0.3[G b2]. �

Automated Verification Techniques for Probabilistic Systems 95

t1 t0 t2
b11

b2

0.5

0.5

b21

b1 1

(a) MDP M

q0 q1

αM \ {b1}

b1

αM

(b) DRA A1 for F b1

q2 q3

b2

αM\{b2}

αM

(c) DRA A2 for G b2

Fig. 14. The MDP and deterministic Rabin automata for Example 17

t1 q1 q3 t0 q0 q2 t2 q0 q2s{1} s{2}
b11

b2

0.5

0.5

b21

b1 1

a{1}1 a{2} 1

a{2} 1

Fig. 15. The MDP M′′, built from M′ = M⊗A1⊗A2, for Example 17

Quantitative Approaches. The techniques presented in this section can also
be generalised in several other ways. Firstly, like for the other verification prob-
lems in this chapter, we can consider quantitative approaches to multi-objective
model checking [69,45]. We can define numerical queries, which may be more
useful than existential ones in practice. These optimise one objective, subject to
constraints on several others. Formally we have the following definition.

Definition 26 (Numerical multi-objective query). For a PA M with ini-
tial state s, multi-objective LTL query θ and LTL formula ψ, a (maximising)
numerical multi-objective query is to find the following value:

Prmax
M,s(ψ | θ) def= sup{Prσ

M,s(ψ) | σ ∈ AdvM ∧ σ, s |= θ} .

If the property θ is not satisfied by any adversary of M, the query returns ⊥. A
minimising numerical multi-objective query is defined similarly.

Numerical queries can solved at essentially the same cost as existential ones.
This is done by adding an objective function to the set of linear inequalities and
solving a linear program instead. Multi-objective queries can be further extended
by integrating reward-based properties similar to those in Section 5; see [45].

Complexity. Consider a multi-objective LTL query θ for an MDP M. Con-
verting the query to disjunctive normal form can be done in time exponential
in the number of connectives of θ, yielding at most exponentially many clauses,
each containing at most polynomially many literals. The formula in disjunctive
normal form, with negations and operators < and � removed, contains at most
k different LTL formulas, where k is polynomial in the size of θ. We convert each
LTL formula to a DRA in time doubly exponential in its size.

For a single clause containing n LTL formulas, we then build the product M′

of M and the constructed DRAs. This product is polynomial in the size of M,

96 V. Forejt et al.

n and the size of the DRAs. Identifying accepting end components and then
constructing the MDP M′′ both require time polynomial in the size of M′ and
exponential in n. The set of equations is constructed in time polynomial in M′′,
and solved in polynomial time using the techniques for linear programming. The
whole procedure thus runs in the time doubly exponential in the size of θ, and
polynomial in the size of M.

Controller Synthesis. The problems discussed in this chapter concern the
generation of MDP adversaries that satisfy certain formally-specified properties.
This is often referred to as controller synthesis, and can be generalised in several
ways. We can, for example, return to the temporal logic PCTL defined in Sec-
tion 6 and consider an alternative semantics for the logic. Let us define validity
of a PCTL formula under a fixed adversary σ by stipulating Adv={σ} in the
semantics presented in Definition 13. The problem is to determine whether there
exists a σ under which the given formula is true.

This problem has also been studied [9,21,20], and—perhaps surprisingly—
it is fundamentally different from the problem in which Adv is the set of all
adversaries. In particular, answering the question whether there is a satisfying
adversary is undecidable. It becomes decidable when we restrict to qualitative
case (i.e. when the probability bounds in the formula are taken from the set
{0, 1}), but even then a satisfying adversary may require infinite memory.

9 Compositional Probabilistic Model Checking

In this section, we discuss compositional approaches to probabilistic model check-
ing of MDPs, in particular illustrating an assume-guarantee framework [69].

9.1 Probabilistic Automata and Parallel Composition

System designs often comprise multiple components operating in parallel. When
these components exhibit stochastic behaviour, MDPs are a natural formalism
to model the system since nondeterminism can be used to capture concurrency
between the components. In fact, for the purposes of compositional modelling
and analysis, it is preferable to use probabilistic automata (PAs) [80,81], which
are a (slight) generalisation of MDPs. The essential difference is that a state of
a PA can have more than one outgoing transition with the same action label.

Definition 27 (Probabilistic automaton). A probabilistic automaton (PA)
is a tuple M=(S, s, αM, δM, L), where S is a finite set of states, s ∈ S is an
initial state, αM is a finite alphabet, δM ⊆ S×(αM∪{τ})×Dist(S) is a finite
probabilistic transition relation and L : S → 2AP is a labelling function mapping
each state to a set of atomic propositions taken from a set AP.

Notice that δM is now a relation, unlike in Definition 4 (see page 57) where it is
a function. Observe also that we allow transitions to be labelled with a special
τ action, representing “silent” transitions that are internal to some component.
We introduce additional notation and use s

a−→ μ to denote that (s, a, μ) ∈ δM.

Automated Verification Techniques for Probabilistic Systems 97

Basic notions such as paths, traces and adversaries of MDPs (see Section 3)
need slight modifications for PAs, but this is straightforward. In the case of
traces, for example, we omit τ actions, following the intuition that these actions
are “silent”. A technical detail required by the compositional approach of [69]
is the use of partial adversaries, which can opt to (with some probability) take
none of the available choices and remain in the current state. However, model
checking of probabilistic safety properties, on which the compositional techniques
described here are based, is unaffected by this distinction (intuitively, this is
because remaining in a state can only decrease the probability of satisfying a
safety property). The definition of a PA-DFA product and the process for model
checking probabilistic safety properties are also essentially the same as the MDP
case; see [69] for details.

We now introduce a few additional concepts required for compositional mod-
elling and analysis of PAs.

Definition 28 (Parallel composition of PAs). If Mi =(Si, si, αMi , δMi , Li)
are PAs for i=1, 2, then their parallel composition, denoted M1‖M2, is given by
the PA (S1×S2, (s1, s2), αM1∪αM2 , δM1‖M2 , L) where δM1‖M2 is defined such
that (s1, s2)

a−→ μ1×μ2 if and only if one of the following holds:

– s1
a−→ μ1, s2

a−→ μ2 and a ∈ αM1 ∩ αM2

– s1
a−→ μ1, μ2 = [s2 �→1] and a ∈ αM1\αM2

– μ1 = [s1 �→1], s2
a−→ μ2 and a ∈ αM2\αM1

and L(s1, s2) = L1(s1) ∪ L2(s2).

This form of parallel composition [80,81], which allows multi-way synchronisa-
tion over the same action by several components, is in a similar style to the
scheme used in the process algebra CSP [79] and is also used in PRISM [56].
By default, we assume that M1 and M2 synchronise over all common actions.
However, this can easily be generalised to incorporate more flexible definitions
of synchronisation, as well as operators to hide and rename action labels.

Definition 29 (Alphabet extension of PA). For a PA M=(S, s, αM, δM, L)
and set of actions α, we extend M’s alphabet to α, denoted M[α], as follows:
M[α]=(S, s, αM∪α, δM[α], L) where δM[α]=δM∪{(s, a, [s �→1]) | s∈S∧a∈α\αM}.

Example 18. Figure 16 shows two PAs used to model a system comprising a
machine (M2) and a controller (M1) that is responsible for powering it down.
When M1 detects a problem, it should send two messages: warn and then shut-
down to M2. However, with probability 0.2, it fails to transmit warn. If M2

does not receive the warn message before the shutdown message, there is a 10%
chance it will fail to shut down correctly. Figure 16(c) also shows the DFA Aerr

G

for a safety property ΦG “action fail never occurs”. On the parallel composition
M1‖M2, we can compute Prmin

M1‖M2,(s0,t0)(ΦG) = 1 − 0.2·0.1 = 0.98. Thus, the
initial state of M1‖M2 satisfies the probabilistic safety property P�0.98[ΦG]. �

98 V. Forejt et al.

s0

s1 s2

s3

detect

0.8

0.2

warn 1

shutdown

1

off

1

(a) M1

t0 t1

t2t3

warn 1

shutdown

1

shutdown

0.90.1

fail

1

off

1

(b) M2

q3

q4

fail

fail

(c) Aerr
G

Fig. 16. Two PAs M1,M2 and a DFA Aerr
G for a safety property ΦG

9.2 Assume-Guarantee Verification

We now describe the approach for compositional verification of probabilistic
automata presented in [69]. This is based on the popular assume-guarantee
paradigm, in which components of a system are verified separately, under as-
sumptions about their environment. After verifying that the other system com-
ponents satisfy these assumptions, proof rules are used to establish properties
about the combined system. We will first define the basic underlying ideas and
then illustrate one of the assume-guarantee proof rules from [69].

The approach uses probabilistic assume-guarantee triples. These take the form
〈ΦA〉�pA M〈ΦG〉�pG , where P�pA [ΦA] and P�pG [ΦG] are probabilistic safety
properties and M is a PA. Informally, the triple means: “whenever M is part
of a system satisfying ΦA with probability at least pA, the system satisfies ΦG

with probability at least pG”. Formally, we have the following definition.

Definition 30 (Probabilistic assume-guarantee triple). If P�pA [ΦA] and
P�pG [ΦG] are probabilistic safety properties, M is a PA and αG ⊆ αA ∪ αM,
then 〈ΦA〉�pA M〈ΦG〉�pG is a probabilistic assume-guarantee triple, meaning:

∀σ∈AdvM[αA] .
(
Prσ

M[αA],s(ΦA)�pA → Prσ
M[αA],s(ΦG)�pG

)
.

The use of M[αA], i.e. M extended to the alphabet of ΦA, in the above is
needed to allow the assumption to refer to actions not used in M. We use
〈true〉M〈ΦG〉�pG to indicate the case where there is no assumption. This is
therefore equivalent to s |= P�pG [ΦG] and can be verified using the techniques
described in Section 7.1. Checking that a triple 〈ΦA〉�pA M〈ΦG〉�pG holds in
the general case, however, requires the use of multi-objective (LTL) probabilistic
model checking, as discussed in Section 8.

Proposition 4 ([69]). If M is a PA, P�pA [ΦA] and P�pG [ΦG] are probabilistic
safety properties and M′ = M[αA]⊗Aerr

A ⊗Aerr
G with initial state s′, then:

〈ΦA〉�pA M〈ΦG〉�pG

⇐⇒ ¬∃σ′∈AdvM′ .
(
Prσ′

M′,s′(G ¬errA)�pA ∧ Prσ′
M′,s′(F errG)>1−pG

)
.

Automated Verification Techniques for Probabilistic Systems 99

t0 q0 q3 t1 q1 q3 t2 q1 q3

t3 q2 q3

{errA}
t3 q2 q4

{errA, errG}
t2 q2 q3

{errA}

warn 1 shutdown 1

shutdown

0.1
0.9

fail 1
fail

1

off

1

off

1

Fig. 17. The product PA M2⊗Aerr
A ⊗Aerr

G for the PA M2 and error automata Aerr
A

and Aerr
G from Figures 8 and 16 (see Example 19)

Based on the definitions given above, [69] presents the following asymmetric
assume-guarantee proof rule for a two component system M1‖M2.

Proposition 5 ([69]). If M1,M2 are PAs and P�pA [ΦA], P�pG [ΦG] probabilis-
tic safety properties such that αA ⊆ αM1 and αG ⊆ αM2∪αA, then the following
proof rule holds:

〈true〉M1 〈ΦA〉�pA

〈ΦA〉�pA M2 〈ΦG〉�pG

〈true〉M1 ‖M2 〈ΦG〉�pG

(ASym)

This rule is asymmetric in the sense that it only uses one assumption (P�pA [ΦA])
about one of the components (M1). Given such an assumption, we can now
model check the probabilistic safety property P�pG [ΦG] on M1‖M2 in a com-
positional fashion. More precisely, verification reduces to two sub-problems, one
for each premise of the rule: (i) checking a probabilistic safety property on M1;
(ii) performing multi-objective model checking on M2[αA]⊗Aerr

A ⊗Aerr
G . If Aerr

A

is much smaller than M1, significant gains in performance and/or scalability
can be made.

Example 19. We illustrate the rule (ASym) on the PAs M1,M2 and property
P�0.98[ΦG] from Example 18 (see Figure 16). We also reuse the probabilistic
safety property P�0.8[ΦA] from Example 13, where ΦA means “warn occurs be-
fore shutdown” and its error automaton is the DFA Aerr

A in Figure 8. Our goal
is to verify that P�0.98[ΦG] holds in M1‖M2 using the rule (ASym) and with
assumption P�0.8[ΦA]. To check the first premise of (ASym), we need to verify
s0 |= P�0.8[ΦA] in M1, which has already been shown to be true in Example 13.

Next, we check the second premise, i.e. 〈ΦA〉�0.8 M2 〈ΦG〉�0.98, using Propo-
sition 4 above. The product M2⊗Aerr

A ⊗Aerr
G is shown in Figure 17 (in this case,

M2[αA] = M2). Recall that we label product states corresponding to accepting
states of Aerr

A and Aerr
G with atomic propositions errA and errG. We also shade

these grey in Figure 17 for clarity. We need to establish that there is no adversary
under which the probability of remaining within states not satisfying errA is at

100 V. Forejt et al.

least 0.8 and the probability of reaching an errG state is above 1−0.98 = 0.02.
Through a manual inspection, we see that no such adversary exists. This check
can be automated using the multi-objective probabilistic model checking tech-
niques from Section 8. In conclusion, combining the two results, we can state
that (s0, t0) |= P�0.98[ΦG] does hold in M1‖M1, as required.

Consider, however, the adversary σ of M2⊗Aerr
A ⊗Aerr

G which, in the initial
state, chooses warn with probability 0.8 and shutdown with probability 0.2. This
satisfies G ¬errA with probability 0.8 and F errG with probability 0.02. Hence,
〈ΦA〉�0.8 M2 〈ΦG〉�pG does not hold for any value of pG > 1−0.02 = 0.98. �
For details of additional probabilistic assume-guarantee proof rules, as well as
quantitative approaches to the problem, see [69]; for further extensions, including
the use of ω-regular and reward-based properties, see [45].

10 Tools and Case Studies

There are several software tools available for probabilistic verification of Markov
decision processes (or probabilistic automata). One of the most widely used of
these is PRISM [56], which incorporates the majority of the techniques described
in this tutorial. It also supports discrete- and continuous-time Markov chains,
and probabilistic timed automata.

Two other tools for probabilistic model checking of MDPs are LiQuor [30],
which has an expressive modelling language extending Promela with probabil-
ities, and ProbDiVinE [13], which focuses on parallel and distributed imple-
mentations of LTL model checking for MDPs. RAPTURE [60] and PASS [50]
both provide verification of MDPs using abstraction and refinement. There are
also various other probabilistic model checkers for discrete- and continuous-time
Markov chains, notably MRMC [61]. For a more extensive list, see [92].

In the following sections, we present three large probabilistic model checking
case studies, based on the use of Markov decision processes. A selection of further
examples can be found at [90].

10.1 Case Study: Israeli and Jalfon’s Self-stabilisation Protocol

A self-stabilising protocol for a network of processes is a protocol which trans-
forms a system from an unstable state to a stable state in a finite number of
steps and without any outside intervention. Here, we consider Israeli and Jal-
fon’s randomised self-stabilising protocol [59].

The protocol of Israeli and Jalfon is designed for a network which is an ori-
ented ring of identical processes P1, . . . , PN with bidirectional communication.
It operates asynchronously with an arbitrary scheduler, and each process Pi has
a boolean variable qi which represents the fact that it has a token. A process is
said to be active if it has a token and only active processes can be scheduled.
When a process is scheduled, it makes a (uniform) random choice as to whether
to move its token to its left or right and when tokens collide they are merged into
a single one. The stable configurations are those where there is exactly one active

Automated Verification Techniques for Probabilistic Systems 101

(a) Minimum probability of stabilisation
by step K

(b) Maximum expected number of tokens
at step K

(c) Minimum expected time to stabilise
(initially k tokens)

(d) Maximum expected time to stabilise
(initially k tokens)

Fig. 18. Israeli-Jalfon’s self-stabilisation protocol: results

process, i.e. exactly one token. Once a stable configuration has been reached, the
token should be passed around the ring forever in a fair manner.

We first verify that the protocol does indeed stabilise, by verifying that a stable
state is reached with minimum probability 1 for all possible initial configurations.
This property can be expressed in PCTL as the formula P�1[F stable] where
stable is the atomic proposition representing the fact that there is only one token
present in the state. We also check that the token is passed around the ring in
a fair manner. Since we have already shown that, with minimum probability
1 there is eventually only one token, it is sufficient to check that each process
obtains the token infinitely often. For process Pi, we use the probabilistic LTL
specification P�1[G F activei], where the atomic proposition activei indicates that
Pi is active, i.e. has a token.

Next, we investigate the protocol’s performance with the properties:

– the minimum probability of stabilising within K steps when starting from
any initial configuration, (Pmin=?[F�K stable]);

102 V. Forejt et al.

– the maximum expected number of tokens after K steps when starting from
any initial configuration, (Rtokens

max=? [I=K], where the reward structure tokens
assigns a reward to each state corresponding to the number of tokens present
in the state and there are no action rewards);

– the minimum and maximum expected time to reach a stable state given that
the initial number of tokens is k (Rsteps

min=?[F stable] and Rsteps
max=?[F stable], where

the reward structure steps assigns a reward of 1 to each action and there are
no state rewards).

Figure 18 presents a summary of the results as the number of processes (N) varies
from 3 to 12. We see that the performance of the protocol decreases as the number
of processes increases. Considering the individual properties, we observe that the
probability to stabilise by step K (Figure 18(a)) and the expected number of
tokens at step K (Figure 18(b)) both converge towards 1 as K increases. This
is to be expected as we have already verified that the minimum probability of
stabilisation is 1. Considering the expected time to stabilise (Figures 18(c)-(d)),
the results show the expected time to stabilise increasing as the initial number of
tokens (k) increases. Further investigation for the other properties shows similar
trends as the initial number of tokens is increased.

10.2 Case Study: Dynamic Power Management

Dynamic Power Management (DPM) is a technique for saving energy in devices
that can be turned on and off under operating system control. Such methods are
particularly important in mobile, hand-held and embedded devices, for which
minimisation of energy consumption is a key issue. DPM-enabled devices typi-
cally have several power states with different energy consumption rates. A DPM
policy is used to decide when commands to transition between these states should
be issued, based on the current state of the system.

The components of a DPM system are: a Service Provider (SP) representing
the device under power management control; a Service Requester (SR) which
sends requests to the SP; a Service Request Queue (SRQ), which stores the
requests that have yet to be served; and the Power Manager (PM), which sends
commands to the SP, based on observations of the system and a DPM policy.

The particular system we consider here is the IBM TravelStar VP [58], a
commercially available hard disk drive. Our model is based on the one in [15]. The
hard disk, i.e. the SP, can operate in five different states as shown in Table 2(a),
which also provides the power dissipation in each of these states. It is only in
state active that the device can perform data reads and writes. In state idle the
disk is spinning but some of the electronic components of the disk drive have
been switched off. The state idlelp (“idle low power”) is similar except that it
has a lower power dissipation. The states stby and sleep correspond to the disk
being spun down. Transition times between states are in Figure 2(b).

We use the following reward structures during our analysis:

– power is used to investigate the energy consumption of the system and is
defined using the power dissipation of the SP given in Figure 2(a);

Automated Verification Techniques for Probabilistic Systems 103

Table 2. Dynamic power management: properties of the states of the hard drive

(a) Average power dissipation

State Power dissipation (W)

active 2.5

idle 1.5

idlelp 0.8

stby 0.3

sleep 0.1

(b) Expected transition times

active idle idlelp stby sleep

active - 1ms 5ms 2.2sec 6sec

idle 1ms - 5ms 2.2sec 6sec

idlelp 5ms - - 2.2sec 6sec

stby 2.2sec - - - 6sec

sleep 6sec - - - -

– queue is used for analysing the size of the service request queue and is con-
structed by setting the reward in each state to the size of the SRQ;

– lost represents the loss of requests by assigning a reward of 1 to actions
representing the arrival of a request when the queue is full.

For further details of the PRISM model see [74,91].
In Figure 19 we present model checking results for computation of the min-

imum and maximum values for the following properties, when the maximum
queue size is 2 and there is no constraint on the battery life of the system:

– the probability of L lost requests by step 1, 000 (e.g. Pmin=?[F�1000 lostL]);
– the expected energy consumed during the first K steps (e.g. Rpower

min=? [C
�K]);

– the expected queue size at step K (e.g. Rqueue
min=?[I

=K]);
– the expected number of lost requests after K steps (e.g. Rlost

min=?[C
�K]).

The results demonstrate that, depending on the power manager’s choices, there
can be a large difference both in the energy consumption (Figure 19(b)) and
in the performance (or quality of service) of the device (Figures 19(a), (c) and
(d)). Analysing the best- and worst-case choices, i.e. generating the adversaries
that yield the optimal values, we find the best-case performance and worst-case
energy consumption is obtained by keeping the SP in the active state. On the
other hand, the worst-case performance and best-case energy consumption is
obtained by keeping the SP in sleep whenever possible and only switching to
active when necessary (to prevent the power manager which minimises energy
consumption by ignoring all requests and keeping the SP in sleep, we require the
SP to be switched to active when the SRQ becomes full).

To further investigate the power-versus-performance trade-off of the system,
we now apply the techniques of Section 8 and [45] (using the PRISM extension
implemented in [69,45]) to perform controller synthesis on the disk-drive. To
allow us to consider long-run average properties in the analysis we follow [15]
and constrain the battery life of the system. Applying these techniques, we can
minimise the expected energy consumption under restrictions on, for example,
the probability that a request waits more than K steps, the probability that N
requests are lost, the average request-queue size or the expected number of lost
requests. To illustrate this approach, Figure 20(a) plots the minimum expected

104 V. Forejt et al.

(a) Prob. L lost requests by step 1,000 (b) Expected energy consumed by step K

(c) Expected queue size at step K (d) Expected lost requests by step K

Fig. 19. Dynamic power management: model checking results

energy consumption under restrictions on the probability that 10 requests are
lost, while Figure 20(b) plots the minimum expected energy consumption un-
der restrictions on both the average queue size and expected number of lost
requests. In both cases the maximum size of the SRQ is set to 2. These results
demonstrate the familiar power-versus-performance trade-off: policies can offer
improved performance, but at the expense of using more energy.

For an example of the controllers generated through this approach, consider
constraints of 0.9 and 100 on the average queue size and expected number of lost
requests. The optimal expected energy consumption is 1,874.6 and is achieved
by the following PM:

– if the SP is in active, the SR is in idle and the queue is empty, move SP to
idle;

– if the SP is in sleep, the SR is in idle and the queue is full, then:

• with probability 0.972958 keep SP in sleep
• with probability 0.027042 move SP to active;

– otherwise, keep the SP in its current state.

Automated Verification Techniques for Probabilistic Systems 105

(a) Constraint on maximum probabil-
ity of 10 lost requests

50

100

150

200

0.5

1.0

1.5

2.0
0

500

1000

1500

2000

2500

expe
cted

 los
t cu

stom
ersqueue size

m
i
n

p
o
w
e
r

c
o
n
s
u
m
p
t
i
o
n

(b) Constraints on maximum average queue
size and expected lost requests

Fig. 20. Dynamic power management: controller synthesis

On the other hand, if the constraints on the average queue size and the expected
lost requests are 0.8 and 80 respectively, then the optimal expected energy con-
sumption is 2,134.5 and is achieved by the following PM:

– immediately move the SP from sleep to active;
– if the SP is in idle, the SR is in req and the queue is empty, move SP to active;
– if the SP is in active, the SR is in idle and the queue is non-empty, then

• with probability 0.995523 move SP to idle
• with probability 0.004477 keep SP in active;

– otherwise, keep the SP in its current state.

10.3 Case Study: Aspnes and Herlihy’s Consensus Algorithm

A distributed consensus protocol is an algorithm for ensuring that a collection
of distributed processes, which start in some initial value supplied by their envi-
ronment, eventually terminate agreeing on the same value. In this case study, we
consider the randomised distributed consensus algorithm of Aspnes & Herlihy
[5] and use it to demonstrate the applicability of the compositional verification
approach for safety properties introduced in Section 9.

The algorithm of Apnes & Herlihy allows N processes in a distributed net-
work to reach a consensus and employs, in each round, a shared coin protocol
parameterised by K. The safety property we will consider is that “agreement
is reached by round R”, where the corresponding set of bad prefixes are those
that end with the action of any process entering round R+1. We will in fact use
the quantitative version of the composition techniques presented in [69], which
allows us to compute a lower bound on the minimum probability of satisfying
the safety property, by computing an upper bound on the maximum probability
of performing a bad prefix (see Proposition 1).

The probabilistic automata model of the algorithm is based on the one pre-
sented in [71]. It comprises the parallel composition of: N PAs, each representing

106 V. Forejt et al.

Table 3. Randomised consensus algorithm: performance of compositional verification

Parameters Non-compositional Compositional

N K R Model size Time (s) Result† LP size Time (s) Result†

2 2 3 5,158 1.6 0.108333 1,064 0.9 0.108333
2 20 3 40,294 108.1 0.012500 1,064 7.4 0.012500
2 2 4 20,886 3.6 0.011736 2,372 1.2 0.011736
2 20 4 166,614 343.1 0.000156 2,372 7.8 0.000156
2 2 5 83,798 7.7 0.001271 4,988 2.2 0.001271
2 20 5 671,894 1,347 0.000002 4,988 8.8 0.000002

3 2 3 1,418,545 18,971 0.229092 40,542 29.6 0.229092
3 12 3 16,674,145* >24h - 40,542 49.7 0.041643
3 20 3 39,827,233* >24h - 40,542 125.3 0.024960
3 2 4 150,487,585 78,955 0.052483 141,168 376.1 0.052483
3 12 4 1,053,762,385* mem-out - 141,168 396.3 0.001734
3 20 4 2,028,200,209* mem-out - 141,168 471.9 0.000623

* These models can be constructed, but not model checked, in PRISM.
† Results are maximum probabilities of error so actual values are these subtracted from 1.

one process, and R PAs, one for the shared coin protocol of each round. The
compositional verification consists of the following steps:

– first, using the techniques of Section 7, we calculate the minimum probability
that the coin protocols of rounds 1, . . . , R−2 each satisfy a safety property
(the property is that the coin protocol returns the same coin value for all
processes, and therefore the bad prefixes are those where the coin protocol
returns different values to different processes);

– second, we combine these results through R−2 applications of of the Async
rule of [69] to return a probabilistic safety property satisfied by the (asyn-
chronous) composition of the shared coin protocols for the first R−2 rounds;

– finally, this probabilistic safety property is used as the assumption for an
application of the Asym rule (see Theorem 5), yielding the final property of
interest on the combined system: the minimum probability that agreement
is reached by round R.

Table 3 shows performance results (taken from [69]) for compositional verifica-
tion on this case study. It gives the total time required to perform verification,
both compositionally (as above) and non-compositionally (using PRISM). To
give an indication of the improvements in scalability, the table shows the size of
the PA (number of states) for the full system and the number of variables in the
LP problems used for multi-objective model checking in the compositional case
(see Section 8). As can be seen, for this case study, the compositional approach
is faster and permits analysis of models that are infeasible with conventional
(non-compositional) techniques. See [69] for further details.

Automated Verification Techniques for Probabilistic Systems 107

11 Conclusions and Further Reading

This tutorial has given a general introduction to probabilistic model checking,
focusing on the model of Markov decision processes. We have covered the ba-
sic underlying theory for this model, discussed techniques for model checking
a wide array of quantitative properties and presented some illustrative case
studies.

We conclude by briefly outlining a few of the active research topics in this
area and give some pointers to further reading. In the context of automated
verification of probabilistic systems, several key challenges are being addressed.
One is extending the range of models to which probabilistic model checking
can be applied. Another is improving the scalability of the techniques to handle
larger and more complex models. There are also many other ways in which the
functionality and applicability of probabilistic verification are being improved.

Models. Recent advances have been made regarding model checking for the
following extensions of MDPs: probabilistic timed automata (see e.g. [70] for a
survey); probabilistic hybrid systems (see e.g. [88,46]); continuous-time MDPs
and continuous-time games (see e.g. [10,23,73,77]); interactive Markov chains
(see e.g. [87]); and recursive MDPs and games (see e.g. [41,22]).

Scalability. A variety of approaches are being considered to improve scalabil-
ity. One example is the development of abstraction and refinement frameworks
[37,55,26,63], some of which have been applied in practice to verification of prob-
abilistic timed automata [68], probabilistic software [62] and PRISM models [50].
Other promising directions include: partial order reduction [49,31], symmetry re-
duction [66,39], algorithms for simulation and bisimulation relations [25,86] and
compositional probabilistic verification techniques [69,43,38].

Other directions. Many other interesting topics are being studied on MDPs
and related models. These include: probabilistic counterexample generation [4,3],
verification under fairness [8] and under restricted classes of adversaries [47,29],
parametric model checking [51], synthesis of parameters [52] and models [28],
and run-time probabilistic model checking [24,44].

Acknowledgments

The authors are supported in part by EU FP7 project CONNECT, ERC Ad-
vanced Grant VERIWARE and EPSRC grant EP/F001096/1. Vojtěch Forejt
is also supported by a Royal Society Newton Fellowship and the Institute for
Theoretical Computer Science, project no. 1M0545. In addition, we acknowl-
edge Dinara Karkabayeva for providing a preliminary version of the results in
Section 4.2 and thank the authors of [15] for making their model of the IBM
TravelStar VP available to us.

108 V. Forejt et al.

References

1. de Alfaro, L.: Formal Verification of Probabilistic Systems. Ph.D. thesis, Stanford
University (1997)

2. de Alfaro, L.: From fairness to chance. In: Baier, C., Huth, M., Kwiatkowska, M.,
Ryan, M. (eds.) Proc. 1st Int. Workshop Probabilistic Methods in Verification
(PROBMIV 1998). ENTCS, vol. 22. Elsevier, Amsterdam (1998)

3. Aljazzar, H., Leue, S.: Generation of counterexamples for model checking of Markov
decision processes. In: Proc. 6th Int. Conf. Quantitative Evaluation of Systems
(QEST 2009), pp. 197–206. IEEE CS Press, Los Alamitos (2009)

4. Andrés, M., D’Argenio, P., van Rossum, P.: Significant diagnostic counterexamples
in probabilistic model checking. In: Chockler, H., Hu, A. (eds.) HVC 2008. LNCS,
vol. 5394, pp. 129–148. Springer, Heidelberg (2009)

5. Aspnes, J., Herlihy, M.: Fast randomized consensus using shared memory. Journal
of Algorithms 15(1), 441–460 (1990)

6. Aziz, A., Singhal, V., Balarin, F., Brayton, R., Sangiovanni-Vincentelli, A.: It
usually works: The temporal logic of stochastic systems. In: Wolper, P. (ed.)
CAV 1995. LNCS, vol. 939, pp. 155–165. Springer, Heidelberg (1995)

7. Baier, C.: On algorithmic verification methods for probabilistic systems, habilita-
tion thesis, Fakultät für Mathematik & Informatik, Universität Mannheim (1998)

8. Baier, C., Groesser, M., Ciesinski, F.: Quantitative analysis under fairness con-
straints. In: Liu, Z., Ravn, A. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 135–150.
Springer, Heidelberg (2009)

9. Baier, C., Größer, M., Leucker, M., Bollig, B., Ciesinski, F.: Controller synthesis
for probabilistic systems. In: Lévy, J.J., Mayr, E., Mitchell, J. (eds.) Proc. 3rd
IFIP Int. Conf. Theoretical Computer Science (TCS 2006), pp. 493–506. Kluwer,
Dordrecht (2004)

10. Baier, C., Hermanns, H., Katoen, J.P., Haverkort, B.: Efficient computation of
time-bounded reachability probabilities in uniform continuous-time Markov deci-
sion processes. Theoretical Computer Science 345(1), 2–26 (2005)

11. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

12. Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time
logic with fairness. Distributed Computing 11(3), 125–155 (1998)

13. Barnat, J., Brim, L., Cerna, I., Ceska, M., Tumova, J.: ProbDiVinE-MC: Multi-core
LTL model checker for probabilistic systems. In: Proc. 5rd Int. Conf. Quantitative
Evaluation of Systems (QEST 2008), pp. 77–78. IEEE CS Press, Los Alamitos
(2008)

14. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
15. Benini, L., Bogliolo, A., Paleologo, G., De Micheli, G.: Policy optimization for

dynamic power management. IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems 8(3), 299–316 (2000)

16. Bertsekas, D.: Dynamic Programming and Optimal Control, vol. 1,2. Athena Sci-
entific, Belmont (1995)

17. Bertsekas, D., Tsitsiklis, J.: An analysis of stochastic shortest path problems. Math-
ematics of Operations Research 16(3), 580–595 (1991)

18. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995)

Automated Verification Techniques for Probabilistic Systems 109

19. Billingsley, P.: Probability and Measure. Wiley, Chichester (1995)
20. Brázdil, T., Forejt, V., Kučera, A.: Controller synthesis and verification for

Markov decision processes with qualitative branching time objectives. In: Aceto,
L., Damg̊ard, I., Goldberg, L., Halldórsson, M., Ingólfsdóttir, A., Walukiewicz, I.
(eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 148–159. Springer, Heidelberg
(2008)

21. Brázdil, T., Brožek, V., Forejt, V., Kučera, A.: Stochastic games with branching-
time winning objectives. In: 21th IEEE Symp. Logic in Computer Science (LICS
2006), pp. 349–358. IEEE CS Press, Los Alamitos (2006)

22. Brázdil, T., Brožek, V., Kučera, A., Obdržálek, J.: Qualitative reachability in
stochastic BPA games. In: Albers, S., Marion, J.Y. (eds.) 26th Int. Symp. The-
oretical Aspects of Computer Science (STACS 2009). LIPIcs, vol. 3, pp. 207–218.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2009)

23. Brázdil, T., Forejt, V., Krčál, J., Křet́ınský, J., Kučera, A.: Continuous-time
stochastic games with time-bounded reachability. In: Kannan, R., Kumar, K. (eds.)
Proc. 29th Int. Conf. Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 2009). LIPIcs, vol. 4, pp. 61–72. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2009)

24. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.:
Dynamic QoS management and optimisation in service-based systems. IEEE Trans-
actions on Software Engineering (2010)

25. Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In: Brim,
L., Janar, P., Ketinsky, M., Kuera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp.
371–385. Springer, Heidelberg (2002)

26. Chadha, R., Viswanathan, M.: A counterexample guided abstraction-refinement
framework for Markov decision processes. ACM Transactions on Computational
Logic 12(1), 1–49 (2010)

27. Chatterjee, K., Henzinger, T.: Value iteration. In: Grumberg, O., Veith, H. (eds.)
25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138. Springer, Heidelberg
(2008)

28. Chatterjee, K., Henzinger, T., Jobstmann, B., Singh, R.: Measuring and synthe-
sizing systems in probabilistic environments. In: Touili, T., Cook, B., Jackson, P.
(eds.) CAV 2010. LNCS, vol. 6174, pp. 380–395. Springer, Heidelberg (2010)

29. Cheung, L.: Reconciling Nondeterministic and Probabilistic Choices. Ph.D. thesis,
Radboud University of Nijmegen (2006)

30. Ciesinski, F., Baier, C.: Liquor: A tool for qualitative and quantitative linear time
analysis of reactive systems. In: Proc. 3rd Int. Conf. Quantitative Evaluation of
Systems (QEST 2006), pp. 131–132. IEEE CS Press, Los Alamitos (2006)

31. Ciesinski, F., Baier, C., Größer, M., Parker, D.: Reduction techniques for model
checking Markov decision processes. In: Proc. 5th Int. Conf. Quantitative Evalua-
tion of Systems (QEST 2008), pp. 45–54. IEEE CS Press, Los Alamitos (2008)

32. Ciesinski, F., Größer, M.: On probabilistic computation tree logic. In: Baier, C.,
Haverkort, B., Hermanns, H., Katoen, J.P., Siegle, M. (eds.) Validation of Stochas-
tic Systems. LNCS, vol. 2925, pp. 147–188. Springer, Heidelberg (2004)

33. Clarke, E., Emerson, A.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS,
vol. 131, pp. 52–71. Springer, Heidelberg (1982)

110 V. Forejt et al.

34. Courcoubetis, C., Yannakakis, M.: Verifying temporal properties of finite state
probabilistic programs. In: Proc. 29th Annual Symp. Foundations of Computer
Science (FOCS 1988), pp. 338–345. IEEE CS Press, Los Alamitos (1988)

35. Courcoubetis, C., Yannakakis, M.: Markov decision processes and regular events.
IEEE Trans. Automatic Control 43(10), 1399–1418 (1998)

36. Daniele, M., Giunchiglia, F., Vardi, M.: Improved automata generation for linear
temporal logic. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 249–260. Springer, Heidelberg (1999)

37. D’Argenio, P., Jeannet, B., Jensen, H., Larsen, K.: Reduction and refine-
ment strategies for probabilistic analysis. In: Hermanns, H., Segala, R. (eds.)
PROBMIV 2002, PAPM-PROBMIV 2002, and PAPM 2002. LNCS, vol. 2399, pp.
57–76. Springer, Heidelberg (2002)

38. Delahaye, B., Caillaud, B., Legay, A.: Probabilistic contracts: A compositional
reasoning methodology for the design of stochastic systems. In: Proc. 10th Int.
Conf. Application of Concurrency to System Design (ACSD 2010), pp. 223–232.
IEEE CS Press, Los Alamitos (2010)

39. Donaldson, A., Miller, A.: Symmetry reduction for probabilistic model checking
using generic representatives. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS,
vol. 4218, pp. 9–23. Springer, Heidelberg (2006)

40. Etessami, K., Kwiatkowska, M., Vardi, M., Yannakakis, M.: Multi-objective model
checking of Markov decision processes. Logical Methods in Computer Science 4(4),
1–21 (2008)

41. Etessami, K., Yannakakis, M.: Recursive Markov decision processes and recursive
stochastic games. In: Caires, L., Italiano, G., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 891–903. Springer, Heidelberg (2005)

42. Feller, W.: An Introduction to Probability Theory and its Applications. Wiley,
Chichester (1968)

43. Feng, L., Kwiatkowska, M., Parker, D.: Compositional verification of probabilistic
systems using learning. In: Proc. 7th Int. Conf. Quantitative Evaluation of Systems
(QEST 2010), pp. 133–142. IEEE CS Press, Los Alamitos (2010)

44. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model
checking. In: Proc. 33rd ACM/IEEE International Conference on Software En-
gineering (ICSE 2011). ACM, New York (2011)

45. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-
objective verification for probabilistic systems. In: Abdulla, P., Leino, K. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 112–127. Springer, Heidelberg (2011)

46. Fränzle, M., Teige, T., Eggers, A.: Engineering constraint solvers for automatic
analysis of probabilistic hybrid automata. Journal of Logic and Algebraic Pro-
gramming 79(7), 436–466 (2010)

47. Giro, S.: On the automatic verification of distributed probabilistic automata with
partial information. Ph.D. thesis, FaMAF, Universidad Nacional de Córdoba (2010)

48. van Glabbeek, R., Smolka, S., Steffen, B.: Reactive, generative, and stratified mod-
els of probabilistic processes. Information and Computation 121(1), 59–80 (1995)

49. Größer, M., Baier, C.: Partial order reduction for Markov decision processes: A
survey. In: de Boer, F., Bonsangue, M., Graf, S., de Roever, W.P. (eds.) FMCO
2005. LNCS, vol. 4111, pp. 408–427. Springer, Heidelberg (2006)

50. Hahn, E., Hermanns, H., Wachter, B., Zhang, L.: PASS: Abstraction refinement for
infinite probabilistic models. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 353–357. Springer, Heidelberg (2010)

Automated Verification Techniques for Probabilistic Systems 111

51. Hahn, E., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. In: Pasareanu, C. (ed.) Model Checking Software. LNCS, vol. 5578,
pp. 88–106. Springer, Heidelberg (2009)

52. Han, T., Katoen, J.P., Mereacre, A.: Approximate parameter synthesis for prob-
abilistic time-bounded reachability. In: Proc. IEEE Symp. Real-Time Systems
(RTSS 2008), pp. 173–182. IEEE CS Press, Los Alamitos (2008)

53. Hansson, H.: Time and Probability in Formal Design of Distributed Systems.
Elsevier, Amsterdam (1994)

54. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

55. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik,
S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)

56. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

57. Howard, R.: Dynamic Programming and Markov Processes. MIT Press, Cambridge
(1960)

58. Technical specifications of hard drive IBM Travelstar VP,
http://www.storage.ibm.com/storage/oem/data/travvp.htm

59. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-
stabilizating mutual exclusion. In: Proc. 9th Annual ACM Symp. Principles of
Distributed Computing (PODC 1990), pp. 119–131. ACM, New York (1990)

60. Jeannet, B., D’Argenio, P., Larsen, K.: Rapture: A tool for verifying Markov de-
cision processes. In: Cerna, I. (ed.) Proc. Tools Day, affiliated to 13th Int. Conf.
Concurrency Theory (CONCUR 2002), pp. 84–98 (2002); Technical Report FIMU-
RS-2002-05, Faculty of Informatics, Masaryk University (2002)

61. Katoen, J.P., Hahn, E., Hermanns, H., Jansen, D., Zapreev, I.: The ins and outs
of the probabilistic model checker MRMC. In: Proc. 6th Int. Conf. Quantitative
Evaluation of Systems (QEST 2009), pp. 167–176. IEEE CS Press, Los Alamitos
(2009)

62. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: Abstraction refine-
ment for probabilistic software. In: Jones, N., Muller-Olm, M. (eds.) VMCAI 2009.
LNCS, vol. 5403, pp. 182–197. Springer, Heidelberg (2009)

63. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. Formal Methods
in System Design 36(3) (2010)

64. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains, 2nd edn. Springer,
Heidelberg (1976)

65. Kulkarni, V.: Modeling and Analysis of Stochastic Systems. Chapman and Hall,
Boca Raton (1995)

66. Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic
model checking. In: Ball, T., Jones, R. (eds.) CAV 2006. LNCS, vol. 4144, pp.
234–248. Springer, Heidelberg (2006)

67. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007)

68. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic games for verification of
probabilistic timed automata. In: Ouaknine, J., Vaandrager, F. (eds.) FORMATS
2009. LNCS, vol. 5813, pp. 212–227. Springer, Heidelberg (2009)

http://www.storage.ibm.com/storage/oem/data/travvp.htm

112 V. Forejt et al.

69. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification
for probabilistic systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 23–37. Springer, Heidelberg (2010)

70. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Verification of Real-
Time Probabilistic Systems. In: Modeling and Verification of Real-Time Systems:
Formalisms and Software Tools, pp. 249–288. John Wiley & Sons, Chichester (2008)

71. Kwiatkowska, M., Norman, G., Segala, R.: Automated verification of a randomized
distributed consensus protocol using cadence SMV and PRISM. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 194–206. Springer,
Heidelberg (2001)

72. Legay, A., Murawski, A., Ouaknine, J., Worrell, J.: On automated verification of
probabilistic programs. In: Ramakrishnan, C., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 173–187. Springer, Heidelberg (2008)

73. Neuhäußer, M., Zhang, L.: Time-bounded reachability probabilities in continuous-
time Markov decision processes. In: Proc. 7th Int. Conf. Quantitative Evaluation
of Systems (QEST 2010), pp. 209–218. IEEE CS Press, Los Alamitos (2010)

74. Norman, G., Parker, D., Kwiatkowska, M., Shukla, S., Gupta, R.: Using proba-
bilistic model checking for dynamic power management. Formal Aspects of Com-
puting 17(2), 160–176 (2005)

75. Pnueli, A.: The temporal logic of programs. In: Proc. 18th Annual Symp. Founda-
tions of Computer Science (FOCS 1977), pp. 46–57. IEEE CS Press, Los Alamitos
(1977)

76. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley and Sons, Chichester (1994)

77. Rabe, M., Schewe, S.: Optimal time-abstract schedulers for CTMDPs and Markov
games. In: Di Pierro, A., Norman, G. (eds.) Proc. 8th Workshop Quantitative
Aspects of Programming Languages (QAPL 2010). EPTCS, vol. 28, pp. 144–158.
Open Publishing Association (2010)

78. Rabin, M.: Probabilistic automata. Information and Control 6, 230–245 (1963)
79. Roscoe, A.: The theory and practice of concurrency. Prentice-Hall, Englewood Cliffs

(1997)
80. Segala, R.: Modelling and Verification of Randomized Distributed Real Time Sys-

tems. Ph.D. thesis, Massachusetts Institute of Technology (1995)
81. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic

Journal of Computing 2(2), 250–273 (1995)
82. Sokolova, A., de Vink, E.: Probabilistic automata: System types, parallel compo-

sition and comparison. In: Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.,
Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 1–43.
Springer, Heidelberg (2004)

83. Stewart, W.: Introduction to the Numerical Solution of Markov Chains, Princeton
(1994)

84. Vardi, M.: Automatic verification of probabilistic concurrent finite state programs.
In: Proc. 26th Annual Symp. Foundations of Computer Science (FOCS 1985), pp.
327–338. IEEE CS Press, Los Alamitos (1985)

85. Vardi, M., Wolper, P.: Reasoning about infinite computations. Information and
Computation 115(1), 1–37 (1994)

Automated Verification Techniques for Probabilistic Systems 113

86. Zhang, L., Hermanns, H.: Deciding simulations on probabilistic automata. In:
Namjoshi, K., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS,
vol. 4762, pp. 207–222. Springer, Heidelberg (2007)

87. Zhang, L., Neuhäußer, M.: Model checking interactive Markov chains. In: Esparza,
J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 53–68. Springer,
Heidelberg (2010)

88. Zhang, L., She, Z., Ratschan, S., Hermanns, H., Hahn, E.: Safety verification for
probabilistic hybrid systems. In: Cook, B., Jackson, P., Touili, T. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 196–211. Springer, Heidelberg (2010)

89. http://www.prismmodelchecker.org/benchmarks/

90. http://www.prismmodelchecker.org/casestudies/

91. http://www.prismmodelchecker.org/files/sfm11/

92. http://www.prismmodelchecker.org/other-tools.php

http://www.prismmodelchecker.org/benchmarks/
http://www.prismmodelchecker.org/casestudies/
http://www.prismmodelchecker.org/files/sfm11/
http://www.prismmodelchecker.org/other-tools.php

Modeling and Verification of

Components and Connectors

Christel Baier, Joachim Klein, and Sascha Klüppelholz

Faculty of Computer Science,
Technische Universität Dresden, Germany

Abstract. Component-based software engineering divides a complex
system into smaller logical components with well-defined interfaces. To
likewise make the complex interactions between components explicit, ex-
ogenous coordination languages like Reo allow the construction of com-
plex coordination glue code in the form of networks of channels and
connectors, orchestrating the interactions of the components. In this pa-
per, we present an overview of the modeling concepts for components and
connectors using Reo and the underlying constraint automata framework
and detail the specification and verification of properties using logics
tailored to this framework.

1 Introduction

The main idea of component-based software engineering is to divide a complex
system into smaller logical components with well-defined interfaces. For this
purpose, a variety of formalisms [23,28,24] have been introduced to capture the
behavior of the components as well as the interaction between the components
in a manner allowing the application of model checking techniques [17,9].

In this article, we explore the modeling and formal verification of models spec-
ified in the Reo [2] and constraint automaton [10] framework. Reo is a channel-
based, exogenous coordination language, where the glue code that organizes the
interactions of the components is provided by a network of channels. In the ex-
ogenous setting, the components themselves are not aware of the context in which
they are used, providing a clean separation between computation inside the com-
ponents and coordination. To facilitate hierarchical modeling, a Reo network can
be regarded as a component connector and can then be used in a higher level
network of the model as a basic building block, hiding the internal behavior and
implementation details. A library of commonly used channels capturing various
synchronous and asynchronous behavior and connectors implementing common
coordination patterns, as well as the ability to use custom channels and compo-
nent connectors allows for the modeling of a wide variety of communication and
coordination scenarios. Constraint automata serve as the uniform operational
semantics for both the interface behavior of the components as well as for the
coordination mechanisms arising from the connector glue. The constraint au-
tomata semantics of Reo is compositional, i.e., the behavior of the constituent

M. Bernardo and V. Issarny (Eds.): SFM 2011, LNCS 6659, pp. 114–147, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Modeling and Verification of Components and Connectors 115

parts of a Reo network, i.e., channels, connectors and the nodes where chan-
nels are joined together, can be captured by constraint automata and a product
automata construction yields the composite behavior.

Adapting well-known formal verification techniques such as model checking of
linear-time [29,31] or branching-time [16] properties to the Reo and constraint
automata framework thus allows the specification and verification of coordina-
tion mechanisms and components, both in isolation and in concert.

Outline. We first present the basic principles of constraint automata in Section 2
and provide an overview of the coordination language Reo and its constraint
automata semantics in Section 3. In Section 4 we present the logics LTLIO [8] and
BTSL [26] for specifying linear-time and branching-time properties in the Reo and
constraint automata context. We also provide a brief description of the model
checking algorithms used to verify such properties and for checking bisimulation
equivalence [8,11]. Furthermore, we sketch the main features of our modeling
and verification tool-kit Vereofy [12,7]. Section 5 addresses the synthesis problem
where a component connector is given as a constraint automaton A and where
the task is to provide Reo code (a network of channels) realizing A.

Elevator Controller Requests

Fig. 1. A simple model for an elevator control system

As a running example in this article, we will use a simple elevator control
system. An overview of the basic structure of the system is depicted in Fig. 1.
The Elevator component models the elevator, keeping track of the current level
of the elevator and responding to action requests, i.e., to move up or down. The
Requests component models the generation of requests by the users, while the
Controller is then responsible for controlling the elevator. The controller can
query the elevator for its current location and send action requests, as well as
accept new user requests.

2 Constraint Automata

Constraint automata (CA) [10] provide a generic operational model to formalize
the behavioral interfaces of the components, the network that coordinates the
components (i.e., the glue code or connector), and the composite system con-
sisting of the components and the glue code. Constraint automata are variants
of labeled transition systems (LTS) where the labels of the transitions repre-
sent the (possibly data-dependent) I/O-operations of the components and the
network. They support any kind of synchronous and asynchronous peer-to-peer
communication. The states of a constraint automaton represent the local states
of components and/or configurations of a connector.

116 C. Baier, J. Klein, and S. Klüppelholz

To formalize the I/O-activity, constraint automata use a finite set N of data-
flow locations, where each element of A ∈ N stands for a data-flow location
where I/O can occur, such as the interface ports of components, nodes in the
connector network, etc. To simplify the presentation in this paper, we assume
that the data items that may occur at each data-flow location are elements of
a finite, global data domain Data. Each transition of a constraint automaton is
labeled by a pair (N, g), where N ⊆ N is a set of active data-flow locations
and g is a data constraint which restricts the possible data items at the active
data-flow locations in N . Formally, data constraints are propositional formulas
built from the atoms “dA = d”, where data item d ∈ Data occurs at data-flow
location A ∈ N , and “dA = dB”, where the data items at data-flow locations A
and B, with A, B ∈ N , are the same.

Definition 1 (Data constraints). Data constraints are given by the following
grammar:

g ::= true | dA = d | dA = dB | g1 ∨ g2 | ¬g

where A, B ∈ N and d ∈ Data. For a subset N ⊆ N , we denote the set of data
constraints using only atoms of the form “dA = d” and “dA = dB” with A, B ∈ N
by DC (N). Other standard propositional operators such as conjunction (∧) or
implication (→) can be derived as usual. dA �= d stands shortly for ¬(dA = d).

�

Definition 2 (Constraint automata). A constraint automaton is a tuple
A = (Q,N ,Nin,Nout,−→, Q0) where

– Q is a finite set of states,
– N is a finite set of data-flow locations,
– Nin and Nout are disjoint subsets of N ,
– −→ is a subset of Q × 2N × DC (N) × Q,
– Q0 ⊆ Q is the non-empty set of initial states.

We write q
N,g−−→ p instead of (q, N, g, p) ∈−→. For every transition q

N,g−−→ p, we
require that g ∈ DC(N), i.e., that the data constraint only refers to data at the
active data-flow locations A ∈ N . �

To simplify the presentation of this article, we describe our logical approach
under the assumption that there are no terminating behaviors. This assumption
can be seen as requiring that no state in the constraint automaton is terminal,
i.e., for every state q ∈ Q there is at least one outgoing transition q

N,g−−→ p with
g being a satisfiable data constraint. This assumption is somehow unrealistic, as
deadlock situations may arise in practice, e.g., when the requested interactions
of the components are contradicting. The simultaneous treatment of infinite and
terminating behavior causes some minor technical difficulties (e.g. [26]), which
are avoided here for the sake of a clear and simple presentation of the major
concepts.

Modeling and Verification of Components and Connectors 117

The subsets Nin and Nout of N provide a characterization of the corresponding
data-flow locations as being available for an external connection, which later
becomes important during the composition of the constraint automata for the
components and the network. Data-flow locations in N that are not elements of
either Nin or Nout can be regarded as internal data-flow locations.

Due to the data constraint, each transition stands for a set of concurrent I/O-
operations, which formalizes the assignment of concrete data values to the active
data-flow locations.

Definition 3 (Concurrent I/O-operations (CIO)).
A concurrent I/O-operation is a partial function assigning data values to the
data-flow locations, i.e., a function c : N → Data ∪ {⊥}, where the symbol ⊥
means “undefined”. We write active(c) for the set of data-flow locations A ∈ N
with c(A) ∈ Data. The empty concurrent I/O-operation, denoted ε, is the unique
concurrent I/O-operation where active(ε) = ∅. CION , or briefly CIO, denotes
the set of all concurrent I/O-operations (including ε). The set of concurrent
I/O-operations consistent with a transition label N, g is then defined as:

CIO(N, g) def= {c ∈ CIO : active(c) = N ∧ c |= g},
where c |= g stands for the obvious satisfaction relation which results from
interpreting the data constraint g over the data assignments given by c. �

Remark 1. The empty concurrent I/O-operation ε represents any step in the
automaton where no data flow at some A ∈ N is observable. It can represent an
internal step of some component or a non-observable step of the coordination
network where data flow appears at most at some “hidden nodes” of the network
(cf. Def. 6 in Sec. 3).

Definition 4 (Executions, paths, I/O-streams)
Let A = (Q,N ,Nin,Nout,−→, Q0) be a constraint automaton. An execution in
A is a finite or infinite sequence

η = q0
c1−→ q1

c2−→ . . .

where, for all i ≥ 0, qi ∈ Q, ci ∈ CIO, and ci ∈ CIO(N, g) for some transition

qi
N,g−−→ qi+1 in A, i.e., where each step from state to state is a valid concurrent

I/O-operation in the automaton.
As stated above, in this paper we focus on infinite behaviors and assume that

for each state q ∈ Q there is at least one transition q
N,g−−→ p such that g �≡ false.

We define a path of A to be an infinite execution and write Paths(q) to denote
the set of all paths starting in state q ∈ Q. Let π = q0

c1−→ q1
c2−→ . . . be a path

and 0 ≤ n. Then, π↓n denotes the prefix of path π with length n and π↑n the
suffix starting at the n-th state. Thus,

π↓n
def= q0

c1−−→ . . .
cn−−−→ qn

π↑n
def= qn

cn+1−−−→ qn+1
cn+2−−−→ qn+2

cn+3−−−→

118 C. Baier, J. Klein, and S. Klüppelholz

The notion of an I/O-stream for constraint automata corresponds to action
sequences in LTS. The I/O-stream ios(η) of a finite execution η is the finite
word over CIO that is obtained by taking the projection to the labels of the
transitions. Formally, if η = q0

c1−→ . . .
cn−→ qn is a finite execution then

ios(η) def= c1 . . . cn ∈ CIO∗. �

Elevator Controller Requests

Up

Down

Level

Up

Down

Level

From

To

From

To

Fig. 2. A refined version of the elevator control system

Example 1. Fig. 2 shows a refined version of the elevator control system as pre-
sented earlier in the introduction of this paper. Here we made the communication
structure more explicit. The Elevator component may receive action requests via
its interface ports Up and Down, resulting in a move of the elevator by one level.
The current position of the elevator can be queried using its interface port Level.

The Requests component modeling the user requests has two interface ports,
which provide the current level of the user requesting the elevator (From) and
the destination level (To). We assume here that the users provide their desired
destination at the moment they request the elevator. The Controller compo-
nent has corresponding interface ports for communicating with the Elevator and
Requests component.

We now consider constraint automata for parts of the elevator system. For
an elevator system with k levels, we assume the global data domain Data =
{1, . . . , k}, i.e., a finite set of natural numbers for encoding the different requests
and the level information.

Fig. 3 shows a constraint automaton for the Elevator component for three
levels. As the data values for the action requests Up and Down are irrelevant,

{Up}, true

{Down}, true{Down}, true

level3level1

{Up}, true

level2

{Level}, dLevel = 2{Level}, dLevel = 1 {Level}, dLevel = 3

N = {Level ,Up,Down}, Nin = {Up,Down}, Nout = {Level}

Fig. 3. Constraint automaton for the Elevator component (3 levels)

Modeling and Verification of Components and Connectors 119

{From,To}, dFrom �= dTo

N = {From,To}, Nin = ∅, Nout = {From,To}

Fig. 4. Constraint automaton for a simple variant of request generation

the data constraints at these transitions are always satisfied. For the transitions
where the data-flow location Level is active, the data constraint ensures that the
correct current level of the elevator is transferred.

The users are modelled in a highly abstract way. Fig. 4 shows a constraint
automaton where requests are generated non-deterministically and are simulta-
neously transferred with the current location and the desired destination via the
two interface ports. The data constraint ensures that no non-sensical request is
generated, where the current location and the destination are the same. �

3 The Coordination Language Reo

Reo [2] is a channel-based, exogenous coordination language. It allows the spec-
ification of the coordination glue between components by a network of channels,
component connectors and Reo nodes. Reo channels serve as the primitive build-
ing blocks for the network. Each channel has two distinct channel ends. A channel
end can be either a source end, through which data enters a channel or a sink
end, through which data leaves a channel. The operational semantics of Reo
networks can be provided in a compositional way using constraint automata for
the channels and an appropriate composition operator on constraint automata
for the Reo join operation, which joins channel ends together to form Reo nodes
in the network.

Reo provides a library of basic channels, which can be extended by user-
defined channels. Fig. 5 shows some of the most common channels and their
constraint automata representation. The synchronous channel – Fig. 5a – syn-
chronizes its source end and its sink end, transferring the data item from the
source end A to the sink end B. The synchronous drain channel – Fig. 5b – has
two source ends and synchronizes both of them, consuming both data values.
Note that the data constraint in the corresponding constraint automaton does
not require both data values to have the same value. The filter channel – Fig. 5c
– is an example for a channel with data-dependent behavior. The filter condi-
tion is here formalized by a subset D ⊆ Data. If the data value d ∈ Data at the
source end of the filter channel is acceptable, i.e., d ∈ D, the filter channel be-
haves like the synchronous channel and passes the data value to the sink end B.
Otherwise, the channel blocks. Fig. 5d shows a FIFO1 channel, which can store a
single value d ∈ Data in its buffer received at the source end, which is then once
available for reading at the sink end. The constraint automaton for the FIFO1
channel is depicted here for the data domain Data = {0, 1}. The state called ∅

120 C. Baier, J. Klein, and S. Klüppelholz

{A, B}, dA = dB

{A, B}, true

{A, B}, dA = dB ∧ dA ∈ D

a) Synchronous channel

b) Synchronous drain

c) Filter channel

d) FIFO1 channel

D

∅1 0
{A}, dA = 0{A}, dA = 1

{B}, dB = 0{B}, dB = 1

A

A

A

A

B

B

B

B

N = {A, B}, Nin = {A}, Nout = {B}

N = {A, B}, Nin = {A, B}, Nout = ∅

N = {A, B}, Nin = {A}, Nout = {B}

N = {A, B}, Nin = {A}, Nout = {B}

Fig. 5. Basic Reo channels and the corresponding constraint automaton. For the FIFO1
channel, the constraint automaton is shown for Data = {0, 1}.

represents the configuration where the buffer is empty, while the states 0 and
1 represent the configurations where the buffer contains the corresponding data
value. The library of channels available as building blocks for the Reo network
can be extended by specifying the type of channel ends and the corresponding
constraint automaton.

A Reo network arises by joining channel ends at Reo nodes which mediate
the data flow of all the channel ends coinciding at a node. In this article, we use
two variants of nodes: the standard Reo node (depicted as) and the route node
(depicted as). As an example, consider the Reo network depicted in Fig. 6. The
left hand side shows the channels with their channel ends before being connected
to the nodes, while the right hand side shows the network after the channel ends
have been joined at the nodes.

Modeling and Verification of Components and Connectors 121

A

B

C

D

E

F

G

H

I

A

B

C1

C2

C3

C4

D1 D2

E1 E2

F1 F2

F3

G1 G2

G3

H

I

a) b)

Fig. 6. A Reo network, before (a) and after (b) the channel ends are joined in Reo
nodes

Nodes can be classified according to the type of the channel ends connected
to them. A node where all the channel ends are source ends is called a source
node. If all the channel ends are sink ends it is called a sink node. A node where
both types of channel ends coincide is called a mixed node. A mixed Reo node
with standard semantics – such as nodes D, E, F, G in Fig. 6b – is active (with
data value d ∈ Data) if both of the following conditions hold:

(S1) Exactly one of the sink ends coinciding at the node is active,
with data value d.

(S2) All of the source ends coinciding at the node are active with
data value d.

Condition (S1) serves to ensure that a node acts as a non-deterministic merger,
choosing exactly one of the channel ends capable of providing data at the mo-
ment. Condition (S2) then ensures the replication of the data as the received
data value is copied to all the connected source ends simultaneously. Thus, a
data item is suitable for selection only if it can be passed on to all the connected
source ends.

A mixed node with route semantics – such as node C in Fig. 6b – is active
(with data value d ∈ Data) if both of the following conditions hold:

(R1) Exactly one of the sink ends coinciding at the node is active
with data value d.

(R2) Exactly one of the source ends coinciding at the node are
active, with data value d.

Condition (R1) is the same as (S1) for the standard Reo nodes, while condition
(R2) replaces the replicator semantics of the standard Reo node with a routing
semantic, where the received data value is routed to exactly one of the connected
source ends.

Source nodes – such as nodes A and B in Fig. 6b – and sink nodes – such
as nodes H and I in Fig. 6b – can be regarded as open for reading and writing
respectively, and serve as the exported interface ports when regarding the Reo
network as a component connector. A source node with the standard semantics is
active if condition (S2) is satisfied, while a sink node with the standard semantics
is active if condition (S1) is satisfied. For source and sink nodes with routing
semantics, the same applies with regard to conditions (R2) and (R1) respectively.

122 C. Baier, J. Klein, and S. Klüppelholz

A1 A2 A3

{A1}, true

{A2}, true

{A3}, true

〈•, ∅, ∅〉

〈∅, •, ∅〉

〈∅, ∅, •〉

N = Nin = {A1, A2, A3}
Nout = ∅

Fig. 7. Component connector realizing a Sequencer with three ports and the corre-
sponding constraint automaton where the internal data-flow locations are “hidden”
(see Sec. 3.1)

Example 2. We now briefly describe the behavior of the Reo network depicted in
Fig. 6b. Data may enter the network at either node A or node B. The route node
C ensures that only one of these ports is simultaneously active, as it chooses one
of the channel ends C1 and C2. The data is routed to one of the channel ends C3

and C4 and thus to either node D or E, i.e., one of the two FIFO1 channels if it
is able to accept a new data value. Node F can only be active if the upper FIFO1
channel is full, i.e., a data item may be read via channel end F1, and if the data
value can be copied to both the F2 and F3 channel ends, i.e., the source end of
the synchronous channel to node H and the upper source end of the synchronous
drain channel. As a consequence, the synchronous drain channel between nodes
F and G ensures that data may only be read from both FIFOs simultaneously.

�

Reo networks can be used to coordinate the communication between compo-
nents connected to it via the interface ports of the components. The interface
ports are for this purpose treated just like sink or source channel ends. To fa-
cilitate hierarchical modeling, a given Reo network can also be regarded as a
component connector with interface ports, which may then be used as a build-
ing block in higher-level Reo networks providing a specific coordination pattern.
The sink and source nodes of the Reo network of a component connector become
the interface ports of the connector. Consider as an example the Reo network
realizing a Sequencer component connector with three input ports depicted in
Fig. 7. The FIFO1 channel on the left is initially filled with a token, which is
sequentially passed to the next FIFO1 channel in each step if a data item at the
corresponding source node can be consumed. When a component connector such
as the Sequencer is used at a higher level, the specifics of the internal realization
are abstracted (“hidden”) and it becomes a basic building block providing a
specific coordination behavior at its interface ports. Component connectors may
also be specified directly by providing their behavior as a constraint automaton,
just like user defined channels. Channels can be regarded as simple component
connectors with exactly two interface ports.

Modeling and Verification of Components and Connectors 123

Writer:{1, . . . , k}

Writer:{1, . . . , k}

Writer: {1}

Writer : {k}

...

�= 1

�= k

Reqk

Req1

FromTo

To1

Tok “User at level k”

“User at level 1”

Fig. 8. Reo network for buffered request generation for k levels

Example 3. As a further example, consider the Reo network in Fig. 8, which
depicts a refinement of the Requests component in the elevator system. In this
network, requests are initiated by one of the components representing the user
located at a certain level (“User at level i”), modeled by a simple Writer compo-
nent. These components produce data items non-deterministically chosen from
a set of data items, in this case from the potential destination levels. A filter
channel then blocks those destination choices that would be non-sensical, i.e.,
where the user is at level i and requests to go to the same destination i. The
request is transferred via node Reqi into a FIFO1 channel. Whenever a new
request is needed by the Controller via the To interface port, one of the full
FIFO1 channels is non-deterministically chosen and the stored data item is out-
put via To. The synchronous drain channels then ensure that simultaneously
the corresponding current level of the request is provided by the Writer at the
corresponding level and transferred via the interface port From. �

3.1 Constraint Automata as the Operational Semantics for Reo

Given constraint automata for all parts of a Reo network, i.e., for the channels
and component connectors, for the nodes and the components, it is possible to
compositionally build a constraint automaton representing the composite sys-
tem [10]. The construction relies on the parallel composition of the constraint
automata of all parts of the system using an appropriate product automata con-
struction for constraint automata with synchronous data-flow at shared data-flow
locations.

Definition 5 (Product automaton). The product automaton of two con-
straint automata

A1 = (Q1,N1,N 1
in,N 1

out,−→1, Q0,1) and A2 = (Q2,N2,N 2
in,N 2

out,−→2, Q0,2)

is the constraint automaton

A1 �� A2 = (Q1 × Q2, N1 ∪ N2, Nin, Nout, −→, Q0,1 × Q0,2)

124 C. Baier, J. Klein, and S. Klüppelholz

where the transition relation −→ of the product constraint automaton is defined
by the following rules:

q
N1,g1−−−−→1 q′ ∧ p

N2,g2−−−−→2 p′ ∧ N1 ∩ N2 = N2 ∩ N1

〈q, p〉 N1∪N2,g1∧g2−−−−−−−−−→ 〈q′, p′〉

q
N1,g1−−−−→1 q′ ∧ N1 ∩N2 = ∅

〈q, p〉 N1,g1−−−−→ 〈q′, p〉
p

N2,g2−−−−→2 p′ ∧ N2 ∩ N1 = ∅

〈q, p〉 N2,g2−−−−→ 〈q, p′〉
The first rule for the transition relation for the product automaton handles the
case that both automata perform a step at the same time, requiring that the
active data-flow locations shared by both automata agree. The second and the
third rule handle the case that only one of the automata performs a step, which
may only happen if none of the active data-flow locations is shared with the
other automaton.

We require that for all data-flow locations A ∈ N1 ∩ N2 shared between A1

and A2, either A ∈ N 1
in and A ∈ N 2

out or A ∈ N 1
out and A ∈ N 2

in, i.e., that only
appropriate data-flow locations are “plugged together”. The sets Nin and Nout

in the product automaton then consist of the remaining data-flow locations that
are not shared, i.e.,

Nin = (N 1
in ∪N 2

in) \ (N1 ∩ N2) and Nout = (N 1
out ∪ N 2

out) \ (N1 ∩ N2).

�

The compositional approach for generating the constraint automaton for a Reo
network relies on the assumption that we are given separate constraint automata
for all channels in the Reo network and for the component connectors and com-
ponents. The application of the product construction given in Def. 5 requires
some renaming of the data-flow locations. In the constraint automata for the
channels, the data-flow locations are renamed to the corresponding names used
in the Reo network. E.g., the constraint automaton for the synchronous channel
with channel ends C3 and D1 in Fig. 6a is obtained from the generic constraint
automaton for the synchronous channel depicted in Fig. 5a by renaming the
data-flow location A to C3 and renaming B to D1. Similarly, such a renaming is
applied to the constraint automata for component connectors and components
to map their interface ports to the names used in the Reo network. We assume
here that the names used in the Reo network for the channel ends and imported
interface ports are distinct. For all Reo nodes in the network we construct ap-
propriate constraint automata that ensure the correct node semantics for the
coinciding channel ends. As an example, Fig. 9 shows the constraint automata
for the nodes C and F in Fig. 6b. The constraint automata for the nodes share
data-flow locations with the coincident channel ends and can thus coordinate the
data flow for the connected channels. The constraint automaton for the compos-
ite system is then the product automaton of all the constraint automata for the
channels, component connectors, nodes and components.

Modeling and Verification of Components and Connectors 125

{C1, C3, C},
dC1 = dC3 = dC

{C1, C4, C},
dC1 = dC4 = dC

{C2, C3, C},
dC2 = dC3 = dC

{C2, C4, C},
dC2 = dC4 = dC

{F1, F2, F3, F},
dF1 = dF2 = dF3 = dF

a) b)

N = {C1, C2, C3, C4, C},
Nin = {C1, C2}, Nout = {C3, C4}

N = {F1, F2, F3, F},
Nin = {F1}, Nout = {F2, F3}

Fig. 9. Constraint automata for a) the route node C and b) the standard Reo node F
in Fig. 6

Hiding. The hide operator for constraint automata provides a means to declare
certain data-flow locations as local and non-observable from outside. This can,
e.g., be used to abstract from internal behavior of a component connector or
Reo network or remove information about the channel ends.

Definition 6 (Hiding). Let A = (Q,N ,Nin,Nout,−→A, Q0) be a constraint
automaton. The result of hiding a data-flow location A ∈ N from A is the
constraint automaton

A′ = (Q, N \ {A}, Nin \ {A}, Nout \ {A}, −→A′ , Q0).

The transition relation −→A′ is given by:

q
N,g−−→A p

q
N\{A},∃[A]g−−−−−−−−→A′ p

where ∃[A]g =
∨

d∈Data

g[dA/d].

Here, we write g[dA/d] to denote the data constraint obtained from g by syn-
tactically replacing all occurrences of atoms of the form “dA = d′” by “true” if
d = d′ and by “¬true” if d �= d′, as well as replacing the atoms of the form
“dA = dB” for some B ∈ N with “dB = d”. �

As an example, reconsider the Reo network in Fig. 6b. The corresponding prod-
uct automaton for this Reo network is depicted in Fig. 10, after hiding the
channel ends and for the data domain Data = {0, 1}. The state space of the
constraint automaton consists of the Cartesian product of the local state spaces
of the two FIFO1 channels in the network. Recall that the states of a FIFO1
channel for this data domain are ∅ if the buffer is empty or 0 or 1 if the buffer
is full and contains that value.

126 C. Baier, J. Klein, and S. Klüppelholz

〈∅,∅〉

〈0,∅〉 〈1,∅〉〈∅,0〉 〈∅,1〉

〈0,1〉〈0,0〉 〈1,1〉〈1,0〉
{F,G, H, I},
dF =dH = 0∧
dG =dI =0

{F,G, H, I},
dF =dH = 0∧
dG =dI =1

{F,G, H, I},
dF =dH = 1∧
dG =dI =0

{F,G, H, I},
dF =dH = 1∧
dG =dI =1

{A, C,D}, gAD0

{B, C,D}, gBD0 {B, C,E}, gBE1

{A, C,E}, gAE1{A, C,E}, gAE0

{B, C,E}, gBE0 {B, C,D}, gBD1

{A, C,D}, gAD1

{A, C,E}, gAE0

{B, C,E}, gBE0 {B, C,E}, gBE1

{A, C,E}, gAE1

{B, C,D}, gBD1

{A, C,D}, gAD1

{B, C,E}, gBE1

{A, C,E}, gAE1

{B, C,D}, gBD1

{A, C,D}, gAD1

{A, C,E}, gAE0

{B, C,E}, gBE0

{A, C,D}, gAD0

{B, C,D}, gBD0

{A, C,D}, gAD0

{B, C,D}, gBD0

gAD0 : dA = dC = dD = 0
gBD0 : dB = dC = dD = 0
gAE0 : dA = dC = dE = 0
gBE0 : dB = dC = dE = 0

gAD1 : dA = dC = dD = 1
gBD1 : dB = dC = dD = 1
gAE1 : dA = dC = dE = 1
gBE1 : dB = dC = dE = 1

Fig. 10. Constraint automaton for the Reo network in Fig. 6, with Data = {0, 1},
N = {A, B, C, D, E, F, G, H, I}, Nin = {A, B} and Nout = {H, I}

4 Verification of Components and Connectors

Constraint automata yield a general framework for the behavior of a compo-
nent, a connector or a composite system and serve as starting points for model
checking. The model checking problem asks whether a given property holds for
a given automaton. In this framework and the tool Vereofy (see Sec. 4.5), the
properties can be specified by temporal formulas with classical modalities to
formalize safety or liveness conditions, but also constraints on the observable
data flow (I/O-streams). Vereofy supports model checking against linear-time,
branching-time properties formalized in the logics LTLIO or BTSL. The logic LTLIO

(see Sec. 4.2) is a variant of linear temporal logic LTL which is closely related to
dynamic LTL [22] and combines the standard temporal modalities of LTL with
stream expressions. It is appropriate to specify complex temporal conditions
on paths (such as Boolean combinations of reachability, repeated reachability

Modeling and Verification of Components and Connectors 127

or persistence conditions), possibly in combination with regular conditions on
I/O-streams of their prefixes. The logic BTSL (see Sec. 4.3) combines features of
CTL [16,17], PDL [19] and timed data stream logic (TDSL) [3,15]. The standard
CTL-operators are combined with special path modalities that allow reasoning
about the data streams observable at data-flow locations by means of stream ex-
pressions. Section 4.4 outlines the main concepts for checking equivalence based
on bisimulations.

4.1 Atomic Propositions, I/O Constraints and Stream Expressions

Our logical framework to specify properties of systems where the component
interfaces are modeled by constraint automata and their glue code by a Reo
network relies on features that allow to express conditions on 1) the local states
of components or component connectors and 2) the I/O-activity at the data-flow
locations. For the states, we employ the standard concept of atomic propositions,
while for the I/O-activity we use I/O-constraints and stream expressions, i.e.,
regular expressions over the I/O-activity.

Atomic Propositions are used to express primitive statements on the states
of the system under consideration. Given a finite set AP of atomic propositions,
a labeling function L : Q → 2AP assigns to each state q ∈ Q in the constraint
automaton a set of atomic propositions L(q) ⊆ AP that are satisfied in q.

Definition 7 (Labeled Constraint Automaton)
A labeled constraint automaton is a tuple A = (Q,N ,Nin,Nout,−→, Q0, AP, L)
where Q, N , Nin, Nout, −→ and Q0 are as in Def. 2 and where

– AP is a finite set of atomic propositions and
– L : Q → 2AP is a labeling function. �

Example 4. As an example, consider the constraint automaton for the FIFO1
channel in Fig. 5d and the set of atomic propositions

AP =
{
"buffer is empty", "buffer is full", "buffer contains 0"

}
.

The labeling function then maps the initial state ∅ representing the empty
FIFO buffer to the set {"buffer is empty"}. Furthermore, it maps the state
0 to the set {"buffer is full", "buffer contains 0"} and maps state 1 to
{"buffer is full"}. �

I/O-constraints and Stream Expressions. To be able to concisely formalize
sets of I/O-activity, we extend the concept of data constraints to I/O-constraints,
propositional formulas over the activity and the data items at data-flow loca-
tions.

Definition 8 (I/O-constraints). The abstract syntax of I/O-constraints over
the set N of data-flow locations is given by the grammar:

ioc ::= tt
∣∣ A

∣∣ dA = d
∣∣ dA = dB

∣∣ ¬ioc
∣∣ ioc1 ∨ ioc2

128 C. Baier, J. Klein, and S. Klüppelholz

where A, B ∈ N and d ∈ Data. Each I/O-constraint ioc stands for a set of
concurrent I/O-operations ‖ioc‖ ⊆ CION , defined as follows:

‖tt‖ def= CION
‖A‖ def=

{
c ∈ CION : A ∈ active(c)

}
‖dA = d‖ def=

{
c ∈ CION : A ∈ active(c) ∧ c(A) = d

}
‖dA = dB‖ def=

{
c ∈ CION : A, B ∈ active(c) ∧ c(A) = c(B)

}
‖¬ioc‖ def= CION \ ‖ioc‖

‖ioc1 ∨ ioc2‖ def= ‖ioc1‖ ∪ ‖ioc2‖
�

As for the data constraints, we derive the standard propositional operators and
syntactic shorthand notations for data constraints. The notation {A1, . . . , An}
with A1, . . . , An ∈ N , signifying that exactly the data-flow locations A1, . . . , An

are active, is used as a shorthand for∧
A∈N

A ∧
∧

B∈N\N

¬B,

where N = {A1, . . . , An}, i.e.,

‖{A1, . . . , An}‖ =
{
c ∈ CION : active(c) = {A1, . . . , An}

}
.

To impose conditions on the data flow at the I/O-ports of components or nodes
in the network, our logics use a symbolic representation for sets of I/O-streams
by means of regular I/O-stream expressions, briefly called stream expressions.

Definition 9 (Stream expression). The abstract syntax of stream expres-
sions over N is given by the following grammar:

α ::= ioc
∣∣∣ α∗

∣∣∣ α1; α2

∣∣∣ α1 ∪ α2

where ioc ranges over all I/O-constraints over N . The formal definition of the
regular languages IOS(α) ⊆ CIO∗ is defined by structural induction. IOS(ioc) is
the set consisting of the I/O-streams of length 1 given by ioc, i.e., IOS(ioc) =
‖ioc‖. Union (∪), Kleene star (*) and concatenation (;) have their standard
meaning as in ordinary regular expressions. �

4.2 Linear-Time Properties: LTLIO

In this section we describe the logic LTLIO [8], which is adapted from Dynamic
Linear Time Temporal Logic (DLTL) [22] for the context of constraint automata
and I/O-stream expressions. DLTL itself extends LTL with regular expressions to
achieve the full expressiveness of ω-regular languages. For LTLIO the concurrent
I/O-operations over the set N (i.e., the elements in the set CION) serve as names
for actions and the I/O-stream expressions take the role of the propositional
dynamic logic programs (regular expressions) of DLTL.

Modeling and Verification of Components and Connectors 129

Definition 10 (Syntax of LTLIO). The abstract syntax of LTLIO formulas over
AP and N is defined by the following grammar.

ϕ ::= true
∣∣∣ a

∣∣∣ ¬ϕ
∣∣∣ ϕ1 ∧ ϕ2

∣∣∣ ϕ1 Uα ϕ2

where a ∈ AP and α is a stream expression over N as in Def. 9. �

Definition 11 (Semantics of LTLIO)
Let A = (Q,N ,Nin,Nout,−→, Q0, AP, L) be a labeled constraint automaton and
let ϕ be an LTLIO formula over AP and N . Given a path π = q0

c1−→ q1
c2−→ . . . in

A, the satisfaction relation π |= ϕ is defined as follows:

π |= true
π |= a iff a ∈ L(q0)
π |= ¬ϕ iff π �|= ϕ
π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

π |= ϕ1 Uα ϕ2 iff there exists n ≥ 0 such that π↑n |= ϕ2 and
ios(π↓n) ∈ IOS(α) and π↑ i |= ϕ1 for all 0 ≤ i < n

�

Recall that π↓n is the prefix of π of length n, π↑n is the suffix of π starting
at the n-th state, ios(η) is the projection on the corresponding I/O-stream and
IOS(α) is the set of I/O-streams satisfying the stream expression α.

The until operator is indexed by a stream expression α over I/O-constraints.
Intuitively, it is satisfied on a given path if there exists a finite prefix such that
its I/O-stream satisfies α and ϕ1 holds for all the suffixes starting at a state
in this prefix and ϕ2 holds for the suffix starting in the state after the prefix
matching α. In addition to the usual propositional operators (∨, →, ↔, etc.) we
can derive the path modalities 〈〈α〉〉ϕ and [[α]]ϕ by

〈〈α〉〉ϕ def= trueUα ϕ and [[α]]ϕ def= ¬〈〈α〉〉¬ϕ.

Intuitively, 〈〈α〉〉ϕ holds if there exists a prefix whose I/O-stream matches α and
afterwards ϕ holds for the suffix. The dual operator, [[α]]ϕ, holds if for all prefixes
with I/O-streams matching α afterwards ϕ holds for the suffix.

The standard LTL until operator without stream expressions can be derived
by ϕ1 Uϕ2

def= ϕ1 Utt∗ ϕ2, where tt∗ is the stream expression signifying an I/O-
stream of any finite length. We can derive as well the standard LTL operators
“eventually ♦”, “always �” and “neXt X”:

♦ ϕ
def= true Uϕ, �ϕ

def= ¬♦¬ϕ, Xϕ
def= 〈〈tt〉〉ϕ.

Given a constraint automaton A, the model checking problem asks whether all
paths in A starting in an initial state satisfy the formula ϕ:

A |= ϕ
def⇐⇒ π |= ϕ for all π ∈ Paths(q0) and all q0 ∈ Q0

130 C. Baier, J. Klein, and S. Klüppelholz

Example 5. We will now provide some example formulas for the elevator system
with k levels as described in the previous sections. We start with a formula
specifying for the Elevator component (cf. Fig. 3) that the elevator will not
move if there is no Up or Down command:

ϕ1 =
∧

1≤i≤k

(
�
(
"elevator at i" → [[(¬Up ∧ ¬Down)∗]]"elevator at i"

))

Here, the atomic propositions "elevator at i" characterize all states where the
elevator is at level i. For the example automaton in Fig. 3, the labeling function
L maps state level i to L(level i) = {"elevator at i"}. The subformula

[[(¬Up ∧ ¬Down)∗]]"elevator at i"

holds if, for all paths with an I/O-stream prefix that does not contain an active
Up or Down, the elevator is still at level i. This includes the empty I/O-stream
prefix, where no I/O occurred. The whole formula ϕ1 thus holds if for all levels
i it is always the case that whenever the elevator is at level i and some arbitrary
I/O occurs without Up or Down commands the elevator will still be at the same
level i.

Thenext formula specifies for thecomposite systemthatwhenever theController
receives a user request it will be the case that the Elevator services that request:

ϕ2 =
∧

1≤i≤k
1≤j≤k

(
�
(〈〈From ∧ To ∧ dFrom = i ∧ dTo = j〉〉true →

♦("elevator at i" ∧ ♦ "elevator at j")
))

The left hand side of the implication holds whenever a user request is received by
the Controller via the From and To ports. The right hand side of the implication
holds if eventually the elevator visits the level i where the request originated and
then later on eventually visits the requested destination level j.

As a further example, consider the elevator system depicted in Fig. 11 with
two elevators. We assume here that both elevators share the same elevator shaft.
It thus becomes imperative that both elevators do not crash into each other, i.e.,
are at the same level. This property can be specified by the following formula:

ϕ3 =
∧

1≤i≤k

(
�
(
"elevator A at level i" → ¬"elevator B at level i"

))

The Controller has to insure that ϕ3 always holds. Alternatively, it would also
be possible to ensure this property by inserting a Reo network between the
Controller and the elevators that provides appropriate coordination for the ele-
vator commands and blocks those that would lead to an elevator crash. �

Model Checking LTLIO Formulas. To determine whether A |= ϕ, the stan-
dard automata theoretic approach to LTL model checking [32,31] can be used, as
illustrated in Fig. 12. For an LTLIO formula φ, first construct a non-deterministic

Modeling and Verification of Components and Connectors 131

Controller Requests

Up

Down

Level

From

To

From

ToDownB

DownA

UpA

UpB

LevelA
Elevator A

Up

Down

Level

Elevator B

LevelB

Fig. 11. Elevator system with 2 elevators, sharing the same elevator shaft

Büchi automaton recognizing exactly the paths π |= φ (e.g., using the con-
struction in [21]). Non-deterministic Büchi automata (NBA) are similar to non-
deterministic finite automata over finite words, but range over infinite words. The
Büchi acceptance condition specifies a subset of automata states that has to be
visited infinitely often for a path to be accepted. To check whether A |= ϕ, we
construct a non-deterministic Büchi automaton Z¬ϕ for the negation of ϕ. Z¬ϕ

recognizes all the paths that violate ϕ. Then the product automaton A �� Z¬ϕ

is built, resulting in a constraint automaton augmented with a Büchi acceptance
condition. The paths of the product can be viewed as pairs 〈π, s〉 of a path π
in A and a run s for π in Z¬ϕ. The model checking algorithm then searches a
path in the product such that s meets the acceptance condition of Z¬ϕ. If such a
path 〈π, s〉 exists then π is a path in A that violates ϕ. Otherwise no such path
in A violates ϕ and consequently A |= ϕ. In the case that A �|= ϕ, the path in
A violating ϕ can be output to the user as a counterexample to ϕ. This allows
the user to inspect the model and find the cause of the property violation.

Complexity. The complexity of LTLIO model checking depends on two factors,
the size of the constraint automaton and the length of the formula. The non-
deterministic Büchi automaton generated by the algorithm of [21] for a given
formula has in the worst-case an exponentially larger number of states compared
to the length of the formula. The search for an accepting path in the product
of the constraint automaton and the Büchi automaton can then be carried out
in linear time of the size of the product automaton. In practice, the state space
explosion problem tends to be the limiting factor for model checking, as most
formulas used in practice can be translated to Büchi automata of reasonable size
by using optimized algorithms that avoid the potential exponential blowup in
many cases.

Fairness. It is often useful to restrict the behavior of an interleaving model
to those paths that satisfy some fairness constraints, e.g., to rule out infinite
behavior that is considered unrealistic as the activities of some components are

132 C. Baier, J. Klein, and S. Klüppelholz

constraint
automaton A

LTLIO formula ϕ

NBA Z¬ϕ for negated formula

construct the product-CA A �� Z¬ϕ

search for accepting path π in product-CA

A |= ϕ A �|= ϕ, output π as counterexample

¬∃π ∃π

Fig. 12. Schema for model checking an LTLIO formula

ignored forever. In the classical approach (e.g., [20]), fairness is used to rule out
exceptional or “unrealistic” behaviors. Most prominent is process fairness that
serves to discard interleavings that are “unfair” for some processes. Suppose we
are given a parallel system with processes P1, . . . , Pn, then the standard variants
of fairness assumptions can be formalized as LTL formulas

– Unconditional fairness: �♦ "engaged(Pi)"
– Weak fairness: ♦� "enabled(Pi)" → �♦ "engaged(Pi)"
– Strong fairness: �♦ "enabled(Pi)" → �♦ "engaged(Pi)"

where "enabled(Pi)" characterizes states where process Pi may by scheduled
and "engaged(Pi)" asserts that process Pi has actually been scheduled. Uncon-
ditional fairness requires that process Pi is infinitely often scheduled, while weak
fairness requires that, if a process is from some point on continually enabled, it
will be scheduled infinitely often. Strong fairness requires that if a process can
be infinitely often that it will be actually scheduled infinitely often.

In the context of Reo and constraint automata, it is natural to base the fairness
assumptions on the I/O-behavior of nodes, e.g., that a Reo node chooses between
its possible inputs in a fair way. Atomic propositions enabled(ioc) (where ioc is
an I/O-constraint) will be used to assert the enabledness of some concurrent I/O-
operation that satisfies ioc. That is, we suppose that enabled(ioc) is an atomic
proposition such that the labeling function L enjoys the following property:

enabled(ioc) ∈ L(q) ⇔ ∃ q
N,g−−→ q′ : CIO(N, g) ∩ ‖ioc‖ �= ∅

Recall that CIO(N, g) consists of all concurrent I/O-operations consistent with
the transition label N, g and ‖ioc‖ consists of all concurrent I/O-operations con-
sistent with the I/O-constraint ioc.

Modeling and Verification of Components and Connectors 133

For example, the fairness assumptions regarding the activity at some Reo
node A can then be formalized as follows:

– Unconditional fairness: �♦〈〈A〉〉true
– Weak fairness: ♦� enabled(A) → �♦〈〈A〉〉true
– Strong fairness: �♦ enabled(A) → �♦〈〈A〉〉true

The unconditional fairness condition requires that node A will be active infinitely
often, the weak fairness condition requires that, if there is from some point on
continually the possibility of node A being active, that A will be active infinitely
often. The strong fairness condition requires that if A can be active infinitely
often it will be active infinitely often. The flexibility of the I/O-constraints al-
lows the formalization of other, more complex fairness assumptions for the I/O-
behavior, including data dependent fairness conditions. Fairness assumptions
corresponding to process fairness for the Reo framework, e.g., that the activity
of a certain component is scheduled in a fair way, can be formalized as well by
using I/O-constraints that capture all the activity of the component.

Model checking an LTLIO formula ϕ under fairness constraints ψ1, . . . , ψk,
where the ψi’s are LTLIO formulas, can be performed by checking the formula
ϕ′ = (ψ1 ∧ . . . ∧ ψk) → ϕ or by using algorithms adapted to take the fairness
assumptions directly into account.

Example 6. Consider as an example the elevator system where the Requests com-
ponent is realized by the Reo network depicted in Fig. 8. This allows for the
distinction between a request being made by a user at level i, i.e., node Reqi is
active, and the request being transferred to the Controller, i.e., nodes Toi and
To are active.

We can then adapt the formula ϕ2 from Example 5 to specify that whenever a
user request is made (in contrast to the request being received by the Controller
as in ϕ2) that the elevator will eventually service that request:

ϕ4 =
∧

1≤i≤k
1≤j≤k

(
�
(〈〈Reqi ∧ dReqi

= j〉〉true →
♦("elevator at i" ∧ ♦ "elevator at j")

))
Even assuming that the Controller correctly services the request once it becomes
aware of it, i.e., formula ϕ2 holds, formula ϕ4 will in general not be satisfied. It
can be the case that, e.g., a user at level 3 first requests the elevator, with another
user at level 2 subsequently also requesting it. The non-deterministic choice at
the Reo node To is then resolved to transfer the request for the user at level 2 to
the Controller. While the Controller and elevator services this request originating
at level 2, another user at the same level again requests the elevator, and the
non-deterministic choice at node To is again resolved in favor of that user. This
may happen infinitely often, and thus, the buffered user request originating at
level 3 is continuously ignored.

We can introduce a fairness assumption that disallows such unfair, unrealistic
behavior, forcing the Reo node To to resolve the non-determinism in a fair way:

ψfair(To) =
∧

1≤i≤k

(
�♦ enabled(Toi) → �♦〈〈Toi〉〉true

)

134 C. Baier, J. Klein, and S. Klüppelholz

This strong fairness condition requires that whenever node Toi is enabled in-
finitely often, i.e., there is a request buffered in the corresponding FIFO1 chan-
nel, that then it is active infinitely often. Under the fairness assumption ψfair(To)

and assuming that the Controller correctly services the requests it receives, it
can then be shown that ϕ4 holds. �

4.3 Branching Time Stream Logic

In this section we introduce a branching time temporal logic for reasoning about
the control and data flow of a constraint automaton. The logic, called Branching
Time Stream Logic (BTSL) [26], combines features of CTL [16,17], PDL [19] and
timed data stream logic (TDSL) [3,15]. As in CTL, formulas may refer to the
configurations of a component connector (states of a constraint automaton) by
means of atomic propositions a ∈ AP and may use the path quantifiers ∃ and ∀.

Definition 12 (Syntax of BTSL). The abstract syntax of BTSL over AP and
N is given by the following abstract grammar for state formulas Φ and path
formulas ϕ:

Φ := true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2

∣∣∣ ¬Φ
∣∣∣ ∃ϕ

∣∣∣ ∀ϕ

ϕ := Φ1 U
α Φ2

where a ∈ AP and α is a stream expression over N as in Def. 9. �

Derived path modalities. The path modalities 〈〈α〉〉Φ and [[α]]Φ can be derived by
〈〈α〉〉Φ def= (true Uα Φ) and

∃[[α]]Φ def= ¬∀〈〈α〉〉¬Φ and ∀[[α]]Φ def= ¬∃〈〈α〉〉¬Φ.

The standard CTL operators for “next step”, “until” and “eventually” are ob-
tained by XΦ

def= (true Utt Φ) = 〈〈tt〉〉Φ, Φ1 U Φ2
def= (Φ1 Utt∗ Φ2) and ♦Φ

def=
(true UΦ). The definition of the always operator � in BTSL is as follows:

∃�Φ
def= ¬∀(true U¬Φ) and ∀�Φ

def= ¬∃(true U¬Φ).

Other Boolean connectives, like disjunction or implication, are obtained in the
obvious way.

Definition 13 (Semantics of BTSL)
Let A = (Q,N ,Nin,Nout,−→, Q0, AP, L) be a labeled constraint automaton.
The satisfaction relation |= for BTSL state formulas is defined as follows:

q |= true
q |= a ⇐⇒ a ∈ L(q)
q |= ¬Φ ⇐⇒ q �|= Φ
q |= Φ1 ∧ Φ2 ⇐⇒ q |= Φ1 and q |= Φ2

q |= ∃ϕ ⇐⇒ there exists a path π ∈ Paths(q) s.t. π |= ϕ
q |= ∀ϕ ⇐⇒ for all paths π ∈ Paths(q): π |= ϕ

Modeling and Verification of Components and Connectors 135

The meaning of a path formula is as follows. Let π = q0
c1−→ q1

c2−→ . . . be a path
in A. Then,

π |= Φ1 Uα Φ2 iff there exists n ∈ N such that ios(π↓n) ∈ IOS(α)
and qi |= Φ1 for all 0 ≤ i < n and qn |= Φ2

�

Let Sat(Φ) = {q ∈ Q | q |= Φ} be the satisfaction set of state formula Φ,
consisting of all the states that satisfy Φ. A constraint automaton A then fulfills
formula Φ, denoted as A |= Φ, if q0 |= Φ for all initial states q0 ∈ Q0, i.e.,
Q0 ⊆ Sat(Φ).

Example 7. As an example we revisit the elevator system and provide some
BTSL formulas. The formulas below can either be interpreted for the Elevator
component in isolation (cf. Fig. 3) or for the composite system as a whole. The
first formula Φ1 states the existence of a path with a certain prefix which ends
in a state where the elevator reached the third level.

Φ1 = ∃〈〈({Level } ∧ dLevel = 1)∗; {Up }; ({Level } ∧ dLevel = 2)∗;

{Up }; ({Level } ∧ dLevel = 3)∗〉〉"elevator at 3"

The I/O-stream of the path must be in the language of the given stream expres-
sion, stating that Up will be active exactly two times and there might be a finite
number of requests for the current level information along this path.

The second formula Φ2 states in essence that requesting the level information
only, without performing any move, does not change the level of the elevator.
Even more, we can specify that the fact that certain sequences of moves of the
elevator eliminate the effect on its level. The formula Φ3 formalizes this fact for
sequences of arbitrary length consisting of either an Up followed by a Down or
a Down followed by an Up move.

Φ2 =
∧

1≤i≤k

(
"elevator at i" → ∀[[{Level }+]]"elevator at i"

)
Φ3 =

∧
1≤i≤k

(∀[[{step }∗; ({Level } ∧ dLevel = i);

(({Up }; {Down }) ∨ ({Down }; {Up }))∗]]"elevator at i"
)

The next formula Φ4 states that incoming requests from level 1 ≤ i ≤ k to
destination 1 ≤ j ≤ k have a chance of being answered eventually.

Φ4 =
∧

1≤i,j≤k

(
∀[[step∗; {From,To } ∧ dFrom = i ∧ dTo = j]]

∃♦
(
"elevator at i" ∧ ∃♦("elevator at j")

))

136 C. Baier, J. Klein, and S. Klüppelholz

Model Checking BTSL Formulas. The model checking problem for BTSL asks
whether, for a given constraint automaton A and BTSL state formula Φ, all initial
states q0 of A satisfy Φ. The main procedure for BTSL model checking follows
the standard approach for CTL-like branching time logics [16] and recursively
calculates the satisfaction sets

Sat(Ψ) def= {q ∈ Q : q |= Ψ}
for all subformulas Ψ of Φ. To compute the satisfaction sets of ∃(Φ1 Uα Φ2) and
∀(Φ1 Uα Φ2), we follow an automata-theoretic approach which resembles the stan-
dard automata-based LTL model checking procedure and relies on a represen-
tation of α by means of a finite automaton Z and the model checking of BTSL
state formulas of the form ∃(Ψ1 UΨ2) and ∀(Ψ1 UΨ2), respectively, in the product
of A and Z. Using standard methods for regular languages, we first generate a
finite automata Z over the alphabet CIO such that the accepted language of Z
agrees with IOS(α). In the sequel, let

Z = (Z, CIO,−→Z , Z0, ZF),

where Z stands for the state space, Z0 denotes the set of initial states, ZF is
the set of final (accept) states and −→Z⊆ Z × CIO × Z the transition relation.
In fact, Z can be viewed as a constraint automaton where the set ZF plays the
role of the labeling function which separates the final states from the non-final
states. Given A and Z, we built the product A �� Z, similar to the product of
finite automata and the product operator for constraint automata.

Let A be a constraint automaton as in Def. 2 and Z an NFA as above.
Furthermore, let Φ be a BTSL state formula. We define the constraint automaton
A ��Φ Z, or briefly A �� Z if Φ is clear from the context, as follows:

A �� Z def= (S,N ,−→, S0, AP′, L′).

As the distinction between input and output data-flow locations is irrelevant at
this level, we ignore Nin and Nout. The state space S is Q×Z, the set of initial
states is given by S0

def=
{ 〈q0, z0〉 : q0 ∈ Q0 and z0 ∈ Z0

}
. The transitions

in A �� Z are obtained by the following synchronization rule for concurrent
I/O-operations c ∈ CIO, states q in A and states z ∈ Z:

q
N,g−−→ q′ ∧ c ∈ CIO(N, g) ∧ z

c−→Z z′

〈q, z〉 N,gc−−−→ 〈q′, z′〉
where gc is a data constraint enforcing the data assignments, i.e., such that
CIO(N, gc) = {c}. The set of atomic propositions inA �� Z is AP′ = {aΦ, accept},
while the labeling function L′ is given by the requirements (i) aΦ ∈ L′(〈q, z〉) iff
q |= Φ and (ii) accept ∈ L′(〈q, z〉) iff z ∈ ZF .

The following lemmas formalize the reduction of the model checking problem
for BTSL state formulas of the form ∃(Φ1 Uα Φ2) and ∀(Φ1 Uα Φ2) to the problem
of computing satisfaction sets for formulas of the type ∃(Ψ1 UΨ2) and ∀(Ψ1 UΨ2)

Modeling and Verification of Components and Connectors 137

in the product, respectively (see Fig. 13). For the treatment of formulas of the
form ∀(Φ1 Uα Φ2) we have to construct a deterministic finite automaton (DFA)
Z for a stream expression α rather than a non-deterministic finite automaton
(NFA) which may cause an exponential blowup in the size of Z.

Lemma 1 (Treatment of ∃(Φ1 Uα Φ2)). Let A be a constraint automaton, and
Z = (Z, CIO,−→Z , Z0, ZF) an NFA for a stream expression α. Furthermore,
let q be a state in A, and Φ1 and Φ2 BTSL state formulas. Then, the following
statements are equivalent:

(a) q |= ∃(Φ1 Uα Φ2) in A
(b) 〈q, z0〉 |= ∃(aΦ1 U (aΦ2 ∧ accept)) in A �� Z for some z0 ∈ Z0

Lemma 2 (Treatment of ∀(Φ1 U
α Φ2)). Let A, α, Φ1, Φ2 be as in Lemma 1

and Z = (Z, CIO,−→Z , z0, ZF) be a DFA for a stream expression α. Then, for
all states q ∈ Q the following statements are equivalent:

(a) q |= ∀(Φ1 Uα Φ2) in A
(b) 〈q, z0〉 |= ∀(aΦ1 U (aΦ2 ∧ accept)) in A �� Z

constraint
automaton A

NFA Z for α

BTSL state formula
∃(Φ1 U

α Φ2)

construct the product-CA A �� Z
compute the set of states q in A s.t.

〈q, z0〉 |= ∃(aΦ1 U(aΦ2 ∧ accept))

A |= ∃(Φ1 U
α Φ2) A �|= ∃(Φ1 U

α Φ2)

q �∈ Sat(·)q ∈ Sat(·)

Fig. 13. Schema for the treatment of ∃(Φ1 U
α Φ2)

Complexity. The complexity of BTSL model checking, i.e., computing the satis-
faction sets of ∃(Φ1 Uα Φ2) and ∀(Φ1 Uα Φ2), is polynomial in the size of A and
finite automaton Z for α. Thus, the overall time complexity of BTSL model check-
ing for formulas of the form ∃(Φ1 Uα Φ2) is polynomial in the size of A and the
size of the input formula Φ, whereas the complexity for formulas of the form
∀(Φ1 Uα Φ2) is polynomial in the size of A and exponential in the length of the
input formula Φ due to the determinization of Z.

138 C. Baier, J. Klein, and S. Klüppelholz

4.4 Bisimulation Equivalence for Constraint Automata

The problem of checking bisimulation equivalence appears naturally in the design
and optimization of complex systems. For example, given a complex component
connector C that uses many internal channels, one might ask whether C can
be replaced by a simpler connector C′ that is cheaper according to some cost
function. One possibility to verify that C and C′ realize the same coordination
mechanism is to prove the bisimulation equivalence of the constraint automata
associated with C and C′. Furthermore, bisimulation equivalence can also serve
as a specification formalism. For example, the specification of a connector might
be provided by means of a constraint automaton Aspec and the task is to provide
the code for a connector C in Reo such that the constraint automata for C and
Aspec are bisimulation equivalent.

Definition 14 (Bisimulation)
Let A = (Q,N ,Nin,Nout,−→, Q0, AP, L) be a labeled constraint automaton. An
equivalence relation R on Q is called bisimulation for A if for all pairs (q1, q2) ∈ R
the following two conditions (i) and (ii) are satisfied:

(i) L(q1) = L(q2)
(ii) CIO(q1, P) = CIO(q2, P) for all R-equivalence classes P ∈ Q/R
where CIO(q, P) for q ∈ Q and P ⊆ Q denotes the set of all I/O-operations that
are enabled in state q and can lead to a state in P , i.e.,

CIO(q, P) =
{

c ∈ CIO : q
N,g−−→ p for some p ∈ P and c ∈ CIO(N, g)

}
.

Two states q1, q2 ∈ Q are called bisimilar (or bisimulation equivalent) iff there
exists a bisimulation R with (q1, q2) ∈ R. �

As usual, the above definition of bisimulation equivalence for the states of a single
constraint automaton can be adapted to define bisimulation equivalence of two
constraint automata. Suppose that A1 and A2 are constraint automata with the
same set of data-flow locations N and a common set AP of atomic propositions.
Let A1�A2 be the “large” automaton obtained through the disjoint union of the
state spaces of A1 and A2. Automata A1 and A2 are called bisimilar, denoted
A1 ∼ A2, if for each bisimulation equivalence class P in A1 � A2 either P does
not contain any initial state of A1 or A2 or P contains at least one initial state
of both automata A1 and A2.

The classical partitioning refinement approach [25] for computing the bisimu-
lation equivalence classes of a finite labeled transition system can be adapted for
constraint automata [10,11]. This algorithm serves at the same time for checking
bisimulation equivalence of two constraint automata and can also be used as a
reduction technique by replacing a “large” constraint automaton with its the
bisimulation quotient. Indeed the switch from a constraint automaton A to a
bisimilar automaton A′ preserves all properties that are expressible in the logics
LTLIO and BTSL.

Modeling and Verification of Components and Connectors 139

Lemma 3. If A1 ∼ A2 then A1, A2 satisfy the same BTSL and LTLIO formulas.

The proof for these statements are standard (see e.g. [9]) and can be provided by
structural induction. As for other CTL-like branching-time logics (see [13]), even
a small fragment of BTSL is sufficient to provide a complete logical characteri-
zation of bisimulation equivalence. Constraint automata A1 and A2 are called
equivalent with respect to a logic L, denoted A1 ≡L A2, if A1 and A2 yield the
same truth value for all formulas in L, i.e.,

A1 ≡L A2 iff for all φ ∈ L: A1 |= φ ⇐⇒ A2 |= φ

Let us now consider the sublogic L of BTSL consisting of all BTSL state formulas
which can be build using the propositional fragment of BTSL (i.e., atomic propo-
sitions and the Boolean connectors ∧ and ¬) and formulas of the form ∃〈〈ioc〉〉Φ
where Φ is a formula of L and ioc a basic stream expression given by an I/O-
constraint (and representing a set consisting of I/O-streams of length 1). Then,
A1 ≡L A2 implies that A1 and A2 are bisimilar. Thus:

A1 ≡L A2 iff A1 ≡BTSL A2 iff A1 ∼ A2

Hence, in order to show that two constraint automata are not bisimilar then a
formula Φ in L can be provided that holds for A1, but not for A2. Such a formula
Φ can be understood as a counterexample.

4.5 Vereofy

The Vereofy [12,8,7] tool-kit supports modeling and verification in the Reo and
constraint automata framework. For modeling, it relies on a hybrid approach.
Custom channels, connectors and the interface behavior of components can be
modeled using CARML (Constraint Automata Reactive Module Language), a
guarded command language for the concise modeling of constraint automata
amenable to an efficient symbolic automaton representation. Reo networks for
component connectors are built in RSL (Reo Scripting Language) by provid-
ing a script instantiating the various channels, connectors and components and
plugging them together. Vereofy can be used as a stand-alone tool or integrated
as a plugin in the Eclipse Coordination Tools [18], where Reo networks can be
designed in a graphical way, allowing the visualization and animation of the data
flow in the network, e.g., to investigate counter examples or witness generated
during the model checking of a Reo network.

To cope with the state space explosion problem and typically large number
of data-flow locations in a Reo network, Vereofy relies on a symbolic represen-
tation of the constraint automata. Vereofy provides model checking engines for
properties specified in LTLIO, BTSL and the alternating-time logic ASL [27] as well
as for bisimulation checking. In the current implementation, Vereofy supports
model checking the LTLIO fragment consisting of propositional logic, the standard
LTL until operator (and the derived temporal operators) as well as the indexed
next step operator 〈〈ioc〉〉ϕ where ioc is an I/O-constraint. It also supports the
use of enabled(ioc) to talk about the enabled concurrent I/O-operations at a

140 C. Baier, J. Klein, and S. Klüppelholz

state, which can be used to specify fairness conditions. The BTSL-fragment of
our implementation cannot yet treat the Uα-operator, but directly supports the
derived operators on path formulas 〈〈α〉〉Φ and [[α]]Φ. The currently implemented
version of the bisimulation algorithm abstracts away from state labels. Thus, it
establishes equivalences only for the observable data flow.

5 Realization of a Constraint Automaton by a Reo
Network

We now address the question of how to realize a given constraint automaton A as
a component connector. The motivation for this task originates from the classical
(controller) synthesis problem, where the starting point is a formal model for
an open system S (often called plant) and an objective Φ that formalizes the
desired system properties and is typically given as a temporal formula. The task
is then to design a controller C that restricts the possible behaviors of S (i.e.,
discards certain non-deterministic alternatives) such that the controlled system
S ‖ C meets the specification Φ. Several instances of the controller synthesis
problem have been studied in the literature, e.g., [1,30,33,5,6] that differ in the
type of system models and objectives, the assumptions on what is visible to the
controller and the way how the environment and controller interact with S.

Here, we do assume that the system S is given as a constraint automaton AS

and that we have a specification of a controller as a constraint automaton A
which ensures a certain property Φ, i.e., AS �� A |= Φ. The goal is to synthe-
size the controller by a Reo network. In essential, the task is here to provide a
construction of a Reo network C such that the constraint automaton AC for C
is equal to A up to isomorphism. In [4] an algorithm has been presented that
constructs a Reo network from a given constraint automaton. This approach
is compositional and relies on a preprocessing step that generates an ω-regular
expression from the given constraint automaton. We present here an alternative
approach for the generation of a Reo network from the constraint automaton A
which reuses some ideas of [4], but avoids the potential exponential blow-up
in the construction of an ω-regular expression. We will first introduce the Reo
primitives used as atomic building blocks in the construction.

Basic channels and component connectors. The construction makes use
of synchronous channels and the synchronous drain channels as introduced in
Section 3. Additionally, we will require a special variant of a FIFO1 channel
where simultaneous writing and reading is possible if the buffer is filled. The
effect of concurrent writing and reading is that the data item in the buffer
is transmitted through the sink end and the new data item received at the
source end is stored in the buffer. Fig. 14 shows the graphical representation of
a simultaneous FIFO1 channel together with its constraint automaton.

In addition to the channels above the construction relies on use four compo-
nent connectors that are used as “primitives”:

Modeling and Verification of Components and Connectors 141

A B
{A, B},
dA = dB = 0

{A, B},
dA = dB = 1

{A, B}, dA = 0 ∧ dB = 1

{A, B}, dA = 1 ∧ dB = 0

∅1 0
{A}, dA = 0{A}, dA = 1

{B}, dB = 0{B}, dB = 1

Fig. 14. Simultaneous FIFO1 channel for data domain Data = {0, 1}

1. A merger has several input ports A1, . . . , Ar and one output port B. It
accepts non-deterministically data from exactly one of the input ports and
forwards it synchronously through the output port.

2. An exclusive router has one input port A and several output ports B1, . . . , Br

synchronously routes an incoming data from port A to exactly one of its
output ports.

3. A replicator has one input port A and several output ports B1, . . . , Br. It
sends copies of an incoming data to all of its output ports synchronously.

4. A data constraint checker for a data constraint

g ∈ DC (A1, . . . , Ar, B1, . . . , Bs)

has input ports A1, . . . , Ar and output ports S, B1, . . . , Bs. Both, the input
and output ports must be active synchronously and the observed data must
fulfill the data constraint g. The additional output port S synchronously
fires a token to indicate that the data has been accepted.

Fig. 15 shows the graphical representation of these four component connectors
together with their constraint automata.

Remark 2. We will treat the constraint checkers as primitives, but using the ap-
proach presented in [4] the constraint checkers themselves could also be realized
by a Reo network. For data constraints in a canonical (disjunctive) normal form
the idea is to provide simple Reo networks for the literals dA = c, dA = dB ,
etc. and component connectors that realize conjunctions and disjunctions. In
the synthesis algorithm proposed in this section we will use standard Reo nodes
with the standard and routing semantics instead of mergers, exclusive routers,
and replicators. The standard Reo node behavior corresponds to the product of
a merger and a replicator (cf. conditions (S1) and (S2) in Sec. 3), whereas the
routing behavior corresponds to the composition of a merger and an exclusive
router (cf. conditions (R1) and (R2) in Sec. 3).

Assumptions. In the sequel, we suppose that we are given a constraint au-
tomaton A = (Q,N ,Nin,Nout,−→, {q0}). To simplify the presentation in this
paper we will present the construction for constraint automata with a single

142 C. Baier, J. Klein, and S. Klüppelholz

{A, B1}, dA = dB1

{A, B2}

{A, Br}, true

... {A, B1, . . . , Br}
...

{A1, B}, dA1 = dB

{A2, B},

{Ar, B}, dAr
= dB

B
data constraint

checker
for guard

...

A1

A2

Ar

{A1, . . . , Ar, S,B1, . . . , Bs}, g

B1

B2...
Bs

Replicator

B1

B2...
Bs

A
Exclusive

router

B1

B2...
Bs

AMerger...

A1

A2

Ar

S

dA2 = dB dA = dB2

dA = dB1 = . . . = dBr

g

Nin = {A1, . . . , Ar}
Nout = {B}

N = Nin ∪Nout N = Nin ∪Nout N = Nin ∪Nout N = Nin ∪Nout

Nin = {A1, . . . , Ar}
Nout = {B1, . . . Bs} Nout = {B1, . . . Bs}
Nin = {A} Nin = {A}

Nout = {S,B1, . . . Bs}

Fig. 15. Merger, exclusive router, replicator and data constraint checker

starting state q0. The treatment of multiple possible starting states requires for
an additional component which non-deterministically selects the initial state and
transition that fires first. Furthermore, we assume that all data-flow locations
A ∈ N are either contained in Nin or in Nout, i.e., N = Nin ∪ Nout.

Idea of the construction. The idea of creating a Reo network C that realizes
A is to represent each state q ∈ Q by a simultaneous FIFO1 channel fq with a
single buffer cell. The Reo network will mimic A’s behavior by a token game,
where exactly one of these simultaneous FIFO1 channels will be filled at a time.
Initially, the token is in the buffer of fq0 . Whenever a transition q

N,g−→A q′ fires
the token moves from the buffer of fq to the buffer of fq′ . The structure of the
construction is shown in Fig. 16. For state q in A, we deal with the simultaneous
FIFO1 channel fq and an exclusive router EXRq and a merger MGRq. The
exclusive router EXRq has one output port for each transition emanating in q.
The merger MGRq has one input port for each transition ending in q. For each
transition θ in A there is a replicator REPθ and a data constraint checker DCCθ.
Furthermore, for each output port A ∈ Nout the Reo network contains a merger
MGRA. Dually, for each input port B ∈ Nin we deal with an exclusive router
EXRB. Their interface ports are connected with the data constraint checkers of
the transitions the ports are involved in.

Each of the simultaneous FIFO1 channels fq is connected to the corresponding
exclusive router EXRq. The exclusive router “schedules” non-deterministically
one of the outgoing transitions θ and routes the token through the correspond-
ing output port into the replicator REPθ. The first task of this replicator is
to forward the token towards the simultaneous FIFO fq′ . The merger MGRq′

ensures that only one of the incoming transitions of state q′ can fire at a time.
The second task of the replicator REPθ is to synchronize the transition with the

Modeling and Verification of Components and Connectors 143

fq

EXRq

EBEA

MGRq′

fq′

REP〈q,N,g,q′〉

A ∈ Nout B ∈ Nin

two output ports:
transition + data part

for eachfor each
state q state q′output port for each

outgoing transition
input port for each
incoming transition

input port for
each transition where

A ∈ Nout fires
each transition where

output port for

B ∈ Nin fires

ReplicatorExrouter Merger

ExrouterMerger
Data

constraint
checker

DCC〈q,N,g,q′〉

output port for each A ∈ N ∩Nout

output port for synchronization,

and input port for each B ∈ N ∩Nin

Fig. 16. Structure of a Reo network C synthesized from constraint automaton A

data constraint checker DCCθ. Thus, the transition θ = (q, N, g, q′) can fire if
and only if all ports A ∈ N fire and the observed data fulfills the data constraint
g ∈ DC (N). For each of the ports A ∈ N we have to ensure that they are not
involved in more than one transition at a time.

For this purpose, we make use of the merger components EA in case of the
output ports A ∈ Nout and the exclusive routers EB for the input ports B ∈
Nin of A. The synchronous channels from the output port of EA to A and
from the data constraint checkers DCCθ to EA ensure that data flow at A is
always synchronized with data flow at the data constraint checker DCCθ and
the replicator REPθ of some transition θ = (q, N, g, q′) if A ∈ N . Similarly, the
synchronous channels from B to input port of EB and from EB to the data
constraint checkers DCCθ ensure that data flow at B is always synchronized
with data flow at DCCθ and REPθ of some transition θ = (q, N, g, q′) if B ∈ N
Vice versa, whenever there is some data flow at one of the replicators REPθ then
there must be data flow at the corresponding data constraint checker DCCθ and
all active ports, i.e., those that appear in the set N of θ.

Soundness of the construction. Let A = (QA,NA,NA
in ,NA

out,−→A, {q0}) be
a constraint automaton and C be the Reo network synthesized from A. Using
the constraint automata product as presented in Section 3.1 we can compose
an automaton representation for C. Let AC = (QC ,NC ,N C

in,N C
out,−→C , Q0,C)

denote the constraint automaton resulting from the the product of all component
connectors, channels and nodes of C. The set NC contains all internal nodes and
boundary nodes (i.e., ports) of C, while N C

in = NA
in and N C

out = NA
out.

Lemma 4 (Soundness of the construction). Let A be a constraint automa-
ton and let C be the constructed Reo network with constraint automaton product

144 C. Baier, J. Klein, and S. Klüppelholz

AC as above. Then, the Reo network C correctly implements A, i.e., the reachable
fragments of the constraint automata AC and A are isomorphic.

Proof sketch. The state space of the constraint automaton AC is the Cartesian
product of the states of the FIFO1 channels fq that store the token in C, i.e.,
QC = {empty, full}n, where n = |Q| is the number of states in the original
constraint automaton A. The token game starts with a single FIFO1 channel
being full and passes the token to exactly one other FIFO1 channel in each step.
We denote by Q′

C ⊆ QC the states of AC where exactly one FIFO1 channel
is full, i.e., the states that are relevant for the token game. By construction,
the reachable fragment of AC , i.e., the states that can be reached via a finite
execution from an initial state, is contained in Q′

C . To relate the states of A
and AC , let h : QA → Q′

C be the bijection that maps each state q ∈ QA to
the corresponding state h(q), i.e., the state of AC where fq is full while all the
other buffers fq′ with q′ �= q are empty.

Furthermore, we have for all q, q′ ∈ QA, N ⊆ NC and g ∈ DC (N):

h(q)
N,g−−→AC h(q′) iff q

N ′,g′
−−−→A q′ (1)

where N ′ = N ∩NA and g′ ≡ ∃[NC\NA]g, i.e., where N ′, g′ corresponds to N, g
after all the internal nodes A in C, A ∈ NC \ NA, have been hidden.

To verify equation (1), one has to apply the product construction for con-
straint automata (cf. Def. 5) to all channels and component connectors (exclu-
sive routers, replicators, mergers, and constraint checkers) that appear in the
Reo network C. We conclude that, for a state q in A and the corresponding state
h(q) in AC , the same concurrent I/O-operations are enabled in q and h(q) after
hiding the internals of AC . Thus the reachable fragments of the automaton AC
for the Reo network C and the constraint automaton A are isomorphic after
“hiding” all internals of C, i.e., after applying the hide operator for constraint
automata to AC to hide the nodes NC \ NA only occurring in AC .

�

Example 8 (Synthesis). We close this section on the synthesis of a Reo network
from a constraint automaton by an example. Our starting point is the constraint
automaton A = (Q,N ,Nin,Nout,−→, {q0}) with state space Q = {q0, q1, q2},
the set of data-flow locations N = {A1, A2, A3, B1, B2, B3}, and transition re-
lation as depicted in Fig. 17. The data-flow locations are disjointly partitioned
into the set of output ports Nout = {A1, A2, A3} and the set of input ports
Nin = {B1, B2, B3}.

The constructed Reo network C for A is shown in Fig. 18. As explained in
Remark 2 the replicators suggested in Fig. 16 have been replaced by standard
replicating Reo nodes and the exclusive routers by routing Reo nodes as their
behavior agrees with the corresponding component connector. �

Modeling and Verification of Components and Connectors 145

{A1, B1}, g1

{A2, A3}, g4

q2q0 q1

{A2, B3}, g2

{B1, B2}, g3

Fig. 17. Example of a constraint automaton to be synthesized

∗∗∗

Data
constraint
checker

Data
constraint
checker

fq1

Data
constraint
checker

A1 ∈ Nout B1 ∈ Nin B2 ∈ Nin

Data
constraint
checker

A2 ∈ Nout A3 ∈ NoutB3 ∈ Nin

g1

g2

fq0

fq2

g3

g4

Fig. 18. Synthesized Reo network C for the automaton A of Fig. 17

6 Conclusion

We presented an overview of the basic concepts of the modeling and formal
verification of models specified in the Reo and constraint automaton framework.
Constructing the coordination glue code from basic coordination primitives like
channels and component connectors provides an intuitive, hierarchical approach
for modeling a wide variety of coordination and communication mechanisms.
The hybrid modeling approach of either specifying behavior via a Reo network
or directly as a constraint automaton allows the modeling at the appropriate
level of abstraction, e.g., a component may be in a first iteration specified by a
constraint automaton describing its interface behavior in an abstract fashion and

146 C. Baier, J. Klein, and S. Klüppelholz

then later replaced by a refined version realized by a Reo network. The logics
and verification algorithms presented in this paper support the specification
and automatic verification of a wide variety of relevant properties. The Vereofy
tool-kit, implementing the modeling and verification approaches outlined in this
paper, has been successfully used in the modeling and verification of a number
of academic examples as well as two industrial case studies in the context of
wireless sensor networks [14] and of a distributed telephony platform.

References

1. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of
reactive systems. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M.
(eds.) ICALP 1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)

2. Arbab, F.: Reo: A Channel-Based Coordination Model for Component Composi-
tion. Mathematical Structures in Computer Science 14(3), 329–366 (2004)

3. Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and temporal logical spec-
ifications for timed component connectors. Software and System Modeling 6(1),
59–82 (2007)

4. Arbab, F., Baier, C., de Boer, F., Rutten, J., Sirjani, M.: Synthesis of Reo Cir-
cuits for Implementation of Component-Connector Automata Specifications. In:
Jacquet, J.-M., Picco, G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, pp.
236–251. Springer, Heidelberg (2005)

5. Asarin, E., Bournez, O., Dang, T., Maler, O., Pnueli, A.: Effective Synthesis of
Switching Controllers for Linear Systems. IEEE Special Issue on Hybrid Sys-
tems 88, 1011–1025 (2000)

6. Asarin, E., Maler, O., Pnueli, A.: Symbolic Controller Synthesis for Discrete and
Timed Systems. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS
1994. LNCS, vol. 999, pp. 1–20. Springer, Heidelberg (1995)

7. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A Uniform Framework for
Modeling and Verifying Components and Connectors. In: Field, J., Vasconce-
los, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 247–267. Springer,
Heidelberg (2009)

8. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: Formal Verification for Com-
ponents and Connectors. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 82–101. Springer, Heidelberg (2009)

9. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

10. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling Component Connectors in
Reo by Constraint Automata. Science of Computer Programming 61(2), 75–113
(2006)

11. Blechmann, T., Baier, C.: Checking equivalence for Reo networks. In: FACS 2007.
Electronic Notes in Theoretical Computer Science, vol. 215, pp. 209–226. Elsevier
Publishers B.V., Amsterdam (2008)

12. Blechmann, T., Klein, J., Klüppelholz, S.: Vereofy User Manual. Technische Uni-
versität Dresden (2008–2011), http://www.vereofy.de/

13. Browne, M., Clarke, E., Grumberg, O.: Characterizing Finite Kripke Structures
in Propositional Temporal Logic. Theoretical Computer Science 59(1-2), 115–131
(1988)

http://www.vereofy.de/

Modeling and Verification of Components and Connectors 147

14. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S., Leister, W.: Design and Veri-
fication of Systems with Exogenous Coordination Using Vereofy. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 97–111. Springer, Heidelberg
(2010)

15. Clarke, D., Costa, D., Arbab, F.: Modelling Coordination in Biological Systems. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS, vol. 4313, pp. 9–25. Springer,
Heidelberg (2006)

16. Clarke, E., Emerson, E., Sistla, A.: Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on
Programming Languages and Systems 8(2), 244–263 (1986)

17. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

18. Eclipse Coordination Tools, http://reo.project.cwi.nl/
19. Fischer, M., Ladner, R.: Propositional Dynamic Logic of Regular Programs.

Journal of Computer and System Science 8, 194–211 (1979)
20. Francez, N.: Fairness. Texts and Monographs in Computer Science. Springer,

Heidelberg (1986)
21. Giordano, L., Martelli, A.: Tableau-based automata construction for dynamic linear

time temporal logic. Annals of Mathematics and Artificial Intelligence 46(3), 289–
315 (2006)

22. Henriksen, J., Thiagarajan, P.: Dynamic Linear Time Temporal Logic. Annals of
Pure and Applied Logic 96(1-3), 187–207 (1999)

23. Hoare, C.: Communcating Sequential Processes. Prentice-Hall, Englewood Cliffs
(1985)

24. Holzmann, G.: Design and Validation of Computer Protocols. Prentice-Hall,
Englewood Cliffs (1990)

25. Kanellakis, P., Smolka, S.: CCS Expressions, Finite State Processes, and Three
Problems of Equivalence. Information and Computation 86(1), 43–68 (1990)

26. Klüppelholz, S., Baier, C.: Symbolic model checking for channel-based component
connectors. Science of Computer Programming 74(9), 688–701 (2009)

27. Klüppelholz, S., Baier, C.: Alternating-time stream logic for multi-agent systems.
Science of Computer Programming 75(6), 398–425 (2010)

28. Milner, R.: Communication and Concurrency. International Series in Computer
Science. Prentice-Hall, Englewood Cliffs (1989)

29. Pnueli, A.: The Temporal Logic of Programs. In: Proceedings of the 18th IEEE
Symposium on the Foundations of Computer Science, pp. 46–57. IEEE Computer
Society Press, Los Alamitos (1977)

30. Pnueli, A., Rosner, R.: On the Synthesis of a Reactive Module. In: Proceedings of
the 16th Annual ACM Symposium on Principles of Programming Languages, pp.
179–190. ACM Press, New York (1989)

31. Vardi, M.: An Automata-Theoretic Approach to Linear Temporal Logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996)

32. Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic Program
Verification. In: Proceedings of the 1st Annual Symposium on Logic in Computer
Science, pp. 332–345. IEEE Computer Society Press, Los Alamitos (1986)

33. Wonham, W.: On the control of discrete-event systems. In: Three Decades of
Mathematical System Theory. Lecture Notes in Control and Information Sciences,
vol. 135, pp. 542–562. Springer, Heidelberg (1989)

http://reo.project.cwi.nl/

Application-Layer Connector Synthesis�

Paola Inverardi, Romina Spalazzese, and Massimo Tivoli

Dipartimento di Informatica - Università degli Studi dell’Aquila, Italy
{paola.inverardi,romina.spalazzese,massimo.tivoli}@di.univaq.it

Abstract. The heterogeneity characterizing the systems populating the
Ubiquitous Computing environment prevents their seamless interoper-
ability. Heterogeneous protocols may be willing to cooperate in order to
reach some common goal even though they meet dynamically and do
not have a priori knowledge of each other. Despite numerous efforts have
been done in the literature, the automated and run-time interoperability
is still an open challenge for such environment. We consider interoper-
ability as the ability for two Networked Systems (NSs) to communicate
and correctly coordinate to achieve their goal(s).

In this chapter we report the main outcomes of our past and recent
research on automatically achieving protocol interoperability via con-
nector synthesis. We consider application-layer connectors by referring
to two conceptually distinct notions of connector: coordinator and medi-
ator. The former is used when the NSs to be connected are already able
to communicate but they need to be specifically coordinated in order to
reach their goal(s). The latter goes a step forward representing a solution
for both achieving correct coordination and enabling communication be-
tween highly heterogeneous NSs. In the past, most of the works in the
literature described efforts to the automatic synthesis of coordinators
while, in recent years the focus moved also to the automatic synthesis
of mediators. Within the Connect project, by considering our past ex-
perience on automatic coordinator synthesis as a baseline, we propose
a formal theory of mediators and a related method for automatically
eliciting a way for the protocols to interoperate. The solution we pro-
pose is the automated synthesis of emerging mediating connectors (i.e.,
mediators for short).

1 Introduction

Today’s ubiquitous computing environment is populated by a wide variety of het-
erogeneous Networked Systems (NSs), dynamically appearing and disappearing,
that belong to a multitude of application domains: home automation, consumer
electronics, mobile and personal computing, to mention a few. Key technologies
such as the Internet, the Web, and the wireless computing devices and networks
can be qualified as ubiquitous, in the sense of Mark Weiser [80], even if these
technologies have still not reached the maturity envisioned by the Ubiquitous
Computing and the subsequent pervasive computing and ambient intelligence
� This work has been partially supported by the FET project Connect No 231167.

M. Bernardo and V. Issarny (Eds.): SFM 2011, LNCS 6659, pp. 148–190, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Application-Layer Connector Synthesis 149

paradigms because of the extreme level of heterogeneity of the underlying in-
frastructure which prevents seamless interoperability. In this environment, het-
erogeneous protocols may be willing to cooperate in order to reach some common
goal even though they meet dynamically and do not have a priori knowledge of
each other.

The term protocol refers to interaction protocols or observable protocols. That
is, a protocol is the behavior of a system in terms of the sequences of messages
visible at the interface level, which it exchanges with other systems. In this
chapter we consider application-layer protocols as opposed to midlleware-layer
protocols that are treated in detail in [76].

By referring to the notion of interoperability introduced in [30], the problem we
address in this chapter, is relatedtohowtoautomaticallyachieve the interoperability
between heterogeneous protocols in the Ubiquitous Computing environment.

With interoperability, we mean the ability of heterogeneous protocols to com-
municate and correctly coordinate to achieve their goal(s). The communication
is expressed as synchronization, i.e., two systems communicate if they are able
to synchronize on “common actions”. Coordination is expressed by the achieve-
ment of a specified goal, i.e., two systems succeed in coordinating if they interact
through synchronization according to the achievement of their goal(s). Commu-
nication that is achieved through a complex protocols interaction can be regarded
as a simple form of coordination. Indeed, application level protocols introduce
a notion of communication that goes beyond single basic synchronizations and
may require a well defined sequence of synchronization to be achieved.

In order to make communication and correct (with respect to the specified
goal) coordination between heterogeneous protocols possible, we focus on meth-
ods, and related tools, for the automatic application-layer connector synthesis. In
particular, in this chapter, we report our past and recent work on devising auto-
matic connector synthesis techniques in the domains of Component Based Soft-
ware Engineering (CBSE) and Ubiquitous Computing (UbiComp), respectively.
The work carried on within the CBSE domain can be considered as a baseline for
the work done in the UbiComp domain. The latter has been done in the context
of the Connect project [30] and, with respect to our past work, represents the
novel contribution concerning the automatic synthesis of application-layer con-
nectors. However, it is worth mentioning that these two research contributions
address two distinct sub-problems of the automatic connector synthesis problem.

In particular, in the CBSE domain, we used automatic connector synthesis
in order to face the so-called component assembly problem. This problem can
be considered as a particular instance of the above mentioned interoperability
problem where the issue of enabling communication is assumed to be (almost)
already solved. The focus, in the component assembly problem, is on how to
coordinate the interactions of already communicating black-box components so
that the resulting system is free from possible deadlocks and it satisfies a goal
specified in terms of coordination policies. Dealing with black-box components,
this is done by inserting in the system a software coordinator. It is an additional
component beyond the ones forming the system and it is synthesized so as to

150 P. Inverardi, R. Spalazzese, and M. Tivoli

intercept all component interactions in order to prevent deadlocks and those
interactions that violate the specified coordination policies. Coordination poli-
cies are routing policies usually specified in some automata-based or temporal
logic formalism. Thus, a coordinator can be considered as a specific notion of
connector, i.e., a coordination connector.

Conversely, in the UbiComp domain, the granularity of a system shifts from the
granularity of a system of components (as in the CBSE domain) to the one of a
System-of-Systems (SoS) [27]. An SoS is characterizedby an assembly of a wide va-
riety of building blocks. Thus, in the UbiComp domain, enabling communication
between heterogeneous NSs regardless, at a first stage, possible coordination mis-
matches, becomes a primary concern. This introduces another specific notion of
connector, i.e., the notion of mediator seen as a communication connector.

Achieving correct communication and coordination among heterogeneous NSs
means achieving interoperability among them. The interoperability problem and
the specific notions of connector (e.g., coordinator or mediator) that can be
used to solve it, or part of it, have been the focus of extensive studies within
different research communities. Protocol interoperability come from the early
days of networking and different efforts, both theoretical and practical, have been
done to address it in several areas including, for example: protocol conversion,
component adaptors, Web services mediation, theories of connectors, wrappers,
bridges, and interoperability platforms.

Despite the existence of numerous solutions in the literature, to the best of
our knowledge, all of them are more focused on coordinator synthesis and little
effort has been devoted to the automatic synthesis of mediators. In particular,
these approaches either: (i) assume the communication problem solved (or almost
solved) by considering protocols already (or almost) able to interoperate; or (ii)
are informal making automatic reasoning impossible; or (iii) follows a semi-
automatic process for the mediator synthesis requiring a human intervention; or
(iv) consider only few possible mismatches.

Our recent work on mediator synthesis has been devoted in particular to (i) the
elicitation and definition of a theory of emerging connectors which also includes
related supporting methods and tools. In particular, our recent work has led
us to design automated model-based techniques and tools to support the devised
synthesis process, from protocol abstraction to matching and mapping. Moreover
we (ii) characterized protocol mismatches and related mediator patterns, and (iii)
we designed a combined approach to take into consideration also non-functional
properties while building an interoperability solution. While (i) is part of this
chapter, for (ii) and (iii), we refer to [66,65] and [14], respectively.

The remainder of the chapter is organized as follows. Section 2 sets the context
of the work reported in this chapter. In particular, by means of two examples, this
section clarifies the distinction between the notions of coordinator and mediator.
Section 3 describes different approaches for the automatic synthesis of coordina-
tors. Section 4 describes the theory of emerging connectors (i.e., of mediators)
mentioned above. Since the pool of coordinator synthesis approaches that are
discussed in Section 3 represents the baseline chosen from the state-of-the-art in

Application-Layer Connector Synthesis 151

order to devise the approach described in Section 4, for the sake of brevity, the
level of description of these two sections is intentionally kept different. That is,
Section 3 briefly recalls the different coordinator synthesis approaches by simply
providing an overview of them, whereas Section 4 describes in more detail the
novel contribution of our recent research with respect to the automatic synthesis
of application-layer connectors. Section 5 discusses related works in the areas of
both coordinator and mediator synthesis. Section 6 concludes the chapter and
outlines our future perspectives in the context of Connect.

2 Setting the Context

Within the Connect project, at synthesis stage, we can assume that a NS
comes together with a Labeled Transition System (LTS) [42] based specification
of its interaction protocol. The interaction protocol of a NS expresses the order
in which input and output actions are performed while the NS interacts with
its environment. Input actions model methods that can be called, or the end of
receiving messages from communication channels, as well as the return values
from such calls. Output actions model method calls, message transmission via
communication channels, or exceptions that occur during methods execution.

As said in Section 1, our focus is on the automatic synthesis of application-
layer connectors. Our notion of protocol abstracts from the content of the ex-
changed data, i.e., values of method/operation parameters, return values, or
content of messages. That is, we are interested in harmonizing the behavior
protocol (e.g., scheduling of operation calls) of heterogeneous NSs rather than
performing mediation of communication primitives or of data encoding/decod-
ing that are issues related to the synthesis of middleware-layer connectors (see
the work described in [76]).

As introduced in Section 1, the interoperability problem concerns the prob-
lem of both enabling communication and achieving correct coordination. We
recall that in our past research we addressed correct coordination by assuming
communication already solved. This is done via automatic coordinator synthesis
(Section 3). Instead, our current research focuses on the whole interoperability
problem by devising methods and tools for the automatic mediator synthesis
(Section 4).

In order to better clarify the distinction between the notions of coordinator
and mediator, in the following two sub-sections, we describe two simple yet
significant examples of the kinds of interoperability problems that can be solved
by using coordinators (Section 2.1) and mediators (Section 2.2).

2.1 The Need for Coordinators: The Shared Resource Scenario

To better illustrate protocol coordination and the related underlying problems, in
the following we describe the Shared Resource scenario. This explanatory exam-
ple is concerned with the automatic assembly of a client-server component-based
system. This system is formed by three components: two clients, respectively de-
noted as C1 and C2, and one server denoted as C3 (the component controlling

152 P. Inverardi, R. Spalazzese, and M. Tivoli

the Shared Resource). This example, although very simple, exhibits coordina-
tion problems that exemplify the kind of problems that coordinator synthesis can
solve. For instance, here, the problem is due to the presence of race conditions
in accessing a shared resource.

Let us assume that we want to assemble a system formed by C1, C2, and C3.
In doing so, we want to automatically prevent possible deadlocks and guarantee
a specified coordination policy, hence, guaranteeing that the system’s goal is
reached.

Figure 1 represents the behavior of each component in terms of an LTS.

Fig. 1. Components’ behavior for the Shared Resource scenario

Each LTS models the component observable behavior in an intuitive way. Each
state of an LTS represents a state of the component and the state S0 represents
its initial state. Each action or complementary action performed by interacting
with the environment of the component (i.e., all other components in parallel)
is represented as a label of a transition into a new state. Actions are input or
output. Within an LTS of a component, the label of an input action is prefixed
by the question mark “?” (e.g., ?C3.retValue1 of C1). The label of an output
action is prefixed by the exclamation mark “!” (e.g., !C3.method2 of C2).

The interface of server C3 exports three methods denoted as C3.method1,
C3.method2, and C3.method3, respectively. While C3.method2 has no return
value, C3.method1 and C3.method3 can return some value. C3.method1 returns
two possible return values denoted as C3.retValue1, and C3.retValue2. The
former is returned when a call of C3.method1 has not preceded by a call of
C3.method2. Otherwise, the latter is returned. C3.method3 returns only one
value, i.e., C3.retValue2. The two clients perform method calls according to
the server interface.

Application-Layer Connector Synthesis 153

It is worthwhile noticing that the described component interfaces syntactically
match since either they already match or suitable component wrappers have been
previously developed by the system assembler. As stated above, the problem of
enabling communication is here considered as already solved. We recall that,
in coordinator synthesis, the focus is on automatically preventing interaction
protocol mismatches rather than enabling communication.

By continuing the description of our example, deadlocks can occur because of
a race condition among C1 and C2. In fact, one client (i.e., C2) performs a call of
C3.method2, hence leading the server C3 in a state in which it expects a call of
C3.method1. While C2 is attempting to perform the call of C3.method1, the other
client (i.e., C1) performs such a call. In this scenario C1, C2, and C3 are in the
state S1, S1, and S3 of their LTSs. Now, C3 expects to return C3.retValue2 as
return value of C3.method1 but C2 is still waiting to perform a call of C3.method1
and C1 expects a different return value. Thus, a coordination mismatch occurs
and it results in an deadlock in the interaction between C1, C2, and C3.

This mismatch can be solved by synthesizing a software coordinator that super-
vises the components’ interaction by preventing the deadlock [73,8,72]. At the level
of the coordinator’s actual code, the coordinator is synthesized as a multi-threaded
component that creates a thread for each request and for each caller performing
such a request. Preventing, or solving if possible, deadlocks corresponds to put in a
waiting state the thread that handles the request leading to the deadlock state and
performed by the identified caller. Thus the coordinatorwill return, again, the con-
trol to the caller, for that request, only when it reaches a state in which the blocked
request is allowable1. Such multi-threaded servers are supported by existing com-
ponent technologies such as COM/DCOM or CORBA.

Another coordination issue that one can note is that, e.g., C1 can always obtain
the access to the shared resource, while C2 never obtains it since C2 can always
require the access whenever the resource is already “lock” by C1. In other words, C3
cannot be fair in providing the access to the shared resource it supervises. To solve
this issue, a software coordinator can be automatically synthesized so as to enforce
an alternating protocol policy [73] on the components’ interaction. The coordinator
allows only the alternating access of C1 and C2 to the shared resource.

2.2 The Need for Mediators: The Photo Sharing Scenario

To better illustrate protocol mediation and the related underlying problems,
in the following we describe the Photo Sharing scenario within a stadium. In
general, different versions of the Photo Sharing application may be available on
the spectators’ handhelds, thus calling for appropriate interoperability solutions.

Let us consider two Photo Sharing implementations: an Infrastructure-based
(IB) and an ad hoc peer-to-peer (P2P) respectively shown by Figures 2 and
3. The protocols are depicted using LTSs where the name of actions are self-
explanatory. We further use the convention that actions with overbar denote
output actions while the ones with no overbar denote input actions.
1 Meaning that, this time, that request performed from that caller does not lead to a

deadlock.

154 P. Inverardi, R. Spalazzese, and M. Tivoli

PhotoMetadata

PhotoFile

PhotoFile

PhotoMetadata

PhotoComment

PhotoCommentt

Consumer role

Fig. 2. Peer-to-Peer-based implementation

In the IB implementation, a Photo Sharing service is provided by the stadium,
where only authenticated photographers are able to produce pictures while any
spectator may download and even annotate pictures.

The P2P implementation allows for photo download, upload and annotation
by any spectator, who are then able to directly share pictures using their hand-
helds.

Then, taking the producer perspective, the high level functionalities that the
networked systems implement are: (1) the authentication -for the IB producer
only- possibly followed by (2) the upload of photo, by sending both metadata and
file, possibly followed by (3) the download of comments ; on the other hand, taking
the consumer perspective, the implemented high level functionalities are: (i) the
download of photo by receiving both metadata and file respectively, possibly
followed by (ii) the upload of comments.

c) Photo Sharing Consumera) Photo Sharing Producer

DownloadPhoto

CommentPhoto

SearchPhotos

DownloadPhoto

Authenticate

b) Photo Sharing Server

UploadPhoto

hoto

Authenticate

UploadPhoto

SearchPhotos

CommentPhoto

CommentPhoto

Acknowledge

Acknowledge

SearchPhotos
SearchPhotos

DownloadPhoto

DownloadPhoto

CommentPhoto

Fig. 3. Infrastructure-based implementation

Application-Layer Connector Synthesis 155

In the P2P implementation, the networked system implements both roles of
producer and consumer. Instead, while having similar roles and high level function-
alities, the IB implementation differs with respect to the P2Pone because: (i) in IB,
the consumer and producer roles are played by two different/separate networked
systems, in collaboration with the server, and (ii) comparing complementary roles
among any P2P and IB, they have different interfaces and behaviors.

For the sake of illustration we consider as example the pair of mismatching
applications made by: the IB producer (Figure 3 a)) and the P2P Photo Sharing
consumer (portion within the dashed line of Figure 2). As can be noticed, the two
protocols have different signatures and several discrepancies in the behavior that
prevent their direct interoperability. Thus a mediator is needed to solve these
heterogeneity in order to enable their communication. A detailed description of
the mediator, including the problems it solves, is provided in Section 4.6 where
the Photo Sharing scenario is used as running example.

3 Automatic Synthesis of Application-Layer and
Failure-Free Coordinators

This section provides an overview of different approaches to the automatic syn-
thesis of application-layer coordinators. We first introduce each approach by
outlining their commonalities and differences. Then, through Sections 3.1 to 3.4,
we give a complete overview of each approach.

Section 3.1 describes a method for the correct (with respect to coordination
mismatches) and automatic assembly of component-based systems via central-
ized coordinator synthesis [73]. In this context, by considering communication
issues already solved, the interoperability problem introduced in Section 1 can
be rephrased as follows: given a set of interacting components, C, and a set of be-
havioral properties, P , automatically derive a deadlock-free assembly, A, of these
components which guarantees every property in P , if possible. The assembly A
is a composition of the components in C plus a synthesized coordinator. The
coordinator is synthesized as an additional component which intercepts all the
component interactions so as to control the exchange of messages with the aim
of preventing possible deadlocks and those interactions that violate the prop-
erties in P . In [73] this problem is addressed by showing how to automatically
synthesize the implementation of a centralized coordinator.

Unfortunately, in a distributed environment it is not always possible or con-
venient to introduce a centralized coordinator. For example, existing distributed
systems might not allow the introduction of an additional component (i.e., the
coordinator) which coordinates the information flow in a centralized way. More-
over, the coordination of several components might cause loss of information and
bottlenecks hence slowing down the response time of the centralized coordinator.
Conversely, building a distributed coordinator might extend the applicability of
the approach to large-scale contexts.

156 P. Inverardi, R. Spalazzese, and M. Tivoli

To overcome the above limitations, in [8], an extension of the previous method
is proposed. This extension is discussed in Section 3.2. The aim of the proposed
extension is to automatically synthesize a distributed coordinator into a set of
wrappers (local coordinators), one for each component whose interaction has
to be controlled. The distributed coordinator synthesis approach has various
advantages with respect to the synthesis of centralized coordinators. The most
relevant ones are: (i) no centralized point of information flow exists; (ii) the
degree of parallelism of the system without the coordinator is maintained; and
(iii) all the domain-specific deployment constraints imposed on the centralized
coordinator can be removed.

However, both methods are static; that is, if the system assembled by means
of the synthesized coordinator evolves, e.g., a new component is added, or an
existing one is either replaced or removed, the two methods have to be entirely
re-performed in order to produce a new coordinator. Since, in the worst case,
the computational complexity of the coordinator synthesis is exponential, re-
performing the methods whenever a change in the systems occurs cannot be
acceptable.

For this reason, in [57], a Software Architecture (SA) based method is
proposed in which the usage of the system SA and of SA verification tech-
niques allows the system assembler to design architectural components whose
interaction is verified with respect to the specified properties. By exploit-
ing this validation, the system assembler can perform coordinator synthesis
by only focusing on each single architectural2 component, hence refining it
as an assembly of actual components which respect the architectural compo-
nent observable behavior. In this way coordinator synthesis is performed lo-
cally on each architectural component, instead of globally on the whole system
interactions, hence reducing the state-space explosion phenomenon due to the
exponential complexity of the synthesis. The approach can be equally well ap-
plied to efficiently manage the whole reconfiguration of the system when one
or more components need to be updated, still maintaining the required prop-
erties. The specified and verified system SA is used as starting point for the
derivation of coordinators that are required to apply changes in the composed
system. An overview of this approach is given in Section 3.3.

The methods outlined so far have been all applied to real case studies in
the domains of COM/DCOM and J2EE applications. This experimentation has
been carried on through the Synthesis tool [6] that implements all the outlined
methods.

All the previously mentioned methods do not account for the handling of
non-functional attributes. Thus, recently, in [72], an extension of Synthesis is
proposed for automatically assembling real-time systems. The extended method
and related tool, called SynthesisRT, are discussed in Section 3.4. This ex-
tension accounts for the handling of Quality-of-Service (QoS) attributes such as
duration and latency of actions plus component clocks.

2 It is an ideal component specified in the system SA.

Application-Layer Connector Synthesis 157

3.1 Automatic Synthesis of Centalized Application-Layer and
Failure-Free Coordinators

Synthesis is a technique equipped with a tool [6] that permits to assemble
a component-based application in a deadlock-free way [73,8]. Starting from a
set of components Off The Shelf (OTS), Synthesis assembles them together
according to a so called coordinator-based architecture by synthesizing a coordi-
nator that guarantees deadlock-free interactions among components. The code
that implements the coordinator is automatically derived directly from the OTS
(black-box) components’ interfaces. Synthesis assumes a partial knowledge of
the components’ interaction behavior described as finite state automata plus
the knowledge of a specification of the system to be assembled given in terms
of Message Sequence Charts (MSCs) [4,74,75]. Furthermore, by exploiting that
MSC specification, it is possible to go beyond deadlock. Actually, the MSC spec-
ification is an implicit failure specification. That is we assume to specify all the
desired assembled system behaviors which are failure-free from the point of view
of the system assembler, rather than to explicitly specify the failure. Under these
hypotheses, Synthesis automatically derives the assembling code of the coordi-
nator for a set of components. The coordinator is derived in such a way to obtain
a failure-free system. It is shown that the coordinator-based system is equivalent
according to a suitable equivalence relation to the initial one once depurate of all
the failure behaviors. The initial coordinator is a no-op coordinator that serves
to model all the possible component interactions (i.e., the failure-free and the
failing ones). Acting on the initial coordinator is enough to automatically pre-
vent both deadlocks and other kinds of failure hence obtaining the failure-free
coordinator.

As illustrated in Figure 4, the Synthesis framework realizes a form of system
adaptation. The initial software system is changed by inserting a new component,
the coordinator, in order to prevent interactions failures.

The framework makes use of the following models and formalisms. An ar-
chitectural model, the coordinator-based architecture that constrains the way
components can interact, by forcing interaction to go through the coordinator.
A set of behavioral models for the components that describe each single com-
ponent’s interaction behavior with the ideal3 external context in the form of
LTSs. A behavioral equivalence on LTS to establish the equivalence among the
original system and the adapted/coordinated one. MSCs are used to specify
the behavioral integration failure to be avoided, and then LTSs and LTS syn-
chronous product [5,42] plus a notion of behavioral refinement [49] to synthesize
the failure-free coordinator specification, as it is described in detail in [73]. As
already mentioned, from the coordinator specification the actual code can then
be automatically derived as either a centralized component [73] or a distributed
one [8]. The latter is implemented as a set of wrappers, one for each component,
that cooperatively realize the same behavior as the centralized coordinator. The
next section gives an overview of this distributed coordinator synthesis approach.

3 The one expected by the component’s developer.

158 P. Inverardi, R. Spalazzese, and M. Tivoli

Fig. 4. Automatic synthesis of centralized failure-free coordinators

3.2 Automatic Synthesis of Distributed Application-Layer and
Failure-Free Coordinators

As an extension of the method described in Section 3.1, the method that we dis-
cuss in this section assumes as input (see Figure 5): (i) a behavioral specification
of the coordinator-free system formed by interacting components. It is given as a
set {C1, . . . , Cn} of LTSs (one for each component). The behavior of the system
is modeled by composing in parallel all the LTSs and by forcing synchronization
on common events; (ii) the specification of the desired behavior that the system
must exhibit. This is given in terms of an LTS, from now on denoted by PLTS .

These two inputs are then processed in two main steps:

1. By taking into account all component LTSs, we automatically derive the
LTS that models the behavior of a centralized deadlock-free coordinator.
This first step is inherited from the approach described in Section 3.1 for
the synthesis of centralized coordinators. Whenever PLTS ensures itself
deadlock-freeness and its traces are all traces of the centralized coordinator
LTS, such a step is not required and, hence, the centralized coordinator
cannot be generated. We recall that, at the worst case, the synthesis of
the centralized coordinator has an exponential computational complexity
in the maximum number of states of the component LTSs. By avoiding the
generation of the centralized coordinator, the method’s complexity becomes
polynomial in the number of states of PLTS . The first step terminates

Application-Layer Connector Synthesis 159

+

C1
C1C2

C1C3 C1C4

C2

C1

C1C1
PLTS

(i.e., actual code of
the component local

wrappers)

w1

synthesis of the LTS
for the centralized

deadlock-free
coordinator

Coordinator-free
Architecture

desired behavior LTS

synthesis of the
actual distributed and

correct coordinator

C1

C3 C4

C1 C2

C3 C4

w2

w3 w4

Deadlock-free
Coordinator

STEP 1

STEP 2

STEP 2

Fig. 5. Automatic synthesis of distributed failure-free coordinators

by checking whether enforcing PLTS is possible or not. This check is
implemented by a suitable notion of refinement. Refinement, in general,
formalizes the relation between two LTSs at different level of abstractions.
Refinement is usually defined as a variant of simulation. In our method, we
use a suitable notion of strong simulation [49] to check a refinement relation
between two LTSs.

2. In the second step, let K be the LTS of the centralized coordinator. If K has
been generated and it has been checked that PLTS can be enforced on it,
our method explores K looking for those states representing the last chance
before entering an execution trace that leads to a deadlock. For instance, in
Figure 6, the state S4 represents the last chance state before incurring in
the deadlock state S7. This information is crucial for deadlock prevention
purposes.

The search of the last chance states is realized by means of a depth-
first search, performed on K, whose aim is to save those states into the
local wrappers of the components that could lead the system from a last
chance state to a deadlock by means of a so called critical action. The idea
is therefore not to allow a component to perform a critical action before be-
ing sure that the system will not reach a deadlock state. By interacting with
the Synthesis tool, the user can tag component actions as either control-
lable or uncontrollable by the external environment. If such a critical action
is controllable then it can be discarded. Otherwise, if it is uncontrollable,
Synthesis performs a controller synthesis step [60,16] that “backtracks” by
looking for the first controllable action that can be discarded to prevent the
execution of the critical action. After the execution of this depth-first search
on K, the set of last chance states and associated critical actions are stored
in a table, one for each component wrapper.

The second step also explores PLTS to retrieve information crucial for
undesired behavior prevention. The aim here is to split and distribute PLTS

160 P. Inverardi, R. Spalazzese, and M. Tivoli

Fig. 6. An example of a centralized coordinator LTS in Synthesis

in a way that each local wrapper knows which actions the wrapped compo-
nent is allowed to execute. This is realized by means of a depth-first search
on PLTS .

Referring to Figures 6 and 7 for instance, the wrapper of component C3
must not allow the component to send the request C1.a, if the current global
state of the system matches the state S0 in PLTS , hence enforcing the desired
behavior modeled by PLTS . In particular, the label {!−C1.a 2,!−C1.a 3}
of the loop on S0 denotes two loops, one labeled with !−C1.a 2 and one
labeled with !−C1.a 3. The action !C1.a 3 denotes an output action C1.a
by C3; !−C1.a 3 represents its neagation, i.e., all possible actions different
from it.

The sets of last chance states and allowed actions are stored and, sub-
sequently, used by the local wrappers as basis for correctly synchronizing
with each other by exchanging additional communication. In other words,
the local wrappers interact with each other to restrict the components’ stan-
dard communication (modeled by K) by allowing only the part of the com-
munication that is correct with respect to deadlock-freeness and PLTS . By
decentralizing K, the local wrappers preserve parallelism of the components
forming the system.

The message exchange among wrappers for synchronization purposes is
realized by means of the two procedures Ask and Ack, whose implementation
is automatically synthesized by Synthesis. The first is used to ask the
permission to the other wrappers before allowing a component to proceed
with a critical action. The second is used to reply to a message sent by
procedure Ask when the global state is safe.

Fig. 7. An example of a desired behavior LTS in Synthesis

Application-Layer Connector Synthesis 161

3.3 Automatic Synthesis of Application-Layer Coordinators for
Evolvable Systems

This coordinator synthesis method is composed of four main phases organized
as shown in Figure 8. In the following, the description of the method assumes
that an SA has been modeled by using the Charmy framework [56] (System
SA + properties of interest in Figure 8).

Design-time phase. the first phase concerns the system SA verification. This
phase is performed by using Charmy. The input of this phase is an SA and the
properties that one wants to check. The output is a system SA specification that
respects the properties of interest (Verified system SA in Figure 8).

For each verified architectural component that has not yet been implemented,
the Actual components selection phase is performed. After that all the architec-
tural components have been implemented, they are deployed (Re-implemented
components deployment in Figure 8) hence producing a first running version of
the system (Running system in Figure 8).

Actual components selection phase. our method implements each archi-
tectural component as an assembly of actual components acquired from a
third-party, when possible. This phase aims at selecting third-party components

Automatically implemented
architectural component

Design-time
phase

Verified
system SA

Selected actual
components

Actual components
selection phase

Compile-time
phase

Run-time
phase

First implementation
of the architectural

component

Further implementations
of the architectural

component

System SA +
properties of interest

Need of a
new implementation

Process
artefact

Process
activity

Legend

For each
non (re-)implemented

Architectural
component

All architectural
components

(re-)implemented Running
system

(Re-)implemented components
deployment

Manually implemented
architectural component

No suitable actual
component exists

Choice

Fig. 8. Automatic synthesis of failure-free coordinators for evolvable systems

162 P. Inverardi, R. Spalazzese, and M. Tivoli

by looking at their interfaces and functionalities. For the selection criteria used
to establish which actual components have to be acquired to implement an archi-
tectural component, we refer to [57] where the method is discussed in detail. This
phase takes as input a verified architectural component and it is performed with
respect to a repository of actual components acquired from a third-party [54]
(black-box components). The output is the set of actual components selected as
possible candidates for the implementation of the architectural one or an empty
set. In case of an empty set, the architectural component is manually imple-
mented (Manually implemented architectural component in Figure 8) since we
did not find suitable components that can be assembled to implement the consid-
ered architectural component. In this case it is up to the developer to guarantee
that the component implementation conforms to its architectural specification,
e.g., via verification techniques.

If possible candidates are found (Selected actual components in Figure 8) they
could still need some adaptations (e.g., they might provide more functionalities
as needed or interaction mismatches might occur). The compile-time phase and
the run-time phase will automatically manage that in the first implementation
of the architectural component and in its further implementations, respectively.

Compile-time phase. in order to correctly implement the considered architec-
tural component, this phase automatically produces an assembly of the selected
actual components that is correct with respect to the architectural component’s
observable behavior (Automatically implemented architectural component in Fig-
ure 8). This is done by exploiting the Synthesis tool as either described in
Sections 3.1 or 3.2 depending on which kind of implementation is required for
the architectural component, centralized or distributed.

Run-time phase. when a new implementation of an architectural component
is needed (the transition Need of a new implementation outgoing from Running
system), the correct (re-)implementation of the considered architectural compo-
nent is produced analogously to what is done in the compile-time phase, i.e.,
again via the Synthesis tool. The run-time phase performs additional opera-
tions with respect to the compile-time phase. These operations are the suspension
of the running system in a consistent state and the transfer of the computational
state.

3.4 Automatic Synthesis of Application-Layer Coordinators for
Real-Time Systems

Recently, the Synthesis approach and its related tool has been extended to the
context of real-time systems [72]. This extension, hereafter called SynthesisRT,
has been developed by the Software Engineering research group at University
of L’Aquila in cooperation with the POP ART project team at INRIA Rhône-
Alpes. In [72], it is shown how to deal with the compatibility, communication,
and QoS issues that can raise while building a real-time system from reusable
black-box components within a lightweight component model where components
follow a data-flow interaction model. Each component declares input and output

Application-Layer Connector Synthesis 163

ports which are the points of interaction with other components and/or the exe-
cution environment. Input (resp., output) ports of a component are connected to
output (resp., input) ports of a different component through synchronous links.
Analogously to the version of Synthesis without real-time constraints, a com-
ponent interface includes a formal description of the interaction protocol of the
component with its expected environment in terms of sequences of writing and
reading actions to and from ports. The interface language is expressive enough
to specify QoS constraints such as writing and reading latency, duration, and
controllability, as well as the component’s clock (i.e., its activation frequency).
In order to deal with incompatible components (e.g., clock inconsistency, read-
/write latency/duration inconsistency, mismatching interaction protocols, etc.)
we synthesize coordinators interposed between two or more interacting compo-
nents. A coordinator is a component that mediates the interaction between the
components it supervises, in order to harmonize their communication. Each coor-
dinator is automatically derived by taking into account the interface specification
of the components it supervises. The coordinator synthesis allows the developer
to automatically and incrementally build correct-by-construction systems from
third-party components.

Figure 9 shows the main steps of the method performed by SynthesisRT by
also highlighting the used formalisms/models.

We take as input the architectural specification of the network of components
to be composed and the component interface specifications. The behavioral mod-
els of the components are generated in form of LTSs that make the elapsing of
time explicit (step 1). Connected ports with different names are renamed such
that complementary actions have the same label in the component LTSs (see

Fig. 9. Main steps of the coordinator synthesis for real-time components

164 P. Inverardi, R. Spalazzese, and M. Tivoli

actions a and d in Figure 9). Possible mismatches/deadlocks are checked by
looking for possible sink states into the parallel composition of the LTSs. The
coordinator synthesis process starts only if such deadlocks are detected.

The synthesis first proceeds by constructing a Petri net (PN) [52] represen-
tation of the environment expected from a component in order not to block it
(step 2). It consists in complementing the actions in the component LTSs that
are performed on connected ports, considering the actions performed on un-
connected ports as internal actions. Moreover, a buffer storing read and written
values is modeled as a place in the environment PN for each IO action. Each such
PN represents a partial view of the coordinator to be built. It is partial since it
reflects the expectation of a single component. In particular, a write (resp. read)
action gives rise to a place (buffer) without outgoing (resp. incoming) arcs.

The partial views of the coordinator are composed together by building causal
dependencies between the reading/writing actions and by unifying time-elapsing
transitions (step 3). Furthermore, the places representing the same buffer are
merged in one single place. This Unification PN models a coordinator that solves
deadlocks using buffers to desynchronize received events from their emission.

However, the unification PN may be not completely correct, in the sense that
it can represent a coordinator that may deadlock and/or that may require un-
bounded buffers. In order to obtain the most permissive and correct coordinator,
we generate an extended version of the graph usually known in PNs theory [52]
as the coverability graph [29] (step 4).

Our method automatically restricts the behavior of the coordinator modeled
by the extended coverability graph in order to keep only the interactions that
are deadlock-free and that use finite buffers (i.e., bounded interactions). This is
done by automatically constructing, if possible, an “instrumented” version of our
extended coverability graph, called the Controlled Coverability Graph (CCG).
The CCG is obtained by pruning from the extended coverability graph both the
sinking paths and the unbounded paths, by using a controller synthesis step [61]
(step 5). Ad, in the figure, denotes the synthesized coordinator.

This process also performs a backwards error propagation step in order to
correctly take into account the case of sinking and unbounded paths originating
from the firing of uncontrollable transitions.

If it exists, the maximal CCG generated is the LTS modeling the behavior of
the correct (i.e., deadlock-free and bounded) coordinator. This coordinator mod-
els the correct-by-construction assembly code for the components in the specified
network. If it does not exist, a correct coordinator assembling the components
given as input to our method cannot be automatically derived, and hence our
method does not provide any assembly/coordination code for those components.

4 Automatic Synthesis of Application-Layer Mediators

This section describes our recent work on the automatic synthesis of application-
layer mediators. We overview our methodology in Section 4.1 and we give formal
foundations in Section 4.2. Then we provide the formalization of our theory by

Application-Layer Connector Synthesis 165

respectively presenting the protocol abstraction in Section 4.3, protocol match-
ing in Section 4.4, and protocol mapping in Section 4.5. Finally we illustrate
the application of the theory to the Photo Sharing scenario in Section 4.6. Ab-
straction, matching, and mapping are fundamentals operations of our mediator
synthesis approach.

As already illustrated in Section 1, we focus on the interoperability problem
between heterogeneous protocols within the UbiComp environment. For the sake
of simplicity, and without loss of generality, we limit the number of protocols to
two but the work can be generalized to an arbitrary number of protocols.

In particular, we focus on compatible or functionally matching proto-
cols. Functional matching means that heterogeneous protocols can potentially
communicate by performing complementary sequences of actions (or complemen-
tary conversations).

Potentially means that communication may not be achieved because of mis-
matches (heterogeneity), i.e., the languages of the two protocols are different,
although semantically equivalent. For example, protocol languages can have: (i)
different granularity, or (ii) different alphabets. Protocols behavior may have,
for example, different sequences of actions because of (a.1) the order in which
actions are performed by a protocol is different from the order in which the other
protocol performs the same actions; (a.2) interleaved actions related to third par-
ties communications i.e., other systems, the environment. In some cases, as for
example (i), (ii) and (a.1), it is necessary to properly perform a manipulation of
the two languages. In the case (a.2) it is necessary to provide an abstraction of
the two actions sequences that results in sequences containing only actions that
are relevant to the communication.

Communication is then possible if the two possibly manipulated (e.g., re-
ordered) and abstracted sequences of actions are complementary, i.e., are the
same sequences of actions while having opposite output/input “type” for all
actions.

Therefore, the problem we address and overcome, is the interoperability be-
tween heterogeneous protocols in the UbiComp environment.

With interoperability, we mean the property referring to the ability of het-
erogeneous protocols to communicate and coordinate to reach their goal(s). Com-
munication and coordination are expressed by synchronization, i.e., two systems
succeed in coordinating if they are able to synchronize hence reaching their
goal(s).

In order to make communication between heterogeneous protocols possible, we
proposed as solution a theory of mediators [36,67,64] that we revise and extend
in the remainder of this section. The theory, reasoning about the mismatches
of the compatible protocols, automatically elicits and synthesizes an emerging
mediator that solves them allowing protocol interoperability. The theory paves
the way for run-time (or on-the-fly) approaches to the mediators synthesis.

A mediator is then a protocol that allows the communication among com-
patible protocols by mediating their differences.

166 P. Inverardi, R. Spalazzese, and M. Tivoli

We assume that each device, e.g. PDA, smartphone, or tablet, is equipped,
for its applications, with the (i) behavioral specification and their (ii) semantical
characterization of their actions through ontologies. Taking the perspective of
two systems that have compatible protocols and that also communicate with
third parties, we assume that there exists also (iii) the proper environment for
them, i.e., the other systems representing third parties. Further, we concentrate
on application layer interoperability while assuming solved the heterogeneity of
the underlying layers.

4.1 Towards Emerging Mediators

Figure 10 depicts the main elements of our methodology which we describe in
the following.

The method includes:

(i) Two application-layer protocols P and Q whose representation is given in
terms of LTSs, where the initial and final states on the LTSs define the
sequences of actions (traces) that characterize the coordination policies of
the protocols.

(ii) Two ontologies OP and OQ describing the meaning of P and Q’s actions,
respectively.

(iii) Two ontology mapping functions mapsP and mapsQ defined from OP and
from OQ to a common ontology. The intersection OPQ on the common
ontology identifies the “common language” between P and Q. For simplicity,
and without loss of generality, we consider protocols P and Q that have
disjoint languages and that are minimal where we recall that every finite
LTS has a unique minimal representative LTS.

OP

AP AQ

QP M
(mediator)

OPQ OQ

IPQ

Protocols

Ontologies

Abstracted protocols

Common abstracted protocol

InfPAbstraction information InfQ

IM

Fig. 10. An overview of our approach

Application-Layer Connector Synthesis 167

(iv) Then, starting from P and Q, and based on the ontology mapping, we build
two abstractions AP and AQ by relabeling P and Q, respectively, where the
actions not belonging to the common language OPQ are hidden by means
of silent actions (τs); moreover, we store some abstraction information (i.e.,
used to make the abstraction), InfP and InfQ, that in case of positive
matching check, will be exploited to synthesize the mediator during the
mapping;

(v) Then, we check the compatibility of the protocols by looking for comple-
mentary traces (the set IPQ in figure), modulo mismatches and third parties
communications, between the sets of traces TP and TQ generated by AP

and AQ, respectively. If this is the case, then we are able to synthesize a
mediator that makes it possible for the protocols to coordinate. Hence, we
store the matching information (i.e., used to make the abstraction) IM that
will be exploited during the mapping.

(vi) Finally, given two protocols P and Q, and an environment E, the mediator
M that we synthesize is such that when building the parallel composition
P ||Q||E||M , P and Q are able to coordinate by reaching their final states
under the hypothesis of fairness.

4.2 Formal Foundations

The application-layer interaction protocol, as described in Section 1, is the be-
havior of a system in terms of the actions it exchanges with other application-
layer interaction protocols. In this section, a characterization of such protocols
is provided together with a conceptualization of the application actions.

Protocols as LTS

As mentioned in Section 2, we use LTSs to characterize the protocols. LTSs
constitute a widely used model for concurrent computation and are often used
as a semantic model for formal behavioral languages such as process algebras. Let
Act be the set of observable actions (input/output actions), we get the following
definition for LTS:

Definition 1 (LTS). A LTS P is a quadruple (S, L, D, s0) where:
S is a finite set of states;
L ⊆ Act

⋃{τ} is a finite set of labels (that denote observable actions) called the
alphabet of P. τ is the silent action. Labels with an overbar in L denote output
actions while the ones without overbar denote input actions. We also use the
convention that for all l ∈ L, l = l4.
D ⊆ S × L× S is a transition relation;
s0 ∈ S is the initial state.

We then denote with {L⋃{τ}}∗ the set containing all words on the alphabet L.
We also make use of the usual following notation to denote transitions:
si

l−→ sj ⇔ (si, l, sj) ∈ D

4 We inherit this convention from Calculus of Communicating Systems (CCS) [49].

168 P. Inverardi, R. Spalazzese, and M. Tivoli

We consider an extended version of LTS, where the set of the LTS’ final states
is explicit. An extended LTS is then a quintuple (S, L, D, F, s0) where the
quadruple (S, L, D, s0) is a LTS and F ⊆ S. From now on, we use the terms LTS
and extended LTS interchangeably, to denote the latter one.

The initial state together with the final states, define the boundaries of the
protocol’s coordination policies. A coordination policy is indeed defined as any
trace that starts from the initial state and ends into a final state. It captures
the most elementary behaviors of the NS which are meaningful from the user
perspective (e.g., upload of photo of photo sharing producer meaning upload of
photo followed by the reception of one or more comments). Then, a coordination
policy represents a communication (i.e., coordination or synchronization) unit.
We get the following formal definition of traces/coordination policy:

Definition 2 (Trace or Coordination Policy). Let P = (S, L, D, F, s0).
A trace t = l1, l2, . . . , ln ∈ L∗ is such that:
∃(s0

l1−→ s1
l2−→ s2 . . . sm

ln−→ sn) where {s1, s2, . . . , sm, sn} ∈ S ∧ sn ∈ F .

We use the usual compact notation s0
t⇒ sn to denote a trace, where t is the

concatenation of actions of the trace.
Moreover we define a subtrace as any sequence in a protocol (it may be also

a trace). More formally:

Definition 3 (Subtrace). Let P = (S, L, D, F, s0).
A subtrace st = li, li+1, . . . , ln ∈ L∗ is such that:

∃(si
li−→ si+1

li+1−−→ si+2 . . . sm
lm−→ sn) where {si, si+1, si+2, . . . , sm, sn} ∈ S

Similarly to traces, also in this case we use the compact notation si
st⇒ sn.

LTSs can be combined using the LTS parallel composition operator. Several
semantics have been given in the literature for this operator. The one needed
here is similar to the one of CSP (Communicating Sequential Processes) [63]:
protocols P and Q synchronize on complementary actions while proceeding in-
dependently when engaged in non complementary actions. Moreover, we need a
synchronous reference model as the one of CSP or FSP (Finite State Process) [47]
where the synchronization is forced when an interaction is possible. Differently,
the asynchronous model like the one of CCS [49], would allow agents to non-
deterministically choose to not interact by performing complementary actions a
and a separately.

Although the semantics and the model we need are à la CSP, we use CCS
because (i) it is able to emulate the synchronous model of CSP thanks to the
restriction operator and (ii) it has several characteristics that CSP does not have
and that we need, e.g., complementary actions and τs .

Then our parallel composition semantics is that protocols P and Q synchro-
nize on complementary actions producing an internal action τ in the parallel
composition. Instead, P and Q can proceed independently when engaged in non
complementary actions. An action of P (Q resp.) for which no complementary
action exists in Q (P resp.), is executed only by P (Q resp.), hence, producing
the same action in the parallel composition.

Application-Layer Connector Synthesis 169

Definition 4 (Parallel composition of protocols). Let P =
(SP , LP , DP , FP , s0P) and Q = (SQ, LQ, DQ, FQ, s0Q). The par-
allel composition between P and Q is defined as the LTS P ||Q =
(SP × SQ, LP ∪ LQ, D, FP ∪ FQ, (s0P , s0Q)) where the transition rela-
tion D is defined as follows:

P
m−→ P ′

P |Q m−→ P ′|Q (where m ∈ LP ∧m
∈ LQ)

Q
m−→ Q′

P |Q m−→ P |Q′ (where m ∈ LQ ∧m
∈ LP)

P
m−→ P ′; Q m−→ Q′

P |Q τ−→ P ′|Q′ (where m ∈ LP ∧m ∈ LQ)

Note that when we build the parallel composition of protocols P , Q, with the
environment E, and the mediator M , the composed protocol P |Q|E|M is re-
stricted to the language made by the union of the common languages between
each pair of protocols. Thus, this restriction force all the protocols to synchronize
when an interaction is possible among them.

Ontologies

Ontologies play an important role in realizing connectors which primarily relies
on reasoning about systems functionalities. More in detail, what is needed is to
identify matching sequences of observable actions among the actions performed
by the systems. Ontologies play a key role in identifying such matching and allow
overcoming the inherent heterogeneity of NSs.

In the literature, [40,39] the ontologies and the ontology mapping are defined
as follows:

– “an ontology is a pair O = (S, A), where S is the (ontological) signature
describing the vocabulary and A is a set of (ontological) axioms specifying
the intended interpretation of the vocabulary in some domain of discourse”.

– “A total ontology mapping from O1 = (S1, A1) to O2 = (S2, A2) is a mor-
phism

f : S1 → S2 of ontological signatures, such that, A2 = f(A1), i.e., all
interpretations that satisfy O2’s axioms also satisfy O1’s translated axioms”.

Towards enabling mediators, in the next section we will detail application on-
tologies characterizing the application actions.

4.3 Abstraction Formalization

Given the definition of extended LTS associated with two interaction protocols
run by NSs, we want to identify whether such two protocols are functionally

170 P. Inverardi, R. Spalazzese, and M. Tivoli

matching and, if so, to synthesize the mediator that enables them to interoperate,
despite behavioral mismatches and third parties communications.

We recall that with functional matching, we mean that given two systems
with respective interaction protocols P and Q, ontologies OP and OQ describing
their actions, ontology mapping functions mapsP on P and mapsQ on Q, and
their intersecting common ontology OPQ, there exists at least one pair of com-
plementary traces (with one trace in P and one in Q) that allows P and Q to
coordinate. In other words, one or more sequences of actions of one protocol can
synchronize with one or more sequences of actions in the other. This can happen
by properly solving mismatches, using the basic patterns discussed in [66,65],
and managing communications with third parties. Thus, we expect to find, at
a given level of abstraction, a common protocol C that represents the potential
interactions of P and Q. This leads us to formally analyze such alike protocols
to find - if it exists - C and a suitable mediator that allows the interoperability
that otherwise would not be possible. This problem can be formulated as a kind
of anti-unification problem [35,58,79,62].

In order to find the protocols’ abstractions, we exploit the information con-
tained in the ontology mapping to suitably relabel the protocols. Specifically,
as detailed in the following, the relabeling of LTSs produces new LTSs that are
labeled only by common actions and τs, and hence are more abstract than before
(e.g., sequences of actions may have been compressed into single actions). For il-
lustration, Figure 11 summarizes the ontological information of the IB Producer
of Figure 3 a) (first column) and of the P2P Photo Sharing of Figure2 (third
column). The second column shows their common language. We recall that: (1)
the overlined actions are output/send action while non-overlined are input/re-
ceive; (2) the P2P application implements both roles, producer and consumer,
while the IB application we are focusing on, is the producer role only(the overall
Photo Sharing is implemented by three separate IB applications). This explains
why we have in the table two non-paired actions; because they are paired with
the actions of the other IB applications.

Infrastructure-based
Photo-Sharing Producer

Common Language
Projected on the Protocols

Peer-to-peer
Photo-Sharing version 1

UploadPhoto.
Acknowledge

UP UP
(upload photo) (download photo)

PhotoMetadata.
PhotoFile

CommentPhoto UC UC
(download comment) (upload comment)

PhotoComment

- - UP
(upload photo)

PhotoMetadata.
PhotoFile

- - UC
(download comment)

PhotoComment

Fig. 11. Ontology mapping between Infrastructure-based Photo Sharing Producer and
peer-to-peer Photo Sharing (Figure 3 a) and Figure2 respectively)

Application-Layer Connector Synthesis 171

In the following we describe more formally the abstraction step. We specialize
the definition of total ontology mapping of Section 4.2, that maps single elements
of S1 into single elements of S2, by defining an abstraction ontology mapping that
maps the S1 language (i.e., S∗

1) into S2, i.e., maps : S∗
1 → S2.

We use such specialized ontology mapping on the ontologies of the compatible
protocols, where the vocabulary of the source ontology is the language of the
protocol. More formally:

Definition 5 (Abstraction Ontology Mapping). Let:

– P = (SP , LP , DP , FP , s0P),
– OP = (L∗

P , AP) be the ontology of P ,
– O = (L, A) be an ontology referred as abstract ontology,
– st ∈ L∗

P be a subtrace on P .

The abstraction ontology mapping is a function maps such that:
maps : L∗

P → L.

The application of the above abstraction ontology mapping maps on the ontology
of P returns as result the set Labs of labels on the abstract ontology defined as
Labs = {l ∈ L : ∀ st ∈ L∗

P l = maps(st)}.
The abstract protocols are then obtained, leveraging on the abstraction on-

tology mapping, by relabeling protocols with labels of their common language
and τs for the thirds parties languages. A necessary condition for the existence
of a common language between two protocols P and Q, is that there exist two
abstraction ontology mapping mapsP on P and mapsQ on Q that map the lan-
guages L∗

P of P and L∗
Q of Q into the same/common abstract ontology. Thus,

to identify the common language, we first map each protocol’s ontology into a
common ontology and then by intersection, we find their common language.

Operationally, we do not work on protocols while we reason on traces: starting
from a protocol P (Q resp.), we extract all the traces from it and apply the
relabelling on the traces that result into a set of abstracted traces, with labels
belonging to the common language and τs. However, the abstract protocol(s) of
P (Q resp.), can be easily obtained by merging the traces where possible (e.g.
common prefixes). Similarly, we use a reasoning on traces also for the matching
and mapping phases.

It has to be noticed that the set of all the traces may not be finite. Then,
the abstraction ontology mapping can be applied to an infinite set of traces.
We consider minimal protocols5. Hence, the infinite set of traces is represented
by a minimal automaton (containing at least a final state). Then, the abstrac-
tion ontology mapping on such minimal automaton, either applies directly (to
the minimal automaton) returning a set of (abstracted) traces on the common
language and τs, or it does not exist any automaton unfolding on which the
abstraction ontology mapping applies.
5 This is similar to the normal form of a system of recursive equations in [37] which

is based on the idea to eliminate repetitions of equivalent recursive equations (that
is equations with the same unfolding).

172 P. Inverardi, R. Spalazzese, and M. Tivoli

AP AQ

QP

OPQmapsP
mapsQ

COQ

COP

OP
OQCDP

CDQCDCDPPD

w ЄOPQ

DDQDCC

w OPQЄ

Fig. 12. The abstract protocol building

Figure 12 depicts the abstraction of the protocols. Let us consider two minimal
and deterministic protocols P and Q with their respective ontologies OP =
(L∗

P , AP) and OQ = (L∗
Q, AQ) and their abstraction ontology mappings mapsP

and mapsQ respectively.
We first map OP and OQ, through mapsP : L∗

P → L and mapsQ : L∗
Q → L

respectively, into a common ontology O = (L, A) where COP and COQ represent
the codomain sets of mapsP and mapsQ respectively.

The common language between P and Q is defined as the intersection OPQ of
COP and COQ. In particular, it is built by: (1) applying the abstraction ontology
mapping to P and Q respectively thus obtaining the two sets of labels COP and
COQ respectively; (2) starting from pairs of actions l and l (l, l resp.) belonging
to COP and COQ respectively, storing into OPQ the action l - without taking
into account the type send/receive. Below, we define the common language more
formally:

Definition 6 (Common Language). Let:

– P = (SP , LP , DP , FP , s0P) and Q = (SQ, LQ, DQ, FQ, s0Q),
– stP , stQ be subtraces of P of Q respectively,
– OP = (L∗

P , AP) be the ontology of P and
OQ = (L∗

Q, AQ) be the ontology of Q,
– O = (L, A) be an ontology,
– mapsP : L∗

P → L be the abstraction ontology mapping of P and
mapsQ : L∗

Q → L be the abstraction ontology mapping of Q,

The common language OPQ between P and Q is defined as:
OPQ = {l : l (or l) = mapsP (stP) ∧ l (or l) = mapsQ(stQ) }
where stP , stQ implement basic mismatches (as defined in papers [66,65]).

For instance, the pairs of labels (UP , UP), or (UP , UP), or (UP , UP), or (UP ,
UP) let us derive UP as an action belonging to the common language.

The abstract protocol AP (AQ resp.) of P (Q resp.), is built as follows:
for each trace tP of P (tQ of Q resp.) build a new trace t′P (t′Q) such that:

Application-Layer Connector Synthesis 173

1. for each chunk (sequences of states and transitions) of tP (tQ resp.) labeled
by subtraces on DP (DQ resp.), build a single transition in t′P (t′Q) labeled
with a label on OPQ;

2. for all the other chunks of tP (tQ resp.) labeled with actions belonging to
the thirds parties language, build chunks labelled with τs.

In the following we define more formally the relabeling function that we exploit:

Definition 7 (Relabelling function). Let:

– P = (SP , LP , DP , FP , s0P) and Q = (SQ, LQ, DQ, FQ, s0Q) be protocols,
– OP = (L∗

P , AXP) and OQ = (L∗
Q, AXQ) be ontologies of P and Q respec-

tively,
– O = (L, A) be a common ontology for P and Q,
– mapsP : L∗

P → L and mapsQ : L∗
Q → L be abstraction ontology mappings of

P and Q respectively,
– COP and COQ be the codomain sets of mapsP and mapsQ respectively,
– OPQ be the common language between P and Q.

The relabeling function relabels is defined as: relabels : (P, mapsP , OPQ) → AP

where AP = (SA, LA, DA, FA, s0A) and where

UP
UC

UP

UC

UP

UC

(a) IB Producer

UP
UC

(b) P2P Photo Sharing

UP

UC

UP

UC

abstracts abstracts

Consumer role

Consumer role

Fig. 13. Abstracted LTSs of the Photo Sharing protocols

174 P. Inverardi, R. Spalazzese, and M. Tivoli

SA ⊆ SP ,
LA = {l ∈ OPQ}

⋃{τ},
DA = {si

l−→ sj (or si
l−→ sj) : ∃ sk

w⇒ sn ∈ DP ∧ l (or l) = mapsP (w)},
FA ⊆ FP , and
s0A = s0P .

The above definition applies similarly to Q: relabels : (Q, mapsQ, OPQ) → AQ.
In the Photo Sharing scenario, the only label that is not abstracted in the com-

mon language is authenticate that represents a third party coordination. The IB
producer and P2P Photo-Sharing version 1’s abstracted LTSs are shown in Fig-
ure 13 where the upper part illustrates the protocols on the common language
(i.e., common labels without taking into account output and input) while the
bottom part of the figure illustrates the protocols on the common language pro-
jected on the protocols (i.e., labels where output and inputs are not abstracted).
The subsequent step is to check whether the two abstracted protocols share a
complementary coordination policy, i.e., whether the abstracted protocols may
in fact synchronize, which we check over protocol traces as mentioned before.

4.4 Matching Formalization

The formalization described so far is needed to: (1) characterize the protocols
and (2) abstract them into protocols on the same alphabet. Then, to establish
whether two protocols P and Q can interoperate given their respective abstrac-
tions AP and AQ based on their common ontology OPQ (i.e., common language)
and possibly τs, we need to check that the abstracted protocols AP and AQ share
complementary coordination policies. To establish this, we use the functional
matching relation between AP and AQ, which succeeds if AP and AQ have a set
of pairs of complementary coordination traces, i.e., at least one pair.

Before going into the definition of the compatibility or functional matching re-
lation, let us provide the one of complementary coordination policies. Informally,
two coordination policies are complementary if and only if they are the same se-
quence of actions while having opposite input/output type for all actions. That
is, traces t and t′ are complementary if and only if: each output action (resp.
input) of t has its complementary input action (resp. output) in t′ and similarly
with switched roles among t′ and t. More formally:

Definition 8 (Complementary Coordination Policies or Traces). Let:

– P = (SP , LP , DP , FP , s0P) and Q = (SQ, LQ, DQ, FQ, s0Q),
– AP , AQ be the abstracted protocols of P and Q respectively,
– TP and TQ be the set of all the traces of AP and AQ, respectively,
– t = l1, l2, . . . , ln ∈ TP and t′ = l′1, l

′
2, . . . , l

′
m ∈ TQ.

Coordination policies t and t′ are complementary coordination policies iff the
following conditions hold: discarding the τs,

(i) for each li ∈ t : li is an output action (input action resp.) ∃ l′j ∈ t′ : l′j is an
input action (output action resp.);

Application-Layer Connector Synthesis 175

(ii) for each l′j ∈ t′ : l′j is an output action (input action resp.) ∃ li ∈ t : li is an
input action (output action resp.);

Note that (i) and (ii) above do not take into account the order in which the
complementary labels li and l′j are within the traces. Hence, two traces having
all complementary labels (skipping the τs) but in different order are considered to
be complementary coordination policies (modulo a reordering). Therefore, while
doing this check, we store such information that will be used during the mediator
synthesis in addition to other information, e.g., the abstraction information.

As said above, we perform the complementary coordination policies check on
the abstracted protocols AP and AQ, which are expressed in a common language
plus τs representing third parties synchronization. We further use the functional
matching relation to describe the conditions that have to hold in order for two
protocols to be compatible. Formally:

Definition 9 (Compatibility or Functional matching). Let:

– P and Q protocols,
– relabels be a relabeling function,
– AP and AQ be the abstracted protocols, through relabels, of P and Q respec-

tively, and
– ti be a coordination policy of AP and let t′i be a coordination policy of AQ.

Protocols P and Q have a functional matching (or are compatible) iff there exists
a set C of pairs (ti, t′i) of complementary coordination policies.

Note that when considering applications that play only the client role, asking for
services to a server, the functional matching definition above is slightly modified
as follows: instead of checking the existence of a set of pairs of complementary
traces, it checks the existence of “a set of pair of traces that result in the same
trace”.

The functional matching relation defines necessary conditions that must hold
in order for a set of NSs to interoperate through a mediator. In our case, till
now, the set is made by two NSs and the matching condition is that they have at
least a complementary trace modulo the τs. Such third parties communications
(τs) can be just skipped while doing the check, but have to be re-injected while
building the mediator. They hence represent information to be stored for the
subsequent synthesis.

4.5 Mapping Formalization

Given two protocols P and Q that functionally match, where the set C is made by
their pairs of complementary coordination policies, we want to synthesize a me-
diator M such that the parallel composition P ||M ||Q, allows P and Q to evolve,
for their portion C, to their final states. An action of P and Q can belong either
to the common language or the third parties language, i.e., the environment. We
build the mediator in such a way that it lets P and Q evolve independently for
the portion of the behavior to be exchanged with the environment (denoted by

176 P. Inverardi, R. Spalazzese, and M. Tivoli

τ action in the abstracted protocols) until they reach a “synchronization state”
from which they can synchronize on complementary actions. We recall that the
synchronization cannot be direct since the mediator needs to perform suitable
manipulations as for instance actions reordering or translation according to the
ontology mapping. An example of translation in the Photo Sharing scenario is
UC = CommentPhoto in one protocol and UC = PhotoComment in the other.

As we said previously, operationally we work on traces instead of working on
protocols, hence producing a set of mediating traces for C where we recall that
the traces of C’s pairs are traces on the abstract protocols AP and AQ of P and
Q respectively. Then, the mediator protocol AM for C can be easily obtained by
merging the mediating traces. AM can be considered an “abstract mediator” since
it mediates between abstract protocols. To obtain the corresponding “concrete
mediator”, we then need to translate each abstract action to its corresponding
concrete (sequence of) action(s), i.e., on the languages of P and of Q.

Therefore, a mediator is a protocol that, for each pair cij = (ci, cj) in C,
builds a mediating trace mij such that, for each action (also τ) in ci and in cj

it always first receive the action and then properly resend it. More formally:

Definition 10 (Mediator). Let:

– C be the set of pairs of complementary coordination policies between two
abstract protocols AP and AQ of protocols P and Q respectively;

– OC be the common language among P and Q;
– (ci, cj) ∈ C be a pair of complementary traces where |ci| = n |ci| = m;

The mediator M for C is defined as follows:

∀ (ci, cj) ∃ a mediating trace mij ∈M : mij = l1, l2, . . . , lk ∧ k = n + m ∧
if ln = a ∧ a ∈ OC ∧ a ∈ ci then ∃ 1 ≤ h < n : lh = a ∧ a ∈ cj;
if ln = a ∧ a ∈ OC ∧ a ∈ cj then ∃ 1 ≤ h < n : lh = a ∧ a ∈ ci;

The mediator is logically made up of two separate components: MC and MT .
MC speaks only the common language and MT speaks only the third parties
language. MC is a LTS built starting from the common language between P
and Q whose aim is to solve the protocol-level mismatches occurring among
their dual interactions (complementary sequences of actions) by translating and
coordinating between them. MT , if it exists, is built starting from the third
parties language of P and Q and represents the environment. The aim of MT is
to let the protocols evolve, from the initial state or from a state where a previous
synchronization is ended, to the states where they can synchronize again.

4.6 Application of the Theory to the Scenario

As already mentioned in Section 4, we assume to have the behavioral specifi-
cation of the considered Photo Sharing applications, their respective ontologies
describing their actions, and the abstraction ontology mapping that defines the
common language between IB producer and P2P Photo Sharing. The first step is
to abstract the protocols exploiting the ontology mapping. Following the theory,

Application-Layer Connector Synthesis 177

the abstracted protocols for the Photo Sharing scenario are illustrated in Figure
13. The second step is the functional matching, i.e., check whether they have
some complementary coordination policies. In this scenario, the IB producer is
able to simulate the P2P consumer (under complementarity of actions), i.e., right
branch of the LTS in Figure 13. The left branch, outside the dashed line, has to
be discarded since it is not common with the producer application (while being
common with the server of the IB application). Then, the coordination policies
that IB producer and P2P consumer share are exactly the consumer’s ones.

In this case, only the producer has third parties language actions and then
the mediator is made by the part that translates and coordinates the common
language and the part that simulates the environment by forwarding from and
to it. Hence, with the application of the theory to the scenario, we obtain the
connector as shown in Figure 14.

We recall (as already sketched in Section 2.2) that the high level functionalities
of the various applications are the following. Taking the producer perspective (1)
authentication - for the IB producer only -, (2) upload of photo, and (3) download
of comments, while taking the consumer perspective: (i) download of photo, and
(ii) the upload of comments.

The mediator allows the interaction between the two different Photo Sharing
applications by (A) manipulating and forwarding the conversations from one
protocol to the other and (B) forwarding the interactions between the producer
and its server. In the following, we also refer to the Basic Mediator Patterns [66]
used to detect and solve the mismatches.

– The IB producer implements the authentication with the action
“Authenticate” while the P2P does not include such functionality, i.e., there
is no semantically correspondent action in the P2P application (the comple-

PhotoMetadata

PhotoFile

PhotoComment

UploadPhoto

CommentPhoto
Acknowledge

AuthenticateAuthenticate

||

Fig. 14. Behavioural description of the Mediating Connector for the Photo Sharing
example (IB photo producer of Figure 3 a) and P2P Photo Sharing of Figure 2)

178 P. Inverardi, R. Spalazzese, and M. Tivoli

mentary action is in the IB server – third parties communication). Then, in
this case, the mediator has to forward the interactions from the producer to
its server (case (B) above).

– The IB producer implements the upload of photo with the sequence of ac-
tions “UploadPhoto . Acknowledge” where the former action sends both
photo metadata and file and the latter models the reception of an acknowl-
edgment. The corresponding download of photo implemented by the P2P
is the sequence of actions “PhotoMetadata . PhotoF ile”. Hence, although
the actions are semantically equivalent, they do not synchronize. In order to
solve the mismatches among the upload/download of photo, the mediator has
to split “UploadPhoto” into “PhotoMetadata . PhotoF ile” and then pro-
duce the “Acknowledge”. To detect and solve the mismatches the mediator
can respectively leverage on message splitting pattern and message producer
pattern [66]. In this case, the mediator (case (A) above) manipulates and
forwards the actions from one protocol to the other.

– The P2P implements the upload of comments with the action
“PhotoComment” while the IB producer implements the respective down-
load of comments with the action “CommentPhoto”. In order to solve the
described mismatch the mediator has to perform a properly translation of
“PhotoComment” into “CommentPhoto”.

In order to detect and solve the described signature mismatch, the media-
tor can use the message translator pattern [66]. In this case (case (A) above),
the mediator manipulates and forwards the conversations from one protocol
to the other.

Note that the building of a connector can be slightly different according to the
kind of protocols to be mediated.

If the control of a protocol P is characterized by both send and receive actions,
then the mediator will (i) receive an action(s) from P , (ii) properly manipulate
it(them), and (iii) send it(them) to the compatible protocol Q of P and vice versa
with switched roles between P and Q. Hence the mediator will synchronize with
P (Q resp.) to both receive or send messages.

Instead, if the control of protocol P (Q resp.) is only characterized by send
actions (i.e., it implements the client role only) then the mediator will only
receive actions from P (Q).

5 Related Works

In this chapter we introduced application-layer connectors by referring to both
coordinators and mediators. According to these two notions of connector, in
this section, we discuss related work in the areas of both automatic coordinator
synthesis (Section 5.1) and automatic mediator synthesis (Section 5.2). Indeed,
since a mediator can be also seen as a coordinator that enables communication,
these works are all related to the automatic mediator synthesis.

Application-Layer Connector Synthesis 179

5.1 Automatic Synthesis of Coordinators

The architectural approaches to correct and automatic coordinator synthesis
presented in Section 3 are related to a large number of other problems that have
been considered by researchers over the past two decades. For the sake of brevity
we mention below only the works closest to those approaches. The most strictly
related approaches are in the “scheduler synthesis” research area. In the discrete
event domain they appear as “supervisory control” or “discrete controller syn-
thesis” problem [16,60] addressed by Wonham, Ramadge et al. In very general
terms, these works can be seen as an instance of the interoperability problem as
(re)phrased in Section 3. However, the application domain of these approaches
is sensibly different from the software component domain. Dealing with software
components introduces a number of further problematic dimensions to the origi-
nal synthesis problem. In the scheduler synthesis approaches the possible system
executions are modeled as a set of event sequences, and the system specifica-
tion describes the desired executions. The role of the supervisory controller is
to interact with the system in order to meet system specification. The aim of
these approach is to restrict the system behavior so that it is contained in a
desired behavior, called the specification. To do this, the system is constrained
to perform events only in strict synchronization with another system, called
the supervisor (or controller). This is achieved by automatically synthesizing a
suitable supervisor with respect to the system specification. In contrast to our
method, there is one main assumption to deal with deadlocks: in order to auto-
matically synthesize a supervisor which avoids deadlocks, they need to consider
a specification of the deadlocking behaviors of the base system (i.e., the event
sequences that might cause deadlocks). This is a problem because, for large sys-
tems, the designers might not know the deadlocking behaviors since they might
be unpredictable.

Other works that are related to our approach appear in the model checking
of software components context in which compositional reachability analysis [33]
and automatic assumption generation [34] techniques are largely used. In [33]
Giannakopoulou, Kramer and Cheung described a compositional approach to
efficiently perform functional analysis of distributed systems. They validate the
behavior of a distributed system with respect to specified safety and liveness
properties. The hierarchical software architecture imposed on the system model
to be validated allows them to reduce its size. In fact, by exploiting the system
hierarchical structure, they are able to check its subsystems against the spec-
ified properties. At this point, each subsystem can be minimized in order to
be modeled as a single component and the analysis is incrementally carried on.
In contrast to our method they are able to minimize the model of the global
system by performing efficient analysis. However, the problem faced by their
approach is limited to analysis while our technique goes beyond analyzing func-
tional properties of a system by also considering the problem of automatically
forcing the system to exhibit only deadlock-free and specified behaviors. In [34]
Giannakopoulou, Pasareanu and Barringer faced a problem that can be seen as
an instance of the general problem (re)formulated in Section 3. In the case of

180 P. Inverardi, R. Spalazzese, and M. Tivoli

these approaches, the treated problem can be formulated as follows: given a com-
ponent C and a desired behavior B, find an environment E for C in such a way
that E(C) ≡ B under an appropriate notion of equivalence. In this approach
when model checking a component against a property, the algorithm returns
one of the following three results: i) the component satisfies the property for
any environment; ii) the component violates the property for any environment;
or finally iii) an automatically generated set of assumptions that characterizes
exactly those environments in which the component satisfies the property. The
difference with our approach is that they automatically synthesize the assump-
tions that represent the weakest environment in which the component satisfies
the specified properties. That is, they deal with only two components: i) one
actual component and ii) its environment. Moreover, they find an environment
in such a way that the specified property is ensured but they do not guarantee
the property for any possible environment.

Promising formal techniques for the compositional analysis of component-
based design have been developed in [24,55]. The key of these works is the
modular-based reasoning that provides a support for the modular checking of
behavioral properties. In [24], De Alfaro and Henzinger use an automata-based
approach to capture both input assumptions about the order in which the meth-
ods of a component are called, and output guarantees about the order in which
the component calls external methods. The formalism supports automatic com-
patibility checks between interface models, and thus constitutes a type system
for components interaction. The purpose of this work is different from ours. The
authors check that two components have compatible interfaces if a legal environ-
ment letting them correctly interact there exists. Each legal environment is an
adaptor for the two components. They provide only a consistency check among
components interfaces. That is they do not deal with automatic synthesis of
component interface adaptors (i.e., automatic synthesis of legal environments).
However in [55] De Alfaro, Henzinger, Passerone and Sangiovanni-Vincentelli
use a game theoretic approach for checking whether incompatible component
interfaces can be made compatible by inserting a converter between them which
satisfies specified requirements. This approach is able to automatically synthesize
the converter. In contrast to the works described in Section 3, with respect to
deadlock-freedom, the specification of the converter’s requirements is assumed to
be correct. Thus if, e.g., the specification would erroneously introduce deadlocks,
they would not be prevented by the converter that it is synthesized in order to be
completely compliant to its requirements specification. In other words, a dead-
lock preventing specification of the requirements to be satisfied by the adaptor
has to be provided by delegating to the user the non-trivial task of specifying it.

Our research is also related to work in the area of protocol adaptor synthesis
developed by Yellin and Strom [88]. The main idea is to modify the interaction
mechanisms that are used to glue components together so that compatibility is
achieved. This is done by integrating the interaction protocol into components
by means of adaptors. However, they are limited to only consider syntactic in-
compatibilities between the interfaces of components and they do not allow the

Application-Layer Connector Synthesis 181

kind of interaction behavior that our synthesis approach supports. Moreover,
they require a formal specification of the adaptor dictating, for example, a map-
ping function among events of different components. Although requiring this
kind of specification enhances applicability of their approach respect to the one
described in Section 3, it is in contrast with our need to be as automatic as pos-
sible. In fact even if other kinds of techniques to specify the adaptor are possible,
providing the adaptor specification requires to know too many implementation
details thus missing part of the goals of the work presented in Section 3. However,
if we assume to have as input that detailed adaptor specification, our approach
can be used to deal with the kind of incompatibilities that Yellin and Strom
face in their work. In [7,71], we extended the approach described in Section 3.1
in order to not only restrict the coordinator behavior but also augmenting it in
order to consider also such incompatibilities.

In other work from Bracciali, Brogi and Canal [15,20], in the area of component
adaptation, it is shownhow to automatically generate a concrete adaptor from: (i) a
specification of component interfaces, (ii) a partial specification of the components
interactionbehavior, (iii) a specification of the adaptation in terms of a set of corre-
spondences between actions of different components and (iv) a partial specification
of theadaptor.Thekey result is the settingofa formal foundation for theadaptation
of heterogeneous components that may present mismatching interaction behavior.
Analogously to the work of Yellin and Strom, although this work provides a fully
formal definition of the notion of component adaptor, its application domain is dif-
ferent fromour.Since, inspecifyingasystem,wewanttomaintainahighabstraction
level, assuming a specification of the adaptation in terms of a set of correspondences
betweenmethods (and their parameters) of two components requires to knowmany
implementation details (about the adaptation) that we do not want to consider in
order to synthesize the adaptor.

Concerning the research underpinning the SynthesisRT tool, a related work
in synchronous programming is the synchronizing of different clocks. In [23],
each input and output port is associated with a periodic clock. Adaptation is
performed at the level of each connection between ports using finite buffers. It
is sufficient to look at the clocks of two connected ports and to introduce a de-
lay by interposing a node buffer between the two ports. In the context of the
work described in Section 3.4, adaptation must be performed at the component
level by taking into account several dimensions of the specification: the compo-
nent clock, the interaction protocol, the latency, duration, and controllability of
each action. For this reason, introducing delays is not sufficient and, e.g., the
reordering or inhibition of actions is also required.

5.2 Automatic Synthesis of Mediators

The automatic synthesis of application-layer mediators presented in Section 4
relates to a wide number of works in the literature within different research
areas, beyond the ones discussed in Section 5.1. The theory concentrated on the
interoperability problem between heterogeneous protocols within the UbiComp
environment.

182 P. Inverardi, R. Spalazzese, and M. Tivoli

UbiComp was proposed by Mark Weiser in Nineties [81] [80] as the direction
for development of technology in the twenty-first century. But the early basics
for this new philosophy were created in 1988 as “tabs, pads and boards” [82].
One of the key principles of UbiComp is to make the computer able to vanish
in the background to increase their use making it in an efficient and invisible
manner to users. UbiComp suggests the ability for users to enter the environ-
ment in a natural way, without being a priori aware of who or what populates
it. Furthermore, the user should be able to use the services available using its
devices without complex procedures and manual configurations. The currently
available technologies and computations have not yet reached the maturity re-
quired by the ubiquitous paradigm due to the fact that they are still tied and
dependent on the underlying layers although we can qualify them as ubiqui-
tous. The ubiquitous vision fits perfectly with our idea of mediator. Each entity,
indeed, maintains its own characteristics (and diversities), being able to com-
municate and cooperate with the others without having any prior knowledge of
them thanks to the support provided by the mediators that masks divergencies
making them appear homogeneous.

Interoperability and mediation have been investigated in several contexts,
among which integration of heterogeneous data sources [85,84], software architec-
ture [32], architectural patterns [18], design patterns [31], patterns of connectors
[83,68], Web services [11,22,70,45,38], and algebra to solve mismatches [26] to
mention a few.

In particular the interoperability/mediation of protocols have received atten-
tion since the early days of networking. Indeed many efforts have been done in
several directions including for example formal approaches to protocol conversion
[19,44,53], and their extension towards reducing the algorithmic complexity of
protocol conversion [43].

A work strictly related to the mediators presented in this chapter is, again,
the work by Yellin and Strom [88] discussed in Section 5.1. With respect to
our mediator synthesis approach, this work prevents to deal with ordering mis-
matches and different granularity of the languages (one send-many receive and
many send-one receive mismatches [66]).

Recently, with the emergence of Web services and advocated universal inter-
operability, the research community has been studying solutions to the automatic
mediation of business processes [78,77,50,86]. They differ with respect to: (a) a
priori exposure of the process models associated with the protocols that are
executed by networked resources, (b) knowledge assumed about the protocols
run by the interacting parties, (c) matching relationship that is enforced. How-
ever, most solutions are discussed informally, making it difficult to assess their
respective advantages and drawbacks.

This highlights the needed for a new and formal foundation for mediating
connectors from which protocol matching and associated mediation may be rig-
orously defined and assessed. These relationships should be automatically rea-
soned upon, thus paving the way for on the fly synthesis of mediating connectors.
To the best of our knowledge, such an effort has not been addressed in the Web

Application-Layer Connector Synthesis 183

services and Semantic Web area although proposed algorithms for automated
mediation manipulates formally grounded process models.

Within the Web Services research community, a lot of work has been also
devoted to behavioral adaptation which has been actively studying this problem.
Among these works, and related to our, there is [51]. It proposes a matching
approach based on heuristic algorithms to match services for the adapter gen-
eration taking into account both the interfaces and the behavioral descriptions.
Our matching is driven by the ontology as described in Section 4 and in [67,36].

Moreover, recently the Web services community has been also investigating
how to actually support service substitution so as to enable interoperability with
different implementations (e.g., due to evolution or provision by different ven-
dors) of a service. While early work has focused on semi-automated, design-time
approaches [50,59], latest work concentrates on automated, run-time solutions
[25,21]. The work [25] addresses the interoperability problem between services
and provide experimentation on real Web2.0 social applications. They propose
a technique to dynamically detect and fix interoperability problems based on a
catalogue of inconsistencies and their respective adapters. This is similar to our
proposal to use ontology mapping to discover mismatches and mediator to solve
them. Our work differs with respect to theirs because we aim at automatically
synthesizing the mediator. Instead, their approach is not fully automatic since
although they discover and select mismatches dynamically, the identification of
mismatches and of the opportune adapters is made by the engineer.

Our work also closely relates to [21], sharing the exploitation of ontology to
reason about interface mapping and the synthesis of mediators according to such
mapping. Despite these similarities, our work goes one step further by not being
tight to the specific Web service domain.

Our work also closely relates to significant effort from the semantic Web ser-
vice domain and in particular the WSMO (Web Service Modeling Ontology)
initiative that defines mediation as a first class entity for Web service modeling
towards supporting service composition. The resulting Web service mediation
architecture highlights the various mediations levels that are required for sys-
tems to interoperate in a highly open network [70]: data level, functional level,
and process level. This has in particular led to elicit base patterns for process
mediation together with supporting algorithms [22,78].

A lot of work has also been devoted to connectors and include a classification
framework [48], studies on connectors [87,41], and formally grounded works on
connectors. For example, [69] presents an approach for formally specifying con-
nector wrappers as protocol transformations, modularizing them, and reasoning
about their properties, with the aim to resolve component mismatches. Another
formal work is [28] the authors propose mathematical techniques as founda-
tions to develop architectural design environments that are ADL-independent.
Authors of [46] present a formal specification mechanism, by a categorical se-
mantics, for higher order connectors concept that is connectors that take a con-
nector as parameter and deliver another as result. In [10] the authors present a
formalization of software connectors. In [17] the authors present an algebra for

184 P. Inverardi, R. Spalazzese, and M. Tivoli

five basic stateless connectors that are symmetry, synchronization, mutual ex-
clusion, hiding and inaction. They also give the operational, observational and
denotational semantics and a complete normal-form axiomatization. The pre-
sented connectors can be composed in series and in parallel. A PhD thesis [9]
proposes a new connector model, in the distributed component-based context of
the SOFA/DCUP project component model. The proposed model allows the de-
scription of interactions between components with a semi-automatic generation
of the corresponding code.

6 Conclusion and Future Perspectives

Automated and on-the-fly interoperability is a key requirement for heterogeneous
protocols within ubiquitous computing environments where networked systems
meet dynamically and need to interoperate without a priori knowledge of each
other. Although numerous efforts has been done in many different research areas,
such kind of interoperability is still an open challenge.

In Connect, we concentrated on the automatic synthesis of mediators be-
tween compatible protocols which enables them to communicate.

We proposed rigorous techniques to automatically reason about and compose
the behavior of networked systems that aim at fulfilling some goal by connecting
to other systems.

The reasoning serves to find a way to achieve communication -if it is possible-
and to build the related mediation solution. Our current work put the emphasis
on “the elicitation of a way to achieve communication” while it can gain from
more practical treatment of similar problems in the literature like the coordi-
nators synthesis or, e.g., converters or adaptors. In particular, we contributed
with:

– the design of a comprehensive mediator synthesis process described in [64];
– a set of mediator patterns which represent the building blocks to tackle in

a systematic way the protocol mediation. This led us to devise a complete
characterization of the protocol mismatches that we are able to solve by our
connector synthesis process and to define significant mediator patterns as
solution to the classified problems. This is reported in [66] and is revised
and extended in [65];

– a formalization of a theory of emerging mediating connectors which includes
related automated model-based techniques and tools to support the devised
synthesis process. The theory rigorously characterizes: (i) application layer
protocols, (ii) their abstraction, (iii) the conditions under which two proto-
cols are functionally matching, (iv) the notion of interoperability between
protocols based on the definition of the functional matching relationship,
and (v) the mapping, i.e., the synthesis of the mediator behavior needed
to achieve protocol interoperability under functional matching. This is illus-
trated in Section 4 as well as in [67,36,64].

Application-Layer Connector Synthesis 185

– A combined approach including the theory and a monitoring system towards
taking into account also non-functional properties reported in [14].

In the following we discuss future work perspectives. The theory of mediators
proposed in this chapter (1) clearly defines the interoperability problem, (2)
shows the feasibility of the automated reasoning about protocols, i.e., functional
matching, and (3) shows the feasibility of the automated synthesis of abstract
mediators under certain assumptions. In the future we plan to:

– implement the theory algorithms in order to automatize the mediator gen-
eration. In this direction, we are currently working on on-the-fly reasoning
about interoperability using ontology-based model checking [12];

– extend the theory of mediators so to have a comprehensive framework for
dealing also with middleware layer protocols and data, in addition to appli-
cation layer protocols. This is currently being investigated [13];

– study run-time techniques towards efficient synthesis;
– scale the synthesis process. The current theory is described considering only

two protocols but extending it to an arbitrary number n of protocols seems
not to be problematic. The protocol abstraction step developed within the
devised process represents a first attempt in this direction by reducing the
size of the behavioral models of the NSs to be connected;

– extend the validation of the theory on other real world applications. It would
possibly help in tuning the theory, if needed, and in refining the boarders
among which the theory works;

– translate the synthesized connector model into an executable artefact that
can be deployed and run in the network for actual enactment of the con-
nectors, as studied in the Connect project. This also requires devising the
runtime architecture of Connectors (see Deliverables D1.1 [1] and D1.2
[2] of Connect) by investigating the issue of generation of code versus in-
terpretation of the connector model. First results in this direction are in
Deliverable D3.2 [3];

– ensure dependability. While preliminary results towards this aim have been
described in [14], we aim to take into account both functional interoperabil-
ity and non-functional interoperability during the process. Indeed we would
include also the modeling of non-functional aspects, together with their re-
spective matching and mapping reasoning.

– relax some assumptions, towards a dynamic environment, and manage the
consequent uncertainty. For example, we aim at integrating with comple-
mentary works ongoing within the Connect project so as to develop an
overall framework enabling the dynamic synthesis of emergent connectors
among networked systems. Instances of complementary works are (i) learn-
ing techniques to dynamically discover the protocols (instead of assuming
them given) that are run in the environment; (ii) data-level interoperability
(instead of assuming the ontology given) to elicit the data mappings. This
may rise the problem of dealing with partial or erroneous specifications.

186 P. Inverardi, R. Spalazzese, and M. Tivoli

References

1. CONNECT consortium. CONNECT Deliverable D1.1: Initial Connect Architec-
ture. FET IP CONNECT EU project, FP7 grant agreement number 231167,
http://www.connect-forever.eu/

2. CONNECT consortium. CONNECT Deliverable D1.2: Intermediate Connect Ar-
chitecture. FET IP CONNECT EU project, FP7 grant agreement number 231167,
http://www.connect-forever.eu/

3. CONNECT consortium. CONNECT Deliverable D3.2: Reasoning about and Har-
monizing the Interaction Behavior of Networked Systems at Application- and
Middleware- Layer. FET IP CONNECT EU project, FP7 grant agreement number
231167, http://www.connect-forever.eu/

4. ITU Telecommunication Standardisation sector, ITU-T reccomendation Z.120.
Message Sequence Charts (MSC 1996), Geneva (1996)

5. Arnold, A.: Finite Transition Systems. International Series in Computer Science.
Prentice Hall International, UK (1989)

6. Autili, M., Inverardi, P., Navarra, A., Tivoli, M.: Synthesis: A tool for automat-
ically assembling correct and distributed component-based systems. In: 29th In-
ternational Conference on Software Engineering (ICSE 2007), Minneapolis, MN,
USA, pp. 784–787. IEEE Computer Society, Los Alamitos (2007), DOI REF:
http://doi.ieeecomputersociety.org/10.1109/ICSE.2007.84

7. Autili, M., Inverardi, P., Tivoli, M., Garlan, D.: Synthesis of “correct” adaptors
for protocol enhancement in component based systems. In: Proceedings of the
1st International Workshop on Specification and Verification of Component-Based
Systems (SAVCBS 2004) at FSE 2004, pp. 79–86 (2004)

8. Autili, M., Mostarda, L., Navarra, A., Tivoli, M.: Synthesis of decentralized and
concurrent adaptors for correctly assembling distributed component-based systems.
Journal of Systems and Software 81(12), 2210–2236 (2008)

9. Balek, D.: Connectors in Software Architectures. PhD thesis, Charles University
(May 2002)

10. Barbosa, M.A., Barbosa, L.S.: Specifying software connectors. In: Liu, Z., Araki,
K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 52–67. Springer, Heidelberg (2005)

11. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing
adapters for web services integration. In: Pastor, Ó., Falcão e Cunha, J. (eds.)
CAiSE 2005. LNCS, vol. 3520, pp. 415–429. Springer, Heidelberg (2005)

12. Bennaceur, A., Issarny, V., Spalazzese, R.: On-the-fly reasoning about interoper-
ability using ontology-based model checking. Technical Report, INRIA Rocquen-
court, Paris (January 2011)

13. Bennaceur, A., Spalazzese, R., Inverardi, P., Issarny, V., Georgantas, N., Saadi, R.:
Model-based mediators for dynamic-adaptive connectors. Technical report, INRIA
Paris-Rocquencourt, France (2011)

14. Bertolino, A., Inverardi, P., Issarny, V., Sabetta, A., Spalazzese, R.: On-the-fly
interoperability through automated mediator synthesis and monitoring. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 251–262.
Springer, Heidelberg (2010)

15. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation.
J. Syst. Softw. 74 (January 2005)

16. Brandin, B., Wonham, W.: Supervisory control of timed discrete-event systems.
IEEE Transactions on Automatic Control 39(2) (1994)

http://www.connect-forever.eu/
http://www.connect-forever.eu/
http://www.connect-forever.eu/
http://doi.ieeecomputersociety.org/10.1109/ICSE.2007.84

Application-Layer Connector Synthesis 187

17. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor.
Comput. Sci. 366(1), 98–120 (2006)

18. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture. A System of Patterns, vol. 1. Wiley, Chichester
(1996)

19. Calvert, K.L., Lam, S.S.: Formal methods for protocol conversion. IEEE Journal
on Selected Areas in Communications 8(1), 127–142 (1990)

20. Canal, C., Poizat, P., Salaün, G.: Model-based adaptation of behavioral mismatch-
ing components. IEEE Trans. Software Eng. 34(4), 546–563 (2008)

21. Cavallaro, L., Nitto, E.D., Pradella, M.: An automatic approach to enable replace-
ment of conversational services. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-
ServiceWave 2009. LNCS, vol. 5900, pp. 159–174. Springer, Heidelberg (2009)

22. Cimpian, E., Mocan, A.: WSMX process mediation based on choreographies. In:
Bussler, C., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 130–143. Springer,
Heidelberg (2006)

23. Cohen, A., Duranton, M., Eisenbeis, C., Pagetti, C., Plateau, F., Pouzet, M.: Syn-
chronization of periodic clocks. In: Proc. of the 5th EMSOFT (2005)

24. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the 8th
European Software Engineering Conference Held Jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ESEC/FSE,
vol. 9, pp. 109–120 (2001)

25. Denaro, G., Pezzé, M., Tosi, D.: Ensuring interoperable service-oriented systems
through engineered self-healing. In: Proceedings of ESEC/FSE 2009. ACM Press,
New York (2009)

26. Dumas, M., Spork, M., Wang, K.: Adapt or perish: Algebra and visual notation
for service interface adaptation. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.)
BPM 2006. LNCS, vol. 4102, pp. 65–80. Springer, Heidelberg (2006)

27. Feiler, P., Gabriel, R.P., Goodenough, J., Lingerand, R., Longstaff, T., Kazman, R.,
Klein, M., Northrop, L., Schmidt, D., Sullivan, K., Wallnau, K.: Ultra-Large-Scale
Systems: The Software Challenge of the Future (2006)

28. Fiadeiro, J.L., Lopes, A., Wermelinger, M.: Theory and practice of software ar-
chitectures. In: Tutorial at the 16th IEEE Conference on Automated Software
Engineering, San Diego, CA, USA, November 26-29 (2001)

29. Finkel, A.: The minimal coverability graph for Petri nets. In: Rozenberg, G. (ed.)
APN 1993. LNCS, vol. 674. Springer, Heidelberg (1993)

30. Blair, G., et al.: Introduction to Interoperability. In: Bernardo, M., Issarny, V.
(eds.) SFM 2011. LNCS, vol. 6659, pp. 350–392. Springer, Heidelberg (2011)

31. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Resusable Object-Oriented Software. Addison-Wesley Professional, Reading (1995)

32. Garlan, D., Shaw, M.: An introduction to software architecture. Technical Report
CMU-CS-94-166, Carnegie Mellon University (January 1994)

33. Giannakopoulou, D., Kramer, J., Cheung, S.C.: Behaviour analysis of distributed
systems using the tracta approach. Automated Software Engg. 6, 7–35 (1999)

34. Giannakopoulou, D., Păsăreanu, C.S., Barringer, H.: Component verification with
automatically generated assumptions. Automated Software Engg. 12, 297–320
(2005)

35. Intrigila, B., Inverardi, P., Zilli, M.V.: A comprehensive setting for matching and
unification over iterative terms. Fundam. Inform. 39(3), 273–304 (1999)

36. Inverardi, P., Issarny, V., Spalazzese, R.: A theory of mediators for eternal connec-
tors. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp.
236–250. Springer, Heidelberg (2010)

188 P. Inverardi, R. Spalazzese, and M. Tivoli

37. Inverardi, P., Nesi, M.: Deciding observational congruence of finite-state ccs ex-
pressions by rewriting. Theor. Comput. Sci. 139(1-2), 315–354 (1995)

38. Jiang, F., Fan, Y., Zhang, X.: Rule-based automatic generation of mediator pat-
terns for service composition mismatches. In: Proceedings of the 2008, The 3rd
International Conference on Grid and Pervasive Computing - Workshops, pp. 3–8.
IEEE Computer Society, Washington, DC, USA (2008)

39. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. Knowl.
Eng. Rev. 18(1), 1–31 (2003)

40. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: The state of the art. In:
Kalfoglou, Y., Schorlemmer, M., Sheth, A., Staab, S., Uschold, M. (eds.) Semantic
Interoperability and Integration, Dagstuhl, Germany. Dagstuhl Seminar Proceed-
ings, vol. 04391. IBFI, Schloss Dagstuhl, Germany (2005)

41. Kell, S.: Rethinking software connectors. In: SYANCO 2007: International Work-
shop on Synthesis and Analysis of Component Connectors, pp. 1–12. ACM, New
York (2007)

42. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–
384 (1976)

43. Kumar, R., Nelvagal, S., Marcus, S.I.: A discrete event systems approach for pro-
tocol conversion. Discrete Event Dynamic Systems 7(3) (1997)

44. Lam, S.S.: Correction to ”protocol conversion”. IEEE Trans. Software Eng. 14(9),
1376 (1988)

45. Li, X., Fan, Y., Wang, J., Wang, L., Jiang, F.: A pattern-based approach to
development of service mediators for protocol mediation. In: Proceedings of
WICSA 2008, pp. 137–146. IEEE Computer Society, Los Alamitos (2008)

46. Lopes, A., Wermelinger, M., Fiadeiro, J.L.: Higher-order architectural connectors.
ACM Trans. Softw. Eng. Methodol. 12(1), 64–104 (2003)

47. Magee, J., Kramer, J.: Concurrency: State models and Java programs. Wiley,
Chichester (2006)

48. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software connec-
tors. In: ICSE 2000: Proceedings of the 22nd International Conference on Software
Engineering, pp. 178–187. ACM Press, New York (2000)

49. Milner, R.: Communication and Concurrency. Prentice Hall, New York (1989)
50. Motahari Nezhad, H.R., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-

automated adaptation of service interactions. In: WWW 2007: Proceedings of the
16th International Conference on World Wide Web, pp. 993–1002. ACM, New York
(2007)

51. Motahari Nezhad, H.R., Xu, G.Y., Benatallah, B.: Protocol-aware matching of
web service interfaces for adapter development. In: Proceedings of the 19th Inter-
national Conference on World Wide Web, WWW 2010, pp. 731–740. ACM, New
York (2010)

52. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (1989)

53. Okumura, K.: A formal protocol conversion method. In: SIGCOMM, pp. 30–37
(1986)

54. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evo-
lution. In: Proceedings of the 20th International Conference on Software Engineer-
ing, ICSE 1998, pp. 177–186 (1998)

55. Passerone, R., de Alfaro, L., Henzinger, T.A., Sangiovanni-Vincentelli, A.L.: Con-
vertibility verification and converter synthesis: two faces of the same coin. In: Pro-
ceedings of the 2002 IEEE/ACM International Conference on Computer-Aided
Design, ICCAD 2002, pp. 132–139 (2002)

Application-Layer Connector Synthesis 189

56. Pelliccione, P., Inverardi, P., Muccini, H.: Charmy: A framework for designing and
verifying architectural specifications. IEEE Trans. Softw. Eng. 35, 325–346 (2009)

57. Pelliccione, P., Tivoli, M., Bucchiarone, A., Polini, A.: An architectural approach to
the correct and automatic assembly of evolving component-based systems. Journal
of Systems and Software 81(12), 2237–2251 (2008)

58. Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5, 153–163
(1970)

59. Ponnekanti, S., Fox, A.: Interoperability among independently evolving web ser-
vices. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 331–351.
Springer, Heidelberg (2004)

60. Ramadge, P., Wonham, W.: Supervisory control of a class of discrete event pro-
cesses. Siam J. Control and Optimization 25(1) (1987)

61. Ramadge, P., Wonham, W.: The control of discrete event systems. Proceedings of
the IEEE 1(77) (1989)

62. Reynolds, J.: Transformational systems and the algebraic structure of atomic for-
mulas machine intelligence, vol. 5, pp. 135–151. Edinburgh University Press, USA
(1970)

63. Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice of Concurrency.
Prentice Hall PTR, Upper Saddle River (1997)

64. Spalazzese, R.: A Theory of Mediating Connectors to achieve Interoperability. PhD
thesis, University of L’Aquila (April 2011)

65. Spalazzese, R., Inverardi, P.: Components interoperability through mediating con-
nector pattern. In: WCSI 2010, arXiv:1010.2337. EPTCS, vol. 37, pp. 27–41 (2010)

66. Spalazzese, R., Inverardi, P.: Mediating connector patterns for components inter-
operability. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285, pp.
335–343. Springer, Heidelberg (2010)

67. Spalazzese, R., Inverardi, P., Issarny, V.: Towards a formalization of mediating con-
nectors for on the fly interoperability. In: Proceedings of the Joint Working IEEE/I-
FIP Conference on Software Architecture and European Conference on Software
Architecture (WICSA/ECSA 2009), pp. 345–348 (2009)

68. Spitznagel, B.: Compositional Transformation of Software Connectors. PhD thesis,
Carnegie Mellon University (May 2004)

69. Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers.
In: ICSE, pp. 374–384 (2003)

70. Stollberg, M., Cimpian, E., Mocan, A., Fensel, D.: A semantic web mediation archi-
tecture. In: Proceedings of the 1st Canadian Semantic Web Working Symposium
(CSWWS 2006). Springer, Heidelberg (2006)

71. Tivoli, M., Autili, M.: Synthesis, a tool for synthesizing correct and protocol-
enhanced adaptors. RSTI - L’objet, Coordination and Adaptation Tech-
niques 12(1), 77–103 (2006)

72. Tivoli, M., Fradet, P., Girault, A., Gößler, G.: Adaptor synthesis for real-time
components. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 185–200. Springer, Heidelberg (2007)

73. Tivoli, M., Inverardi, P.: Failure-free coordinators synthesis for component-based
architectures. Science of Computer Programming 71(3), 181–212 (2008)

74. Uchitel, S., Kramer, J.: A workbench for synthesising behaviour models from sce-
narios. In: Proceeding of the 23rd IEEE International Conference on Software En-
gineering (ICSE 2001) (2001)

75. Uchitel, S., Kramer, J., Magee, J.: Detecting implied scenarios in message sequence
chart specifications. In: ACM Proceedings of the Joint 8th ESEC and 9th FSE
(2001)

190 P. Inverardi, R. Spalazzese, and M. Tivoli

76. Issarny, V., et al.: Middleware-layer Connector Synthesis. In: Bernardo, M., Issarny,
V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 350–392. Springer, Heidelberg (2011)

77. Vacuĺın, R., Neruda, R., Sycara, K.P.: An agent for asymmetric process mediation
in open environments. In: Kowalczyk, R., Huhns, M.N., Klusch, M., Maamar, Z.,
Vo, Q.B. (eds.) SOCASE. LNCS, vol. 5006, pp. 104–117. Springer, Heidelberg
(2008)

78. Vacuĺın, R., Sycara, K.: Towards automatic mediation of OWL-S process models.
In: IEEE International Conference on Web Services, vol. 0, pp. 1032–1039 (2007)

79. Watt, S.M.: Algebraic generalization. SIGSAM Bull. 39(3), 93–94 (2005)
80. Weiser, M.: The computer for the 21st century. Scientific American (September

1991)
81. Weiser, M.: Hot Topics: Ubiquitous Computing. IEEE Computer (October 1993)
82. Weiser, M.: Ubiquitous computing (1996), http://sandbox.xerox.com/ubicomp/
83. Wermelinger, M., Fiadeiro, J.L.: Connectors for mobile programs. IEEE Trans.

Softw. Eng. 24(5), 331–341 (1998)
84. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE

Computer 25, 38–49 (1992)
85. Wiederhold, G., Genesereth, M.: The conceptual basis for mediation services. IEEE

Expert: Intelligent Systems and Their Applications 12(5), 38–47 (1997)
86. Williams, S.K., Battle, S.A., Cuadrado, J.E.: Protocol mediation for adaptation

in semantic web services. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS,
vol. 4011, pp. 635–649. Springer, Heidelberg (2006)

87. Woollard, D., Medvidovic, N.: High performance software architectures: A
connector-oriented approach. In: Proceedings of the Institute for Software Research
Graduate Research Symposium, Irvine, California (June 2006)

88. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Trans. Program. Lang. Syst. 19 (1997)

http://sandbox.xerox.com/ubicomp/

Context Synthesis

Dimitra Giannakopoulou2 and Corina S. Păsăreanu1

1 Carnegie Mellon Silicon Valley/
2 NASA Ames Research Center,
Moffett Field, CA 94035, USA

{dimitra.giannakopoulou,corina.s.pasareanu}@nasa.gov

Abstract. With the advent of component-based and distributed soft-
ware development, service-oriented computing, and other such concepts,
components are no longer viewed as parts of specific systems, but rather
as open systems that can be reused, or connected dynamically, in a vari-
ety of environments to form larger systems. Reasoning about components
as open systems is different from reasoning about closed systems, since
property satisfaction may depend on the context in which a component
may be introduced.

Component interfaces are an important feature of open sytems, since
interfaces summarize the expectations that a component has from the
contexts in which it gets introduced. Traditionally, component interfaces
have been of a purely syntactic form, including information about the
services/methods that can be invoked on the component, and their sig-
natures, meaning the numbers and types of arguments and their return
values. However, there is a recognized need for richer interfaces that
capture additional aspects of a component. For example, interfaces may
characterize legal sequences of invocations to component services.

Generating compact and yet useful component interfaces is a
challenging task to perform manually. Over the last decade, several ap-
proaches have been developed for performing context synthesis, i.e., gen-
erating component interfaces automatically. This tutorial mostly reviews
such techniques developed by the authors, but also discusses alternative
techniques for context synthesis.

1 Introduction

With the advent of component-based and distributed software development,
service-oriented computing, and other such concepts, components are no longer
viewed as parts of specific systems, but rather as open systems that can be
reused, or connected dynamically, in a variety of environments to form larger
systems. Reasoning about components as open systems is different from reason-
ing about closed systems, since property satisfaction may depend on the context
in which a component may be introduced. As a result, a component satisfies or
violates a property only when the property is satisfied or violated by the com-
ponent irrespective of context. For all other cases, meaningful analysis would
consist of synthesizing a characterization of all contexts in which the component

M. Bernardo and V. Issarny (Eds.): SFM 2011, LNCS 6659, pp. 191–216, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

192 D. Giannakopoulou and C.S. Păsăreanu

satisfies the desired property. We refer to such analysis as “context synthesis”,
and the result of the synthesis a “component interface”.

Component interfaces therefore summarize the expectations that a component
has from the contexts in which it gets introduced. Traditionally, component in-
terfaces have been of a purely syntactic form, including information about the
services/methods that can be invoked on the component, and their signatures,
meaning the numbers and types of arguments and their return values. However,
there is a recognized need for richer interfaces that capture additional aspects
of a component. For example, “temporal” interfaces [3], which are the focus of
this tutorial, describe legal sequences of service invocations or method calls to a
component. The purpose is to document (for clients of a component) what se-
quences of calls could lead to undesirable component states and should therefore
be avoided.

Generating compact and yet useful component interfaces is a challenging task
to perform manually. Over the last decade, several approaches have been devel-
oped for generating component interfaces automatically. This tutorial reviews
techniques for interface generation of components with respect to safety prop-
erties. We discuss in depth some techniques developed by the authors, but also
present and discuss alternative techniques, and provide references to some new
trends in this research area.

Context synthesis is closely related to compositional reasoning methods for
model checking. Compositional verification presents a “divide and conquer” ap-
proach to the state-explosion problem [9] associated with model checking. It
decomposes the properties of the system into local properties of the system
components. Each component is checked separately against its local properties;
the combination of these simpler checks guarantees the correctness of the global
property on the entire system.

Analysis of components in isolation for compositional verification will often
return results that are not meaningful. The reason is again that components
usually rely on some features of the environments in which they are introduced.
One therefore needs to incorporate some knowledge of the contexts in which
the components are expected to operate correctly. Assume-guarantee reasoning
[19,24] addresses this issue by making explicit use of assumptions in component
verification. Assumptions are akin to interfaces and they document expectations
of a component from its environment in order to fulfill its guarantees. Assume-
guarantee rules are then used to merge the results of individual component
verification steps for verification of system-level properties.

The fundamental difference between an interface and an assumption in the
context of reasoning about safety properties, is that an interface summarizes the
component with respect to all the possible environments in which the component
may be introduced. On the other hand, an assumption serves as a potentially
imprecise interface that only needs to reflect interactions with a specific envi-
ronment, representing the rest of the components in the analyzed system. We
note that in the context of compositional verification, all the components that
participate in the verification problem are known and available. As a result,

Context Synthesis 193

context synthesis takes the form of assumption generation in compositional ver-
ification, and can be performed more efficiently than interface generation due to
the availability of an actual component environment.

The rest of this paper is organized as follows. We provide background for
our work in Section 2, followed by a characterization of precise (safe and per-
missive) component interfaces in the context of safety property checking for
finite state systems in Section 3. In Section 4, we present several algorithms for
automated interface generation. A construction of what we call the “weakest as-
sumption”, corresponding to a precise component interface, is presented first. We
then present an alternative approach that uses the L* learning algorithm to com-
pute component interfaces in an iterative manner. In Section 5 we address the
problem of generating interfaces for infinite state components. Context synthesis
is subsequently discussed in the context of compositional verification in Section
6. Finally, we discuss implementation and applicability of these techniques and
present some open research topics in this domain in Section 7.

2 Background

In this section we introduce labeled transition systems (LTSs) [20], the formalism
that we use to model components. We present the definition of traces and parallel
composition for LTSs and also present how safety properties are checked. We
then introduce assume-guarantee reasoning and the L* algorithm that we use to
automatically synthesize interfaces and assumptions.

2.1 Labeled Transition Systems (LTSs)

Let Act be the universal set of observable actions and let τ denote a local unob-
servable action. Let π denote a special error state, which models safety violations;

Fig. 1. Example

194 D. Giannakopoulou and C.S. Păsăreanu

the error state has no outgoing transitions. Formally, an LTS M is a four-tuple
〈Q, αM, δ, q0〉 where:

– Q is a finite non-empty set of states
– αM ⊆ Act is a set of observable actions called the alphabet of M
– δ ⊆ Q× (αM ∪ {τ})×Q is a transition relation
– q0 ∈ Q is the initial state

Let Π denote the LTS 〈{π},Act, ∅, π〉. An LTS M = 〈Q, αM, δ, q0〉 is non-
deterministic if it contains τ -transitions or if there exists (q, a, q′), (q, a, q′′) ∈ δ
such that q′
= q′′. Otherwise, M is deterministic.

2.2 Traces

A trace t of LTS M is a finite sequence of observable actions that label the
transitions that M can perform starting from its initial state (ignoring the un-
observable τ -transitions). We sometimes denote by t both a trace and its trace
LTS. For a trace t of length n, its trace LTS lts(t) consists of n + 1 states, such
that there is a transition between states i and i + 1 on the ith action in trace t,
for 1 ≤ i ≤ n. The set of all traces of an LTS M is the language of M ,denoted
L (M); errTr(M) denotes the set of traces that lead to π, which are called the
error traces of M .

For Σ ⊆ Act, we use t ↑ Σ to denote the trace obtained by removing from
t all occurrences of actions a /∈ Σ. Similarly, M ↑ Σ is defined to be an LTS
over alphabet Σ which is obtained from M by renaming to τ all the transitions
labeled with actions that are not in Σ.

2.3 Parallel Composition

Let M = 〈Q, αM, δ, q0〉 and M ′ = 〈Q′, αM ′, δ′, q′0〉. M transits into M ′ with
action a, written M

a−→ M ′, if and only if (q0, a, q′0) ∈ δ and either Q = Q′,
αM = αM ′, and δ = δ′ for q′0
= π, or, in the special case where q′0 = π, M ′ = Π .

The parallel composition operator ‖ is a commutative and associative operator
that combines the behavior of two components by synchronizing the common
actions and interleaving the remaining actions.

Formally, let M1 = 〈Q1, αM1, δ
1, q1

0〉 and M2 = 〈Q2, αM2, δ
2, q2

0〉 be two LTSs.
If M1 = Π or M2 = Π , then M1 ‖ M2 = Π . Otherwise, M1 ‖ M2 is an LTS
M = 〈Q, αM, δ, q0〉, where Q = Q1 ×Q2, q0 = (q1

0 , q2
0), αM = αM1 ∪ αM2, and

δ is defined as follows, where a is either an observable action or τ :

M1
a−→M ′

1, a /∈ αM2

M1 ‖ M2
a−→M ′

1 ‖M2

M2
a−→M ′

2, a /∈ αM1

M1 ‖M2
a−→M1 ‖M ′

2

M1
a−→M ′

1, M2
a−→M ′

2, a
= τ

M1 ‖M2
a−→M ′

1 ‖M ′
2

Context Synthesis 195

2.4 Safety Properties

In our context, properties are modeled as safety LTS’s. A safety LTS is a deter-
ministic LTS that contains no π states. A safety property is specified as a safety
LTS P , whose language L (P) defines the set of acceptable behaviors over αP .

For an LTS M and a safety LTS P such that αP ⊆ αM , we say that M
satisfies P , denoted M |= P , if and only if ∀t ∈ L (M) : (t ↑ αP) ∈ L (P).

When checking a property P , an error LTS denoted Perr is created, which
traps possible violations with the π state. Formally, the error LTS of a property
P = 〈Q, αP, δ, q0〉 is Perr = 〈Q ∪ {π}, αPerr , δ

′, q0〉, where αPerr = αP and

δ′ = δ ∪ {(q, a, π) | q ∈ Q, a ∈ αP, and
 ∃q′ ∈ Q : (q, a, q′) ∈ δ}
Note that the error LTS is complete (except for π), meaning each state other
than the error state has outgoing transitions for every action in its alphabet.
Also note that the error traces of Perr define the language of P ’s complement.

As an example, consider the communication channel in Figure 1. It consists
of an Input and an Output component; grey states are initial states. Actions
send and ack are common to the alphabets of the two components and will be
synchronized when the LTSs are composed. Property Order states that inputs
and outputs come in matched pairs with input always preceding output. The
error state is colored red.

2.5 Assume-Guarantee Reasoning

Concurrent software is inherently difficult to analyze. The problem of reaching
a specific global state in a system with N finite-state components can be shown
to be PSPACE-complete in N . What this means in practice is that the number
of states in a concurrent system may in the worst case be exponential in the size
of the components of the system.

One approach to dealing with this state explosion problem is compositional
or local reasoning. In essence, the goal of compositional reasoning is to replace
the analysis over the global state space with localized analyses, which consider
each component by itself, together with a small abstraction of the environment
of that component. The intuition behind this principle is that many systems can
be viewed as “loosely coupled” collections of components; that is, the proportion
of the behavior of one component behavior which influences that of another is
small. Hence, there should be an advantage to doing localized reasoning.

Assume-guarantee reasoning [19,24] is a compositional verification technique
that uses assume-guarantee rules for verification. Assume-guarantee rules are
proof rules that show how, by performing local verification steps on individual
components of the system, one can safely deduce properties that refer to the
entire system. The local verification steps usually involve some abstraction of
the environment of each component, named assumption.

In the assume-guarantee reasoning paradigm, formulas are triples of the type
〈A〉 M 〈P 〉, where M is a component, P is a property, and A is an assumption
about M ’s environment. The formula is true if whenever M is part of a system

196 D. Giannakopoulou and C.S. Păsăreanu

satisfying A, then the system must also guarantee P , i.e., ∀E, E ‖ M |= A
implies E ‖M |= P . For LTS M and safety LTSs A and P , checking 〈A〉 M 〈P 〉
reduces to checking if state π is reachable in A ‖ M ‖ Perr . Note that when
αP ⊆ αA ∪ αM , this is equivalent to A ‖ M |= P . Also note that we assume
that M contains no π states.

The simplest assume guarantee rule is for checking a safety propery P on a
system with two components M1 and M2.
Rule ASym

1 : 〈A〉 M1 〈P 〉
2 : 〈true〉 M2 〈A〉
〈true〉 M1 ‖M2 〈P 〉

In this rule, A denotes an assumption about the environment of M1. Note that
the rule is not symmetric in its use of the two components, and does not sup-
port circularity. Despite its simplicity, experience with applying compositional
verification has shown this rule to be most useful in the context of checking
safety properties. This rule can be extended for multiple components. Several
other rules have also been defined in the literature. We have experimented with
several rules in practice [23].

Weakest Assumption. For a given LTS component M and safety property P
there is a natural notion of the weakest assumption Aw, such that 〈Aw〉 M 〈P 〉
holds. Aw characterizes all the possible environments E under which the property
holds, i.e.∀E : M ‖ E |= P if and only if E |= Aw.

2.6 The L* Algorithm

L* is a learning algorithm that was developed by Angluin [2] and later improved
by Rivest and Schapire [25]. L* learns an unknown regular language and produces
a DFA that accepts it. Let U be an unknown regular language over some alphabet
Σ. In order to learn U , L* needs to interact with a Minimally Adequate Teacher,
from now on called Teacher. A Teacher must be able to correctly answer two
types of questions from L*. The first type is a membership query, consisting of a
string σ ∈ Σ∗; the answer is true if σ ∈ U , and false otherwise. The second type
of question is a conjecture, i.e., a candidate DFA C whose language the algorithm
believes to be identical to U . The answer is true if L (C) = U . Otherwise the
Teacher returns a counterexample, which is a string σ in the symmetric difference
of L (C) and U .

At a higher level, L* creates a table where it incrementally records whether
strings in Σ∗ belong to U . It does this by making membership queries to the
Teacher. At various stages L* decides to make a conjecture. It constructs a
candidate automaton C based on the information contained in the table and asks
the Teacher whether the conjecture is correct. If it is, the algorithm terminates.
Otherwise, L* uses the counterexample returned by the Teacher to extend the
table with strings that witness differences between L (C) and U .

Context Synthesis 197

Characteristics of L*. L* depends on the correctness of the Teacher in order
to provide a number of guarantees. More specifically, L* is guaranteed to termi-
nate with a minimal automaton for the unknown language U . Moreover, each
candidate DFA C that L* constructs is smallest, in the sense that any other
DFA consistent with the information provided to L* has at least as many states
as C. This characteristic of L* makes it particularly attractive in the context
of learning interfaces or assumptions, since in the frameworks that we describe,
the candidates provided by L* are combined with component models in model
checking steps. Smaller state machines typically result in easier model checking
problems. The conjectures made by L* strictly increase in size; each conjecture
is smaller than the next one, and all incorrect conjectures are smaller than the
minimal automaton for language U. Therefore, if that minimal automaton has n
states, L* makes at most n−1 incorrect conjectures. The number of membership
queries made by L* is O(kn2 + n log m), where k is the size of the alphabet of
U , n is the number of states in the minimal DFA for U , and m is the length of
the longest counterexample returned when a conjecture is made.

3 Component Interfaces

An interface characterizes the expectations that a component has from its en-
vironment. As discussed in the introduction, there is a recognized need for ex-
tending component interfaces beyond their traditional, purely syntactic form. In
this tutorial paper, we focus on interfaces that describe legal sequences of ser-
vice invocations or method calls to a component. For example, an interface may
describe the fact that closing a file before opening it is undesirable because an
exception will be thrown. An ideal interface should precisely represent the com-
ponent in all its intended usages. In other words, it should include all the good
interactions, and exclude all problematic interactions. We describe this formally
in the following.

Let Σ be the set of interaction points of an LTS M , where Σ ⊆ αM . A word
over Σ is considered legal if its execution cannot lead M to an error state, and
is considered legal otherwise. Accordingly, we define two additional language
sets for any LTS M . We use the term Lillegal(M) = errTr(M) to refer to the
set of illegal executions of LTS M . The set of legal executions is defined as
Llegal(M) = Σ∗\Lillegal(M). Note that we slightly abuse the term “executions”
in this context, since the set of legal executions may contain words that cannot
execute to completion in M , meaning that they do not correspond to traces in
L (M). The reason why it is desirable to consider such words in the set of legal
executions is that such words should never be disallowed in the behavior of M ’s
environment since they can never be executed in the context of M , and could
therefore never lead M to an error state.

Let us now assume that a component is represented as an LTS M , with Σ
being the set of its interaction points with the environment. Assume also that
an interface A is represented as an LTS over Σ. Then A is a precise interface for
M if it satisfies two conditions:

198 D. Giannakopoulou and C.S. Păsăreanu

1. Safe. Interface A is safe for M iff Llegal(A) ∩ Lillegal(M ↑ Σ) = ∅. Infor-
mally, this definition says that any legal word w in A can only trigger legal
executions in M .

2. Permissive. Interface A is permissive for M iff Llegal(M ↑ Σ) ⊆ Llegal(A).
Informally, every legal word in M should be represented by some legal word
in A.

Note that safety is concerned with blocking behaviors while permissiveness is
concerned with including behaviors. These two concepts are complementary in
achieving an exact characterization of correct component usage. When dealing
with component interfaces, it is therefore important to be able to determine
whether a given interface is safe and permissive.

Let M = 〈QM , αM, δM , q0M 〉 be the LTS description of a component, and let
A = 〈QA, αA, δA, q0A〉 be an interface provided for M .

Checking for safety. Interface A is safe for M if and only if illegal states of
M are not reachable in A ‖M . Interface safety can therefore be performed by a
reachability check, as supported by any standard model checker. Counterexam-
ples correspond to illegal executions of M that are not blocked by A.

Fig. 2. Safety Check

Figure 2 is used to illustrate the safety check. States M0, M1, M2 and Merror

belong to component M while states A0 and A1 belong to interface A. The error
state is no longer reachable in the composition.

Checking for permissiveness. To check permissiveness, we need to complete
M with a sink state to obtain Mc, and A with an error state to obtain Aerr. In
Mc ‖ Aerr, we then check for reachability of states that correspond to an error
state in Aerr and a non error state in Mc. A path leading to such states could
identify a legal word in Mc that is not accepted by A, reflecting the fact that A is

Context Synthesis 199

Fig. 3. Checking for Permissiveness

not permissive. However, this check is not sufficient to determine permissiveness
of an interface. This is illustrated by an example below.

The example in Figure 3 shows the problem with the permissiveness check
above. As before, states M0, M1, M2, Merror belong to M and states A0, A1

and Aerror belong to interface A. According to the above check, trace a, b lead-
ing to state [M1, Aerror] in the composition could be an indication that A is
not permissive enough. However this is not true, since the same path leads to
[Merror, Aerror]. This happens because the alphabet of the assumption is {a, b},
meaning that action c in M is considered as a τ from the point of view of A. In
the figure, this is illustrated as a τ action covering action c.

This example illustrates the fact that non-determinism in component M
may cause spurious counterexamples in the permissiveness reachability check
described above. As a consequence, precise characterization of permissiveness
requires determinization of component M , which can be performed using sub-
set construction. The permissiveness check is therefore NP-hard [1], and can be
inefficient in practice.

Several approaches have been proposed to deal with this problem. Unless
determinization is a viable solution for a targeted component M [14,3], heuris-
tic approaches are often used to determine whether a counterexample is spuri-
ous [1,13]. Also, if non determinism is introduced through abstraction of a de-
terministic concrete component, this problem can sometimes be avoided, using
a combination of over- and under- approximating abstractions [26].

In the next sections we discuss some of these solutions. We first present an ap-
proach that creates a safe and permissive interface by construction, and which in-
volves determinization of the component. Subsequently, we describe an iterative
learning-based approach that is based on safety and permissiveness checks and
which uses heuristics to avoid determinization of the component. We then discuss
interface generation in the context of infinite-state components and abstraction.

200 D. Giannakopoulou and C.S. Păsăreanu

4 Automated Interface Generation

Precise characterization of component interfaces is a difficult task to perform
manually. Given the need for automated modular or compositional verification
techniques warranted by the size of modern software and hardware systems, au-
tomated interface and assumption generation have been thoroughly investigated
in the last decade. Our first attempt to automated interface generation consists
of a construction that systematically builds finite-state machine interfaces for
finite-state components and safety properties expressed as LTSs [14]. The built
interfaces are safe and permissive by construction. Learning-based approaches
to interface generation are subsequently discussed. These frameworks are based
on the use of the L* algorithm for providing and gradually refining guesses of
the desired interface.

4.1 Computing the Weakest Assumption

We describe here an approach to building the weakest assumption for a compo-
nent with respect to a safety property. The approach addresses the more general
problem of model checking for open systems, i.e. components that interact with
their environments. When model checking a component against a property, our
algorithm returns one of the following three results: (i) the component satisfies
the property for any environment; (ii) the component violates the property for
any environment; or finally, (iii) the “weakest assumption” – an automatically
generated assumption that characterizes exactly those environments in which
the component satisfies the property.

The traditional approach to verifying a property of an open system is to check
it for all the possible environments. The result of verification is either true, if the
property holds for all the possible environments, or false, if there exists some
environment that can lead the component to falsify the property. However this
approach may be overly pessimistic and we advocate an optimistic view, which
assumes a helpful environment. The reason is that software components are often
required to satisfy properties only in specific environments, so it is natural to

Fig. 4. Model Checking with Assumption Generation

Context Synthesis 201

accept a component if there are some environments in which the component does
not violate the property.

In our approach, the result of component verification is true, if the property
holds for all environments, similar to the traditional approach. However, the
result is false only if the property is falsified in all environments. If there exist
some environments in which the component satisfies the property, the result
of verification is not false, as in the traditional approach, but rather true in
environments that satisfy the weakest assumption.

Figure 4 illustrates our approach together with the steps we follow to build
the weakest assumption (that are described below).

Step 1: Composition and Minimization
Given an open system (described as an LTS) and a property LTS that may relate
the behavior of the system with the behavior of the environment, the first step
is to build the composition of the system with the error LTS of the property and
to hide (i.e., turn into τ) the internal actions of the system. The resulting LTS
can be minimized with respect to any equivalence that preserves (error) traces.

As an example, let us consider the communication channel from Section 2.
We show here the computation of the weakest assumption for component Input
with respect to property Order. Figure 5 depicts the result of composing Input
with the error automaton for the property. The internal actions of the system,
i.e. the transitions labeled in, were abstracted to τ . This is illustrated in Figure 5
by covering action in with action τ .

If the error state is not reachable in this composition, the property is true
in any environment, and this is reported to the user. Otherwise, we determine
whether there exist environments that can help the system avoid the error; this
is achieved through the following steps.

step 1: composition & hiding

send

ack

Input || Ordererr \ {in}

0 1 2 3

4

ack

send out

out

out

out

out

out

5

Input Output
in send

ack

out

τin

τin

Fig. 5. Step 1: Composition and Hiding

202 D. Giannakopoulou and C.S. Păsăreanu

Step 2: Backward Error Propagation
This step first performs backward propagation of the error state over τ transi-
tions, thus pruning the states where the environment cannot prevent the error
state from being entered via one or more τ steps. We are interested only in the
error traces, and therefore we also eliminate the states that are not backward
reachable from the error state. If, as a result of this transformation, the initial
state becomes an error state, it means that no environment can prevent the sys-
tem from reaching the error state, so the property is false (for all environments)
and this is reported to the user.

Consider again the composite system in Figure 5. As a result of backward
propagation, we identify state 5 with the error state; the result is shown in
Figure 6. The intuition here is that, if the component is in a state from which it
can violate the property by some number of internal moves, then no environment
can prevent the violation from occurring.

Fig. 6. Step 2: Error Propagation

Step 3: Property Extraction
This step builds the property LTS that is our assumption. It performs this in two
stages; first it builds the error LTS for the assumption, from which it extracts
the corresponding property LTS. Note that the LTS resulting from Step 2 might
not be an error LTS (i.e. it might not be deterministic or complete), although it
contains an error state. Recall from the background section that the error LTS
is both deterministic and complete.

In order to get an error LTS we make the LTS obtained from step 2 deter-
ministic by applying to it τ elimination and the subset construction [18], but
by taking special care of the π state as follows. During subset construction, the
states of the deterministic LTS that is being generated are sets of states in the
original non-deterministic LTS. If any of these sets contains π, the entire set
becomes π. Intuitively, a trace that non-deterministically may or may not lead

Context Synthesis 203

Fig. 7. Step 3: Property Extraction

to an error has to be considered as an error trace. Such non-determinism reflects
the fact that, by performing a particular sequence of actions, the environment
cannot guarantee that the component will avoid error states.

The resulting LTS is then completed. Completion is performed by adding a
new “sink” state to the LTS, and adding a transition to this state for each
missing transition in the “incomplete” LTS. The missing transitions in the in-
complete LTS represent behavior of the environment that is never exercised by
the open system under analysis. As a result, no assumptions need to be made
about these behaviors. The sink state reflects exactly this fact, since it poses no
implementation restrictions to the environment.

The result of subset construction and completion for our running example is
shown in Figure 8. The sink state is colored green.

Fig. 8. Computed Assumption

204 D. Giannakopoulou and C.S. Păsăreanu

Once we have the error LTS, we obtain the assumption by deleting the error
state and the transitions that lead to it.

The assumption for the running example is depicted in Figure 8. The as-
sumption expresses the fact that actions send, out, ack should happen in this
order (and this is in fact the encoding of component Output); in addition, the
assumption allows extra behaviors (the ones that lead to the sink state). It can
be shown that indeed this assumption is the “weakest”.

4.2 Learning Component Interfaces

Let M = 〈QM , αM, δM , q0M 〉 be a component, and Σ ⊆ αM denote the com-
munication alphabet of component M , i.e., the set of actions through which M
communicates with its environment. Our goal is to compute M ’s precise inter-
face as a finite state automaton A over Σ, in other words an interface A that is
both safe and permissive, as defined in Section 3.

Since A represents a regular language, we can use the learning algorithm L*
to learn it. To this aim, we need to provide L* with a teacher that represents the
language of A. As discussed in the following, the teacher can be implemented
using model checking, since all questions asked by L* can be reduced to reach-
ability problems (see Figure 9).

Queries. L* is first used to repeatedly query M to check whether, in the context
of strings s, M reaches an error state. If it does, then s corresponds to an illegal
execution of M and should be excluded from A and the query returns false.
Otherwise, s should be included in A, and the query returns true. If error states
are introduced by some property P , then the query corresponds to checking the
triple 〈s〉 M 〈P 〉 as illustrated in Figure 9 (we abuse notation here, and use s to
represent lts(s)).

context synthesis using learning

〈s〉 M 〈P〉

〈Ai〉 M 〈P〉

Fig. 9. Learning for Context Synthesis

Context Synthesis 205

Conjectures. The conjectured automaton A is checked for correctness, which
in this context means checking whether the interface that it represents is safe
and permissive. We therefore break down answering conjectures into two parts:

Oracle 1. Checks if A is safe, using the model checking procedure described in
Section 3. Again, if error states are introduced by some property P , the safety
checks corresponds to checking the triple 〈A〉 M 〈P 〉, as illustrated in Figure 9. If
A is safe, then the teacher proceeds to Oracle 2. If it is unsafe, the model checker
returns a counterexample t. The resulting counterexample t, projected on the
interface alphabet Σ, is returned to L* to refine its conjecture (see Figure 9,
where c = t ↑ Σ). The projection is necessary because L* needs counterexamples
in terms of the alphabet over which it is learning.

Oracle 2. Checks if safe interface A is also permissive, using the model check-
ing procedure described in Section 3. If the interface is permissive, then the
framework terminates with A as a safe, permissive and minimal interface for M
(minimality is guaranteed by the characteristics of the L* algorithm). If, on the
other hand, a counterexample t is returned, then this may be because the inter-
face needs to be refined, or it could be because the permissiveness procedure is
not precise in the presence of non-determinism. As discussed above, one could
determinize component M for performing this check. Other, more light-weight
approaches propose heuristics.

For example, one such heuristic consists of making a query on c = t ↑ Σ (with
the same mechanism as L* queries are answered). If the query returns true, then
it means the interface is not permissive, and therefore c is returned to L* for
refinement, and the learning process continues with more queries and eventually
with a new conjecture (see Figure 9).

If the query returns false, then c does not correspond to a real counterexam-
ple. Model checking therefore ignores this state. Several approaches have been
proposed at this point. One approach applies an additional heuristic step [1],
whereas another backtracks after the spurious counterexample and continues the
state space exploration [13]. The latter approach is illustrated in Figure 10. This
heuristic is non-trivial to implement within a model checker. The reason is that
the permissiveness check consists of a reachability check within which a query
is invoked to potentially invalidate a discovered counterexample, in which case
the reachability check backtracks and continues the search. In essence, querying
within a reachability check would naively mean that a model checker is invoked
within a model checker, which is clearly inefficient.

For this reason, all query results are stored in a memoized table which is
consulted during reachability analysis. If a potential counterexample discovered
is stored in the memoized table as a spurious one, then the algorithm backtracks
and tries a different path. If it is a real counterexample, it is returned to L*. If it
is not stored in the table, the reachability check terminates. A query then follows
as an independent step, and the reachability check is started from scratch. Since
the result of the query is stored in the memoized table, the reachability check is
guaranteed to return a different counterexample in the next round.

206 D. Giannakopoulou and C.S. Păsăreanu

permissiveness check
MC: model check for (Mi, Aerror)

c = t ↑ Σ

backtrack and continue search
if (memoized(c) == false) // c is spurious

if (query(c) == yes)
return c to L* // not permissive

else // memoized(c) == true or c not in memoized
model checker produces c

else restart at MC

reached (Mi, Aerror) by trace t

Fig. 10. Permissiveness heuristic

Non-determinism: In summary, unless component M is deterministic with
respect to the alphabet Σ of the assumption, precise interfaces can only be
computed through determinization of M , which may result in a component ex-
ponentially larger than M . Heuristics can be quite efficient at getting a precise
interface, but cannot provide guarantees. Of course, if the permissiveness check
does not encounter spurious counterexamples, then we know that the resulting
interface is precise, despite heuristics.

There are two cases where determinization can be avoided, as will be described
in the following sections. First, when the potential source for non-determinism
is abstraction of a deterministic infinite state component, then we may use a
combination of over- and under- approximations to precisely compute a com-
ponent interface while avoiding determinization in the permissiveness step. Sec-
ond, when the environment of a component is available, determinization can
be avoided during compositional reasoning. Since in this context, rather than a
precise interface for the component irrespective of environment, we just need the
interface to act as an assumption for an assume-guarantee rule, the environment
can be used to selectively increase the interface permissiveness. We discuss these
cases in the following sections.

5 Interface Generation and Abstraction

The learning frameworks that we discussed in the previous section only apply to
finite state components since they rely on teachers that exhaustively explore the
component state space. However, most realistic components are infinite state for
all practical purposes. A typical approach for dealing with large components in
model checking is by using abstraction techniques. In this section, we discuss a
framework that computes interfaces of potentially infinite-state components by
combining abstraction and learning approaches.

Context Synthesis 207

There are two types of abstractions that one may built of a component. An
over-approximation (“may” abstraction) is an abstraction that contains a super-
set of the behaviors of the component. The advantage of over-approximations
is that, when used for checking properties, if the property is satisfied for the
overapproximation, then it is also satisfied for the concrete component. The dis-
advantage is that when a counterexample is obtained, it may be a spurious one,
since it may correspond to a behavior that is not really feasible in the con-
crete component. These characteristics are reversed for under-approximations.
An under-approximation (“must” abstraction) contains only a subset of the be-
haviors of the concrete component. As such, it will only return real counterexam-
ples. In the absence of errors, however, there is not guarantee that the concrete
component is also error-free since there may be concrete behaviors that are not
accounted for in the under-approximation.

The may and must abstractions that we use [26] are obtained using predicate
abstraction. Predicate abstraction is a technique that substitutes component
variables on large or infinite domains with a finite set of predicates over these
variables. Concrete states of the component are then substituted with abstract
states representing valuations of the selected predicates. In a may abstraction, an
abstract transition links two abstract states if there exists a concrete transition
between concrete states represented by the two abstract states. May transitions
between abstract states may or may not correspond to actual transitions in the
concrete system. A may abstraction is an over-approximation (see Figure 11).
On the other hand, in a must abstraction, abstract transitions link two ab-
stract states only if all the concrete states represented by the two abstract states
are linked by concrete transitions. Must transitions are guaranteed to represent
transitions in the concrete system, but do not necessarily cover all concrete tran-
sitions. A must abstraction is therefore an under-approximation of the concrete
component (see Figure 11).

may and must abstraction

  may abstraction produces a finite over-approximation
  must abstraction produces a finite under-approximation

Fig. 11. May and Must Abstraction

208 D. Giannakopoulou and C.S. Păsăreanu

Let C be a component corresponding to a potentially infinite-state transition
system SC . From now on, for simplicity, we will use C to represent the compo-
nent and its transition system. We have proposed interface-generation algorithms
that operate by analyzing finite-state abstractions of C [26]. The essence of our
approach lies in the following observation:

Theorem 1. Assume a component C, a may abstraction Cmayand a must ab-
straction Cmustfor C. If an interface Afor C is permissive with respect to Cmust

and safe with respect to Cmay, then Ais safe and permissive with respect to C.

To provide an intuition for this theorem, let us analyze the relationships be-
tween the languages corresponding to may and must abstractions. For any com-
ponent C, since Cmayhas more behaviors that C, it follows that Lillegal(C) ⊆
Lillegal(Cmay), and consequently, Llegal(C) ⊇ Llegal(Cmay). On the other hand,
Lillegal(C) ⊇ Lillegal(Cmust), and consequently, Llegal(C) ⊆ Llegal(Cmust). If an
interface A is safe with respect to Cmay, it means that its legal executions are
a subset of the legal executions of Cmay. Similarly, if A is permissive, its illegal
executions are a subset of the illegal executions of Cmust. These relationships are
illustrated in Figure 12. Given the complementary nature of the legal and illegal
execution sets of any component, an interface can only have both properties if
Lillegal(Cmust) = Lillegal(C) = Lillegal(Cmay) = Lillegal(A).

Our approach for interface generation is therefore based on constructing may
and must abstractions for a concrete component C(Cmayand Cmust, respec-
tively). Its novelty with respect to previous work is that it uses Cmayto check
whether an interface is safe, and Cmustto check whether an interface is permis-
sive. The advantage of the approach is that, if the concrete component is deter-
ministic, then so is Cmust, since it under-approximates the concrete behavior.
By using Cmustfor the permissiveness check, we therefore avoid determinizing

safe and permissive interfaces for infinite state components
Lillegal

Lillegal

Lillegal

Llegal

Llegal

Llegal

A A

Fig. 12. Relationship between languages of abstractions of a concrete component and
the component itself

Context Synthesis 209

the abstractions that are constructed, while still providing guarantees for safety
and permissiveness of the computed interface.

5.1 Learning Interfaces Using Abstractions

In order to compute an interface for component C, we use the learning frame-
work presented in the previous section. The teacher is very similar, except that
it sometimes needs to trigger a refinement of the abstraction, in order to pro-
vide answers to the learner. Refinement consists of adding predicates, and it
is performed on demand, within the teacher’s mechanism for answering the L*
questions. More specifically, the teacher operates as follows.

Queries. The procedure for queries is illustrated in Figure 13. It first checks
whether the word σ triggers an illegal execution in Cmust. If it does, σ should not
belong to A because it must also trigger an illegal execution in C. So the query
returns false. Otherwise, σ is checked against Cmay . If it is safe for Cmay, then
σ must belong to A so the query returns true. Otherwise, we have a situation
where σ is safe for Cmustand unsafe for Cmay. In other words, σ demonstrates
that the illegal languages of Cmayand Cmustare not equal. As discussed earlier
in the section, we are able to compute an interface when the illegal languages of
Cmayand Cmustbecome equal. We therefore need to refine the abstraction, and
check the query again. L* is not involved in the refinement or restarted after
it; it just awaits for the teacher to come up with a response to the query. The
response is always consistent with the concrete component C.

Conjectures. We use Theorem 1 to answer the conjectures using two oracles,
as illustrated in Figure 14 and Figure 15.

Query(σ, C)

1.  if checkSafe(σ,Cmust) != null
2.  return “false”
3.  cex = checkSafe(σ,Cmay)
4.  if cex == null
5.  return “true”
6.  Preds = Preds U Refine(cex)
7.  Query(σ, C)

Fig. 13. Answering queries

210 D. Giannakopoulou and C.S. Păsăreanu

conjecture : Oracle 1

1.  cex = checkSafe(A, Cmay)
2.  if cex == null
3.  invoke Oracle2
4.  If Query(cex, C) == “false”
5.  return cex to L*
6.  else
7.  goto 1

Fig. 14. Answering conjectures: Oracle 1

conjecture : Oracle 2

1.  cex = checkPermissive(A, Cmust)
2.  if cex == null
3.  return A
4.  If Query(cex, C) == “true”
5.  return cex to L*
6.  else
7.  goto 1

Fig. 15. Answering Conjectures: Oracle 2

Oracle 1 is invoked first. If it finds that A is safe with respect to Cmay, Oracle
2 gets invoked. If Oracle 2 finds that A is also permissive with respect to Cmust,
we conclude from Theorem 1 that A is a safe and permissive interface for C. All
remaining cases require either the refinement of A by L*, or the refinement of
the component abstractions. We use queries to help us determine what needs to
be refined. Our approach is described in detail below.

Oracle 1: If A is not safe with respect to Cmay, we obtain a counterexample
cex, which is allowed by A but leads to error in Cmay. We subsequently query
cex in order to determine whether it is indeed a counterexample to the safety of
A. Note that the querying procedure may involve refinement of the abstraction.

Context Synthesis 211

If the query returns no, then it means that cex should indeed not be in the
language of A, so cex is returned to L* for A to be refined. Otherwise, we
invoke Oracle 1 again, knowing that Predshave been updated because abstraction
refinement must have occurred.

Oracle 2: If A is not permissive with respect to Cmust, we obtain a counterexam-
ple cex, which corresponds to a word that is not allowed by A. We subsequently
query cex in order to determine whether it is indeed a counterexample to the
permissiveness of A. If the query response is positive, then cex should belong to
A, so cex is returned to L* for refining the assumption. Note again that query-
ing may involve refinement. If the response in negative, then the permissive-
ness check is invoked again, because we know there must have been abstraction
refinement involved.

More details and explanations are provided in [26].

5.2 Applicability and Related Approaches

The learning scheme presented in this section for computing interfaces of infinite
state components generates deterministic finite state automata. As such, its ap-
plicability is restricted to interfaces that can be represented in this fashion. The
framework that we have developed may not always termine, which is always a
possibility in abstraction refinement schemes. However, if the concrete compo-
nent C has a finite bisimulation quotient, then our framework is guaranteed to
terminate and produce a minimal safe and permissive interface for C [26].

Other related approaches to inteface generation for infinite components have
been presented in [1,17]. Both approaches construct only over-approximations of
the component behavior, which may be non-deterministic. As mentioned, check-
ing permissiveness when (abstracted) components are non-deterministic requires
a potentially expensive determinization step. Alur et al. [1] avoid this step by
using heuristics, and therefore cannot guarantee permissiveness of the generated
interfaces. On the other hand, Henzinger et al. [17] build “abstract regions”,
which is equivalent to performing a determinization step. Furthermore, the ab-
straction mechanisms in [17] cannot guarantee minimal interfaces. Even if these
interfaces were to be minimized, this approach would suffer from potentially
large intermediate interfaces that subsequently get compacted. This latter prob-
lem is more pronounced in the presence of the determinization step, which is
exponential, in the worst case. In contrast, L*-based approaches like ours and
[1] directly generate minimal interfaces. Note however that the technique by [1]
does not provide criteria to automatically detect the need for abstraction refine-
ment. Their refinements are based on inspection of the generated interfaces, and
are performed manually. In contrast, refinement in our work [26] is performed
automatically.

6 Assumption Generation for Compositional Verification

As discussed in Section 2, assume guarantee reasoning provides solutions to the
problem of decomposing the verification of a large system into local verification

212 D. Giannakopoulou and C.S. Păsăreanu

steps of the system components. The most challenging part of applying assume-
guarantee reasoning, however, is coming up with appropriate assumptions to use
in the application of the assume-guarantee rules. In this section, we discuss work
on generating assumptions for automated assume-guarantee verification.

We will restrict ourselves to the simple rule presented in Section 2, and will
then discuss how one can expand to other rules.

As discussed earlier in this paper, the weakest assumption captures precisely
all restrictions that a component needs to make on its environment in order to
satisfy some safety property(ies). The weakest assumption can safely be used for
assume-guarantee reasoning; in fact, with the weakest assumption, the rule also
becomes complete since, the second premise holds (〈true〉 M2 〈A〉) if and only if
the conclusion of the rule holds (〈true〉 M1 ‖ M2 〈P 〉).

The weakest assumption corresponds to a safe and permissive interface for
component M1. We could therefore use L* to learn this assumption while auto-
matically verifying a property on some system in an assume guarantee style. The
framework of Figure 16 demonstrates the steps involved in performing automated
assume-guarantee reasoning while learning the weakest assumption. Queries are
asnwered in the exact same fashion as in the interface generation framework of
Figure 9. The first Oracle, checking whether the conjecture corresponds to a safe
interface for M1, is answered identically to the interface generation framework.
Note that checking for safety corresponds to checking the first premise of the
assume-guarantee Rule ASym.

In terms of the permissiveness check, we can now take advantage of the fact
that M2 is available, to avoid determinization of M1. Remember that our main
target in this framework is to prove or disprove a property on the system us-
ing assume-guarantee reasoning. Since Oracle 1 checks that premise 1 of Rule
ASym holds, it remains to check premise 2 (〈true〉 M2 〈A〉). Premise 2 therefore
substitures Oracle 2 of the original interface generation framework. If this check

permissiveness check for AG reasoning

↑α

  〈 〉 〈 〉
  〈 〉 〈 〉

〈 〉 〈 〉

〈 〉 〈 〉

〈 〉 〈 〉

↑α

〈 〉 〈 〉

〈 〉 〈 〉

Fig. 16. Learning Assumptions for Assume-Guarantee Reasoning

Context Synthesis 213

passes, then we know that both premises of Rule ASym hold, and therefore the
property holds for M1 ‖ M2.

If the check fails, the Teacher performs some analysis to determine the under-
lying reason (see Figure 16). The Teacher performs a query (of the L* type) in
order to determine whether the returned counterexample cex, projected to the
alphabet of the assumption, should belong to the conjectured assumption A. If
the answer is true, meaning that c ↑ αA should be included in A, then it means
that A is not the weakest assumption since it does not include a safe word, and
c ↑ αA is returned to L* for refinement of A. If, on the other hand, the answer
is false, it means that c is a word that belongs to M2, in the context of which
M1 violates the property P . As a consequence, M1 ‖ M2 does not satisfy the
property P .

Notice that the answers that this modified Teacher provides to L* are always
with respect to the weakest assumption. However, the framework uses M2 to
filter which missing words to include in the language of the assumption, as
opposed to adding all of them. The reason is that we restrict our reasoning to a
specific context, rather than accounting for all possible contexts. As a result, we
no longer require determinization of component M1.

Note also that we do not always obtain the weakest assumption from this
framework; in other words, the obtained assumption is not the most permissive.
Our primary goal is to obtain conclusive results from the assume guarantee rule.
As soon as we are able to prove or disprove the property in the system, we
stop refining the learned assumptions. At that point, we may, or may not have
reached the weakest assumption. We will however have reached an assumption
that completes our verification; this assumption is smaller than or equal to the
weakest assumption, as guaranteed by the characteristics of L*. For our running
example, the assumption generated is smaller than the weakest assumption, as
illustrated in Figure 17. The second conjecture, A2, generated by L*, passes

conjectures

 ack
send

A1: Oracle 1:
〈A1〉 Input 〈Order〉

Counterexample:
c = 〈in,send,ack,in〉

Return to L*:
c↑ Σ = 〈send,ack〉

Oracle 1:
〈A2〉 Input 〈Order〉

True

Oracle 2:
〈 true〉 Output 〈A2〉

True

 property Order holds
on Input || Output

 ack

 send

 out, send

A2: Queries

Ordererr in

 out out in

Output
 send

ack

 out
 Input

 in

ack

 send

Fig. 17. Assumption for AG reasoning

214 D. Giannakopoulou and C.S. Păsăreanu

both Oracles and the learning framework terminates reporting that the property
holds; notice that A2 has only two states as compared to the weakest assumption
that has four states (see Figure 8).

Given the fact that our Teacher only comes back to L* for refinement with
counterexamples for the weakest assumption, the framework will eventually con-
verge to the weakest assumption unless it terminates earlier. We have shown [23]
that with the weakest assumption, the rule becomes sound and complete, and
therefore our framework will return a conclusive answer at that iteration. As a
result, the framework always terminates.

To summarize, we presented a framework that computes an assumption for
automated assume-guarantee reasoning. We cannot tell if the framework com-
putes the weakest assumption, but we know that it will do so if necessary, and
thus guarantees termination.

6.1 Related Approaches

We have showed how to guide our learning of assumptions for compositional ver-
ification towards the weakest assumption. Other researchers focused on the more
computationally expensive problem of learning a minimal assumption [16,8] for
compositional verification. In other words, computing an assumption Amin such
that any other assumption A that can check satisfaction or violation of P will
have a greater than or equal number of states, i.e., |A| ≥ |Amin|.

The alphabet of the assumptions we learn for compositional verification is
fixed to (αM1 ∪ αP) ∩ αM2. Other researchers and ourselves observed that it
may sometimes be possible to verify a problem with a smaller alphabet, and
therefore potentially smaller assumptions [23,6]. Learning assumptions can be
extended for other assume-guarantee rules that are symmetric and may involve
circularity, and may involve multiple components [23]. Rule ASym itself can
be extended to multiple components through recursive invocation. Learning has
also been applied in the context of symbolic and implicit model checking [21,7],
and of assume-guarantee reasoning for liveness properties [11].

7 Discussion and Conclusions

In this tutorial paper, we reviewed several approaches for context synthesis. Our
context synthesis techniques rely on standard model checking features, such as
reachability analysis and counterexample generation. Over the years, we have
implemented our techniques on top of several well known model-checkers, such
as LTSA [14], SPIN [22], Java PathFinder [13], and ARMC [26]. We have exper-
imented with compositional verification and interface generation techniques in
the context of several applications, mostly involving NASA systems. Our NASA
case studies include a Rover Executive [10,15,4], autonomous rendez vous and
docking [5], a resource arbiter for the Mars Exploration Rover [12], and models of
the flight phases of a spacecraft [13,26]. We have also experimented with existing
benchmarks for compositional verification [12] and for interface generation [26].

Context Synthesis 215

In our experience, learning-based interface generation and compositional ver-
ification were most successful when a system has a well-designed component-
based structure, where component interfaces are small. Beyer, Henzinger and
Singh make a similar observation [3]. Moreover, even though abstraction can
be introduced in order to deal with large component implementations, it is still
much harder to generate interfaces at the level of source code. Interface are ide-
ally generated at design time, and are then used in several ways throughout the
life cycle of a component: for compositional verification, concrete component and
system integration testing, runtime verification, and incremental verification in
the presence of component upgrades or substitutions.

Our learning based algorithms for context synthesis are part of the open-
source Java PathFinder tool-set and they are available from the following web-
site: http://babelfish.arc.nasa.gov/trac/jpf/, the jpf-cv project.

Our work on interface generation needs to be extended and matured in order
to make it applicable in practice. There are several interesting future research
directions. Some of them involve the generation of interfaces that go beyond
purely functional properties such as safety and liveness, but potentially timed
or probabilistic properties. Moreover, it would be interesting to try and identify
design decisions that facilitate the generation of component interfaces. Finally,
one could investigate interfaces in different domains such as service-oriented
systems, aerospace systems, and others.

References

1. Alur, R., Cerný, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications
for Java classes. In: Palsberg, J., Abadi, M. (eds.) POPL, pp. 98–109. ACM, New
York (2005)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf.
Comput. 75(2), 87–106 (1987)

3. Beyer, D., Henzinger, T.A., Singh, V.: Algorithms for interface synthesis. In:
Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 4–19. Springer,
Heidelberg (2007)

4. Blundell, C., Giannakopoulou, D., Pasareanu, C.S.: Assume-guarantee testing.
ACM SIGSOFT Software Engineering Notes 31(2) (2006)

5. Brat, G., Denney, E., Giannakopoulou, D., Jonsson, A.: Verification of autonomous
systems for space applications. In: IEEE Aerospace Conference (2006)

6. Chaki, S., Strichman, O.: Three optimizations for assume-guarantee reasoning with
L*. Formal Methods in System Design 32(3), 267–284 (2008)

7. Chen, Y.-F., Clarke, E.M., Farzan, A., Tsai, M.-H., Tsay, Y.-K., Wang, B.-Y.:
Automated assume-guarantee reasoning through implicit learning. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 511–526. Springer,
Heidelberg (2010)

8. Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning minimal
separating DFAs for compositional verification. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009)

9. Clarke, E., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge (1999)

216 D. Giannakopoulou and C.S. Păsăreanu

10. Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

11. Farzan, A., Chen, Y.-F., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Extending auto-
mated compositional verification to the full class of omega-regular languages. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 2–17.
Springer, Heidelberg (2008)

12. Gheorghiu, M., Giannakopoulou, D., Pasareanu, C.S.: Refining interface alphabets
for compositional verification. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 292–307. Springer, Heidelberg (2007)

13. Giannakopoulou, D., Pasareanu, C.S.: Interface generation and compositional
verification in javaPathfinder. In: Chechik, M., Wirsing, M. (eds.) FASE 2009.
LNCS, vol. 5503, pp. 94–108. Springer, Heidelberg (2009)

14. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Component verification with
automatically generated assumptions. Autom. Softw. Eng. 12(3), 297–320 (2005)

15. Giannakopoulou, D., Pasareanu, C.S., Cobleigh, J.M.: Assume-guarantee verifica-
tion of source code with design-level assumptions. In: ICSE, pp. 211–220 (2004)

16. Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for compo-
sitional verification. Formal Methods in System Design 32(3), 285–301 (2008)

17. Henzinger, T.A., Jhala, R., Majumdar, R.: Permissive interfaces. SIGSOFT Softw.
Eng. Notes 30, 31–40 (2005)

18. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Adison-Wesley Publishing Company, Reading (1979)

19. Jones, C.B.: Tentative steps toward a development method for interfering
programs. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

20. Magee, J., Kramer, J.: Concurrency: state models & Java programs. John Wiley
& Sons, Inc., New York (1999)

21. Nam, W., Madhusudan, P., Alur, R.: Automatic symbolic compositional verifica-
tion by learning assumptions. Formal Methods in System Design 32(3), 207–234
(2008)

22. Pasareanu, C.S., Giannakopoulou, D.: Towards a compositional SPIN. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 234–251. Springer, Heidelberg (2006)

23. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer,
H.: Learning to divide and conquer: applying the L* algorithm to automate assume-
guarantee reasoning. Formal Methods in System Design 32(3), 175–205 (2008)

24. Pnueli, A.: In transition from global to modular temporal reasoning about
programs, pp. 123–144. Springer-Verlag New York, Inc., New York (1985)

25. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993)

26. Singh, R., Giannakopoulou, D., Pasareanu, C.S.: Learning component interfaces
with may and must abstractions. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 527–542. Springer, Heidelberg (2010)

Middleware-Layer Connector Synthesis:

Beyond State of the Art in Middleware
Interoperability

Valérie Issarny1, Amel Bennaceur1, and Yérom-David Bromberg2

1 INRIA, CRI Paris-Rocquencourt, France
2 LaBRI, University of Bordeaux, France

Abstract. This chapter deals with interoperability among pervasive
networked systems, in particular accounting for the heterogeneity of
protocols from the application down to the middleware layer, which is
mandatory for today’s and even more for tomorrow’s open and highly
heterogeneous networks. The chapter then surveys existing approaches
to middleware interoperability, further providing a formal specification
so as to allow for rigorous characterization and assessment. In general,
existing approaches fail to address interoperability required by today’s
ubiquitous and heterogeneous networking environments where interac-
tion protocols run by networked systems need to be mediated at both
application and middleware layers. To meet such a goal, this chapter in-
troduces the approach that is investigated within the Connect project
and that deals with the dynamic synthesis of emergent connectors that
mediate the interaction protocols executed by the networked systems.

Keywords: Interoperability, Middleware, Pervasive networking,
Protocol mediation.

1 Introduction

As networked systems are becoming increasingly pervasive, they need to compose
dynamically with their ever evolving environment according to functionalities
they provide and/or request. However, such dynamic composition is greatly chal-
lenged by the heterogeneity and autonomy of today’s digital systems, which are
not designed in concert, but are instead independently developed and deployed
within pervasive networking environments. As a result, although networked sys-
tems may possibly match from the standpoint of provided and required function-
alities, actual behavioral matching is unlikely due to inherent design diversity.
Therefore, what is needed for enabling the composition of pervasive networked
systems is emergent connectors [28], which embed a mediation process so as to
adapt the systems’ respective interaction behaviors for the sake of coordination.

The notion of mediator underlying emergent connectors is not new. It has
indeed been investigated since the need for interoperability in distributed sys-
tems was identified [23]. However, this was initially a design-time concern, while
today’s dynamic distributed systems require on-the-fly mediation. On-the-fly

M. Bernardo and V. Issarny (Eds.): SFM 2011, LNCS 6659, pp. 217–255, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

218 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

protocol mediation has in particular been studied quite extensively in the con-
text of Web services to deal with either dynamic service composition (e.g., [14])
or substitution (e.g., [12]). Still, as in particular investigated in the companion
chapter on application-layer connector synthesis [26], existing work on runtime
automated mediation concentrates on application-layer protocols, while the het-
erogeneity of open networked systems may concern both the application and
middleware layers.

As surveyed within companion chapter on interoperability in complex
distributed systems [6], middleware interoperability solutions have been de-
veloped since the early days of middleware. While one-to-one bridging was
among the early approaches [40], it evolved into more generic solutions such as
Enterprise Service Bus [13], interoperability platforms [21] and transparent in-
teroperability approaches [9,36]. However, except for the transparent interoper-
ability approaches, most of these solutions rely upon the design-time choice to
develop applications using the proposed interoperability solution. Thus, they do
not allow for on-the-fly interoperability between networked applications embed-
ding different legacy middleware. Middleware interoperability further needs to
cope with the many middleware interaction paradigms that now need to coex-
ist. This includes accessing the same functionality through distinct paradigms
(e.g., context-awareness through access to a data-centric sensor network or an
RPC-based context server).

As an illustration, consider the simple, yet challenging scenario of photo shar-
ing within a public space such as a stadium, which is also investigated from
the standpoint of application-layer connection in [26]. Typically, the target en-
vironment allows for both infrastructure-based and ad hoc peer-to-peer photo
sharing. In the former implementation, a photo sharing service is provided by the
stadium, where only authenticated photographers are able to produce pictures
while any spectator may download and even annotate pictures. The peer-to-peer
implementation allows for photo download, upload and annotation by any spec-
tator, who are then able to directly share pictures using their handhelds. In both
cases, the spectator’s handheld would need to embed the appropriate software
application, which may not be available due to the handheld’s specific platform.
Further, the spectator may not be willing to download yet another photo sharing
application, i.e., the proprietary implementation offered by the stadium, while
one is already available on the handheld. Moreover, while the photo sharing
functionality is present in both versions of the photo sharing application, it is
unlikely that they feature the very same interface and behavior. In particular,
the RPC interaction paradigm suits quite well the infrastructure-based service,
while a distributed shared data space is more appropriate for the peer-to-peer
version. In general, considering the ever-growing base of content-sharing appli-
cations for handhelds, numerous versions of the photo sharing application may
be available on the spectators’ handhelds, thus calling for appropriate interop-
erability solutions that mediate interaction protocols from the application down
to the middleware layer.

Middleware-Layer Connector Synthesis 219

This chapter more specifically concentrates on middleware-layer interoper-
ability, i.e., enabling networked systems that functionally match to be able to
coordinate despite running heterogeneous middleware protocols. The next sec-
tion formalizes the role of middleware in the connection of networked systems, in
particular highlighting the inter-play between application- and middleware-layer
protocols. Then, Section 3 focuses on interoperability connectors introduced in
the literature, as surveyed in companion chapter [6]; the behavior of interoper-
ability connectors is formally defined, hence providing a rigorous characteriza-
tion of their respective features. As presented, interoperability connectors allow
overcoming the heterogeneity of middleware protocols as long as the protocols
implement the same coordination paradigm, which is too restrictive regarding
the objective of enabling emergent connectors. Section 4 paves the way for en-
abling emergent connectors, i.e., the on-the-fly synthesis of connectors that me-
diate interaction protocols from the application down to the middleware layer,
which builds upon the theory of mediators presented in companion chapter [26].
Finally, Section 5 concludes with perspective for future work towards effecting
emergent middleware.

2 Middleware-Based Connectors

In the context of distributed systems, a connector abstracts a complex interac-
tion behavior that is facilitated by middleware which provides services to realize
this interaction. In particular, middleware overcomes the heterogeneity of the
distributed infrastructure by establishing a software layer that homogenizes the
infrastructure’s diversities using a well-defined and structured distributed pro-
gramming model [27]. In particular, middleware induces an interaction paradigm
for enabling distributed networked systems to coordinate [38].

In the following, we introduce middleware-based connectors using state-of-
the-art connector classification [34,50] (Section 2.1) and define their specification
using formal notation(Section 2.2). Then, we describe the mismatches preventing
connection among components and introduce the needed mediation to enforce
interoperability among them.

2.1 A Classification of Middleware-Based Connectors

Based upon the classification of connectors introduced in [34,50], services pro-
vided by middleware are depicted in Figure 1. The communication and coordi-
nation services support the transfer of data and control among components and
can be realized by different connector types, each of which defining an interaction
paradigm such as procedure call, event, message-based, or data access connectors.
The adaptor connector type provides a conversion service to support interac-
tion among heterogeneous components while services that facilitate interaction
among components are achieved using the distributor and arbitrator connec-
tor types. Distributor connectors perform discovery through the identification
of interaction paths and subsequent routing of communication and coordination

220 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

Middleware

Services

Data Access

Message-based

Arbitrator

Distributor

Adaptator

In
te

ra
ct

io
n

pa
ra

di
gm

s
D

is
co

ve
ry

N
FP

Application

Communication

Facilitation

Conversion

Coordination

Procedure Call

Event

Connector types

Fig. 1. Middleware-based connector classification

information among components along these paths. Non-functional properties
(NFP) are managed by arbitrator connectors that streamline system operations,
resolve any conflict and redirect the flow of control.

Each connector type is associated with different dimensions (and subdimen-
sions) representing its architectural details. For example, a procedure call con-
nector defines the Parameters dimension that is subdivided into data transfer,
semantics, return value, and invocation record subdimensions. The procedure
call connector type is also associated to other dimensions such as Entry point
associated to two subdimensions, single or multiple, Invocation defining the im-
plicit and explicit subdimensions, Synchronicity, Cardinality, and Accessibility.
The values associated to the various dimensions and subdimensions define a
connector implementation, that is, a specific middleware. For example, SOAP1

(Simple Object Access Protocol), CORBA2 (Common Object Request Broker
Architecture), and RMI3 (Remote Method Invocation) are specific middleware
defining implementations of the procedure call connector type.

2.2 Formalizing Middleware-Based Connectors

In order to precisely characterize the role of middleware in the connection of
networked systems, this section formalizes middleware-based connectors using
FSP [33], as FSP has proven to be a convenient formalism for specifying con-
nectors [47]. In particular, using FSP allows us to exploit the LTSA tool [33] to
automate reasoning about the behavior of connectors and connected systems.

1 http://www.w3.org/TR/soap/
2 http://www.omg.org/technology/documents/corba spec catalog.htm
3 http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html

Middleware-Layer Connector Synthesis 221

Table 1. FSP syntax overview

Definitions

END Predefined process, denotes the state in which a process suc-
cessfully terminates

set S Defines a set of action labels

[i : S] Binds the variable i to a value from S

Primitive Processes (P)

a → P Action prefix

a → P |b → P Choice

P ; Q Sequential composition

P (X =′ a) Parameterized process: P is described using parameter X
and modeled for a particular parameter value, P (a1)

P/{new 1/old 1, ..., new n/old n} Relabeling

P\{a1, a2, ..., an} Hiding

P + {a1, a2, ..., an} Alphabet extension

Composite Processes (‖P)

P‖Q Parallel composition

forall [i : 1..n] P (i) Replicator construct: equivalent to the parallel composition
(P (1)‖...‖P (n)).

a : P Process labeling

FSP notations and semantics. Table 1 provides an overview of the FSP oper-
ators, while the interested reader is referred to [33] for further detail. Briefly
stated, FSP processes describe actions (events) that occur in sequence, and
choices between event sequences. Each process has an alphabet of the events
that it is aware of (and either engages in or refuses to engage in). There are
two types of processes: primitive processes and composite processes. Primitive
processes are constructed through action prefix, choice, and sequential composi-
tion. Composite processes are constructed using parallel composition or process
relabeling. When composed in parallel, processes synchronize on shared events:
if processes P and Q are composed in parallel as P ||Q, events that are in the
alphabet of only one of the two processes can occur independently of the other
process, but an event that is in the alphabets of both processes cannot occur un-
til the two of them are willing to engage in it. The replicator forall is a convenient
syntactic construct used to specify parallel composition over a set of processes.
Processes can optionally be parameterized and have re-labeling, hiding or exten-
sion over their alphabet. A composite process is distinguished from a primitive
process by prefixing its definition with ‖.

A formalization of connectors. According to [1], a connector is defined by a set
of roles and a glue where:

222 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

Connector roles

Middleware

Application

Component port

Middleware

Application

12
Component port

2

Connector glue
3

Fig. 2. Components & Connector

– roles (See Figure 2, ❶) specify the expected local behavior of each of the
interacting parties.

– glue (See Figure 2, ❸) specifies how the behaviors of these parties are
coordinated.

In addition, the interaction protocols of components are specified by ports (See
Figure 2, ❷).

Then according to [47], roles, glues and ports are specified as FSP processes,
which allows assessing architectural matching and thus interoperability. Specifi-
cally, a component can be attached to a connector only if its port is behaviorally
compatible with the connector role it is bound to. Allen and Garlan [1] define
behavioral compatibility between a component port and a connector role based
on the notion of refinement. Informally, a component port is behaviorally com-
patible with a connector role if the process specifying the behavior of the former
refines the process characterizing the latter. In other words, it should be possible
to substitute the role process by the port process.

In our case, we are further interested in characterizing interaction protocols
at both application and middleware layers since both of them are sources of het-
erogeneity. We then define the behavior of a connector as a hierarchical protocol
that specifies the behavior of the application-layer interaction protocol in terms
of middleware-specific protocols. Building on the work of [47], the behavior of a
middleware-layer connector is specified as a parallel FSP process composing: (i)
one process for each role of the connector, and (ii) one process for the glue that
describes how all roles are bound together. The application-specific behavior is
further specified as a process over role processes of the underlying middleware-
layer connector.

Example. As an illustration, we have the following FSP-based specification of a
SOAP-based connector:

1 Role ClientSOAP = SOAP -RPCCall → SOAP -RPCReceiveReply→ClientSOAP

2 Role ServerSOAP = SOAP -RPCReceiveCall→ SOAP -RPCReply → ServerSOAP

3 GlueSOAP = SOAP -RPCCall → SOAP -RPCReceiveCall→GlueSOAP

4 | SOAP -RPCReply → SOAP -RPCReceiveReply→GlueSOAP

5 ‖ConnectorSOAP = ClientSOAP || GlueSOAP || ServerSOAP

Middleware-Layer Connector Synthesis 223

According to the specification, ClientSOAP (Line 1) initiates a request using
SOAP -RPCCall, and gets a response through SOAP -RPCReceiveReply.
When ServerSOAP (Line 2) gets a request SOAP -RPCReceiveCall, it initiates
a response SOAP -RPCReply. The GlueSOAP coordinates the interaction of the
two roles (Lines 3 and 4): a SOAP -RPCCall from the ClientSOAP is followed by
a SOAP -RPCReceiveCall to the ServerSOAP , and a SOAP -RPCReply from
the ServerSOAP is followed by a SOAP -RPCReceiveReply to the ClientSOAP .

Then, different application-layer protocols may be specified using the pro-
vided middleware connector. For instance, consider the Photo Sharing example
discussed in the introduction, Figure 3 gives the FSP specification of the RPC-
SOAP implementation of infrastructure-based photo sharing. First, we define
the SOAP actions that can be performed by the networked systems (Line 1).
The behavior of the photo sharing consumer (Lines 3 to 5), producer (Lines 6
to 7), and server (Lines 8 to 12) are specified using this provided set of actions.
The photo sharing producer and consumer invoke actions using the ClientSOAP

process (Lines 14 to 15) while the photo sharing server provides actions using
the ServerSOAP process(Lines 16 to 17). The GlueSOAP ensures the coordination
among all the actions (Lines 18 to 20).

1 //Infrastructure-bade application specification
2 set SOAP PhotoSharing Actions = {uploadPhoto, searchPhoto, downloadPhoto, downloadComment, commentPhoto}
3 PhotoSharingConsumer = (req.searchPhoto →P1),
4 P1 = (req.downloadPhoto →P1|req.commentPhoto →P1
5 |req.downloadComment →P1 |terminate →END).
6 PhotoSharingProducer = (req.uploadPhoto →PhotoSharingProducer
7 |terminate →END).
8 PhotoSharingServer = (prov.uploadPhoto →PhotoSharingServer
9 |prov.searchPhoto →PhotoSharingServer
10 |prov.downloadPhoto →PhotoSharingServer
11 |prov.commentPhoto →PhotoSharingServer
12 |prov.downloadComment →PhotoSharingServer|terminate →END).
13 //SOAP middleware Specification
14 ClientSOAP (X =′ op) = (req.[X] →P1|terminate →END),
15 P1 = (SOAP -RPCCall[X] → SOAP -RPCReceiveReply[X] →ClientSOAP).
16 ServerSOAP (X =′ op) = (prov.[X] →P2 |terminate →END),
17 P2 = (SOAP -RPCReceiveCall[X] → SOAP -RPCReply[X] →ServerSOAP).
18 GlueSOAP (X =′ op) = (SOAP -RPCCall[X] →P0 |terminate →END),
19 P0 = (SOAP -RPCReceiveCall[X] → SOAP -RPCReply[X]
20 → SOAP -RPCReceiveReply[X] →GlueSOAP).
21 //System specification
22 ‖SOAP PhotoSharing = (PhotoSharingProducer
23 ‖PhotoSharingConsumer
24 ‖PhotoSharingServer
25 ‖(forall [op:SOAP PhotoSharing Actions] ServerSOAP (op))
26 ‖(forall [op:SOAP PhotoSharing Actions] ClientSOAP (op))
27 ‖(forall [op:SOAP PhotoSharing Actions] GlueSOAP (op))).

Fig. 3. Infrastructure-based photo sharing

2.3 Connection Mismatches and Related Mediation

Connection mismatches result from different assumptions that components make
about connection. Blair et al. [6] define several heterogeneity dimensions gener-
ating mismatches (see Figure 4):

224 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

Mismatches Mismatches

DataData

BehavioralBehavioral

Application-levelApplication-level

Middleware-levelMiddleware-level

Business process\logicBusiness process\logic

Operation granularityOperation granularity

Coordination modelCoordination model

Coordination model instantiationCoordination model instantiation

SyntacticSyntactic

SemanticSemantic

Fig. 4. Classifying mismatches

– Data heterogeneity: Networked systems associate different representations
(syntax) and meanings (semantics) to their data, which may results in data
inconsistencies. Middleware coupled with ontologies play a valuable role in
solving both the syntactic and semantic mismatches.

– Behavioral middleware-level heterogeneity: While middleware ensures
interoperability across languages and network platforms, it only does so for
systems using the same middleware. Indeed, a middleware implementation
involves a style of interaction by specifying a coordination model and the
associated protocol and data format. As a result, systems using different
middleware are not able to interoperate.

– Behavioral application-level heterogeneity: Different systems may have in-
compatible business-process logic and disparate interface signatures (e.g.,
see [26]).

A further dimension of heterogeneity is related to the handling of non-functional
properties, which we do not address in this chapter.

In general, networked systems may be connected only in the absence of all
of the above heterogeneity dimensions, i.e., networked systems should be be-
haviorally compatible from application down to middleware layer, and further
exchange semantically and syntactically matching data.

However, with networked systems getting increasingly pervasive, one would
like to be able to connect networked systems that semantically match, despite
heterogeneity in the above dimensions. By semantic matching [41], we mean that
networked systems share a complementary high level goal towards which they
need to coordinate although they may possibly run heterogeneous interaction
protocols from the application down to the middleware layer.

Still considering the photo sharing example, both the infrastructure-based
(see Figure 5A) and the peer-to-peer-based (see Figure 5B) versions of the photo
sharing may be implemented over SOAP. Even though, the two systems seman-
tically match and behaviorally match at the middleware-layer, they are not able
to interact due to behavioral mismatches at the application layer.

Similarly, the infrastructure-based version of photo sharing may be imple-
mented using two different middleware, such as SOAP (see Figure 6A) and
RMI(see Figure 6B). In this case, middleware-layer mismatches prevent the two

Middleware-Layer Connector Synthesis 225

Fig. 6. Middleware mismatches

networked systems from interacting despite semantic matching and behavioral
matching at the application-layer.

Under semantic matching of two networked systems, behavioral matchmaking
is achieved through the generation of mediators that enforce the behavioral
compatibility of the networked systems (see Figure 7). The resulting system is
called connected system.

Since mismatches take place at different inter-related layers, mediation be-
comes a cross-cutting concern that has to be achieved in conjunction at the dif-
ferent system layers, from application down to middleware down to network (see
Figure 8). At each layer, many facets (data, interface, and behavior) of hetero-
geneity should be dealt with. There is a number of existing mediation solutions,
each of which solves mismatches related either to applications or to middleware.
Indeed, solutions addressing application heterogeneity assume the same middle-
ware whereas solutions achieving middleware interoperability consider the same
application atop of it. However, all the dimensions of heterogeneity should be
simultaneously addressed in order to guarantee effective interoperability among
heterogeneous systems.

Soap
Middleware

Service 2

Soap
Middleware

Client 1
Mediator

Fig. 7. Connected system

Photo Sharing
Consumer

B

A

SOAP Middleware

Photo Sharing
Producer

SOAP Middleware

Photo Sharing
Peer

Photo Sharing
Peer

SOAP Middleware SOAP Middleware

Mismatch

Fig. 5. Application mismatches

Photo Sharing
Consumer

B

A

SOAP Middleware

Photo Sharing
Producer

SOAP Middleware

RMI Middleware RMI Middleware

Photo Sharing
Producer

Photo Sharing
Consumer

Mismatch

226 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

Application

Middleware

Network

DataData InterfaceInterface BehaviorBehavior

Interoperability facets

Interoperability
layers

Data/Semantic
Mediation

Listener/Actuator Synthesis

Process/Behavioral
Mediation

Fig. 8. Mediation

In this chapter, we more specifically concentrate on middleware-layer proto-
col mediation and its relation with application-layer mediation. As a first step,
the next section reviews state-of-the-art solutions to middleware interoperabil-
ity that is in particular surveyed in [6]. We qualify such solutions as interop-
erability connectors. However, these solutions primarily deal with middleware-
level heterogeneity, further assuming connection between components relying on
the same interaction paradigm. Section 4 then introduces the solution investi-
gated within the Connect project that aims at overcoming both application-
and middleware-level heterogeneity, including heterogeneity in the interaction
paradigms.

3 Interoperability Connectors

State-of-the-art solutions to interoperability between heterogeneous middleware
primarily concentrate on middleware implementing the same interaction para-
digm and subdivide into the following categories: software bridge, interoperability
platform and transparent interoperability [6]. We review each approach in turn,
providing their FSP-based semantics so as to precisely characterize their re-
spective features and further allow for thorough assessment and comparison. In
addition, we point out exploitation of the proposed interoperability connectors
at the application layer.

3.1 Software Bridges

Bridging assumes a priori knowledge of both applications and middleware that
have to be made interoperable without any intervention in their code. Particu-
larly, bridging provides a mapping between various interaction protocols. Such
a mapping can be either 1 → 1, which is direct bridging; or n → 1 → m, which
is indirect bridging.

Middleware-Layer Connector Synthesis 227

Direct Bridging. The principle of direct bridging is to transform one of the con-
nector roles according the incompatible connector role, as illustrated in
Figure 9.

C2C1
R12 R22

connector 2
R21R11

Bridge

connector 1
T

Fig. 9. Direct bridge

Formally, direct bridging is performed as follows (see Figure 10):

1. The glue of each connector is first tagged in order to avoid unwanted event
synchronization (tag1 :Glue1 and tag2 :Glue2, Line 11),

2. A set of predefined transformations, T (Line 7), is applied to the connectors
in order to adapt their respective behaviors,

3. The transformations are chained with the tagged glues through the Bridge
(Line 5) process.

According to the above, the direct bridge mediator specification is defined as:

‖Direct Bridge Mediator = (Bridge||T).

The developer must thus ensure the correctness of T, in particular ensuring that
the bridging actually performs the required mediation without introducing any
error. Moreover, a direct bridge must be developed separately for every pair of
protocols between which interaction is required. Hence, ensuring interoperability
between each pair of n components requires developing n(n− 1) mediators. The
diversity of protocols that are used in today’s networked systems implies that
this is a substantial development task.

//Specification of Connector1 & Connector2

1 Role R1i,i∈[1··2] = Specification of Role R1 of Connectori

2 Role R2i,i∈[1··2] = Specification of Role R2 of Connectori

3 Gluei,i∈[1··2] = Specification of the glue of Connectori

4 set Ii,i∈[1··2] = Set of events initiated from Role R1i and R2i

5 Bridge = tag1.[e1 :I1] → tag2.[e1] →Bridge|tag2.[e2 :I2] → tag1.[e2] →Bridge

6 //Specification of the adaptation process
7 T = Specification of the required transformations to bridge Connector1 to Connector2

8 //Specification of the direct bridge connector
9 ‖C-DBridge = R11‖tag1 :Glue1‖Bridge ‖T‖tag2 :Glue2‖R22

Fig. 10. Direct bridging specification

228 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

Practically, middleware direct bridges, such as OrbixCOMet4 and SOAP2-
CORBA5, ensure interoperability between two fixed middleware implementa-
tions (DCOM-CORBA and SOAP-CORBA respectively). Similarly, application
software bridges may be introduced to define bridging between application-
specific protocols (i.e., overcoming application- and middleware-layer protocols
heterogeneity). However, implementing a bridge between two networked applica-
tions becomes very complex due to the domain-specific and technical knowledge
required to realize the mediation.

Indirect Bridging. Indirect bridging reduces the development effort associ-
ated with software bridges by introducing a common fixed intermediary proto-
col. This intermediary protocol is represented as a dedicated connector called
Connectorbus (see Figure 11). Then, interoperability is achieved in two steps:
(i) the given native middleware protocol taken among n middleware is translated
into a common intermediary protocol, (ii) the common intermediary protocol is
then translated into the other given native middleware protocol taken among m
middleware.

R11 R21

R1k R2k

connector' 1

R1n R2n R1m R2m
C2

R1i R2i

C1
R21R11

connectorbus

Bridge2Bridge1

R1bus R2bus

connector' k

connector' mconnector m

connector i

connector 1

mm

ToT1

ToTi

ToTn

ToT '1

ToT 'i

ToT 'm

Fig. 11. Indirect bridge

Formally, indirect bridging performs translations back and forth using direct
bridges in two steps (see Figure 12):

1. Connectori to Connectorbus direct bridging through the use of processes
ToTi‖Bridgei (Lines 19 and 26) (i ∈ [1··n]),

2. Connectorbus to Connector′k direct bridging through the use of processes
ToT ′

k‖Bridge′k (lines 22 and 29) (k ∈ [1··m]).

The indirect bridge mediator is then specified as:

‖Indirect Bridge Mediator = (T1‖Bridge1‖Bridge2‖T2).

Practically, there exist various implementations of indirect bridges such as En-
terprise Service Buses (e.g., ARTIX6) and MUSDAC [43]. Especially, Enterprise
4 http://www.iona.com/support/whitepapers/ocomet-wp
5 http://soap2corba.sourceforge.net/
6 http://web.progress.com/en/sonic/artix-index.html

Middleware-Layer Connector Synthesis 229

//Connectorbus specification
1 Role R1bus = Specification of Role R1 of Connectorbus

2 Role R2bus = Specification of Role R2 of Connectorbus

3 Gluebus = Specification that describes interactions between Role R1bus and Role R2bus

4 //Connectors specification
5 Role R1 = |ni=1(a.gluei →R1i),
6 R1i,i∈[1··n] = R1i initial specification as given by Connectori |reset → R1
7 Role R2 = |mk=1(b.glue′k →R2k),
8 R2k,k∈[1··m] = R2k initial specification as given by Connector′k|reset → R2
9 Gluei,i∈[1··n] = Specification that describes interactions between
10 Roles R1i and R2i

11 Glue′k,k∈[1··m] = Specification that describes interactions between
12 Role R′1k and Role R′2k

13 //Set of events initiated or observed
14 set I1i,i∈[1··n] = Set of events initiated from Role R1i

15 set O1i,i∈[1··n] = Set of events observed from Role R1i

16 set I2k,k∈[1··m] = Set of events initiated from Role R′2k

17 set O2k,k∈[1··m] = Set of events observed from Role R′2k

18 //Specification of the adaptation processes
19 T1 = |ni=1(a.gluei → ToTi),
20 ToTi,i∈[1··n] = Specification of the required transformations to bridge Connectori to Connectorbus

21 | a.reset →T1

22 T2 = |mk=1(b.glue′k → ToT′
k),

23 ToT′
k,k∈[1··m] = Specification of the required transformations to bridgeConnectorbus to Connector′k

24 | b.reset →T2

25 //Specification of the bridging processes
26 Bridge1 = |ni=1(a.gluei → Bridgei),
27 Bridgei,i∈[1··n] = [e : I1i] → a.tagi.[e] → Bridgei|a.tagi.[e : O1i] → [e] → Bridgei

28 | a.reset →Bridge1

29 Bridge2 = |mk=1(b.glue′k → Bridge′k),
30 Bridge′k,k∈[1··m] = [e : I2k] → b.tagk.[e] → Bridge′k|b.tagi.[e : O2k] → [e] → Bridge′k
31 | b.reset → Bridge2

32 //Specification of the indirect bridge connector
33 ‖C-IBridge = R1‖T1‖n

i=1a.tagi :Gluei‖Bridge1‖Gluebus‖Bridge2‖m
k=1b.tagk :Glue′k‖T2‖R2

Fig. 12. Indirect bridging specification

Service Buses (ESBs) have received a lot of attention. An ESB [35] is an open
standards, message-based, distributed integration infrastructure that provides
routing, invocation and mediation services to facilitate the interactions of dis-
parate distributed applications and services.

Compared to direct bridging that requires n × m direct bridges to allow n
components to interact with m, indirect bridging reduces the development effort
since n + m bridges have to be manually developed. Nevertheless, it limits the
expressiveness of protocols, as some aspects of the relevant protocols may not
be compatible with the chosen intermediary protocol.

3.2 Interoperability Platform

To overcome the static nature of software bridging, new approaches that dy-
namically select the best middleware bridge at a given time and place have

230 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

emerged. Such solutions, called thereafter interoperability platforms, enable net-
worked systems to switch their interaction protocol on-the-fly according to their
environment. The principle is to provide a custom interface that abstracts the
different interaction protocols used in the environment (see Figure 13).

connector 1
R11 R21

connector 2
R12 R22

connector i
R1i R2i

connector N
R1N R2N

Bridge

SwitchC1
C2

Rinterface

ToT1

ToT2

ToTi

ToTn

Fig. 13. Interoperability platform

Formally, interoperability is ensured in the following steps (see Figure 14):

1. The common interface, that has to be used by any component to interoperate
with its environment is formally specified by a role Rinterface (Line 2),

1 //Proprietary interface
2 Role Rinterface = Specification of the bridge interface
3 Role R2 = |ni=1(gluei → R2i),
4 R2i,i∈[1··n] = Initial specification of the Role R2 of Connectori|reset → R2
5 Gluei,i∈[1··n] = Specification of the glue of Connectori

6 //Set of events initiated or observed
7 set I2i,i∈[1··n] = Set of events initiated from Role R2i

8 set O2i,i∈[1··n] = Set of events observed from Role R2i

9 set Iinterface = Set of events initiated from Role Rinterface

10 set Ointerface = Set of events observed from Role Rinterface

11 //Switch process
12 Switch = (election → reset → Switch |ni=1election → gluei → Switch)\{election}

13 //Specification of the adaptation process
14 T = |ni=1(gluei → ToTi),
15 ToTi,i∈[1··n] = Specification of the required transformations to bridge Rinterface to Connectori

16 | reset → T

17 //Specification of the bridging process
18 Bridge = |ni=1(gluei → Bridgei),
19 Bridgei,i∈[1··n] = [e : Rinterface] → tagi.[e] → Bridgei|tagi.[e : Ointerface] → [e] → Bridgei

20 | [e : I2i] → tagi.[e] → Bridgei|tagi.[e : O2i] → [e] → Bridgei

21 | reset →Bridge

22 //Specification of the interoperability platform connector
23 ‖C-InteropPlatforms = Rinterface‖Switch‖T‖Bridge‖n

i=1tagi :Gluei‖R2

Fig. 14. Interoperability platform specification

Middleware-Layer Connector Synthesis 231

2. The Switch process (Line 12) selects the appropriate connector Connectori

among n according to the requirements of the environment,
3. The translation between Rinterface and Connectori is achieved in a way

similar to direct bridging (Lines 14 to 21).

This leads to the following specification of the interoperability mediator :

‖Interoperability Mediator = (Switch‖T‖Bridge).

Practically, middleware-level interoperability platforms, such as UIC [44] and
ReMMoC [21], allow the development of applications independently from the
underlying protocol. They select the most appropriate communication protocol
according to the context. Many applications, however, have not been developed
using such middleware interface and cannot be modified because their source
codes are not available. From the perspective of application-layer protocols, the
common interface is in general a domain-specific standard that several compo-
nents and services comply with. However, compliance to the same interface does
not necessarily imply behavioral compatibility and mediators have to be used in
order to guarantee behavioral compatibility as well [15].

3.3 Transparent Interoperability

Unlike indirect bridging, transparent interoperability solutions do not rely on
a fixed common protocol anymore but rather synthesize the common protocol
dynamically based on the interaction behavior of communicating parties. We are
more specifically interested in dynamic protocol translation [7]. This approach
is based on concepts taken from the theory of protocol projection [30]. The
theory enables mapping incompatible protocols to an image protocol (see Figure
15), which has proven effective to reason about conversions and semantic
equivalence among heterogeneous protocols [7]. In particular, an image protocol
abstracts incompatibilities among protocols to exclusively consider their sim-
ilarities. Further, by generating an image protocol on-the-fly, it is possible to
provide a dynamic semantic correspondence among heterogeneous middleware
protocols.

Switch'

R11 R21

R1k R2k

connector' 1

R1n R2n R1m R2m
C2

R1i R2i

C1
R21R11

connectorimageSwitch

Bridge2Bridge1

R1image R2image

connector' k

connector' mconnector m

connector i

connector 1

mm

ToMap1

ToMapi

ToMapn

ToMap '1

ToMap 'i

ToMap 'mnnnnR2R2R2R2

R2iR2iR2iR2

R21R21R21

m

r i

r 1

W1 W2

R11R11R11R11

RR1kRR1kRR1kR1k

con

RRRR1R1mR1mR1m

con

con

Fig. 15. Transparent interoperability

232 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

Formally, a projection function f is used to synthesize an image protocol, that
is the greatest common denominator between a pair of protocols (see Figure 16).
Interoperability is then performed in the following steps:

1. The glue of all the connectors are tagged in order to avoid unwanted event
synchronization,

2. One connector is dynamically chosen among n (m) connectors based on
the context/environment through the Switch (Switch′) process: Connectori

(Connector′k) (Lines 19 and 20),
3. W1 (W2) (Lines 22 to 25) are then used to synchronize tagged glues with

their respective roles depending on the selected connector,
4. The strength of the approach lies in M1 and M2 processes (Lines 26 to 32)

that are used to define the semantics of the events. To do so, the projection
function (f) is used to establish the semantic equivalence between events:
f(e1) = f(e2) iff e1 and e2 have the same semantics,

5. Bridge1 and Bridge2 (Lines 34 to 41) tag/untag the projected events in order
to allow M1 and M2 to synchronize.

This leads to the following specification of the transparent mediator :

‖Transparent Mediator = (Switch ‖W 1‖M 1‖Bridge1‖Bridge2‖M 2‖ W2‖Switch′).

Practically, the INDISS [9] and NEMESYS [7] middleware implement the dy-
namic protocol translation approach for service discovery and interaction proto-
col (assuming the same application atop) respectively. uMiddle [36], OSDA [31],
SeDiM [19] are other middleware-level implementations of the transparent inter-
operability approach. Regarding the application layer, there is a substantial piece
of work on transparent interoperability at the application layer assuming the use
of Semantic Web technologies. OWL-S [51] exploit Semantic Web ontologies to
enrich descriptions of services in order to enhance service discovery and com-
position using semantic matching. Web Service Modeling Ontology (WSMO)7

introduces mediators as the core of a conceptual model treating heterogeneity
of Semantic Web Services. In particular, it addresses both data and behavioral
mediation.

As briefly surveyed in this section, tremendous work exists on the develop-
ment of concrete interoperability solutions to overcome protocol heterogeneity
and in particular middleware protocol heterogeneity. However, these solutions
focus on a single protocol layer, while the connection of pervasive networked
systems requires dealing with protocol heterogeneity at both application and
middleware layers. In addition, middleware heterogeneity is in general overcome
for middleware protocols implementing the same interaction paradigms while
the increasing heterogeneity of the networked devices now calls for connecting
systems relying on different interaction paradigms.

7 http://www.wsmo.org/

Middleware-Layer Connector Synthesis 233

1 //Connectors specification
2 Role R1 = |ni=1(a.gluei → R1i),
3 R1i,i∈[1··n] = R1i Initial specification as given by Connectori |reset → R1
4 Role R2 = |nk=1(b.gluek → R2k),
5 R2k,k∈[1··n] = R2k Initial specification as given by Connector′k|reset → R2
6 Gluei,i∈[1··n] = Specification that describes interactions between Role R1i and Role R2i

7 Glue′k,k∈[1··m] = specification that describes interactions between Role R′1k and Role R′2k

8 //Definition of set of events
9 set I1i,i∈[1··n] = Set of events initiated from Role R1i

10 set O1i,i∈[1··n] = Set of events observed from Role R1i

11 set I2k,k∈[1··m] = Set of events initiated from Role R′2k

12 set O2k,k∈[1··m] = Set of events observed from Role R′2k

13 set Ei,i∈[1··n] = αR1i ∩ αGluei

14 set Ek,k∈[1··m] = αR2k ∩ αGlue′k
15 set

∑
E1n

= ∪n
i=1E1i

16 set
∑

E2m
= ∪m

k=1E2k

17 set
∑

O1n
= ∪n

i=1O1i

18 set
∑

O2m
= ∪m

k=1O2k

19 Switch = (a.election → a.reset → Switch|ni=1a.election → a.gluei → Switch)\{a.election}
20 Switch′ = (b.election → b.reset → Switch′|mk=1b.election → b.glue′k → Switch′)\{b.election}

21 //Specification of processes for the image protocol generation
22 W1 = |ni=1(a.gluei → ToGluei),
23 ToGluei,i∈[1··n] = [e : I1i] → a.tagi.[e] → ToGluei |a.tagi.[e : O1i] → [e] → ToGluei |a.reset →W1

24 W2 = |nk=1(b.glue′k → ToGlue′k),
25 ToGlue′k,k∈[1··m] = [e : I2k] → b.tagk.[e] → ToGlue′k |b.tagk.[e : O2k] → [e] → ToGlue′k |b.reset →W2

26 M1 = |ni=1(a.gluei → ToMapi),
27 ToMapi,i∈[1··n] = a.tagi.[e : I1i] → a.tagi.f(e) → ToMapi

28 | a.tagi.f(e :
∑

O1n
) → a.tagi.[e : O1i] → ToMapi|a.reset →M1

29 M2 = |nk=1(b.glue′k → ToMap′
k),

30 ToMap′
k,k∈[1··m] = b.tagk.[e : I2k] → b.tagk.f(e) → ToMap′

k

31 | b.tagk.f(e :
∑

O2m
) → b.tagk.[e : O2k] → ToMap′

k

32 | b.reset →M2

33 //Specification of the bridging processes
34 Bridge1 = |ni=1(a.gluei → ToBridgei),

35 ToBridgei,i∈[1··n] = a.tagi.f
(
e2 :

∑
E2k

)
→ f(e2) → ToBridgei

36 | f(e1 :
∑

E1n
) → a.tagi.f(e1) → ToBridgei

37 | a.reset →Bridge1

38 Bridge2 = |mk=1(b.glue′k → ToBridge′k),

39 ToBridge′k,k∈[1··m] = b.tagk.f
(
e1 :

∑
E1n

)
→ f(e1) → ToBridge′k

40 | f(e2 :
∑

E2m
) → b.tagk.f(e2) → ToBridge′k

41 | b.reset →Bridge2

42 //Specification of the transparent interoperability connector
43 ‖C-Transparent Interop = R1‖ Switch ‖n

i=1a.tagi : Gluei/{f(r : αGluei)/[r]}‖ W 1‖ M 1‖Bridge1‖Bridge2

44 ‖M 2‖ W 2‖m
k=1b.tagk : Gluek/{f(r : αGluek)/[r]}‖Switch ′‖R2

Fig. 16. Transparent interoperability specification

4 Emergent Connector Synthesis

Towards overcoming the increasing heterogeneity of today’s pervasive networking
environments, this section introduces a model-based approach to the synthesis
of emergent connectors, which builds upon the theory of mediators introduced
for application-layer protocols in [46] and further surveyed in companion chapter

234 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

[26]. An emergent connector allows two networked systems that complementary
provide/require the same functionality to coordinate although they possibly ex-
ecute different protocols. This then requires adequate modeling of networked
systems to enable reasoning about their semantic and behavioral compatibili-
ty/matching (Section 4.1), which in particular relies on the definition of ontolo-
gies conceptualizing middleware and application functions (Section 4.2). Briefly
stated, two networked systems are considered to be semantically matching if they
respectively require and provide a matching high-level functionality, which is
characterized by ontology concepts. Then, assessing whether the two networked
systems are behaviorally compatible relies on analyzing whether the protocols
associated with the realization of the given functionality may be adapted so
that they can successfully coordinate. The resulting adaptation then defines the
mediator to be implemented by the emergent connector. As illustrated by the
rich literature on protocol conversion (e.g., [11]), different compatibility rela-
tions may be defined. They primarily differ according to their complexity and
conversely proportional flexibility. In order to lower the complexity of emer-
gent connectors, we perform protocol mediation according to known mapping
between the networked systems’ actions, which is inferred from their ontology-
based semantics. In addition, protocol mediation is composed according to the
basic mediation patterns known from the literature (Section 4.3), while concrete
connectors handle actual middleware message translation (Section 4.4). Finally,
our work takes inspiration from extensive literature in the area of protocol medi-
ation and middleware interoperability; our contribution primarily lies in dealing
with mediation from application down to the middleware layer (Section 4.5).

4.1 Modeling Networked Systems towards On-the-Fly Connection

A basic assumption of on-the-fly connection of networked systems is that sys-
tems advertise their presence in the network(s) they join. This is now common
in pervasive networks and supported by a number of resource discovery pro-
tocols [53]. Still, a crucial question is which description of resources should be
advertised, which ranges from simple (attribute, value) pairs as with SLP8 to
advanced ontology-based interface specification [3].

In our work, resource description shall enable networked systems to compose
according to the high-level functionalities they provide and/or require in the
network, despite heterogeneity in the protocols associated with the implemen-
tation of the functionality. In other words, networked systems must advertise
the high-level functionalities they provide and/or consume to be able to meet
according to the matching of their respective functionalities. Building upon Se-
mantic Web Services, we call such functionalities capabilities and we say that
networked systems semantically match when a networked system requires a ca-
pability that matches a capability provided by the other. Then, in accordance
with the definition of connectors discussed in Section 2, connection between se-
mantically matching networked systems requires precise characterization of the

8 http://www.openslp.org/

Middleware-Layer Connector Synthesis 235

protocols associated with the realization of capabilities, where protocols are de-
fined as processes over the networked system’s observable actions. Observable
actions are typically specified as part of the system’s interface signature while
the modeling of protocols relies on some concurrent language and may be ad-
vertised by the system or be possibly learned. Last but not least, the semantics
of observable actions need to be rigorously defined in order to assign the same
meaning to actions in any environment, for which we exploit ontologies.

The following paragraphs further define the notions of capability, interface
signature, and ccapability protocol.

Capability. Using the terminology of the Semantic Web Services area9, a capa-
bility denotes a high-level functionality provided or required from the networked
environment. Concretely, a capability is specified as a tuple:

Capability =<Type, C, I, O >

where:

– Type stands for required (noted Req), provided (noted Prov) or required
and provided (noted Req Prov) capability. A provided capability denotes a
capability offered in the network while a required one is to be consumed. A
required and provided capability is then both consumed and offered by the
networked system, as common in peer-to-peer systems.

– C gives the semantics of the capability in terms of an ontology concept;
– I (resp. O) specifies the set of inputs (resp. outputs) of the capability, which

is defined as a tuple < i1, ..., in > (resp. < o1, ..., om >) with il=[1..n] (resp.
ol=[1..m]) being an ontology concept.

and where the ontology concepts are defined by a domain-specific ontology re-
ferred to in the networked system’s interface. As an illustration, the capability
of the photo sharing consumer application is defined as:

<Req, Photo-Sharing Consumer, Comment, Photo>

where the meaning of concepts is direct from the given names (see further Sec-
tion 4.2 for the definition of the ontology).

Interface Signature. The interface signature of a networked system specifies
the set of observable actions that the system executes to interact with other
systems. In particular, networked systems implement advertised capabilities as
protocols over observable actions that are defined in their interfaces. Usually,
the interface signature abstracts the specific middleware functions that the sys-
tem calls to carry out actions in the network. However, this is due to the fact
that existing interface definition languages are closely tight to a specific mid-
dleware solution, while we target pervasive networking environments hosting
heterogeneous middleware solutions. The specification of an action should then
9 http://www.ai.sri.com/daml/services/owl-s/

236 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

be enriched with the one of the middleware function that is specifically used to
carry out that action; indeed, an observable action in an open pervasive network
is the conjunction of an application-layer with a middleware-layer function. Mid-
dleware functions then need to be unambiguously characterized, which leads us
to introduce a middleware ontology that defines key concepts associated with
state-of-the-art middleware API, as presented in the next section.

Given the above, the interface of a networked system is defined as a set of
actions where each action is described as a tuple: < mf , a, I, O >, where: mf

denotes a middleware function; a denotes the application action; I (resp. O)
denotes the set of inputs (resp. outputs) of the action. Moreover, as detailed
in Section 4.2, the tuple elements are ontology concepts so that their semantics
may be reasoned upon.

As an illustration, Figure 1710 gives the interface signatures associated with
the infrastructure-based implementation of photo sharing. The interfaces refer
to ontology concepts from the middleware and application-specific domains of
the target scenario; however, this does not prevent general understanding of
the signatures given the self-explanatory naming of concepts. Three interface
signatures are introduced, which are respectively associated with the producer,
consumer and server networked systems. The definition of the systems’ actions
specify the associated SOAP functions, i.e., the client-side application actions are
invoked though SOAP middleware using the SOAP-RPCCall function followed
by the SOAP-RPCReceiveReply function, while they are processed on the server
side using the two functions SOAP-RPCReceiveCall and SOAP-RPCReply. The
specific applications actions are rather straightforward from the informal sketch
of the scenario introduced in Section 1. For instance, the producer invokes the
server operations Authenticate and UploadPhoto for authentication and photo
upload, respectively. The consumer may possibly search for, download or com-
ment photos, or download comments. Finally, the actions of the photo sharing
server are complementary to the client actions.

Unlike the infrastructure-based implementation, the peer-to-peer-based photo
sharing defines a single interface signature (see Figure 18), as all the peers feature
the same capability. The interface further illustrates the naming of actions after
domain data types of the application data instead of operations since the actions
are data-centric and are performed through functions of the Lime11 tuple-space
middleware.

Capability Protocol. Given the networked system’s interface signature, the
behavior of the system’s capabilities is specified as protocols over the system’s
actions defined in the interface signature. Such protocols need to be explicitly
defined using some concurrent language, as part of the networked system’s ad-
vertisements. Alternatively, the protocol specification may be learned in a sys-
tematic way based on the system’s interfaces as investigated in the companion
chapter on automata learning [18]. Different languages may be considered for
such a specification from formal modeling to programming languages.
10 As defined in the next section, photoFile and photoComment include photoID.
11 http://lime.sourceforge.net

Middleware-Layer Connector Synthesis 237

Interfacephoto sharing producer = {
< SOAP -RPCCall, Authenticate,< login >, ∅ >,
< SOAP -RPCReceiveReply,Authenticate, ∅, < authenticationToken >>,
< SOAP -RPCCall, UploadPhoto,< photo >, ∅ >
< SOAP -RPCReceiveReply,UploadPhoto, ∅, < acknowledgment >>

}
Interfacephoto sharing consumer = {

< SOAP -RPCCall, SearchPhotos,< photoMetadata >, ∅ >,
< SOAP -RPCReceiveReply,SearchPhotos, ∅, < photoMetadataList >>,
< SOAP -RPCCall, DownloadPhoto, < photoID >, ∅ >,
< SOAP -RPCReceiveReply,DownloadPhoto, ∅, < photoF ile >>,
< SOAP -RPCCall, DownloadComment, < photoID >, ∅ >,
< SOAP -RPCReceiveReply,DownloadComment, ∅, < photoComment >>,
< SOAP -RPCCall, CommentPhoto,< photoComment >, ∅ >
< SOAP -RPCReceiveReply,CommentPhoto, ∅, < acknowledgment >>

}
Interfacephoto sharing server = {

< SOAP -RPCReceiveCall,Authenticate,< login >, ∅ >,
< SOAP -RPCReply,Authenticate, ∅, < authenticationToken >>,
< SOAP -RPCReceiveCall, UploadPhoto, < photo >, ∅ >,
< SOAP -RPCReply,UploadPhoto, ∅, < acknowledgment >>,
< SOAP -RPCReceiveCall, SearchPhotos, < photoMetadata >, ∅ >,
< SOAP -RPCReply,SearchPhotos, ∅, < photoMetadataList >>,
< SOAP -RPCReceiveCall,DownloadPhoto, < photoID >, ∅ >,
< SOAP -RPCReply,DownloadPhoto, ∅, < photoF ile >>,
< SOAP -RPCReceiveCall,DownloadComment, < photoID >, ∅ >,
< SOAP -RPCReply,DownloadComment, ∅, < photoComment >>,
< SOAP -RPCReceiveCall,CommentPhoto,< photoComment >, ∅ >,
< SOAP -RPCReply,CommentPhoto, ∅, < acknowledgment >>

}

Fig. 17. Interface signature of infrastructure-based photo sharing

Interfacephoto sharing = {
< Out, PhotoMetadata,∅, < photoMetadata >>,
< Out, PhotoF ile, ∅, < photoF ile >>,
< Rdg,PhotoMetadata,< photoMetadata >, < photoMetadataList >>,
< Rd, PhotoF ile, < photoID >, < photoF ile >>,
< Rd, PhotoComment,< photoID >,< photoComment >>,
< Out, PhotoComment, ∅, < photoComment >>,
< In, PhotoComment, < photoID >, < photoComment >>,
< Rd, PhotoComment,< photoID >,< photoComment >>

}

Fig. 18. Interface signature of Peer-to-Peer-based photo sharing

Formal languages are a prerequisite for automated reasoning about matching
and mediator generation while well-established language from the Web service
domain, such as BPEL12, are easier for developer to deal with. Indeed, BPEL

12 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

238 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

offers many advantages for the definition of processes, among which: (i) the
specification of both data and control flows that allow identifying causally inde-
pendent actions; (ii) the formal specification of BPEL in terms of process algebra
that allows abstracting BPEL processes for automated reasoning about protocol
matching [20]; and (iii) the rich tool sets coming along with BPEL, which in par-
ticular ease process definition by developers. However, same as for the interface
signature definition, the language must be generalized to not be only specific
to the Web service technology. Precisely, BPEL needs to be enriched so as to
support interaction with networked systems using other interaction patterns and
protocols than those classically associated with Web services, which can be ad-
dressed in a systematic way using the BPEL extension mechanism. Therefore,
BPEL may be used by developers to specify the protocol implemented by the
networked systems and automatically translated into FSP process algebra.

For illustration, Figure 3 gives the FSP-based specification of the protocols
associated with a SOAP-based implementation of the infrastructure-based ver-
sion of photo sharing application, while Figure 19 introduces the specification of
a Lime-based implementation of the peer-to-peer version of the photo sharing
application. The protocol executed by a Lime-based networked system allows for
both production and consumption of photo files. On the other hand, there are
different protocols for the producer, consumer and server for the SOAP-based
implementation due to the distinctive roles imposed by the service implemented
by the photo sharing server. Still, emergent connectors shall enable seamless

1 //Peer-to-Peer-based application specification
2 set Lime PhotoSharing Actions = {photoMetadata, photoF ile, photoComment}
3 PhotoSharingPeer = (req.photoMetadata →Consumer |prov.photoMetadata → Producer),
4 Producer = (prov.photoF ile →PhotoSharingPeer),
5 Consumer = (req.photoF ile →Consumer |req.photoComment →Consumer
6 |prov.photoComment →Consumer |req.photoF ile →PhotoSharingPeer
7 |req.photoComment →PhotoSharingPeer
8 |prov.photoComment → PhotoSharingPeer |terminate →END).

9 //Lime middleware Specification
10 Lime Reader(X =′ tuple) = (req.[X] →P1),
11 P1 = (rd[X] →Lime Reader |rdp[X] →Lime Reader
12 | rdg[X] →Lime Reader |in[X] →Lime Reader
13 | inp[X] →Lime Reader |ing[X] →Lime Reader
14 | terminate → END).
15 Lime Writer(X =′ tuple) = (prov.[X] →P2),
16 P2 = (out[X] →Lime Writer |outp[X] →Lime Writer
17 | outg[X] →Lime Writer |terminate →END).
18 Lime glue(X =′ tuple) = (write[X] → P0 |outp[X] → P0 |outg[X] → P0
19 | terminate →END),
20 P0 = (rd[X] →P0 |rdp[X] →P0 |rdg[X] →P0
21 | in[X] →Lime glue |inp[X] →Lime glue |ing[X] →Lime glue).

22 const NumberOfPeers = 2
23 ‖Lime PhotoSharing = ([i : 1..NumberOfPeers]:PhotoSharingPeer
24 ‖(forall [tuple:Lime PhotoSharing Actions] Lime Writer(tuple))
25 ‖(forall [tuple:Lime PhotoSharing Actions] Lime Reader(tuple))
26 ‖(forall [tuple:Lime PhotoSharing Actions] Lime glue(tuple))).

Fig. 19. Peer-to-Peer-based photo sharing

Middleware-Layer Connector Synthesis 239

interaction of the Lime-based photo sharing implementation with systems im-
plementing capabilities of the infrastructure-based photo sharing.

4.2 Ontology for Mediation

Realizing emergent connectors primarily relies on reasoning about capability
matching together with identifying matching observable actions among the ac-
tions performed by networked systems. Ontologies play a key role in identifying
such matching and allow overcoming the inherent heterogeneity of pervasive net-
worked systems. Indeed, “an ontology is a formal, explicit specification of a shared
conceptualization” [49]. Such an ontology is then assumed to be shared widely. In
addition, work on ontology alignment enables dealing with possible usage of dis-
tinct ontologies in the modeling of the different networked systems [17].

Different relations may be defined between ontology concepts. The subsump-
tion relation (in general named is-a) is essential since it allows, besides equiva-
lence, to match between concepts based on inclusion. Precisely: a concept C is
subsumed by a concept D in a given ontology O, noted C � D, if in every model
of O the set denoted by C is a subset of the set denoted by D [2].

Towards enabling emergent connectors, we introduce a middleware ontology
that forms the basis of middleware protocol mediation. In addition, domain-
specific application ontologies characterizing application actions serve defining
both control- and data-centric concepts.

Middleware Ontology. As discussed in Section 2.1, state-of-the-art middle-
ware may be categorized according to four middleware types regarding provided
communication and coordination services [50]: remote procedure call, shared
memory, event-based and message-based. As depicted in Figure 20 and more
specifically with concepts defined in white boxes, the proposed middleware on-
tology is structured around these four categories, which serve as reference en-
abling to align functions of different middleware solutions. Indeed, the reference
middleware ontology can be refined into concepts associated with functions of a
specific middleware. This is illustrated in the figure by the grayed boxes that
define concepts of the Lime and SOAP-based middleware solutions that we
specifically consider in our photo sharing scenario. In addition to the is-a re-
lation that is denoted by a white arrow, the middleware ontology introduces a
number of customized relations between concepts: hasOutput (resp. hasInput)
to characterize output (resp. input) parameters. We also use relations from best
practices in ontology design13 as illustrated by the follows relation that serves
defining sequence patterns.

The ontology is given as a set of UML diagrams. In Figure 20.a), the ontology
concepts associated with RPC-based middleware include the Call function pa-
rameterized by the method name and arguments, which must must be followed
by the ReceiveReply function to receive the result of the call. On the server
side, the ReceiveCall function to catch an invocation is followed by the execu-
tion of the Reply function to return the result. The ontologies of functions for
13 http://ontologydesignpatterns.org

240 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

<<owlClass>>
RemoteProcedureCallAPI

<<owlClass>>
ReceiveReply

<<owlClass>>
ReceiveCall

<<owlClass>>
Reply

<<owlClass>>
MethodName

<<owlClass>>
Arguments

<<owlClass>>
ReturnValue

0..1 + follows {some}

+hasInput {some}

+hasOutput {some}

+hasOutput {some}

<<owlClass>>
SharedMemoryAPI

<<owlClass>>
Read

<<owlClass>>
Write

<<owlClass>>
DataChannel

<<owlClass>>
Data

+hasIntput {some}
+hasOutput {some}

+hasInput {some} +hasOutput {some}

<<owlClass>>
EventAPI

<<owlClass>>
Subscribe

<<owlClass>>
GetEvent

<<owlClass>>
Publish

<<owlClass>>
EventType

<<owlClass>>
Event

0..1 + follows {some}

+hasOutput {some}

+hasIntput {some} +hasOutput {some}+hasOutput {some}

+hasOutput {some}

<<owlClass>>
MessageAPI

<<owlClass>>
SendMessage

<<owlClass>>
ReceiveMessage

<<owlClass>>
MessageChannel

<<owlClass>>
Message

+hasOutput {some}

+hasOutput {some} +hasOutput {some}

+hasOutput {some}

+hasInput {some}

+IsAssociatedWith {some}

(d) Message-based middleware

a) Remote procedure call middleware (b) Shared memory middleware

(c) Event-based middleware

+hasInput {some}

+hasOutput {some}

<<owlClass>>
SOAP-RPCReply

<<owlClass>>
SOAP-

RPCReceiveReply

<<owlClass>>
SOAP-

RPCReceiveCall

<<owlClass>>
SOAPRequest

<<owlClass>>
SOAPResponse

<<owlClass>>
In

<<owlClass>>
Inp

<<owlClass>>
Ing

<<owlClass>>
Rd

<<owlClass>>
Rdp

<<owlClass>>
Rdg

<<owlClass>>
Out

<<owlClass>>
Outg

<<owlClass>>
TupleTemplate

<<owlClass>>
Tuple

<<owlClass>>
SOAP-RPCCall

<<owlClass>>
Call

0..1 + follows {some}

+hasInput {some}

Fig. 20. Middleware ontology

shared memory and message-based middleware are rather straightforward. In
the former, the shared memory is accessed through Read/Write functions pa-
rameterized by the associated data and corresponding channel (see Figure 20.b).
In the latter, messages are exchanged using the SendMessage and ReceiveMes-
sage functions parameterized by the actual message and related channel (see
Figure 20.d). Regarding event-based middleware, events are published using the
Publish function parameterized by the specific event; while they are consumed
through the GetEvent function after registering for the specific event type using
the Subscribe function (see Figure 20.c).

The proposed ontology serves aligning the functions of middleware of the
same type through mapping onto the reference functions, which is illustrated
for the specific cases of SOAP-based and Lime middleware. Heterogeneity in the
underlying implementation may then be overcome using transparent middleware
interoperability solutions (see Section 3.3).

A further challenge for emergent connectors in pervasive networking environ-
ments is to enable mediation among different middleware types. To enable such
mediation, we introduce a further abstraction allowing cross-type alignment of
middleware functions. More specifically, according to their semantics, middle-
ware functions may be aligned based on whether they produce or consume an
action in the network. We hence define the mapping of middleware functions
onto abstract input and output (denoted by an overbar) actions, which are pa-
rameterized by the application action a and associated input I and output O.

Middleware-Layer Connector Synthesis 241

The alignment of (possibly sequence of) middleware functions as abstract in-
put and output actions is summarized in Figure 21. The alignment defined for
shared memory and message-based middleware functions is rather direct: the
Write and SendMessage functions are mapped onto an output action; while
the Read and ReceiveMessage translate into an input action. Note that Read
is possibly parameterized with I if the value to be read shall match some con-
straints, as, e.g., enabled by tuple space middleware. The alignment for the
event-based middleware functions is straightforward for Publish: publication of
an event maps onto an output action. The dual input action is performed by the
GetEvent function, which is preceded by at least one invocation of Subscribe on
the given event14. The semantics of RPC functions follows from the fact that
it is the server that produces an application action, although this production is
called upon by the client. Then, the output action is defined by the execution
of ReceiveCall followed by Reply, while the dual input action is defined by the
Invoke function.

<ReceiveCall, a, I, >

<Reply, a, , O>

Middleware
Agnostic LTS

<a, I, O>

RPC Server LTS

RPC Client LTS Event Subscriber LTS

Event Publisher LTS

Memory Reader LTS

Memory Writer LTS Message Sender LTS

Message Receiver LTS

<a, I, O>

<Write, a, , O>

<Read, a, I, O>

<Publish, a, , O>

<Subscribe, a, , >

<GetEvent, a, , O> (*)

<SendMessage, a, , O>

<ReceiveMessage, a, , O>

= MethodName
= Arguments
= ReturnValue

= DataChannel
= Data
= Data

= EventType
= Event

= MessageChannel
= Message

a
I
O

a
I
O

a
O

a
O

(*) Considers transient subscription only

Output action

Input action

<ReceiveReply, a, , O>

<Call, a, I, >

Fig. 21. Middleware alignment

The given alignments abstract protocols associated with the realization of
capabilities as middleware-agnostic processes. As a result, protocols may be
matched based purely on their application-specific features. In more detail,
middleware-specific functions are abstracted as middleware functions from the
reference ontology, which are then translated into input and output actions
through the defined alignment. This is illustrated in Figure 22, which gives the
FSP-based protocol associated with the peer-to-peer photo sharing implemen-
tation, after abstracting middleware-specific functions into reference functions
(see Figure 23) and further aligning onto middleware-agnostic input and output
actions. Thanks to the alignment of middleware functions, processes may be

14 Note that for the sake of conciseness, the figure depicts only the case where a Sub-
scribe is followed by a single GetEvent.

242 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

1 Reader(X =′ data) = (req.[X] →P1),
2 P1 = (read[X] →Reader |terminate → END).
3 Writer(X =′ data) = (prov.[X] →P2),
4 P2 = (write[X] →Writer |terminate →END).
5 SM glue(X =′ data) = (write[X] → P3 |terminate →END),
6 P3 = (read[X] →SM glue).

Fig. 22. Shared-memory middleware type specification

1 Reader(X =′ data) = (input[X] →Reader|terminate → END).
2 Writer(X =′ data) = (output[X] →Writer|terminate → END).
3 SM glue(X =′ data) = (output[X] → P |terminate →END),
4 P = (input[X] →SM glue).

Fig. 23. Middleware-agnostic peer-to-peer photo sharing

matched against the realization of matching application-specific actions whose
semantics is given by the associated ontology.

Application-Specific Ontology. The subsumption relation of ontologies serves
matching application-specific capabilities and actions against each other. Basi-
cally, and as detailed in the next section, a required capability/action matches
a provided one if the former is subsumed by the latter.

For illustration, Figure 24 gives an excerpt of the domain-specific ontology
associated with our photo sharing scenario, which shows the subsumptions hold-
ing among the various concepts defining the interfaces of the networked systems
implementing the scenario.

<<owlClass>>
Photo

<<owlClass>>
PhotoMetadataList

<<owlClass>>
PhotoFile

hasPhotoID: string
hasContent: hexBinary

<<owlClass>>
PhotoMetadata

hasPhotoID: string
hasLongitude: double
hasLatitude: double
hasDetails: string

<<owlClass>>
DownloadPhoto

<<owlClass>>
UploadPhoto

<<owlClass>>
SearchPhoto

<<owlClass>>
PhotoComment

hasPhotoID: string
hasComment: string

<<owlClass>>
CommentPhoto

<<owlClass>>
Photo-Sharing

<<owlClass>>
Photo-Sharing_Producer

<<owlClass>>
Photo-Sharing_Consumer

<<owlClass>>
Photo-Sharing_Server

<<owlClass>>
DownloadComment

Fig. 24. Photo sharing ontology

Middleware-Layer Connector Synthesis 243

Note that the application-specific ontology not only describes the semantics
and relationships related to data but also to the functionalities and roles of the
networked systems, such as Photo-Sharing Producer, Photo-Sharing Consumer,
and Photo-Sharing Server. It also defines the semantics of the operations per-
formed on data, such as UploadPhoto, DownloadPhoto, and SearchPhoto. Fur-
thermore, it relates data to operations: data subsumes the operations performed
on them. The rationale behind this statement is that by having access to data,
any operation could be performed on it. For example PhotoFile subsumes Down-
loadPhoto since by providing access to a photo file, one can download it.

Finally, subsumption is not the panacea to reason about semantic relation-
ships between concepts and many other relations such as sequence [16] or part-
whole15 should be specified. We believe that best practices of ontology design
and ontology engineering16 and the use of ontology design patterns17 may prove
very beneficial to automatically discover and reuse semantic relations between
concepts.

4.3 Emergent Connectors

Given the models characterizing networked systems that are introduced in Sec-
tion 4.1 and related ontology definition, emergent connectors are enabled through
matching and mapping functions defined over the actions of networked systems.
Precisely, if two networked systems implement matching capabilities, then they
may possibly coordinate towards the realization of the capability. This is achieved
by mapping the respective actions of the systems according to their ontology-
based semantics, and then synthesizing the mediator that adapts accordingly
the interaction protocols executed by the networked systems.

Capability Matching. The first step in identifying the possible matching of
two networked systems is to assess whether they respectively provide and require
a matching capability. Precisely, and following the definition of semantic match-
ing of capabilities [41], we say that capability CR =< Req, CR, IR, OR > seman-
tically matches with capability CP =< Prov, CP , IP , OP >, noted CR ↪→ CP , iff
in the given ontology:

– CR � CP ,
– IP � IR (which is a shorthand notation for subsumption between sets of

ontology concepts), and
– OR � OP .

Note that a capability CR of type Req produces the inputs IR and consumes
the corresponding outputs OR. In a dual manner, a capability CP of type Prov
consumes the inputs IP and produces the corresponding outputs OP .

In addition, since the capability is related to semantic concepts, we make a
similar assumption to that made in the Semantic Web [41], i.e., by specifying CP

15 http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/index.html
16 http://www.w3.org/2001/sw/BestPractices/OEP/
17 http://ontologydesignpatterns.org

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/index.html
http://www.w3.org/2001/sw/BestPractices/OEP/
http://ontologydesignpatterns.org

244 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

as the functional concept, the provider commits to offering all the functionalities
subsumed by CP and output consistent with every concept subsumed by OP . If
this is not the case, then the functionality/output should be restricted to those
verifying the above assumption. Similarly, the requester commits to provide any
input consistent with the classes that IR subsumes. However, if the input/output
are related to syntactic (XML-based) types and not to semantic concepts, it
becomes important to verify the Liskov Substitution Principle (LSP) [32] in the
following way:

– CP subtypeOf CR, which corresponds to the LSP co-variance rule;
– IR subtypeOf IP , which corresponds to the LSP contra-variance rule for the

outputs; and
– OP subtypeOf OR, which corresponds to the LSP co-variance rule.

That being the case, if the semantic concept is automatically extracted or learned
from the syntactic description, then it should be restricted to the most specific
concept. Moreover, since there is a close relation between the semantic concepts
and the related syntactic objects, it is required to have specifications or methods
enabling transformations between the different concepts and types.

In the case where one capability is required and provided (i.e., of type Req Prov)
by a networked system and the other capability is required (resp. provided) by
the other networked system, the same condition as above applies considering
that the Req Prov capability is considered as being provided and required. For
instance, given (1) and (2) below, we have (3):

PhotoSharingConsumer = < Req, Photo− Sharing Consumer, < PhotoComment >, < Photo >> (1)
PhotoSharing = < Req Prov, Photo− Sharing, < Photo > ∨ < PhotoComment >,

< Photo, PhotoComment >> (2)
PhotoSharingConsumer ↪→ PhotoSharing (3)

Given capability matching, the emergent connector between the matching net-
worked systems should mediate possible behavioral mismatches in their respec-
tive middleware-agnostic interaction protocols. Towards that goal, we build on
basic mediation patterns.

Mediation Patterns. Possible behavioral mismatches for input actions need
to be solved so as to ensure that any input action is synchronized with an output
action of the matching networked system with respect to the realization of the
capability of interest. On the other hand, the absence of consumption of an
output action does not affect the behavior of the networked system as long as
deadlock is prevented by the emergent connector at runtime. Still, synthesis
of a protocol mediator is known as a computationally hard problem for finite
state systems in general [11] and thus requires heuristics to make the problem
tractable. Towards that goal, we focus on enabling basic mediation patterns [45]
as introduced in the literature for, e.g., Semantic Web Services [48]. We then
account for basic mediation patterns as follows:

Middleware-Layer Connector Synthesis 245

– Ordering mismatch: This concerns the re-ordering of actions so that net-
worked systems may indeed coordinate. In the case of BPEL specification,
causally independent actions may be identified through data-flow analysis,
hence enabling to introduce concurrency among actions and thus supporting
acceptable re-ordering.

– Extra output action (or missing input action): As discussed above,
extra output actions are simply discarded from the standpoint of behavioral
matching. Obviously, the associated concrete mediator should handle any
extra synchronous output action to avoid deadlock.

– Extra input action (or missing output action): Any input action needs
to be mapped to an output action of the matching networked system. How-
ever, in this case, there is no such output action that directly maps to the
input action. In a first step, we do not handle these mismatches as they
would significantly increase the complexity of protocol adaptation.

– Splitting of actions: Splitting actions relate to having an action of one
system realized by a number of actions of the other. Then, an input action
may be split into a number of output actions of the matching networked
system if such a relation holds from the domain-specific ontology giving the
semantics of actions. On the other hand, we do not deal with the splitting
of output actions, which is an area for future work given the complexity it
introduces.

– Merging of actions: The merging of actions is the dual of splitting from
the standpoint of the matching networked system. Then, we only handle the
merging of output actions.

Interface Mapping. Following the above, interface mapping serves identifying
mapping among the actions of the interaction protocols run by the networked
systems that should coordinate towards the realization of a given capability.

Let two networked systems that respectively implement the matching capa-
bilities C1 and C2. Let further IC1 (resp. IC2) be the set of middleware-agnostic
actions executed by the protocol realizing C1 (resp. C2); IC1 and IC2 are then
subsets of the actions defined in the networked systems’ interfaces, which are
further made middleware-agnostic according to the alignment defined in Sec-
tion 4.2. We introduce the function MapI(IC1 , IC2) which identifies the set of all
possible mappings of all the input actions of IC1 (resp. IC2) with actions of IC2

(resp. IC1), according to the semantics of actions. Formally:

MapI(IC1 , IC2) =
⋃

<a,I,O>∈IC1
{< a, I, O > �→ map(< a, I, O >, IC2)}

⋃⋃
<a′,I′,O′>∈IC2

{< a′, I ′, O′ > �→ map(< a′, I ′, O′ >, IC1)}
where:
map(< a, Ia, Oa >, I) = {<< bi, Ii, Oi >∈ I >i=1..n |

a � ∪i{bi}
∧ Ii≤n � (∪j<i{Oj}) ∪ {Ia}
∧ Oa � (∪j<i{Oj}) ∪ {Ia}
}

and
∀seq1 ∈ map(< a, Ia, Oa >, I),
 ∃seq2 ∈ map(< a, Ia, Oa >, I)|seq2 ≺ seq1

246 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

where ≺ denotes the inclusion of sequences. In the above definition, the order-
ing of actions given by the sequence follows from the sequencing of actions in
the protocol realizing the capability. The definition is further given in the ab-
sence of concurrent actions to simplify the notations, while the generalization to
concurrent actions is rather direct.

As an illustration, we give below the interface mapping between the Photo-
SharingConsumer and PhotoSharing capabilities. All the input actions of Photo-
SharingConsumer have a corresponding output action in PhotoSharing. On the
other hand, the input actions of PhotoSharing associated with the production
of photos do not have matching output actions in PhotoSharingConsumer. As
a result, we support the adaptation of protocols for interaction between Pho-
toSharingConsumer and PhotoSharing regarding the consumption of photos by
the former only, as further discussed in the next section.

Map(Interface’photo sharing consumer,Interface′photo sharing)= {
< SearchPhotos, photoMetadata, photoMetadataList >

�→ {<< PhotoMetadata, ∅, photoMetadata >>},
< DownloadPhoto, photoID, photoF ile >

�→ {<< PhotoF ile, ∅, photoF ile >>},
< CommentPhoto, photoComment, acknowledgment >

�→ {<< PhotoComment, ∅, photoComment >>},
< DownloadComment, photoID, photoComment >

�→ {<< PhotoComment, ∅, photoComment >>},
< PhotoComment, photoID, photoComment > �→ ∅,
< PhotoMetadata, photoMetadata, photoMetadataList > �→ ∅,
< PhotoF ile, photoID, photoF ile > �→ ∅

}

Mediator Synthesis. Given interface mappings returned by MapI , we need
to identify whether the protocols associated with the matching capabilities may
indeed coordinate, i.e., the concurrent execution of the two protocols successfully
terminates. However, in a first step , we assume that it exists a single mapping
for each input action. Formally, let:

I ′1 = {αi = 〈ai, Iai , Oai〉}i=1..n ∪
{
βj =

〈
bj , Ibj , Obj

〉}
j=1..m

be the abstract interface associated with required capability C1, and:

I ′2 =
{
α′

i′ =
〈
a′

i′ , Iai′ , Oai′
〉}

i′=1..n′ ∪
{
β′

j′ =
〈
b′j′, Ib′j′ , Ob′j′

〉}
j′=1..m′

be the abstract interface associated with provided capability C2.
From MapI(I ′1, I ′2), we have:

∀αi=1..n ∈ I′1 : αi �→
〈
β′

1, ..., β
′
n

〉
| β′

j ∈ I′2
We then define the processes Mαi=1..n that deal with the splitting/merging of
C1 actions by allowing the synchronization of each input action αi=1..n with its
corresponding output actions:

Middleware-Layer Connector Synthesis 247

Mαi=1..n = β′
1 → ...→ β′

n → αi → Mαi=1..n

We further define the processes Mβ′
j′=1..k′ for any extra output action β′

j′ ∈ I′2
that is not required by any input action αi=1..n ∈ I′1, as follows:

Mβ′
j′=1..k′ = β′

j′=1..k′ → Mβ′
j′=1..k′

We define similarly Mα′
i′=1..n′ and Mβj=1..k

for C2.
A process P1 associated with capability C1 behaviorally matches a process P2

associated with capability C2 under Map(I ′1, I ′2), noted P1↪→P P2, iff

P1 ||
i=1..n

Mαi=1..n ||
j′=1..k′

Mβ′
j′=1..k′ ≤ P2 ||

i′=1..n′
Mα′

i′=1..n′ ||
j=1..k

Mβj=1..k

where≤ refers to trace refinement as defined in [24] and guarantees that mediated
P1 can safely communicate with mediated P2.

Applying the above definition, we can check that:

Pphoto sharing consumer↪→PPphoto sharing

Consequently, the emergent connector mediator is defined as follows:

‖Emergent Connector Mediator=(
||

i=1..n

Mαi=1..n

)
||
(

||
j′=1..k′

Mβ′
j′=1..k′

)
||
(

||
i′=1..n′

Mα′
i′=1..n′

)
||
(

||
j=1..k

Mβj=1..k

)

4.4 From Abstract to Concrete Emergent Connectors

Once the model of the emergent connector has been synthesized, it needs to be
transformed into a concrete software artifact. The concretization is threefold:

1. Parsing the network messages in order to generate the corresponding ac-
tions; this parsing is performed by a Listener specific to each middleware
implementation (see Figure 25A).

2. Generating the code corresponding to the mediator (see Figure 25B).
3. Composing the abstract actions in order to generate the corresponding net-

work message; this is the role of an Actuator specific to each middleware
implementation (see Figure 25C).

Networked System 1Networked System 1

Application 1Application 1

Middleware 1Middleware 1

Networked System 2Networked System 2

Application 2Application 2

Middleware 2Middleware 2
Listener 2

Actuator 2

Listener 1

Actuator 1

Emergent ConnectorEmergent Connector

Mediator
A A

B

C C

Fig. 25. Concretizing the mediator

248 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

Towards the above, we adopt results in the area of synthesis of concrete mid-
dleware protocols. Indeed, these last years two main approaches, z2z [10] and
Starlink [8], have emerged to synthesize middleware, which acts as gateways to
translate one protocol to another. More precisely, these approaches have instan-
tiated the direct bridge concepts, as it provides a high degree of expressiveness
and does not require modifications to existing applications. Both z2z and Star-
link are based on similar concepts (see Figure 26a,b): they provide an optimized
run-time system, and facilities for describing network protocol behaviors, mes-
sage structures, and translation logics. Such facilities come from the fact that
they rely on a high-level definition language that hides low level network details
and highlights only key properties of protocols. Hence, to get a generated gate-
way between two heterogeneous protocols, developers must write specifications
consisting of: (i) a protocol specification, describing how the protocols interact
with the network, (ii) a message specification, describing the structure of mes-
sage requests and responses, and (iii) a translation specification, describing how
to translate messages among protocols (See Figure 26, ❶,❷). These specifica-
tions enable to generate software components such as listeners, actuators and
mediators that are plugged into a runtime system to form, from a formal point
of view, a direct bridging connector (as introduced in Section 3.1). Listeners,
and actuators enable respectively to extract required informations relevant to
the interacting parties, and to generate extracted informations in an adequate
format according to protocols being used. The mediator applies the required
translation logic to resolve mismatches between protocols.

Developer

spec

Protocol, message
and translation
specification

compiler

Actuator
Mediator

Listener
App1

Middleware
A

Runtime System

App2

Middleware
B

cation

Generation

z2z approach

spec
Protocol, message

and translation
specification

Generated
code

c to
Starlink

y interpretor

c to
z2z

Developer

a

b

1

2

Starlink approach

Listener

Actuator

Fig. 26. z2z and Starlink approaches to synthesize middleware

Middleware-Layer Connector Synthesis 249

Although z2z and Starlink are closed together in their design, they differ
strongly in the way code plugged into the runtime is generated. With z2z, gen-
erated gateways are statically built. Hence, once such gateways are deployed in
one environment, it is not anymore possible to alter afterwards the translation
being processed. Consequently, in environments where systems are composed
dynamically, interoperability can not be guaranteed. In general, z2z targets en-
vironments where gateways need to be embedded in resource constraint devices
with performances in mind. Specifications in z2z are expressed in a C-like lan-
guage and are compiled at design time. The z2z compiler relies on advanced
compilation strategies to perform static verifications at the specification level
and to produce highly optimized native code dedicated to the translation be-
tween two specific protocols. On the contrary, Starlink is designed with both
dynamicity and genericity in mind. Specifications in Starlink are processed dy-
namically at runtime, and the code plugged into the runtime is done on the fly
according to protocols currently used in the environment (See Figure 26b). To
this end, compared to z2z, the Starlink runtime embeds both generic parsers
and composers that are customized dynamically according to the specifications
being used. It is important to note that in Starlink, specifications are interpreted
and not compiled as in z2z. Hence, it has a potential impact on performance.

4.5 Related Work

Protocol interoperability has been the focus of significant research since the early
days of networking. This has initially led to the study of systematic approaches
to protocol conversion (i.e., synthesizing a mediator that adapts the two inter-
acting protocols that need to interoperate) based on formal methods as surveyed
in [11]. Existing approaches may in particular be classified into two categories
depending on whether: (i) they are bottom-up, heuristic-based, or (ii) top-down,
algorithmic-based. In the former case, the conversion system derives from some
given protocol, which may either be inferred from the semantic correspondence
between the messages of the interacting protocols [30] or correspond to the ref-
erence protocol associated with the service to be realized through protocol in-
teraction [39]. In the latter case, protocol conversion is considered as finding the
quotient between the two interacting protocols. Then, if protocols are specified
as finite-state systems, an algorithm computing the quotient is possible but the
problem is computationally hard since it requires an exhaustive search of pos-
sibilities [11]. Then, the advantage of the bottom-up approach is its efficiency
but at the expense of: (i) requiring the message mapping or reference protocol
to be given and further (ii) not identifying a converter in all cases. On the other
hand, the bottom-up approach will always compute a converter if it exists given
the knowledge about the semantics of messages, but at the expense of significant
complexity. This has led to the further development of formal approaches to pro-
tocol conversion so as to improve the performance of proposed algorithms [29].
Our work extensively builds on these formal foundations, adopting a bottom-up
approach in the form of interface mapping. However, unlike the work of [30],
our interface mapping is systematically inferred, thanks to the use of ontologies.

250 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

In addition, while the proposed formal approaches pave the way for rigorous rea-
soning about protocol compatibility and conversion, they are mostly theoretical,
dealing with simple messages (e.g., absence of parameters).

More practical treatment of protocol conversion is addressed in [52], which fo-
cuses on the adaptation of component protocols for object-oriented systems. The
solution is top-down in that the synthesis of the mediator requires the mapping
of messages to be given. By further concentrating on practical application, the
authors have primarily targeted an efficient algorithm for protocol conversion,
leading to a number of constraining assumptions such as synchronous commu-
nication. In general, the approach is quite restrictive in the mediation patterns
that it supports by not buffering messages and thus preventing the handling
of the merging/splitting or re-ordering of messages in general. Then, while our
solution relates to this specific proposal, it is more general by dealing with more
complex mediation patterns and further inferring message mapping from the
ontology-based specification of interfaces. Our solution further defines protocol
compatibility by in particular requiring that any input action (message recep-
tion) has a corresponding (set of) output action(s), while the definition of [52]
requires the reverse. Our approach then enforces networked systems to coordi-
nate so as to update their states as needed, based on input from the environment.

More recently, with the emergence of Web services and advocated universal
interoperability, the research community has been investigating how to actu-
ally support service substitution so as to enable interoperability with different
implementations (e.g., due to evolution or provision by different vendors) of a ser-
vice. While early work has focused on semi-automated, design-time approaches
[37,42], latest work concentrates on automated, run-time solutions [12]. Our work
closely relates to the latest effort, sharing the exploitation of ontology to reason
about interface mapping and the further synthesis of protocol converter behav-
iors according to such mapping, using model checking [12]. However, our work
goes one step further by not being tight to the specific Web service domain but in-
stead considering highly heterogeneous pervasive environments where networked
systems may build upon diverse middleware technologies and hence protocols.

Our work also closely relates to significant effort from the semantic Web ser-
vice domain and in particular the WSMO (Web Service Modeling Ontology)
initiative that defines mediation as a first class entity for Web service modeling
towards supporting service composition. The resulting Web service mediation
architecture highlights the various mediations levels that are required for sys-
tems to interoperate in a highly open network [48]: data level, functional level,
and process level. This has in particular led to elicit base patterns for pro-
cess mediation together with supporting algorithms [14,51]. However, as for the
above-mentioned work on Web service adaptation, mediation is focused on the
upper application layer, ignoring possible mismatches in the lower protocol lay-
ers. In other words, work from the Web service arena so far concentrates on
interoperability among networked systems from the same technology domain.
However, pervasive networks will increasingly be populated by highly heteroge-
neous systems, spanning, e.g., from systems for sensing/actuating to enterprise

Middleware-Layer Connector Synthesis 251

information systems. As a result, systems run disparate middleware protocols
that need to be reconciled on the fly.

The issue of middleware interoperability has deserved a great deal of attention
since the emergence of middleware. Solutions were initially dealing with diverging
implementations of the same middleware specification and then evolved to address
interoperabilityamongdifferentmiddleware solutions, acknowledging thediversity
of systems populating the increasingly complex distributed systems of systems. As
already discussed, one-to-one bridging was among the early approaches [40] and
then evolved into more generic solutions such as Enterprise Service Bus [13], in-
teroperability platforms [21] and transparent interoperability approaches [9,36].
Our work takes inspiration from the latest transparent interoperability approach,
which is itself based on early protocol conversion approaches. Indeed, protocol con-
version appears the most flexible approach as it does not constrain the behavior
of networked systems. Then, our overall contribution comes from the comprehen-
sive handling of protocol conversion, from the application down to the middleware
layers, which have so far been tackled in isolation. In addition, existing work on
middleware-layer protocol conversion focuses on interoperability between middle-
waresolutions implementingthesameinteractionparadigm.Ontheotherhand,our
approach allows for interoperability among networked systems based upon hetero-
geneous middleware paradigms, which is crucial for the increasingly heterogeneous
pervasive networking environment.

5 Conclusion

The need to deal with the existence of different protocols that perform the same
function is not new and has been the focus of tremendous work since the 80s,
leading to the study of protocol mediation from both theoretical and practical
perspectives. However, while this could be initially considered as a transitory
state of affairs, the increasing pervasiveness of networking technologies together
with the continuous evolution of information and communication technologies
make protocol interoperability a continuous research challenge. As a matter of
fact, networked systems now need to compose on the fly while overcoming pro-
tocol mismatches from the application down to the middleware layer. Towards
that goal, this paper has discussed the foundations of emergent connectors, which
adapt the protocols run by networked systems that implement a matching func-
tionality but possibly mismatch from the standpoint of associated application
protocol and even middleware technology used for interactions. Enabling emer-
gent connectors specifically lies in the appropriate modeling of the networked
systems’ high-level functionalities and related protocols, for which we exploit
ontologies so as to enable unambiguous specification. Compared to related work
that deals with either automated protocol conversion/mediation or middleware
interoperability, our contribution lies in comprehensively dealing with both the
application and middleware layers. In addition, through the alignment of mid-
dleware concepts, we are able to deal with interoperability between networked
systems relying on heterogeneous middleware paradigms.

252 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

While this paper has surveyed the overall model-based approach enabling
emergent connectors, it comes along with concrete enablers to be deployed in
the network for actual enactment of the connectors [4], as studied in companion
chapter on the Connect architecture [22]. Enablers include universal discovery,
which in particular implements the matching and mapping relations discussed
in this paper, so as to enable networked systems to meet and compose on the
fly. However, it should be acknowledged that most legacy systems do not adver-
tise interfaces like the ones needed by emergent connectors but instead advertise
simple interface signatures, as common with today’s middleware. This leads the
Connect project to investigate learning enablers so as to enable automated
learning of interaction protocols [5,25] as well as inference of capabilities from
interface signatures. Furthermore, while universal discovery enables networked
systems to compose abstractly through the proposed model-based approach to
emergent connection, concrete connectors need to be instantiated, which con-
cretize the proposed model-based protocol conversion according to actual middle-
ware protocols and application actions. Concretization of mediation processes is
in particular investigated based on the exploitation of domain-specific languages
as defined in Section 4.4. Preliminary prototypes of the Connect enablers are
being implemented and will be shortly released on the Connect Web site [28].

Acknoledgment. This work is partially supported by the FP7 ICT FET IP
Project CONNECT. The authors would also like to thank their colleagues Niko-
laos Georgantas, Rachid Saadi, Romina Spalazzese and Paola Inverardi for useful
discussion about this work.

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.
Softw. Eng. Methodol. 6(3) (1997)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook. Cambridge University Press, Cambridge (2003)

3. Ben Mokhtar, S., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: EASY:
Efficient semantic service discovery in pervasive computing environments with QoS
and context support. Journal of Systems and Software 81(5) (2008)

4. Bennaceur, A., Blair, G.S., Chauvel, F., Huang, G., Georgantas, N., Grace, P.,
Howar, F., Inverardi, P., Issarny, V., Paolucci, M., Pathak, A., Spalazzese, R., Stef-
fen, B., Souville, B.: Towards an architecture for runtime interoperability. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 206–220. Springer,
Heidelberg (2010)

5. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of be-
havior protocols for composable web-services. In: Proceedings of ESEC/SIGSOFT
FSE (2009)

6. Blair, G., Paolucci, M., Grace, P., Georgantas, N.: Interoperability in complex dis-
tributed systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659,
pp. 350–392. Springer, Heidelberg (2011)

7. Bromberg, Y.D.: Solutions to middleware heterogeneity in open networked envi-
ronment. Ph.D. thesis, Université de Versailles Saint-Quentin-en-Yvelynes (2006)

Middleware-Layer Connector Synthesis 253

8. Bromberg, Y.D., Grace, P., Réveillère, L.: Starlink: runtime interoperability be-
tween heterogeneous middleware protocols. In: Proceedings of ICDCS 2011. IEEE
Computer Society, Los Alamitos (2011)

9. Bromberg, Y.D., Issarny, V.: INDISS: Interoperable discovery system for networked
services. In: Alonso, G. (ed.) Middleware 2005. LNCS, vol. 3790, pp. 164–183.
Springer, Heidelberg (2005)

10. Bromberg, Y.D., Réveillère, L., Lawall, J.L., Muller, G.: Automatic generation of
network protocol gateways. In: Bacon, J.M., Cooper, B.F. (eds.) Middleware 2009.
LNCS, vol. 5896, pp. 21–41. Springer, Heidelberg (2009)

11. Calvert, K.L., Lam, S.S.: Formal methods for protocol conversion. IEEE Journal
on Selected Areas in Communications 8(1) (1990)

12. Cavallaro, L., Nitto, E.D., Pradella, M.: An automatic approach to enable replace-
ment of conversational services. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-
ServiceWave 2009. LNCS, vol. 5900, pp. 159–174. Springer, Heidelberg (2009)

13. Chappell, D.A.: Enterprise Service Bus. O’Reilly, Sebastopol (2004)

14. Cimpian, E., Mocan, A.: WSMX process mediation based on choreographies. In:
Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 130–143. Springer,
Heidelberg (2006)

15. Denaro, G., Pezzè, M., Tosi, D.: Ensuring interoperable service-oriented systems
through engineered self-healing. In: Proceedings of ESEC/SIGSOFT FSE (2009)

16. Drummond, N., Rector, A.L., Stevens, R., Moulton, G., Horridge, M., Wang, H.,
Seidenberg, J.: Putting OWL in order: Patterns for sequences in OWL. In: Pro-
ceedings of OWLED (2006)

17. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)

18. Howar, F., Merten, M., Neubauer, J., Steffen, B.: Introduction to automata learn-
ing. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 350–392.
Springer, Heidelberg (2011)

19. Flores-Cortés, C.A., Blair, G.S., Grace, P.: An adaptive middleware to overcome
service discovery heterogeneity in mobile ad hoc environments. IEEE Distributed
Systems Online 8(7) (2007)

20. Foster, H., Uchitel, S., Magee, J., Kramer, J.: LTSA-WS: a tool for model-based
verification of web service compositions and choreography. In: Proceedings of ICSE
(2006)

21. Grace, P., Blair, G.S., Samuel, S.: ReMMoC: A reflective middleware to support
mobile client interoperability. In: Chung, S., Schmidt, D.C. (eds.) CoopIS 2003,
DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 1170–1187. Springer, Hei-
delberg (2003)

22. Grace, P., Georgantas, N., Bennaceur, A., Blair, G., Chauvel, F., Issarny, V.,
Paolucci, M., Saadi, R., Souville, B., Sykes, D.: The connect architecture. In:
Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 350–392. Springer,
Heidelberg (2011)

23. Green Jr., P.: Protocol conversion. IEEE Transactions on Communications 34(3)
(March 1986)

24. Hoare, C.A.R.: Communicating sequential processes. Communications of the ACM
(CACM) 21(8) (1978)

25. Howar, F., Jonsson, B., Merten, M., Steffen, B., Cassel, S.: On handling data in
automata learning - considerations from the connect perspective. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 221–235. Springer, Heidelberg
(2010)

254 V. Issarny, A. Bennaceur, and Y.-D. Bromberg

26. Inverardi, P., Spalazzese, R., Tivoli, M.: Application-layer connector synthesis. In:
Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 350–392. Springer,
Heidelberg (2011)

27. Issarny, V., Caporuscio, M., Georgantas, N.: A Perspective on the Future of
Middleware-based Software Engineering. In: Proceedings of FOSE 2007 (2007)

28. Issarny, V., Steffen, B., Jonsson, B., Blair, G., Grace, P., Kwiatkowska, M., Cali-
nescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: CONNECT Chal-
lenges: Towards Emergent Connectors for Eternal Networked Systems. In: Pro-
ceedings of the 14th ICECCS (2009)

29. Kumar, R., Nelvagal, S., Marcus, S.I.: A discrete event systems approach for pro-
tocol conversion. Discrete Event Dynamic Systems 7 (June 1997)

30. Lam, S.S.: Protocol conversion. IEEE Transaction Software Engineering 14(9)
(1988)

31. Limam, N., Ziembicki, J., Ahmed, R., Iraqi, Y., Li, T., Boutaba, R., Cuervo, F.:
Osda: Open service discovery architecture for efficient cross-domain service provi-
sioning. Computer Communications 30(3) (2007)

32. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. on Prog.
Lang. and Syst. (1994)

33. Magee, J., Kramer, J.: Concurrency: State models and Java programs. Wiley, Hobo-
ken (2006)

34. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software con-
nectors. In: Proceedings of ICSE (2000)

35. Menge, F.: Enterprise Service Bus. In: Free and Open Source Software Conference
(2007)

36. Nakazawa, J., Tokuda, H., Edwards, W.K., Ramachandran, U.: A bridging frame-
work for universal interoperability in pervasive systems. In: Proceedings of ICDCS
(2006)

37. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions. In: Proceedings of WWW (2007)

38. Nitto, E.D., Rosenblum, D.S.: Exploiting adls to specify architectural styles in-
duced by middleware infrastructures. In: Proceedings of ICSE (1999)

39. Okumura, K.: A formal protocol conversion method. In: Proceedings of SIGCOMM
(1986)

40. (OMG): COM/CORBA interworking specification Part A & B (1997)
41. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic matching of

web services capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, p. 333. Springer, Heidelberg (2002)

42. Ponnekanti, S., Fox, A.: Interoperability among independently evolving web ser-
vices. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 331–351.
Springer, Heidelberg (2004)

43. Raverdy, P.G., Issarny, V., Chibout, R., de La Chapelle, A.: A multi-protocol
approach to service discovery and access in pervasive environments. In: Proceedings
of MobiQuitous. IEEE Computer Society, Los Alamitos (2006)

44. Román, M., Campbell, R.H., Kon, F.: Reective middleware: From your desk to
your hand. IEEE Distributed Systems Online 2(5) (2001)

45. Spalazzese, R., Inverardi, P.: Mediating Connector Patterns for Components In-
teroperability. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285, pp.
335–343. Springer, Heidelberg (2010)

46. Spalazzese, R., Inverardi, P., Issarny, V.: Towards a formalization of mediating
connectors for on the y interoperability. In: Proceedings of WICSA/ECSA (2009)

Middleware-Layer Connector Synthesis 255

47. Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers.
In: Proceedings of ICSE (2003)

48. Stollberg, M., Cimpian, E., Mocan, A., Fensel, D.: A semantic web mediation
architecture. In: Proceedings of CSWWS (2006)

49. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering. Data & Knowl-
edge Engineering (1998)

50. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software architecture: foundations,
theory, and practice. Wiley, Hoboken (2009)

51. Vacuĺın, R., Sycara, K.P.: Towards automatic mediation of OWL-S process models.
In: Proceedings of ICWS (2007)

52. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Trans. Program. Lang. Syst. 19(2) (1997)

53. Zhu, F., Mutka, M., Ni, L.: Service discovery in pervasive computing environments.
Pervasive Computing (2005)

Introduction to Active Automata Learning from

a Practical Perspective�

Bernhard Steffen, Falk Howar, and Maik Merten

TU Dortmund University, Chair for Programming Systems,
Dortmund, D-44227, Germany

{steffen,falk.howar,maik.merten}@cs.tu-dortmund.de

Abstract. In this chapter we give an introduction to active learning
of Mealy machines, an automata model particularly suited for modeling
the behavior of realistic reactive systems. Active learning is characterized
by its alternation of an exploration phase and a testing phase. During
exploration phases so-called membership queries are used to construct
hypothesis models of a system under learning. In testing phases so-called
equivalence queries are used to compare respective hypothesis models to
the actual system. These two phases are iterated until a valid model of
the target system is produced.

We will step-wisely elaborate on this simple algorithmic pattern, its
underlying correctness arguments, its limitations, and, in particular,
ways to overcome apparent hurdles for practical application. This should
provide students and outsiders of the field with an intuitive account of the
high potential of this challenging research area in particular concerning
the control and validation of evolving reactive systems.

1 Motivation

Interoperability remains a fundamental challenge when connecting heteroge-
neous systems [10]. The Connect Integrated Project [35] aims at overcoming
the interoperability barrier by synthesizing required Connectors on the fly in
five steps [5,21]: (i) extracting knowledge from, (ii) learning about and (iii) rea-
soning about the interaction behavior of networked systems, as a basis for (iv)
synthesizing Connectors [33,34], and subsequently (v) generating and deploy-
ing them for immediate use [9].

This chapter focuses on the foundations for step (ii), namely on techniques for
leveraging and enriching the extracted knowledge by means of experimentation
with the targeted components. Central are here advanced techniques for active
automata learning [3,38,4,31,50], which are designed for optimally aggregating,
and where necessary completing, the observed behavior.

Characteristic for active learning automata learning is its iterative alternation
between a “testing” phase for completing the transitions relation of the model ag-
gregated from the observed behavior, and an equivalence checking phase,

� This work is supported by the European FP 7 project CONNECT (IST 231167).

M. Bernardo and V. Issarny (Eds.): SFM 2011, LNCS 6659, pp. 256–296, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Introduction to Active Automata Learning from a Practical Perspective 257

which either signals success or provides a counterexample, i.e., a behavior that dis-
tinguishes the current aggregate (called hypothesis) from the system to be learned.
In practice, this second phase must typically be (approximately) realized via test-
ing. This is the reason for the learning approach neither to be correct nor complete
in practice. However, it can be proven that it optimally aggregates the behavior
optimal in the following sense: hypothesis models are guaranteed to be the most
concise (state-minimal) consistent representation of the observed behavior.

This technique, which originally has been introduced for dealing with formal
languages, works very well also for reactive systems, whenever the chosen inter-
pretation of the stimuli and reactions leads to a deterministic language. For such
systems, active automata learning can be regarded as regular extrapolation, i.e.,
as a technique to construct the “best” regular model being consistent with the
observations made. This is similar to the well-known polynomial extrapolation,
where polynomials are used instead of finite automata, and functions instead of
reactive systems. And like there, the quality, not the applicability, of extrapola-
tion depends on the structure of the considered system behavior. However, due to
the enormous degree of freedom inherent in reactive systems, automata learning
is computationally much more expensive than polynomial extrapolation. Thus
the success of automata learning in practice very much depends on the opti-
mizations employed to exploit the specific profile of the system to be learned
[31,50]. One important step in the direction was the generalization of the model-
ing structure from deterministic automata to Mealy machines [31,45,32,52]. We
will therefore consider this setup throughout this chapter.

Outline: In this chapter we will review the foundations of active learning for
Mealy machines, which have proven to be an adequate modeling formalism for
reactive systems in practice.

We will start in Section 2 by formally introducing Mealy machines and trans-
ferring the idea of the Nerode-relation from languages to the world of Mealy
machines. This will provide us with a mechanism for distinguishing states of
an unknown system under learning. Finally, we will revisit the idea of partition
refinement, using a simple minimization algorithm for Mealy machines as an
example.

In Section 3 we will then exactly define the scenario of active learning and
discuss how the ideas from Section 2 can be put together conceptually in order
to infer models from black-box systems. This scheme will be used in Section 4
when we present an intuitive algorithm that uses a direct on-the-fly construction
approach to learning. In Section 5 we present a modified L∗ learning algorithm
for Mealy machines that uses the data-structures and building blocks usually
used in active learning literature.

Finally, we will discuss briefly the challenges to be faced when using active
learning in real-world scenarios in Section 6 and present a framework for au-
tomata learning in Section 7, before we conclude in Section 8. A more detailed
account of practical challenges is given in [30,36]. Section 9 contains pointers to
literature for the interested reader and in Section 10 you will find some exercises
based on the concepts presented in this chapter.

258 B. Steffen, F. Howar, and M. Merten

2 Modeling Reactive Systems

In this sectionwewill discuss how tomodel reactive systems formally and introduce
Mealymachines as anadequate formalism formodeling systemswith inputandout-
put. We will see that Mealy machines can be given semantics in terms of runs in the
same way as finite automata are interpreted as representations of formal languages.
Subsequently, we exploit this similarity to a Myhill/Nerode-like theorem for the
Mealy scenario.This will allowus to define canonicalmodels and provides us with a
handle to constructMealymachines fromsets of runs.Finally,wewill present amin-
imizationalgorithmforMealymachines and thereby revisit the conceptofpartition
refinement, the characteristic algorithmic pattern underlying active learning.

Most of the systems we are using every day – imagine a telephony
system – can be seen as reactive systems: These systems usually (almost) never
terminate and interact with their environment, e.g., with a user or another sys-
tem. They expose a set of input actions to their environment and on a specific
input these systems will produce some output: In a telephony system, e.g., after
dialing a number, you may hear a ringing tone. Alternatively, you might also
hear a busy tone. From a user’s perspective this behavior of the system is not
(input) deterministic, (i.e., the reaction to the same input (sequence) leads to
two different reactions (outputs)) although, from a more detailed perspective it
is not: including additional information on the “state” of the system will expose
the causal prerequisites of hearing a ringing tone or busy tone. In this particular
case, we even know the causal connections: when we attempt to call someone
who is in a call already, we will hear the busy tone. Thus the apparent (input)
non-determinism can be overcome by considering the larger context including
the activities that led to the called party being already on a call.

Active automata learning very much depends on the system under learning to
be (input) deterministic. Usually this is not too much of a restriction as indicated
above: apparently non-deterministic practical (man made) systems can usually
be “made” deterministic by adding detail (refinement). Otherwise, the system
would not be controllable, which often is considered a reliability problem.

Example 1 (A coffee machine). Letusconsideraverysimplereactivesystem:acof-
fee machine. This machine has an assessable user interface, namely a button which
starts the production of delicious coffee.However, before the production of this pre-
ciousfluidcancommence, awater tank(filledwithwater)andacoffeepodhavetobe
put inplace.Aftereverycupofcoffeeproduced, themachinehastobecleaned,which
involves the removal of all expendables. Thus the operations possible on the ma-
chine are “water” (fill the water tank), “pod” (provide a fresh coffee pod), “clean”
(remove all expendables) and “button” (start the production of coffee).

One single flaw that escaped product testing, however, is that the machine
will immediately enter an error state on any mishandling. If, e.g., the button for
coffee production is pressed before a complete set of expendables is filled in, an
error will be signaled that cannot be overcome using the conventional interaction
operations described above. This explains the lukewarm reception by consumers
and in turn the affordable price of the machine.

Introduction to Active Automata Learning from a Practical Perspective 259

(a) empty (b) with pod (c) with water

(d) with pod and water (e) success (f) error

Fig. 1. The illustrated state space of the coffee machine

The state space of the machine is readily observable (see Fig. 1), as is the
output produced: the machine can be “OK” (“�”) with a user interaction, pro-
duce coffee (“K”), or express its dissatisfaction with the way it is operated by
signaling an error (“✷”). ��

2.1 Mealy Machines

Mealy machines are a variant of automata which distinguish between an input
alphabet and an output alphabet. Characteristic for Mealy machines is that in-
puts are always enabled (in other words the transition function is totally defined
for all input symbols), and that their response to an input (sequence) is uniquely
determined (this property is called input determinism). Both properties fit the
requirements of a large class of (reactive) systems very well.

We will use Mealy machines throughout this chapter. It should, however, be
noted that there is a very close relationship between Mealy machines and de-
terministic finite automata: Mealy machines can be regarded as deterministic
finite automata over the union of the input alphabet and an output alphabet
with just one rejection state, which is a sink, or more elegantly, with a partially

260 B. Steffen, F. Howar, and M. Merten

defined transition relation. In fact, considering partially defined transition rela-
tions provides a close analogy, as Mealy machines do not distinguish between
accepting and rejecting states. They distinguish runs according to their output.
Semantically this means that these automata define prefix closed languages, an
adequate choice when modeling the reactive behavior of a system, because one
cannot observe a long run without first seeing its prefixes.

More formally, we assume a set of input actions Σ and a set of outputs Ω,
and we refer as usual to sequences of inputs (or outputs) w = α1 . . . αn, where
αi ∈ Σ, as words, which can be concatenated, as well as split into prefixes and
suffixes in the same way as known from language theory: we write w = uv to
denote that w can be split into a prefix u and a suffix v, or – reversely – that
u and v can be concatenated to w. Sometimes, when we want to emphasize the
concatenation, we write u · v, and we denote the empty word by ε.

Let us now define a Mealy machine:

Definition 1. A Mealy machine is defined as a tuple M = 〈S, s0, Σ, Ω, δ, λ〉
where

– S is a finite nonempty set of states (be n = |S| the size of the Mealy ma-
chine),

– s0 ∈ S is the initial state,
– Σ is a finite input alphabet,
– Ω is a finite output alphabet,
– δ : S ×Σ → S is the transition function, and
– λ : S ×Σ → Ω is the output function.

Intuitively, a Mealy machine evolves through states s ∈ S, and whenever one
applies an input symbol (or action) α ∈ Σ, the machine moves to a new state
according to δ (s, α) and produces an output according to λ(s, α). ��

We write s
α/o−→ s′ to denote that on input symbol α the Mealy machine moves

from state s to state s′ producing output symbol o. We will denote the straight-
forward inductive extensions of δ : S ×Σ → S and λ : S ×Σ → Ω to deal with
words in the second component with δ∗ and λ∗, respectively. δ∗ : S ×Σ∗ → S
and λ∗ : S × Σ∗ → Ω are formally defined by δ∗(s, ε) = s and δ∗(s, αw) =
δ∗(δ(s, α), w); by λ∗(s, ε) = ∅ and λ∗(s, wα) = λ(δ∗(s, w), α) respectively.

Example 2 (Modeling the coffee machine). We can specify the behavior of the
coffee machine from Example 1 as the Mealy machine Mcm = 〈S, s0, Σ, Ω, δ, λ〉,
where

– S = {a, b, c, d, d′, e, f}
– s0 = a
– Σ = {water, pod, button, clean}
– Ω = {�,K, ✷}

The transition- and output-function are defined according to the model shown
in Fig. 2. In this example specification, we use two states d and d′ differing wrt.
the order in which water and pod have been filled into the machine. ��

Introduction to Active Automata Learning from a Practical Perspective 261

a

b c

d d′e

f

pod/� water/�
clean/� button/�

water/�

pod/�

button/�

pod/�

water/�

button/�

button/K

{water, pod}/�

button/K

{water, pod}/�

clean/�

Σ \ {clean}/�

Σ/�

Fig. 2. Mealy specification of the coffee machine

The concrete behavior of a Mealy machine when processing a sequence of inputs
α1α2 . . . αn has the pattern of an alternating sequence of input and output sym-
bols α1o1α2o2 . . . αnon. It turns out, however, that Mealy machines can be fully
characterized in terms of their runs, which abstract from all the intermediate
outputs and simply record the the final output. This means that the follow-
ing semantic functional �M� : Σ∗ → Ω defined by �M�(w) = λ∗(s0, w) faithfully
captures the behavioral semantics of Mealy machines (see Theorem 1). In partic-
ular, we will see that the corresponding notion of semantic equivalenceM≡M′

defined by �M� = �M′� is the leading notion in the following development.

Example 3 (Runs of Mealy machines). The run

〈water pod button clean button, ✷〉

is in �Mcm�, while the run

〈water button clean, �〉

is not, because in Mcm, once a run passes state f no other output than ✷ will
be produced. ��

262 B. Steffen, F. Howar, and M. Merten

2.2 Regularity

In this section we will characterize which functionals P : Σ∗ → Ω are the
semantics of some Mealy machine. Key to this characterization is the follow-
ing notion of equivalence induced by P on input words which resembles the
well-known Nerode relation for formal languages [44]:

Definition 2 (Equivalence of words wrt. P). Two words u, u′ ∈ Σ∗ are
equivalent wrt. ≡P , iff for all continuations v ∈ Σ∗, the concatenated words uv
and u′v are mapped to the same output by P :

u ≡P u′ ⇔ (∀v ∈ Σ∗. P (uv) = P (u′v)).

We write [u] to denote the equivalence class of u wrt. ≡P . ��
Obviously, ≡P is an equivalence relation: equality is reflexive, symmetric, and
transitive. Also, we observe that every Mealy machine M for P refines such a
relation ≡P : Two words u, u′ ∈ Σ∗ leading to the same state have to be in the
same class of ≡P as the future behavior of M for both words is identical.

Example 4 (Equivalence of words wrt. P). In our example model of Mcm from
Example 2 and Figure 2, the following three words (among others) are equivalent
wrt. ≡�Mcm�:

water pod (1)
≡�Mcm� water water pod (2)
≡�Mcm� pod pod water (3)

For (1) and (2) it is obvious, because (1) and (2) lead to the same state (d). The
word (3), on the other hand, leads to a different state (d′). However, we defined
the equivalence relation on Σ∗, and not on Mcm. We leave it to the reader to
retrace that there does not exists a possible continuation of (1) and (3) in Σ∗,
which proves both words inequivalent. ��
This is already sufficient to prove our Characterization Theorem as a straight-
forward adaption of the Myhill/Nerode theorem for regular languages and de-
terministic finite automata (DFA) [26,44].

Theorem 1 (Characterization Theorem). A mapping P : Σ∗ → Ω is
a semantic functional for some Mealy machine iff ≡P has only finitely many
equivalence classes (finite index).

Proof. (⇒): Let M be an arbitrary Mealy machine. Then we must show that
≡�M� has finite index. This follows directly from that fact that all input words
that lead to the same state of the M are obviously equivalent, which limits the
index by the number of state of M.

Introduction to Active Automata Learning from a Practical Perspective 263

(⇐): Consider the following definition of Mealy machineMP = 〈S, s0, Σ, Ω, δ, λ〉:
– S is given by the classes of ≡P .
– s0 is given by [ε].
– the transition function is defined by δ([w], α) = [wα].
– the output function can be defined as λ([w], α) = o, where P (wα) = o.

Then it is straightforward to verify that MP is a well-defined Mealy machine
with semantic functional P , i.e., with �MP � = P . ��
In analogy to classical language theory, we will call a mapping P : Σ∗ → Ω
regular whenever there exists a corresponding Mealy machine MP , or, equiv-
alently, whenever ≡P has finite index. In this situation it is easy to establish
a corresponding variant of the famous Pumping Lemma (cf. [26]), again in full
analogy to classical language theory:

Proposition 1 (Bounded reachability). Every state of a minimal Mealy ma-
chine with n states has an access sequence, i.e., a path from the initial state to
this state, of length at most n − 1. Every transition of this Mealy machine can
be covered by a sequence of length at most n from the initial state.

A more careful look at the Mealy machine MP constructed above reveals that
it is indeed the up to isomorphism unique state-minimal Mealy machine with
semantic functional P , as two input words can obviously only lead to the same
state if they are equivalent wrt. ≡P . This makes MP the canonical model for
representing P .

Example 4 shows that a Mealy machine can have more than one state per
class of ≡�M�. In the following, we will investigate when and how we can effec-
tively transform such Mealy machines into canonical form. Please note that the
construction in the proof of the Characterization Theorem is not effective as it
is in general not possible to compute ≡P just from P . We will see that there is
a smooth transition from variants of minimization algorithms to the underlying
pattern of L∗, Angluin’s seminal active learning algorithm.

2.3 Canonical Mealy Machines

For an arbitrary Mealy machine, we will usually have no information about the
index of ≡�M�, the classes of ≡�M�, or how single states correspond to classes
of ≡�M�. From Theorem 1 we know, however, that all words leading to the
same state, have to be in the same class of ≡�M�, and that there exists a Mealy
machine whose states directly correspond to the equivalence classes of ≡�M�.
Unfortunately, trying the minimize a given Mealy machine by merging some
states whose access sequences are ≡�M�-equivalent has two drawbacks:

– it may destroy the well-definedness of the transitions function δ (which could
be overcome by generalizing the notion for Mealy automaton to allow for
transitions relations), and, much worse,

– proving the equivalence of access sequences is in general quite hard. In the
setting of active learning of black box system (cf. Section 6) it is even unde-
cidable in general.

264 B. Steffen, F. Howar, and M. Merten

However there is an alternative way, which in addition to its elegance and effi-
ciency, paves the way to active automata learning: partition refinement. Rather
than collapsing a too fine partition on access sequences (given here by the states
of a Mealy machine), partition refinement works by iteratively refining too coarse
partitions (initially typically the partition with just one class) based on so called
distinguishing suffixes, i.e., suffixes that witness the difference of two access
sequences.

Remark. Both approaches, the collapsing-based approach and the refinement-
based approach, iteratively compute fixed points on the basis of �M�: collapsing
the smallest, and refining the greatest. As the fixed point is unique in this case,
both approaches would lead to the same result.

Theorem 1 and its underlying construction of MP provide the conceptual back-
bone for all the following variants of partition refinement algorithms. The fol-
lowing notion is important:

Definition 3 (k-distinguishability). Two states s, s′ ∈ S of some Mealy ma-
chine M are k-distinguishable, iff there is a word w ∈ Σ∗ of length k or shorter,
for which λ∗(s, w)
= λ∗(s′, w). ��
Intuitively, two states are k-distinguishable, if starting from both states we can
produce different outputs when processing the same suffix within k steps. To ease
readability, we introduce exact k-distinguishability, denoted by k=, for states that
are k-distinguishable, but not (k − 1)-distinguishable.

As a general prerequisite for the following developments, we will assume that
we can effectively ask so-called membership queries (a central notion in active
learning), i.e., that there is a so-called membership oracle which returns �M�(w)
in constant time, whenever it is asked for w, and we will measure the efficiency
of the following approaches to constructing canonical Mealy machines just in the
number of required membership queries. We denote the canonical representation
of some Mealy machine M by C(�M�).

Constructing �M� for words of sufficient length: Knowing an upper approxima-
tion N of the index of ≡�M� is already sufficient to effectively construct C(�M�)
in exponential time. Due to Proposition 1

– all states of C(�M�) are N -distinguishable, and
– the set ΣN of all words of length up to N is guaranteed to contain an access

sequence to every state and to cover every transition of C(�M�).

With this knowledge, C(�M�) can be constructed along the lines presented in
the proof of Theorem 1, leading to a combinatorial O(|Σ|2N) algorithm.

Using access sequences from M: If we now, additionally, take advantage of the
knowledge of the n states of the Mealy machine to be minimized, the complexity
of the algorithm sketched above immediately reduces to O(n|Σ| · |Σ|N), as we
are able to access every state and to cover every transition of C(�M�) just by
looking at the n states and the n|Σ| transitions of that Mealy machine.

Introduction to Active Automata Learning from a Practical Perspective 265

Using access sequences and suffixes from M: This naive algorithm can be dras-
tically improved based on the following elementary observation: Whenever two
states s1 and s2 are (k + 1)-distinguishable then they each have a α-successor
s′1 respectively s′2 (for some α ∈ Σ) such that s′1 and s′2 are k-distinguishable.
This suggests the following inductive characterization of k-distinguishability:

– no states are 0-distinguishable, and
– two states s1 and s2 are (k + 1)-distinguishable iff there exists an input

symbol α ∈ Σ such that λ(s1, α)
= λ(s2, α) or δ(s1, α) and δ(s2, α) are
k-distinguishable.

which directly leads to an algorithm that iteratively computes k-distinguishability
for increasing k until stability, i.e., until the set of exactly k-distinguishable
states is empty, in analogy to the original algorithm by Hopcroft for minimizing
deterministic finite automata [25]. It is straightforward to deduce that each level
of k-distinguishability can be done in O(n|Σ|), i.e., by processing every transition
once, and that k will never exceed n. Thus we arrived at an O(n2|Σ|) algorithm,
for which corresponding pseudocode is shown in Algorithm 1.

Example 5 (Partition refinement). Assume the Mealy machine from Figure 2 as
an input to Algorithm 1. We start by computing the initial partition P1:

P1 = {a, b, c}, {d, d′}, {e}, {f}

where “clean” distinguishes e from f , and “button” distinguishes, e.g., a from
d. In the second step, we will generate:

P2 = {a}, {b}, {c}, {d, d′}, {e}, {f}

where “water” and “pod” distinguish a, b and c: The “water”-successor of a and
c is c, while for b it is d. The “pod”-successor of a and b is b, while for c it is d′.

Then, however, in the next step, we will not be able to further refine P2. We
can merge d and d′ and get the Mealy machine depicted in Figure 3. ��
The correctness of this algorithm follows a very well-known three-step proof
pattern:

– Invariance: The number of equivalence classes obtained during the partition
refinement process never exceeds the index of ≡�M�. This follows from the
fact that only distinguishable states are split.

– Progress: Before the final partition is reached, it is guaranteed that the in-
vestigation of all transitions ofM will suffice to split at least one equivalence
class. This follows from the inductive characterization of distinguishability
in terms of k-distinguishability.

– Termination: The partition refinement process terminates after at most
index of ≡�M� many steps. This is a direct consequence of the just described
properties invariance and progress.

266 B. Steffen, F. Howar, and M. Merten

a

b c

d e

f

pod/� water/�
clean/� button/�

water/�

pod/�

button/�

pod/�

water/�

button/�

button/K

{water, pod}/�

clean/�

Σ \ {clean}/�

Σ/�

Fig. 3. Minimal Mealy machine of the coffee machine

Algorithm 1. Compute partition on set of states
Input: A Mealy machine M = 〈S, s0, Σ, Ω, δ, λ〉
Output: A partition P on S, the set of states of the Mealy machine
1: i := 1
2: put all s ∈ S with the same λ valuation into the same class p of partition Pi

3: loop
4: for all p ∈ Pi do
5: for all s ∈ p do
6: construct mapping sig : Σ → Pi:
7: sig(α) = p′ such that δ(s, α) ∈ p′

8: Ssig := Ssig ∪ s
9: end for

10: Pi+1 :=
⋃

sig Ssig

11: end for
12: if Pi = Pi+1 then
13: return Pi

14: end if
15: i := i + 1
16: end loop

Introduction to Active Automata Learning from a Practical Perspective 267

In oder to better understand the essential difference between minimization and
active learning, let M = 〈S, s0, Σ, Ω, δ, λ〉 and M′ = 〈S′, s′0, Σ, Ω, δ′, λ′〉 be
two Mealy machines with shared alphabets. Then we call a surjective function
fk : S → S′ existential k-epimorphism between M and M′, if for all s′ ∈ S′,
s ∈ S with fk(s) = s′, and α ∈ Σ we have: fk(δ(s, α)) = δ′(s′, α) and all state
that are mapped by fk to the same state of M′ are not k-distinguishable.

It is straightforward to establish that all intermediate models arising during the
partition refinement process are images of the considered Mealy machine under a k-
epimorphism, where k is the number of times all transitions have been investigated.
In the next section, we will establish a similar notion of epimorphism which fits the
active learning scenario. Its difference to k-epimorphism will help us to maintain
as much of the argument discussed here as possible and to formally pinpoint some
essentially differences between minimization and learning.

More generally, the pattern of this algorithm and its correctness proof will
guide us in the following sections, where we are going to develop an algorithm
to infer a canonical Mealy machine from black box systems by experimenta-
tion/testing. In contrast to this section, where we exploited knowledge in terms
of a given realizing Mealy machine, or at least of the number of states of such a
machine, we will start by assuming an ideal, indeed quite unrealistic, but in the
community accepted operation: the so-called equivalence oracles. They can be
queried in terms of so-called equivalence queries asking for the semantic equiv-
alence of the already computed hypothesis model and the black box systems,
and in case of failure provide evidence in terms of a counterexample. We will
see that under these assumption it is possible to also learn the canonical Mealy
machine for regular black box systems with polynomial complexity measured in
membership and equivalence queries.

3 Construction of Models from Black-Box Systems

In principle, we are concerned with the same problem as in the previous section:
the construction of a canonical model for some Mealy machine M . Only the
frame conditions changed. Rather than having M = 〈S, s0, Σ, Ω, δ, λ〉 at hand,
we only have limited access to the resources: active learning algorithms classically
use two kinds of queries to gather information about a black-box system under
learning (SUL) – the notion is meant to remind of the term System Under Test
(SUT) used by the testing community – which are assumed to be realized via
two corresponding oracles, resembling a “teacher” who is capable of answering
these queries appropriately and correctly according to the minimally adequate
teacher (MAT) model [3]. These queries, which have been sketched already in
the previous section, are the so-called:

Membership Queries retrieving behavioral information about the target sys-
tem. Consisting of sequences of system inputs, they actively trigger behavioral
outputs which are collected and analyzed by the learning algorithm. Member-
ship queries are used to construct a hypothesis model, which is then subject to
validation by means of the second kind of queries, the equivalence queries.

268 B. Steffen, F. Howar, and M. Merten

We write mq(w) = o to denote that executing the query w ∈ Σ∗ on
SUL leads to the output o, meaning that λ∗

SUL(q0, w) = o. In practice,
membership queries correspond to single test runs executed on a system to
be learned.

Equivalence Queries determining whether the learned hypothesis is a faithful
representation of the target system. If the equivalence oracle handling the
equivalence query finds diverging behavior between the learned hypothesis
and the SUL, a counterexample will be produced, which is used to refine the
hypothesis model with a next iteration of the learning algorithm.

We write eq(H) = c̄ to denote that the equivalence query for H returned
a counterexample c̄ ∈ Σ∗ with λ∗

H(s0, c̄)
= mq(c̄). In practice, equiva-
lence queries can typically not be realized. We will discuss this problem and
possible solutions in Section 6. Equivalence queries are, however, an elegant
concept for structuring active learning algorithms.

In the following, we will study this classical active learning scenario, before we
will discuss its limitations, associated problems and ways to reach practicality in
Section 6. In particular we will see that based on these two kinds of queries active
learning algorithms such as L∗

M effectively create canonical automata models of
the SUL, whenever the SUL is regular (cf. Section 2.2).

The high-level algorithmic patterns underlying most active learning algo-
rithms is shown in Fig. 4: active learning proceeds in rounds, generating a
sequence of so-called hypothesis models by alternating test-based exploration
on the basis of membership queries and equivalence checking using the equiva-
lence oracle. Counterexamples resulting from failing equivalence checks are used
to steer the next round of local exploration. The first step shown in Fig. 4,
the setup of a learning algorithm from some input requirements, will briefly be
discussed in Section 6.

Following the partition-refinement pattern we used in Section 2.3 to minimize
Mealy machines, inference starts with the one state hypothesis automaton that
treats all words over the considered alphabet (of elementary observations) alike
and refines this automaton on the basis of the query results, iterating test-based
exploration steps and the equivalence checking steps. Here, the dual way of how
states are characterized (and distinguished) is central:

– by words reaching them. A prefix-closed set Sp of words, reaching each state
exactly once, defines a spanning tree of the automaton. This characterization
aims at providing exactly one representative element from each class of≡P on
the SUL. Active learning algorithms incrementally construct such a set Sp.

Prefix-closedness will guarantee that the constructed set is a “spanning
tree” of the unknown Mealy machine. Extending this spanning tree to con-
tain also all one-letter continuations of words in Sp will result in a tree
covering all the transitions of the Mealy machine. We will denote the set of
all one-letter continuations that are not already contained in Sp by Lp.

– by their future behavior wrt. a dynamically increasing vector of strings from
Σ∗. This vector 〈d1 . . . dk〉 will be denoted by D, for “distinguishing suffixes”.

Introduction to Active Automata Learning from a Practical Perspective 269

Fig. 4. Structure of Extrapolation Algorithms (modeled in XPDD [37]). Square boxes
on the left hand side denote inputs, on the right hand side they denote outputs.

The corresponding future behavior of a state, here given in terms of its access
sequence u ∈ Sp, is the output vector 〈mq(u · d1) . . .mq(u · dk)〉 ∈ Ωk, which
leads to an upper approximation of the classes of ≡�SUL�. Active learning
incrementally refines this approximation by extending the vector until the
approximation is precise.

Whereas the second characterization directly defines the states of a hypothesis
automaton, each occurring output vector corresponds to one state in the hypoth-
esis automaton, the spanning tree on Lp is used to determine the corresponding
transitions.

In order to characterize the relation between hypothesis models and a corre-
sponding SUL let M = 〈S, s0, Σ, Ω, δ, λ〉 and M′ = 〈S′, s′0, Σ, Ω, δ′, λ′〉 be two
Mealy machines with shared alphabets and D be a set of words in Σ∗. Then we
call a surjective function fD : S → S′ existential D-epimorphism between M
and M′, if for all s′ ∈ S′ there exists an s ∈ S with fD(s) = s′ such that for all
α ∈ Σ and all d ∈ D: fD(δ(s, α)) = δ′(s′, α) and λ∗(s, d) = λ′∗(s′, d).

270 B. Steffen, F. Howar, and M. Merten

Please note that active learning conceptually deals with the canonical Mealy
machine C(�SUL�) for a given SUL, and not with the perhaps much larger
Mealing machine of the SUL itself. This reflects the fact that it is not possible
to observe the difference of these two Mealy machines.

Exploiting the fact that all the algorithms considered in the following main-
tain a successively growing extended spanning tree for the arising hypothesis
automaton H = 〈SH , h0, Σ, Ω, δH , λH〉, i.e., a prefix-closed set of word reaching
all its states and covering all transitions, it is quite straightforward to establish
that all these hypothesis models are images of C(�SUL�) under a canonical exis-
tential D-epimorphism, where D is the set of distinctive futures underlying the
hypothesis construction.

– define fD : SSUL → SH by fD(s) = h in the following fashion: if there exists
a w ∈ Sp ∪ Lp with δ(s0, w) = s, then h = δH(h0, w). Otherwise h may be
chosen arbitrarily.

– In order to establish the defining properties of fD, it suffices to consider
the states reached by words in the spanning tree. For all the considered
hypothesis construction algorithms this straightforwardly yields:
• fD(δ(s, α)) = δH(h, α) for all α ∈ Σ, which reflects the characterization

from below.
• λ∗(s, d) = λ∗

H(h, d) for all d ∈ D, which follows from the maintained
characterization from above.

This also shows that canonical, existential D-epimorphisms quite faithfully re-
flect all the knowledge maintained during active learning.

However, please note the difference between the k-epimorphisms introduced
in the previous section and (canonical) existential D-epimorphisms considered
here:

– whereas the difference of k and D is not crucial, as one could have used
also D-epimorphisms in the previous sections, with D = Σk instead of k.
However, it is important for complexity reasons. Black box systems do not
support the polynomial time inductive construction of k-distinguishability.
Rather they require the explicit construction of distinguishing futures. We
will see that it is possible to limit the size of D to the index of ≡�SUL�.

– the role of “existential” is crucial: it reflects the fact that fD must deal with
unknown states, i.e., state that not yet have been encountered. Thus the
characterization can only be valid for the already encountered states.

Most active learning algorithms, and all the variants we are considering in the
following, can be proven correct using a variant of the three-step proof pattern
introduced in the previous section:

– Invariance: The number of states of each hypothesis automaton never ex-
ceeds the index of ≡�SUL�. This follows from the fact that only distinguish-
able states are split (cf. definition of canonical Mealy machines).

Introduction to Active Automata Learning from a Practical Perspective 271

– Progress: Before the final partition is reached, it is guaranteed that the
Equivalence Oracle provides a counterexample, i.e., an input word which
leads to a different output on the SUL and on the hypothesis. As the algo-
rithms maintain a spanning tree for the states of H , this difference can only
be resolved by splitting at least one state, thus increasing the state count.

– Termination: The partition refinement process terminates after at most
index of≡�SUL� many steps. This is a direct consequence of the just described
properties invariance and progress.

4 First Variant: Direct Hypothesis Construction

The DHC (Direct Hypothesis Construction) algorithm, whose kernel is outlined
in Algorithm 2, follows the idea of a breadth-first search for states for an au-
tomaton being constructed on-the-fly. It is particularly intuitive, as each step
can be followed on the (intermediate) hypothesis models which, at any time,
visualizes the state of knowledge.

The algorithm uses a queue of states to be explored, which is initialized with
the states of the spanning tree to be maintained (line 2 in Algorithm 2). Explored
states are removed from the queue, while the successors of discovered, provably
new states (states with a new extended output signature which is defined by not
only comprising one step futures, but also the increasing set of distinguishing
futures produced by the algorithm) are enqueued (line 14 in Algorithm 2).

Algorithm 2. Hypothesis construction of the DHC algorithm
Input: A set of access sequences Sp, a set of suffixes D, a set of inputs Σ
Output: A Mealy machine H = 〈S, s0, Σ, Ω, δ, λ〉
1: create states in hypothesis H for all access sequences
2: add states of H into queue Q
3: while Q is not empty do
4: s := dequeued state from Q
5: u := access sequence to s
6: for d ∈ D do
7: o := mq(u · d)
8: set λ(s, d) = o
9: end for

10: if exists state s′ with same output signature (i.e., λ) as s then
11: reroute all transitions in H that lead to s to s′

12: remove s from H
13: else
14: create and enqueue successors for all inputs in Σ of s into Q
15: that are not in Sp
16: end if
17: end while
18: Remove information about d ∈ D \ Σ from λ
19: return H

272 B. Steffen, F. Howar, and M. Merten

The DHC algorithm starts with a one-state hypothesis, which just includes
the initial state, reached by the empty word and with D = Σ. Then it tries to
complete the hypothesis, which means that for every state the extended signa-
ture, i.e., its behavior under D, is determined (lines 6-8 in Algorithm 2). States
with a new extended signature are provably new states, which need to be fur-
ther investigated. This is guaranteed by enqueuing all their successors (line 14
in Algorithm 2). As initially D = Σ, only 1=-distinguishable states can be re-
vealed during the first iteration. The initially one-state spanning tree is this way
straightforwardly extended to comprise a prefix closed set of access sequences to
all revealed states (cf. Fig. 5 and 6).

After the termination of the while loop, we easily obtain a well-formed hy-
pothesis by eliminating from λ all symbols of D that are not in Σ. This step is
unnecessary after the first iteration, as D at first only contains elements of Σ.
The hypothesis automaton is then handed over to the equivalence oracle, which
either signals success, in which case the learning procedure successfully termi-
nates, or it produces a counterexample, i.e., a word c̄ with λ∗(s0, c̄)
= mq(c̄). In
the latter case, D is enlarged by all suffixes of c̄ (Sect. 4.1), and a new iteration of
completion begins, this time starting with the just enlarged set D of suffixes and
with all access sequences of all the states revealed in the previous iteration (the
current spanning tree). As we will see, this procedure is guaranteed to eventually
terminate with an hypothesis model equivalent to the SUL.

4.1 Counterexamples

In this section we address the dominant case where the current hypothesis and
the SUL are not yet equivalent and the equivalence query therefore returns a
counterexample, i.e., a word c̄ ∈ Σ∗ with λ∗

H(s0, c̄)
= mq(c̄). This counterex-
ample can be used to enlarge both

– the maintained prefix-closed set of access sequences Sp (the spanning tree),
and

– the current set of distinguishing suffixes D
and therefore the size of the hypothesis automaton.

A very simple strategy has been proposed in [40] for deterministic finite au-
tomata, where simply all suffixes of a counterexample are added to D. As we
will see, this strategy is guaranteed to realize the above extension of Sp with-
out requiring any analysis of the counterexample, however at the prize of a fast
growth of D. A slightly improved version for Mealy machines has been proposed
in [52].

In order to establish that the simple methods of [40] really works, let us
introduce the following notation: for a u ∈ Σ∗ let [u]H be the unique word in Sp
that reaches δ∗(s0, u) in the hypothesis model. Then we are able to prove:

Theorem 2 (Counterexample Decomposition). For every counterexample
c̄ there exists a decomposition c̄ = uαv into a prefix u, an action α, and a suffix
v such that mq([u]Hαv)
= mq([uα]Hv).

Introduction to Active Automata Learning from a Practical Perspective 273

s0

(a) incomplete starting state

s0

s1 s2 s3 s4

pod/�

water/� button/�

clean/�

(b) starting state completed

s0

s1 s2 s3 s4

s5 s6 s7 s8

pod/�

water/� button/�

clean/�

pod/� water/� button/� clean/�

(c) state s1 completed

s0

s1 s2 s3

pod/�

water/� button/✷

clean/�

(d) former state s1 merged with starting state

Fig. 5. First steps of DHC hypothesis construction: The hypothesis at first only consists
of the incomplete starting state, which is completed using membership queries. This
results in new incomplete states, that are completed using additional queries. In this
example the first successor of the starting state shows the same output behavior after
completition, which results in this state being merged with the starting state.

274 B. Steffen, F. Howar, and M. Merten

s0

s1 s2 s3 s4 f1

s5 s6 s7 s8 f2

pod/�
water/� button/� clean/� [water, button]/[�,�]

pod/�
water/� button/�

clean/� [water, button]/[�,K]

Fig. 6. An early stage of the DHC hypothesis construction, corresponding to Fig. 5(c),
with the distinguishing suffix “water button”. The diverging output for the distinguish-
ing suffix at the states s0 and s1 prevents the merging of those two states, in contrast
to what happens without a distinguishing suffix in Fig. 5. The states reached by distin-
guishing suffix transitions are named with a diverging scheme so that the state names
in Fig. 5(c) are also valid in this figure for quick comparison. The letter “f” is used to
express that the distinguishing suffixes reveal peeks into future behavior.

Proof. Define u as the longest prefix of c̄ and v′ as its corresponding suffix such
that mq([u]Hv′) = mq(c̄). As mq([c̄]H) = λ∗

H(s0, c̄), c̄ being a counterexample
guarantees that v′ has length greater than one, and that it therefore can be
decomposed in αv, which concludes the proof. ��
Thus adding all suffixes of counterexample c̄ would also add v and therefore the
means to separate [u]Hα from all states of Sp. As a consequence, [u]Hα must be
added to Sp, which due to this construction even maintains the structure of a
spanning tree.

More concretely, by adding v to the signature, the hypothesis construction of
Algorithm 2 will automatically move [u]Hα from Lp to Sp, and add all one-letter
extensions of [u]Hα to the queue of to be investigated words.

At the same time, Theorem 2 also suggests that it would suffice to simply
extend D by v. We will see in the next section that this does not only require
to simply decompose the counterexamples (cf. Algorithm 4), but that there are
some additional complications.

Example 6 (Analyzing a counterexample). We are learning the coffee machine
from Example 2 and have produced the hypothesis in Figure 7. An equivalence
query returns

c̄ = pod water pod water button

as a counterexample. We have λ∗
H(qo, c̄) = ✷
= K = mq(c̄). Table 1 shows

the decomposition of the counterexample into prefix, symbol, and suffix for all

Introduction to Active Automata Learning from a Practical Perspective 275

Table 1. Analysis of counterexample from Example 6

Index u [u]H α v Output

1 ε ε pod water pod water button K
2 pod ε water pod water button K
3 pod water ε pod water button K
4 pod water pod ε water button ✷

5 pod water pod water ε button ε ✷

indices of the counterexample. The output “flips” from “K” to “✷” between
prefixes “pod water” and “pod water pod”. Both prefixes have the empty word
as access sequence in the hypothesis. We have

mq([pod water]H pod · water button)
= mq([pod water pod]H · water button).

Adding “water button” to the set of suffixes will result in discovering a new
state, reached by “pod”, in the next round of hypothesis construction. The effect
of adding this suffix is illustrated in Fig. 6. ��

4.2 Putting It Together

We have discussed how to construct a hypothesis incrementally and how to
treat counterexamples in the previous two sections. Iterating these two phases
will eventually lead to a hypothesis that is behaviorally equivalent to the system
under learning:

Theorem 3 (Correctness and Termination of DHC). Iterating the DHC
hypothesis construction and adding all suffixes of counterexamples to the set of
suffixes D will lead a model that is behaviorally equivalent to the SUL with less
than index of ≡�SUL� equivalence queries.

The proof follows the three step pattern introduced in Section 2.3:

– Invariance: The state construction via the equivalence induced by D guar-
antees that the number of states of the hypothesis automaton can never
exceed the number of states of C(�SUL�).
The number of states of each hypothesis automaton never exceeds the index
of ≡�SUL�. This follows from the fact that only distinguishable states are
split (cf. definition of canonical Mealy machines).

– Progress: The equivalence oracle provides new counterexamples as long as
the behavior of the hypothesis does not match the behavior of C(�SUL�),
and the treatment of counterexamples guarantees that at least one additional
state is added to the hypothesis automaton for each counterexample.

– Termination: The partition refinement process terminates after at most
index of≡�SUL� many steps. This is a direct consequence of the just described
properties invariance and progress.

276 B. Steffen, F. Howar, and M. Merten

Finally, let us consider the complexity of the DHC approach. The complexity
of learning algorithms is usually measured by the number of membership resp.
equivalence queries required to produce a final model. Let n denote the number
of states in the final hypothesis, k the size of the set of inputs, and m the length
of the longest counterexample. Then we have:

Theorem 4 (Complexity of DHC). The DHC algorithm terminates after at
most n3mk + n2k2 membership queries and n equivalence queries.

From Theorem 3 we know that the DHC algorithm will never require more than
n equivalence queries, and therefore at most n iterations of the DHC kernel
(Algorithm 2). In each of these iterations at most m new suffixes are added to
D, which is initialized with the k elements of Σ. Thus the size of D is bound by
k + mn. Moreover, the number of transitions that need to be considered in an
iteration never exceeds nk, which limits the number of membership queries per
iteration to O(n2mk + nk2) membership queries per round. The theorem now
follows from the fact that there will never be more than n such iterations.

The DHC algorithm is a fully-functional learning algorithm for Mealy ma-
chines, which, due to its simplicity and its intuitive hypothesis construction,
eases an initial understanding. Moreover, as the DHC algorithms is guaranteed
to maintain a suffix closed set of distinguishing futures D, one can prove that all
intermediate hypothesis automata are guaranteed to be canonical, which means
in particular that each iteration produces a new set of accepted runs.

The DHC algorithm leaves room for a number of optimizations, some of which
were already covered by L∗, the first active learning algorithm. The following
section describes an adaptation of L∗ for Mealy machines, which, due to the
L∗-specific data structure, avoids a factor n in the complexity. Additionally,
following [51], we will show how also the factor m can be almost fully avoided
in order to arrive at an O(n2k + nk2 + n log(m)) algorithm. The algorithm of
[51], however, no longer guarantees that the intermediate hypothesis automata
are canonical. In the next section we will see that also this problem can be
overcome.

5 The L∗
M Algorithm

The DHC algorithm has two major shortcomings: hypothesis automata are con-
structed from scratch in each round and all suffixes of each found counterexample
are added to D before starting the next iteration. This leads to many unneces-
sary membership queries, which, in practice, may be rather expensive, as they
may involve, e.g., communication over the network, in order to access remote
resources. In this section, we present a modified L∗ learning algorithm for Mealy
machines that is also optimized to avoid these sources of inefficiency.

First, we introduce observation tables, the characteristic data structure of the
original L∗ algorithm [3], which support the incremental construction of hypoth-
esis models and thus avoids the first source of inefficiency. The second source
of inefficiency is then overcome in Section 5.2, where an optimized treatment of

Introduction to Active Automata Learning from a Practical Perspective 277

counterexamples is presented. Subsequently, Section 5.3 provides an estimate of
the worst-case complexity of the L∗

M algorithm, as usually measured in required
queries, before the algorithm is illustrated along on our running example, the
coffee machine.

5.1 Observation Table

The DHC algorithm directly operates on the hypothesis model, which it recon-
structs during each iteration. In this section we will present the commonly used
observation tables, which are essentially mappings Obs(U ,D) : U × D → Ω,
where U = Sp ∪ Lp is as set of prefixes and D the considered set of suffixes.
Observation tables represent the outcome of membership queries for words ud,
with u ∈ U and d ∈ D. This can be visualized in table form: rows are la-
beled by prefixes and columns by suffixes. The table cells contain the result of
the corresponding membership query. Table 2 shows an observation table that
corresponds to continuing the first steps of hypothesis construction from the
example presented in Fig. 5.

In Section 4.2, we have merged states with identical signatures. In observa-
tion tables, we identify prefixes with identical rows. We write Obsu to denote
the mapping from D to Ω that is represented by the row labeled with u. In ob-
servation tables the part representing the access sequences from Sp are collected
in the upper part, whereas the not yet covered one-letter extensions (Lp), which
complete the information about the transitions, are collected below.

The breadth-first search pattern we used in Section 4.2 to find new states
is reflected here by establishing the closedness of the observation table: a table
is closed if all transitions lead to already established states, i.e., if for every
u ∈ Lp there exists a u′ ∈ Sp with Obsu = Obsu′ . Closedness is established by
successively adding each u ∈ Lp which does not yet have a matching state in Sp
yet to Sp, combined with adding all its one letter continuations to Lp. Please
note that this directly corresponds to the enqueuing process in line 14 of the
DHC algorithm.

The resulting procedure is shown in Algorithm 3. We extend Sp and fill ta-
ble cells until closedness is established on the table. As we extend Sp only by
elements of Lp, the set of access sequences will be prefix closed at any point. It
represents an extended spanning tree for the hypothesis that can be constructed
from the observation table.

From a closed observation table we can construct a hypothesis in a straight-
forward way. We construct H = 〈S, s0, Σ, Ω, δ, λ〉 from Obs(U ,D) as follows:

– Every state in S corresponds to one word in Sp.
– the initial state s0 will correspond to the the empty word ε.
– the transition function is defined by δ(u, α) = u′ where u′ ∈ Sp with

Obsuα = Obsu′ .
– the output function is defined as λ(u, α) = Obs(u, α).

It is easy to establish that this automaton is well defined: the closedness of the
observation table guarantees that the transition function is well defined, and
D ⊇ Σ that the output function is well defined.

278 B. Steffen, F. Howar, and M. Merten

Algorithm 3. Close table
Input: An observation table Obs(U ,D)
Output: A hypothesis H
1: repeat
2: fill table by mq(uv) for all pairs u ∈ U and v ∈ D, where Obs(u, v) = ∅.
3: if ∃u ∈ Lp ∀u′ ∈ Sp. Obsu = Obsu′ then
4: Sp := Sp ∪ {u}
5: Lp := (Lp ∩ {u}) ∪ {uα | α ∈ Σ}
6: end if
7: until closedness is established
8: return hypothesis for Obs(U ,D)

Example 7 (Observation tables). We are learning the coffee machine from Ex-
ample 2. Initializing Sp as {ε} and D as Σ results in the observation table in
Table 2. This observation table, however, is not closed since the row for the
prefix “button” does not match the row of ε. Extending Sp by “button” and Lp
accordingly results in the closed table shown in Table 3. From this table we can
construct the hypothesis in Figure 7. ��

5.2 Analyzing Counterexamples

As discussed in Section 4.1, every counterexample contains at least one suffix
that, when added to D, leads to a violation of the closedness of the observa-
tion table, and therefore to proper progress in the hypothesis construction. In
the previous section, we captured this effect by simply adding all suffixes of a
counterexample to D.

This section presents an optimization of this approach which adds exactly one
suffix of each counterexample to D, following the “reduced observation table”
approach from [51]. The idea is to determine the decomposition

c̄ = uαv, such that mq([u]Hαv)
= mq([uα]Hv)
guaranteed by Theorem 2 by means of binary search. See Algorithm 4 for details.

Example 8 (Binary search for suffixes). As in Example 6, let us assume that
we are learning the coffee machine from Example 2 and have produced the
hypothesis in Figure 7. An equivalence query returns

c̄ = pod water pod water button

as a counterexample. Table 1 shows all possible decompositions of the counterex-
ample. The decomposition for index 1 corresponds to the membership query for
the original counterexample. The decomposition for index 5 corresponds to the
output of hypothesis. Table 4 shows the progress of a binary search between
indices 2 and 4. For the first mid-point we get the same output as for the origi-
nal counterexample. Thus, we move right. For second mid-point we get an error
output. We would move left in the next step. Since the upper boundary becomes
smaller than the lower boundary, and since we are moving leftwards, we will
return “water button” as new suffix. ��

Introduction to Active Automata Learning from a Practical Perspective 279

Algorithm 4. Process counterexample
Input: counterexample c̄ = c̄1 . . . c̄m, hypothesis H.
Output: new suffix for D
1: oc̄ := mq(c̄)
2: // binary search
3: lower := 2, upper := m − 1
4: loop
5: mid := �(lower + upper) / 2�
6: // prepare membership query for current index
7: s := c̄1 . . . c̄mid−1, s′ := [s]H, d := c̄mid . . . c̄m

8: omid := mq(s′d)
9: if omid = oc̄ then

10: lower := mid + 1 // same as reference output: move right
11: if upper < lower then
12: // since omid = oc̄ and (provably) omid+1 = oc̄

13: return c̄mid+1 . . . c̄m

14: end if
15: else
16: upper := mid − 1 // not same as reference output: move left
17: if upper < lower then
18: // since omid = oc̄ and (provably) omid−1 = oc̄

19: return c̄mid . . . c̄m

20: end if
21: end if
22: end loop

Simply using the suffix provided by Algorithm 4 instead of all its suffixes, or
even worse, all the suffixes of the original counterexample, does already allow
to remove the factor m in the estimate of |D|. However, it comes with a defect,
which led some people to doubt its correctness: intermediate hypothesis models
may not be canonical. This has, e.g., been shown up when trying to use confor-
mance testing tools to approximate the equivalence oracle: these tools typically
require canonical models as input, which led them to fail on the non-canonical
hypothesis. Also, minimizing these hypotheses did not seem to be a proper way
out, as the minimization may, indeed, undo the achieved progress and therefore
seems to lead to a dead loop.

It turns out that this is not true. Remember that the decomposition of a
counterexample guaranteed in Theorem 2 and the subsequent extraction of a new
state does not depend on the underlying hypothesis automaton to be canonical.
Thus one can simply go ahead as usually. One should avoid to minimize the
arising hypotheses, however, as this would (partially) undo the gained progress.
A good heuristic is to simply reuse the same counterexample on the steadily
growing non-canonical hypothesis until it fails to serve as a counterexample. Of
course, canonicity is sacrificed for the intermediate hypothesis models, and can
only be guaranteed for the final result.

There is, however, a way to maintain that the intermediate hypothesis models
are canonical without impairing the complexity in terms of required membership

280 B. Steffen, F. Howar, and M. Merten

and equivalence queries. The solution is based on generalizing the notion of suffix
completeness. This is best understood by first considering the situation for suffix
closed suffix sets in more detail:

For suffix closed D, it is is easy to establish that for any two states u, u′ from
Sp with Obs(u, αv)
= Obs(u′, αv) we also have Obs([uα]H, v)
= Obs([u′α]H, v).
This property can be exploited to show that the underlying Mealy machine is
canonical by induction on the length of v. Please note, however, that after each
step uα and u′α must be replaced by the corresponding access sequence [uα]H
resp. [u′α]H in order to maintain the applicability of the induction hypothesis.

Our new notion of semantic suffix closedness aims at the pattern of the above-
mentioned property of suffix closed suffix sets:

Definition 4 (Semantic Suffix Closedness). Let H be the hypothesis model
for Obs(U ,D) : (Sp∪Lp)×D → Ω. Then D is called semantically suffix closed
for H , if for any two states u, u′ ∈ Sp and any decomposition v1v2 ∈ D of any
suffix with Obs(u, v1v2)
= Obs(u′, v1v2) we also have Obs[uv1]H
= Obs[u′v1]H .

Intuitively, semantic suffix closed means that the “duty” of the suffix v2 of v1v2

to split uv1 and u′v1 can be delegated to other members of D.
It turns out that this weaker property is already sufficient to guarantee that

H is canonical:

Theorem 5 (Semantic Suffix Closedness). Every hypothesis constructed
from an observation table with semantically suffix closed D is canonical.

Theorem 5 can be proven analogously to the case of suffix closedness. One only
has to change from an induction on the length of v to an induction on the sum
of the lengths of all the suffixes required to cover the roles of all suffixes of v1v2.

We will see that this notion allows us to select “missing” suffixes which are
guaranteed to enlarge the size of the hypothesis automaton without posing any
membership queries. Rather, when applicable, they replace equivalence queries,
and having iteratively established semantic suffix closedness, we are guaranteed
to have a canonical hypothesis. In particular, this allows us to apply standard
conformance testing tools to approximate the equivalence oracle.

Algorithm 5 provides a new suffix d ∈ D that leads to a proper refinement
of the hypothesis H whenever H is not canonical. Thus “standard” equivalence
queries need only be applied in cases when H is canonical.

It starts from a point of canonicity violation, i.e., two states, represented by
their access sequences u, u′ ∈ Sp, that can be distinguished by a suffix d ∈ D,
but which cannot be distinguished in the current topology of H (lines 5 and 6).
As u and u′ are not separated by the topology of H, there must be a prefix of
d which leads u and u′ to the same state v of H. Lines 8 to 12 determine the
shortest such prefix p. Now, by definition, the suffix of d resulting from cutting
of p is guaranteed to split v and therefore to refine H. This guarantees that with
each element added to d the hypothesis will grow by a least one state.

Introduction to Active Automata Learning from a Practical Perspective 281

Algorithm 5. Closing canonicity defects by refinement
Input: An observation table Obs(U ,D), a hypothesis H
Output: A new suffix for D or ’ok’
1: P := Partition on Sp, computed by Algorithm 1
2: if H canonical, i.e., |pi| = 1 for all pi ∈ P then
3: return ’ok’
4: end if
5: Let u = u′ ∈ pi

6: Let d = α1 . . . αm ∈ D, such that Obs(u, d) = Obs(u′, d)
7: i := 0
8: while u = u′ do
9: i := i + 1

10: u := [uαi]H
11: u′ := [u′αi]H
12: end while
13: return αi+1 . . . αm

5.3 The Resulting Algorithm

Combining the algorithms presented in the previous sections, we construct the
L∗

M learning algorithm, shown in Algorithm 6: we loop hypothesis construction
and processing of counterexamples as we did already in Section 3. For hypothesis
construction, we repeat closing the table and enforcing semantic suffix-closedness
until the table is closed and semantically suffix-closed.

The correctness of the overall algorithm follows from the same three arguments
that were used to prove Theorem 3 together with the arguments establishing the
correctness of the single steps given in the this section.

Algorithm 6. L∗
M

Input: A set of inputs Σ
Output: A Mealy machine H = 〈S, s0, Σ, Ω, δ, λ〉
1: loop
2: repeat
3: construct H by Algorithm Close table
4: check semantic suffix-closedness by Algorithm Check semantic suffix-

closedness
5: if Algorithm Check semantic suffix-closedness returns new suffix d then
6: D := D ∪ {d}
7: end if
8: until semantic suffix-closedness is established
9: c̄ := eq(H)

10: if c̄ = ’ok’ then
11: return H
12: else
13: get suffix d from c̄ by Algorithm Process counterexample
14: D := D ∪ {d}
15: end if
16: end loop

282 B. Steffen, F. Howar, and M. Merten

Theorem 6 (Correctness and Termination of L∗
M). L∗

M will learn a model
that is behaviorally equivalent to the system under learning with less than index
of ≡�SUL� equivalence queries.

Let us now consider the complexity of L∗
M . Let n denote the number of states

in the final hypothesis, i.e., the index of ≡�SUL�, k the size of the set of inputs,
and m the length of the longest counterexample.

As D is initialized with Σ and every suffix d that is added to D guarantees
a state size increase of at least one, the number of columns of the observation
table is bounded by n+k. The number of rows is bounded by kn+1: one row for
the empty word and k rows for every state. Thus the table will never have more
than n2k + k2n elements, and can therefore be filled out by means of n2k + k2n
membership queries. We also need membership queries for the processing of the
at most n counterexamples arising from the at most n equivalence queries. Using
binary search lets us estimate this number by log(m). One easily establishes that
this comprises the repetitive treatment of counterexamples until they are fully
exploited. Thus, altogether, we have:

Theorem 7 (Complexity of L∗
M). The L∗

M algorithm terminates after at most
n2k + k2n + n · log(m) membership queries and n equivalence queries.

Remark. Maintaining the output of the transitions separately, allows for start-
ing with an initially empty D and therefore reduces the number of required
membership queries to n2k + n · log(m). This optimization is rarely done, as k
is often considered to be a small constant. This will change, because even in the
already treated case studies we observed input alphabets with hundreds of sym-
bols. Some of this complexity can of course be overcome by adequate abstraction
(see also Section 6), and there are other powerful optimizations to reduce the
data structures and the number of membership queries to maintain them. Pop-
ular is the introduction of observation packs which maintain suffix sets tailored
to every state [4].

Finally, let us point out that all computation that is required on the table
and the construction of hypothesis models is polynomial in the size of the final
observation table.

5.4 Using L∗
M on the Coffee Machine Example

In this section we will apply the algorithm developed during the previous sections
to the coffee machine. Assume that the SUL we are using to learn a model of
the coffee machine equals the model from Figure 2.

We initialize the observation table by Sp = {ε}, and Lp = D = Σ. The
resulting observation table is shown in Table 2. This table, however, is not closed.
Adding “button” to the set of access sequences and extending Lp accordingly
will result in the table from Table 3.

This table is closed and we can construct a hypothesis from this table. The
words from Sp become the access sequences to the states of the hypothesis. The
transition function will be defined according to the characterization of states

Introduction to Active Automata Learning from a Practical Perspective 283

Table 2. Not yet closed observation table, first round

D
water pod button clean

Sp ε � � ✷ �

Lp
water � � ✷ �

pod � � ✷ �
button ✷ ✷ ✷ ✷

clean � � ✷ �

Table 3. Observation table, end of first round

D
water pod button clean

Sp
ε � � ✷ �

button ✷ ✷ ✷ ✷

Lp

water � � ✷ �
pod � � ✷ �

clean � � ✷ �
button · water ✷ ✷ ✷ ✷

button · pod ✷ ✷ ✷ ✷

button · button ✷ ✷ ✷ ✷

button · clean ✷ ✷ ✷ ✷

in terms of the rows of the observation table. The output function will be con-
structed from the corresponding entries in the table for prefixes from Sp and
suffixes from Σ using membership queries. The resulting hypothesis is shown in
Figure 7.

As discussed already in Example 8, an equivalence query returns

c̄ = pod water pod water button

as a counterexample. Table 1 shows all possible decompositions of the counterex-
ample. The decomposition for index 1 corresponds to the membership query for
the original counterexample. The decomposition for index 5 corresponds to the
output of hypothesis. Table 4 shows the progress of a binary search between
indices 2 and 4. For the first mid-point we get the same output as for the origi-
nal counterexample. Thus, we move right. For second mid-point we get an error

a fΣ \ {button}/�
button/�

Σ/✷

Fig. 7. H1 of the coffee machine

284 B. Steffen, F. Howar, and M. Merten

Table 4. Analysis of first counterexample

u [u]H lower mid upper 1 2 3 4 5

ε ε K
pod water pod water ε ✷

pod water ε 2 3 4 K
pod water pod ε 3+1 4 4 ✷

- 4 - 4-1

output. We would move left in the next step. Since the upper boundary becomes
smaller than the lower boundary, and since we are moving leftwards, we will
return “water button” as new suffix.

Adding “water button” to the set of suffixes will eventually result in the
observation table in Table 5 from which we can construct the second hypothesis.
The hypothesis is shown in Figure 8. Comparing the hypothesis with the minimal
model for the coffee machine from Figure 3, we see that only one state is missing
in the current hypothesis. The missing state is the state that is reached by the
access sequence “water” and that could be distinguished from the initial state
by the suffix “pod button”.

Table 5. Observation table, end of second round

D
water pod button clean water · button

Sp

ε � � ✷ � ✷

button ✷ ✷ ✷ ✷ ✷

pod � � ✷ � K
pod · water � � K � K

pod · water · button ✷ ✷ ✷ � ✷

Lp

water � � ✷ � ✷

clean � � ✷ � ✷

button · water ✷ ✷ ✷ ✷ ✷

button · pod ✷ ✷ ✷ ✷ ✷

button · button ✷ ✷ ✷ ✷ ✷

button · clean ✷ ✷ ✷ ✷ ✷

pod · pod � � ✷ � K
pod · button ✷ ✷ ✷ ✷ ✷

pod · clean � � ✷ � ✷

pod · water · water � � K � K
pod · water · pod � � K � K

pod · water · clean � � ✷ � ✷

pod · water · button · water ✷ ✷ ✷ ✷ ✷

pod · water · button · pod ✷ ✷ ✷ ✷ ✷

pod · water · button · button ✷ ✷ ✷ ✷ ✷

pod · water · button · clean � � ✷ � ✷

Introduction to Active Automata Learning from a Practical Perspective 285

a

b

d e

f

pod/�

{clean,water}/� button/�

water/�

pod/�

button/�

button/K

{water, pod}/�

clean/�

Σ \ {clean}/�

Σ/�

Fig. 8. H2 of the coffee machine

Let us assume that the second equivalence query returns

c̄ = water pod button

as a counterexample. The decomposition for index 1 corresponds to the mem-
bership query for the original counterexample. The decomposition for index 3
corresponds to the output of hypothesis. Table 6 shows the (trivial) progress of
a binary search between indices 2 and 2. For the first mid-point we get the same
output as from the hypothesis. Thus, we move left. Since the upper boundary
becomes smaller than the lower boundary, and since we are moving leftwards,
we will return “pod button” as the second new suffix.

Using this second new suffix, we can produce an observation table from which
we can construct as a hypothesis the model that is shown in Figure 3. We do not

Table 6. Analysis of second counterexample

u [u]H lower mid upper 1 2 3

ε ε K
water pod pod ✷

water ε 2 2 2 ✷

- 2 - 2-1

286 B. Steffen, F. Howar, and M. Merten

show this table here, but leave its construction as an exercise to the reader. The
next equivalence query would then return positive, indicating that we arrived at
a correct model of the systems behavior.

The final table would have 25 rows and 6 columns, which could be filled by
150 membership queries. An additional 3 + 2 = 5 membership queries were
used for the processing of counterexamples. In total, we used 155 membership
queries, which is much less than 258 queries, which is the estimate we get from
Theorem 7. Also, we used only 3 equivalence queries instead of the worst case
of 6 equivalence queries. This is typical for real systems that usually are more
“talkative” than the assumed worst case from Theorem 7.

6 Challenges in Practical Applications

In the previous sections we have developed a learning algorithm for reactive in-
put/output systems that can be modeled as Mealy machines. We have assumed a
scenario in which the learning algorithm can use membership queries and equiv-
alence queries as resources. However, in practice it will not always be obvious
how to realize the required resources on an actual SUL. In this section we will
briefly discuss challenges to be faced when using active learning in real-world
scenarios and present common solutions and approaches to these challenges.

Whereas membership queries may often be realized via testing in practice,
equivalence queries are typically unrealistic, in particular when one has to deal
with black box systems.

Equivalence queries compare a learned hypothesis model with the target
system for language equivalence and, in case of failure, return a counterexample
exposing a difference. Their realization is rather simple in simulation scenarios:
if the target system is a model, equivalence can be tested explicitly. In practice,
however, the SUL will typically be some kind of black box and equivalence queries
will have to be approximated using membership queries. Without assuming any
extra knowledge, e.g., about the number of states of the SUL (cf. Section 2.3),
such equivalence tests are in general not decidable: the possibility of having not
tested extensively enough will always remain.

Model-based testing methods [14,57] have been used to simulate equivalence
queries. If, e.g., an upper bound on the number of states the target system can
have is known, the W-method [15] or the Wp-method [20] can be applied. Both
methods have an exponential complexity (in the size of the target system and
measured in the number of membership queries needed – cf. Section 2.3). The
relationship between regular extrapolation and conformance testing methods is
discussed in [6].

If one does not have reliable extra knowledge one can build upon, one has
to resort to approximative solutions of equivalence queries, which are typically
based on membership queries. In this case, conformance testing methods may not
always be a wise choice. It has turned out that changing the view from “trying
to proof equivalence”, e.g., by using conformance testing techniques, to “finding
counterexamples fast” may drastically improve performance, in particular in the

Introduction to Active Automata Learning from a Practical Perspective 287

early learning phases. A recent attempt to intensify research in this direction
is taken by the ZULU challenge [17]. The winning solution is discussed in [28].
Key to the success here was a new approach to finding counterexamples fast,
together with a new interpretation of equivalence queries as one incremental
model construction rather than as a number of unrelated queries. In the ZULU
scenario, which considers learning of randomly generated automata just on the
basis of membership queries, this led to a surprisingly efficient realization of
equivalence queries: in average, only 3 to 4 membership queries where required.
It will be a major challenge to achieve similar success also in other learning
scenarios.

Besides the realization of equivalence queries, which are obviously problem-
atic in practice, there are a number of more hidden challenges which need to
be resolved in a practical environment. The following paragraphs discuss such
challenges according to the various characteristics of application scenarios, and
illustrate that “black does not equal black” in real-life black box scenarios:

A: Interacting with real systems
The interaction with a realistic target system comes with two problems: a
merely technical problem of establishing an adequate interface that allows
one to apply test cases for realizing membership queries, and a conceptual
problem of bridging the gap between the abstract learned model and the
concrete runtime scenario.

The first problem is rather simple for systems designed for connectivity
(e.g., web services or code libraries) which have a native concept of being in-
voked from the outside and come with documentation on how to accomplish
this. Establishing connectivity may be arbitrarily complicated, however, for,
e.g., some embedded systems which work within well-concealed environments
and are only accessible via some proprietary GUI.

The second problem is conceptually more challenging. It concerns estab-
lishing an adequate abstraction level in terms of a communication alphabet,
which on one hand leads to a useful model structure, but on the other hand
also allows for an automatic back and forth translation between the abstract
model level and the concrete target system level.

There is some recent work focusing on the use of abstraction in learning
[1,36] and even first steps in the direction of automatic abstraction refinement
[29].

B: Membership Queries
Whereas small learning experiments typically require only a few hundred
membership queries, learning realistic systems may easily require several or-
ders of magnitude more. This directly shows that the speed of the target
system when processing membership queries, or as in most practical settings
the corresponding test cases, is of utmost importance. In contrast to simu-
lation environments, which typically process several thousand of queries per
second, real systems may well need many seconds or sometimes even min-
utes per test case. In such a case, rather than parallelization, minimizing the
number of required test cases is the key to success.

288 B. Steffen, F. Howar, and M. Merten

In [28,52] optimizations are discussed to classic learning algorithms that
aim at saving membership queries in practical scenarios. Additionally, the
use of filters (exploiting domain specific expert knowledge) has been proven
as a practical solution to the problem [42].

C: Parameters and value domains
Active learning classically is based on abstract communication alphabets.
Parameters and interpreted values are only treated to an extent expressible
within the abstract alphabet. In practice, this typically is not sufficient, not
even for systems as simple as communication protocols, where, e.g., increas-
ing sequence numbers must be handled, or where authentication requires
matching user/password combinations. Due to the complexity of this prob-
lem, we do not expect any comprehensive solutions here. We rather think
that domain- and problem-specific approaches must be developed in order
to produce dedicated solutions.

First attempts to deal with parameters range from case studies with pro-
totypical solutions [1,53,27] to smaller extensions of the basic learning algo-
rithms that can deal with boolean parameters [7,8]. One big future challenge
will be extending active learning to models with state variables and arbitrary
data parameters in a general way.

D: Reset
Active learning requires membership queries to be independent. Whereas
this is no problem for simulated system, this may be quite problematic in
practice. Solutions range here from reset mechanisms via homing sequences
[51] or snapshots of the system state to the generation of independent fresh
system scenarios. Indeed, in certain situations, executing each membership
query with a separate independent user scenario may be the best one can
do. Besides the overhead of establishing these scenarios, this also requires an
adequate aggregation of the query results. E.g., the different user password
combinations of the various used scenarios must be abstractly identified.

Due to the above problems and requirements, active learning, in practice, is in-
herently neither correct nor complete, e.g., due to the lack of equivalence queries.
However, there does not seem to be a good alternative for dealing with black-box
systems, and there are some very promising experiences: already in the project
reported in [23], where the learned models had only very few states, these mod-
els helped to reorganize the corresponding test suites in order to allow a much
improved test selection. In this scenario it did not harm that learned models
were neither correct nor complete. They revealed parts that were ignored by the
existing test suites.

In the meantime, learning technology has much improved, and we are con-
fident to be able to extrapolate high quality behavioral models for specific ap-
plication scenarios, like in the case of the Connect project [35], which focuses
on connectors and protocols, i.e., on systems, where domain-specific information
can be used to support regular extrapolation. In this application domain we do
not expect any scalability problems, as we are in the meantime able to learn
systems of tens of thousands of states and millions of transitions [49].

Introduction to Active Automata Learning from a Practical Perspective 289

7 The LearnLib Framework

LearnLib [50,43] is a framework for automata learning, which includes imple-
mentations for many algorithms related to automata learning, including those
presented in this chapter.

The foundation of LearnLib is an extensive Java framework of data structures
and utilities, based on a set of interface agreements extensively covering concerns
of active learning from constructing alphabets to tethering target systems. This
supports the development of new learning components with little boilerplate
code.

The component model of the LearnLib extends into the core of the learning
algorithms, enabling application-fit tailoring of learning algorithms, at design-
as well as at runtime. In particular, it is unique in

– comprising features for addressing real-world or legacy systems, like instru-
mentation, abstraction, and resetting,

– resolving abstraction-based non-determinism by alphabet abstraction refine-
ment, which would otherwise lead to the failure of learning attempts [29],

– supporting execution and systematic experimentation and evaluation, even
including remote learning and evaluation components, and, most notably, in

– its high-level modeling approach described in the next section.

7.1 Modeling Learning Solutions

LearnLib Studio, which is based on jABC [55], our service-oriented framework
for the modeling, development, and execution of complex applications and pro-
cesses, is LearnLib’s graphical interface for designing and executing learning and
experimentation setups.

A complete learning solution is usually composed of several components,
some of which are optional: learning algorithms for various model types, system
adapters, query filters and caches, model exporters, statistical probes, abstrac-
tion providers, handlers for counterexamples etc.. Many of these components are
reusable in nature. LearnLib makes them available as easy-to-use building blocks
for the graphical composition of application-fit learning experiments.

Figure 9 illustrates the graphical modeling style typical for LearnLib Studio
along a very basic learning scenario. One easily identifies a common three phase
pattern recurring in most learning solutions: The learning process starts with
a configuration phase, where in particular the considered alphabet and the sys-
tem connector are selected, before the learner itself is created and started. The
subsequent central learning phase is characterized by the L∗-typical iterations,
which organize the test-based interrogation of the SUL. As described in detail
in the previous sections, these iterations are structured in phases of exploration,
which end with the construction of a hypothesis automaton, and the (approxi-
mate) realization of the so-called equivalence query, which in practice searches
for counterexamples separating the hypothesis automaton from the SUL. If this
search is successful, a new phase of exploration is started in order to take care

290 B. Steffen, F. Howar, and M. Merten

Fig. 9. Executable model of a simple learning experiment in LearnLib Studio

of all the consequences implied by the counterexample. Otherwise the learning
process terminates after some postprocessing in the third phase, e.g., to produce
statistical data.

Most learning experiments follow this pattern, usually enriched by application-
specific refinements. Our graphical modeling environment is designed for devel-
oping such kinds of refinements by supporting, e.g., component reuse, versioning,
optimization and evaluation.

8 Conclusions

In this chapter we have given an introduction to active learning of Mealy ma-
chines, an automata model particularly suited for modeling the behavior of
realistic reactive systems. We have tried to build on the readers intuition by
establishing links to classical automata theory, in particular concerning the min-
imization of finite automata based on Myhill/Nerode’s famous theorem [44]. We
have also discussed practical concerns, most importantly the concept of an equiv-
alence query classical active learning depends upon, but also a number of other
issues arising when trying to put learning technology into practice. All these
considerations lead into the direction of model-based testing [56,57], where ac-
cessibility of a system, system reset, and conformance are major concerns. In

Introduction to Active Automata Learning from a Practical Perspective 291

fact, model-based testing provides perhaps the best practical solution to the re-
alization of equivalence queries. In this light automata learning can be seen as a
method to overcome the central hurdle of model-based testing, the availability
of a model: being able to aggregate testing knowledge in an optimal fashion in
terms of models enables “model-based testing without requiring models”.

9 Bibliographic Notes and Further Reading

Bibliographic notes: In this chapter we have presented some basic results for
Mealy machines along with an efficient learning algorithm for Mealy machines.
We have tried to follow in presentation the style that is usually used in intro-
ductions to automata theory (cf. [26]). Especially Theorem 1 is a one-to-one
adaptation of the Myhill/Nerode theorem [44].

For the learning algorithms, these follow the general pattern introduced by
Dana Angluin [3] for deterministic finite automata. We have presented a straight-
forward adaption of this algorithm to Mealy machines in [41,45].

The simple pattern for handling counterexamples presented in Section 4.1 has
been introduced for DFA in [40]. A slightly improved version for Mealy machines
has been presented in [52]. The binary search for counterexamples was presented
in [51] for DFA.

In Section 5.2, we have introduced the concept of semantic suffix-closedness.
Our definition of semantic suffix-closedness in some respect is similar to the
concept of consistency, introduced in [3]. While consistency is used to extend
the set of suffixes by longer words, we use semantic suffix-closedness to extend
the set of suffixes by shorter words. Intuitively, we propagate information in
forward direction along transitions, while in Angluin’s L∗ it is propagated in
backward direction.

Further reading: Automata learning has grown to be a wide research area in
the past decades. Automata are widely used to represent knowledge gathered by
learning methods. Only one branch of the field is concerned with active learning
by queries (i.e., questions that the learner can ask some “teacher”). A wider
perspective on the field of automata learning is given in [38,18].

The particular queries we use are membership queries, which correspond to
a single test run on a SUL, and equivalence queries that compare a current
hypothesis model with the actual system. The first algorithm for this scenario
(called L∗) is due to Dana Angluin [3]. Using the underlying concept of query
learning a number of optimizations and akin algorithms have been proposed
[51,38], [4] gives a unifying overview.

We proved the practical relevance of automata learning in the context of the
documentation and verification of telecommunication systems [24,23]. To meet
the requirements in practical scenarios, we transferred automata learning to
Mealy machines [41]. Mealy machines are widely used models of deterministic
reactive systems and the development of new learning algorithms for Mealy
machines is still an active field of research [52,50]. In fact, Mealy machine learning
seems to dominate for practical and larger-scale applications. Examples are the

292 B. Steffen, F. Howar, and M. Merten

learning of behavioral models for Web Services [48], communication protocol
entities [11], or software components [53,49].

Recent extensions to inference methods focus on capturing further phenom-
ena that occur in real systems. On the basis of inference algorithms for Mealy
machines, inference algorithms for I/O-automata [2], timed automata [22], Petri
Nets [19], and Message Sequence Charts [12,13] have been developed. With the
I/O-automata model, the wide range of systems that comprise quiescence is made
accessible for query learning. Timed automata model explicitly time dependent
behavior. With Petri Nets, systems with explicit parallelism and distributed
states are addressed.

First extensions that use complex interface alphabets with data parameters
are presented in [7,54]. In [8] active learning is applied to systems with complex
actions with parameters over infinite domains comprising an infinite state space.

A key enabler for dealing with infinite parameter domains and real systems
is abstraction, which, however, usually is also the cause of a major problem: the
introduction of non-determinism. In [29], we introduce a method for refining a
given abstraction on the inputs to automatically regain a deterministic behavior
on-the-fly during the learning process. Thus the control over abstraction becomes
part of the learning process, with the effect that detected non-determinism does
not lead to failure, but to a dynamic alphabet abstraction refinement. Like au-
tomata learning itself, this method in general is neither sound nor complete, but
it also enjoys similar convergence properties even for infinite systems as long
as the concrete system itself behaves deterministically, as illustrated along a
concrete example.

Besides the extension of learning algorithms to cover a wider range of phe-
nomena, the application of active learning in model checking (especially in
assume-guarantee-style compositional verification) is an active field of research
[16,46,39,47]. The moderate style of exploration that is used in learning is used
here to ease the problem of state space explosion.

10 Exercises

1. The coffee machine presented in Example 1 has an error state that cannot
be overcome by conventional operations on the machine. The manufacturer’s
support hotline, however, informs that it is possible to reset the machine into
a working state by removing all expendables, disconnecting the machine from
the power grid, waiting several minutes, and then restoring power to the
machine. This procedure is called “hardreset”. How can the Mealy machine
specification from Example 2 be adapted to include this operation?

2. In Section 2.3 we have given very roughly two ideas for finding canonical
Mealy machines from runs without using partition refinement. Develop im-
plementations of both approaches and relate your ideas to Theorem 1 and
Proposition 1.

3. Algorithm 1 computes a canonical Mealy machine for an arbitrary Mealy
machine. It is based on partition refinement. One could argue that it im-
plicitly uses distinguishing suffixes. Make this usage explicit by extending

Introduction to Active Automata Learning from a Practical Perspective 293

the algorithm to construct a set of distinguishing suffixes while refining the
partition on the set of states. Can you keep the size of the suffix set below
n?

4. Complete the construction of the hypothesis begun in Fig. 5. What does the
result look like?

5. Are there other counterexamples for the hypothesis in Fig. 7 than the one
used in Example 6? If so, repeat the analysis done in Example 6 with the
counterexample you discovered.

6. The manufacturer of the coffee machine has issued an updated product that
can detect when a “clean” operation has been performed. Now, when being
in the error state, the machine will return to the initial state when perform-
ing the “clean” procedure. What updates to the tables in Section 5.4 are
necessary?

7. Elaborate the proof sketch for Theorem 5. Is semantic suffix closedness also
necessary for the canonicity of a corresponding hypothesis? Try to prove or
disprove.

8. Elaborate the proof sketch for the correctness of Algorithm 5.
9. Algorithm 5 finds a discriminating suffix without querying the SUL whenever

the hypothesis is not canonical. Give an example of a learning process in
which Algorithm 5 actually leads to an extension of the set of suffixes, and
therefore to a refinement of the hypothesis automaton.

References

1. Aarts, F., Jonsson, B., Uijen, J.: Generating Models of Infinite-State Communica-
tion Protocols Using Regular Inference with Abstraction. In: Petrenko, A., Simão,
A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer,
Heidelberg (2010)

2. Aarts, F., Vaandrager, F.: Learning I/O Automata. In: Gastin, P., Laroussinie, F.
(eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010)

3. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation 75(2), 87–106 (1987)

4. Balcázar, J.L., Dı́az, J., Gavaldà, R.: Algorithms for Learning Finite Automata
from Queries: A Unified View. In: Advances in Algorithms, Languages, and
Complexity, pp. 53–72 (1997)

5. Bennaceur, A., Blair, G.S., Chauvel, F., Georgantas, N., Grace, P., Howar, F.,
Inverardi, P., Issarny, V., Paolucci, M., Pathak, A., Spalazzese, R., Steffen, B.,
Souville, B.: Towards an Architecture for Runtime Interoperability. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 206–220. Springer, Heidel-
berg (2010)

6. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.:
On the correspondence between conformance testing and regular inference.
In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer,
Heidelberg (2005)

7. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines with param-
eters. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 107–121.
Springer, Heidelberg (2006)

294 B. Steffen, F. Howar, and M. Merten

8. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines using
domains with equality tests. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008.
LNCS, vol. 4961, pp. 317–331. Springer, Heidelberg (2008)

9. Bertolino, A., Calabro, A., Di Giandomenico, F., Nostro, N.: Dependability and
Performance Assessment of Dynamic CONNECTed Systems. Formal Methods for
Eternal Networked Software Systems. Springer, Heidelberg (2011)

10. Blair, G.S., Paolucci, M., Grace, P., Georgantas, N.: Interoperability in Complex
Distributed Systems. Formal Methods for Eternal Networked Software Systems.
Springer, Heidelberg (2011)

11. Bohlin, T., Jonsson, B.: Regular Inference for Communication Protocol Enti-
ties. Technical report, Department of Information Technology, Uppsala University,
Schweden (2009)

12. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M.: Replaying play in and play out:
Synthesis of design models from scenarios by learning. In: Grumberg, O., Huth, M.
(eds.) TACAS 2007. LNCS, vol. 4424, pp. 435–450. Springer, Heidelberg (2007)

13. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M.: smyle: A tool for synthesizing
distributed models from scenarios by learning. In: van Breugel, F., Chechik, M.
(eds.) CONCUR 2008. LNCS, vol. 5201, pp. 162–166. Springer, Heidelberg (2008)

14. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A.: Model-Based
Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)

15. Chow, T.S.: Testing Software Design Modeled by Finite-State Machines. IEEE
Trans. on Software Engineering 4(3), 178–187 (1978)

16. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

17. Combe, D., de la Higuera, C., Janodet, J.-C.: Zulu: an Interactive Learning Com-
petition. In: Yli-Jyrä, A., Kornai, A., Sakarovitch, J., Watson, B. (eds.) FSMNLP
2009. LNCS, vol. 6062, Springer, Heidelberg (2010)

18. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, New York (2010)

19. Esparza, J., Leucker, M., Schlund, M.: Learning Workflow Petri Nets. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 206–225. Springer,
Heidelberg (2010)

20. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test Se-
lection Based on Finite State Models. IEEE Trans. on Software Engineering 17(6),
591–603 (1991)

21. Grace, P., Georgantas, N., Bennaceur, A., Blair, G., Chauvel, F., Issarny, V.,
Paolucci, M., Saadi, R., Souville, B., Sykes, D.: The CONNECT Architecture.
Formal Methods for Eternal Networked Software Systems. Springer, Heidelberg
(2011)

22. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata
using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006.
LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006)

23. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated
regular extrapolation. LNCS, pp. 80–95. Springer, Heidelberg (2002)

24. Hagerer, A., Margaria, T., Niese, O., Steffen, B., Brune, G., Ide, H.-D.: Efficient
regression testing of CTI-systems: Testing a complex call-center solution. An-
nual Review of Communication, Int. Engineering Consortium (IEC) 55, 1033–1040
(2001)

25. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton.
Technical report, Stanford, CA, USA (1971)

Introduction to Active Automata Learning from a Practical Perspective 295

26. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation, 2nd edn. Addison-Wesley series in computer science.
Addison-Wesley-Longman, Amsterdam (2001)

27. Howar, F., Jonsson, B., Merten, M., Steffen, B., Cassel, S.: On Handling Data
in Automata Learning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS,
vol. 6416, pp. 221–235. Springer, Heidelberg (2010)

28. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS - Lessons Learned in the
ZULU Challenge. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415,
pp. 687–704. Springer, Heidelberg (2010)

29. Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet
abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 263–277. Springer, Heidelberg (2011)

30. Howar, F., Steffen, B., Merten, M., Margaria, T.: Practical Aspects of Active Learn-
ing. FMICS Handbook on Industrial Critical Systems. Wiley, Chichester (to ap-
pear, 2011)

31. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learn-
ing. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–
327. Springer, Heidelberg (2003)

32. Hungar, H., Steffen, B.: Behavior-based model construction. Int. J. Softw. Tools
Technol. Transf. 6(1), 4–14 (2004)

33. Inverardi, P., Spalazzese, R., Tivoli, M.: Application-layer Connector Synthesis.
Formal Methods for Eternal Networked Software Systems. Springer, Heidelberg
(2011)

34. Issarny, V., Bennaceur, A., Bromberg, Y.-D.: Middleware-layer Connector Synthe-
sis. Formal Methods for Eternal Networked Software Systems. Springer, Heidelberg
(2011)

35. Issarny, V., Steffen, B., Jonsson, B., Blair, G.S., Grace, P., Kwiatkowska, M.Z.,
Calinescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: CONNECT
Challenges: Towards Emergent Connectors for Eternal Networked Systems. In:
ICECCS, pp. 154–161 (2009)

36. Jonsson, B.: Machine Learning and Data. Formal Methods for Eternal Networked
Software Systems. Springer, Heidelberg (2011)

37. Jung, G., Margaria, T., Wagner, C., Bakera, M.: Formalizing a Methodology for
Design- and Runtime Self-Healing. In: IEEE International Workshop on Engineer-
ing of Autonomic and Autonomous Systems, pp. 106–115 (2010)

38. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

39. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-Guarantee Verifica-
tion for Probabilistic Systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 23–37. Springer, Heidelberg (2010)

40. Maler, O., Pnueli, A.: On the Learnability of Infinitary Regular Sets. Information
and Computation 118(2), 316–326 (1995)

41. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model genera-
tion for legacy reactive systems. In: HLDVT 2004: Proceedings of the Ninth IEEE
International High-Level Design Validation and Test Workshop, pp. 95–100. IEEE
Computer Society, Washington, DC (2004)

42. Margaria, T., Raffelt, H., Steffen, B.: Knowledge-based relevance filtering for
efficient system-level test-based model generation. Innovations in Systems and Soft-
ware Engineering 1(2), 147–156 (2005)

296 B. Steffen, F. Howar, and M. Merten

43. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next Generation LearnLib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011)

44. Nerode, A.: Linear Automaton Transformations. Proceedings of the American
Mathematical Society 9(4), 541–544 (1958)

45. Niese, O.: An Integrated Approach to Testing Complex Systems. PhD thesis, Uni-
versity of Dortmund, Germany (2003)

46. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer,
H.: Learning to divide and conquer: applying the L* algorithm to automate assume-
guarantee reasoning. Formal Methods in System Design 32(3), 175–205 (2008)

47. Peled, D., Vardi, M.Y., Yannakakis, M.: Black Box Checking. In: Wu, J., Chanson,
S.T., Gao, Q. (eds.) Proc. FORTE 1999, pp. 225–240. Kluwer Academic, Dordrecht
(1999)

48. Raffelt, H., Margaria, T., Steffen, B., Merten, M.: Hybrid test of web applications
with webtest. In: TAV-WEB 2008: Proceedings of the 2008 Workshop on Testing,
Analysis, and Verification of Web Services and Applications, pp. 1–7. ACM, New
York (2008)

49. Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata
learning. Int. J. Softw. Tools Technol. Transf. 11(4), 307–324 (2009)

50. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-
olating behavioral models. Int. J. Softw. Tools Technol. Transf. 11(5), 393–407
(2009)

51. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993)

52. Shahbaz, M., Groz, R.: Inferring Mealy Machines. In: Cavalcanti, A., Dams, D.R.
(eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009)

53. Shahbaz, M., Li, K., Groz, R.: Learning and Integration of Parameterized Compo-
nents Through Testing. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W.
(eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 319–334. Springer, Heidelberg
(2007)

54. Shahbaz, M., Li, K., Groz, R.: Learning Parameterized State Machine Model for In-
tegration Testing. In: Proc. 31st Annual Int. Computer Software and Applications
Conf., vol. 2, pp. 755–760. IEEE Computer Society, Washington, DC (2007)

55. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-driven
development with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 92–108. Springer, Heidelberg (2007)

56. Tretmans, J.: Model Based Testing with Labelled Transition Systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) FORTEST 2008. LNCS, vol. 4949, pp. 1–38.
Springer, Heidelberg (2008)

57. Tretmans, J.: Testing Supported by Learning. Formal Methods for Eternal
Networked Software Systems. Springer, Heidelberg (2011)

Model-Based Testing

and Some Steps towards Test-Based Modelling

Jan Tretmans1,2,�

1 Embedded Systems Institute, Eindhoven, The Netherlands
2 Radboud University, Institute for Computing and Information Sciences,

Nijmegen, The Netherlands
jan.tretmans@esi.nl

Abstract. Model-based testing is one of the promising technologies to
increase the efficiency and effectiveness of software testing. In model-
based testing, a model specifies the required behaviour of a system, and
test cases are algorithmically generated from this model. Obtaining a
valid model, however, is often difficult if the system is complex, contains
legacy or third-party components, or if documentation is incomplete.
Test-based modelling, also called automata learning, turns model-based
testing around: it aims at automatically generating a model from test
observations. This paper first gives an overview of formal, model-based
testing in general, and of model-based testing for labelled transition sys-
tem models in particular. Then the practice of model-based testing, the
difficulty of obtaining models, and the role of learning are discussed. It
is shown that model-based testing and learning are strongly related, and
that learning can be fully expressed in the concepts of model-based test-
ing. In particular, test coverage in model-based testing and precision of
learned models turn out to be two sides of the same coin.

Keywords: model-based testing, test-based modelling, automata
learning.

1 Introduction

Testing is an experimental way to check whether a (software) system does what
it should do. Experiments, i.e., test cases, are applied to check whether the
system under test (sut) behaves as expected and prescribed in its specification
and requirements documents. Systematic testing plays an important role in the
demand for improved quality of systems and software. Testing, however, is often
a manual and laborious process without effective automation, which makes it
error-prone, time consuming, and very costly. Estimates are that testing takes
30-50% of the total software development effort. This leads to the quest for more
effective and more efficient testing.

� This work has been supported by the EU FP7 under grant number ICT-214755:
Quasimodo.

M. Bernardo and V. Issarny (Eds.): SFM 2011, LNCS 6659, pp. 297–326, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

298 J. Tretmans

Model-based testing is a promising new technology that can contribute to
increasing the efficiency and effectiveness of the testing process. In model-based
testing, a model is the starting point for testing. This model expresses precisely
and completely what the sut should do, and should not do, and, consequently,
it is a good basis for systematically generating test cases. Model-based testing
makes it possible to generate an efficient set of test cases, including test oracles,
completely automatically from a model of required sut behaviour. In this way,
model-based testing allows for test automation that goes well beyond the mere
automatic execution of manually crafted test scripts, which is the current state
of practice. And if the model is valid, i.e., it expresses the system requirements
accurately, then all these algorithmically generated tests are provably valid, too.

In Sect. 2, this paper first discusses the ideas, concepts, ingredients, and re-
quirements of model-based testing in general, both informally and in a more
rigorous framework. Then Sect. 3 presents a specific theory for model-based
testing called the ioco approach, where models are expressed as labelled tran-
sition systems, and correctness of an sut with respect to its model is expressed
with the ioco-implementation relation. This approach provides a well-defined
foundation for model-based testing, and it has proved to be a good basis for
several practical model-based test generation tools and their application. Sect. 2
and 3 are mainly based on [43], and are intended to give an overview of formal,
model-based testing in general, and the ioco approach in particular.

Model-based testing starts with a model that is presumed to be correct and
valid. Obtaining or constructing a valid model, however, may be
difficult if the system is complex, if specifiers and designers do not make mod-
els, if the system includes legacy or third-party components, or if documen-
tation is missing or incomplete. The emerging area of automata learning or
test-based modelling aims at generating models automatically from observa-
tions made during testing, following a kind of black-box reverse engineering
approach [4,37,23,34,6,49,8,36,1,40,39,3]. Sect. 4 starts with discussing some prac-
tical model-based testing issues and projects, and how learning plays a role
therein although in an informal and ad-hoc way. The second part of Sect. 4 dis-
cusses learning in a more systematic way, in particular placing learning in the
context of the model-based testing framework of Sect. 2 and the ioco-test theory
of Sect. 3. Sect. 4 does not intend to give an overview of learning, nor does it
present any learning algorithms. It does discuss learning of nondeterministic sys-
tems and it considers the consequences of dropping the equivalence requirement
between learned model and teaching system, and compares this approach with
the currently prevailing Angluin-style of learning [4], such as in the learning tool
environment LearnLib [40].

Classification of Model-Based Testing. There are different kinds of model-
based testing depending on the kind of models being used, the quality aspects
being tested, the level of formality involved, and the degree of accessibility and
observability of the system being tested. In this contribution we consider model-
based testing as formal, specification-based, active, black-box, functionality testing.

Model-Based Testing and Some Steps towards Test-Based Modelling 299

It is testing, because it involves checking some properties of the sut by sys-
tematically performing experiments on the real, executing sut, as opposed to,
e.g., formal verification, where properties are checked on the level of formal de-
scriptions of the system. The kind of properties being checked are concerned
with functionality, i.e., testing whether the system correctly does what it should
do in terms of correct responses to given stimuli, as opposed to, e.g., perfor-
mance, usability, reliability, or security properties. Such classes of properties are
also referred to as quality characteristics. The testing is active, in the sense that
the tester controls and observes the sut in an active way by giving stimuli and
triggers to the sut, and observing its responses, as opposed to passive testing,
or monitoring.

The basis and starting point for testing is the specification, which prescribes
what the sut should, and should not do. The specification is given in the form of
some model of behaviour to which the behaviour of the sut must conform. This
model is assumed to be correct and valid: it is not itself the subject of testing
or validation. Moreover, the testing is black-box. The sut is seen as a black box
without internal detail, which can only be accessed and observed through its
external interfaces, as opposed to white-box testing, where the internal structure
of the sut, i.e., the code, is the basis for testing.

Finally, we deal with formal testing: the model, or specification, prescribing
the desired behaviour is given in some formal language with precisely defined
syntax and semantics. But formal testing involves more than just a formal spec-
ification. It also involves a formal definition of what a conforming sut is, a
well-defined algorithm for the generation of tests, and a correctness proof that
the generated tests are sound and exhaustive, i.e., that they exactly test what
they should test.

2 Model-Based Testing

In model-based testing there is a system under test (sut), a model that serves
as specification, and the question whether the behaviour of the sut conforms
to the behaviour expressed in the model. To check conformance test cases are
constructed from the model through test generation and selection. Test execution
and analysis of test results leads to a verdict whether the sut indeed conforms
to the model.

These ingredients of model-based testing are now discussed in general, both
informally and in a more rigorous way. The next section will elaborate these for
a particular model-based testing approach using labelled transition systems as
models and ioco as notion of conformance.

System Under Test. The system to be tested is called the system under
test (sut). The sut is a real, physical object, such as a piece of hardware, a
computer program with all its libraries running on a particular processor, an
embedded system consisting of software embedded in some physical device, or a
process control system with sensors and actuators. The sut is treated as a black

300 J. Tretmans

i fails Ts

test

imp
generation

i ∈ MOD

execution

implementation

specification
s ∈ SPEC

test cases

Ts ⊆ TEST

test

i passes Ts

Fig. 1. The process of model-based testing

box exhibiting behaviour. A tester can only control and observe the sut via its
external interfaces, where stimuli and inputs can be provided and responses and
outputs are observed. Identifying these test interfaces of the sut, in terms of,
e.g., ports, programming interfaces, message exchanges, or communication lines,
is an important first step for (model-based) testing. The occurrence of input and
output actions on these interfaces, together with their inter-dependencies and
ordering, constitutes the behaviour of the sut. It is this behaviour of the sut
that will be tested.

Model. The second main ingredient for model-based testing is the specification
model. The model specifies which behaviours are allowed and which are forbid-
den. In our formal, model-based testing approach the model is expressed in some
formal language, i.e., a language with a formal syntax and semantics. Let this
language, i.e., the set of all valid expressions in this language, be denoted by
SPEC , then a specification model s is an element of this language: s ∈ SPEC .

Conformance. The goal of model-based testing is to check whether the actual
behaviour of the sut conforms to the behaviour expressed in the model. To
relate an sut to a model, the first, static step is to map the real interfaces,
inputs, and outputs of the sut, to their abstract descriptions in the model, e.g.,
to map the concrete socket connection 〈192.168.1.1, 7890〉 to the abstract port p
used in the model, and to map the concrete message with bit pattern 01010101
to the abstract message Init.

The second, dynamic step of relating a model to an sut is stating pre-
cisely when an sut correctly implements the behaviour described in a model

Model-Based Testing and Some Steps towards Test-Based Modelling 301

s ∈ SPEC . An implementation relation, or conformance relation, defines the
conditions under which the behaviour of an sut complies with the behaviour
prescribed in s. Such a relation is necessary because s in itself does not com-
pletely define which sut behaviours are correct, e.g., whether the sut may or
must implement all behaviours described in s.

An implementation relation typically answers such questions, but, if we want
to define such a formal implementation relation between suts and specifications,
we encounter a problem. Whereas a specification s is a formal object taken from
the formal domain SPEC , an sut is not amenable to formal reasoning. An sut
is not a formal object: it is a real, physical thing, existing in the world of material
objects, on which only experiments and tests can be performed.

In order to formally reason about suts we do a little trick: we make the
assumption that any real sut can be modelled by some formal object iSUT in a
domain of models MOD . The domain MOD is a-priori chosen, may be different
from SPEC , and is referred to as the universe of implementation models. This
assumption is commonly referred to as the test assumption or test hypothesis
[7,20]. Note that the test assumption presupposes a particular domain of models
MOD , and that it is only assumed that a valid model iSUT of the sut exists in
this domain, but not that this model iSUT is a-priori known.

Thus, the test assumption allows reasoning about suts as if they were formal
objects in MOD . This is what we will do from now on, and we call such a formal
sut model an implementation. Consequently, conformance is expressed by a
formal relation between implementations and specifications, and that relation
is called the implementation relation denoted by imp ⊆ MOD × SPEC . An
implementation i ∈ MOD is said to be correct with respect to s ∈ SPEC if
i imp s. Implementation relations for labelled transition systems are further
discussed in Sect. 3.

Test Cases. A test case specifies the experiment that is performed on the sut.
It specifies the inputs, or stimuli, to be supplied to the sut, the outputs, or
responses, expected from the sut, and the ordering of these inputs and outputs.
Formally, we assume a domain of test cases TEST from which test cases are
taken.

Test Execution and Analysis. We use the term test execution for applying a
test case to an sut, resulting in some observations. To execute a test case, the ab-
stract actions of the test casemust invoke the concrete interfaces of the sut, and the
concrete observationsmade on the sutmust be interpreted in terms of the abstract
test case actions. This is called adaptation, and the component in the test execution
environment taking care of this is usually called the adapter. Formally, the process
of executing a test case t ∈ TEST against an sut is denoted by exec(t, sut).

During test execution a number of observations is made, e.g., occurring events
will be logged, or the response of the implementation to a particular stimulus will
be recorded. Let there be a domain of observations OBS , then test execution, due
to possible nondeterminism, leads to a set of observations: exec(t, sut) ⊆ OBS .

Test execution exec(t, sut) is not a formal concept but corresponds to the
physical execution of a test case. This process is lifted to the level of formal

302 J. Tretmans

models by introducing an observation function obs : TEST ×MOD → P(OBS)
(where P(OBS) denotes the power set of OBS , i.e., the set of all subsets of
OBS). So, obs(t, iSUT) is a formal expression modelling the real test execution
exec(t, sut). In the context of an observational framework consisting of TEST ,
OBS , exec, and obs , the test assumption can be expressed in a more precise
way:

∀sut ∃iSUT ∈ MOD ∀t ∈ TEST : exec(t, sut) = obs(t, iSUT) (1)

This could be paraphrased as follows: for all real suts that we are testing, it is
assumed that there is a model iSUT, such that if we would put the sut and the
model iSUT in black boxes and would perform all possible experiments in TEST
on both, then we would not be able to distinguish between the real sut and the
model iSUT. Actually, this notion of testing is analogous to the ideas underlying
testing equivalences [15,14].

In testing, a verdict is assigned based on the observations: νt : P(OBS) →
{fail,pass}, which allows to introduce the following abbreviation:

sut passes t ⇔def νt(exec(t, sut)) = pass (2)

This is straightforwardly extended to a test suite T ⊆ TEST , and moreover a
test suite fails if it does not pass:

sut passes T ⇔def ∀t ∈ T : sut passes t (3)
sut fails T ⇔def ∃t ∈ T : sut /passes t (4)

Test Generation. The main gain of model-based testing is the systematic,
algorithmic generation of test suites from a specification model for a given im-
plementation relation: gen imp : SPEC → P(TEST),

The generated test cases should exactly detect those behaviours that are not
correct with respect to the specification model and the implementation relation.
A test suite is sound if all correct suts pass, i.e., there are no false alarms. The
other way around, if no erroneous sut passes a test suite, the test suite is called
exhaustive, i.e., all possible failures are detected. For a specification s, a test
suite T , and an implementation relation imp:

T is sound ⇔def ∀i ∈ MOD : i imp s implies i passes T (5)
T is exhaustive ⇔def ∀i ∈ MOD : i imp s if i passes T (6)

Soundness is minimal requirement for test suites. Exhaustive test suites do not
exist in practice, because detecting all potential faults in an sut would require
an infinite number of infinitely long test cases: “Program testing can be used
to show the presence of bugs, but never to show their absence!” [16]. Yet, for
reasoning about model-based test generation algorithms, both soundness and
exhaustiveness are important concepts. A theoretically exhaustive test genera-
tion algorithm will eventually detect all possible errors if the time of testing is
unbounded. Practically, this means that every error has a non-zero probability
of being detected, i.e., there are no errors that are fully undetectable.

Model-Based Testing and Some Steps towards Test-Based Modelling 303

Conformance Testing. Conformance testing involves assessing, by means of
testing, whether an implementation conforms to its specification. Hence, the
notions of conformance, expressed by imp, and of test execution, expressed
by passes, have to be linked in such a way that test execution is a (semi-)
decision procedure for conformance. This can indeed be achieved if soundness
and exhaustiveness are proved on models:

∀i ∈ MOD : i imp s iff ∀t ∈ T : νt(obs(t, i)) = pass (7)

Once (7) has been shown it follows that

sut passes T
iff (∗ definition passes T ∗)
∀t ∈ T : sut passes t

iff (∗ definition passes t ∗)
∀t ∈ T : νt(exec(t, sut)) = pass

iff (∗ test assumption (1) ∗)
∀t ∈ T : νt(obs(t, iSUT)) = pass

iff (∗ soundness and exhaustiveness on models (7) ∗)
iSUT imp s

iff sut conforms to s

Thus, testing is indeed a decision procedure for imp-conformance if the test
assumption (1) and (7) hold. In case of test generation gen imp : SPEC →
P(TEST) the proof obligation shall hold for any s ∈ SPEC :

∀s ∈ SPEC ∀i ∈ MOD : i imp s iff i passes gen imp(s) (8)

Test Selection. A sound and exhaustive test generation algorithm can generate
many more test cases than can ever be executed. Even testing the addition of
two 32-bit integers, which could easily be automated by writing a test generation
algorithm that enumerates all 232 × 232 = 1.8 1019 possible test cases, would
require 584,542 years of test execution if one test case would take 1 μsec.

Practical test generation algorithms use test selection criteria to generate a
feasible and executable selection of sound, but not exhaustive test cases. The aim
is to select test cases in such a way that they provide a high chance of detecting
failures, and give confidence that an sut that passes is indeed conforming, within
given constraints of testing time and effort.

Selection criteria, also referred to as test adequacy criteria, are based on
heuristics, experience, gut feeling, and expert domain knowledge, so human in-
fluence is prominent. General selection criteria for model-based testing express
when a model is considered sufficiently covered by test cases. Examples are
state- and transition coverage for state-based models, and condition coverage
for guarded-command specifications. Selection criteria may also be specific for a
particular model or domain, such as a domain expert having knowledge about
particular critical behaviours.

304 J. Tretmans

PT

Cs FT

s′ ∈ SPEC

s

PT

Cs

MOD

s ∈ SPEC

MOD

FT

Fig. 2. Test selection as a subset of MOD

Test selection is an important yet difficult topic, with various approaches, see,
for example, the use of test purposes [26,48], the use of metrics [13,18], approx-
imate analysis [27], and coverage analysis [22]. We elaborate here a bit on an
approach in which test selection is considered as a measure-theoretic question on
the domain of implementations MOD [10,9]; this approach will be reconsidered
in the context of learning in Sect. 4.

In Fig. 2, left-hand side, MOD is represented together with a specification
s ∈ SPEC . The specification s partitions MOD into conforming implementations
Cs = {m | m imp s} and nonconforming ones MOD\Cs. A test suite T ⊆ TEST
partitions MOD into passing implementations PT = {m | m passes T } and
failing ones FT = MOD\PT . Ideally, the test suite T for s is sound and exhaustive
so that Cs and PT coincide and all and only nonconforming implementations are
detected by T . In practice, however, test suites are only sound, Cs � PT , so that
they detect only but not all nonconforming implementations. There is an area
of nonconforming yet passing implementations PT \Cs. Test selection aims at
minimizing this area, or equivalently, optimizing the area FT . The area FT is a
measure for the level of exhaustiveness of a sound test suite.

Suppose we have a monotonic, with ⊆-increasing measure on MOD :
μ : P(MOD)→ IR≥0, then the coverage of a test suite T is expressed by

μ(FT)
μ(MOD\Cs)

i.e., the value of detected erroneous implementations normalized with respect to
all erroneous implementations. If there is also a function cost : P(TEST)→ IR≥0

expressing the cost and effort of executing test suite T , then test selection is the
optimization problem of choosing T such that the coverage is maximized and the
cost is minimized. In practice, this will often amount to optimizing the coverage
within given constraints on cost.

Model-Based Testing and Some Steps towards Test-Based Modelling 305

Another way of looking at the above view on test selection is depicted in the
right-hand side of Fig. 2. The selected test suite T is a sound and exhaustive test
suite for some other, weaker specification s′, i.e., PT = Cs′ . Test selection can be
cast into the specification domain as a transformation of s into s′. A sound and
exhaustive test suite is then generated from s′, which is a weaker specification
in the sense that s′ allows more conforming implementations. Suppose we can
define a distance function on specifications then exhaustiveness and test selection
can be quantified in the specification domain, and corresponds to minimizing the
distance between s and s′ constraint by maximum admissible test cost [18].

Conclusion. For reasoning about formal, model-based testing we need a formal
specification language SPEC , a domain of models of implementations MOD , an
implementation relation imp ⊆ MOD × SPEC expressing correctness, a do-
main of test cases TEST , a test execution procedure passes ⊆ MOD × TEST
expressing when a model of an implementation passes a test case, a test gen-
eration algorithm gen imp : SPEC → P(TEST), a proof that a model of an
implementation passes a generated test suite if and only if it is imp-correct, and
the test assumption that any sut can be modelled by a model in MOD . Then
model-based testing is a decision procedure for imp-conformance. Yet, practi-
cal test suites are sound but not exhaustive so that test selection is necessary.
Test selection quantifies the level of exhaustiveness by test coverage, and then
optimizes test coverage against test cost.

The next section will elaborate most of these concepts for the formalism of
labelled transition systems and the ioco-implementation relation. This means
that we will use (variants of) labelled transition systems for SPEC , MOD , and
TEST , that conformance is expressed as the relation ioco on labelled transition
systems, that test execution of a labelled transition system with an implementa-
tion is defined, and that a test generation algorithm is presented that is proved
to generate sound and exhaustive test suites.

Also other elaborations for other kinds of formal models are possible, e.g.,
Finite State Machines (FSM, Mealy Machines) [38], Abstract Data Types [20],
object oriented formalisms [12], or (mathematical) functions [29].

In Sect. 4 we will use the formalizations in this section to relate model-based
testing to test-based modelling, also called learning.

3 Model-Based Testing for Labelled Transition Systems

This section presents an overview of the formal test theory for labelled transition
systems using the ioco-conformance relation; see [41,43] for a more elaborate
treatment.

Models. In the ioco-test theory, specification models, implementations, and
test cases are all expressed as labelled transition systems.

Definition 1. A labelled transition system with inputs and outputs is a 5-
tuple 〈Q, LI , LU , T, q0〉 where Q is a countable, non-empty set of states; LI is a

306 J. Tretmans

countable set of input labels; LU is a countable set of output labels, such that
LI ∩LU = ∅; T ⊆ Q× (LI ∪LU ∪ {τ})×Q, with τ /∈ LI ∪LU , is the transition
relation; and q0 ∈ Q is the initial state.

The labels in LI and LU represent the inputs and outputs, respectively, of a
system, i.e., the system’s possible interactions with its environment. (The ‘U’
refers to ‘uitvoer’, the Dutch word for ‘output’, which is preferred for historical
reasons, and to avoid confusion between LO (letter ‘O’) and L0 (digit zero)).
Inputs are usually decorated with ‘?’ and outputs with ‘!’. We use L = LI ∪ LU

when we abstract from the distinction between inputs and outputs.
The execution of an action is modelled as a transition: (q, μ, q′) ∈ T expresses

that the system, when in state q, may perform action μ, and go to state q′ . This is
more elegantly denoted as q μ−−→ q′. Transitions can be composed: q μ−−→ q′ μ′−−→ q′′,
which is written as q μ·μ′−−−→ q′′.

Internal transitions are labelled by the special action τ (τ /∈ L), which is
assumed to be unobservable for the system’s environment. Consequently, the
observable behaviour of a system is captured by the system’s ability to perform
sequences of observable actions. Such a sequence of observable actions, say σ, is
obtained from a sequence of actions under abstraction from the internal action
τ , and it is denoted by σ=⇒ . If, for example, q a·τ ·τ ·b·c·τ−−−−−−−→ q′ (a, b, c ∈ L), then
we write q

a·b·c===⇒ q′ for the τ -abstracted sequence of observable actions. We say
that q is able to perform the trace a·b·c ∈ L∗. Here, the set of all finite sequences
over L is denoted by L∗, with ε denoting the empty sequence. If σ1, σ2 ∈ L∗

are finite sequences, then σ1·σ2 is the concatenation of σ1 and σ2. Some more,
standard notations and definitions are given in Definitions 2 and 3.

Definition 2. Let p = 〈Q, LI , LU , T, q0〉 be a labelled transition system with
q, q′ ∈ Q, μ, μi ∈ L ∪ {τ}, a, ai ∈ L, and σ ∈ L∗.

q μ−−→ q′ ⇔def (q, μ, q′) ∈ T
q μ1·...·μn−−−−−−→ q′ ⇔def ∃q0, . . . , qn : q = q0

μ1−−→ q1
μ2−−→ . . . μn−−→ qn = q′

q μ1·...·μn−−−−−−→ ⇔def ∃q′ : q μ1·...·μn−−−−−−→ q′

q
μ1·...·μn−−−−−−−→/ ⇔def not ∃q′ : q μ1·...·μn−−−−−−→ q′

q
ε=⇒ q′ ⇔def q = q′ or q τ ·...·τ−−−−→ q′

q
a=⇒ q′ ⇔def ∃q1, q2 : q

ε=⇒ q1
a−→ q2

ε=⇒ q′

q
a1·...·an======⇒ q′ ⇔def ∃q0 . . . qn : q = q0

a1==⇒ q1
a2==⇒ . . .

an==⇒ qn = q′

q
σ=⇒ ⇔def ∃q′ : q

σ=⇒ q′

q
σ

=
⇒ ⇔def not ∃q′ : q
σ=⇒ q′

In our reasoning about labelled transition systems we will not always distinguish
between a transition system and its initial state. If p = 〈Q, LI , LU , T, q0〉, we will
identify the process p with its initial state q0, and, e.g., we write p

σ=⇒ instead
of q0

σ=⇒ .

Definition 3. Let p be a (state of a) labelled transition system, P a set of states,
A ⊆ L a set of labels, and σ ∈ L∗.

Model-Based Testing and Some Steps towards Test-Based Modelling 307

1. traces(p) =def { σ ∈ L∗ | p σ=⇒ }
2. p after σ =def { p′ | p σ=⇒ p′ }
3. P after σ =def

⋃ { p after σ | p ∈ P }
4. P refuses A =def ∃p ∈ P, ∀μ ∈ A ∪ {τ} : p

μ−−→/
The class of labelled transition systems with inputs in LI and outputs in LU is
denoted as LTS(LI , LU). For technical reasons we restrict this class to strongly
converging and image finite systems. Strong convergence means that infinite
sequences of τ -actions are not allowed to occur. Image finiteness means that the
number of non-deterministically reachable states shall be finite, i.e., for any σ,
p after σ shall be finite.

Representing Labelled Transition Systems. To represent labelled transi-
tion systems we use either graphs (as in Fig. 3), or expressions in a process-
algebraic-like language with the following syntax:

B ::= a ; B | i ; B | Σ B | B |[G]| B | P

Expressions in this language are called behaviour expressions, and they define
labelled transition systems following the axioms and rules given in Table 1.

Table 1. Structural operational semantics

a ;B a−→ B i ;B τ−→ B
B

μ−→ B′

Σ B μ−→ B′ B ∈ B, μ ∈ L ∪ {τ}

B1
μ−→ B′

1

B1 |[G]|B2
μ−→B′

1 |[G]|B2

B2
μ−→ B′

2

B1 |[G]|B2
μ−→B1 |[G]|B′

2

μ ∈ (L∪{τ})\G

B1
a−→ B′

1, B2
a−→ B′

2

B1 |[G]|B2
a−→B′

1 |[G]|B′
2

a ∈ G
BP

μ−→ B′

P
μ−→ B′ P := BP , μ ∈ L∪{τ}

In that table, a ∈ L is a label, B is a behaviour expression, B is a countable set
of behaviour expressions, G ⊆ L is a set of labels, and P is a process name, which
must be linked to a named behaviour expression by a process definition of the
form P := BP . In addition, we use B1 � B2 as an abbreviation for Σ{B1, B2} ,
stop to denote Σ ∅ , ‖ as an abbreviation for |[L]| , i.e., synchronization on
all observable actions, and ||| as an abbreviation for |[∅]| , i.e., full interleaving
without synchronization.

Input-Output Transition Systems. In the ioco-test theory a specification is
a labelled transition system in LTS(LI , LU). In order to formally reason about
an sut the assumption is made that the sut behaves as if it were some kind of
behavioural, formal model. This assumption is referred to as the test assumption

308 J. Tretmans

or test hypothesis, and this model is called an implementation; see Sect. 2. In
the ioco-test theory the test assumption is that an sut behaves as if it were a
labelled transition system that is always able to perform any input action, i.e.,
all inputs are enabled in all states. Such a system is defined as an input-output
transition system. The class of such input-output transition systems is denoted
by IOTS(LI , LU) ⊆ LTS(LI , LU).

Definition 4. An input-output transition system is a labelled transition system
with inputs and outputs 〈Q, LI , LU , T, q0〉 where all input actions are enabled in
any reachable state: ∀σ, q : q0

σ=⇒ q implies ∀a ∈ LI : q
a=⇒

A state of a system where no outputs or internal actions are enabled, and con-
sequently the system is forced to wait until its environment provides an input,
is called suspended, or quiescent. An observer looking at a quiescent system does
not see any outputs. This particular observation of seeing nothing can itself be
considered as an event, which is denoted by δ (δ /∈ L ∪ {τ}); p δ−→ p expresses
that p allows the observation of quiescence. Also these transitions can be com-
posed, e.g., p

δ·?a·δ·?b·!x========⇒ expresses that initially p is quiescent, i.e., does not
produce outputs, but p does accept input action ?a, after which there are again
no outputs; when then input ?b is performed, the output !x is produced. We use
Lδ for L ∪ {δ}, and traces that may contain the quiescence action δ are called
suspension traces.

Definition 5. Let p = 〈Q, LI , LU , T, q0〉 ∈ LTS(LI , LU).

1. A state q of p is quiescent, denoted by δ(q), if ∀μ ∈ LU ∪ {τ} : q
μ−−→/

2. pδ =def 〈 Q, LI , LU ∪ {δ}, T ∪ Tδ, q0 〉,
with Tδ =def { q δ−→ q | q ∈ Q, δ(q) }

3. The suspension traces of p are Straces(p) =def { σ ∈ L∗
δ | pδ

σ=⇒ }
From now on we will usually include δ-transitions in the transition relations, i.e.,
we consider pδ instead of p, unless otherwise indicated. Definitions 2 and 3 also
apply to transition systems with label set Lδ.

The Implementation Relation ioco. An implementation relation is intended
to precisely define when an implementation is correct with respect to a speci-
fication. We use the implementation relation ioco, which is abbreviated from
input-output conformance. Informally, an implementation i ∈ IOTS(LI , LU)
is ioco-conforming to specification s ∈ LTS(LI , LU) if any experiment derived
from s and executed on i leads to an output (including quiescence) from i that
is foreseen by s. We define ioco as a special case of the more general class of
relations iocoF , where F ⊆ L∗

δ is a set of suspension traces, which typically
depends on the specification s.

Definition 6. Let q be a state in a transition system, Q be a set of states,
i ∈ IOTS(LI , LU), s ∈ LTS(LI , LU), and F ⊆ L∗

δ, then

Model-Based Testing and Some Steps towards Test-Based Modelling 309

!liq

?but

k1

?but

k2 k3

!liq

?but

!choc

?but
l0

l1

l3

l2

l4

l5

!liq

?but

?but

?but

!choc

?but

?but
?but

Fig. 3. Example labelled transition systems

1. out(q) =def { x ∈ LU | q x−−→ } ∪ { δ | δ(q) }
2. out(Q) =def

⋃ { out(q) | q ∈ Q }
3. i iocoF s ⇔def ∀σ ∈ F : out(i after σ) ⊆ out(s after σ)
4. i ioco s ⇔def i iocoStraces(s) s

Example 1. Figure 3 presents three examples of labelled transition systems mod-
elling candy machines. There is an input action for pushing a button ?but , and
there are outputs for obtaining chocolate !choc and liquorice !liq : LI = {?but}
and LU = {!liq , !choc}.

Since k1, k2 ∈ IOTS(LI , LU) they can be both specifications and implemen-
tations; k3 is not input-enabled, and can only be a specification. We have that
out(k1 after ?but) = {!liq} ⊆ {!liq , !choc} = out(k2 after ?but); so we get now
k1 ioco k2, but k2 /ioco k1. For k3 we have out(k3 after ?but) = {!liq , δ} since
δ(l2), and out(k3 after ?but ·?but) = {!choc}, so both k1, k2 /ioco k3.

The importance of having suspension actions δ in the set F over which
ioco quantifies is illustrated in Fig. 4. It holds that out(r1 after ?but ·?but) =
out(r2 after ?but ·?but) = {!liq, !choc}, but we have out(r1 after ?but ·δ·?but) =
{!liq , !choc} ⊃ {!choc} = out(r2 after ?but ·δ·?but). So, without δ in these traces
r1 and r2 would be considered implementations of each other in both directions,
whereas with δ, r2 ioco r1 but r1 /ioco r2.

Underspecification and the Implementation Relation uioco. The imple-
mentation relation ioco allows to have partial specifications. A partial specifi-
cation does not specify the required behaviour of the implementation after all
possible traces. This corresponds to the fact that specifications may be non-
input enabled, and inclusion of out -sets is only required for suspension traces
that explicitly occur in the specification. Traces that do not explicitly occur are
called underspecified. There are different ways of dealing with underspecified
traces. The relation uioco does it in a slightly different manner than ioco. For
the rationale consider Example 2.

Example 2. Consider k3 of Fig. 3 as a specification. Since k3 is not input-enabled,
it is a partial specification. For example, ?but ·?but ·?but is an underspecified

310 J. Tretmans

trace, and any implementation behaviour is allowed after it. On the other hand,
?but is clearly specified; the allowed outputs after it are !liq and δ. For the trace
?but ·?but the situation is less clear. According to ioco the expected output after
?but ·?but is out(k3 after ?but ·?but) = {!choc}. But suppose that in the first
?but-transition k3 moves nondeterministically to state l1 (the left branch) then
one might argue that the second ?but-transition is underspecified, and that,
consequently, any possible behaviour is allowed in an implementation. This is
exactly where ioco and uioco differ: ioco postulates that ?but ·?but is not an
underspecified trace, because there exists a state where it is specified, whereas
uioco states that ?but ·?but is underspecified, because there exists a state where
it is underspecified.

Formally, ioco quantifies over F = Straces(s), which are all possible suspension
traces of the specification s. The relation uioco quantifies over F = Utraces(s) ⊆
Straces(s), which are the suspension traces without the possibly underspecified
traces, i.e., all suspension traces σ of s for which it is not possible that a prefix
σ1 of σ (σ = σ1·a·σ2) leads to a state of s where the remainder a·σ2 of σ is
underspecified, that is, a is refused.

Definition 7. Let i ∈ IOTS(LI , LU), and s ∈ LTS(LI , LU).

1. Utraces(s) =def { σ ∈ Straces(s) | ∀σ1, σ2 ∈ L∗
δ , a ∈ LI :

σ = σ1·a·σ2 implies not s after σ1 refuses {a} }
2. i uioco s ⇔def i iocoUtraces(s) s

Example 3. Because Utraces(s) ⊆ Straces(s) it is evident that uioco is not
stronger than ioco. That it is strictly weaker follows from the following example.
Take k3 in Fig. 3 as a (partial) specification, and consider r1 and r2 from Fig. 4
as implementations. Then r2 /ioco k3 because !liq ∈ out(r2 after ?but ·?but) and
!liq /∈ out(k3 after ?but ·?but). But r2 uioco k3 because we have ?but ·?but /∈
Utraces(k3). Also r1 /ioco k3, but in this case also r1 /uioco k3. The reason for
this is that we have ?but ·δ·?but ∈ Utraces(k3), !liq ∈ out(r1 after ?but ·δ·?but)
and !liq /∈ out(k3 after ?but ·δ·?but).

!liq

?but

r1

?but

?but

?but

?but

!choc

?but
?but

!liq

?but
!liq

r2

!choc

?but

?but

?but

?but

?but

?but

?but

/ioco

ioco

Fig. 4. More labelled transition systems

Model-Based Testing and Some Steps towards Test-Based Modelling 311

Test Cases. For the generation of test cases from labelled transition system
specifications, which can test suts that behave as input-output transition sys-
tems, we must first define what test cases are. Then we discuss what test execu-
tion is, and what it means to pass a test. A test generation algorithm is given,
and soundness and exhaustiveness are discussed.

A test case is a specification of the behaviour of a tester in an experiment
carried out on an sut. The behaviour of such a tester is also modelled as a
special kind of input-output transition system, but, naturally, with inputs and
outputs exchanged. Consequently, input-enabledness of a test case means that
all actions in LU (i.e., the set of outputs of the implementation) are enabled. For
observing quiescence we add a special label θ to the transition systems modelling
tests (θ /∈ L).

Definition 8. A test case t for an implementation with inputs LI and outputs
LU is an input-output transition system 〈Q, LU , LI∪{θ}, T, q0〉 ∈ IOTS(LU , LI∪
{θ}) generated following the next fragment of the syntax for behaviour expres-
sions, where pass and fail are process names:

t ::= pass
| fail
| Σ { x ; t | x ∈ LU ∪ {a} } for some a ∈ LI

| Σ { x ; t | x ∈ LU ∪ {θ} }
where pass := Σ { x ; pass | x ∈ LU ∪ {θ} }

fail := Σ { x ; fail | x ∈ LU ∪ {θ} }

The class of test cases for implementations with inputs LI and outputs LU is de-
noted as T TS(LU , LI). A set of test cases is called a test suite T ⊆ T TS(LU , LI).

Test Execution. Test cases are run by putting them in parallel with the im-
plementation, where inputs of the test case synchronize with the outputs of
the implementation, and vice versa. Basically, this can be modelled using the
behaviour-expression operator ‖ . Since, however, we added the special label θ
to test cases to test for quiescence, this operator has to be extended a bit, and
is then denoted as �| .

Because of nondeterminism in implementations, it may be the case that testing
the same implementation with the same test case leads to different test runs.
Test execution consists of performing all possible test runs. Each test run leads to
an observation which is the trace executed until a pass- or fail-state is reached.
Thus, test execution leads to a set of observations. An implementation passes a
test case if and only if all its test runs lead to a pass verdict of the test case. All
this is reflected in the following definition.

Definition 9. Let t ∈ T TS(LU , LI) and i ∈ IOTS(LI , LU).

1. Running a test case t with an implementation i is expressed by the parallel

operator �| : T TS(LU , LI) × IOTS(LI , LU) → LTS(LI ∪ LU ∪ {δ}) which

312 J. Tretmans

is defined by the following inference rules:

i
τ−→ i′

t�| i τ−→ t�| i′
t

a−→ t′, i
a−→ i′

t�| i a−→ t′�| i′ a ∈ LI ∪ LU
t

θ−→ t′, i
δ−→

t�| i δ−→ t′�| i
2. An observation of a test run of t with i is a trace of t�| i leading to one of

the states pass or fail of t:

obs(t, i) =def { σ ∈ L∗
δ | ∃i′ : t�| i σ=⇒pass�| i′ or t�| i σ=⇒ fail�| i′ }

3. Implementation i passes test case t if all observations go to the pass-state
of t:

i passes t ⇔def ∀σ ∈ obs(t, i) ∃i′ : t�| i σ=⇒pass�| i′

4. An implementation i passes a test suite T if it passes all test cases in T :

i passes T ⇔def ∀t ∈ T : i passes t

If i does not pass a test case or a test suite, it fails.

!liq

fail failθ

fail failfail fail

fail

θ

t1

!choc

!liq
!choc

!liq !choc

?but !liq !choc

?but

pass

θ

fail pass fail

t51

t31

t21

t41

t61
!choc!liq

t71

Fig. 5. A test case

Test Generation. Now all ingredients are there to present an algorithm to
generate test cases from a labelled transition system specification, which test
implementations for ioco-correctness.

Algorithm 1. Let s ∈ LTS(LI , LU) be a specification, and let S be a set of
states with initially S = s after ε .

A test case t ∈ T TS(LU , LI) is obtained from a non-empty set of states S by
a finite number of recursive applications of one of the following three nondeter-
ministic choices:

Model-Based Testing and Some Steps towards Test-Based Modelling 313

1.

LU ∪ θ

pass

t := pass

2.

failfail

xi ∈ out(S)

xj �∈ out(S)

ta txi

xj

tx1

xi

a

t := a ; ta
� Σ { xj ; fail | xj ∈ LU , xj
∈ out(S) }
� Σ { xi ; txi | xi ∈ LU , xi ∈ out(S) }

where a ∈ LI such that S after a
= ∅, ta is obtained by recursively
applying the algorithm for the set of states S after a , and for each xi ∈
out(S), txi is obtained by recursively applying the algorithm for the set of
states S after xi .

3.

θ

xi ∈ out(S)

fail

xj �∈ out(S)

fail

tx1 txi tθ

xjxi

t := Σ { xj ; fail | xj ∈ LU , xj
∈ out(S) }
� Σ { θ ; fail | δ
∈ out(S) }
� Σ { xi ; txi | xi ∈ LU , xi ∈ out(S) }
� Σ { θ ; tθ | δ ∈ out(S) }

where for each xi ∈ out(S), txi is obtained by recursively applying the al-
gorithm for the set of states S after xi , and tθ is obtained by recursively
applying the algorithm for the set of states S after δ .

Algorithm 1 generates a test case from a set of states S. This set represents the set
of all possible states in which the specification can be at the given stage of the test

314 J. Tretmans

case generation. Initially S = s after ε = q0 after ε , so that the first transition
of the test case is derived from the initial state(s) of the specification. Then the
remaining part of the test case is recursively derived from the specification states
reachable from the initial states via this first test case transition.

The algorithm is nondeterministic in the sense that in each recursive step it
can be continued in three different ways. Each choice results in another, valid
test case:

choice 1: The test case can be terminated by ending the recursion with the
single-state test case pass, which is always a sound test case.

choice 2: The test case can continue with supplying an input a ∈ LI allowed
by the specification (S after a
= ∅). After action a the test case continues
as ta, which is obtained by recursive application of the algorithm with the
set of states S after a . Moreover, t is prepared to accept any output of the
sut (not quiescence) that might occur before a is supplied. Analogous to ta,
each txi is obtained from S after xi .

choice 3: The test case can wait for an output of the sut and check it, or
conclude that the sut is quiescent, i.e., produces ‘output’ δ. If the output,
whether real or quiescence, is not allowed, i.e., xj
∈ out(S), the test case
terminates with fail. If the response is allowed the algorithm continues with
recursively generating a test case from the set of states S after xi .

Example 4. Test case t1 of Figure 5 can be generated from k3 in Figure 3 with
Algorithm 1:

1. Initially, S := k3 after ε = {l0}.
2. In the first step input ?but is tried: t1 := ?but ; t21 � !liq ; fail � !choc; fail,

after which S := {l0} after ?but = {l1, l2}.
3. The allowed outputs are checked: out(S) = out({l1, l2}) = {!liq , δ}.

This leads to the test case t21 := !liq ; t31 � !choc; fail � θ; t41.
4. For t31 we continue with S := {l1, l2} after !liq = {l3} for which it is checked

that no output occurs: t31 := !liq ; fail � !choc; fail � θ; t51.
5. The test case is stopped: t51 := pass.
6. Further with t41: this is the test case after quiescence has been observed; t41

is generated from S := {l1, l2} after δ = {l2}. From {l2} another input ?but
can be supplied: t41 := ?but ; t61 � !liq ; fail � !choc; fail.

7. Now output is checked: t61 := !liq ; fail � !choc; t71 � θ; fail.
8. After this the test case is stopped: t71 := pass.

Soundness and Exhaustiveness. Algorithm 1 is correct, in the sense that the
generated test suites are able to detect all, and only all, non-ioco correct imple-
mentations. This is expressed by the properties of soundness and exhaustiveness;
see Sect. 2. This means that testing for ioco according to Algorithm 1 and Def. 9
is indeed a decision procedure for ioco-correctness. Of course, exhaustiveness is
merely a theoretical property: for realistic systems exhaustive test suites would
be infinite. But yet, exhaustiveness does express that there are no ioco-errors
that are undetectable.

Model-Based Testing and Some Steps towards Test-Based Modelling 315

Theorem 2. Algorithm 1 generates sound test cases, and the set of all test cases
that can be generated with it is exhaustive for ioco and s.

Example 5. In Example 4 test case t1 of Figure 5 was generated from specifica-
tion k3 in Figure 3. For t1 with k1 there is one test run:
t1�| k1

?but·!liq·δ
=======⇒pass�| k′

1, so k1 passes t1.
For t1 with k2 there are two test runs:
t1�| k2

?but·!liq·δ
=======⇒pass�| k′

2, and t1�| k2
?but·!choc=======⇒ fail�| k′′

2 , so k2 fails t1.
We had in Example 1 that k1, k2 /ioco k3, so the erroneous k2 is detected by

t1 but k1 is not. The singleton test suite {t1} is indeed sound but not exhaustive.

4 From Model-Based Testing towards Test-Based
Modelling

Practical Model-Based Testing. Model-based testing currently attracts a lot
of interest, both fromresearchand fromcompanies.Academicaswell as commercial
model-based testing tools and services become available, and many companies are
involved in trial projects [47,11,45,25,35,21]. This is triggered by the promise that
model-based testing will make it possible to automate the testing process beyond
the mere automation of test execution, which is the current state of practice in soft-
ware testing. Once models are available, model-based testing allows automating
the generation of test cases and the analysis of test results, thus making it possi-
ble to automate the complete testing process. Moreover, once models are available,
also other sophisticated engineering and analysis methods are possible such as sim-
ulation, model checking, and implementation generation.Models, however, are not
always easily available, because of various reasons.

Many modern systems are large, complex, distributed, dynamic, and net-
worked systems, which are not monolithically built from scratch, but composed
of components. Among these components are legacy, reused, general purpose,
outsourced, third-party, and off-the-shelf components. These components are
different in many aspects, such as different life cycles, different visibility and
accessibility of internal details (black-box vs. white-box), and different forms of
specifications and documentation, if documentation is available at all. For such
components often no models are available, and because of insufficient documen-
tation it is difficult or impossible to construct a valid model. Even for newly
developed components, the construction of models typically requires specialized
expertise and involves significant manual effort, in particular if the available
documentation is poor or the knowledge about a system or component is con-
centrated in the minds of a few engineers. An additional issue is that systems
evolve: components are substituted by newer versions or replaced by alternative
components, components are restructured, or interaction with the system’s en-
vironment changes. This adds maintainability of models as a main concern, and
it may lead to models getting outdated as the system evolves.

The availability of models is therefore a key issue that inhibits the further
proliferation of model-based testing and of other forms of model-based and

316 J. Tretmans

model-driven analysis and development [42]. Even if models are available, they
are often incomplete and not fully valid. This means that a straightforward
model-based testing process consisting of sequentially performing the steps de-
scribed in Sect. 2, Fig. 1, is too naive and does not work. Such a process, which
would consist of sequentially making a model, generating test cases from the
model, executing these test cases, and assigning a verdict, does not take into
account that a discrepancy between actual outcomes and expected ones does
not necessarily point to a fault in the sut, but may be due to errors, misunder-
standing, incompleteness, or invalidity of the model.

Consequently, practical model-based testing is not only checking an sut with
respect to a model, but also checking the model itself. Model-based testing in
practice serves as a technique to detect discrepancies between the sut and the
model, but without making any judgment about which one is wrong. Only sub-
sequent analysis and diagnosis can show whether the model shall be adapted, or
the sut shall be repaired. What we see is a process of concurrent improvement
of both the sut and the model by iteratively comparing them using tests: the
sut is improved using tests generated from the model, and the model is refined
using observations made during these tests. The benefit of model-based testing
is that this comparison is fully automated. And when in the beginning there is
no model at all, this modification process starts from scratch with an ‘empty’
model, building up and ‘learning’ the model completely from observations that
are made by applying tests to the sut.

Example 6. Recently, we tested the new Dutch electronic passport [35]. Elec-
tronic passports contain a contactless smart-card that stores digitally-signed
data including sensitive biometric data such as fingerprints. We developed a
labelled transition system model of the electronic passport protocols, and used
the model-based testing tool TorXakis to generate test cases and execute them
on the actual passport. TorXakis is a straightforward implementation of the
algorithms of the ioco-test theory of Sect. 3. It inherits from the model-based
testing tool TorX [44], and adds symbolic test generation capabilities [19].

Although the behaviour of the passport is relatively simple, also in this case
the most difficult part of the testing process was understanding the official spec-
ifications [24,17], which contain several hundreds of pages of detailed and wordy
descriptions, and constructing a formal model from them. Access to electronic
passports involves several protocols. In themselves, these protocols are fairly sim-
ple, yet, understanding their combination and interactions and extracting their
essential behaviour, are a major challenge. Once we had a first model, the first
test runs were more directed towards validating and checking the model and
our understanding of the documents than towards testing the passport. Once
there was sufficient confidence in the model the actual thorough testing of the
passport took less than a week. The tests were run fully automatically; during
a test run of a few days we were able to perform over 1,000,000 protocol steps
on the passport. By refining and tweaking the model we could quickly learn how
any underspecification and unclarities in the documents had been resolved in
the implementation that we were testing.

Model-Based Testing and Some Steps towards Test-Based Modelling 317

Whereas for the passport we were eventually able to construct a valid model
from the documentation, though with some difficulty, this was not the case
for testing a wireless sensor network (WSN) node [50]. This experiment was
carried out with the model-based test tools Uppaal-Tron [30], JTorX [5], and
TorXakis. The design and development of the WSN is mainly ‘guru-driven’:
a few clever engineers designed and developed it, and they know how it works.
This implies that making a model is driven by talking with these gurus, trying
to construct a model from their explanations, and subsequently trying to get
their explanations confirmed by doing model-based testing experiments on the
sut, which was one node of the WSN. In case of discrepancies between the
model and the sut we went back to the gurus trying to get more and better
explanations for these discrepancies, improved the model, and re-tested the sut.
Thus, from meetings and explanations, intertwined with test experiments on
the sut, we gradually and iteratively ‘learned’ the behaviour of the WSN node,
making modifications and additions to the model in each iteration. This process
is very clarifying for the testers as well as for the guru-developers who learn more
about their own system.

Test-Based Modelling. On the one hand the not infrequent practice of using
model-based testing to construct and refine models, and on the other hand recent
theoretical developments in automata learning and grammatical inference, have
led to an interesting area of research and development on the borderline of
testing, verification, and machine learning, referred to as model learning or test-
based modelling. Other terms are behaviour capturing [34,32], observation-based
modelling [28], or just learning.

The ideaofmodel learning is to systematicallyperformexperiments, or tests, ona
(black-box) sut, so that from the observationsmade during these tests a model can
be constructed. It is a kind of black-box reverse engineering. Although the research
area on grammatical inference and automata learning already exists for some time,
only recently these techniques are supportedby sufficiently powerful tools andhave
been applied successfully to learn models of software components.

The approach that is considered here is also called active or adaptive learning.
It is adaptive because the tests used for obtaining observations are dynamically
generated and optimized based on the information that has already been ob-
tained during the learning process. It is active because through these tests extra
observations are actively pursued as opposed to passive learning where a model
is deduced solely from a set of existing system logs or traces without further
interaction with the sut. The latter is possible with tools like ProM [46,28].

A number of these active learning approaches have their roots in the so-called
L∗ algorithm of Angluin [4]. One of these developments is an adaptation of
L∗ for Mealy Machines, which has been implemented in the LearnLib tool
environment [39]. In the LearnLib approach a teacher, who knows a Mealy
Machine model M , interacts with a learner, who wishes to learn this model.
Initially only knowing the sets of input and output actions, the learner asks the
teacher two kind of questions: output queries asking which output occurs in re-
sponse to a particular input, and equivalence queries asking whether a particular

318 J. Tretmans

hypothesized machine H is equivalent to the machine M . If that is the case, M
has been learned and the algorithm terminates; if not the learner continues with
asking more output and equivalence queries. LearnLib implements an algo-
rithm for this learning process, i.e., a recipe for the learner which output and
equivalence queries to ask, to eventually know M .

If the teacher’s machine M is a real sut, then an output query can easily be
answered by the teacher by performing a test on the sut consisting of supplying
the inputs to the sut and returning the corresponding responses. An equivalence
query, however, cannot be directly answered by the teacher when M is a real
black-box sut. This is where LearnLib uses model-based testing algorithms
for Mealy Machines, such as the W-method and the UIO-method, to answer
whether an hypothesized machine H is equivalent to the real sut [31].

A couple of experiments have been done with LearnLib on real suts [23,1],
among which there is also the electronic passport of Example 6, for which a
model was learned from scratch and successfully compared with the one initially
developed for model-based testing [2]. These experiments show the possibilities
of learning in general, and of LearnLib in particular, but as identified in [3],
further work is necessary, such as: (i) the use of abstraction techniques to learn
much larger state spaces; (ii) using a more general model than pure Mealy
Machines which require strict alternation between inputs and outputs; and (iii)
extension to nondeterministic systems and models.

Abstraction techniques, in particular with respect to input and output actions,
have been considered in [1]. An extension to (deterministic) I/O Automata [33],
which do not require the strict alternation between inputs and outputs, has been
studied [3]. I/O Automata are (almost) identical to the Input-Output Transition
Systems IOTS of Sect. 3. Nondeterminism in the context of ioco was elaborated
in [49] where the suspension automaton of [41] was used as a deterministic model
to represent nondeterministic labelled transition systems.

In this section we will not give new algorithms for learning or work specifically
on one of these extensions. In the remainder of this section model-based testing and
test-based modelling will be compared and related in the context of the abstract
concepts introduced in Sect. 2, with elaborations for the ioco theory of Sect. 3.

Learning and Model-Based Testing. Model-based testing and learning are
two sides of the same coin. Both use an sut, a model, and tests, and aim at dis-
covering discrepancies between behaviour described in the model and behaviour
exhibited by the (black-box) sut. Model-based testing starts with the model,
and a discrepancy is in the first place considered a failure of the sut, and an
incentive to modify the sut, after which it can be retested. Learning starts with
an sut, and a discrepancy is an incentive to adapt the hypothesized model, after
which the next cycle of learning can start. But as discussed above, in practical
situations the difference often disappears, as on the one hand complete and valid
models for model-based testing are often lacking for various reasons, and on the
other hand many learning algorithms critically depend on a model-based testing
step to check an hypothesized model.

Model-Based Testing and Some Steps towards Test-Based Modelling 319

Both model-based testing and learning can be described on an abstract level
by the iterative process of Fig. 6. The difference between model-based testing
and learning comes from a different initial model and sut, the use of different
test generation algorithms, a different choice as what to modify in case of a
discrepancy, and differences in algorithmically and manually performed steps:

– In learning, the starting sut is given and is correct by definition. A discrep-
ancy between model and sut leads to adapting the model.

– In learning, the initial model can be an empty or trivial model, which can be
always correct or erroneous, but it can also be an initial guess, for example, a
model derived using passive testing from a set of available traces, or a model
obtained in a completely different way, e.g., from reverse engineering of the
code.

adapt
model

model
refine more

yes

no

yesyes

tests

stop

confidence nono

model sut

test generation

and execution

discrepancy

and an sut

with a model

start

modify
sut

Fig. 6. The combined process of learning and model-based testing

320 J. Tretmans

– In learning, algorithms like Angluin-style learning take care of adapting the
model completely automatically.

– A test generation algorithm for learning tries to expose as much information
from the sut as possible, i.e., it aims at rich observations with information
that is useful for extending the current hypothesized model.

– If after a number of cycles in learning there is no discrepancy detected, it
still can be that there is no confidence that the model is precise enough.
Then the model can be refined and more tests can be executed.

– In model-based testing, the sut is given and assumed to have been developed
independently from the model.

– In (pure) model-based testing, the model is considered given and valid. Con-
sequently, a discrepancy between model and sut leads to modifying the sut.

– Modifying and repairing the sut is typically a manual step.
– A test generation algorithm for model-based testing tries to expose discrep-

ancies between model and sut, not necessarily providing information for
extending the model.

– If after a number of cycles in model-based testing there is no discrepancy
detected, it still can be that there is no confidence that the sut is indeed
correct. Then the the testing is continued with more tests.

As discussed above, current practical model-based testing processes are often
a combination of learning and model-based testing. Any discrepancy has to be
analysed to see whether either the model is wrong or the sut. Such a combination
completely fits in this process.

Learning in a Formal Context. We will now try to embed learning within
the concepts and relations presented in Sect. 2 for model-based testing. The
starting points are a formal modelling language SPEC , a domain of models of
implementations MOD , an implementation relation imp ⊆ MOD×SPEC , and a
test execution procedure leading to observations obs : TEST×MOD → P(OBS).

LearnLib-style Learning in a Formal Context. In Angluin-style learning
with LearnLib there is a model m which is in the class of deterministic, fully-
specified Mealy Machines, which we denote with MM. The goal of learning
is also a deterministic, fully-specified Mealy Machine; thus we take MOD ≡
SPEC ≡MM. The tests that can applied toMM are sequences of input actions
that lead to observations that are sequences of output actions; this defines TEST .
The learning algorithm looks for a model h ∈ MM that is equivalent to m in
terms of observations:

h ≈MM m ⇔def ∀t ∈ TEST : obs(t, h) = obs(t, m) (9)

This means that the learning algorithm delivers the unique model m modulo
≈MM (which is really unique if restricted to minimal Mealy Machines). This
model can be obtained in a straightforward way using all possible tests in TEST
directly following (9), but fortunately LearnLib provides a more clever and
efficient solution by selecting those tests that really matter based on what is
already known about h.

Model-Based Testing and Some Steps towards Test-Based Modelling 321

A comparison of learning and model-based testing on MM shows that both
are characterized by (9), the difference being the unknown variables. In testing
the goal is to decide about ≈MM for given m and h; in learning the goal is
to construct h. This leads to different algorithms, i.c. LearnLib and W- and
UIO-algorithms.

Learning with Labelled Transition Systems. The next step is to consider
more general models such as labelled transition systems. Such models allow arbi-
trary sequences of inputs and outputs instead of strict alternation, and they add
nondeterminism. Arbitrary sequences of inputs and outputs were already studied
in [3] in the context of I/O Automata but these systems are still deterministic.

As in Sect. 3 we consider suts behaving as possibly nondeterministic IOTS ,
from which we wish to learn models that are labelled transition systems in
LTS, but not necessarily input-enabled: MOD ≡ IOTS(LI , LU) and SPEC ≡
LTS(LI , LU). We assume the signature of actions LI , LU to be known. Test cases
in TEST are as defined in Def. 8: TEST ≡ T TS(LU , LI), and observations and
test execution are as introduced in Def. 9, i.e., OBS ≡ L∗

δ and test execution is
given by t�| i σ=⇒ t′�| i′ where t′ = pass or fail.

When learning models in LTS from suts behaving as IOTS there are different
test scenarios that can be followed depending on the relation required between
the sut and the learned model. Analogous to model-based testing various re-
lations can be chosen, and not only equivalence of models as in the LearnLib
case. Just as in testing this relation is denoted by imp ⊆ MOD × SPEC .

Though not the only choice, one obvious choice for imp in learning is the
equivalence on IOTS induced by TEST , analogous as for LearnLib-style learn-
ing. Let m ∈ IOTS be the (model of) the sut, and let h ∈ IOTS ⊆ LTS be
the learned model then:

h ≈te m ⇔def ∀t ∈ T TS(LU , LI) : obs(t, h) = obs(t, m) (10)

This is the strongest relation that is testable on IOTS with T TS. This implies
that a learned model h satisfying (10) is the most precise model that can be
obtained when learning m. The precision is expressed by the equivalence class
{ m′ ∈ IOTS | m′ ≈te m }. But most likely h is also the most expensive model,
in terms of testing effort, that can be learned from m. And for nondeterministic
transition systems there are no Learnlib-like algorithms yet that can construct
h in a much more efficient way.

Another choice for imp is the ioco relation that is used for model-based
testing. Then the goal is to learn a model h ∈ LTS such that m ioco h. There
are many candidate models h that satisfy this goal. One such a model is m itself
since m ioco m (reflexivity of ioco on IOTS). Another candidate is the chaos
system χ in Fig. 7, since for any m, m ioco χ. It even holds that m ioco χA for
any m and any A ⊆ LI ; see Fig. 7. But χ and χA are not very precise and not
distinctive so not very useful.

322 J. Tretmans

A ⊆ LI

LI τ τ LI ∪ LU

χ

τ τ A ∪ LUA

χA

Fig. 7. Chaos. (A transition labelled with a set X is an abbreviation for all transitions

with actions in that set: q X−−→ q′ =def {q x−−→ q′ | x ∈ X})

It follows that there is not a unique model that can be learned from m follow-
ing the ioco relation but a class of models ranging from m itself to χ, and many
models ‘in between’. The most precise model is m itself (or more precisely its
≈te-equivalence class), but this is also the most expensive model, in terms of test
cost, to learn. The most general and therefore useless model is χ but it is also
the cheapest one since it requires no testing at all. Learning can be seen as an
optimization problem where we are looking for a model h ∈ LTS that optimally
balances the cost of learning against obtained precision. The cost of learning a
model can be expressed, for example, in the number and length of the test cases
necessary to learn that model, completely analogous to Sect. 2. The precision
of a learned model h ∈ LTS is related to the area of imp-related implementa-
tions in IOTS. Let μ again be a monotonically increasing function on subsets of
IOTS then the precision of a model can be expressed as μ(IOTS)−μ(Ch)

μ(IOTS) where
Ch = { m′ ∈ IOTS | m′ ioco h }.

This definition of precision is analogous to the discussion on test selection
for model-based testing in Sect. 2, and the measure μ : P(MOD) → IR≥0 is
the same as the one defined there. In model-based testing, see Fig. 2, the area
PT \Cs = Cs′\Cs expresses the uncertainty when using an exhaustive test suite
derived from s′ instead of one derived from s. Completely analogously, Ch′\Ch

expresses the additional uncertainty when we stop with learned model h′, i.e.,
we stop when we know that m ioco h′, compared to stopping at h which may
be obtained if learning is continued.

Thus, when learning a specification model h from an sut for ioco-based
learning there are many correct learned models. These candidate models can be
compared in cost of learning and in precision. Given a measure μ on IOTS ,
the precision of learned specification models can be quantified and compared.
Selection of the best model is a two-dimensional optimization issue, analogous
to the selection of the best test suite for model-based testing in Sect. 2.

Whereas LearnLib-style learning starts with an ‘empty’ model, which is
not correct, i.e., not equivalent, ioco learning can start with a correct model
χ which is subsequently refined and kept correct, until a sufficiently precise
model is achieved, or the additional testing for a better model becomes too
costly. LearnLib-style learning, if it succeeds, gives a very precise answer based
on MM-equivalence, but it might fail due to complexity. LTS-style learning
promises better scalability because it always gives an answer, although it might
be with less precision, but it is negotiable against cost of learning.

Model-Based Testing and Some Steps towards Test-Based Modelling 323

Open Issues. This section only compared model-based testing and learning
on an abstract level. No concrete algorithms for LTS or ioco-learning have
been presented. Such an algorithm is, for example, presented in [49], but further
elaborations are necessary.

Another one of our abstractions that obviously needs concretization is the use
of the measure μ in order to quantify the over-approximation and uncertainty in
testing and learning. As explained, this measure is equally applicable to express-
ing the quality of learned models, as well as to expressing the quality of selected
test suites. Such a measure can, for example, be defined as a measure-theoretic
integral over the space IOTS [9], but this is far from trivial. As shown in Sect. 2
such a measure can be replaced by a distance function on specification models.
First attempts in this direction are [13,18].

When learning and model-based testing are combined care should be taken how
to use the learned models. Doing model-based testing on a system with a fully
learned model of the same system does not make sense. Testing requires indepen-
dence: the sut and the test cases, or the model from which the test cases were
generated, should have been developed independently. Yet, such a learned model
can be used for regression testing, i.e., testing whether a modified component still
complies with the old specification. Another application domain is testing of re-
factored or re-implemented legacy components, which is a growing area of interest.
In addition learned models can be used for other design and analysis activities,
such as increasing understanding about systems, communication among stake-
holders, model-based analysis of properties, model checking, and simulation.

It looks natural to extend learning of nondeterministic models with proba-
bilities indicating the occurrence frequency of nondeterministic transitions. This
opens the way towards combining with the rich area of probabilistic and stochas-
tic state-based models.

A last point that is mentioned is uncertainty in LearnLib-style learning. This
style of learning depends for its equivalence query for a real sut on a model-
based test. Model-based testing of Mealy Machines does not provide a complete
decision procedure. In particular, completeness depends on the assumption that
the number of states of the sut is smaller than or equal to the number of states
of the hypothesized model h. This assumption may be violated, so that testing
is not complete, and consequently, the learned model is not equivalent to the
sut. Additional investigations are necessary to deal with, and quantify such
incompleteness and uncertainty.

Acknowledgements. I wish to thank Fides Aarts, Brian Nielsen, Lars Frantzen,
and Frits Vaandrager for discussions and for comments on earlier versions of
some of the sections.

References

1. Aarts, F.: Inference and Abstraction of Communication Protocols. Master’s the-
sis, Institute for Computing and Information Sciences, Radboud University, and
Uppsala University, Nijmegen, The Netherlands, and Uppsala, Sweden (2009)

324 J. Tretmans

2. Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and abstraction of the biometric
passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp.
673–686. Springer, Heidelberg (2010)

3. Aarts, F., Vaandrager, F.: Learning I/O Automata. In: Gastin, P., Laroussinie, F.
(eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010)

4. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation 75(2), 87–106 (1987)

5. Belinfante, A.: JTorX: A Tool for On-Line Model-Driven Test Derivation and Ex-
ecution. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
266–270. Springer, Heidelberg (2010)

6. Berg, T., Jonsson, B., Raffelt, H.: Regular Inference for State Machines with Pa-
rameters. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 107–121.
Springer, Heidelberg (2006)

7. Bernot, G., Gaudel, M.G., Marre, B.: Software testing based on formal specifi-
cations: a theory and a tool. Software Engineering Journal, 387–405 (November
1991)

8. Bollig, B., Katoen, J.P., Kern, C., Leucker, M.: Replaying Play in and Play out:
Synthesis of Design Models from Scenarios by Learning. In: Grumberg, O., Huth,
M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 435–450. Springer, Heidelberg (2007)

9. Brinksma, E.: On the coverage of partial validations. In: Nivat, M., Rattray, C.,
Rus, T., Scollo, G. (eds.) AMAST 1993. BCS-FACS Workshops in Computing
Series, pp. 247–254. Springer, Heidelberg (1993)

10. Brinksma, E., Tretmans, J., Verhaard, L.: A framework for test selection. In: Jon-
sson, B., Parrow, J., Pehrson, B. (eds.) Protocol Specification, Testing, and Veri-
fication XI, pp. 233–248. North-Holland, Amsterdam (1991)

11. Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)

12. Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes,
M.: Testing Concurrent Object-Oriented Systems with Spec Explorer – Ex-
tended Abstract. In: Fitzgerald, J., Hayes, I., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 542–547. Springer, Heidelberg (2005)

13. Curgus, J., Vuong, S.: Sensitivity analysis of the metric based test selection. In:
Kim, M., Kang, S., Hong, K. (eds.) Int. Workshop on Testing of Communicating
Systems, vol. 10, pp. 200–219. Chapman & Hall, Boca Raton (1997)

14. De Nicola, R.: Extensional Equivalences for Transition Systems. Acta Informat-
ica 24, 211–237 (1987)

15. De Nicola, R., Hennessy, M.: Testing Equivalences for Processes. Theoretical Com-
puter Science 34, 83–133 (1984)

16. Dijkstra, E.: Notes On Structured Programming, End of section 3: On The Relia-
bility of Mechanisms (1969)

17. Advanced Security Mechanisms for Machine Readable Travel Documents – Ex-
tended Access Control (EAC) – Version 1.11. Tech. Rep. TR-03110, German Fed-
eral Office for Information Security (BSI), Bonn, Germany (2008)

18. Feijs, L., Goga, N., Mauw, S., Tretmans, J.: Test Selection, Trace Distance and
Heuristics. In: Schieferdecker, I., König, H., Wolisz, A. (eds.) Testing of Communi-
cating Systems XIV, pp. 267–282. Kluwer Academic Publishers, Dordrecht (2002)

19. Frantzen, L., Tretmans, J., Willemse, T.: Test Generation Based on Symbolic Spec-
ifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
1–15. Springer, Heidelberg (2005)

Model-Based Testing and Some Steps towards Test-Based Modelling 325

20. Gaudel, M.C.: Testing can be formal, too. In: Mosses, P., Nielsen, M.,
Schwartzbach, M. (eds.) TAPSOFT 1995. LNCS, vol. 915, pp. 82–96. Springer,
Heidelberg (1995)

21. Grieskamp, W.: Microsoft’s protocol documentation program: A success story for
model-based testing. In: Bottaci, L., Fraser, G. (eds.) TAIC PART 2010. LNCS,
vol. 6303, pp. 7–7. Springer, Heidelberg (2010)

22. Groz, R., Charles, O., Renévot, J.: Relating Conformance Test Coverage to Formal
Specifications. In: Gotzhein, R. (ed.) FORTE 1996. Chapman & Hall, Boca Raton
(1996)

23. Hungar, H., Margaria, T., Steffen, B.: Domain-Specific Optimization in Automata
Learning. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp.
315–327. Springer, Heidelberg (2003)

24. Doc 9303 – Machine Readable Travel Documents – Part 1–2. Tech. rep., ICAO, 6
edn (2006),

25. Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-Based Software Testing
and Analysis with C#. Cambridge University Press, Cambridge (2008)

26. Jard, C., Jéron, T.: TGV: Theory, Principles and Algorithms: A Tool for the Au-
tomatic Synthesis of Conformance Test Cases for Non-Deterministic Reactive Sys-
tems. Software Tools for Technology Transfer 7(4), 297–315 (2005)

27. Jeannet, B., Jéron, T., Rusu, V., Zinovieva, E.: Symbolic Test Selection based on
Approximate Analysis. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 349–364. Springer, Heidelberg (2005)

28. Kanstrén, T., Piel, E., Gonzalez-Sanchez, A., Gross, H.G.: Observation-Based Mod-
eling for Testing and Verifying Highly Dependable Systems – A Practitioner’s Ap-
proach. In: Wagner, A. (ed.) Workshop on Design of Dependable Critical Systems
at Safecomp 2009, Hamburg, Germany (September 2009)

29. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: Generic Auto-
mated Software Testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670,
pp. 84–100. Springer, Heidelberg (2003)

30. Larsen, K., Mikucionis, M., Nielsen, B.: Online Testing of Real-Time Systems using
Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
79–94. Springer, Heidelberg (2005)

31. Lee, D., Yannakakis, M.: Principles and Methods for Testing Finite State Machines
– A Survey. The Proceedings of the IEEE 84(8), 1090–1123 (1996)

32. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: ICSE 2008: 30th Int. Conf. on Software Engineering, pp. 501–510.
ACM, New York (2008)

33. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Fran-
cisco (1996)

34. Mariani, L., Pezzè, M.: Behaviour Capture and Test: Automated Analysis of Com-
ponent Integration. In: 10th IEEE Int. Conf. on Engineering of Complex Computer
Systems – ICECCS 2005, pp. 292–301. IEEE Computer Society, Los Alamitos
(2005)

35. Mostowski, W., Poll, E., Schmaltz, J., Tretmans, J., Wichers Schreur, R.: Model-
Based Testing of Electronic Passports. In: Alpuente, M., Cook, B., Joubert, C.
(eds.) FMICS 2009. LNCS, vol. 5825, pp. 207–209. Springer, Heidelberg (2009)

36. Oostdijk, M., Rusu, V., Tretmans, J., de Vries, R., Willemse, T.C.: Integrating
Verification, Testing, and Learning for Cryptographic Protocols. In: Davies, J.,
Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 538–557. Springer, Heidelberg
(2007)

326 J. Tretmans

37. Peled, D., Vardi, M., Yannakakis, M.: Black Box Checking. Journal of Automata,
Languages, and Combinatorics 7(2), 225–246 (2002)

38. Petrenko, A.: Fault Model-Driven Test Derivation from Finite State Models: An-
notated Bibliography. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.)
MOVEP 2000. LNCS, vol. 2067, pp. 196–205. Springer, Heidelberg (2001)

39. Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata
learning. Software Tools for Technology Transfer 11(4), 307–324 (2009)

40. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: A framework for extrap-
olating behavioral models. Software Tools for Technology Transfer 11(5), 393–407
(2009)

41. Tretmans, J.: Test Generation with Inputs, Outputs and Repetitive Quiescence.
Software—Concepts and Tools 17(3), 103–120 (1996)

42. Tretmans, J. (ed.): Tangram: Model-Based Integration and Testing of Complex
High-Tech Systems. Embedded Systems Institute, Eindhoven (2007),
http://www.esi.nl/publications/tangramBook.pdf

43. Tretmans, J.: Model Based Testing with Labelled Transition Systems. In: Hierons,
R., Bowen, J., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38. Springer,
Heidelberg (2008)

44. Tretmans, J., Brinksma, E.: TorX : Automated Model Based Testing. In: Hart-
man, A., Dussa-Zieger, K. (eds.) First European Conference on Model-Driven Soft-
ware Engineering, Imbuss, Möhrendorf, Germany, December 11-12 (2003)

45. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach.
Morgan-Kaufmann, San Francisco (2007)

46. Verbeek, E., Buijs, J., van Dongen, B., van de Aalst, W.: Prom 6: The Process
Mining Toolkit. In: 8th Int. Conf. on Business Process Management – BPM 2010
(2010)

47. de Vries, R., Belinfante, A., Feenstra, J.: Automated Testing in Practice: The
Highway Tolling System. In: Schieferdecker, I., König, H., Wolisz, A. (eds.) Test-
ing of Communicating Systems XIV, pp. 219–234. Kluwer Academic Publishers,
Dordrecht (2002)

48. de Vries, R., Tretmans, J.: Towards Formal Test Purposes. In: Brinksma, E., Tret-
mans, J. (eds.) Formal Approaches to Testing of Software – FATES 2001. BRICS
Notes Series, vol. NS-01-4, pp. 61–76. BRICS, University of Aarhus, Denmark
(2001)

49. Willemse, T.: Heuristics for ioco-Based Test-Based Modelling. In: Brim, L.,
Haverkort, B., Leucker, M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006.
LNCS, vol. 4346, pp. 132–147. Springer, Heidelberg (2007)

50. Zhu, F.: Testing Timed Systems in Simulated Time with Uppaal-Tron: An Indus-
trial Case Study. Master’s thesis, Institute for Computing and Information Sci-
ences, Radboud University, Nijmegen, The Netherlands (2010)

http://www.esi.nl/publications/tangramBook.pdf

Learning of Automata Models Extended

with Data�

Bengt Jonsson

Department of Computer Systems, Uppsala University, Sweden
bengt@it.uu.se

Abstract. One of the challenges in the Connect project is to de-
velop techniques for learning models of networked components from ex-
ploratory interaction with the component, based on analyzing
messages exchanged between the component and its environment. Many
approaches to this problem employ regular inference (aka. automata
learning) techniques which generate modest-size finite-state models.
Most communication with real-life systems involves data values being
relevant to the communication context and thus influencing the observ-
able behavior of the communication endpoints. When applying methods
from the realm of automata learning, it is desirable to handle such data-
occurrences. It is therefore important to extend inference techniques to
handle message alphabets and state-spaces with structures containing
data parameters, often with large domains. After very briefly mention-
ing several approaches to the problem, we give a longer account of an
approach proposed by Aarts et al, which adapts ideas from of predicate
abstraction, successfully used in formal verification. We illustrate the
techniques by application to a simple running example, which models a
simple booking service.

1 Introduction

Interoperability remains a fundamental challenge when connecting heteroge-
neous systems which encounter and spontaneously communicate with one an-
other in pervasive computing environments. The Connect Integrated Project
[22] aims at overcoming the interoperability barrier by synthesizing on the fly
the Connectors via which networked systems communicate. Connectors are
implemented through a comprehensive dynamic process based on (i) extracting
knowledge from, (ii) learning about and (iii) reasoning about, the interaction
behavior of networked systems, together with (iv) synthesizing new interaction
behaviors out of the ones exhibited by the systems to be made interoperable.

One of the challenges in the Connect project is to develop techniques for
learning models of exploratory interaction with the component, based on ana-
lyzing messages exchanged between the component and its environment. Gener-
ation of models by exploratory interaction can be useful also in other contexts.

� Supported in part by EC Proj. 231167 (CONNECT).

M. Bernardo and V. Issarny (Eds.): SFM 2011, LNCS 6659, pp. 327–349, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

328 B. Jonsson

A large source of application might be found in model-based verification and val-
idation, including model checking and model-based testing [7]. Such techniques
have witnessed drastic advances in the last decades, and are being applied to
verification and valiation of communication protocols, hardware systems, embed-
ded controllers, etc., also in industrial settings (e.g., [20]). They require models
that specify the intended behavior of system components, which ideally should
be developed during specification and design. However, the construction of mod-
els typically requires significant manual effort, implying that in practice often
models are not available, or become outdated as the system evolves. Automated
support for constructing models of the behavior of implemented components
would therefore be useful also, e.g., for regression testing, for replacing manual
testing by model based testing, for producing models of standardized protocols,
for analyzing whether an existing system is vulnerable to attacks, etc.

The construction of models from observations of component behavior can be
performed using automata learning (aka. regular inference) techniques [4, 11, 13,
23, 30, 33]. This class of techniques is now receiving increasing attention in the
testing and verification community, e.g., for regression testing of telecommunica-
tion systems [18, 21], for integration testing [17, 24], security protocol testing [32],
and for combining conformance testing and model checking [29, 16]. One of the
most used algorithms for regular inference, L∗, is thoroughly explained in the
Chapter Introduction to Active Automata Learning from a Practical Perspective
by Steffen, Howar, and Merten. This algorithm poses a sequence of membership
queries, each of which observes the component’s output in response to a certain
input word, and produces a minimal deterministic finite-state machine which
conforms to the observations. If the sequence of membership queries is suffi-
ciently large, the produced machine will be a model of the observed component.

Since regular inference techniques are designed for finite-state models, most
previous applications to model generation have been limited to generating con-
trol flow skeletons, suppressing data which appear, e.g., as parameters of mes-
sages. However, data parameters have a significant impact on control flow and
behavior in typical networked components and protocol entities. they can be
sequence numbers, configuration parameters, agent and session identifiers, etc.;
a model of a networked service is considerabely less informative if information
about exchanged data is suppressed. It is therefore important to extend infer-
ence techniques to handle message alphabets and state-spaces with structures
containing data parameters with large domains.

In this chapter, we will consider the problem of extending learning to au-
tomata with data, by presenting a particular approach, introduced in the work
by Aarts, Jonsson, Uijen, and Vaandrager [1, 2]. We first define a model for
symbolic representation of protocols. Thereafter, we present a technique for us-
ing the L∗ algorithm, designed for inference of finite-state Mealy machines, to
infer also symbolically defined protocol models. The technique is inspired by
predicate abstraction [26, 9], which has been successful for extending finite-state

Learning of Automata Models Extended with Data 329

model checking to large and infinite state spaces. In contrast to that work, how-
ever, we are now in a black-box setting, where an abstraction cannot be defined
based on the source code or model of a component, since it is not accessible.
Instead, we must construct an externally supplied abstraction, which translates
between a large message alphabet of the component to be modeled and a small
finite alphabet of the regular inference algorithm. Via regular inference, a finite-
state model of the abstracted interface is inferred. The abstraction can then be
reversed to generate a faithful model of the component.

The presented approach was used to learn models of reduced versions of the
SIP and TCP protocols, in [1], and also to learn a model of the new generation
of biometric passports in [2]. A We will also describe how to construct a suitable
abstraction, utilizing pre-existing knowledge about which operators are sufficient
to express guards and operations on data in a faithful model of the component.

On Related Work. Regular inference techniques have been used for several tasks
in verification and test generation, e.g., to create models of environment con-
straints with respect to which a component should be verified [10], for regression
testing to create a specification and test suite [18, 21], to perform model checking
without access to source code or formal models [16, 29], for program analysis [3],
and for formal specification and verification [10].

In several approaches, the challenge of including data parameters of message
have been addressed. In the work of Shu and Lee [32], parameters are essentially
suppressed in order to obtain a finite subset of input symbols when learning the
behavior of security protocol implementations. This subset can be extended in
response to new information obtained in counterexamples. Groz, Li, and Shah-
baz [24, 31, 17] extend regular inference to Mealy machines with data values, for
use in integration testing. In their work, they select a finite set of representative
data values to be supplied together with the input to ta component.

An influential approach to learning properties of data in programs is repre-
sented by the Daikon system [12]. Its basic technique is to observe executions of
a component, and extract invariants over program variables that are observed
to hold. The invariants can be chosen from a predefined collection. The Daikon
system does not immediately consider to extract control structures of compo-
nents. There are several approaches that combine regular inference for learning
control structures, and the Daikon tool (or similar) for inferring constraints on
data parameters. One of the questions to be solved in such a combination is how
to correlate the two types of models.

Lorenzoli, Mariani, and Pezzé infer models of software components that con-
sider both sequence of method invocations and their associated data param-
eters [27, 28]. They use a passive learning approach where a finite control
structure that captures possible sequences of method invocations is infer by
an extension of the k-tails algorithm (a passive learning algorithm), and using
Daikon [8] to infer guards and relations on method parameters. This allows to in-
fer constraints on data parameters that are exchanged after specific sequences of

330 B. Jonsson

method invocations, but not to analyze the influence of data parameter on sub-
sequent control behavior. The same basic combination is also employed by Lo
and Maoz [25], which infer a more refined view on constraints over data param-
eters, in that different constraints are generated for different scenarios, if a need
for this is detected.

In previous work, we have considered extensions of regular inference to han-
dle data parameters. In [5], we show how guards on boolean parameters can
be refined lazily. This technique for maintaining guards have inspired the more
general notion of abstractions on input symbols presented in this chapter. We
have also proposed techniques to handle infinite-state systems, in which param-
eters of messages and state variables are from an unbounded domain, e.g., for
identifiers [6], and timers [15, 14]. These extensions are specialized towards a
particular data domain, and their worst-case complexities do not immediately
suggest an efficient implementation.

Organization. In the next section, we first introduce a simple running example
that will serve to illustrate the techniques presented in this tutorial. Thereafter,
we introduce Mealy machines, and our symbolic extension of Mealy machines, that
include data. The technique of using abstraction to adapt finite-state learning al-
gorithms to symbolically defined Mealy machines is presented in Section 5. This
techniques requires an abstraction which in general must be constructed manually.
A technique for systematic construction of such abstractions is presented in 7. We
illustrate the application of this technique to the running example in Section 6.

2 A Running Example

Let us introduce a small example to illustrate the techniques that will be in-
troduced in later sections. Imagine a service for booking seats in a concert or
similar event. A user of this service has to provide his credentials and can then
browse through a list of seats. From the list of seats, a single seat can be booked,
which will be confirmed in a corresponding receipt.

Imagine further that an a priori interface description of the service is pro-
vided, specifying a specific set of messages that are understood by the service,
containing

– openSession with two parameters, a user name and a password, supplies
credentials, and if they are accepted the service provides a session identifier
in response,

– getSeats with a session identifier as parameter, asks for a list of avaible seats
that can be booked,

– getSeat with a session identifier and a seat as parameters, asks to book a
specific seat, and if accepted, the service will confirm by a positive reply.

The exchange of interface primitives during a typical session can be informally
depicted in sequence chart in Figure 1.

Learning of Automata Models Extended with Data 331

Client Service

�openSession(user, passwd, session)

� session

�getSeats(session)

� seats

�getSeat(session, seat)

� seat

Fig. 1. Message Flow in the Running Example

In the following sections, we will consider how active automata learning, which
is able to generate finite-state Mealy machines from queries, can be used to
generate a model of the booking service.

3 Mealy Machines

Throughout the presentation, we will use Mealy machines to model the behavior
of communication protocol entities, networked services, etc.

Definition 1. A Mealy machine is a tuple M = 〈ΣI , ΣO, Q, q0, δ, λ〉 where

– ΣI is a nonempty set of input symbols,
– ΣO is a nonempty set of output symbols,
– Q is a nonempty set of states,
– q0 ∈ Q is the initial state,
– δ : Q×ΣI → Q is the transition function, and
– λ : Q×ΣI → ΣO is the output function. ��

The sets of states and symbols can be finite or infinite: if they are both finite
we say that the Mealy machine is finite-state. Elements of Σ∗

I are called input
words, and elements of Σ∗

O are called output words.
Intuitively, a Mealy machine behaves as follows. At any point in time, the

machine is in some state q ∈ Q. When supplied with an input symbol a ∈ ΣI ,
it responds by producing an output symbol λ(q, a) and transforms itself to a

332 B. Jonsson

new state δ(q, a). We use the notation q
a/b−→ q′ to denote that δ(q, a) = q′ and

λ(q, a) = b; in this case q
a/b−→ q′ is called a transition of M.

We can depict Mealy machines as directed edge-labeled graphs, where Q is
the set of vertices. The outgoing edges from a state q ∈ S lead to δ(q, a) for all
a ∈ ΣI , and they are labeled “a/b”, where a is the input symbol and b is the
output symbol λ(q, a). As an example, Figure 2 shows a Mealy machine that
receives a sequence of symbols of form a or b. Whenever an a-symbol is received,
it outputs the number of received a-symbols modulo 2, and whenever a b-symbol
is received, it outputs the number of received a-symbols modulo 4. The initial
state is q0.

q3q0

q2q1

b/0 b/3

b/1 b/2

a/0

a/1

a/0

a/1

Fig. 2. A Mealy machine 〈ΣI , ΣO, Q, q0, δ, λ〉 with states Q = {q1, q2, q3, q4}, input
alphabet ΣI = {a, b}, and output alphabet ΣO = {0, 1, 2, 3}. For instance, applying a
starting in q0 produces output λ(q0, a) = 1 and moves to next state δ(q0, a) = q1.

Applying a word a1a2 · · · ak ∈ Σ∗
I of input symbols starting in a state q0 results

in the sequence of states q0, q1, . . . , qk with qj = δ(qj−1, aj) for j = 1, . . . , k. We

extend the transition function to δ(q0, a1a2 · · ·ak) def= qk and the output function
to λ(q0, a1a2 · · ·ak) def= λ(q0, a1)λ(q1, a2) · · ·λ(qk−1, ak), i.e., the concatenation of
all outputs. We define λM(u) = λ(q0, u) for u ∈ Σ∗

I . Two Mealy machines M
and M′ with the same set of input symbols are equivalent if λM(u) = λM′(u)
for all input words u.

Mealy machines are completely specified, meaning that at every state there
is a next state for every input (δ and λ are total). They are also deterministic,
because only one next state is possible.

4 Symbolic Mealy Machines

Finite-state Mealy machines, introduced in the previous section, cannot repre-
sent all aspects of the behavior of protocols and networked components, where

Learning of Automata Models Extended with Data 333

the interplay between control and data is significant. Typical such models have
an infinite number of states and infinite communication alphabets that span do-
mains of data values that are very large or infinite. Typical examples of such
data domains are integers to represent sequence numbers, session identifiers, etc.,
strings to represent exchanged data, etc.

In this section, we introduce Symbolic Mealy Machines. They can be seen as a
symbolic representation of large or infinite-state Mealy machines, in that input
and output symbols have parameters which are data values, e.g., to represent
messages in a typical communication protocol. Often, data parameters are from
rather large (in practice “infinite”) domains, and on which rather simple oper-
ations and tests are applied, e.g., equality tests between elements of the same
domain, or a check whether an element is a member of some set. It seems rea-
sonable to be able to extend automata learning to such models, in analogy with
the way automated verification techniques have been extended from finite-state
models to extensions that cover, e.g., clocks as in timed automata.

Data Values. We first consider the data values that occur as parameters of
input and output symbols and stored in state variables that are part of the
representation of the internal state of a Mealy machine. We will use d, d1, d2,
etc. to range over data values. To describe the data values that are relevant for
a symbolic Mealy machine, we assume a finite set of domains, each of which is a
(finite or infinite) set of data values. We also assume a finite set of functions and a
finite set of predicates. Each function f has an arity, denoted D1×· · ·×Dn �→ D,
where D1, . . . ,Dn and D are domains, meaning that the arguments to f must
be an n-tuple of data values d1, . . . , dn, where di ∈ Di for i = 1, . . . , n, and then
f(d1, . . . , dn) is an element in D. We write f : D1×· · ·×Dn �→ D to denote that
f has arity D1×· · ·×Dn �→ D. A predicate r has an arity, denoted D1×· · ·×Dn,
meaning that it can be thought of as a function from D1 × · · · × Dn to boolean
values.

Input and Output Symbols. Input and output symbols will be represented using
finite sets I and O of (input and output) ations. Each ation α has a certain
arity, which is a tuple of domains Dα,1, . . . ,Dα,n (where n depends on α). Let
ΣI be the set of input symbols of form α(d1, . . . , dn), where di ∈ Dα,i is in the
appropriate domain for each i with 1 ≤ i ≤ n. The set of output symbols ΣO is
defined analogously.

Example. For the service introduce in Section 2, we use the following domains
to represent the data values that occur in input and output symbols.

– STRING contains data values for user names and passwords.
– SESSION contains identifiers of sessions: it could be, e.g., the set of natural

numbers.
– SEAT contains the possible seats (e.g., represented by seat numbers) that

are available in the event, and
– SEATS contains sets of seats in SEAT.

334 B. Jonsson

We use the following predicates.

– ∈: SEAT × SEATS is the test for membership, and
– has passwd : STRING × STRING tests for valid combinations of usernames

and passwords.

In addition, we include the equality predicate = on the domains SESSION and
SEAT.

The set of input ations with corresponding arities is described in the following
table.q

Input ation arity
openSession : STRING, STRING, SESSION
getSeats : SESSION
getSeat : SESSION, SEAT

To model the response from the service, we could use one output ation for each
kind of response, e.g., an ation returnSession with arity SESSION for replies to
input symbols of form openSession(u, p, s). To save space, we will simply just let
the reply be modeled by a data element from the appropriate domain. ��
Symbolic Mealy Machines. We can now define symbolic Mealy machines. We
assume a set of domains, functions, and predicates, as described in the previous
paragraphs, which will be used to form expressions denoting data values, and
boolean expressions to denote tests on data values. We assume that expressions
always follow the restrictions of the relevant arities.

We assume a set of formal parameters, ranged over by p1, p2, . . ., to be used as
placeholders for parameters of symbols in symbolic transitions. We also assume
a set of state variables, each with a domain of possible values, and a unique
initial value.

Definition 2. A Symbolic Mealy machine (SMM for short) is a tuple SM =
〈I, O, L, l0, X,−→〉, where

– I and O are disjoint finite sets of actions (input ations and output ations),
– L is a finite set of locations,
– l0 ∈ L is the initial location,
– X is a finite set of state variables; each state variable x has a domain Dx of

possible values, and a unique initial value, and
– −→ is a finite set of symbolic transitions, each of form

�l �l′�α(p1, . . . , pn) when g / x1, . . . , xk := e1, . . . , ek ; β(eout
1, . . . , e

out
m)

in which
• l and l′ are locations,
• α ∈ I and β ∈ O are input and output actions,
• p1, . . . , pn are distinct formal parameters,
• x1, . . . , xk are distinct state variables in X ,
• g (the guard) is a boolean expression over the formal parameters p1, . . . , pn

and the state variables in X , and

Learning of Automata Models Extended with Data 335

• e1, . . . , ek and eout
1, . . . , e

out
m are tuples of expressions over p1, . . . , pn

and X . We assume that the arities of α and β and the domains of
x1, . . . , xk are respected. ��

Intuitively, a symbolic transition of the above form denotes steps of the
Mealy machine in which some input symbol of form α(d1, . . . , dn) is received,
whereby the formal parameters p1, . . . , pn are bound to the received data
values d1, . . . , dn; in case the guard g is evaluated to true, the state variables
among x1, . . . , xk are assigned new values by the assignment x1, . . . , xk :=
e1, . . . , ek, and an output symbol, obtained by evaluating β(eout

1, . . . , e
out

m),
is generated. In case the guard g is evaluted to false, then the symbolic
transition does not denote any step.

Semantics of SMM. We can give a precise meaning to an SMM by letting it
denote a Mealy machine with possibly infinite sets of input and output symbols
and states. Such a Mealy machine can be defined as follows. Assume an SMM
SM defined as the tuple 〈I, O, L, l0, X,−→〉. A valuation is an assignment σ
which maps each location variable x in X to a data value in Dx. Valuations
are extended to expressions in the natural way: for instance, if σ(x3) = 8, then
σ(2 ∗ x3 + 4) = 20. We let σ0 denote the valuation which maps each variable to
its initial value. In the following, we will use p for p1, . . . , pn and d for d1, . . . , dn.

Definition 3. We define a SMM SM = 〈I, O, L, l0, X,−→〉 as denoting a (typ-
ically infinite-state) Mealy machine MSM = 〈ΣI , ΣO, Q, q0, δ, λ〉, where

– ΣI is obtained from I as described when introducing actions, and similarly
for ΣO,

– Q is the set of pairs 〈l, σ〉 consisting of a location l ∈ L and a valuation σ,
– q0 is the pair 〈l0, σ0〉, and
– δ and λ are such that for any symbolic transition in −→ of form

�l �l′�α(p) when g / x1, . . . , xk := e1, . . . , ek ; β(eout
1, . . . , e

out
m)

for any valuation σ and data values d such that σ(g[d/p]) is true (i.e., under
the valuation σ, the guard g is evaluated to true when the formal parameters
p are replaced by the received data values d), it holds that
• δ(〈l, σ〉, α(d)) = 〈l′, σ′〉, where σ′ is the valuation such that

∗ σ′(xi) = σ(ei[d/p]) for 1 ≤ i ≤ k, and
∗ σ′(x) = σ(x) if x is not among x1, . . . , xk,

• λ(〈l, σ〉, α(d)) = β(σ′(eout
1 [d/p]), . . . , σ′(eout

m [d/p])). ��
Here the four last lines say that the state is updated to a new pair 〈l′, σ′〉, where l′

is the target location of the symbolic transition and σ′ is obtained by performing
the multiple assignment x1, . . . , xk := e1, . . . , ek simultaneously to all variables
that are among x1, . . . , xk, and that an output symbol, obtained by evaluating
the expression β(eout

1, . . . , e
out

m) in σ, is generated.
Having defined the meaning of an SMM through translation to an ordinary

Mealy machine, we can inherit some definitions. We use λSM to denote λMSM ,

336 B. Jonsson

and say that SM and SM′ are equivalent if λSM(u) = λSM′ (u) for all input
words u. We can similarly say that an SMM is equivalent to a Mealy machine.

Symbolic Mealy machines are required to be deterministic, just like ordinary
Mealy machines. We say that SM is deterministic if MSM is deterministic: a
sufficient condition under which MSM, is deterministic is that for each input
action α ∈ I, each location l ∈ L, and each valuation σ, the set −→ contains
exactly one symbolic transition such that σ(g[d/p]) is true.

Example 1. Model a simple booking system

5 Inference Using Abstraction

Let us consider the problem of extending finite-state automata learning (as re-
alized. e.g., by th L∗ alglorithm) to the learning of infinite state automata, as
represented by Symbolic Mealy machines. More precisely, given a SUT, whose
behavior can be modeled as an SMM SM, we should describe how a component,
called the Learner, which communicates with the SUT, can infer an SMM equiv-
alent to SM by query learning. In this setup, the Learner initially knows the
static interface of SM, i.e., the sets I and O of input and output actions together
with their arities. It may then ask a sequence of membership queries; each one
supplying a chosen input word u ∈ (ΣI)∗ and observing the response λSM(u).
After a “sufficient” number of membership membership queries the Learner can
build a “stable” hypothesis H from the obtained information. The hypothesis
H should of course agree with SM on the performed membership queries (i.e.,
λSM(u) = λH(u) whenever u was supplied in a membership query), but must
make suitable generalizations for other input words.

The L∗ algorithm is designed for finite-state Mealy machines and cannot con-
struct infinite-state models. In order to use it for inferring models of large or
infinite-state SMMs, we must somehow transform the behavior of an SMM so
that it becomes the behavior of some finite-state Mealy machine. In this section,
we present an approach, which has been elaborated in the work by Aarts, Jon-
sson, Uijen, and Vaandrager [1, 2]. The approach adapts ideas from predicate
abstraction [26, 9], which has been successful for extending finite-state model
checking to large and infinite state spaces.

In order to introduce our ideas, consider an SMM SM = 〈I, O, L, l0, X,−→〉
for which the sets ΣI and ΣO of input and output symbols, and the set of
valuations of X may be large or even infinite. To apply regular inference to
SM, we here propose to define an abstraction from ΣI and ΣO to (small) finite
sets of abstract input and output symbols. The overall idea can be schematically
depicted as in Figure 3. The abstraction A interacts with the SUT using the
alphabets ΣI and ΣO; it interacts with the Learner using finite alphabets of
symbols ΣA

I and ΣA
O . Thus, A can transform sequences of symbols in ΣI or

ΣO to sequences of abstract symbols in ΣA
I or ΣA

O . If A is suitable defined,
it can also the (possibly) infinite-state behavior of SUT into a behavior which
can be represented by a finite-state Mealy machine. The Learner can then use
standard techniques to learn this Mealy machine. Having done this, we can finally

Learning of Automata Models Extended with Data 337

Learner A SUT

�ΣA
I �ΣI

� ΣO� ΣA
O

Fig. 3. Introducing an abstraction A between the SUT and the Learner

“reverse” the effect of the abstraction A to obtain an SMM which is equivalent
to the original SUT.

As a concrete example, in the SMM in our running example, symbols of form
getSeats(s) in which the parameter s belongs to the large domain of session
identifiers, can be abstracted to symbols of form getSeats(S), where S is a value
from a small domain. A natural choice for such a small domain could be the
set {CUR, BAD}, where the value CUR denotes that s is the “current” session
identifier (supplied in the relevant openSession interaction), and the value BAD

denotes that s has some other value. Thus, the abstraction of a symbol, such
as getSeats(s), in general depends on the previous history of symbols. In model
checking using abstraction [26, 9], this dependency is taken into account by let-
ting the abstraction depend on internal state variables. For instance, the SUT
may have a state variable to remember the “current” session identifier; a pred-
icate abstraction will then only represent whether this internal state variable is
equal to the session identifier that is received in the input symbol that is be-
ing processed. However, automata learning is performed in a black-box setting
where the state variables of the SMM are not accessible. Therefore, these state
variables must be recreated in the the abstraction, and be updated to record
relevant history information. In our example, the recreated state variables can
be cur session and cur seats, where cur session is assigned the session identifier
supplied to the SUT in the relevant openSession interaction, and cur seats is
returned by the SUT in response to the relevant getSeats interaction. Typically,
these additional state variables must be defined by a user who has some insight
into the functioning of the SUT. In general, this is a nontrivial task, but in
Section 7 we discuss approaches for systematically constructing abstractions for
situations where the operation on data is not overly complex.

We can define an abstraction formally as follows.

Definition 4. Let I and O be disjoint finite sets of (input and output) actions.
An 〈I, O〉-abstraction is a tuple A = 〈ΣA

I , ΣA
O , R, r0, abstrI , abstrO, δR〉, where

– ΣA
I and ΣA

O are finite sets of abstract input and output symbols,
– R is a (possibly infinite) set of local states,
– r0 ∈ R is an initial local state,
– abstrI : R × ΣI �→ ΣA

I maps input symbols of the SUT to abstract input
symbols,

– abstrO : R×ΣO �→ ΣA
O maps output symbols of the SUT to abstract output

symbols, and

338 B. Jonsson

– δR : R× (ΣI ∪ΣO) �→ R updates the local state when a new input or output
symbol occurs. ��

Intuitively, an abstraction A maps input and output symbols of the SUT to
abstract input and output symbols, and updates its local state immediately
after the occurrence of each symbol.

Let us, as was done for Mealy machines, extend the definitions of the abstrac-
tion functions to sequences of input and output symbols. We will use u to range
over sequences of input symbols, v to range over sequences of output symbols,
and w to range over sequences of pairs (of form a/b) of input and output sym-
bols. Since a Mealy machine interacts with both an input symbol and an output
symbol at each transition, we extend the definitions of δR, abstrI , and abstrO

by defining:
δR(r, a/b) = δR(δR(r, a), b)
abstr(r, a/b) = abstrI(r, a)/abstrO(δR(r, a), b)

where a/b is a pair of input and output symbol, and abstr maps pairs of input
and output symbols to corresponding abstract ones. In the last formula, the
abstraction of the input symbol a is performed in the local state r, and the
abstraction of the output symbol b is performed wrp. to the local state δR(r, a)
reached after having processed the input symbol a.

We thereafter extend δR to sequences of pairs of input and output symbols,
by

δR(r, ε) = r δR(r, w a/b) = δR(δR(r, w), a/b)

We can similarly extend the mapping abstr from pairs of input and output
symbols to sequences of such pairs.

abstr(r, ε) = ε
abstr(r, w a/b) = abstr(r, w) abstr(δR(r, w), a/b) ,

In particular, abstr(r0, w) is the abstraction of an arbitrary sequence w of input-
output pairs.

In a concrete setup for learning a model of the SUT, we envisage that the
abstraction is performed by introducing a Mapper module between the Learner
and the SUT, which carries out the transformations of the abstraction. The
Learner can then interact with the combination of the Mapper and the SUT,
using the finite sets ΣA

I and ΣA
O , whereas the Mapper and the SUT interact

using the alphabets ΣI and ΣO. The Mapper maintains the local state r of
the abstraction. Note that the Mapper must transform between original and
abstract symbols in two different directions, depending on whether the symbol
is an input or output symbol. Each abstract input symbol aA supplied by the
Learner is translated by the Mapper to a concrete input symbol a such that
aA = abstrI(r, a), and sent to the SUT, while also updating the local state r
to δR(r, a). The corresponding reply b by SUT is translated to the abstract
symbol abstrO(δR(r, a), b) and sent back to the Learner. Finally the local state
r is updated to δR(r, a/b).

Learning of Automata Models Extended with Data 339

An example of a possible round of exchanged symbols is depicted in Figure 4.
In this round, the abstract symbol openSession(USR,OK) is received by the Map-
per. Here the combination USR,OK represents a valid combination of user and
password. The Mapper chooses appropriate concrete data values as parameters,
including to choose a session identifier to create an input symbol for the SUT. It
also stores the chosen session identifier into a local variable. The SUT recognizes
the input symbol as a valid start of a session, and so acknowledges this by return-
ing the provided session identifier. The Mapper compares the session identifier
returned with its stored local variable containing the session identifier in the
preceding input symbol, finds out that they are equal, and therefore transforms
42 into the abstract symbol CUR, representing “current session identifier”.

Learner Mapper SUT

�openSession(USR,OK) �openSession(Mary, 1346,42)

� 42� CUR

Fig. 4. Introduction of Mapper module

Example. Let us suggest an abstraction that could be applied in order to learn
a model of the seat booking service. In Section 4, we already described the
domains and predicates for modeling data parameters. Let us first suggest a
representation of the local state of the abstraction. This can be represented by
two state variables:

– cur session which stores the value of the “current” session, and and
– cur seats which stores the set of seats that has been proposed by the service.

The initial values of both variables is ⊥ (undefined). Thus, a state of the abstrac-
tion is a valuation ρ which maps cur session and cur seats to values. Initially, ρ
maps these variables to the undefined value.

Let us then define the set of abstract input symbols and the state-dependent
mapping abstrI from input symbols of the service to abstract input symbols.
The abstraction of an input symbol depends on whether certain guards, that
may be evaluated when such an input symbol is received, hold. For each com-
bination of input symbol and applicable guard, we create a suitable abstract
input symbol. In Table 1, we show the different combinations of input sym-
bols and guards, and the corresponding abstract input symbols. For instance, if
ρ(cur session) = 42, and ρ(cur seats) = {C, D, G}, then abstrI(ρ, getSeat(42, F))
is getSeat(CUR, NO SEAT).

Let us next define the set of abstract output symbols and the mapping abstrO.
As described in Section 4, the set of output symbols correspond to data values
in domains SESSION, SEATS, and SEAT. In addition, there is an output symbol

340 B. Jonsson

Table 1. Mapping from combinations of input symbols and guards to abstract input
symbols

input guard abstract symbol

openSession(u, p, s) has passwd(u, p) openSession(USR,OK)
¬has passwd(u, p) openSession(USR,NOK)

getSeats(s) s = cur session getSeats(CUR)
s = cur session getSeats(BAD)

getSeat(s, seat) s = cur session ∧ seat ∈ cur seats getSeat(CUR,SEAT)
s = cur session ∧ seat ∈ cur seats getSeat(CUR,NO SEAT)
s = cur session ∧ seat ∈ cur seats getSeat(BAD,SEAT)
s = cur session ∧ seat ∈ cur seats getSeat(BAD,NO SEAT)

error which is returned on input that does not make the current session progress.
These output symbols are mapped to abstract output symbols as follows.

– Data values in SESSION are mapped to CUR or BAD, depending on whether
they are equal to cur session or not.

– Data values in SEATS are mapped to OFFERED or NOT OFFERED, depend-
ing on whether they are equal to the set of seats offered by the service. Here,
we have performed a modeling trick in order to be able to model the service
as a (deterministic) Mealy machine, in spite of the fact that the set of seats
it may return cannot be predicted from the past sequence of input and out-
put symbol. In order not to have to model the return of a set of seats using
nondeterminism, we invent a constant, named offered (say), which represents
the set of seats offered by the service in the session considered.

– Data values in SEAT are mapped to SEAT or NO SEAT, depending on whether
the seat is a member of the set cur seats or not.

– The output symbol error is left unchanged by the abstraction.

Let us finally consider how the state of the abstraction is updated on the oc-
currence of an input or output symbol. This state is unchanged, except for the
following cases.

– When an input symbol of form openSession(u, p, s) is received, such that
has passwd(u, p) and when cur session is previously undefined, then
cur session is assigned the value s received in the input symbol.

– When an output symbol in domain SEATS is produced in a situation where
cur seats is previously undefined, then cur seats is assigned the value of the
output symbol. ��

In order to better understand what behavior is obtained by wrapping the SUT
with the Mapper, and which is observed by the Learner, let us model the behavior
of the combination of the Mapper and SUT, which we denote by A〈〈SM〉〉. Un-
fortunately, A〈〈SM〉〉 cannot in general be modeled as a (deterministic) Mealy
machine. The reason is that each (abstract) input symbol aA can be translated
by the Mapper (in state r) to any input symbol a with aA = abstrI(r, a): different

Learning of Automata Models Extended with Data 341

choices of a will, in general, cause the SUT to move to different states and subse-
quently cause different (abstract) output symbols to be generated. In addition, the
Mapper should have a defined reaction for the case that there is no input symbol a
with aA = abstrI(r, a). We therefore need to introduce a generalization of Mealy
machines that allows nondeterminism, and represent the behavior of A〈〈SM〉〉
as a nondeterministic Mealy machine. A nondeterministic Mealy machine differs
from a Mealy machine as defined in Definition 1 in that the reception of an input
symbol can result in several possible combinations of output symbols and next

states. For this situation, it is more suitable to use only the notation q
a/b−→ q′ to

denote that when the machine is in state q and receives input symbol a, a possible
reaction is to emit output symbol b and move to state q′.

LetMSM = 〈ΣI , ΣO, Q, q0, δ, λ〉 denote the Mealy machine model of SM, let
(ΣA

O)	 = ΣA
O ∪{"} and R	 = R∪{r	}, where " is an output symbol denoting

that the provided abstract input symbol cannot be translated by the Mapper.
Then the behavior of A〈〈SM〉〉 can be modeled as a nondeterministic Mealy
machine in which

– ΣA
I and (ΣA

O)	 are the sets of input and output symbols,
– Q×R	 is the set of states,
– 〈q0, r0〉 is the initial state, and
– whenever A〈〈SM〉〉 is in state 〈q, r〉 and receives an abstract input symbol

aA, then for any concrete input symbol a such that aA = abstrI(r, a)
• the state 〈q, r〉 can be updated to 〈δ(q, a), δR(r, a/b)〉, where b = λ(q, a)

is the output symbol returned by SM, and
• the abstract output symbol abstrO(δR(r, a), b) can be produced.

We denote this possible symbol exchnage by

〈q, r〉 abstrI (r,a)/abstrO(δR(r,a),λ(q,a))−→ 〈δ(q, a), δR(r, a/λ(q, a))〉 .

For the case where there is no concrete input symbol a such that aA =
abstrI(r, a), the output symbol " is produced and the state 〈q, r〉 is updated
to r	, where it remains, i.e.,

• 〈q, r〉 aA/	−→ 〈q, r	〉, and

• 〈q, r	〉 aA/	−→ 〈q, r	〉 for any aA ∈ ΣA
I .

Although the behavior of A〈〈SM〉〉 must, in general, be modeled as a Mealy
machine, which is internally nondeterministic, it is still possible that its external
behavior will appear to the Learner as being deterministic. The Learner can only
observe the sequences of abstract output symbols that are produced in response
to provided input sequences. So, for a sequence aA

1 · · ·aA
n of abstract input sym-

bols, define λA〈〈SM〉〉(〈q, r〉, aA
1 · · · aA

n) as the set of sequences of output symbols
of form bA1 · · · bAn such that for some sequence of states 〈q1, r1〉 · · · 〈qn, rn〉 we
have

〈q, r〉 aA
1 /bA1−→ 〈q1, r1〉 aA

2 /bA2−→ · · · aA
n co/bAn−→ 〈qn, rn〉

342 B. Jonsson

Intuitively, λA〈〈SM〉〉(〈q, r〉, aA
1 · · · aA

n) is the set of abstract output sequences
that may be generated by A〈〈SM〉〉 in response to aA

1 · · · aA
n , starting from

state 〈q, r〉. In particular, λA〈〈SM〉〉(〈q0, r0〉, u) is the set of sequences that may
result from the input sequence u.

If tha input-output behavior of A〈〈SM〉〉 is equivalent to that of a determin-
istic Mealy machine, and if this (deterministic) Mealy machine is finite-state, it
will be possible to use L∗ for learning a model of its external behavior. Indeed, a
well-designed abstraction will preserve the determinism of the SUT so that the
input-output behavior of A〈〈SM〉〉 behaves deterministically, i.e., each sequence
of supplied (abstract) input symbols uniquely determines the subsequently pro-
duced (abstract) output symbol.

We make a formal definition of the condition under which the abstraction will
present a deterministic view to the Learner.

Definition 5. Let SM = 〈I, O, L, l0, X,−→〉 be an SMM, and let
A = 〈ΣA

I , ΣA
O , R, r0, abstrI , abstrO, δR〉 be an 〈I, O〉-abstraction. Then A is ad-

equate for SM if for any sequence u ∈ (ΣA
I)∗ of abstract input symbols, the set

λA〈〈SM〉〉(〈q0, r0〉, u) of correspondingly generated output sequences has at most
one element. ��
Intuitively, adequacy means that A〈〈SM〉〉 exhibits a deterministic mapping
from sequences of abstract input symbols received by the Mapper to sequences of
abstract output symbols produced by the Mapper after abstracting the output of
the SUT. If A is adequate for SM, then the Learner will perceive that A〈〈SM〉〉
is equivalent to a (deterministic) Mealy machine (which may or may not be finite-
state). For any deterministic mapping from sequences of abstract input symbols
to sequences of abstract output symbols, there is a minimal Mealy machine
which generates it. This Mealy machine can be defined by a Nerode-like quotient
construction, as follows.

Let Q〈SM,A〉 denote the set of states of A〈〈SM〉〉 that are reachable. More
precisely, Q〈SM,A〉 is the smallest subset of Q × R which includes 〈q0, r0〉 and
such that 〈q, r〉 ∈ Q〈SM,A〉 implies 〈δ(q, a), δR(r, a/λ(q, a)〉 ∈ Q〈SM,A〉 for all
a ∈ ΣI). Note that we have excluded states where the Mapper has reached r	.

Define the equivalence# on Q〈SM,A〉 by 〈q, r〉 # 〈q′, r′〉 if λA〈〈SM〉〉(〈q, r〉, u)=
λA〈〈SM〉〉(〈q′, r′〉, u) for any sequence of abstract input symbols u ∈ (ΣA

I)∗. Intu-
itively, two elements of Q〈SM,A〉 are equivalent if they cannot be distinguished
by the Learner, i.e., any two subsequent sequences of input symbols that are
identified by abstrI trigger two subsequent output words that are identified by
abstrO.

If A is adequate for SM, then the input-output behavior of A〈〈SM〉〉 is equal
to that of a deterministic Mealy machineMA (in the sense that λA〈〈SM〉〉(〈q0, r0〉,
u) = {λMA(u)} for any sequence u ∈ (ΣA

I)∗ of abstract input symbols), which is
defined by MA = 〈ΣA

I , ΣA
O , QA, qA0 , δA, λA〉, where

– QA = Q〈SM,A〉/ # ∪{q	}, i.e., the set of states is the set of equivalence
classes under # plus an extra state q	 denoting that an abstract input
symbol with no corresponding concrete input symbol has been received,

Learning of Automata Models Extended with Data 343

– qA0 = [〈q0, r0〉]� is the equivalence class of the initial state of A〈〈SM〉〉,
– δA and λA are defined as follows:

for any a ∈ ΣI with abstrI(r, a) = aA we have
• δA([〈q, r〉]�, aA) = [〈δ(q, a), δR(r, a/λ(q, a))〉]�, and
• λA([〈q, r〉]�, aA) = abstrO(δR(r, a), λ(q, a)),

for any aA ∈ ΣA
I s.t. there is no a ∈ ΣI with abstrI(r, a) = aA we have

• λA([〈q, r〉]�, aA) = ", and
• δA([〈q, r〉]�, aA) = q	.

To complete the definition, we define δA(q	, aA) = q	 for any aA ∈ ΣA
I .

The definition of # can be used to show that MA is well-defined.
The Mealy machineMA may be finite- or infinite-state. If a finite-state Mealy

machine MA = 〈ΣA
I , ΣA

O , QA, qA0 , δA, λA〉 is produced by the Learner, then we
must finally “reverse” the effect of the abstraction A to obtain the original SMM
SM, such that A〈〈SM〉〉 is equivalent toMA. In general, there can of course be
many SMMs with this property. In order that the SMMs be determined uniquely
up to equivalence (which is anyway the best we can hope for), it is necessary
that each abstract output symbol correspond to a uniquely determined concrete
output symbol generated by the SMM. We formulate this as follows.

Definition 6. An 〈I, O〉-abstraction A = 〈ΣA
I , ΣA

O , R, r0, abstrI , abstrO, δR〉 is
unambiguous if for all abstract output symbols bA and all r ∈ R there is at most
one output symbol b such that bA = abstrO(δR(r, a), b) for some input symbol
a ∈ ΣI . ��
Intuitively, this means that we can deduce which output symbol is produced by
SM by seeing only its abstraction.

If A is unambiguous, and MA = 〈ΣA
I , ΣA

O , QA, qA0 , δA, λA〉 is a finite-state
mealy machine, define A−1〈〈MA〉〉 as be the Mealy machine 〈ΣI , ΣO, QA ×
R, 〈qA0 , r0〉, δ, λ〉, where δ and λ are defined by

– λ(〈qA, r〉, a) = b, where b the unique output symbol such that
λA(qA, abstrI(r, a)) = abstrO(δR(r, a), b), and

– δ(〈qA, r〉, a) = 〈δA(qA, abstrI(r, a)), δR(r, a/b)〉.
We can now prove that under the conditions we have introduced, the SUT can
be inferred from MA, of course up to equivalence.

Proposition 1. If A is unambiguous and adequate for SM, and if A〈〈SM〉〉 is
equivalent to MA (i.e., λA〈〈SM〉〉(〈q0, r0〉, u) = {λMA(u)} for any u ∈ (ΣA

I)∗),
then SM is equivalent to A−1〈〈MA〉〉. ��
The proposition can be proven by establishing that A−1〈〈MA〉〉 satisfies the
conditions of the propsition, i.e., thatA〈〈A−1〈〈MA〉〉〉〉 is equivalent toMA, and
by establishing (e.g., by induction on the length of u) that the ouput generated
in response to an input sequence u, by any SM such that A〈〈SM〉〉 is equivalent
to MA, is uniquely determined.

344 B. Jonsson

6 Illustrating Example

In this section, we sketch how a model of the booking service could be obtained
by combining automata learning, and the abstraction that was developed in the
course of the two previous sections.

�

��

��

l0 ������������������������

openSession(USR,OK)/CUR

��

��

l1������������������������

getSeats(CUR)/OFFERED

��

��

l2 ������������������������

getSeat(CUR,SEAT)/SEAT

��

��

l3

Fig. 5. Learned Abstract Mealy machine (self-loops suppressed)

�

��
��

l0 ������������������������

openSession(u, p, s) when has passwd(u, p)/

cur session := s; s

��
��

l1������������������������

getSeats(s) when s = cur session/

seatsvar := offered; offered

��
��

l2 ������������������������

getSeat(s, seat) when s = cur session ∧ seat ∈ cur seats/seat

��
��

l3

Fig. 6. Constructed Symbolic Mealy machine (self-loops suppressed)

Learning of Automata Models Extended with Data 345

Having supplied the abstraction described in the previous section, we can now
employ theL∗ algorithmto learnafinite-stateMealymachine,which interactsusing
the sets ΣA

I and ΣA
O of symbols. Assume that the result is as described by the finite-

state Mealy machine in Figure 5. In this figure, we have omitted all transitions that
return error, and concentrate on those that make the session progress.

Starting from the finite-state Mealy machine in Figure 5, we can apply the
construction described at the end of the preceding section to generate a possible
SMM that models the service. It is shown in Figure 6.

7 Systematic Construction of Abstractions

The construction of a suitable abstraction is crucial for successful inference of
an SMM SM. In this subsection, we discuss how a successful abstraction can
be constructued more systematically. A necessary prerequisite for constructing
an abstraction is obviously that the sets I and O of input and output actions of
SM, together with their arities, are known a priori.

Furthermore, it appears necessary to have some a priori knowledge about
how SM stores and manipulates data that it receives and emits. On the other
hand, the control aspects of SM can be inferred by the Learner using automata
learning, provided that the abstraction is “good enough”. In the following, we
give some sufficient criteria for “good enough” abstractions, under which learning
and SM, according to the technique described in Section 5 can be successful.
At the end of this section, we discuss how such knowledge can sometimes be
obtained by testing and experimentation on SM.

In the running example in the previous subsection, we see that the abstraction
mapping for input symbols uses expressions that become guards in the resulting
SMM, and that the abstraction mapping for output symbols uses expressions that
occur in output expressions of the SMM. WhenSM is only available as a black box,
such an abstraction can be produced if the following information is available.

– An “overestimate” of the information that is stored in state variables of SM.
More precisely, such an overestimate can be represented by a set R of states
of the abstraction and an update function δR such that after any sequence
of pairs of input and output symbols, the information in the “data state”,
represented by the current valuation σ of state variables, of SM can be
obtained from the current state r of the abstraction. One way to formalize
is by finding a mapping h from the set of valuations of the state variables X
to the set r of states of the Mapper, which has the properties that
• h(σ0) = r0, and
• for any symbolic transition in −→ of form

�l �l′�
α(p) when g / x1, . . . , xk := e1, . . . , ek ; β(eout

1, . . . , e
out

m)

and valuation σ and data values d such that σ(g[d/p]) evaluates to true,
then if h(σ) = r, then it holds that for σ′ defined by
∗ σ′(xi) = σ(ei[d/p]) for 1 ≤ i ≤ k, and
∗ σ′(x) = σ(x) if x is not among x1, . . . , xk,

346 B. Jonsson

we have h(σ′) = δR(r, α(d)/β(σ′(eout
1 [d/p]), . . . , σ′(eout

m [d/p]))).

– The abstraction should distinguish between the different symbolic transitions
from a location. More precisely, this means that if from a location and from
some state 〈l, σ〉 with h(σ) = r, there are two different symbolic transitions
taken for input α(d) and α′(d

′
), then abstrI(r, α(d))
= abstrI(r, α′(d

′
)). This

can be achieved by letting each possible guard correspond to a different
abstract input symbol. For the case that the abstraction is not fine enough
to distinguish between symbolic transitions that cause different output, a
technique for refining the abstraction on-the-fly, during the learning process,
has been developed by Howar, Steffen, and Merten [19].

– The abstraction should be unambiguous. This can be achieved if different
output expressions are mapped to different abstract output symbols. For
instance, one could let abstract output symbols “be” the output expressions
that can occur in symbolic transitions, assuming that an output expression
is uniquely obtainable from the actual output symbol produced.

Under the above assumptions, we can construct an abstraction which maps com-
binations of parameterized input actions and guards in a possibe SMM to ab-
stract input symbols, and maps combinations of expressions in output symbols
of a possible SMM to abstract output symbols, as in the running example. The
updates to state variables will simply consist in assigning some input parameters
to state variables: the problem here is to decide which input parameters will in-
fluence the future behavior of SM, and must be remembered in state variables.
In our experiments, we have made this decision based on observing the response
of SM to selected input strings, i.e., by posing membership queries, and saving
those parameter values that are used to produce future output. For parameter
values on which the only performed operation is a test for equality, such as the
id parameter of the running example, we have made these ideas more precise in
our earlier work [6], as follows:

Consider an input string u, which contains a parameter value d. We observe
the output of M in response to u and to selected continuations of u, and decide
to store d in a state variable if there is some continuation v of u such that d
is used to produce the response to v. More precisely, this happens if there is a
fresh (i.e., previously unused) data value d′ such that the response λ(δ(q0, u), v)
to v and the response λ(δ(q0, u), v[d′/d]) to v[d′/d] (i.e., v where all occurrences
of d have been replaced by d′) satisfy λ(δ(q0, u), v)[d′/d]
= λ(δ(q0, u), v[d′/d]),
i.e., SM does not treat d in the same way as a fresh (previously unused) value
d′. This happens, e.g., if λ(δ(q0, u), v[d′/d]) contains the data value d implying
that d must have been remembered before seeing the subsequent input v[d′/d],
and that d should be stored in a state variable.

8 Conclusions and Future Work

We have considered the problem of extending automata learning to incorporate
data parameters, including their influence on control behavior. We concentrated

Learning of Automata Models Extended with Data 347

on presenting an approach that adapts ideas using abstraction that have been
successfully applied in formal verification. This approach has been used on some
nontrivial examples [1, 2], and techniques for revising abstractions by need have
been developed [19]. However, it is clear that much work remains in order to
make automata learning with data easily applicable to a wide class of systems.
Issues that need to be addressed include to remove (some of) the need for manual
construction of abstractions: this could be addressed by developing more canon-
ical models for automata with data. Another issue is that the determinism of
the Mealy machine model is limiting the modeling power: ways should be found
to effectively learn nondeterministic models.

Acknowledgment. This paper builds on joint work with several present and for-
mer collaborators, including Fides Aarts, Therese Bohlin, Sofia Cassel, Olga
Grinchtein, Falk Howar, Maik Merten, Bernhard Steffen, Johan Uijen, and Frits
Vaandrager. Mistakes and inconsistencies are caused by the author.

References

1. Aarts, F., Jonsson, B., Uijen, J.: Generating models of infinite-state communica-
tion protocols using regular inference with abstraction. In: Petrenko, A., Simão,
A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer,
Heidelberg (2010)

2. Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and abstraction of the biometric
passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp.
673–686. Springer, Heidelberg (2010)

3. Ammons, G., Bodik, R., Larus, J.: Mining specifications. In: Proc. 29th ACM
Symp. on Principles of Programming Languages, pp. 4–16 (2002)

4. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

5. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines with param-
eters. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 107–121.
Springer, Heidelberg (2006)

6. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines using do-
mains with equality tests. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS,
vol. 4961, pp. 317–331. Springer, Heidelberg (2008)

7. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)

8. Brun, Y., Ernst, M.: Finding latent code errors via machine learning over program
executions. In: ICSE 2004: 26th Int. Conf. on Software Enginering (May 2004)

9. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. Journal of the ACM 50(5),
752–794 (2003)

10. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

11. Dupont, P.: Incremental regular inference. In: Miclet, L., de la Higuera, C. (eds.)
ICGI 1996. LNCS, vol. 1147, pp. 222–237. Springer, Heidelberg (1996)

348 B. Jonsson

12. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1-3), 35–45 (2007)

13. Gold, E.M.: Language identification in the limit. Information and Control 10(5),
447–474 (1967)

14. Grinchtein, O.: Learning of Timed Systems. PhD thesis, Dept. of IT, Uppsala
University, Sweden (2008)

15. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata.
In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS,
vol. 3253, pp. 379–395. Springer, Heidelberg (2004)

16. Groce, A., Peled, D.A., Yannakakis, M.: Adaptive model checking. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 357–370. Springer,
Heidelberg (2002)

17. Groz, R., Li, K., Petrenko, A., Shahbaz, M.: Modular system verification by in-
ference, testing and reachability analysis. In: Suzuki, K., Higashino, T., Ulrich,
A., Hasegawa, T. (eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 216–233.
Springer, Heidelberg (2008)

18. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated
regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS,
vol. 2306, pp. 80–95. Springer, Heidelberg (2002)

19. Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet
abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 263–277. Springer, Heidelberg (2011)

20. Huima, A.: Implementing conformiq qtronic. In: Petrenko, A., Veanes, M.,
Tretmans, J., Grieskamp, W. (eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp.
1–12. Springer, Heidelberg (2007)

21. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learn-
ing. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–
327. Springer, Heidelberg (2003)

22. Issarny, V., Steffen, B., Jonsson, B., Blair, G.S., Grace, P., Kwiatkowska, M.Z.,
Calinescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: Connect chal-
lenges: Towards emergent connectors for eternal networked systems. In: ICECCS,
pp. 154–161 (2009)

23. Kearns, M., Vazirani, U.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

24. Li, K., Groz, R., Shahbaz, M.: Integration testing of distributed components
based on learning parameterized I/O models. In: Najm, E., Pradat-Peyre, J.-F.,
Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 436–450. Springer,
Heidelberg (2006)

25. Lo, D., Maoz, S.: Scenario-based and value-based specification mining: better to-
gether. In: ASE 2010, 25th IEEE/ACM International Conference on Automated
Software Engineering, Antwerp, Belgium, pp. 387–396. ACM, New York (2010)

26. Loiseaux, C., Graf, S., Sifakis, J., Boujjani, A., Bensalem, S.: Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design 6(1), 11–44 (1995)

27. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: Proc. ICSE 2008: 30th Int. Conf. on Software Enginering, pp. 501–510
(2008)

28. Mariani, L., Pezzè, M.: Dynamic detection of COTS components incompatibility.
IEEE Software 24(5), 76–85 (2007)

Learning of Automata Models Extended with Data 349

29. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson,
S.T., Gao, Q. (eds.) Formal Methods for Protocol Engineering and Distributed
Systems, FORTE/PSTV, pp. 225–240. Kluwer, Beijing (1999)

30. Rivest, R., Schapire, R.: Inference of finite automata using homing sequences.
Information and Computation 103, 299–347 (1993)

31. Shahbaz, M., Li, K., Groz, R.: Learning and integration of parameterized compo-
nents through testing. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W.
(eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 319–334. Springer, Heidelberg
(2007)

32. Shu, G., Lee, D.: Testing security properties of protocol implementations - a ma-
chine learning based approach. In: Proc. ICDCS 2007, 27th IEEE Int. Conf. on
Distributed Computing Systems, Toronto, Ontario. IEEE Computer Society, Los
Alamitos (2007)

33. Trakhtenbrot, B., Barzdin, J.: Finite automata: behaviour and synthesis.
North-Holland, Amsterdam (1973)

Dependability and Performance Assessment

of Dynamic CONNECTed Systems

Antonia Bertolino, Antonello Calabró,
Felicita Di Giandomenico, and Nicola Nostro

Istituto di Scienza e Tecnologie dell’Informazione,
Consiglio Nazionale delle Ricerche

via Moruzzi 1, I-56124, Italy
name.surname@isti.cnr.it

Abstract. In this chapter we present approaches for analysis and mon-
itoring of dependability and performance of Connected systems, and
their combined usage. These approaches need to account for dynam-
icity and evolvability of Connected systems. In particular, the chap-
ter covers the quantitative assessment of dependability and performance
properties through a stochastic model-based approach: first an overview
of dependability-related measurements and stochastic model-based ap-
proaches provides the necessary background. Then, our proposal in Con-
nect of an automated and modular dependability analysis framework
for dynamically Connected systems is described. This framework can
be used off-line for system design (specifically, in Connect, for Con-
nector synthesis), and on-line, to continuously assess system behaviour
and detect possible issues arising at run-time. For the latter purpose,
a generic, flexible and modular monitoring infrastructure has been de-
veloped. Monitoring is at the core of the Connect vision, in order to
ensure run-time observation of specified quantitative properties and pos-
sibly trigger adequate reactions. We focus here on the interaction chain
between monitoring and analysis, to allow for on-line continuous valida-
tion of specified dependability and performance properties. Illustrative
examples of applications of analysis and monitoring are provided with
reference to the Connect Terrorist Alert scenario.

1 Introduction

Modern software applications are more and more conceived as dynamically
adaptable and evolvable sets of components that must be able to modify their
behaviour at run-time to tackle the continuous changes in the unpredictable
open-world settings [BGD06]. On the other hand, these systems are increasingly
pervasive and their improper behaviour will produce effects on our everyday
lives and business, which can range from annoying ones up to sometime even
critical consequences. Therefore, we need to ensure that these dynamic systems
provide the required non-functional properties, such as reliability, availability,
performance, security and trust, and so on, and continue to do so even after
evolution and adaptation.

M. Bernardo and V. Issarny (Eds.): SFM 2011, LNCS 6659, pp. 350–392, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Dependability and Performance Assessment 351

In suchpartially unknownand evolving contexts, dependability analysis [Lap95]
calls for on-line support to enhance the accuracy of preliminary estimates per-
formed at design time. Indeed, as we entrust more and more responsibilities to
distributed software systems, the need arises to augment them with powerful over-
sight and management functions in order to allow continuous and flexible moni-
toring of their behaviour.

In this chapter we tackle the challenge of dependability and performance
analysis in dynamic Connected systems. We present our preliminary results
obtained in the context of the European Project Connect [CON13], which
considers dynamic environments populated by heterogeneous Networked Sys-
tems within disconnected isles, willing to communicate with each other despite
differing and evolving technologies.

In Connect, communication between heterogeneous systems is seamlessly
supported by Connect Enablers, which make on-the-fly interoperation possible
by synthesising and deploying mediating software bridges, called Connectors.
Specifically, the main Enablers in the Connect architecture include (please refer
to [GGB+11] for a complete description): Discovery, which discovers mutually
interested Networked Systems (NSs), and retrieves information on the NS inter-
faces; Learning, which possibly completes the specifications of the NSs through a
learning procedure; Synthesis and Deployment, which perform, respectively, the
dynamic synthesis of the mediating Connectors and their deployment; Depend-
ability&Performance, which uses a model-based analysis to support Synthesis in
the definition of a dependable Connector; Security&Trust, which assess and en-
force security, privacy and trust aspects, and finally Monitoring, which continu-
ously monitors the deployed Connector to update the Connector specification
used by the other Enablers with run-time data.

To accomplish dependability and performance analysis in such a complex and
evolving context, both off-line and on-line approaches are pursued, to cover a
wider range of needs. As commonly intended in the literature, off-line analysis
refers to activities devoted to analyse the system at hand before deployment, or
even after its deployment but in isolation with respect to the system in operation.
On the contrary, on-line analysis refers to activities performed while the system
is in operation, so accounting for the detailed system and environment aspects
during that specific system execution. We adopt the off-line and on-line terms
with such meanings.

Analysis at the early stage of a development process is of paramount impor-
tance to achieve the required functional and non-functional properties. In fact,
early evaluation of the concepts and architectural choices prevents wasting time
and resources by promptly identifying possible design deficiencies or helping
in performing design decisions by comparing different alternative architectural
solutions and selecting the most suitable one.

Nevertheless, the incomplete a priori knowledge about the operating system
and environment unavoidably undermines the accuracy of the considered ele-
ments and, hence, of the analysis results. In this perspective, monitoring be-
comes a key technological enabler for dependability assurance, as it provides

352 A. Bertolino et al.

the enabling infrastructure to prolong software lifecycle after deployment, by
supporting run-time verification and on-line adaptation.

Therefore, in Connect, both an automated approach to off-line dependabil-
ity analysis adopting model-based analysis, to support the design of dependable
connectors, and event-based monitoring, to support dependability and perfor-
mance run-time analysis, are under definition and development. In this chapter,
the two approaches are first individually presented, pointing out their respec-
tive architectures and their role in the Connect framework. Then, we focus on
their synergic use, to allow refining model-based dependability and performance
analysis in distributed dynamic systems through monitoring.

The continuous interplay and refinement between model-based analysis and
run-time monitoring is today emerging as an irremissible direction of software
development. A software module (the whole software system or part of it) is
repeatedly analysed through model-based analysis and refined in its design un-
til it proves to satisfy specified non-functional quantitative requirements. Once
such a proper design is obtained, it is deployed in a suitable computing environ-
ment and put in operation. At run-time, the deployed software system must be
monitored to be sure that its execution respects the required properties. Data
collected through monitoring constitute invaluable information to be exploited
for: i) validating the models generated through model-based software engineering
sub-process, and ii) continuously refining the analysis by overcoming the possible
inaccuracy in the values of the model parameters due to incomplete knowledge
or to evolution of the elements involved in the analysis.

The rest of the chapter is structured as follows. Section 2 presents some back-
ground material about dependability and performance properties and related
analysis approaches. The approaches undertaken in Connect to perform de-
pendability and performance assessment of Connected systems are dealt with
in Section 3, namely model-based analysis and event-based monitoring. In ad-
dition to presenting them individually, emphasis is put on their synergic use
and the current steps towards their integration are illustrated. A case-study ac-
counting for representative aspects of the Connect context is then elaborated
in Section 4, which allows to provide preliminary illustrative examples of the
analysis performed both off-line and on-line. Related work is briefly overviewed
in Section 5, while conclusions and future perspectives are drawn in Section 6.

2 Background

In this section we provide some background material about dependability, per-
formance and monitoring.

2.1 Dependability, Performance and Related Assessment Metrics

Dependability has been defined in the 90’s as the ability of a system to provide
its intended services in a justifiable way [Lap95, ALRL04]. Such ability of the
system is generally measured against the following attributes (see Figure 1):

Dependability and Performance Assessment 353

availability, reliability, safety, integrity, maintainability. Availability is defined as
the readiness for correct service and is generally computed as the ratio between
the up-time of the system to the duration of the considered time period. Reli-
ability is defined as the continuity of correct service and is typically expressed
by using the notions of mean time between failures (MTBF) and mean time to
recover (MTTR) for repairable systems, and with mean time to failure (MTTF)
for non-repairable systems. Safety is the absence of catastrophic consequences.
This attribute is a special case of reliability: a safe state, in this case, can be
either a state in which a proper service is provided, or a state where an improper
service is provided due to non-catastrophic failures. Integrity is defined as the
absence of improper system state alterations. Maintainability is the ability to
undergo modifications and repairs.

Fig. 1. Classical dependability attributes and resilience

Dynamic and evolvable systems generally need to cope with unanticipated
conditions that might cause system failures. In these cases, the concept of de-
pendability can be naturally extended to Resilience, i.e., the persistence of ser-
vice delivery that can justifiably be trusted when facing changes [Lap08]. Possible
changes can be classified according to their nature (e.g., functional, environmen-
tal, technological), prospect (e.g., foreseen, foreseeable, unforeseen), and timing
(e.g., short, medium or long term).

Performance is the ability of a system to accomplish its intended services
within given non-functional constraints (e.g., time, memory) [iee90]. Typically,
performance of a system can be characterised with the following attributes (see

354 A. Bertolino et al.

Figure 2): timeliness, precision, accuracy, capacity and throughput. Timeliness is
the ability of the system to provide a service according to given time require-
ments, e.g., at a given time and within a certain time frame. Precision is the
ability of the system to provide the same results when repeating measurements
under unchanged conditions. Accuracy is the ability of the system to provide
exact results, i.e., results that match the actual value of the quantity being mea-
sured. Capacity is the ability of the system to hold a certain amount of data
or handle a certain amount of operations. Throughput is the ability to handle a
certain amount of operations or data in a given time period.

Fig. 2. Performance attributes

Quantification of dependability and performance attributes is of paramount
importance in the process of determining whether a system meets its specification
and to compare possible alternative design solutions leading to the most effective
system realization. This is accomplished through the definition of appropriate
metrics for the dependability and performance attributes. In general, a number
of metrics can be defined for a given attribute; as an example, the following
metrics allow to quantify Availability, that is the alternation between deliveries
of proper and improper service:

– A(t) is 1 if service is proper at time t, 0 otherwise;
– E[A(t)] (Expected value of A(t)) is the probability that service is proper at

time t;

Dependability and Performance Assessment 355

Fig. 3. Performability and its relation with Dependability and Performance

– A(0,t) is the fraction of time the system delivers proper service during [0,t];
– E[A(0,t)] is the expected fraction of time the system delivers proper service

during [0,t].

Similarly, Performance metrics typically include:

– the number of jobs processed per time unit, as a measure of throughput;
– the time to process a specific job, as a measure of the response time;
– the maximum number of jobs that may be processed per time unit, as a

measure of the capacity.

Most practical Performance measures are very application specific, and mea-
sure times to perform particular functions or, more generally, the probability
distribution function of the time to perform a function.

A measure of special interest introduced to evaluate degradable systems, i.e.,
systems that are still able to provide a proper service when facing faults, but
with degraded level of performance, is Performability. This indicator combines
the concepts of performance and dependability and represents the ability of
a system to accomplish its intended services in the presence of faults over a
specified period of time [Mey92]. Performability allows to evaluate different ap-
plication requirements and to assess dependability-related attributes in terms of
risk versus benefit.

2.2 Stochastic Model-Based Approaches for Early Prediction of
Dependability and Performance Metrics

Fault forecasting and evaluation approaches are very suited to detect errors
and deficiencies at design time, that could otherwise be very costly or even
catastrophic when discovered at later stages.

Modelling is composed of two phases:

– The construction of a model of the system from the elementary stochastic
processes that model the behaviour of the components of the system and

356 A. Bertolino et al.

their interactions. These elementary stochastic processes relate to failures,
to repair, service restoration and possibly to system duty cycle or phases of
activity;

– Processing the model to obtain the expressions and the values of the de-
pendability measures of the system.

Research in dependability analysis has developed a variety of models, each
one focusing on particular levels of abstraction and/or system characteristics.
As reported in [NST04], important classes of model representation include: i)
Combinatorial Methods (such as Reliability Block Diagrams); ii) Model Check-
ing; and iii) State-Based Stochastic Methods. In the Connect project, ap-
proaches at both points ii) and iii) are employed; in this chapter the emphasis
is on State-Based Stochastic Methods, which support the explicit modelling of
complex relationships (e.g., concerning failure and repair processes), and their
transition structure encodes important sequencing information; for discussing
Stochastic Model-Checking and for a compared evaluation of their usefulness in
the Connect environment instead we refer to [CON10]. Concerning Combina-
torial Methods, they have not been considered in Connect, since they do not
easily capture certain features relevant for the project’s context such as stochas-
tic dependence and imperfect fault coverage,

State-Based Stochastic Methods use state-space mathematical models
expressed with probabilistic assumptions about time durations and transition
behaviours. State-based stochastic models can be classified in Markovian and
non-Markovian according to the underlying stochastic process [CGL94, Hav01,
Tri02]. A wide range of dependability modelling problems fall in the domain of
Markovian models, for example when only exponentially distributed times occur.
Markov chains (DTMC and CTMC) [How71, MFT00, Hav01, Tri02], Stochastic
Petri nets (SPN) [Mol82, CBC+93, Bal01] and Generalized Stochastic Petri nets
(GSPN) [ABC84] are among the major Markovian models. However, there is
also a great number of real circumstances in which the Markov property is not
valid, for example when deterministic times occur; non-Markovian models are
used for this type of problems. In past years, several classes of non-Markovian ap-
proaches have been defined [BT98], such as Semi-Markov Stochastic Petri Net
(SMSPN’s) [CGL94], Markov Regenerative Stochastic Petri Nets (MRSPN’s)
[CKT94] and Deterministic and Stochastic Petri Nets (DSPN’s) [AC87]. Some
major methods for analytically solving the non-Markovian models are discussed
in [BPTT98, MFT00, Ger01]. A short survey on State-Based Stochastic Meth-
ods and automated supporting tools for the assisted construction and solution
of dependability models can be found in [BCG05].

The proposal of an automated dependability analysis framework for dynam-
ically Connected systems will be discussed in 3.1. Two implementation of the
analysis engine are being pursued: one based on the Stochastic Activity Net-
works (SAN) formalism and related Möbius tool, and the other on the PRISM
tool. In this chapter, we focus on the Möbius implementation only; details on the
PRISM-based implementation can be found in [CON11b]. The Stochastic Activ-
ity Networks (SAN) formalism is one of the most powerful (in term of modelling

Dependability and Performance Assessment 357

capabilities) stochastic extensions to Petri nets and is supported by the Möbius
tool. SAN formalism and the Möbius tool are very commonly used in depend-
ability analysis and therefore they have been initially chosen for dependability
analysis in Connect. In the following, we provide some background on SAN
and Möbius to get the reader more familiar with (part of the) dependability
models we are going to define in this chapter.

Stochastic Activity Networks (SAN). SAN are stochastic extensions of
Petri Nets introduced in [MM84] and formally defined in [SM02]. They have a
graphical representation and consist of four primitive objects: places, activities,
input gates and output gates. Places in SANs have the same interpretation as in
Petri Nets, i.e., they hold tokens. The number of tokens in a place is referred to
as the marking of that place, and the marking of the SAN is the set of all place
markings.

There are two types of activities: instantaneous and timed. Timed activities
represent actions that have a duration that impacts the performance of the
modelled system, e.g., message transmission time, recovery time, time to fail.
The duration of each timed activity is expressed via a time distribution function.
Both instantaneous and timed activities may have case probabilities. Each case
probability stands for a possible outcome of the activity, and can be used to
model probabilistic aspects of the system, e.g., probability for a component to
fail.

Gates connect activities and places. Input gates (indicated as red/grey tri-
angles) are connected to one or more places and one single activity. They have
a predicate, a boolean function of the markings of the connected places, and
an output function. When the predicate is true, the gate holds. Output gates
(indicated as black triangles) are connected to one or more places, and to the
output side of an activity. If the activity has more than one case, output gates
are connected to a single case. Output gates have only an output function. Gate
functions (both for input and output gates) provide flexibility in defining how the
markings of connected places change when the delay represented by an activity
expires.

Properties of interest. Properties of interest are specified with reward functions.
Each reward function is a C++ function that specifies how to measure a property
on the basis of the marking of the SAN. There are two kinds of reward functions:
rate reward and impulse reward. Rate rewards can be evaluated at any time
instant. Impulse rewards are associated with specific activities and they can be
evaluated only when the associated activity completes. Measurements can be
conducted at specific time instants, over periods of time, or when the system
reaches the steady state.

Möbius. Möbius [CCD+01] provides an infrastructure to support multiple in-
teracting modelling formalisms and solvers. The main features of the tool include:

– Multiple modelling languages, based on either graphical or textual represen-
tations. Supported model types include stochastic extensions to Petri nets
(e.g. SAN), Markov chains and extensions, and stochastic process algebras.

358 A. Bertolino et al.

– Hierarchical modelling paradigm. Models are built from the ground up. First
the behaviour of individual components is specified, and then a model of the
complete system is created by combining these components.

– Customized measures of system properties, with ability to construct detailed
expressions that measure the exact information desired about the system
(e.g., reliability, availability, performance, and security). Measurements can
be conducted at specific time points, over periods of time, or when the system
reaches steady state.

– Study the behaviour of the system under a variety of operating conditions.
The functionality of the system can be defined as model input parameters,
and then the behaviour of the system can be automatically studied across
wide ranges of input parameter values.

– Distributed discrete-event simulation. The tool evaluates the custom mea-
sures using efficient simulation algorithms to repeatedly execute the system.

– Numerical solution techniques. Exact solutions can be calculated for many
classes of models, and advances in state-space computation and generation
techniques make it possible to solve models with tens of millions of states.

Möbius allows to combine (atomic) models to form the Composed model. To this
purpose, it supports the two operators Rep and Join to compose sub-networks.
Join is used to compose two or more SANs. Rep is a special case of Join, and is
used to construct a model consisting of a number of replicas of a SAN. Models
in a composed system interact via Place Sharing. Place Sharing is a composition
formalism based on the notion of sharing places via an equivalence relation.
It supports the transient and steady-state analysis of Markovian models, the
steady-state analysis of non-Markovian DSPN-like models [Sha93], and transient
and steady-state simulation. More information can be found in the web site:
http://www.crhc.uiuc.edu/PERFORM.

2.3 Run-Time Analysis via Monitoring

The ultimate goal of Connect, i.e., achieving automated and eternal interop-
erability among heterogeneous and evolvable Networked System, strongly relies
on the adoption of on-line approaches, and therefore on a pervasive monitoring
infrastructure.

More in general, as systems become more and more dynamic, distributed
and evolvable, the capability of effectively gathering run-time information about
their execution and/or their surrounding environment becomes an indispens-
able tool for many functionalities. Schroeder [Sch95], for example, identified
the following seven monitor functionalities: Control, Correctness checking, De-
bugging&Testing, Dependability, Performance evaluation, Performance enhance-
ment, and Security. In modern applications certainly further functionalities can
be identified, such as Learning, Accounting, Trust management, and so on.

Although in this chapter we focus on the use of monitoring for dependabil-
ity and performance evaluation, the monitoring infrastructure that we built in
Connect (described in the next section) has been conceived to be general and

Dependability and Performance Assessment 359

flexible, and not restricted to this purpose. Here below, as a background we
provide a basic introductory overview of monitoring concepts.

For the purpose of monitoring, the actions performed by the object under ob-
servation are abstracted into events. In particular, simple or primitive events are
directly produced by the observed object, whereas complex events can be defined
from simple events by using operators of a suitable event algebra [Zim99]. Event
specification requires a careful design and configuration activity that is central
to the overall setup of a monitoring system. In [SK88], events that may hap-
pen in a distributed system are divided in local, non-local, global. Local events
are produced on a single node, which means that observing them does not re-
quire addressing the problems that are related to distribution and inter-node
synchronization. Non-local events, on the other hand, are (composite) events
whose observation requires considering and correlating events originated from
more than a single node. Global events are a special case of non-local events,
and require considering all the nodes of a system. Recognizing complex events
in distributed loosely-coupled environments is not trivial [Fid96], as it requires
establishing in which order two or more constituent events (originated from dif-
ferent nodes) happened. As noted by Lamport in his well-known 1978 paper,
in a distributed system it is sometimes impossible to say that one of two events
happened first [Lam78]. Fortunately, the observability problem does not neces-
sarily arise in all distributed systems. For example, if one aims at identifying the
service that takes the maximum average response time among a set of services,
the problem is not really distributed, as the observation is in fact local and there
is no need for aggregated interpretation.

Even though more than 20 years old, Joyce definition of monitoring as the
process of dynamic collection, interpretation, and presentation of information
concerning objects or software processes under scrutiny [JLSU87] remains still
relevant and suggests some reflections.

Firstly, it qualifies monitoring as a dynamic activity, to underline that it is
inherently concerned with the execution phase of a system, as opposed to (static)
activities that are carried out in the development/coding phase. With this same
meaning we also speak of run-time monitoring. Secondly, the definition identifies
several different activities, namely collection, interpretation, and presentation, as
part of monitoring. Each of these activities is meant to address a specific problem
and may use dedicated techniques. This is why research on monitoring appears
fragmented: the many works on monitoring are hard to compare as most of them
focus only on some of the aspects of monitoring. A first attempt to overview the
most important problems and issues about monitoring in distributed systems
is [MSS94].

Monitor generic architecture. Figure 4 depicts the main architectural ele-
ments of a generic monitoring system. Elaborating on [MSS94], we identified
the following five core functions.

Raw data collection. The lowest layer of a monitoring framework is realized by a
set of sensors or probes: these fire a primitive event whenever the observed entity

360 A. Bertolino et al.

Fig. 4. Architectural elements of a monitoring system

performs some specified computation steps (actions). This is done locally on the
entity under observation. Therefore, data collection is the function through which
a monitor can produce the largest impact on the system under observation. We
expand more on it later.

Local interpretation. The process of local interpretation is concerned with mak-
ing sense (locally) of the information extracted by probes. This is achieved by
applying a filter that extracts interesting sequences of events out of the raw data
collected by probes. In practical implementations, data collection and filtering
can overlap to some extent: a sort of rough preliminary filtering is done if the
events emitted in the data collection step are not just the result of reaching a
given point in the execution but also of some other logic or processing embedded
in the probe.

Data transmission and storage. In distributed systems, the relevant events that
are revealed locally need to be collected at one or more sites where they can be
aggregated with analogous data coming from other nodes. Transmission may oc-
cur immediately, to reduce detection latency, or may be delayed, using buffering,
e.g., to cope with network congestion (at the expense of memory occupation or
CPU cycles if compression is used).

Global interpretation (also known as “correlation” or “aggregation”). This func-
tion makes sense of pieces of information that come from several nodes and puts
them together in order to identify interesting conditions/events that can be ob-
served only at an aggregated level. Architectures with more than one level of
aggregation are possible, and are usually adopted when enhanced scalability is
necessary [MCC04]. When moving from local to global observation, observability
issues must be taken into account. Suitable timestamping and synchronization
facilities must be used as appropriate.

Dependability and Performance Assessment 361

Reporting. The information provided as the output of monitoring can be used for
a variety of purposes and should be presented in a way that is meaningful to the
“consumer” of the monitoring system. The consumer can be a piece of software
itself or a human. In both cases the results of the final interpretation phase must
undergo an elaboration in order to express output data in a suitable format. In
the former case, this format should be machine-readable; in the latter, it must
be shown either as a textual report or it may use interactive GUIs, graphics,
animations and so on.

The first core function, data collection, determines the monitoring system in-
trusiveness [Sch95], i.e., the level of interference imposed upon the observed ap-
plication. Intrusive monitors may alter the behaviour that they want to observe.
This phenomenon is referred to as the probe effect (or sometime the “Heisenberg
effect”) [Gai86]. It concerns especially monitoring of performance-related char-
acteristics, but may also impact functional properties, since the process might
alter the timing of events and therefore cause wrong behaviour that otherwise
would not happen [JLSU87]. Analogously, faults (that would have happened oth-
erwise) can be masked as an effect of the interplay of the subject system and
the monitoring.

The collection of data can be done according to two styles [HBPU06]:

– Instrumentation: some code is inserted in the application to be monitored
in order to emit an event when the control flow reaches a certain point in
the execution. This can be realized in different forms at different levels of
abstraction. For example, source code instrumentation techniques include
statements in the original program to be monitored. Their outcome can be
guarded by a condition, whereby it is possible to refine the event definition
and to emit an event only when the guard condition is satisfied.

– Interception: when adopting this style, data collection is achieved through a
proxy-likeprobe that is put on the wire and snoops interactions, as in [BGG04].
Although this approach may not be as flexible as the previous, it has the
advantage of being non-intrusive, therefore it is well suited in other contexts
where the control over the system is distributed/partioned across several
organizations.

Orthogonally to the instrument/intercept criterion, the techniques for collecting
monitoring data can also be distinguished according to whether the collection
is based on sampling or complete executions are observed. Most sampling ap-
proaches sample on a time basis; however certain (composite) events may go
undetected if some of the constituent events are discarded by the sampling. A
possible way to address this problem is by sampling in space, rather than in
time, i.e., by alternating the processes (or components) that are chosen as the
target of monitoring, in such a way that, locally to the target, the observation
is complete and no event is discarded.

362 A. Bertolino et al.

3 Dependability Assessment Approach in CONNECT

Assessment techniques are sought in Connect to ensure that Networked Sys-
tems as well as the generated bridging Connectors satisfy specified levels of
accomplishment for dependability and performance requirements, according to
pertinent metrics. In the following, we present two approaches under develop-
ment in Connect for this purpose: the Dependability&Performance Enabler
(DePer) and the Monitoring Enabler (Glimpse). The two approaches are first
described individually and then their combined use to enhance dependability
and performance assessment of the system under analysis is discussed.

3.1 DePer

DePer provides support to the definition of a Connector that allows NSs to
interact with a desired level of dependability and performance properties.

Before presenting the architecture of this Enabler, we briefly discuss its rela-
tions with other Enablers of the Connect architecture. In [GGB+11], a com-
plete overview of Connect Enablers and their role is provided. Adopting a
DePer-centric view, here we restrict to those having input-output relations
with DePer, as shown in Figure 5 (to make the chapter self-complete, the role
of relevant Enablers has also been synthetically recalled in Section 1).

According to the Connect vision, a Networked System broadcasts a connect
request whenever a new connection to a service is needed. The connect request
contains a description of the requested service together with a specification of
the required dependability and performance level for the service. When Discov-
ery detects a connect request, it looks for available Networked Systems that can
provide the requested service. If such systems are found and operate a com-
munication protocol different from that of the Networked System that made the
connect request, Discovery triggers the process of creating a suitable Connector

Fig. 5. Input-Output Relations between DePer and the Other Enablers

Dependability and Performance Assessment 363

that enables interoperation. The Synthesis Enabler, on the basis of the specifica-
tion of the communication protocols, produces a mediating Connector. Before
Connector deployment, Synthesis activates DePer to evaluate if the Con-
nected system that will be obtained satisfies the non-functional requirements
expressed by the Networked Systems. If the non-functional requirements are sat-
isfied, the Connector is deployed; otherwise, Synthesis is supported by DePer
in the definition of possible enhancements that can be applied. To take into ac-
count dynamic system changes once the Connector is deployed, the Monitoring
Enabler, if requested by other Enablers, continuously observes the run-time be-
haviour of the Connected system and provides them related information, in
accordance with received requests.

Therefore, as shown in Figure 5, the joint activity of Discovery and Learning
provides the dependability requirements; Synthesis provides the specification
of the Connected system, and possibly requests a dependability enhancement;
Monitoring provides run-time data on the execution of the deployed Connector.
The dependability and performance assessment and the enhancements produced
by DePer are used by Synthesis.

The architecture of the DePer Enabler is shown in Figure 6 and also
preliminarily described in [MMDGar]. Currently, this Enabler accommodates
dependability and performance analysis performed through both the stochastic
state-based and the stochastic model-checking approaches. Actually, the archi-
tecture is general and other analysis methods could be easily included by spec-
ifying and implementing an appropriate Analysis Engine module. The Selector
and Aggregator modules, at the entrance and exit of the architecture, allow the
selection of the analysis method and the aggregation of the analyses results (in
case more than one method is applied), respectively. More details on each module
are provided in the following.

At the time of writing, a prototype which partially implements the DePer
architecture is under development (http://dcl.isti.cnr.it/DEA/). It is based on
the SAN formalism and the Möbius tool, already introduced in Section 2. For
those modules already considered in the implementation, some details are also
provided in the following description.

3.2 Selector

The Selector module activates, depending on the characteristics of the specifi-
cation of the Connected system and of the requirements, the most suitable
analysis engine among those available to the Enabler. In fact, the employed en-
gines implement different approaches to analyse dependability and performance
properties of a Connected system. Each approach has its own advantages re-
garding modelling capability, specification of properties, and scalability; hence,
besides using the different engines to cross validate the results and to improve
the confidence in the correctness of the models, they actually complement each
other. In the study conducted during the first year [CON10], the characteristics
of the stochastic model checking and state-based stochastic methods evaluation
approaches have been already pointed out.

364 A. Bertolino et al.

Fig. 6. Architecture of the Dependability&Performance Analysis Enabler

3.3 Aggregator

The Aggregator module is in charge of selecting the analysis results to be pro-
vided in output to the Synthesis Enabler, in case more than one Analysis Engines
have been activated for a Connected system specification. Therefore, when
only one kind of analysis is performed, based on the choice made by the Selector
module, Aggregator just conveys the analysis results to the output interface of
DePer. Instead, when more analysis methods are activated, their results are
collected by Aggregator and elaborated according to some criteria to derive the
output results.

The first step to be performed is a comparison among the values provided by
the different methods to check whether they are in agreement (within a certain
tolerance degree, to cope with natural dissimilarities inherent to the use of differ-
ent methods). In the case of a matching comparison, the reliance in each of the
employed approaches is increased (cross-validation) and all the analysis results
can be equally considered valid, so anyone of them can be output as final analy-
sis values. Alternatively, some form of mediation could be made on the obtained
multiple results (e.g., the average), to balance the effects of single method’s
approximations. A mismatch, instead, would be the symptom of erroneous/-
too inaccurate analysis by at least one of the applied methods. Let us recall
that DePer in Connect is based on an automated procedure, starting from
given specifications of the Connected system and of the dependability and per-
formance requirements, partially implemented at the current stage. Therefore,
once fully automated, we expect that the case of mismatch would be removed
by construction; however more investigations are necessary on this issue. The
implementation of this module has been deferred, at the moment.

3.4 Dependability&Performance Analysis Engine

The Dependability&Performance Analysis Engine is logically split into five main
functional modules (see Figure 7): Builder, Analyser, Evaluator, Enhancer and
Updater.

Dependability and Performance Assessment 365

Fig. 7. Architecture of the Dependability&Performance Analysis Engine

Builder. The Builder module takes in input the specification of the Connected
system from Synthesis, and the dependability and performance requirements
from Discovery/Learning. The module produces in output a dependability and
performance model of the Connected system suitable to assess the given de-
pendability and performance requirements.

Specification of the Connected system. With reference to recent works on syn-
thesis ofmediating Connectors [SI10] and automata discovery/learning [RSB05],
the specification of the Connected system is given with Labelled Transition Sys-
tems (LTSs) annotated with non-functional information necessary to build the de-
pendability and performance model of the Connected system. An LTS is an ab-
stract machine that represents the sequence of actions performed by the system.
Formally, an LTS is a tuple (S,S0,L, T), where S is a set of states,S0 ⊆ S is a set of
initial states, L is a set of labels, and T ⊆ S ×L×S is a transition relation. Anno-
tations include, for each labelled transition, the following fields: time to complete,
firing probability, and failure probability. The values for these parameters could
be exact values or ranges of values (ranges are especially appropriate when the
exact estimate is not possible, given uncertainties of the environment).

Dependability and performance requirements. In our architecture, the depend-
ability and performance properties required by the Networked Systems are trans-
lated by Discovery/Learning into metrics and guarantees. Metrics are arithmetic
expressions that describe how to obtain a quantitative assessment of the prop-
erties of interest of the Connected system. They are expressed in terms of
transitions and states of the LTS specification of the Networked Systems. Guar-
antees are boolean expressions that are required to be satisfied on the metrics.

366 A. Bertolino et al.

Dependability and performance model. Thedependability andperformancemodel
of theConnected system is specifiedwith a formalism that allows to describe com-
plex systems that have probabilistic behaviour, e.g., stochastic processes.

Implementation. The prototype implementation of the Builder module takes in
input the LTS of the connected system described with Finite State Processes
(FSP) [MK06]. The dependability model of the system is specified with Stochas-
tic Activity Networks (SANs), already introduced in section 2. The SAN model
is obtained from the LTS model by using the theory of regions [ER90]. A region
identifies a set of states in the LTS such that all transitions with the same label
either enter, exit, or never cross the boundary of the region. Each region in the
LTS corresponds to a place in the derived SAN model, and each labelled transi-
tion in the LTS corresponds to an activity in the SAN model. A similar approach
has already been used in other works to translate LTSs into Petri Nets (see, for
instance, [CKLY98], [BS02] and [CCK09]). In order to have a well-defined prob-
abilistic model, non-deterministic choices among k transitions outgoing from an
LTS state are mapped in the SAN model into instantaneous activities with k
case probabilities. The metric is an arithmetic expression that may contain a
predefined set of functions (see Table 1 for some examples). The guarantee is
given by a boolean expression on the metric and a set of constraints on the
connected system model (e.g., constraints on the time frame of evaluation of the
metric). Statistical operators (e.g., mean and variance), comparison and logical
operators can be used in the expression.

Table 1. Examples of predefined functions that can be used in the metric expression

Function Description

timeFrame(s) : S → R+ returns the interval of time when the system is in
state s

minT imeStamp(tr) : T → R+ returns the first instant of time when transition tr
fires

avgT imeStamp(tr) : T → R+ returns the average instant of time when transition
tr fires

maxT imeStamp(tr) : T → R+ returns the last instant of time when transition tr
fires

#(tr, t1, t2) : T × R+ × R+ → N returns the number of times transition tr fires during
the time frame [t1, t2]

#(l, t1, t2) : L × R+ × R+ → N returns the number of times transitions with label l
fire during the time frame [t1, t2]

Analyser. The Analyser module takes in input the dependability and perfor-
mance model from the Builder module and the dependability and performance
requirements from Discovery/Learning. The module builds a reward model, i.e.,
a model that enables a quantitative assessment of the metrics of interest, and
makes use of a solver engine to obtain a quantitative assessment of the depend-
ability and performance metrics.

Dependability and Performance Assessment 367

Reward model. The reward model is the dependability and performance model
extended with reward functions. Reward functions allow to specify properties of
interest: they return a value depending on the system state, and can be evaluated
either at an instant of time or accumulated over a time frame.

Solver. The solver engine evaluates the reward functions defined in the reward
model. The evaluation can be performed either through analytical approaches
or through simulation, depending on the metrics under evaluation and on the
mathematical representation of the involved phenomena.

Implementation. The prototype implementation of the Analyser is based on
Möbius, already introduced in section 2. In Möbius, each reward function is
a C++ function that returns a value depending on the marking of the SAN.
There are two kinds of reward functions: rate rewards and impulse rewards. Rate
rewards are used to implement time-based reward functions. Impulse rewards
are used to implement action-based reward functions, i.e., they are associated
with specific activities and can be evaluated only when the associated activity
completes. The reward functions are automatically derived from the metrics ex-
pression as follows: the metric is mapped into its syntax tree to decompose the
metric into a combination of basic functions; the basic functions are translated
into C++ functions by using a predefined repository of function templates (cur-
rently under construction). For instance, with reference to the functions shown
in Table 1, a rate reward template is used to translate timeFrame(s), while an
impulse reward template is used to translate #(tr, t1, t2). Then, the quantitative
assessment of the metric is obtained from the assessment of the reward functions
by merging the results according to the arithmetic operations specified in the
syntax tree of the metric expression.

Evaluator. The Evaluator module reports to Synthesis if the Connected
system satisfies the dependability and performance requirements provided by
Discovery/Learning. In the case of requirements mismatch, Evaluator sends a
warning message to Synthesis, and may receive back a request to evaluate if en-
hancements can be applied to improve the dependability (and/or performance,
depending on the received request) level of the Connected system.

In view of the synergic cooperation with the monitoring infrastructure, this
module also informs the Updater module, which is in relationship with the Mon-
itor Enabler, about the model parameters for on-line observation.

Requirements mismatch. If the requirements are not satisfied, Evaluator may re-
ceive a request to explore one of the following three directions for improvements:

1. Update the specification of the Connector to take into account an alterna-
tive Connector deployment (e.g., a deployment that uses a communication
channel with lower failure rate). Upon receiving this request, the Evalua-
tor triggers a new analysis that considers the updated specification of the
Connector.

368 A. Bertolino et al.

2. Enhance the specification of the Connector by including dependability
mechanisms, which are counter-measures to contrast failure modes affecting
performance and/or dependability metrics (e.g., a message retransmission
technique). Upon receiving this request, it is first necessary to understand
which are the failure probabilities mostly impacting on the metrics evalua-
tion, so as to include primarily dependability mechanisms capable of limiting
the effects of such highly impacting failures. To this end, Evaluator builds a
sensitivity analysis campaign to instruct the Builder module on the creation
of dependability and performance model variants, each of which considers
a specific subset of failure probabilities, among those foreseen. Whenever a
variant is generated, the Analyser module performs the assessment of the
metrics on the generated model. Evaluator collects the analysis results and,
after all variants have been analysed, produces a ranking of the failure prob-
abilities. This ranking is used by Evaluator to iteratively activate the En-
hancer module until one of the following conditions is met: the guarantees
are satisfied, or Enhancer signals that all possible dependability mechanisms
have been explored.

3. Apply a combination of the previously mentioned enhancements.

Enhancer. The Enhancer module is activated by Evaluator when the guaran-
tees are not satisfied and Synthesis makes a request to enhance the Connector
with dependability mechanisms. Enhancer is instructed by the Evaluator mod-
ule on the requirements mismatch and the failure probability that needs to be
improved. Then, it performs the following actions: (i) selects the dependability
mechanisms that can be employed, among those available, to improve the failure
probability indicated by the Evaluator module; (ii) instructs the Builder module
on the application of the selected dependability mechanisms in the Connected
system model (one model variant will be generated for each dependability mech-
anism selected, generally only one) and triggers a new analysis for each of the
generated models.

Dependability mechanisms. Typically, dependability mechanisms are based on
the application of redundancy, e.g., duplication of system channels, or retry of
message transmissions over system channels. The dependability mechanism, in
this context, will be embedded in the synthesised Connector, because Net-
worked Systems are not under the control of the framework. Nevertheless, the
dependability mechanisms embedded in the Connector can be employed to im-
prove, to some extent, the dependability and performance level of the Networked
Systems. For example, the reliability level of a transmission performed by a Net-
worked System can be improved through timeouts or message retransmissions
applied at the Connector level.

Implementation. We developed ad hoc dependability models for a set of rele-
vant dependability mechanisms, and a set of rules to automate the application of
the mechanisms in the SAN model of the connected system. The ad hoc models
can be parametric; for instance, a retransmission mechanism is parametric with

Dependability and Performance Assessment 369

(a) Basic model (b) Enhanced model

Fig. 8. Example of dependability mechanism and application rule

respect to the maximum number of allowed retransmissions. As an example of
mechanism and application rule, in Figure 8 we graphically show a retransmission
mechanism and how to modify the original model in order to apply message re-
transmissions to a send operation. Specifically, the original model contains a timed
activity send that models the send operation, an input gate send cond that spec-
ifies the enabling condition of the activity, and two output gates, send success
and send fail, that specify the output functions in the case of correct and faulty
behaviour. The enhanced model is obtained from the original model by adding
the following elements: a place send count, with initial marking the maximum
allowed number of retransmissions; an output gate send count reset, which re-
sets the marking of send count to its initial value when the send succeeds; an
output gate send retry, which reactivates send as long as send count contains
tokens, and resets the marking of send count after performing all retransmission
attempts.

In a more structured vision, the dependability mechanism(s) suitable to im-
prove on a given failure probability are determined through an ontology of de-
pendability mechanisms, such as that reported in [ReS08]. The definition of such
an ontology is planned as future work.

Updater. The Updater module interacts with the Monitoring Enabler to refine
the accuracy of model parameters through on-line observations. Inaccuracy of the
non-functional values used in the off-line analysis at Connector design time is
mainly due to two possible causes: i) limited knowledge of the NSs characteristics
acquired by Learning/Discovery Enablers; ii) evolution along time of the NSs,
as naturally accounted for in the Connect context.

Updater receives inputs from both internally to DePer (from the Evaluator)
and externally (from the Monitor Enabler). From the former, for each Con-
nector ready to be deployed it receives the model parameters to convey to the
Monitor for run-time observations. From the latter, it receives a continuous flow
of data for the parameters under monitoring relative to the different executions
of the Connector. Accumulated data are processed through statistical infer-
ence techniques. If, for a given parameter, the statistical inference indicates a
discrepancy between the on-line observed behaviour and the off-line estimated
value used in the model resulting into a significant deviation of the performed
analysis, a new analysis is triggered by instructing the Builder module to update
the Connected system model.

370 A. Bertolino et al.

Details on the implementation between Updater and Monitoring are illus-
trated in Subsection 3.6.

Statistical Inference Techniques. As reported in [Tri02], methods of statistical
inference applied to a collection of elements under investigation (called popula-
tion), allow to estimate the characteristics of the entire population. In our case,
the collection of values relative to each parameter under monitoring constitute
a population to which such techniques are applied.

3.5 GLIMPSE

In Connect we developed a monitoring infrastructure, called Glimpse, aimed
at covering the main function[MSS94] for the monitoring discussed in section 2.3.
We tried to implement these five core function in a modular and flexible way,
aiming to support behavioural learning, performance, reliability assessment, se-
curity and trust also in non-Connect context.

Glimpse is an acronym for “Generic fLexIble Monitoring based on a Publish-
Subscribe infrastructurE”. The architecture of Glimpse is shown in Figure 10;
details of each component are in the following.

Probes. There are entrusted to Collection and Local interpretation functions.
Probes are usually realized by injecting code into the existing software or by
using a proxy. The probes that we used in Glimpse are already injected into
the Connector during its synthesis phase. When primitive events occur into
the software, probes send them to the Monitoring Bus component (described
below).

An event, in the current context, represent a transition between two states
of an LTS. In our implementation we collect all the information that may be
useful at Glimpse to infer complex event occurrences for the analysis in the
ConnectBaseEvent interface.

The event description is shown in figure 9.
Examinating more in details some of the parameters composing the Connect

BaseEvent interface we can find:

– connectorID : defines the identity of the Connector
– connectorInstanceID : used to define the execution of the Connector

Monitoring bus. The monitoring bus is the communication backbone where
all information (events, requests, responses) is sent on by: Probes, Enablers,
Complex Event Processor and by all the services using Glimpse. To obtain a
better decoupling and to keep asynchronous communication, in our implemen-
tation we decided to adopt public-subscribe paradigm, which is implemented
with messages queue through ServiceMix4 and Java Message Service. There are
many commercial products that implement Enterprise Service Bus, we prefer
ServiceMix for its strong compatibility and simplicity interacting with the rule
engine used for this prototype.

Dependability and Performance Assessment 371

Fig. 9. ConnectBaseEvent Interface

However, in designing the Glimpse architecture, we adopted a model-driven
which allow Glimpse to use different rule languages. The handling of the Mon-
itoring Bus is devoted to the Manager component, analysed below.

The usage of a messaging system in Enterprise Service Bus (ESB) allows
Glimpse to use a variety of protocols such as HTTP/SOAP and REST. More-
over, with the usage of JBI [jbi] components, Glimpse interact even with legacy
systems, binary transports, document-oriented transports, and Remote Proce-
dure Call [rpc] systems. Adopting a messaging system reduces execution
bottlenecks that might occur using Remote Procedure Call or Database-centric
architecture.

Complex Event Processor. The Complex Event Processor (CEP) is the rule
engine that allows to infer complex events from primitive sent on the Monitoring
Bus by Probes.

The CEP is instructed at runtime by the Manager component that, after
analysing the consumer (Enabler) request expressed sending a JMS message
on wich payload is written in XML using the ComplexEventRuleActionList
schema (see Listing 1), load the new inference rules on the engine. There are
several rule engines that can be used for this task (like Drools Fusion [dro],
RuleML [rul]), in the existing prototype wu used Drools Fusion.

The schema of complexEventActionList is shown in Listing 1.

372 A. Bertolino et al.

The complexEventActionList specification supports the use of heteroge-
neous rule languages, as it is natively unbound to any. Examinating the Listing 1,
at line 30, we found the RuleBody field that is used by the Enabler to set the
Drools rule for the requested evaluation. Into the field RuleType (line 32), the
Enabler will set the type of rule language requested for the evaluation, this will
allow to use more rule languages even at run-time.

Consumer. In Glimpse, a Consumer may be a learning engine, a dependability
analyser or a simple customer that requests some information to be monitored.
The basic requirement to interact with Glimpse is to be able to send/receive
JMS messages and to raise correct query to the inference engine (CEP). The
Consumer sends a request to the Manager using the Monitoring Bus and waits
for the evaluation results on a dedicated response channel provided and notified
by the Manager.

Manager. It manages all the communications among its components. The Man-
ager component is the orchestrator of all the Glimpse architecture. Specifically,
the Manager fetches requests coming from Consumers (Enablers), analyses them
and instructs the Probes. Then, it instructs the CEP Evaluator, creates and no-
tifies to the Consumer a dedicated channel on which it will provide results pro-
duced by the CEP Evaluator. (For more information about interaction, sec:3.6).

The most valuable support provided by the Manager is the handling of all the
knowledge base loaded into the CEP.

Glimpse Implementation. A prototype of Glimpse is available for public down-
load at http://labse.isti.cnr.it/tools/glimpse.

Fig. 10. The architecture of Glimpse

Dependability and Performance Assessment 373

3.6 Integrated Run-Time Analysis

Synergic use of DePer and Glimpse is pursued to allow automated refine-
ment of dependability and performance analysis through inspection of run-time
data, as preliminarly described in [BCDG+ar]. Precisely, feedbacks from run-
time executions of the Connected system as collected from Glimpse are used
by DePer to enhance the accuracy of model parameters adopted in the analysis
performed at design time.

The interactions between DePer and Glimpse Enablers start after the De-
Per Enabler determines that the synthesised Connector satisfies the required
dependability and performance level. Specifically, after the analysis phase, if
compliance with requirements is verified with the consequent deployment of the
Connector, DePer informs the Glimpse on which are the parameters (among
those used in the dependability analysis) relative to Connector and NSs, that
must be kept under observation at run-time. Glimpse, upon receiving the re-
quest, properly instructs the probes embedded in the Connector.

Run-time data relative to parameters under observation are sent by the
Glimpse to DePer. DePer, through its Updater module, continuously per-
forms statistical analyses on the collection of data received to verify whether
the accuracy of the model parameters used in the analysis is good enough for
the analysis results to be still valid, or the Connector no longer satisfies the
requirements and needs adjustments. In this latter case, a new analysis adopting
the updates parameters values is triggered.

Figure 11 shows the interaction between DePer and Glimpse. DePer is
shown inside the dotted box at the top of the Figure, while Glimpse is shown
again in a dotted box at the bottom left side of the Figure. For clarity, only
relevant modules involved in the cycle with Monitoring, are shown. Inside De-
Per, the activities from receiving the Connected System specifications till
conclusion of the evaluation phase are represented. Since we want to show the
interaction between DePer and Glimpse, we depicted the case where the de-
pendability and performance requirements are met, so the Evaluator module
reports to Synthesis that the Connector can be deployed and triggers Updater
on sending monitoring requests to Glimpse. Such requests are received by the
Manager component of Glimpse through a service channel on the Monitoring
Bus, which instructs the Probes and the Complex Event Processor and creates a
dedicated communication channel on the Monitoring Bus, used to provide results
to DePer.

Then, Probes start intercepting events of interest, when they occur. If De-
Per requests consist of complex events, their composing primitive events are
elaborated by the rule engine Complex Event Processor, and resulting values
are computed.

Responses to monitoring requests so determined are sent to DePer through
a dedicated channel on the Monitoring Bus.

Once the Updater module of DePer receives the run-time data from Glimpse,
it applies to them statistical inference techniques to determine the actual values
of the corresponding model parameters. In case the newly determined values are

374 A. Bertolino et al.

1 <?xml v e r s i on=” 1 .0 ” encoding=”UTF−8”?>
2 <schema xmlns=”http ://www.w3 . org /2001/XMLSchema”

targetNamespace=”http :// l ab s e . i s t i . cnr . i t / g l impse /xml/
ComplexEventRule” xmlns : tns=”http :// l ab s e . i s t i . cnr . i t /
g l impse /xml/ComplexEventRule” elementFormDefault=”
q u a l i f i e d ”>

3

4

5 <element name=”ComplexEventRuleActionList ” type=” tns :
ComplexEventRuleActionType”></element>

6

7 <complexType name=”ComplexEventRuleActionType”>
8 <sequence>
9 <element name=” I n s e r t ” type=” tns :

ComplexEventRuleType”
10 maxOccurs=”unbounded” minOccurs=”0”>
11 </element>
12 <element name=” Delete ” type=” tns :

ComplexEventRuleType”
13 maxOccurs=”unbounded” minOccurs=”0”>
14 </element>
15 <element name=” Star t ” type=” tns :

ComplexEventRuleType”
16 maxOccurs=”unbounded” minOccurs=”0”>
17 </element>
18 <element name=”Stop” type=” tns :

ComplexEventRuleType”
19 maxOccurs=”unbounded” minOccurs=”0”>
20 </element>
21 <element name=” Restart ” type=” tns :

ComplexEventRuleType”
22 maxOccurs=”unbounded” minOccurs=”0”>
23 </element>
24 </sequence>
25 </complexType>
26

27 <complexType name=”ComplexEventRuleType”>
28 <sequence>
29 <element name=”RuleName” type=” s t r i n g ”

maxOccurs=”1” minOccurs=”1”></element>
30 <element name=”RuleBody” type=” s t r i n g ”

maxOccurs=”1” minOccurs=”0”></element>
31 </sequence>
32 <a t t r i b u t e name=”RuleType” type=” s t r i n g ”></

a t t r i bu t e>
33 </complexType>
34 </schema>

Listing 1. ComplexEventRuleActionList Schema

Dependability and Performance Assessment 375

Fig. 11. Interactions between DePer and Glimpse

outside the range assumed in the analysis at design time, the analysis model is
updated with the new values and solved again. If the new analysis evidences that
the deployed Connector needs adjustments, a new synthesis-analysis cycle is
started in cooperation with the Synthesis Enabler and a notification is sent to
Glimpse about stopping monitoring the no more satisfactory Connector.

Implementation. In the implementation performed so far, DePer and Glimpse
interact by using a Publish/Subscribe protocol. The interaction pattern is shown
as a sequence diagram in Figure 12 where we intentionally left out system start-
up operations (for a more detailed sequence diagram, see [CON11a]). Whenever
Monitoring Enabler receives a request message on the service channel (see mes-
sage 2 on Figure 12), a new channel dedicated to the requesting Enabler is set
up to communicate the monitored values.

376 A. Bertolino et al.

Fig. 12. Sequence Diagram of the Basic Interaction Pattern between DePer and
Glimpse

Glimpse sends response messages to DePer Enabler as soon as the aspect
of interest is available (see message 8 on Figure 12).

The two Enablers exchange JMS messages whose payload is expressed in XML
language. The payload of the XML, contains a ComplexEventRuleActionList
xml object, which determines a lists of possible actions to execute on the Moni-
toring Enabler knowledge base. The schema of ComplexEventRuleActionList is
shown in Listing 1.

4 Example

In this section we first introduce an example scenario and then we show how we
apply the presented approaches to it.

4.1 The Terrorist Alert Scenario

We consider the Connect Terrorist Alert scenario [CON11c], depicting the
critical situation that during a show in the stadium, the control center spots one
suspect terrorist moving around. The alarm is immediately sent to the Police.

Policemen are equipped with ad hoc handheld devices which are connected
to the Police control center to receive command and documents. Precisely, the
policemen can share documents with the Police control center and with other
policemen through a SecuredFileSharing application, for example a picture of a
suspect terrorist.

Unfortunately, the suspect is put on alert from the police movements and tries
to escape, evading the Stadium.

In such an emergency situation, there may be various cases in which Connect
can be of help. As described in [CON11c], the police could for example be directly

Dependability and Performance Assessment 377

put in connection with various surveillance systems in the zone to receive videos
or pictures in their devices. We focus on the case that a policeman that sees
the suspect running away can dynamically seek assistance to capture him from
civilians serving as private security guards in the zone of interest. To get help in
following the moves of the escaping terrorist and capturing him, the policeman
sends to the civilian guards an alert message in which one picture of the suspect
is distributed.

On their side, to perform their service, the guards are equipped with smart
radio transmitters which run an EmergencyCall application. This transmission
follows a two steps protocol. We assume in fact that the guards that control a
zone are Connected in groups, and that for each group there is a Commander
on duty. The protocol followed in the EmergencyCall application is that a request
message is first sent from the guards control center to the Commander. As soon
as the Commander replies with an acknowledgement of receipt, a message with
details of the emergency is forwarded to all security guards. On correct receipt of
the alert, each guard’s device automatically sends an ack to the control center.

The two applications, SecuredFileSharing and EmergencyCall, in this scenario
represent the two Networked Systems, which are not a priori compatible; hence
a Connector bridging between the policeman device and the guard device must
be deployed.

In the following we show the LTSs modelling the two applications above
mentioned.

SecuredFileSharing

– The peer that initiates the communication (hereafter denominated the co-
ordinator) sends a broadcast message (selectArea) to selected peers (the
Police control center or policemen) operating in a specified area of inter-
est. In the SecuredFileSharing application, the coordinator can be either the
Police control center or a policeman.

– The selected peers reply with an areaSelected message.
– The coordinator sends an uploadData message to transmit confidential data

to the selected peers.
– Each selected peer automatically notifies the coordinator with an

uploadSuccess message when the data have been successfully received.

EmergencyCall

– The guards control center sends an eReq message to the commanders of the
patrolling groups operating in a given area of interest.

– The commanders reply with an eResp message.
– The guards control center sends an emergencyAlert message to all guards

of the patrolling groups; the message reports the alert details.
– Each guard’s device automatically notifies the guards control center with an

eACK message when the data has been successfully received and a timeout is
triggered after a time interval if not all guards sends back the eAck message.
The timeout represents the maximum time that the Connector can wait
for the eAck message from the guards.

378 A. Bertolino et al.

Fig. 13. LTS of the SecuredFileSharing Application

(a) Commander

(b) Other guards

Fig. 14. LTSs of the EmergencyCall Application

To allow a Policeman and the guards in the zone where the suspect has escaped
to communicate we need to synthesize on-the-fly a Connector. Precisely, we
need to mediate between the LTSs shown in Figures 13 and 14, respectively. We
briefly summarise the needed mappings below.

CONNECTor

– The selectAreamessage of the policeman is translated into an eReqmessage
directed to the commander of the patrolling group operating in the area of
interest.

– The eResp message of the commander is translated into an areaSelected
message for the policeman.

– The uploadData message of the policeman is translated into a multicast
emergencyAlert message.

– The eACK messages automatically sent by the guards’ devices that correctly
receive the emergencyAlert message are collected and then translated into
a single uploadSuccess message for the policeman.

Dependability and Performance Assessment 379

Fig. 15. LTS of the Connector

The LTS of the Connector in the case of a patrolling group consisting of one
commander and two other guards is shown in Figure 15.

4.2 Off-line Analysis

In this section, first we show the SAN models of the case study under analysis,
then the results of the analysis obtained through Möbius.

SAN Models. The SAN models of guard, commander, Connector, and Se-
curedFileSharing are shown in Figure 16. The model of the Connected system
is obtained by composing, via place sharing, the SAN models of SecuredFile-
Sharing, commander, Connector and guards (the SAN model of the guards is
obtained by replicating a guard with the Rep operator). There is a shared place
for each pair of activities that represent send/receive actions: send activities add
tokens in the shared place, while receive activities remove tokens from the shared
place and use the marking of the shared place as enabling condition. Note that,
in general, a send activity may control n > 1 receive activities (e.g., in the case
of a message with multicast/broadcast addresses); in this case, the send activity
will add n tokens to the shared place to allow the simultaneous enabling of the
receive activity of n receivers.

Timing aspects for send/receive actions are taken into account in the SAN
models as follows: when n receive activities complete simultaneously after a send
action completes, the receive activities are instantaneous and the send activity
is timed; when n receive activities complete independently after a send action
completes, the receive activities are timed and the send activity is instantaneous.
Timeouts are modelled with timed activities that force the enabling of other
activities.

In the following we describe in detail the behaviour of the model of Con-
nected system. In the description, we will use the prefixes C, G, CON, and S
to disambiguate the names of local places, activities and gates of commander,
guards, Connector, and SecuredFileSharing.

Initially, all places in the models have zero tokens, except p0, which con-
tains one token in all models. The SecuredFileSharing starts the communica-
tion, because S.selectArea is the only enabled activity. When S.selectArea

380 A. Bertolino et al.

(a) SecuredFileSharing

(b) Connector

(c) EmergencyCall, commander (d) EmergencyCall, guard

Fig. 16. SAN Models

completes, one token is placed in S.p1 and one token in SharedCT0. At this
point, S.selectArea is enabled. When S.selectArea completes, one token is
placed in S.p1 and the number of tokens in SharedCT0 is increased. The ac-
tivity CON.selectArea is now enabled, when it completes one token is moved
from SharedCT0 to CON.p1, and CON.eReq becomes enabled. When CON.eReq
completes, the marking changes as follows: commNum tokens are placed in
SharedCM0, because commNum commanders must be involved in the communi-
cation; commNum tokens are placed in CON.p2, because the Connector must
wait for one eResp from each commander. When the Connector receives a re-
sponse from each commanders, (i) for each response received one token is placed
in CON.p3; (ii) when each commanders has sent a response CON.areaSelected is

Dependability and Performance Assessment 381

enabled, one token is placed in CON.p4 and the number of tokens in SharedCT1
is increased. At this point S.areaSelected is enabled, when it completes one
token is moved from SharedCT1 to S.p2, and S.uploadData becomes enabled.
A token is placed in S.p3 and the number of token in SharedCT2 is increased.
Activity CON.uploadData is now enabled, when it completes one token is moved
from SharedCT2 to CON.p5, which enables the activity emergencyAlert. When
emergencyAlert completes commNum + guardNum tokens are placed both in
SharedGD0 and CON.p6, and the number of tokens in CON.start1 is increased.
At this point activities CON.timeOut1 and G.emergencyAlert are both enabled.
The first one represents the Connector’s timeout on the maximum waiting
time; while the second one enables the activity G.eACK which increases the num-
ber of tokens in SharedGD1. At this point activity CON.eACK is enabled and the
number of tokens in CON.p7 and CON.Nresps is increased, until the timed activity
CON.timeOut1 completes. The activity uploadSuccess becomes enabled when
commNum+guardNum tokens are placed in CON.p7, this means that the Con-
nector has received all responses, or when the number of tokens in CON.stop1 is
greater than zero, this means that the time associated to the activity timeOut1
has elapsed, CON.timeOut1 completes. The number of tokens in CON.Nresps rep-
resents the number of guards that have recived the emergencyAlert and have
sent back the eACK before the timeout.

State-based Stochastic Analysis. The analysis performed through Möbius
consists in: i) two measures of latency, at varying the number of guards and for
different traffic patterns; ii) a measure of coverage in case of failure.

Latency. This property ismeasured fromthemomentwhen the control center starts
to send the initial request selectArea to the time it receives uploadSuccess. The
latency is specified by accumulating over time the following rate reward function:

double latency() {

if (SecuredFileSharing->p1->Mark() > 0

|| SecuredFileSharing->p2->Mark() > 0

|| SecuredFileSharing->p3->Mark() > 0)

{ return 1; }

}

Latency2. It is also useful to know the trend of the amount of time spent on
waiting for eAck, given different values of T, the duration of the timeout shown
in the model of the Connector,.

This property is specified by accumulating over time the following rate reward
function:

double latency2() {

if (connector->start1->Mark() > 0 && connector->p6->Mark() > 0)

{ return 1; }

}

382 A. Bertolino et al.

Coverage. This property is associated to the real value m/n, where n represents
the total number of guards and commanders, and m represents how many of
them send back their respons to the connector within T time units, after they
receive the request emergencyAlert.

Coverage is specified by accumulating over time the following impulse reward
on CON.uploadSuccess (guardNum and commNum are two parameters of the com-
posed model, and hold the number of guards and commanders respectively):

double coverage() {

return ((double) connector->Nresps->Mark()) / (guardNum + commNum);

}

Connected systems may include an arbitrary large number of Networked
Systems. Therefore, we investigated the scalability of the SAN model of the
Connected system by analysing large networks. The developed SAN model of
the Connected system is parametric with respect to the number of guards and
commanders.

We successfully assessed coverage and latency for scenarios with hundreds of
guards and two commanders. Figure 17(a) shows the analysis results for latency
in scenarios with at most 100 guards. We can notice that, for low values of the
timeout T, it is not possibile to appreciate differences in latency at increasing
the number of guards. In fact, due to the short duration of T the guards do
not have enough time to send a response. When T becomes greater than 8 time
units, it is possible to observe how the number of guards affects the value of
latency: as expected, increasing the number of guards leads to an increase of
latency.

The number of batches needed to reach a confidence level of 95% and a confi-
dence interval of 10% for the considered models was always below 10K, because
the models are relatively simple.

Latency for different traffic patterns. Connected systems are expected
to be a mix of heterogeneous user applications, each of which may have different
characteristics and requirements. Currently, there is no single traffic distribution
that can efficiently capture the traffic characteristics of all types of networks un-
der every possible situation. A large number of empirical studies have shown
that network traffic is self-similar and that it generally exhibits multiple time-
scale behaviour [LTWW94]. These aspects can be modelled with subexponential
distributions, such as Weibull and Lognormal.

We investigated the effect of different subexponential distributions on latency
by changing the probability distribution function of the timed activities. For a
fair comparison, we have chosen distribution parameters that allow the same
mean value in all cases. The analysis results are shown in Figure 17(b). We can
notice that different traffic patterns lead to different latency profiles. Similarly
to the previous analysis, the latency assumes a constant value when the timeout
T reaches a certain value (5 time units in this case), after which it is possible to
appreciate how different traffic patterns affect the latency.

Dependability and Performance Assessment 383

(a) Latency for different number of
guards

(b) Latency for different traffic patterns

Fig. 17. Latency for Different System Size and Different Traffic Patterns

Coverage in the case of failures. Communication in the real-world can be
subject to failures. Therefore, failure modes need to be accounted for when set-
ting up the system model. Failure modes can pertain the value domain (e.g.,
wrong output), and/or the time domain (e.g., omission). In this section, we as-
sess coverage in the case of omission failure of the messages sent and received in
the EmergencyCall application. Figure 18 shows the coverage profiles for differ-
ent probability P(ECallFailure) of failures of EmergencyCall communications.
The analysis is performed with two commanders and two guards. The figure
shows that variations in the failure probability significantly affect the coverage
metric. The lower values shown by all the curves on the left side of the figure
(that is, at initial values of T) are due to the fact that, given the short duration
of T, the guards do not have enough time to send a response.

Fig. 18. Coverage for Different P(ECallFailure) of Failures of EmergencyCall

Communications

384 A. Bertolino et al.

4.3 On-line Analysis

In the following, we focus on the Enablers interactions only, leaving out of scope
the actions taken by DePer Enabler once it obtains the values observed at run-
time from the Glimpse Enabler. We show a basic interaction between DePer
and Glimpse Enablers, with reference to the Terrorist Alert Scenario [CON11c].
As summarised in Section 4.1, the scenario considers the interactions between
police and patrolling civil guards. It is assumed that policemen and guards are
both equipped with mobile devices, but they use different communication pro-
tocols. Hence, we intend to use the Connect infrastructure to enable the direct
interoperation between a policeman and guards in the zone.

What we want to monitor at run-time is the latency between two states of the
LTS. Specifically, we want to monitor latency of two transitions from the LTS
shown in Figure 13.

The parameters under monitoring are the duration of the transitions executed
by the NS requesting the communication, on which timeouts have been setup
in the Connector specification to limit the waiting periods. Therefore, having
feedbacks on real executions is useful to improve the timeout calibration.

From Figure 13, the events to be monitored are the consumer transitions
selectArea and areaSelected. The request messages sent by DePer Enabler
to Glimpse are shown in Listing 2.

The Glimpse infrastructure, more specifically, the Manager component, re-
ceives the DePer requests and sets up the ComplexEventProcessor with the
provided rule.

The events flowing in from Probes are structured on a ConnectBaseEvent
object (see Figure 9), that provides all the necessary informations for an accurate
pattern recognition.

According to the scenario, the peer that initiates the communication sends
a broadcast message selectArea to selected peers (the Police control center or
policemen) operating in a specified area of interest.

The event generated from the Probe instrumented into the peer software
component is shown in Figure 19 and flows in into the Glimpse infrastructure
stream of events.

When the selected peer replies (Police control center or policemen), another
event is fired and sent on the Monitoring Bus, the areaSelected event.

The rule computation time, (lines 15-20) in Listing:2, used the timestamp
contained into the two different events, matching: connectorID, sequenceID, Con-
nectorInstanceID, ConnectorInstanceExecutionID of each event. This rule, is
able to calculate the latency (line 27) and provide it to the DePer.

Indeed, the rule pending request in the Listing2, (lines 40-42), computes
the number of incoming requests into the Connector and provide it to DePer
in order to evaluate coverage metric.

With those results, DePer is able now to evaluate the behaviour of the Con-
nector and if this is not compliant to the expected values, it may contact the
Syntesis Enabler requiring a new synthesis process.

Dependability and Performance Assessment 385

Using a CEP able to infer more complex rules and patterns along with an
event-driven architecture approach for dependability and performance analysis,
may be beneficial in order to provide a cross-checking validation between run-
time value and analysis expected value.

5 Related Work

This work spans over automated model-based dependability analysis and event-
based monitoring.

Research on definition and development of transformation-based verification
and validation environments are being pursued since several years. Providing
automatic/automated transformations methods from system specification lan-
guages to modelling languages amenable to perform dependability analysis has
been recognized as an important support for improving the quality of systems.
In addition, it favours the application of verification and validation techniques at
industry level, where these methods are not widely used primarily due to the high
level of abstractness of the mathematical modelling and analysis techniques. To
provide some examples, the Viatra tool [CHM+02] automatically checks consis-
tency, completeness, and dependability requirements of systems designed using
the Unified Modeling Language. The Genet tool [CCK09], based on the theory
of regions [ER90], allows the derivation of a general Petri net from a state-based
representation of a system. Our work addresses the transformation from the LTS
formalism, as system specification language, to SAN, as dependability modelling
language. Since there are some steps in common with the Genet tool and related
theory, we partially reused available results from this previous study.

Similarly to Glimpse, also [PSB04] presents an extended event-based middle-
ware with complex event processing capabilities on distributed systems. Similar
to Glimpse this work adopts a publish/subscribe infrastructure but it is mainly
focused on the definition of a complex-event specification language. The aim of
Glimpse is to give a more general and flexible monitoring infrastructure for
achieving a better interpretability with many possible heterogeneous systems.

Another monitoring architecture for distributed systems management is pre-
sented in [HAwM99]. Differently from Glimpse, this architecture employs a
hierarchical and layered event filtering approach. The goal of the authors is to
improve monitoring scalability and performance for large-scale distributed sys-
tems, minimizing the monitoring intrusiveness.

Many works focus on the definition of expressive complex event specifica-
tion languages [MSS97, CM94, CM10]. Among these languages, GEM [MSS97]
is a generalized and interpreted event monitoring language. It is rule-based
(similar to other event-condition-action approaches) and also provides a tree-
bases detection algorithm taking into account communication delay. Also the
Snoop language [CM94] follows an event-condition-action approach support-
ing temporal and composite events specification but it is especially developed
for active databases. A more recent formally defined specification language is
TESLA [CM10]. It has a simple syntax and a semantics based on a first order

386 A. Bertolino et al.

1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
2 <ComplexEventRuleActionList xmlns=”http :// l ab s e . i s t i . cnr . i t

/ g l impse /xml/ComplexEventRule”
3 xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s t anc e ”
4 x s i : schemaLocation=”http :// l ab s e . i s t i . cnr . i t / g l impse /xml/

ComplexEventRule . / ComplexEventRule . xsd”>
5 <I n s e r t RuleType=” droo l s ”>
6 <RuleName>t rans i t i onDurat ionRule</RuleName>
7 <RuleBody>
8 [. . .]
9 rule ” computation time”

10 no−loop
11 salience 999
12 dialect ” java ”
13 when
14 $aEvent : SimpleEvent (this . data == ” se l e c tArea ” , this

. getConsumed == f a l s e) ;
15 $bEvent : SimpleEvent (this . data == ” ar eaSe l e c t ed ” ,
16 this . getConsumed == f a l s e ,
17 this . getConnectorID == $aEvent .

getConnectorID ,
18 this . getConnectorInstanceID == $aEvent .

getConnectorInstanceID ,
19 this . getConnectorInstanceExecut ionID ==

$aEvent .
getConnectorInstanceExecut ionID ,

20 this after $aEvent) ;
21 then
22 $aEvent . setConsumed (t rue) ;
23 $bEvent . setConsumed (t rue) ;
24 Sa t i s f i e dReque s t s r = new Sa t i s f i e dReque s t () ;
25 s r . setIncoming ($aEvent) ;
26 s r . setOutcoming ($bEvent) ;
27 s r . se tDurat ion (Droo l sUt i l s . l a t ency ($aEvent .

getTimestamp () , $bEvent . getTimestamp ())) ;
28 i n s e r t (s r) ;
29 r e t r a c t ($aEvent) ;
30 r e t r a c t ($bEvent) ;
31 ResponseDispatcher . NotifyMe (d roo l s . getRule () . getName

() , ”DePer Module” , s r . getDurat ion ()) ;
32 end
33

34 rule ”pending reque s t ”
35 no−loop
36 salience 999
37 dialect ” java ”
38 when
39 $ t o t a l : Number ()
40 from accumulate ($nEvent : SimpleEvent (data == ”

se l e c tArea ”)
41 from entry−point ”DEFAULT” ,
42 count ($nEvent))
43 then
44 ResponseDispatcher . NotifyMe (d roo l s . getRule () . getName

() , ”DePer Module” , ”PENDING: ” + $ t o t a l) ;
45 end
46 </RuleBody>
47 </In s e r t>
48 </ComplexEventRuleActionList>

Listing 2. Sample Request from Dependability&Performance Enabler

Dependability and Performance Assessment 387

Fig. 19. The selectArea Event Sent from Peer Probe

temporal logic. The authors of [CM10] also provide an efficient event detection
algorithm by translating TESLA rules into automata. Some existing open-source
event processing engines are Drools Fusion [dro] and Esper [esp]. They can fully
be embedded in existing Java architectures and provide efficient rule processing
mechanisms. In our prototype we used Drools because ServiceMix offers it as
business rule engine.

Preliminary studies that attempt combining off-line with on-line analysis have
already appeared in the literature. A major area on which such approaches have
been based is that of autonomic computing. Among such studies, in [MT06],
an approach is proposed for autonomic systems, which combines analytic avail-
ability models and monitoring. The analytic model provides the behavioural
abstraction of components/subsystems and of their interconnections and depen-
dencies, while statistical inference is applied on the data from real time moni-
toring of those components and subsystems, to assess parameter values of the
system availability model. Through on-line monitoring and estimation of system
availability, adaptive on-line control of system availability can then be obtained.
In [RP10], an approach is proposed to carry out run-time reliability estimation,
based on a preliminary modelling phase followed by a refinement phase, where
real operational data are used to overcome potential errors due to model simpli-
fications. The model is based on Discrete Time Markov Chain, and a prototype
version of the monitoring system has been implemented, that is initially trained
with the reference model and the preliminary reliability estimation, and then
uses operational data to compute the on-line reliability level.

Our approach aims at proposing powerful evaluation and monitoring supports
able to cover, individually, a wide spectrum of needs inside the Connect frame-
work (quantitative assessment of a variety of dependability and performance
metrics on one side and generic monitoring infrastructure useful to a variety of
Connect Enablers on the other side), and at exploiting their synergic usage to
lead to higher accuracy of dependability and performance analysis results.

6 Conclusions and Outlook

We have presented the directions currently pursued in the Connect project for
the assessment of dependability and performance related properties of dynamic

388 A. Bertolino et al.

evolving systems. In particular, we focused on usage of stochastic model-based
approaches, both at design time, for the early evaluation of the relevant non-
functional requirements, and at run-time, for the continuous checking of system
behaviour based on the actual data collected by the publish-subscribe monitoring
infrastructure.

In line with the tutorial flavour of the chapter, we first provided basic intro-
ductory concepts and bibliography to model-based analysis of dependability at-
tributes, relying on the SAN formalism and the Möbius tool. We also overviewed
event-based monitoring and current research directions. We then described the
solutions developed in the Connect project, which include the DePer modular
infrastructure and the flexible Glimpse monitor, and discussed their intercon-
nection to bring dependability and performance analysis to on-line stage.

The presented solutions mostly exploit advanced state-of-art results. The
value brought forward by the Connect project stays mainly in their combined
engineering and in the integration with the other Connect Enablers. The in-
frastructure resulting from the interfacing of DePer and Glimpse has been
conceived with the highest flexibility and modularity in mind, so to allow for
future further expansions, for example by including differing analysis engines, as
we already show in [DGKM+10] for stochastic model checking.

At the time of writing, the implementation of the presented framework is still
on-going and therefore our future work in the short term will of course involve
the experimentation and refinement of the proposed approaches. More impor-
tantly, we intend to make the framework model-driven, so to make it more general
and reusable. We are defining a property meta-model, a first release of which
is available at http://labsewiki.isti.cnr.it/labse/tools/cpmm/public/main. The
meta-model specifies non-functional properties, both qualitative and quantita-
tive, to be evaluated. The idea then is that specific property models conforming
to such meta-model can be used to automatically drive both DePer analysis,
by providing in input the requested dependability and performance metrics, and
probe instrumentation of the Connect monitoring Enabler.

Acknowledgements

The work reported in this chapter has been partially supported by the EU-
funded Connect project (FP7231167) and stems from the collaborative effort
of many colleagues from the Connect project, whom we would like to thank col-
lectively, in the difficulty to list each single contribution. Among them, however,
a special acknowledgement goes to the contributions from Marco Martinucci,
Paolo Masci and Antonino Sabetta, formerly part of the CNR-ISTI Connect
team, who have conceived with us the architectures of the presented DePer and
Glimpse infrastructures, contributed to their development, and shared with us
lot of discussions, insights, writing, and perspectives. We and the project owe
much to them for the presented achievements.

Dependability and Performance Assessment 389

References

[ABC84] Ajmone Marsan, M., Balbo, G., Conte, G.: A class of generalized stochas-
tic petri nets for the performance evaluation of multiprocessor systems.
ACM Transactions on Computer Systems 2(2), 93–122 (1984)

[AC87] Ajmone Marsan, M., Chiola, G.: On Petri nets with deterministic and
exponentially distributed firing times. In: Rozenberg, G. (ed.) APN 1987.
LNCS, vol. 266, pp. 132–145. Springer, Heidelberg (1987)

[ALRL04] Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing 1(1), 11–33 (2004)

[Bal01] Balbo, G.: Introduction to stochastic petri nets. In: Katoen, J.-P.,
Brinksma, H., Hermanns, H. (eds.) EEF School 2000 and FMPA 2000.
LNCS, vol. 2090, pp. 84–155. Springer, Heidelberg (2001)

[BCDG+ar] Bertolino, A., Calabrò, A., Di Giandomenico, F., Martinucci, M., Masci,
P.: Automated refinement of dependability analysis through monitoring
in dynamically connected systems. In: Proc. IEEE International Sympo-
sium on Autonomous Decentralized Systems, Tokyo, Japan (March 2011,
to appear)

[BCG05] Bondavalli, A., Chiaradonna, S., Di Giandomenico, F.: Model-based eval-
uation as a support to the design of dependable systems. In: Diab, H.B.,
Zomaya, A.Y. (eds.) Dependable Computing Systems: Paradigms, Per-
formance Issues, and Applications, pp. 57–86. Wiley, Chichester (2005)

[BGD06] Baresi, L., Ghezzi, C., Di Nitto, E.: Toward open-world software: issues
and challenges. Computer 39(10) (2006)

[BGG04] Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services.
In: ICSOC 2004: Proceedings of the 2nd International Conference on
Service Oriented Computing, pp. 193–202. ACM, New York (2004)

[BPTT98] Bobbio, A., Puliafito, A., Telek, M., Trivedi, K.S.: Recent developments
in non-Markovian stochastic Petri nets. Journal of Circuits, Systems and
Computers 8(1), 119–158 (1998)

[BS02] Buy, U.A., Singal, G.: Toward efficient algorithms for generating compact
petri nets from labeled transition systems. In: COMPSAC 2002, pp. 717–
722. IEEE Computer Society, Washington, DC, USA (2002)

[BT98] Bobbio, A., Telek, M.: Non-exponential stochastic Petri nets: an overview
of methods and techniques. Computer Systems Science and Engineer-
ing 13(6), 339–351 (1998)

[CBC+93] Ciardo, G., Blakemore, A., Chimento, P.F., Muppala, J.K., Trivedi,
K.S.: Automated generation and analysis of markov reward models us-
ing stochastic reward nets. In: Meyer, C., Plemmons, R.J. (eds.) Linear
Algebra, Markov Chains, and Queueing Models. IMA Volumes in Math-
ematics and its Applications, vol. 48, pp. 145–191. Springer, Heidelberg
(1993)

[CCD+01] Clark, G., Courtney, T., Daly, D., Deavours, D.D., Derisavi, S., Doyle,
J.M., Sanders, W.H., Webster, P.G.: The Mobius modeling tool. In: 9th
Int. Workshop on Petri Nets and Performance Models, Aachen, Germany,
pp. 241–250. IEEE Computer Society Press, Los Alamitos (2001)

[CCK09] Carmona, J., Cortadella, J., Kishinevsky, M.: Genet: A tool for the syn-
thesis and mining of petri nets. In: ACSD 2009, pp. 181–185. IEEE Com-
puter Society, Washington, DC, USA (2009)

390 A. Bertolino et al.

[CGL94] Ciardo, G., German, R., Lindemann, C.: A characterization of the
stochastic process underlying a stochastic petri net. IEEE Transactions
on Software Engineering 20(7), 506–515 (1994)

[CHM+02] Csertan, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varro, D.,
Varr, D.: Viatra - visual automated transformations for formal verifi-
cation and validation of uml models. In: 17th IEEE International Con-
ference on Automated Software Engineering (ASE 2002), pp. 267–270
(2002)

[CKLY98] Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving
petri nets from finite transition systems. IEEE Transactions on Com-
puters 47(8), 859–882 (1998)

[CKT94] Choi, H., Kulkarni, V.G., Trivedi, K.S.: Performance modeling using
Markov regenerative stochastic Petri nets. Performance Evaluation 20(1-
3), 339–356 (1994)

[CM94] Chakravarthy, S., Mishra, D.: Snoop: An expressive event specification
language for active databases. Data & Knowledge Engineering 14(1), 1–
26 (1994)

[CM10] Cugola, G., Margara, A.: TESLA: a formally defined event specification
language. In: Proceedings of DEBS, pp. 50–61 (2010)

[CON10] CONNECT Consortium. Deliverable 5.1 – Conceptual Models for Assess-
ment & Assurance of Dependability, Security and Privacy in the Eternal
Connected World (2010)

[CON11a] CONNECT Consortium. Deliverable 4.2 – Further development of learn-
ing techniques (2011)

[CON11b] CONNECT Consortium. Deliverable 5.2 – Design of Approaches for De-
pendability and Initial Prototypes (2011)

[CON11c] CONNECT Consortium. Deliverable 6.1 – Experiment scenarios, proto-
types and report Iteration 1 (2011)

[CON13] EU FP7 Project Connect (FP7–231167) (2009-2013)
[DGKM+10] Di Giandomenico, F., Kwiatkowska, M., Martinucci, M., Masci, P., Qu,

H.: Dependability analysis and verification for connected systems. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 263–
277. Springer, Heidelberg (2010)

[dro] Drools fusion: Complex event processor,
http://www.jboss.org/drools/drools-fusion.html

[ER90] Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. Part I: basic
notions and the representation problem. Acta Inf. 27(4), 315–342 (1990)

[esp] Esper: Event stream and complex event processing for java,
http://www.espertech.com/products/esper.php

[Fid96] Fidge, C.: Fundamentals of Distributed System Observation. IEEE
Softw. 13(6), 77–83 (1996)

[Gai86] Gait, J.: A Probe Effect in Concurrent Programs. Softw., Pract. Ex-
per. 16(3), 225–233 (1986)

[Ger01] German, R.: Non-Markovian analysis. In: Brinksma, E., Hermanns, H.,
Katoen, J.P. (eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090,
pp. 156–182. Springer, Heidelberg (2001)

[GGB+11] Grace, P., Georgantas, N., Bennaceur, A., Blair, G., Chauvel, F., Issarny,
V., Paolucci, M., Saadi, R., Souville, B., Sykes, D.: The Connect archi-
tecture. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659,
pp. 350–392. Springer, Heidelberg (2011)

http://www.jboss.org/drools/drools-fusion.html
http://www.espertech.com/products/esper.php

Dependability and Performance Assessment 391

[Hav01] Haverkort, B.R.: Markovian models for performance and dependability
evaluation. In: Katoen, J.-P., Brinksma, H., Hermanns, H. (eds.) EEF
School 2000 and FMPA 2000. LNCS, vol. 2090, pp. 38–83. Springer,
Heidelberg (2001)

[HAwM99] Hussein, E.A.-S., Abdel-wahab, H., Maly, K.: HiFi: A New Monitoring
Architecture for Distributed Systems Management. In: Proceedings of
ICDCS, pp. 171–178 (1999)

[HBPU06] Hallal, H., Boroday, S., Petrenko, A., Ulrich, A.: A formal approach to
property testing in causally consistent distributed traces. Formal Asp.
Comput. 18(1), 63–83 (2006)

[How71] Howard, R.A.: Dynamic Probabilistic Systems: Markov Models. Decision
and Control, vol. 1. John Wiley and Sons, New York (1971)

[iee90] IEEE Std 610.12-1990: IEEE Standard Glossary of Software Engineering
Terminology (1990)

[jbi] Jbi: Java business integration,
http://jcp.org/aboutJava/communityprocess/final/jsr208

[JLSU87] Joyce, J., Lomow, G., Slind, K., Unger, B.: Monitoring distributed sys-
tems. ACM Trans. Comput. Syst. 5(2), 121–150 (1987)

[Lam78] Lamport, L.: Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21(7), 558–565 (1978)

[Lap95] Laprie, J.C.: Dependable computing and fault tolerance: concepts
and terminology. In: Twenty-Fifth International Symposium on Fault-
Tolerant Computing, 1995, Highlights from Twenty-Five Years, pages 2+
(1995)

[Lap08] Laprie, J.C.: From dependability to resilience. In: 38th IEEE/IFIP Int.
Conf. on Dependable Systems and Networks (2008)

[LTWW94] Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-
similar nature of ethernet traffic (extended version). IEEE/ACM Trans-
actions on Networking 2(1), 1–15 (1994)

[MCC04] Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed moni-
toring system: design, implementation, and experience. Parallel Comput-
ing 30(7), 817 (2004)

[Mey92] Meyer, J.F.: Performability: A retrospective and some pointers to the
future. Perform. Eval. 14(3-4), 139–156 (1992)

[MFT00] Muppala, J.K., Fricks, R.M., Trivedi, K.S.: Techniques for system de-
pendability evaluation. In: Grassmann, W.K. (ed.) Computational Prob-
ability. Operations Research and Management Science, vol. 24, pp. 445–
480. Kluwer Academic Publishers, The Netherlands (2000)

[MK06] Magee, J., Kramer, J.: Concurrency: state models & Java programs. John
Wiley & Sons, New York (2006)

[MM84] Movaghar, A., Meyer, J.F.: Performability modelling with stochastic ac-
tivity networks. In: 1984 Real-Time Systems Symposium, Austin, TX,
pp. 215–224. IEEE Computer Society Press, Los Alamitos (December
1984)

[MMDGar] Masci, P., Martinucci, M., Di Giandomenico, F.: Towards automated
dependability analysis of dynamically connected systems. In: Proc. IEEE
International Symposium on Autonomous Decentralized Systems. IEEE,
Tokyo (March 2011, to appear)

[Mol82] Molloy, M.K.: Performance analysis using stochastic Petri nets. IEEE
Transactions on Computers 31(9), 913–917 (1982)

http://jcp.org/aboutJava/communityprocess/final/jsr208

392 A. Bertolino et al.

[MSS94] Mansouri-Samani, M., Sloman, M.: Monitoring distributed systems. pp.
303–347 (1994)

[MSS97] Mansouri-Samani, M., Sloman, M.: GEM: a generalized event monitoring
language for distributed systems. Distributed Systems Engineering 4(2),
96–108 (1997)

[MT06] Mishra, K., Trivedi, K.S.: Model based approach for autonomic availabil-
ity management. In: Penkler, D., Reitenspiess, M., Tam, F. (eds.) ISAS
2006. LNCS, vol. 4328, pp. 1–16. Springer, Heidelberg (2006)

[NST04] Nicol, D.M., Sanders, W.H., Trivedi, K.S.: Model-based evaluation: from
dependability to security. IEEE Transactions on Dependable and Secure
Computing 1, 48–65 (2004)

[PSB04] Pietzuch, P.R., Shand, B., Bacon, J.: Composite event detection as a
generic middleware extension. IEEE Network 18(1), 44–55 (2004)

[ReS08] ReSIST Consortium. EU project ReSIST: Resilience for Survivability
in IST. Deliverable D33: Resilience-explicit computing. Technical report
(2008), http://www.resist-noe.org/

[RP10] Trivedi, K.S., Pietrantuono, R., Russo, S.: Online monitoring of soft-
ware system reliability. In: Proc. EDCC 2010 - 2010 European Depend-
able Computing Conference, pp. 209–218. IEEE Computer Society, Los
Alamitos (2010)

[rpc] RPC: Model for programming in a distributed computing environment,
http://msdn.microsoft.com/enus/library/ms691207(VS.85).aspx

[RSB05] Raffelt, H., Steffen, B., Berg, T.: Learnlib: a library for automata learning
and experimentation. In: FMICS 2005, pp. 62–71. ACM, New York (2005)

[rul] Ruleml: The rule markup initiative, http://ruleml.org
[Sch95] Schroeder, B.A.: On-Line Monitoring: A Tutorial. Computer 28(6), 72–78

(1995)
[Sha93] Shah, B.P.: Analytic solution of stochastic activity networks with expo-

nential and deterministic activities. Master’s thesis, University of Ari-
zona, USA (1993)

[SI10] Spalazzese, R., Inverardi, P.: Mediating connector patterns for compo-
nents interoperability. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010.
LNCS, vol. 6285, pp. 335–343. Springer, Heidelberg (2010)

[SK88] Spezialetti, M., Kearns, J.P.: A General Approach to Recognizing Event
Occurences in Distributed Computations. In: ICDCS, pp. 300–307 (1988)

[SM02] Sanders, W.H., Meyer, J.F.: Stochastic Activity Networks: formal defini-
tions and concepts, pp. 315–343 (2002)

[Tri02] Trivedi, K.S.: Probability and Statistics with Reliability, Queueing and
Computer Science Applications, 2nd edn. John Wiley & Sons, New York
(2002)

[Zim99] Zimmer, D.: On the semantics of complex events in active database man-
agement systems. In: Proceedings of the 15th International Conference
on Data Engineering, p. 392. IEEE Computer Society, Washington (1999)

http://www.resist-noe.org/
http://ruleml.org

Security and Trust�

Gabriele Costa1,2, Valérie Issarny3, Fabio Martinelli1,
Ilaria Matteucci1, and Rachid Saadi3

1 IIT CNR, Pisa, Italy
2 Università di Pisa, Italy

3 INRIA, France
{gabriele.costa,fabio.martinelli,ilaria.matteucci}@iit.cnr.it,

{valerie.issarny,rachid.saadi}@inria.fr

Abstract. Security and Trust offer two different prospectives on the problem of
the correct interaction among software components. For many aspects, they rep-
resent complementary viewpoints. Moreover, in the study of the verification of
non-functional properties of programs they represent a mainstream. Several se-
curity aspects, e.g., access control, could be based also on trust and, vice versa,
trust models could update the level of trust of a (component of a) system accord-
ing to the satisfaction of a particular security policies. According to that, here we
present the Security-by-Contract-with-Trust framework, S×C×T for short. It has
been developed considering a system platform that has to execute an application
whose developer is unknown in such a way that security policies set on it are not
violated. The S×C×T mechanism is driven by both security and trust aspects. It
is based of three main concepts: the application code, the application contract,
and the system security policy The level of trust we consider measures the adher-
ence of the application code to its contract, i.e., if the code respects its contract
then the application is trusted, otherwise its level of trust decreases. According to
the level of trust of the application, S×C×T decides if check the contract against
the policies and if the answer is positive, execute the application just monitoring
its contract, or directly enforce the security policy set on the platform.

In order to better describe how the proposed mechanism works, we present its
application to a mobile application marketplace scenarios. In this way we are also
able to show its possible advantages in terms of performances and modularity.

Keywords: Security properties, Trust model, Managing of trust feedback,
Run-time enforcement, Contract monitoring.

1 Introduction

In the last decades, the number of devices, e.g., mobile phones, smart phones and slates,
used in our daily life has been rapidly growing up. Furthermore, the computational ca-
pabilities of such devices tend to increase over and over. In practice, they combine
the fair hardware profiles, e.g., CPU, with high level connectivity. Hence, they can
download and run a rich variety of quite complex applications.

� Work partially supported by EU-funded project FP7-231167 CONNECT and by EU-funded
project FP7-256980 NESSOS.

M. Bernardo and V. Issarny (Eds.): SFM 2011, LNCS 6659, pp. 393–416, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

394 G. Costa et al.

Mobile Java applications (MIDlets) offer a clear example of fixed trust relationship.
Indeed, a MIDlet is a software released by some vendor that clients download and install
on their device. The potential constraints on the resources of mobile devices (e.g., bat-
tery and memory) make several security mechanisms practically infeasible. The current
technique for providing security assurances to mobile device users is based on soft-
ware certification released by a accredited certification authority (CA). However, the
certificate-based approach has several, well known drawbacks. Mainly, it implements
a white list strategy. While certified MIDlets have all the privileges they need, uncer-
tified applications have very little access to the system independently from their actual
behaviour, leading to a significant reduction of their usability. On the other hand, exe-
cuting a malicious, signed application can have obvious, dramatic consequences. There
are many ways in which this attack can take place. A simple attacking scenario is based
on the user’s unawareness about security. Basically, a device owner wanting to install
a MIDlet could decide to ignore whether it is not signed. This scenario is becoming
popular, for instance, with local providers offering small, contextual applications (e.g.,
catalogues, interactive guides). Often, MIDlet spots dispatch unsigned or self-certified
applications to users moving inside some area of interest (e.g., a museum).

Another danger arises from the hierarchical structure of certificates. In fact, when
purchasing a certificate, the owner is often authorized to produce and distribute sub-
certificates. The features of a sub-certificate depend on the structure of the original one
(e.g., a certificate can generate sub-certificates with an expiration date lower or equal
to its own). For instance, an attacker acquiring a certificate can use it for signing a
malicious MIDlet. Then, after detecting the attack, it should be possible, analysing the
certificate, to trace back the certificate history and discover what went wrong in the
sub-certificates chain. However, this is a reactive approach that can lead to identifying
misbehaving entities (CAs, developers, vendors), while, in general, a proactive solution
would be preferable.

For overcoming these limitations, contract-based approaches have been presented.
In these models contracts are in charge of providing guarantees on the correct behaviour
of programs. Contracts are automatically produced by any provider and attached to
the code. The counterpart of contracts are user-defined, security policies which define
the safe behaviours, i.e., those complying with the user’s requirements. Hereafter we
recall the Security-by-Contract (S×C) paradigm that, among the others, received major
attention.

Along this research direction, we also present the Security-by-Contract-with-Trust
(S×C×T) framework. Briefly, S×C×T extends the previous approach by including a
notion of trust. In particular, this process is implemented through a contract monitoring
framework responsible for verifying whether a running application respects its contract.
When an attack, namely an attempt to violate a contract, is detected, our system reacts
immediately by enforcing a security policy and preventing the attack from being ac-
tually performed. Moreover, a contract breaking causes an automatic modification of
the trust relationship between the device and the authority providing the contract. In-
formally, trust feedback are managed according to the concept of mobile application
criticality. The degree of criticality reflects how much an application may be consid-
ered critical with respect to security and trust aspects according to its type and category

Security and Trust 395

(i.e., according to which kind of data it may access or which resources it uses). Hence,
this system can immediately react to threats and prevent further attacks coming for the
same source.

In order to show how the proposed framework works, we present an application of
the S×C×T to a Mobile Applications Marketplaces (MAMp) scenario, like, for in-
stance, Apple AppStore, Cydia, Android Market, in which mobile applications (MA)
are released by some vendors and customers can download and install them on their
devices. The S×C×T mechanism manages trust by rewarding and penalising MA’s
provider according to the MA’s trust recommendation given by the MAMp and the MA
criticality. Furthermore, the proposed framework offers a high degree of flexibility pro-
viding applications clients with a reliability feedback and assuring security guarantees
also under pervasive, contextual mobility conditions.

This chapter is structured as follows: Section 2 presents some background about se-
curity for mobile applications. Section 3 recalls background notions about trust man-
agement. Section 4 presents the Security-by-Contract-with-Trust framework starting
by recalling the original Security-by-Contract paradigm and underlining the extensions
and the differences. In Section 5 we show the application of the Security-by-Contract-
with-Trust to the case study of a mobile application marketplace and in Section 6 we
provide the conclusion of the chapter and some future directions.

2 Mobile Code Security

Traditionally, security solutions aim at protecting our resources from malicious enti-
ties by restricting and filtering their access. However, with the growth of mobile ap-
plications, the problem of securing critical resources got more complex [1]. Moreover,
the recent success of the component-based development paradigms, e.g., plug-in archi-
tectures for web browsers or mobile phones using micro applications, have made the
mobile pieces of software even more common. Under these assumptions, mechanisms
for defining and applying fine-grained security rules are needed for guaranteeing the
correct behaviour and interactions of these systems.

In the last years, history-based security has received major attention from the re-
searchers. Mainly, this is due to the model scalability and applicability. As a matter of
fact, almost every running program performing security-relevant operations can be seen
as the source of a stream of security actions. Security actions are the side effect of stan-
dard computation and their sequences, namely execution traces or histories, provide a
precise characterisation of programs behaviour.

Histories can be observed action by action while they are produced, issued by
analysing the instructions of a program or simply declared by the software provider. In
general, we can classify the history-based security mechanisms according to the source
of the traces they use and the moment in the application life-cycle in which they ap-
plies. As we consider the security on client-side, we identify two stages for the security
analysis: deploy-time and run-time. Below we provide an overview of some of the most
studied approaches in both the previous categories.

396 G. Costa et al.

2.1 Deploy-Time Security Analysis

Some of the advantages obtained by analysing a program before actually executing it are
straightforward. Basically, one can directly discharge faulty components without risk-
ing to execute dangerous code. Nevertheless, static analysis may be expensive in terms
of system resources, e.g., CPU and memory, and it could be out of the scope of limited
capabilities devices, e.g., mobile phones. In general, the cost of performing this kind of
analysis varies according to the complexity of the property that one is interested to check.

For instance, cryptographic code-signing is used for certifying the source, i.e., the
producer, of a mobile application and its integrity. Checking the signature of an ap-
plication is equivalent to verifying that the code has not been tampered or modified
before reaching the customer’s system. Typically, the signature process is implemented
by means of private/public encryption of the binary code. Even though this analysis
is fast enough to be usable on small devices, checking the code signature provides no
guarantees on the actual safety of running it.

Type checking can offer some more advantages. Indeed, well-typed programs are
proved to be free from several run-time errors, e.g., buffer overflows. Hence, type check-
ing an application guarantees useful security properties. For instance, a well-typed pro-
gram never accesses memory slots it is not allowed to. Again, type checking is effi-
ciently implemented in many systems. Nevertheless, these properties are far from being
the totality of the safe behaviours that one wants to force.

The Proof-Carrying Code (PCC) approach [2] enables safe execution of code from
untrusted sources by requiring a producer to furnish a proof regarding the safety of its
application. The code costumer uses a proof validator to check that the proof is valid
and then the foreign code can be safely executed. Although optimised proof checkers
have been proposed, this approach relies on a quite strong assumption, that is the code
producer is always aware about the security requirements of the consumes. However,
in many cases it seems to be not very reasonable and, in particular, when the customers
can modify their security policies.

Strongly inspired to PCC, the Model-Carrying Code (MCC) [3] approach is also
based on the idea that untrusted code is accompanied by additional information, captur-
ing the security-relevant behaviour of code. Then, this extra information is extracted,
verified, e.g., through signature checking, and finally compared with the customer’s
security requirements. In this way, the code consumers can verify their own security
policies, but the verification process is usually time consuming or even cumbersome.
Moreover, as the code must carry its own model, the size of the applications may
sensibly increase.

2.2 Run-Time Security

Run-time enforcement is a common practice in systems security. The basic idea behind
policy enforcement is to guide safe behaviours through a monitoring agent. The security
monitor holds the system policy and is responsible for guaranteeing its validity in time.
Whenever the monitor observes security-relevant actions, it checks whether they are
allowed by the policy. If it is the case, the action source can go on with its operations.
Instead, if a violation is detected, the monitor prevents it and reacts according to the
security rules of the policy. Several reaction strategies exist.

Security and Trust 397

Java [4] offers a clear example. Indeed, Java applications need an interpreter, namely
a Java virtual machine (JVM), to be actually executed. Hence, a monitor controlling
the JVM can work directly on the instructions flow of Java applications. Whenever a
security violation occurs, the monitor can force the JVM to quit the current execution,
skip the last operation, invoke some emergency function, throw an exception, etc.

The capabilities of a security monitor mainly depend on two factors: the monitor
effectiveness and the policy expressiveness. For being effective a monitor must be non
by-passable, i.e., it is triggered every time a security action is taking place, and proac-
tive, i.e., it can prevent an action from being actually executed. Policy expressiveness is
a consequence of the used language. In the last decades two formalisation of security
automata have received major attention.

Schneider’s automata [5] are slightly different from non-deterministic finite state au-
tomata (NFA). Basically, they are defined by a finite set of states S, an alphabet A of
observable actions and a set of labelled transitions T : S × A × S. Starting from the
initial state, the transitions of the automaton are triggered by the actions that programs
fire. If the execution leads to a final, faulty state of the automaton the target is stopped.

The class of properties that can be specified and enforced through these automata
coincides with the class of safety properties. They play a central role in program moni-
toring. Indeed, each safety property defines unsafe configurations/states of a system and
states that the executions must never reach it. Considering that the instances of safety
properties cover many problems of interest, e.g., deadlock freedom, the importance of
monitoring them is straightforward.

Edit automata have been proposed by Ligatti et al. [6]. Their work mainly focuses
on classifying the security monitor according to their capabilities with respect to the
executing target. In doing that, they abstract from any property specification formal-
ism. In that way, they identify four different typologies of security automata: truncation
automata, suppression automata, insertion automata and edit automata. Briefly, a trun-
cation automaton can only halt, i.e., truncate, the execution of its target. Also note that
Schneider’s automata are a proper subset of this class. Suppression automata are al-
lowed to remove one or more actions from the sequence produced by the program they
are responsible to look at. Symmetrically, insertion automata can put new actions inside
the received flow. Finally, edit automata capabilities amount to the sum of suppression
and insertion. Along with these considerations, the authors name edit properties the
class of properties that can be enforced by their automata.

Together with the safety properties we have the class of liveness properties. Roughly,
liveness properties state that a desirable configuration of the system must be always
reachable. It is known (e.g., see [7]) that every security property can be expressed as
the composition of a safety and a liveness property. Hence, edit automata can enforce a
class of properties that contains the safety ones and also part of the liveness properties.
This represent an important category of properties that can be effectively enforced.
Nevertheless, several liveness properties are out of the scope of run-time monitoring.
Mainly, this is due to the finiteness of monitoring. Indeed, at each time instant the
monitor is only aware of a finite prefix of the whole execution history of its target.

398 G. Costa et al.

3 Trust Management

In the previous section we have seen several security solutions. Despite the formal guar-
antees that they can provide, many of them require strong assumptions to be satisfied,
e.g., in terms of actions visibility. Indeed, in many real-life system the evaluation of
these assumptions is not straightforward and some uncertainty on the behaviour of the
involved components exists. As consequence, some safe execution are discarded be-
cause there is not way to formally proof that are secure.

Trust management mechanism can be seen as a way to integrate standard security
mechanisms in order to cope with these limitations. Indeed, the lack of information is
replaced by trust notions. These kind of approaches are first introduced by Rasmussen &
Jonson [8] as Hard security for traditional solutions and Soft security for solutions that are
based on social interactions, of which trust and reputation are considered as the pillars.
However, to the best of our knowledge, there is not much work about the integration of
trust management and policy enforcement for mobile application in the literature.

The main advantage of the Trust paradigm is the fact that it creates/provides a social
capital [9], which means, “the ability of people to work together for common purposes
in groups and organizations [10].

As illustrated in Fig. 1, on the one hand, the more we trust, the greater is the benefit
that can be taken from the social capital. At the same time the risk of being exposed
increases. On the other hand, bolstering security has the effect of reducing the risk, but
also reduces the benefit through accessibility limitations.

Thus, the aim of extending the Security with Trust (i.e., soft security) is to optimize
the benefit/risk ratio, so that increasing the benefit, as well as, decreasing the risk.

In order to enhance security with trust, we have to understand how trust is established
and assessed.

Substantial research has been done on the concept of trust in the field of social sci-
ences. The obtained results have been applied in various areas including economics,
finance, management, government, and psychology. In recent years, trust has generated
considerable interest in the computer science community as the basis of security solu-
tions for various distributed systems, such as ad-hoc networks, pervasive environment,
Grid, Web services.

Trust

R
is
k
&
 B

en
ef

it

Security & Trust

R
isk

Benefit

Security

R
isk &

 B
enefit

+ =

Hard security
solutions

soft security
solutions

Fig. 1. Risk vs. Benefit

Security and Trust 399

Hence, as people getting increasingly connected virtually as trust management is
becoming a central element of today’s open distributed digital environment. This is
indeed leading to the introduction of various trust management systems and associated
trust models, which are customized according to their target applications.

According to [11], A trustor trusts a trustee with regard to its ability to perform a
specific action or to provide a specific service. Hence, any trust model may basically be
defined in terms of the three following elements:

1. Trustor and Trustee abstract the representative behaviours of stakeholders from the
standpoint of trust management.

2. Trust relations serve specifying trust relationships holding among stakeholders, and
3. Trust assessment defines how to compute the trustworthiness of stakeholders.

A trust model can be decomposed into (i) the definitions of trust relations (Section 3.1),
(ii) trust assessment (Section 5.1), (iii) trust bootstrapping, (iv) and risk management,
which plays a key role.

3.1 Trust Relation

Manifestations of trust are easy to recognize because we are confronted to this paradigm
everyday, but, at the same time, trust is more complex than it seems considering it
manifests itself in many different forms. We identify two types of trust relationships,
i.e., direct and indirect, depending on the number of stakeholders that are involved into
the trust relationship (Fig. 2).

Direct trust. A direct trust relationship represents a trust assertion of a subject (i.e.,
trustor) about another subject (i.e., trustee). It is thus a one-to-one trust relation (de-
noted 1:1) since it defines a direct link from 1 trustor to 1 trustee. One-to-one trust
relations are maintained locally by trustors and represent the trustors’ personal opinion
regarding their trustees [12]. For example, a one-to-one relation may represent a be-
longing relationship (e.g., employees trust their company), a social relationship (e.g.,
trust among friends), or a profit-driven relationship (e.g., a person trusts a trader for
managing its portfolio).

Indirect trust. As opposed to a direct trust relationship, an indirect trust relationship
represents a subject’s trustworthiness based on a third party’s recommendation(s). This
can be either (i) transitive-based or (ii) reputation-based.

– Transitive-based trust relations are one-to-many (denoted 1:N). Such a relation en-
ables 1 trustor (e.g., Alice in Fig. 2(B)) to indirectly assess the trustworthiness of an
unknown trustee (e.g., Bob in Fig. 2(B)) through the recommendations of a group
of trustees (N). Hence, the computation of 1:N relations results from the concate-
nation and/or aggregation of many 1:1 trust relations (arrow T in Fig. 2). The con-
catenation of 1:1 trust relations usually represents a transitive trust path, where each
entity can trust unknown entities based on the recommendation of its trustees. Thus,
this relationship is built by composing personal trust relations [13,14]. Furthermore,

400 G. Costa et al.

Alice

Bob is
my

friend

Direct Trust
relationship

1:1

Bob

Indirect Trust
relationship

N:1

1:N

1:1 1:1 1:1

1:1 1:1 1:1

Bob

Alice

1:1 1:11:1

Alice

Bob
1:1

N:1NN 1N 1

B

Transitive-based
Trust relationship

1:N

Reputation-based
Trust relationship

N:1

T

R

1:1

(a) (b) (c)

Fig. 2. Trust Relations

if several trust paths that link the trustor to the recommended trustee exist, the
aggregation can be used to aggregate all given trust recommendations [15]. More
recently, this kind of relation gained importance by the emergence of WS composi-
tion to assess the trustworthiness of Web Services (WS) composition [16,17,18]. In
this case, the aggregation of sub-services recommendation allows defining the trust
recommendation for the whole composition.

– Reputation-based trust relations are many-to-one (denoted N:1). These relations
result from the aggregation of many personal trust relationships of recommenders
having the same trustee (see arrow R in Fig. 2). In other words, the a group of
recommenders (N) trust a specific subject (e.g., Alice in Fig. 2(C)) to take their
personal opinions and to maintain and provide the reputation of trustees (e.g.,
Bob in Fig. 2(C)). Such reputation can be used, by any entity as a reference, to
define its trust relation with unknown ones (e.g., “I trust you because of your good
reputation”,”I distrust you because of your bad reputation”, “I trust you less than
before due to your current bad reputation” or “I trust you more than before due to
your current good reputation”).

In the literature, reputation systems are divided into two categories depending on
whether they are (i) Centralized or (ii) Distributed. In the former case, the repu-
tation of each participant is collected and made publicly available at a centralized
server (e.g., eBay, Amazon, Google, [19]). In the latter one, reputation is spread
throughout the network and each networked entity is responsible to manage the
reputation of other entities (e.g., [15,20,21,22]).

Security and Trust 401

3.2 Trust Assessment

Trust assessing, i.e., assigning values to trust relationships, relies on the definition of:
(i) trust metrics characterizing how trust is measured, (ii) operations for assessing and
composing trust values and (iii) operations for assessing and providing trust values.

Trust metrics. Different metrics have been defined to measure trust. This is due to the fact
that one trust metric may be more or less suitable to a certain context. Thus, there is no
widely recognized way to assign trust values. Some systems assume only binary values.
In [23], trust is quantified by qualitative labels (e.g., high trust, low trust). Other solutions
represent trust by a numerical range. For instance, this range can be defined by the interval
[-1..1] (e.g., [24]), [0..n] (e.g., [25,13,14]) or [0..1] (e.g., [15,26]. A trust value can also
be described in many dimensions, such as (Belief, Disbelief, Uncertainty) [15].

In addition, several definitions exist about the semantics of trust metrics. This is for
instance illustrated by the meaning of zero and negative values. For example, zero may
indicate lack of trust (but not distrust), lack of information, or deep distrust. Negative
values, if allowed, usually indicate distrust, but there is a doubt whether distrust is
simply trust with a negative sign, or a phenomenon of its own.

Assessment operations. We define the following main operations for the computation of
trust values associated with the trust relations given in Section 3.1 (Table 1): Updating,
aggregation, and concatenation.

Table 1. Trust assessment operations

Setting
Aggregation Concatenation

Bootstrapping Updating
One-to-One (1:1) X X
One-to-Many (1:N) X X X
Many-to-One (N:1) X X X

The setting operations are mainly performed by trustors to bootstrap (i.e., initial-
ize) 1:1 and N:1 trust relationships or to update these relationships after receiving per-
sonal feedback or third parties recommendation.

The bootstrapping operation initializes the a priori values of 1:1 and N:1 trust rela-
tions. Trust bootstrapping consists of deciding how to initialize trust relations in order
to efficiently start the system and also allow newcomers to join the running system [27].
Most existing solutions simply initialize trust relation with a fixed value (e.g., 0.5 [28],
a uniform Beta probabilistic distribution [29], etc.). Other approaches include among
others: initializing existing trust relations according to given peers recommendations
[30]; applying a sorting mechanism instead of assigning fixed values [14]; and assess-
ing trustees into different contexts (e.g., fixing a car, babysitting) and then inferring
unknown trust values from known ones of similar or correlate contexts [27,31].

All the solutions dealing with 1:N trust assessment mainly define the concatenation
and the aggregation operations, in order to concatenate and to aggregate trust recom-
mendations by computing the average [14], the minimum or the product [13] of all the
intermediary trust values. In the case of Web service composition, some approaches
(e.g., [17]) evaluate the recommendation for each service by evaluating its provider,

402 G. Costa et al.

whereas other approaches (e.g., [18]) evaluate the service itself in terms of its previous
invocations, performance, reliability, etc. Then, trust is composed and/or aggregated ac-
cording to the service composition flow (sequence, concurrent, conditional and loop).

Aggregation operations such as Bayesian probability (e.g., [32]) are often used for the
assessment of N:1 (reputation-based) trust relations. Trust values are then represented
by a beta Probability Density Function [29], which takes binary ratings as inputs (i.e.,
positive or negative) from all trustors. Thus, the reputation score is refreshed from the
previous reputation score and the new rating [19]. The advantage of Bayesian systems is
that they provide a theoretically sound basis for computing reputation scores and can also
be used to predict future behaviour. Other solutions [22,33] use the fuzzy logic approach,
which offers the ability to handle uncertainty and imprecision effectively, and is therefore
ideally suited for interpreting trust. In contrast to Bayesian inference, the Fuzzy inference
copes with fuzzy inputs, such as assessments of quality, and allows inference rules to be
specified using imprecise linguistic terms, such as ”very high quality” or ”slightly late”.

4 Overview of the Security-by-Contract with Trust

In this section we describe the Security-by-Contract-with-Trust paradigm as mechanism
for enforcing security policies. In order to better explain the reason because we develop
this framework, we start by recalling the original idea of contract-based security that
has lead to the development of the Security-by-Contract paradigm described in [34].

4.1 Security-by-Contract Paradigm

The Security-by-Contract (S×C) paradigm has been developed, in its first version, for
guaranteeing security at run-time on a mobile device. Indeed the idea is to make secure
a mobile device while it is executing an applications downloaded from an unknown,
and possible malicious, provider.

S×C provides a full characterisation of the contract-based interaction. As a matter
of fact, the basic concept of this paradigm is the contract.

Definition 1. A contract is a formal complete and correct specification of the behaviour
of an application for what concerns security relevant actions (Virtual Machine API call,
Operating System Calls). It defines a subset of the traces of all possible security actions.

Loosely speaking, the contract is an over-approximation of all possible execution be-
haviours. Every application must be coupled with a corresponding contract, e.g., re-
leased by the application developer. Example of contract are [35]:

– The application does not send MMS messages.
– The application only sends messages to determined numbers.
– The application sends only text (or binary) messages.

The other cornerstone of the S×C approach is the concept of policy.

Security and Trust 403

Definition 2. A policy is a formal complete specification of the acceptable behaviour
of an application to be executed on the platform for what concerns relevant security
actions (Virtual Machine API call, Operating System Calls). It defines a subset of the
traces of all possible security actions.

Roughly, it defines a subset of the traces of all possible security actions. Example of
policy are [35]:

– The application only receives SMS messages on a specific port.
– The application does not use Bluetooth or IrDA connections.
– The application does not use local socket connections (like 127.0.0.1 or localhost).

Actually, the S×C paradigm works as follows: let us assume that both contracts and
policies are specified through the same formalism [36,37]. The code released by a
provider is annotated with a contract. When a user receives an application verifies
whether the code and the contract actually match by an evidence checking procedure. If
the check fails then the user can decide to delete the application or to enforce a security
policy on it. Otherwise, the system can proceed to verify whether the contract (correctly
representing the application) satisfies the user’s policy. If this step fails, i.e., the contract
does not adhere to the policy, the solution consists in enforcing the active policy on the
execution. Finally, if the previous checks were positively passed, the application can be
executed with no active runtime monitor.

Looking at the architecture of the S×C framework graphically described in Fig. 3,
it is possible to note that the workflow depends on the answers of the two function:
“check evidence” and “contract-policy matching”.

The check evidence procedure consists of a digital signature of a formal proof. The
contract-policy matching function ensures that any security relevant behaviour allowed
by the contract is also allowed by the policy. This matching function allows the user that
is going to execute the application to understand if the behaviour of the application itself
is compliant with the set of policies he has on his device or not without running it. This
matching could be done with respect to different behavioural relation, e.g., language
inclusion [38] or behavioural relations [39].

Start

E
xecu

te
A
pplicatio

n

Match
contract
& Policy

Y

y
tttt

Y

N

Check
Evidence

Y
ee

Y
N

Enforce
policy

Fig. 3. The Security-by-Contract Workflow

404 G. Costa et al.

Indeed, the basic idea underlying contract-policy matching is that any sequence of
security relevant actions allowed by the contract is also allowed by the policy. Referring
to behavioural relation, trace inclusion is thus a suitable candidate for the contract-
policy matching. However, for generic contract and policy, the complexity is PSPACE
complete, even for finite state systems. We chose to use the simulation relation [40]
as a formal compliance relation between contracts and policies. This relation can be
efficiently checked on finite state systems. Furthermore, there exists a semi-decision
procedure for checking similarity between symbolic transition systems.

In particular, the simulation-based contract-policy matching proposed in [40] con-
sists in checking if a contract transition system is simulated by a policy one, i.e., if, for
each transition corresponding to a certain security action of the contract (and so possi-
bly performed by the program), the policy has a similar transition and resulting contract
system is yet simulated by the resulting policy one. When the algorithm reports that the
contract is simulated by the policy then we can conclude that the contract matches the
policy and so the program can be safely executed on the device.

According to the answer of these two functions, the application behaviour is enforced
by exploiting the monitoring/enforcement infrastructure in order to assure that the se-
curity policy set on the device is respected. The enforcing approach has been shown to
be feasible on mobile devices. In particular two techniques have been detailed in the lit-
erature and exploited for experiments and tools: JVM customization [36] and bytecode
in-lining [37]. Briefly, the first replace the standard JVM with a modified one dispatch-
ing signals to the monitoring agent whenever a program makes a call to (a subset of) the
system APIs. The second mechanism instruments the sequence of bytecode instructions
with invocations to the security policy monitor making the program send security sig-
nals at run-time. Both approaches use an external component, namely a Policy Decision
Point (PDP), holding the set of rules that compose the security policy. Moreover the
PDP reads the current device state (battery consumption, link strength, available credit)
through dedicated internal components. When the PDP receives a request for an action
violating the security policy, it answers denying the necessary permission. Then, the
system reacts by throwing an exception.

Fig. 4 depicts the two mechanisms described above. Note that the complexity resid-
ing in the customised JVM in the first approach is moved to specific security APIs that
are attached to the application in the second one.

4.2 Security-by-Contract-with-Trust Paradigm

The Security-by-Contract-with-Trust paradigm, S×C×T for short, has been introduced
in [41,42] as a unique framework for managing both security and trust at application ex-
ecution time. One of the main differences between the Security-by-Contract paradigm
and the Security-by-Contract-with-Trust approach is that also the code of the applica-
tion plays a central role in the S×C×T workflow, depicted in Fig. 5. Indeed, the func-
tion “check-evidence” is replaced by a trust module that according to the adherence of
the application to its contract updates the level of trust of the application itself. It is
interesting to note that updating the level of trust of the application implies updating
the level of trust of the provider of the application since the device receives the couple
application-contract from the provider.

Security and Trust 405

Ja
va

M
E

Mobile Device OS

SIS

PIS

PDPPEP

PEP

MIDP

CLDC

KVM

Method(args)
Allow/deny

Method(args)
Allow/deny

MIDlet

Mobile Device OS

JavaME

PEP

W
rapped

A
P
Is

SIS

PIS

PDP
Method
(args)
Allow/
deny

Inline

MIDlet

M
ID

le
t

Fig. 4. Enforcement environments using customised JVM (left) and in-lining (right)

The basic idea is the following one: let us consider to have a device and let us sup-
pose to run on it an application, developed by possible unknown developers. As in the
S×C paradigm, we assume that contracts and policies are specified through the same
formalism. According to Fig. 5, the code is downloaded with its contract. The level of
trust is checked, this means that we measure the level of trust that the code adheres to its
contract. If the check fails, the code is considered untrusted, so on one side the policy
is enforced in order to guarantee security issues, on the other side the contract is moni-
tored in order to log the contract violations. If the monitored execution does not violate
its contract the level of trust is upgraded, otherwise it is downgraded. Otherwise, if the
code is trusted, the compliance between the contract and the policy is checked in order
to understand if the application can be executed without any enforceable mechanisms
running on it.

Match
contract
& Policy

Y

y
tttt

Y

N

Trusted
Application

YY

N

Start

Enforce
policy &
monitor
contract

Monitor
contract
MMMMooonnniiitttooorrr

Scenario
MC

E
x
e
c
u
t
e

A
p
p
l
ic

a
t
io

n

EEEEEEnnnnffffoooorrrrcccceeee

Scenario
EPMC

STEP 1 STEP 2

Fig. 5. The Security-by-Contract Workflow

406 G. Costa et al.

R
U

N
N

IN
G

A
p
p
l
ic

a
t
io

n

Capture
Event

Continue
Execution

Raise
Security
Exception

CHECK
CONTRACT
VIOLATION

Y

N
T

Y

N

Update
Trust

Update
Monitor
State

Enforce
Policy

Check
Policy

Violation

N

VVVVVVVV

N

Y

STEP 3 STEP 4

(a) Scenario MC

R
U

N
N

IN
G

A
p
p
l
ic

a
t
io

n

Capture
Event

Continue
Execution

Raise
Security
Exception

CHECK
CONTRACT
VIOLATION

Y

VVVV
CC

Y

N

Update
Trust

Update
Monitor
State

Check
Policy

Violation

N

nn

N

Y

STEP 4 STEP 3

(b) Scenario EPMC

Fig. 6. The contract monitoring configurations

Going more in detail, the application lifecycle consists in the following steps:

– Step 1-Trust Assessment: Each downloaded mobile application comes with a given
recommendation rate, which allows the trust module of the user device to decide if
the application can be considered as trusted or not (Section 5.1).

– Step 2-Contract Driven Deployment: According to the trust measure, the secu-
rity module decides if just monitoring the contract or both enforce the policy and
monitoring the contract going into one on the scenarios described in Step 3.

– Step 3-Contract Monitoring vs Policy Enforcement Scenarios: Depending on the
chosen scenario the security module is in charge to monitor either the policy or the
contract and save the execution traces (logs). Indeed, we have two cases:

Scenario MC. The monitoring/enforcement infrastructure is required to monitor
only the application contract. Indeed, under these conditions, contract adherence
also implies policy compliance. If no violation is detected then the application
worked as expected. Otherwise, we discovered that a trusted party provided us
with a fake contract. More in detail, the contract monitoring works according to
the following strategy depicted in Fig. 6a: the contract monitoring receives event
signals from the executing code. The execution trace is kept in memory. When a
signal arrives, its consistency with respect to the monitored contract is checked.
If the contract is respected then its internal monitoring state is updated and the
operation is allowed, and a good behaviour is logged (i.e., contract respected).
Otherwise, if a violation attempt happens, a security error occurs, and a bad feed-
back is trigged (i.e., contract violation), and the system switches from contract
monitoring to policy enforcement configuration in order to guarantee that the se-
curity policy is satisfied. Since an instance of the policy is always present, this
operation does not imply a serious computational overhead.

Scenario EPMC. Since the contract declares some potentially undesired
behaviour, policy enforcement is turned on. Similarly to a pure enforcement
framework, our system guarantees that executions are policy-compliant. How-
ever, monitoring contract during these executions can provide a useful feed-
back for better tuning the trust vector. Hence, in this scenario, both the policy

Security and Trust 407

enforcement and the contract monitoring are active. Indeed, the contract mon-
itoring receives event signals from the executing code and keeps trace of the
execution trace. When a signal arrives, its consistency with respect to the mon-
itored contract is checked. If the contract is respected then its internal moni-
toring state is updated and the operation is allowed, and a good behaviour is
logged (i.e., contract respected). Otherwise, if a violation attempt happens, a
security error occurs and a violation feedback is logged for the trust module.
The policy enforcer is only in charge to following the execution of the appli-
cation and whenever it attempts to violate the security policy of the device the
enforcement mechanism halts the execution in such a way the security policy
is satisfied. This configuration is activated on a statistical base (Fig. 6b).

Let us notice that, in both the previous scenarios, contract monitoring plays a central
role. Indeed, a contract violation denotes that a trusted provider released a fake
contract.

– Step 4-Trust Feedback Inference: Finally, the trust module parses the S×C×T
produced logs and infers trust feedback (Section 5.3).

5 An Application of the S×C×T Framework

In order to better explain the framework, let us consider a Mobile Applications Market-
places (MAMp), (e.g., Apple AppStore, Cydia, Android Market) in which mobile appli-
cations (MAs) are released by a provider (MAP) and customers can download and install

rep rep rep rep

rep rep rep rep

Trusts

M
A
M
p

Customer

Downloads

Gives
Feedback

MAP

MA MA MA MA

MAMAMAMA

Fig. 7. Mobile Application Marketplace -use case-

408 G. Costa et al.

them on their devices. Let us also suppose that a trust reputation is associated to each MAP.
Reputations are managed by MAMp and updated according to customers’ feedback.

Generally speaking, we consider a customer, owner of a mobile device, who needs
to add a certain functionality to his own device. The customer asks for an application
for doing that. Such MA is downloaded from the MAMp.

The customer decides to download or not the mobile application according to the
given recommendation and the trust threshold he has set on his device. Each mobile
application comes with its contract released by the provider of the application itself.

Let us suppose that a security policy is embedded on the customer’s device. It can
be set by the customer himself or by the manufacturer of the device. If the applica-
tion is downloaded, whenever it is executed, some security mechanisms are needed for
guaranteeing that the device’s security policy is satisfied.

In this scenario we have applied the Security-by-Contract-with-Trust in order to
guarantee that a downloaded application is executed without violating the security pol-
icy required by the customer.

Hereafter, we detail the MA lifecycle according to the S×C×T workflow.

5.1 Trust Assessment - Step 1

MAMp computes/maintains trust reputations of mobile applications by aggregating
subjective customers’ opinions (i.e., 1:1 subjective feedback -Fig. 8-). However, this
aggregation process is not sufficient, we have to consider objective feedback such as
those provided by monitoring security and privacy. Thus, we introduce a new parame-
ter that reflects the global reputation of a Mobile Application Provider (MAP) in term of

MA

1:1
Fully tusted

N:1
"MAP" Reputation

N:1
"MA" Reputation

1:1
Subjective
Feedback

1:1
Objective

Security Feedback

1:N
MAMp Recommendation

1:1
Provide

"MA"

Fig. 8. Mobile Application Marketplace -trust relations-

Security and Trust 409

security behaviour (i.e., N:1 MAP reputation -Fig. 8-) in such a way that the provider’s
reputation grows according to the number of times that its provided applications satis-
fies their contract, and vice versa.

In the literature, managing reputation is widely investigated. For our use case, since
MAMp are fully trusted, we trust each MAMp to work as a centralised reputation man-
ager that maintains MAs and MAPs reputations. Note that, the MAMp considers only
accredited feedback, i.e., all the feedback that can not be reproduced.

Therefore, each customer is able to assess transitively (i.e., 1:N MAMp recommen-
dation -Fig. 8-) through ”MAMp” a given recommendation about a MA, which results
from the aggregation of subjective and objective feedback as follows:

Rec(MAMp, MA) = Rep(MAP) ∗ Rep(MA) (1)

Where, the amount of the recommendation is denoted by Rec(MAMp, MA); the
Rep(MA) represents the aggregation process of users’ subjective opinions that is per-
formed by the MAMp (this value is normalised into the interval [0,1]); the Rep(MAP)
falls into the interval [0,1] and denotes the reputation of the provider (MAP) that re-
leases MA. The reputation of MAP is updated according to the S×C×T monitoring.

In order to decide if a given mobile application from MAMp is trusted or not, each
customer has to fix its trust threshold Th0 (bounded between 0 and 1). Hence, the ones
that their recommendation is over Th0 are considered as trusted, where those with a
recommendation below than Th0 are untrusted.

The trust threshold is set according to the criticality of the mobile application. For
instance, a mobile application that manipulates users’ localisation can be considered as
a risky application and hence will lead to define a high Th0 close to ’1’. Whereas, for a
harmless application, Th0 will be close to ’0’.

For bootstrapping, we assume that each MAP is initialised with a low reputation (i.e.,
0.1) in order to reduce Whitewashing phenomena [43], where malicious consumers with
low reputation leaves the system and then backs with a new identity. Furthermore, neither
this kind of attack nor the Sybil attack [43] are efficient, since in MAMp is very tedious to
create multiple accounts especially if it requires an expense from the part of the attacker.

5.2 Monitoring/Enforcement Process - Step 2 and Step 3

Once the Trust module established the threshold according to the application critical-
ity and once it gets the trust recommendation of the MA, we have the following two
possibilities:

(i) The customer does not trust that the MA behaviour adheres to the MA contract.
In this case the contract policy matching is not performed since it does not provide any
guarantee about the compliance between the MA behaviour and the policy. Hence we
turn to the Enforce policy & Monitor Contract scenario (EPMC scenario of Fig. 3). This
allows us to guarantee that the security policy is respected by applying the enforcement
mechanism and trust feedback are provided according to the contract monitoring answer.

(ii) The customer trusts the MA, i.e., the customer trusts that the MA behaviour
adheres to the MA contract. In this case we check if the contract satisfies the policy by
the Contract-Policy Matching function. Two subcases arise:

410 G. Costa et al.

– The contract satisfies the policy. This allows the customer to establish that the MA
satisfies also the security policy. For that reason, the MA is executed and we turn
into the Monitor Contract scenario (MC scenario of Fig. 3).

– The contract does not satisfy the policy. Hence, we are not able to infer anything
about the compliance between the MA behaviour and the security policy. The en-
forcement mechanism is applied for guaranteeing that the security policy is re-
spected. Thus, also in this case, we turn into the Enforce Policy & Monitor Contract
scenario (EPMC scenario of Fig. 3). The contract monitoring can provide a useful
feedback for better tuning MAPs’ reputation. The contract monitoring is performed
only for providing feedback to the trust module. It is performed on statistical bases
according to a probability called Pmon. Pmon is computed according to the level
of the given recommendation and the remaining battery life. Indeed, Pmon is in-
versely proportional to the measure of trust of the application and proportional to
the remaining battery life. For instance, the more trusted the application is or the
lower the battery life is, the less frequent the contract monitoring is performed.

We implement the behaviour function BV [14] in order to compute Pmon. The
behaviour function BV is monotonically increasing function, and is able to oscil-
late from parabolic to hyperbolic shape according to a behaviour level called l0.

Note that it is possible to use other mathematical functions (logarithmic, ex-
ponential or stepwave) to assess the monitoring probability but the originality of
using Bezier curves comes from the easiness of plotting different monotonic and
increasing curves (i.e., logarithmic-like and exponential-like) with a unique func-
tion taking as inputs only two parameters, namely the curve thresholds and the
degree of the curvature.

Definition 3. [14] [BVl0,hx,hy
: The behaviour Function] The BV function is the

Cartesian form of a quadratic Bezier curve. Thus, the BV function is able to draw
smooth curves (see Figure 9) which are achieved through three points P0, P1 and
P2, starting at P0 going towards P1 and terminating at P2, where:
• P0(0, 0) is the origin point.
• P2(hx, hy) is called the threshold point, where the hx and hy represent respec-

tively the abscissa and the ordinate thresholds.

l0 = 1

l0 = 0.8

l0 = 0.5

l0 = 0.2

l0 = 0P0

BV : [0, hx] −→ [0, hy]
X −→ Y

BVl0,hx,hy
(X) =

{
(hy−2by)

4b2x
X2 +

by
bx
X si (hx − 2bx = 0)

(hy − 2by)(∝ (X))2 + 2by ∝ (X), si (hx − 2bx �= 0)

Where

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∝ (X) =
−bx+

√
bx2−2bx∗X+hx∗X
hx−2bx

0 ≤ bx ≤ hx ∧ hx > 0

bx = (1− l0) · hx ∧ by = hy · l0X

Y
=

B
V
l0
,h

x
,h

y
(X

)

P2(hx, hy)

Fig. 9. The BV function

Security and Trust 411

• P1(bx, by) defines the behaviour point. The coordinate of this point (bx, by) are
guided by a given level ’l0’ (l0 ∈ [0, 1]) through the diagonal of the rectangle
that is defined by P0 and P2,.

Thus, by aligning the behaviour level l0 with the trust level of the application
Rec(MAMp, MA) (i.e., l0 = 1 − Rec(MAMp, MA)) and by representing,
through the abscissa, the battery life Batteryremain, we obtain the following
equation:

Pmon(C) = BV(1−Rec(MAMp,MA)),1,1(Batteryremain) (2)

Table 2 shows some examples of monitoring probabilities that are obtained by vary-
ing the trust recommendation value of the mobile application and the percentage
of the remaining battery. Hence, as expected, the probability decreases when the
battery life falls (proportionately) or the given recommendation become higher (in-
versely proportional).

Table 2. Monitoring probability examples (Pmon(C))

���������������Rec(MAMp,MA))

Batteryremain
20% 40% 60% 80% 100%

0.2 0.47 0.70 0.84 0.93 1.00
0.5 0.20 0.40 0.60 0.80 1.00
0.8 0.06 0.16 0.30 0.53 1.00
1.0 0.01 0.05 0.16 0.31 1.00

5.3 Trust Feedbacks -Step 4

According to the previous steps, a trust log that reflects the behaviour of the deployed
application throughout the monitoring process is generated. Table 2 represents all pos-
sible logs by crossing all possible behaviours with a trusted and an untrusted case. Thus,
four types of feedback are highlighted, namely, Highly Reward, Reward, Penalise, and
Highly Penalise.

As illustrated in Table 2, for a trusted application, it is obvious to reward the corre-
sponding MAP if that application respects its contract but we have to turn on the EPMC
scenario, and to highly reward if the application matches the contract and we are in the
MC scenario. On the contrary, we highly penalise MAP if its recommended application
violates its contract.

Table 3. Feedback types

�������Trust
Security Respect the contract Violate the contract

MC scenario EPMC scenario MC scenario EPMC scenario

Trusted Highly reward Reward Highly penalise
Untrusted —— Reward —— Penalise

412 G. Costa et al.

However, for an untrusted application, the Security-by-Contract is only applied under
the EPMC scenario, and it check the contract and enforce the policy. In this case, we
adopt a reserved behaviour, by just rewarding if the contract is respected and penalising
otherwise.

In order to reduce the impact of malicious customers on our framework (i.e., Slan-
dering and denial of services attacks [43]), in which they try to send multiple bad feed-
back for good application or several good feedback for bad ones, each customer can
only provide one reward and one penalty feedback for each mobile application. Fur-
thermore, as mentioned above, each given recommendation is processed, by our model,
proportionately to the reputation of its sender.

Then, MAMp performs the Algorithm 1, with the given trust feedback, to update
MAP’s reputation which directly results in updating all the recommendation of the ap-
plications of that provider.

MAMp updates the MAP’s reputation (Algorithm 1 line 18) by increasing or de-
creasing current evaluation proportionately to α and also to the quantitative variable
Feedback amount. The Feedback amount is respectively equal to ’0.5’ for reward
or penalise and ’1’ for highly reward or highly penalise.

The parameter α (α ∈ [a, b]) defines how significant is the impact of new actions
will be on the previous acquired trust history. We choose to bound α into the interval
[a, b], where a is close to 0 (e.g., a = 0.2) and b is close to ’1’ (e.g., a = 0.8). Thus,
α = a means that past acquired history is highly relevant, whereas α = b gives the
highest impact to new actions.

Algorithm 1 . Update trust

Require:
MA: The monitored Mobile Application
Feedback ∈ {”Reward”, ”Highly reward”, ”Penalise”, ”Highly penalise”}
α ∈ [a, b]

1. MAP = Pr(MA) {Pr(MA) returns the MAP of MA}
2. OldPr = Rep(MAP) {Rep(MAP) returns or updates the current reputation of MAP}
3. if Feedback = ”Reward” or Feedback = ”Highly reward” then
4. if Feedback = ”Reward” then
5. Feedback amount=0.5
6. else if Feedback = ”Highly reward” then
7. Feedback amount=1
8. end if
9. NewPr = OldPr + Feedback amount ∗ (1 − OldPr)

10. else if Feedback = ”Penalise” or Feedback = ”Highly penalise” then
11. if Feedback = ”Penalise” then
12. Feedback amount=0.5
13. else if Feedback = ”Highlypenalise” then
14. Feedback amount=1
15. end if
16. NewPr = OldPr − Feedback amount ∗ OldPr
17. end if
18. Rep(MAP) = (1 − α) ∗ OldPr + α ∗ NewPr

Security and Trust 413

In order to automatically infer the value of α, two statements are considered:

– α is proportional to the recommendation value. In fact, if the given recommenda-
tion of the application is low and a new good behaviour is monitored, MAMp has
to slightly update trust values (i.e., α is close to a). Whereas, if the given recom-
mendation of the application is high and a bad behaviour is trigged, MAMp has to
give a high impact to new computed feedback (i.e., α is close to b).

– α is proportional to Th0 (i.e., application criticality) in case of a penalty and in-
versely proportional to Th0 in case of a reward. Indeed, risky applications have to
be less rewarded than harmless applications and inversely, risky applications have
to be more strongly penalised than harmless applications.

Thus, as for contract monitoring process, α can be inferred using the BV function as
follows:

α =
{

BVTh0,1,(b−a)(REC) + a if Feedback ∈ {Penalise, Highly penalise}
BV(1−Th0),1,(b−a)(REC) + a if Feedback ∈ {Reward, Highly reward}

Where REC = Rec(MAMp, MA)
(3)

Table 4 shows some examples of alpha that are obtained by varying the criticality of
the mobile application and the amount of the recommendation.

Table 4. α computing examples

Penalty Reward
�������Th0

Rec(MA)
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0.8 0.48 0.62 0.70 0.76 0.24 0.30 0.38 0.52
0.2 0.24 0.30 0.38 0.52 0.48 0.62 0.70 0.76

6 Conclusion and Future Work

In this paper we have presented a contract-based and trust-driven run-time enforcement
mechanism in which both the notions of security and trust are integrated in a unique
approach. Indeed, starting by describing the Security-by-Contract paradigm, in which
the notion of trust was not taken into account, we described the Security-by-Contract-
with-Trust framework.

The main novelty of the Security-by-Contract-with-Trust (S×C×T) framework with
respect to the previous one, consists in the contract monitoring scenario that allows
us to manage the trust level of an application. As a matter of fact, at deploy-time, the
monitoring structure is decided depending on both the application contract and the cre-
dentials (i.e., trust measure) of the contract releaser. Furthermore, at run-time, a trusted
program violating its contract leads to a correction of the trust relationship with the
provider and activates the policy enforcement configuration of our system.

414 G. Costa et al.

In order to better explain how the Security-by-Contract-with-Trust framework works,
we showed how it can be applied to a Mobile Application Marketplace (MAMp) sce-
nario. In particular, we provided a possible trust management strategy for managing
trust feedback according to the concept of mobile application criticality, i.e., mobile
application developers are rewarded or penalized according to its level of the recom-
mendation that is provided by the Mobile Application Marketplace and the criticality
of the application. The information about the amount of the recommendation can be
retrieved from the MAMp and the contract of the application that the developer has to
send in addition to the application itself, respectively. This means that we have a unified
architecture for managing both security and trust. According to the level of trust and
the trust threshold set by the user on the device, the Security-by-Contract-with-Trsut
mechanism monitors the contract or both enforces the policy and monitor the contract.

This mechanism allows the owner of the device to be sure to execute downloaded
application in a secure way and, at the same time, to be able to take trace of trusted and
untrsuted provider for future interactions.

Many future directions are viable. Mainly our trust management strategy is still a
work in progress. Currently, trust weights can only decrease monotonically as a con-
sequence of contract violations with the only exception of a direct intervention of the
user. Also the contracting infrastructure can be further improved. As a matter of fact, in
this work we only referred to single-contract applications. However, we can extend our
model in order to accept more contract instances for a single program. This scenario
seems to be realistic and open new directions of investigation.

We also envision to extend the trust module to allow banishing malicious applications
and/or developers from MAMp by taking into account the time fading aspect.

Finally, similarly to [37], we plan to implement a working prototype for testing the
practical feasibility of our approach including performance and resources consumption
analysis.

References

1. Jøsang, A., Keser, C., Dimitrakos, T.: An we manage trust?, pp. 93–107 (2005)
2. Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Langauges (POPL 1997), pp. 106–119 (1997)
3. Sekar, R., Venkatakrishnan, V., Basu, S., Bhatkar, S., DuVarney, D.C.: Model-carrying code:

a practical approach for safe execution of untrusted applications. In: SOSP 2003: Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles, pp. 15–28 (2003)

4. Gong, L.: Java Security: Present and Near Future. IEEE Micro 17(3), 14–19 (1997)
5. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information and Sys-

tem Security 3, 2000 (1998)
6. Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for run-time se-

curity policies. International Journal of Information Security 4, 2–16 (2005)
7. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng. 3,

125–143 (1977)
8. Rasmusson, L., Jansson, S.: Simulated social control for secure Internet commerce. In: Pro-

ceedings of the 1996 Workshop on New Security Paradigms, pp. 18–25. ACM, New York
(1996)

Security and Trust 415

9. Fukuyama, F.: Trust: The social virtues and the creation of prosperity. Free Press, New York
(1996)

10. Coleman, J.: Social capital in the creation of human capital. American Journal of Sociol-
ogy 94(1), 95–120 (1988)

11. Grandison, T., Sloman, M.: A survey of trust in internet applications. IEEE Communications
Surveys & Tutorials 3(4), 2–16 (2009)

12. Kautz, H., Selman, B., Shah, M.: Referral Web: combining social networks and collaborative
filtering. Communications of the ACM 40(3), 63–65 (1997)

13. Abdul-Rahman, A., Hailes, S.: A distributed trust model. In: NSPW: New Security
Paradigms Workshop, pp. 48–60. ACM Press, New York (1997)

14. Saadi, R., Pierson, J.M., Brunie, L.: Establishing trust beliefs based on a uniform disposition
to trust. In: ACM SAC: Trust, Reputation, Evidence and other Collaboration Know-how
track. ACM Press, New York (2010)

15. Jøsang, A., Pope, S.: Semantic constraints for trust transitivity. In: APCCM: 2nd Asia-Pacific
Conference on Conceptual Modelling, pp. 59–68. Australian Computer Society, Inc., New-
castle (2005)

16. Nepal, S., Malik, Z., Bouguettaya, A.: Reputation Propagation in Composite Services. In:
Proceedings of the 2009 IEEE International Conference on Web Services, vol. 00, pp. 295–
302. IEEE Computer Society, Los Alamitos (2009)

17. Paradesi, S., Doshi, P., Swaika, S.: Integrating Behavioral Trust in Web Service Compo-
sitions. In: Proceedings of the 2009 IEEE International Conference on Web Services, pp.
453–460. IEEE Computer Society, Los Alamitos (2009)

18. Kim, Y., Doh, K.: Trust Type based Semantic Web Services Assessment and Selection. In:
Proceedings of ICACT, pp. 2048–2053. IEEE Computer, Los Alamitos (2008)

19. Nurmi, P.: A bayesian framework for online reputation systems. In: International Confer-
ence on Internet and Web Applications and Services/Advanced International Conference on
Telecommunications, AICT-ICIW 2006, pp. 121–121 (2006)

20. Xiong, L., Liu, L.: A reputation-based trust model for peer-to-peer ecommerce communities.
In: 4th ACM Conference on Electronic Commerce, pp. 228–229 (2003)

21. Zhou, R., Hwang, K., Cai, M.: Gossiptrust for fast reputation aggregation in peer-to-peer
networks. IEEE Transactions on Knowledge and Data Engineering, 1282–1295 (2008)

22. Song, S., Hwang, K., Zhou, R., Kwok, Y.: Trusted P2P transactions with fuzzy reputation
aggregation. IEEE Internet Computing 9(6), 24–34 (2005)

23. Zimmermann, P.R.: The official PGP user’s guide. MIT Press, Cambridge (1995)
24. Marsh, S.: Formalising Trust as a Computational Concept. PhD thesis, University of Stirling,

Scotland (1994)
25. Golbeck, J., Hendler, J.: Filmtrust: Movie recommendations using trust in web-based social

networks. In: CCNC: IEEE Consumer Communications and Networking Conference, Las
Vegas, NV, USA, pp. 282–286. IEEE Computer Society, Los Alamitos (2006)

26. Theodorakopoulos, G., Baras, J.S.: Trust evaluation in ad-hoc networks. In: 3rd ACM Work-
shop on Wireless Security, pp. 1–10. ACM Press, New York (2004)

27. Quercia, D., Hailes, S., Capra, L.: TRULLO-local trust bootstrapping for ubiquitous devices.
In: Proc. of IEEE Mobiquitous (2007)

28. Haque, M., Ahamed, S.: An omnipresent formal trust model (FTM) for pervasive computing
environment. In: 31st Annual International Computer Software and Applications Confer-
ence, COMPSAC 2007, vol. 1 (2007)

29. Jsang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th Bled Electronic
Commerce Conference, pp. 17–19 (2002)

30. Rahman, A., Hailes, S.: Supporting trust in virtual communities. In: IEEE Hawaii Interna-
tional Conference on System Sciences, p. 6007 (2000)

416 G. Costa et al.

31. Ahamed, S., Monjur, M., Islam, M.: CCTB: Context correlation for trust bootstrapping in
pervasive environment. In: 2008 IET 4th International Conference on Intelligent Environ-
ments, pp. 1–8 (2008)

32. Mui, L., Mohtashemi, M., Ang, C., Szolovits, P., Halberstadt, A.: Ratings in distributed sys-
tems: A bayesian approach. In: Proceedings of the Workshop on Information Technologies
and Systems (WITS), pp. 1–7. Citeseer (2001)

33. Aringhieri, R., Damiani, E., Di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: Fuzzy tech-
niques for trust and reputation management in anonymous peer-to-peer systems: Special
topic section on soft approaches to information retrieval and information access on the web.
JASIST: Journal of the American Society for Information Science and Technology 57(4),
528–537 (2006)

34. Dragoni, N., Martinelli, F., Massacci, F., Mori, P., Schaefer, C., Walter, T., Vetillard, E.:
Security-by-contract (SxC) for software and services of mobile systems. In: At your service
- Service-Oriented Computing from an EU Perspective. MIT Press, Cambridge (2008)

35. Labs, T.: Ontology. S3MS CP-2006-RT-503-0.3 (2006)
36. Castrucci, A., Martinelli, F., Mori, P., Roperti, F.: Enhancing java ME security support with

resource usage monitoring. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008. LNCS,
vol. 5308, pp. 256–266. Springer, Heidelberg (2008)

37. Costa, G., Martinelli, F., Mori, P., Schaefer, C., Walter, T.: Runtime monitoring for next
generation java me platform. Computers & Security (2009)

38. Desmet, L., Joosen, W., Massacci, F., Philippaerts, P., Piessens, F., Siahaan, I., Vanover-
berghe, D.: Security-by-contract on the .net platform, Oxford, UK, vol. 13, pp. 25–32. Else-
vier Advanced Technology Publications, Amsterdam (2008)

39. Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge University
Press, Cambridge (1999)

40. Greci, P., Martinelli, F., Matteucci, I.: A framework for contract-policy matching based on
symbolic simulations for securing mobile device application. In: ISoLA, pp. 221–236 (2008)

41. Costa, G., Dragoni, N., Lazouski, A., Martinelli, F., Massacci, F., Matteucci, I.: Extend-
ing security-by-contract with quantitative trust on mobile devices. In: Proceeding of CISIS
2010, The Fourth International Conference on Complex, Intelligent and Software Intensive
Systems, Krakow, Poland, pp. 872–877. IEEE Computer Society, Los Alamitos (2010)

42. Costa, G., Dragoni, N., Issarny, V., Lazouski, A., Martinelli, F., Massacci, F., Matteucci, I.,
Saadi, R.: Extending security-by-contract with quantitative trust on mobile devices. Jour-
nal of Wireless Mobile Networks, Ubiquitous Computing and Dependable Applications
(JOWUA) 1(4), 75–91 (2011) ISSN (print): 2093-5374, ISSN (on-line): 2093-5382

43. Hoffman, K., Zage, D., Nita-Rotaru, C.: A survey of attack and defense techniques for repu-
tation systems. ACM Computing Surveys (CSUR) 42(1), 1–31 (2009)

Modeling Spatial and Temporal Variability

with the HATS
Abstract Behavioral Modeling Language�

Dave Clarke1, Nikolay Diakov2, Reiner Hähnle3, Einar Broch Johnsen4,
Ina Schaefer5, Jan Schäfer6, Rudolf Schlatte4, and Peter Y.H. Wong2

1 Katholieke Universiteit Leuven, Belgium
2 Fredhopper B.V., Amsterdam, The Netherlands

3 Chalmers University of Technology, Sweden
4 University of Oslo, Norway

5 Technische Universität Braunschweig, Germany
6 Technische Universität Kaiserslautern, Germany

Abstract. The Abstract Behavioral Specification (ABS) language facil-
itates to precisely model the behavior of highly configurable, distributed
systems. Its basis is Core ABS which is a strongly typed, abstract,
object-based, concurrent, fully executable modeling language. Spatial
variability of ABS models is represented by feature models, delta mod-
ules containing modifications of ABS models, product line configurations
linking delta modules with product features and product selections spec-
ifying actual product instances. Temporal variability is captured by dy-
namic delta modules that can be applied to perform runtime updates.
The feasibility of ABS is demonstrated by modeling an industrial-scale
web merchandising system.

1 Introduction

Contemporary software development faces recurring challenges over many differ-
ent application domains: software systems are concurrent and distributed, they
exhibit a large variety of features and deployment scenarios, their requirements
change frequently, and new requirements arise unexpectedly. All of these char-
acteristics are increasingly difficult to address on the level of implementation
languages, such as C/C++, C#, or Java. Even when it is possible, the result is
often a large gap between the implemented system and the requirements doc-
umentation resulting in high validation and maintenance costs and impeding
traceability.

Further, major IT-trends under way pose new challenges: a prerequisite for
cloud computing is the ability to abstract away from physical resource allocation,
load distribution, the architecture of the execution platform, etc. This implies
the need to specify intended behavior without referring to concrete resources.
� This research is funded by the EU project FP7-231620 HATS: Highly Adaptable and

Trustworthy Software using Formal Models (http://www.hats-project.eu)

M. Bernardo and V. Issarny (Eds.): SFM 2011, LNCS 6659, pp. 417–457, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.hats-project.eu

418 D. Clarke et al.

Likewise, the emergence of cyber-physical systems and the internet of things
emphasize the need for abstract behavioral description of highly configurable
and diverse systems.

Model-centric approaches to system development are gaining rapidly in pop-
ularity in order to provide an abstract representation of system structure and
behavior. There is a lot of research involving feature description languages [5],
architectural languages for components [17], or UML and state machine-based
notations [1,12,25]. Development processes, such as software product line engi-
neering [18] distinguish between generic artifact and product-level system de-
velopment and are specifically designed to use (and reuse) high-level artifacts.
Hence, modeling languages capturing system diversity are required to deal with
the variability of generic development artifacts. The main limitation of existing
modeling approaches is their insularity and the lack of a unified formal seman-
tics. Both is necessary, however, to provide a future generation of development
tools that can, for example, generate code from models that is guaranteed to be
sound, generate test cases that have a guaranteed coverage, or ensure that the
implementation of features obeys their application constraints.

The HATS (Highly Adaptable and Trustworthy Software using Formal Mod-
els) project develops an executable modeling language called Abstract Behav-
ioral Specification (ABS) language and an accompanying tool framework that
promises to overcome the mentioned shortcomings: it facilitates to model pre-
cisely the behaviour of highly configurable, distributed systems in an “end-to-
end” manner. This means that not only the (concurrent) implementation of
features is captured, but also the feature space and the dependencies among
them. Furthermore, ABS includes language concepts to represent model evolu-
tion, e.g., due to changing requirements. In addition, it is possible to formally
specify properties of systems modeled with ABS in form of behavioral contracts.
The ABS modeling language aims to fill the gap between structural high-level
modeling languages, such as UML, and implementation-close formalisms, includ-
ing programming languages.

Fig. 1 shows the different language layers constituting the ABS. At its core,
ABS is a state-of-the-art, strongly typed, abstract, concurrent, object-based
modeling language (Core ABS) that is fully executable. Shared memory is only
permitted among closely collaborating synchronous groups of objects. Other-
wise, objects communicate asynchronously and use message passing to update
the state. This core language is described in Section 2. While ABS is an object-
based language and, hence, compatible with the UML world, code reuse by inher-
itance, which tends to be brittle, is excluded. Instead, system diversity in ABS
is captured by delta modeling [19,20,22,21] which represents a set of systems by
a designated core system and a set of system deltas specifying modifications to
the core system. Delta modeling is an incremental composition technique that
is highly compatible with feature-oriented software development [2] and also a
good match for agile and evolutionary development approaches [3].

In Section 3, we describe how spatial variability is captured using the different
language layers of the ABS (cf. Fig. 1). Spatial variability is concerned with the

Modeling Spatial and Temporal Variability with the HATS 419

Language Rôle

Core ABS Specifies core behavioural modules
(independent of extensions)

Micro Textual Variability Language Feature models, attributes and
(μTVL) constraints on them

Delta Modelling Language Modifications to core behavioural
(DML) modules

Product Line Configuration Language Links features and delta modules,
(CL) configures deltas with attributes

Product Selection Language Feature and attributes selections plus
(PSL) product initialisation block

Fig. 1. Language definitions in ABS

modeling of anticipated features, as well as known system diversity and deploy-
ment scenarios. First, we introduce μTVL (Micro Textual Variability Language)
to represent feature models and feature constraints. Second, we describe DML
(Delta Modelling Language) that captures variability of Core ABS models by
the concepts of delta modeling. Finally, we present CL (Product Line Configura-
tion Language) for configuring a product line of ABS models and PSL (Product
Selection Language) for deriving particular products from an ABS product line.

Even more difficult than spatial variability, but of growing importance is tem-
poral variability or evolvability in time. The main difference to spatial variability
is that temporal variability is not known in advance and cannot be anticipated.
In Section 4, we show how delta modeling can be adapted to deal with tempo-
ral evolution of ABS product lines including the possibility to perform runtime
system updates.

The measure of success for an ambitious and holistic approach such as it is
pursued in HATS is whether one can model not only toy examples, but real indus-
trial scenarios. In Section 5, we present an ABS modeling example that is taken
from production code used in the distributed web merchandising platform—
Fredhopper Access Server [11]. We conducted this industrial-strength case study
along with the development of the ABS language and tools, in order to provide
valuable early feedback to guarantee strong results. Section 6 describes the ABS
tool set consisting of a parser, type checker, editor, debugger, and code gener-
ators. We conclude in Section 7 with an evaluation of what has been achieved
with HATS ABS so far.

2 Core ABS

Core ABS (or simply ABS in the following) is an object-based modeling language.
With its object-based model structure, it fits well with modeling languages used in

420 D. Clarke et al.

object-oriented analysis and design, such as UML. However, code reuse via class-
based inheritance is excluded. Instead, variability and code reuse in ABS models is
achieved by specific language constructs as explained in Section 3.

ABS is designed to model distributed systems that communicate asynchro-
nously by exchanging messages. The concurrency model of ABS is similar to
that of JCoBox [24], which generalizes the concurrency model of Creol [15,4]
from single concurrent objects to concurrent object groups (COG). COGs can
be regarded as object-based runtime components, which have their own heap of
objects and solely communicate via asynchronous method calls. The behavior of
a COG is represented by cooperative multi-tasking. Cooperative multi-tasking
guarantees data-race freedom inside a COG and enables the safe combination of
active and reactive behavior.

Beside the object-based part, the core language supports user-defined data
types with (non-higher-order) functions and pattern matching. This functional
sublanguage of ABS is largely orthogonal to the object-based part and is intended
to model data. As such data is immutable, it can safely be exchanged between
COGs. Using functional data types to realize most internal data structures of
COGs will simplify the specification and verification of COGs.

The ABS language contains non-deterministic constructs; in particular, the
outcome of executing concurrency primitives is non-deterministic. While under-
specification is used to realize abstraction on data, non-deterministic execution
semantics is the prerequisite for abstracting behavior. As ABS is a modeling
language, we do not want to make any a priori assumptions about, for example,
a concrete scheduling mechanism. Underspecification and non-determinism do
not preclude executability: an unknown value is still a value and the outcome
of a non-deterministic statement is a set of possible successor states from which
one can be picked in simulation and visualization.

In this section, we first describe how to represent data in the ABS. Second, we
explain the object-based fragment and the module system of the ABS. Finally,
we present the concurrency model that is based on COGs and cooperative multi-
tasking. A complete description of all ABS features is in [10].

2.1 Data Types

Built-In Data Types. ABS does not have primitive types, but a number of
built-in data types and operators to work with basic values.

The Unit Value. To express that an expression has no value, ABS has the data
type Unit, which has only one, identically named, constructor Unit. The Unit
type is typically used for methods that do not have a return value.

Logical Values. ABS supports logical values by the Bool data type. It has the
two constructors True and False. The defined operators on Bool are equality
(==), unequality (!=), negation (~), logical and (&&), and logical or (||).

Modeling Spatial and Temporal Variability with the HATS 421

Example:

~((True && False) || True)

Numbers. ABS supports unbounded integers by the data type Int. Integers
are constructed by using integer literals, which are positive numbers of an arbi-
trary length, e.g., 0, 1, 3434, 4711, 42. ABS supports the standard arithmetic
operations on Int with the usual precedences, i.e., negation (-), addition (+),
subtraction (-), multiplication (*), division (/), and modulo (%).

Example:

((-5+6)*4)/(2%1)

Character Sequences. Character sequences are represented by the data type
String. Strings are constructed by using string literals, which are sequences of
characters enclosed by double quotes ("). There is no special data type for single
characters, as a single character can be regarded as a string of length 1. The
concatenation operator (+) can be used to concatenate two strings. The length
of a string can be obtained by the length function.

Example:

"Hello" + "World"

Algebraic Data Types. Immutable values can be defined in ABS by algebraic
data types. The possible values of data types are defined by a finite set of data
type constructors. Constructors can have a finite list of parameters, which can
refer to built-in types, algebraic data types, or reference types (see Section 2.2).
The names of data types and constructors start with an upper case letter. The
following example defines the data type Fruit with three constructors, and the
data type Juice with the two constructors Pure and Mixed. With these data
types, we can create a cherry-banana juice.

Example:

data Fruit = Apple | Banana | Cherry;

data Juice = Pure(Fruit) | Mixed(Juice, Juice);

Mixed(Pure(Cherry),Pure(Banana))

Parametric Data Types. ABS also supports data types with type parameters to
define generic data types. A typical example is a List data type that should be
generic in the types of its elements. In ABS, there is the predefined List data
type, which is defined as follows:

422 D. Clarke et al.

Example:

data List<T> = Nil | Cons(T, List<T>);

Type Synonyms. To define shortcuts for types, ABS knows type synonyms,
which are defined by using the type keyword. Semantically, a type synonym is
equivalent to its aliased type.

Example:

type Catalog = Map<String, Product>;

Functions. Functions in ABS are used for working with data types. They are
always side-effect free. A function is defined by using the def keyword. Also,
functions can have type parameters to abstract from concrete types. For example,
the predefined head function is over a parametric data type A is declared as
follows:

Example:

def A head<A>(List<A> list) = ...

Pattern Matching. In order to conveniently work with algebraic data types, ABS
supports the pattern matching. A pattern can be a bound variable, in which case
it matches against its value, a free variable, in which case the variable matches
everything and is bound to the matched value, the placeholder (underscore)
which matches anything, but does not establish a binding, and a constructor pat-
tern, in which case the value must match the corresponding constructor. Pattern
matching can be defined using the case expression. In the following example, pat-
tern matching is used to get the set of all ingredients of a given juice. The data
type Set, with its constructors Insert and EmptySet, as well as the function
union are predefined in ABS.

Example:

def Set<Fruit> ingredients(Juice juice) =

case juice {

Mixed(j1,j2) => union(ingredients(j1),ingredients(j2));

Pure(fruit) => Insert(fruit,EmptySet);

} ;

2.2 Object-Based Programming

Classes. ABS models are structured into classes. A class declaration consists
of the class name, a list of constructor arguments, a list of interfaces that the
class implements, a list of fields (instance variables), an init block, and a list of
methods. All of these except the class name are optional.

Modeling Spatial and Temporal Variability with the HATS 423

Example:

class IPing(Pong pong, Int pingCount) implements Ping {

Int pingsLeft = pingCount; // A field definition

// The init block contains non−trivial field initializations.
// All constructor arguments are fields as well and can be used here.
{

...

}

// The special run() method is invoked once upon object creation.
// It specifies the object’s active behavior.
Unit run() {

while (pingsLeft > 0) {

pong ! hi("Hello");

pingsLeft = pingsLeft - 1;

}

}

}

Interfaces. In ABS, classes are not types. Instead, all object references are typed
by interfaces. An interface declaration consists of the interface name, a list of
interfaces that the interface inherits from, a list of methods that have to be
implemented by classes implementing the interface. All elements except the in-
terface name are optional. A class has to implement at least the methods that are
listed in its interface(s). These methods listed in the implemented interfaces can
be called from the outside. All other methods the class implements are private
and can only be invoked on this. Interfaces do not contain field declarations.
Hence, there is no way of accessing fields of an object different from this.

Example:

interface Empty {

Unit doNothing();

}

class IEmpty implements Empty {

Unit doNothing() { skip; }

Unit thisIsPrivate() { skip; }

}

Statements. ABS supports standard statements and expressions known from
object-oriented languages, such as Java. These include: assignments, conditional
statements and loops. The most basic statement is skip, which does nothing.
While not particularly useful, it has its place in empty method bodies of abstract
behavioral models which will be concretized later. Variables in ABS are defined
in the usual way by giving a type, name and initial value. Variable names must

424 D. Clarke et al.

begin with a lowercase letter, followed by a combination of letters, numbers
and the underscore () character. Variable assignments consist of a left-hand
side naming a variable and a right-hand side which can be any type-correct
expression.

Example:

String x = "Hello";

x = x + " World!";

The conditional statement has the same syntax as in Java. The conditional
expression must be of type Bool (i.e., evaluate to True or False), the consequent
and optional alternate parts of the conditional statement are blocks which can
introduce local variables.

Example:

if (contains(ingredients(juice), Banana)) {

result = "I love bananas!";

} else {

skip;
}

The while loop is standard as well, consisting of a Boolean expression and a
block, to be evaluated until the expression evaluates to False.

Example:

while (True) {

skip; // This loops forever.
}

Modules. An ABS Model is a set of modules, where each module is defined in
an ABS file, which typically ends with .abs. A file can have multiple module
definitions, but a single module must be completely defined in one file.

Modules define named scopes for declarations which can be interfaces, classes,
or data types, and provide name spaces and a means for implementation hiding.
All declarations defined in a module are by default hidden and cannot be used by
other modules. In order to make declarations available to other modules, they
have to be explicitly exported. In order to use declarations of other modules,
they have to be explicitly imported. The following example shows how names
can be exported and imported. Like Java packages, modules in ABS are flat.
Even though module names are often made hierarchical by using periods, such
a structure has no special meaning in ABS.

Example:

module Example.PingPong.Ping;

export IPing, Ping;

import Pong from Example.PingPong.Pong;

Modeling Spatial and Temporal Variability with the HATS 425

A module can have an optional main block, which defines how a system is started.
The following module has a main block that creates an instance of IPing and
calls its start method. See the following subsection for the new cog syntax.

Example:

module Example.PingPong;

import * from Example.PingPong.Ping;

import * from Example.PingPong.Pong;

{

Pong pong = new cog IPong();

Ping ping = new cog IPing(pong,5);

}

2.3 Concurrency Model

ABS is especially designed for modeling concurrent and distributed systems. The
concurrency model of ABS is based on the concept of Concurrent Object Groups
(COGs). A typical ABS system consists of multiple COGs at runtime. COGs can
be regarded as autonomous, runtime components that are executed concurrently
and share no state.

Concurrent Object Groups. A new COG is created by using the new cog ex-
pression. It takes as argument a class name, which is the class of the first object
of the new COG. The result is a reference to the first object. The following ex-
ample creates a new COG with an initial object of class IPong. The reference
to this new IPong object is stored in the pong variable. The IPong object lives
in a different COG than the COG which created it.

Example:

Pong pong = new cog IPong();

Asynchronous Method Calls. Objects communicate by exchanging messages via
method calls. When using a synchronous method call, the caller must wait for
the call to be returned. This leads to a strong temporal coupling between the
caller and the callee. In a distributed setting, the caller must additionally also
wait until the corresponding network message has been sent to the target node,
which leads to problems for systems with high latency. ABS contains linguistic
constructs for synchronous method calls. However, due to the above reasons,
communication between COGs may solely be via asynchronous method calls.
The difference to the synchronous case is that an asynchronous call immediately
returns to the caller without waiting for the message to be received and handled
by the callee. Asynchronous method calls are indicated by an exclamation mark
(!) instead of a dot.

426 D. Clarke et al.

Example:

pong ! hi("Hello Pong");

In order to ensure that COGs only communicate via asynchronous methods
calls, ABS provides a pluggable type extension to statically distinguish far ref-
erences to objects in a different COG and near references in the same COG. The
used type annotations are [Near], [Far], and [Somewhere], where [Somewhere]
means that the reference is either near or far. The above example can be then
typed as follows.

Example:

[Far] Pong pong = new cog IPong();

As synchronous method calls are not allowed on far references the following code
will lead to a runtime error in ABS. When using the additional type annotations,
the type checker will catch that error at compile time already.

Example:

Pong pong = new cog IPong();

pong.hi("Hello"); // runtime error

Futures. Communication between objects usually follows a request-response pat-
tern. If a request is sent via a synchronous method call, eventually the called
object sends the return value of the call as return value to the caller. When
using asynchronous method calls, the caller does not wait for the result of the
call. Instead, the asynchronous method call returns a future. A future is a place-
holder for the result of the method call. Initially, a future is unresolved. When
the called method has terminated, the future will (automatically) be resolved
with the result value of the call. The caller can, thus, obtain the result value of
the method call at a later point by using the future.

A future in ABS is represented by the predefined data type Fut<T> where
the type parameter T corresponds to the return type of the called method. The
following example assigns the result of the above asynchronous method call to
a future answerFut, where the method hi is assumed to have String as return
type. To get the value of the future answer, the get-expression can be used.

Example:

Fut<String> answerFut = pong ! hi("Hello Pong");

String answer = answerFut.get;

The get-expression only returns the value of the future, when the future is
resolved. If the future is unresolved, the control flow is blocked, until the future
is resolved. Hence, synchronous communication can be simulated in ABS by
performing an asynchronous method call and waiting for the resolved future
using the get-expression.

Modeling Spatial and Temporal Variability with the HATS 427

Cooperative Multi-Tasking. The ABS approach to handle concurrency relies on
strict data encapsulation and on cooperative multi-tasking on the level of COGs.
Strict data encapsulation is achieved since all object fields are private and can
only be accessed via method calls. Hence, the state of an object does not have
to be protected against modifications from the outside.

COG-level cooperative multi-tasking means that all tasks1 run within the
scope of a COG. A method call creates a task in the scope of the target object.
For asynchronous methods calls, the calling task can continue to run while the
issued method call is processed and get its result at a later point in time. Race
conditions between the tasks of the same COG are prevented by cooperative
multi-tasking. For example, in conventional programming languages that are
based on preemptively scheduled threads, the following code is prone to subtle
errors:

Example:

Unit addToState(Int item) {

itemCount = itemCount + 1;

itemList = Cons(item, itemList);

}

Int removeFromState() {

Int result = 0;

if (itemCount > 0) {

itemCount = itemCount - 1;

result = head(itemList); itemList = removeHead(itemList);

} else {

// handle error
}

return item;

}

If a thread running addToState is interrupted after its first statement, a sec-
ond thread running removeFromState might try to remove an element from an
empty itemList which is a typical race condition. In languages like Java race
conditions can only be prevented by explicitly synchronizing threads using locks
or synchronized blocks.

ABS solves this problem by scheduling tasks only at specific scheduling points
during program execution which are apparent in the source code. Hence, a COG
state is implicitly protected, except at certain points that can be syntactically
identified and analyzed. The suspend statement introduces a scheduling point,
allowing the running task to be suspended and another task of the COG to be
scheduled.

1 Tasks correspond to threads, known from languages such as Java, but are scheduled
cooperatively instead of preemptively.

428 D. Clarke et al.

Example:

// This loops forever, blocking the COG
while (True) { skip; }

// This loops forever, in parallel with other tasks
while (True) { suspend; }

With the await statement, one can create a conditional scheduling point, where
the running task is suspended, until the specified condition becomes true.

Example:

Bool flag = False;

Bool waitUntilTrue () {

await flag; // we rely on some other task to set the flag for us
return flag; // will always return True

}

The await statement is also a way to synchronize with the future of an asyn-
chronous method call without blocking the entire COG.

Example:

Fut<String> answerFut = ping ! hi("Hello Ping");

skip; // do some processing ...
await answerFut?;

String answer = answerFut.get; // guaranteed not to block

A method for reasoning about absence of race conditions in ABS is to inspect
each suspend and await statement, and check if the task at this point leaves
the COG in an orderly state (i.e., establishes the COG invariant). At all other
points, the COG is implicitly protected against concurrent modifications.

3 Spatial Variability Modeling

Spatial variability captures different variants of a software products coexisting
at the same point in time. This variability can often be phrased in terms of
the features offered by the software. Finer-grained configuration parameters are
represented using attributes of features. Software product line engineering [18]
aims at developing similar product variants by reuse. The ABS incarnation of
this approach is realised by four languages (μTVL, DML, CL, PSL) on top of
core ABS. These languages express spatial variability at the level of product
features and as changes to the behavior of a core product, along with providing
the configuration of the product line artifacts, and the ultimate selection of a
product via the specification of the relevant features and their attributes.

The feature description language μTVL is used to describe the variability of a
product line in terms of features and their attributes. At this level of abstraction,

Modeling Spatial and Temporal Variability with the HATS 429

a feature is just a name. Attributes represent micro-variability within features.
DML is used to specify delta modules which, when selected, are used to modify
a core ABS model. Delta modules implement spatial variability at the level
of core ABS. Although DML delta modules are used to implement features,
they are written independently of any feature. They are, in fact, reusable for
different ABS product lines as they may be written independently of a specific
application context. CL specifications link μTVL feature models with the DML
delta modules that implement the corresponding behavioral modifications. A CL
specification provides application conditions for each delta module, which are
constraints over features and their attributes governing when the delta module
is applicable. A CL specification also specifies constraints on the ordering of
applicable delta modules, in order to avoid potential ambiguity in different delta
application orders. A PSL script consists of two parts, namely, a specification of
the features and their attributes selected for a product and an initialization code
block, which typically is just a call to an appropriate main method, though it may
contain additional configuration. The feature selection part of a PSL specification
is checked against a μTVL feature model, and is also used to determine which
delta modules to apply, namely, those whose application condition is true given
the feature selection. To generate the product specified by the PSL script, all
deltas with valid application condition are applied to the core ABS model in
some order compliant with the order specified in the CL script, and then the
initialisation block is added to the core program.

The following application, the core of a multilingual “Hello World” program,
will be used to illustrate these languages and their interaction. Here is the core
of the MultiLingualHelloWorld product line in core ABS:

Example:

interface Greeting {

String say_hello();

}

class Greeter implements Greeting {

String say_hello() {

return "Hello world";

}

}

class Application {

Unit main() {

Greeting bob;

bob = new Greeter();

String s = "";

s = bob.say_hello();

}

}

Interface Greeting, class Greeter and class Application form the core modules
of the ABS implementation.

430 D. Clarke et al.

3.1 Feature Modeling

μTVL is a feature modelling language, pronounced either micro textual vari-
ability language or simply mu tee vee ell. It is an extended subset of TVL [5,6],
which was developed to serve as a reference language for specifying feature mod-
els. μTVL is textual, as opposed to diagrammatic, and aims to be scalable, con-
cise, modular, and comprehensive. A feature model is represented textually as a
forest of nested features, each with a collection of boolean or integer attributes.
Additional cross-tree dependencies can be expressed in the feature model. μTVL
allows a feature model with multiple roots (hence, multiple trees) to express or-
thogonal variability [18], which is useful for representing application or platform
models in an orthogonal fashion.

The grammar of μTVL is given in Fig. 2. FID is the set of valid feature
names, and AID of valid attribute names. Attributes and values in μTVL range
either over integers or over booleans. Extensions to include other data types is
unproblematic, as long as any relevant constraints can be encoded by integer
constraints.

Model ::= (root FeatureDecl)∗ FeatureExtension∗

FeatureDecl ::= FID [{ [Group] AttributeDecl∗ Constraint∗ }]
FeatureExtension ::= extension FID { AttributeDecl∗ Constraint∗}

Group ::= group Cardinality { [opt] FeatureDecl, ([opt] FeatureDecl)∗ }
Cardinality ::= allof | oneof | [n1 .. ∗] | [n1 .. n2]

AttributeDecl ::= Int AID ; | Int AID in [Limit .. Limit] ; | Bool AID ;

Limit ::= n | ∗
Constraint ::= Expr ; | ifin: Expr ; | ifout: Expr ;

| require: FID ; | exclude: FID ;

Expr ::= true | false | n | FID | AID | FID.AID
| UnOp Expr | Expr BinOp Expr | (Expr)

UnOp ::= ! | -
BinOp ::= || | && | -> | <-> | == | != | > | < | >= | <= | + | - | * | / | %

Fig. 2. Syntax of μTVL (n ranges over integers)

The Model clause specifies a number of “orthogonal” root feature models and
some extensions. A root feature model, FeatureDecl, contains the name of a
feature (FID), followed by a specification of any sub-features, the feature’s at-
tributes and any relevant constraints. Extensions, FeatureExtension, specify ad-
ditional attributes and constraints, typically cross-tree dependencies. The Group
clause specifies the sub-features of a feature. This consists of a specification of
the cardinality of the group, plus a number of possibly optional sub-features.
The Cardinality clause describes the number of elements of a group that may
appear in a result. Keyword allof means that all elements of the group must
appear. Keyword oneof means that one element must appear. Range descrip-
tions [n1 .. ∗] and [n1 .. n2] specify the range of values on the number of

Modeling Spatial and Temporal Variability with the HATS 431

elements of the group. These can be bounded below and above or unbounded
above (∗). Zero or one instances of each feature can be present in the ultimate
model—this means that cardinality specifies not that features can be multiply
instantiated, rather it specifies the number of selections that can be made for a
choice: by analogy, {Apple,Banana} is a valid choice of 2 elements from the set
{Apple,Orange,Banana}, whereas {Orange,Orange} is not.

The AttributeDecl clause specifies both integer (bounded or unbounded) and
boolean attributes of features. The Limit clause is used to specify the bounds,
where n is some integer and ∗ indicates that an attribute is unbounded below
and/or above.

The Constraint clause specifies constraints on the presence of features and on
attribute values. An ifin constraint is only applicable if the current feature is
selected. Similarly, an ifout constraint is only applicable if the current feature
is not selected. An include clause specifies that the current feature requires
some other feature, whereas exclude expresses the mutual incompatibility be-
tween the current feature and some other feature. The Expr clause ultimately
expresses a boolean constraint over the presence of features and attribute values.
Features are referred to by identity (FID). Attributes are referred to either using
an unqualified name (AID), for in scope attributes, or using a qualified name
(FID.AID) for attributes of other features. Unary, UnOp, and binary operators,
BinOP, are standard.

Example 1. The following is a feature model for the MultiLingualHelloWorld
product line, which describes software that outputs “hello world” in multiple
languages some number of times.

root MultiLingualHelloWorld {
group allof {
Language {

group oneof { English, Dutch, French, German }
},
opt Repeat {
Int times in [0..1000];
times > 0;

}
}

}

extension English {
ifin: Repeat ->

(Repeat.times >= 2 && Repeat.times <= 5);
}

This feature model introduces two core features, Language and Repeat. The
Language feature corresponds to one of four possible features: English, Dutch,
French, or German. The Repeat feature has no sub-features, and it has an at-
tribute times with range from 0 to 1000, with an added condition that it must

432 D. Clarke et al.

be strictly greater than 0. The extension for the English feature states that
when the English and Repeat features are both present, the attribute times
must be between 2 and 5, inclusive.

This feature model can be depicted as a feature diagram using standard no-
tations [7], as shown in Fig. 3.

MultiLingualHelloWorld

LanguageRepeat

German

French Dutch

English

Int times in [0..1000]
times > 0

Repeat → Repeat.times ≥ 2 ∧
Repeat.times ≤ 5

Fig. 3. Feature Diagram for the MultiLingualHelloWorld example

3.2 Delta Modeling

Variability at the level of abstract behavioral specifications (or source code) is
achieved using delta modeling. The concept of delta modeling was introduced
by Schaefer et al. [19,20,22,21] as a novel modeling and programming language
approach for software-based product lines, and can be seen as an direct alterna-
tive to feature-oriented programming [2]. Both approaches aim at automatically
generating software products for a given valid collection of features, providing
flexible and modular techniques to build different products that share function-
ality or code. In delta-oriented programming [20], application conditions, condi-
tions over the set of features and their attributes, are associated with modules
of program modifications (add, remove, or otherwise modify code), called delta
modules. The implementation of a software product line in delta-oriented pro-
gramming is divided into a core module and a set of delta modules. The core
module consists of the classes that implement a complete product of the corre-
sponding product line. Delta modules describe how to change the core module
to obtain new products. The choice of which delta modules to apply is based on
the selection of desired features for the final product. For representing spatial
variability in the ABS language, we adapt these ideas to ABS models.

Fig. 4 specifies the syntax of delta modules over core ABS models. The gram-
mar uses nonterminals from the core ABS language, indicated in purple (gray).
Their names should be sufficiently suggestive.

Modeling Spatial and Temporal Variability with the HATS 433

DeltaDecl ::= delta TypeId [DeltaParamDecls]
{ClassOrInterfaceModifier∗ }

ClassOrInterfaceModifier ::= adds ClassDecl
| modifies class TypeId ImplementsModifier∗

{ Modifier∗ }
| removes class TypeId ;

| adds InterfaceDecl
| modifies interface TypeId ImplementsModifier∗

{ Modifier∗ }
| removes interface TypeId ;

ImplementsModifier ::= adds TypeId
| removes TypeId

Modifier ::= adds FieldDecl
| removes FieldDecl
| adds MethDecl
| modifies MethDecl
| removes MethSig

DeltaParamDecls ::= (DeltaParamDecl (, DeltaParamDecl)∗)

DeltaParamDecl ::= Identifier HasCondition∗

| Type Identifier

HasCondition ::= hasField FieldDecl
| hasMethod MethSig
| hasInterface TypeId

Fig. 4. Syntax of Delta Modules

The DeltaDecl clause specifies the syntax of delta modules, which consists of
an unique identifier, a list of parameters, and a body containing a sequence of
class and interface modifiers. The ClassOrInterfaceModifier clause describes the
syntax of modifications at the level of classes and interfaces. Such a modification
can add a class or interface declaration, modify an existing class or interface,
or remove a class or interface. The ImplementsModifier clause describes how to
modify the interfaces a class implements or extends, either by adding new or
removing existing interfaces.

The Modifier clause specifies the modifications that can occur within a class
or interface body. These include (where relevant) adding and removing fields and
method signatures (from interfaces), and modifying methods, which amounts to
replacing a method with a new implementation, but enabling the original method
to be called using the original() keyword. The semantics of calling original()
is essentially the same as Super() from feature-oriented programming [2], and
proceed from context-oriented programming [13], and similar to ordinary super
calls in standard object-oriented languages, as well as the around advice (without
quantification) from aspect-oriented programming [16].

Delta modules in the ABS language can be parameterised both by attribute val-
ues and by class names, to enable the application of a single delta in more than one

434 D. Clarke et al.

context. This is in contrast to delta modules presented in the literature [20,22,21],
which are unparameterised. The HasCondition describes constraints on class ar-
guments to which a delta may be applied. These constraints state, for instance, the
methods and fields that a class or interface is expected to have.

Below are some delta modules for the MultiLingualHelloWorld product line
defined above which represent the Repeat, German and Dutch features. A delta
module for the French feature can be implemented in a similar fashion.

Example:

delta Rpt (Int times) {

modifies class Greeter {

modifies String say_hello() {

String result = "";

Int i = 0;

while (i < times) {

result = result + original();
i = i + 1;

}

return result;

}

}

}

delta De {

modifies class Greeter {

modifies String say_hello() {

return "Hallo Welt";

}

}

}

delta Nl {

modifies class Greeter {

modifies String say_hello() {

return "Hallo wereld";

}

}

}

The delta module De, for example, implements a single class modifier for Greeter,
which in turn has a single method modifier. This method modifier replaces the
method say hello() of class Greeter to return the German text “Hallo Welt”.
The delta module Rpt has a single parameter for the number of times that
the hello string should be repeated. This delta module replaces the method
say hello() in class Greeter with new ABS code. However, in this case, the
code being replaced is also included via the special method call original().

3.3 Product Line Configuration

The product line configuration language (CL) links μTVL feature models with
DML delta modules to provide a complete specification of the spatial variability

Modeling Spatial and Temporal Variability with the HATS 435

in an ABS product line [22,21]. A product line configuration script consists of
the set of features assumed to exist and a set of delta clauses. Each delta clause
names a delta module and specifies the conditions required for its application,
called application conditions. A partial ordering on delta modules specified by
after clauses constrains the order in which delta modules can be applied to the
core module. The syntax of the product line configuration language is given in
Fig. 5.

Configuration ::= productline Name { Features ; DeltaClauses }
Features ::= features FID (, FID)∗

DeltaClauses ::= DeltaClause (, DeltaClause)∗

DeltaClause ::= delta DeltaSpec [AfterCondition] [ApplicationCondition] ;

DeltaSpec ::= Name [(DeltaArguments)]
DeltaArguments ::= DeltaArgument (, DeltaArgument)∗

DeltaArgument ::= FID | FID.AID | PureExpr

AfterCondition ::= after Name (, Name)∗

ApplicationCondition ::= when PureExpr

Fig. 5. CL grammar

The Configuration clause specifies the name of the product line, the set of
features it provides using a Features clause, and the set of delta modules used
to implement those features by DeltaClause clauses. In a DeltaClause, the Af-
terCondition clause specifies the delta modules that the current delta module
must be applied after. The DeltaSpec clause names a specific delta module and
specifies any parameters that need to be passed. These parameters are either
attributes from the feature model or constant values specified in core ABS as a
PureExpr, that is, an expression without side effects. The ApplicationCondition
clause specifies a predicate describing under which feature configurations the
given delta module is applied. This condition is phrased in terms of the presence
and absence of features and feature combinations, as well as using attributes of
features and integer and boolean constants.

The MultiLingualHelloWorld product line is configured as follows:

Example:

productline MultiLingualHelloWorld {

features English, German, French, Dutch, Repeat;

delta Rpt(Repeat.times) after De, Fr, Nl when Repeat;

delta De when German;

delta Fr when French;

delta Nl when Dutch;

}

The example CL configuration script specifies, for example, that the De delta
module is applicable when the German feature is selected. Note that there is

436 D. Clarke et al.

no delta module corresponding to the feature English, as the core provides
support for the English feature as a default. In addition, Rpt is configured such
that it has to be applied after all the language-specific delta modules. The delta
module Rpt’s argument is filled with the times attribute of feature Repeat,
which ultimately will be specified in a PSL script (Section 3.4).

3.4 Product Selection and Generation

To generate a product from an ABS product line, a product selection is specified
using the product selection language (PSL). A product selection states which
features are to be included in the product and specifies concrete values for their
attributes. In addition, some core ABS code is provided to initialise the selected
product. A product selection is checked against a μTVL feature model for va-
lidity, possibly after adding any implied features. An implied feature is a parent
feature in the μTVL feature model. Then, the product selection is used by the
configuration file to guide the application of the delta modules during the gen-
eration of the final software product. Fig. 6 specifies the grammar of PSL.

Selection ::= product Name (FeatureSpecs) { InitBlock }
FeatureSpecs ::= FeatureSpec (, FeatureSpec)∗

FeatureSpec ::= FID [AttributeAssignments]

AttributeAssignments ::= { AttributeAssignment (, AttributeAssignment)∗ }
AttributeAssignment ::= AID = Value

InitBlock ::= { Core ABS code }

Fig. 6. PSL grammar

The Selection clause specifies a product by giving it a name, by stating the fea-
tures (FeatureSpec) to be included in the product and the concrete values for their
attributes (AttributeAssignment) and by specifying an initialisation block (Init-
Block). This can be any coreABS code, but typically, it will be a simple call to some
already present main method. Initialisation blocks are specified in the product se-
lection language to enable product lineswithmultiple entry points to the code base.

Here are some candidate product selections for the MultiLingualHelloWorld
product line:

Example:

// basic product with no deltas
product P1 (English) {

Application.main();

}

// apply delta Fr
product P2 (French) {

Modeling Spatial and Temporal Variability with the HATS 437

Application.main();

}

// apply deltas De and Repeat
product P3 (German, Repeat{times=10}) {

Application.main();

}

// apply delta Repeat to core with feature English, but the application should
// be refused because ”times > 5”
product P4 (English, Repeat{times=6}) {

Application.main();

}

The example specifies four products: P1, P2, P3, and P4. In the case of the
product P1, the parameter English means the product consists of this feature
and of the features implied by the feature model. In this case, the implied features
are Language and the root MultiLingualHelloWorld, according to the feature
model in Example 1. In P3 and P4, the parameters also include attribute values,
in these cases assigning a value to the attribute times of the Repeat feature.
The block of ABS code associated to each product provides its initialisation
code. Every product in our example executes the main method of the class
Application, which is included in the core module.

3.5 Product Generation

Given a core ABS program P , a set of delta modules Δ, a product line config-
uration C, a feature model FM , and a product selection p, the final software
product, which will be a core ABS program, is derived as follows:

– first, check that the product selection p satisfies the constraints imposed by
the feature model FM ;

– second, select the delta modules from Δ with a valid application condition
with respect to p;

– third, apply the delta modules to the core program P in some order respect-
ing the partial order described in C; and

– finally, add the initialisation block to the resulting ABS code.

The selection of product P3 in our running example results in the following Core
ABS model. The parameter times from feature Rpt has been replaced by the
value 10, as specified in the product selection. Class Application and interface
Greeting are as above in the core module. The original() call to the previous
version of the say hello method is replaced with a call to a renamed version of
the unchanged method.

438 D. Clarke et al.

Example:

class Greeter implements Greeting {

String say_hello_original() {

return "Hallo Welt";

}

String say_hello() {

String result = "";

Int i = 0;

while (i < 10) {

result = result + say_hello_original();

i = i + 1;

}

return result;

}

}

{ // initialisation block
Application.main();

}

4 Temporal Variability Modeling

The basic idea of temporal variability modeling in ABS is to capture how prod-
ucts in an ABS product line safely evolve over time. Evolution takes place during
system execution in order to accomodate necessary changes after the deployment
of the products; e.g., bug fixes, feature extensions or modifications, or changes
in user requirements. The main design target of ABS models are concurrent
and distributed systems in which objects communicate asynchronously. Conse-
quently, it is not straightforward to halt a deployed product during execution in
order to let it evolve. Rather, temporal evolution must happen asynchronously
at runtime. In ABS, we follow an approach developed for class-based inheritance
for distributed concurrent objects [14], but we adapt it to delta modeling.

4.1 Dynamic Delta Modules

In order to facilitate the modeling of temporal variability for high-level ABS
models, it is crucial that evolution is expressed at the abstraction level of the
modeling language. Therefore, temporal variability is captured by a series of
asynchronous changes to the executing product, where each change addresses
one of the structuring concepts of the modeling language and where the series of
changes together bring about the desired overall modification of product behav-
ior. In ABS, the main structuring concepts for system variability are a designated
core module and delta modules, which contain modifier operations for classes,
interfaces, field and method declarations (see Fig. 4).

Modeling Spatial and Temporal Variability with the HATS 439

DynDeltaDecl ::= dyndelta TypeId [DeltaParamDecls]
{ (DeltaModifier | ClassOrInterfaceModifier)∗ }

DeltaModifier ::= adds delta DeltaDecl
| modifies delta DeltaDecl

DeltaDecl ::= TypeId [DeltaParamDecls]
{ClassOrInterfaceModifier∗ }

ClassOrInterfaceModifier ::= adds ClassDecl
| adds InterfaceDecl
| modifies class TypeId ImplementsModifier∗

{ Modifier∗ }
| simplifies class TypeId

{ Simplifier∗ }
ImplementsModifier ::= adds TypeId

Modifier ::= adds FieldDecl
| adds MethDecl
| modifies MethDecl

Simplifier ::= removes FieldDecl
| removes MethDecl

Fig. 7. Syntax for dynamic delta declarations in ABS (the clause for DeltaParamDecls
is defined in Fig. 4)

Temporal variability in ABS is expressed in terms of dynamic delta mod-
ules. Dynamic delta modules can add classes or interfaces to the core module or
modify classes or interfaces that are already contained in the core module. Ad-
ditionally, dynamic delta modules can change delta modules, meaning they can
add classes or interfaces which are in turn added by the delta modules or alter
the contained modification operations. The grammar for dynamic delta modules
is given in Fig. 7. Dynamic delta modules allow us to add new class and interface
declarations to the core module or delta modules, and to change existing class
declarations in the following ways:

– add new fields and method definitions
– modify existing method definitions
– simplify the class by removing redundant field and method declarations

Thus, the dynamic delta modules are slightly more restrictive than standard
delta modules used for spatial variability. In particular, classes and interfaces
cannot be removed, and the modifiers are distinguished from the simplifiers (in
Fig. 4, the simplifiers are in the same syntactic category as the modifiers).

In order to illustrate the usage of dynamic delta modules, the MultiLingual
HelloWorld product line is modified to make a more personal greeting. The
dynamic delta module ExtendedGreeting changes the Greeter class that is
defined in the core module by adding a method i am bob() which returns a

440 D. Clarke et al.

personalized message and modifies the say hello() method to output this mes-
sage. The delta modules De and Nl are modified to include a translated version
of the i am bob() method:

Example:

dyndelta ExtendedGreeting {

modifies class Greeter { // Adds a new method to the class Greeter
adds String i_am_bob () { return ", I am Bob!"; }

modifies String say_hello() {

return = original() + this.i_am_bob();

}

}

modifies delta De {

modifies class Greeter {

modifies String i_am_bob() {return ", ich bin Bob!";}

}

}

modifies delta Nl {

modifies class Greeter {

modifies String i_am_bob() {return ", ick ben Bob!";}

}

}

}

4.2 Restrictions on Dynamic Delta Modules

The rationale for the syntactic restrictions introduced in the dynamic delta mod-
ules is to guarantee that the temporal evolution of the product’s code does not
give rise to runtime errors. This guarantee is provided by a static analysis which
identifies runtime applicability conditions for the different elements of the dy-
namic delta module. In order to apply a change to a class, other changes may be
required to have taken place already. In the asynchronous setting of ABS, this
cannot be statically controlled. For example, if new code in a change to a class
D invokes a method on an instance of another class C, that method must be
available. If the method is introduced as a change to C, the static analysis of the
change to D will generate an applicability condition to require that this change
to C has already occurred at runtime. The distinction between modifiers and
simplifiers corresponds to the distinction between runtime applicability condi-
tions at the level of classes and at the level of instances of those classes [14]. The
removal of classes, as well as the removal and modification of interfaces, are dis-
allowed because they would require a inspectionvof all references of the involved
interfaces (including references in messages), which is a very heavy operation in
the asynchronous distributed setting targeted by ABS.

Modeling Spatial and Temporal Variability with the HATS 441

5 Case Study

In this section, we present a case study of spatial and temporal variability mod-
eling with the ABS based on the Fredhopper Access Server (FAS) [11]. In par-
ticular, we focus on its Replication System component. First, we describe how
we model the core components of the existing Java implementation of the FAS
replication system using Core ABS. Second, we capture some of the system’s spa-
tial variabilities using the languages presented in Section 3. Third, we illustrate
how to represent temporal variability, including changing of available features.
Finally, we describe how the HATS tools suite assists our modeling activities.

5.1 Fredhopper Access Server

The Fredhopper Access Server (FAS) is a service-oriented, server-based software
system, which provides search and merchandising IT services to e-Commerce
companies, such as large catalogue trading, travel booking, or classified adver-
tising, etc. Each FAS installation is deployed to a customer according to the FAS
deployment architecture. Fig. 8 shows an example setup.

Live
Environment (1)

Live
Environment (n)

Data and Config
Updates

Configurations
changes

Staging
Environment

Data
Manager

Internet

...

Client-side
Web App

Client-side
Web App

Client-side
Web App

Data updates Live
Environment (2)... Load

balancer

Fig. 8. Example of FAS deployment

A FAS deployment consists of a set of live environments and a staging envi-
ronment. A live environment processes queries from client web applications via
web services. The staging environment is responsible for receiving data updates
in XML format, indexing the XML, and distributing the resulting indices across
all live environments according to the replication protocol. A more detailed de-
scription of the replication system can be found in [8].

For the purpose of this case study, we focus on the synchronisation client
component in the live environment and the synchronisation server component
in the staging environment. The synchronisation server and a set of synchro-
nisation clients together constitute the replication system. The synchronization
server distributes configuration and data updates to the synchronization clients

442 D. Clarke et al.

running on the live environments. It is responsible for determining the sched-
ule of replication as well as the content of each replication item for its staging
environment. A replication item represents a single unit of replicable data. It
is either a file directory, a set of files whose name matches a regular expression
or a database journal. A replication snapshot is a set of replication items. The
synchronisation client connects to the synchronisation server component in the
staging environment and responds to incoming updates resulting from changes
to data and configuration.

The synchronisation server and clients do not communicate directly. The syn-
chronisation server creates connection threads that serve as the interface to the
server-side of the replication protocol. In the existing implementation, connection
threads are Java thread objects. The synchronisation client, on the other hand,
schedules client jobs to handle communications to the client-side of the replica-
tion protocol. In the existing implementation, a client job is a Java object that
is scheduled using a third party scheduling library. The synchronisation server
and clients communicate via connection threads and client jobs asynchronously
via sockets.

SyncServer

ConnectionThread Acceptor Coordinator

starts becomes
ReplicationSnapshot

11 contains

*

1
starts/finishes replication

refreshs/cleans

ReplicationItem

1

*contains

get items from

* 1

starts

suspends/resumes

SyncClientClientJob
11schedules

1
1

schedules

(a)

(b)

Fig. 9. Class diagram of (a) synchronisation server and (b) synchronisation client

Fig. 9(a) and (b) show the UML class diagram of the synchronisation server
and client respectively. The synchronisation server consists of the following com-
ponents: an acceptor, one or more connection threads, a coordinator, a Sync-
Server and a replication snapshot. The synchronisation client, on the other hand
consists of a SyncClient and one or more client jobs.

Modeling Spatial and Temporal Variability with the HATS 443

5.2 Modeling the Replication System with Core ABS

We now provide a description of the individual components of the replication
system in our ABS model. Listing 1 shows the ABS interfaces for the components
of the synchronisation server. For brevity, we have omitted ABS class definitions.
More details on the ABS model described in this section can be found on the
HATS project website http://www.hats-project-eu.

command(Command command); } interface ConnectionThread extends
Command { } interface Node { DataBase getDataBase(); } interface
ServerNode extends Node { Set<Schedule> getSchedule(); }

interface Acceptor {
[Far] ConnectionThread getConnection(ClientJob job);
Bool isAcceptingConnection();
Unit suspendConnection();
Unit resumingConnection(); }

interface Coordinator {
Unit process();
Unit startUpdate(ConnectionThread worker);
Unit finishUpdate(ConnectionThread worker); }

interface SyncServer extends ServerNode {
Acceptor getAcceptor();
[Far] Coordinator getCoordinator();
[Near] ReplicationSnapshot getReplicationSnapshot(); }

interface ReplicationSnapshot {
Unit refreshSnapshot(Bool refreshSnapshot);
Unit clearSnapshot();
Int getIndexingId();
Set<ReplicationItem> getItems();
Bool hasUpdated(); }

interface ReplicationItem {
FileEntry getContents();
ReplicationItemType getType();
FileId getAbsoluteDir();
Unit refresh();
Unit cleanup(); }

Listing 1. ABS interfaces of the synchronisation server components

http://www.hats-project-eu

444 D. Clarke et al.

The Acceptor component is responsible for accepting connections from the
synchronisation clients and is specified by interface Acceptor shown in Listing 1.
The interface provides a method for a client job to obtain a reference to a
connection thread, as well as methods to enable and disable the synchronisation
server to accept a new client job connection. The connection thread and the client
job are specified by interfaces ConnectionThread and ClientJob in Listing 1
and Listing 2, respectively.

interface SyncClient extends Node {
[Far] Acceptor getAcceptor();
ClientDataBase getClientDataBase();
Unit becomesState(State state);
Unit setAcceptor(Acceptor acceptor); }

interface ClientJob extends Command {
Bool registerReplicationItems(CheckPoint checkpoint);
Maybe<FileSize> processFile(FileId id);
Unit processContent(File file);
Unit receiveSchedule(); }

Listing 2. ABS interfaces of the synchronisation client components

Each connection thread is instantiated by the Acceptor. After the Acceptor
accepts a connection from a client job, it instantiates a ConnectionThread to
carry out the replication protocol. The connection thread is specified by inter-
face ConnectionThread shown in Listing 1. ConnectionThread exposes a single
method command(), which is asynchronously invoked by ClientJob objects to
determine the current state of a replication.

The Coordinator is responsible for coordinating when the Acceptor may ac-
cept connections from synchronisation clients. This component also provides
methods for preparing replication items before a replication session and clearing
them afterwards. The coordinator is specified by interface Coordinator shown
in Listing 1.

The SyncServer starts the Acceptor and the Coordinator. It also keeps a
reference to the relevant replication snapshot. The synchronization server is spec-
ified by the interface SyncServer shown in Listing 1.

Listing 2 shows the ABS interfaces of the components that are part of the
synchronization client. The SyncClient communicates with the SyncServer via
job scheduling. At initialisation time, the SyncClient schedules a client job to
acquire a replication schedule from the server. Using this schedule, this client
job creates a new client job for performing the actual replication. Each client
job thereafter is responsible to request replication schedules and set up the sub-
sequent jobs for further replication.

Each client job receives replication items from a connection thread and up-
dates the synchronisation client’s files (configuration and data). The client job is

Modeling Spatial and Temporal Variability with the HATS 445

specified by interface ClientJob shown on Listing 2. Client jobs may be sched-
uled either sequentially or concurrently.

Listing 3 shows an example main block of the replication system. In this main
block, first an exemplary set of changes to the data in the synchronisation server
is defined. In our ABS model, the file system is structured as a tree, where
non-leaf nodes are directories. The changes to a file directory are specified by
the map items, whose keys are CheckPoint values identifying particular sets of
changes. Each key points to a set of File values representing updates to those
files. A file is identified by its fully qualified name, specifying the path through
the directory tree to the file content. As simplification, the file content is denoted
by an integer value representing its size. For example, in the listing the key 1
points to updates on files located at dir1/file and dir2/file2.

{
Map<CheckPoint,Map<FileId,FileContent>> items =
map[Pair(1,map[file("dir1/file1",1),file("dir2/file2",2)]),..];

Set<Schedule> schedules =
set[FileItem("dir2","dir2/dir21"),..];

Set<ClientId> cids = set[0,..];
Set<[Far] SyncClient> syncclients = EmptySet;
Set<ClientId> iterator = cids;
while (hasNext(iterator)) {
Pair<Set<ClientId>,ClientId> nt = next(iterator);
SyncClient syncclient = new cog SyncClientImpl(snd(nt));
syncclients = insertElement(syncclients,syncclient);
iterator = fst(nt); }

SyncServer syncserver =
new cog SyncServerImpl(items,schedules);

Fut<Acceptor> acc = syncserver!getAcceptor(); await acc?;
[Far] Acceptor acceptor = acc.get;

Set<SyncClient> clientIterator = syncclients;
while (hasNext(clientIterator)) {
Pair<Set<SyncClient>,SyncClient> nt = next(clientIterator);
SyncClient syncclient = snd(nt);
syncclient!setAcceptor(acceptor);
clientIterator = fst(nt); }

}

Listing 3. An example main block

446 D. Clarke et al.

The main block defines a set of schedules for replication and instantiates a
corresponding set of synchronisation clients, each as a separate COG. Addition-
ally, a synchronisation server is instantiated in another COG, and a reference to
its acceptor class is obtained. Afterwards, the main block passes this reference
to the clients, which triggers the replication protocol. By instantiating all clients
and the server as separate COGs, all connection threads and client jobs belong
to separate COGs and, thus, can only communicate via asynchronous method
calls.

5.3 Spatial Variability of the Replication System

The replication system can exist in several variants. Listing 4 shows the corre-
sponding feature model. The replication system has a feature JobProcessing,
which requires an alternative choice between the two features Seq and Concur,
capturing the choice between sequential and concurrent client job processing,
respectively. Additionally, the replication system has a feature ReplicationItem
which allows choosing between three replication item types represented by the
features Dir, File and Journal. The Dir feature is mandatory, that is, all
versions of the replication system support replicating complete file directories.
Moreover, the Journal feature requires the feature Seq which means that vari-
ants of the replication system that support database journal replication may
only schedule client jobs sequentially.

root ReplicationSystem {
group allof {
JobProcessing {

group oneof { opt Seq, opt Concur }
},
ReplicationItem {

group [1..*] {
Dir, opt File, opt Journal { require: Seq; }

}
}

}
}

Listing 4. Feature model of the replication system in μTVL

The core model of the replication system supports sequential client job pro-
cessing. This functionality is implemented by the active class ClientJobImpl.
A partial ABS class definition of ClientJobImpl is shown in Listing 5. Each
instance of ClientJob initialises the Boolean field newJob to False and in-
vokes its run method. This method in turn invokes scheduleNewJob() asyn-
chronously. The method scheduleNewJob() waits for field newJob to become
True before creating a new instance of ClientJob. Setting newJob to True at

Modeling Spatial and Temporal Variability with the HATS 447

the end of the run method ensures that each client job is scheduled sequentially.
The method becomeState() is invoked synchronously at specific points inside
the run method to ensure that, while scheduling client jobs sequentially, the
synchronisation client follows a predefined client state machine [8].

The lower half of Listing 5 defines the delta module Concurrent which spec-
ifies a single class modifier for class ClientJobImpl that has two method mod-
ifiers. The first modifier removes the await statement from scheduleNewJob()
in such a way that a new instance of ClientJob is created as soon as the cur-
rent ClientJob instance releases the lock of this object group. This potentially
allows scheduling client jobs concurrently. The second modifier updates method
becomeState so that the synchronisation client is not required to follow the
client state machine which only applies to sequential scheduling.

class ClientJobImpl([Far] InternalClient client, JobType job)
implements ClientJob {
Bool newJob = False;
Unit scheduleNewJob() {

await newJob;
new ClientJobImpl(this.client, Replication);

}
Unit run() { .. this!scheduleNewJob(); .. newJob = True; .. }
Unit becomeState(State state) { .. }
..

}

delta Concurrent {
modifies class ClientJobImpl {

modifies Unit scheduleNewJob() {
new ClientJobImpl(this.client, Replication);

}
modifies Unit becomeState(State state) { .. }

}
}

Listing 5. Core module and delta module for job processing

Listing 6 shows a partial definition of the classes DirectoryItem and
ReplicationSnapshotImpl. The class DirectoryItem defines a replication item
for a complete file directory and the class ReplicationSnapshotImpl imple-
ments ReplicationSnapshot. The method replicationItem defined in the
class ReplicationSnapshotImpl takes a replication schedule, creates a corre-
sponding ReplicationItem object and adds it to the set of replication items.
By default, this method only handles replication schedules for complete file
directories.

448 D. Clarke et al.

class DirectoryItem(FileId qualified, ServerDataBase db)
implements ReplicationItem { .. }

class ReplicationSnapshotImpl(
ServerDataBase db, Set<Schedule> schedules)
implements ReplicationSnapshot {

Set<ReplicationItem> items = EmptySet;

Unit replicationItem(Schedule schedule) {
if (isSearchItem(schedule)) {
FileId qualified = left(item(schedule));
ReplicationItem item = new DirectoryItem(qualified,this.db);
this.items = Insert(item,this.items);
}

}
..

}

Listing 6. Partial core implementation of replication item

In Listing 7, two delta modules are depicted that implement the necessary
functionality for other types of replication items. The delta module File is ap-
plied for handling file set replication and has two class modifiers. The first mod-
ifier adds class FilePattern, an implementation of interface ReplicationItem
handling replicating file sets that matches a regular expression. The second
modifier updates the method replicationItem to handle replication schedules
with file sets. The delta module Journal contains the necessary modifications
for handling database journal replication. It has two class modifiers to add a
new implementation of interface ReplicationItem and to update the method
replicationItem to handle replication schedules with data base journals.

delta File {
adds class FilePattern(FileId qualified, String pattern,

ServerDataBase db)
implements ReplicationItem { .. }

modifies class ReplicationSnapshotImpl {
modifies Unit replicationItem(Schedule schedule) {

original();
if (isFileItem(schedule)) {
Pair<FileId,String> it = right(item(schedule));
ReplicationItem item =

new FilePattern(fst(it),snd(it),this.db);

Modeling Spatial and Temporal Variability with the HATS 449

items = Insert(item,items);
}

}
}

}

delta Journal {
adds class JournalItem(FileId qualified, ServerDataBase db)

implements ReplicationItem { .. }

modifies class ReplicationSnapshotImpl {
modifies Unit replicationItem(Schedule schedule) {

original();
if (isJournalItem(schedule)) {
FileId qualified = left(item(schedule));
ReplicationItem item = new JournalItem(qualified,this.db);
this.items = Insert(item,this.items);
}

}
}

}

Listing 7. Delta modules for replication items

Listing 8 shows the product line configuration of the replication system in CL,
where the features Dir and Seq are the features provided by the core module.
The application condition for delta Concurrent states that this delta is applied
if and only if feature Concur is selected and feature Journal is not selected.
This application condition respects the constraint specified in the feature model
shown in Listing 4.

productline ReplicationSystem {
features Dir, File, Journal, Seq, Concur;
delta File when File;
delta Journal when Journal;
delta Concurrent when Concur && (~ Journal);

}

product DS (Dir, Seq) { .. } // default product (core)
product DFC (Dir, File, Concur) { .. } // file pattern, concurrent
product DC (Dir, Concur) { .. } // directory, concurrent
product DFJS (Dir, File, Journal, Seq) { .. } // directory, concurrent

Listing 8. Product line configuration and product selections for the replication system

450 D. Clarke et al.

Listing 8 also shows some example product selections for the replication sys-
tem product line specified in PSL. For brevity, details of the main blocks have
been omitted. For example, product DS defines a variant of the replication system
that supports the core set of features. Product DFJS is a variant that supports
all types of replication items, and product DFC supports both directory and file
set replication, as well as concurrent client job scheduling.

5.4 Temporal Variability of the Replication System

Existing products have to evolve to meet the market demand for new features.
Thus, a product line may have to be changed simultaneously in several dimen-
sions, which makes the management of the evolution a difficult task. A complete
re-modeling of an evolved product line has a high cost. Therefore, it is bene-
ficial to re-use model artifacts from previous versions of the product line in a
compositional and incremental manner.

As an evolution from the current versions, Fredhopper aims to develop a
loosely coupled, pluggable architecture for FAS. This architecture will allow
components to be added and removed from a FAS deployment dynamically at
runtime. One component that will benefit from this pluggable architecture is
the Search Engine Optimizer (SEO) component. Search engine optimization im-
proves the visibility of a client’s website in search engines via search results. The
SEO component includes an indexing facility for these search results which must
also be replicated from the staging environment across all live environments.

The replication system currently supports replicating complete directories,
file sets, and database journals. In order to add support for replication of SEO
search result indices, we use dynamic delta modules to change the ABS model of
the replication system product line. The dynamic delta module IndexItemDelta
modifies the replication system such that an SEO component can be added to
a FAS deployment at runtime. Listing 9 shows a partial implementation of this
dynamic delta module. Read from top to bottom, the dynamic delta module
IndexItemDelta in Listing 9 provides the following modifications:

1. Addition of an interface Indexer to model a generic indexer.
2. Addition of a class SEOIndexer implementing the Indexer interface for the

SEO indexing facility. For brevity, implementation details are omitted.
3. Addition of the interface IndexItem that extends the interface Replication-

Item to associate an Indexer to a replication item.
4. Modification of the class ReplicationSnapshotImpl so that method

refreshSnapshot() creates a new instance of the class Indexer, before
refreshing individual items.

5. Modification of the delta module File in the following ways:

(a) Modification of the class ReplicationSnapshotImpl (which is already
modified by the delta module File) in such a way that the method
createReplicationItems() associates the indexer with file set replica-
tion items.

Modeling Spatial and Temporal Variability with the HATS 451

(b) Modification of the class FilePattern (that is added by the delta module
File) such that it implements the interfaceIndexItem and such that the
method refresh(), which refreshes the files contained in the replication
item, acquires a set of indices (Set<Index>) stored at the file locations
pointed to by the replication item. In the ABS model, we represent in-
dices by the algebraic data type Index.

dyndelta IndexItemDelta {

adds interface Indexer { // adding new indexer interface
Set<Index> getIndex(FileId id, String pattern);

}

// a default implementation of the indexer
adds class SEOIndexer(ServerDataBase db)
implements Indexer { .. }

// extends replication item to handle indices
adds interface IndexItem extends ReplicationItem {

Unit setIndexer(Indexer indexer);
}

modifies class ReplicationSnapshotImpl { // adds indexing support
adds Indexer indexer = null;
modifies Unit refreshSnapshot(Bool refreshSnapshot) {
this.indexer = new SEOIndexer(this.db);
original();

}
}

modifies delta File { // adds indexing support
modifies class ReplicationSnapshotImpl {

modifies Unit createReplicationItems() {
original();
if (isFileItem(schedule)) {
Pair<FileId,String> it = right(item(schedule));
IndexItem item =

new FilePattern(fst(it),snd(it),this.db);
item.setIndexer(indexer);
items = Insert(item,items);

}
}

}

452 D. Clarke et al.

modifies class FilePattern adds IndexItem {
adds Set<Index> indices = EmptySet;
adds Indexer indexer = null;
adds Unit setIndexer(Indexer i) { this.indexer = i; }
modifies Unit refresh() {

original();
this.indices = indexer.getIndex(qualified,pattern);

}
}

}
}

Listing 9. Dynamic delta IndexItemDelta for supporting the SEO component

The dynamic delta module IndexItemDelta only provides support for search
result indices used by SEO components. However, it can be composed with
another delta module that provides a different implementation of the interface
Indexer, thereby reusing dynamic delta module IndexItemDelta to support the
indexing facility of other pluggable components.

6 ABS Tool Suite

The ABS tool suite supports the modeling of highly configurable, distributed
and concurrent systems in ABS. Specifically, the ABS compiler front-end takes
a full ABS model as input, which includes the core ABS model in the Core
ABS language, a feature model descriptions in μTVL, delta modules in DML, a
product line configuration in CL, product selections in PSL. It checks the model
for syntax and semantic errors and translates it into an internal representation.
Several different back-ends can then be used to translate the internal represen-
tation into different languages, like Maude and Java, which allows ABS models
to be executed and analyzed on these platforms.

Moreover, the HATS framework comes with a plug-in for Eclipse, a graphical
debugger and a sequence diagram visualizer. The plug-in provides an Eclipse
perspective for navigating, editing, parsing and type checking ABS models. It
also provides integrations with different back-ends, allowing the generation of
both Java and Maude code from ABS models and the execution and debugging
of the generated code directly in the Eclipse perspective. Fig. 10 shows a screen
shot of the Eclipse perspective, taken when conducting the replication system
case study. The left hand pane in the figure shows the ABS module view. In
this view, ABS modules, imports/exports, classes, interfaces, functions and data
types of an open ABS Eclipse project are shown, independent of the actual ABS
(.abs) files where they are defined in. The middle pane depicts the ABS editor
view for editing ABS (.abs) files. The editor provides syntax highlighting, jump-
to-declaration, content assistance, and code completion. The right hand pane is

Modeling Spatial and Temporal Variability with the HATS 453

Fig. 10. ABS Eclipse Perspective

Fig. 11. ABS Graphical Debugger

the ABS outline view, which shows the structure of the active ABS file. It is
updated as the user edits the file.

Fig. 11 shows a screen shot of the ABS graphical debugger, taken when
conducting the replication system case study. The graphical debugger allows
stepping through ABS models, either interactively or via a seeded random se-
quence of steps. The left hand pane in the figure shows the current scheduler

454 D. Clarke et al.

and the sequence of steps that have already been executed. The right pane shows
the current state of the execution. The window includes the state of individual
concurrent object groups, a list of concurrent tasks, and an ABS model view,
relating active tasks to the currently executing statement in the ABS model.

Fig. 12 shows a screen shot of the ABS sequence diagram visualizer, taken
when conducting the replication system case study. The visualizer is used in
conjunction with the graphical debugger. When stepping through ABS models
via the debugger, the visualizer shows the asynchronous messages sent between
objects in various concurrent object groups.

Fig. 12. ABS Sequence Diagram Visualizer

In the course of the HATS project, the development of the tool suite and the
case studies go hand-in-hand. On the one hand, the tool suite encourages the
practical application of the ABS. This is evidently shown by modeling a large
piece of production code, such as the replication system, with the ABS. On
the other hand, the continuous application of the ABS to real-life case studies
steers the development of the ABS tool suite ever closer to an industrial-strength
framework.

Modeling Spatial and Temporal Variability with the HATS 455

7 Conclusion

The ABS modeling language of the HATS project, together with the HATS ABS
tool suite constitutes a new model-based approach to the development of con-
current systems that exhibit a high degree of variability.

The Core ABS language (Section 2) is a state-of-the-art, strongly typed,
abstract, concurrent, object-based modeling language that is fully executable.
Tightly coupled groups of objects with shared memory are encapsulated into
concurrent object groups (COGs) that realize data-race free computation via
cooperative multi-tasking. Objects from different COGs may only use asyn-
chronous communication and message passing. Future types make it possible to
continue computation, while waiting for the result of an asynchronous method
call. Functional expressions over parametric algebraic data types are used to
model data in an implementation-independent way.

A novelty of ABS is the possibility to define software product lines with the
help of feature models and delta modeling. Delta modeling is a flexible code reuse
technique that has been shown to be particularly suitable for the description of
product lines (see [9,20] for a thorough discussion). In contrast to architectural
languages, ABS provides a formal link between features and their implementa-
tion. A dynamic version of delta modules allows describing the evolution of ABS
models at runtime (Section 4).

As illustrated in Section 6, the ABS language is integrated into a tool suite
that includes editing, parsing, type checking, compilation (into Java and Maude),
debugging, and visualization. The ABS language has a formal, mathematical
semantics which is the basis of advanced tools, partially under development,
that address test case generation, model mining, functional verification, various
static analyses, resource analysis, etc.2 The aim of HATS is to position ABS and
its tool suite as a single source technology for architectural modeling, functional
modeling, verification, and implementation of highly configurable, concurrent
software systems [23].

The case study in Section 5 demonstrates that this is not just a vision, but a
realistic goal. We illustrated how to model a core component of a complex, in-
dustrial distributed system using the ABS language. Specifically, we have shown:

– How to use the core ABS language to model the concurrent aspects of the
replication system.

– How to refine the core model using the ABS language to express impor-
tant variabilities of the replication system to capture all possible component
variants.

– How to capture evolution (variabilities over time) with the ABS language in
order to reduce modeling cost.

The HATS tool suite, documentation, as well as several case studies, including
the one discussed here, are available from http://www.hats-project.eu.

2 A description of these is beyond the scope of this tutorial.

http://www.hats-project.eu

456 D. Clarke et al.

References

1. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R.,
Muthig, D., Paech, B., Wüst, J., Zettel, J.: Component-based product line engi-
neering with UML. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

2. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Trans. Software Eng. 30(6) (2004)

3. Beck, K.: Extreme Programming. Addison-Wesley, Reading (1999)
4. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De

Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

5. Boucher, Q., Classen, A., Faber, P., Heymans, P.: Introducing TVL, a text-based
feature modelling language. In: Proceedings of the Fourth International Workshop
on Variability Modelling of Software-intensive Systems (VaMoS 2010), Linz, Aus-
tria, January 27-29, pp. 159–162. University of Duisburg-Essen (2010),
http://www.vamos-workshop.net/2010

6. Classen, A., Boucher, Q., Heymans, P.: A text-based approach to feature mod-
elling: Syntax and semantics of TVL. Science of Computer Programming (Novem-
ber 2010), http://linkinghub.elsevier.com/retrieve/pii/S0167642310001899

7. Czarnecki, K., Eisenecker, U.: Generative programming. Addison-Wesley, Reading
(2000)

8. Evaluation of Core Framework (August 2010), deliverable 5.2 of project FP7-
231620 (HATS), http://www.hats-project.eu

9. Final Report on Feature Selection and Integration (March 2011), deliverable 2.2b
of project FP7-231620 (HATS), http://www.hats-project.eu

10. Full ABS Modeling Framework (March 2011), deliverable 1.2 of project FP7-231620
(HATS), http://www.hats-project.eu

11. Fredhopper Access Server, http://www.fredhopper.com
12. Gomaa, H.: Designing Software Product Lines with UML. Addison Wesley, Reading

(2004)
13. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented Programming. Jour-

nal of Object Technology (March/April 2008)
14. Johnsen, E.B., Kyas, M., Yu, I.C.: Dynamic classes: Modular asynchronous evo-

lution of distributed concurrent objects. In: Cavalcanti, A., Dams, D. (eds.)
FM 2009. LNCS, vol. 5850, pp. 596–611. Springer, Heidelberg (2009)

15. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and System Modeling 6(1), 35–58 (2007)

16. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,
J., Irwin, J.: Aspect-oriented programming. In: Liu, Y., Auletta, V. (eds.)
ECOOP 1997. LNCS, vol. 1241. Springer, Heidelberg (1997)

17. Medvidovic, N., Taylor, R.: A Classification and Comparison Framework for Soft-
ware Architecture Description Languages. IEEE Transactions on Software Engi-
neering (2000)

18. Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, Heidelberg (2005)

19. Schaefer, I.: Variability Modelling for Model-Driven Development of Software Prod-
uct Lines. In: Proc. of 4th Intl. Workshop on Variability Modelling of Software-
intensive Systems (VaMoS 2010) (2010)

20. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010)

http://www.vamos-workshop.net/2010
http://linkinghub.elsevier.com/retrieve/pii/S0167642310001899
http://www.hats-project.eu
http://www.hats-project.eu
http://www.hats-project.eu
http://www.fredhopper.com

Modeling Spatial and Temporal Variability with the HATS 457

21. Schaefer, I., Bettini, L., Damiani, F.: Compositional Type-Checking for Delta-
oriented Programming. In: Intl. Conference on Aspect-oriented Software Develop-
ment (AOSD 2011) (2011, to appear)

22. Schaefer, I., Damiani, F.: Pure Delta-oriented Programming. In: FOSD 2010 (2010)
23. Schaefer, I., Hähnle, R.: Formal methods in software product line engineering.

IEEE Computer 44(2), 82–85 (2011)
24. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing active objects to concurrent

components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299.
Springer, Heidelberg (2010)

25. Ziadi, T., Hélouët, L., Jézéquel, J.M.: Towards a UML Profile for Software Product
Lines. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 129–139.
Springer, Heidelberg (2004)

Kernel-Based Machines for Abstract and Easy Modeling
of Automatic Learning

Alessandro Moschitti

Computer Science and Engineering Department,
University of Trento,

Via Sommarive 18, Povo (TN), Italy
moschitti@disi.unitn.it

http://disi.unitn.it/moschitti

Abstract. The modeling of system semantics (in several ICT domains) by means
of pattern analysis or relational learning is a product of latest results in statistical
learning theory. For example, the modeling of natural language semantics ex-
pressed by text, images, speech in information search (e.g. Google, Yahoo,..) or
DNA sequence labeling in Bioinformatics represent distinguished cases of suc-
cessful use of statistical machine learning. The reason of this success is due to
the ability to overcome the concrete limitations of logic/rule-based approaches to
semantic modeling: although, from a knowledge engineer perspective, rules are
natural methods to encode system semantics, noise, ambiguity and errors affect-
ing dynamic systems, prevent such approached from being effective, e.g. they are
not flexible enough.

In contrast, statistical relational learning, applied to representations of system
states, i.e. training examples, can produce semantic models of system behavior
based on a large number attributes. As the values of the latter are automatically
learned, they reflect the flexibility of statistical settings and the overall model
is robust to unexpected system condition changes. Unfortunately, while attribute
weight and their relations with other attributes can be automatically learned from
examples, their design for representing the target object (e.g. a system state) has
to be manually carry out. This requires expertise, intuition and deep knowledge
about the expected system behavior. A typical difficult task is for example the
conversion of structures into attribute-value representations.

Kernel Methods are powerful techniques designed within the statistical learn-
ing theory. They can be used in learning algorithms in place of attributes, thus
simplifying object representation. More specifically, kernel functions can define
structural and semantic similarities between objects (e.g. states) at abstract level,
replacing the similarity defined in terms of attribute overlap.

In this chapter, we provide the basic notions of machine learning along with
latest theoretical results obtained in recent years. First, we show traditional and
simple machine learning algorithms based on attribute-value representations and
probability notions such as the Naive Bayes and the Decision Tree classifiers.
Second, we introduce the PAC learning theory and the Perceptron algorithm to
provide the readers with essential concepts of modern machine learning. Finally,
we use the above background to illustrate a simplified theory of Support Vector
Machines, which, along with the kernel methods, are the ultimate product of the
statistical learning theory.

M. Bernardo and V. Issarny (Eds.): SFM 2011, LNCS 6659, pp. 458–503, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://disi.unitn.it/moschitti

Automatic Learning Using Kernels Methods 459

1 What Is Machine Learning?

In high school, in the mathematic or statistic classes, we have been taught techniques
that, given a set of points, e.g. xi and the values associated with them, i.e. yi, attempt
to derive the functions that best interpolates their relationships φ(xi, y). For example,
linear or polynomial regression as shown in Figure 1. These techniques, e.g. least square
fit, are the first examples of machine learning algorithms. When the output values, yi, of
the target function are finite and discrete, the regression problem is called classification,
which is very interesting for the application on real scenarios, e.g. categorization of text
documents in different topics.

Before introducing more advanced machine learning techniques, it is helpful to show
an example of their usefulness in ICT. Let us suppose that a programmer is asked to
write the following program: given some employee characteristics and a pre-defined
employee level hierarchy, automatically assign to each new employee the adequate en-
try level. Moreover, suppose that (i) the rules to determine such entry level depends on
many variables, e.g. achieved diplomas, previous working experiences, age and so on;
and (ii) there is no formal document that explains how to produce such rule set. This
is not an unrealistic situation as the target company may use such level information to
only propose tasks to employees; thus the level may be heuristically assigned by the
human resource department by using an informal algorithm.

The unlucky programmer would be soon in troubles as it is rather difficult to ex-
tract algorithmic information from people not used to think in terms of procedures and
instructions. What might be the solution?

We note that, there is a lot of data about the link between variables (i.e. the employ-
ees) and the output of the target function (i.e. the entry level). The company keeps the
data of employees along with their entry levels, thus the programmer may examine the
data and try to hand-craft the rules from it. However, if the number of employees and
the number of their characteristics are large, this would result in a very time consuming
and boring task.

x

y

Fig. 1. Polynomial interpolation of as set of points 〈xi, yi〉

460 A. Moschitti

Machines have traditionally been built to perform such kind of job, thus, the solu-
tion should rely on writing an algorithm which automatically derives from examples
the employee classification rules. This kind of algorithms are a special class of machine
learning methods called example-driven or inductive learning models. They are stan-
dard in the sense that they can be applied to all problems in which there are some data
examples and we need a classification function as output.

Given such tools, the lucky programmer can only re-write the examples from the
employee database in an input format suitable for the target machine learning algorithm
and run it to derive the classification function. The latter function unlikely will provide
a correct entry level in all cases but if the commissioning company (as in this case)
accepts an certain error rate in this procedure, the application of an automatic approach
will be a feasible alternative to the hand-coding. Indeed, another output of the learning
process is usually the expected error rate. This value can be estimated by measuring the
number of classification mistakes that the classification function commits on a set of
employee data (test set) not used for training.

We have introduced what learning models may offer to the solution of real problems.
In the next section, we illustrate two simple ML approaches based on Decision Trees
and naive probabilistic models. These will clarify the importance of kernel methods for
more quickly and easily define the appropriate learning system.

1.1 Decision Trees

The introduction has shown that ML models derive a classification function from a set
of training examples (e.g. the employee data) already categorized in the target class
(e.g. the entry level). The input for the ML program is the set of examples encoded
in a meaningful way with respect to the classification task, i.e. the level assignment.
The variables describing the individual examples are usually called features and they
capture important aspects of the classification objects, e.g. the employees. For instance,
the study title is a relevant feature for the entry level whereas the preferred employee
food is not relevant thus it should not be included in the example description.

The idea of decision tree classifier (DT) algorithm is inspired by a simple principle:
the feature that correctly separates the highest number of training examples should be
used before the others. To simplify such idea, suppose that we have only two levels (0
and 1) and also the features are binary (e.g. the employee has or not a master degrees).
Intuitively, the decision tree algorithm finds the feature which splits the training set S
in two subsets S0 and S1 such that the proportion of employees of level 0 is higher in
S0 than in S whereas the proportion of employees of level 1 is higher in S1 than in S.
This means that guessing the employee level in the two new sets is easier than in S. As
we cannot hope to correctly separate all data with only one feature the algorithm will
iteratively find other features that best separates S0 and S1.

Figure 2 illustrates the decision tree which a DT algorithm may generate. First, the
PhD attribute is tested. In case the employee owns it the level is surely 1. Second,
features such as Previous Experiences and Intelligent Quotient are tested. Finally, the
tests on the leaves should output the final classification in case it had not been output
on the internal nodes.

Automatic Learning Using Kernels Methods 461

Does He/She own PhD?

Previous experiences?

no yes

no

High IQ?

no

Output: L0 Output: L1

yes

Output: Level 1

...

Fig. 2. Decision tree generated for the classification task of two employee levels

In order to find the most discriminative feature, DTs use the entropy quantity. In the
general case, we have a set of classes {C1, .., Cm} distributed in the training set S with
the probabilities P (Ci), then the entropy H of P is the following:

H(P) =
m∑

i=1

−P (Ci)log2(P (Ci)) (1)

Suppose to select a feature f which assumes {a1, .., an} values in S. If we split the
training examples according to f , we obtain n different subsets, i.e. {S1, .., Sn}, whose
average entropy is:

H̄(PS1 , .., PSn) =
m∑

i=1

H(PSi)
|Si| (2)

where, PSi is the probability distribution of Ci on the Si set and H(PSi) is the related
entropy.

The DT algorithm evaluates Eq. 2 for each feature and selects the one which is
associated with the highest value. Such approach uses the probability theory to select
the most informative features and generate the tree of decisions. In the next section,
we show another machine learning approach in which the probability theory is more
explicitly applied for the design of the decision function.

1.2 Naive Bayes

We have pointed out that machine learning approaches are useful when the informa-
tion about the target classification function (e.g. the commissioned program) is not ex-
plicitly available and is not completely accurate. Such aspects determine a degree of
uncertainty, which results in an error rate.

462 A. Moschitti

Given the random nature of the expected outcome, the probability theory is well
suited for the design of a classification function that aims to achieve the highest proba-
bility in producing correct results. Indeed, we can model the output of our target func-
tion as the probability to categorize an instance in a target class, given some parameters
estimated from the training data.

More formally, let us indicate with E the classification example and let {C1, .., Cm}
be the set of categories in which we want to classify such example. We are interested
to evaluate the probability that E belongs to Ci, i.e. P (Ci|E). In other words, we know
the classifying example and we need to know its category. Our example E can be repre-
sented as a set of features {f1, .., fn} but we do not know how to relate P (Ci|f1, .., fn)
to the training examples. Thus, we can use the Bayes’ rule to derive a more useful
probability form:

P (Ci|f1, .., fn) =
P (f1, .., fn|Ci) × P (Ci)

P (f1, .., fn)
, (3)

where
m∑

i=1

P (Ci|f1, .., fn) =
m∑

i=1

P (f1, .., fn|Ci) × P (Ci)
P (f1, .., fn)

= 1

for definition of probability.
We will choose for the example E the category Ci associated with the maximum

P (Ci|E). To evaluate such probabilities, we need to select a category i and count the
number of examples that contain the whole set of features, {f1, .., fn}. Considering
that in real scenarios, a training set may contain no more than 10,000 examples, we will
unlikely be able to derive reliable statistics as n binary features determine 2n different
examples1. Thus, to make the Bayesian approach practical, we naively assume that
features are independent. Given such assumption, Eq. 3 can be rewritten as:

P (Ci|f1, .., fn) =
n∏

k=1

P (fk|Ci) × P (Ci)
P (f1, .., fn)

(4)

As P (f1, .., fn) is the same for each i, we do not need it to determine the category
associated with the maximal probability. The P (Ci) can be computed by simply count-
ing the number of training examples labeled as Ci, i.e. |Ci| and divide it by the total
number of examples in all categories:

P (Ci) =
|Ci|∑m

j=1 |Cj |
To estimate P (fk|Ci), we derive nik, i.e. the number of examples categorized as Ci

that contain the feature fk and we divide it by the Ci cardinality, i.e.

P (fk|Ci) =
nik

|Ci|

1 If we assume uniform distribution, to have a chance that a target example of only 20 features
is included in the training set, the latter has to have a size larger than 1 billion of examples.

Automatic Learning Using Kernels Methods 463

Table 1. Probability distribution of sneeze, cough and fever features inside the Allergy, Cold
and Healthy categories

Prob. Allergy Cold Healthy

P (Ci) 0.05 0.05 0.9
P (sneeze|Ci) 0.9 0.9 0.1
P (cough|Ci) 0.7 0.8 0.1
P (fever|Ci) 0.4 0.7 0.01

As an example of naive Bayesian classification suppose that we divide the healthy
conditions of target patients in thee different categories: Allergy, Cold and Healthy.
The features that we use to categorize such states are f1 = sneeze, f2 = cough and
f3 = fever. Suppose also that we can derive the probability distribution of Table 1
from a medical database, in which f1, f2 and f3 are annotated for each patient.

If we extract from our target patient the following feature representation E =
{sneeze, cough, ∼fever}, where ∼ stands for not fever, we can evaluate his/her
probabilities to be in each category i:

- P (Allergy |E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P (E)
- P (Cold |E) = (0.05)(0.9)(0.8)(0.3)/P (E) = 0.01/P (E)
- P (Healthy |E) = (0.9)(0.1)(0.1)(0.99)/P (E) = 0.0089/P (E)

According to the above table, the patient should be affected by allergy.
It is worth to note that such probabilities depend on the product of the probabilities

of each feature. It may occur, especially when the training corpus is too small, that some
of them never appear in the training examples of some categories. As a consequence,
the estimation of the probability of a feature f in the category Ci, P (f |Ci), will be 0.
This causes the product of Eq. 4 of a category i to be 0, although the contributions of the
other features in the product may be high. In general, assigning a probability equal 0 to
a feature is a rough approximation as the real probability is just too small to be observed
in the training data, i.e. we do not have enough data to find an occurrence of f .

To solve the above problem, smoothing techniques are applied. The idea is to give
to the features which do not appear in the training data a small probability, α. To keep
constant the overall feature probability mass, to the other features will be subtracted a
small portion, β, of their probability such that the overall summation is still 1.

The simplest of such techniques is called Laplace smoothing. The new feature prob-
ability is the following:

P (fk|Ci) =
nik + a × pk

|Ci| + a

where pk is a probability distribution and a is the size of a hypothetical set of examples,
where we assume to have observed pk. When we do not know any information about
the not observed features, it is logical to assume a uniform distribution, i.e. pk = 1/a
therefore a = n and

P (fk|Ci) =
nik + 1
|Ci| + n

.

464 A. Moschitti

The smoothing techniques improve the Naive Bayes model by providing a better
estimation of the probability of the features not observed in the data. However, the
independence assumption seems a serious limitation to the accuracy reachable by such
approach. The next section illustrates more recent machine learning techniques, which
do not need to make such assumptions. These are called Support Vector Machines and
also offer the possibility to model object with abstract feature representations.

Exercise 1. Classify using a Naive Bayes learning algorithm and the probabilities in
Table 1 all 8 possible examples, e.g. {sneeze, cough, ∼fever}, {sneeze, ∼cough,
fever},...

Exercise 2. Modify the probabilities in Table 1 to classify e.g. {sneeze, cough,
∼fever} in class Cold with a Naive Bayes classifier.

Exercise 3. Define a new learning application using the Naive Bayes algorithm.

2 Probably Approximately Correct (PAC) Learning

So far, we have seen two different ML approaches, i.e. DT and Naive Bayes. They can
be both applied to training examples to learn classification functions and estimate their
accuracy on a test set of new examples. Intuitively, we may think that as the number
of training examples increases the accuracy increases as well. Unfortunately, this is
not generally true. For example, if we want to learn the difference between Allergy
and Cold categories using only the sneeze and cough features, we will never reach
high accuracy, no matter how many training examples we have available. This happens
because such features do not deterministically separate the two classes.

Given such problems, we need some analytical results that helps us to determine
(1) if our learning function is adequate for the target learning problem and (2) the
probability of error according to the number of available training examples. The class
of functions for which we have such analytical data is called the probably approximately
correct (PAC) class.

The statistical learning theory provides mathematical tool to determine if a class of
functions is PAC learnable. At the base of such result there is a new statistical quantity
designed by two scientists, Vapnik and Chervonenkis, called VC-dimension. This gives
a measure of the learning complexity and can be used to estimate the classification error.

In the next sections, we formally define the PAC function class, provide a practi-
cal example to derive the error probability of PAC functions and introduce the VC-
dimension, which automatizes the estimation of such error.

2.1 Formal PAC Definition

The aim of ML is to learn some functions from a set (Tr) of training examples. These
latter can be seen as data points that are associated with some discrete values C =
{C1, .., Cn}, in case of classification problems or real number R, in case of regression
problem. We focus only on classification problems, i.e. on finding a function f : X → C
using Tr ∈ X . In general, the training examples are randomly drawn thus we need to
deal with a probability distribution D on X .

Automatic Learning Using Kernels Methods 465

The function f can be learned by using an algorithm, which can generate only a
small subset of all possible functions. Such algorithm derives a function h ∈ H from
the examples, where H is the class of all possible hypotheses (functions) derivable with
it. This suggests that h will hardly be equal to f , consequently, it is very useful to define
a measure of its error.

A reasonable measure is the percentage of points for which f and h differ, i.e. the
probability that given an example x, P [f(x) �= h(x)]. Note that D is particularly im-
portant. As a trivial example, if the probability D(x0) of an element x0 ∈ X is 1 and
f(x0) = h(x0), the error rate will be 0, independently of the number of x ∈ Tr for
which f(x) �= h(x).

The above case is very rare and does not occur in practical situations. On the con-
trary, there is a large class of functions whose error decreases as the number of training
examples increases. These constitute the PAC learnable functions. Their formal defini-
tion is the following:

– Let the function f : X → C belongs to the class F , i.e. f ∈ F , where X is the
domain and C is the codomain of f .

– Suppose that the training and the test documents x ∈ X are generated with a
probability D.

– Let h ∈ H be the function that we learned from the examples provided that we can
learn only functions in H , i.e. in the hypothesis space.

– The error of h, error(h), is defined as P [f(x) �= h(x)], i.e. the percentage of
miss-classified examples.

– Let m be the size of the training set, then F is a class of PAC learnable functions if
there is a learning algorithm such that:

• ∀f ∈ F , ∀D ∈ X and ∀ε > 0, δ < 1
• ∃m such that P [error(h) > ε] < δ, i.e. the probability that the h’s error is

greater than ε is lower than δ.

In other words, a class of functions F is PAC learnable if we can find a learning al-
gorithm which, given an enough number of training examples, produces a function h
such that its error is greater than ε with a probability less than δ. Thus by choosing low
values for ε and δ, we can have a low error (i.e. < ε) with high probability (i.e. 1 − δ).

Next section clarifies the above idea with a practical example.

2.2 An Example of PAC Learnable Functions

Suppose that we need to learn the concept of medium-built people. Given such problem
two very important features are the height and the weight of a person. One of these
features alone would not be able to characterize the concept of medium-built body. For
example, a person which has a height of 1,75 meters may be seen as medium person
but if her/his weight is 130 kg we would immediately change our idea.

As the above two features assume real number values, we can represent people on
a cartesian chart, where the X-axis and Y-axis correspond to height and the weight,
respectively. Figure 3 illustrates such idea.

466 A. Moschitti

Weight

Height

Weight-Max

Weight-Min

Height-Min Height-Max

c

h

Fig. 3. The medium-built person concept on a cartesian chart

This representation implies that the medium-built person concept c is represented
by a rectangle, which defines the maximum and minimum weight and height. Suppose
that we have available some training examples, i.e. the measures of a set of people,
which may or may not have a medium-build body, we can represent them in the chart.
The white points, which are outside the rectangle c, are not medium-built people all the
others (black points) are instead in such class.

As we assumed that our hypothesis c has a rectangular shape whose edges are parallel
to the axes, our ML algorithm should only learn h from the rectangle set, namely the
set of hypotheses H . Additionally, since the error is defined as P [f(x) �= h(x)], we can
evaluate it by dividing the area between the rectangles c and h by the area of c2.

In order to design an effective algorithm, we need to exploit the training data. In this
respect, a simple way is to avoid errors in the training set; hence our learning algorithm
is the following:

Select the smallest rectangle having its edges parallel to the axes that includes all train-
ing examples corresponding to medium-built people.

Since it includes all positive points, it would not make mistakes on them on the train-
ing set. Selecting also the smallest rectangle also prevents to commit error on the more
external negative points.

We would like to verify that this is a PAC algorithm. To do this, we fix an error ε, a
target probability δ and evaluate the P [error(h) > ε], i.e. the probability of generating
a bad hypothesis, h. (to be a PAC algorithm, such probability must be lower then δ).
Since P [error(h) > ε], h correctly classifies one training example with a probability
< 1 − ε. This implies that, in the cartesian representation of Figure 4.A, the rectangle
associated with a bad h is included in the smallest rectangle of good hypotheses (i.e.
the hypotheses of area equal to 1− ε). Additionally, our algorithm produces a rectangle
(a hypothesis) that includes all m training points.

Now, let us consider the four strips between c and h: a bad hypothesis cannot con-
temporary touch all four strips as shown by the frames B and C. It follows that, a

2 It can be proven that this is true for any distribution D.

Automatic Learning Using Kernels Methods 467

1- ε 1- ε 1- ε

A B C

h

c

h

c

h

c

Fig. 4. Probabilities of bad and good hypotheses

necessary condition for the existence of a bad hypothesis is to have all the m points at
least outside of one of the 4 strips. Necessary means that it must happen each time we
learn a bad hypothesis and, consequently, the probability of drawing m points out of at
least one strip is higher than a hypothesis to be bad. In other words, the latter is upper
bounded by the former probability. More in detail, the evaluation of the probability of
the latter follows these steps:

1. the probability that a point x is out of one strip, P (x out of 1 strip) = (1 − ε/4);
2. the probability that m points are out of one strip, P (x out of 1 strip)m = (1−ε/4)m;
3. the probability that m points are out of 4 strips < 4P (x out of 1 strip)m = 4(1 −

ε/4)m;

Therefore, we can use the inequality, P [error(h) > ε] < 4(1 − ε/4)m < δ, to impose
our δ requirement. From ⇒ 4(1 − ε/4)m < δ, we can derive an upperbound3 to m
(satisfying our constraint):

m >
ln(δ/4)

ln(1 − ε/4)

From Taylor’s series, we know that

−ln(1 − y) = y + y2/2 + y3/3 + .. ⇒ (1 − y) < e(−y)

We can apply the above inequality to ln(1 − ε/4) to obtain

m >
ln(δ/4)

ln(1 − ε/4)
⇒ m >

4ln(4/δ)
ε

. (5)

Eq. 5 proves that the medium-built people concept is PAC learnable as we can reduce
the error probability as much as we want, provided that we have an enough number of
training examples.

It is interesting to note that a general upperbound for PAC functions can be evaluated
by considering the following points:

1. the probability that a bad hypothesis is consistent with m training examples (i.e.
classifies them correctly) is (1 − ε)m;

3 Consider that we divide by ln(1− ε/4), which is always negative, thus we need to change the
direction of the inequality.

468 A. Moschitti

2. the number of bad hypotheses is less than the total number of hypotheses N ⇒
3. P (h bad and consistent with m examples) = N(1− ε)m < Ne−εm

= Ne−mε < δ.
It follows that

m >
1
ε
(ln

1
δ

+ lnN). (6)

We can use Eq. 6 when N can be estimated. For example, if we want to learn a Boolean
function of n variable, their number is 22n

> N ⇒ a rough upperboud of the needed
m is 1

ε (ln 1
δ + 2nln2).

In most cases the above bound is not useful and we need to derive one specific to
our target problem as we did for the medium-built concept. However, when the feature
space is larger than 2 the manual procedure may become much more complex. In the
next section, we will see a characterization of PAC functions via VC dimension, which
makes more systematic derivation of PAC properties.

2.3 The VC-Dimension

The previous section has shown that some function classes can be learned with any
accuracy and this depends on the properties of the adopted learning algorithm. For
example, the fact that we use rectangles as our hypothesis space (the one from which
our algorithm selects h) instead of circles or lines impacts on the learning capacity of
our algorithm.

Indeed, it is easy to show that using lines, we would have never been able to separate
medium-built people from the others whereas the rectangle class is rather effective to
do this. Thus, we need a property that allows us to determine which hypothesis class
is more appropriate to learn a target function f ∈ F . Moreover, we note that, in most
of the cases, we do not know the nature of the target f . We know only the training
examples, consequently, our property should be derived only from them and by the
function class H that we have available.

The Vapnik and Chervonenkis (VC) dimension aims to characterize functions from
a learning perspective. The intuitive idea is that different function classes have differ-
ent capacity in separating data points: some of them can just separate some configura-
tions of points whereas others can separate a much larger number of configurations, i.e.
they are in some sense more general purpose. The VC dimension captures this kind of
property.

Intuitively, VC dimension, i.e. the learning capacity, determines the generalization
reachable during learning:

– A function selected from a high class capacity is expected to easily separate the
training points since it has the capacity to adapt to any training set. This will result
on a learned function too specific to the used training data (i.e. it will overfit data).
An immediate consequence is that the probability to correctly separate the test set
will be lower.

– In contrast, a function that belongs to a low capacity class can separate a lower
number of data configurations thus if it successful separates the current training
points, the probability to well separate the test data will be higher.

The definition of VC dimension depends on the concept of shattering a set of points.

Automatic Learning Using Kernels Methods 469

l

l

A B

Fig. 5. VC dimension of lines in a bidimensional space

Definition 1. Shattered Sets
Let us consider binary classification functions f ∈ F , f : X → {0, 1}. We say that
S ⊆ X is shattered by a function class F if ∀S′ ⊆ S, ∃f ∈ F :

f(x) =

{
0 iff x ∈ S′

1 iff x ∈ S − S′ (7)

The definition says that a set of points S is shattered by a function class F if for any
assignment of the points in S into {0, 1}, we can find f ∈ F that reproduces such
assignments.

A graphical interpretation is given in Figure 5. In the frame A, we have 3 points
represented in a two-dimensional space. The target function class L is the one of linear
functions. For any assignment of points (white is 0 and black is 1), we can find a line
l ∈ L that separates them. From l we can derive the shattering function f by assigning
f(x1, x2)=0 iff x2 < l(x1) and 1 otherwise, i.e., if the point is under the line, we assign
0 to it and 1 otherwise. Consequently, a set of three points can be shattered by linear
functions.

On the contrary, the 4 points in the frame B cannot be shattered. More precisely,
there are not 4 points that can be shattered by linear functions since we can always
draw a tetragon having such points as vertices and assign the same color to the opposite
vertices. If the line assigned the same color to the opposite vertices there would always
be a vertex on the same side of such two points with a different color.

Definition 2. VC dimension
The VC dimension of a function class F is the maximum number of points that can be
shattered by F .

Since Figure 5.A shows a set of tree points shattered by a linear function, such class
has at least a VC dimension of 3 in the bidimensional space. We have also proved that
4 points cannot be shattered, consequently, the VC dimension of linear functions on the
plane is exactly 3. Note that, selecting points that are linearly dependent, i.e., they lie
on the same lines, will not work as we cannot hope to shatter them if we assign the
same label to those external an a different color to the internal one. In particular it can
be proven (see [16]) the following:

Theorem 1. Consider a set of m points in Rn and choose any one of the points as
origin, then they can be shattered by oriented hyperplanes if and only if the position
vectors of the remaining points are linearly independent.

470 A. Moschitti

A B C

D E F

Fig. 6. VC dimension of (axis aligned) rectangles

As a consequence we have the following

Corollary 1. The VC dimension of the class of functions composed by the set of ori-
ented hyperplanes in Rn is n+1.

Proof. We can always choose one of the points as origin of vectors and the remaining
n points as their end such that the vectors are linearly independent. However, we can
never choose n + 1 of such points (since no set of n + 1 vectors in Rn can be linearly
independent).

This Corollary is useful to determine the VC dimension of linear functions in an n di-
mensional space. Linear functions are the building block of Support Vector Machines,
nevertheless, there are other examples of classifiers which have different VC dimen-
sion such as the rectangle class. The following example is useful to understand how to
evaluate the VC dimension of geometric classifiers.

Example 1. The VC dimension of rectangles with edges parallel to the axes
To evaluate the VC dimension of rectangles, we (i) make a guess about its value, for
instance 4, (ii) show that 4 points can be shattered by rectangles and (iii) prove that no
set of 5 points can be shattered.

Let us choose 4 points that are not aligned like in Figure 6.A. Then, we give all
possible assignments to the 4 points. For example, Figure 6.B shows two pairs of ad-
jacent points, which have the same color. In Section 2.2, we established that points
inside the rectangle belong to medium-built people, i.e., they are positive examples of
such class. Without loss of generality, we can keep such assumption and use the black
color to indicate that the examples are positive (or that they are assigned to 1). The only
relevant aspect is that we need to be consistent with such choice for all assignments,
i.e., we cannot change our classification algorithm while we are testing it on the point
configurations.

From the above convention, it follows that given the assignments B, C, D, E and F
in Figure 6, we need to find the rectangles that contain only black points and leave the

Automatic Learning Using Kernels Methods 471

white points outside. The rectangles C, D, E, F separate half positive and half negative
examples. It is worth noting that if we have 3 positive (or 3 negative) examples, find-
ing the shattering rectangles is straight forward (see Frame E), consequently, we have
proven that the VC dimension is at least 4.

To prove that is not greater than 4, let us consider a general 5 point set. We can create
4 different rankings of the points by sorting in ascending and descending order by their
x-coordinate and by their y-coordinate. Then, we color the top point of each of the 4
lists in black and the 5th point in white. The latter will be included (by construction) in
the rectangle of the selected 4 vertices. Since any rectangular hypothesis h that contains
the four points must contain the previous rectangle, we cannot hope to exclude the 5th
point from h. Consequently, no set of 5 points can be shattered by the rectangle class.

Finally, we report two theorems on the sample complexity, which, given a certain
wished error, derive upper and lower bounds of the required number of training ex-
amples. We also report one theorem on the error probability of a hypothesis given the
VC dimension of its class. These theorems make clear the link between VC dimension
and PAC learning.

Theorem 2. (upper bound on sample complexity, [15])
Let H and F be two function classes such that F ⊆ H and let A an algorithm that

derives a function h ∈ H consistent with m training examples. Then, ∃c0 such that
∀f ∈ F , ∀D distribution, ∀ε > 0 and δ < 1 if

m >
c0

ε

(
d × ln

1
ε

+
1
δ

)
then with a probability 1 − δ,

errorD(h) ≤ ε,

where d is the VC dimension of H and errorD(h) is the error of h according to the
data distribution D.

Theorem 3. (lower bound on sample complexity, [15])
To learn a concept class F whose VC-dimension is d, any PAC algorithm requires
m = O(1

ε (1
δ + d)) examples.

Theorem 4. (Vapnik and Chervonenkis, [64])
Let H be a hypothesis space having VC dimension d. For any probability distribution
D on X × {−1, 1}, with probability 1 − δ over m random examples S, any hypothesis
h ∈ H that is consistent with S has error no more than

error(h) ≤ ε(m, H, δ) =
2
m

(
d × ln

2e × m

d
+ ln

2
δ

)
,

provided that d ≤ m and m ≥ 2/ε.

Exercise 4. Compare the upper bounds on sample complexity of rectangles derived in
Section 2.2 with the one derivable from Theorem 2.

Exercise 5. Evaluate the VC dimensions of triangles aligned and not aligned to the
axes.

Exercise 6. Evaluate the VC dimension of circles.

472 A. Moschitti

3 Support Vector Machines

The previous section has shown that classification instances can be represented with
numerical features. These can also be associated with the coordinates of points in an
n-dimensional space, where a classification function can be modeled with geometrical
objects, e.g., lines or hyperplanes. The latter constitute the basic building block of the
statistical learning theory, which has produced Support Vector Machines (SVMs).

In this section, we first introduce the Perceptron algorithm, which can be considered
the simplest SVM and then we define the theory and algorithms of more advanced
SVMs. One of their important properties is the possibility to use kernel functions to
deal with non linear classification problems. Thus, a conclusive section will introduce
the kernel theory and its application to advanced learning tasks, e.g., the classification
of syntactic-parse trees.

3.1 Perceptrons

Once objects are projected into a vector space, they can be simply classified by linear
functions, e.g., Figure 5.A shows a line that separates black from white points. One ad-
vantage of such mathematical objects is their simplicity that allows us to design efficient
learning algorithms, i.e., efficient approaches to find separating lines or hyperplanes in
high dimensional spaces.

The reader may wonder if such simplicity limits the capability of the learning algo-
rithms or if we can use them to learn any possible learnable function. It is clear that
with only one hyperplane, we cannot learn any function. For example, Figure 5 shows
four points that cannot be separated in the Frame B. However, this is not a definitive
limitation of linear functions as:

1. By modeling our learning problem more effectively, i.e., by choosing more appro-
priate features, the target problem could become linearly separable. For example,
the four points of the previous figure can be divided in a three-dimensional space.
This means that we need just to add a significant feature to solve the problem.

2. We can use linear functions in cascade. The resulting function is more expres-
sive and, depending on the number of levels in such cascade, we can design any
function.

The thesis that linear functions are sufficient to derive any learnable relation from ex-
amples is supported by the observation that human beings’ brain is structured with such
sort of devices.

To clarify this point, let us consider an animal neuron shown in Figure 7. It is con-
stituted by one set of inputs, i.e., the dendrites, which are connected to a cellular body,
i.e., soma, via synapses. These are able to amplify or attenuate an incoming signal. The
neuron output is transported by the axon, whose filaments are connected to the dendrites
of other neurons. When a chemical signal is transmitted to the dendrites, it is amplified
by the synapses before entering in the soma. If the overall signal, coming from differ-
ent synapses, overcomes a certain threshold, the soma will launch a signal to the other
neurons through the axon.

Automatic Learning Using Kernels Methods 473

Fig. 7. An animal neuron

Fig. 8. An artificial neuron

The artificial version of the neuron is often referred to as Perceptron and can be
sketched as in Figure 8. Each dendrite is an input xi associated with a weight wi. The
product between the weights and the input signals are summed together and if such
summation overcomes the threshold b the output y will be 1, otherwise it will be 0.
The interesting aspect is that the output of such neuron can be modeled with a simple
hyperplane whose equation is:

y = w1x1 + .. + wnxn + b = w · x + b = 0 (8)

where the final perceptron classification function output is obtained by applying the
signum function to y, i.e.,

f(x) = sgn(w · x + b) (9)

Eq. 9 shows that linear functions are equivalent to neurons, which, combined to-
gether, constitute the most complex learning device that we know, i.e., the human brain.
The signum function simply divides the data points in two sets: those that are over and
those that are below the hyperplane. The major advantage of using linear functions is
that given a set of training points, {x1, .., xm}, each one associated with a classification
label yi (i.e., +1 or −1), we can apply a learning algorithm that derives the vector w
and the scalar b of a separating hyperplane, provided that at least one exists.

474 A. Moschitti

w
r

|||| w

b
r

'iγ

ixw
rr ⋅

w
r

|||| w

b
r

A B

ix
r

Fig. 9. Separating hyperplane and geometric margin

For example, Figure 9.A shows a set of training points (black positives and white
negatives) along with a separating hyperplane in a 2-dimensional space. The vector w
and the scalar −b/||w|| are the gradient vector and the distance of such hyperplane from
the origin, respectively. Indeed, from Eq. 8, −b = w · x thus −b/||w|| = w/||w|| · x,
where x is any point lying on the hyperplane and w/||w|| · x is the projection of x on
the gradient (i.e., the normal to the hyperplane).

The perceptron learning algorithm exploits the above properties along with the con-
cept of functional and geometric margin.

Definition 3. The functional margin γi of an example xi with respect to a hyperplane
w · x + b = 0 is the product yi(w · xi + b).

Definition 4. The geometric margin γ′
i of an example xi with respect to a hyperplane

w · x + b = 0 is yi(w
||w|| · xi + b

||w||).

It is immediate to see in Figure 9.B that the geometric margin γ′
i is the distance of the

point xi from the hyperplane as:

– w
||w|| · xi is the projection of xi on the line crossing the origin and parallel to w;

– the distance of the hyperplane from the origin is subtracted to the above quantity,
i.e., b

||w|| . It follows that we obtain the distance of x from the hyperplane.
– When the example x is negative, it is located under the hyperplane thus the product

w ·xi is negative. If we multiply such quantity by the label yi (i.e., -1), we make it
positive, i.e., we obtain a distance.

Given the above geometric concepts, the algorithm of perceptron learning in Table 2,
results very clear. At step k = 0, w and b are set to 0, i.e., w0 = 0 and b0 = 0, whereas
R is set to the maximum length of the training set vectors, i.e., the maximum among
the distances of the training points from the origin. Then, for each xi, the functional
margin yi(wk · xi + bk) is evaluated. If it is negative it means that xi is not correctly
classified by the hyperplane, i.e., yi disagrees with the point position with respect to
the hyperplane. In this case, we need to adjust the hyperplane to correctly classify the
example. This can be done by rotating the current hyperplane (i.e., by summing ηyixi

Automatic Learning Using Kernels Methods 475

Table 2. Rosenblatt’s perceptron algorithm

function Perceptron(training-point set: {x1, .., xm})
begin

w0 = 0; b0 = 0; k = 0;
R = max1≤i≤m ||xi||
repeat

no errors = 1;
for (i = 1 to m)

if yi(wk · xi + bk) ≤ 0 then
wk+1 = wk + ηyixi;
bk+1 = bk + ηyiR

2;
k = k + 1;no errors = 0;

end(if)
until no errors;
return k, wk and bk ;

end

to wk) as shown in the charts A and B of Figure 10 and by translating the hyperplane
of a quantity ηyiR

2 as shown in the chart C.
The perceptron algorithm always converges when the data points are linearly sepa-

rable as stated by the following.

Theorem 5. (Novikoff) Let S be a non-trivial training and let γ > 0 and R =
max1≤i≤m ||xi||. Suppose that there exists a vector wopt such that ||wopt|| = 1 and
yi(wopt · xi + bopt) ≥ γ ∀i = 1, .., m. Then the number of mistakes made by the

perceptron algorithm on S is at most
(

2R
γ

)2
.

This theorem proves that the algorithm converges in a finite number of iterations
bounded by

(
2R
γ

)2
provided that a separating hyperplane exists. In particular:

– the condition ||wopt|| = 1 states that normalized vectors are considered, i.e. wopt =
wopt

||wopt|| , thus the functional margin is equal to the geometric margin.

– yi(wopt ·xi+bopt) ≥ γ is equivalent to state that for such hyperplane the geometric
margin of the data points are ≥ γ > 0, i.e. any point is correctly classified by the
hyperplane, wopt · x + bopt = 0.

If the training data is not separable then the algorithm will oscillate indefinitely correct-
ing at each step some misclassified example.

An interesting property showed by the Novikoff theorem is that the gradient w is
obtained by adding vectors proportional to the examples xi to 0. This means that w
can be written as a linear combination of training points, i.e.,

w =
m∑

i=1

αiyixi (10)

476 A. Moschitti

w
r

|||| w

b
r

A

ix
r w

r

B

ix
r

ii xy
rη

w
r

ii xyw
rr η+

w
r

C

ix
r

iik xyw
rr η+

||||

2

iik

ik

xyw

Ryb
rr η

η
+

+

Fig. 10. Perceptron algorithm process

Since the sign of the contribution xi is given by yi, αi is positive and is proportional
(through the η factor) to the number of times that xi is incorrectly classified. Difficult
points that cause many mistakes will be associated with large αi.

It is interesting to note that, if we fix the training set S, we can use the αi as alter-
native coordinates of a dual space to represent the target hypothesis associated with w.
The resulting decision function is the following:

h(x) = sgn(w · x + b) = sgn

((m∑
i=1

αiyixi

)
· x + b

)
=

= sgn

(
m∑

i=1

αiyi(xi · x) + b

)
(11)

Given the dual representation, we can adopt a learning algorithm that works in the
dual space described in Table 3.

Note that as the Novikoff’s theorem states that the learning rate η only changes the
scaling of the hyperplanes, it does not affect the algorithm thus we can set η = 1.
On the contrary, if the perceptron algorithm starts with a different initialization, it will
find a different separating hyperplane. The reader may wonder if such hyperplanes are
all equivalent in terms of the classification accuracy of the test set; the answer is no:
different hyperplanes may lead to different error probabilities. In particular, the next

Automatic Learning Using Kernels Methods 477

Table 3. Dual perceptron algorithm

function Perceptron(training-point set: {x1, .., xm})
begin

α = 0; b0 = 0;
R = max1≤i≤m ||xi||
repeat

no errors = 1;
for (i = 1 to m)

if yi

(∑m
j=1 αjyj(xj · x) + b

) ≤ 0 then
αi = αi + 1;
b = b + yiR

2;
no errors = 0;

end(if)
until no errors;
return α and b ;

end

section shows that the maximal margin hyperplane minimizes an upperbound to the
error probability on the space of all possible hyperplanes.

3.2 Maximal Margin Classifier

The PAC theory suggests that, for a class of target functions, a hypothesis h that is
learned consistently with the training set provides low error probability and we can
show an analytical bound for such error. This idea can be applied to hyperplanes to
estimate the final error probability but also to improve the learning algorithm of lin-
ear classifiers. Indeed, one of the interesting results of the statistical learning theory is
that to reduce such probability, we need to select the hyperplane (from the set of sep-
arating hyperplanes) that shows the maximum distance between positive and negative
examples. To understand better this idea let us introduce some definitions:

Definition 5. The functional (geometric) margin distribution of a hyperplane (w,b)
with respect to a training set S is the distribution of the functional (geometric) margins
of the examples, i.e. yi(w · xi + b)∀xi ∈ S.

Definition 6. The functional (geometric) margin of a hyperplane is the minimum
functional (geometric) margin of the distribution.

Definition 7. The functional (geometric) margin of a training set S is the maximum
functional (geometric) margin of a hyperplane over all possible hyperplanes. The hy-
perplane that realizes such maximum is called the maximal margin hyperplane.

Figure 11 shows the geometric margins of the points xi and xj (part A) and the ge-
ometric margin of the hyperplane (part B) whereas Figure 12 shows two separating
hyperplanes that realize two different margins.

478 A. Moschitti

γ

A B

'iγ

'jγ

jx
r

ix
r

Fig. 11. Geometric margins of two points (part A) and margin of the hyperplane (part B)

Margin 2

Margin 1

Fig. 12. Margins of two hyperplanes

Intuitively, the larger the margin of a hyperplane is, the lower the probability of
error is. The important result of the statistical learning theory is that (i) analytical up-
perbounds to such error can be found; (ii) they can be proved to be correlated to the
hyperplanes; and (iii) the maximal margin hyperplane is associated with the lowest
bound.

In order to show such analytical result let us focus on finding the maximal margin
hyperplane. Figure 13 shows that a necessary and sufficient condition for a hyperplane
w · x + b = 0 to be a maximal margin hyperplane is that (a) two frontier hyperplanes
(negative and positive frontiers) exist and (b) they hold the following properties:

1. their equations are w · x + b = k and w · x + b = −k, i.e. they are parallel to
the target hyperplane and are both located at a distance of k (k

||w|| if w is not a
normalized vector;

2. such equations satisfy the constraints yi(w · xi + b) ≥ k ∀xi ∈ S, i.e. they both
separate the data points in S; and

3. the distance of the hyperplane from such frontiers is maximal with respect to other
frontiers.

Automatic Learning Using Kernels Methods 479

kbxw −=+⋅ rr

kbxw =+⋅ rr

0=+⋅ bxw
rr

k
k

w
r

1w x b⋅ + = −r r

1w x b⋅ + =r r

0=+⋅ bxw
rr

1
1

w
r

A B

Fig. 13. Frontiers and Maximal Margin Hyperplane

First, property 1 follows from a simple consideration: suppose that: (i) the nearest pos-
itive example x+ is located at a distance of γi from a hyperplane h1; (ii) the nearest
negative example x− is located at a distance of γj (�= γi); and (iii) the h1 margin is the
minimum between γi and γj . If we select a hyperplane h2 parallel to h1 and equidis-
tant from x+ and x−, it will be at a distance of k = γi+γj

2 from both x+ and x−.
Since k ≥ min{γi, γj}, the margin of h2 equidistant from the frontier points is always
greater or equal than other hyperplanes.

Second, the previous property has shown that the nearest positive examples is located
on the frontier w · x + b = k thus all the other positive examples x+ have a functional
margin w · x+ + b larger than k. The same rational applies to the negative examples
but, to work with positive quantities, we multiply (w · xi + b) by the label yi, thus, we
obtain the constrain yi(w · xi + bk) ≥ k.

Finally, the third property holds since k
||w|| is the distance from one of the two frontier

hyperplanes which, in turn, is the distance from the nearest points, i.e. the margin.
From these properties, it follows that the maximal margin hyperplane can be derived

by solving the optimization (maximization) problem below:{
max k

||w||
yi(w · xi + b) ≥ 1 ∀xi ∈ S,

(12)

where k
||w|| is the objective function, yi(w · xi + b) = 1 ∀xi ∈ S are the set of

linear equality constraints hi(w) and yi(w · xi + b) > 1 ∀xi ∈ S are the set of
linear inequality constraints, gi(w). Note that (i) the objective function is quadratic
since ||w|| = w ·w and (ii) we can rescale the distance among the data points such that
the maximal margin hyperplane has a margin of exactly 1. Thus, we can rewrite Eq. 12
as follows: {

max 1
||w||

yi(w · xi + b) ≥ 1 ∀xi ∈ S
(13)

Moreover, we can transform the above maximization problem in the following min-
imization problem:

480 A. Moschitti

{
min ||w||
yi(w · xi + b) ≥ 1 ∀xi ∈ S

(14)

Eq. 14 states that to obtain a maximal margin hyperplane, we have to minimize the
norm of the gradient w but it does not provide any analytical evidence on the benefit of
choosing such hyperplane. In contrast, the PAC learning theory provides the link with
the error probability with the following theorem:

Theorem 6. (Vapnik, 1982) Consider hyperplanes w · x + b = 0 in a Rn vector space
as hypotheses. If all examples xi are contained in a ball of radius R and

∀xi ∈ S, yi(w · xi + b) ≥ 1, with ||w|| ≤ A

then this set of hyperplanes has a VC-dimension d bounded by

d ≤ min(R2 × A2, n) + 1

The theorem states that if we set our hypothesis class HA to be the set of hyperplanes
whose w has a norm ≤ A then the VC dimension is less or equal than R2 × A2.
This means that if we reduce ||w||, we obtain a lower A and consequently a lower VC
dimension, which in turn is connected to the error probability by the Theorem 4 (lower
VC dim. results in lower error bound). This proves that, when the number of training
examples is fixed, a lower VC-dimension will produce a lower error probability. In
other words, as the maximum margin hyperplane minimizes the bound on the error
probability, it constitutes a promising hypothesis for our learning problem.

Other interesting properties of the maximum margin hyperplane are derived from the
optimization theory of convex functions over linear constraints. The main concepts of
such theory relate on the following definition and theorem:

Definition 8. Given an optimization problem with objective function f(w), and equal-
ity constraints hi(w) = 0, i = 1, .., l, we define the Lagrangian function as

L(w, β) = f(w) +
l∑

i=1

βihi(w),

where the coefficient βi are called Lagrange multipliers.

Theorem 7. (Lagrange) A necessary condition for a normal point w∗ to be a minimum
of f(w) subject to hi(w) = 0, i = 1, .., l, with f , hi ∈ C is

∂L(w∗, β∗)
∂w

= 0 (15)

∂L(w∗, β∗)
∂β

= 0 (16)

for some values of β∗. The above conditions are also sufficient provided that ∂L(β∗) is
a convex function of w.

Automatic Learning Using Kernels Methods 481

Proof. (necessity)
A continue function has a local maximum (minimum) when the partial derivatives are
equal 0, i.e. ∂f(w)

∂w = 0. Since, we are in presence of constraints, it is possible that
∂f(w∗)

∂w �= 0. To respect such equality constraints, given the starting point w∗, we can

move only perpendicularly to ∂hi(w
∗)

∂w . In other words, we can only move perpendic-

ularly to the subspace V spanned by the vectors ∂hi(w
∗)

∂w , i = 1, .., l. Thus, if a point
∂f(w∗)

∂w lies on V , any direction we move causes to violate the constraints. In other
words, if we start from such point, we cannot increase the objective function, i.e. it
can be a minimum or maximum point. The V memberships can be stated as the linear
dependence between ∂f(w∗)

∂w and ∂hi(w
∗)

∂w , formalized by the following equation:

∂f(w∗)
∂w

+
l∑

i=1

βi
∂hi(w∗)

∂w
= 0 (17)

where ∃i : βi �= 0. This is exactly the condition 15. Moreover, Condition 16 holds
since ∂L(w∗,β∗)

∂β = (h1(w∗), h2(w∗), ..., hl(w∗)) and all the constraints hi(w∗) = 0
are satisfied for the feasible solution w∗. �

The above conditions can be applied to evaluate the maximal margin classifier, i.e.
the Problem 14, but the general approach is to transform Problem 14 in an equivalent
problem, simpler to solve. The output of such transformation is called dual problem and
it is described by the following definition.

Definition 9. Let f(w), hi(w) and gi(w) be the objective function, the equality con-
straints and the inequality constraints (i.e. ≤) of an optimization problem, and let
L(w, α, β) be its Lagrangian, defined as follows:

L(w, α, β) = f(w) +
m∑

i=1

αigi(w) +
l∑

i=1

βihi(w)

The Lagrangian dual problem of the above primal problem is

maximize θ(α, β)

subject to α ≥ 0

where θ(α, β) = infw∈W L(w, α, β)

The strong duality theorem assures that an optimal solution of the dual is also the opti-
mal solution for the primal problem and vice versa, thus, we can focus on the transfor-
mation of Problem 14 according to the Definition 9.

First, we observe that the only constraints in Problem 14 are the inequalities4 [gi(w)
= −(yi(w · xi + b) − 1)] ≥ 0 ∀xi ∈ S.

4 We need to change the sign of the inequalities to have them in the normal form, i.e. gi(·) ≤ 0.

482 A. Moschitti

Second, the objective function is w · w. Consequently, the primal Lagrangian5 is

L(w, b, α) =
1
2
w · w −

m∑
i=1

αi[yi(w · xi + b) − 1], (18)

where αi are the Lagrange multipliers and b is the extra variable associated with the
threshold.

Third, to evaluate θ(α, β) = infw∈W L(w, α, β), we can find the minimum of the
Lagrangian by setting the partial derivatives to 0.

∂L(w, b, α)
∂w

= w −
m∑

i=1

yiαixi = 0 ⇒ w =
m∑

i=1

yiαixi (19)

∂L(w, b, α)
∂b

=
m∑

i=1

yiαi = 0 (20)

Finally, by substituting Eq. 19 and 20 into the primal Lagrangian we obtain

L(w, b, α) =
1
2
w · w −

m∑
i=1

αi[yi(w · xi + b) − 1] =

=
1
2

m∑
i,j=1

yiyjαiαjxi · xj −
m∑

i,j=1

yiyjαiαjxi · xj +
m∑

i=1

αi

=
m∑

i=1

αi − 1
2

m∑
i,j=1

yiyjαiαjxi · xj

(21)

which according to the Definition 9 is the optimization function of the dual problem
subject to αi ≥ 0. In summary, the final dual optimization problem is the following:

maximize
m∑

i=1

αi − 1
2

m∑
i,j=1

yiyjαiαjxi · xj

subject to αi ≥ 0, i = 1, .., m

m∑
i=1

yiαi = 0

where w =
∑m

i=1 yiαixi and
∑m

i=1 yiαi = 0 are the relation derived from eqs. 19 and
20. Other conditions establishing interesting properties can be derived by the Khun-
Tucker theorem. This provides the following relations for an optimal solution:

5 As w ·w or 1
2
w ·w is the same optimization function from a solution perspective, we use the

1
2

factor to simplify the next computation.

Automatic Learning Using Kernels Methods 483

∂L(w∗, α∗, β∗)
∂w

= 0
∂L(w∗, α∗, β∗)

∂β
= 0

α∗
i gi(w∗) = 0, i = 1, .., m
gi(w∗) ≤ 0, i = 1, .., m

α∗
i ≥ 0, i = 1, .., m

The third equation is usually called Karush-Khun-Tucker condition and it is very
interesting for Support Vector Machines as it states that α∗

i × [yi(w · xi + b)− 1] = 0.
On one hand, if α∗

i = 0 the training point xi does not affect w as stated by Eq. 19.
This means that the separating hyperplane and the associated classification function do
not depend on such vectors. On the other hand, if α∗

i �= 0 ⇒ [yi(w · xi + b) − 1] = 0
⇒ yi(w · xi + b) = −1, i.e. xi is located on the frontier. Such data points are called
support vectors (SV) as they support the classification function. Moreover, they can be
used to derive the threshold b by evaluating the average between the projection of a
positive and a negative SV on the gradient w∗, i.e.:

b∗ = −w∗ · x+ + w∗ · x−

2

The error probability upperbound of SVMs provides only a piece of evidence of
the maximal margin effectiveness. Unfortunately, there is no analytical proof that such
approach produces the best linear classifier. Indeed, it may exist other bounds lower
than the one derived with the VC dimension and the related theory. Another drawback
of the maximal margin approach is that it can only be applied when training data is
linearly separable, i.e. the constraints over the negative and positive examples must be
satisfied. Such hard conditions also define the name of such model, i.e., Hard Mar-
gin Support Vector Machines. In contrast, the next section introduces the Soft Margin
Support Vector Machines, whose optimization problem relaxes some constraints, i.e., a
certain number of errors on the training set is allowed.

3.3 Soft Margin Support Vector Machines

In real scenario applications, training data is often affected by noise due to several
reasons, e.g. classification mistakes of annotators. These may cause the data not to be
separable by any linear function. Additionally, the target problem itself may be not
separable in the designed feature space. As result, the Hard Margin SVMs will fail to
converge.

In order to solve such critical aspect, the Soft Margin SVMs have been designed.
Their main idea is to allow the optimization problem to provide solutions that can vi-
olate a certain number of constraints. Intuitively, to be as much as possible consistent
with the training data, such number of errors should be the lowest possible. This trade-
off between the separability with highest margin and the number of errors can be en-
coded by (a) introducing slack variables ξi in the inequality constraints of Problem 14
and (b) the number of errors as quantity to be minimized in the objective function. The
resulting optimization problem is

484 A. Moschitti

0=+⋅ bxw
rr

1w x b⋅ + = −r r

1w x b⋅ + =r r

1
1

w
r

iξ ix
r

Fig. 14. Soft Margin Hyperplane

⎧⎪⎨
⎪⎩

min ||w|| + C
∑m

i=1 ξ2
i

yi(w · xi + b) ≥ 1 − ξi, ∀i = 1, .., m

ξi ≥ 0, i = 1, .., m

(22)

whose the main characteristics are:

- The constraint yi(w · xi + b) ≥ 1 − ξi allows the point xi to violate the hard
constraint of Problem 14 of a quantity equal to ξi. This is clearly shown by the
outliers in Figure 14, e.g. xi.

- If a point is misclassified by the hyperplane then the slack variable assumes a value
larger than 1. For example, Figure 14 shows the misclassified point xi and its asso-
ciated slack variable ξi, which is necessarily > 1. Thus,

∑m
i=1 ξi is an upperbound

to the number of errors. The same property is held by the quantity,
∑m

i=1 ξ2
i , which

can be used as an alternative bound6.
- The constant C tunes the trade-off between the classification errors and the margin.

The higher C is, the lower number of errors will be in the optimal solution. For
C → ∞, Problem 22 approximates Problem 14.

- Similarly to the hard margin formulation, it can be proven that minimizing ||w|| +
C
∑m

i=1 ξ2
i minimizes the error probability of classifiers. Even though these are not

perfectly consistent with the training data (they do not necessarily classify correctly
all the training data).

- Figure 15 shows that by accepting some errors, it is possible to find better hypothe-
ses. In the part A, the point xi prevents to derive a good margin. As we accept to
mistake xi, the learning algorithm can find a more suitable margin (part B).

As it has been done for the hard optimization problem, we can evaluate the primal
Lagrangian:

L(w, b, ξ, α) =
1
2
w · w +

C

2

m∑
i=1

ξ2
i −

m∑
i=1

αi[yi(w · xi + b) − 1 + ξi], (23)

6 This also results in an easier mathematical solution of the optimization problem.

Automatic Learning Using Kernels Methods 485

ξi

B) Soft Margin SVM A) Hard Margin SVM

ix
r

ix
r

Fig. 15. Soft Margin vs. Hard Margin hyperplanes

where αi are Lagrangian multipliers.
The dual problem is obtained by imposing stationarity on the derivatives respect to

w, ξ and b:

∂L(w, b, ξ, α)
∂w

= w −
m∑

i=1

yiαixi = 0 ⇒ w =
m∑

i=1

yiαixi

∂L(w, b, ξ, α)
∂ξ

= Cξ − α = 0

∂L(w, b, ξ, α)
∂b

=
m∑

i=1

yiαi = 0

(24)

By substituting the above relations into the primal, we obtain the following dual
objective function:

w(α) =
m∑

i=1

αi − 1
2

m∑
i,j=1

yiyjαiαjxi · xj +
1

2C
α · α − 1

C
α · α =

=
m∑

i=1

αi − 1
2

m∑
i,j=1

yiyjαiαjxi · xj − 1
2C

α · α =

=
m∑

i=1

αi − 1
2

m∑
i,j=1

yiyjαiαj

(
xi · xj +

1
C

δij

)
,

(25)

where the Kronecker’s delta, δij = 1 if i = j and 0 otherwise. The objective function
above is subject to the usual constraints:{

αi ≥ 0, ∀i = 1, .., m∑m
i=1 yiαi = 0

This dual formulation can be used to find a solution of Problem 22, which extends
the applicability of linear functions to classification problems not completely linearly
separable. The separability property relates not only to the available class of hypotheses,
e.g. linear vs. polynomial functions, but it strictly depends on the adopted features. Their

486 A. Moschitti

x

x

x

x

o

o

o

o

)x(φ

)x(φ

)x(φ

)x(φ

)(oφ

)(oφ

)(oφ

)(oφ

φ

Fig. 16. A mapping φ that makes separable the initial data points

roles is to provide a map between the examples and vectors in Rn. Given such mapping,
the scalar product provides a measure of the similarity between pairs of examples or,
according to a more minimalist interpretation, it provides a partitioning function based
on such features.

The next section shows that, it is possible to directly substitute the scalar product
of two feature vectors with a similarity function between the data examples. This al-
lows for avoiding explicit feature design and consequently enabling the use of similarly
measures called kernel functions. These, in turn, define implicit feature spaces.

4 Kernel Methods

One of the most difficult step on applying machine learning is the feature design. Fea-
tures should represent data in a way that allows learning algorithms to separate positive
from negative examples. The features used by SVMs are used to build vector represen-
tations of data examples and the scalar product between them. This, sometimes, simply
counts the number of common features to measure how much the examples are sim-
ilar. Instead of encoding data in feature vectors, we may design kernel functions that
provide such similarity between examples avoiding the use of explicit feature represen-
tations. The reader may object that the learning algorithm still requires the supporting
feature space to model the hyperplane and the data points, but this is not necessary if
the optimization problem is solved in the dual space.

The real limit of the kernel functions is that they must generate a well defined inner
product vector space. Such property will hold if the Mercer’s conditions are satisfied.
Fortunately, there are many kernels, e.g. polynomial, string, lexical and tree kernels that
satisfy such conditions and give us the possibility to use them in SVMs.

Kernels allow for more abstractly defining our leaning problems and in many cases
allow for solving non linear problems by re-mapping the initial data points in a sepa-
rable space as shown by Figure 16. The following example illustrates one of the case
in which a non-linear function can be expressed in a linear formulation in a different
space.

Automatic Learning Using Kernels Methods 487

Example 2. Overcoming linear inseparability
Suppose that we want to study the force of interactions between two masses m1 and
m2. m1 is free to move whereas m2 is blocked. The distance between the two masses
is indicated with r and their are subject to the Newtown’s gravity law:

f(m1, m2, r) = C
m1m2

r2
,

Thus mass m1 naturally tends to move towards m2.
We apply a force fa of inverse direction with respect to f to m1. As a result, we note

that sometimes m1 approaches m2 whereas other times it gets far from it. To study such
phenomenon, we carry out a set of experiments with different experimental parameters,
i.e. m1, m2, r and fa and we annotate the result of our action: success if m1 gets closer
to m2 (or does not move) and failure otherwise.

Each successful experiment can be considered a positive example whereas unsuc-
cessful experiments are considered negative examples. The parameters above constitute
feature vectors representing an experiment. We can apply SVMs to learn the classifi-
cation of new experiments 〈fa, m1, m2, r〉 in successful or unsuccessful, i.e. if fa −
f(m1, m2, r) ≥ 0 or otherwise, respectively. This means that SVMs have to learn the
gravitational law function, f(m1, m2, r), but, since this is clearly non-linear, hard mar-
gin SVMs will not generally converge and soft margin SVMs will provide inaccurate
results.

The solution for this problem is to map our initial feature space in another vec-
tor space, i.e. 〈fa, m1, m2, r〉 → 〈lnfa, ln(m1), ln(m2), ln(r)〉 = 〈k, x, y, z〉. Since
ln
(
f(m1, m2, r)

)
= ln(C) + ln(m1) + ln(m2) − 2ln(r) = c + x + y − 2z, we can

express the logarithm of gravity law with a linear combination of the transformed fea-
tures in the new space. In more detail, points above (or lying on) the ideal hyperplane
k−(c+x+y−2z) = 0, i.e. points that satisfy k−(c+x+y−2z) ≥ 0 (or equivalently
that satisfy fa − f(m1, m2, r) ≥ 0), are successful experiments whereas points below
such hyperplane are unsuccessful. The above passages prove that a separating hyper-
plane of the training set always exists in the transformed space, consequently SVMs
will always converge (with an error dependent on the number of training examples).

4.1 The Kernel Trick

Section 3.1 has shown that the Perceptron algorithm, used to learn linear classifiers, can
be adapted to work in the dual space. In particular, such algorithm (see Table 3) clearly
shows that it only exploits feature vectors in the form of scalar product. Consequently,
we can replace feature vectors xi with the data objects oi, substituting the scalar product
xi · xj with a kernel function k(oi, oj), where oi are the initial objects mapped into xi

using a feature representation, φ(.). This implies that xi ·xj = φ(oi)·φ(oj) = k(oi, oj).
Similarly to the Perceptron algorithm, the dual optimization problem of Soft Margin

SVMs (Eq. 25) uses feature vectors only inside a scalar product, which can be substi-
tuted with k(oi, oj). Therefore, the kernelized version of the soft margin SVMs is

488 A. Moschitti

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

maximize

m∑
i=1

αi − 1
2

m∑
i,j=1

yiyjαiαj

(
k(oi, oj) +

1
C

δij

)
αi ≥ 0, ∀i = 1, .., m
m∑

i=1

yiαi = 0

Moreover, Eq. 10 for the Perceptron appears also in the Soft Margin SVMs (see
conditions 24), hence we can rewrite the SVM classification function as in Eq. 11 and
use a kernel inside it, i.e.:

h(x) = sgn

(
m∑

i=1

αiyik(oi, oj) + b

)

The data object o is mapped in the vector space trough a feature extraction procedure
φ : o → (x1, ..., xn) = x, more in general, we can map a vector x from one feature
space into another one:

x = (x1, ..., xn) → φ(x) = (φ1(x), ..., φn(x))

This leads to the general definition of kernel functions:

Definition 10. A kernel is a function k, such that ∀ x,z ∈ X

k(x, z) = φ(x) · φ(z)

where φ is a mapping from X to an (inner product) feature space.

Note that, once we have defined a kernel function that is effective for a given learning
problem, we do not need to find which mapping φ corresponds to. It is enough to know
that such mapping exists. The following proposition states the conditions that guarantee
such existence.

Proposition 1. (Mercer’s conditions)
Let X be a finite input space and let K(x, z) be a symmetric function on X. Then

K(x, z) is a kernel function if and only if the matrix

k(x, z) = φ(x) · φ(z)

is positive semi-definite (has non-negative eigenvalues).

Proof. Let us consider a symmetric function on a finite space X = {x1, x2, ..., xn}

K =
(
K(xi, xj)

)n

i,j=1

Since K is symmetric there is an orthogonal matrix V such that K = V ΛV ′

where Λ is a diagonal matrix containing the eigenvalues λt of K, with corresponding

Automatic Learning Using Kernels Methods 489

eigenvectors vt = (vti)n
i=1, i.e., the columns of V . Now assume that all the eigenvalues

are non-negatives and consider the feature mapping:

φ : xi →
(√

λtvti

)n

t=1
∈ Rn, i = 1, .., n.

It follows that

φ(xi) · φ(xj) =
n∑

t=1

λtvtivtj = (V ΛV ′)ij = Kij = K(xi, xj).

This proves that K(x, z) is a valid kernel function that corresponds to the mapping
φ. Therefore, the only requirement to derive the mapping φ is that the eigenvalues
of K are non-negatives since if we had a negative eigenvalue λs associated with the
eigenvector vs, the point

z =
n∑

i=1

vsiφ(xi) =
√

ΛV ′vs.

in the feature space would have norm squared

||z||2 = z · z = v′
sV

√
Λ
√

ΛV ′vs = v′
sV ΛV ′vs = v′

sKvs = λs < 0,

which contradicts the geometry of the space [20].

4.2 Polynomial Kernel

The above section has shown that kernel functions can be used to map a vector space in
other spaces in which the target classification problem becomes linearly separable (or
in general easier). Another advantage is the possibility to map the initial feature space
in a richer space which includes a high number of dimensions (possibly infinite): this
may result in a better description of the objects and higher accuracy. For example, the
polynomial kernel maps the initial features in a space which contains both the original
features and all the possible feature conjunctions. For example, given the components
x1 and x2, the new space will contain x1x2. This is interesting for text categorization as
the polynomial kernel automatically derives the feature hard rock or hard disk
from the individual featureshard, rock and disk. The conjunctive features may help
to disambiguate between Music Store and Computer Store categories.

The great advantage of using kernel functions is that we do not need to keep the
vectors of the new space in the computer memory to evaluate the inner product. For
example, suppose that the initial feature space has a cardinality of 100,000 features,
i.e., a typical size of the vocabulary in a text categorization problem, only the number of
word pairs would be 1010, which cannot be managed by many learning algorithms. The
polynomial kernel can be used to evaluate the scalar product between pairs of vectors
of such huge space by only using the initial space and vocabulary, as it is shown by the
following passages:

490 A. Moschitti

(x · z)2 =
(n∑

i=1

xizi

)2 =
(n∑

i=1

xizi

)(n∑
j=1

xizi

)

=
n∑

i=1

n∑
j=1

xixjzizj =
∑

i,j∈{1,..,n}
(xixj)(zizj)

=
m∑

k=1

XkZk = X · Z,

where:

– x and z are two vectors of the initial space,

– X and Z are the vectors of the final space and

– Xk = xixj , Zk = zizj with k = (i − 1) × n + j and m = n2.

We note that

– the mapping between the two space is φ(x) = (xixj) for j = 1, .., n and for
i = 1, .., n;

– to evaluate X · Z, we just compute the square of the scalar product in the initial
space, i.e. (x · z)2; and

– the final space contains conjunctions and also the features of the initial space (xixi

is equivalent to xi).

Additionally, since xixj = xjxi, the conjunctions receive the double of the weight of
single features. The number of distinct features are: n for i = 1 and j = 1, .., n; (n−1)
for i = 2 and j = 2, .., n; ..; and 1 for i = n and j = n. It follows that the total number
of terms is

n + (n − 1) + (n − 2) + .. + 1 =
n∑

k=1

k =
n(n + 1)

2

Another way to compute such number it to consider that, to build all the monomials,
the first variable can be chosen out of n + 1 possibilities (n symbols to form conjunc-
tions and the empty symbol for the single feature) whereas for the second variable only
n chances are available (no empty symbol at this time). This way, we obtain all permu-
tations of each monomial of two variables. To compute the number of distinct features,
we can divide the number of monomials, i.e. (n + 1)n, by the number of permutations
of two variables, i.e. 2! = 2. The final quantity can be expressed with the binomial
coefficient

(
n+1

2

)
.

Given the above observation, we can generalize the kernel from degree 2 to a degree
d by computing (x · z)d. The results are all monomials of degree d or equivalently
all the conjunctions constituted up to d features. The distinct features will be

(
n+d−1

d

)
since we can choose either the empty symbol up to d − 1 times or n variables.

A still more general kernel can be derived by introducing a constant in the scalar
product computation. Hereafter, we show the case for a degree equal to two:

Automatic Learning Using Kernels Methods 491

(x · z + c)2 =
(n∑

i=1

xizi + c
)2 =

(n∑
i=1

xizi + c
)(n∑

j=1

xizi + c
)

=

=
n∑

i=1

n∑
j=1

xixjzizj + 2c

n∑
i=1

xizi + c2 =

=
∑

i,j∈{1,..,n}
(xixj)(zizj) +

n∑
i=1

(√
2cxi

)(√
2czi

)
+ c2

Note that the second summation introduces n individual features (i.e. xi) whose
weights are controlled by the parameter c which also determines the strength of the
degree 0. Thus, we add (n+1) new features to the

(
n+1

2

)
features of the previous kernel

of degree 2. If we consider a generic degree d, i.e. the kernel (x ·z +c)d, we will obtain(
n+d−1

d

)
+ n + d − 1 =

(
n+d

d

)
distinct features (which have at least distinct weights).

These are all monomials up to and including the degree d.

4.3 String Kernel

Kernel functions can be also applied to discrete space. As a first example, we show their
potentiality on the space of finite strings.

Let Σ be a finite alphabet. A string is a finite sequence of characters from Σ, includ-
ing the empty sequence. We denote by |s| the length of the string s = s1, .., s|s|, where
si are symbols, and by st the string obtained by concatenating the strings s and t. The
string s[i : j] is the substring si, .., sj of s. We say that u is a subsequence of s, if there
exist indices I = (i1, ..., i|u|), with 1 ≤ i1 < ... < i|u| ≤ |s|, such that uj = sij ,
for j = 1, ..., |u|, or u = s[I] for short. The length l(I) of the subsequence in s is
i|u| − ii + 1. We denote by Σ∗ the set of all string

Σ∗ =
∞⋃

n=0

Σn

We now define the feature space, F = {u1, u2..} = Σ∗, i.e. the space of all possible
substrings. We map a string s in R∞ space as follows:

φu(s) =
∑

I:u=s[I]

λl(I) (26)

for some λ ≤ 1. These features measure the number of occurrences of subsequences
in the string s, weighting them according to their lengths. Hence, the inner product of
the feature vectors for two strings s and t gives a sum over all common subsequences
weighted according to their frequency of occurrences and lengths, i.e.

K(s, t) =
∑

u∈Σ∗
φu(s) · φu(t) =

∑
u∈Σ∗

∑
I:u=s[I]

λl(I)
∑

J :u=t[J]

λl(J) =

=
∑

u∈Σ∗

∑
I:u=s[I]

∑
J :u=t[J]

λl(I)+l(J) (27)

492 A. Moschitti

The above equation defines a class of similarity functions known as string kernels
or sequence kernels. These functions are very effective for extracting features from
streams. For example, in case of text categorization, they allow the learning algorithm
to quantify the matching between two different words, phrases, sentences or whole
documents. Given two strings, Bank and Rank:

– B, a, n, k, Ba, Ban, Bank, an, ank, nk, Bn, Bnk, Bk and ak are substrings of
Bank.

– R, a, n, k, Ra, Ran, Rank, an, ank, nk, Rn, Rnk, Rk and ak are substrings of
Rank.

Such substrings are features in the Σ∗ that have non-null weights. These are evaluated
by means of Eq. 26, e.g. φB(Bank) = λ(i1−i1+1) = λ(1−1+1) = λ, φk(Bank) =
λ(i1−i1+1) = λ(4−4+1) = λ, φan(Bank) = λ(i2−i1+1) = λ(3−2+1) = λ2 and
φBk(Bank) = λ(i2−i1+1) = λ(4−1+1) = λ4.

Since Eq. 27 requires that the substrings in Bank and Rank match, we need to evalu-
ate Eq. 26 only for the common substrings, i.e.:

- φa(Bank) = φa(Rank) = λ(i1−i1+1) = λ(2−2+1) = λ,
- φn(Bank) = φn(Rank) = λ(i1−i1+1) = λ(3−3+1) = λ,
- φk(Bank) = φk(Rank) = λ(i1−i1+1) = λ(4−4+1) = λ,
- φan(Bank) = φan(Rank) = λ(i2−i1+1) = λ(3−2+1) = λ2,
- φank(Bank) = φank(Rank) = λ(i3−i1+1) = λ(4−2+1) = λ3,
- φnk(Bank) = φnk(Rank) = λ(i2−i1+1) = λ(4−3+1) = λ2,
- φak(Bank) = φak(Rank) = λ(i2−i1+1) = λ(4−2+1) = λ3.

It follows that K(Bank,Rank) = (λ, λ, λ, λ2, λ3, λ2, λ3) · (λ, λ, λ, λ2, λ3, λ2, λ3)
= 3λ2 + 2λ4 + 2λ6.

From this example, we note that short non-discontinuous strings receive the highest
contribution, e.g. φB(Bank) = λ > φan(Bank) = λ2. This may appear counterin-
tuitive as longer string should be more important to characterize two textual snippets.
Such inconsistency disappears if we consider that when a large string is matched, the
same will happen for all its substrings. For example, the contribution coming from
Bank, in the matching between the ”Bank of America” and ”Bank of Italy”
strings, includes the match of B, a, n, k, Ba, Ban,..., an so on.

Moreover, it should be noted that Eq. 27 is rather expensive from a computational
viewpoint. A method for its fast computation trough a recursive function was proposed
in [38].

First, a kernel over the space of strings of length n, Σn is computed, i.e.

Kn(s, t) =
∑

u∈Σn

φu(s) · φu(t) =
∑

u∈Σn

∑
I:u=s[I]

∑
J :u=t[J]

λl(I)+l(J).

Second, a slightly different version of the above function is considered, i.e.

K ′
i(s, t) =

∑
u∈Σn

φu(s) · φu(t) =
∑

u∈Σi

∑
I:u=s[I]

∑
J :u=t[J]

λ|s|+|t|−i1−j1+2,

Automatic Learning Using Kernels Methods 493

for i = 1, .., n − 1. K ′
i(s, t) is different than Kn(s, t) since, to assign weights, the

distances from the initial character of the substrings to the end of the string, i.e. |s| −
i1 + 1 and |t| − j1 + 1, are used in place of the distances between the first and last
characters of the substrings, i.e. l(I) and l(J).

It can be proved that Kn(s, t) is evaluated by the following recursive relations:

- K ′
0(s, t) = 1, for all s,t,

- K ′
i(s, t) = 0, if min (|s|,|t|)< i,

- Ki(s, t) = 0, if min (|s|,|t|)< i,
- K ′

i(sx, t) = λK ′
i(s, t) +

∑
j:tj=x

K ′
i−1(s, t[1 : j − 1])λ|t|−j+2, i = 1, ..,n − 1,

- Kn(sx, t) = Kn(s, t) +
∑

j:tj=x

K ′
n−1(s, t[1 : j − 1])λ2.

The general idea is that K ′
i−1(s, t) can be used to compute Kn(s, t) when we increase

the size of the input strings of one character, e.g. Kn(sx, t). Indeed, K ′
i and Ki compute

the same quantity when the last character of the substring u ∈ Σi, i.e. x, coincides with
the last character of the string, i.e. the string can be written as sx. Since K ′

i(sx, t) can
be reduced to K ′

i(s, t), the recursion relation is valid. The computation time of such
process is proportional to n × |s| × |t|, i.e. an efficient evaluation.

4.4 Lexical Kernel

The most used Information Retrieval (IR) paradigm is based on the assumptions that
(a) the semantic of a document can be represented by the semantic of its words and
(b) to express the similarity between document pairs, it is enough to only consider the
contribution from matching terms. In this view, two words that are strongly related, e.g.
synonyms, do not contribute with their relatedness to the document similarity.

More advanced IR models attempt to take the above problem into account by intro-
ducing term similarities. Complex and interesting term similarities can be implemented
using external (to the target corpus) thesaurus, like for example the Wordnet hierarchy
[26]. For example, the terms mammal and invertebrate are under the term animal in
such hierarchy. In turns, the terms dog and cat, are under the term mammal. The length
of the path that connects two terms in such hierarchy intuitively provides a sort of sim-
ilarity metrics. Once a term relatedness is designed, document similarities, which are
the core functions of most Text Categorization algorithms, can be designed as well.

Given a term similarity function σ and two documents d1 and d2 ∈ D (the document
set), we define their similarity as:

K(d1, d2) =
∑

f1∈d1,f2∈d2

(w1w2) × σ(f1, f2) (28)

where w1 and w2 are the weights of the words (features) f1 and f2 in the documents
d1 and d2, respectively. Interestingly such similarity can be a valid kernel function and,
therefore, used in SVMs. To prove this we need to verify the Mercer’s conditions, i.e.
that the associated kernel matrix (see Proposition 1) is positive semi-definite. We can
apply single value decomposition and check the eigenvalues. In case we find that some

494 A. Moschitti

of them are negative, we can still use the lexical kernel by squaring its associated matrix.
Indeed, the kernel K(d1, d2) can be written as P = M ′ · M , where M is the matrix
defined by σ(f1, f2) and M ′ is its transposed. Since P is surely positive semi-definite
(it is a square), K(d1, d2) = P satisfies the Mercer’s conditions.

The lexical kernel has been successfully applied to improve document categoriza-
tion [8] when few documents are available for training. Indeed, the possibility to match
different words using a σ similarity allows SVMs to recover important semantic
information.

5 Tree Kernel Spaces

The polynomial and the string kernels have shown that, starting from an initial feature
set, they can automatically provide a very high number of interesting features. These are
a first example of the usefulness of kernel methods. Other interesting kernel approaches
aim to automatically generate large number of features from structures. For example,
tree kernels are able to extract many types of tree fragments from a target tree. One of
their purposes is to model syntactic information in a target learning problem. In partic-
ular, tree kernels seem well suited to model syntax in natural language applications, e.g.
for the extraction of semantic predicative structures like bought(Mary, a cat, in Rome)
[54].

Indeed, previous work shows that defining linguistic theories for the modeling of
natural languages (e.g. [35]) is a complex problem, far away from a sound and complete
solution, e.g. the links between syntax and semantic are not completely understood
yet. This makes the design of syntactic features for the automatic learning of semantic
structures complex and consequently both remarkable deep knowledge about the target
linguistic phenomena and research effort are required.

Kernel methods, which do not require any noticeable feature design effort, can pro-
vide the same accuracy of manually designed features and sometime they can suggest
new solutions to the designer to improve the model of the target linguistic phenomenon.

The kernels that we consider in next sections represent trees in terms of their sub-
structures (fragments). Their are based on the general notion of convolution kernels
hereafter reported.

Definition 11. General Convolution Kernels
Let X, X1, .., Xm be separable metric spaces, x ∈ X a structure and x = x1, ..., xm

its parts, where xi ∈ Xi ∀i = 1, .., m. Let R be a relation on the set X×X1×..×Xm

such that R(x, x) holds if x are the parts of x. We indicate with R−1(x) the set {x :
R(x, x)}. Given two objects x and y ∈ X , their similarity K(x, y) is defined as:

K(x, y) =
∑

x∈R−1(x)

∑
y∈R−1(y)

m∏
i=1

Ki(xi, yi) (29)

Subparts or fragments define a feature space which, in turn, is mapped into a vector
space, e.g. Rn. In case of tree kernels, the similarity between trees is given by the
number of common tree fragments. These functions detect if a common tree subpart

Automatic Learning Using Kernels Methods 495

S → N VP

VP → V NP PP

PP → IN N

N → school
N

school

The root

A leaf

S

N

NP

D N

VP

VMary

to

brought

a cat

PP

IN

A subtree

Fig. 17. A syntactic parse tree

S

N

NP

D N

VP

VMary

brought

a cat

NP

D N

a cat

N

 cat

D

a

V

brought

N

Mary

NP

D N

VP

V

brought

a cat

Fig. 18. A syntactic parse tree with its SubTrees (STs)

belongs to the feature space that we intend to generate. For such purpose, the fragment
type needs to be described. We consider three important characterizations: the SubTrees
(STs), the SubSet Trees (SSTs) and the Partial Trees (PTs).

5.1 SubTree, SubSet Tree and Partial Tree Kernels

Trees are directed, connected acyclic graphs with a special node called root. Their re-
cursive definition is the following: (1) the root node, connected with one or more nodes
(called children), is a tree and (2) a child can be a tree, i.e. a SubTree, or a node without
children, i.e. a leaf.

In case of syntactic parse trees each node with its children is associated with a gram-
mar production rule, where the symbol at left-hand side corresponds to the parent and
the symbols at right-hand side are associated with the children. The terminal symbols of
the grammar are always associated with the leaves of the tree. For example, Figure 17
illustrates the syntactic parse of the sentence "Mary brought a cat to school".

We define a SubTree (ST) as any node of a tree along with all its descendants. For
example, the line in Figure 17 circles the SubTree rooted in the NP node. A SubSet Tree
(SST) is a more general structure which not necessarily includes all its descendants. The
only restriction is that an SST must be generated by applying the same grammatical rule
set that generated the original tree, as pointed out in [19]. Thus, the difference with the
SubTrees is that the SST’s leaves can be associated with non-terminal symbols. For
example, [S [N VP]] is an SST of the tree in Figure 17 and it has the two non-
terminal symbols N and VP as leaves.

496 A. Moschitti

NP

D N

a cat

NP

D N

NP

D N

a

NP

D N

NP

D N

VP

V

brought

a cat

 cat
NP

D N

VP

V

a cat

NP

D N

VP

V

N

 cat

D

a

V

brought

N

Mary
…

Fig. 19. A tree with some of its SubSet Trees (SSTs)

NP

D N

VP

V

brought

a cat

NP

D N

VP

V

a cat

NP

D N

VP

a cat

NP

D N

VP

a

NP

D

VP

a

NP

D

VP

NP

N

VP

NP

N

NPNP

D N D

NP

…

VP

Fig. 20. A tree with some of its Partial Trees (PTs)

If we relax the constraint over the SSTs, we obtain a more general form of substruc-
tures that we defined as Partial Trees (PTs). These can be generated by the application
of partial production rules of the original grammar. For example, [S [N VP]], [S
[N]] and [S [VP]] are valid PTs of the tree in Figure 17.

Given a syntactic tree, we may represent it by means of the set of all its STs, SSTs
or PTs. For example, Figure 18 shows the parse tree of the sentence "Mary brought

a cat" together with its 6 STs. The number of SSTs is always higher. For example,
Figure 19 shows 10 SSTs (out of all 17) of the SubTree of Figure 18 rooted in VP.
Figure 20 shows that the number of PTs derived from the same tree is even higher (i.e.
30 PTs). These different substructure numbers provide an intuitive quantification of the
different information level of the diverse tree-based representations.

5.2 The Kernel Functions

The main idea of the tree kernels is to compute the number of the common substruc-
tures between two trees T1 and T2 without explicitly considering the whole fragment
space. For this purpose, we slightly modified the kernel function proposed in [19] by
introducing a parameters σ, which enables the ST or the SST evaluation. For the PT
kernel function, we designed a new algorithm.

The ST and SST Computation. Given a tree fragment space {f1, f2, ..} = F , we
defined the indicator function Ii(n), which is equal to 1 if the target fi is rooted at node
n and 0 otherwise. It follows that:

K(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

Δ(n1, n2) (30)

where NT1 and NT2 are the sets of the T1’s and T2’s nodes, respectively and Δ(n1, n2)=∑|F|
i=1 Ii(n1)Ii(n2). This latter is equal to the number of common fragments rooted at

the n1 and n2 nodes. We can compute Δ as follows:

Automatic Learning Using Kernels Methods 497

1. if the productions at n1 and n2 are different then Δ(n1, n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 have only leaf children

(i.e. they are pre-terminal symbols) then Δ(n1, n2) = 1;
3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-terminals

then

Δ(n1, n2) =
nc(n1)∏

j=1

(σ + Δ(cj
n1

, cj
n2

)) (31)

where σ ∈ {0, 1}, nc(n1) is the number of the children of n1 and cj
n is the j-th child of

the node n. Note that, as the productions are the same nc(n1) = nc(n2).
When σ = 0, Δ(n1, n2) is equal 1 only if ∀j Δ(cj

n1
, cj

n2
) = 1, i.e. all the produc-

tions associated with the children are identical. By recursively applying this property, it
follows that the SubTrees in n1 and n2 are identical. Thus, Eq. 30 evaluates the SubTree
(ST) kernel. When σ = 1, Δ(n1, n2) evaluates the number of SSTs common to n1 and
n2 as proved in [19].

To include the leaves as fragments it is enough to add, to the recursive rule set above,
the condition:

0. if n1 and n2 are leaves and their associated symbols are equal then
Δ(n1, n2) = 1

We will refer to such extended kernels as ST+bow (bag-of-words) and SST+bow.
Moreover, we use the decay factor λ as follows7:Δ(nx, nz) = λ and Δ(nx, nz) =
λ
∏nc(nx)

j=1 (σ + Δ(cj
n1

, cj
n2

)).
The Δ computation complexity is O(|NT1 | × |NT2 |) time as proved in [19]. We will

refer to this basic implementation as the Quadratic Tree Kernel (QTK).

The PT Kernel Function. The evaluation of the Partial Trees is more complex since
two nodes n1 and n2 with different child sets (i.e. associated with different productions)
can share one or more children, consequently they have one or more common substruc-
tures, e.g. [S [DT JJ N]] and [S [DT N N]] have the [S [N]] (2 times) and
the [S [DT N]] in common.

To evaluate all possible substructures common to two trees, we can (1) select a child
subset from both trees, (2) extract the portion of the syntactic rule that contains such
subset, (3) apply Eq. 31 to the extracted partial productions and (4) sum the contribu-
tions of all children subsets.

Such subsets correspond to all possible common (non-continuous) node subse-
quences and can be computed efficiently by means of sequence kernels [38]. Let
J1 = (J11, .., J1r) and J2 = (J21, .., J2r) be the index sequences associate with the
ordered child sequences of n1 and n2, respectively, then the number of PTs is evaluated
by the following Δ function:

Δ(n1, n2) = 1 +
∑

J1,J2,l(J1)=l(J2)

l(J1)∏
i=1

Δ(cJ1i
n1

, cJ2i
n2

), (32)

7 To have a similarity score between 0 and 1, we also apply the normalization in the kernel
space, i.e. Knormed(T1, T2) = K(T1,T2)√

K(T1,T1)×K(T2,T2)
.

498 A. Moschitti

where l(J1) indicates the length of the target child sequence whereas J1i and J2i are
the ith children in the two sequences. We note that:

1. Eq. 32 is a convolution kernel [34] (see Definition 11).
2. Given a sequence of common children, J , the product in Eq. 32 evaluates the num-

ber of common PTs rooted in n1 and n2. In these PTs, the children of n1 and n2

are all and only those in J .
3. By summing the products associated with each sequence we evaluate all possible

PTs (the root is included).
4. Tree kernels based on sequences were proposed in [72; 21] but they do not evaluate

all tree substructures, i.e. they are not convolution kernels.
5. We can scale down the contribution from the longer sequences by adding two decay

factors λ and μ:

Δ(n1, n2) = μ
(
λ +

∑
J1,J2,l(J1)=l(J2)

λd(J1)+d(J2)

l(J1)∏
i=1

Δ(cJ1i
n1

, cJ2i
n2

)
)

where d(J1) = J1l(J1) − J11 + 1 and d(J2) = J2l(J2) − J21 + 1.

Finally, as the sequence kernels and the Eq. 31 can be efficiently evaluated, the same
can be done for Eq. 32. The computational complexity of PTK is O(pρ2|NT1 |× |NT2 |),
where p is the largest subsequence of children that we want to consider and ρ is the
maximal outdegree observed in the two trees. However, as shown in [40], the average
running time tends to be linear for natural language syntactic trees.

6 Conclusions and Advanced Topics

In this chapter we have shown the basic approaches of traditional machine learning such
as Decision Trees and Naive Bayes and we have introduced the basic concepts of the
statistical learning theory such as the characterization of learning via the PAC theory
and VC-dimension. We have also presented, the Perceptron algorithm to introduce a
simplified theory of Support Vector Machines (SVMs) and kernel methods. Regarding
the latter, we have shown some of their potentials, e.g. the Polynomial, String, Lexi-
cal and Tree kernels by alluding to their application for Natural Language Processing
(NLP).

The interested reader, who would like to acquire much more practical knowledge
on the use of SVMs and kernel methods can refer to the following publications clus-
tered by topics (mostly from NLP): Text Categorization [9; 56; 10; 6; 5; 11; 12; 7;
13]; Corefernce Resolution [66; 65]; Question Answering [51; 13; 14; 55; 49; 50];
Shallow Semantic Parsing [54; 32; 45; 3; 30; 46; 31; 48; 42; 47; 57; 22; 44]; Con-
cept segmentation and labeling of text and speech [23; 24; 59; 36; 37; 33]; Relational
Learning [68; 69; 52; 67; 70; 71; 58; 43; 39; 27]; SVM optimization [40; 1; 41; 2; 53;
60; 61; 63; 62]; Mapping Natural Language to SQL [28; 29]; Protein Classification [17;
18]; Audio classification [4]; and Electronic Device Failure detection [25].

The articles above are available at http://disi.unitn.it/moschitti/
Publications.htm whereas complementary training material can be found at

http://disi.unitn.it/moschitti/Publications.htm
http://disi.unitn.it/moschitti/Publications.htm

Automatic Learning Using Kernels Methods 499

http://disi.unitn.it/moschitti/teaching.html. Additionally, SVM
software comprising several structural kernels can be downloaded from http://
disi.unitn.it/moschitti/Tree-Kernel.htm.

Acknowledgement

The work for this tutorial has been partially founded by the European Coordinate Ac-
tion, EternalS, Trustworthy Eternal Systems via Evolving Software, Data and Knowl-
edge (project number FP7 247758).

I would like to thank Roberto Basili for his contribution to an early draft of this
chapter.

References

1. Aiolli, F., Martino, G.D.S., Moschitti, A., Sperduti, A.: Fast On-line Kernel Learning for
Trees. In: Proceedings Sixth International Conference on Data Mining, ICDM 2006. IEEE,
Los Alamitos (2006)

2. Aiolli, F., Martino, G.D.S., Moschitti, A., Sperduti, A.: Efficient Kernel-based Learning for
Trees. In: IEEE Symposium on Computational Intelligence and Data Mining, pp. 308–316.
IEEE, Stati Uniti d’America (2007)

3. Ana-Maria, G., Moschitti, A.: Towards Free-text Semantic Parsing: A Unified Framework
Based on FrameNet, VerbNet and PropBank. In: The Workshop on Learning Structured In-
formation for Natural Language Applications. EACL (2006)

4. Annesi, P., Basili, R., Gitto, R., Moschitti, A., Petitti, R.: Audio Feature Engineering for
Automatic Music Genre Classification. In: RIAO, Paris, France, pp. 702–711 (2007)

5. Basili, R., Cammisa, M., Moschitti, A.: A Semantic Kernel to Exploit Linguistic Knowledge.
In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS (LNAI), vol. 3673, pp. 290–302.
Springer, Heidelberg (2005)

6. Basili, R., Cammisa, M., Moschitti, A.: Effective use of WordNet Semantics via Kernel-
based Learning. In: Proceedings of the Ninth Conference on Computational Natural Lan-
guage Learning, pp. 1–8. The Association for Computational Linguistics (June 2005)

7. Basili, R., Cammisa, M., Moschitti, A.: A semantic Kernel to Classify Texts with very few
Training Examples. Informatica, an International Journal of Computing and Informatics 1,
1–10 (2006)

8. Basili, R., Cammisa, M., Moschitti, A.: Effective use of wordnet semantics via kernel-based
learning. In: Proceedings of Ninth Conference on Computational Natural Language Learn-
ing, Ann Arbor, Michigan USA, June 29-30 (2005)

9. Basili, R., Moschitti, A.: NLP-driven IR: Evaluating Performance over a Text Classification
Task. In: International Joint Conference of Artificial Intelligence (2001)

10. Basili, R., Moschitti, A.: Automatic Text Categorization: from Information Retrieval to Sup-
port Vector Learning. Aracne Publisher (2005)

11. Basili, R., Moschitti, A., Pazienza, M.T.: Extensive Evaluation of Efficient NLP-driven Text
Classification. Applied Artificial Intelligence (2006)

12. Bloehdorn, S., Basili, R., Cammisa, M., Moschitti, A.: Semantic Kernels for Text Classifica-
tion based on Topological Measures of Feature Similarity. In: Sixth International Conference
on Data Mining, ICDM 2006, pp. 808–812. IEEE, Los Alamitos (2006)

http://disi.unitn.it/moschitti/teaching.html
http://disi.unitn.it/moschitti/Tree-Kernel.htm
http://disi.unitn.it/moschitti/Tree-Kernel.htm

500 A. Moschitti

13. Bloehdorn, S., Moschitti, A.: Combined Syntactic and Semanitc Kernels for Text Classifi-
cation. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, pp.
307–318. Springer, Heidelberg (2007)

14. Bloehdorn, S., Moschitti, A.: Exploiting Structure and Semantics for Expressive Text Ker-
nels. In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge Man-
agement, CIKM 2007, pp. 861–864. ACM, New York (2007)

15. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the vapnik-
chervonenkis dimension. Journal of the Association for Computing Machinery 36(4), 929–
965 (1989)

16. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery 2(2), 121–167 (1998)

17. Cilia, E., Moschitti, A.: Advanced Tree-based Kernels for Protein Classification. In: Basili,
R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 218–229. Springer,
Heidelberg (2007)

18. Cilia, E., Moschitti, A., Ammendola, S., Basili, R.: Structured kernels for automatic detection
of protein active sites. In: Mining and Learning with Graphs Workshop (MLG) (2006)

19. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels over discrete
structures, and the voted perceptron. In: ACL 2002 (2002)

20. Cristianini, N., Shawe-Taylor, J.: An introduction to Support Vector Machines. Cambridge
University Press, Cambridge (2000)

21. Culotta, A., Sorensen, J.: Dependency Tree Kernels for Relation Extraction. In: Proceedings
of the 42nd Meeting of the Association for Computational Linguistics (ACL 2004), Main
Volume, Barcelona, Spain, pp. 423–429 (July 2004)

22. Diab, M., Moschitti, A., Pighin, D.: Semantic Role Labeling Systems for Arabic Language
using Kernel Methods. In: Proceedings of the 46th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pp. 798–806. Association for
Computational Linguistics, Columbus (June 2008)

23. Dinarelli, M., Moschitti, A., Riccardi, G.: Re-Ranking Models for Spoken Language Un-
derstanding. In: Proceedings of the 12th Conference of the European Chapter of the ACL
(EACL 2009), pp. 202–210. Association for Computational Linguistics, Athens (March
2009)

24. Dinarelli, M., Moschitti, A., Riccardi, G.: Re-Ranking Models Based-on Small Training Data
for Spoken Language Understanding. In: Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pp. 1076–1085. Association for Computational
Linguistics (2009)

25. Dutta, H., Waltz, D., Moschitti, A., Pighin, D., Gross, P., Monteleoni, C., Salleb-Aouissi,
A., Boulanger, A., Pooleery, M., Anderson, R.: Estimating the Time Between Failures of
Electrical Feeders in the New York Power Grid. In: Next Generation Data Mining Summit,
NGDM 2009, Baltimore, MD (2009)

26. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
27. Giannone, C., Basili, R., Naggar, P., Moschitti, A.: Supervised Semantic Relation Mining

from Linguistically Noisy Text Documents. International Journal on Document Analysis and
Recognition 2010, 1–25 (2010)

28. Giordani, A., Moschitti, A.: Semantic Mapping Between Natural Language Questions and
SQL Queries via Syntactic Pairing. In: Horacek, H., Métais, E., Muñoz, R., Wolska, M. (eds.)
NLDB 2009. LNCS, vol. 5723, pp. 207–221. Springer, Heidelberg (2010)

29. Giordani, A., Moschitti, A.: Syntactic Structural Kernels for Natural Language Interfaces
to Databases. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML
PKDD 2009. LNCS, vol. 5781, pp. 391–406. Springer, Heidelberg (2009)

Automatic Learning Using Kernels Methods 501

30. Giuglea, A., Moschitti, A.: Semantic Role Labeling via FrameNet, VerbNet and PropBank.
In: COLING-ACL 2006: 21st International Conference on Computational Linguistics and
44th Annual Meeting of the Association for Computational Linguistics, pp. 929–936. Asso-
ciation for Computational Linguistics (July 2006)

31. Giuglea, A.M., Moschitti, A.: Shallow Semantic Parsing Based on FrameNet, VerbNet and
PropBank. In: ECAI 2006, 17th Conference on Artificial Intelligence, including Prestigious
Applications of Intelligent Systems (PAIS 2006), Riva del Garda, Italy, August 29-September
1. IOS, Amsterdam (2006)

32. Giuglea, A.M., Moschitti, A.: Knowledge Discovery using FrameNet, VerbNet and Prop-
Bank. In: Meyers, A. (ed.) Workshop on Ontology and Knowledge Discovering at
ECML 2004, Pisa, Italy (2004)

33. Hahn, S., Dinarelli, M., Raymond, C., Lefevre, F., Lehnen, P., Mori, R.D., Moschitti, A., Ney,
H., Riccardi, G.: Comparing Stochastic Approaches to Spoken Language Understanding in
Multiple Languages. IEEE Transaction on Audio, Speech and Language Processing PP (99),
1–15 (2010)

34. Haussler, D.: Convolution Kernels on Discrete Structures. Technical report ucs-crl-99-10,
University of California Santa Cruz (1999)

35. Jackendoff, R.: Semantic Structures. Current Studies in Linguistics series. The MIT Press,
Cambridge (1990)

36. Johansson, R., Moschitti, A.: Reranking Models in Fine-grained Opinion Analysis. In: Pro-
ceedings of the 23rd International Conference on Computational Linguistics (Coling 2010),
Beijing, China, pp. 519–527 (August 2010)

37. Johansson, R., Moschitti, A.: Syntactic and Semantic Structure for Opinion Expression De-
tection. In: Proceedings of the Fourteenth Conference on Computational Natural Language
Learning, Sweden, pp. 67–76 (July 2010)

38. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification
using string kernels. In: NIPS, pp. 563–569 (2000)

39. Mehdad, Y., Moschitti, A., Zanzotto, F.: Syntactic/Semantic Structures for Textual Entail-
ment Recognition. In: Human Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, pp. 1020–1028.
Association for Computational Linguistics, Los Angeles (June 2010)

40. Moschitti, A.: Efficient Convolution Kernels for Dependency and Constituent Syntactic
Trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI),
vol. 4212, pp. 318–329. Springer, Heidelberg (2006)

41. Moschitti, A.: Making tree kernels practical for natural language learning. In: EACL 2006:
11th Conference of the European Chapter of the Association for Computational Linguistics.
ACL (2006)

42. Moschitti, A.: Syntactic Kernels for Natural Language Learning: the Semantic Role Labeling
Case. In: Human Language Technology Conference of the North American Chapter of the
Association of Computational Linguistics, pp. 97–100. ACL (2006)

43. Moschitti, A.: Syntactic and Semantic Kernels for Short Text Pair Categorization. In: Pro-
ceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009), pp.
576–584. Association for Computational Linguistics, Athens (March 2009)

44. Moschitti, A.: LivingKnowledge: Kernel Methods for Relational Learning and Semantic
Modeling. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp.
15–19. Springer, Heidelberg (2010)

45. Moschitti, A., Giuglea, A.M., Coppola, B., Basili, R.: Hierarchical Semantic Role Label-
ing. In: Proceedings of the Ninth Conference on Computational Natural Language Learning
(CoNLL 2005), June 30, pp. 201–204. Association for Computational Linguistics (2005)

502 A. Moschitti

46. Moschitti, A., Pighin, D., Basili, R.: Semantic Role Labeling via Tree Kernel Joint Inference.
In: Proceedings of the 10th Conference on Computational Natural Language Learning, pp.
61–68. Association for Computational Linguistics (June 2006)

47. Moschitti, A., Pighin, D., Basili, R.: Tree Kernel Engineering for Proposition Reranking. In:
MLG 2006: Proceedings of the International Workshop on Mining and Learning with Graphs
(in conjunction with ECML/PKDD 2006), pp. 165–172 (September 2006)

48. Moschitti, A., Pighin, D., Basili, R.: Tree Kernel Engineering in Semantic Role Labeling
Systems. In: EACL 2006: 11th Conference of the European Chapter of the Association for
Computational Linguistics: Proceedings of the Workshop on Learning Structured Informa-
tion in Natural Language Applications, pp. 49–56 (2006)

49. Moschitti, A., Quarteroni, S.: Kernels on Linguistic Structures for Answer Extraction. In:
46th Conference of the Association for Computational Linguistics, pp. 113–116. ACL,
Columbus (2008)

50. Moschitti, A., Quarteroni, S.: Linguistic Kernels for Answer Re-ranking in Question An-
swering Systems. Information Processing & Management 2010, 1–36 (2010)

51. Moschitti, A., Quarteroni, S., Basili, R., Manandhar, S.: Exploiting Syntactic and Shallow
Semantic Kernels for Question/Answer Classification. In: Proceedings of the 45th Annual
Meeting of the Association for Computational Linguistics, pp. 776–783. Association for
Computational Linguistics, USA (2007)

52. Moschitti, A., Zanzotto, F.M.: Experimenting a General Purpose Textual Entailment Learner
in AVE. In: Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke,
M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730, pp. 510–517. Springer, Heidelberg
(2007)

53. Moschitti, A., Zanzotto, F.M.: Fast and effective kernels for relational learning from texts.
In: Proceedings of the 24th Annual International Conference on Machine Learning, pp. 649–
656. ACM, New York (June 2007)

54. Moschitti, A.: A study on convolution kernel for shallow semantic parsing. In: Proceedings
of the 42th Conference on Association for Computational Linguistic (ACL 2004), Barcelona,
Spain (2004)

55. Moschitti, A.: Kernel Methods, Syntax and Semantics for Relational Text Categorization. In:
Proceeding of ACM 17th Conf. on Information and Knowledge Management (CIKM 2008),
Napa Valley, CA, USA (2008)

56. Moschitti, A., Basili, R.: Complex Linguistic Features for Text Classification: a Comprehen-
sive Study. In: McDonald, S., Tait, J.I. (eds.) ECIR 2004. LNCS, vol. 2997, pp. 181–196.
Springer, Heidelberg (2004)

57. Moschitti, A., Pighin, D., Basili, R.: Tree Kernels for Semantic Role Labeling. Computa-
tional Linguistics, 193–224 (2008)

58. Nguyen, T., Moschitti, A., Riccardi, G.: Convolution Kernels on Constituent, Dependency
and Sequential Structures for Relation Extraction. In: Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing, pp. 1378–1387. Association for Computa-
tional Linguistics, Singapore (August 2009)

59. Nguyen, T.V.T., Moschitti, A., Riccardi, G.: Kernel-based Reranking for Named-Entity Ex-
traction. In: Coling 2010: Posters, Beijing, China, pp. 901–909 (August 2010)

60. Pighin, D., Moschitti, A.: Efficient Linearization of Tree Kernel Functions. In: Proceedings
of the Thirteenth Conference on Computational Natural Language Learning (CoNLL 2009),
pp. 30–38. Association for Computational Linguistics (2009)

61. Pighin, D., Moschitti, A.: Reverse Engineering of Tree Kernel Feature Spaces. In: Proceed-
ings of the 2009 Conference on Empirical Methods in Natural Language Processing, pp.
111–120. Association for Computational Linguistics (2009)

Automatic Learning Using Kernels Methods 503

62. Pighin, D., Moschitti, A.: On Reverse Feature Engineering of Syntactic Tree Kernels. In:
Proceedings of the Fourteenth Conference on Computational Natural Language Learning,
pp. 223–233. Association for Computational Linguistics, Uppsala (July 2010)

63. Severyn, A., Moschitti, A.: Large-Scale Support Vector Learning with Structural Kernels. In:
Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS,
vol. 6323, pp. 229–244. Springer, Heidelberg (2010)

64. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)
65. Versley, Y., Ponzetto, S.P., Poesio, M., Eidelman, V., Jern, A., Smith, J., Yang, X., Moschitti,

A.: BART: A Modular Toolkit for Coreference Resolution. In: ACL (Demo Papers), pp. 9–12
(2008)

66. Vesley, Y., Moschitti, A., Poesio, M.: Coreference Systems based on Kernels Methods. In:
International Conference on Computational Linguistics, pp. 961–968. Association for Com-
putational Linguistics (2008)

67. Zanzotto, F.M., Moschitti, A.: Automatic Learning of Textual Entailments with Cross-Pair
Similarities. In: The Joint 21st International Conference on Computational Linguistics and
44th Annual Meeting of the Association for Computational Linguistics (COLING-ACL).
Association for Computational Linguistics, Sydney (2006)

68. Zanzotto, F.M., Moschitti, A.: Similarity between Pairs of Co-indexed Trees for Textual En-
tailment Recognition. In: The TextGraphs Workshop at Human Language Technology. As-
sociation for Computational Linguistics (2006)

69. Zanzotto, F.M., Moschitti, A., Pennacchiotti, M., Pazienza, M.T.: Learning Textual Entail-
ment from Examples. In: The Second Recognising Textual Entailment Challenge. The Sec-
ond Recognising Textual Entailment Challenge (2006)

70. Zanzotto, F.M., Pennacchiotti, M., Moschitti, A.: Shallow Semantics in Fast Textual Entail-
ment Rule Learners. In: The Third Recognising Textual Entailment Challenge, pp. 72–77.
Association for Computational Linguistics (2007)

71. Zanzotto, F.M., Pennacchiotti, M., Moschitti, A.: A Machine Learning Approach to Recog-
nizing Textual Entailment. Natural Language Engineering 15(4), 551–582 (2009)

72. Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction. Journal of
Machine Learning Research (2003)

Modelling Secure Systems Evolution:

Abstract and Concrete Change Specifications

Jan Jürjens1,2 , Mart́ın Ochoa1, Holger Schmidt1, Löıc Marchal3,
Siv Hilde Houmb4, and Shareeful Islam5

1 Software Engineering, Dep. of Computer Science, TU Dortmund, Germany
2 Fraunhofer ISST, Germany

3 Hermès Engineering, Belgium
4 Secure-NOK AS, Norway

5 School of Computing, IT and Engineering, University of East London, UK
{jan.jurjens,martin.ochoa,holger.schmidt}@cs.tu-dortmund.de,

loic.marchal@hermes-ecs.com,
sivhoumb@securenok.com,
shareeful@uel.ac.uk

Abstract. Developing security-critical systems is difficult, and there are
many well-known examples of vulnerabilities exploited in practice. In
fact, there has recently been a lot of work on methods, techniques, and
tools to improve this situation already at the system specification and
design. However, security-critical systems are increasingly long-living and
undergo evolution throughout their lifetime. Therefore, a secure software
development approach that supports maintaining the needed levels of
security even through later software evolution is highly desirable. In this
chapter, we recall the UMLsec approach to model-based security and
discuss on tools and techniques to model and verify evolution of UMLsec
models.

Keywords: Software Evolution, UMLsec, UMLseCh, Security.

1 Introduction

Typically, a systematic approach focused on software quality – the degree to
which a software system meets its requirements – is addressed during design
time through design processes and supporting tools. Once the system is put in
operation, maintenance and re-engineering operations are supposed to keep it
running.

At the same time, successful software-based systems are becoming increasingly
long-living [21]. This was demonstrated strikingly with the occurrence of the
year 2000 bug, which occurred because software had been in use for far longer
than its expected lifespan. Also, software-based systems are getting increasingly
security-critical since software now pervades the whole critical infrastructures
dealing with critical data of both nations and also private individuals. There is
therefore a growing demand for more assurance and verifiable secure IT systems

M. Bernardo and V. Issarny (Eds.): SFM 2011, LNCS 6659, pp. 504–526, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Modelling Secure Systems Evolution 505

Model

Software System
Model

n
Security verified

{Still secure?

{

1

Evolved System

Evolved System
Model

Δ1

...
...

Δn

Fig. 1. Model verification problem for n possible evolution paths

both during development and at deployment time, in particular also for long
living systems. Yet a long lived system also needs to be flexible, to adapt to
evolving requirements, usage, and attack models. However, using today’s system
engineering techniques we are forced to trade flexibility for assurance or vice
versa: we know today how to provide security or flexibility taken in isolation.
We can use full fledged verification for providing a high-level of assurance to
fairly static requirements, or we can provide flexible software, developed in weeks
using agile methodologies, but without any assurance. This raises the research
challenge of whether and how we can provide some level of security assurance
for something that is going to change.

Our objective is thus to develop techniques and tools that ensure “lifelong”
compliance to evolving security requirements for a long-running evolving soft-
ware system. This is challenging because these requirements are not necessarily
preserved by system evolution [22]. In this chapter, we present results towards
a security modelling notation for the evolution of security-critical designs, suit-
able by verification with formally founded automated security analysis tools.
Most existing assessment methods used in the development of secure systems
are mainly targeted at analysing a static picture of the system or infrastructure
in question. For example, the system as it is at the moment, or the system as it
will be when we have updated certain parts according to some specifications. In
the development of secure systems for longevity, we also need descriptions and
specifications of what may be foreseen as future changes, and the assessment
methods must be specialized account for this kind of descriptions. Consequently,
our approach allows to re-assess the impact that changes might have on the
security of systems.

On one hand, a system needs to cope with a given change as early as possible
and on the other hand, it should preserve the security properties of the overall
system (Fig. 1). To achieve this, it is preferable to analyse the planned evolution
before carrying it out. In this chapter we present a notation that allows to precisely
determine the changes between one or more system versions, and that combined
with proper analysis techniques, allows to reason about how to preserve the exist-
ing and new (if any) security properties due to the evolution. Reflecting change on
the model level eases system evolution by ensuring effective control and tracking

506 J. Jürjens et al.

Automated
Theorem

Prover

UML editor

Java editor

Analyzer

Local
Code

Checker
Control
Flow
Graph

code Report
TextJava

Trace
Attack

data flow

"uses"

fmla
FOL

generator
Attack

prog.

model

Prolog

UMLsec
Code
with

Assert’s;
Tests

Assertion/Test
Generator

Security
Analyzer

Fig. 2. a) Model-based Security Engineering; b) Model-based Security Tool Suite

of changes. We focus in understanding and tracing the change notations for the
system design model. Design models represent the early exploration of the solu-
tion space and are the intermediate between requirements and implementation.
They can be used to specify, analyse, and trace changes directly.

In Sect. 2 we recall the UMLsec profile [10,13], which is a UML [28] light-
weight extension to develop and analyse security models, together with some
applications. We present a change-modelling profile called UMLseCh in Sect. 3.
We use UMLseCh design models for change exploration and decision support
when considering how to integrate new or additional security functions and to
explore the security implications of planned system evolution. To maintain the
security properties of a system through change, the change can be explicitly
expressed such that its implications can be analysed a priori. The UMLseCh
stereotypes extend the existing UMLsec stereotypes so that the design models
preserve the security properties due to change.

Although, the question of model evolution is intrinsically related with model-
transformation, we do not aim to show an alternative for any existing general-
purpose evolution specification or model transformation approaches (such as
[7,1,2,25,20]). However, we rely on UMLsec because it comes with sophisticated
tool support1, and our goal is to present an approach that is a) consistent with
the UMLsec philosophy of extending UML b) is meant to be used on the UML
fragment relevant for UMLsec.

In Sect. 4 we show some applications of UMLseCh to different diagram types
and we discuss how this notation and related verification mechanisms could be
supported by an extension of the UMLsec Tool Suite.

2 Background: Secure Systems Modelling with UMLsec

Generally, when using model-based development (Fig. 2a), the idea is that one
first constructs a model of the system. Then, the implementation is derived from

1 UMLsec tool suite: http://www.umlsec.de/

http://www.umlsec.de/

Modelling Secure Systems Evolution 507

the model: either automatically using code generation, or manually, in which case
one can generate test sequences from the model to establish conformance of the
code regarding the model. In the model-based security engineering (MBSE) ap-
proach based on the UML [28] extension UMLsec, [11,13], recurring security
requirements (such as secrecy, integrity, authenticity, and others) and security
assumptions on the system environment, can be specified either within UML
specifications, or within the source code (Java or C) as annotations (Fig. 2b).
This way we encapsulate knowledge on prudent security engineering as anno-
tations in models or code and make it available to developers who may not be
security experts.

The UMLsec extension is given in form of a UML profile using the standard
UML extension mechanisms. Stereotypes are used together with tags to formu-
late the security requirements and assumptions. Constraints give criteria that
determine whether the requirements are met by the system design, by referring
to a precise semantics of the used fragment of UML. The security-relevant infor-
mation added using stereotypes includes security assumptions on the physical
level of the system, security requirements related to the secure handling and
communication of data, and security policies that system parts are supposed to
obey. The UMLsec tool-support in Fig. 2b) can be used to check the constraints
associated with UMLsec stereotypes mechanically, based on XMI output of the
diagrams from the UML drawing tool in use [29,14,18,8]. There is also a frame-
work for implementing verification routines for the constraints associated with
the UMLsec stereotypes. Thus advanced users of the UMLsec approach can use
this framework to implement verification routines for the constraints of self-
defined stereotypes. The semantics for the fragment of UML used for UMLsec is
defined in [13] using so-called UML Machines, which is a kind of state machine
with input/output interfaces similar to Broy’s Focus model, whose behavior can
be specified in a notation similar to that of Abstract State Machines (ASMs),
and which is equipped with UML-type communication mechanisms. On this
basis, important security requirements such as secrecy, integrity, authenticity,
and secure information flow are defined. To support stepwise development, we
show secrecy, integrity, authenticity, and secure information flow to be preserved
under refinement and the composition of system components. We have also de-
veloped an approach that supports the secure development of layered security
services (such as layered security protocols). UMLsec can be used to specify and
implement security patterns, and is supported by dedicated secure systems devel-
opment processes, in particular an Aspect-Oriented Modeling approach which
separates complex security mechanisms (which implement the security aspect
model) from the core functionality of the system (the primary model) in order
to allow a security verification of the particularly security-critical parts, and also
of the composed model.

2.1 The UMLsec Profile

Because of space restrictions, we cannot recall our formal semantics here com-
pletely. Instead, we define precisely and explain the interfaces of this semantics

508 J. Jürjens et al.

that we need here to define the UMLsec profile. More details on the formal
semantics of a simplified fragment of UML and on previous and related work
in this area can be found in [9,13]. The semantics is defined formally using so-
called UML Machines, which is an extension of Mealy automata with UML-type
communication mechanisms. It includes the following kinds of diagrams:

Class diagrams define the static class structure of the system: classes with
attributes, operations, and signals and relationships between classes. On the
instance level, the corresponding diagrams are called object diagrams.

Statechart diagrams (or state diagrams) give the dynamic behavior of an
individual object or component: events may cause a change in state or an
execution of actions.

Sequence diagrams describe interaction between objects or system
components via message exchange.

Activity diagrams specify the control flow between several components within
the system, usually at a higher degree of abstraction than statecharts and
sequence diagrams. They can be used to put objects or components in the
context of overall system behavior or to explain use cases in more detail.

Deployment diagrams describe the physical layer on which the system is to
be implemented.

Subsystems (a certain kind of packages) integrate the information between
the different kinds of diagrams and between different parts of the system
specification.

There is another kind of diagrams, the use case diagrams, which describe typical
interactions between a user and a computer system. They are often used in
an informal way for negotiation with a customer before a system is designed.
We will not use it in the following. Additionally to sequence diagrams, there
are collaboration diagrams, which present similar information. Also, there are
component diagrams, presenting part of the information contained in deployment
diagrams.

The used fragment of UML is simplified to keep automated formal verification
that is necessary for some of the more subtle security requirements feasible. Note
that in our approach we identify system objects with UML objects, which is
suitable for our purposes. Also, as with practically all analysis methods, also in
the real-time setting [30], we are mainly concerned with instance-based models.
Although, simplified, our choice of a subset of UML is reasonable for our needs,
as we have demonstrated in several industrial case-studies (some of which are
documented in [13]).

The formal semantics for subsystems incorporates the formal semantics of the
diagrams contained in a subsystem. It

– models actions and internal activities explicitly (rather than treating them
as atomic given events), in particular the operations and the parameters
employed in them,

– provides passing of messages with their parameters between objects or com-
ponents specified in different diagrams, including a dispatching mechanism
for events and the handling of actions, and thus

Modelling Secure Systems Evolution 509

«Internet»

«secrecy» server machineclient machine
get_password

browser
client apps

access control
web server«call»

«secure links»remote access

Fig. 3. Example secure links usage

– allows in principle whole specification documents to be based on a formal
foundation.

In particular, we can compose subsystems by including them into other
subsystems.

For example, consider the following UMLsec Stereotype:

secure links. This stereotype, which may label (instances of) subsystems, is
used to ensure that security requirements on the communication are met by the
physical layer. More precisely, the constraint enforces that for each dependency d
with stereotype s ∈ {�secrecy�,�integrity�,�high�} between subsys-
tems or objects on different nodes n, m, we have a communication link l between
n and m with stereotype t such that

– in the case of s = �high�, we have ThreatsA(t) = ∅,
– in the case of s = �secrecy�, we have read /∈ ThreatsA(t), and
– in the case of s = �integrity�, we have insert /∈ ThreatsA(t).

Example. In Fig. 3, given the default adversary type, the constraint for the
stereotype �secure links� is violated: The model does not provide commu-
nication secrecy against the default adversary, because the Internet communica-
tion link between web-server and client does not give the needed security level
according to the Threatsdefault (Internet) scenario. Intuitively, the reason is that
Internet connections do not provide secrecy against default adversaries. Techni-
cally, the constraint is violated, because the dependency carries the stereotype
�secrecy�, but for the stereotype �Internet� of corresponding link we
have read ∈ Threatsdefault (Internet).

Code Security Assurance [15,16]. Even if specifications exist for the im-
plemented system, and even if these are formally analyzed, there is usually no
guarantee that the implementation actually conforms to the specification. To
deal with this problem, we use the following approach: After specifying the
system in UMLsec and verifying the model against the given security goals as

510 J. Jürjens et al.

explained above, we make sure that the implementation correctly implements
the specification with techniques explained below. In particular, this approach is
applicable to legacy systems. In ongoing work, we are automating this approach
to free one of the need to manually construct the UMLsec model.

Run-time Security Monitoring using Assertions. A simple and effective alterna-
tive is to insert security checks generated from the UMLsec specification that
remain in the code while in use, for example using the assertion statement that
is part of the Java language. These assertions then throw security exceptions
when violated at run-time. In a similar way, this can also be done for C code.

Model-based Test Generation. For performance-intensive applications, it may be
preferable not to leave the assertions active in the code. This can be done by
making sure by extensive testing that the assertions are always satisfied. We
can generate the test sequences automatically from the UMLsec specifications.
More generally, this way we can ensure that the code actually conforms to the
UMLsec specification. Since complete test coverage is often infeasible, our ap-
proach automatically selects those test cases that are particularly sensitive to
the specified security requirements [19].

Automated Code Verification against Interface Specifications. For highly non-
deterministic systems such as those using cryptography, testing can only provide
assurance up to a certain degree. For higher levels of trustworthiness, it may
therefore be desirable to establish that the code does enforce the annotations by a
formal verification of the source code against the UMLsec interface specifications.
We have developed an approach that does this automatically and efficiently by
proving locally that the security checks in the specification are actually enforced
in the source code.

Automated Code Security Analysis. We developed an approach to use automated
theorem provers for first-order logic to directly formally verify crypto-based Java
implementations based on control flow graphs that are automatically generated
(and without first manually constructing an interface specification). It supports
an abstract and modular security analysis by using assertions in the source
code. Thus large software systems can be divided into small parts for which a
formal security analysis can be performed more easily and the results composed.
Currently, this approach works especially well with nicely structured code (such
as created using the MBSE development process).

Secure Software-Hardware Interfaces. We have tailored the code security analysis
approach to software close to the hardware level. More concretely, we considered
the industrial Cryptographic Token Interface Standard PKCS 11 which defines
how software on untrustworthy hardware can make use of tamper-proof hardware
such as smart-cards to perform cryptographic operations on sensitive data. We
developed an approach for automated security analysis with first-order logic
theorem provers of crypto protocol implementations making use of this standard.

Modelling Secure Systems Evolution 511

Analyzing Security Configurations. We have also performed research on
linking the UMLsec approach with the automated analysis of security-critical
configuration data. For example, our tools automatically checks SAP R/3 user
permissions for security policy rules formulated as UML specifications [13]. Be-
cause of its modular architecture and its standardized interfaces, the tool can
be adapted to check security constraints in other kinds of application software,
such as firewalls or other access control configurations.

Industrial Applications of MBSE include:

Biometric Authentication. For a project with an industrial partner, MBSE was
chosen to support the development of a biometric authentication system at the
specification level, where three significant security flaws were found [14]. We also
applied it to the source-code level for a prototypical implementation constructed
from the specification [12].

Common Electronic Purse Specifications. MBSE was applied to a security anal-
ysis of the Common Electronic Purse Specifications (CEPS), a candidate for
a globally interoperable electronic purse standard supported by organizations
representing 90 % of the world’s electronic purse cards (including Visa Inter-
national). We found three significant security weaknesses in the purchase and
load transaction protocols [13], proposed improvements to the specifications and
showed that these are secure [13]. We also performed a security analysis of a
prototypical Java Card implementation of CEPS.

Web-based Banking Application. In a project with a German bank, MBSE was
applied to a web-based banking application to be used by customers to fill out
and sign digital order forms [6]. The personal data in the forms must be kept
confidential, and orders securely authenticated. The system uses a proprietary
client authentication protocol layered over an SSL connection supposed to pro-
vide confidentiality and server authentication. Using the MBSE approach, the
system architecture and the protocol were specified and verified with regard to
the relevant security requirements.

In other applications [13], MBSE was used . . .

– to uncover a flaw in a variant of the Internet protocol TLS proposed at IEEE
Infocom 1999, and suggest and verify a correction of the protocol.

– to perform a security verification of the Java implementation Jessie of SSL.
– to correctly employ advanced Java 2 or CORBA security concepts in a way

that allows an automated security analysis of the resulting systems.
– for an analysis of the security policies of a German mobile phone operator

[17].
– for a security analysis of the specifications for the German Electronic Health

Card in development by the German Ministry of Health.
– for the security analysis of an electronic purse system developed for the

Oktoberfest in Munich.
– for a security analysis of an electronic signature pad based contract signing

architecture under consideration by a German insurance company.

512 J. Jürjens et al.

– in a project with a German car manufacturer for the security analysis of an
intranet-based web information system.

– with a German chip manufacturer and a German reinsurance company for
security risk assessment, also regarding Return on Security Investment.

– in applications specifically targeted to service-based, health telematics, and
automotive systems.

Recently, there has been some work analyzing trade-offs between security- and
performance-requirements [24,31].

3 Modelling Evolution with UMLseCh

This section introduces extensions of the UMLsec profile for supporting system
evolution in the context of model-based secure software development with UML.

This profile, UMLseCh, is a further extension of the UML profile UMLsec in
order to support system evolution in the context of model-based secure software
development with UML. It is a “light-weight” extension of the UML in the sense
that it is defined based on the UML notation using the extension mechanisms
stereotypes, tags, and constraints, that are provided by the UML standard. For
the purposes of this section, by “UML” we mean the core of the UML 2.0 which
was conservatively included from UML 1.52.

As such, one can define the meta-model for UMLsec and also for UMLseCh
by referring to the meta-model for UML and by defining the relevant list of
stereotypes and associated tags and constraints. The meta-model of the UMLsec
notation was defined in this way in [13]. In this section, we define the meta-model
of UMLseCh in an analogous way.

The UMLseCh notation is divided in two parts: one part intended to be used
during abstract design, which tends to be more informal and less complete in its
use and is thus particularly suitable for abstract documentation and discussion
with customers (cf. Sect. 3.1), and one part intended to be used during detailed
design, which is assumed to be more detailed and also more formal, such that
it will lend itself towards automated security analysis (cf. Sect. 3.2). We discuss
about possible verification strategies based on the concrete notation in Sect. 3.3.

3.1 Abstract Notation

We use stereotypes to model change in the UML design models. These extend
the existing UMLsec stereotypes and are specific for system evolution (change).
We define change stereotypes on two abstraction layers: (i) abstract stereotypes
and (ii) Concrete stereotypes. This subsection given an overview of the abstract
stereotypes.

The aim of the abstract change stereotypes is to document change arte-
facts directly on the design models to enable controlled change actions. The
abstract change stereotypes are tailored for modelling a living security system,
i.e., through all phases of a system’s life-cycle.
2 http://www.omg.org/spec/UML/1.5

Modelling Secure Systems Evolution 513

We distinguish between past, current and future change. The abstract stereo-
types makes up three refinement levels, where the upper level is �change�.
This stereotype can be attached to subsystems and is used across all UML dia-
grams. The meaning of the stereotype is that the annotated modelling element
and all its sub-elements has or is ready to undergo change.

�change� is refined into the three change schedule stereotypes:

1. �past change� representing changes already made to the system (typi-
cally between two system versions).

2. �current change� representing changes currently being made to a system.
3. �future change� specifying the future allowed changes.

To track and ensure controlled change actions one needs to be explicit about
which model elements are allowed to change and what kind of change is per-
mitted on a particular model element. For example, it should not be allowed to
introduce audit on data elements that are private or otherwise sensitive, which
is annotated using the UMLsec stereotype �secrecy�. To avoid such conflict,
security analysis must be undertaken by refining the abstract notation into the
concrete one.

Past and current changes are categories into addition of new elements, modi-
fication of existing elements and deletion of elements. The following stereotypes
have been defined to cover these three types of change: �new�, �modified�
and �deleted�.

For future change we also include the same three categories of change and the
following three future change stereotypes have been defined: �allowed add�;
�allowed modify�; �allowed delete�. These stereotypes can be attached
to any model element in a subsystem. The future change stereotypes are used
to specify future allowed changes for a particular model element.

Past and current change The �new� stereotype is attached to a new sys-
tem part that is added to the system as a result of a functionality-driven or a
security-driven change. For security-driven changes, we use the UMLsec stereo-
types secrecy, integrity and authenticity to specify the cause of security-driven
change; e.g. that a component has been added to ensure the secrecy of informa-
tion being transmitted. This piece of information allows us to keep track of the
reasons behind a change. Such information is of particular importance for secu-
rity analysis; e.g. to determine whether or which parts of a system (according to
the associated dependencies tag) that must be analysed or added to the target
of evaluation (ToE) in case of a security assurance evaluation.

Tagged values are used to assist in security analysis and holds information rele-
vant for the associated stereotype. The tagged value: {version=version number}
is attached to the �new� stereotype to specify and trace the number of changes
that has been made to the new system part. When a ‘new’ system part is first
added to the system, the version number is set to 0. This means that if a system
part has the �new� stereotype attached to it where the version number is > 0,
the system part has been augmented with additional parts since being added

514 J. Jürjens et al.

to the system (e.g., addition of an new attribute to a new class). For all other
changes, the �modified� stereotype shall be used.

The tagged value: {dependencies=yes/no} is used to document whether
there is a dependency between other system parts and the new/modified system
part. At this point in the work, we envision changes to this tag, maybe even
a new stereotype to keep track of exactly which system parts that depends on
each other. However, there is a need to gain more experience and to run through
more examples to make a decision on this issue, as new stereotypes should only
be added if necessary for the security analysis or for the security assurance eval-
uation. Note that the term dependencies are adopted from ISO 14508 Part 2
(Common Criteria) [5].

The �modified� change stereotype is attached to an already existing system
part that has been modified as a result of a functional-driven or a security-driven
change/change request. The tagged values is the same as for the ’new’ stereotype.

The �deleted� change stereotype is attached to an existing system part
(subsystem, package, node, class, components, etc.) for which one or more parts
(component, attributes, service and similar) have been removed as a result of a
functionality-driven change. This stereotype differs from the ’new’ and ’modified’
stereotypes in that it is only used in cases where it is essential to document the
deletion. Examples of such cases are when a security component is removed as a
result of a functionality-driven change, as this often affects the overall security
level of a system. Information about deleted model elements are used as input
to security analysis and security assurance evaluation.

Future change The allowed future change for a modelling element or system part
(subsystem) is adding a new element, modifying an existing element and deleting
elements (�allowed add�, �allowed modify� and �allowed delete�).
We reuse the tagged values from the past and current change stereotypes, except
for ‘version number’ which is not used for future changes.

3.2 Concrete Notation

We further extend UMLsec by adding so called “concrete” stereotypes: these
stereotypes allow to precisely define substitutive (sub) model elements and are
equipped with constraints that help ensuring their correct application. These
differ from the abstract stereotypes basically because we define a precise seman-
tics (similar to the one of a transformation language) that is intended to be the
basis for a security-preservation analysis based on the model difference between
versions.

Figure 4 shows the stereotypes defining table. The tags table is shown in
Figure 5.

Description of the notation. We now describe informally the intended se-
mantics of each stereotype.

substitute. The stereotype substitute attached to a model element denotes the
possibility for that model element to be substituted by a model element of the

Modelling Secure Systems Evolution 515

Stereotype Base Class Tags Constraints Description

substitute all ref, substitute, FOL formula substitute a model
pattern element

add all ref, add, FOL formula add a model
pattern element

delete all ref, pattern FOL formula delete a model
element

substitute-all subsystem ref, substitute, FOL formula substitute a
pattern group of elements

add-all subsystem ref, add, FOL formula add a group
pattern of elements

delete-all subsystem ref, pattern FOL formula delete a group
of elements

Fig. 4. UMLsecCh concrete design stereotypes

Tag Stereotype Type Multip. Description

ref substitute, add, delete, object name 1 Informal type
substitute-all, add-all, of change
delete-all

substitute substitute, list of 1 Substitutives
substitute-all model elements elements

add add, add-all list of 1 New elements
model elements

pattern substitute, add, delete, list of 1 Elements to
substitute-all, add-all, model elements be modified
delete-all

Fig. 5. UMLsecCh concrete design tags

same type over the time. It has three associated tags, namely {ref},
{substitute} and {pattern}.

These tags are of the form

{ ref =CHANGE-REFERENCE},
{ substitute= MODEL-ELEMENT}

and { pattern= CONDITION }.
The tag {ref} takes a string as value, which is simply used as a reference of

the change. The value of this tag can also be considered as a predicate and take
a truth value to evaluate conditions on the changes, as we explain further in
this section. The tag {substitute} has a list of model element as value, which
represents the several different new model elements that can substitute the actual
one if a change occurs. An element of the list contained in the tagged value is a
model element itself (e.g. a stereotype, {substitute = �stereotype�}). To
textually describe UML model elements one can use an abstract syntax as in
[13] or any equivalent grammar. Ideally, tool support should help the user into

516 J. Jürjens et al.

choosing from a graphical menu which model elements to use, without the user
to learn the model-describing grammar. The last tag, {pattern}, is optional. If
the model element to change is clearly identified by the syntactic notation, i.e. if
there is no possible ambiguity to state which model element is concerned by the
stereotype �substitute�, the tag pattern can be omitted. On the other hand,
if the model element concerned by the stereotype �substitute� is not clearly
identifiable (as it will be the case for simultaneous changes where we can not
attach the evolution stereotype to all targeted elements at once), the tag pattern
must be used. This tag has a model element as value, which represents the model
element to substitute if a change occurs. In general the value of pattern can be
a function uniquely identifying one or more model elements within a diagram.

Therefore, to specify that we want to change, for example, a link stereotyped
�Internet� with a link stereotyped �encrypted�, using the UMLseCh no-
tation, we attach:

�substitute�
{ ref= encrypt-link }

{ substitute= encrypted }
{ pattern= Internet }

to the link concerned by the change.
The stereotype �substitute� also has a constraint formulated in first order

logic. This constraint is of the form [CONDITION]. As mentioned earlier, the
value of the tag {ref} of a stereotype �substitute� can be used as the atomic
predicate for the constraint of another stereotype �substitute�. The truth
value of that atomic predicate is true if the change represented by the stereotype
�substitute� for which the tag {ref} is associated occurred, false otherwise.
The truth value of the condition of a stereotype �substitute� then represents
whether or not the change is allowed to happen (i.e. if the condition is evaluated
to true, the change is allowed, otherwise the change is not allowed).

To illustrate the use of the constraint, let us refine the previous example.
Assume that to allow the change with reference { ref = encrypt-link }, another
change, simply named ”change” for example, has to occur. We then attach the
following to the link concerned by the change:

�substitute�
{ ref= encrypt-link }

{ substitute= encrypted }
{ pattern= Internet }

[change]

add. The stereotype �add� is similar to the stereotype �substitute� but,
as its name indicates, denotes the addition of a new model element. It has three
associated tags, namely {ref}, {add} and {pattern}. The tag {ref} has the
same meaning as in the case of the stereotype �substitute�, as well as the tag
{add} (i.e. a list of model elements that we wish to add). The tag{pattern} has

Modelling Secure Systems Evolution 517

a slightly different meaning in this case. While with stereotype �substitute�,
the tag {pattern} represents the model element to substitute, within the stereo-
type �add� it does not represent the model element to add, but the parent
model element to which the new (sub)-model element is to be added.

The stereotype�add� is a syntactic sugar of the stereotype �substitute�,
as a stereotype �add� could always be represented with a substitute stereotype
(substituting the parent element with a modified one). For example, in the case
of Class Diagrams, if s is the set of methods and m a new method to be added,
the new set of methods is:

s′ = s ∪ {m}
The stereotype �add� also has a constraint formulated in first order logic,

which represents the same information as for the stereotype �substitute�.

delete. The stereotype �delete� is similar to the stereotype �substitute�
but, obviously, denotes the deletion of a model element. It has two associated
tags, namely {ref} and {pattern}, which have the same meaning as in the case
of the stereotype �substitute�, i.e. a reference name and the model element
to delete respectively.

The stereotype �delete� is a syntactic sugar of the substitute stereotype,
as a stereotype �delete� could always be represented with a substitution. For
example, if s is the set of methods and m a method to delete, the new set of
methods is:

s′ = s \ m

As with the previous stereotypes, the stereotype �delete� also has a con-
straint formulated in first order logic.

substitute-all. The stereotype �substitute-all� is an extension of the stereo-
type �substitute� that can be associated to a (sub)model element or to a
whole subsystem. It denotes the possibility for a set of (sub)model elements
to evolve over the time and what are the possible changes. The elements of the
set are sub elements of the element to which this stereotype is attached (i.e. a set
of methods of a class, a set of links of a Deployment diagram, etc). As the stereo-
type �substitute�, it has the three associated tags {ref}, {substitute} and
{pattern}, of the form { ref =CHANGE-REFERENCE}, { substitute= MODEL-
ELEMENT} and { pattern =CONDITION }. The tags {ref} and {substitute}
have the exact same meaning as in the case of the stereotype �substitute�.
The tag {pattern}, here, does not represent one (sub)model element but a set
of (sub)model elements to substitute if a change occur. Again, in order to
identify the list model elements precisely, we can use, if necessary, the abstract
syntax of UMLsec, defined in [13].

If we want, for example, to replace all the links stereotyped �Internet�
of a subsystem by links stereotyped �encrypted�, we can then attach the
following to the subsystem:

518 J. Jürjens et al.

�substitute-all�
{ ref = encrypt-all-links}

{ substitute=�encrypted�}
{ pattern =�Internet�}

The tags {substitute} and {pattern} here allow a parametrisation of the tagged
values MODEL-ELEMENT and CONDITION in order to keep information of
the different model elements of the subsystem concerned by the substitution. For
this, we allow the use of variables in the tagged value of both, the tag {substitute}
and the tag {pattern}.

To illustrate the use of the parametrisation in this simultaneous substitution,
consider the following example. Assume that we would like to substitute all the
secrecy tags in the stereotype �critical� by the integrity tag, we can attach:

�substitute-all�
{ ref = secrecy-to-integrity}

{ substitute= { integrity= X } }
{ pattern = { secrecy= X } }

to the model element to which the stereotype �critical� is attached.
The stereotype �substitute-all� also has a constraint formulated in first

order logic, which represents the same information as for the stereotype
�substitute�.

add-all. The stereotype �add� also has its extension �add-all�, which
follows the same semantics as �substitue-all� but in the context of an
addition.

delete-all. The stereotype �delete� also has its extension �delete-all�,
which follows the same semantics as �substitue-all� but in the context of
a deletion.

Example. Figure 6 shows the use of �add-all� and �substitute-all� on
a package containing a class diagram and a deployment diagram depicting the
communication between two parties through a common proxy server. The change
reflects the design choice to, in addition to protect the integrity of the message
d, enforce the secrecy of this value as well.

Complex changes. In case of complex changes, that arise for example if we
want to merge two diagrams having elements in common, we can overload the
aforementioned stereotypes for accepting not only lists of elements but even lists
of lists of elements. This is technically not very different from what we have
described so far, since the complex evolutions can be seen as syntactic sugar for
multiple coordinated single-model evolutions.

3.3 Security Preservation under Evolution

With the use of the UMLseCh concrete stereotypes, evolving a model means
that we either add, delete, or / and substitute elements of this model explicitly.

Modelling Secure Systems Evolution 519

Channel «substitute−all»
{ref = make−link−secure}
{substitute−all = «encrypted»}
{pattern = «Internet»}

«add−all»
{ref = make−data−secret}
{add−all = {secrecy = X}}
{pattern = {integrity = X}}
[make−link−secure]

sending
«Interface»

send(d:Data)

receiving
«Interface»

receive():Data

R:Receiver

send(d:Data)

S:Sender
{integrity = {d}}

receive():Data

X:Server
{integrity = {d’}}

transmit(d’:Data)

«critical»

«critical»

«send» «send»

Sendercomp

S:Sender

«LAN»
Sendernode

R:Receiver

Receivercomp

«LAN»
Receivernode

X:Server

Servercomp

«LAN»
Servernode

«Internet»

«Internet»

«send»

«send»

Fig. 6. A UMLseCh annotated diagram with simultaneous substitutions and additions

520 J. Jürjens et al.

In other words, the stereotypes induce sets Add, Del, and Subs, containing the
model elements to be added, deleted and substituted respectively, together with
information about where to perform these changes.

Given a diagram M and a set Δ of such modifications we denote M [Δ] the
diagram resulting after the modifications have taken place. So in general let
P be a diagram property. We express the fact that M enforces P by P (M).
Soundness of the security preserving rules R for a property P on diagram M
can be formalized as follows:

P (M) ∧ R(M,Δ) ⇒ P (M [Δ]).

So to reason about security preservation, one has several alternatives, de-
pending on the property P . For some static analysis, it suffices to show that
simultaneous sub-changes contained in Δ preserve P . Then, incrementally, we
can proceed until reaching P (M [Δ]). This can be done by reasoning inductively
inductively by cases given a security requirement on UML models, by consider-
ing incremental atomic changes and distinguishing them according to a) their
evolution type (addition, deletion, substitution) and b) their UML diagram type.

For dealing with behavioural properties one could exploit the divide and con-
quer approach by means of compositionality verification results. This idea, orig-
inally described in general in [4] (and as mentioned before, used for safety prop-
erties in [3]), is as follows: given components C and D, we denote with C ⊗ D
its composition. Then, if we now that a security property P holds on both com-
ponents separately and some set of rules R are satisfied then P holds in the
composition, we can use this to achieve a more efficient verification under evolu-
tion, given R is easy enough to check. In practice, one often has to modify just
one component in a system, and thus if one has:

P (C) ∧ P (D) ∧ R(C, D) ⇒ P (C ⊗ D)

one can then check, for a modification Δ on one of the components:

P (C[Δ]) ∧ P (D) ∧ R(C[Δ], D) ⇒ P (C[Δ] ⊗ D) = P (C ⊗ D)[Δ]

and thus benefit from the already covered case P (D) and the efficiency of
R. Depending on the completeness of R, this procedure can also be relevant
for an evolution of both components, since one could reapply the same deci-
sion procedure for a change in D (and therefore can be generalized to more
than two components). The benefit consists in splitting the problem of verifying
the composition (which is a problem with a bigger input) in two smaller sub-
problems. Some security properties (remarkably information flow properties like
non-interference) are not safety properties, and there are interesting results for
their compositionality (for example [23]).

4 Application Examples and Tool Support

4.1 Modelling Change of UMLsec Diagrams

Secure Dependency. This stereotype, used to label subsystems containing object
diagrams or static structure diagrams, ensures that the �call� and �send�

Modelling Secure Systems Evolution 521

dependencies between objects or subsystems respect the security requirements on
the data that may be communicated along them, as given by the tags {secrecy},
{integrity}, and {high} of the stereotype �critical�. More exactly, the
constraint enforced by this stereotype is that if there is a �call� or �send�
dependency from an object (or subsystem) C to an interface I of an object (or
subsystem) D then the following conditions are fulfilled.

– For any message name n in I, n appears in the tag {secrecy} (resp.
{integrity}, {high}) in C if and only if it does so in D.

– If a message name in I appears in the tag {secrecy} (resp.{integrity},
{high}) in C then the dependency is stereotyped �secrecy� (resp.
�integrity� , �high�).

If the dependency goes directly to another object (or subsystem) without involv-
ing an interface, the same requirement applies to the trivial interface containing
all messages of the server object.

This property is specially interesting to verify under evolution since it is local
enough to re-use effectively previous verifications on the unmodified parts and
its syntactic nature makes the incremental decision procedure relatively straight-
forward.

Example. The example in Fig. 7 shows the Client side of a communication chan-
nel between two parties. At first (disregarding the evolution stereotypes) the
communication is unsecured. In the packages Symmetric and Asymmetric, we have
classes providing cryptographic mechanisms to the Client class. Here the stereo-
type �add� marked with the reference tag {ref} with value add encryption

specifies two possible evolution paths: merging the classes contained in the cur-
rent package (Channel) with either Symmetric or Asymmetric. There exists also a
stereotype �add� associated with the Client class adding either a pre-shared
private key k or a public key KS of the server. To coordinate the intended evo-
lution paths for these two stereotypes, we can use the following first-order logic
constraint (associated with add encryption):

[add encryption(add) = Symmetric ⇒ add keys(add) = k : Keys ∧
add encryption(add) = Asymmetric ⇒ add keys(add) = KS : Keys]

The two deltas, representing two possible evolution paths induced by this
notation, can be checked incrementally by case distinction. In this case, the evo-
lution is security preserving in both cases. For more details about the verification
technique see [27].

Role-based Access Control. The stereotype �rbac� defines the access rights
of actors to activities within an activity diagram under a role schema. For this
purpose there exists tags {protected}, {role}, {right}. An activity diagram is
UMLsec satisfies �rbac� if for every protected activity A in {protected}, for
which an user U has access to it, there exists a pair (A,R) in {rights} and a pair
(R,U) in {roles}. The verification computational cost depends therefore on the
number of protected activities.

522 J. Jürjens et al.

<<send>>

+ receive() : Data

<<call>>
SymmetricEncryptionDecryption

{secrecy = {d}}

+ encrypt(d: Data, k: Key) : EncryptedData
+ decrypt(e: EncryptedData, k: Key) : Data

<<critical>>

Symmetric

<<add>>

<<add>>
{add = {<<critical>> secrecy = {d}}}

Client

+ receive() : Data

{ref= add_keys}<<add>>

+ transmit(d: Data)

Client

{add = { :Keys,k:Keys}}

Channel {ref=add_encryption}<<add>>

<<call>>
AsymmetricEncryptionDecryption
<<critical>>

+ decrypt(e: EncryptedData, priv: PrivKey) : Data

{secrecy = {d}}

{add={Symmetric,Asymmetric}}

Asymmetric

Server

secrecy = {d}}}

Client

+ encrypt(d: Data, pub: PubKey) : EncryptedData

{add = {<<critical>>
KS

[add encryption(add) = Symmetric ⇒ add keys(add) = k : Keys ∧
add encryption(add) = Asymmetric ⇒ add keys(add) = KS : Keys]

Fig. 7. An evolving class diagram with two possible evolution paths

Example. In Fig. 8 (left-hand side), we show an activity diagram to which we
want to add a new set of activities, introducing a web-check-in functionality to
a flight booking system. The new activity “Check-in online” (middle of Fig. 8)
is protected, but we do not add a proper role/right association to this activity,
thus resulting in a security violating diagram (right-hand side Fig. 8).

4.2 Tool Support

The UMLsec Tool Suite provides mechanical tool support for analyzing UML
specifications for security requirements using model-checkers and automated the-
orem provers for first-order logic . The tool support is based on an XML dialect
called XMI which allows interchange of UML models. For this, the developer
creates a model using a UML drawing tool capable of XMI export and stores
it as an XMI file. The file is imported by the UMLsec analysis tool (for exam-
ple, through its web interface) which analyses the UMLsec model with respect
to the security requirements that are included. The results of the analysis are

Modelling Secure Systems Evolution 523

Book

Customer Airport

Book a flight

{right=(Book,Admin)}

«rbac»
{protected=(Book)} {role=(Admin,Airport)}

Request flight

Pay

Check availability

Customer

Check−in
{protected=(Check−in−online)}

Check−in
online

Airport

Book
Pay

Request flight

Check−in
online

Book

Check availability

Customer

Book a flight «rbac»

Airport

{protected=(Book,Check−in online)}
{right=(Book,Admin)} {role=(Admin,Airport)}

Fig. 8. Activity Diagram Annotated with �rbac� Before Evolution (left-hand side),
Added Model Elements (middle), and After Evolution (right-hand side)

given back to the developer, together with a modified UML model, where the
weaknesses that were found are highlighted.

We also have a framework for implementing verification routines for the con-
straints associated with the UMLsec stereotypes. The goal is that advanced users
of the UMLsec approach should be able to use this framework to implement ver-
ification routines for the constraints of self-defined stereotypes. In particular,
the framework includes the UMLsec tool web interface, so that new routines are
also accessible over this interface. The idea behind the framework is to provide
a common programming framework for the developers of different verification
modules. A tool developer should be able to concentrate on the implementation
of the verification logic and not be required to implement the user interface.

As mentioned in Sect. 3, tool support for UMLseCh would be beneficial in at
least two ways:

– Supporting the user in modelling expected evolutions explicitly in a graphical
way, without using a particular grammar or textual abstract syntax, and
supporting the specification of non-elementary changes.

– Supporting the decision of including a change based on verification tech-
niques for model consistency preservation after change.

but more importantly:

– Supporting the decision of including a change based on verification tech-
niques for security preservation after change

First steps in this direction have been done in the context of the EU project
SecureChange for statical security properties. For more details refer to [27].

524 J. Jürjens et al.

5 Conclusions and Future Work

For system evolution to be reliable, it must be carried out in a controlled man-
ner. Such control must include both functional and quality perspectives, such as
security, of a system. Control can only be achieved under structured and formal
identification and analysis of change implications up front, i.e. a priori. In this
chapter, we presented a step-by-step controlled change process with emphasis on
preservation of security properties through and throughout change, where the
first is characterized as a security-driven change and the second a functionality-
driven change. As there are many reasons for evolution to come about, security
may drive the change process or be directly or indirectly influenced by it. Our
approach covers both. In particular, the chapter introduces the change notation
UMLseCh that allows for formally expressing, tracing, and analysing for security
property preservation. UMLseCh can be viewed as an extension of UMLsec in
the context of secure systems evolution. We showed how can one use the no-
tation to model change for different UMLsec diagrams, and how this approach
could be useful for tool-aided security verification. Consequently, this work can
be extended in different directions. First of all, compositional and incremen-
tal techniques to reason about the security properties covered by UMLsec are
necessary to take advantage of the precise model difference specification offered
by UMLseCh. On the other hand, comprehensive tool support for both mod-
elling and verification is key for a successful application of UMLseCh in practical
contexts.

Acknowledgements

This research was partially supported by the EU project “Security Engineering
for Lifelong Evolvable Systems” (Secure Change, ICT-FET-231101).

References

1. Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.-J., Kuske, S.,
Plump, D., Schürr, A., Taentzer, G.: Graph transformation for specification and
programming. Science of Computer Programming 34(1), 1–54 (1999)

2. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model
transformations? Transformation models! In: Wang, J., Whittle, J., Harel, D., Reg-
gio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 440–453. Springer, Heidelberg
(2006)

3. Chaki, S., Sharygina, N., Sinha, N.: Verification of evolving software (2004)

4. Clarke, E., Long, D., McMillan, K.: Compositional model checking. In: Proceedings
of the Annual Symposium on Logic in Computer Science (LICS), pp. 353–362 (June
1989)

5. ISO 15408:2007 Common Criteria for Information Technology Security Evaluation,
Version 3.1, Revision 2: Part 2; Security Functional Components, CCMB-2007-09-
002 (September 2007)

Modelling Secure Systems Evolution 525

6. Grünbauer, J., Hollmann, H., Jürjens, J., Wimmel, G.: Modelling and verification
of layered security protocols: A bank application. In: Anderson, S., Felici, M.,
Littlewood, B. (eds.) SAFECOMP 2003. LNCS, vol. 2788, pp. 116–129. Springer,
Heidelberg (2003)

7. Heckel, R.: Compositional verification of reactive systems specified by graph trans-
formation. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382,
pp. 138–153. Springer, Heidelberg (1998)

8. Höhn, S., Jürjens, J.: Rubacon: automated support for model-based compliance
engineering. In: Robby [26], pp. 875–878

9. Jürjens, J.: Formal Semantics for Interacting UML subsystems. In: Proceedings
of the International Conference on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS). International Federation for Information Processing
(IFIP), pp. 29–44. Kluwer Academic Publishers, Dordrecht (2002)

10. Jürjens, J.: Principles for Secure Systems Design. PhD thesis, Oxford University
Computing Laboratory (2002)

11. Jürjens, J.: Model-based security engineering with UML. In: Aldini, A., Gorri-
eri, R., Martinelli, F. (eds.) FOSAD 2005. LNCS, vol. 3655, pp. 42–77. Springer,
Heidelberg (2005)

12. Jürjens, J.: Code security analysis of a biometric authentication system using au-
tomated theorem provers. In: Proceedings of the Annual Computer Security Appli-
cations Conference (ACSAC), pp. 138–149. IEEE Computer Society, Los Alamitos
(2005)

13. Jürjens, J.: Secure Systems Development with UML. Springer, Heidelberg (2005)

14. Jürjens, J.: Sound methods and effective tools for model-based security engineering
with UML. In: Roman, G.-C., Griswold, W.G., Nuseibeh, B. (eds.) Proceedings of
the International Conference on Software Engineering (ICSE), pp. 322–331. ACM
Press, New York (2005)

15. Jürjens, J.: Verification of low-level crypto-protocol implementations using auto-
mated theorem proving. In: MEMOCODE, pp. 89–98. IEEE, Los Alamitos (2005)

16. Jürjens, J.: Security analysis of crypto-based Java programs using automated the-
orem provers. In: Proceedings of the IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), pp. 167–176. IEEE Computer Society, Los
Alamitos (2006)

17. Jürjens, J., Schreck, J., Bartmann, P.: Model-based security analysis for mobile
communications. In: Robby [26], pp. 683–692

18. Jürjens, J., Shabalin, P.: Tools for secure systems development with UML. Intern.
Journal on Software Tools for Technology Transfer 9(5-6), 527–544 (2007); Invited
submission to the special issue for FASE 2004/05

19. Jürjens, J., Wimmel, G.: Formally testing fail-safety of electronic purse protocols.
In: 16th International Conference on Automated Software Engineering (ASE 2001),
pp. 408–411. IEEE Computer Society, Los Alamitos (2001)

20. Kolovos, D.S., Paige, R.F., Polack, F., Rose, L.M.: Update transformations in the
small with the epsilon wizard language. Journal of Object Technology 6(9), 53–69
(2007)

21. Lehman, M.: Software’s future: Managing evolution. IEEE Software 15(1), 40–44
(1998)

22. Lipson, H.: Evolutionary systems design: Recognizing changes in security and sur-
vivability risks. Technical Report CMU/SEI-2006-TN-027, Carnegie Mellon Soft-
ware Engineering Institute (September 2006)

526 J. Jürjens et al.

23. Mantel, H.: On the composition of secure systems. In: Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, CA, USA, pp. 88–101. IEEE Com-
puter Society, Los Alamitos (2002)

24. Petriu, D.C., Woodside, C.M., Petriu, D.B., Xu, J., Israr, T., Georg, G., France,
R.B., Bieman, J.M., Houmb, S.H., Jürjens, J.: Performance analysis of security
aspects in UML models. In: Cortellessa, V., Uchitel, S., Yankelevich, D. (eds.)
WOSP, pp. 91–102. ACM, New York (2007)

25. Rensink, A., Schmidt, Á., Varró, D.: Model checking graph transformations: A com-
parison of two approaches. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 226–241. Springer, Heidelberg (2004)

26. Robby (ed.): 30th International Conference on Software Engineering (ICSE 2008),
Leipzig, Germany, May 10-18. ACM, New York (2008)

27. Secure Change Project. Deliverable 4.2.,
http://www-jj.cs.tu-dortmund.de/jj/deliverable_4_2.pdf

28. UML Revision Task Force. OMG Unified Modeling Language: Specification. Object
Management Group (OMG) (September 2001),
http://www.omg.org/spec/UML/1.4/PDF/index.htm

29. UMLsec group. UMLsec Tool Suite (2001-2011), http://www.umlsec.de
30. Watson, B.: Non-functional analysis for UML models. In: Real-Time and Embed-

ded Distributed Object Computing Workshop, Object Management Group (OMG),
July 15-18 (2002)

31. Woodside, C.M., Petriu, D.C., Petriu, D.B., Xu, J., Israr, T.A., Georg, G., France,
R.B., Bieman, J.M., Houmb, S.H., Jürjens, J.: Performance analysis of security
aspects by weaving scenarios extracted from UML models. Journal of Systems and
Software 82(1), 56–74 (2009)

http://www-jj.cs.tu-dortmund.de/jj/deliverable_4_2.pdf
http://www.omg.org/spec/UML/1.4/PDF/index.htm
http://www.umlsec.de

Author Index

Baier, Christel, 114
Bennaceur, Amel, 27, 217
Bertolino, Antonia, 350
Blair, Gordon S., 1, 27
Bromberg, Yérom-David, 217

Calabró, Antonello, 350
Chauvel, Franck, 27
Clarke, Dave, 417
Costa, Gabriele, 393

Diakov, Nikolay, 417
Di Giandomenico, Felicita, 350

Forejt, Vojtěch, 53

Georgantas, Nikolaos, 1, 27
Giannakopoulou, Dimitra, 191
Grace, Paul, 1, 27

Hähnle, Reiner, 417
Houmb, Siv Hilde, 504
Howar, Falk, 256

Inverardi, Paola, 148
Islam, Shareeful, 504
Issarny, Valérie, 27, 217, 393

Johnsen, Einar Broch, 417
Jonsson, Bengt, 327
Jürjens, Jan, 504

Klein, Joachim, 114
Klüppelholz, Sascha, 114
Kwiatkowska, Marta, 53

Marchal, Löıc, 504
Martinelli, Fabio, 393
Matteucci, Ilaria, 393
Merten, Maik, 256
Moschitti, Alessandro, 458

Norman, Gethin, 53
Nostro, Nicola, 350

Ochoa, Mart́ın, 504

Paolucci, Massimo, 1, 27
Parker, David, 53
Păsăreanu, Corina S., 191

Saadi, Rachid, 27, 393
Schaefer, Ina, 417
Schäfer, Jan, 417
Schlatte, Rudolf, 417
Schmidt, Holger, 504
Souville, Betrand, 27
Spalazzese, Romina, 148
Steffen, Bernhard, 256
Sykes, Daniel, 27

Tivoli, Massimo, 148
Tretmans, Jan, 297

Wong, Peter Y.H., 417

	Title
	Preface
	Table of Contents
	Part I: Architecture and Interoperability
	Interoperability in Complex Distributed Systems
	Introduction
	Interoperability Barriers: Dimensions of Heterogeneity
	Data Heterogeneity
	Middleware Heterogeneity
	Application Heterogeneity
	Non-functional Heterogeneity

	Middleware Solutions to Interoperability
	Introduction
	Traditional Middleware
	Interoperability Platforms
	Software Bridges
	Transparent Interoperability
	Logical Mobility

	Semantics-Based Interoperability Solutions
	Introduction
	Semantic Web Services
	Semantic Middleware
	Beyond Web Services: DB Federation
	Raising Interoperability One Level Up

	Analysis
	Conclusions and Future Work
	References

	The CONNECT Architecture
	Introduction
	Motivation: The Interoperability Problem
	The CONNECT Approach
	Structure of the Chapter

	A Framework for Interoperability
	CONNECT Actors
	Networked System Model
	The CONNECT Enabler Architecture
	CONNECTors
	Summary

	Communicating with Legacy Protocols
	Abstract Messages
	From Abstract Message to Concrete Message

	CONNECT in Action
	Phase 1: Discovery
	Phase 2: Learning
	Phase 3: Synthesis of a Mediator

	Conclusions and Future Perspectives
	Concluding Remarks
	Future Research Direction: Advanced Learning of Middleware Protocols
	Future Research Direction: The Role of Ontologies in Interoperability Frameworks
	Future Research Direction: Interoperability Considering Non-functional Requirements

	References

	Part II: Formal Foundations for Connectors
	Automated Verification Techniques for Probabilistic Systems
	Introduction
	Background Material
	Probability Distributions and Measures
	Discrete-Time Markov Chains

	Markov Decision Processes
	Probabilistic Reachability
	Qualitative Reachability
	Quantitative Reachability
	Adversary Generation

	Reward-Based Properties
	Instantaneous Rewards
	Step-Bounded Cumulative Reward
	Cumulative Reward to Reach a Target

	PCTL Model Checking
	The Logic PCTL
	PCTL Model Checking
	Extending PCTL with Rewards
	Complexity

	Linear-Time Probabilistic Model Checking
	Probabilistic Safety Properties
	LTL and -Regular Properties
	Model Checking LTL and -Regular Properties

	Multi-objective Probabilistic Model Checking
	Compositional Probabilistic Model Checking
	Probabilistic Automata and Parallel Composition
	Assume-Guarantee Verification

	Tools and Case Studies
	Case Study: Israeli and Jalfon's Self-stabilisation Protocol
	Case Study: Dynamic Power Management
	Case Study: Aspnes and Herlihy's Consensus Algorithm

	Conclusions and Further Reading
	References

	Modeling and Verification of Components and Connectors
	Introduction
	Constraint Automata
	The Coordination Language Reo
	Constraint Automata as the Operational Semantics for Reo

	Verification of Components and Connectors
	Atomic Propositions, I/O Constraints and Stream Expressions
	Linear-Time Properties: LTLIO
	Branching Time Stream Logic
	Bisimulation Equivalence for Constraint Automata
	Vereofy

	Realization of a Constraint Automaton by a Reo Network
	Conclusion
	References

	Part III: Connector Synthesis
	Application-Layer Connector Synthesis
	Introduction
	Setting the Context
	The Need for Coordinators: The Shared Resource Scenario
	The Need for Mediators: The Photo Sharing Scenario

	Automatic Synthesis of Application-Layer and Failure-Free Coordinators
	Automatic Synthesis of Centalized Application-Layer and Failure-Free Coordinators
	Automatic Synthesis of Distributed Application-Layer and Failure-Free Coordinators
	Automatic Synthesis of Application-Layer Coordinators for Evolvable Systems
	Automatic Synthesis of Application-Layer Coordinators for Real-Time Systems

	Automatic Synthesis of Application-Layer Mediators
	Towards Emerging Mediators
	Formal Foundations
	Abstraction Formalization
	Matching Formalization
	Mapping Formalization
	Application of the Theory to the Scenario

	Related Works
	Automatic Synthesis of Coordinators
	Automatic Synthesis of Mediators

	Conclusion and Future Perspectives
	References

	Context Synthesis
	Introduction
	Background
	Labeled Transition Systems (LTSs)
	Traces
	Parallel Composition
	Safety Properties
	Assume-Guarantee Reasoning
	The L* Algorithm

	Component Interfaces
	Automated Interface Generation
	Computing the Weakest Assumption
	Learning Component Interfaces

	Interface Generation and Abstraction
	Learning Interfaces Using Abstractions
	Applicability and Related Approaches

	Assumption Generation for Compositional Verification
	Related Approaches

	Discussion and Conclusions
	Refereces

	Middleware-Layer Connector Synthesis: Beyond State of the Art in Middleware Interoperability
	Introduction
	Middleware-Based Connectors
	A Classification of Middleware-Based Connectors
	Formalizing Middleware-Based Connectors
	Connection Mismatches and Related Mediation

	Interoperability Connectors
	Software Bridges
	Interoperability Platform
	Transparent Interoperability

	Emergent Connector Synthesis
	Modeling Networked Systems towards On-the-Fly Connection
	Ontology for Mediation
	Emergent Connectors
	From Abstract to Concrete Emergent Connectors
	Related Work

	Conclusion
	References

	Part IV: Learning and Monitoring
	Introduction to Active Automata Learning from a Practical Perspective
	Motivation
	Modeling Reactive Systems
	Mealy Machines
	Regularity
	Canonical Mealy Machines

	Construction of Models from Black-Box Systems
	First Variant: Direct Hypothesis Construction
	Counterexamples
	Putting It Together

	The L*M Algorithm
	Observation Table
	Analyzing Counterexamples
	The Resulting Algorithm
	Using L*M on the Coffee Machine Example

	Challenges in Practical Applications
	The LearnLib Framework
	Modeling Learning Solutions

	Conclusions
	Bibliographic Notes and Further Reading
	Exercises
	References

	Model-Based Testing and Some Steps towards Test-Based Modelling
	Introduction
	Model-Based Testing
	Model-Based Testing for Labelled Transition Systems
	From Model-Based Testing towards Test-Based Modelling
	References

	Learning of Automata Models Extended with Data
	Introduction
	A Running Example
	Mealy Machines
	Symbolic Mealy Machines
	Inference Using Abstraction
	Illustrating Example
	Systematic Construction of Abstractions
	Conclusions and Future Work
	References

	Part V: Dependability Assurance
	Dependability and Performance Assessment of Dynamic CONNECTed Systems
	Introduction
	Background
	Dependability, Performance and Related Assessment Metrics
	Stochastic Model-Based Approaches for Early Prediction of Dependability and Performance Metrics
	Run-Time Analysis via Monitoring

	Dependability Assessment Approach in CONNECT
	DePer
	Selector
	Aggregator
	Dependability&Performance Analysis Engine
	GLIMPSE
	Integrated Run-Time Analysis

	Example
	The Terrorist Alert Scenario
	Off-line Analysis
	On-line Analysis

	Related Work
	Conclusions and Outlook
	References

	Security and Trust
	Introduction
	Mobile Code Security
	Deploy-Time Security Analysis
	Run-Time Security

	Trust Management
	Trust Relation
	Trust Assessment

	Overview of the Security-by-Contract with Trust
	Security-by-Contract Paradigm
	Security-by-Contract-with-Trust Paradigm

	An Application of the SCT Framework
	Trust Assessment - Step 1
	Monitoring/Enforcement Process - Step 2 and Step 3
	Trust Feedbacks -Step 4

	Conclusion and Future Work
	References

	Part VI: Trustworthy Eternal Systems via Evolving Software
	Modeling Spatial and Temporal Variability with the HATS Abstract Behavioral Modeling Language
	Introduction
	Core ABS
	Data Types
	Object-Based Programming
	Concurrency Model

	Spatial Variability Modeling
	Feature Modeling
	Delta Modeling
	Product Line Configuration
	Product Selection and Generation
	Product Generation

	Temporal Variability Modeling
	Dynamic Delta Modules
	Restrictions on Dynamic Delta Modules

	Case Study
	Fredhopper Access Server
	Modeling the Replication System with Core ABS
	Spatial Variability of the Replication System
	Temporal Variability of the Replication System

	ABS Tool Suite
	Conclusion
	References

	Kernel-Based Machines for Abstract and Easy Modeling of Automatic Learning
	What Is Machine Learning?
	Decision Trees
	Naive Bayes

	Probably Approximately Correct (PAC) Learning
	Formal PAC Definition
	An Example of PAC Learnable Functions
	The VC-Dimension

	Support Vector Machines
	Perceptrons
	Maximal Margin Classifier
	Soft Margin Support Vector Machines

	Kernel Methods
	The Kernel Trick
	Polynomial Kernel
	String Kernel
	Lexical Kernel

	Tree Kernel Spaces
	SubTree, SubSet Tree and Partial Tree Kernels
	The Kernel Functions

	Conclusions and Advanced Topics
	References

	Modelling Secure Systems Evolution: Abstract and Concrete Change Specifications
	Introduction
	Background: Secure Systems Modelling with UMLsec
	The UMLsec Profile

	Modelling Evolution with UMLseCh
	Abstract Notation
	Concrete Notation
	Security Preservation under Evolution

	Application Examples and Tool Support
	Modelling Change of UMLsec Diagrams
	Tool Support

	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

