
Verifying Linearisability with Potential

Linearisation Points

John Derrick1, Gerhard Schellhorn2, and Heike Wehrheim3

1 Department of Computing, University of Sheffield, Sheffield, UK
J.Derrick@dcs.shef.ac.uk

2 Universität Augsburg, Institut für Informatik, 86135 Augsburg, Germany
schellhorn@informatik.uni-augsburg.de

3 Universität Paderborn, Institut für Informatik, 33098 Paderborn, Germany
wehrheim@uni-paderborn.de

Abstract. Linearisability is the key correctness criterion for concurrent
implementations of data structures shared by multiple processes. In this
paper we present a proof of linearisability of the lazy implementation of a
set due to Heller et al. The lazy set presents one of the most challenging
issues in verifying linearisability: a linearisation point of an operation
set by a process other than the one executing it. For this we develop
a proof strategy based on refinement which uses thread local simulation
conditions and the technique of potential linearisation points. The former
allows us to prove linearisability for arbitrary numbers of processes by
looking at only two processes at a time, the latter permits disposing with
reasoning about the past. All proofs have been mechanically carried out
using the interactive prover KIV.

1 Introduction

The setting of this work are data structures such as sets, stacks and queues
that are shared by parallel processes. To increase the opportunities for concur-
rency (particularly relevant in a multicore context), implementations of these, so
called, concurrent objects usually apply fine-grained synchronisation schemes for
access. Fine-grained synchronisation disposes with locking the whole data struc-
ture during access, and locks only single elements (e.g., nodes in a linked list
representation). The extreme to this are implementations of operations taking
no locks at all.

Such highly concurrent algorithms are intrinsically difficult to prove correct,
the down-side of the performance gain from permitting concurrency is the much
harder verification problem: how can one verify that the implementation of a
concurrent object is correct? Here, the key correctness property to be shown is
linearisability [11]. It permits one to view operations on concurrent objects as
though they occur atomically, in some sequential order [11]:

Linearisability provides the illusion that each operation applied by con-
current processes takes effect instantaneously at some point between its
invocation and its response.

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 323–337, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

324 J. Derrick, G. Schellhorn, and H. Wehrheim

This “point” in between invocation and response of an operation is referred to
as the linearisation point (LP).

A number of different techniques have been employed to verify linearisability,
ranging from shape analysis [1], separation logic and rely-guarantee reasoning
[21] to simulation-based methods. The concurrent algorithm considered in this
paper (the lazy set of Heller et al. [9]) poses a particular challenge for verifica-
tion: the linearisation point for one of the operations does not coincide with the
execution of an instruction of the source code, but rather can be set by a process
other than the one executing the operation. As a consequence, the real LP of
this operation is only known when it finishes. This has lead to the development
of a number of proof techniques for the lazy set looking into the past: the first
approach in [20] argues that knowing the outcome of this operation its lineari-
sation point can be found, later approaches use backward simulation proofs [3]
or “hindsight” techniques [16].

In this paper we propose a new technique for verifying linearisability of the
lazy set which avoids having to look into the past. The technique extends our
previous approach [4,5] to cope with the class of algorithms like the lazy set.
In general, we carry out a proof of refinement: the concurrent implementation
is shown to be a valid refinement of the abstract data structure. Our proof
principle consists of two levels: we have local (i.e., thread modular) simulation
conditions which need to be verified for the concurrent implementation at hand,
and a general theory which links the local conditions with linearisability and thus
shows their soundness.

Both levels have been formally verified with KIV using standard higher-order
logic. A web presentation with all details can be found at [12]. Unfortunately we
are not able to describe the global part of the theory in this paper, where we
focus on the local simulation conditions and their application to the lazy set.

The key idea of the local conditions is to define potential linearisation points,
which solve the issue of LPs set by other processes. The next section gives our
running example of the lazy set. In section 3 we introduce our refinement tech-
nique, and in section 4 we show how we can derive local proof obligations that
can cope with the type of algorithm exemplified by our running example. In
Section 5 we discuss how these proof obligations can be discharged for this im-
plementation. Finally, Section 6 gives related work and concludes.

2 The Lazy Concurrent Set

Our running example is a concurrent implementation of a set data structure and
its access operations. The abstract data type A = (AS ,ASInit , (AOpi

p)i∈I ,p∈P)
uses a finite set of integers as abstract state: AS =̂ [set : F Z]. The set is initially
empty (ASInit), and then allows for three operations, I = {1, 2, 3} executed by
processes p ∈ P : integers can be added, removed, and we have a test of contain-
ment: contains. Abstractly, all these operations are atomic. They all return a
boolean result: add and remove return true if the set has been changed.

Here, we study the highly concurrent implementation proposed in [9]. The
set is implemented by a sorted linked list. Its elements appear in the nodes of

Verifying Linearisability with Potential Linearisation Points 325

add(e): remove(e):

A1 : n1, n3 := locate(e); R1 : n1, n2 := locate(e);

A2 : if n3.val != e then R2 : if n2.val = e then

A3 : n2 := new Node(e); R2b: n2.mrk := true;

A4 : n2.next := n3; R3 : n3 := n2.next;

A5 : n1.next := n2; R4 : n1.next := n3;

A6 : res := true; R5 : res := true;

A7 : else res := false R6 : else res := false

endif ; endif;

A8 : n1.unlock(); R7 : n1.unlock();

A9 : n3.unlock(); R8 : n2.unlock();

A10: return res R9 : return res

Fig. 1. Operations add and remove

the list in a strictly increasing order. The list has two sentinel nodes: head with
value −∞ and tail with value ∞. Every node has a val field with an integer,
a nxt field for the pointer to the next node and a mrk bit (used to mark nodes
that as logically deleted).

In the algorithm, atomicity is given up as to allow for concurrency. Concurrency
here means that several processes should be able to execute operations on the set
at the same time, thus the steps of operations of the algorithm in Fig. 1 can be
interleaved. To cope with this interleaving, each node in the list is associated with
a lock. Operations n.lock() and n.unlock() lock and unlock a node n.

Operations add and remove rely on an additional operation locate (see Fig. 2)
which finds the appropriate position of the element (to be added or removed)
and then locks the two adjacent nodes. Operation add then checks whether the
second locked node already contains the new element to be added, and if not,
creates a new node and inserts it (by redirecting the pointer of the previous node)
into the list. Operation remove proceeds in two steps (when locate has found the
element to be removed): first, it will mark the node as deleted using the mrk
bit in line R2b1 (lazy). Then it will physically remove the node by redirecting
pointers. Both add and remove unlock the nodes returned by locate at the end.

The locking scheme of operation locate (see Figure 2) is an optimistic one:
while traversing the list in search of the element, it does not lock nodes. Only
when the correct position has been found, the previous and current node is
locked. Since these nodes might have been removed by other processes while the
search loop was running, the locate always validates the found candidates. Vali-
dation has to check that neither of the locked nodes have already been logically
deleted (mrk bit set), and that the nodes are still adjacent. If this fails, locate
has to be restarted. Note that the marking bit is used to ensure that removal
can be done as one atomic step.

Finally, the most interesting operation is contains . The implementation of
contains is wait-free and uses no locks at all. It searches for the element itself

1 Line R2b is the only modification of remove compared to the pessimistic version
studied in [5].

326 J. Derrick, G. Schellhorn, and H. Wehrheim

locate(e): L11: then return pred, curr

while (true) { L12: else { pred.unlock()

L1: pred := Head; L13: curr.unlock(); }

L2: curr := pred.next; } /* end of while(true) */

L3: while (curr.val < e) {

L4: pred := curr;

L5: curr := curr.next; } contains(e):

L6: pred.lock(); I1: curr := Head;

L7: curr.lock(); I2: while (curr.val < e)

/* validate */ I3: curr := curr.next;

L8 : if ! pred.mrk I4: if curr.mrk then res:= false;

L9: and ! curr.mrk I5: else res := (curr.val = e)

L10: and pred.next = curr I6: return res

Fig. 2. Operations locate and contains

(without use of locate) and also checks for the mrk bit. It is this omission of
locking combined with the lazyness of remove which makes verification of lin-
earisability hard.

Our proof technique given in the next section relies on a proof of linearisability
via refinement of the abstract type defined above to a concrete data type C =
(CS ,CSInit , (COpj

p)j∈J ,p∈P) that we define now as a Z specification.
We start with modelling the global heap mem, which is a partial function from

a basic type Ref of references (with null ∈ Ref) to memory cells: cells consist of
a value of type Z (plus −∞,∞), can be locked by a process from a set P , can be
marked and have a (potentially null) reference to the next node. To access these
components of a cell with address r we write r .val , r .lck , r .mrk and r .nxt , respec-
tively. The heap mem together with the head reference forms the global state GS .
Initially, the global state (GSInit) just consists of a list with head and tail node.

The local state of one process LS consists of the tuple of the local variables of
the algorithms, together with a type pc : PC for the program counter. Its initial
state, given by LSInit (not shown) has pc = 1 to indicate that no operation is
running. All other values of the initial state are unused, so they can be arbitrary.

The complete concrete state space CS is defined by combining GS with a
local state function assigning a local state lsf (p) to every process p ∈ P .

GS

head : Ref

mem : Ref �→
(Z ∪ {−∞,∞}) ×
(P ∪ {none}) × B × Ref

LS

n1,n2, n3 : Ref

curr , pred : Ref

res : B, e : Z, pc : PC

GSInit

GS ′

nh ,nt ∈ Ref

mem ′ = {nh �→ (−∞,none, false,nt),

nt �→ (∞,none, false,null)}
head ′ = nh

CS

GS

lsf : P → LS

Verifying Linearisability with Potential Linearisation Points 327

To define the concrete operations, we first define operations COPj on one local
state. For this, each line of the algorithms is turned into one Z operation. The
following gives the Z specification of lines I1 and I4 of contains2.

containsI 1

ΞGS

ΔLS

pc = I 1 ∧ pc′ = I 2

curr ′ = head

containsI 4

ΞGS

ΔLS

pc = I 4 ∧ curr .mrk ∧ pc′ = I 6

¬res ′

These operations are then promoted (using the same standard schema as in [5])
to operations COpj

p on CS for each process p ∈ P , which work on the local state
lsf (p). Initialisation CSInit of the concrete state space is defined similarly.

3 Linearisability and Refinement

Linearisability requires that operations should appear as taking place atomically,
i.e., take effect instantaneously at some point in time, even though the atomicity
of operations has been given up in the implementation and an actual concrete
execution might be an arbitrary interleaving of steps from the above algorithm.
This “point in time” is the linearisation point (LP). Linearisability permits one
to view operations on concurrent data structures as though they occur in some
sequential order, namely the order of their linearisation points.

Our proof technique introduced in [4] and further elaborated in [5] relies on
a proof of linearisability via refinement. Basically, we show that the concurrent
implementation C = (CS ,CSInit , (COpj

p)j∈J ,p∈P) is a non-atomic refinement
[6] of the abstract data type A = (AS ,ASInit , (AOpi

p)i∈I ,p∈P).
Here, non-atomic means that a step of the concrete data type COpj

p that
is part of the implementation of AOpi

p can either match an empty step skip
or an execution of AOpi

p . Basically, the steps representing linearisation points
have to match with the abstract operations, and all other steps correspond to
skip steps. To do so, we first of all have to determine the linearisation points.
For some simpler classes of algorithms (e.g., stack and non-lazy set considered
in [5]), LPs can be determined from the current state of a process (basically,
its program counter), and in our methodology are fixed by defining a so-called
status function assigning values from a type STATUS :

STATUS ::= IDLE | IN | OUT

Therein, IDLE represents an idle process, and IN and OUT describe the status
of processes being before and after their linearisation points, respectively. With
the help of the status function we define specific status-dependent proof obliga-
tions in [4,5]. The proof obligations are local, i.e., they do not consider all the

2 We use the Object-Z approach and mention only those variables which are changed.

328 J. Derrick, G. Schellhorn, and H. Wehrheim

processes, but only two specific processes p and q. p is executing a step, and q
represents an arbitrary other process, which might be affected. Such local proof
obligations are possible for many linearizable algorithms, where typically it does
not matter for one process which other process affects the global state, but only
how the state is affected. This is true also for the lazy set, where the only rele-
vant information a process sees from others is new cells being introduced or old
cells being marked.

The proof obligations in [5] are particular instances of forward simulations.
The status tells us whether an individual concrete step has to be matched with a
skip or an operation of the abstract data type in the simulation. They prove that
the concurrent implementation is a non-atomic refinement of an abstract data
type (given that the LPs can be defined this way). In a second step, it has to be
proven that this kind of non-atomic refinement actually shows linearisability (the
general theory). Both the linearisability proofs for concrete data structures and
the general proof of soundness of our refinement theory have been mechanically
conducted using the interactive prover KIV [17]. None of the other approaches
for verifying linearisability has a mechanised proof that their proof obligations
imply Herlihy and Wing’s original definition of linearisability [11].

For our case study, the proof obligations of [5] are sufficient to verify the add
and remove operation, where the LP can be identified in the code. E.g., for add
the LP is either A5 or A7 (for return value true and false).

However, this technique is not applicable to the contains operation (which rep-
resents a whole class of similar concurrent operations). The issue is that it is not
possible to statically determine the linearisation point of contains as it depends on
future behaviour of processes other than the one currently executing contains .

An example can make this clearer. Consider the list representation of the set
{2, 4, 6} in Figure 3 (a). Assume that contains(4) has been started and executed
its while loop reaching I4. At this point, variable curr points to node 4 (see
figure). If the next step executed is I4, contains would return true and the LP
could have been the last I3, setting variable curr .

2 6 ∞

2 6 ∞4

curr

(b) remove(4)

−∞

2 6 ∞

curr

4

−∞

(c) add(4)

4

4−∞

curr

(a) contains(4) until I4

Fig. 3. Sample execution: contains(4) until I4 (a), then remove(4) (b), then add(4)

Verifying Linearisability with Potential Linearisation Points 329

However, assume that we do not take I4 next, but start another process exe-
cuting remove(4) (completing without any interleaving of operations from other
processes). At the end of remove we reach situation (b) of Figure 3, leaving the
node curr pointing at a marked node. If we would now execute I4 next, contains
would return false. Thus taking I3 as LP is wrong (at this point the return value
for contains would have been true). So let us assume, we choose I4 as LP. This
might however still be incorrect: if the next operation is add(4) which starts and
completes (bringing us into situation (c)), executing I4 would still give us the
wrong return value: now 4 is in the set again, so at this point in time it is not
correct for contains(4) to return false.

It turns out that for the sequence contains(4) (until I4), remove(4) (com-
pletely), add(4) (completely), contains(4) (rest), the only valid linearisation
point for contains is directly after the LP of remove. It gives the following valid
sequence of abstract operations: 〈remove(4, true), contains(4, false), add(4, true)〉.
However, not every remove is a linearisation point for a running contains . It cru-
cially depends on where the contains currently is, and whether some more adds
will appear in the future or not.

Such a case could not be tackled by our current technique, and for the lazy set
we need a proof technique which can show linearisability for (a) operations whose
linearisation point is set by another process and (b) are determined by future
operations. Moreover there is additional complexity in this example, and we
also need a technique for situations whereby (c) one step in the implementation
can linearise multiple operations (the remove can potentially set the LPs of all
running contains).

4 Local Proof Obligations

The proof obligations have to guarantee that the concrete data type is a refine-
ment of the abstract data type. This is usually shown by defining an abstraction
function (Abs : GS → AS) between concrete and abstract state space, and then
showing that initialisation and operation execution of concrete and abstract data
type match in a certain way (simulation).

Again, we aim at local proof obligations, which just consider local states lsp
and lsq of two representative processes p and q. Process p is executing a step of
its algorithm, and process q might be affected by having to execute its lineari-
sation point (the case in question being process p marking a cell, while process
q searches for its value).

Coping with potential linearisation points: To tackle this issue we need
to generalise our status function, with a new status INOUT to cover the situation
in which an operation has potentially linearised (the types in brackets describe
types of inputs and outputs). Thus for our example, a process p with status
INOUT (3, true) is a process which is potentially after its LP, has 3 as input and
will return true.

STATUS ::= IDLE | IN 〈〈Z〉〉 | OUT 〈〈B〉〉 | INOUT 〈〈Z × B〉〉

330 J. Derrick, G. Schellhorn, and H. Wehrheim

For every implementation, we need to define a status function

status : GS × LS → STATUS

assigning a status to a process with local state ls ∈ LS and current global state
gs ∈ GS . The status of a process can change several times during execution
of an operation. In particular, several status changes between INOUT (e, true)
and INOUT (e, false) are possible if another process executes a step which af-
fects the outcome. Every status change from IN to INOUT , INOUT (e, true) to
INOUT (e, false) (and vice versa) and INOUT to OUT is a potential linearisa-
tion point and has to match with the corresponding abstract operation. It may
seem odd that due to the status changes several abstract contains appear in a
thus constructed run. However, this is sound as contains is not modifying the
set: the last operation that affects the output value of the status executed in a
run is the linearisation point.

Defining the invariants: As in [5], in addition to the abstraction function
our theory requires a local invariant INV on GS × LS to capture constraints
which are always valid in our linked list implementation (e.g., that tail is always
reachable from head). Last, a disjointness predicate D over the local states of p
and q serves the purpose of keeping disjointness information about local states.

Defining the non-atomic simulation conditions: As in standard simula-
tion conditions, our local proof obligations need to match the behaviour of the
concrete and abstract operations. Since we do not have a 1-1 correspondence of
abstract and concrete operation anymore, and furthermore, a concrete opera-
tion can linearise several processes, and thus match with more than one abstract
operation, we have to capture different cases in our simulation conditions. The
latter point requires an extension to the theory developed in [5]. Basically, four
different types of matchings can occur, each being accompanied by particular
status changes.

The most basic type is the classic simulation diagram: process p executes
some concrete operation COpp (bringing us from state cs to cs ′), which is the
linearisation point, and matches with abstract operation AOpp (going from ab-
stract as to as ′) with input in and output out . Concrete and abstract states are
related via the abstraction function Abs . The left hand side of Figure 4 describes
this case. When process p executes a potential linearisation point, both lineari-
sation as well as a skip step must be possible. Therefore in this case the abstract
state is not allowed to change, as shown on the right hand side. The right hand

as as´

cs cs´

Abs Abs

COpp

AOpp
as

cs cs´

Abs Abs

COpp

AOpp ∨ skip

Fig. 4. Simulation types 1 and 2

Verifying Linearisability with Potential Linearisation Points 331

as as´

cs cs´

Abs Abs

COpp

AOpq

AOpp
as

cs cs´

Abs Abs

COpp

(AOpp ∨ skip); AOpq

Fig. 5. Simulation types 3 and 4

diagram (with skip) is also used when the concrete step does not execute an LP.
No processes other than p are affected in the two cases of Fig. 4.

The next two types (in Fig. 5) consider the case where a step of a process p (pos-
sibly) linearises itself as well as linearises a process q. The left diagram of Figure 5
shows the case where the execution of operation COp of process p definitely sets
its own as well as the linearisation point of process q. Thus the simulation has to
guarantee that abstractly the operation of p and q is possible. The right hand side
depicts the case where the abstract operation of process p is either no or a poten-
tial LP for p, and is therefore not allowed to change the abstract state. Both cases
require, that process q does not change the abstract state. This allows to lift the
proof to a global scenario, where p linearises a number of operations q1, . . . , qn ,
since their abstract operations can all start in the same state.

The simulation conditions have to formalise all these cases. In these, both
the status of p and q are used for deciding which case applies, i.e., which kind
of matching to show. Instead of writing several simulation conditions, one for
each possible status change, we accumulate all cases in one condition using a
so-called exec function. This function takes as an input the status of a process
before and after executing some operation COp (stat , stat ′), the corresponding
abstract states as and as ′, and the index i of the operation currently being run.
From this, it determines the verification condition to be shown.

exec(stat , i , stat ′, as, as ′) := ∃ in, in ′, out , out ′ •
(stat = IN (in) ∧ stat ′ = OUT (out ′) ∧ AOpi(in, as, as ′, out ′))

∨(stat = IN (in) ∧ stat ′ = INOUT (in ′, out ′) (∗)
∧ AOpi(in,as, as ′, out ′) ∧ in = in ′ ∧ as = as ′)

∨(stat = INOUT (in,out) ∧ stat ′ = OUT (out ′)
∧ AOpi(in,as, as ′, out ′) ∨ (as = as ′ ∧ out = out ′))

∨(stat = INOUT (in,out) ∧ stat ′ = INOUT (in ′, out ′)
∧as = as ′ ∧ (AOpi(in, as, as ′, out ′) ∨ out = out ′) ∧ in = in ′)

∨(stat = IN (in) ∧ stat ′ = IN (in ′) ∧ as = as ′ ∧ in = in ′)
∨(stat = INOUT (in,out) ∧ stat ′ = IN (in ′) ⇒ as = as ′ ∧ in = in ′)
∨(stat = OUT (out) ∧ stat ′ = OUT (out ′) ∧ as = as ′ ∧ out = out ′)

As an example, consider case (*) in the definition of exec. If the status of a
process changes from IN to INOUT , i.e., from before to potentially after the
linearisation point, then a corresponding abstract operation must be executed

332 J. Derrick, G. Schellhorn, and H. Wehrheim

which does not change the abstract state and gets exactly the same input and
output as those in the INOUT status. This ensures that e.g., a contains with
return value false cannot match with an abstract contains returning true.

The case following (*) gives two possibilities for going from INOUT (in, out)
to OUT (out ′). Either the potential linearisation is made permanent (as = as ′ ∧
out = out ′), or the potential linearisation is discarded and a new one is estab-
lished by executing AOp. In general, abstract state changes in AOp are allowed
when the operation definitely linearises by setting status to OUT (out ′).

This lets us finally define the simulation condition. Herein, we use a function
runs which returns the (index of the) abstract operation a process in local state
LS is currently executing (this can be determined from the value of the pc).

∀ gs, gs ′ : GS , lsp, lsq , lsp′, lsq ′ : LS •
INV (gs, lsp) ∧ INV (gs, lsq) ∧ D(lsp, lsq) ∧ COpj

p(gs, lsp, gs ′, lsp′)
⇒ (LPO)

INV (gs ′, lsp′) ∧ INV (gs ′, lsq) ∧ D(lsp′, lsq)

∧ exec(status(gs, lsp), runs(lsp), status(gs ′ , lsp′),Abs(gs), Abs(gs ′))
∧ exec(status(gs, lsq), runs(lsq), status(gs ′ , lsq),Abs(gs ′),Abs(gs ′))

Basically, (LPO) requires to show that (a) the invariant and the disjointness
properties are kept when a concrete operation is executed, and (b) the appropri-
ate matching as defined by exec can be carried out for both p and q. Please note
that lsq is left unchanged by COpp . Since (LPO) just refers to two local states
lsp and lsq , but never to the complete concrete state CS , we have obtained a
local proof obligation.

In addition to this simulation rule, we have two simpler proof obligations con-
sidering the special cases of invocation and return steps. These disallow abstract
state changes and status changes of q (no linearisation). The status of p is re-
quired to change from IDLE to IN (in) and from OUT (out) to IDLE with the
correct input resp. output value of COpp . Due to lack of space we will not give
them here. We also omit the simple initialisation conditions.

5 Verification of the Case Study

Verification of the case study requires to instantiate the predicates and functions
used in the proof obligation (LPO) . We start with the status function:

ls.pc = 1 ⇒ status(gs, ls) = IDLE

ls.pc ∈ {A1, . . . ,A5, A7, R1,R2,R2b,R6} ⇒ status(gs, ls) = IN (e)

ls.pc ∈ {A6, R3,R4,R5} ⇒ status(gs, ls) = OUT (true)

ls.pc ∈ {A8, A9,A10, R7, R8,R9} ⇒ status(gs, ls) = OUT (res)

ls.pc = I 1 ⇒ status(gs, ls) = IN (e)

ls.pc ∈ {I 2, I 3, I 4} ⇒ status(gs, ls) = INOUT (e,

∃ r .reachable(curr , r , mem) ∧ r .val = e ∧ ¬ r .mrk)

ls.pc = I 5 ⇒ status(gs, ls) = OUT (curr .val = e)

ls.pc = I 6 ⇒ status(gs, ls) = OUT (res)

Verifying Linearisability with Potential Linearisation Points 333

The definition gives the LPs of the add algorithm as A5 (for res = true) and A7.
Before and at this point in the algorithm the status is IN (e), after it OUT (res).
Similarly, the LPs for remove are the marking operation at R2b when true is
returned, and the negative case of R2 for false.

The interesting clauses are the last four for the contains algorithm. Initially
the status is IN (e) for pc = I 1, and at the end of the algorithm it has definitely
linearised: at I5 the cell curr has been fixed, so the test curr .val = e determines
the output, at I6 the output is already stored in res .

While the algorithm executes its main loop (I2,I3,I4) we exploit that contains
can potentially linearise at any time by using a status of the form INOUT (e, bv).
The correct output value bv is simple to determine: it is just the value that
contains would return if it would now run to completion without interruption
(i.e., no other process executing steps). Note that this uniform characterisation
should be applicable to every algorithm with potential LPs. For the contains
algorithm this specialises to the value bv being true iff an unmarked cell is
reachable from curr that contains e.

By using this status definition the algorithm “changes its mind” about the
linearisation point and its outcome as often as necessary. Our proof obligation
just requires that every change is justified by the current set representation. In
particular, a process p marking the element that is searched by process q (the
step from (a) to (b) in Fig. 3) will change bv in the status of process q executing
contains to false. This is justified, since it is removed from the set representation
too: executing an abstract contains with result false is possible after removal,
we have an instance of simulation type 3 in Fig. 5. A process q adding a cell with
e behind curr will change bv to true. Again this is justified, since the element is
also added to the set. Adding an element that does not become reachable (e.g.,
stepping from (b) to (c) in Fig. 3) will keep bv = false.

By using an INOUT status the problem of finding the right LP is no longer a
difficulty for the verification of the case study. The KIV proof of (LPO) just un-
folds the definition of exec and checks whether the abstraction function changes
correctly. All global reasoning and reasoning about the past has been moved into
the generic theory.

It remains to be shown how the rest of the predicates and functions used
in (LPO) are instantiated. Many of these instances are similar to the ones for
verifying the pessimistic algorithm in [5]. In particular, the abstraction function
just specifies that the abstract set consists of those values r .val 	= ±∞, for which
a reference r is reachable from head . Also, the disjointness predicate D is solely
used to ensure that p and q never share their newly allocated cell before adding
it to the set representation (i.e., when both are at A4 or A5). The invariant
consists of three parts.

INV (gs, ls) := (∃ tail ∈ Ref • HEADTAILINV (gs, tail) ∧
∀ r ∈ dom(mem) • NODEINV (gs, tail , r)) ∧ INVL(gs, ls)

The first part, HEADTAILINV specifies the global invariant for the current data
structure: a unique cell tail is always reachable from head such that head .val =
−∞, tail .val = ∞. Both head and tail are never marked.

334 J. Derrick, G. Schellhorn, and H. Wehrheim

The interesting part is the second. It gives a condition NODEINV for all allo-
cated references r . This condition is necessary, since in contrast to the pessimistic
version, the lazy algorithms for contains and locate may visit arbitrary old cells
that have been marked and may also have been removed from the current set
representation (as shown in Fig. 3 (b)).

NODEINV ((head , mem), tail , r) :=

(r .nxt = null ⇒ r .nxt ∈ dom(mem) ∧ r .val < r .nxt .val) ∧
if r .mrk then r .val = −∞ ∧ reachable(r , tail ,mem) /* class 1 */

else if ∃ r0 ∈ dom(mem) • r0.nxt = r

then reachable(head , r ,mem) ∧ reachable(r , tail ,mem) /* class 2 */

else if r .val = −∞ then head = r /* class 3 */

else r .val = ±∞ ∧ (r .nxt = null ∨ reachable(r , tail ,mem)) /* class 4 */

NODEINV requires that even old cells are in strictly ascending order. It also
divides the allocated cells into four classes. The first class contains all marked
cells. These never contain −∞, and allow to reach tail in a finite number of
steps: the cells form a tree shape with pointers going upwards towards tail as
the root. This ensures that contains never accesses dangling references. The sec-
ond class are pointers that have a predecessor r0. All these cells are part of the
current set representation. Whenever contains or locate reach an unmarked cell
by computing a successor, the cell is definitely a member of the set representa-
tion. Finally, there are cells which have no predecessor. One cell is head (third
case). All remaining cells (fourth class) have just been allocated in add by some
process, but have not yet been inserted into the set representation. These cells
do not have a value −∞ and either their nxt pointer is still null (A4) or has
been set at A5, making tail reachable. Note that although we give the intuition,
that some process has allocated such a cell, our local predicate avoids this global
characterisation, which would have to quantify over existing processes. Figuring
out a simple3 classification of the allocated cells that works locally was the main
difficulty specific to this case study.

The full invariant finally contains a local invariant INVL with assertions for
intermediate states of the algorithms, typically by characterising the program
counter values, where they hold. The main assertion for contains

(ls .pc ∈ {I 2, I 3, I 5, I 6} ⇒
ls .curr ∈ dom(mem) ∧ (reachable(head , ls .curr ,mem) ∨ ls .curr .mrk)

ensures, that curr is always an allocated reference, and is either part of the
set representation or an old marked cell. A similar property is used for the local
variables pred and curr of locate. Note that NODEINV implies that this property
is preserved when stepping from curr to curr .nxt in the algorithm.

3 A generic, but more complex alternative is using an existentially quantified set of
local cells, that must be updated where necessary. This is the preferred solution
in separation logic, which hides the quantifier (and our D predicate) within the
semantics of separating conjunction.

Verifying Linearisability with Potential Linearisation Points 335

With these instances the verification of the proof obligation (LPO) in KIV is
now only slightly more difficult than for the pessimistic case, and the additional
complexity is solely due to the more complex invariant NODEINV . The technical
encoding of Z schemata in KIV is the same as described in Section 7 of [5].
The proof obligation is given in KIV as three goals, one that proves invariance
of INV (gs , lsp), a second that proves INV (gs , lsq) and D(lsp, lsq), and finally
one that checks the clauses about exec. Although an abstraction function is
sufficient for the case study, the three goals in KIV generalise (LPO) using
an abstraction relation, which shows that they are an instance of backward
simulation. The proofs for the case study split immediately into 67 cases (one for
each Z operation). Altogether the main proofs needed 276 interactions. Getting
the details of the case study right took the second author about a week of work.
All proofs and specifications (including the derivation from a global theory of
possibilities that we could not describe here) are available on the Web [12].

6 Conclusion

The only other mechanised proof of the lazy set implementation of [9] we are
aware of (except [2], which approximates a full linearizability proof by model
checking executions of two fixed operations) is given in [3] using PVS. Like our
approach (and [8]) it uses refinement (of IO automata) to prove linearisability.

Although the transition relation of the automaton in [3] corresponds to the
disjunction of our operations in Z, the proof strategy is rather different. First,
it considers the global automaton (with state CS) instead of a reduction to two
processes. Second it defines an intermediate automaton specific to the case study,
that splits the refinement into a forward and backward simulation, to cope with
the problem that the LP of contains cannot be determined by forward simulation
alone. Our approach solves the problem in the generic theory, and thus should
be applicable to a wide class of algorithms. Third, the proof strategy uses a
predicate public to distinguish locally available references from global ones, that
are or have been in the set representation: a cell is not public, if it has just
been allocated and is stored in the local variable n2 of some process p at A4 or
A5. Such iteration over all processes is incompatible with our reduction to two
processes. Finally, the proof idea follows [9]: when contains returns false, then
there must have been a time in the past when the element was not in the set.
Our theory completely avoids such reasoning about the past.

The same argument about the past is also used in [20]. In his PhD [18],
Vafeiadis continues this work, giving proof obligations using separation logic and
rely-guarantee reasoning. The approach has influenced our work, since Vafeiadis
argues (Sect. 5.2.3), that several LPs are acceptable for read-only operations.
Our mechanised proofs (that ensure that it is possible to change the out value
when status is INOUT) can be viewed as a formal justification. Vafeiadis’ work
is not based on refinement, but adds ghost code executing abstract operations
to the concrete algorithm at linearisation points. The approach is global, at the
LP of delete the auxiliary code has to iterate over all threads running contains.

336 J. Derrick, G. Schellhorn, and H. Wehrheim

It has been implemented and can verify several standard algorithms automati-
cally, though currently not the lazy set example (see [19]).

We did not have space to discuss the global theory underlying our local proof
obligations: Any linearizable algorithm can be verified using backward simu-
lation, when the abstract layer is defined using the possibilities from [11]. It is
related to Theorems 13.3-5 of N. Lynch’s book [14] (see also [13]) as well as to the
embedding of linearizability into observational refinement given in [7]. We have
mechanized the global theory in KIV and are not aware of any other approaches
that have mechanically verified the soundness of their proof technique.

We conjecture that our local proof strategy is applicable to all algorithms
which have potential linearisation points outside their thread and where the
abstraction function does not change. The optimistic version of the set algorithm
is another example of this class, as are algorithms where a potential LP exists
that is determined in the future. The latter includes the “dequeue with an empty
queue” case in Michael & Scott’s queue [15].

Of course there remains future work. For example, two algorithms which would
require further extensions include Herlihy & Wing’s original queue (which re-
quires a proof with the global theory) and the elimination stack [10], which uses
a handshake to linearise a push and a pop-operation at the same time. The latter
would need a reduction of the global theory to three processes (the two processes
participating, and one representing all others), and we leave this for the future.

References

1. Amit, D., Rinetzky, N., Reps, T.W., Sagiv, M., Yahav, E.: Comparison under
abstraction for verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 477–490. Springer, Heidelberg (2007)

2. Černý, P., Radhakrishna, A., Zufferey, D., Chaudhuri, S., Alur, R.: Model check-
ing of linearizability of concurrent list implementations. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 465–479. Springer, Heidelberg
(2010)

3. Colvin, R., Groves, L., Luchangco, V., Moir, M.: Formal verification of a lazy
concurrent list-based set algorithm. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 475–488. Springer, Heidelberg (2006)

4. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanizing a correctness proof for a
lock-free concurrent stack. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 78–95. Springer, Heidelberg (2008)

5. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanically verified proof obligations
for linearizability. ACM Trans. Program. Lang. Syst. 33(1), 4 (2011)

6. Derrick, J., Wehrheim, H.: Non-atomic refinement in Z and CSP. In: Treharne, H.,
King, S., Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 24–44.
Springer, Heidelberg (2005)

7. Filipovic, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent
objects. Theoretical Computer Science 411(51-52), 4379–4398 (2010)

8. Groves, L., Colvin, R.: Trace-based derivation of a scalable lock-free stack algo-
rithm. Formal Aspects of Computing (FAC) 21(1–2), 187–223 (2009)

Verifying Linearisability with Potential Linearisation Points 337

9. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N., Shavit, N.: A
lazy concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G., Watten-
hofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 305–309. Springer, Heidelberg
(2006)

10. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In:
SPAA 2004, pp. 206–215. ACM Press, New York (2004)

11. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM TOPLAS 12(3), 463–492 (1990)

12. Web presentation of linearizability theory and the lazy set algorithm (2010),
http://www.informatik.uniaugsburg.de/swt/projects/possibilities.html

13. Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model checking linearizability via refinement.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 321–337.
Springer, Heidelberg (2009)

14. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco
(1996)

15. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proc. 15th ACM Symp. on Principles of Dis-
tributed Computing, pp. 267–275 (1996)

16. O’Hearn, P.W., Rinetzky, N., Vechev, M.T., Yahav, E., Yorsh, G.: Verifying lin-
earizability with hindsight. In: 29th Annual ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC), pp. 85–94 (2010)

17. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and
interactive proofs with KIV. In: Automated Deduction—A Basis for Applications,
Interactive Theorem Proving, vol. II, ch. 1, pp. 13–39. Kluwer, Dordrecht (1998)

18. Vafeiadis, V.: Modular fine-grained concurrency verification. PhD thesis, University
of Cambridge (2007)

19. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg (2010)

20. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-
concurrent linearisable objects. In: PPoPP 2006, pp. 129–136. ACM, New York
(2006)

21. Vafeiadis, V., Parkinson, M.: A marriage of rely/Guarantee and separation logic.
In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–
271. Springer, Heidelberg (2007)

http://www.informatik.uniaugsburg.de/swt/projects/possibilities.html

	Verifying Linearisability with Potential Linearisation Points
	Introduction
	The Lazy Concurrent Set
	Linearisability and Refinement
	Local Proof Obligations
	Verification of the Case Study
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

