

Lecture Notes in Computer Science 6664
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Michael Butler Wolfram Schulte (Eds.)

FM 2011:
Formal Methods
17th International Symposium on Formal Methods
Limerick, Ireland, June 20-24, 2011
Proceedings

13

Volume Editors

Michael Butler
University of Southampton, Electronics and Computer Science
Highfield, Southampton S017 1BJ, UK
E-mail: mjb@ecs.soton.ac.uk

Wolfram Schulte
Microsoft Research
One Microsoft Way, Redmond, WA 98052-6399, USA
E-mail: schulte@microsoft.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-21436-3 e-ISBN 978-3-642-21437-0
DOI 10.1007/978-3-642-21437-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011928375

CR Subject Classification (1998): D.2, F.3, D.3, D.1, J.1, K.6, F.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The FM 2011 Symposium was held in Limerick during June 20–24, 2011. FM
2011 was the 17th in a series of symposia organized by Formal Methods Europe,
an independent association whose aim is to stimulate the use of, and research
on, formal methods for software development.

The FM 2011 Symposium had the goal of highlighting and celebrating ad-
vances and maturity in formal methods research, education, and deployment via
tool support and industrial best practice, and their role in a variety of industries
and domains. The call for papers invited contributions covering the use of for-
mal methods in practice, tools for formal methods, the role of formal methods
in software and systems engineering, theoretical foundations for formal methods
and teaching of formal methods.

There were 101 submissions in total for FM 2011. After thorough review and
discussion, including a rebuttal phase where authors were invited to submit a
short response to the reviews, the committee decided to accept 29 papers based
on originality, technical soundness, presentation and relevance to the themes of
FM 2011.

The papers accepted covered a range of topics including the use of formal
methods for analysis of cyber-physical systems and secure systems. Several pa-
pers on reasoning about concurrency and about dynamic structures were selected
as well as papers addressing process algebra. On the tools front, there were pa-
pers on tools for model checking, runtime verification and program compilation
and transformation. There were also papers on verification experiments and on
formal methods education. The authors of the submitted papers represented 36
different countries

The symposium included three exciting and challenging presentations from
invited speakers. Janos Sztipanovits gave a talk on modelling and cyber-physical
systems, David Harel gave a talk on behavioral programming and Jasmin Fisher
gave a talk on executable biology.

We wish to thank the members of the Program Committee and the numer-
ous sub-reviewers for their work. Lero, the Irish Software Engineering Research
Centre, at the University of Limerick, hosted the conference. Thanks to Mike
Hinchey and other Lero members for managing the local organization and to
FME for their strong support of the symposium. The Easychair system was used
for management of the submission and reviewing process. Thanks to Springer
for publication of the proceedings.

April 2011 Michael Butler
Wolfram Schulte

Organization

General Chair Mike Hinchey, Lero

Program Chairs Michael Butler, University of Southampton
Wolfram Schulte, Microsoft Research

Workshop Chairs Emil Vassev, Lero
David Sinclair, Lero

Tutorials Chair Nico Plat, West Consulting

Industry Day Chairs Andrew Butterfield, Trinity College Dublin
Thierry Lecomte, ClearSy

Doctoral Chair Norah Power, Lero

Publicity Chair Jonathan P. Bowen, Museophile Limited

Program Committee

Farhad Arbab CWI and Leiden University, The Netherlands
Jos Baeten TUE
Anindya Banerjee IMDEA Software Institute, Spain
David Basin ETH Zurich, Switzerland
Eerke Boiten University of Kent, UK
Jonathan P. Bowen Museophile Limited, UK
Michael Butler University of Southampton, UK
Andrew Butterfield Trinity College Dublin, Ireland
Ana Cavalcanti University of York, UK
Byron Cook Microsoft Research
Jin Song Dong National University of Singapore
Colin Fidge Queensland University of Technology, Australia
Bernd Finkbeiner Saarland University, Germany
John Fitzgerald Newcastle University, UK
Marc Frappier University of Sherbrooke, Canada
Dimitra Giannakopoulou Carnegie Mellon / NASA Ames, USA
Stefania Gnesi ISTI-CNR Pisa, Italy
Reiner Hahnle Chalmers University of Technology, Sweden
Klaus Havelund Jet Propulsion Laboratory, California Institute of

Technology, USA

VIII Organization

Mats Heimdahl University of Minnesota, USA
Jane Hillston University of Edinburgh, UK
Daniel Jackson MIT, USA
Einar Broch Johnsen University of Oslo, Norway
Randolph Johnson National Security Agency, USA
Sarfraz Khurshid The University of Texas at Austin, USA
Gerwin Klein NICTA and UNSW, Australia
Daniel Kroening Computing Laboratory, Oxford University, UK
Regine Laleau Paris Est Creteil University, France
Kim Larsen Aalborg University, Denmark
Peter Gorm Larsen Aarhus School of Engineering, Denmark
Timo Latvala Space Systems, Finland
Gary Leavens University of Central Florida, USA
Elizabeth Leonard Naval Research Laboratory, USA
Michael Leuschel University of Düsseldorf, Germany
Zhiming Liu United Nations University - International Institute

for Software Technology, Macao
Tom Maibaum McMaster University, Canada
Joao Marques-Silva University College Dublin, Ireland
Sjouke Mauw University of Luxembourg
Annabelle Mciver Macquarie University, Australia
Simão Melo De Sousa LIACC and Departamento de Informática,

Universidade da Beira Interior, Portugal
Tobias Nipkow TU München, Germany
Manuel Nunez University Complutense de Madrid, Spain
Colin O’Halloran QinetiQ
Jose Nuno Oliveira Universidade do Minho, Portugal
Ganesan Ramalingam Microsoft Research
S Ramesh India Science Lab., GM R&D Labs., Bangalore
Grigore Rosu Runtime Verification, Inc., and The University

of Illinois at Urbana-Champaign, USA
Andreas Roth SAP Research
Augusto Sampaio Federal University of Pernambuco, Brazil
Wolfgang Schreiner Research Institute for Symbolic Computation

(RISC), Austria
Wolfram Schulte Microsoft Research
Kaisa Sere Abo Akademi University, Finland
Kenji Taguchi AIST Japan
Andrzej Tarlecki Institute of Informatics, Faculty of Mathematics,

Informatics and Mechanics, Warsaw University,
Poland

Mark Utting The University of Waikato, New Zealand
Huibiao Zhu Software Engineering Institute, East China

Normal University, China

Organization IX

Additional Reviewers

Aguirre, Nazareno
Ahrendt, Wolfgang
Ait Ameur, Yamine
Alglave, Jade
Alkassar, Eyad
Andres, Cesar
André, Étienne
Bendisposto, Jens
Bertolini, Cristiano
Bherer, Hans
Boström, Pontus
Broda, Sabine
Bryans, Jeremy W.
Bubel, Richard
Böhme, Sascha
Bøgholm, Thomas
Castro, Pablo
Cazorla, Diego
Chen, Chunqing
Cornelio, Marcio
Crocker, Paul
Daum, Matthias
Degerlund, Fredrik
Demasi, Ramiro
Dimitrova, Rayna
Donaldson, Alastair
Ehlers, Rüdiger
Ellison, Chucky
Fantechi, Alessandro
Ferrari, Alessio
Genaim, Samir
Gervais, Frederic
Gopinath, Divya
Greenaway, David
Gregorio-Rodŕıguez, Carlos
Griesmayer, Andreas
Haller, Leopold
Hansen, Helle Hvid
He, Nannan
Hoang, Thai Son
Homeier, Peter
Ilic, Dubravka
Jacobs, Bart

Ji, Ran
Jonker, Hugo
Jost, Steffen
Kaiser, Alexander
Kamali, Maryam
Khalek, Shadi
Kozyura, Vitaly
Kumar Mohalik, Swarup
Li, Qin
Lin, Shang-Wei
Liu, Yang
Llana, Luis
Malkis, Alexander
Mammar, Amel
Mariano, Georges
Markovski, Jasen
Marriott, Chris
Mazzanti, Franco
Mehlhorn, Kurt
Meinicke, Larissa
Meredith, Patrick
Moreira, Nelma
Morgan, Carroll
Mota, Alexandre
Murray, Toby
Myreen, Magnus O.
Møller, Mikael H.
Naumann, David
Nishihara, Hideki
Nogueira, Sidney
Nokhbeh, Razieh
Olesen, Mads Chr.
Olszewska Plaska, Marta
Pang, Jun
Patcas, Lucian
Pereira, David
Peter, Hans-Jörg
Plagge, Daniel
Qiu, Zongyan
Rabe, Markus
Reniers, Michel
Rinetzky, Noam
Rodrigues, Vitor Gabriel

X Organization

Rosa, Fernando
Ruemmer, Philipp
Rungta, Neha
Ryan, Mark
Satpathy, Manoranjan
Schlatte, Rudolf
Schmidt, Benedikt
Schäf, Martin
Serbanuta, Traian
Siddiqui, Junaid
Sprenger, Christoph
Stefanescu, Andrei
Steffen, Martin

Stolz, Volker
Sun, Jun
Tapia Tarifa, Silvia Lizeth
Tautschnig, Michael
Vain, Juri
Valarcher, Pierre
Van De Mortel-Fronczak, Asia
Varpaaniemi, Kimmo
Wei, Wei
Westerholm, Jan
Winwood, Simon
Yang, Guowei
Yatsu, Hirokazu

Table of Contents

Invited Talks

Model Integration and Cyber Physical Systems: A Semantics
Perspective . 1

Janos Sztipanovits

Some Thoughts on Behavioral Programming . 2
David Harel

The Only Way Is Up . 3
Jasmin Fisher, Nir Piterman, and Moshe Y. Vardi

Cyber-Physical Systems

Does It Pay to Extend the Perimeter of a World Model? 12
Werner Damm and Bernd Finkbeiner

System Verification through Program Verification . 27
Daniel Dietsch, Bernd Westphal, and Andreas Podelski

Adaptive Cruise Control: Hybrid, Distributed, and Now Formally
Verified . 42

Sarah M. Loos, André Platzer, and Ligia Nistor

Runtime Analysis

TraceContract: A Scala DSL for Trace Analysis 57
Howard Barringer and Klaus Havelund

Using Debuggers to Understand Failed Verification Attempts 73
Peter Müller and Joseph N. Ruskiewicz

Sampling-Based Runtime Verification . 88
Borzoo Bonakdarpour, Samaneh Navabpour, and
Sebastian Fischmeister

Case Studies / Tools

Specifying and Verifying the SYNERGY Reconfiguration Protocol with
LOTOS NT and CADP . 103

Fabienne Boyer, Olivier Gruber, and Gwen Salaün

XII Table of Contents

Formal Development of a Tool for Automated Modelling and
Verification of Relay Interlocking Systems . 118

Anne E. Haxthausen, Andreas A. Kjær, and Marie Le Bliguet

Relational Reasoning via SMT Solving . 133
Aboubakr Achraf El Ghazi and Mana Taghdiri

Building VCL Models and Automatically Generating Z Specifications
from Them . 149

Nuno Amálio, Christian Glodt, and Pierre Kelsen

Experience

The 1st Verified Software Competition: Experience Report 154
Vladimir Klebanov, Peter Müller, Natarajan Shankar,
Gary T. Leavens, Valentin Wüstholz, Eyad Alkassar, Rob Arthan,
Derek Bronish, Rod Chapman, Ernie Cohen, Mark Hillebrand,
Bart Jacobs, K. Rustan M. Leino, Rosemary Monahan,
Frank Piessens, Nadia Polikarpova, Tom Ridge, Jan Smans,
Stephan Tobies, Thomas Tuerk, Mattias Ulbrich, and Benjamin Weiß

Program Compilation and Transformation

Validated Compilation through Logic . 169
Guodong Li

Certification of Safe Polynomial Memory Bounds . 184
Javier de Dios and Ricardo Peña

Relational Verification Using Product Programs . 200
Gilles Barthe, Juan Manuel Crespo, and César Kunz

Security

Specifying Confidentiality in Circus . 215
Michael J. Banks and Jeremy L. Jacob

Formally Verifying Isolation and Availability in an Idealized Model of
Virtualization . 231

Gilles Barthe, Gustavo Betarte, Juan Diego Campo, and
Carlos Luna

Table of Contents XIII

The Safety-Critical Java Memory Model: A Formal Account 246
Ana Cavalcanti, Andy Wellings, and Jim Woodcock

Process Algebra

Failure-Divergence Refinement of Compensating Communicating
Processes . 262

Zhenbang Chen, Zhiming Liu, and Ji Wang

Termination without � in CSP . 278
Steve Dunne

Timed Migration and Interaction with Access Permissions 293
Gabriel Ciobanu and Maciej Koutny

Education

From a Community of Practice to a Body of Knowledge: A Case Study
of the Formal Methods Community . 308

Jonathan P. Bowen and Steve Reeves

Concurrency

Verifying Linearisability with Potential Linearisation Points 323
John Derrick, Gerhard Schellhorn, and Heike Wehrheim

Refinement-Based Verification of Local Synchronization Algorithms 338
Dominique Méry, Mohamed Mosbah, and Mohamed Tounsi

Simulating Concurrent Behaviors with Worst-Case Cost Bounds 353
Elvira Albert, Samir Genaim, Miguel Gómez-Zamalloa,
Einar Broch Johnsen, Rudolf Schlatte, and S. Lizeth Tapia Tarifa

Dynamic Structures

Automatically Refining Partial Specifications for Program
Verification . 369

Shengchao Qin, Chenguang Luo, Wei-Ngan Chin, and Guanhua He

Structured Specifications for Better Verification of Heap-Manipulating
Programs . 386

Cristian Gherghina, Cristina David, Shengchao Qin, and
Wei-Ngan Chin

Verification of Unloadable Modules . 402
Bart Jacobs, Jan Smans, and Frank Piessens

XIV Table of Contents

Model Checking

A Multi-encoding Approach for LTL Symbolic Satisfiability Checking . . . 417
Kristin Y. Rozier and Moshe Y. Vardi

On Combining State Space Reductions with Global Fairness
Assumptions . 432

Shao Jie Zhang, Jun Sun, Jun Pang, Yang Liu, and Jin Song Dong

Author Index . 449

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, p. 1, 2011.

Model Integration and Cyber Physical Systems:
A Semantics Perspective

Janos Sztipanovits

Institute for Software Integrated Systems, Vanderbilt University, P.O. Box 1829 Sta. B.
Nashville, TN 37235, USA

janos.sztipanovits@vanderbilt.edu

Abstract. Recent attention to Cyber Physical Systems (CPS) is driven by the
need for deeper integration of design disciplines that dominate physical and
computational domains. Consequently, heterogeneity is the norm as well as the
main challenge in CPS design: components and systems are modeled using
multiple physical, logical, functional and non-functional modeling aspects. The
scope of relevant design domains includes (1) physical domains, such as
structure, mechanical dynamics, thermal, propulsion, fluid, electrical,
acoustics/vibration and (2) computational/networking domains, such as system
control, sensors, health management, mission management, communication.
However, the practice of multi-modeling – using established domain-specific
modeling languages and tools independently in the design process – is
insufficient. Modeling and analyzing cross-domain interactions among physical
and computational/networking domains and understanding the effects of
heterogeneous abstraction layers in the design flow are fundamental part of CPS
design theories. I will cast this challenge as a model integration problem and
discuss solutions for capturing interdependencies across the modeling domains
using constructs for meta-model composition and integration.

Some Thoughts on Behavioral Programming

David Harel

Dept. of Computer Science and Applied Mathematics
The Weizmann Institute of Science

Rehovot 76100, Israel

Abstract. The talk starts from a dream/vision paper I published in
2008, whose title is a play on that of John Backus’ famous Turing Award
Lecture (and paper). I will propose that — or rather ask whether — pro-
gramming can be made a lot closer to the way we humans think about
dynamics, and the way we somehow manage to get others (e.g., our chil-
dren, our employees, etc.) to do what we have in mind. Technically, the
question is whether we can liberate programming from its three main
straightjackets: (1) having to directly produce a precise artifact in some
language; (2) having actually to produce two separate artifacts (the pro-
gram and the requirements) and having then to pit one against the other;
(3) having to program each piece/part/object of the system separately.
The talk will then get a little more technical, providing some evidence
of feasibility of the dream, via LSCs and the play-in/play-out approach
to scenario-based programming, and its more recent Java variant. The
entire body of work around these ideas can be framed as a paradigm,
which we call behavioral programming.

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, p. 2, 2011.

The Only Way Is Up

Jasmin Fisher1, Nir Piterman2, and Moshe Y. Vardi3

1 Microsoft Research Cambridge, UK
2 University of Leicester, UK

3 Rice University, USA

Abstract. We draw an analogy between biology and computer hard-
ware systems and argue for the need of a tower of abstractions to tame
complexity of living systems. Much like in hardware design, where engi-
neers use a tower of abstractions to produce the most complex man-made
systems, we stress that in reverse engineering of biological systems; only
by using a tower of abstractions we would be able to understand the
“program of life”.

1 Introduction

System-level approaches in biology have gained mainstream attention in the past
decade, in an effort to better understand biological complexity. An important
activity in system biology is the development of mathematical and computational
models. Abstraction is well understood to be a key to modeling complex systems
in general, and biological systems in particular, where by “abstraction” we refer
to a model at a certain level of description, suppressing lower-level details in a
principled way. All models used in system biology employ abstraction, but they
vary in their level of abstraction from low-level differential equations all the way
to Boolean logic. Today’s systems biology offers a tool set of many different types
of abstraction, but without an overall organizing principle. Furthermore, the
overwhelming majority of cellular models focus on the levels of genes, proteins,
and metabolites, as well as metabolic or regulatory networks. Our claim is that
abstraction alone is unlikely to be sufficient as a tool to understand biological
systems; what is needed, we believe, is a tower of abstractions ; that is, a sequence
of models of increasing degree of abstraction, each level building on the level
below it. Biology, we believe, must “climb up the ladder of tower of abstractions.”

To show how a tower of abstractions can be used to tame complexity, it is
useful to draw an analogy between biological systems and computing hardware
systems. We note that, in recent years, many tools and formalisms that were
originally designed for the development and analysis of computing systems have
been successfully used for modeling biological systems [14,10,24]. Perhaps the
most striking resemblance between biology and hardware is the ability to do
concurrent computation. Biological systems operate with inherent concurrency
events (e.g., biochemical reactions, intercellular signaling, and the like) do not
occur one after the other, but rather concurrently in different compartments over
the entire organism just as the logical elements in computing hardware execute

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 3–11, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

4 J. Fisher, N. Piterman, and M.Y. Vardi

concurrently. In order for computing hardware to make sequential progress, for
example, to sum up a vector of numbers, one has to add to the hardware memory
elements, referred to as registers, which make it possible to transfer values from
one machine cycle to the next. Analogously, in a cell, the accumulation of a
certain protein may serve as a memory device and triggers events that depend
on it. It is exactly this concurrency, however, that makes it difficult to understand
the behavior of hardware and biological systems.

Our thesis is that in order to better understand complex biological behaviors,
which will hopefully (and eventually) help us understand how genotype gives rise
to phenotype, one must think of multiple useful levels of abstraction, similar to
the tower of abstractions used by computer scientists and engineers in designing
computing hardware. The argument is that to tame biological complexity we
must find the right levels of abstraction to model biological systems, and that
without such a tower of abstractions it would probably be impossible to under-
stand the machinery behind complex living systems. Furthermore, the analysis
through multi-leveled abstraction can serve to identify emergent behaviors of bi-
ological systems. A computer cannot be understood by pondering the behavior
of transistors, or logic gates; similarly, the behavior of a cell cannot be predicted
by understanding its chemistry at a molecular level. In order to understand the
protocols employed by biological systems, which Caste and Doyle have suggested
will give the necessary tools to reason about biological systems [8], we have to
first identify the right levels of abstraction.

2 The Process of Hardware Design

To pursue the analogy of biology and hardware, it is useful to give a short
(and rather simplified) overview of the process of hardware design [29]. The
most notable feature of the design process is that it is a top-down process.
Hardware design starts with the formulation of requirements, typically provided
in a natural-language document. The next stage is the development of a software
model of the intended system. This software model is intended to serve as an
initial prototype for the system, which ultimately is implemented in hardware.
The software model is an executable model, which can be experimented with,
modified, and tuned.

The second design stage is a transformation of the software model into a
hardware-description language (HDL). Such a language is essentially a program-
ming language for hardware; it includes specialized features that talk about
clocks and concurrency. While traditional software programming languages are
designed to produce procedural code, executed one command at a time, HDLs
assume that everything happens concurrently. An HDL model describes the be-
havior of the hardware in terms of signal flow and data transfer between registers
(memory elements) and the operations performed on these signals and data. Note
that the HDL model is not meant to run the software model; the software model
and the HDL model are both models of the same system, but at different levels
of abstraction.

The Only Way Is Up 5

The next stage is called logic synthesis ; it converts the HDL model into a
gate-level model, which describes the design implementation in terms logic gates
and their connectivity. The conversion uses a predefined library of logic gates
(e.g., AND gate with 2, 3, 4, or 8 inputs, etc.) that serve as elementary building
blocks. Logic synthesis is typically an automated process, which implies that the
two different descriptions (HDL and logic gates) should have exactly the same
functionality.

The next stage is called physical design; here the logic has to be mapped
to its physical implementation, in terms of components, component locations,
component wiring, and the like. Here one deals with transistors and wires rather
than with logic gates. While previously the main constraints were functional, here
they are mainly physical. Length of wires, width of transistors, capacity, power
consumption, and timing are the primary concerns. Ultimately, this design phase
ends with a photomask, to be used in photolithography. Finally, the transistors
and wires are actually printed on silicon.

Let us now illustrate this with a concrete example. We start with a software-
level definition of integer multiplication, which can be described by K=I*J.

Fig. 1. The process of hardware design

6 J. Fisher, N. Piterman, and M.Y. Vardi

At the HDL level, we choose (for the sake of this example) to implement mul-
tiplication via iterated addition. We need registers for I, J, and K (initially 0).
We now iterate, at each iteration decrementing I and adding J to K. We stop
when I reaches 0. At the gate level, we represent I, J, and K as 32-bit-vectors,
that is, arrays of bits, each of length 32. We now need to implement bit-level
decrementation and addition in terms of AND, OR, and NOT gates, and repli-
cate that circuit 32 times. Finally, at the transistor level, we need to implement
logic gates and registers using transistors. The final device will have thousands
of transistors.

What is the point of this detailed description of computing hardware design?
It is to emphasize the importance of having multiple levels of abstractions. Ab-
straction is the hardware designer’s primary tool in dealing with complexity.
The designers of the first microprocessor, in 1974, were able to work directly
at the level of its 2300 transistors, but a modern microprocessor can have over
two billion transistors. Today’s tower of abstractions in hardware design (see
Figure 1)software, HDL, logic-gates, transistors, silicon has emerged from close
to 50 years of experience in hardware design. Hardware designers realized not
only that abstraction is necessary for taming complexity, but also that several
levels of abstraction are actually necessary.

3 Hardware and Wetware

It is important to note that the description above refers to the design of digi-
tal hardware systems, which have discrete behavior and form the basis for most
computing systems. In continuous (analog) hardware systems, such as amplifiers,
regulators, and filters, the focus is much more in the physical attributes of the
devices, such as gain, power, and resistance. Which approach, discrete or con-
tinuous, is more appropriate for viewing biological systems? Many researchers
believe that biology is completely continuous, doubting whether discrete abstrac-
tions can be found at all. This view, in our opinion misses an important point.
Even digital computer systems are ultimately continuous systems, implemented
in terms of transistors and wires. The value of discrete models is in their utility;
they enable us to abstract away from the low-level continuous details. Thus,
in hardware design continuous models are used only at the lowest level of ab-
straction, with higher levels, from logic gates and above, using discrete models.
Discrete models are also extremely useful in biology. Indeed, the genetic code is
discrete. Similarly, the opening and closing gating of ion channels in response
to specific stimuli allowing cells to control their internal environment is just like
having discrete switches. Biologists have been using discrete models, such as
Boolean networks, since the 1960s [17]. For example, Boolean models correctly
capture network motifs such as forward loops and dual-positive feedback loops
[4,19] and lead to better understanding of the Drosophila segment polarity gene
network resilience [2,7].

Clearly, biological systems are the “hardware of life”, referred to as “wetware”
by Rudy Rucker in his 1988 science-fiction novel [26]. The description above of

The Only Way Is Up 7

the hardware-design process reveals, however, fundamental differences between
hardware and wetware. Most fundamentally, computing hardware systems are
designed by an intelligent designer, while biological systems are the result of
billions of years of evolution. Furthermore, while hardware design proceeds in a
sequence of distinct well-defined modelssoftware, HDL, logic gates, transistors,
and silicon biology provides us with only the final ‘model’, so to speak, the living
organism. What then is the value of the hardware-wetware analogy?

To understand the value of this analogy we need to remember that the biolo-
gist is not a designer, but rather a reverse engineer, with the task of uncovering,
given a device, the functionality of that device and its principles of operation.
Consider now a hardware engineer who is given a hardware device with the task
of reverse engineering it. That task can be quite difficult. Take the device de-
scribed above for integer multiplication. An inspection of a semiconductor chip
may reveal an intricate network of thousands of transistors, but may say nothing
about the functionality of the device. The reverse-engineering process is helped
enormously by the reverse engineer’s understanding of the (forward engineer-
ing) design process. Understanding that the transistor network implements logic
gates, which implement HDL, which implements software, is critical to the suc-
cess of reverse engineering a hardware device. We believe that the main value of
the hardware-wetware analogy is in its showing that abstraction, and multiple
levels of it, are absolutely crucial to handling biological complexity.

The importance of abstraction has been implicitly understood for quite some
time. As stated by Brenner, “while the genome sequence is central, it is a level
of abstraction that is too cryptic to be used for the organization of data and
derivation of theoretical models.” [6] Boolean gene networks are an example
of an abstract model, whose value is that it is much easier to work with than
the network of differential equations that it approximates. When Bornholdt says
“Less Is More in Modeling Large Genetic Networks” [4], he is pointing out to the
value of abstract models. In our view, Biology needs to go beyond mere abstrac-
tion and develop its own tower of abstractions. Note that we are not referring
here to the fact that biology requires models at different scales (e.g., molecular,
cellular, organ), rather, even a single scale requires multiple levels of abstraction,
just as hardware designers apply multiple levels of abstraction during the design
process at the same scale, for example, multiplication can be performed in terms
of iterated addition. In biology, one can also observe different level of abstrac-
tion at the same scale. For example, the process of cell-fate determination in the
earthworm C. elegans can be observed at different levels of abstraction. On the
low-level, we can look at signal transduction and describe gene-expression levels
[30] and the change in protein quantities over time [11,20], or, at a higher level
of abstraction, we can observe the cell acquiring a specific cell fate according to
morphology, cell division, or position of its daughter cells [28,27]. The cellular
module of circadian clocks, constructed from genes and proteins involved in in-
terlocking feedback loops [13], is an example of functional module that is best
considered at a higher level of abstraction than that of regulatory, or metabolic
pathways, which in turn are at a higher level of abstraction than that of genes,

8 J. Fisher, N. Piterman, and M.Y. Vardi

proteins, and metabolites [22]. The segmentation clock, a transcriptional oscil-
lator that is responsible for vertebrate somitogenesis, is, in turn, an ensemble of
numerous cellular oscillators [15].

One may argue that because biological systems are evolved rather than engi-
neered, unlike hardware, they are unlikely to be amenable to hierarchical mod-
eling. We argue otherwise. Evolution selects by fitness, and fitness is determined
by phenotype. It is the very high-level attributes and traits of an organism that
determine its fitness. Precisely because evolution typically works via reuse and
modification of biological modules [16,18], we should expect a tower of abstrac-
tions to bridge the large gap between the genotype and phenotype. The brain is
another complex system that is the result of evolution. While at the lowest level,
brain functionality is driven by neurons, a full understanding of the brain re-
quires it to be understood in terms of systems, subsystems, and sub-subsystems
[23]; one would expect this to also be the case in cellular biology. As an ex-
ample, let us consider bacterial chemotaxsis, whereby bacteria migrate towards
chemical attractants and away from chemical repellents. Chemotaxis is a behav-
ior that contributed to fitness and is therefore selected for by evolution. The
molecular mechanisms underlying chemotaxis are a subject of ongoing research,
which shows that these mechanisms vary among different bacterial species [25].
The process of chemotaxis is very amenable to hierarchical modeling. Low level
models consider the configuration of the molecules in the base of a flagellum and
how changes in their phosphorylation leads to the binary choice of clockwise or
anti-clockwise rotation [3]. The change in conformation is abstracted in the sig-
naling network model of Rao et al., which includes the sensing (through ligand
binding) and rotation-direction decision (through phosphorylation of controller).
Higher-level models could, for example, abstract away the signaling network and
connect directly sensing and motion.

While hardware is based on a well-defined and well understood tower of
abstractions, a standard abstraction tower for biology has yet to emerge, see
Figure 2 for a putative tower (of course, a biological tower of abstraction may
not be as neat and orderly as the computing hardware tower). Even at the most
basic level, we do not have a biological analogy to the most fundamental fact of
hardware design, which is that transistors implement logic gates. Searching for
the fundamental “bio-logic gates” [10] is a highly active research area. Brandman
et al. [5] describe several general building blocks in genetic networks, such as exci-
tatory feedback loop, inhibitory feedback loop, and the like. Nurse [21] calls for a
program of describing and cataloguing cellular “logic circuits”. In the context of
synthetic biology, which is concerned with designing artificial biological systems,
Endy [9] has argued for using functional modules and in turn to use these mod-
ules to create systems. In essence, these calls are for the development of a “bio-
logic gate-level model” (obviously, in a biological setting the components are much
more fluid than in an engineering setting, often performing different tasks in dif-
ferent contexts). While the development of such a model would constitute a signif-
icant step forward in system biology, we should remember that in hardware design
the gate-level model is still a fairly low-level model. The reverse engineer who has

The Only Way Is Up 9

Fig. 2. Tower of abstractions in biology

uncovered the gate-level model of the multiplication device described above is still
far from realizing that the device performs integer multiplication. Similarly, we
must define models that are more abstract and higher-level than the “bio-logic
gate-level model.” The segmentation clock [15], mentioned above, which is an en-
semble of numerous cellular oscillators seems to be an example of a functional
module that is best considered at a level above that of “bio-logic gates.”

4 The Software of Life

In the tower of abstractions of hardware design, the highest level was the soft-
ware level, which describes the behavior of the hardware device. What is then
the software of life? Let us go back to the example above. The software of the
device we described above is the equation Z=X*Y. This equation is not directly
represented in the silicon; nevertheless, the silicon implements it. Thus, Z=X*Y
emerges from the simple and local interaction of the thousands of transistors that
constitute the circuit. It follows that the software of hardware can be viewed as
an emergent behavior of the hardware. This behavior is the top level in our tower
of abstractions; see [1] for a discussion of emergence and multi-levelled abstrac-
tion in science. Analogously, the “software of life” is an emergent behavior of

10 J. Fisher, N. Piterman, and M.Y. Vardi

biological systems (e.g., chemotaxis). To understand how genotype leads to be-
havior, we need to identify first the tower of abstractions bridging genotype and
behavior. In genetics, the central dogma provides us with the appropriate level of
abstraction, referring to the DNA-to-protein transfer. While system biology re-
searchers are largely aware of the importance of abstraction, system biology has
concentrated its efforts in models of the gene/protein/metabolite and regulatory
network levels. We believe that biological models should have multiple levels of
abstraction, starting from molecular-level models, going through bio-logic-gate
models, and eventually getting to behavioral models, relating to the “software
of life”. Identifying these levels of abstraction is, in our opinion, one of the cen-
tral challenges of system biology; and quoting a recent piece on systems biology
theory by Gunawardena [12], “Molecular biology was reductionism’s finest hour.
Now, there is nowhere left to go but up.”

References

1. Abott, R.: Emergence explained-abstractions. Complexity 12(1), 13–26 (2006)

2. Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the
expression pattern of the segment polarity genes in drosophila melanogaster. J.
Theor. Biol. 223(1), 1–18 (2003)

3. Bai, F., Branch, R.W., Nicolau Jr., D.V., Pilizota, T., Steel, B.C., Maini, P.K.,
Berry, R.M.: Conformational spread as a mechanism for cooperativity in the bac-
terial flagellar switch. Science 327(5966), 685–689 (2010)

4. Bornholdt, S.: Systems biology. less is more in modeling large genetic networks.
Science 310(5747), 449–451 (2005)

5. Brandman Jr., O., Ferrell, J.E., Li, R., Meyer, T.: Interlinked fast and slow positive
feedback loops drive reliable cell decisions. Science 310(5747), 496–498 (2005)

6. Brenner, S.: Sequences and consequences. Philos. Trans. R Soc. Lond. B Biol.
Sci. 365(1537), 207–212 (2010)

7. Chaves, M., Albert, R., Sontag, E.D.: Robustness and fragility of boolean models
for genetic regulatory networks. J. Theor. Biol. 235(3), 431–449 (2005)

8. Csete, M.E., Doyle, J.C.: Reverse engineering of biological complexity.
Science 295(5560), 1664–1669 (2002)

9. Endy, D.: Foundations for engineering biology. Nature 438(7067), 449–453 (2005)

10. Fisher, J., Henzinger, T.A.: Executable cell biology. Nat. Biotechnol. 25(11), 1239–
1249 (2007)

11. Grant, B.D., Wilkinson, H.A.: Functional genomic maps in caenorhabditis elegans.
Curr. Opin. Cell Biol. 15(2), 206–212 (2003)

12. Gunawardena, J.: Systems biology. biological systems theory. Science 328(5978),
581–582 (2010)

13. Hardin, P.E.: The circadian timekeeping system of drosophila. Curr. Biol. 15(17),
R714–R722 (2005)

14. Harel, D.: On comprehensive and realistic modeling: some ruminations on the what,
the how and the why. Clin. Invest. Med. 28(6), 334–337 (2005)

15. Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S., Takeda, H.: Noise-resistant
and synchronized oscillation of the segmentation clock. Nature 441(7094), 719–723
(2006)

The Only Way Is Up 11

16. Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs.
Proc. Natl. Acad. Sci. U S A 102(39), 13773–13778 (2005)

17. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic
nets. J. Theor. Biol. 22(3), 437–467 (1969)

18. Kitano, H.: Biological robustness. Nat. Rev. Genet. 5(11), 826–837 (2004)
19. Klemm, K., Bornholdt, S.: Topology of biological networks and reliability of infor-

mation processing. Proc. Natl. Acad. Sci. U S A 102(51), 18414–18419 (2005)
20. Long, F., Peng, H., Liu, X., Kim, S.K., Myers, E.: A 3d digital atlas of c. elegans

and its application to single-cell analyses. Nat. Methods 6(9), 667–672 (2009)
21. Nurse, P.: Life, logic and information. Nature 454(7203), 424–426 (2008)
22. Oltvai, Z.N., Barabasi, A.L.: Systems biology. life’s complexity pyramid.

Science 298(5594), 763–764 (2002)
23. Perus, M.: Multi-level synergetic computation in brain. Nonlinear Phenomena in

Complex Systems 4(2), 157–193 (2001)
24. Priami, C.: Algorithmic systems biology. Communications of the ACM 52(5), 80–88

(2009)
25. Rao, C.V., Kirby, J.R., Arkin, A.P.: Design and diversity in bacterial chemotaxis:

a comparative study in escherichia coli and bacillus subtilis. PLoS Biol. 2(2), E49
(2004)

26. Rudy, V.B.: Rucker and Copyright Paperback Collection (Library of Congress).
Wetware. Avon Books, New York (1988)

27. Sternberg, P.W., Felix, M.A.: Evolution of cell lineage. Curr. Opin. Genet.
Dev. 7(4), 543–550 (1997)

28. Sulston, J.E.: C. elegans: the cell lineage and beyond. Biosci. Rep. 23(2-3), 49–66
(2003)

29. Wakerly, J.F.: Digital Design: Principles and Practices, 4th edn. Pearson Educa-
tion, London (2008)

30. Wang, M., Sternberg, P.W.: Pattern formation during c. elegans vulval induction.
Curr. Top Dev. Biol. 51, 189–220 (2001)

Does It Pay to Extend the Perimeter

of a World Model?�

Werner Damm1 and Bernd Finkbeiner2

1 Carl von Ossietzky Universität Oldenburg
2 Universität des Saarlandes

Abstract. Will the cost for observing additional real-world phenomena
in a world model be recovered by the resulting increase in the quality of
the implementations based on the model? We address the quest for opti-
mal models in light of industrial practices in systems engineering, where
the development of control strategies is based on combined models of
a system and its environment. We introduce the notion of remorsefree
dominance between strategies, where one strategy is preferred over an-
other if it outperforms the other strategy in comparable situations, even
if neither strategy is guaranteed to achieve all objectives. We call a world
model optimal if it is sufficiently precise to allow for a remorsefree domi-
nating strategy that is guaranteed to remain dominant even if the world
model is refined. We present algorithms for the automatic verification
and synthesis of dominant strategies, based on tree automata construc-
tions from reactive synthesis.

1 Introduction

What constitutes a good model? We revisit this fundamental question using
concepts and algorithms from reactive synthesis, which allow us to construct
and compare different strategies for achieving a given collection of objectives.
A key challenge rests in the identification of the perimeter of the model: given
a (physical) system S under development, what real-world aspects could poten-
tially impact S in a way that endangers its proper functioning? Examples of
systems of interest are aircrafts, cars, nuclear power plants, defibrillators, pro-
duction plants, or in general what is often referred to as cyber-physical systems,
i.e., systems where both software and hardware components play key roles in
realizing the system’s functionality.

1.1 A Motivating Example

Suppose we wish to develop a driver assistance system that maintains, whenever
possible, a safe distance to objects ahead on the same lane, such as another car
or some obstacle on the road. The starting point for the development is the world
model shown in Figure 1(a), which specifies how environment disturbances like
� This research was partially supported by the German Science Foundation within the

Transregional Collaborative Research Center TR14 AVACS.

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 12–26, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Does It Pay to Extend the Perimeter of a World Model? 13

safe
∧ start

safe

safe ∧
warning

¬safe

true

obstacletrue

¬brake ∨
t damage

true

true

(a) simple world model

safe
∧ start

safe ∧
¬warning

safe ∧
¬warning

safe ∧
warning

safe ∧
warning

¬safe

left ¬left

obstacle
∧ o left

obstacle
∧ ¬o left

brake brake

¬brake ∨
t damage

¬brake ∨
t damage

true

¬obstacle
∨¬o left

¬obstacle
∨ o left

(b) refined world model

Fig. 1. Example world models for a driver assistance system. Sets of labels are specified
using logical formulas: for example, the edges marked with true are labeled with all
subsets of {obstacle , o left , t damage, left , brake}.

the appearance of obstacles (obstacle) or a sudden tire damage (t damage), and
controllable system actions, such as braking (brake), result in transitions on the
world states.

In the initial state the world is safe. Once an obstacle appears somewhere
ahead, we observe (through some distance sensor) a warning signal, as indicated
in the middle state; at this point, the world may transition into the unsafe
bottom state. Braking will prevent the unsafe state unless a rare event such as a
sudden tire damage (t damage) causes the transition to the unsafe state. Clearly,
this world model is very simple; in particular, we have not modeled the lane in
which our car is traveling and the lane where the obstacle appears. As a result,
the effect of a decision not to brake is nondeterministic: after not braking in the
warning state, the next state will either be safe, if the obstacle was indeed on
the same lane as the car and we thus avoided the obstacle by changing the lane,
or the bottom unsafe state, if the obstacle was in fact on the other lane. The
nondeterminism can be eliminated in a refined world model, such as the one

14 W. Damm and B. Finkbeiner

shown in Figure 1(b): this world model extends the perimeter to additionally
include the concept of lanes. In this example, there is a left and a right lane (for
the same direction of travel). The states on the left correspond to the case that
the car is on the left lane, the states on the right to the case that the car is
on the right lane. In the initial state, the car chooses one of the two lanes, we
assume that there is no further possibility to change lanes. The refined world
model in Figure 1(b) is larger and more detailed than the simple world model
in Figure 1(a). But does the extension pay?

Let us assume that the primary objective of our driver assistance system is to
maintain safety, i.e., to ensure that safe is always true, and that an additional,
secondary, objective is to avoid braking, i.e., to ensure that brake is always false.
Consider the following three example control strategies: Strategy 1 never brakes.
Strategy 2 brakes if and only if a warning has occurred. Strategy 3 brakes all the
time. In both world models it is clear that none of the three strategies guarantees
that the objectives are met in all situations: irrespectively of the strategy, the
occurrence of an obstacle followed by tire damage will always cause a transition to
the unsafe state, violating the primary objective. A more meaningful comparison
of the strategies is therefore to see how they perform on particular sequences of
disturbances.

Strategy 3 is clearly not dominant, because it brakes, and, hence, violates the
secondary objective, even in the middle safe state, where there is no danger that
the primary objective might be violated. Strategies 1 and 2 avoid this unneces-
sary braking. Because of the nondeterminism in the simple world model, it is,
however, also impossible to identify one of the two strategies as remorsefreely
dominant. If, starting from the warning state, the assistance system does not
brake, following Strategy 1, then there is the possibility that the unsafe state is
reached and, hence, the primary objective is violated. It would thus have been
preferable to brake, as suggested by Strategy 2. On the other hand, if the assis-
tance system does brake, following Strategy 2, then there is also the possibility
that not braking would have led to a transition to the safe state, in which case
the secondary objective was violated unnecessarily.

The simple world model thus does not allow us to choose a dominant strategy.
Let us analyze the same situation in the refined world model of Figure 1(b).
Strategy 2 still dominates Strategies 1 and 3, because Strategy 1 may violate
the primary objective in the warning state, and Strategy 3 may violate the
secondary objective in middle safe state. As before, Strategy 3 never performs
better than Strategy 2. Unlike in the simple model, however, the same holds for
Strategy 1: In the warning state it is now always better to brake, as suggested by
Strategy 2, because the nondeterministic possibility to return to the middle safe
state without braking has been eliminated. Hence, the payoff of the refinement
of the world model is that we can identify Strategy 2 as dominant.

1.2 From Correctness to Dominance

As the example illustrates, cyber-physical systems should not be expected to
always guarantee their functional requirements – the system is likely to exhibit

Does It Pay to Extend the Perimeter of a World Model? 15

failures when exposed to a physical environment outside the perimeter of the
employed world model. Since the concept of an all encompassing complete model
is of philosophical interest only, the notion of “correctness” has to be revisited
and replaced by notions addressing the inherent incompleteness of verification
approaches induced from modeling boundaries.

In this paper, we propose such a new notion of correctness based on a compar-
ison of the available strategies. We call the strategic dominance described in the
example (for each sequence of disturbances, the dominating strategy achieves
at least the same priority as the dominated strategy) remorsefree dominance.
Remorsefree dominance allows us to compare two strategies even if both strate-
gies violate some objectives. Intuitively, remorsefree dominance means that one
never feels “remorse” about a decision, because, in retrospect, after having seen
a sequence of disturbances, the other strategy would appear preferable.

We compare the strategic capabilities when extending the perimeter of the
world model: does it pay to extend the perimeter of a world model from from
a set V of real-world phenomena to a set V ∪ {e} – i.e., can strategies which
are aware about the real-world phenomenon e avoid violations of the system
requirements more often than strategies which are only aware about real-world
phenomena contained in V ?

We must be careful to distinguish the unavailability of information about a
phenomenon due to an incomplete observation of the world through a limited
sensor system on the one hand from a complete absence of the phenomenon in the
world model on the other. In systems engineering, this distinction corresponds
to the following two different design questions. The first question is that of
sensor completeness: Relative to a given perimeter of the world model, will
adding certain sensors strengthen the strategic capabilities to achieve the given
objectives? For example, in the driver assistance system, it is irrelevant whether
we directly observe the occurrence of an obstacle as long as we observe the
warning signal. The second question refers to the perimeter of the model: Will
extending the perimeter of the model add strategic capabilities?

To answer the first question, we study strategy classes that are indexed by
the available observables: The strategy class SI consists of all strategies that
determine the system actions based on observations from I. We are interested
in finding strategies from one class SI that remorsefreely dominate all strategies
from another class SJ with more (I ⊂ J) or even full information.

To answer the second question, we search for strategies that remain dominant
under all possible refinements of the world model. A simple (but correct) model
hides the impact of certain phenomena with nondeterminism; whether or not this
imprecision has an impact on the existence of a dominating strategy depends
on how relevant the phenomenon is for the objectives under consideration. We
thus have a formal characterization of what constitutes an optimal world model:
A world model is optimal if the description of the relevant phenomena is suffi-
ciently precise to guarantee the existence of a dominating strategy that remains
dominant in all possible refinements of the model.

16 W. Damm and B. Finkbeiner

1.3 Verification and Synthesis

An algorithmic treatment of these questions combines aspects of verification
(which objectives are achieved?) with aspects of synthesis (is there a better strat-
egy?). The algorithmic approach of the paper is therefore based on constructions
on automata over infinite trees, similar to those used in the automata-theoretic
synthesis of reactive systems [1,2,3,4,5]. We characterize remorsefree dominance
as a language on infinite trees by providing a tree automaton that accepts all
dominating strategies. This automaton can be used to verify that a given strategy
is dominant (it is dominant iff it is accepted by the automaton) and to synthe-
size a dominant strategy iff such a strategy exists (it exists iff the language of
the automaton is nonempty). We also give analogous constructions for the set
of strategies that remain dominant over all refinements of the world model.

The paper thus provides a conceptual and algorithmic framework for what
could be called a new relativized theory of correctness, which accepts that sys-
tems may fail and replaces absolute guarantees (all objectives are guaranteed to
be achieved) with the relative notions of dominance and optimality.

2 Foundations

2.1 World Models

We study the interaction of a system with its environment. Let VS be a finite
set of system variables, modeling actions under the system’s control, such as
the setting of actuators, and VE be an arbitrary set of environment variables,
in the context of control theory corresponding to the variables of the plant
model. We assume that the environment variables are partitioned into disjoint
sets of disturbances VD, modeling uncontrollable environment observations, and
controllable environment variables VC , modeling phenomena in the environment,
i.e., actions and observations which can be influenced by the system through the
system variables. For the purposes of this paper, we assume that all values can
be finitely encoded, and thus, without loss of generality, assume all variables to
be of Boolean type.

We formalize the possible interactions between the system and its environment
using labeled graphs, which we call world models. Nodes represent the states of
a plant. Transitions between nodes then represent the effect of a given setting of
the system variables and a given disturbance on the current state of the plant.
The actual choice of settings of system variables will be determined by (control-)
strategies discussed below.

We consider world models that restrict only a finite subset VE ⊆ VE of the
environment variables. We call this subset the perimeter of the world model. As
made formal in the definition below, models with restricted perimeter can be
understood as full models by assigning arbitrary valuations to the environment

Does It Pay to Extend the Perimeter of a World Model? 17

variables outside the perimeter of the model. We denote, for a valuation1 σ ⊆ VE

of environment variables VE , the set of valuations of VE obtained by assigning
arbitrary valuations to environment variables outside the perimeter by E(σ) =
{σ ∪ r |r ⊆ (VE � VE)}.

A world model M = (VE , N, n0, E, LN , LE) is a labeled directed graph, where
VE ⊆ VE is the subset of environment variables observed by the model, N is a
possibly infinite set of nodes, n0 ∈ N is an initial node, E ⊆ N × N is a set of
edges, and LN : N → 22VC , LE : E → 22VS∪VD is a pair of labeling functions that
assign to each node a set of valuations of the controllable environment variables
and to each edge a set of valuations of the system variables and the disturbances.

We denote by VC = VE ∩VC and VD = VE ∩VD the finite sets of controllable
environment variables and disturbances, respectively, within the perimeter of the
world model. We assume LN and LE to be induced from valuations of environ-
ment variables within the perimeter, e.g., LN to be induced by a labeling function
L′

N : N → 22VC such that LN(n) =
⋃

σ∈L′
N (n) E(σ), and, similarly, LE to be in-

duced by a function L′
E : E → 22VS∪VD such that LE(e) =

⋃
σ∈L′

E(E) E(σ). We
furthermore assume that the world models are total, i.e., for each node n ∈ N ,
each valuation σS of the system variables, and each valuation σD of the distur-
bances there exists a node m ∈ N such that σS ∪ σE ∈ L′

E(n, m).
As an example, consider the world models of Figure 1. The models refer to

the system variables VS = {brake, left}, the disturbances VD = {obstacle, o left ,
t damage} and the controllable environment variables VC ={safe, start ,warning}.
The perimeter of the simple world model, VE = {obstacle, t damage, safe, start ,
warning}, is a subset of the perimeter of the refined world model, V ′

E = VE ∪
{left , o left}.

The purpose of the world model is to predict the consequences of system ac-
tions. Because each model only considers a finite number of phenomena, however,
it typically abstracts from some relevant phenomena with nondeterminism: We
call a world model nondeterministic if there exist two edges (n, m1), (n, m2) such
that the edge labels are not disjoint, L′

E(n, m1)∩L′
E(n, m2) �= ∅, and the union

of the target node labels is not singleton |L′
N(m1) ∪ L′

N(m2)| ≥ 1. Otherwise,
we call the world model deterministic2.

It is often possible to reduce the nondeterminism by extending the perimeter
of the world model. While the models may differ in their precision, they model
the same reality. We therefore expect them to be consistent in the sense that
the more concrete (or refined) model must be simulated by the more abstract
model.

A concrete world model M1 = (VE1 , N1, n01 , E1, LE1, LN1) is simulated by an
abstract world model M2 = (VE2 , N2, n02 , E2, LE2 , LN2) with VE2 ⊆ VE1 iff there
exists a simulation relation R ⊆ {(n1, n2) ∈ N1×N2 | LN1(n1) ⊆ LN2(n2)} such
that
1 All variables are of Boolean type. A variable is evaluated to true iff it is an element

of σ.
2 Note that a deterministic model may still have multiple runs due to different evalu-

ations of the system and disturbance variables.

18 W. Damm and B. Finkbeiner

1. (n01 , n02) ∈ R and
2. for all (n1, n2) ∈ R, (n1, m1) ∈ E1, and σ ∈ LE1(n1, m1)

there exists a pair (n2, m2) ∈ E2 such that σ ∈ LE2 and (m1, m2) ∈ R.

For example, the world model in Figure 1(a) simulates the world model in Fig-
ure 1(b). The simulation relation relates two nodes from the two wolds models
whenever they are depicted horizontally next to each other, i.e., the initial nodes
are related, the nodes labeled safe ∧ ¬warning are related to the node labeled
safe, etc.

2.2 Strategic Objectives

We use linear-time temporal logic (LTL) [6] to specify strategic objectives. Let
V = VS ∪ VE . We interpret LTL formulas over computations, which are infinite
sequences σ = σ0σ1σ2 . . . ∈ (2V)ω of variable valuations. We denote restrictions
of a computation σ or other sequences of variables to a subset X ⊆ V of the
variables by σ|X = σ0 ∩ X σ1 ∩ X, The satisfaction of an LTL formula ϕ on
a computation σ is denoted by σ |= ϕ.

An objective specification ϕ = (O, p) consists of a set O of LTL formulas,
called objectives, and a priority function p : O → {1, . . . , |O|}, which identifies
the priority of each objective as a positive number, where 1 is the most important
priority.

In the driver assistance system, the objectives consist of two invariants, the
invariant �safe with priority two, and the invariant �¬brake with priority two.

We say that a computation σ satisfies priorities up to n if n is the greatest
nonnegative number n ∈ N≥0 such that σ |= φ for all φ ∈ O and p(φ) ≤ n. A
set of computations C satisfies priorities up to n if n is the greatest nonnegative
number n ∈ N≥0 such that σ |= φ for all ϕ ∈ O, p(φ) ≤ n, and σ ∈ C. If a
strategy s or a set S of strategies satisfies priorities up to 0, i.e., none of the
priorities are met, we say that s or S, respectively, completely violates (O, p).

2.3 Strategy Classes

Let M = (VE , N, n0, d0, E, LN , LE) be a world model over VE , modeling the
influence of a valuation of the system variables VS and the disturbances VD on
the controllable environment variables. Let V = VE ∪ VS .

A control strategy (or short: strategy) for M selects the valuation of the system
variables dependent on the sequence of valuations of the environment variables
VE as observed through a finite set of observables I ⊆ VE . Formally, a control
strategy over observables I is a function s : (2I)∗ → 2VS .

A control strategy s and a sequence of disturbances σD ∈ (2VD)ω determine
jointly the following set of computations CM (σD, s) in the world model M :
CM (σD, s) = {σ0σ1 . . . ∈ (2V)ω | ∃n0n1 . . . ∈ Nω . σ0 = L′

N(n0)∪d0∪s(ε)∧∀j >
0 . (nj−1, nj) ∈ E L′

E(nj−1, nj) = (σS , σD) ∧ σj = σS ∪ σD ∪ L′
N(nj)}, where

σS = s(σ0 ∩ I . . . σj−1 ∩ I).
We call the class of such strategies sI the I-observation strategy class, denoted

by SI . The special case I = VE is called the full-observation class. We use the

Does It Pay to Extend the Perimeter of a World Model? 19

term partial observation strategies for strategies in some I-observation strategy
class with I � VE .

2.4 Winning Strategies

We call the set CM (s) =
⋃

σD∈(2VD)ω CM (σD, s) of computations that result from
combining a strategy s with sequences of disturbances the computations of s.
We say that strategy s is winning up to priority n if every computation in CM (s)
satisfies the objective specification up to priority n. This induces a partial order
� on strategies: a strategy s is dominated by a strategy t, denoted by s �M t, if
s is winning up to priority n, t is winning up to priority m, and n ≤ m.

3 Remorsefree Dominance

As discussed in the introduction, it is often unrealistic to expect a strategy
to enforce an objective for every possible environment behavior. For example,
in the driver assistance system, a tire damage can always cause a transition
to the unsafe state. If even the full-observation strategies violate the objective
specification completely, then the �-hierarchy collapses: all strategies violate the
objective specification completely.

We now introduce a finer dominance order that allows us to distinguish strate-
gies even if none of the objectives can be guaranteed. Remorsefree dominance
refers to individual computations rather than full strategies. We say a compu-
tation σ is dominated by a computation η, denoted by σ � η, if σ satisfies the
objective specification up to priority m, η up to priority n, and m ≤ n.

A strategy s is remorsefreely dominated (in world model M) by a strategy
t, denoted by s �M t, iff for every sequence of disturbances σD ∈ (2VD)ω and
every computation c ∈ CM (σD, t) there is a computation c′ ∈ CM (σD, s) such
that c dominates c′.

To motivate the “for every . . . there is” quantification in the above defini-
tion, consider the following two variations of the same scenario: An aircraft is
approaching the airport under strong shear winds. In variation 1, the aircraft is
not equipped with a shear wind sensor, and the autopilot (unaware of the shear
wind) initiates an approach. In this variation, an uncontrollable nondeterminism
will decide over life and death, i.e., whether by chance the aircraft is still able to
land, or whether the shear wind will cause the aircraft to crash on the ground. In
variation 2, the aircraft is equipped with a shear wind sensor, and the autopilot
tests for the velocity and changes of the shear wind and automatically initiates
an abort of the approach. In variation 1, there is thus an uncontrollable chance
that both the primary objective (safety) and the secondary objective (landing) is
achieved. However, at the uncontrollable risk of violating the primary objective.
In variation 2, by contrast, safety is guaranteed at the price of excluding the
possibility of achieving the secondary objective. In such a situation, we argue
that the more informed strategy should be considered remorsefreely dominating.

Comparing remorsefree dominance �M to the notion of dominance defined in
Section 3, it is easy to see that s �M t implies s � t:

20 W. Damm and B. Finkbeiner

Theorem 1. For two strategies s and t, s �M t implies s �M t.

Proof. Assume, by way of contradiction, that s �M t and s ��M t. Since s ��M t,
there exists a priority n such that all computations in CM (s) satisfy the objec-
tive specification up to priority n but there exists a computation c ∈ C(t) that
violates priority n. Let σD be the sequence of disturbances in c. No computa-
tion in CM (σD, s) is dominated by c, which is in CM (σD, t). This contradicts the
assumption that s �M t. ��

The converse does not hold: suppose, for example, that strategies s1 and s2 both
completely violate the objective specification, but s1 achieves some objective for
some specific sequence of disturbances, while s2 achieves no objective, no matter
what the environment does; then s1 �M s2, but not s1 �M s2.

In addition to comparing strategies with strategies, we are also interested in
comparing strategy classes with strategies: A strategy class S is remorsefully
dominated by a specific strategy t ∈ T from some strategy class T , denoted by
S �M t, iff for every strategy s ∈ S, it holds that s �M t.

4 An Automata-Theoretic Characterization of
Remorsefree Dominance

The remainder of the paper is devoted to the algorithmic analysis of remorsefree
dominance. We start, in this section, by constructing an automaton over infinite
trees that characterizes the set of remorsefreely dominating strategies in a par-
ticular strategy class. This automaton can be used to verify that a strategy is
dominant and to synthesize dominant strategies.

4.1 Preliminaries: Automata over Infinite Words and Trees

We assume familiarity with automata over infinite words and trees. In the fol-
lowing we only give a quick summary of the standard terminology, the reader is
referred to [7] for a full exposition.

A (full) tree is given as the set Υ ∗ of all finite words over a given set of
directions Υ . For given finite sets Σ and Υ , a Σ-labeled Υ -tree is a pair 〈Υ ∗, l〉
with a labeling function l : Υ ∗ → Σ that maps every node of Υ ∗ to a letter of Σ.

An alternating tree automaton A = (Σ, Υ, Q, q0, δ, α) runs on Σ-labeled Υ -
trees. Q is a finite set of states, q0 ∈ Q a designated initial state, δ a transition
function δ : Q×Σ → B+(Q×Υ), where B+(Q×Υ) denotes the positive Boolean
combinations of Q×Υ , and α is an acceptance condition. Intuitively, disjunctions
in the transition function represent nondeterministic choice; conjunctions start
an additional branch in the run tree of the automaton, corresponding to an
additional check that must be passed by the input tree. A run tree on a given
Σ-labeled Υ -tree 〈Υ ∗, l〉 is a Q × Υ ∗-labeled tree where the root is labeled with
(q0, l(ε)) and where for a node n with a label (q, x) and a set of children child(n),
the labels of these children have the following properties:

Does It Pay to Extend the Perimeter of a World Model? 21

– for all m ∈ child(n) : the label of m is (qm, x · υm), qm ∈ Q, υm ∈ Υ such
that (qm, υm) is an atom of δ(q, l(x)), and

– the set of atoms defined by the children of n satisfies δ(q, l(x)).

A run tree is accepting if all its paths fulfill the acceptance condition. A parity
condition is a function α from Q to a finite set of colors C ⊂ N. A path is accepted
if the highest color appearing infinitely often is even. The safety condition is the
special case of the parity condition where all states are colored with 0. The Büchi
condition is the special case of the parity condition where all states are colored
with either 1 or 2. A Σ-labeled Υ -tree is accepted if it has an accepting run tree.
The set of trees accepted by an alternating automaton A is called its language
L(A). An automaton is empty iff its language is empty.

A nondeterministic automaton is a special alternating automaton where the
image of δ consists only of such formulas that, when rewritten in disjunctive
normal form, contain exactly one element of Q×{υ} in every disjunct. A deter-
ministic automaton is a special nondeterministic automaton where the image of
δ contains no disjunctions.

A word automaton is the special case of a tree automaton where the set Υ of
directions is singleton. For word automata, we omit the direction in the transition
function.

4.2 Dominant Computations

A strategy dominates another if, for every sequence of disturbances, each com-
putation that is produced by the first strategy dominates some computation
produced by the second. We begin our construction with a word automaton that
checks for dominance between computations. In order to relate two computations
that result from the same sequence of disturbances, we duplicate the variables
in VS and VC , i.e., we consider sequences over the alphabet 2VD∪VS∪VC∪V′

S∪V ′
C ,

where V ′
S and V ′

C are sets of fresh “primed” variables duplicating the vari-
ables in VS and VC , respectively. We write primed(X) for the set of primed
variables corresponding to the variables in a set X , and, for two sequences
σ ∈ (2VD∪VS∪VC)ω and η ∈ (2VD∪V ′

S∪V ′
C)ω, we write [σ, η] for the sequence

((σ0[V �→ V ′]) ∪ η0) ((σ1[V �→ V ′]) ∪ η1) . . ., where [V �→ V ′] indicates that
each variable from V is replaced by the corresponding primed variable in V ′.

Lemma 1. Let ϕ = (O, p) be an objective specification, let V = VD ∪ VS ∪ VC ,
V ′

S = primed(VS), V ′
C = primed(VC), and V ′ = VD ∪ V ′

S ∪ V ′
C . There exists a

deterministic parity word automaton Aϕ over V ∪ V ′ such that [σ, η] is accepted
by Aϕ iff σ � η.

Proof. We define an LTL formula ψ for the desired property as follows:

ψ =
∧

n∈{1,...,|O|}

⎛⎝ ∧
φ∈O,p(φ)≤n

φ[V �→ V ′] →
∧

φ∈O,p(φ)≤n

φ

⎞⎠ .

We translate ψ to a deterministic parity word automaton using a standard con-
struction (cf. [8]). ��

22 W. Damm and B. Finkbeiner

The definition of dominant strategies compares different computations of a par-
ticular world model M . In preparation for the construction of the automaton for
dominant strategies in the next subsection, we condition Aϕ with respect to M .

Lemma 2. Let M be a model, ϕ = (O, p) an objective specification, and let
V = VD ∪VS∪VC , V ′

S = primed(VS), V ′
C = primed(VC), and V ′ = VD∪V ′

S ∪V ′
C .

There exists a parity word automaton BM,ϕ over V ∪ V ′ such that the sequence
[σ, η] is accepted by BM,ϕ iff (1) σ � η and σ is a computation of M or (2) η is
not a computation of M .

Proof. We start by translating the world model M into a safety word automa-
ton AM over the alphabet 2VD∪VC∪VS , which accepts the sequences of variable
evaluations allowed by M . Let A′

M be the same automaton as AM , but over the
alphabet 2VD∪V ′

C∪V′
S with the variables in VC and VS replaced by their coun-

terparts in V ′
C and V ′

S, respectively. We represent condition (1) by building the
product of A′

M with Aϕ. We represent condition (2) by complementing AM .
BM,ϕ is an automaton that accepts the language union of the two automata. ��

4.3 Dominant Strategies

We now construct a tree automaton that recognizes the subset of strategies in
SI1 that dominate a strategy class SI2 in a given world model M . We assume
that I1 ⊆ I2, i.e., the reference strategy class SI2 has the larger set of observable
variables. A first observation is that we can, without loss of generality, assume
that VD ⊆ I2. As explained in the following lemma, this is due to the fact
that the definition of remorsefree dominance refers to individual sequences of
disturbances. If some strategy in SI2∪VD is not dominated, then this is due to
some individual computation; however, there exists a strategy in SI2 that behaves
exactly as the strategy in SI2∪VD on that particular computation.

Lemma 3. Let M be a world model and let SI1 and SI2 be two strategy classes
with I1 ⊆ I2. For every t ∈ SI1 it holds that SI2 �M t iff SI2∪VD �M t.

Proof. The “if” direction is obvious, because SI2 ⊆ SI2∪VD . For the “only if”
direction, suppose, by way of contradiction, that SI2 �M t but SI2∪VD ��M t.
Since SI2∪VD ��M t, there exists a sequence of disturbances σD ∈ (2VD)ω and a
computation c ∈ CM (σD, t) such there exists an alternative strategy t′ ∈ SI2∪VD

where for all c′ ∈ CM (σD, t′) it holds that c′ �� c. There exists, however, the
strategy t′′ ∈ SI2 with t′′(σ0σ1 . . . σk) = t′((σ0 ∪σD,0)(σ1∪σD,1) . . . (σk ∪σD,k)),
which has the same set CM (σD, t′′) = CM (σD, t′) of strictly better computations.
This contradicts the assumption that SI2 �M t. ��

The construction of the tree automaton in the following theorem uses the con-
junctive branching available in alternating automata to compare against all
possible strategies in SI2 .

Does It Pay to Extend the Perimeter of a World Model? 23

Theorem 2. Let M be a world model, ϕ an objective specification, and SI1 and
SI2 two strategy classes with I1 ⊆ I2. Then there exists an alternating parity tree
automaton CM,ϕ,I1,I2 that recognizes the subset of strategies in SI1 that dominate
the strategy class SI2 in M .

Proof. We construct a tree automaton that reads a strategy of SI1 as its input
tree and simulates all possible reference strategies in SI2 in its run tree. Since
I1 ⊆ I2, the reference strategy may have more branches than the input tree.
These additional branches are simulated by the transition function as follows:
The part due to VD is simulated by conjunction, since the computation of the
input strategy must dominate the computation of the reference strategy for all
possible sequences of disturbances. Applying Lemma 3, we assume that VD ⊆ I2.
The reference strategy therefore branches according to (at least) VD.

The part due to I2 � VD is simultated by disjunction, because we may choose
the computation of the reference strategy. The part due to VC � I2 is chosen by
projection: we choose a computation of the reference strategy for every compu-
tation of the input strategy; unlike the part due to I2, however, the reference
strategy does not branch according to these choices. We therefore project and
determinize the word automaton BM,ϕ accordingly.

Let BM,ϕ be as defined in Lemma 2. Let B′=(2VD∪I1∪VS∪I′
2∪V′

S , {∅}, Q, q0, δ, α)
be the determinization of the universal projection with respect to VC � I1 of the
existential projection with respect to V ′

C � I ′2 of BM,ϕ. We construct the alter-
nating parity tree automaton CM,ϕ,I1,I2 = (2VS , 2I1 , Q, q0, δ

′, α) with transition
function

δ′(q, WS) =
∧

WD⊆VD

∧
W1⊆I1�VD

∨
W ′

2⊆I′
2�V ′

D

∧
W ′

S⊆V′
S

(δ(q, WS ∪ WD ∪ W1 ∪ W ′
2 ∪ W ′

S), (WD ∪ W1) ∩ I1).

��

5 Verifying and Synthesizing Dominant Strategies

With the tree automaton CM,ϕ,I1,I2 constructed in the previous section, we can
check if a given strategy is dominant (iff it is accepted by CM,ϕ,I1,I2) and if
the strategy class SI1 contains a strategy that dominates SI2 (iff CM,ϕ,I1,I2 is
nonempty).

Theorem 3. Let M be a world model, ϕ an objective specification and SI1 and
SI2 two strategy classes with I1 ⊆ I2. We can automatically check whether a
given strategy in SI1 (given as a safety word automaton) dominates SI2 , and
whether SI1 contains a strategy that remorsefreely dominates SI2 .

Proof. To check whether a given strategy (represented as a safety word automa-
ton T) is accepted by CM,ϕ,I1,I2 , we solve the parity game that results from
combining T and CM,ϕ,I1,I2 (cf. [9]). To check whether there exists a strategy
that is accepted by CM,ϕ,I1,I2 , we translate the alternating automaton into an
equivalent nondeterministic automaton. Language emptiness of the nondeter-
ministic automaton can be checked by solving a parity game on its state graph.
If the language is non-empty, an accepted tree can be extracted. ��

24 W. Damm and B. Finkbeiner

6 Towards Optimal World Models

We now address the fundamental question whether a given world model is opti-
mal: does it pay to refine the model?

For a given objective specification and strategy class, we say that a world
model is optimal if the current strategy class already contains a strategy that
dominates all strategies in the same class for any refined model. For example,
the simple world model from Figure 1(a) is not optimal because there is no
dominant strategy; the refined world model from Figure 1(b) is optimal due to
the dominating Strategy 2 (brake if and only if a warning has occurred).

In the automata-theoretic analysis, we can safely restrict our attention to
refined world models that are deterministic. In a deterministic model, a sequence
of disturbances and a strategy determine a unique computation. Remorsefree
dominance in the deterministic models thus implies remorsefree dominance in
nondeterministic models, where it suffices to dominate some computation from
a set of possible computations.

In the following, we describe the necessary adaptations of our constructions.
When comparing the computations of two strategies in an unknown but deter-
ministic refinement of a world model M , we must ensure that variations in VC

may only occur if there was a previous variation in VS . The following lemma
adapts Lemma 2 accordingly:

Lemma 4. Let M be a deterministic world model, let ϕ = (O, p) be an objective
specification, and let V = VD ∪ VS ∪ VC , V ′

S = primed(VS), V ′
C = primed(VC),

and V ′ = VD ∪V ′
S ∪V ′

C . There exists a parity word automaton EM,ϕ over V ∪V ′

such that [σ, η] is accepted by EM,ϕ iff (1) σ � η and σ is a computation of M
and the valuation of the variables in VC differs in σ and η only if there was
a previous difference in the valuation of the variables in VS or (2) η is not a
computation of M .

Proof. The construction of EM,ϕ is analogous to the construction of BM,ϕ,I2 in
Lemma 2. For the modified condition (1), we add a memory bit to the state of
the automaton that records whether a deviation in the valuation of the variables
in VS has occurred. If a deviation in the valuation of the variables in VC occurs
before the bit has been set, the automaton enforces condition (2). ��

The following theorem is an adaptation of Theorem 2 that checks for dominance
in all deterministic refinements of the world model.

Theorem 4. Let M be a world model with environment variables VE , ϕ an
objective specification, and SI a strategy class. There exists an alternating parity
tree automaton FM,ϕ,I that recognizes the subset of strategies in SI that dominate
a strategy class SI in every deterministic model M ′ such that M simulates M ′.

Proof. The construction of FM,ϕ,I is analogous to the construction of CM,ϕ,I1,I2

in Theorem 2. Let EM,ϕ be the parity word automaton from Lemma 4 and let
E ′ = (2VD∪VS∪V′

S∪VC∪V ′
C , {∅}, Q, q0, δ, α) be the determinization of the universal

Does It Pay to Extend the Perimeter of a World Model? 25

projection with respect to (VC � I) ∪ (V ′
C � I ′) of BM,ϕ. We construct the al-

ternating parity tree automaton FM,ϕ,I = (2VS , 2I , Q, q0, δ
′, α) with transition

function

δ′(q, WS) =
∧

WD⊆VD

∧
W1⊆I�VD

∧
W ′

2⊆I′�V ′
D

∧
W ′

S⊆V′
S

(δ(q, WD ∪ W1 ∪ W ′
2 ∪ W ′

S), (WD ∪ W1) ∩ I).

The difference to the construction in Theorem 2 is that the valuation of the
variables in V ′

C � V ′
D is chosen conjunctively, rather than disjunctively: if the

world model is deterministic, then the set of computations corresponding to the
reference strategy is singleton. ��

Using the tree automaton from Theorem 4, we can check if our world model is
optimal: M is optimal iff there exists a strategy that dominates the strategies of
the same class in all deterministic refinements of M , which is the case iff FM,ϕ,I

is nonempty.

Theorem 5. Let M be a world model, ϕ an objective specification and SI a
strategy class. We can automatically check whether M is optimal for ϕ and SI

and, in case of a positive answer, synthesize a remorsefreely dominating strategy.

Proof. To check whether there exists a strategy that is accepted by FM,ϕ,I and
to obtain such a strategy, we proceed as in the proof of Theorem 3: we translate
the alternating automaton into an equivalent nondeterministic automaton and
solve the resulting emptiness game. ��

7 Conclusions

One of the paradoxical challenges in bringing formal methods to practice is that
detecting errors is most useful when done early, at a point in the design process
when it is still inexpensive to make a change; but how can one apply formal
verification if there is no system yet to analyze?

Arguably, the approach presented in this paper brings formal methods to
the earliest possible point in the design process, when the developer has not
even started with the design, but rather tries to understand the environment in
which the planned system is to achieve its objectives. Our constructions allow
the designer to optimize the world model to ensure that no objective will be
missed because too few real-world phenomena have been considered.

Since the verification of remorsefree dominance must not only analyze the
given strategy, but also search through an entire class of strategies for an al-
ternative, our algorithms are more complex than typical verification algorithms
and are, in fact, closer to synthesis [1,2,3,4,5] than to standard verification. Re-
cently, there has been a lot of interest in efficient implementation techniques for
synthesis algorithms (such as bounded synthesis [5] and GR(1) synthesis [4]), for
which the analysis of world models should provide an interesting new application
domain.

26 W. Damm and B. Finkbeiner

A fundamental difference to both the classical verification and synthesis prob-
lems is, however, that we do not necessarily expect our strategies to meet all ob-
jectives and instead only demand optimality with respect to remorsefree dom-
inance. While such a relative notion of correctness is very unusual in formal
verification and synthesis, it is an established concept in general decision theory:
Regret minimization [10], for example, is a model of choice under uncertainty,
where the player minimizes the difference between the payoff of the chosen strat-
egy and the payoff that would have been obtained with a different course of
action.

References

1. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. of POPL,
pp. 179–190 (1989)

2. Kupferman, O., Vardi, M.Y.: Synthesis with incomplete informatio. In: Proc. of
ICTL (1997)

3. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Proc. of LICS,
pp. 321–330 (2005)

4. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Proc. of
VMCAI, pp. 364–380 (2006)

5. Finkbeiner, B., Schewe, S.: SMT-based synthesis of distributed systems. In: Proc.
of AFM (2007)

6. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, New York (1991)

7. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

8. Vardi, M.Y., Wilke, T.: Automata: from logics to algorithms. In: Flum, J., Grädel,
E., Wilke, T. (eds.) Logic and Automata: History and Perspectives, pp. 629–736
(2007)

9. Jurdziński, M.: Small progress measures for solving parity games. In: Proc. STACS,
pp. 290–301 (2000)

10. Loomes, G., Sugden, R.: Regret theory: An alternative theory of rational choice
under uncertainty. Economic Journal 92, 805–824 (1982)

System Verification through

Program Verification�

Daniel Dietsch, Bernd Westphal, and Andreas Podelski

Albert-Ludwigs Universität Freiburg, Freiburg, Germany
{dietsch,westphal,podelski}@informatik.uni-freiburg.de

Abstract. We present an automatable approach to verify that a system
satisfies its requirements by verification of the program that controls the
system. The approach can be applied if the interaction of the program
with the system hardware can be faithfully described by a table relating
domain phenomena and program variables. We show the applicability of
the approach with a case study based on a real-world system.

1 Introduction

When software for systems that interact with a physical environment is to be
developed, the requirements are typically system requirements. That is, require-
ments stated in terms of domain phenomena observable in the physical envi-
ronment. For instance, when a software shall realise the monitoring of a backup
battery of a system, one requirement could be

“For each point in time, the battery-low warning light is on if and only if
the battery is low, i.e. the current battery voltage is below 6.6V”,

or, formalised using LTL (cf. Section 2)

ϕbatt : G(battery-low warning light is on ⇐⇒ battery is low (Vbatt < 6.6V)).

Here, “battery-low warning light is on” and “battery is low” are domain phe-
nomena. Whether such a phenomenon is present or absent in a given point in
time can be measured in the physical environment.

There is a need to assess whether a given program P is correct, that is,
whether the system S executing P satisfies the requirements ϕ. Even battery
monitoring can be safety critical, for instance if it is the backup battery of a fire
alarm system. An undetected battery failure can cause undetected fires in case
of power outage, a false indication of battery failure causes unnecessary costs.

Tests can falsify correctness. If the program P is executed on the system
hardware and if measurements in the physical environment show a violation
of a requirement ϕ, then P is clearly not correct. But to establish that P is
correct without executing it on S (for instance because S is not yet built), we
� Partly funded by the Ministry of Science and Culture (MWK) Baden-Württemberg

in project “Verbundprojekt Salomo” (www.salomo-projekt.de).

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 27–41, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.salomo-projekt.de

28 D. Dietsch, B. Westphal, and A. Podelski

face the problem that the program only operates on program variables, not on
domain phenomena. On programs, we can only evaluate and analyse software
specifications, i.e. properties of the evolution of program variables over time, but
not system requirements. In this situation, we need a software specification f(ϕ)
such that P satisfies f(ϕ) if and only if S executing P satisfies ϕ.

Closely related to this problem is the work in [18], which provides a general
framework to derive software specifications from system requirements. There, the
authors explain how the transition from requirements to specifications can be
done in a structured way by introducing additional domain assumptions (“bread-
crumbs”) that shift single requirements closer to the software. A sequence of
breadcrumbs gives a so-called crumbtrail from requirements to specifications.

In the example, one helpful domain assumption would be that the battery-
low warning light is attached to an output pin on the system hardware which is
accessed via memory-mapped I/O by the variable SCL in the program and that
the light is on if and only if SCL = 1.

[18] defines the correctness of breadcrumbs, but does not describe an au-
tomatable procedure to obtain them. In general, providing breadcrumbs is a
highly creative act which involves insight into properties of the domain and the
system design. For example, the breadcrumbs of the treatment control system
or the two-way traffic light in [18] are clearly not obvious.

At the end of a crumbtrail, we find a software specification. In [18], the cor-
responding software is given in form of a high-level Alloy program which is then
analyzed. In this paper, the software specification refers not to an Alloy program
but to C code which will be executed by a system. This raises the additional
challenge of dealing with real C code running on controller boards, such as the
delay between reading inputs and providing outputs due to the computation
phase.

In this work, we observe that there is a special class of systems and domain
phenomena where breadcrumbs simply make explicit the relations between do-
main phenomena and program variables that can be assumed to be known by
the programmer. For this class, we significantly ease the creation of the last
breadcrumbs in the crumbtrail.

We identify premises under which we can conclude the satisfaction of the
system requirements from results of model-checking the program against a soft-
ware specification, which is obtained by transforming the system requirements.
We argue that these premises are met at least by a certain common pattern of
C programs and demonstrate the application on a case study employing a C
verification tool.

Our approach allows for a high degree of automation. Except for providing
the system requirements and the program, only the relation between domain
phenomena and software observables is needed. The rest of the analysis can be
carried out automatically.

We believe that especially small and medium-sized enterprises (SMEs) con-
cerned with the development of safety-critical systems can benefit from this work.
They typically cannot afford the high entry costs – in terms of training as well

System Verification through Program Verification 29

as tool licenses – for the introduction of formal methods [8, 19]. Our approach
reduces those costs while, at the same time, it allows for a gradual introduction
of formal methods to development processes in SME.

The remainder of this document is organized as follows. Section 2 introduces
the formal prerequisites of our approach, namely syntax and semantics of LTL
with respect to Kripke structures. Section 3 details the formal foundation of
the approach, Section 4 discusses its application to C programs of a certain
form running on system hardware with memory mapped I/O or special function
registers. In Section 5 we present the verification of an excerpt of a real world
system, a radio-based fire alarm system, with the Verifying C Compiler [6, 21]
as a case study. Section 6 discusses the related work and Section 7 summarises
our contributions and names future work.

2 Preliminaries

2.1 Kripke Structure

A Kripke structure M over a set of variables Var is a tuple M := (S, sinit ,→, μ),
where

– S is a finite set of states,
– sinit ∈ S is an initial state,
– →⊆ S × S is the transition relation, and
– μ : S → (Var → D(Var)) labels each state with a valuation of the variables,

i.e. with a function which assigns each variable in Var a value from the
domain D(Var).

A path π in M is a sequence of states s0s1s2 . . . such that (si, si+1) ∈→ for all
i ∈ N0. We write π(n) to denote the n-th state sn of π.

Furthermore, ΠM (s) denotes the set of paths in M with s0 = s, i.e. all paths
that start in s and Π(M) := ΠM (sinit) denotes the set of paths of the Kripke
structure M .

2.2 LTL Syntax

Let ExprB(Var) be a set of boolean expressions over variables Var . The set of
LTL formulas over ExprB(Var) is inductively defined as follows.

ϕ ::= expr | ¬ϕ1 | ϕ1 ∧ ϕ2 | Xϕ1 | ϕ1 U ϕ2 | ϕ1
←−
U ϕ2

where expr ∈ ExprB(Var) and ϕ1, ϕ2 are LTL formulas.

2.3 LTL Semantics

Let M be a Kripke structure over Var and ϕ an LTL formula over ExprB(Var).
Let I�expr�(β) ∈ {�,⊥} be the interpretation of boolean expression expr ∈
Expr

B
(Var) under valuation β : Var → D(Var). We say that M |= ϕ iff π, 0 |= ϕ

for all paths π ∈ Π(M). The satisfaction relation π, n |= ϕ, n ∈ N0, is inductively
defined as follows.

30 D. Dietsch, B. Westphal, and A. Podelski

π, n |= expr iff I�expr�(μ(π(n))) = �.
π, n |= ¬ϕ1 iff π, n �|= ϕ1.
π, n |= ϕ1 ∧ ϕ2 iff π, n |= ϕ1 and π, n |= ϕ2.
π, n |= X ϕ1 iff π, n + 1 |= ϕ1.
π, n |= ϕ1 U ϕ2 iff there exists j ≥ n such that π, j |= ϕ2 and π, i |= ϕ1

for all n ≤ i < j.
π, n |= ϕ1

←−
U ϕ2 iff there exists j ≤ n such that π, j |= ϕ2 and π, i |= ϕ1

for all j < i ≤ n.

3 The Interface between Requirements and Software

We consider programs to be Kripke structures over the program variables. We
assume that there is a dedicated boolean program variable vsn which the pro-
grammer sets in the program whenever she considers the last inputs to be fully
processed, where the outputs are stable, and where new inputs are read. For in-
stance, the points in time where computed results are written into the memory-
mapped I/O region or into special function registers to control output pins and
where values of input pins are obtained via such addresses or registers (cf. Sec-
tion 4).

Definition 1 (Program). Let Var ⊇ {vsn} be a set of variables called program
variables. The variable vsn is called snapshot variable.

A program over Var is a Kripke structure P = (SP , sinitP
,→P , μP) over

Var ∪{•v | v ∈ Var} where the snapshot variable is a boolean flag which holds in
the initial state, i.e. for each s ∈ SP , μP (s, vsn) ∈ {�,⊥} and μP (sinit , vsn) = �.

For simplicity, we assume that the valuation of •v in a state s provides the value
of v at the last snapshot state visited before s. We write [expr]@pre to denote
the expression obtained from expr by syntactically substituting each variable v
by •v, i.e. the expression expr [v := •v | v ∈ Var].

Given a set of program variables Var , an LTL formula over ExprB(Var) is
called (software) specification.

For us, a system S is a hardware such as a controller board with inputs and
outputs to which switches, sensors, etc. or lights, actuators, etc. can be con-
nected, and a micro-processor which can execute programs. The named sensors
and actuators interact with the environment which we consider not to be part
of the system. For instance, a sensor can measure the voltage of a battery and
an actuator can automatically dial a phone number to inform service personnel
about power problems. Following Jackson et al. [18], the controller board, the
sensors, and the voltage as well as the photons emitted by the light are part of
the domain. A domain phenomenon is a phenomenon observable in the domain
which is either present or absent. Such as the battery being low or the power
warning light being on. Each domain phenomenon dp is either controlled by the
system or uncontrolled. For example, the voltage of the battery is uncontrolled
(an input to the system) while the warning light is controlled (an output of the
system).

System Verification through Program Verification 31

Given a set of domain phenomena DP , an LTL formula over DP as atomic
propositions (that is, by assuming that DP is the set of variables, i.e. Var := DP ,
and that the set of expressions over these variables only provides the variable
names itself, no logical connectives or functions, etc., i.e. Expr

B
(Var) := Var)

is called requirement. Unless otherwise noted, from now on we assume that sets
of domain phenomena DP and boolean expressions ExprB(Var) over program
variables are disjoint.

Let S(P) denote the behaviour of a system which is executing program P in
the considered domain, that is, S(P) includes the evolution of domain phenom-
ena over time. In general, S(P) does not directly satisfy a requirement like the
faithfulness of low battery warnings because the system in reality takes time to
process the inputs. Such systems can in reality not process inputs in zero time.
For example, there may be short periods in time where we can observe in S(P)
that the battery has recovered to a voltage above the critical threshold, that is,
the domain phenomenon “battery low” is not observed, but that the warning
light is still on because the program is currently processing the inputs. For the
reasons given above, these violations cannot and should not be “blamed” on the
program. So we consider a program P to be correct if S(P) already satisfies the
requirements admitting a reasonable processing time to the program.

Instead of S(P) we thus consider Sε(P) as representation of the system exe-
cuting P , a Kripke structure which is (conceptually) obtained by observing S(P)
and noting down the presence or absence of controlled (output) domain phenom-
ena and the presence or absence of uncontrolled (input) domain phenomena at
the last relevant point in time according to some sampling procedure ε. Such
a sampling procedure may depend on such various criteria as changes of the
domain phenomena, the clock of the hardware board, or the current program
counter. For example, if we use a predicate over the program counter as sampling
procedure, we can separate the actual processing time of the program from the
functional properties of the requirements. If necessary, techniques like worst case
execution time analysis can be used to determine the actual time between the
sampling points in the program and thus to conclude a time bound. Altogether,
ε ensures that in the states of Sε(P) we see the reaction of the system together
with the last uncontrolled domain phenomena, on which the system reacted.
Thereby, we can leave the formula from Section 1 unchanged and uncluttered
by details of the (orthogonal) observation procedure. Over Sε(P), the example
requirement ϕbatt correctly expresses that the warning light shall be on now if
and only if the previous measurement of battery voltage found the battery to
be low.

Definition 2 (System). Let DP be a set of boolean variables called domain
phenomena and P a program. A system controlled by program P and observed
according to sampling procedure ε is a Kripke structure Sε(P) over DP.

We say a program P correctly realises the requirements ϕ on hardware S if and
only if Sε(P) |= ϕ.

32 D. Dietsch, B. Westphal, and A. Podelski

Definition 3 (IRS). Let DP be a set of domain phenomena and Expr
B
(Var)

a set of boolean expressions over Var. A function

IRS : DP → ExprB(Var)

is called interface between requirements and software (or IRS-table, for short).

Each row of an IRS-table is a domain assumption in the sense of [18]. It states
the assumption that domain phenomenon dp ∈ DP is observable if and only if
IRS(dp) holds for a valuation of program variables. Intuitively, it makes explicit
the programmer’s assumption how, i.e. by which (expressions over) program
variables, the program controls or obtains domain phenomena.

Note that Sε(P) is conceptually obtained by observing the running system so
this structure is not directly available for analysis, in contrast to the program
itself. Yet for the program, we cannot directly evaluate a requirement because a
requirement is a formula over domain phenomena and a program only provides
valuations of program variables.

Recall from the definition of programs that there is the dedicated snapshot
variable vsn which indicates that the software has completely processed the last
set of inputs. So we can apply the IRS-table backwards at each state of the
program where vsn holds to obtain a system �IRS , i.e. a Kripke structure over
domain phenomena. The program states where vsn does not hold are removed
as they do not influence the environment and disregard the current environment
situation. In the resulting �IRS , corresponding acceleration transitions are intro-
duced between states s and s′ if and only if there is a consecutive finite sequence
of states s = s0s1 . . . sn = s′ in the program where vsn holds for s and s′ but not
in between.

Definition 4 (�IRS). Let P = (SP , sinitP
,→P , μP) be a program over Var,

DP a set of domain phenomena, and IRS an IRS-table relating DP and Var.
Then �IRS(P) is the Kripke structure (S, sinit ,→, μ) over DP with

– S = {s ∈ SP | μP (s, vsn) = �},
– sinit = sinitP

,
– → = {(s, s′) ∈ S × S | ∃ s0, s1, . . . , sn ∈ S.s0 = s ∧ sn = s′∧

∀ 0 ≤ i < n.(si, si+1) ∈→P ∧∀ 0 < i < n.μP (si, vsn) = ⊥}, and
– ∀ s ∈ S, dp ∈ DP .μ(s, dp) = I�IRS(dp)�(μP (s)).

We say program P satisfies requirements ϕ if and only if �IRS(P) |= ϕ.
Instead of applying Definition 4 in a constructive fashion, that is, constructing

the Kripke structure �IRS and checking requirement ϕ on it, we want a software
specification that is satisfied by a program if and only if the system executing
the program satisfies the requirements. Given such a software specification, any
program analysis procedure or tool able to decide whether the given formula
holds for the program becomes directly applicable for deciding whether the pro-
gram satisfies the requirements. In Definition 5 we give a procedure to construct
such a software specification from a requirement, Lemma 1 states that the soft-
ware specifications yielded by Definition 5 indeed characterises satisfaction of
requirements.

System Verification through Program Verification 33

Definition 5 (fvsn

IRS). Let P be a program over Var, DP a set of domain phe-
nomena, and IRS an IRS-table relating DP and Var.

Let ϕ be a requirement, i.e. an LTL formula over DP. Then fvsn

IRS(ϕ) denotes
the software specification inductively defined as follows.

fvsn

IRS(ϕ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

¬vsn
←−
U (vsn ∧ IRS(dp)) iff ϕ = dp (controlled)

¬vsn
←−
U (vsn ∧ [IRS(dp)]@pre) iff ϕ = dp (uncontrolled)

¬fvsn

IRS(ϕ1) iff ϕ = ¬ϕ1

fvsn

IRS(ϕ1) ∧ fvsn

IRS(ϕ2) iff ϕ = ϕ1 ∧ ϕ2

X(¬vsn U (vsn ∧ fvsn

IRS(ϕ1))) iff ϕ = X ϕ1

fvsn

IRS(ϕ1) U fvsn

IRS(ϕ2) iff ϕ = ϕ1 U ϕ2

fvsn

IRS(ϕ1)
←−
U fvsn

IRS(ϕ2) iff ϕ = ϕ1
←−
U ϕ2

Lemma 1. Let P be a program over Var, DP a set of domain phenomena, ϕ a
requirement, and IRS an IRS-table relating DP and Var. Then

P |= fvsn

IRS(ϕ) ⇐⇒ �IRS(P) |= ϕ.

Proof. By induction over the structure of ϕ show the contraposition. ��

By the following theorem, we can conclude from properties of the program P to
properties of the system Sε(P) if we employ a valid IRS-table, that is, an IRS-
table which faithfully represents the dependencies between domain phenomena
and program variables as observed when executing P on a system S. In the
particular case we consider here for simplicity, validity of IRS implicitly requires
that the observation procedure ε corresponds to the processing of inputs as
indicated by the snapshot variable.

Definition 6. Let P be a program over Var, DP a set of domain phenomena,
and IRS an IRS-table relating DP and Var. Let S be a system and ε an obser-
vation procedure.

The IRS-table IRS is called valid if and only if �IRS(P) = Sε(P).

Theorem 1. Let P be a program over Var, DP a set of domain phenomena,
S be a system, and ε an observation procedure. Let IRS be a valid IRS-table
relating DP and Var.

Then for each requirement ϕ over DP,

Sε(P) |= ϕ ⇐⇒ P |= fvsn

IRS(ϕ).

Proof. Lemma 1. ��

4 The Class of Memory-Mapped Systems

Memory-mapped systems are characterized by a close and direct interaction
between input and output ports of the hardware and the memory the micro-
controller provides to the program running on it. Typically there is a dedicated

34 D. Dietsch, B. Westphal, and A. Podelski

area of memory (e.g. the first 512 bytes) where the program can read values that
directly correspond to the applied voltage at an input port. In the same fashion
there is a dedicated area of memory for the output ports of the hardware.

Furthermore, many memory-mapped systems operate in three phases. First,
they read values from the input ports (read inputs), then they process the ob-
tained data (process data) and finally they write the resulting values to the
output ports (write outputs). After such a cycle, the system has reacted to
changes in its environment and is stable again. Here we can observe if it ad-
heres to its requirements or not and thus any sampling procedure ε for such a
system has to be interested in observing those stable states of the system. Natu-
rally, an observation during the cycle, for example right after an input value has
been read, would prohibit the system from exhibiting the correct reaction to the
read input value and result in the system’s failure to adhere to its requirements.
More generally, systems can never react immediately (atomic) to changes in the
environment because every system needs some time to calculate the reaction.
Furthermore, the actual input values can change during the process-data phase
or even during the write-outputs phase, again resulting in a mismatch between
desired and observed system reaction.

Let us recall the battery measurement example from Section 1. There is a
system with a backup battery. It has to routinely measure its battery to ensure
it is operational in case of an emergency. The system reads the input providing
the current battery voltage, calculates if this voltage is already too low and
decides if it has to switch on the battery-low warning light and finally writes
the actual reaction to the output variable. The sampling procedure ε observes
the state of the domain phenomena at the end of the cycle, compares the value
read by the program (i.e. the memorized input value) to the defined battery-low
threshold and observes if the light is on or not.

Now let us assume that our example system is controlled by a C program. Let
us further assume that the hardware is such that the memory address 0xFF14
is mapped to the input port representing the battery voltage and the fourth bit
of the word starting at 0xFF00 is mapped to the output port controlling the
battery-low warning light. Then, we expect to see variable declarations similar
to the ones shown in Figure 1.

Figure 2 shows the main function of the C program that together with the
variable declarations from Figure 1 and the aforementioned hardware constitutes

1 // . . .
2 s f r P0 = 0xFF00 ;
3 // . . .
4 s f r p ADCR = 0xFF14 ;
5 // . . .
6 bool SCL = P0 . 3 ;
7 // . . .

Fig. 1. An example of the declaration of memory-mapped in- and outputs for an 8-bit
microprocessor in a real-world C program. sfr and sfrp are compiler-specific keywords
that indicate special function registers.

System Verification through Program Verification 35

the system. The function is divided into two parts. First, all local variables are
declared and initialized. Then the main loop follows, where the program pro-
gresses through the three phases, namely reading inputs, calculating a response
to those inputs and finally writing outputs. After writing outputs, the program
becomes stable and then the whole cycle starts again. Here the snapshot variable
vsn evaluates to �. Note here that the first evaluation of vsn to � is the initial
state of the program P , thus we omit the initialization and the first execution
of the loop body from our considerations.

Because the program completely controls the system, the three phases are
exactly those we can observe when looking at the system. As we said, ε samples
the system at the end of every cycle. In the program, this is at the end of the
while-loop, thus at the same point in time where vsn evaluates to �. Therefore,
we check for the desired behavior in the system as well as in the program at
the same point in time, thus carrying the assumption �IRS(P) = Sε(P) from
Definition 6 by ensuring that the sets of states of �IRS(P) and Sε(P) have the
same size. Although the identification of the three phases in general may be not
as easy as in our example, a large class of programs, namely PLC programs (cf.
IEC 61131 [9]), exhibits exactly those.

Another important aspect concerns the validity of the IRS-table. The vari-
ables in the program have to be bound to the “right” hardware addresses, that
is, if the IRS-table states that the light is on if SCL == 1, SCL has to be bound
to the output port controlling that light such that it is on if and only if SCL
is set to 1. If this is the case can be easily validated by someone familiar with
the hardware of the system. Consider a relation between program variables and
hardware addresses, similar to the IRS-table (or the variable declaration shown
in Figure 1). With such a relation and a description of the hardware, e.g. the
data sheet of the microcontroller, one can formulate the relation between domain
phenomena and hardware in terms of in- and output ports. This relation then
states when a domain phenomenon is observable in terms of hardware in- and
output ports.

To sum up, we say that if a system consists of a memory-mapping hardware
and a program adhering to the three phases described above, and if the program
variables used in the IRS-table are bound to the hardware addresses that cor-
respond to the right domain phenomena, we fulfill the assumption �IRS(P) =
Sε(P), which in turn enables the use of Theorem 1 to check the system require-
ment ϕ directly on the program.

5 Case Study

Recall the requirement from Section 1:

ϕbatt : G(battery-low warning light is on ⇐⇒ battery is low (< 6.6V))

We want to verify if the system described in Section 4 satisfies ϕbatt . That system
is actually an excerpt from the central unit F.BZ 100, which is embedded in the
cc100 system, a radio-based fire alarm system which consists of F.BZ 100 itself,

36 D. Dietsch, B. Westphal, and A. Podelski

different sensors and input/output devices as well as repeaters, all interconnected
via high-frequency radio. In order to verify the system, we first need an IRS-
table for the program shown in Figure 2. Figure 3 shows that IRS-table. Now
we can apply the function fvsn

IRS to ϕbatt , which yields the following software
specification:

σ1 : G
(
(¬sn

←−
U (sn ∧ SCL == 1)) ⇐⇒ (¬sn

←−
U (sn ∧ ADCR < 33152))

)
Since we already know that our system belongs to the class of memory-mapped
systems, thus operates in three phases, we only need to show that our program
adheres to the specification σ1 to invoke Theorem 1 and be confident that the
whole system satisfies ϕbatt .

For our case we chose Microsoft’s Verifying C Compiler (VCC) [6,21] as sound
code-level analysis method. Because VCC has to handle the complexity of a low-
level program with considerable size (Hyper-V [16] has approximately 100.000
LOC), we expected it to be usable for smaller system code as well. Besides a
high level of automation and scalability, VCC also provides a tight integration
in Microsoft Visual Studio [22], a commonly used integrated development envi-
ronment (IDE). This integration allows an easy reporting of verification errors,
comparable to the error messages provided by compilers [1].

The input to VCC is C code extended with annotations, which consist of
function pre- and post-conditions, assertions, type invariants and specification
code [6]. For VCC, we need to transform the software specification to annota-
tions of the C program. This transformation depends in general on the form of

1 void main (void)
2 {
3 // i n i t
4 bool l ed = 0 ;
5 unsigned int bat t e ry = 0 ;
6
7 // main loop
8 while (1)
9 {

10 // read inpu ts
11 bat t e ry = ADCR;
12
13 // c a l c u l a t e
14 l ed = (bat t e ry < 33152) ;
15
16 // wr i te ou tpu t s
17 SCL = led ;
18 }
19 }

Fig. 2. A program controlling a battery-low warning light. The variable ADCR is bound
to the input port monitoring the battery voltage while the variable SCL is bound to
the output port controlling the battery-low warning light.

System Verification through Program Verification 37

DP ExprB(Var)
battery low warning light is on SCL == 1
battery low (<6.6V) ADCR < 33152

Fig. 3. The IRS-table for the requirement ϕbatt

1 #include <vcc . h>

2
3 bool SCL ;

4 volat i l e unsigned int ADCR;

5
6 void main(void)

7 writes (s e t u n i v e r s e ())

8 maintains (program entry point ())

9 {
10 // i n i t
11 bool l ed = 0 ;
12 unsigned int bat t e ry = 0 ;
13

14 spec (bool dp ;)

15
16 // main loop
17 while (1)
18 {
19 // read inpu ts
20 bat t e ry = ADCR;

21 spec (dp = ADCR < 33152 ;)

22
23 // c a l c u l a t e
24 l ed = (bat t e ry < 33152) ;
25
26 // wr i te ou tpu t s
27 SCL = led ;
28
29 // check

30 assert (SCL <==> dp) ;

31 }
32 }

Fig. 4. The program from Figure 2 after preparing it for the code-level analysis by
VCC. The highlighted parts are new annotations.

the software specification as VCC is not supporting LTL directly. For our ex-
periments, we exploited the fact that the requirement is a simple global invariant.

38 D. Dietsch, B. Westphal, and A. Podelski

A manual transformation of the specification yielded the program shown in
Figure 4. In the following, we describe the important aspects of those anno-
tations:

– In line 4 we declared the input variable ADCR as volatile. This causes
VCC to interpret the variable as non-deterministic, i.e. it can assume every
value its type allows regardless of the last write to the variable observed
in the program, thereby representing all values the corresponding domain
phenomena can assume. Also, note that because of this we could not use the
variable declarations from Figure 1 but rather re-declared SCL and ADCR.

– In line 14 we declare a ghost variable dp, which is used in line 21 to memorize
the value of the boolean expression ADCR < 33152 – representing the input
domain phenomena “battery-low warning light is on” – directly after the
read-access to ADCR occurred. This is done because, like in the real system,
every access to ADCR could yield different values, but later in our check we
want to use the value that actually determined the output. In this example
dp corresponds to the ghost variables •v from Definition 1.

– Finally, in line 30 we check if our specification holds. This is the only place
where the last input is fully processed and therefore the snapshot variable
vsn evaluates to �. Here we place the assert-statement, thus synchronizing
on the sampling procedure ε of the system. We use that vsn evaluates to �,
so we can assert SCL == 1 ⇐⇒ ADCR < 33152 to represent the software
specification σ1. We also substitute the memorized value for ADCR < 33152
from line 21 (dp) and get SCL ⇐⇒ dp as the actual condition that has to
be checked.

Additionally we had to include the various VCC macros in line 1, declare that
the function main may write and read every global variable (line 7) and that
function main is the program entry point (line 8).

VCC reports that the assert-statement in line 30 holds, and with Theorem 1
and Section 4 we conclude that the system satisfies the requirement ϕbatt .

6 Related Work

Constructive formal methods like RAISE [20], VDM [13] or the B-Method [15]
have successfully been applied in industrial settings to construct correct systems
(for a recent survey see [24]). They are centered around the stepwise-refinement
paradigm [14], that is, the development starts by formulating high level require-
ments in a formal language and continues with the stepwise refinement of these.
Every iteration adds more details to the formal representation and requires a new
check for correctness. The process is repeated until the formal representation is
detailed enough to allow a code generator to generate executable code. A tool
that supports this activity is for example SCADE [7], which generates C or ADA
code from the high-level language LUSTRE [5]. In contrast to our work, they
employ a model-based development approach, which requires extensive knowl-
edge for e.g. choosing the right abstractions. Such refinement-based approaches

System Verification through Program Verification 39

typically require SMEs to restructure their whole software development process
and to perform intensive training of the participating engineers.

Notably, the RAISE method provides a new approach to software engineering
as a whole, namely domain engineering [4,3,2]. In domain engineering, one tries
to formalize the important parts of the domain to define the bridge between
domain and software automatically. Like our approach, it is concerned with the
relation between domain phenomena and software representations, but instead
of relying on the implicit domain knowledge of the developer manifesting in form
of the IRS-table, it demands an explicit formalization of this knowledge. This,
again, requires much effort and training from the user, but promises great bene-
fits through the automatic detection of errors in the transition from the domain
to the software. A recent example for the application of domain engineering can
be found in [17].

The approach presented in this paper relates directly to previous work on
the transformation of system requirements to software specifications, in particu-
lar [12] and [18]. In [12], conditions are given under which a transformation from
requirements to specifications can be successful; the automation of the trans-
formation is not considered. An extension of those considerations is presented
in [18] in form of an iterative process called requirement progression. Its goal is to
obtain a specification in terms of the to-be-specified software from requirements
represented as problem frames [11]. There, domain assumptions – called bread-
crumbs – are used to create a new requirement from an old one that talks about
domain phenomena. In each iteration new breadcrumbs are introduced until the
new requirement only talks about phenomena known to the software. In a sense,
our IRS function represents a special form of those breadcrumbs. We have for
each domain phenomenon dp an entry in the IRS, namely dp ⇐⇒ ExprB(Var).
While this allows even untrained programmers to create such a function, it also
prohibits the direct use in more complex systems, where a single domain phe-
nomenon is not directly relatable to the software. Contrary to our approach,
they do not consider C code which is still widely found in practice, thus their
approach does not directly apply there.

7 Conclusion

We have presented an approach to verify that a program correctly realises system
requirements by verification of the program code itself. The approach can be
applied if the interaction of the program with the system hardware can faithfully
be described by an IRS-table. The basic variant presented here already covers
the huge class of systems where C code with dedicated read/process/write phases
is executed on memory mapped I/O hardware and where domain phenomena
are closely related to inputs and outputs of the system.

Given the system requirements, our approach requires nothing but the
IRS-table and a C model-checker, in particular there is no need for a changed
development process. We assume every programmer capable of developing soft-
ware as discussed here is capable of creating an IRS-table because he or she is

40 D. Dietsch, B. Westphal, and A. Podelski

necessarily already familiar with the domain phenomena in order to be able to
develop the software.

Furthermore, we do not assume that system requirements are complete in any
sense. Thus our approach can also be applied to only some, possibly most relevant
system requirements giving control over the overall costs. By these advantages,
our approach is in particular appealing for small or medium sized companies
(SMEs), which on the one hand are often concerned with the class of systems we
consider here but on the other hand cannot afford the high entry costs associated
with formal methods or significant changes in the development process. Our
approach provides for a gradual introduction of formal methods.

Furthermore, capturing the domain assumptions of the programmer in form
of an IRS-table is a contribution towards dependability [10]. The IRS-table is
an artifact which can be validated by domain experts. Additionally, the IRS-
table defines a clear boundary of the responsibilities of the programmer. By
providing the IRS-table, the programmer describes how sensors and actors have
to be connected to, e.g., input and output pins of the system hardware. If the
connection is according to the IRS-table, then the system will satisfy the system
requirements. If the system malfunctions due to incorrect connections, this is
clearly the responsibility of the party deploying the software.

The latter aspect is in particular relevant for sub-contracting software devel-
opment. In addition to clearly limiting the responsibility of the programmer, it
opens the possibility to decide the fulfillment of the contract by software model-
checking tools [23].

Further work consists of a generalisation of the theory to more involved sys-
tems, e.g. where inputs and outputs have certain characteristics. For example,
inputs may be constrained by environmental assumptions or can be fed back into
the system directly or indirectly (such that there are dependencies between in-
puts and outputs). Also, outputs may not immediately change the environment
but only after a certain delay.

Another important aspect is the automation and extension of C code anno-
tations as described in Section 5, in particular covering the whole class of safety
requirements in addition to the shown global invariant.

Acknowledgments. We would like to thank the anonymous reviewers for their
many suggestions which helped us improving our work.

References

1. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
Modular Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

2. Bjørner, D.: Domains as a prerequisite for requirements and software domain per-
spectives and facets, requirements aspects and software views. In: Broy, M., Rumpe,
B. (eds.) RTSE 1997. LNCS, vol. 1526, pp. 1–41. Springer, Heidelberg (1998)

System Verification through Program Verification 41

3. Bjørner, D.: Domain engineering: A software engineering discipline in need of re-
search. In: Hlavác, V., Jeffery, K.G., Wiedermann, J. (eds.) SOFSEM 2000. LNCS,
vol. 1963, pp. 1–17. Springer, Heidelberg (2000)

4. Bjørner, D.: Domain engineering: a “Radical innovation” for software and systems
engineering? A biased account. In: Dershowitz, N. (ed.) Verification: Theory and
Practice. LNCS, vol. 2772, pp. 100–144. Springer, Heidelberg (2004)

5. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: A declarative language for
programming synchronous systems. In: POPL, pp. 178–188 (1987)

6. Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M.,
Santen, T., Schulte, W., Tobies, S.: VCC: A Practical System for Verifying
Concurrent C. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

7. Halbwachs, N., Raymond, P., Ratel, C.: Generating Efficient Code From Data-Flow
Programs. In: PLILP, vol. 22, pp. 207–218 (1991); special Issue on WOFACS 1998

8. Hall, A.: Realising the benefits of formal methods. J. UCS 13(5), 669–678 (2007)
9. IEC 61131 Programmable controllers, www.iec.ch

10. Jackson, D.: A Direct Path to Dependable Software. Commun. ACM 52(4), 78–88
(2009)

11. Jackson, M.: Software Requirements & Specifications: A Lexicon of Practice, Prin-
ciples and Prejudices. ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA (1995)

12. Jackson, M., Zave, P.: Deriving specifications from requirements: An example. In:
ICSE, pp. 15–24 (1995)

13. Jones, C.B.: Systematic software development using VDM. Prentice Hall Interna-
tional (UK) Ltd., Hertfordshire (1986)

14. Kant, E., Barstow, D.R.: The refinement paradigm: The interaction of coding
and efficiency knowledge in program synthesis. IEEE Trans. Software Eng. 7(5),
458–471 (1981)

15. Lano, K.: The B Language and Method: A Guide to Practical Formal Development.
Springer, New York (1996)

16. Leinenbach, D., Santen, T.: Verifying the microsoft hyper-V hypervisor with VCC.
In: Cavalcanti, A., Dams, D. (eds.) FM 2009. LNCS, vol. 5850, pp. 806–809.
Springer, Heidelberg (2009)

17. Nami, M.R., Tehrani, M.S., Sharifi, M.: Applying domain engineering using raise
into a particular banking domain. SIGSOFT Softw. Eng. Notes 32(2), 1–6 (2007)

18. Seater, R., Jackson, D., Gheyi, R.: Requirement Progression in Problem Frames:
Deriving Specifications from Requirements. Requir. Eng. 12(2), 77–102 (2007)

19. Snook, C.F., Harrison, R.: Practitioners’ views on the use of formal methods: an in-
dustrial survey by structured interview. Information & Software Technology 43(4),
275–283 (2001)

20. The RAISE Method Group: The RAISE Development Method. The BCS Practi-
tioners Series, Prentice-Hall International, Englewood Cliffs (1995)

21. The Verifying C Compiler at Codeplex, http://vcc.codeplex.com/
22. Microsoft Visual Studio at MSDN, http://msdn.microsoft.com/en-us/vstudio/

default.aspx

23. Westphal, B., Dietsch, D., Podelski, A., Pahlow, L.: Successful software subcon-
tracting by system verification (submitted)

24. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: Practice
and experience. ACM Comput. Surv. 41(4), 1–36 (2009)

www.iec.ch
http://vcc.codeplex.com/
http://msdn.microsoft.com/en-us/vstudio/default.aspx
http://msdn.microsoft.com/en-us/vstudio/default.aspx

Adaptive Cruise Control:
Hybrid, Distributed, and Now Formally Verified�

Sarah M. Loos, André Platzer, and Ligia Nistor

Carnegie Mellon University, Computer Science Department, Pittsburgh, PA, USA
�������������	
�������
�
�������	��

Abstract. Car safety measures can be most e�ective when the cars on a street
coordinate their control actions using distributed cooperative control. While each
car optimizes its navigation planning locally to ensure the driver reaches his des-
tination, all cars coordinate their actions in a distributed way in order to minimize
the risk of safety hazards and collisions. These systems control the physical as-
pects of car movement using cyber technologies like local and remote sensor data
and distributed V2V and V2I communication. They are thus cyber-physical sys-
tems. In this paper, we consider a distributed car control system that is inspired
by the ambitions of the California PATH project, the CICAS system, SAFESPOT
and PReVENT initiatives. We develop a formal model of a distributed car control
system in which every car is controlled by adaptive cruise control. One of the ma-
jor technical diÆculties is that faithful models of distributed car control have both
distributed systems and hybrid systems dynamics. They form distributed hybrid
systems, which makes them very challenging for verification. In a formal proof
system, we verify that the control model satisfies its main safety objective and
guarantees collision freedom for arbitrarily many cars driving on a street, even
if new cars enter the lane from on-ramps or multi-lane streets. The system we
present is in many ways one of the most complicated cyber-physical systems that
has ever been fully verified formally.

1 Introduction

Because of its societal relevance, many parts of car control have been studied before
[1–18]. Major initiatives have been devoted to developing next generation individual
ground transportation solutions, including the California PATH project, the SAFESPOT
and PReVENT initiatives, and the CICAS-V system. Chang et al. [1], for instance, pro-
pose CICAS-V in response to a report that crashes at intersections in the US cost $97
Billion in the year 2000. The promise is tempting. Current uncontrolled car traÆc is
ineÆcient and has too many safety risks, which are caused, e.g., by traÆc jams be-
hind curves, reduced vision at night, inappropriate reactions to diÆcult driving condi-
tions, or sleepy drivers. Next generation car control aims to solve these problems by

� This material is based upon work supported by National Science Foundation under NSF CA-
REER Award CNS-1054246 and Grant Nos. CNS-0926181, CNS-0931985, CNS-1035800,
CNS-1035813, and ONR N00014-10-1-0188. The first author was supported by an NSF
Graduate Research Fellowship. For proofs and interactive car system simulations, see
���������������������	�������� online.

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 42–56, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

http://www.ls.cs.cmu.edu/dccs/

Adaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified 43

using advanced sensing, wireless V2V (vehicle to vehicle) and V2I (vehicle to roadside
infrastructure) communication, and (semi)automatic driver assistance technology that
prevents accidents and increases economical and ecological eÆciency.

Yet, there are several challenges that still need to be solved to make next genera-
tion car control a reality. The most interesting challenge for us is that it only makes
sense to introduce any of these systems after its correct functioning and reliability has
been ensured. Otherwise, the system might do more harm than good. This is the formal
verification problem for distributed car control, which we consider in this paper.

What makes this problem particularly exciting is its practical relevance. What makes
it particularly challenging is its complicated dynamics. Distributed car control follows a
hybrid dynamics, because cars move continuously along di�erential equations and their
behavior is a�ected by discrete control decisions like when and how strongly to brake
or to accelerate and to steer. It is in the very nature of distributed car control, however,
to go beyond that with distributed traÆc agents that interact by local sensing, broadcast
communication, remote sensor data, or cooperative networked control decisions. This
makes distributed car control systems prime examples of what are called distributed
hybrid systems. In fact, because they form distributed cyber-physical multi-agent sys-
tems, the resulting systems are distributed hybrid systems regardless of whether they
are built using explicitly distributed V2V and V2I network communication infrastruc-
ture or just rely on the distributed e�ects of sensor readings about objects traveling at
remote locations (e.g., laser-range sensors measuring the distance to the car in front).

Cars reach maneuvering decisions locally in a distributed way. Is the global dynam-
ics that emerges from the various local choices safe? What can a car assume about other
cars in its maneuver planning? How do we ensure that multiple maneuvers that make
sense locally do not cause conflicts or collisions globally? Formal verification of dis-
tributed hybrid systems had been an essentially unsolved challenge until recently [19].

Our main contribution is that we develop a distributed car control system and a for-
mal proof that this system is collision-free for arbitrarily many cars, even when new
cars enter or leave a multi-lane highway with arbitrarily many lanes. Another contribu-
tion is that we develop a proof structure that is strictly modular. We reduce the proof
to modular stages that can be verified without the details in lower levels of abstraction.
We believe the principles behind our modular structure and verification techniques are
useful for other systems beyond the automotive domain. Further contributions are:

– This is the first case study in distributed hybrid systems to be verified with a generic
and systematic verification approach that is not specific to the particular problem.

– We identify a simple invariant that all cars have to obey and show that it is suÆcient
for safety, even for emergent behavior of multiple distributed car maneuvers.

– We identify generic and static constraints on the input output parameters that any
controller must obey to ensure that cars always stay safe.

– We demonstrate the feasibility of distributed hybrid systems verification.

2 Related Work

Car control is a deep area that has been studied by a number of di�erent communi-
ties. The societal relevance of vehicle cooperation for CICAS intersection collision

44 S.M. Loos, A. Platzer, and L. Nistor

avoidance [11] and for automated highway systems [5,8] has been emphasized. Horowitz
et al. [10] proposed a lane change maneuver within platoons. Varaiya [13] outlines the
key features of an IVHS (Intelligent Vehicle�Highway System). A significant amount
of work has been done in the pioneering California PATH Project. Our work is strongly
inspired by these systems, but it goes further and sets the groundwork for the modeling
and formal verification of their reliability and safety even in distributed car control.

Dao et al. [3,4] developed an algorithm and model for lane assignment. Their sim-
ulations suggest [3] that traÆc safety can be enhanced if vehicles are organized into
platoons, as opposed to having random space between them. Our approach considers
an even more general setting: we not only verify safety for platoon systems, but also
when cars are driving on a lane without following platooning controllers. Hall et al. [6]
also used simulations to find the best strategy of maximizing traÆc throughput. Chee et
al. [15] showed that lane change maneuvers can be achieved in automated highway sys-
tems using the signals available from on-board sensors. Jula et al. [9] used simulations
to study the conditions under which accidents can be avoided during lane changes and
merges. They have only tested safety partially. In contrast to [3,4,6,9,15], we do not use
simulation but formal verification to validate our hypotheses.

Hsu et al. [7] propose a control system for IVHS that organizes traÆc in platoons of
closely spaced vehicles. They specify this system by interacting finite state machines.
Those cannot represent the actual continuous movement of the cars. We use di�erential
equations to model the continuous dynamics of the vehicles and thus consider more
realistic models of the interactions between vehicles, their control, and their movement.

Stursberg et al. [12] applied counterexample-guided verification to a cruise control
system with two cars on one lane. Their technique can not scale to an arbitrary num-
ber of cars. Altho� et al. [17] use reachability analysis to prove the safety of evasive
maneuvers with constant velocity. They verify a very specific situation: a wrong way
driver threatens two autonomously driving vehicles on a road with three lanes.

Wongpiromsarn et al. [14] verify safety of the planner-controller subsystem of a
single autonomous ground vehicle. Their verification techniques restrict acceleration
changes to fixed and perfect polling frequency, while our model of an arbitrary number
of cars allows changes in acceleration at any point in time, with irregular sensor updates.

Damm et al. [2] give a verification rule that is specialized to collision freedom of traf-
fic agents. To show that two cars do not collide, they need to manually prove eighteen
verification conditions. Lygeros and Lynch [20] prove safety only for one deceleration
strategy for a string of vehicles: the leading vehicle applies maximum deceleration until
it stops, while at the same time, the cars following it in the string decelerate to a stop.
The instantaneous, globally synchronized reaction of the cars is an unrealistic assump-
tion that we do not make in our case study. Dolginova and Lynch [21] verify that no
collisions with big relative velocity can occur when two adjacent platoons do a merge
maneuver. This does not prove the absence of small relative velocity collisions, nor the
behavior of 3 platoons or when not merging. In contrast to the manual semantic rea-
soning of [2,20,21], our techniques follow a formal proof calculus [19], which can be
mechanized. In the case studies analyzed by [20,21] safety is proved only for a partic-
ular scenario, while our modular formal proofs deal with the general case. In our case
study, the cars have more flexibility and an arbitrary number of control choices.

Adaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified 45

Unlike [2,12,14,17], we prove safety for an arbitrary number of cars. Our techniques
and results are more general than the case-specific approaches [2,12,14,17,20,21], as we
prove collision-freedom for any number of cars driving on any finite number of lanes.
None of the previously cited papers have proved safety for distributed car control in
which cars can dynamically enter the highway system, change lanes, and exit.

3 Preliminaries: Quantified Di�erential Dynamic Logic

Distributed car control systems are distributed hybrid systems, which we model by
quantified hybrid programs (QHPs) [19]. QHPs are defined by the grammar (�� � are
QHPs, � a term, i a variable, f a function symbol, and H a formula of first-order logic):

�� � ::� �i : C f (i) :� � � �i : C f (i)� � � & H � f (i) :� � � ?H � � � � � �; � � ��

The e�ect of quantified assignment �i : C f (i) :� � is an instantaneous discrete jump
assigning � to f (i) simultaneously for all objects i of type C. Usually i occurs in �. The
e�ect of quantified di�erential equation �i : C f (i)� � �& H is a continuous evolution
where, for all objects i of type C, all di�erential equations f (i)� � � hold and (written &
for clarity) formula H holds throughout the evolution (the state remains in the region de-
scribed by H). Usually, i occurs in �. Here f (i)� is intended to denote the derivative of the
interpretation of the term f (i) over time during continuous evolution, not the derivative
of f (i) by its argument i. For f (i)� to be defined, we assume f is an R-valued function
symbol. The e�ect of the random assignment f (i) :� � is to non-deterministically pick
an arbitrary number or object (of type the type of f (i)) as the value of f (i).

The e�ect of test ?H is a skip (i.e., no change) if formula H is true in the current state
and abort (blocking the system run by a failed assertion), otherwise. Non-deterministic
choice � � � is for alternatives in the behavior of the distributed hybrid system. In the
sequential composition �; �, QHP � starts after � finishes (� never starts if � continues
indefinitely). Non-deterministic repetition �� repeats � an arbitrary number of times �0.

For stating and proving properties of QHPs, we use quantified di�erential dynamic
logic Qd� [19] with the grammar:

�� � ::� �1 � �2 � �1 � �2 � �� � � � � � �i : C � � 	i : C � � [�]� �
���

In addition to all formulas of first-order real arithmetic, Qd� allows formulas of the
form [�]� with a QHP � and a formula �. Formula [�]� is true in a state � i� � is true in
all states that are reachable from � by following the transitions of �; see [19] for details.

4 The Distributed Car Control Problem

Our approach to proving safety of a distributed car control system is to break the veri-
fication into modular pieces. In this way, we simplify what would otherwise be a very
large and complex proof. The ultimate result of this paper is a formally verified model
of any straight stretch of highway on which each car is following adaptive cruise con-
trol. On any highway, there will be an arbitrary number of lanes and an arbitrary number
of cars, and the system will change while it runs when cars enter and leave the highway.

46 S.M. Loos, A. Platzer, and L. Nistor

This would be an incredibly complex system to verify if we were to tackle it at this
level. Each lane has a group of cars driving on it. This group is constantly changing
as cars weave in and out of surrounding traÆc. Each car has a position, velocity, and
acceleration, and must obey the laws of physics. On top of that, in order to ensure
complete safety of the system, every car must be certain at all times that its control
choices will not cause a collision anywhere else in the system at any time in the future.

These issues are compounded by the limits of the sensory and communications net-
works. On a highway that stretches hundreds of miles, we could not hope for any car
to collect and analyze real-time data from every other car on the interstate. Instead, we
must assume each car is making decisions based on its local environment, e.g., within
the limitations of sensors, V2V and V2I communication, and real-time computation.

!

Fig. 1. Emergent highway collision risk

Additionally, once you split your system into
reasonably local models, it is still diÆcult to rea-
son about how these local groups of cars inter-
act. For example, consider a local group of three
cars for a lane change maneuver: the car chang-
ing lanes, and the two cars that will be ahead and
behind it. It is tempting to signal the car ahead
to speed up and the car behind to slow down in

order to make space for the car changing lanes. This is perfectly reasonable on the local
level; however, Fig. 1 demonstrates a problem that appears when we attempt to compose
these seemingly safe local cases into a global system. Two cars are attempting safe and
legal lane changes simultaneously, but the car which separates the merging cars is at
risk. The car in the middle simultaneously receives requests to slow down and speed
up. It cannot comply, which could jeopardize the safety of the entire system.

To avoid complex rippling cases that could result in a situation similar to the one
in Fig. 1, we organize our system model as a collection of hierarchical modular pieces.
The smallest piece consists of only two cars on a single lane. We present a verification
of this model in Sect. 5 and build more complex proofs upon it throughout the paper.

In Sect. 6, we prove that a lane with an arbitrary number of cars driven by any dis-
tributed homogeneous adaptive cruise control system is safe, assuming the system has
been proved safe for two cars. We generate our own verified adaptive cruise control
model for this system, but, due to the modular proof structure, it can be substituted with
any implementation-specific control system which has been proved safe for two cars.

The verification of this one lane system, as well as the verification we present in
Sect. 8 for a highway with multiple lanes, will hold independently with respect to the
adaptive cruise control specifications. In Sect. 7, we look at the local level of a multi-
lane highway system. We verify the adaptive cruise control for a single lane, where cars
are allowed to merge in and out of the lane. Finally in Sect. 8, we compose the lane
systems verified in Sect. 7 to provide a full verification of the highway system.

5 Local Lane Control

The local car dynamics problem that we are solving is: we have two cars on a straight
lane that can accelerate, coast or brake and we want to prove that they will not collide.

Adaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified 47

This system contains complex physical controls as well as discrete and continuous dy-
namics, thus, is a hybrid system. Once the model for the local problem is verified, we
will use it in a compositional fashion to prove safety for more complicated scenarios,
such as multiple cars driving on a lane or on parallel lanes. We can apply modular com-
position because we have structured the models in a hierarchical order, we have found
the right decomposition of the sub-problems and we have identified the right invariants.

t0 t1 t2 t3 t4

-B

-b

0

A

B
R

A
K

IN
G

 /
A

C
C

E
LE

R
A

TI
O

N leader
follower

t0 t1 t2 t3 t4

V
E

LO
C

IT
Y

t0 t1 t2 t3 t4
TIME

P
O

S
IT

IO
N

t0 t1 t2 t3 t4

t0 t1 t2 t3 t4

0 t1 t2 t3 t4

B

b

0

A

Fig. 2. Local car crash

Modeling. We develop a formal model of the local car
dynamics as a QHP. Each car has state variables that
determine how it operates: position, velocity, and accel-
eration. For follower car f , x f represents its position, v f

its velocity, and a f its acceleration (similarly for leader
car �).

The continuous dynamics for f are described by the
following di�erential equation system: x�f � v f � v�f � a f .
This is the ideal-world dynamics that is adequate for a
kinematic model of longitudinal lane maneuvers. The rate
with which the position of the car changes is given by
x�f , i.e., the velocity. The velocity itself changes contin-
uously according to the current acceleration a f . We do
not assume permanent control over the acceleration, but
tolerate delays since sensor readings are not available
continuously, control decisions may need time, and ac-
tuators may take time to react. For simplicity, though, we
still assume that, once set, the acceleration a f takes instant
e�ect. We assume a global limit for the maximum accel-
eration and we denote it by A � 0. We assume that all
cars have an emergency brake with a braking power be-
tween a maximum value B and a minimum value b, where
B � b 	 0. The two values have to be positive, otherwise
the cars cannot brake. They may be di�erent, however,
because we cannot expect all cars to realize exactly the same emergency braking power
and it would be unrealistic to build a system based on the assumption that all reactions
are equal.

In Fig. 2, we see that leader � brakes unexpectedly at time t1 with its maximum
braking power, �B. Unfortunately, f did not follow � at a safe distance, and so when
sensor and network data finally inform f at time t2 that � is braking, it is already too late
for f to prevent a collision. Although f applies its full braking power, �b, at time t2,
the cars will inevitably crash at time t3. The same problem can happen if � brakes with
�b and f brakes with �B. This example shows that control choices which look good
early on can cause problems later. Adding cars to the system amplifies these errors.

We present the entire specification of the local lane control (���), consisting of the
discrete control and the continuous dynamics, in Model 1. This system evolves over
time, which is measured by a clock, i.e., variable t changing with slope t� � 1 as in (8).
The di�erential equation system (8) formalizes the physical laws for movement, which
are restricted to the evolution domain (9). Neither human drivers nor driver assistance

48 S.M. Loos, A. Platzer, and L. Nistor

Model 1. Local lane control (���)

��� � (ctrl; dyn)� (1)

ctrl � �ctrl �� fctrl; (2)

�ctrl � (a� � �; ?(�B � a� � A)) (3)

fctrl �
�
af � �; ?(�B � af � �b)

�
(4)

�
�
?Safe�; af � �; ?(�B � af � A)

�
(5)

�
�
?(vf � 0); af � 0

�
(6)

Safe� � xf �
v2

f

2b
�

� A
b
� 1

� �A
2
�2 � �vf

�
� x� �

v2
�

2B
(7)

dyn � (t :� 0; x�

f � vf � v�

f � af � x�

�
� v�� v�

�
� a�� t

� � 1 (8)

vf 	 0
 v� 	 0
 t � �) (9)

technology are able to react immediately and each vehicle or driver will have a specific
reaction time. Therefore we have a constant parameter,
, which serves as an upper
bound on the reaction time for all vehicles. We verify car control for arbitrary values of

. Cars can react as quickly as they want, but they can take no longer than
.

The leading car is not restricted by the car behind, so it may accelerate, coast, or
brake at will. In Model 1, a� is first randomly assigned a real value, non-deterministically
through (3). The model continues if a� is within the physical limits of the car’s brakes
and engine, i.e. between -B and A. On the other hand, f depends on the distance to �

and has a more restrictive set of possible moves. Car f can take some choices only if
certain safety constraints about the distance and velocities are met.

Braking is allowed at all times, so a human driver may always override the automated
control to brake in an emergency. In fact, braking is the only option if there is not enough
distance between the cars for f to maintain its speed or accelerate. This is represented
in (4), where there is no precondition for any force between �B and �b.

The second possibility, (5), is that there is enough distance between the two cars for
f to take any choice. This freedom is only given when (7) is satisfied. If (7) holds, then �

will still be safely in front of f until the controllers can react again (i.e., after they drive
for up to
 time units), no matter how � accelerates or brakes. This distance is greater
than the minimum distance required for safety if they both brake simultaneously. The

 terms in (7) add this extra distance to account for the possibility that f accelerates
for time
 even when � decides to brake, which f may not notice until the next sensor
update. These terms represent the distance traveled during one maximum reaction cycle
of
 time units with worst-case acceleration A, including the additional distance needed
to reduce the speed down to v f again after accelerating with A for
 time units.

Now the third possibility. If f had previously chosen to brake by a f � �b then the
continuous evolution dyn cannot continue with the current acceleration choices below
velocity v f � 0 due to constraint (9). Thus, we add the choice (6) saying that the car
may always choose to stand still at its position if its velocity is 0 already.

The two cars can repeatedly choose from the range of legal accelerations. This non-
deterministic repetition is represented by operator � in (1). The controllers of the two
cars operate in parallel as seen in (2). Notice that the controllers are independent with

Adaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified 49

respect to read and write variables (which also makes sense for implementation pur-
poses), so in this case, parallel (��) is equivalent to sequential composition (;).

Verification. To verify the local lane control problem modeled in Sect. 5, we use a
formal proof calculus for Qd� [19]. In the local lane control problem, we want f to be
safely behind � at all times. To verify that a collision is not possible, we show that there
is always a reasonable distance between � and f ; enough distance that if both cars brake
instantly, the cars would not collide. We verify this property for all times and under any
condition which the system can run, so if a car can come so close to another car that
even instant braking would not prevent a crash, the system is already unsafe.

For two cars f and �, we have identified the following crucial relation (f
 �), i.e.,
follower f is safely behind leader �:

(f
 �) � (x f � x�) � (f � �) �

�
������x f � x� � x f �

v2
f

2b
� x� �

v2
�

2B
� v f � 0 � v� � 0

�
������

If (f
 �) is satisfied, then f has a safe distance from �. The formula states that, if � is
the leading car (i.e., x f � x� for di�erent cars f � �), then the leader must be strictly
ahead of the follower, and there must be enough distance between them such that the
follower can stop when the leader is braking. Also both cars must be driving forward.

The safe distance formula (f
 �) is the most important invariant. The system must
satisfy it at all times to be verified. This is not to be confused with the definition of
Safe� in the control, which must foresee the impact of control decisions for the future
of
 time. For simplicity, these formulas do not allow cars to have non-zero length;
however, adding the car length to x f would eliminate this requirement.

Proposition 1 (Safety of local lane control ���). If car f is safely behind car � ini-
tially, then the cars will never collide while they follow the ��� control model; there-
fore, safety of ��� is expressed by the provable formula: (f
 �) � [���](f
 �)

We proved Proposition 1 using KeYmaera, a theorem prover for hybrid systems (proof
files available online [22]). A proof sketch is presented in [23, Appendix A.1].

6 Global Lane Control

! !

Fig. 3. Lane risk

In Sect. 5 we show that a system of two cars is safe, which
gives a local version of the problem to build upon. However,
our goal is to prove safety for a whole highway of high-speed
vehicles. The next step toward this goal is to verify safety for
a single lane of n cars, where n is arbitrary and finite, and the

ordering of the cars is fixed (i.e., no car can pass another). Each car follows the same
control we proved safe for two cars in Sect. 5, but adding cars to the system and making
it distributed has introduced new risks. It is now necessary to show, for example, if you
are driving along and the car in front of you slows while the car behind simultaneously
accelerates, you won’t be left sandwiched between with no way to avoid a collision (as
in Fig. 3).

50 S.M. Loos, A. Platzer, and L. Nistor

Model 2. Global lane control (���)

��� � (ctrln; dynn)� (10)

ctrln � �i : C (ctrl(i)) (11)

ctrl(i) �
�
a(i) � �; ?(�B � a(i) � �b)

�
(12)

�
�
?Safe�(i); a(i) � �; ?(�B � a(i) � A)

�
(13)

�
�
?(v(i) � 0); a(i) � 0

�
(14)

Safe�(i) � x(i) �
v(i)2

2b
�

�A
b
� 1

� �A
2
�

2 � �v(i)
�
� x(L(i)) �

v(L(i))2

2B
(15)

dynn � (t � 0; �i : C (dyn(i))� t� � 1� t � �) (16)

dyn(i) � x�(i) � v(i)� v�(i) � a(i)� v(i) 	 0 (17)

Modeling. Because we are now looking at a lane of cars, our model will require addi-
tional features. First, we must represent the position, velocity, and acceleration of each
car. If these variables were represented as primitives, the number of variables would be
large and diÆcult to handle. Using only primitive variables, we cannot verify a system
for any arbitrary number of cars, i.e., we could verify for, say, 5 cars, but not for any
n cars. Therefore, we give each car an index, i, and use first-order variables x(i), v(i),
and a(i) to refer to the position, velocity and acceleration of car i. With these first-order
variables, our verification applies to a lane of any number of cars.

Of course, the cars are all driving along the road at the same time, so we evolve the
positions of the cars simultaneously along their di�erential equations. The acceleration,
a(i), of all cars is also set simultaneously in the control. We need notation for this
parallel execution, so we use the universal quantifier (�) in the definition of the overall
control and continuous dynamics (see (11) and (16) in Model 2). The control of all cars
in the system is defined by ctrln (11). This says that for each car i, we execute ctrl(i).
This control is exactly the control defined in Sect. 5 - under any conditions the car may
brake (12); if the car is safely following its leader, it may choose any valid acceleration
between �b and A (13); and if the car is stopped, it may remain stopped (14). There
are only two distinctions between the control introduced in ��� and the control used
in ��� described in Sect. 5. First, we change primitive variables to first-order variables.
Second, with so many cars in the system, we have to determine which car is our leader.

It is vital that every car be able to identify, through local sensors or V2V�V2I com-
munication networks, which car is directly in front of it. It is already assumed that the
sensor and communication network is guaranteed to give accurate updates to every car
within time
. We now also make the reasonable assumption that with each update, ev-
ery car is able to identify which car is directly ahead of it in its lane. This may be a bit
tricky if the car only has sensor readings to guide it, but this assumption is reasonable
if all cars are broadcasting their positions (and which lane they occupy in the case of
multiple lanes). For some car i, we call the car directly ahead of it L(i), or the leader of
car i. More formally, we assume the following properties about L(i):

L(i) � j � x(i) � x(j) � �k : C��i� j� (x(k) � x(i) � x(j) � x(k))
(i
 L(i)) � � j : C((L(i) � j) � (i
 j))

Adaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified 51

The equation L(i) � j is expanded to mean that the position of j must be ahead of the
position of i, and there can be no cars between. The second formula states that for a car,
i, to be safely behind its leader, denoted (i
 L(i)), we require that i should be safely
behind any car which fulfills the requirements of the first equation. Each car will have
at most one leader at any given time. At the end of the finite length lane, we position a
stationary car. This car has no leader and therefore will never move.

The constraint Safe� from Sect. 5 has been updated to a first-order variable as well
(15). It now uses L(i) to identify which car is directly ahead of car i, and then determines
if i is following safely enough to accelerate for
 time. This constraint is applied to all
cars in the system when the individual controls set acceleration.

The continuous dynamics are the same as those described in Sect. 5, but with the
added dynamics of the other cars in the system (16). Once a(i) has been set for all cars
by ctrln (11), each car evolves along the dynamics of the system for no more than
 time
(maximum reaction time). The position of each car evolves as the second derivative of
the acceleration set by the control (17). The model requires that the cars never move
backward by adding the constraint v(i) � 0. We still have a global time variable, t, that
is introduced in the definition of dynn (16). Since t� � 1, all cars evolve along their
respective di�erential equations in an absolute timeframe. Note that t is never read by
the controller, thus, ��� has no issues with local clock drift.

We model all cars in the system as repeatedly setting their accelerations as they syn-
chronously receive sensor updates (11) and following the continuous dynamics (16).
When put together and repeated non-deterministically with the � operator, these QHPs
form the ��� model (10) for global lane control. The ��� model is easy to implement
since each car relies on local information about the car directly ahead. Our online sup-
plementary material shows a demo of an implementation of this model [22].

Verification. Now that we have a suitable model for a system of n cars in a single lane,
we identify a suitable set of requirements and prove that our model never violates them.
In Sect. 5, since there were only two cars on the road, it was suÆcient to show that the
follower car was safely behind its leader at all times. However, in this model it is not
enough to only ensure safety for each car and its direct leader. We must also verify that
a car is safely following all cars ahead – each car has to be safely behind its leader, and
the leader of its leader, and the car in front of that car, and so on.

For example, suppose there were a long line of cars following each other very closely
(they could, for instance, be in a platoon). If the first car brakes, then one-by-one the
cars behind each react to the car directly in front of them and apply their brakes. In
some models, it would be possible for these reaction delays to add up and eventually
result in a crash [24]. Our model is not prone to this fatal error, because our controllers
are explicitly designed to tolerate reaction delays. Each car is able to come to a full stop
no matter what the behavior of the cars in front of it (so long as all cars behave within
the physical limits of their engines and brakes). To show this, we must verify that under
the system controls every car is always safely behind all cars ahead until the lane ends.
We do this by first defining transitive leaders, L�(i) as follows:

(i
 L�(i)) � [k � i; (k � L(k))�](i
 k)
The QHP, k � i; (k � L(k))�, continually redefines k to be the next car in the

lane (until the lane ends). Because this QHP is encapsulated in [], all states that are

52 S.M. Loos, A. Platzer, and L. Nistor

reachable in the program must satisfy the formula (i
 k). In other words, starting with
(k � i), we check that i is safely behind k, or (i
 i). Next, k � L(k), so k � L(i),
and we prove that i is safely behind k: (i
 L(i)). Then we redefine k to be its leader
again (k � L(k)), and we check that i is safely behind k: (i
 L(L(i))). This check is
continued indefinitely: (i
 L(L(��� L(i)))). Hence the notation, (i
 L�(i)).

Proposition 2 (Safety of global lane control ���). For every configuration of cars
in which each car is safely following the car directly in front of it, all cars will re-
main in a safe configuration (i.e., no car will ever collide with another car) while they
follow the distributed control. This is expressed by the following provable formula:

�i : C(i
 L(i)) � [���](�i : C(i
 L�(i)))
This means that as the cars move along the lane, every car in the system is safely fol-
lowing all of its transitive leaders.

Using Gödel’s generalization rule, our proof for a lane of cars splits immediately into
two branches: one which relies on the verification of the control and dynamics in the
local, two car case, and one which verifies the rest of the system. These two branches are
independent, and furthermore, the control and dynamics of the cars are only expanded
in the verification of the local model. This is good news for two reasons. First, it keeps
the resulting proof modular, which makes it possible to verify larger and more complex
systems. Second, if the control or dynamics of the model are modified, only an updated
verification of safety for two cars will be needed to verify the new model for the whole
system. Proof details are available in [23, Appendix A.2].

7 Local Highway Control

In Sect. 6, we verified an automated control system for an arbitrary, but constant, num-
ber of cars on a lane. Later, we will put lots of these lanes together to model highway
traÆc. In our full highway model, cars will be able to pass each other, change lanes,
and enter or leave the highway. We first study how this full system behaves from the
perspective of a single lane. When a car changes into or out of that lane, it will look
like a car is appearing or disappearing in the middle of the lane: in front of and behind
existing cars. It is crucial to show that these appearances and disappearances are safe.

If a new car cuts into the lane without leaving enough space for the car behind it, it
could cause an accident. Furthermore, when two cars enter the lane simultaneously, if
there are several cars between them, we must prove that there will not be a ripple e�ect
which causes those cars between to crash (also see Fig. 1). Faithful verification must
apply to all kinds of complex maneuvers and show safety for all cars in the system, not
just those involved locally in one maneuver.

Our verification approach proves separate, modular properties. This allows us to
compose these modular proofs and verify collision freedom for the entire system for any
valid maneuver, no matter how complex, even multiple maneuvers at di�erent places.

Modeling. We have additional challenges in modeling this new system where cars can
appear and disappear dynamically. First of all, in previous sections we have used �i : C
to mean “for all cars in the system.” We will now abuse this notation and take it to mean

Adaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified 53

Model 3. Local highway control (���)

��� � (delete�; create�; ctrln; dynn)� (18)

create � n � new; ?((F(n) � n)
 (n � L(n))) (19)

(n � new) � n � �; ?(

(n) � 0);

(n) � 1 (20)

(F(n) � n) � � j : C (L(j) � n � (j � n)) (21)

delete � n � �; ?(

(n) � 1);

(n) � 0 (22)

“for all cars which currently exist on this lane.” (In our formal proof we use an actualist
quantifier to distinguish between these situations. This technique is described in detail
in another paper [19].) Secondly, our model must represent what physical conditions in
the lane must be met before a car may disappear or appear safely. And finally, the model
must be robust enough to allow disappearances and appearances to happen throughout
the evolution of the system (i.e., a car may enter or leave the lane at any time).

Recall that a car, n, has three real values: position, velocity and acceleration. Now
that cars can appear and disappear, we add a fourth element: existence. The existence
field is just a bit that we flip on (

	
(n) :� 1) when the car appears and flip o� (

	
(n) :� 0)

when the car disappears.
When we create a new car, n, we start by allowing the car to be anything. This can be

written in dynamic logic as a random assignment n � �. Of course, when we look at the
highway system as a whole, we won’t allow cars to pop out of thin air onto the lane. This
definition can be restricted to cars which already exist on an adjacent lane. However,
since the choice of � is non-deterministic, we are verifying our model for all possible
values of n. This means that the verification required for an entire highway system will
be a subset of the cases covered by this model of a single lane. Because n � � allows
n to be any car, one that exists on the lane or one that doesn’t, we first must check that
this “new” car isn’t already on the lane. If it doesn’t exist, i.e. ?(

	
(n) � 0), then we can

flip our existence bit to on and it will join the existing cars on this lane (20).
Now that we have defined appearance, we can define its dual: disappearance. We

delete cars by choosing a car, n, non-deterministically, checking that it exists, and then
flipping that bit so that it no longer exists on this lane (22). After a delete, notice that
while the car ceases to exist physically on our lane, we are still able to refer to it in our
model and verification as car n – a car that used to be in the lane.

A car may leave the lane at any time (assuming there is an adjacent lane which it can
move into safely), but it should only be allowed to enter the lane if it is safely between
the car that will be in front of it and the car that will be behind it. Because of this, when
creating a car in the lane, our model will check that the car is safely between the car
in front and behind. If we have a test which follows a creation of a new car, as in our
definition of create in (19), a new car will only appear if the test succeeds. The formula
(F(i)
 i) evaluates to true if car i is safely ahead of the car behind it. This is the dual
of (i
 L(i)). We define this formally in terms of (i
 L(i)) as shown in (21).

The ��� model is identical to the ��� model in Sect. 6, but at the beginning of each
control cycle it includes zero or more car deletes or creates as shown by delete� and
create� in (18). It is important to note that the verification will include interleaving and

54 S.M. Loos, A. Platzer, and L. Nistor

simultaneous creates and deletes since the continuous dynamics (dynn) are allowed to
evolve for zero time and start over immediately with another delete and create cycle.

Verification. Now that we have a model for local highway control, we have to de-
scribe a set of requirements that we want the model to satisfy in order to ensure safety.
These requirements will be identical to the requirements necessary in the global lane
control. We want to show that every car is a safe distance from its transitive leaders:
�i : C(i
 L�(i)). Because these requirements are identical to those presented in Propo-
sition 2, the statement of Proposition 3 is identical except for the updated model.

Proposition 3 (Safety of local highway control ���). Assuming the cars start in a
controllable state (i.e. each car is a safe distance from the car in front of it), the cars
may move, appear, and disappear as described in the (���) model, then no cars will
ever collide. This is expressed by the following provable formula:

�i : C(i
 L(i)) � [���]�i : C(i
 L�(i))

We keep the proof of Proposition 3 entirely modular just as we did in the previous
section for Proposition 2. The proof is presented in [23, Appendix A.3].

8 Global Highway Control

So far, we have verified an automated car control system for cars driving on one lane.
A highway consists of multiple lanes, and cars may change from one lane to the other.
Just because a system is safe on one lane does not mean that it would operate safely on
multiple lanes. When a car changes lanes, it might change from a position that used to
be safe for its previous lane over to another lane where that position becomes unsafe.
Lane change needs to be coordinated and not chaotic. We have to ensure that multiple
local maneuvers cannot cause global inconsistencies and follow-up crashes; see Fig. 1.

Modeling. The first aspect we need to model is which lane is concerned. The quantifier
�i : C, which in Sect. 7 quantified over “all cars which exist on the lane”, now needs
to be parametrized by the lane that it is referring to. We use the notation �i : Cl to
quantify over all cars on lane l. Likewise, instead of the existence function

	
(i), we now

use
	
(i� l) to say whether car i exists on lane l. A car could exist on some l but not on

others. A car can exist on multiple lanes at once if its wheels are on di�erent lanes (e.g.,
when crossing dashed lines). We use subscripted ctrlnl � dynn

l � Ll(i)� L�
l (i) etc. to denote

variants of ctrln� dynn� L(i)� L�(i) in which all quantifiers refer to lane l. Similarly, we
write �l : L ctrlml for the QHP running the controllers of all cars on all lanes at once.

In addition to whatever a car may do in terms of speeding up or slowing down, lane
change corresponds to a sequence of changes in existence function

	
(i� l). A model

for an instant switch of car i from lane l to lane l� would correspond to
	
(i� l) :� 0;

	
(i� l�) :� 1, i.e., disappearance from l and subsequent appearance on l�. This is mostly

for adjacent lanes l� � l � 1, but we allow arbitrary lanes l� l� to capture highways with
complex topology. Real cars do not change lanes instantly, of course. They gradually
move from one lane over to the other while (partially) occupying both lanes simultane-
ously for some period of time. This corresponds to the same car existing on multiple
lanes for some time (studying the actual local curve dynamics is beyond the scope of
this paper, but benefits from our modular hierarchical proof structure).

Adaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified 55

Gradual lane change is modeled by an appearance of i on the new lane (
	
(i� l�) :� 1)

when the lane change starts, then a period of simultaneous existence on both lanes while
the car is in the process of moving over, and then, eventually, disappearance from the
old lane (

	
(i� l) :� 0) when the lane change has been completed and the car occupies no

part of the old lane anymore. Consequently, gradual lane change is over-approximated
by a series of deletes from all lanes (�l : L delete�l) together with a series of appearances
on all lanes (�l : L new�

l). Global highway control with multiple cars moving on multiple
lanes and non-deterministic gradual lane changing can be modeled by QHP:

��� � (�l : L delete�l ; �l : L new�
l ; �l : L ctrlnl ; �l : L dynn

l)�

Verification. Global highway control ��� is safe, i.e., guarantees collision freedom for
multi-lane car control with arbitrarily many lanes, cars, and gradual lane changing.

Theorem 1 (Safety of global highway control ���). The global highway control sys-
tem (���) for multi-lane distributed car control is collision-free. This is expressed by
the provable formula:

�l : L�i : Cl(i
 Ll(i)) �

[(�l : L delete�l ;�l : L new�
l ;�l : L ctrlnl ;�l : L dynn

l)�] �l : L�i : Cl(i
 L�
l (i))

For the proof see [23, Appendix A.4]. Note that the constraints on safe lane changing
coincide with those identified in Sect. 7 for safe appearance on a lane.

9 Conclusion and Future Work

Distributed car control has been proposed repeatedly as a solution to safety and eÆ-
ciency problems in ground transportation. Yet, a move to this next generation technol-
ogy, however promising it may be, is only wise when its reliability has been ensured.
Otherwise the cure would be worse than the disease. Distributed car control has been out
of scope for previous formal verification techniques. We have presented formal verifica-
tion results guaranteeing collision freedom in a series of increasingly complex settings,
culminating in a safety proof for distributed car control despite an arbitrary and evolv-
ing number of cars moving between an arbitrary number of lanes. Our research is an
important basis for formally assured car control. The modular proof structure we iden-
tify in this paper generalizes to other scenarios, e.g., variations in local car dynamics or
changes in system design. Future work includes mechanizing the proof and addressing
time synchronization, sensor inaccuracy, curved lanes, and asynchronous sensors.

References

1. Chang, J., Cohen, D., Blincoe, L., Subramanian, R., Lombardo, L.: CICAS-V research on
comprehensive costs of intersection crashes. Technical Report 07-0016, NHTSA (2007)

2. Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traÆc agents. Interna-
tional Journal of Control 79, 395–421 (2006)

56 S.M. Loos, A. Platzer, and L. Nistor

3. Dao, T.S., Clark, C.M., Huissoon, J.P.: Distributed platoon assignment and lane selection for
traÆc flow optimization. In: IEEE IV 2008, pp. 739–744 (2008)

4. Dao, T.S., Clark, C.M., Huissoon, J.P.: Optimized lane assignment using inter-vehicle com-
munication. In: IEEE IV 2007, pp. 1217–1222 (2007)

5. Hall, R., Chin, C., Gadgil, N.: The automated highway system � street interface: Final report.
PATH Research Report UCB-ITS-PRR-2003-06, UC Berkeley (2003)

6. Hall, R., Chin, C.: Vehicle sorting for platoon formation: Impacts on highway entry and
troughput. PATH Research Report UCB-ITS-PRR-2002-07, UC Berkeley (2002)

7. Hsu, A., Eskafi, F., Sachs, S., Varaiya, P.: Design of platoon maneuver protocols for IVHS.
PATH Research Report UCB-ITS-PRR-91-6, UC Berkeley (1991)

8. Ioannou, P.A.: Automated Highway Systems. Springer, Heidelberg (1997)
9. Jula, H., Kosmatopoulos, E.B., Ioannou, P.A.: Collision avoidance analysis for lane changing

and merging. PATH Research Report UCB-ITS-PRR-99-13, UC Berkeley (1999)
10. Horowitz, R., Tan, C.W., Sun, X.: An eÆcient lane change maneuver for platoons of vehi-

cles in an automated highway system. PATH Research Report UCB-ITS-PRR-2004-16, UC
Berkeley (2004)

11. Shladover, S.E.: E�ects of traÆc density on communication requirements for Cooperative
Intersection Collision Avoidance Systems (CICAS). PATH Working Paper UCB-ITS-PWP-
2005-1, UC Berkeley (2004)

12. Stursberg, O., Fehnker, A., Han, Z., Krogh, B.H.: Verification of a cruise control system
using counterexample-guided search. Control Engineering Practice 38, 1269–1278 (2004)

13. Varaiya, P.: Smart cars on smart roads: problems of control. IEEE Trans. Automat. Con-
trol 38, 195–207 (1993)

14. Wongpiromsarn, T., Mitra, S., Murray, R.M., Lamperski, A.: Periodically controlled hybrid
systems: Verifying a controller for an autonomous vehicle. In: Majumdar, R., Tabuada, P.
(eds.) HSCC 2009. LNCS, vol. 5469, pp. 396–410. Springer, Heidelberg (2009)

15. Chee, W., Tomizuka, M.: Vehicle lane change maneuver in automated highway systems.
PATH Research Report UCB-ITS-PRR-94-22, UC Berkeley (1994)

16. Johansson, R., Rantzer, A. (eds.): Nonlinear and Hybrid Systems in Automotive Control.
Society of Automotive Engineers Inc. (2003)

17. Altho�, M., Altho�, D., Wollherr, D., Buss, M.: Safety verification of autonomous vehicles
for coordinated evasive maneuvers. In: IEEE IV 2010, pp. 1078–1083 (2010)

18. Berardi, L., Santis, E., Benedetto, M., Pola, G.: Approximations of maximal controlled safe
sets for hybrid systems. In: Johansson, R., Rantzer, A. (eds.) Nonlinear and Hybrid Systems
in Automotive Control, pp. 335–350. Springer, Heidelberg (2003)

19. Platzer, A.: Quantified Di�erential Dynamic Logic for Distributed Hybrid Systems. In:
Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 469–483. Springer, Heidelberg
(2010)

20. Lygeros, J., Lynch, N.: Strings of vehicles: Modeling safety conditions. In: Henzinger, T.A.,
Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 273–288. Springer, Heidelberg (1998)

21. Dolginova, E., Lynch, N.: Safety verification for automated platoon maneuvers: A case study.
In: Maler, O. (ed.) HART, pp. 154–170. Springer, Heidelberg (1997)

22. Electronic Proof and Demo, ���������������������	��������
23. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: Hybrid, distributed, and now

formally verified. Technical Report CMU-CS-11-107, Carnegie Mellon University (2011)
24. Germann, S.: Modellbildung und Modellgestützte Regelung der Fahrzeuglängsdynamik.

Fortschrittsberichte VDI, Reihe 12, Nr. 309, VDI Verlag (1997)

http://www.ls.cs.cmu.edu/dccs/

TRACECONTRACT: A Scala DSL for Trace Analysis�

Howard Barringer1 and Klaus Havelund2

1 School of Computer Science, University of Manchester, UK
Howard.Barringer@manchester.ac.uk

2 Jet Propulsion Laboratory, California Institute of Technology, USA
Klaus.Havelund@jpl.nasa.gov

Abstract. In this paper we describe TRACECONTRACT, an API for trace analy-
sis, implemented in the SCALA programming language. We argue that for
certain forms of trace analysis the best weapon is a high level programming lan-
guage augmented with constructs for temporal reasoning. A trace is a sequence of
events, which may for example be generated by a running program, instrumented
appropriately to generate events. The API supports writing properties in a nota-
tion that combines an advanced form of data parameterized state machines with
temporal logic. The implementation utilizes SCALA’s support for defining inter-
nal Domain Specific Languages (DSLs). Furthermore SCALA’s combination of
object oriented and functional programming features, including partial functions
and pattern matching, makes it an ideal host language for such an API.

1 Introduction

The trace analysis problem consists of determining whether a trace, a sequence of
events, satisfies a formalized property. One challenge is to find convenient and ex-
pressive languages for expressing such trace properties. We present in this paper an
API, named TRACECONTRACT, in the SCALA programming language [2] for perform-
ing trace analysis (runtime verification). It supports writing temporal properties about
traces and can be used for analyzing log files produced as a result of program execu-
tions or for monitoring systems executing online. The contribution of the paper is a
convenient and very expressive specification notation, which can be perceived as a hy-
brid between state machines and temporal logic, but formulated as an API in a high
level programming language. This allows a mixture of temporal specification and high
level programming, a combination we find very attractive for practical purposes. The
implementation of the API benefits from SCALA’s support for defining domain specific
languages and from its functional programming features. This includes specifically the
use of partial functions and pattern matching over parameterized events to model state
transitions, which is very similar to the way to the receive function in SCALA’s Actor
class is implemented to model an actor’s reception of messages from other concur-
rently running actors. The API and SCALA have been chosen for analysis of command

� Part of the research described in this publication was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and Space
Administration.

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 57–72, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

58 H. Barringer and K. Havelund

sequences for NASA’s LADEE (Lunar Atmosphere and Dust Environment Explorer)
mission [1].

A large number of formalisms have been proposed in recent years for supporting
trace analysis, see for example [13,9,12,10,3,15,8]. Examples are temporal logics, in-
cluding past time as well as future time, regular expressions, state machines, context
free grammars, real-time logics, and statistics gathering logics. Most have been imple-
mented as what are often referred to as external DSLs (Domain Specific Languages),
external to the programming language they are implemented in, and parsed with a
specialized parser. Our own work includes several such systems, most of which put
emphasis on expressiveness, in order to be able to capture the many different logics
provided in other systems. Amongst these systems are EAGLE [4] — based on recur-
sive definitions of temporal predicates; RULER [7] — a rule-based framework providing
the same level of formal expressivity as EAGLE but with a simpler and more efficient
step-wise monitoring algorithm; and LOGSCOPE [5] — a state machine-like subset of
RULER with the addition of a temporal logic. From these experiences, we observe two
key points: (i) once a DSL is defined, it is laborious to change/extend it later; and (ii)
users often ask for additional features, some of which are best handled by a general
purpose programming language. We propose here instead to write trace monitors in a
high level programming language, SCALA, augmented with support for temporal spec-
ification. Our solution is what is referred to as an internal DSL, internal to (embedded
in) the programming language it is developed in. Stolz and Huch describe in [16] an
embedding of LTL in HASKELL. Our framework differs in two major ways. First, we
handle data parameterization by re-using SCALA’s built-in notion of partial functions
and pattern matching. Second, we introduce a new formalism which is a hybrid between
state machines and temporal logic.

TRACECONTRACT is really just an API, formulated using the host language’s prim-
itives. It does, however, have the flavor of a DSL due to SCALA’s special support for
defining internal DSLs, and due to the fact that SCALA supports functional as well as
object oriented programming. We shall use the terms API and DSL interchangeably.
The DSL is a shallow embedding, meaning that we are making the host language’s
constructs part of the DSL. This is in contrast to a deep embedding, as in [16], where
a separate internal representation is made of the DSL (an abstract syntax), which is
then interpreted or compiled as in the case of an external DSL. See [11] for a recent
discussion of shallow vs. deep embeddings. Generally, the arguments for a shallow in-
ternal DSL are: limited implementation effort (leading to adaptability), feature richness
through the host language, and tool inheritance. The arguments against are: lack of an-
alyzability — which can have consequences for performance and reporting to users,
and full exposure of the implementation language (the user has to be a programmer, in
this case a SCALA programmer). The groundwork for a theoretical study of the char-
acteristics of the approach, such as soundness, completeness, and expressiveness, has
been done during our previous work on EAGLE and RULER. However, a full theoretical
presentation of TRACECONTRACT, including a formal semantics, is planned.

The rest of the paper is organized as follows. Section 2 presents the API and exam-
ples of its use. Section 3 outlines how the API is implemented. Section 4 concludes the
paper.

TRACECONTRACT: A Scala DSL for Trace Analysis 59

2 The TraceContract DSL

A trace contract conceptually represents a predicate on execution traces, where an exe-
cution trace is a finite sequence of events. TRACECONTRACT is parameterized with the
event type, which may be any type. To illustrate, we shall consider a simplified plane-
tary rover scenario (to be our on-going example), similar to the example used in [5]1.
A rover is controlled from ground via commands emitted to it. Commands can either
fail or succeed. Events are commonly modeled as objects (instances) of certain classes.
The following SCALA classes define the type Event of events, and three specific kinds
of events we are interested in monitoring:

Listing 1.1. Type Event

1 abstract class Event
2 case class COMMAND(name: String, nr: Int) extends Event
3 case class SUCCESS(name: String, nr: Int) extends Event
4 case class FAIL(name: String, nr: Int) extends Event

The class Event is defined as abstract, meaning that it has to be subclassed. Each kind
of event is defined as a subclass of class Event. Each event class is furthermore defined
as a case class, which enables pattern matching over members of the type (this we be
illustrated below). Each subclass in this scenario is parameterized with data (the con-
structor parameters), which must be provided when creating an object of the class. Note
that in SCALA constructor parameters can be provided in the class definition without
having to define an explicit constructor inside the class as in JAVA. All of the events
here have two parameters: a command name of type String and a command number
of type Int. Success and fail events have the command number corresponding to the
command they stem from. With the above definitions, the following is an example of a
trace of four events:

val trace: List[Event] = List(
COMMAND("STOP_DRIVING", 1), SUCCESS("STOP_DRIVING", 1),
COMMAND("TAKE_PICTURE", 2), FAIL("TAKE_PICTURE", 2))

The val keyword introduces a constant, in this case trace of type List[Event], de-
fined as the list returned by the list constructor call: List(event1, event2,. . .). Each
element in the list is an event, an object of one of the event classes. For example, the
first list element COMMAND("STOP_DRIVING", 1) is an object of class COMMAND. Due
to the fact that the event classes are defined as case classes, objects can be conveniently
created without use of the new keyword. Such a trace can for example be constructed
by parsing a log file produced by the rover software. Note, however, that events can be
processed one by one as well, they do not need to come as part of a pre-computed trace.

2.1 The DSL and a First Example

The main two classes are Monitor, offering functions for writing properties, and
Formula, representing the type of temporal formulas used to define properties. A class

1 This example is inspired from the Mars Science Laboratory (MSL) rover mission.

60 H. Barringer and K. Havelund

FactOps offers additional functions on recorded facts (to model past time temporal
logic). The API interfaces of these three classes are shown in code listings 1.2 and 1.3
respectively. These, and other listings will be referred to using references of the form:
〈listing-id:line-number〉 (one line), or: 〈listing-id:line-number1-line-number2〉 (a range
of lines).

Listing 1.2. Class Monitor

1 class Monitor[Event] {
2 def property(name: Symbol)(formula: Formula): Unit
3 def invariant(name: Symbol)(block: Block): Unit
4 def monitor(monitors: Monitor[Event]*): Unit
5 def verify(event: Event): Unit
6 def end(): Unit
7 def verify(trace: List[Event]): Unit
8 def finish(): Unit
9 def getMonitorResult: MonitorResult[Event]

10

11 // state logic:
12 type Block = PartialFunction[Event, Formula]
13 def always(block: Block): Formula
14 def state(block: Block): Formula
15 def hot(block: Block): Formula
16 def step(block: Block): Formula
17 def strong(block: Block): Formula
18 def weak(block: Block): Formula
19 def error(message: String): Formula
20 def error: Formula
21 def ok(message: String): Formula
22 def ok: Formula
23

24 // future time temporal logic:
25 def matches(predicate: PartialFunction[Event, Boolean]): Formula
26 def not(formula: Formula): Formula
27 def globally(formula: Formula): Formula
28 def eventually(formula: Formula): Formula
29 def strongnext(formula: Formula): Formula
30 def within(time: Int)(formula: Formula): Formula
31

32 // past time temporal logic:
33 abstract class Fact
34 implicit def convFact2FactOps(fact: Fact): FactOps
35 def factExists(pred: PartialFunction[Fact,Boolean]): Boolean
36

37 // implicit conversions to Formula:
38 implicit def convEvent2Formula(event: Event): Formula
39 implicit def convBoolean2Formula(cond: Boolean): Formula
40 implicit def convUnitToFormula(unit: Unit): Formula
41 }

TRACECONTRACT: A Scala DSL for Trace Analysis 61

Listing 1.3. Classes Formula and FactOps

1 abstract class Formula {
2 // propositional and future time temporal logic:
3 def and(that: Formula): Formula
4 def or(that: Formula): Formula
5 def implies(that: Formula): Formula
6 def until(that: Formula): Formula
7 def unless(that: Formula): Formula
8

9 // sequential, causal and hierarchical composition:
10 def then(that: Formula): Formula
11 def causes(that: Formula): Formula
12 def except(block: Block): Formula
13 }
14

15 class FactOps(fact: Fact) {
16 def + : Unit
17 def - : Unit
18 def ? : Boolean
19 def ˜ : Boolean
20 }

The public functions in each class are here represented by their signatures, each in-
troduced with the def keyword (the associated bodies are not shown here). Most of these
functions will be explained in the following. The class Monitor is parameterized with
the event type, which must be provided at instantiation time. A user-defined monitor
representing one or more trace properties must extend class Monitor to get access to
the functions defined therein. Consider as an example the following requirements: R1:
“Whenever a command is issued, it should eventually succeed with no failure occurring
before then”, and R2: “A command must not succeed more than once”. These require-
ments can be formulated as the TRACECONTRACT monitor in Listing 1.4. The monitor
is defined as a class named CommandRequirements, which extends the class Monitor.
In SCALA, the body of a class can contain statements (in addition to definitions), which
will get executed when an object is constructed (the body of the class works as the con-
structor). Each of the two requirements is defined by a call of the function property
〈1.2:2〉 from the Monitor API. It is a curried function, which as first argument takes
the name of the property, and as second argument takes the formula to be checked. The
function returns no value of importance (return type is Unit), but has as side effect to
add the formula to the list of formulas being checked.

Consider the formalization of the first requirement R1. The first argument to the
property function is the name of the property, in this case the symbol ’R1 of type
Symbol. SCALA’s Symbol type contains quoted names, which are convenient to type
instead of strings, such as "R1". The second argument to the property function is a
formula 〈1.4:4-10〉 of the form: always{...}. The formula is the result of a call of
the always function 〈1.2:13〉, which takes as argument a partial function from events to
formulas, called a block 〈1.2:12〉. A partial function f of type PartialFunction[A,B]

62 H. Barringer and K. Havelund

is associated with a function isDefinedAt(x: A):Boolean where f.definedAt(v)
returns true if and only if the partial function f is defined at v. A partial function is
typically defined with a sequence of case statements, each defining a subset of A for
which it is defined. In the above case, the argument to the always function is the partial
function defined only on COMMAND objects (there is only one case statement 〈1.4:5〉):

{case COMMAND(name, number) => hot { ... }}

When the function is applied to a value v, the value is matched against the patterns in the
case statements, in a left to right manner, until a match occurs (an exception is thrown
in case a match does not occur). In the above example, the value v is matched against
the pattern COMMAND(name, number). In case v is a command the match succeeds, the
identifiers name and number are bound to the actual corresponding values in v, and the
result is the value of the expression to the right of the => symbol. It is the fact that
the event classes COMMAND, SUCCESS and FAIL are defined as case classes (Listing 1.1)
that allows us to perform pattern matching as above. The intuition is that the always
function creates a state (a kind of formula), in which the monitor will wait until an event
arrives for which the partial function is defined. When this happens, the partial function
is applied to obtain a new formula, namely the right hand side of =>, in this case a new
state H produced by the hot function 〈1.4:6〉. The net result is the conjunction of the
original always{...} formula and this new state H: always{...} ∧ H - to reflect the
fact that we will keep checking the body of the always function.

Listing 1.4. Formalization of Requirements R1 and R2

1 \vspace*{1mm}
2 class CommandRequirements extends Monitor[Event] {
3 property(’R1) {
4 always {
5 case COMMAND(name, number) =>
6 hot {
7 case FAIL(‘name‘, ‘number‘) => error
8 case SUCCESS(‘name‘, ‘number‘) => ok
9 }

10 }
11 }
12

13 property(’R2) {
14 always {
15 case SUCCESS(_, number) =>
16 state {
17 case SUCCESS(_, ‘number‘) => error
18 }
19 }
20 }
21 }

TRACECONTRACT: A Scala DSL for Trace Analysis 63

The hot function 〈1.2:15〉 similarly takes a partial function (block) as argument.
As before, a hot state will remain waiting until an event arrives for which the partial
function is defined. However, when such an event arrives, the net result is the value
of the body – that is, there is no repetition as in the case of always. The hot state
is also signified by causing an error in case it has not been left before the end of the
trace. The partial function occurring as argument to the hot function 〈1.4:7-8〉 contains
patterns which contain quoted variable names: ‘name‘ and ‘number‘. The meaning of
such patterns is that the incoming value must equal the value of these variables, instead
of being bound to them. In this example, the monitor is waiting for failure or success
of the command previously observed (same name and number). Finally, the formulas
error 〈1.2:20〉 and ok 〈1.2:22〉 are special formulas, essentially representing False
and True respectively. These functions also exist in overloaded forms taking a message
as argument, 〈1.2:19〉 and 〈1.2:21〉, which is printed to standard out.

The property R2 〈1.4:13-20〉 states that a success with a certain number should never
be followed by another success with the same number. The underscore (‘_’) is the wild-
card pattern that always matches, and is here used to model that the command name
is not of importance to this requirement. The state function 〈1.2:14〉 takes, as before,
a partial function (block) as argument, and creates a state where the monitor will wait
until an event arrives for which the partial function is defined, in which case an error
is emitted in this example. In contrast to a hot state, however, no error is issued if a
monitor remains in such a state at the end of the trace. state states are hence used to
model safety properties, whereas hot states are used to model liveness properties (see
[6] for a discussion of safety and liveness properties on finite traces).

2.2 State Machines

The API contains other kinds of states, produced by functions that take partial functions
as arguments, such as step 〈1.2:16〉, strong 〈1.2:17〉, and weak 〈1.2:18〉 states. A step
state evaluates to true if it does not trigger in the next step (this corresponds to ignoring
this branch). A strong state evaluates to false if it does not trigger in the next step
(some event must happen in the next step). A weak state, like a strong state, evaluates
to false if it does not trigger in the next step, provided there is a next step.

In the example shown in Listing 1.4, properties have a flavor of temporal logic in the
sense that intermediate states are not explicitly named. For example, in property ’R1,
the right hand side of the transition ‘case COMMAND(name, number) => hot{...}’ is
a hot state that is not explicitly named, corresponding to a use of the diamond (eventu-
ally) operator � in temporal logic. TRACECONTRACT also, however, naturally supports
naming of states using SCALA’s already built-in function concept, and consequently
supports definition of state machines. The two styles (named states and inlined states
as in Listing 1.4) can furthermore be mixed freely, which is the main characteristic
of the TRACECONTRACT DSL. Consider the requirement R3: “Consecutive command
numbers should increase by exactly 1, and a command (name) should not be re-issued
with a new number until a success has occurred”. In addition, let’s collect the names
of the commands issued and store them in a set for later printing. The property is pre-
sented in Listing 1.5, including the definition of two functions (increaseCmdNumber
and holdCmd), each representing a parameterized named state. Instead of a call of

64 H. Barringer and K. Havelund

the form: property(name){always{block}}, here we use the invariant function
〈1.2:3〉, giving rise to the abbreviated form: invariant(name){block}. That is:

def invariant(name: Symbol)(block: Block) = property(name){always{block}}

Listing 1.5. A State Machine

1 \vspace*{2mm}
2 var commands: Set[String] = Set()
3

4 invariant(’R3) {
5 case COMMAND(name, number) =>
6 commands += name
7 increaseCmdNumber(number) and holdCmd(name, number)
8 }
9

10 def increaseCmdNumber(number: Int) =
11 state {
12 case COMMAND(_, number2) => number2 == number+1
13 }
14

15 def holdCmd(name: String, number: Int) =
16 state {
17 case COMMAND(‘name‘, number2) if number2 != number => error
18 case SUCCESS(‘name‘, ‘number‘) => ok
19 }

The property illustrates a number of features. Line 〈1.5:2〉 declares the monitor
local updatable variable commands (keyword var) of type Set[String], initialized
to the empty set. This variable is updated in line 〈1.5:6〉 by adding the command
name to the set. The variable update is followed in line 〈1.5:7〉 by a formula, which
is the conjunction of two states. TRACECONTRACT allows conjunction as well as dis-
junction of states corresponding to AND/OR automata. These two lines illustrate how
side-effects elegantly can be combined with logic. The two states are themselves the re-
sult of applying the two functions increaseCmdNumber and holdCmd, defined after the
property. Line 〈1.5:12〉 illustrates how a Boolean expression (number2 == number+1)
appears as a formula (it is lifted to a formula by an implicit function 〈1.2:39〉). Line
〈1.5:17〉 illustrates a conditional transition: the transition is only taken if the pattern
COMMAND(‘name‘,number2) matches, and the expression number2 != number evalu-
ates to true.

2.3 Future Time Temporal Logic

TRACECONTRACT offers, as an alternative, a set of functions supporting writing
properties in Linear Temporal Logic (LTL). This includes propositional logic 〈1.2:26〉,
〈1.3:3-5〉, and temporal operators 〈1.2:27-29〉, 〈1.3:6-7〉. As an example, the require-
ment R1 from above can alternatively be stated as in Listing 1.6, in a notation similar to
LTL.

TRACECONTRACT: A Scala DSL for Trace Analysis 65

The right hand side of the transition is an LTL formula constructed as follows. First,
the events FAIL(name, number) and SUCCESS(name, number) are each converted
to a formula via the implicit conversion function convEvent2Formula 〈1.2:38〉. Gen-
erally, the implicit functions 〈1.2:38-40〉 automatically convert values of the argument
type into values of the result type. Whenever a SCALA expression fails to type check, the
SCALA compiler will consult the implicit functions in scope and determine whether the
application of a such will make the expression type check, and in this case the compiler
will insert an application of the function (there can be no more than one such implicit
conversion function, otherwise the SCALA compiler will complain). These functions
allow us to write events, Boolean expressions, and code blocks returning Unit as for-
mulas. Second, the formula obtained from the FAIL(name, number) event is negated
with the not function 〈1.2:26〉, resulting in a new formula. Listing 1.3 shows the func-
tions callable on formulas, including the until function 〈1.3:6〉. SCALA permits to
write calls of functions on objects without dot-notation and without parentheses around
arguments (as required in JAVA). That is, given an object o of a class defining a function
m, instead of: o.m(a), we are allowed to write: o m a. This technique is used to write the
above LTL formula composing two formulas with the infix until operator. The formula
is equivalent to: not(FAIL(name, number)).until(SUCCESS(name, number)).

Listing 1.6. An LTL Formula

1 \vspace*{1mm}
2 invariant(’R4) {
3 case COMMAND(name, number) =>
4 not(FAIL(name, number)) until SUCCESS(name, number)
5 }

As we can see, we have here mixed pattern matching with LTL. In support for
handling pattern matching, the API furthermore offers the matches function 〈1.2:25〉,
which returns a formula that will be true or false on an event, depending on whether the
partial function argument (a predicate) to matches is defined, and furthermore returns
true on the event. Note that in this case no binding of values takes place, it is purely a
predicate. Amongst other combinators we can mention:- Sequential composition – f1

then f2 〈1.3:10〉: evaluates f1 until (and if) it becomes true whereupon f2 is evaluated;
Cause and effect – f1 causes f2 〈1.3:11〉: whenever f1 evaluates to true, f2 is evalu-
ated (similar to message sequence diagrams); Bounds– f except{block} 〈1.3:12〉: f is
evaluated unless the partial function block becomes defined for an incoming event, in
which case it is applied and its result becomes the new formula. Several other forms of
formula are offered, including formulas counting events, for example that some event
must happen within n steps.

2.4 Past Time Temporal Logic

Consider the requirement: R5: “A failure should only occur if a command (same name
and number) has been observed in the past, and no success has been observed so far
since then.”. This requirement expresses a past time property. TRACECONTRACT of-
fers a set of constructs for writing past time properties. The general idea is to support

66 H. Barringer and K. Havelund

recording of facts in a database, which can then be queried later, i.e. in the future. The
API provides an abstract class Fact 〈1.2:33〉, which the user can extend in order to
define facts. An implicit function 〈1.2:34〉 converts facts into objects of class FactOps
〈1.3:15〉, which offers a collection of functions on facts (applied using post-fix nota-
tion): a function for adding a fact to the database (+), a function for deleting a fact (-),
and functions for querying whether a fact is in the database (?) or not (˜). There is
also a function factExists 〈1.2:35〉 for checking whether a fact exists that satisfies a
predicate. Requirement R5 can be formulated as in Listing 1.7.

Listing 1.7. Reasoning About the Past

1 case class Commanded(name: String, number: Int) extends Fact
2

3 invariant(’R5) {
4 case COMMAND(name, number) => Commanded(name, number) +
5 case SUCCESS(name, number) => Commanded(name, number) -
6 case FAIL(name, number) if Commanded(name, number) ˜ => error
7 }

A class Commanded is defined 〈1.7:1〉 extending class Fact. An object Commanded(n,x)
of this class is meant to represent the fact that a command with name n and number x
has been observed. By defining it as a case class, objects can be conveniently created
without using the new keyword. The property then updates the database in the first two
transitions 〈1.7:4-5〉, by adding respectively deleting a fact, and in the third transition
〈1.7:6〉 by testing for the absence of the fact (absence is an error). This specification
style is very close to the way such past time properties are specified in RULER and
LOGSCOPE. Indeed, [7] presents a translation scheme from future and past time LTL to
RULER, the past time part of which can be fully mimicked to obtain a formal translation
of past time LTL into TRACECONTRACT. Essentially, there is one key difference be-
tween the two. In RULER, memory is encoded by rules that are not persistent, i.e. they
exist for the next moment only, whereas, here for TRACECONTRACT, facts are persis-
tent by default and must be forcibly removed. Theoretical results about the separation of
any LTL formula into pure past, present and pure future parts then enables us to claim,
similar to our result for RULER, that any temporal logic property can be embedded/en-
coded in TRACECONTRACT.

We observe, however, that it is possible, as an alternative to the above, to declare
variables in a monitor that maintains such a database and one may then find, because of
SCALA’s convenient syntax, the incurred effort is not too burdensome.

2.5 Using Monitors

Properties can be written in different monitors and composed in a hierarchical manner
by calls of the monitor(monitors: Monitor[Event]*):Unit function 〈1.2:4〉. This
is a function with a variable length argument list, indicated by ‘*’, taking zero or more
monitors as arguments. The example in Listing 1.8 illustrates how two sets of require-
ments are composed into a new monitor AllRequirements 〈1.8:1-3〉. This class is then
instantiated to an object 〈1.8:7〉, upon which the verify function is called 〈1.8:9〉. In
this case a trace is read from a log file and the verify function 〈1.2:7〉 that takes a trace

TRACECONTRACT: A Scala DSL for Trace Analysis 67

as argument is called. This function will check the events in the trace against the pro-
vided properties. In some scenarios, events may be provided in a step-wise manner, for
example during online monitoring of a running system, or if the log file is too large to
be represented as a SCALA list. In such cases the alternative verify(event: Event)
function 〈1.2:5〉 can be called on each incoming event. Such a sequence of calls has to
be ended with a call of the end function 〈1.2:6〉. The user can in the monitor override
the finish function 〈1.2:8〉 (for example to compute and print some statistics), which
will be called when end is called.

Listing 1.8. Using a Monitor

1 class AllRequirements extends Monitor[Event] {
2 monitor(new CommandRequirements, new RadioRequirements)
3 }
4

5 object TraceAnalysis {
6 def main(args: Array[String]) {
7 val monitor = new AllRequirements
8 val trace = readLog()
9 monitor.verify(trace)

10 }
11 }

3 Implementation

In this section we shall briefly outline how the combinators described above have been
implemented. We shall leave out non-essential details.

3.1 Formulas and Linear Temporal Logic

Requirements to be monitored are expressed as formulas. Formulas are objects of sub-
classes of the abstract class in Listing 1.9.

Listing 1.9. Class Formula

1 abstract class Formula {
2 def apply(event: Event): Formula
3 def reduce(): Formula = this
4 def and(that: Formula): Formula = And(this, that).reduce()
5 def until(that: Formula): Formula = Until(this, that).reduce()
6 ...
7 }

Each kind of formula is represented by a specific subclass of this class. A number
of functions are defined on all formulas, four of which are shown here. The apply
function takes an event and returns a new formula, either unchanged in case the event
is not relevant, or a changed to reflect the impact of the event. The apply function
is special in SCALA in that for a given formula f, it allows us to write f(e) instead

68 H. Barringer and K. Havelund

of f.apply(e). The function is defined as abstract and is overridden by the different
subclasses of Formula.

The apply function is invoked as follows. A monitor consists in principle of a
collection of formulas to be monitored. The verify function 〈1.2:7〉 applied to a trace
will traverse the trace, and will for each event e call verify(e) 〈1.2:5〉, which in turn
will apply each formula f in the monitor to the event: f (e), resulting in either True,
False, an unchanged formula, or a changed formula different from True and False. At
the end of the trace (when the end function 〈1.2:6〉 is called) all formulas are evaluated
to either true (if they represent safety properties) or false (if they represent liveness
properties).

The Formula class furthermore contains all infix operators on formulas, including
Boolean logic operators, such as and, as well as temporal operators such as until. For
example, given two formulas f1 and f2, the function and allows us to write: f1 and f2

(instead of the more classical also allowed: f1.and(f2)). The result is an object of class
And, which is one of the many subclasses of class Formula, see Listing 1.10.

When composing Boolean logic expressions, it is necessary to simplify them. For
example, for a formula f : true ∧ f can be reduced to: f. The reduce function will per-
form this rewriting according to the classical Boolean axioms for each formula resulting
during monitoring. By default the function is defined to leave the formula unchanged,
but may be overridden in subclasses of Formula.

The atomic formulas are True, False, and Now(e), for some event e. The latter
formula is true if the current event is equal to e. These atomic combinators are defined
as subobjects/classes of Formula. A term such as And(f1, f2) is evaluated by evaluating
its subformulas, and subsequently calling reduce to perform Boolean logic reduction,
as shown in Listing 1.10.

Here reduce is defined with a match statement: the tuple (formula1, formula2)
is matched against the patterns (False, _), (_, False), etc., until there is a match,
and the formula on the right hand side of the corresponding => symbol is returned. The
formulas corresponding to the classical LTL operators � (globally) and � (eventually)
are defined using the classical rewrite rules ‘�p = p∧©�p’ and ‘�p = p∨©�p’, as
shown in Listing 1.11.

We have mentioned that events, Booleans and the unit value are automatically trans-
formed to formulas. This is achieved through the definitions in Listing 1.12. The con-
version from the unit value to True allows us to write a block of code in the place of a
formula, which can be useful when writing state machines.

3.2 State-Oriented Constructs

The most common specification style in TRACECONTRACT is to use (anonymous or
named) states, The formula classes of some of these are shown in Listing 1.13. Common
for all states is that they consist of a block 〈1.2:12〉, which is a partial function from
events to formulas. States differ in how they evaluate when the partial function is not
defined for an event. That is, whether they become True, False, or stay unchanged
(this).

TRACECONTRACT: A Scala DSL for Trace Analysis 69

Listing 1.10. Class And

1 case class And(formula1: Formula, formula2: Formula) extends Formula {
2 override def apply(event: Event): Formula =
3 And(formula1(event), formula2(event)).reduce()
4

5 override def reduce(): Formula = {
6 (formula1, formula2) match {
7 case (False, _) => False
8 case (_, False) => False
9 case (True, _) => formula2

10 case (_, True) => formula1
11 case (f1, f2) if f1 == f2 => f1
12 case _ => this
13 }
14 }
15 }

Listing 1.11. Classes Globally and Eventually

1 case class Globally(formula: Formula) extends Formula {
2 override def apply(event: Event): Formula =
3 And(formula(event), this).reduce()
4 }
5

6 case class Eventually(formula: Formula) extends Formula {
7 override def apply(event: Event): Formula =
8 Or(formula(event), this).reduce()
9 }

Listing 1.12. Implicit Functions

1 implicit def convEvent2Formula(event: Event): Formula = Now(event)
2 implicit def convBoolean2Formula(cond: Boolean): Formula =
3 if (cond) True else False
4 implicit def convUnitToFormula(unit: Unit): Formula = True

States, and other formulas, also differ in the way they evaluate at the end of the trace.
Some formulas will evaluate to true (representing safety properties: nothing unexpected
happened), while others will evaluate to false (representing liveness properties: some-
thing expected did not happen). For example, for any formula f , at the end the formula
Globally(f) evaluates to true whereas Eventually(f) evaluates to false. Likewise,
for any block b, State(b) evaluates to true whereas Hot(b) evaluates to false.

3.3 Properties, Formulas, and Error Traces

A monitor technically contains a collection of properties. A property is a named for-
mula. A property also maintains an error trace candidate for the formula. Whenever the
formula changes due to a new incoming event, that event is recorded in the error trace.

70 H. Barringer and K. Havelund

This way an error trace for a formula reflects only those events that are important to
the evolution of the formula. If the formula at some point is violated, that error trace
can be printed to the user. However, formulas of the form always{ f}, for some for-
mula f , are treated differently than other formulas at the top level in order to provide
the user with informative error traces. That is, in case such a formula occurs and f
changes to f ′ different from True or False, then a new property is created specifically
for the new f ′, with a new error trace initialized to contain the event that caused the
formula change. The original always{ f} continues to be monitored as well, reflect-
ing the semantics: �p = p∧©�p. Consider as an example the formula always{case e
=> eventually(q)}. Each time e matches an incoming event, a new property monitor-
ing eventually(q) is created, tracking the error trace only for this particular scenario.

Listing 1.13. States

1 case class State(block: Block) extends Formula {
2 override def apply(event: Event): Formula =
3 if (block.isDefinedAt(event)) block(event) else this
4 }
5

6 case class Hot(block: Block) extends Formula {
7 override def apply(event: Event): Formula =
8 if (block.isDefinedAt(event)) block(event) else this
9 }

10

11 case class Step(block: Block) extends Formula {
12 override def apply(event: Event): Formula =
13 if (block.isDefinedAt(event)) block(event) else True
14 }
15

16 case class Strong(block: Block) extends Formula {
17 override def apply(event: Event): Formula =
18 if (block.isDefinedAt(event)) block(event) else False
19 }

4 Conclusion

TRACECONTRACT is implemented as an API in SCALA, also referred to as a shallow
internal DSL. Internal since it extends the host language (SCALA) and shallow since
it is defined relying heavily on SCALA’s already existing language constructs, such as
function definitions, partial functions and pattern matching. An immediate consequence
is that, in contrast to RULER, TRACECONTRACT is close to an order of magnitude
smaller in code size, even though it offers greater functionality and easier adaptability.
Previously, we have had many discussions as to how to integrate temporal logic into
the RULER and LOGSCOPE systems. The internal DSL surprisingly provides many of
these concepts with very little effort. Using SCALA as a host language can, however,
potentially in some contexts be considered as a drawback instead of a virtue, depending
on who the user is. Flight missions at NASA are for example more often manned with

TRACECONTRACT: A Scala DSL for Trace Analysis 71

system/hardware engineers than with software engineers. One cannot expect a system
engineer to use a programming language such as SCALA. A system engineer is more
likely to pick up an external DSL with limited scope and limited potential for introduc-
ing programming errors. This dilemma is a subject for further research.

Our approach with TRACECONTRACT in SCALA has led to a very expressive and
convenient DSL, but at the cost of analyzability. That is, a piece of specification is a
SCALA fragment, and SCALA does not offer enough reflexive capabilities to allow one
to analyze such a fragment, unless one interferes with the SCALA compiler. Amongst
the things that become difficult is to provide the user with detailed information about the
specification, such as visualizing state machines, or showing the progress of monitoring.
It might also become a challenge to maximally optimize the implementation.

TRACECONTRACT was initially developed for analysis of log files produced from
running software. For this purpose we believe that the solution is very powerful and
convenient. The system can, however, also be used for online monitoring. Indeed, on-
line monitoring of SCALA programs is a natural application, and future work includes
extending Odersky’s design by contract [14] with TRACECONTRACT.

References

1. NASA’s LADEE (Lunar Atmosphere and Dust Environment Explorer) mission,
http://www.nasa.gov/mission_pages/LADEE/main

2. The Scala programming language, http://www.scala-lang.org
3. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O., de Moor,

O., Sereni, D., Sittamplan, G., Tibble, J.: Adding trace matching with free variables to As-
pectJ. In: OOPSLA 2005. ACM Press, New York (2005)

4. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verification. In: Stef-
fen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57. Springer, Heidelberg
(2004)

5. Barringer, H., Groce, A., Havelund, K., Smith, M.: Formal analysis of log files. Journal of
Aerospace Computing, Information, and Communication 7(11), 365–390 (2010)

6. Barringer, H., Havelund, K., Rydeheard, D., Groce, A.: Rule systems for runtime verification:
A short tutorial. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp. 1–24.
Springer, Heidelberg (2009)

7. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitoring: from
EAGLE to RULER. J. Log. Comput. 20(3), 675–706 (2010)

8. Chen, F., Roşu, G.: MOP: An efficient and generic runtime verification framework. In:
Object-Oriented Programming, Systems, Languages and Applications, OOPSLA 2007
(2007)

9. Drusinsky, D.: The temporal rover and the ATG rover. In: Havelund, K., Penix, J., Visser, W.
(eds.) SPIN 2000. LNCS, vol. 1885, pp. 323–330. Springer, Heidelberg (2000)

10. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.: Collecting statistics over runtime execu-
tions. Formal Methods in System Design 27(3), 253–274 (2005)

11. Garillot, F., Werner, B.: Simple types in type theory: Deep and shallow encodings. In: Schnei-
der, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 368–382. Springer, Heidelberg
(2007)

12. Havelund, K., Rosu, G.: Monitoring programs using rewriting. In: 16th ASE conference, San
Diego, CA, USA, pp. 135–143 (2001)

http://www.nasa.gov/mission_pages/LADEE/main
http://www.scala-lang.org

72 H. Barringer and K. Havelund

13. Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assurance based on
formal specifications. In: PDPTA, pp. 279–287. CSREA Press (1999)

14. Odersky, M.: Contracts for scala. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund,
K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418,
pp. 51–57. Springer, Heidelberg (2010)

15. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. In: Proc. of the 5th Int. Workshop
on Runtime Verification (RV 2005). ENTCS, vol. 144(4), pp. 109–124. Elsevier, Amsterdam
(2006)

16. Stolz, V., Huch, F.: Runtime verification of concurrent Haskell programs. In: Proc. of the 4th
Int. Workshop on Runtime Verification (RV 2004). ENTCS, vol. 113, pp. 201–216. Elsevier,
Amsterdam (2005)

Using Debuggers to Understand

Failed Verification Attempts

Peter Müller and Joseph N. Ruskiewicz

ETH Zurich, Switzerland
{peter.mueller,joseph.ruskiewicz}@inf.ethz.ch

Abstract. Automatic program verification allows programmers to de-
tect program errors at compile time. When an attempt to automatically
verify a program fails the reason for the failure is often difficult to un-
derstand. Many program verifiers provide a counterexample of the failed
attempt. These counterexamples are usually very complex and therefore
not amenable to manual inspection. Moreover, the counterexample may
be invalid, possibly misleading the programmer. We present a new ap-
proach to help the programmer understand failed verification attempts
by generating an executable program that reproduces the failed verifica-
tion attempt described by the counterexample. The generated program
(1) can be executed within the program debugger to systematically ex-
plore the counterexample, (2) encodes the program semantics used by
the verifier, which allows us to detect errors in specifications as well as
in programs, and (3) contains runtime checks for all specifications, which
allows us to detect spurious errors. Our approach is implemented within
the Spec# programming system.

1 Introduction

A common approach to automatic program verification is to compute verification
conditions, logical formulas whose validity entails the correctness of the program.
The verification conditions are then passed to an automatic theorem prover,
typically an SMT solver such as Simplify [7] or Z3 [6]. If the prover can establish
the validity of the verification condition then verification succeeds; otherwise
verification fails for one of the following reasons:

1. The program is incorrect, that is, the program does not satisfy its speci-
fication, and the specification expresses what the programmer intended. A
typical example is a runtime error such as division by zero.

2. The specification is incorrect or incomplete, that is, the program does not
satisfy its specification, and the program expresses what the programmer
intended. A typical example is a loop invariant that is too weak.

3. The prover was too weak to validate the condition, that is, the verification
error is a false positive, called a spurious error.

All three causes occur frequently in program verification; in particular, incorrect
and incomplete specifications are as common as errors in programs. Spurious
errors are less common, but are more difficult to understand when they do occur.

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 73–87, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

74 P. Müller and J.N. Ruskiewicz

class IntList {
int[] Elements;
int Count;

void Add (int value)
modifies Count, Elements, Elements[*];
ensures Contains (Elements, value)

{ ... }

void Sort ()
modifies Elements[*];
ensures Sorted (Elements);

{ ... }
}

class SortedList {
IntList list;

// The list is sorted
invariant Sorted (list.Elements);

void AddSorted (int value)
modifies list.Count, list.Elements[*];
ensures Contains (list.Elements,value);

{
list.Add (value);
list.Sort ();

}
}

Fig. 1. Spec# is unable to verify AddSorted. The notation Sorted(a) abbreviates the
condition that array a is sorted and Contains(a,v) abbreviates that v is contained
in a. Both conditions can be expressed in Spec# via quantification over the indices
of a. The modifies-clauses specify frame properties by listing the locations a method
is allowed to modify. For brevity, we omit the method bodies in class IntList, access
modifiers, as well as Spec#’s ownership and non-null annotations.

Consider the small Spec# [11] program in Fig. 1. The method AddSorted
of class SortedList adds the value parameter to the list of integers and then
sorts the list. The specification requires that after the execution of AddSorted,
the list be sorted (by an object invariant) and that it contains value (by a
postcondition). Verifying the method with the Spec# program verifier fails. A
modular verifier such as Spec# verifies each method individually and reasons
about method calls in terms of the callee’s specification, not its implementation.
The specification of Sort states only that the elements of the list will be sorted,
not that they will be preserved. Consequently, the verifier is unable to prove that
value is still contained in list.Elements after the call to list.Sort and, thus,
that the postcondition of AddSorted holds. We will discuss a second verification
error related to AddSorted’s modifies clause in Sec. 5.

A programmer who may not understand the cause of this failure from the
program text can query the program verifier for a counterexample. The coun-
terexample essentially contains a value for each variable in each state—a trace
leading to the failing specification. For programs with non-trivial states (in par-
ticular, heap data structures) these counterexamples can be magnitudes larger
than the program. For our example, the counterexample is over 1,200 lines of
text. It is therefore not amenable to manual inspection and provides little benefit
to the programmer. Moreover, due to the limitations of automatic proving, the
counterexample may be invalid and not representative of a valid execution, thus
misleading the programmer.

Using the initial state from the counterexample to construct a unit test for
the failing method is helpful only if the error is in the program; errors caused
by incorrect or incomplete specifications cannot be reproduced by a unit test.
For example, a test that executes AddSorted with the initial state from the
counterexample and then asserts the postcondition will succeed because the im-
plementation does satisfy its postcondition. It is the incomplete specification of

Using Debuggers to Understand Failed Verification Attempts 75

list.Sort that causes the verification to fail, not the implementation. So suc-
cessful tests are inconclusive about the presence and cause of verification errors.

In this paper, we present a technique that enables programmers to use stan-
dard debuggers to inspect program verification and counterexamples just as they
use debuggers to inspect program executions and execution states. Our tech-
nique enables programmers to step through the verification of a method, check
the validity of assertions, and observe the evolution of the state described by
the counterexample. It detects verification failures caused by all three reasons
mentioned in the introduction and notifies the programmer of invalid counterex-
amples. This tool support allows programmers to understand, locate, and fix
verification errors more easily. We believe that applying a familiar tool for this
task is crucial for making program verification more efficient and for increasing
acceptance among practitioners. Our approach is implemented within the Spec#
programming system. The tool, examples, and a demo video are available online
at http://www.pm.inf.ethz.ch/publications/cee.

Outline. In Sec. 2 we give an overview of our approach. We explain how we
reproduce counterexample states in Sec. 3. Sec. 4 describes how we rewrite the
program to simulate its verification semantics and to reproduce the execution
described by the counterexample. In Sec. 5 we extend the runtime assertion
checker to handle all relevant specifications and show how it can be used to check
the validity of the verification failure in Sec. 6. We discuss experiences using our
approach and give a debugging procedure in Sec. 7. We present related work in
Sec. 8 and conclude with Sec. 9.

2 Approach

Given a Spec# program and a counterexample produced by Z3, we construct
an executable .NET program that simulates the verification semantics and re-
produces states given by the counterexample. The constructed program can be
executed in a program debugger, allowing the programmer to systematically and
efficiently explore the counterexample. By executing the constructed program,
we are able to detect spurious errors and validate failed verification attempts.
The three key features of our approach are as follows:

(1) The constructed program simulates the verification semantics of the pro-
gram as defined by the verifier rather than the concrete execution semantics
as defined by the .NET platform. The semantics used by a program verifier is
typically an abstraction of the execution semantics. Loops are typically verified
via loop invariants rather than by considering the actual iterations, and modu-
lar verifiers reason about method calls in terms of method specifications rather
than the implementation of the called method. By simulating the verification
semantics rather than the execution semantics, we can detect verification errors
caused by incorrect or incomplete specifications.

(2) The constructed program reproduces the states given by the counterexam-
ple. We execute the constructed program in the initial state described by the
counterexample. For each statement whose verification semantics differs from

http://www.pm.inf.ethz.ch/publications/cee

76 P. Müller and J.N. Ruskiewicz

the execution semantics, we reproduce the effect of executing the statement by
creating a program stub that alters the state as described by the counterex-
ample. This allows programmers to use the debugger to explore and navigate
through the counterexample.

(3) The constructed program contains runtime checks for specifications that
are relevant for the verification error. For those specifications that generally can-
not be checked efficiently at runtime (for instance, frame specifications, which
universally quantify over all allocated objects), we use the counterexample to
determine which objects are relevant for the verification error and focus the
runtime checks on those. Moreover, checking the relevant specifications at run-
time allows us to determine whether or not a verification error is spurious. This
is the case if the constructed program terminates without a runtime error or
specification violation.

Our approach enables the programmer to understand the failed verification
attempt in method AddSorted as follows: We extract the initial state from the
counterexample and construct a program driver that will create a SortedList
object that contains an IntList object (in field list) with a list containing the
elements, say, 0 and 1. We then rewrite the body of AddSorted so that it sim-
ulates Spec#’s verification semantics. That is, we replace the calls to Add and
Sorted with program stubs that change the program state to the state given
by the counterexample. The stub for the call to Add changes list.Elements
to contain the elements [0,1,-3]1. The stub for the call to Sort updates the
state of list.Elements to some sorted array, say [7,7,7]. We finish by con-
structing a runtime check for the invariant of SortedList and the postcondition
(and modifies clause) of AddSorted. For each step in the construction, we insert
debugger directives that allow the programmer to control the execution of the
of the original program, but observe the states of the constructed program.

A programmer using our approach is presented with the original implementa-
tion of AddSorted highlighted by the program debugger. The programmer can
either use the debugger to inspect the initial (counterexample) state or execute
the method until either the runtime assertion checker notifies them of a failing
assertion or the method terminates, notifying the programmer of a spurious er-
ror. In our example, the runtime assertion checker will notify the programmer
of the failing postcondition AddSorted, thus confirming the verification failure.
The programmer can then inspect the post-state of the method and observe the
value [7,7,7] for list.Elements. However, the initial state contained the state
[0,1] for list.Elements and -3 for value. The programmer can now single-
step through the body of AddSorted inspecting the (counterexample) state of
each step. Stepping over the call to list.Add adds value to list.Elements,
as expected. Stepping over the call to list.Sort changes list.Elements to
[7,7,7]. This unexpected change points the programmer to the cause of the
verification failure, namely the incomplete specification of Sort. Note that it
is the simulation of the verification semantics that enables us to identify the

1 Given the weak specification of Add, the counterexample could provide any array
that contains the initial value of value, which we assume here to be -3.

Using Debuggers to Understand Failed Verification Attempts 77

incomplete specification as the cause of this verification error. Using the exe-
cution semantics, for instance in a test case, could exhibit only errors in the
code.

3 State Construction

To simulate the verification semantics of the failing method, we replace each
statement whose verification semantics differs from the execution semantics by a
program stub that alters the state as prescribed by the counterexample. Both for
this purpose and to set up the initial state of the method execution, we extract
information from the counterexample and construct the corresponding state.

A counterexample contains values for all local variables in each execution
state; we use those to extract the method arguments. Moreover, it contains
function interpretations, in particular, for the select and store functions that are
used to encode the heap; we use those to extract field values. The extraction is
relatively simple and works for all counterexamples.

In this section we describe the construction of mock types that replace the
original types in the program with versions that enable flexible initialization, of
program stubs that construct the state given by the counterexample, and of the
entry point to the failing method, the driver.

3.1 Type Mocking

For variables of built-in types such as primitive types and arrays, the state con-
struction consists of straightforward assignments. For variables of user-defined
types such as classes and interfaces, the state construction involves the creation
of objects and the initialization of their fields according to the state given in the
counterexample. Object creation is not possible for abstract types; initialization
is difficult for types that do not provide a suitable constructor.

To address these issues we replace each user-defined type in the program by
a mock type—a concrete class—that contains: (1) a parameterless constructor
with empty body, which allows the program stubs to instantiate the class; (2) a
declaration for each field that is accessible to the failing method or that is men-
tioned in a specification; if the field is of a user-defined type, we replace it by
the corresponding mock type. We declare all fields of mock types public, which
allows the program stubs to initialize them according to the counterexample
via field assignments. Mock types do not contain any methods, except for the
method that simulates the verification semantics of the failing method as we
describe in Sec. 4.

In our example, we construct mock types for SortedList and IntList. Class
SortedList contains a field list, which is accessed in the body of AddSorted.
The type of this field is the mock type for IntList. All the fields of IntList
are of built-in types. The type mocking is performed on the .NET level and
transparent to the programmer.

78 P. Müller and J.N. Ruskiewicz

3.2 Program Stubs

We replace each statement s whose verification semantics differs from the execu-
tion semantics by a program stub. This stub simulates the verification semantics
of s by constructing the state after the execution of s as described by the coun-
terexample. For this purpose, we extract the state before and after the execution
of s from the counterexample. For each variable or field in which these two states
differ, the program stub contains an assignment that updates the variable to re-
flect the state change.

When updating variables of reference types, we must preserve any alias prop-
erties contained in the counterexample, that is, when two variables contain the
same symbolic reference in the counterexample, they must also contain the same
reference in the constructed state. So when we update a variable of a reference
type, we first check if we have already constructed an object for the symbolic
reference in the counterexample. If so, we assign a reference to that object. If
not, we create and initialize a new object, making use of the type mocking.

3.3 Driver

To begin executing the failing method we have to generate a driver, which con-
structs the initial state, attaches itself to the program debugger, and then calls
the failing method. The initial state consists of values for the receiver, the method
arguments, and all objects reachable from them (an extension to global data
is straightforward). Its construction is a special case of the state construction
described in the previous subsection; the only difference is that the driver con-
structs the entire state and not just the changes since a previous state. The
programmer does not see the driver, but only the effects the driver produces.

// Construct the array for IntList.Elements
int[] Elements = new int[2];
Elements[0] = 0;
Elements[1] = 1;

// Construct an instance of IntList
IntList list = new IntList ();
list.Elements = Elements;
list.Count = 2;

// Construct receiver of failing method
SortedList rcvr = new SortedList ();
rcvr.list = list;

// Attach to the program debugger
Debugger.Launch ();

// Set the first step of the debugger
Debugger.Step ("rcvr.AddSorted (-3)");

// Call the failing method
rcvr.AddSorted (-3);

Fig. 2. The driver for our example first constructs the initial state, then launches the
debugger, and finally calls the failing method. The types IntList and SortedList

denote the mock types generated for the classes with the same names, which declare
parameterless constructors and public fields.

The driver for our example creates the initial state for the failing method
AddSorted, in particular, the receiver of type SortedList (Fig. 2, left column).
In order to initialize this object, it first constructs and initializes an IntList
object that will be assigned to the receiver’s list field. For this purpose, we

Using Debuggers to Understand Failed Verification Attempts 79

create an integer array of the length given in the counterexample (2) and directly
initialize its elements with the values from the counterexample ([0,1]). We
use this array to initialize the new IntList object. After the initialization of
the IntList object, the driver creates and initializes the receiver of the failing
method.

After the initial state construction, the driver launches the debugger, and
then calls the failing method AddSorted on the constructed receiver with the
argument value from the counterexample, -3 (Fig. 2, right column).

4 Verification Semantics

Program verifiers such as Spec# reason about a program using a verification se-
mantics, which abstracts from the execution semantics. The two main abstrac-
tions are to reason about method calls in terms of the method’s specification
rather than its implementation (for the sake of modularity) and to reason about
loops in terms of a loop invariant rather than actual iterations (to avoid imprac-
tical fixpoint computations). To help the programmer detect verification errors
caused by incorrect or incomplete specifications, we replace in the failing method
all method calls and loops by program stubs that simulate the verification se-
mantics. The counterexample indicates which path through the failing method
lead to the verification error; we use this information to eliminate all branches,
jumps, and loops from the failing method. The resulting method body contains
only straight-line code.

Although we rewrite the body of the failing method, the program debugger
displays the original method body; the rewriting is transparent to the program-
mer. We achieve this effect by injecting debugger directives (in the form of calls
to Debugger.Step) into the program stubs. These directives highlight the code
in the original method body and allow the programmer to control the execution
of the stubs from the original method body.

4.1 Method Calls

The verification semantics of a call to a method m is (1) to assert m’s pre-
condition, (2) to assign arbitrary values to all memory locations that may be
changed by m (according to its modifies clause), and then (3) to assume m’s
postcondition. To simulate this semantics, we replace each call to a method m
in the failing method, including recursive calls and constructor calls, with a pro-
gram stub that contains: (1) a runtime check for m’s precondition (2) code that
updates the state of the program to reflect the state given by the counterexam-
ple as described in Sec. 3.2, and (3) a runtime check for m’s postcondition; the
motivation for this check will be explained in Sec. 6.

Method AddSorted contains calls to list.Add and list.Sort. For each call
the counterexample contains a state describing the effect of the call. We replace
these method calls with the stubs in Fig. 3. The stub for the call to list.Add
(left column) constructs the state as prescribed by the counterexample. In the
counterexample, Elements contains a new symbolic reference; so we construct a

80 P. Müller and J.N. Ruskiewicz

// Step over the method list.Add
Debugger.Step (list.Add);

// Construct the poststate of list.Add
int[] Elements = new int[3];
Elements[0] = 0;
Elements[1] = 1;
Elements[2] = -3;
list.Elements = Elements;
list.Count = 3;

// Check postcondition of list.Add
... // See Sec. 6.2

// Step over the method list.Sort
Debugger.Step (list.Sort);

// Construct the poststate of list.Sort
list.Elements[0] = 7;
list.Elements[1] = 7;
list.Elements[2] = 7;

// Check postcondition of list.Sort
... // See Sec. 6.2

Fig. 3. The program stubs replacing the calls to list.Add and list.Sort in the failing
method AddSorted. The debugger directives instruct the program debugger to highlight
the calls. The stubs construct the post-states of the calls given by the counterexample.

new Elements array. The list field has not changed since the pre-state of the
call, so we update only the state of the referenced object with the new values
given by the counterexample. The stub then checks the postcondition of method
Add, which we discuss in Sec. 6.

The stub for the call to list.Sort (right column) is analogous; however, we
do not update list.Elements because the counterexample does not contain a
value that is different from the pre-state (because the modifies clause of Sort
does not permit modifications of the field Elements, only of the elements within
the array). Note that the two stubs do not contain precondition checks because
neither of the two methods has a precondition.

Specification languages such as Spec# allow specifications to contain calls to
side-effect free (pure) methods. The verification semantics of such calls is to en-
code the pure method as a mathematical function that is axiomatized based on
the specification of the pure method and not on its implementation [5]. Calls to
pure methods in specifications are then encoded as applications of these math-
ematical functions. To simulate this semantics, we replace all occurrences of a
pure method within a specification with the result value contained in the coun-
terexample. Since pure methods are not allowed to change the heap, this simple
replacement is sufficient to capture the effects of the pure method.

4.2 Loops

The verification semantics of a loop is: (1) to assert the loop invariant before
the loop, (2) to simulate the state after an arbitrary number of (possibly zero)
loop iterations by assigning arbitrary values to all locations that may be mod-
ified by the loop and assuming that the resulting state again satisfies the loop
invariant. The verification semantics then considers two possibilities to continue
the execution: (3) an arbitrary execution of the loop body by assuming that the
condition of the loop holds, executing the loop body, and asserting that the loop
invariant holds again after the body, or (4) exiting the loop by assuming that
the condition of the loop does not hold and proceeding to the statement after
the loop. Checking an arbitrary iteration of the loop suffices to ensure that any
execution of the loop preserves the loop invariant.

Using Debuggers to Understand Failed Verification Attempts 81

To simulate this semantics we replace each loop with a program stub that
contains: (1) a runtime check for the loop invariant, and (2) code that updates
the state of the program to reflect the state given by the counterexample as
described in Sec. 3.2 and another runtime check for the loop invariant, which we
discuss in Sec. 6. From the counterexample, we know whether the verification
error occurred on the path that contains the arbitrary loop iteration (branch (3))
or the path that exits the loop (branch (4)). In case (3), the stub contains a
runtime check for the loop condition (see Sec. 6), the loop body (replacing any
method calls or inner loops), another runtime check for the loop invariant, and
then terminates the execution of the method. In case (4), the stub just contains
a runtime check for the negation of the loop condition (see Sec. 6) and then
proceeds with the code following the loop.

As we mentioned above, a programmer using our approach will not see the
program stubs, but only the effect they have on the state of the program. If the
error is located in the loop body, the execution as presented to the programmer
enters the loop body; upon entry, the programmer will observe a sudden change
of the state to the arbitrary state prescribed by the counterexample (satisfying
the loop invariant and the loop condition). If the error is located after the loop,
execution skips the loop entirely, also with a sudden change of the state (to
an arbitrary state that satisfies the loop invariant and the negation of the loop
condition).

5 Extended Runtime Checking

We rely on the runtime assertion checker to reproduce failed verification at-
tempts. An execution of the rewritten failing method that does not lead to an
assertion violation indicates a spurious error. To be conclusive about a verifica-
tion failure, the runtime checker must be able to check any failing assertion.

Most assertions in Spec# programs are executable. In particular, quantifiers
that range over finite integer intervals, such as array indices, are checked by
iterating over the range. However, the verification semantics of Spec# also makes
use of assertions that quantify over possibly unbounded sets, for instance, over
all allocated objects in the assertions for modifies clauses and object invariants.
Such assertions cannot be checked efficiently at runtime.

Nevertheless, we can generate useful runtime checks for most failed quantified
assertions. When an assertion with a universal quantifier fails to verify, the
counterexample contains instantiations of the quantified variables for which the
assertion does not hold. In order to check whether a verification error is spurious,
it is sufficient to generate a runtime check for those specific instantiations, which
is straightforward. For unbounded existential quantifiers, the counterexample
does not contain useful information because one would have to check all values
of the unbounded set, not just one. However, automatic program verifiers avoid
unbounded existential quantifiers because they are not handled well by SMT
solvers. Therefore, not checking them at runtime is not a limitation in practice.

In our example, method AddSorted does not satisfy its modifies clause be-
cause the call to list.Addmay modify list.Elements but AddSortedmust not.

82 P. Müller and J.N. Ruskiewicz

Therefore, the static verification of AddSorted leads to a second verification er-
ror. The counterexample for this error contains instantiations for the quantified
variables in the assertion for AddSorted’s modifies clause. Here, these instan-
tiations indicate that the Elements field of the object list is being modified
without permission by the modifies clause. Using this information, we generate
code that stores the initial value of list.Elements upon entry to AddSorted
and then checks that list.Elements has not been modified upon termination
of the method. Since the program stub for the call to list.Add changes the
value of list.Elements (see Fig. 3), this runtime check fails and confirms the
verification error.

The programmer debugging this verification failure can localize the error ef-
ficiently by attaching a data breakpoint to list.Elements. If a statement then
modifies list.Elements, the debugger stops the execution notifying the pro-
grammer of the modification; in our example, at the call to list.Add. The pro-
grammer, now aware of the location of the failure, can fix the error by weakening
the modifies clause of AddSorted.

6 Error Validation

In this section we explain how our approach detects spurious errors and invalid
counterexamples.

6.1 Spurious Errors

Since the validity of verification conditions is undecidable, SMT solvers cannot
always determine whether a verification condition is valid or not. Whenever the
SMT solver does not provide a conclusive result, a sound verifier needs to be
conservative and report a verification error, which is possibly spurious. Spurious
errors occur frequently in automatic program verification, for instance, when
specifications include quantifiers or non-linear arithmetic.

By extending the runtime assertion checker to handle all relevant failing as-
sertions in Spec#, we are able to validate verification failures. If the execution
of the rewritten failing method terminates without a failed runtime assertion
check, we can safely conclude that the error is spurious and notify the program-
mer; who can now address the problem by rephrasing the specification, rather
than spending time determining the cause of an error that does not exist.

6.2 Invalid Counterexamples

A counterexample is supposed to satisfy all assumptions that are being made
in the verification semantics of a program. For instance, the initial state in a
counterexample is supposed to satisfy the precondition of the failing method.
However, if the assumptions contain formulas that are beyond the capabilities
of the prover, it might construct an invalid counterexample that contradicts the
assumptions. For example, most automatic provers do not fully support non-
linear arithmetic and might produce an initial state such as -563 for x and 4

Using Debuggers to Understand Failed Verification Attempts 83

for y for the precondition x / y > 0. Simulating the execution described by an
invalid counterexample and, in particular, checking assertions in states extracted
from an invalid counterexample, is not helpful to understand verification errors.

We extract states from the counterexample in three cases: (1) to set up the
initial state in the driver, (2) to reproduce the state changes made by a method
call, (3) and to reproduce the state changes made by a loop iteration. For these
cases, the verification semantics of Spec# makes the following assumptions about
the expected state: (1) the precondition of the failing method, (2) the postcon-
dition and modifies clause of a called method, and (3) the loop invariant and the
loop condition. To guard against invalid counterexamples, we introduce runtime
checks for each of these assumptions. When such a runtime check fails, it indi-
cates that the counterexample state does not satisfy the assumption and, thus,
the counterexample is invalid.

The failing method AddSorted of our example assumes its precondition as
well as the postconditions and modifies clauses of the called methods Add and
Sort. The assumption for the precondition would be part of the driver, which
extracts the initial state from the counterexample, but is omitted in Fig. 2 be-
cause AddSorted has no precondition. The assumptions for the postconditions
are part of the program stubs that replace the calls. To the stubs in Fig. 3,
we append the checks assert Contains(list.Elements,value) and assert
Sorted(list.Elements), respectively.

Our approach checks most assumptions in the verification semantics at run-
time, but not all of them. Assumptions that are not checked include for instance
the modifies clause of a called method, which contains an unbounded universal
quantification; the extended runtime checking described in Sec. 5 does not apply
here, because this check does not correspond to a failed assertion and, therefore,
the counterexample does not provide instantiations for the quantifier. Therefore,
our approach might theoretically miss some invalid counterexamples, but that
has not happened in any of the examples we have tried so far.

7 Experience

We have applied our approach in debugging the various verification failures
found in examples from the Spec# tutorial [11], the Spec# test suite (see
http://specsharp.codeplex.com), and our own test suite2. In this section,
we outline a systematic procedure that we have found to be effective for using
our approach to locate the cause of verification failures. We also summarize and
evaluate our experiences using this procedure.

The main observations of our experiments are: (1) Our approach is helpful for
understanding most of the verification failures in the examples. In particular, we
were able to effectively and efficiently detect bugs in the implementation as well
as incorrect or incomplete specifications. The examples where our approach did
not provide any benefit were fairly obvious errors in small methods. For those

2 Also included in the download of our tool.

http://specsharp.codeplex.com

84 P. Müller and J.N. Ruskiewicz

verification failures, the error message provided by Spec# was sufficient to local-
ize and fix the error. (2) Our set of examples contained very few spurious errors
and invalid counterexamples because we took them mostly from the Spec# tu-
torial and test suite, both of which focus on examples that are handled well by
the verifier. Nevertheless, our runtime checks identified all of the spurious er-
rors and invalid counterexamples. (3) Most verification failures can be debugged
systematically with a simple procedure, which we outline below.

These initial results are very promising. However, our evaluation may be bi-
ased in two ways. Firstly, the examples were written for Spec# demonstrations
and might not be representative of real application code. Secondly, the evalua-
tion was performed by people who are familiar with Spec#’s program verifier; it
is possible that programmers might struggle with issues that are obvious to us.
Nevertheless, we are confident that our positive experience will be confirmed by
programmers working on application code.

Debugging Procedure. We have found the following steps to be an efficient
way to localize and understand the cause of a verification failure. If the verifier
reports several errors for the same method, we debug them in the order of their
source location.

1. Use the error message to check the method for obvious errors. For very
simple programs and specifications our approach usually requires more effort
than simply inspecting the failing method. This is often the case for programs
that contain neither method calls nor loops, which reduces the likelihood that
the verification failure is caused by an incorrect or incomplete specification.

2. Run the rewritten program in the debugger and observe the failure. Before
attempting to localize the error, one should first confirm that the verifier has
found a valid error by running the rewritten program in the debugger. This
run will either result in an assertion violation (confirming the validity of the
error), in a failed assumption check (indicating an invalid counterexample), or
in a message that suggests that the error is spurious. In the latter two cases,
the programmer needs to find an alternative way of expressing the program or
its specification and re-verify the program. In the former case, the debugging
procedure continues with the next step.

3. Inspect the state in which the assertion failed. The runtime check for an
assertion fails either because the assertion is incorrect or because the assertion
was checked in a state the programmer did not expect. We recommend to inspect
the assertion and the state in which the runtime check failed to determine which
case applies. If the assertion is incorrect, we can fix it and re-verify the method.
If the state contains unexpected values, we determine their origin in the next
step.

4. Step through the rewritten program and observe changes to the relevant
variables. From step 3, we know which assertion fails. It is helpful to track the
values of the variables in this assertions to detect unexpected values, for instance,
caused by a weak precondition or loop invariant. This tracking is best performed
by adding these variables to the variable watch window of the debugger and then
single-stepping through the rewritten method. Unexpected initial values point

Using Debuggers to Understand Failed Verification Attempts 85

us to a weak precondition; unexpected modifications during a single step require
further investigation, described in step 5. Single-stepping through the method
is also likely to reveal errors in the code such as incorrect control flow or the
absence of a necessary assignment.

A variation of step 4 is more efficient when the failing assertion contains only a
small number of variables, such as the runtime check for a modifies clause which
focuses on only one heap location (see Sec. 5). In this case, one can avoid the
single-stepping and instead add data breakpoints for the relevant variables. We
can then run the rewritten method in the debugger and get notified whenever a
variable of interest gets updated.

5. Analyze unexpected modifications. Step 4 determines where a variable re-
ceives an unexpected value. If this happens during a method call or in a loop, we
have identified the method’s specification or the loop invariant as the cause of
the unexpected value and can amend them. If the unexpected value comes from
an assignment then we may also need to track the variables in the right-hand
side expression by adding them to the watch window and repeating from step 4.

8 Related Work

The literature contains several proposals for extracting useful information from
counterexamples, but in the context of deductive program verification, these
proposals are generally not sufficient to understand the verification failure. In
particular, they do not support the programmer in detecting incomplete speci-
fications, spurious errors, and invalid counterexamples.

Some verifiers such as Spec# apply heuristics to extract those parts of a coun-
terexample that are likely to be relevant for the verification error. However, it is
difficult to tune the heuristics such that they provide all necessary information
without swamping the programmer with irrelevant details. For instance, Spec#
filters too aggressively for the method AddSorted and it provides only the follow-
ing excerpt from the counterexample, which does not point us in the direction
of the error: (initial value of: value) == -3.

Trace and distance based techniques [1,8,3] have been applied successfully in
the context of model checking to localize program errors. They compare success-
ful program executions against failing executions to determine which branches
of the program lead to the error. Narrowing down the location of the error is
useful, but may not suffice to determine the actual cause of the error. For in-
stance, since the method body of AddSorted does not contain branches, these
techniques will not provide any benefit. They also do not assist the programmer
in detecting spurious errors. Another localization technique is program slicing
[14], which systematically removes statements that are not relevant for the va-
lidity of the failed verification condition. In practice, however, program slicers
do not effectively reduce the size of programs (and counterexamples) with heap
data structures and specifications containing quantifiers. Slicing the body of
AddSorted will not result in a smaller program because both statements affect
the state of list, which is relevant for the failing postcondition.

86 P. Müller and J.N. Ruskiewicz

Another approach is to construct a test case from a failed verification at-
tempt, using the initial state of the counterexample as test input [4,2,13]. This
approach is only helpful if the test leads to a runtime error or if the violated
specification can be found by a runtime assertion checker. However, when static
verification fails because of incomplete specifications, or when the violated spec-
ification is not checked at runtime (for instance, when the specification contains
unbounded quantification over objects), or when the error is spurious, the test
case will succeed and, thus, not help the programmer to determine the cause
of the verification error and might even mislead the programmer into believing
that the error does not exist [4].

Verification techniques based on symbolic execution assist the programmer in
understanding failed verification attempts by presenting the programmer with
the symbolic states used during the verification process [9,10]. Inspecting a sym-
bolic state is very helpful to a verification expert who is familiar with the sym-
bolic representation of the program, whereas our approach seems more appro-
priate for programmers. Moreover, it is not clear to what extent symbolic states
help in detecting spurious errors.

Alternative techniques based on visualizing the counterexample, such as those
based on graph visualization [12,15], are limited by the size of the state presented
and do not help in identifying spurious errors and invalid counterexamples.

9 Conclusions

We have presented our approach to help programmers to understand failed veri-
fication attempts. We generate an executable program that reproduces the veri-
fication error by encoding the verification semantics of the program and by using
variable values from a counterexample. We extend the runtime assertion checker
to reproduce all relevant verification errors, identify spurious errors, and detect
invalid counterexamples. Executing the generated program inside a debugger
allows the programmer to systematically and efficiently explore the counterex-
ample; which is crucial for understanding, localizing, and fixing the verification
failure. The generation of the executable program is entirely automatic and is
transparent to the programmer.

We have implemented our approach in Spec#, but it is applicable to all pro-
gram verifiers based on automatic provers that provide counterexamples. Our
experience using our approach is very promising; we are able to understand
and fix verification errors effectively and efficiently. As an additional benefit, we
have found our approach useful to debug the encoding of Spec#. We have indeed
found an error in the Spec# verifier; when inspecting a counterexample in our
tool, we noticed that a variable of type uint contained a negative value, which
pointed us to an omission in the encoding of Spec# programs.

The main direction for future work is to combine our approach with counter-
example-based dynamic program slicing to further reduce the time for localizing
and fixing verification errors. Slicing will in particular allow us to automate
step 5 of our debugging procedure.

Using Debuggers to Understand Failed Verification Attempts 87

Acknowledgments. We are grateful to the reviewers for their insightful com-
ments. We would like to thank Christoph M. Wintersteiger for the various dis-
cussions on the internals of SMT solvers. We are also indebted to Jürg Billeter
for the initial implementation of the tool and Christoph Studer for adding addi-
tional support for pure methods and modifies clauses.

References

1. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: Localizing errors in
counterexample traces. In: POPL, pp. 97–105. ACM, New York (2003)

2. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumbar, R.: Generating
tests from counterexamples. In: ICSE, pp. 326–335. IEEE, Los Alamitos (2004)

3. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI C programs.
In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

4. Csallner, C., Smaragdakis, Y.: Check ’n’ Crash: Combining static checking and
testing. In: ICSE, pp. 422–431. ACM, New York (2005)

5. Darvas, Á., Müller, P.: Reasoning about method calls in interface specifications.
Journal of Object Technology 5(5), 59–85 (2006)

6. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. Technical Report HPL-2003-148, HP Laboratories, Palo Alto (2003)

8. Groce, A.: Error explanation with distance metrics. In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, pp. 108–122. Springer, Heidelberg (2004)

9. Hähnle, R., Baum, M., Bubel, R., Rothe, M.: A visual interactive debugger based
on symbolic execution. In: ASE, pp. 143–146. ACM, New York (2010)

10. Hall, R.J., Zisman, A.: Validating personal requirements by assisted symbolic be-
havior browsing. In: ASE, pp. 56–66. IEEE, Los Alamitos (2004)

11. Leino, K.R.M., Müller, P.: Using the spec# language, methodology, and tools to
write bug-free programs. In: Müller, P. (ed.) LASER Summer School 2007/2008.
LNCS, vol. 6029, pp. 91–139. Springer, Heidelberg (2010)

12. Rayside, D., Chang, F.S.-H., Dennis, G., Seater, R., Jackson, D.: Automatic visu-
alization of relational logic models. ECEASST 7 (2007)

13. Tillman, N., Schulte, W.: Mock-object generation with behavior. In: ASE,
pp. 365–368. IEEE, Los Alamitos (2006)

14. Tip, F.: A survey of program slicing techniques. Journal of Programming Lan-
guages 3(3) (1995)

15. Zeller, A., Lütkehaus, D.: DDD—a free graphical front-end for UNIX debuggers.
SIGPLAN Notices 31(1), 22–27 (1996)

Sampling-Based Runtime Verification

Borzoo Bonakdarpour, Samaneh Navabpour, and Sebastian Fischmeister

Department of Electrical and Computer Engineering
University of Waterloo

200 University Avenue West
Waterloo, Ontario, Canada, N2L 3G1

{borzoo,snavabpo,sfischme}@ece.uwaterloo.ca

Abstract. The literature of runtime verification mostly focuses on event-
triggered solutions, where a monitor is invoked by every change in the
state of the system and evaluates properties of the system. This con-
stant invocation introduces two major drawbacks to the system under
scrutiny at run time: (1) significant overhead and (2) unpredictability.
To circumvent the latter drawback, in this paper, we introduce a time-
triggered approach, where the monitor frequently takes samples from the
system to analyze the system’s health. We propose formal semantics of
sampling-based monitoring and discuss how to optimize the sampling pe-
riod using minimum auxiliary memory. We show that such optimization
is NP-complete and consequently introduce a mapping to Integer Linear
Programming. Experiments on benchmark applications show that our ap-
proach introduces bounded overhead and effectively reduces involvement
of the monitor at run time using negligible auxiliary memory.

Keywords: Runtime verification, monitoring, time-triggered, predic-
tability.

1 Introduction

Runtime verification [2, 3, 4, 8, 21] is a complementary technique to exhaustive
verification methods such as model checking and theorem proving, as well as
incomplete solutions such as testing. Roughly speaking, in runtime verification,
the objective is to ensure that at run time, a system satisfies its desirable prop-
erties; i.e., the system under inspection is observed and analyzed by a decision
procedure called the monitor.

In the literature of runtime verification, constructing a monitor involves syn-
thesizing an automaton that realizes the properties that the system under scrutiny
must satisfy [17]. Then, by composing the monitor with the system, the monitor
observes the occurrence of each transition and decides whether the specification
has been met, violated, or impossible to tell. Thus, the monitor is invoked by
each event (e.g., change of value of a variable) triggered in the system. We call
this type of monitoring event-triggered. The main drawback of event-triggered
runtime verification is twofold: the monitor (1) imposes unpredictable overhead

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 88–102, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Sampling-Based Runtime Verification 89

and (2) may introduce bursts of interruptions to the system at run time. This
can lead to undesirable transient overload situations in time-sensitive systems.

With this motivation, in this paper, we propose an alternative approach for
runtime verification of sequential systems where the monitor is time-triggered.
The idea is that the monitor takes samples from the system with a constant
frequency to analyze the system’s soundness. This way, the involvement of the
monitor is time-bounded and predictable. However, the main challenge in this
mechanism is accurate reconstruction of the system’s state between two samples;
i.e., if the value of a variable of interest changes more than once between two
samples, the monitor may fail to detect violations of some properties. Hence, the
problem boils down to finding the longest possible sampling period that allows
state reconstruction.

We calculate the sampling period through building the system’s control-flow
graph. Then, we employ this sampling period to define the formal semantics of
sampling-based runtime verification using the timed automata formalism. The
sampling period extracted from control-flow graphs tend to be short and, hence,
precipitates highly frequent involvement of the monitor even in branches of the
program that do not require monitoring. To tackle this problem, we propose a
method for increasing the sampling period by incorporating auxiliary memory,
where we store a history of state changes. Obviously, we face a tradeoff between
minimizing the size of auxiliary memory versus maximizing the sampling period.
We show that the corresponding optimization problem is NP-complete.

In order to cope with the exponential complexity of the optimization problem,
we map the problem onto Integer Linear Programming (ILP). We have developed
a tool chain that takes C programs as input, instruments the program to build
optimal history, and constructs a monitor that takes samples with the optimal
sampling period. Our experimental results show encouraging results. Firstly, the
size of ILP models for benchmark applications are manageable. Secondly, we
observe that in event-triggered implementations, the system suffers from bursts
of monitor involvement, whereas our sampling-based monitor adds bounded and,
hence, predictable overhead. Finally, we observe that the memory usage overhead
is negligible and our method effectively increases the sampling period, which
results in adding less overall overhead at run time and in some cases obtaining
faster execution of the system as compared to event-triggered methods.

2 Preliminaries

Definition 1. The control-flow graph of a program P is a weighted directed
simple graph CFGP = 〈V, v0, A, w〉, where:

– V : is a set of vertices, each representing a basic block of P . Each basic block
consists of a sequence of instructions in P .

– v0: is the initial vertex with indegree 0, which represents the initial basic
block of P .

– A: is a set of arcs (u, v), where u, v ∈ V . An arc (u, v) exists in A, if and
only if the execution of basic block u can immediately lead to the execution
of basic block v.

90 B. Bonakdarpour, S. Navabpour, and S. Fischmeister

1: a = scanf(...);
2: if (a % 2 == 0) goto 9
3: else {
4: printf(a + "is odd");
5:* b = a/2;
6:* c = a/2 + 1;
7: goto 10;
8: }
9: printf(a + "is even");
10: end program

(a) A simple C program

10

2 2

4 1

A
1, 2

B C

D

4..7 9

(b) Control-flow
graph

Fig. 1. A C program and its control-flow graph

– w: is a function w : A → N, which defines a weight for each arc in A. The
weight of an arc is the best-case execution time (BCET) of the source basic
block. ��

Notation: Since the weight of all outgoing arcs from a vertex v are equal, w(v)
denotes the weight of the arcs that originate from v.

For example, consider the C program in Figure 1(a). If each instruction takes
one time unit to execute, the resulting control-flow graph will be as shown in
Figure 1(b). Vertices of the graph in Figure 1(b) are annotated by the corre-
sponding line numbers of the C program in Figure 1(a).

Timed automata. Let Σ be an alphabet. A timed word over Σ is a sequence
(a0, t0), (a1, t1) · · · (ak, tk), where each ai ∈ Σ and each ti is in non-negative real
numbers R≥0 and the occurrence times increase monotonically. Let X be a set of
clock variables. A clock constraint over X is a Boolean combination of formulae
of the form x � c or x − y � c, where x, y ∈ X , c ∈ Z≥0, and � is either < or
≤. We denote the set of all clock constraints over X by Φ(X). A clock valuation
is a function ν : X → R≥0 that assigns a real value to each clock variable. For
τ ∈ R≥0, we write ν + τ to denote ν(x)+ τ for every clock variable x in X . Also,
for λ ⊆ X , ν[λ := 0] denotes the clock valuation that assigns 0 to each x ∈ λ
and agrees with ν over the rest of the clock variables in X .

Definition 2. A timed automaton [1] is a tuple A = 〈L, L0, X, Σ, E, I〉, where

– L is a finite set of locations.
– L0 ⊆ L is a set of initial locations.
– X is a finite set of clock variables.
– Σ is a finite set of labels.
– E ⊆ (L × Σ × 2X × Φ(X) × L) is a set of switches. A switch 〈l, a, λ, ϕ, l′〉

represents a transition from location l to location l′ labelled by a, under clock
constraint ϕ. The set λ ⊆ X gives the clocks to be reset with this switch.

– I : L → Φ(X) assigns delay invariants to locations. ��

The semantics of a timed automaton A is as follows. A state is a pair (l, ν),
where l ∈ L and ν is a clock valuation for X . A state (l, ν) is an initial state, if
l ∈ L0 and ν(x) = 0 for all x ∈ X . There are two types of transitions :

Sampling-Based Runtime Verification 91

1. Location switches are of the form 〈l, a, λ, ϕ, l′〉 such that ν satisfies ϕ, (l, ν) a−→
(l′, ν[λ := 0]), and ν[λ := 0] satisfies I(l′).

2. Delay transitions are of the form (l, ν) τ−→ (l, ν + τ), which preserves the
location l for time duration τ ∈ R≥0, such that for all 0 ≤ τ ′ ≤ τ , ν + τ ′

satisfies the invariant I(l).

For a timed word w = (a0, t0), (a1, t1) · · · (ak, tk), a run over w is a sequence

q0
t0−→ q′0

a0−→ q1
t1−t0−−−→ q′1

a1−→ q2
t2−t1−−−→ q′2

a2−→ q3 → · · · ak−→ qk+1

such that q0 is an initial state.
Let A1 = 〈L1, L

0
1, X1, Σ1, E1, I1〉 and A2 = 〈L2, L

0
2, X2, Σ2, E2, I2〉 be two

timed automata, where X1 ∩ X2 = ∅. The parallel composition of A1 and A2 is
A1||A2 = 〈L1×L2, L

0
1×L0

2, X1∪X2, Σ1∪Σ2, E, I〉, where I(l1, l2) = I(l1) ∧ I(l2),
and E is defined by:

1. for a ∈ Σ1 ∩Σ2, for every 〈l1, a, λ1, ϕ1, l
′
1〉 in E1, and 〈l2, a, λ2, ϕ2, l

′
2〉 in E2,

E contains 〈(l1, l2), a, λ1 ∪ λ2, ϕ1 ∧ ϕ2, (l′1, l′2)〉.
2. for a ∈ Σ1\Σ2, for every 〈l, a, λ, ϕ, l′〉 in E1, and every m ∈ L2, E contains

〈(l, m), a, λ, ϕ, (l′, m)〉.
3. for a ∈ Σ2\Σ1, for every 〈l, a, λ, ϕ, l′〉 in E2, and every m ∈ L1, E contains

〈(m, l), a, λ, ϕ, (m, l′)〉.

3 Formal Semantics of Sampling-Based Monitoring

Given a program P , we describe the semantics of sampling-based monitoring in
two steps: (1) identifying the minimum sampling period and (2) constructing
and composing a sampling-based monitor with P .

3.1 Calculating the Sampling Period

Let P be a program and Π be a logical property (e.g., in Ltl), where P is
expected to satisfy Π. Let VΠ denote the set of variables that participate in
Π. In our idea of sampling-based monitoring, the monitor wakes up with some
sampling period, reads the value of variables in VΠ and evaluates Π. The main
challenge in this mechanism is accurate reconstruction of the state of P between
two samples; i.e., if the value of a variable in VΠ changes more than once between
two samples, the monitor may fail to detect violations of Π.

To handle value changes accurately, we modify CFGP as follows. In the first
step, we ensure that each critical instruction (i.e., an instruction that modifies
a variable in VΠ) is in a basic block that contains no other instructions. We
refer to such a basic block as critical basic block or critical vertex. Formally,
let instv = 〈v1 · · · vn〉 denote the sequence of instructions in a basic block v of
CFGP . Let vi, where 1 < i < n, be a critical instruction. We split vertex v
into three vertices v1, v2, and v3, such that instv1 = 〈v1

1 · · · vi−1
1 〉, instv2 = 〈vi

2〉,
and instv3 = 〈vi+1

3 · · · vn
3 〉. Incoming arcs to v now enter v1. We add arc (v1, v2),

92 B. Bonakdarpour, S. Navabpour, and S. Fischmeister

10

A
1, 22

B1
4

6
B3

5

1

2

1

1

1

1

7
B4

B2

C
9

D

(a) Step 1

D

1

3

3

2

A

B2

B3

(b) Step 2

Legened

Critical basic block

Uncritical basic block

Fig. 2. Obtaining a critical CFG and calculating the sampling period

where w(v1, v2) is equal to the best-case execution time of 〈v1
1 · · · vi−1

1 〉. We also
add arc (v2, v3), where w(v2, v3) is equal to the best-case execution time of 〈vi

2〉.
Outgoing arcs from v now leave v3 with weight equal to the best-case execution
time of 〈vi+1

3 · · · vn
3 〉. Obviously, if i = 1 or i = n, we split v into two vertices.

We continue this procedure until each critical instruction is in one basic block.
For example, in the program in Figure 1(a), if variables b and c are of interest
for verifying a property at run time, then instructions 5 and 6 will be critical
and we will obtain the control-flow graph in Figure 2(a).

Since only critical vertices play a role in determining the sampling period, in
the second step, we collapse uncritical vertices as follows. Let CFG = 〈V, v0, A, w〉
be a control-flow graph. Transformation T (CFG , v), where v ∈ V \{v0} and out-
degree of v is positive, obtains CFG ′ = 〈V ′, v0, A′, w′〉 via the following ordered
steps:

1. Let A′′ be the set A ∪ {(u1, u2) | (u1, v), (v, u2) ∈ A}. Observe that if an arc
(u1, u2) already exists in A, then A′′ will contain parallel arcs (such arcs can
be distinguished by a simple indexing or renaming scheme). We eliminate
the additional arcs in Step 3.

2. For each arc (u1, u2) ∈ A′′,

w′(u1, u2) =
{

w(u1, u2) if (u1, u2) ∈ A
w(u1, v) + w(v, u2) if (u1, u2) ∈ A′′\A

3. If there exist parallel arcs from vertex u1 to u2, we only include the one with
minimum weight in A′′.

4. Finally, A′ = A′′\{(u1, v), (v, u2) | u1, u2 ∈ V } and V ′ = V \ {v}.

We clarify a special case of the above transformation, where u and v are two
uncritical vertices with arcs (u, v) and (v, u) between them. Deleting one of the
vertices, e.g., u, results in a self-loop (v, v), which we can safely remove. This is
simply because a loop that contains no critical instructions does not affect the
sampling period.

Sampling-Based Runtime Verification 93

We apply the above transformation on all uncritical vertices. We call the result
a critical control-flow graph. Such a graph includes (1) an uncritical initial basic
block, (2) possibly an uncritical vertex with outdegree zero (if the program is
terminating), and (3) a set of critical vertices. Figure 2(b) shows the critical
CFG of the graph in Figure 2(a).

Definition 3. Let CFG = 〈V, v0, A, w〉 be a critical control-flow graph. The
minimum sampling period for CFG is MSPCFG = min{w(v1, v2) | (v1, v2) ∈
A ∧ v1 is a critical vertex}. ��

Intuitively, minimum sampling period is the minimum amount of time that two
variables in VΠ get changed. For example the minimum sampling period of the
control-flow graph in Figure 2(b) is MSP = 1. Later in this section, we will show
that by applying this sampling period, no property violations can be overlooked.

3.2 Constructing and Composing Sampling-Based Monitor

We now explain the semantics of sampling-based monitoring using timed au-
tomata. Transformation of a control-flow graph CFG = 〈V, v0, A, w〉 into a timed
automaton ACFG = 〈L, L0, X, Σ, E, I〉, where X = {t} and Σ = {a, s}, is as
follows:

– L = {lv | v ∈ V }
– L0 = {lv0}
– E = {〈lv, a, {t}, t ≥ w(v, v′), lv′〉 | (v, v′) ∈ A} ∪ {〈lv, s, {}, true, lv〉 | v ∈ V }.
– I(lv) = worst-case execution time of basic block v ∈ V .

Intuitively, ACFG works as follows. Each location of ACFG corresponds to one
and only one vertex of CFG . The initial location corresponds to the initial basic
block of CFG. Each location is associated with a delay invariant; the execution
can stay in a location no longer than the worst-case execution time of the corre-
sponding basic block. ACFG has two types of switches. The first set of switches
(labelled by a) change location. Each such switch takes place when the execu-
tion of the corresponding basic block is complete. Obviously, this can happen
not earlier than the best-case execution time of the basic block. The other set
of switches (labelled by s) are self-loops and are meant to synchronize with the
sampling-based monitor. The timed automaton obtained from the control-flow
graph in Figure 1(b) is shown in Figure 3(a), where the worst-case execution
time of each instruction is 2.

The relation between execution of a program P and runs of timed automaton
ACFGP

is as follows. Intuitively, a delay transition in ACFGP
corresponds to

execution of a set of instructions in P . Formally, let q = (l, t = 0) be a state
of ACFGP

, where location l hosts instructions {l1 · · · ln}. An outgoing transition
from this state with delay τ reaches a state (l, t + τ) which leads to executing
zero or more instructions. Thus, starting from (l, t = 0), a run of ACFGP

is of
the form:

(l, t = 0)
τ1−→ (li, t + τ1)

τ2−→ (lj , t + τ1 + τ2)
τ3−→ · · · τm−−→ (ln, t +

∑m
k=1 τk)

a−→ (l′, t = 0),

94 B. Bonakdarpour, S. Navabpour, and S. Fischmeister

C

A

D

t := 0

t := 0
t ≥ 2

t ≥ 1

t := 0

t ≤ 4

t ≤ 2

s

s

s

aa

a a

t ≥ 4
t := 0

B
t ≤ 8

s

t ≥ 2

(a) Transformed Timed au-
tomaton

M1

x = MSP

x := 0s

M0
x ≤ MSP

x ≤ MD

(b) Sampling-based
Monitor

Fig. 3. Formal semantics of sampling-based monitoring

such that i ≤ j ≤ m, l �= l′, (li, t + τ1) denotes the fact that instructions
〈l1 · · · li〉 have been executed within τ1 time units,

∑m
k=1 τk ≥ w(l, l′) in CFGP ,

and
∑m

k=1 τk satisfies I(l). Note that an s-transition may occur in such a run,
but such transitions obviously do not change the current location or the value
of t.

A sampling-based monitor MP for program P works as follows (see Figure
3(b)). From the initial location M0 the only outgoing switch is enabled when the
sampling period is complete (i.e., x = MSPCFGP). The monitor may remain in
location M1 for at most MD time units, where MD is the maximum delay that
can occur in execution of an instruction. Such delays are normally caused by
pipeline stalls, I/O operations, etc. From location M1, the monitor synchronizes
with ACFGP

on the switch labelled by s in order to read the variables of interest
for evaluating properties. Thus, the parallel composition ACFGP ||MP constructs
the entire system. For example, the following is a run of the automaton in Figure
3(a) composed with a monitor with sampling period MSP = 1 and MD = 0:

AM0
1−→ A1M1

s−→ A1M0
1−→ A2M1

s−→ A2M0
a−→ BM0

1−→ B4M1
s−→ B4M0

1−→ B5M1 → · · · ,

Assumption 1. We assume that MD ≤ MSP. ��

Theorem 1. Let P be a program and w = (a0, t0), (a1, t1) · · · be a timed word of
ACFGP

||MP . For all i and j, where i < j, ai = aj = s, and there does not exist
an s-transition between ai and aj in w, no run over w contains delay transitions
between ai and aj that includes two critical instructions. ��

4 Optimizing Sampling Period and Its Complexity

To reduce the sampling points, we use auxiliary memory to build a history of
critical state changes between two samples. More specifically, let (u, v) be an arc

Sampling-Based Runtime Verification 95

and v be a vertex in a critical control-flow graph CFG, where instv = 〈i〉 and
i changes the value of a variable, say a. We apply transformation T (CFG, v)
introduced in Subsection 3.1 and add an instruction i′ : a′ ← a, where a′ is an
auxiliary memory location. Thus, we obtain instu = instu.〈i, i′〉. We call this
process instrumenting transformation and denote it by IT (CFG , v). Observe
that adding the extra instruction does not affect the calculation of the sampling
period. This is due to the fact that adding instrumentation only increases the
best case execution time of a basic block and by maintaining the calculated
sampling period, we are guaranteed that no critical instruction is overlooked.

Unlike uncritical vertices, the issue of loops involving critical vertices need to
be handled differently. Suppose u and v are two critical vertices with arcs (u, v)
and (v, u) between them and we intend to delete u through the use of auxiliary
memory. This results in a self-loop (v, v), where w(v, v) = w(u, v) + w(v, u).
Since we do not know how many times the loop may iterate at run time, it is
impossible to determine the upperbound on the size of auxiliary memory needed
to collapse vertex v. Hence, to ensure correctness, we do not allow applying
transformation IT on critical vertices that have self-loops.

Given a critical control-flow graph, our goal is to optimize two factors through
a set of IT transformations: (1) minimizing auxiliary memory, and (2) maximiz-
ing sampling period. We now analyze the complexity of such optimization.

Instance. A critical control-flow graph CFG = 〈V, v0, A, w〉 and positive inte-
gers X and Y .

Transformation optimization decision problem (TO). Does there exist
a set U ⊆ V , such that after applying transformation IT (CFG, u) for all u ∈ U ,
we obtain a critical control-flow graph CFG ′ = 〈V ′, v0, A′, w′〉, where |U | ≤ Y
and for all arcs (u, v) ∈ A′, w′(u, v) ≥ X?

Theorem 2. TO is NP-complete. ��

5 Mapping to Integer Linear Programming

The Integer Linear Programming (ILP) problem is of the form:⎧⎨⎩
Minimize c.z

Subject to A.z ≥ b

where A (a rational m × n matrix), c (a rational n-vector), and b (a rational
m-vector) are given, and, z is an n-vector of integers to be determined. In other
words, we try to find the minimum of a linear function over a feasible set defined
by a finite number of linear constraints. It can be shown that a problem with
linear equalities and inequalities can always be put in the above form, implying
that this formulation is more general than it might look.

We now describe how we map the optimization problem described in Section
4 to ILP. Our mapping takes the critical control-flow graph CFG = 〈V, v0, A, w〉

96 B. Bonakdarpour, S. Navabpour, and S. Fischmeister

of a given source code and a desired sampling period SP as input. Our objective
is to find the minimum number of vertices that must be removed from V .

Integer variables. Our ILP model employs the following sets of variables:

1. x = {xv | v ∈ V }, where each xv is a binary integer variable: if xv = 1, then
vertex v is removed from V , whereas xv = 0 means that v remains in V .

2. a = {av | v ∈ V }: where each av is an integer variable which represents the
weight of arcs originating from vertex v. Recall that all the outgoing arcs of
a vertex have the same weight in CFG . This variable is needed to store the
new weight of an arc created by merging a sequence of arcs. For example, in
Figure 2(b), initially, variable aB2 = 1. However, if xB3 = 1 (i.e., vertex B3

is removed), then aB2 = 3.
3. y = {yv, y

′
v | v ∈ V }, called choice variables, where each yv and y′

v is an
integer variable. The application of this set is described later in this section.

Constraints for the initial basic block. Since we always want a sample at
the beginning of the program to extract the initial value of variables, we add the
following constraints:

xv0 = 0 (1)
av0 = w(v0) (2)

Constraints for arc weights and internal vertices. Since our goal is to
ensure that the weight of all arcs become at least SP , if there exists an arc of
weight less than SP , then the target vertex of the arc must be removed from the
graph. Thus, for every arc (u, v) ∈ A, we add the following constraint:

au + SP .xv ≥ SP (3)

Next, we add constraints for calculating the new weights of arcs when vertices
are deleted from CFG . We distinguish two cases:

– Case 1: If xv = 0, for some v ∈ V , then av = w(v).
– Case 2: If xv = 1, then av = w(v) + w(u), where (u, v) ∈ A. Note that

in this case, although vertex v is removed, for simplicity, we use variable av

as the weight of the newly created arc. Also note that in this case, outgoing
arcs from u automatically satisfy Constraint 3.

To make these cases mutually exclusive in ILP, we use the choice variables with
the following properties:

– Prop. 1: The values of yv and y′
v are such that one of them is zero and the

other is au. This property enforces mutual exclusiveness of the above cases.
– Prop. 2: If xv = 1, then yv = au and y′

v = 0. On the contrary, if xv = 0,
then yv = 0 and y′

v = au.

To enforce Prop. 1, we use a special data structure implemented in our ILP solver
called Special Ordered Set Type 1, where at most one variable can take a positive

Sampling-Based Runtime Verification 97

value while all others must have a value of zero. The following constraints enforce
Prop. 1 and 2:

yv + y′
v = au (4)

sos1(yv, y′
v) (5)

1 ≤ xv + y′
v ≤ au (6)

The following constraints implement Case 1 and 2, respectively:

w(v) + au − y′
v = av (7)

yv + w(v) = av (8)

For example, if v is deleted (i.e., xv = 1), then we have yv = 0 and y′
v = au by

Constraints 4-6. Moreover, when v is deleted, the weight of the newly created
arc av will be au + w(v). This is ensured by Constraints 7 and 8.

Now, we duplicate Constraints 4-8 for each incoming arc to vertex v. More
specifically, for arcs (u1, v), (u2, v) · · · (un, v), we instantiate Constraints 4-8 with
variables au1 , au2 · · · aun and au1

v , au2
v · · · aun

v . We note that existence of multiple
incoming arcs in a control-flow graph is due to the existence of conditional and
goto statements in the input program. Since the depth of nested conditional
statements is not normally high, we do not expect to encounter an explosion in
the number of a-variables in our ILP model.

Handling loops. Recall that in Section 4, we argued that vertices with self-
loops cannot be removed. Self-loops are created when we apply the IT transfor-
mation on vertices of a cycle in a control-flow graph. To ensure that self-loops
are not removed, we add a constraint to our ILP model, such that from each
cycle v1 → v2 → · · · → vn → v1, only n − 1 vertices can be deleted:

n∑
i=1

xvi ≤ n − 1 (9)

We note that cycles can be identified when we construct CFG and there is no
need for graph exploration to enumerate them.

Objective function. Finally, we state our objective function, where we aim
at minimizing the set of vertices removed from CFG :

Minimize
∑
v∈V

xv (10)

6 Experimental Results

In this section, we present the results of our experiments using the following tool
chain. First, we generate the control-flow graph of a given C program using the
tool CIL [19]. Next, we generate the critical control-flow graph and transform
it into an ILP model. The model is given to the tool lp solve [18] to obtain the

98 B. Bonakdarpour, S. Navabpour, and S. Fischmeister

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 1 2 3 4 5 6

O
ve

rh
ea

d
(M

S
ec

)

Execution Time (Sec)

sampling-based with no history
event-based

sampling-based 50x MSP

(a) 50 ∗ MSP sampling period

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 1 2 3 4 5 6

O
ve

rh
ea

d
(M

S
ec

)

Execution Time (Sec)

sampling-based with no history
event-based

sampling-based with 100x MSP

(b) 100 ∗ MSP sampling period

Fig. 4. Experimental results for Dijktra

optimal sampling period and the size of auxiliary memory. We use the breakpoint
mechanism of gdb [7] to implement monitors. Finally, a Python script controls
gdb and handles possible exceptions.

Our case studies are from the MiBench [9] benchmark suite:

1. Blowfish: This benchmark has 745 lines of code, which results in a CFG of
169 vertices and 213 arcs. We take 20 variables for monitoring.

2. Dijkstra: This benchmark has 171 lines of code, which results in a CFG of
65 vertices and 78 arcs. We take 8 variables for monitoring.

All experiments are conducted on a Mac Book Pro with 2.26GHz Intel Core 2
Duo and 2GB main memory. We consider the following different settings:

– Event-based: gdb extracts the new value of variables of interest whenever
they get changed throughout the program execution.

– Sampling-based with no history: gdb is invoked every MSP time units
(see Subsection 3.1) to extract the value of all the variables of interest.

– Sampling-based with history: This setting incorporates our ILP opti-
mization. Thus, whenever gdb is invoked, it extracts the value of variables
of interest as well as the history.

In the event-based setting (see Figures 4(a) and 5(a)), since the monitor inter-
rupts the program execution irregularly, unequal bursts in the overhead can be
seen. Moreover, the overhead caused by each data extraction is proportional to
the data type. Hence, the data extraction overhead varies considerably from one
interruption to another. Thus, the monitor introduces probe-effects, which in
turn may create unpredictable and even incorrect behaviour. This anomaly is,
in particular, unacceptable for real-time embedded and mission-critical systems.

On the contrary, since the sampling-based monitor interrupts the program
execution on a regular basis, the overhead introduced by data extraction is not
subject to any bursts and, hence, remains consistent and bounded (see Figures
4(a) and 5(a)). Consequently, the monitored program exhibits a predictable be-
haviour. Obviously, the sampling-based monitor may potentially increase the

Sampling-Based Runtime Verification 99

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

O
ve

rh
ea

d
(M

S
ec

)

Execution Time (Sec)

sampling-based with no history
event-based

sampling-based with 50x MSP

(a) 50 ∗ MSP sampling period

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

O
ve

rh
ea

d
(M

S
ec

)

Execution Time (Sec)

sampling-based with no history
event-based

sampling-based with 100x MSP

(b) 100 ∗ MSP sampling period

Fig. 5. Experimental results for Blowfish

overhead, which extends the overall execution time. Nonetheless, in many com-
monly considered applications, designers prefer predictability at the cost of larger
overhead.

Regarding the third setting, recall that we prohibited deletion of self-loops
from critical control-flow graphs. Hence, if some variables get updated in loops,
the minimum sampling period of loops, can determine the optimal sampling
period. For example, in both case studies, since the majority of the variables of
interest are updated in loops, we cannot increase the sampling period beyond
4 ∗ MSP . In such a situation, employing the new sampling period and history
does not achieve much. To overcome this problem, we devise a simple heuristic
that makes a conservative estimate of the size of a buffer needed to build the
history for loops. By incorporating this heuristic, we allow deletion of self-loops.
For example, in both case studies, the ILP solver can increase the sampling
period up to 100 ∗ MSP .

Figures 4(a) and 5(a) show the results of our experiments for sampling period
of 50 ∗ MSP . As can be seen, increasing the sampling period results in larger
overhead. This is because the monitor needs to read a larger amount of data
formed by the history. However, the increase in overhead is considerably small
(less than twice the original overhead). Having said that, the other side of the
coin is that by increasing the sampling period, the program is subject to less
monitoring interrupts. This results in significant decrease in the overall execution
time of the programs. This is indeed advantageous for monitoring hard real-
time programs. Although adding history causes variability in data extraction
overhead, the system behavior is still highly predictable as compared to the
event-based setting.

The above observations are valid for the case, where we increase the sampling
period by 100 ∗ MSP as well (see Figures 4(b) and 5(b)). Observe that the
reduction in execution time of Blowfish is less than Dijkstra, as the overhead of
data extraction in Blowfish is proportionally larger than Dijkstra. This is due
to the fact that in Blowfish more and larger variables are stored in the history
between two samples. On the other hand, overhead variability in Blowfish is less
than Dijkstra, as the number of variables stored in the history from one sample
to another does not significantly vary in Blowfish.

100 B. Bonakdarpour, S. Navabpour, and S. Fischmeister

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

M
SP

20x M
SP

50x M
SP

70x M
SP

100x M
SP

 7.15

 7.2

 7.25

 7.3

 7.35

 7.4

 7.45

 7.5

 7.55

E
xe

cu
tio

n
T

im
e

(S
ec

)

V
irt

ua
l M

em
or

y
U

sa
ge

 (
M

B
)

Sampling Type

Execution Time
Memory Consumption

(a) Dijkstra

 3.6

 3.7

 3.8

 3.9

 4

 4.1

 4.2

 4.3

 4.4

 4.5

M
SP

20x M
SP

50x M
SP

70x M
SP

100x M
SP

 9.4

 9.5

 9.6

 9.7

 9.8

E
xe

cu
tio

n
T

im
e

(S
ec

)

V
irt

ua
l M

em
or

y
U

sa
ge

 (
M

B
)

Sampling Type

Execution Time
Memory Consumption

(b) Blowfish

Fig. 6. Memory usage vs. execution time

Finally, we discuss the tradeoff between execution time and the added memory
consumption when the sampling period is increased (see Figure 6). As can be
seen, as we increase the sampling period, the system requires negligible extra
memory. Also, one can clearly observe the proportion of increase in memory
usage versus the reduction in the execution time. In other words, by employing
small amount of auxiliary memory, one can achieve considerable speedups.

7 Related Work

From the logical and language point of view, runtime verification has mostly
been studied in the context of Linear Temporal Logic (LTL) properties [2, 8,
10, 11, 12, 23] and in particular safety properties [13, 22]. Other languages and
frameworks have also been developed for facilitating specification of temporal
properties [15, 16, 24]. Runtime verification of ω-languages was considered in [5].

In [6], the authors introduce a sampling-based program monitoring technique.
They propose a framework that allows quantitative reasoning about issues in-
volved in sampling-based techniques. They also discuss how to optimally in-
strument a program by a set of markers, such that different execution paths
reachable from the same state are distinguishable. In the same context, in [20],
the authors propose the language Capilot for developing hard real-time moni-
tors. The aim of this language is to develop programs where the monitor (1)
does not change the functionality and schedule of the program, and (2) adds
minimal overhead to the program. We, however, take a different approach by fo-
cusing on designing a method where predictable monitors are added to observe
the behaviour of existing programs. We also present optimization techniques
and experimental evidence on the effectiveness of our approach. Finally, in [14],
the authors propose a method to control the overhead of software monitoring
using control theory for discrete event systems. In this work, overhead control
is achieved by temporarily disabling involvement of monitor, thus avoiding the
overhead to pass a user-defined threshold.

Sampling-Based Runtime Verification 101

8 Conclusion

We investigated a sampling-based approach for runtime verification. We explored
the problem by defining it in formal terms and then showed that the optimization
problem for using minimum auxiliary memory to maximize the sampling period
is NP-complete. As a practical solution, we encoded our problem in Integer
Linear Programming (ILP). Our approach is implemented in a tool chain that
takes a C program as input and (1) constructs a time-triggered monitor with
an optimal sampling period, and (2) instruments the input program in order
to build a history of optimal size. Experimental results show that sampling-
based monitoring provides a predictive overhead on the system. Moreover, using
negligible auxiliary memory, one can increase the sampling period, which results
in less overall overhead and faster execution of the system under scrutiny.

For future work, we are considering several research directions. We are cur-
rently working on adaptive monitoring, where the monitor adapts its sampling
period based upon the structure of the input program. Also, one may consider
developing hybrid monitors that take advantage of both event-triggered as well
as time-triggered techniques.

Acknowledgement

This research was supported in part by NSERC DG 357121-2008, ORF RE03-
045, ORE RE-04-036, and ISOP IS09-06-037.

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Bauer, A., Leucker, M., Schallhart, C.: Runtime Verification for LTL and TLTL.
ACM Transactions on Software Engineering and Methodology, TOSEM (2009) (in
press)

3. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL Semantics for Runtime
Verification. Journal of Logic and Computation 20(3), 651–674 (2010)

4. Colin, S., Mariani, L.: Run-Time Verification. In: Broy, M., Jonsson, B., Katoen,
J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems.
LNCS, vol. 3472, pp. 525–555. Springer, Heidelberg (2005)

5. D’Amorim, M., Roşu, G.: Efficient Monitoring of omega-Languages. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364–378. Springer,
Heidelberg (2005)

6. Fischmeister, S., Ba, Y.: Sampling-based Program Execution Monitoring. In: ACM
International conference on Languages, compilers, and tools for embedded systems
(LCTES), pp. 133–142 (2010)

7. GNU debugger, http://www.gnu.org/software/gdb/
8. Giannakopoulou, D., Havelund, K.: Automata-Based Verification of Temporal

Properties on Running Programs. Automated Software Engineering (ASE), pp.
412–416 (2001)

http://www.gnu.org/software/gdb/

102 B. Bonakdarpour, S. Navabpour, and S. Fischmeister

9. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: MiBench: A free, commercially representative embedded benchmark suite.
In: IEEE International Workshop on In Workload Characterization (WWC), pp.
3–14 (2001)

10. Havelund, K., Rosu, G.: Monitoring Java Programs with Java PathExplorer. Elec-
tronic Notes in Theoretical. Computer Science 55(2) (2001)

11. Havelund, K., Rosu, G.: Monitoring Programs Using Rewriting. Automated Soft-
ware Engineering (ASE), 135–143 (2001)

12. Havelund, K., Roşu, G.: Synthesizing Monitors for Safety Properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002)

13. Havelund, K., Rosu, G.: Efficient Monitoring of Safety Properties. Software Tools
and Technology Transfer (STTT) 6(2), 158–173 (2004)

14. Huang, X., Seyster, J., Callanan, S., Dixit, K., Grosu, R., Smolka, S.A., Stoller,
S.D., Zadok, E.: Software monitoring with controllable overhead. Software tools
for technology transfer, STTT (2011) (to appear)

15. Kim, M., Lee, I., Sammapun, U., Shin, J., Sokolsky, O.: Monitoring, Checking,
and Steering of Real-Time Systems. Electronic. Notes in Theoretical Computer
Science 70(4) (2002)

16. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: A Run-
Time Assurance Approach for Java Programs. Formal Methods in System Design
(FMSD) 24(2), 129–155 (2004)

17. Kupferman, O., Vardi, M.Y.: Model Checking of Safety Properties. In: Halbwachs,
N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 172–183. Springer, Heidel-
berg (1999)

18. ILP solver lp solve, http://lpsolve.sourceforge.net/5.5/
19. Necula, G.C., McPeak, S., Rahul, S., Weimer, W.: CIL: Intermediate language and

tools for analysis and transformation of c programs. In: Proceedings of Conference
on Compilier Construction (2002)

20. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: A hard real-time runtime
monitor. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace,
G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 345–
359. Springer, Heidelberg (2010)

21. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers.
In: Misra, J., Nipkow, T., Karakostas, G. (eds.) FM 2006. LNCS, vol. 4085, pp.
573–586. Springer, Heidelberg (2006)

22. Roşu, G., Chen, F., Ball, T.: Synthesizing monitors for safety properties: This time
with calls and returns. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289, pp. 51–68.
Springer, Heidelberg (2008)

23. Stolz, V., Bodden, E.: Temporal Assertions using Aspectj. Electronic Notes in
Theoretical Computer Science 144(4) (2006)

24. Zhou, W., Sokolsky, O., Loo, B.T., Lee, I.: MaC: Distributed Monitoring and
Checking. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779,
pp. 184–201. Springer, Heidelberg (2009)

http://lpsolve.sourceforge.net/5.5/

Specifying and Verifying the SYNERGY

Reconfiguration Protocol with LOTOS NT and
CADP

Fabienne Boyer1, Olivier Gruber1, and Gwen Salaün2

1 UJF-Grenoble 1, INRIA, France
{Fabienne.Boyer,Olivier.Gruber}@inria.fr

2 Grenoble INP, INRIA, France
Gwen.Salaun@inria.fr

Abstract. Dynamic software systems that provide the ability to recon-
figure themselves seem to be reaching a complexity that suggests the use
of formal methods in the design process, helping system designers mas-
ter that complexity, better understand their systems, find and correct
bugs rapidly, and ultimately build strong confidence in the correctness
of their systems. As an illustration of this trend, this paper reports on
our experience with the co-design and specification of the reconfigura-
tion protocol of a component-based platform, intended as the founda-
tion for building robust dynamic systems. We wrote the specification in
Lotos NT, whose evolution from the E-Lotos standard proved espe-
cially suited to this work. We extensively verified the protocol using the
Cadp toolbox. This formal analysis helped to detect several issues which
enabled us to correct various parts of the protocol. The protocol is imple-
mented in the Synergy virtual machine, the prototype of an ongoing re-
search programme on reconfigurable and robust component-aware virtual
machines.

1 Introduction

A major factor in the complexity of modern software systems is their ability to
reconfigure themselves as directed by changing circumstances. This ability often
relies on the component paradigm where software is understood as an assem-
bly of components that can be reconfigured dynamically as one sees fit. While
expressing a desired reconfiguration is relatively simple, actually evolving a run-
ning system, without shutting it down, is complex. This is even more complex
when considering failures that may happen during the reconfiguration process.

At the heart of this reconfiguration capability lies the reconfiguration protocol,
a protocol that is responsible for incrementally and correctly evolving a running
system. This evolution happens incrementally, invoking individual reconfigura-
tion operations on components. Therefore, a key challenge of this protocol is
to compute and order the set of individual reconfiguration operations that are
necessary to evolve one assembly of components into another. This is complex

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 103–117, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

104 F. Boyer, O. Gruber, and G. Salaün

because the ordering of reconfiguration operations must never violate several in-
variants regarding the overall structure of the evolving assembly, and must also
respect a reconfiguration grammar per component. Respecting this grammar is
crucial as it underlies the programming model given to component developers.
In addition, failures may happen during a reconfiguration and must be handled
in a way that continously respects both the invariants and the reconfiguration
grammar.

Reconfigurable component-based software has been the subject of quite some
work during the last decade [3,8,6,7], and has made its way into most modern
middleware platforms such as Eclipse, Web application servers, Web browsers,
and even main-stream operating systems such as Windows or Linux. However,
tolerating failures that occur during such reconfigurations remains a crucial chal-
lenge [16]. The protocol presented in this paper is the first protocol, to the best
of our knowledge, to tolerate multiple failures occuring at reconfiguration time.

We designed and implemented such a protocol in the Synergy virtual ma-
chine, an experimental Java virtual machine that is fully component-aware and
strives to guarantee robust software reconfigurations. Soon after a first version
was partially running, it became obvious that the complexity of the protocol
required a more formal approach, relying on specifying and verifying the proto-
col to help not only the design and implementation efforts but also increase the
confidence of the overall robustness of the protocol.

We specified the reconfiguration protocol using Lotos NT [4] and verified it
with the Cadp toolbox [9]. Lotos NT is a simplified variant of the E-Lotos

standard [10] that combines the best features of imperative programming
languages and value-passing process algebras. Lotos NT has a user-friendly syn-
tax, and supports the description of complex data types written using a func-
tional specification language. This makes specifications easy to understand and
write by system designers. In our case, this greatly simplified the design and anal-
ysis process. This reduced gap between the specification and the real implemen-
tation of the system drastically improved the confidence of system experts in the
relevance of the verification process. Moreover, the late introduction of formal
techniques and the establishment of a virtuous circle between the design, the
specification, the verification, and the implementation efforts, were a success. It
lowered the entry costs for specification specialists because the specification could
be approached incrementally, in parallel with the design and implementation of
the real system. It also helped us understand the finer points of the protocol ear-
lier, thereby significantly reducing the implementation and testing efforts.

The rest of this paper is organized as follows. Section 2 and 3 introduce the
concept of a component assembly and the reconfiguration protocol, respectively.
We present the Lotos NT specification language and the specification of the
reconfiguration protocol in Section 4. Section 5 details the different checks we
have done and presents some experimental results. After comparing our experi-
ence with related work in Section 6, we conclude this paper in Section 7 with
the lessons we have learned.

Verification of the SYNERGY Reconfiguration Protocol 105

2 Component Assembly

In the component paradigm, complex systems are designed and built as a com-
ponent assembly, depicted in Figure 1. Components are independent fragments
of software, assembled together by wiring imports to exports. For each com-
ponent, its exports describe services that the component is willing to provide
and imports describe service requirements, that is, services that the component
needs to function properly. A wire from an import to an export indicates that
the service requirement described by the import is to be satisfied by the provided
service described by the export.

Fig. 1. A Component Assembly

To be correct, a component assembly must respect certain invariants that
correlate the lifecycle of components, the different semantics of imports, and the
wiring of imports to exports. There are three semantics for an import: vital,
mandatory, and optional. Vital imports represent services that are needed to
construct and initialize a component. Mandatory imports represent references
to services that are needed by a component to be functional. Finally, optional
imports express that the component may function without the corresponding
services. There are four states to the component lifecycle: registered, constructed,
resolved, and failed. An import is said to be satisfied if it is wired to an export
and the component of that export is resolved. Due to space limitations, we only
give below the four main invariants:

INV.1 A component is constructed if all its vital imports are satisfied.
INV.2 A component is resolved, if all its mandatory and vital imports are
satisfied.
INV.3 There can be no wire from a resolved component to either a con-
structed, registered, or failed component.
INV.4 If a component is failed or registered, none of its exports are wired.

A component starts its life when it is registered in the assembly. It is constructed
when its vital imports are satisfied. When constructed, a component has created
the services it exports, but they are not yet available to use by other components.
When a component is resolved, all its mandatory requirements are satisfied; it
is therefore fully functional and the services it exports are available to use.

106 F. Boyer, O. Gruber, and G. Salaün

3 The Reconfiguration Protocol

The rôle of the reconfiguration protocol is to reconfigure the running system,
called the concrete assembly. As depicted in Figure 2, the reconfiguration to
apply to the concrete assembly is given to the protocol as two abstract assemblies:
the current assembly and the target assembly. The current assembly is an abstract
description of the current state of the running system. The target assembly is an
abstract description of the desired assembly for the running system. Comparing
the current and target assemblies, the protocol computes the ordered set of
reconfiguration operations that must be invoked on the concrete assembly in
order to reconfigure it to conform to the target assembly definition.

While computing the set of necessary operations is relatively straightforward,
ordering these operations correctly is a real challenge. Correctness is defined here
as (i) invariants must be respected before and after each operation, (ii) per com-
ponent, the sequence of reconfiguration operations must respect the grammar
corresponding to the automaton depicted in Figure 3. This correctness is crucial
because it is the cornerstone of the programming model exposed to component
developers. Firstly, invariants control the lifecycle of components that governs
when a component is operational and when wired services may be used. Sec-
ondly, the grammar is the behavioural contract given to component developers
regarding reconfigurations.

Embracing this correctness all at once is complex, so we will discuss it in
three incremental steps. First, we will only consider the optional and mandatory
semantics on imports, ignoring the vital semantics. Second, we will focus on
the vital semantics, and third we will consider reconfiguration failures. Interest-
ingly enough, these three steps correspond to the actual steps we followed when
cooperatively designing and specifying the protocol.

Without considering the vital semantics (INV.1), the V-shape order depicted
in Figure 4 is correct. During the down phase, it starts with down operations
(unresolve, unwire, and destruct) applied to all components in the depicted order.
During the up phase, it finishes with up operations (construct, wire, and resolve)
in the depicted order. This precise order ensures that all our invariants (but
INV.1) are never violated.

Fig. 2. Concrete and Abstract Assemblies

Verification of the SYNERGY Reconfiguration Protocol 107

Fig. 3. Component Lifecycle

Fig. 4. Our V-shaped Protocol

When considering INV.1, this V-shape ordering is no longer sufficient. INV.1
states that the vital imports of a component must be satisfied before that com-
ponent can be constructed. To be satisfied, a vital import must be wired to a
component that is already resolved. This implies that some components be re-
solved before some others can be constructed, however, our V-shape protocol
always constructs before it resolves. To ensure that INV.1 is never violated, we
must group components in different sets that we process in the correct order.

To compute these sets and order their processing, we leverage the fact that
vital imports define a Direct Acyclic Graph (DAG) over an assembly of compo-
nents. This DAG is useful because it splits components into layers that can be
processed in distinct up and down phases of the V-shape protocol, as depicted
in Figure 5. Thus, we no longer apply the down phase to all components and
then the up phase to all components. We selectively apply the down phase per
layer, going down in the DAG from leaf components down to the root. We then
selectively apply the up phase per layer, going up in the DAG from the root
up to leaf components. At each layer, we go through the complete down phase
(resp. up phase) on all components belonging to that layer.

We now consider reconfiguration failures: any reconfiguration operation in-
voked on the concrete assembly by the reconfiguration protocol may fail. Mod-
eling such failures is important because they happen in running systems, either
because of exceptional situations or bugs. It is important to insist that these
failures are not failures of our protocol but the failure of individual concrete

108 F. Boyer, O. Gruber, and G. Salaün

Fig. 5. Combining the V-shape Protocol with the DAG

components. Our protocol resists such failures, assists the running system to
recover from them, and then continues to make progress towards the target
assembly.

When a component C of the concrete assembly fails to execute a reconfig-
uration operation, our protocol immediately suspends its V-shape processing
(Figure 5) in order to recover from the occured failure. First, it marks the com-
ponent C as failed. Second, it reconfigures the concrete assembly, striving to
re-establish its consistency regarding INV.3 and INV.4. In other words, the im-
pact of the failure is propagated throughout the concrete assembly, restoring all
invariants. Obviously, since reconfiguration operations are invoked on the con-
crete assembly during this failure propagation, nested failures may occur. To
cope with nested failures, the failure propagation is a fixpoint. This fixpoint
terminates because the maximum number of failures is bounded by the num-
ber of components. When the fixpoint terminates, the running system has fully
recovered from failures; its concrete assembly respects all our invariants.

Before our protocol can loop over on the complete V-shape protocol of Fig-
ure 5, trying to make further progress towards the target assembly, it needs to
recover the consistency of both abstract assemblies. First, since the concrete as-
sembly has been changed by the failure propagation described above, the current
assembly must be changed so that it describes the concrete assembly accurately.
The target abstract assembly must also be changed; the impact of component
failures must be propagated throughout the target assembly, adapting it to the
new reality that some components have failed. Note that failed components
are not automatically repaired by this reconfiguration protocol; component re-
pairs are managed by higher-level protocols in Synergy. Comparing these two
modified assemblies, the protocol loops, computing a new ordered set of recon-
figuration operations and resumes the reconfiguration of the concrete assembly,
evolving it further towards the new desired assembly.

4 Specification in LOTOS NT

We specified the protocol in Lotos NT [4], one of the input languages of the
Cadp verification toolbox [9]. We chose Lotos NT as our specification language
because (i) it provides expressive enough operators, in particular rich datatype
descriptions, for modelling the reconfiguration protocol, (ii) its user-friendly

Verification of the SYNERGY Reconfiguration Protocol 109

notation simplifies the specification writing, and (iii) it is equipped with state-
of-the-art verification tools in order to check that the protocol works correctly.

LOTOS NT in a Nutshell. Lotos NT [4] is a simplified variant of the
E-Lotos standard [10] that attempts to combine the best features of imper-
ative programming languages and value-passing process algebras. Lotos NT

has a user-friendly syntax and a formal operational semantics defined in terms
of labeled transition systems (Ltss). Lotos NT is supported by the Lnt.Open

tool of Cadp, which enables the on-the-fly exploration of the Ltss corresponding
to Lotos NT specifications. We give in Figure 6 the behavioural fragment of
Lotos NT we use in this paper.

Lotos NT terms (denoted by B) are built from actions, sequential composi-
tion (“;”), conditional (“if”), assignments (“:=”), looping behaviour (“while”),
choice (“select”), and parallel composition (“par”). Communication is carried
out by rendezvous on gates G with bidirectional transmission of multiple values
(for simplicity, in Fig. 6 we consider actions with only two values being sent in
both directions). Synchronizations may also contain optional guards (“where”)
expressing Boolean conditions on received values. The parallel composition oper-
ator allows multiway rendezvous on the same gate. Processes are parameterized
by gates and input/output data variables.

Lotos NT specifications can be analysed using Cadp [9], a verification tool-
box that has been in continuous development since the late 80s. Cadp is dedi-
cated to the design, analysis, and verification of asynchronous systems consisting
of concurrent processes interacting via message passing. The toolbox contains
42 tools that can be used to make different analyses such as simulation, model-
checking, equivalence-checking, compositional verification, test case generation,
or performance evaluation. Cadp is widely used (760 licenses granted in 2009)
and was successfully applied to real-world and industrial cases studies in many
different fields such as telecommunication protocols, hardware design, embedded
systems, or avionics.

The Reconfiguration Protocol in LOTOS NT. The specification in
Lotos NT consists of three parts: data types (300 lines), functions (2500 lines),
and processes (900 lines). The protocol is quite small in number of lines of spec-
ification. However, it is highly complex (e.g., several nested loops, see Sections 2
and 3), and its formal analysis induced numerous revisions and improvements of
the protocol.

Data types describe mainly the assembly (components, imports/exports, wires,
etc). Functions define first all the reconfigurations we need in the reconfigura-
tion protocol to make the current assembly evolve towards the target assembly

B ::= G(!E, ?x) where E′ | B1; B2 | if E then B end if
| var x:T in x := E; B end var | while E loop B end loop
| select [var x1:T1, ..., xn:Tn in] B1[]...[]Bn end select
| par G in B1||...||Bn end par | P [g1, ..., gm](E1, ..., En)

Fig. 6. Syntax of the Lotos NT Fragment

110 F. Boyer, O. Gruber, and G. Salaün

e.g., adding/removing a wire, changing a component state, adding/removing a
port, etc). Some functions also apply the failure propagation on both assemblies,
and others check structural invariants that assemblies must preserve through-
out the whole protocol (these functions are used for verification purposes – see
Section 5). Let us show an example: the type defining the set of wires and the
function disconnect wires traversing these wires (wires) and disconnecting
those connected to a given component (cid). We can see with this example
that Lotos NT uses the basis ingredients of the functional programming style,
namely pattern matching (case) and recursion.

type TWires is set of TWire end type
type TWire is
twire (id:TID, cexport:TID, cimport:TID, idimport:TID, idexport:TID)

end type

function disconnect wires (cid: TID, wires: TWires): TWires is
case wires in
var w:TWire, l: TWires in

nil -> return nil
| cons(w,l) -> if (w.cimport==cid) or (w.cexport==cid) then

return disconnect wires(cid,l)

else
return cons(w,disconnect wires(cid,l))

end if
end case

end function

Processes are used to specify the behaviour of each step in the V-shape, the
failure occurrence, and the main behaviour (down and up phases applied wrt. the
layered structure plus failure handling). Each step is specified as a Lotos NT

process which handles a specific task (e.g., removing some optional wires from
the current assembly, first step of the V-shape). To fulfill its task, the process
calls functions to access and modify the current assembly. For verification pur-
poses, the process body also contains some actions to tag some specific moments
of the protocol execution such as the reconfiguration operations, a failure arrival,
or the beginning of the V-shape. We show below the process pdestruct which
takes as input two assemblies, a list of components which need to be destructed,
a Boolean indicating whether a failure occured during this step, the identifier
of the component that failed, and the layer being processed (list of component
identifiers). These two last parameters are output parameters. The process de-
structs each component of the list. For each component, the function destruct
is called, and is in charge of updating the component state in the current assem-
bly (current). We can see that for each reconfiguration, here destruction of a
component, a possible failure is generated as well. One can observe some exam-
ples of actions (DESTRUCT and FAILURE) which will appear in the corresponding
LTS and that will be used for the forthcoming verification of the protocol.

Verification of the SYNERGY Reconfiguration Protocol 111

process pdestruct [DESTRUCT:any, FAILURE:any]
(inout current:TAssembly, target:TAssembly, lcompo:STID,

out fail:Bool, out cfailed:TID, cl:STID) is
var h: TID, modif: Bool, currenttmp: TAssembly in

while not(is empty stid(lcompo)) and not(fail) loop
h:=head stid(lcompo); lcompo:=tail stid(lcompo); modif:=false;

if is in set(h,cl) then
eval currenttmp:=destruct(h,current,target,!?modif);

if modif then
select
current:=currenttmp; DESTRUCT (!h)

[]

FAILURE (!fdestruct of TFail,!h of TID);

fail:=true; cfailed:=h

end select end if end if end loop end var
end process

Another process is used to invoke the whole protocol (p10). For each step
the corresponding process is called to apply the different required reconfigura-
tions. The down and up phases are preceded by the computation of the DAG
(see Section 3) which guides the order of application of the different reconfig-
urations. When a failure occurs, the protocol executes a Lotos NT function
which propagates the effects of this failure on both assemblies, and restarts the
V-shape. The main process consists of the parallel composition between the
process pfailure and the process p10 implementing the protocol. Processes in
p10 (e.g., pdestruct) may fail, and the process pfailure controls these failures
through synchronizations on action FAILURE. We can see in the process alphabet
various actions used to tag some specific moments of the protocol (e.g., START,
PROPAGATE, FINISH) or to retrieve some information from the assemblies be-
ing reconfigured (e.g., CHECKINVARIANTS, VERIFWIRE). These actions are used to
analyse the protocol, see Section 5.

process MAIN [UNRESOLVE:any, UNWIRE:any, REMOVEIMPORT:any,
REMOVEEXPORT:any, FAILURE:any, START:any, PROPAGATE:any,
FINISH:any, CHECKINVARIANTS:any, VERIFWIRE:any, ...] is
var source, target: TAssembly in
source:=archi source(); target:=archi target();

par FAILURE in
p10[UNRESOLVE,UNWIRE,...](source,target) || pfailure[FAILURE]

end par
end var

end process

From this specification and two assemblies (current and target), Cadp ex-
ploration tools generate an LTS describing all the possible executions of the
protocol. In this LTS, transitions are labelled with the actions introduced pre-
viously. Suppose a simple assembly with two components C1 and C2 where C1 is
resolved and C2 is registered (current assembly). We want to add a wire between

112 F. Boyer, O. Gruber, and G. Salaün

Fig. 7. LTS Resulting from the Protocol Application on a Simple System

both components (we assume that available ports already exist) and resolve C2
(target assembly). Figure 7 shows a simplified version of the LTS the protocol
specification produces. We can see that START !1 corresponds to the beginning
of the protocol application and 1 indicates that this is the first time we enter the
V-shape. FINISH is used to tag the termination of the reconfiguration protocol.
In between, the assembly is reconfigured: WIRE !W !C1 !C2 indicates that a wire
identified by W is added between components C1 and C2, RESOLVE !C2 indicates
that C2 is resolved. Components can also fail, e.g., FAIL! RESOLVE !C2 meaning
that component C2 has failed during the resolution phase. Every failure is fol-
lowed by a propagation on both assemblies (PROPAGATE), and in this case both
assemblies become the same since the protocol finishes (FINISH) right after this
step.

Verification techniques presented in the next section take as input such LTSs.
Depending on the input assembly, the resulting LTS may completely differ and
sometimes consists of hundreds of thousands of states and transitions. For these
reasons, we need some automated techniques to check that the protocol works
as expected.

5 Verification Using CADP

We verified the following three facets of the protocol: structural invariants, re-
configuration grammar, and temporal properties. Firstly, invariants focus on as-
sembly structures, and we checked that all invariants are preserved throughout
the whole protocol application, e.g., if a component is constructed, all its vital
imports are satisfied (INV.1 in Section 2). These invariants are checked using
functions which traverse the data terms storing the assemblies being reconfig-
ured, and return Boolean values. The resulting Boolean is returned as parameter
of a specific action CHECKINVARIANTS, and we use a simple liveness property to
check that all these actions appearing in the state space never come with a
false value. Temporal properties are verified by formalising them into µ-calculus
which is the temporal logic used in Cadp. We then used the Evaluator model-
checker [18] that automatically says whether those properties are verified or not
throughout the execution of the protocol.

Secondly, reconfiguration grammars ensure that components respect the cor-
rect ordering of actions (see Section 3) throughout the protocol. We verify for
each component involved in a system under reconfiguration that its grammar is

Verification of the SYNERGY Reconfiguration Protocol 113

never violated. This is checked using first hiding and reduction techniques on
the whole state space to keep only operations corresponding to that component.
Then, we check that the resulting LTS is branching equivalent to the grammar
using the Bisimulator equivalence checker [2].

These checks are important but they do not detect subtle errors that can occur
in the specification such as forbidden sequences of actions. Temporal properties
complement these two kinds of check by analysing the application order of oper-
ations during the protocol execution. We identified 14 temporal properties that
the protocol must satisfy. Examples of such temporal properties are the follow-
ing: “if a component is constructed it is illegal to unwire vital imports”, or “there
is no sequence where the V-shape is started twice without a failure in-between”.
Temporal properties are specified in µ-calculus and verified with Evaluator. As
an illustration, the second property mentioned above in natural language is writ-
ten as follows in µ-calculus:

[true* . "START !*" . (not "FAILURE !* !*")* . "START !*"] false

Experiments. Experiments were conducted on more than 200 hand-crafted ex-
amples, ranging from simple assemblies to the most pathological ones.
Table 1 summarizes some of the numbers obtained on illustrative examples of
our dataset. The current and target assemblies used as input to the protocol are
characterized using the number of components, the maximum number of wires,
and the number of reconfigurations necessary to evolve the current assembly into
the target assembly. For each example, the corresponding LTS is generated using
Cadp by enumerating all the possible executions of the system. Verification is a
time-consuming process because checking each invariant and property presented
above requires traversal of the whole LTS. To reduce this verification time, we
first minimize the raw LTS (using Cadp reduction techniques respecting strong
equivalence) to obtain an equivalent LTS where all duplicated states and paths
have been removed. Hence, all verifications are performed on the reduced LTS
only.

The last column gives the time to execute the whole process (LTS genera-
tion and reduction as well as checking invariants, equivalences, and properties).

Table 1. Experimental Results

Size LTS (states/transitions) Time
components wires reconfigurations raw reduced m:s

0010 4 5 8 115/134 44/58 1:12

0018 6 9 6 94/107 52/65 1:27

0066 9 15 13 335/401 110/157 1:54

0086 11 19 27 10,353/12,598 915/1,304 2:24

0137 16 17 11 41,386/46,758 553/671 3:37

0204 17 26 48 473,935/586,330 6,696/9,257 44:15

0207 17 28 52 875,762/1,081,136 9,964/13,873 198:22

114 F. Boyer, O. Gruber, and G. Salaün

Experiments have been carried out on a Pentium 4 (2.2GHz, 1GB RAM) run-
ning Linux. These times grow exponentially as the number of reconfigurations
increases. Thus, by adding only a few more reconfigurations (examples 0204 and
0207 in Table 1), the LTS is almost twice as large, and the time required for gen-
eration and verification purposes is multiplied by almost five. Fortunately, such
state explosion is not a real problem in our case. Indeed, growing the reconfig-
uration size is much less important than covering pathological reconfiguration
cases.

All the LTSs presented in this table have been obtained assuming that any
reconfiguration operation on any component may fail. Furthermore, we do not
consider only one failure, but all possible sequences of failures. This explains why,
although our test-case assemblies are quite small, the corresponding LTSs contain
up to hundreds of thousands of states and transitions. The size of these LTSs
depends on the number of reconfiguration operations that need to be invoked: the
more operations, the larger the resulting LTS. This also means that each failure
is propagated throughout both the current and target assemblies, generating
two new assemblies on which the protocol is applied again. In other words, each
failure simulation generates a new test case for the protocol. Starting with 200
examples that were manually crafted, the protocol has been applied and verified
over more than 2000 pairs of assemblies1.

6 Related Work

In this section, we focus on approaches proposing formal techniques for describ-
ing and analysing dynamically reconfigurable systems. The approach proposed in
our paper shares common principles with others related works that address the
safety of dynamic reconfigurations through formal approaches. In particular, our
V-shape ordering provides a notion of incremental consistency that is linked to
the concept of a transitional invariant proposed in [15]. Transitional invariants
are used to verify the correctness of programs during and after reconfigurations.
However, in [15], such invariants are only verified on abstract specifications of
programs and reconfigurations.

Our approach is also close to [20], which generates adaptive programs from
formal models. Nevertheless, while our approach considers structural invariants
that are application-independent, the solutions proposed in [20] focus on high-
level behavioural constraints that are application-specific. Such constraints shall
be individually modeled (for example using Petri nets) as well as the different
reconfigurations that can be applied on the system. For each specific application,
the designer can also define some properties using LTL formulas and check them
on the aforementioned models using model-checking techniques.

Another set of works [12,17,1,19] aims at proposing various formal models
(Darwin, Wright, etc.) to specify component-based systems whose architectures
can evolve (addition/removal of components/wires) at run-time. Our approach
1 This number has been computed experimentally by keeping track of all new assem-

blies generated while applying the protocol.

Verification of the SYNERGY Reconfiguration Protocol 115

differs in at least two points: (i) we started and focused on a real implementation
in Java and did not follow the classic V-shaped software lifecycle2, and (ii) our
goal in this work was mostly to verify and debug the reconfiguration protocol at
hand, and not only to formalise it.

Graph grammars, in particular Reo, have been used in [14] for modeling dy-
namic reconfigurations of systems evolving in changing environments, and veri-
fying properties (safety, consistency) on them. In [13], the authors also advocate
the use of analysis tools to check that these changes do not affect the integrity
or consistency of the system. More precisely, they show how dynamic software
architectures can be specified using FSP, and some reachability and safety prop-
erties checked using LTSA. Our approach follows the same line of work, but the
reconfiguration protocol is much more complex (e.g., import semantics, failure
tolerance, or component configuration) and therefore deserved more expressive
specification languages and more powerful verification tools.

Another related work is [5], where the authors verify some temporal properties
using model-checking techniques on a dynamic reconfiguration protocol used
in agent-based applications. There is also a reference implementation in Java.
However, analysis techniques were applied a posteriori on a protocol which was
already working as expected, whereas we use formal verification a priori during
the protocol design and development.

In [11], the authors present the formal verification of an operating system
microkernel. They proved the functional correctness of the microkernel using the
Isabelle theorem prover. The formal specification was generated automatically
from an Haskell prototype, and the final implementation was manually encoded
in C. This formal process helped to detect and correct many bugs in the system
algorithms. Here, we focused on an alternative approach which requires much less
effort in the verification process (automated versus semi-automated verification).
Nevertheless, although model-checking techniques are very suitable to detect
bugs in any kind of application, they do not ensure correctness of the system as
it may be achieved using theorem proving techniques.

7 Concluding Remarks

We have presented in this paper a robust reconfiguration protocol which is part
of the Synergy virtual machine. This protocol applies a number of architectural
changes to a current assembly to reach a target assembly. This protocol preserves
over its application some structural invariants and is resistant to failures that
may occur during the reconfiguration process. Its specification and verification
helped to detect several issues which enabled us to revise several parts of the
protocol, for instance: introduction of two additional (un)wire phases (a single
wire/unwire was originally present in the V-shaped protocol), several corrections
of the failure propagation algorithm, and several corrections in the reconfigura-
tion grammar and structural invariants.
2 This software lifecycle is completely different from the V-shaped protocol we propose

in this paper.

116 F. Boyer, O. Gruber, and G. Salaün

We think that this experience was successful due to the late introduction of
specification and verification techniques in the design process (a Java implemen-
tation was already available, but was still under development). Therefore, we
had several iterations between designing, specifying, and verifying the protocol
on the one hand, and completing its implementation on the other hand. Through
these iterations, the specification and verification refined our understanding of
the finer points of the procotol, ultimately fixing bugs in the most pathological
cases that would have been impossible to identify manually. In addition, this
work shows that formal techniques and tools are not only of interest for criti-
cial systems but are also necessary for the design and development of complex
system protocols existing in dynamically reconfigurable systems.

Finally, we would like to emphasize that this was one of the first real-world
applications of the Lotos NT specification language. Lotos NT, thanks to
its user-friendly and programming-like notation, makes specification languages
much more accessible to software engineers, and is expected to become main-
stream for specifying concurrent and distributed systems.

Acknowledgements. The authors would like to thank Frédéric Lang and the
anonymous reviewers for their comments on a former version of this paper.

References

1. Allen, R., Douence, R., Garlan, D.: Specifying and Analyzing Dynamic Soft-
ware Architectures. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS,
vol. 1382, pp. 21–37. Springer, Heidelberg (1998)

2. Bergamini, D., Descoubes, N., Joubert, C., Mateescu, R.: BISIMULATOR: A Mod-
ular Tool for On-the-Fly Equivalence Checking. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 581–585. Springer, Heidelberg (2005)

3. Bruneton, É., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The Frac-
tal Component Model and its Support in Java. Software – Practice and Experi-
ence 36(11-12), 1257–1284 (2006)

4. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., Powazny, V., Lang, F., Serwe,
W., Smeding, G.: Reference Manual of the LOTOS NT to LOTOS Translator
(Version 5.1). INRIA/VASY, 109 pages (2010)

5. Cornejo, M.A., Garavel, H., Mateescu, R., De Palma, N.: Specification and Veri-
fication of a Dynamic Reconfiguration Protocol for Agent-Based Applications. In:
Proc. of DAIS 2001. IFIP Conference Proceedings, vol. 198, pp. 229–244. Kluwer,
Dordrecht (2001)

6. Coulson, G., Blair, G., Clarke, M., Parlavantzas, N.: The Design of a Configurable
and Reconfigurable Middleware Platform. Distributed Computing 15(2), 109–126
(2002)

7. Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia, A., Lee, K., Ueyama, J.,
Sivaharan, T.: A Generic Component Model for Building Systems Software. ACM
Trans. Comput. Syst. 26(1), 1–42 (2008)

8. David, P.-C., Ledoux, T.: An Aspect-Oriented Approach for Developing Self-
Adaptive Fractal Components. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS,
vol. 4089, pp. 82–97. Springer, Heidelberg (2006)

Verification of the SYNERGY Reconfiguration Protocol 117

9. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

10. ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001. International Organization for Standardization — Information Tech-
nology (2001)

11. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: Formal Verification of an OS Kernel. In: Proc. of SOSP 2009, pp.
207–220. ACM, New York (2009)

12. Kramer, J., Magee, J.: The Evolving Philosophers Problem: Dynamic Change Man-
agement. IEEE TSE 16(11), 1293–1306 (1990)

13. Kramer, J., Magee, J.: Analysing Dynamic Change in Distributed Software Archi-
tectures. IEE Proceedings - Software 145(5), 146–154 (1998)

14. Krause, C., Maraikar, Z., Lazovik, A., Arbab, F.: Modeling Dynamic Reconfigu-
rations in Reo using High-level Replacement Systems. Science of Computer Pro-
gramming 76(1), 23–36 (2011)

15. Kulkarni, S.S., Biyani, K.N.: Correctness of Component-Based Adaptation. In:
Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K. (eds.) CBSE 2004. LNCS,
vol. 3054, pp. 48–58. Springer, Heidelberg (2004)

16. Léger, M., Ledoux, T., Coupaye, T.: Reliable Dynamic Reconfigurations in a Re-
flective Component Model. In: Grunske, L., Reussner, R., Plasil, F. (eds.) CBSE
2010. LNCS, vol. 6092, pp. 74–92. Springer, Heidelberg (2010)

17. Magee, J., Kramer, J.: Dynamic Structure in Software Architectures. In: SIGSOFT
FSE 1996, pp. 3–14. ACM, New York (1996)

18. Mateescu, R., Sighireanu, M.: Efficient On-the-Fly Model-Checking for Regular
Alternation-Free Mu-Calculus. Science of Computer Programming 46(3), 255–281
(2003)

19. Wermelinger, M., Lopes, A., Fiadeiro, J.L.: A Graph Based Architectural
(Re)configuration Language. In: Proc. of ESEC / SIGSOFT FSE 2001, pp. 21–
32. ACM, New York (2001)

20. Zhang, J., Cheng, B.H.C.: Model-based Development of Dynamically Adaptive
Software. In: Proc. of ICSE 2006, pp. 371–380. ACM, New York (2006)

Formal Development of a Tool for

Automated Modelling and Verification of
Relay Interlocking Systems

Anne E. Haxthausen, Andreas A. Kjær, and Marie Le Bliguet

DTU Informatics, Technical University of Denmark, DK-2800 Lyngby, Denmark
ah@imm.dtu.dk

Abstract. This paper describes a tool for formal modelling relay in-
terlocking systems and explains how it has been stepwise, formally de-
veloped using the RAISE method. The developed tool takes the circuit
diagrams of a relay interlocking system as input and gives as result a
state transition system modelling the dynamic behaviour of the inter-
locking system, i.e. the dynamic behaviour of the circuits depicted in
the diagrams. The resulting state transition system (model) is expressed
in the SAL language such that the SAL model checker can be used to
model check required properties of this model of the interlocking system.
The tool has been applied to the circuit diagrams of Stenstrup station in
Denmark and the resulting formal model has then been model checked
to satisfy a number of required safety properties.

1 Introduction

The task of a railway interlocking system is to control signals and points of a
railway network such that the railway traffic is safe, i.e. collisions and derailing of
trains are avoided. In Denmark many interlocking systems are still implemented
by electrical relay circuits and these are verified by manual inspection of the
associated circuit diagrams. Such a manual inspection is very difficult and time
consuming and may as a result of that be insufficient and error prone. That is
not satisfactory for such a safety-critical application. For that reason Railnet
Denmark (Banedanmark) asked us to research a better verification method.

Our solution has been to develop a set of tools [9] supporting automated anal-
ysis and verification of relay interlocking systems. To make the tool set user
friendly for railway engineers we decided to centre the tools around a domain-
specific language for expressing documentation such as relay circuit diagrams
that are usually made for relay interlocking systems. The tools comprise editors
for creating the documentation as well as analysis and verification tools that take
the documentation as input. Hence, to analyse or verify an interlocking system,
the railway engineer should just create the documentation of the relay interlock-
ing system to be investigated and then apply to this documentation relevant
tools from the tool set. In [5] is described how a graphical editor for creating
circuit diagrams and a simulator that can visualize the dynamic behaviour of

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 118–132, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Formal Development of a Tool for Automated Modelling and Verification 119

the circuits were developed. In the present paper we will describe how we have
developed a tool supporting the formal verification of relay interlocking systems.
Details of this work can be found in [2,10].

We choose to develop a tool for formal (mathematical based) verification as
this is the most rigorous and effective way to completely verify a system. Formal
methods are now increasingly being used for safety-critical systems and many
standards for the development of safety-critical systems strongly recommend or
even require the use of formal methods. This is for instance the case for the
European CENELEC standards for railway applications. We have chosen the
model checking [3] approach to verification as this allows for full automation.
Many tools for model checking exist and we choose as a first experiment to
use the SAL symbolic model checker [1]. In order to use the model checker to
verify an interlocking system the following must be provided: (1) a state tran-
sition model of the dynamic behaviour of the implemented interlocking system,
(2) a state transition model of the dynamic behaviour of the environment giv-
ing inputs (from operators and track side equipment) to the system, and (3) a
specification of the required system behaviour (e.g. safety requirements). The
model checker can then automatically check that the system model satisfies the
required properties. A model of the dynamic behaviour of an interlocking system
can be derived from the circuit diagrams documenting the implementation of the
interlocking system. However, to make such a derivation manually is very time
consuming and there is the risk of making bugs. Therefore we decided to make
a tool for automated generation of such a model from the circuit diagrams. For
similar reasons tools for automated generation of a model of the behaviour of the
environment and automated generation of a formal specification of the required
system properties should be developed. So far we have implemented a generator
for system models and a generator for one class of required system properties
called confidence conditions. In the future we plan also to implement generators
for safety conditions and behavioural environment models.

We did not only decide to develop the above mentioned tools for generat-
ing formal models and formal properties that can be formally verified using
existing automated model checking tools, we also decided to use formal meth-
ods for the development of these generator tools. We choose the RAISE for-
mal method [15,16] as the authors had previous good experience in using that
method. Other methods such as VDM [7] and Z [18], that are also well suited
for specifying data types and functions manipulating data, could alternatively
have been used.

Paper overview. This paper primarily concerns the development of the model
generator tool and its use. The confidence condition generator was developed
in a similar way. First, in Section 2, we give an informal introduction to the
railway domain, and in Section 3, we informally describe the model generator
tool. Then, in Section 4, we give an overview of the formal development of the
model generator tool, and in Sections 5–6 we describe some of the details of this
development. In Section 7, we report on how we have applied the tool to verify

120 A.E. Haxthausen, A.A. Kjær, and M. Le Bliguet

the interlocking system for Stenstrup station in Denmark. Finally, in Section 8
some conclusions are drawn and some related work is mentioned.

2 The Railway Application Domain

This section introduces concepts of the railway domain relevant for this paper.

2.1 Track-Side Equipment

The considered interlocking systems use track-side equipment to monitor and
control trains:

Track circuits: The railway tracks are divided into sections each having a track
circuit for train detection. The interlocking system uses this for monitoring
the occupancy status of the individual track sections.

Points: Tracks are joined at points which can guide trains into different di-
rections depending on the position of the points. An operator can switch
the points. The interlocking system monitors and controls the positions of
points.

Signals: Signals are placed at the entrance of some track sections. They can
show GO and STOP aspects. The interlocking system sets the signals to
inform the train drivers whether they are allowed to enter these sections.

2.2 Route Based Interlocking

The interlocking systems we are considering in this paper use a route based
approach to interlocking. The basic ideas of this approach are:

– Trains should drive on routes through the network.
– Each route is covered by an entrance signal that informs whether it is allowed

for a train to enter the route or not. Trains are assumed to respect this.
– Two trains must never be allowed to drive on conflicting (i.e. overlapping)

routes at the same time. (To prevent collisions.)
– Before a train is allowed to enter a route, the points in the route must be

locked in positions making the route connected (i.e. it is physically possible
to go from one end of the route to the other end without derailing), and
the route must be empty (i.e. there are no trains on the route). (To prevent
derailing and collisions, respectively.)

– The points of a route must not be switched while a train is driving on the
route. (To prevent derailing.)

2.3 Relay Circuits

The interlocking systems we are considering are implemented by electrical relay
circuits. The circuits are made up of components such as power supplies (each
having a positive and a negative pole), relays, contacts, lamps inside signals,

Formal Development of a Tool for Automated Modelling and Verification 121

Fig. 1. Diagram for circuit controlling relay RR1

and buttons, connected by wires. A relay is an electrical switch operated by an
electromagnet to connect or disconnect a number of contacts in a circuit. When
current flows through the relay, the magnet is drawn and some of the associated
contacts are connected (these contacts are said to be upper contacts) while others
(the lower contacts) are disconnected. When no current flows through the relay,
the magnet is dropped and the associated upper and lower contacts will be discon-
nected and connected, respectively. When contacts are connected/disconnected
this may imply that sub-circuits containing these contacts become live/dead.
This again may imply that relays of these sub-circuits are drawn or dropped,
and so on. The system can get input from the environment:

– buttons can be pushed (and later released) by an operator,
– for each track section there is a (track) relay that is dropped/drawn when a

train enters/leaves that track section, and,
– for each point there is a (point) relay that is dropped/drawn when that point

is moved into a new position.

The track relays and point relays are said to be external, while the relays con-
trolled by the interlocking system are said to be internal.

2.4 Relay Circuit Diagrams

The Danish railways use diagrams to document the electrical circuits of a relay
system. For each internal relay one of the diagrams shows the sub-circuit that
controls that relay. An example of such a diagram is shown in Figure 1. This di-
agram shows the sub-circuit controlling a relay named RR1. The circuit consists
of a number of components connected by wires. The wires are depicted as black
lines. At the top is the positive pole and at the bottom is the negative pole of
the power supply. Relay RR1 is shown using this signature:

�
�
�
��
�
�
�

�� ��
RR1

122 A.E. Haxthausen, A.A. Kjær, and M. Le Bliguet

The downwards arrow informs that in the initial state this relay is dropped. (If
it had been drawn the arrow would have been upwards.) A number of contacts
belonging to other relays occur in this circuit. E.g. a contact belonging to a relay
named A1 is shown using this signature:

A1

The downwards arrow informs that in the initial state relay A1 is dropped. The
horizontal bar breaks the wire – this indicates that the contact is disconnected
in the initial state. If it had not been breaking the wire it would have indicated
that the contact had been connected in the initial state, as it is the case for A2.
Also a button B1 is shown in the diagram using this signature:

B1

A pushed button is shown by this signature:

B1

2.5 Dynamic Behaviour of Relay Circuits

In this section we present an example of the dynamics of a circuit. The example
shows a scenario where a button of a circuit is pushed. In Figure 2 the first four
states of the circuit in this scenario are visualised in a diagram of the circuit.
Wires that are current carrying are shown by a grey colour. State 0 is the initial
state. In the initial state, no wires are current carrying. When the button is
pushed, current flows from plus to minus through relay 37, see state 1. As a
consequence of this, relay 37 is drawn and its associated upper contact becomes
connected, opening a second path of current from plus to minus through relay
33, see state 2. As current flows through relay 33, this will be drawn, see state
3. In state 3 no more internal events can happen.

2.6 Required System Properties

We have identified three kinds of required properties for a relay interlocking
system:

– Confidence conditions expressing that the circuits are well-designed in the
sense that (1) there are no cycles where the same sequence of internal relay
events is repeated over and over again as the reaction to an input, and, (2)
there are no critical races (hence the system always reacts in the same way
to the same input).

– Low level safety conditions expressing that the rules for train route based
interlocking (see Section 2.2) are satisfied.

– High level safety conditions expressing that there are no potential train col-
lisions and no potential derailing of trains. These conditions are independent
of the chosen approach to interlocking.

Formal Development of a Tool for Automated Modelling and Verification 123

+

+

+

+

+

+

+

+

−

− −

−

−

−−

−

State 0

State 2 State 3

State 1

Fig. 2. A state sequence for a circuit. State 0: Initial state; State 1: Button is pushed;
State 2: Relay 37 is drawn and its associated contact is connected; State 3: Relay 33
is drawn.

124 A.E. Haxthausen, A.A. Kjær, and M. Le Bliguet

3 Informal Description of the Model Generator Tool

In this section we informally explain the model generator tool. Given (an XML
representation of) the circuit diagrams of a relay interlocking system, the tool will
generate a state transition system model expressed in RSL-SAL1 as described
below.

State space and initial state: Relays and other components change state over
time. We are in particular interested in the states of the relays as it is possible
to express all the required system properties as LTL formulas over their states.
The states of relays depend on the states of buttons and contacts, however, the
state of a contact can be derived from the state of the relay to which it belongs.
Therefore we have chosen the state space to consist of:

– a Boolean variable b for each button b in the given diagrams
– a Boolean variable r for each relay r in the given diagrams

When a variable is true it means pushed and drawn, respectively. The initial
state of the buttons is false, and for internal relays it is derived from the infor-
mation in the diagrams.

Transition rules: For each internal relay r there are two rules, one for drawing
it and one for dropping it:

[draw r] ∼r ∧ isConducting r → r′ = true,
[drop r] r ∧ ∼ isConducting r → r′ = false

The first rule expresses that r may2 be set to true (meaning that r becomes
drawn) when r is dropped and conducting current, while the second rule ex-
presses that r may be set to false (meaning that r becomes dropped) when r is
drawn and not conducting current. The condition isConducting r for current to
flow through a relay r is a logical formula determined as follows from the circuit
diagram that shows the circuit controlling r. Current will flow through the relay
if there is a path from the positive pole to the negative pole that goes through
the relay and all contacts within this path are connected and all buttons are
pushed. Now for a given relay there are several potential paths, p1, ..., pn, for
current to flow through it. For each potential path pi we express the condition
isConducting pi for that path to be conductive. Then the condition for the relay
to be conducting is the disjunction of these conditions:

isConducting r = isConducting p1 ∨ ... ∨ isConducting pn

1 RSL-SAL [14] is an extension of the RAISE Specification Language [15] with con-
structs for defining state transition systems and assertions in the temporal logic
LTL. RSL-SAL specifications can be translated into a representation in the SAL
language [4] upon which the SAL model checker can be applied.

2 This transition will be taken in any execution if there are no race conditions.

Formal Development of a Tool for Automated Modelling and Verification 125

The condition for a potential path to be conductive is a conjunction of conditions
for its contacts to be connected and its buttons to be pushed. The condition for
a button b to be pushed is b. The condition for an upper contact and a lower
contact belonging to relay r to be connected is r and ¬r, respectively.

As an example, the tool will from the diagram in Figure 1 generate the fol-
lowing two rules for relay RR1:

[draw RR1] ∼RR1 ∧ ((A1 ∧ ∼A2) ∨ (B1 ∧ ∼A2)) → RR1′ = true,
[drop RR1] RR1 ∧ ∼((A1 ∧ ∼A2) ∨ (B1 ∧ ∼A2)) → RR1′ = false

Note that transition rules for external relays and buttons belong to the model of
the environment and should be generated by another generator. For a description
of these rules, see [2,10]. As in [13], we do not model all details of the environment,
but only record the needed assumptions about this. However, while we record
the assumptions in the form of an abstract transitions system model, [13] uses
a more property-oriented specification in an interval logic.

4 Development Overview

In this section we give an overview of how we used the RAISE [15,16] formal
method to develop the tool for automated generation of models of relay inter-
locking systems. The tool was informally described in Section 3.

RAISE allows for stepwise refinement as described in [8]. Refinement is a
verifiable transformation of an abstract (high-level) formal specification into a
concrete (low-level/translatable) specification or a program. Stepwise refinement
allows this process to be done in stages. One of the advantages of using stepwise
refinement is abstraction: One can start specifying the essential, generic prop-
erties of a system without being implementation biased. Design decisions (such
as choice of algorithms and data structures) can be deferred to later refinement
steps. For the present development we started with an abstract specification in
the RAISE Specification Language, RSL [15], refined this into a concrete RSL
specification, and finally translated that into a Java implementation. The two
first steps are sketched in Sections 5–6.

The main component of the developed model generator tool is a function that
maps a Java representation of circuit diagrams into a Java representation of the
state transition system that models the behaviour of the interlocking system.
It is this function that we have formally developed. Other components of the
tool are used to create the Java representation of the diagrams from an XML

parser
(Java)

generator

Model generator

Diagrams
(XML)

Model
(RSL−SAL)

Diagrams Model
(Java)

unparser

text file text file

Fig. 3. Input, output, and Java components of the model generator

126 A.E. Haxthausen, A.A. Kjær, and M. Le Bliguet

representation of these (to be obtained from the circuit diagram editor [5]), and
to convert the Java representation of the state transition system model into an
RSL-SAL representation of this, see Figure 3.

5 Abstract Specification

The main components of the initial RSL specification are an abstract data type
for circuit diagrams, a data type for paths of current in a circuit (diagram), a
data type for models, and a function for generation of models from diagrams.

5.1 Circuit Diagrams

A circuit diagram consists of components that are connected by wires. There are
several potential ways of choosing a data representation for such diagrams. At
this early phase of development we want to defer a decision on which represen-
tation to use. Therefore we just introduce an abstract type (a sort) Diagram for
diagrams:

type Diagram

and declare signatures (see below) for a number of Diagram observer functions.

Components: The components of a diagram are identified by identifiers. We
introduce a sort type Id for such identifiers:

type Id

There exists different kinds of components in a diagram, e.g. a positive pole, a
negative pole, relays, contacts, and buttons. Observer functions are introduced
in order to identify which kind of component an identifier Id represents in a
Diagram:

value
isPlus : Id × Diagram → Bool,
isMinus : Id × Diagram → Bool,
isRelay : Id × Diagram → Bool,
isContact : Id × Diagram → Bool,
isButton : Id × Diagram → Bool

For each kind of component additional observer functions are introduced to
provide additional information that can be found in a diagram for that kind of
component. For instance, for relays identified by an Id in a Diagram, we introduce
a function that returns the initial state that it is given in the Diagram:

value relayState : Id × Diagram ∼→ State

Here State is an enumeration type having two values up and down, representing
the possible initial states of a relay:

type State == up | down

Formal Development of a Tool for Automated Modelling and Verification 127

Wires/connections: We introduce an observer function areNeighbours that
can be used to determine whether two components represented by two Ids are
neighbours (i.e. are connected by a wire) in a Diagram:

value areNeighbours : Id × Id × Diagram → Bool

Well-formedness: Not all values of type Diagram represent legal diagrams.
Therefore we introduce a function, isWfDiagram, that can be used to decide
whether a diagram is legal:

value
isWfDiagram : Diagram → Bool
isWfDiagram(d) ≡ ...

This function is explicitly defined in terms of the Diagram observer functions
introduced above. It checks for instance that the areNeighbours function is sym-
metric and anti reflexive, that no Id in the Diagram represents more than one
component, and that the Diagram contains one positive and one negative pole.

5.2 Paths in a Diagram

We specify the notion of paths of current for a diagram (informally explained in
Section 3). A path can be represented by a list of component Ids:

type Path = Id∗

The following function can be used to test whether a list of identifiers constitute a
legal path in a diagram, i.e. is a list of connected components without repetitions,
the first is the positive pole and the last is the negative pole:

value
isWfPath : Path × Diagram ∼→ Bool
isWfPath(p, d) ≡ ...

We introduce a function that for a legal diagram and a component identifier of
that diagram returns all legal paths that go though the identified component:

value
allPathsFor : Id × Diagram ∼→ Path-set
allPathsFor(id, d) ≡ {p | p : Path • isWfPath(p,d) ∧ id ∈ elems p }
pre isWfDiagram(d) ∧ id ∈ allIds(d)

Here allIds is a function that gives the set of all identifiers of a diagram.

5.3 Models

We introduce RSL types for representing state transition systems (as those ex-
plained in Section 3):

128 A.E. Haxthausen, A.A. Kjær, and M. Le Bliguet

type
TransitionSystem ::

initialisation : Assignment-set
transitionRules : TransitionRule-set

A transition system consists of (1) an initialisation that is a set of assignments
defining the initial state and (2) a set of transition rules. The types of Assignment
and TransitionRule are straight forward and not shown here to save space.

5.4 Generator Function

The generator function that from a set of legal circuit diagrams can derive a state
transition system model of a relay system (as informally described in Section 3)
is now explicitly defined:

value
generateModel : Diagram-set ∼→ TransitionSystem
generateModel(ds) ≡ ...
pre isWfDiagrams(ds)

This function uses a number of auxiliary functions. One of these is the allPaths-
For function. allPathsFor(r, d) is used to find the set of potential paths of current
through a relay r in a diagram d when formulating the transition rules for r.
Other auxiliary functions are used to find abstract representations of the follow-
ing conditions from Section 3: isConducting r for a relay r and isConducting pi

for a path pi.

6 Refinement into a Concrete Specification

In this section we refine the RSL specification into a concrete RSL specification
that is translatable into Java.

6.1 Refinement of Sorts

Abstract types (sorts) such as Diagram and Id are not translatable, so these
are now refined into concrete types. For component identifiers Id we choose text
strings as representation:

type Id = Text

Diagrams are chosen to be represented by short records having two fields, one
field that map component Ids into Components, and one field that contains a
set of Wires:

type
Diagram ::

getComponentMap : Id →m Component
getWires : Wire-set

Formal Development of a Tool for Automated Modelling and Verification 129

For each kind of component a record type is introduced containing a field for
each kind of attribute. For instance, for relays we introduce the following type:

type Relay :: getInitState : State

The Component type is the union of all the component types (Relay etc):

type Component = Pole | Relay | Button | Contact | ...

A Wire is represented by the Ids of the two components that it connects:

type Wire = Id × Id

6.2 Refinement of Functions

The Diagram observer functions that were only given a function signature should
be given an explicit definition in order to become executable. For instance, the
definition of the areNeighbours function is refined into:

value
areNeighbours : Id × Id × Diagram → Bool
areNeighbours(id1, id2, d) ≡

(id1, id2) ∈ getWires(d) ∨ (id2, id1) ∈ getWires(d)

The allPathsFor function (see Section 5.2) was completely specified by a set
comprehension, but this is not translatable as it does not give an algorithm for
finding the legal paths through a component in a diagram. The explicit definition
is therefore refined as follows:

value
allPathsFor : Id × Diagram ∼→ Path-set
allPathsFor(id, d) ≡
{ p | p : Path • p ∈ makePathsBetweenPoles(d) ∧ id ∈ elems p}
pre isWfDiagram(d) ∧ id ∈ allIds(d)

where makePathsBetweenPoles : Diagram ∼→ Path-set is an explicitly defined
function that finds all legal paths from the positive pole to the negative pole. It
is based on the backtracking algorithm in [17] and a detailed explanation of this
can be found in [2].

While the other presented refinement steps have been correct by default, the
refinement of allPathsFor requires a proof that the old and new definitions are
equivalent. We have made a proof of this by informally proving:

∀ d : Diagram, p : Path •

p ∈ makePathsBetweenPoles(d) ≡ isWfPath(p, d) pre isWfDiagram(d)

130 A.E. Haxthausen, A.A. Kjær, and M. Le Bliguet

Fig. 4. Stenstrup station

7 Experiments

We applied the developed model generator to the diagrams for the interlocking
system for Stenstrup station in Denmark. The station layout for Stenstrup is
shown in Figure 4. The diagrams involved 4 buttons, 46 internal relays and 10
external relays. The generated transition system model contained > 61 Boolean
variables and 92 transition rules for internal relays. Transition rules for the en-
vironment were added by hand. The confidence condition generator mentioned
in the introduction generated 102 confidence conditions. Further 40 safety con-
ditions were formulated by hand. We translated the model and the conditions
into SAL using the RAISE tools, and then we used the SAL model checker to
verify that the resulting model satisfied all the conditions.

The advantage of using our model generator is two-fold: It would not only have
been very time consuming to derive the 92 rules manually from the diagrams,
there would also have been the risk of making bugs.

8 Conclusions

Summary. This paper has two contributions: (1) a tool that supports formal
verification of relay interlocking systems and (2) a description of how this tool
was formally developed using the RAISE method.

Given the circuit diagrams of a relay interlocking system, the tool can be
used to automatically generate a formal model of the relay interlocking system,
and then a model checker can be used to verify that required properties always
hold for the generated model. To use such an automated, formal verification
approach is a great improvement compared to manual inspections of diagrams:
It is faster and less error prone, it is much more complete wrt. what is being
checked, and the checking it-self is exhaustive considering all possible scenarios.
The approach has successfully been applied to the relay interlocking system for
Stenstrup station.

The tool was formally developed starting with an abstract (property-oriented)
specification that was refined into a concrete specification that could directly be
transformed into Java code. Some of the advantages we experienced with this
approach were:

– It was easier first to make an abstract specification in which some types were
declared without a data representation and some functions were not given

Formal Development of a Tool for Automated Modelling and Verification 131

an algorithm, and then later make a concrete specification in which data
representations for types and algorithms for the functions were invented.

– It was easier to define data types and algorithms in a concrete RSL specifi-
cation and translate these into Java, than coding them directly in Java.

In a similar way we have developed a tool that can generate confidence conditions
from circuit diagrams.

Future work. In future work we plan to develop tools that from track layouts and
other railway data can generate transition rules for the dynamic behaviour of
the environment and safety conditions, respectively. We have already informally
described a procedure for such generations, so it should be straight forward to
implement. We also plan to apply the tools to larger stations to test to which
extent the method is scalable without state space explosion problems. In case of
state space explosion, techniques such as compositional reasoning and induction
to avoid that should be investigated. One idea could be to combine bounded
model checking with inductive reasoning, as done in [11].

Related work. The first author of this paper and other authors have also made
research into model checking of railway control systems, see e.g. [12,11], but
these systems have been computer based and not implemented by relay circuits,
and therefore they have not made models of relay circuits. Eriksson [6] has
formally verified an interlocking system containing relay circuits, but he used
theorem proving and not model checking, and his proof obligations do not include
our circuit confidence conditions. Furthermore, the other authors have to our
knowledge not been using formal methods for the development of their tools.

Acknowledgements. The authors would like to thank Kirsten Mark Hansen,
Railnet Denmark, for providing the initial idea for this project and for many
valuable discussions and suggestions.

References

1. Symbolic Analysis Laboratory, SAL, home page (2001), http://sal.csl.sri.com
2. Le Bliguet, M., Kjær, A.A.: Modelling Interlocking Systems for Railway Stations.

Technical Report IMM-M.Sc.-2008-68, Informatics and Mathematical Modelling,
Technical University of Denmark, Richard Petersens Plads, Building 321, DK-2800
Kgs. Lyngby, Master thesis supervised by Anne Haxthausen (2008),
http://orbit.dtu.dk (under department records)

3. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

4. de Moura, L., Owre, S., Shankar, N.: The SAL Language Manual. Technical Report
SRI-CSL-01-02, SRI International (2003), http://sal.csl.sri.com

5. Eriksen, L.E., Pedersen, B.: Simulation of Relay Interlocking Systems. Technical
Report IMM-B.Sc.-2007-04, Informatics and Mathematical Modelling, Technical
University of Denmark, Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyn-
gby (2007), Bachelor thesis supervised by Anne Haxthausen and Hubert Baumeis-
ter, http://www2.imm.dtu.dk/pubdb/p.php?5306

http://sal.csl.sri.com
http://orbit.dtu.dk
http://sal.csl.sri.com
http://www2.imm.dtu.dk/pubdb/p.php?5306

132 A.E. Haxthausen, A.A. Kjær, and M. Le Bliguet

6. Eriksson, L.-H.: Using Formal Methods in a Retrospective Safety Case. In: Heisel,
M., Liggesmeyer, P., Wittmann, S. (eds.) SAFECOMP 2004. LNCS, vol. 3219, pp.
31–44. Springer, Heidelberg (2004)

7. Fitzgerald, J., Larsen, P.G.: Modelling Systems – Practical Tools and Techniques
in Software Development, 2nd edn. Cambridge University Press, Cambridge (2009)

8. Haxthausen, A.E.: Developing a Domain Model for Relay Circuits. International
Journal of Software and Informatics 3(2–3), 241–272 (2009)

9. Haxthausen, A.E.: Towards a Framework for Modelling and Verification of Re-
lay Interlocking Systems. In: Kordon, F. (ed.) Monterey Workshops 2010. LNCS,
vol. 6662, pp. 176–192. Springer, Heidelberg (2011)

10. Haxthausen, A.E., Le Bliguet, M., Kjær, A.A.: Modelling and Verification of Relay
Interlocking Systems. In: Choppy, C., Sokolsky, O. (eds.) Monterey Workshop 2008.
LNCS, vol. 6028, pp. 141–153. Springer, Heidelberg (2010)

11. Haxthausen, A.E., Peleska, J., Kinder, S.: A Formal Approach for the Construction
and Verification of Railway Control Systems. Formal Aspects of Computing 23(2),
191–219 (2011); The article is also available electronically on SpringerLink,
http://www.springerlink.com/openurl.aspgenre=article&id=doi:10.1007/

s00165-009-0143-6

12. Huber, M., King, S.: Towards an integrated model checker for railway signalling
data. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp.
204–223. Springer, Heidelberg (2002)

13. Jones, C.B., Hayes, I.J., Jackson, M.A.: Deriving specifications for systems that
are connected to the physical world. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.)
Formal Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 364–390.
Springer, Heidelberg (2007)

14. Perna, J.I., George, C.: Model Checking RAISE Applicative Specifications. In:
Proceedings of the Fifth IEEE International Conference on Software Engineering
and Formal Methods, pp. 257–268. IEEE Computer Society Press, Los Alamitos
(2007)

15. The RAISE Language Group. The RAISE Specification Language. The BCS Prac-
titioners Series. Prentice Hall Int. (1992)

16. The RAISE Method Group. The RAISE Development Method. The BCS Practi-
tioners Series. Prentice Hall Int. (1995)

17. Skiena, S.S.: Combinatorial Search and Heuristic Methods. In: The Algorithm De-
sign Manual. Springer, Heidelberg (1998)

18. Woodcock, J.C.P., Davies, J.: Using Z: Specification, Proof and Refinement. Pren-
tice Hall International Series in Computer Science. Prentice-Hall, Englewood Cliffs
(1996)

http://www.springerlink.com/openurl.aspgenre=article&id=doi:10.1007/s00165-009-0143-6
http://www.springerlink.com/openurl.aspgenre=article&id=doi:10.1007/s00165-009-0143-6

Relational Reasoning via SMT Solving

Aboubakr Achraf El Ghazi and Mana Taghdiri

Karlsruhe Institute of Technology, Germany
{elghazi,mana.taghdiri}@kit.edu

http://asa.iti.kit.edu/

Abstract. This paper explores the idea of using a SAT Modulo Theo-
ries (SMT) solver for proving properties of relational specifications. The
goal is to automatically establish or refute consistency of a set of con-
straints expressed in a first-order relational logic, namely Alloy, without
limiting the analysis to a bounded scope. Existing analysis of relational
constraints – as performed by the Alloy Analyzer – is based on SAT
solving and thus requires finitizing the set of values that each relation
can take. Our technique complements this approach by axiomatizing all
relational operators in a first-order SMT logic, and taking advantage of
the background theories supported by SMT solvers. Consequently, it can
potentially prove that a formula is a tautology – a capability completely
missing from the Alloy Analyzer – and generate a counterexample when
the proof fails. We also report on our experiments of applying this tech-
nique to various systems specified in Alloy.

Keywords: First-order relational logic, SAT Modulo Theories, Z3,
Alloy, Relational specification, Constraint solving.

1 Introduction

Many computational problems can be specified declaratively as a set of con-
straints expressed in a first-order relational logic. Safety properties of structure-
rich systems, in particular, have been successfully expressed in Alloy [14], a
typed, first-order relational logic with a built-in transitive closure operator. Due
to its expressiveness and yet simplicity, Alloy has become a popular choice for de-
scribing high-level designs of various systems such as network configurations [24],
naming architectures [17], and file-systems [15,20]. It has also been used as an
intermediate logic in many program checking tools such as Jalloy [27], JForge [7],
Karun [25], and TestEra [16].

Besides its expressiveness and intuitive syntax, Alloy’s fully automatic con-
straint solver – the Alloy Analyzer – is an important reason for its popularity.
The Analyzer checks a collection of Alloy constraints, looking for an instance
that satisfies all the constraints, but violates a property of interest. This analy-
sis, however, is always performed with respect to a bounded scope in which only
a finite number of values is considered for each type. This is because Alloy con-
straints are translated to a propositional logic and solved using a SAT solver.
Therefore, although the Alloy Analyzer can produce counterexamples efficiently,

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 133–148, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://asa.iti.kit.edu/

134 A.A. El Ghazi and M. Taghdiri

it can never prove the correctness of a property – not even for the simplest con-
straints. Furthermore, since arithmetic expressions in Alloy are directly trans-
lated to SAT via bit blasting, they can be analyzed with respect to only a few
bits. Consequently, Alloy offers limited support for numerical constraints.

In order to overcome these limitations, we introduce a new approach in which
Alloy constraints are analyzed using an SMT solver rather than a SAT solver.
SMT solvers are particularly attractive because they can efficiently prove a rich
combination of decidable background theories without sacrificing completeness
or full automation. Furthermore, their increasing capability of handling quanti-
fiers [5,11,12] supports an intuitive, non-finitized translation of first-order rela-
tional logic. Similar to SAT solvers, many SMT solvers can produce satisfying
instances as well as unsatisfiable cores that improve their usability.

Our previous work [13] described how a subset of Alloy could be analyzed
using the Yices SMT solver [8]. That analysis could prove properties of certain
Alloy models, but it required type finitization for handling the transitive closure
operator. Therefore, a complete proof was impossible in the presence of transi-
tive closure. Our current technique, however, handles the whole Alloy language
without requiring any type finitization and thus is potentially capable of proving
properties of any Alloy model. Furthermore, it produces SMT formulas in the
standard SMT-LIB language, so they can be analyzed by various SMT solvers.

We mitigate the bounded-analysis problem of Alloy by specifying all
relational operators as first-order axioms in SMT2 – SMT-LIB, version 2.0 [4]
– exploiting the increasing power of SMT solvers in handling quantifiers. How-
ever, since the Alloy logic is undecidable, axiomatizing certain Alloy constructs
such as its hierarchical type system, transitive closure, set cardinality, and mul-
tiplicity keywords is particularly challenging; a naive translation can generate
undecidable formulas that cannot be proven by SMT solvers. Therefore, we have
carefully developed our translation rules to ensure that (1) the translation is al-
ways sound, and (2) it performs well in practice, i.e. the SMT formulas resulting
from commonly-used Alloy idioms and patterns can be proven by the solver.

Due to our arbitrary use of quantifiers, our target logic is undecidable, and
thus the instance returned by the SMT solver may be marked as “unknown”.
This indicates that the instance may be spurious, and must be double-checked.
However, if the SMT solver outputs “unsat”, it is guaranteed that the set of
formulas is unsatisfiable. Consequently, our approach is a complement to the
Alloy Analyzer: when the Alloy Analyzer fails to find a counterexample, our
technique will translate the constraints to SMT2, aiming at proving the correct-
ness of the property of interest. Therefore, the user can benefit from both the
Alloy Analyzer’s sound counterexamples, and the SMT solvers’ sound proofs.

We report on the theoretical foundations of analyzing the Alloy relational logic
using an SMT solver. We describe the translation rules in detail and report on
our experiments of applying those rules to 8 systems already specified in Alloy.
We checked a total of 20 assertions using the Z3 SMT solver [6] and the results are
encouraging: out of the 15 valid assertions, 12 were successfully proven correct,
and sound counterexamples were generated for 4 out of the 5 invalid assertions.

Relational Reasoning via SMT Solving 135

problem ::= typeDcl∗relDcl∗fact∗[assertion]
typeDcl ::= sig identifier [in type]
relDcl ::= rel : type [[mult] → [mult] type]∗

mult ::= lone | some | one | set
fact ::= formula
assertion ::= formula
exp ::= type | var | rel | none | exp + exp
| exp & exp | exp − exp | exp.exp
| exp → exp |~exp |^exp | Int intExp

intExp ::= number | #exp | int var

| intExp intOp intExp | (sum [var : exp]+|intExp)

formula ::= exp in exp
| intExp intComp intExp
| not formula | formula and formula
| formula or formula
| all var : exp|formula
| some var : exp|formula

intOp ::= + | -
intComp ::= < | > | =
type ::= identifier | Int
rel ::= identifier
var ::= identifier

Fig. 1. Abstract syntax for the core Alloy logic

This suggests that although our motivation was to prove valid assertions, our
technique can be useful for invalid assertions too. The analysis time in most
cases was close to zero seconds, witnessing the efficiency of using SMT solvers.

2 Background

2.1 The Alloy Language

Alloy [14] is a typed, first order relational logic with an object-oriented-like
syntax. As shown in Figure 1, a problem expressed in Alloy is a collection of
type declarations, relation declarations, formulas marked as fact, and possibly
an assertion to check. The Alloy Analyzer looks for an instance that satisfies all
the facts, but violates the assertion. This analysis is performed with respect to
a finite scope, an upper bound on the number of elements of each type, and thus
absence of an instance does not constitute proof of correctness.

Type Declarations. Alloy types represent sets of atoms. The signature sig A{}
declares a top-level type named A whereas sig B in A{} declares a type B as a
subtype (subset) of the type A.

Relation Declarations. Relations are declared as fields of signatures. That is,
sig A {r : B → C} declares r as a relation of type A → B → C. A relation can
be constrained by the multiplicity keywords lone (at most one), some (at least
one), one (exactly one), and set (any number). A declaration r : A m → n B
constrains r to associate each element of A with n elements of B, and each
element of B with m elements of A where m and n are multiplicity keywords.

Expressions. Basic Alloy expressions are relations. Sets are unary relations,
and scalars are singleton unary relations. The built-in relation none denotes
the empty set. Set operators union, intersection, and difference are denoted by
“+”, “&”, and “-” respectively. The “.” operator denotes relational join: for
two relations p and q with arities m and n, the expression p.q is defined as
{(p1, .., pm−1, q2, .., qn) | (p1, .., pm) ∈ p ∧ (q1, .., qn) ∈ q ∧ pm = q1}. The
expression p → q denotes Cartesian product of p and q, and ~ represents the
transpose of a binary relation, i.e. ~r = {(r2, r1) | (r1, r2) ∈ r}. The operator ^
denotes transitive closure, and is defined only on homogeneous binary relations.

136 A.A. El Ghazi and M. Taghdiri

Integer expressions denote primitive integers. The built-in type Int represents
the set of all atoms carrying primitive integers. The expression Int ie denotes
the atom carrying the integer denoted by the integer expression ie, whereas
int v denotes the integer value of the atom represented by the variable v. Inte-
ger expressions are obtained from constant numbers and set cardinality #, and
combined using arithmetic operators. These operators are distinguished from set
operators using the type information. The expression (sum x : A | ie) computes
the sum of the values that the integer expression ie can take for all distinct
bindings of the variable x in A.

Formulas. Basic Alloy formulas are formed using the subset operator in and
the integer comparison operators, and combined using logical operators. In a
quantified formula (Q x : e | F), the formula F is based on x, the expression e
bounds the values of x, and Q is either a universal or existential quantifier.

2.2 The SMT2 Language

We translate Alloy problems to SMT2 – the SMT-LIB standard, version 2.0 [4]
as supported by the Z3 SMT solver1 [6]. SMT-LIB supports various theories
and defines a common language for SMT problems. Our generated formulas use
the quantified theories of free sorts, linear integer arithmetic, and uninterpreted
functions with equality, and thus fit in the AUFLIA logic [4].

Declarations. The logic underlying SMT2 is a many-sorted first-order logic
with equality. It supports Int, Real, and Bool, and allows users to declare new
sorts (types) using the declare-sort command.

Functions are the basic building blocks of SMT formulas. The command
(declare-fun f (A1, · · · , An−1) An) declares f : A1 × · · · × An−1 → An.
All functions are total, i.e. they are defined for all elements of their domain.
Constants are functions that take no arguments, i.e. a constant v of type A is
declared as (declare-fun v () A).

Assertions. The command (assert f) asserts a formula f in the current logi-
cal context. Basic formulas are function applications and can be combined using
the boolean operators and, or, not, and => (implies). Universal and existen-
tial quantifiers are denoted by (forall (a1 A1)..(an An) f) and (exists
(a1 A1)..(an An) f) respectively.

Analysis. We use the (set-logic l) command to tell the solver what combi-
nation of theories is being used, and (check-sat) to instruct the solver to check
whether the conjunction of the given assertions is satisfiable or not.

3 Approach

We translate well-typed Alloy problems to SMT2 by specifying the semantics of
Alloy constructs as first-order axioms. Therefore, Alloy problems can be analyzed
1 The syntax of Z3 is slightly different from SMT-LIB in the use of parentheses.

Relational Reasoning via SMT Solving 137

sig Name {}
sig Address {}
sig Book {}
sig AddrBook in Book {
addr: Name->lone Address

}

1. (declare-sort Name)
2. (declare-sort Address)
3. (declare-sort Book)
4. (declare-fun isName (Name) Bool)
5. (declare-fun isAddress (Address) Bool)
6. (declare-fun isBook (Book) Bool)
7. (declare-fun isAddrBook (Book) Bool)
8. (assert (forall (b Book) (=> (isAddrBook b) (isBook b))))
9. (declare-fun addr (Book Name Address) Bool)
10.(assert (forall (b Book)(n Name)(a Address)

(=> (addr b n a) (and (isAddrBook b)(isName n)(isAddress t)))))
11.(declare-fun oneAddr (Book Name) Address)
12.(assert (forall (b Book)(n Name)(a Address)

(=> (addr b n a) (= a (oneAddr b n)))))

Fig. 2. An example of translating Alloy declarations

without type finitization or sacrificing full automation. However, due to Alloy’s
undecidability and our extensive use of quantifiers, the resulting SMT formulas
can be undecidable. Thus the SMT solver may fail to establish or refute an
assertion and can generate an “unknown” instance that may be invalid. We try
to minimize the chances of producing invalid instances in practice by choosing an
axiomatization that performs best for commonly-used Alloy patterns and idioms
according to our experiments.

3.1 Type and Relation Declarations

Since SMT2 does not support subtype declarations, we translate Alloy’s hier-
archical type system implicitly. Top-level Alloy types are translated to unin-
terpreted SMT2 sorts, but subtypes are specified only through axioms. Extra
axioms are needed for specifying those relations that are defined over subtypes.

Figure 2 provides an example. On the left, an address book is represented by
an Alloy relation addr: AddrBook -> Name -> lone Address where AddrBook
is a subtype of Book. On the right, our SMT2 translation is shown. The top-level
types Name, Address, and Book are declared as uninterpreted sorts in Lines 1-3.
Lines 4-7 declare an uninterpreted membership function for each Alloy type. A
membership function isT is defined over the top-level, supertype T ′ of a type T
to denote which elements of T ′ belong to T . Membership functions are necessary
for specifying the semantics of subtypes2. Line 8 specifies the subtype semantics,
i.e. all elements of AddrBook should belong to Book.

Since all SMT2 functions are total, arbitrary relations are specified using a
function with an additional boolean column whose value is true for the tuples
that are included in that relation, and false for all others. Line 9 declares addr
as a boolean-valued function over its top-level types. Line 10 constrains addr
to be defined only for the intended type of AddrBook × Name × Address. The
multiplicity keyword lone is specified by Lines 11-12. Line 11 declares an unin-
terpreted function oneAddr that maps each element of Book × Name to exactly
one element of Address. Line 12 constrains addr to be a subset of oneAddr, and
thus to map every element of Book × Name to at most one address.
2 Membership functions of top-level types are often avoidable. They are included in

this example for uniformity.

138 A.A. El Ghazi and M. Taghdiri

D : AlloyPar → SMTCommand∗ S : Alloy type

Ti : AlloyExpr → SMTSort r : Alloy relation

E : AlloyExpr × −−−−−−→
SMTV ar → SMTFormula v : SMT variable

E[S, v] = (isName[S] v)

E[r, <v1, .., vn>] = (name[r] v1 .. vn)

D[sig S] = {(declare-sort name[S]), If S is top-level

(declare-fun isName[S] (T1[S]) Bool)}
D[sig S1 in S2] = {D[sig S1], (assert (forall (v T1[S1]) (=> E[S1, v] E[S2, v])))}
D[r : S1-> .. ->Sn] = {(declare-fun name[r] (T1[S1] .. T1[Sn]) Bool),

(assert (forall (v1 T1[S1]) .. (vn T1[Sn])(=> E[r, <v1, .., vn>] (and E[S1, v1] .. E[Sn, vn]))))}
D[r : S1-> .. -> set Sn] = D[r : S1-> .. -> Sn]

D[r : S1-> .. -> lone Sn] = {D[r : S1-> .. -> Sn],

(declare-fun oneName[r] (T1[S1] .. T1[Sn−1]) T1[Sn]),

(assert (forall (v1 T1[S1]) .. (vn T1[Sn])(=> E[r, <v1, .., vn>] (= vn (oneName[r] v1..vn−1)))))}
D[r : S1 -> .. -> some Sn] = {D[r : S1 -> .. -> Sn],

(declare-fun oneName[r] (T1[S1] .. T1[Sn−1]) T1[Sn]),

(assert (forall (v1 T1[S1]) .. (vn−1 T1[Sn−1])

(=> (and E[S1, v1] .. E[Sn−1, vn−1]) E[r, <v1, .., vn−1, (oneName[r] v1 .. vn−1)>])))}
D[r : S1-> .. -> one Sn] = {D[r : S1-> .. -> lone Sn], D[r : S1-> .. -> some Sn]}

Fig. 3. Translation rules for Alloy type and relation declarations

Figure 3 gives the translation rules for Alloy type and relation declarations.
The main translation function D generates a collection of SMT commands for
an Alloy paragraph. This figure defines D only for Alloy declarations; facts and
assertions are covered in Sec. 3.2. For an Alloy expression e of type S1 × ..×Sn,
the auxiliary function Ti[e] returns the SMT sort that corresponds to the top-
level, supertype of Si. Function E translates intermediate Alloy expressions.
E[e,−→v] returns an SMT formula that encodes that a list of SMT variables −→v
is included in the relation resulting from evaluating e. Figure 3 defines E as
needed by this set of rules. Other cases are covered in the next sections. Sorts
and functions declared in SMT2 are named using the functions name, isName,
and oneName. The function name returns a unique name for each Alloy type
and relation. isName denotes the type membership function, and oneName
denotes the helper function used for encoding multiplicity constraints.

As shown in Figure 3, an Alloy top-level type is translated to a sort in SMT2.
A membership function is declared for each Alloy type to represent the elements
that are included in that type. Subtypes are further constrained to be subsets of
their immediate supertypes. An Alloy relation is translated to a boolean-valued
SMT2 function. Since only top-level types are declared as sorts, this function
is declared over top-level types. An extra constraint ensures that the relation
is defined only for its intended types (and not their supertypes). Multiplicity
keywords can be desugared to basic Alloy constraints. For example, r : S1 →
lone S2 is equivalent to r : S1 → S2 with the additional constraint all x :
S1, y, z : S2 | ((y in x.r) and (z in x.r)) ⇒ (y = z). However, since multiplicity
applied to the last column is widely-used in Alloy, we optimize this case. For a
relation r : S1 → .. → mult Sn with a multiplicity keyword mult, we declare a
function oneName[r] that maps every tuple of (T1[S1]× ..×T1[Sn−1]) to exactly

Relational Reasoning via SMT Solving 139

F : AlloyFormula → SMTFormula fact, assertion, f : Alloy formula
D[fact] = (assert F [fact]) e : Alloy expression
D[assertion] = (assert F [not assertion]) x : Alloy variable
F [not f] = (not F [f]) v, w : SMT variable
F [f1 and f2] = (and F [f1] F [f2])
F [f1 or f2] = (or F [f1] F [f2])
F [all x : e|f] = (forall (v T1[e]) (=> E[e, v] F [f][v/x]))
F [some x : e|f] = (exists (v T1[e]) (and E[e, v] F [f][v/x]))
F [e1 in e2] = (forall (v1 T1[e1]) .. (vn Tn[e1])(=> E[e1, <v1, .., vn>] E[e2, <v1, .., vn>]))
E[~e, <v1, v2>] = E[e, <v2, v1>]
E[e1 + e2, <v1, .., vn>] = (or E[e1, <v1, .., vn>] E[e2, <v1, .., vn>])
E[e1 & e2, <v1, .., vn>] = (and E[e1, <v1, .., vn>] E[e2, <v1, .., vn>])
E[e1 - e2, <v1, .., vn>] = (and E[e1, <v1, .., vn>] (not E[e2, <v1, .., vn>]))
E[e1 -> e2, <v1, .., vn, .., vn+m>] = (and E[e1, <v1, .., vn>] E[e2, <vn+1, .., vn+m>])
E[e1.e2, <v1, .., vn−1, vn+2.., vn+m>] = (exists (w Tn[e1])

(and E[e1, <v1, .., vn−1, w>] E[e2, <w, vn+2, .., vn+m>]))
E[none, v] = false
E[x, v] = (= x v)

Fig. 4. Translation rules for Alloy formulas

one element of T1[Sn]. For lone, elements of r must be included in oneName[r],
for some, r must include all elements of oneName[r] that belong to the intended
type of S1 × .. × Sn, and for one, both conditions must hold.

3.2 Formulas

Figure 4 gives the translation rules for Alloy facts (that are assumed to be true)
and assertions (that are intended to be checked). We negate an assertion so that
any instance found by the SMT solver will be a counterexample to the assertion.
If the solver finds no instances, the assertion is proven correct.

In addition to the translation functions defined in Figure 3, Figure 4 uses the
function F to translate Alloy formulas. Negation, conjunction, and disjunction
in Alloy are mapped to those in SMT2. A quantified Alloy formula (Q x : e|f) is
translated to an SMT formula that bounds x to T1[e], and uses either an impli-
cation (for universal quantifiers) or a conjunction (for existential quantifiers) of e
to constrain the values of x. The notation [v/x] substitutes v for all occurrences
of x3. The Alloy formula (e1 in e2) is well-formed only when arity[e1] = arity[e2]
and is translated by specifying that every element of e1 is included in e2.

E[e, <v1, .., vn>] produces an SMT formula that encodes that <v1, .., vn> is in-
cluded in the relation corresponding to e. Since the original Alloy constraints
are well-typed, n = arity[e]. Defining E for relational transpose, union, inter-
section, and difference is straightforward. An expression e1->e2 contains a tuple
<v1, .., vn, .., vn+m> iff e1 contains <v1, .., vn> and e2 contains <vn+1, .., vn+m>
where n = arity[e1] and m = arity[e2]. Relational join is similar except that it
requires an existentially quantified variable for the merged column of the two
relations. E[none, v] = false because none denotes the empty set, and the scalar
case of E[x, v] is defined as equality. Since in the expression E[x, v], the variable
x is declared in Alloy and v in SMT2, the formula (= x v) is not well-formed by
itself. However, the translation rules will substitute an SMT variable for x after
this formula is plugged in its enclosing formula.
3 Alloy’s universal quantifiers cannot be applied to non-unary relations, and existential

quantifies over non-unary relations can be desugared using multiple unary relations.

140 A.A. El Ghazi and M. Taghdiri

1. (declare-fun trName[r] (Int T1[r] T2[r]) Bool)
2. (assert (forall (i Int) (v1 T1[r]) (v2 T2[r]) (=> (< i 1) (not (trName[r] i v1 v2)))))
3. (assert (forall (v1 T1[r]) (v2 T2[r]) (= (trName[r] 1 v1 v2) E[r, <v1, v2>])))
4. (assert (forall (i Int) (v1 T1[r]) (v2 T2[r]) (=> (> i 1)

(= (trName[r] i v1 v2) (or (trName[r] (- i 1) v1 v2)
(exists (w T1[r]) (and (trName[r] (- i 1) v1 w)E[r, <w, v2>])))))))

E[^r, <v1, v2>] = (exists (i Int) (trName[r] i v1 v2))

Fig. 5. Translation rules for the transitive closure of a relation r

3.3 Transitive Closure

The Alloy expression ^r computes the smallest symmetric and transitive relation
that contains r where r : S → S is a binary homogeneous relation. Since the Alloy
Analyzer checks Alloy problems with respect to finite scopes, it soundly unrolls
^r to r+r.r+..+r(n) where n is the upper bound on the size of S. In our analysis,
however, types are infinite and so any finite unrolling of transitive closure will be
unsound. Figure 5 gives our axioms using an integer-based inductive definition.
In the interest of space, here we only describe the translation of ^r where r is a
relation explicitly declared in Alloy. The general case of ^e requires normalizing
the expression e and applying a generalized version of these rules.

Line 1 of Figure 5 declares a helper SMT function trName[r] to compute
transitive closure. For any integer i, (trName[r] i) denotes the expression r +
r.r + .. + r(i). This is specified inductively (on the value of i) using axioms 2-
4. Line 2 specifies that (trName[r] i) does not contain any elements if i < 1.
Line 3 constrains the base case of (trName[r] 1) to be equal to r, and Line 4
specifies (trName[r] i) in terms of (trName[r] (i − 1)) for i > 1. Finally, the
definition of E specifies that a pair <v1, v2> is included in the relation resulting
from evaluating ^r iff <v1, v2> is included in (trName[r] i) for some integer i.

3.4 Integer Expressions

Arithmetic expressions in Alloy are handled by bit blasting, using a fixed, user-
defined bitwidth (usually less than 7 [1]). Overflows are truncated silently. Better
handling of arithmetic expressions was needed in many applications [26]. Thus
we deviate from the Alloy’s behavior and translate integer expressions using the
SMT2 theory of linear integer arithmetic that supports infinite integers.

Figure 6 gives the rules. Function I translates an Alloy integer expression to
an SMT2 expression of type integer. Alloy’s built-in type Int is mapped to the
SMT2’s built-in sort Int. Unlike Alloy that distinguishes between integer atoms
and primitive integers, the SMT logic allows a single integer type. Comparison
and arithmetic operators in Alloy are translated to those in SMT2. E[Int ie, v]
specifies that a variable v corresponds to the atom carrying ie iff the (integer)
values of v and I[ie] are equal. The int operator becomes the identity function.

In the interest of space, we discuss the translation of #r where r is a unary
relation explicitly declared in Alloy. The general case of #e requires normalizing
the expression e and applying a generalized version of the rules. Our approach
allows the cardinality of a (possibly cyclic) relation to be arbitrarily large (but
finite). To compute #r, we define a mapping ordName[r] from every element of

Relational Reasoning via SMT Solving 141

I : AlloyIntExpr → SMTExpr ie : Alloy integer expression

T1[Int] = Int n : Number

F [ie1 intComp ie2] = (intComp I[ie1] I[ie2])

E[Int ie, v] = (= I[ie] v)

E[Int, v] = true if v is of type Int, false otherwise

I[n] = n

I[int x] = x

I[ie1 intOp ie2] = (intOp I[ie1] I[ie2])

I[#r] = crdName[r]

I[(sum x : r | ie)] = (sumName[r] 1 crdName[r])

1.(declare-fun crdName[r] () Int)

2.(declare-fun ordName[r] (T1[r]) Int)

3.(declare-fun invName[r] (Int) T1[r])

4.(declare-fun trgName[r] (Int) Bool)

5.(assert (and (>= crdName[r] 0) (=> (= crdName[r] 0)(forall (v T1[r]) (not E[r, v])))))

6.(assert (forall (v T1[r])(=> E[r, v] (and (<= 1 (ordName[r] v)) (<= (ordName[r] v) crdName[r])))))

7.(assert (forall (v T1[r])(=> E[r, v](= v (invName[r] (ordName[r] v))))))

8.(assert (forall (i Int)(=> (and (<= 1 i)(<= i crdName[r]))(= i (ordName[r] (invName[r] i))))))

9.(assert (forall (i Int)(=> (and (<= 1 i)(<=i crdName[r])) E[r, (invName[r]i)]):pat {(trgName[r] i)}))
10.(assert (=> (< 0 crdName[r]) (trgName[r] 1)))

11.(assert (forall (i Int)(=> (and (<= 1 i)(< i crdName[r]))(trgName[r](+ i 1))) :pat {(trgName[r] i)}))
12.(declare-fun sumName[r] (Int Int) Int)

Fig. 6. Translation rules for Alloy integer expressions

1. (name[r] v1 .. vn) = (= vn(oneName[r] v1 .. vn−1)) if r is a function

2. cardName[none] = 0, cardName[e] = 1 if e is a singleton relation

3. (forall (v Sort[w]) (=> (= v w) f)) = f [w/v]

4. (exists (v Sort[w]) (and (= v w) f)) = f [w/v]

5. (and (forall (v T)(=> f1 f2)) (forall (w T)(=> f2 f1))) = (forall (v T)(= f1 f2))

Fig. 7. Simplification rules

r to one distinct integer i ≥ 1. We constrain the integers to be consecutive so
that #r is the largest integer used in the mapping. Lines 1-4 of Figure 6 define
the helper functions. Line 5 specifies that crdName[r] ≥ 0 and if it is 0, then r
must be empty. Lines 6-9 specify that invName[r] is the inverse of ordName[r]
and that there is a one-to-one correspondence between the elements of r and
the integers 1 ≤ i ≤ crdName[r]. Thus crdName[r] = |r|. (The existence of
crdName[r] ensures that |r| is finite.) Since the Z3 SMT solver instantiates uni-
versal quantifiers based on the ground terms syntactically used in the formulas,
we introduce the helper function trgName[r] to ensure that the numeric axioms
are sufficiently instantiated. Lines 10 and 11 constrain (trgName[r] i) to be true
for 1 ≤ i ≤ |r| which triggers the instantiation of Axiom 9, which in turn triggers
the instantiation of the other axioms.

Leino et.al. [18] introduced efficient first-order axioms for comprehensions of
the form Q{L ≤ i < H, T } where Q is a function (e.g. sum, min), L and H are
the lower and upper bounds on the integer i, and T is an integer term based on
i. Alloy’s sum expressions are computed over integer-carrying relations. Thus no
integer bounds are explicitly available. However, using our cardinality axioms,

142 A.A. El Ghazi and M. Taghdiri

we have (sum x : r | ie) = sum{1 ≤ i ≤ |r|, I[ie][invName[i]/x]} which makes
Leino’s axioms and patterns directly applicable. Figure 6 declares sumName[r]
to compute this sum expression for the required integer bounds. Definition of
sumName[r] is based on Leino’s axioms and is skipped in the interest of space.

3.5 Simplifications

The SMT formulas generated by previous rules can be substantially simplified
while their semantics is preserved. Out of the 12 Alloy assertions proven success-
fully in our experiments (see Sec. 4), only 3 can be proven before simplification.

The simplification rules are given in Figure 7. Rule 1 simplifies the expressions
involving functional relations. For any Alloy relation r : S1 → .. → one Sn,
a tuple <v1, .., vn> is included in the corresponding function name[r] iff vn =
(oneName[r] v1, .., vn−1). Rule 2 simplifies cardinality for the obvious cases of
empty and singleton relations. This is determined syntactically based on the
type information. Rules 3 and 4 eliminate quantifiers based on the semantics of
scalar values. They substitute the free variable w for the quantified variable v
used in a formula f . These rules are valid because w represents a single value
in Sort[w]. Rule 3 holds since in any logical context, (∀v : Sort[w] | ((v =
w) =⇒ f)) ≡ (∀v ∈ {w} | f) ≡ f [w/v], and Rule 4 holds because
(∃v : Sort[w] | ((v = w)∧ f)) ≡ (∃v ∈ {w} | f) ≡ f [w/v]. Rule 5 converts the
equality hidden in bidirectional implications to an explicit equality. It is applied
when f1 and f2 are syntactically identical except possibly for the names of the
bound variables; no decision procedure calls are involved.

Simplification is done in multiple passes. The first pass applies Rules 1 and
2 to all formulas. Consecutive passes apply Rules 3-5 iteratively until no more
rules are applicable. Since these rules strictly reduce the number of quantifiers,
this process terminates.

3.6 Correctness

An Alloy problem is a structure AP =< Ttop, Tsub, R, F > where Ttop, Tsub, R,
and F respectively denote the set of top-level types, subtypes, relations, and
formulas4 declared in AP . An Alloy instance Ia = (Ua, va) defines a universe of
atoms Ua and a valuation va that maps every type and relation of AP to a set
of elements and tuples derived from Ua, respectively. Ia satisfies AP iff

– Types are well-formed. That is, (1) for t ∈ Tsub that is a subtype of t′ ∈ Ttop∪
Tsub, we have va(t) ⊆ va(t′), and (2) for t, t′ ∈ Ttop, we have va(t)∩va(t′) = ∅.

– Relations are well-formed. That is, for r ∈ R of type t1 → .. → [m] tn, we
have va(r) ⊆ va(t1) × .. × va(tn) and the multiplicity constraint of m holds.

– Any f ∈ F evaluates to true under Ia. That is, �f�Ia = true where ��Ia is
defined inductively on the grammar of Figure 1 (see [14]).

Similarly, an SMT2 problem is a structure SP =< S, G, A > where S, G, and
A respectively denote the set of sorts, functions, and assertions declared in SP .
4 We assume that the assertion is negated and conjoined with the formula F .

Relational Reasoning via SMT Solving 143

An SMT instance Is = (Us, vs) defines a universe of elements Us and a valuation
vs that defines the values of sorts and functions. An instance Is satisfies SP iff

– Sorts are well-formed. That is, for s, s′ ∈ S, we have vs(s) ∩ vs(s′) = ∅.
– Functions are well-formed. That is, for g ∈ G of type (s1 .. sn s), vs(g) gives

a total function from vs(s1) × .. × vs(sn) to vs(s).
– Any a ∈ A evaluates to true under Is. That is, �a�Is = true where ��Is is

defined inductively for SMT2 formulas (see [4]).

Our analysis complements that of the Alloy Analyzer by providing proof capa-
bility. Thus to show its soundness, it is sufficient to show that for any Alloy
problem AP , if our SMT2 translation D[AP] is unsatisfiable, implying that the
assertion in AP is a tautology, then AP is unsatisfiable too. But since Alloy com-
putes arithmetic with respect to a fixed bitwidth, mathematically valid numeric
formulas (based on infinite integers) may be invalid in Alloy due to overflows5.
Thus unsatisfiability of D[AP] implies unsatisfiability of AP only in the absence
of integer overflows, or equivalently, the following theorem holds:

Theorem 1. If an Alloy problem AP =< Ttop, Tsub, R, F > has a satisfying
instance for which none of the arithmetic computations overflow, its translation
D[AP] =< S, G, A > has a satisfying instance too.

Proof. For any instance Ia = (Ua, va) that satisfies AP , we construct an instance
Is = (Us, vs) that satisfies D[AP]. Without loss of generality, we define Us = Ua,
and define vs as follows. For s ∈ S corresponding to t ∈ Ttop, define vs(s) =
va(t). For g ∈ G, (1) if g is a membership function for t ∈ Ttop ∪ Tsub, then
(vs(g)[u] = true) ⇔ (u ∈ va(t)) for all u ∈ Ua, (2) if g is a boolean-valued
function for r ∈ R, then (vs(g)[u1, .., un] = true) ⇔ (<u1, .., un> ∈ va(r)),
(3) if g is a multiplicity function for r ∈ R, then (vs(g)[u1, .., un−1] = un) ⇒
(<u1, .., un> ∈ va(r)) for multiplicities “some” and “one”, and (<u1, .., un> ∈
va(r)) ⇒ (vs(g)[u1, .., un−1] = un) for “lone”, (4) if g corresponds to ^r, then
for 1 ≤ i ≤ |Ua|, define vs(g)[i, u1, u2] = true ⇔ <u1, u2> ∈ va(r)∪ va(r).va(r)∪
.. ∪ va(r)(i). For i > |Ua|, define vs(g)[i, u1, u2] = vs(g)[|Ua|, u1, u2], and (5) for
cardinality-related g, let vs(g) = |va(r)| if g is crdName[r], (vs(g)[ui] = i) ⇔
(va(r) = {u1, .., un}) if g is ordName[r], (vs(g)[i] = ui) ⇔ (va(r) = {u1, .., un})
if g is invName[r], and (vs(g)[i] = true) ⇔ (1 ≤ i ≤ |va(r)|) if g is trgName[r].
Sorts and functions are well-formed under Is because types and relations are well-
formed under Ia. The property �a�Is = true is proved by cases: it holds for the
assertions produced by each translation rule based on the semantics of Alloy and
SMT2. Absence of integer overflows ensures that any arithmetic computation
yields the same result in both logics. Details are skipped in the interest of space.

4 Experiments

We have evaluated our technique by checking 20 assertions in 8 Alloy problems6:
the address book of an email client where aliases and groups are allowed, the
5 For example, 2 + 2 > 2 does not hold in Alloy with a bitwidth of 3.
6 Available at http://www.rz.uni-karlsruhe.de/~ kh133/alloyToSMT/

144 A.A. El Ghazi and M. Taghdiri

query interface and aggregation mechanism of Microsoft COM, the operations
of a memory accessed by abstract addresses, a system for managing media files,
the mark and sweep garbage collection algorithm, the own-grandpa puzzle, and
a hand shaking protocol among spouses. The Alloy models of these problems
are included in the Alloy 4 distribution, and represent various combinations of
hierarchical types, nested relational joins, transitive closure, nested quantifiers,
set cardinality, and arithmetic operations7. To further check our arithmetic rules,
we also translated the queens’ arrangement puzzle for an n × n chessboard [1].

We applied our translation and simplification rules to these models and used
Z3 2.16 to solve the resulting SMT formulas. Table 1 gives the results. It also
reports on the performance of the Alloy Analyzer 4 (AA). The time (in second)
is measured on an Intel Core2Quad, 2.8GHz, 8GB memory. The Alloy analysis
time is the total of the time spent on generating CNF and solving it using the
SAT4J solver. The Z3 analysis time is what it reports using the -st option.

The assertions in the top part of the table are expected to be valid, i.e. their
Alloy models contain developers’ comments that no counterexamples are ex-
pected. The scope column in this case denotes the maximum scope for which
AA can check the assertion before reaching the time-out of 180 seconds. The re-
sult column gives the outcome of running Z3: proved if it returns “unsat” when
looking for a counterexample, implying that the assertion is successfully proven,
and false CE if it returns a spurious counterexample. Out of the 15 valid asser-
tions, 12 were proven correct by our analysis. However, none of the assertions
of mark sweep could be proven. As the scope column suggests, this problem
is structurally more complex than the other problems; AA cannot check those
assertions even for a scope of 10 before reaching time-out. This problem is partic-
ularly difficult because it simulates the recursion involved in the mark and sweep
algorithm by applying transitive closure to union and join of multiple relations.
These expressions occur within nested quantifiers or in both sides of the subset
or intersection operators. Since such structures create deeply-nested quantifiers
in our translation, Z3 cannot readily prove those assertions. We are investigating
other translation possibilities to reduce the complexity of such cases.

The assertions in the bottom part of the table are invalid, i.e. AA generates
sound counterexamples for them. The scope column in this case gives the smallest
scope required by AA to find a counterexample. Although the main goal of our
approach is to prove valid assertions, we analyzed these invalid assertions to
evaluate our technique in case of a counterexample. For the first 4 assertions,
Z3 is capable of producing an instance that although marked as “unknown”, it
demonstrates a true counterexample (denoted by sound CE).

Since our approach requires no type finitization, its performance is always
independent of scope. Exceptions are the 15Queens and puzzle assertions that
hard-code the scope using set cardinality. We have chosen our translation rules
so that the generated SMT formulas are easy to solve, witnessed by the fact
that the Z3 analysis time in most cases is close to zero. However, when pro-
ducing a satisfying instance for formulas containing cardinality, Z3 has to deeply

7 Currently we do not support models that use Alloy’s utility library.

Relational Reasoning via SMT Solving 145

Table 1. Evaluation results

Alloy Analyzer Our Analysis by Z3

Problem Assertion Scope Time (sec) Time (sec) Result

address book delUndoesAdd 31 80.91 0.00 proved
addIdempotent 31 112.66 0.01 proved

COM theorem1 14 175.46 0.00 proved
theorem2 14 177.97 0.00 proved
theorem3 14 168.51 0.00 proved
theorem4a 14 174.89 0.00 proved
theorem4b 14 166.68 0.00 proved

abstract memory writeRead 44 179.44 0.00 proved
writeIdempotent 29 98.67 0.03 proved

media assets hidePreservesInv 87 86.03 0.00 proved
pasteAffectsHidden 29 138.34 0.00 proved

mark sweep soundness1 9 81.52 0.12 false CE
soundness2 8 28.84 0.11 false CE

completeness 7 32.52 0.14 false CE

nQueen solCondition 73 173.51 0.05 proved

address book addLocal 3 0.05 0.10 sound CE

media assets cutPaste 3 0.19 0.06 sount CE

own grandpa ownGrandpa 4 0.01 0.12 sound CE

nQueen 15Queens 15 4.95 13.53 sound CE

handshake puzzle 10 2.47 time out N/A

instantiate all the cardinality helper functions. Therefore, its runtime for 15Queen
is worse than AA, and it times out for puzzle. This is not necessarily true for
provable assertions as witnessed by solCondition which also involves cardinality
constraints. Since AA performs well in finding small counterexamples, we sug-
gest that the user checks his intended assertion using AA first, and then runs
our analysis to prove potentially valid assertions.

5 Related Work

Previous attempts to prove Alloy properties used interactive theorem provers.
Dynamite [10] proves properties of Alloy specifications using the PVS theorem
prover [21], via a translation to fork algebra. It introduces a PVS pretty-printer
that shows proof steps in Alloy, reducing the burden of guiding the prover. Prioni
[3] integrates the Alloy Analyzer with the Athena theorem prover. To overcome
the challenge of finding proofs, Prioni provides a lemma library that captures
commonly-used Alloy patterns.

Compared to theorem provers that perform a complete analysis but are not
fully automatic, SMT solvers are fully automatic, but may fail to prove quanti-
fied formulas. Recent SMT solvers, however, have shown significant advances in
handling quantifiers. Z3 integrates the superposition calculus in the DPLL frame-
work [5,12], and CVC3 uses improved E-matching instantiation strategies [11].
SMT solvers have been used to increase the automation level of many theorem

146 A.A. El Ghazi and M. Taghdiri

provers. The PVS [21] and Isabelle/HOL [9] logics, e.g., have been translated to
Yices input language [8]. Although such translations address higher-order logics
with a rich combination of types predicates, recursive data types, records, etc.,
they do not support constructs such as transitive closure and set cardinality.

Abadi, et. al. [2] verified some Alloy problems while identifying decidable frag-
ments of many-sorted first-order logic. However, they only support a restricted
form of transitive closure, and no integer arithmetic or cardinality. Lev-Ami,
et. al. [19] introduced a method for simulating reachability properties that arise
in program verification. Similar to our technique, they specify the semantics of
transitive closure using first-order axioms. However, they use additional (color-
ing) axioms to aid the underlying prover (SPASS [22]). The coloring axioms are
either provided by users or generated by heuristics. Although not immediately
clear, a similar approach may be applicable to translating Alloy’s transitive clo-
sure. Automated theorem provers (ATP) such as SPASS provide an unbounded
analysis based on superposition calculus, but their lack of support for linear
arithmetic makes them less attractive for reasoning about a rich logic like Alloy.

Suter, et. al. [23] presented a decision procedure for the quantifier-free Boolean
Algebra with Presburger Arithmetic (QFBAPA) capable of handling sets and
their cardinalities. They reduce QFBAPA to integer linear arithmetic (QFPA)
which is solved by the decision procedures of Z3. Set cardinality is computed
using the integers that represent the cardinality of Venn regions – the regions
built by the maximal overlapping degree of a finite collection of sets. Since Alloy
cardinality can be applied to arbitrary expressions (possibly containing variables)
with arbitrary arities, this technique is not readily applicable to our translation.

6 Conclusions

We presented a new approach for analyzing problems expressed in Alloy, a first-
order relational logic. Its main advantage is the ability to prove an assertion
correct, a capability totally missing from the Alloy Analyzer (AA). We suggest
our analysis be used to complement AA: when AA fails to find a counterexample,
our tool can be used to prove the assertion correct. We avoid type finitization
altogether and use the theories supported by SMT solvers instead.

Due to Alloy’s undecidability and our arbitrary use of quantifiers, resulting
SMT formulas can be undecidable. However, among different ways of axioma-
tizing an Alloy construct, we have carefully chosen the one that performs best
in practice. While more experiments on larger Alloy models are needed to fully
evaluate our technique, current results show that Z3 can correctly handle most
of the valid and invalid properties, witnessing the effectiveness of the approach.
Improving the cases that Z3 failed to handle is left for future work.

Although we focused on Alloy, our translation rules demonstrate a general
approach that can be applied in various contexts. In particular, we described
how to specify multiplicity constraints using uninterpreted functions, transitive
closure using the theory of linear integer arithmetic, and cardinality of (possibly
cyclic) relations using bijective integer functions.

Relational Reasoning via SMT Solving 147

AA provides some predefined library functions (e.g. ordering) that trigger
special optimizations in AA. Investigating an efficient translation of widely-used
Alloy libraries (e.g. ordering, graph, and relation) is left for future work. We will
also investigate how to use SMT solvers’ unsatisfiable cores and next satisfying
solution to improve the usability of our technique. Our current translation devi-
ates from Alloy semantics in handling arithmetic using infinite integers. While
we believe that this is more suitable for most system descriptions, we will also
provide an alternative fixed bitwidth arithmetic using bit-vectors in the future.

References

1. The Alloy community, http://alloy.mit.edu/community/
2. Abadi, A., Rabinovich, A., Sagiv, M.: Decidable fragments of many-sorted logic.

Preprint submitted to Elsevier (2009)
3. Arkoudas, K., Khurshid, S., Marinov, D., Rinard, M.: Integrating model checking

and theorem proving for relational reasoning. In: RELMICS, pp. 21–33 (2003)
4. The satisfiability modulo theories library, http://goedel.cs.uiowa.edu/smtib
5. Bonacina, M.P., Lynch, C., de Moura, L.: On deciding satisfiability by dPLL(Γ+T)

and unsound theorem proving. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663,
pp. 35–50. Springer, Heidelberg (2009)

6. de Moura, L., Bjorner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Dennis, G., Chang, F., Jackson, D.: Modular verification of code with SAT. In:
ISSTA, pp. 109–120 (2006)

8. Dutertre, B., de Moura, L.: The Yices SMT Solver. Tool Document (2006)
9. Erkök, L., Matthews, J.: Using Yices as an automated solver in Isabelle/HOL. In:

AFM (2008)
10. Frias, M.F., Pombo, C.G.L., Moscato, M.M.: Alloy analyzer+PVS in the analysis

and verification of alloy specifications. In: Grumberg, O., Huth, M. (eds.) TACAS
2007. LNCS, vol. 4424, pp. 587–601. Springer, Heidelberg (2007)

11. Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using
satisfiability modulo theories. AMAI 55(1), 101–122 (2009)

12. Ge, Y., Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby
modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 306–320. Springer, Heidelberg (2009)

13. EI Ghazi, A.A., Taghdiri, M.: Analyzing Alloy constraints using an SMT solver:
A case study. In: AFM, Edinburgh, United Kingdom (2010)

14. Jackson, D.: Software Abstractions: Logic, Lang. and Analysis. MIT Press, Cam-
bridge (2006)

15. Kang, E., Jackson, D.: Formal modeling and analysis of a flash filesystem in Alloy.
In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238,
pp. 294–308. Springer, Heidelberg (2008)

16. Khurshid, S.: Generating Structurally Complex Tests from Declarative Constraints.
PhD thesis, MIT (2003)

17. Khurshid, S., Jackson, D.: Exploring the design of an intentional naming scheme
with an automatic constraint analyzer. In: ASE (2000)

18. Leino, R., Monahan, R.: Reasoning about comprehensions with first-order SMT
solvers. In: SAC, pp. 615–622 (2009)

http://alloy.mit.edu/community/
http://goedel.cs.uiowa.edu/smtib

148 A.A. El Ghazi and M. Taghdiri

19. Lev-ami, T., Immerman, N., Reps, T., Sagiv, M., et al.: Simulating reachabil-
ity using first-order logic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI),
vol. 3632, pp. 99–115. Springer, Heidelberg (2005)

20. Nolte, T.: Exploring filesystem synchronization with lightweight modeling and
analysis. Master’s thesis, MIT (2002)

21. Owre, S., Shankar, N., Rushby, J.: PVS: A prototype verification system. In:
CADE-11 (1992)

22. Spass: Automated prover for FOL with equality, http://www.spass-prover.org/
23. Suter, P., Steiger, R., Kuncak, V.: Sets with cardinality constraints in satisfiability

modulo theories. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538,
pp. 403–418. Springer, Heidelberg (2011)

24. Taghdiri, M., Jackson, D.: A lightweight formal analysis of a multicast key man-
agement scheme. In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS,
vol. 2767, pp. 240–256. Springer, Heidelberg (2003)

25. Taghdiri, M., Jackson, D.: Inferring specifications to detect errors in code.
JASE 14(1), 87–121 (2007)

26. Torlak, E.: A Constraint Solver for Software Engineering. PhD thesis, MIT (2009)
27. Vaziri, M.: Finding Bugs in Software with Constraint Solver. PhD thesis (2004)

http://www.spass-prover.org/

Building VCL Models and Automatically

Generating Z Specifications from Them

Nuno Amálio, Christian Glodt, and Pierre Kelsen

University of Luxembourg, 6, r. Coudenhove-Kalergi, L-1359 Luxembourg
{nuno.amalio,christian.glodt,pierre.kelsen}@uni.lu

Abstract. VCL is a visual and formal language for abstract specifica-
tion of software systems. Its novelty lies in its capacity to describe pred-
icates visually. This paper presents work-in-progress on a tool for VCL;
the tool version presented here supports the VCL notations of structural
and assertion diagrams (a subset of the whole VCL suite), enabling the
generation of Z specifications from them.

Keywords: formal methods, visual languages, Z, model-driven devel-
opment.

1 Introduction

Diagrams are widely used in modern day software engineering. There are, how-
ever, several issues with existing visual languages (VLs) such as UML. Diagrams
are effective provided they make use of certain properties of visual descriptions
that benefit cognition [1,2]. One problem is that most VLs, like UML, have not
been designed to be cognitive-effective and to make use of such properties [2].
Another problem is that mainstream VLs have not been designed with a formal
semantics [3]; they are mostly used without formal semantics, which precludes
formal model analysis. Furthermore, most VLs cannot describe all properties
visually; UML, for instance, uses the textual OCL to describe invariants and
operations.

This paper presents our first results on a tool to support the visual contract
language (VCL) [4,5]. VCL is formal, designed with usability in mind and to
express predicates visually. It aims at making formal methods usage more prac-
tical; in particular: (a) to be usable by a variety of engineers, not necessarily
formal methods experts; (b) to enable engineers to focus on software design; and
(c) to use formal methods, but hiding them from the lay user. This enables the
formation of teams with a good combination of skills; some individuals may be
experts in the domain, others in the formal method.

2 VCL Tool

The visual contract builder (VCB)1, VCL’s tool presented here, is an Eclipse
plug-in built using the GMF framework2. VCB’s version presented here supports
1 http://vcl.gforge.uni.lu
2 http://www.eclipse.org/modeling/gmf/

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 149–153, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://vcl.gforge.uni.lu
http://www.eclipse.org/modeling/gmf/

150 N. Amálio, C. Glodt, and P. Kelsen

Assertion

Object

Blob

Node

hasInside

*

target

*

source

SDiag *

elements

*

0..1

lInvariants

lConstants

0..1

IntBlob

NatBlob peTarget

mult : Mult
PropEdge isDef : boolean

kind : BlobKind

BlobId

type : Name
Constant

multS : Mult
multT : Mult

RelEdge

name : Name
SDElem

lProps

(a) Metamodel of VCL structural diagrams (b) A VCL Structural Diagram

Fig. 1. Metamodel of VCL structural diagrams and sample instance

the construction of VCL structural and assertion (or constraint) diagrams (a
subset of the whole VCL suite, see [4]).

VCB provides editors to construct VCL diagrams. These editors are built
from metamodels that describe the abstract syntax of the VCL notations. VCL’s
metamodels are described in terms of object-oriented (OO) class metamodels
specified in Alloy, which were refined to build diagram editors using GMF. All
Alloy metamodels can be found in http://vcl.gforge.uni.lu/metamodels.

Figure 1(a) gives a UML class diagram that partially describes the meta-
model of VCL structural diagrams (SDs). An instance of this metamodel is
given in Fig. 1(b). The rounded contours in Fig. 1(b) are blobs. Blob Int
is an instance of metaclass IntBlob; all other blobs are instances of BlobId.
Customer and Account, drawn with a bold line, are domain blobs (kind meta-
attribute has value domain); all others are value blobs (kind meta-attribute
has value value). CustType and AccType, represented with symbol ©, are def-
inition blobs (isDef meta-attribute has value true); the objects inside these
blobs (meta-association hasInside) are instances of metaclass Object. Prop-
erty edges (instances of metaclass PropEgde), such as name and address, define
state properties of blobs. Holds is a relation edge (metaclass RelEdge) con-
nected to Customer (meta-association source) and Account (meta-association
target) with multiplicity one (meta-attribute multS) to many (meta-attribute
multT). Elements of Fig. 1(b) depicted as elongated hexagons are instances of
metaclass Assertion; SavingsArePositive is a local assertion of blob Account
(meta-association lInvariants); all others are global assertions.

VCB uses type-checking to check well-formedness. This helps to find subtle er-
rors in an efficient way. VCB type-checks diagrams based on VCL’s type system,
and generates Z from type-correct diagrams only. Currently, VCB maps diagrams
to Z specifications expressed in the ZOO style of object-orientation [3,6]. The
generated Z is type-checked using Community Z Tools (CZT)3; in most cases,
this is a mere sanity check: all type errors in diagrams are captured using VCL
type-checking.

3 http://czt.sourceforge.net/

http://vcl.gforge.uni.lu/metamodels
http://czt.sourceforge.net/

Building VCL Models and Automatically Generating Z from Them 151

(a) Assertion Diagram of invariant
SavingsArePositive of blob Account

(b) Assertion Diagram
of global invariant
SavingsArePositive2

Fig. 2. VCL diagrams of Simple Bank [6,4] constructed using the VCL tool

3 Illustration

Figures 1(b) and 2 present VCL structural and assertion diagrams of the Simple
Bank case study [6,4] drawn using VCB (see [4] for details). The Z generated by
VCB for this case study’s VCL model, along with a demo of VCB, can be found
at http://vcl.gforge.uni.lu/SBDemo.

Assertion diagram (AD) of Fig. 2(a) describes the local invariant Savings-
ArePositive, identified in the SD of Fig. 1(b); in VCB, double-clicking the
invariant on the SD takes the user to the AD. This AD says that savings accounts
must have positive balances using a logical implication formula. The Z predicate
that is generated for this AD is: aType = savings ⇒ balance ≥ 0.

The same constraint is expressed in the AD of Fig. 2(b), using a set formula.
It defines the set of Accounts that are savings and have negative balances using
a definition blob, which is shaded to say that the set must be empty. The Z
predicate resulting from the diagram is:

{o : sAccount | (stAccount o).aType = savings ∧ (stAccount o).balance < 0} = ∅

The blob definition results in a Z set comprehension. Here, sAccount is set of
Account objects; stAccount is a function mapping account objects to their state.

4 Discussion

We believe that we achieve usability gains by hiding the formal method from
the lay user4. Four people developed the large VCL model of [5], only one is a
Z expert. The VCL approach may be relevant for the critical systems industry
that uses formal methods, such as Z [7]. Users writing specifications do not
necessarily need to be trained in a formal method, they could use a VL, such as
VCL, that abstracts away from the underlying formal method(s); based on [5],
VCL appears to be easier to learn than Z.

VCL has been designed to exploit many target formal languages, not just
Z. We intend to map VCL to other languages in the future to produce partial
or total specifications from VCL diagrams; this enables use of the verification
capabilities of the target language.
4 We intend to assess this claim empirically in the future.

http://vcl.gforge.uni.lu/SBDemo

152 N. Amálio, C. Glodt, and P. Kelsen

5 Related Work

The AutoZ tool [8] generates Z specifications, expressed in the ZOO style, from
UML class (similar to VCL SDs) and state diagrams, following the UML +
Z approach of [3]. Predicates of invariants are expressed textually in Z. VCL
describes predicates visually and generates Z from them. AutoZ uses Z type-
cheking to check well-formedness of diagrams, which complicates error-reporting.
VCB type-checks diagrams directly based on VCL’s type-system.

Constraint diagrams [9] is a VL that describes predicates visually. Its semantic
basis is similar to VCL (set theory). To our knowledge, there are no visual dia-
gram editors to support this VL. VL of [9] emphasises reasoning with diagrams;
VCL generates Z to enable formal reasoning at the Z level.

Visual OCL (VOCL) [10], a VL based on OCL, expresses predicates visually
and has a semantics based on graph transformations. There is a tool with a visual
editor (http://tfs.cs.tu-berlin.de/vocl/) for VOCL. This tool, however,
does not support UML class diagrams (similar to VCL SDs). Unlike VCB, VOCL
tool only supports basic types and only generates simple OCL expressions. VCB
supports both ADs and SDs, checks consistency of ADs (predicates) against SDs
(structures), and generates complete Z Specifications.

6 Conclusions and Future Work

This paper presents work-in-progress on VCL’s tool: the Visual Contract Builder
(VCB)5. VCB version presented here supports the construction of VCL struc-
tural and assertion (or constraint) diagrams (a subset of the whole VCL suite),
enabling the generation of Z specifications from them. It is the first step towards
tool support for VCL. The most relevant contribution of the work presented
here is a tool supporting a software engineering visual language that has a for-
mal basis, expresses predicates visually, and enables the generation of formal
specifications that can be processed independently on their own. To our knowl-
edge, no other tool supports a language that describes predicates visually, and
generates complete formal specifications. This is also a contribution to VCL’s
development: (a) it demonstrates VCL’s formal semantics, and (b) it supports
the novel notation of assertion diagrams (ADs).

Future work will complete the tool support for ADs (modular mechanisms of
VCL ADs [4] are currently not supported), the type system for structural and
assertion diagrams, and will extend the tool to support VCL’s descriptions of
behaviour using the VCL notations of behaviour and contract diagrams (see [4]).

References

1. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science 11, 65–99 (1987)

2. Moody, D.L.: The “physics” of notations: Toward a scientific basis for constructing
visual notations in software engineering. IEEE TSE 6(35), 756–779 (2009)

5 http://vcl.gforge.uni.lu/

http://tfs.cs.tu-berlin.de/vocl/
http://vcl.gforge.uni.lu/

Building VCL Models and Automatically Generating Z from Them 153

3. Amálio, N.: Generative frameworks for rigorous model-driven development. Ph.D.
thesis, Dept. Computer Science, Univ. of York (2007)

4. Amálio, N., Kelsen, P.: Modular design by contract visually and formally using
VCL. In: VL/HCC 2010 (2010)

5. Amálio, N., Kelsen, P., Ma, Q., Glodt, C.: Using VCL as an aspect-oriented ap-
proach to requirements modelling. TAOSD VII, 151–199 (2010)

6. Amálio, N., Polack, F., Stepney, S.: An object-oriented structuring for Z based on
views. In: Treharne, H., King, S., Henson, M., Schneider, S. (eds.) ZB 2005. LNCS,
vol. 3455, pp. 262–278. Springer, Heidelberg (2005)

7. Hall, A.: Correctness by construction: Integrating formality into a commercial de-
velopment process. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, pp. 139–157. Springer, Heidelberg (2002)

8. Williams, J., Polack, F.: Automated formalisation for verification of diagrammatic
models. ENTCS 263, 211–226 (2010)

9. Fish, A., Flowe, J., Howse, J.: The semantics of augmented constraint diagrams.
Journal of Visual Languages and Computing 16, 541–573 (2005)

10. Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G.: A visualization of OCL us-
ing collaborations. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185,
pp. 257–271. Springer, Heidelberg (2001)

The 1st Verified Software Competition:

Experience Report

Vladimir Klebanov, Peter Müller, Natarajan Shankar, Gary T. Leavens,
Valentin Wüstholz, Eyad Alkassar, Rob Arthan, Derek Bronish,

Rod Chapman, Ernie Cohen, Mark Hillebrand, Bart Jacobs,
K. Rustan M. Leino, Rosemary Monahan, Frank Piessens, Nadia Polikarpova,

Tom Ridge, Jan Smans, Stephan Tobies, Thomas Tuerk, Mattias Ulbrich,
and Benjamin Weiß

www.vscomp.org

Abstract. We, the organizers and participants, report our experiences
from the 1st Verified Software Competition, held in August 2010 in Ed-
inburgh at the VSTTE 2010 conference.

1 Introduction

Research on SAT solving and automatic theorem proving has been boosted by
the competitions held in connections with conferences such as SAT, CADE, and
CAV. The regular comparisons of tools help the community by exhibiting the
practical impact of algorithms and implementation strategies, and help its clients
by providing an assessment of the performance of individual tools as well as of
the research field overall.

Inspired by this success, participants of the Verified Software Initiative [8]
decided to start a program verification competition, which was first organized
by Peter Müller and Natarajan Shankar and held at the VSTTE 2010 conference.
While the long-term objective is to provide similar benefits to the community
like the ATP, SAT, and SMT competitions, the goals for the initial event were
much more modest—to create interest among researchers and tool builders, to
get an impression of how such an event is received by the community, and to
gain experience in designing and carrying out a verification competition.

The competition was explicitly held as a forum where researchers could demon-
strate the strengths of their tools rather than be punished for their shortcomings.
There were no deliberate attempts to expose weaknesses such as unsoundness or
incompleteness of the verification tools, or missing support for certain language
features. The organizers presented five small programs and suggestions what to
prove about them (such as the absence of run-time errors, functional behavior, or
termination). After the presentation followed a four-hour thinking period where
no tool use was allowed. After that, the participants had two hours to develop their
solutions. The participants could work in teams of up to three people, provided
that all of them were physically present on site. The physical presence allowed the
organizers to interact with the participants and to get immediate feedback about
the challenge problems and the organization of the competition.

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 154–168, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.vscomp.org

The 1st Verified Software Competition: Experience Report 155

T
a
b
le

1
.
S
o
lu

ti
o
n
s

ov
er

v
ie

w

T
ea

m
T
o
o
l

P
ro

b
le

m
s

so
lv

ed
Im

p
le

m
en

ta
ti
o
n

/
sp

ec
ifi

ca
ti
o
n

la
n
g
u
a
g
e

T
o
o
l
w

eb
si
te

a
t

co
m

p
et

it
io

n
in

th
e

a
ft

er
m

a
th

Sum&Max

Invert

LinkedList

NQueens

Queue

Sum&Max

Invert

LinkedList

NQueens

Queue

A
.T

sy
b
a
n

1
Is

a
b
el

le
a

a
C

/
H

o
a
re

lo
g
ic

a
n
o
n
H

o
lH

a
ck

er
1

H
O

L
4

a
H

O
L

h
o
l
.
s
o
u
r
c
e
f
o
r
g
e
.
n
e
t

H
o
lf
o
o
t

1
H

o
lf
o
o
t

C
-l
ik

e
/

se
p
.
lo

g
ic

h
o
l
f
o
o
t
.
h
e
a
p
-
o
f
-
p
r
o
b
l
e
m
s
.
o
r
g

K
eY

3
K

eY
a

a
J
av

a
/

J
M

L
(+

)
k
e
y
-
p
r
o
j
e
c
t
.
o
r
g
/
V
S
C
o
m
p
2
0
1
0

L
ei

n
o

1
D

a
fn

y
a

a
a

D
a
fn

y
r
e
s
e
a
r
c
h
.
m
i
c
r
o
s
o
f
t
.
c
o
m
/
d
a
f
n
y
/

S
p
a
rk

U
L
ik

e
1

S
P
A

R
K

a
S
P
A

R
K

l
i
b
r
e
.
a
d
a
c
o
r
e
.
c
o
m

M
o
n
a
P
o
li

2
B

o
o
g
ie

a
B

o
o
g
ie

r
e
s
e
a
r
c
h
.
m
i
c
r
o
s
o
f
t
.
c
o
m
/
b
o
o
g
i
e
/

R
es

o
lv

e
1

R
es

o
lv

e
b

a
R

es
o
lv

e
r
e
s
o
l
v
e
.
c
s
e
.
o
h
i
o
-
s
t
a
t
e
.
e
d
u
:
8
0
8
0
/
R
e
s
o
l
v
e
V
C
W
e
b
/

R
o
b
A

rt
h
a
n

1
P
ro

o
fP

ow
er

a
a

H
O

L
w
w
w
.
l
e
m
m
a
-
o
n
e
.
c
o
m
/
P
r
o
o
f
P
o
w
e
r
/
i
n
d
e
x
/

V
C

C
ru

sh
er

s
3

V
C

C
C

/
V

C
C

a
n
n
o
ta

t.
v
c
c
.
c
o
d
e
p
l
e
x
.
c
o
m

V
er

iF
a
st

1
V

er
iF

a
st

a
C

,
J
av

a
/

se
p
.
lo

g
ic

w
w
w
.
c
s
.
k
u
l
e
u
v
e
n
.
b
e
/
~
b
a
r
t
j
/
v
e
r
i
f
a
s
t
/

N
u
m

e
ra

l
=

n
u
m

b
e
r

o
f

p
e
rs

o
n
s

a
t

c
o
m

p
e
ti

ti
o
n

a
so

lu
ti

o
n

u
n
ch

a
n
g
e
d

si
n
c
e

c
o
m

p
e
ti

ti
o
n

b
so

lv
e
d

b
e
fo

re
th

e
c
o
m

p
e
ti

ti
o
n

S
in

g
le

e
n
tr

y
=

la
n
g
u
a
g
e

in
te

g
ra

ti
n
g

im
p
le

m
e
n
ta

ti
o
n

a
n
d

sp
e
c
ifi

c
a
ti

o
n

so
lv

e
d

n
o
t

so
lv

e
d

su
b
st

a
n
ti

a
l
p
a
rt

ia
l
so

lu
ti

o
n

hol.sourceforge.net
holfoot.heap-of-problems.org
key-project.org/VSComp2010
research.microsoft.com/dafny/
libre.adacore.com
research.microsoft.com/boogie/
resolve.cse.ohio-state.edu:8080/ResolveVCWeb/
www.lemma-one.com/ProofPower/index/
vcc.codeplex.com
www.cs.kuleuven.be/~bartj/verifast/

156 V. Klebanov et al.

There was no ranking of solutions or winner announcement. The evaluation
committee (Gary Leavens, Peter Müller, and Natarajan Shankar) manually in-
spected the solutions and pointed out strengths and weaknesses according to the
criteria of completeness, elegance, and (reported) automation; these subjective
results were presented at the conference to foster discussions among the partic-
ipants. Not ranking the results allowed in particular a comparison of different
verification approaches, whereas a fair ranking would have required standardiza-
tion and grouping by disciplines (such as automatic vs. interactive or modular
vs. whole-program verification).

This setup proved to be successful. Eleven teams participated in the competi-
tion and submitted in total 19 (partial) solutions to the five challenge problems
(reproduced in Section 2). For this paper, the participants also had the chance
to revise or complete their solutions (see Table 1 for an overview). Ten out of
11 original teams report their experiences in Section 3. A number of challenges,
common issues, and conclusions are presented in Section 4.

The original problem statements, all team solutions, as well as an extended
version of this report are available on the competition web site.

2 The Challenge Problems

This section presents short versions of the competition problems, which were pre-
pared by the organizers together with Valentin Wüstholz. The original problem
descriptions included reference implementations in pseudocode and test cases.

Problem 1: �������. Given an N -element array of natural numbers, write
a program to compute the sum and the maximum of the elements in the array.
Prove the postcondition that sum � N · max.
Problem 2: �	
��
ing an Injection. Invert an injective (and thus surjective)
array A of N elements in the subrange from 0 to N − 1. Prove that the output
array B is injective and that B[A[i]] = i for 0 � i < N .

Problem 3: Searching a ��	������
. Given a linked-list representation of
a list of integers, find the index of the first element that is equal to zero. Show
that the program returns a number i equal to the length of the list if there is no
such element. Otherwise, the element at index i must be equal to zero, and all
the preceding elements must be non-zero.

Problem 4: �����	�. Write and verify a program to place N queens on an
N ×N chess board so that no queen can capture another one with a legal move.
If there is no solution, the algorithm should indicate that.

Problem 5: Amortized �����. An applicative queue with a good amortized
complexity can be implemented using a pair of linked lists, such that the front
list joined to the reverse of the rear list gives the abstract queue. The queue
offers the operations Enqueue(item: T) to place an element at the rear of the
queue, Tail() to return the queue without the first element, and Front() to
return the first element of the queue. The implementation must maintain the

The 1st Verified Software Competition: Experience Report 157

invariant queue.rear.length � queue.front.length (prove this). Also, show
that a client invoking the above operations observes an abstract queue given by
a sequence.

3 The Team Reports

3.1 Team anonymousHolHacker (Tom Ridge)

HOL4 [14] is an interactive theorem prover for higher-order logic, broadly similar
to systems such as Isabelle/HOL, HOL Light, and ProofPower. HOL4 has good
automated proof support, including powerful equality reasoning (simplification,
i.e., rewriting with directed equalities), complete first-order proof search, and
decision procedures for decidable fragments of arithmetic. Extensive libraries of
theorems covering many common data types and functions are also provided.

Competition. Only Queue was attempted during the competition.
The HOL statement uses an abstraction function abstr to construct the queue

by joining (++) the two underlying implementation lists (represented as the pair
impl):

abstr impl = (front impl) ++ (REVERSE (rear impl))

All the data types, functions, and required properties given in the problem
statement are fairly directly transcribed in HOL. Three very simple arithmetic
facts are established, and proof of the required properties then proceeds essen-
tially by case analysis on lists, and simplification, with a few trivial instances
of first-order proof (first-order proof with appropriate case splitting and other
library lemmas would automatically prove all the required properties outright).
Induction is not explicitly needed in the proofs, so that Queue is in some ways
simpler than the other problems. However, the arithmetic facts and various
HOL4 library lemmas about lists essentially are inductive: the simplicity of our
proofs (the lack of induction) derives from the maturity of the HOL4 system,
especially the automation for arithmetic lemmas, and the extensive libraries of
theorems about lists.

The HOL4 solution is given at a relatively abstract level, and no attempt is
made to address imperative features such as linked lists and pointer manipula-
tion.

3.2 Team Holfoot (Thomas Tuerk)

Holfoot is an instantiation of a general separation logic framework inside the
HOL4 [14] theorem prover. It is able to reason about the partial correctness of
programs written in a simple, low-level imperative language, which is designed to
resemble C. This language contains pointers, local and global variables, dynamic
memory allocation/deallocation, conditional execution, while loops, and recur-
sive procedures with call-by-value and call-by-reference arguments. Moreover,
concurrency is supported by conditional critical regions and a parallel composi-
tion operator.

158 V. Klebanov et al.

Holfoot follows in the footsteps of the separation logic tool Smallfoot [4]. It
uses the same programming language and a similar specification language but
gives them a rigorous formal semantics in HOL. As all inferences pass through
the HOL4 kernel, the Holfoot proofs are highly trustworthy with respect to the
defined formal semantics. Also, while Smallfoot is concerned only with the shape
of data structures, Holfoot can reason about their content as well, supporting
full functional verification. Holfoot can handle arrays and pointer arithmetic.

Simple specifications, like the Smallfoot examples or a fully functional speci-
fication of reversing a singly linked list can be verified automatically in Holfoot.
More complicated ones like fully functional specifications of quicksort or inser-
tion into a red-black tree require interactive proofs. These interactive proofs can
use all the infrastructure of HOL4.

Competition. The Holfoot team consists only of Thomas Tuerk, the developer of
Holfoot. Unluckily, only the first example was solved during the competition due
to time limitations. This is mainly due to Thomas Tuerk not being familiar with
HOL4’s arithmetic reasoning infrastructure. Invert was tried, but not finished
during the competition.

Aftermath. Since the competition, all problems have been solved using Holfoot.
As a separation logic tool, Holfoot is aimed at reasoning about dynamic data
structures. Therefore, Holfoot is especially good at reasoning about Queue. For
other examples, HOL4’s infrastructure for defining new predicates and functions
was beneficial. Invert for example uses a newly defined function to translate
the original problem into a functional one inside HOL4.

3.3 Team KeY (Vladimir Klebanov, Mattias Ulbrich, Benjamin
Weiß)

The KeY system [3] is a verification tool for Java programs. At the core of
the system is a deductive prover working in first-order Dynamic Logic for Java
(JavaDL). Properties of programs can be specified in JML or OCL, which KeY
translates into proof obligations in JavaDL. Specifying directly in JavaDL is also
possible.

The KeY system is not strictly a verification condition generator (VCG), but
a theorem prover for program logic interleaving symbolic execution of programs,
first-order reasoning, arithmetic, and symbolic state simplification, etc. Via its
SMT export interface, the system can also use external solvers (such as Z3) to
discharge goals.

For programs annotated with requirements and sufficient loop invariants, the
system can often find verification proofs automatically. On the other hand, the
system does expose an explicit proof object of (relatively) good understand-
ability. The user can provide guidance to the prover by manipulating the proof
manually at key points—for instance adding lemmas or instantiating quantifiers.

Competition. At the competition, the KeY team consisted of three developers
with in-depth knowledge of the system. We used a pre-release of KeY1.6. By the

The 1st Verified Software Competition: Experience Report 159

end of the allotted time, we had solved Sum&Max and Invert, which fall into
the class where KeY is strongest (functional-arithmetical properties).

Both problems could be specified without difficulties in standard JML. The
specifications were complete regarding the problem formulation. For Sum&Max,
we have also specified and proven that the program indeed computes the sum
and the maximum of the array. KeY found the proof automatically (with one
goal discharged by a tweaked strategy setting), and the pure prover running
time was about six seconds. Quite some time was wasted on Invert in search of
the loop invariant, which turned out to be simpler than expected. In the proof,
it was necessary to invoke Z3 and manually instantiate two quantifiers (in the
surjectivity precondition). Attempts to solve LinkedList were not successful
within the given time limit. We did not attempt N Queens or Queue.

Aftermath. After the competition, complete solutions to the three outstand-
ing problems have been produced, using a development branch of the KeY sys-
tem [12], which is stronger in handling recursive data structures. An extended
variant of JML was used for specification. The solutions to LinkedList and
Queue are inspired by those of Leino (Section 3.4): dynamic frames in the form
of ghost fields are used for framing, and mathematical sequences for specifying
functional behavior. The total effort spent was two person-weeks, which included
some extensions to the verification system.

3.4 Team Leino (Rustan Leino)

Dafny is an object-based language with built-in specification constructs [9]. To a
first approximation, it is like Java (but without subclasses) with Eiffel- or JML-
like specifications. Language features that are especially useful when writing
specifications include sets and sequences, ghost variables, and user-defined re-
cursive functions. Dafny uses mathematical integers (implemented by big-nums),
which avoids overflow errors.

The Dafny verifier statically checks all specifications, language rules (e.g., ar-
ray index bounds), termination, and other conditions (e.g., well-foundedness of
functions). To help it along, a user supplies assertions like method pre- and post-
conditions, loop invariants, and termination metrics. The compiler then omits
specifications and other ghost constructs from the compiled code. Like VCC,
the Dafny verifier is built using Boogie [2,11], which in turn uses the SMT-solver
Z3 [7] as its reasoning engine. The preferable way to develop Dafny programs is
in the Microsoft Visual Studio IDE, where the Dafny verifier runs in the back-
ground and verification errors are reported as the program is being designed.

Competition. Solving Sum&Max came down to adding a one-line loop invariant.
To solve LinkedList, I associated with every linked-list node a ghost variable

whose value is the sequence of list elements from that point onward in the list. To
state the appropriate invariant about that ghost variable, one must account for
which linked-list nodes contribute to the value, which is done using a common
“dynamic frames” specification idiom in Dafny.

The linked list in Queue is similar to the one in LinkedList, but stores in
every node the length of the remaining list and provides additional operations

160 V. Klebanov et al.

like Concat and Reverse. To build an amortized queue from two linked lists,
one reversed, is then straightforward using a user-defined function that returns
the reverse of a given sequence.

The competition was an adrenalin rush and a race against the clock. I had
gone into it hoping to finish all five problems, but ended up with incomplete
attempts at Invert and N Queens. In retrospect, I may have finished Invert

had I ignored N Queens.
As the author of the tool, I may not be a good judge of its user-friendliness.

But for me, I found the immediate feedback from the verifier running in the
background useful throughout.

Aftermath. The difficulty with Invert lies in getting the SMT solver to make use
of the given surjectivity property. The general trick is state a lemma, an assert
statement whose condition supplies the reasoning engine with a stepping stone
in the proof. In particular, the lemma will mention terms that trigger reasoning
about quantifiers that also mention those terms. In Invert, the surjectivity
property does not contain any terms that can be used in a lemma, so I introduced
a dummy function for that purpose.

I found NQueens to be the most difficult problem, because it involves verify-
ing the absence of a solution in those cases where the given search strategy does
not find one. After some more verbose attempts, I was able to get this down to
two lemmas.

3.5 Team SPARKuLike (Rod Chapman)

SPARK is a contractualized subset of the Ada language, specifically designed
for the construction of high-assurance software. It has an industrial track record
spanning some twenty years, including use in projects such as the EuroFighter
Typhoon, the Lockheed-Martin C130J, and the NSA’s Tokeneer demonstrator
system. The overriding design goal of the language is the provision of a sound
verification system, which is based on information-flow analysis, Hoare logic, and
theorem proving.

Rather than tackling all the problems in this challenge, I decided to take on
the first (Sum&Max), but aiming at a complete implementation and proof to
the standard that we would expect for industrial safety-critical code. In partic-
ular, the solution offers a complete proof of partial correctness, type safety, and
termination. Test cases were also developed that offer a respectable coverage
of boundary conditions and structural coverage. The proof of type safety also
covers the absence of arithmetic overflow. This was not required by the com-
petition rules, but was felt to be achievable in SPARK through the judicious
selection of well-defined ranges for the basic numeric types—a common practice
in SPARK. Indeed, failure to specify numeric ranges is normally considered an
outright design error in SPARK.

The solution took 107 minutes total, broken down as follows: Planning 5,
Design 40, Coding and Proof 50, Compile 1, Test 1, Review and Write-up 10.
The very low times for Compile and Test are encouraging—essentially no defects
were discovered at this stage. The SPARK Verification Condition Generator

The 1st Verified Software Competition: Experience Report 161

produces 18 VCs, of which 14 are proved automatically. The remaining 4 VCs
require some additional Lemmas and are completed with the interactive prover.

3.6 Team MonaPoli (Rosemary Monahan, Nadia Polikarpova)

Boogie 2 [11] is an intermediate verification language designed to accommodate
the encoding of verification conditions for imperative, object-oriented programs.
Boogie [2] is a static verifier that accepts Boogie 2 programs as input and gen-
erates verification conditions, which are then submitted to one of the supported
theorem provers (the default being the SMT solver Z3 [7]). In this competition,
we chose to write our solutions directly in Boogie 2, using the Boogie tool and
Z3 (version 2.11 during the competition, version 2.15 for the final version) to
verify our solutions.

Competition. At the competition the MonaPoli team consisted of Nadia Polikar-
pova and Rosemary Monahan, two people who had just met at VSTTE 2010.
Both had used the Boogie tool but primarily as an underlying component of
verifiers for other languages. The team worked together and submitted solutions
to Sum&Max and LinkedList.

We attempted LinkedList first. Specifying heap-manipulating programs in
Boogie 2 requires explicitly defining the heap, so we defined the linked list by
mapping a list cell to its stored value and to the next list cell. Our specification
included auxiliary functions which calculated the length of the list, determined if
a value was in the list, and returned the value at a particular position in the list.
Our main observation from this solution was that while the need to specify the
heap is an overhead, it ensures that the specifier has a complete understanding
of the program semantics. The solution we submitted at the competition was
incomplete as we used two unproved lemmas. Our solution for the paper is
complete and proves automatically in about 2 seconds.

Our solution to Sum&Max was easily specified and automatically verified in
less than 2 seconds. Our main observation here was that specifications for small,
integer- and array-manipulating programs in Boogie 2 are simple and concise.

We did not prove termination for any of the problems as Boogie 2 does not
directly support termination measures.

Aftermath. After the competition, solutions to Invert and Queue were com-
pleted.

In Invert, proving that one array is an inversion of another simply requires
the addition of an obvious loop invariant. Proving that an array is injective
is more complicated. The main difficulty was making Boogie instantiate the
surjectivity precondition. Instead, we introduced a ghost set mirroring all seen
values of A and loop invariants stating that the set cardinality is exactly k (k
being the loop counter) and that all elements are in [0;N). To this end, we
formalized a small theory of sets.

Queue delivered a more interesting experience as theories of sequences and
heap allocation were required. These were not difficult to specify but were quite
labor-intensive. However, once these theories have been written, it is possible to
solve a whole range of similar problems, so the effort is not wasted.

162 V. Klebanov et al.

When dealing with linked data structures, one typically needs to define in-
ductive properties. We noticed that in order for Z3 to handle them effectively
it is important to use induction on structure instead of induction on integers.
Verification of the list and queue implementations was also greatly simplified by
the fact that both classes are immutable: no advanced techniques for specifying
footprints of the methods (such as dynamic frames) were required.

3.7 Team Resolve (Derek Bronish)

Resolve is a tool-supported programming and specification language for full-
functional verification of imperative component-based programs [13]. The
language emphasizes strict separation of client- and implementer-views of com-
ponents, providing full modularity both in terms of human comprehensibility
and the proof process. The key to this approach is the maintenance of value se-
mantics for all types, so references cannot “leak” across component boundaries.

Verification conditions generated automatically from Resolve code may be
discharged either by interfaces with third-party provers such as Isabelle and
Z3, or by SplitDecision, an internally-developed tool that applies theorems of
the mathematical theories that pervade the specification language (e.g., strings,
finite sets, tuples, etc.).

Competition. The Resolve group representative did not originally intend to par-
ticipate in the competition and has only submitted Queue, for which we already
had a solution posted to the web.

Most notably, the Resolve solution to this problem (the StackRealization
of the QueueTemplate, viewable online at http://resolve.cse.ohio-state.
edu:8080/ResolveVCWeb) uses an abstraction to separate the queue from extra-
neous implementation details such as the nodes and pointers that may comprise
the lists’ concrete realizations. In other words, the amortized queue is repre-
sented as two stacks, which themselves may use a linked-list representation, but
the implementation details of the stacks are separated from the proof of the
queue implementation. An important tenet of Resolve is that such modularity
is required for verification efforts to scale upwards to more complex software
systems.

Aftermath. Since the competition proper, solutions to all five problems have
been composed in Resolve. An important attribute of the solutions, allowing all
of the VCs to be discharged either mechanically or simply by hand, is the use of
specifier-supplied mathematical definitions to hide quantifiers. For example, the
postcondition for Invert can be expressed as:

a.lb = #a.lb and a.ub = #a.ub and
IS_INVERTED_UP_TO(a.ub + 1, #a, a)

This states that the bounds of the array are not changed, and the outgoing
value of the array is completely inverted with respect to its incoming value. The
definition of IS INVERTED UP TO is rather complicated and involves a universal

http://resolve.cse.ohio-state.edu:8080/ResolveVCWeb
http://resolve.cse.ohio-state.edu:8080/ResolveVCWeb

The 1st Verified Software Competition: Experience Report 163

quantifier, but this definition never needs to be expanded in order to verify the
code. Instead, one simply applies universal algebraic lemmas such as:

i = a.lb =⇒ IS INVERTED UP TO(i, a, b)

How best to design a verification system that allows specifiers to provide such
definitions and lemmas, demonstrate the validity of the lemmas as a one-time
cost, and then incorporate proven lemmas into its automated reasoning engine is
an ongoing research question, which experience in this competition has revealed
is important and promising for the future of Resolve.

3.8 Team RobArthan (Rob Arthan)

ProofPower [1] is a tool supporting specification and proof in HOL (Mike
Gordon’s polymorphic formulation of Church’s simple type theory) and other
languages, most notably the Z notation, via semantic embeddings in HOL. Proof-
Power is the basis for an Ada verification system called the Ada Compliance Tool
developed for QinetiQ, who use it for verifying safety-critical control software,
using Z specifications derived from Simulink diagrams.

Competition. For the competition, as I felt that functional programming was
rather under-represented at VSTTE, I decided to write recursive definitions in
HOL of functional programs and verify those. The resulting “programs” are
executable in ProofPower using the rewriting engine, although this is not really
a general purpose execution environment.

The conservative extension mechanism used to make the definitions imposes
a consistency proof obligation. This proof obligation is discharged automatically
for all the examples in the solutions and the syntactic form of the definitions
then guarantees termination.

The solutions are modular in the sense that the new functions are defined
by combining existing functions, and theorems about those new functions are
derived from theorems about their constituent functions. The list searching so-
lution first defines a polymorphic search function with a higher-order parameter
giving the search criteria and instantiates it to search for zeroes in a list of
integers.

This means that one can do particular calculations in the theorem prover with
the results as theorems. I just did this for testing purposes in the competition,
but it is an important technique in the application of systems like ProofPower to
mathematical and engineering problems requiring highly-assured calculations,
e.g., Tom Hales’s Flyspeck project uses this kind of technique in HOL Light and
Isabelle/HOL.

I was the only ProofPower user at VSTTE at the time of the competition, so I
formed a team of one. I am one of the main authors of the system. Given the time
available, I chose Sum&Max and LinkedList as the problems most amenable
to the techniques I was using. The other problems could easily be handled in
much the same way, but a few more hours would be required.

164 V. Klebanov et al.

3.9 Team VC Crushers (Eyad Alkassar, Ernie Cohen,
Mark Hillebrand, Stephan Tobies)

VCC is an assertional, first-order deductive verifier for industrial-strength con-
current C (and assembly) code. VCC verification is based on modular two-state
invariants, which allow the encoding of a variety of verification disciplines. (There
is explicit syntactic support for Spec#-style ownership.) To overcome the re-
strictions of first-order reasoning, ghost state/code are typically used to main-
tain inductively defined information (e.g., the reachable nodes of a recursive
data structure), with ghost code substituting for prover guidance. (For exam-
ple, simulation is encoded by maintaining the abstract state as ghost state, with
explicit updates to this state witnessing the simulation.) Verification conditions
are discharged by an automatic prover (currently, Z3), but there is also a back-
end connection to Isabelle/HOL. VCC currently verifies only partial correctness
(but termination is coming soon).

The VC Crushers team consisted of three persons during competition time,
who were joined by a fourth person (Ernie Cohen) afterwards.

Competition. Sum&Max was solved modulo two assumptions related to C’s use
of bounded (machine) integers. The first assumption was that the sum main-
tained in the loop did not overflow. This has to either be assumed in the loop,
provided as a precondition, or taken into account in the postcondition. The sec-
ond assumption was of a nonlinear arithmetic property that Z3 could not handle
effectively for bounded integers. In addition to the required postcondition, we
also proved that the result for the maximum is a bound for the individual el-
ements and that the function result is the summation of the array elements.
LinkedList was also fully solved during the contest, but using an overly com-
plex list specification with many superfluous invariants in the list data structure.
Invert was attempted during the competition, and was partially but not com-
pletely finished.

Aftermath. The remaining problems were solved after the competition.
For Sum&Max, we discovered that the nonlinear arithmetic assumption could

be proven by Z3 for unbounded integers (which helps explain why other Z3-based
verifiers did not run into the same problem). The work-around in our solution
is to “guide” Z3 by asserting the unbounded property (essentially making it
available as a lemma). We also removed the no-overflow assumption by weakening
the postcondition to say that either the result is correct or the (unbounded) sum
overflows.

In Invert, we use a ghost map parameter inverse to the function to encode
surjectivity of the input array A. The central hint to the prover to show the
postconditions on the output array B is to rewrite B[j] to B[A[inverse[j]]];
getting Z3 to do this automatically required using a custom trigger. Alterna-
tively, we could have explicitly provided a hint (by mentioning a term of the
form B[A[inverse[j]]]) where needed.

In our contest solution for LinkedList, we used an overly complex list
implementation (one that maintains the reachability relation through arbitrary

The 1st Verified Software Competition: Experience Report 165

first-order surgery on lists). However, this complexity is not needed for the con-
test problems, so we re-did the verification using a much simpler list implemen-
tation (used also for Queue).

The main difficulty in N Queens is how to express the non-existence of the
solution when the search procedure returns false. Our C implementation uses
arrays (and destructive updates) to work on the board. VCC does not allow
assertions to quantify over heaps (for reasons related to logical consistency), so
we instead used maps (a mathematical abstraction) to reason about the solution
space (with the same encoding as for boards). To express that there is no solution
in a certain search state, we state that all solutions sharing the same prefix as
the current board are inconsistent (i.e., have a queen i capturing a queen j).

In VCC, reading an object requires evidence that it still exists. In most cases
(including typical sequential code), this is done by owning the object. When the
object has to be shared, this is usually done by owning a ghost object (called a
claim) whose invariant guarantees the existence of the object in question. Ma-
nipulating these claims increases the annotation burden, but allows the data
to eventually be destroyed. On the other hand, this problem tacitly assumes
garbage collection, since the code creates shared data with no way to reclaim
it. We verified a version of the problem that does its own memory management
(essentially consuming data passed into functions); the solution verifies quite
conveniently using ownership, but does not allow reuse. As expected, the solu-
tion had to make additional assumptions (or preconditions) to make sure that
memory allocations do not fail and that the queues do not grow too large.

3.10 Team VeriFast (Bart Jacobs, Frank Piessens, Jan Smans)

VeriFast is a verifier for single- and multithreaded C and Java programs. It
takes as input C or Java source files, annotated with pre- and postconditions,
loop invariants, definitions of inductive data types, fixpoint functions, recursive
separation logic predicates, lemma functions, as well as some proof steps in
specially marked comments. It outputs either “0 errors found” or both the source
location of a potential error, and a symbolic execution trace leading up to the
error, with the symbolic heap, the symbolic store, and the path condition at
each execution step. These can be browsed conveniently in the VeriFast IDE.

When designing VeriFast, we put a very strong premium on predictable per-
formance. To deal with heap effect framing, we copycat Smallfoot [4] and per-
form symbolic execution with memory represented as a separating conjunction
of “heap chunks”, i.e., separation logic predicate applications. The SMT solver
is used only to reason about the arguments of the heap chunks, i.e., the data
values. Furthermore, we avoid general quantification in specifications—in fact,
it is currently not supported. The only quantifiers that are made available to
the SMT solver are those that axiomatize the inductive data types and fixpoint
functions (primitive recursive functions over inductive data types); these behave
very predictably. The approach pays off: VeriFast’s typical sub-second verifica-
tion times enable a comfortable interactive annotation-insertion experience.

166 V. Klebanov et al.

Competition. One member of our team, Bart Jacobs, participated at VSTTE
and the competition. The first problem he tackled was Sum&Max. He first tried
a Java version, since we have some automation for dealing with arrays in Java.
Unfortunately, however, our automation proved quite incomplete. Bart had so
much trouble dealing with the complex terms involving take, drop, append, etc.
that described the inductive list representing the contents of the array, that he
decided the automation was working against him, so he switched to C where
VeriFast has no special support for arrays. A C array can be described using
a simple recursive predicate. This allowed him to complete Sum&Max, but by
then the competition was more than halfway through. Along the way, however,
he also struggled with an incompleteness in the theory of multiplication and
inequalities in the version of Z3 that he was using.

He then moved to LinkedList, which, since based on a nice recursive data
structure, was a piece of cake for VeriFast.

Finally, he started on Queue, which, it seemed, should have been easy for
the same reason. However, again, VeriFast’s automation started acting up. Shar-
ing of immutable data structures can be expressed in VeriFast using fractional
permissions [5]. VeriFast automatically splits and merges fractional chunks as
necessary—usually. In this case, it did not, so some time-consuming contortions
were necessary to get the sharable linked list implementation finished, not leav-
ing time to complete other problems.

The main conclusion that we took away from the competition is that automa-
tion is evil :-). Nonetheless, we will of course continue to work on more and
better automation.

Aftermath. We have now completed all problems. Queue was fairly easy, once
the right encoding of sharability was found. (Quantify over the list’s fraction,
or over each field’s fraction separately? Quantifying over each field’s fraction
works better.) Completing Invert and N Queens required developing quite a
bit of theory, which was labor-intensive but possible in VeriFast. For example,
for Invert we proved surjectivity of A from injectivity and boundedness.

4 Conclusions

Results of the competition. Sum&Max was the easiest problem, solved by every-
body attempting it. Invert—while not very difficult—challenged the systems’
quantifier handling in presence of linear arithmetic. LinkedList provided differ-
entiation in reasoning about heap data structures. NQueens and Queue were
perceived by most as outside the achievable in the competition time frame. Alto-
gether, NQueens was probably the most difficult problem, combining complex
reasoning and a difficulty to express when there is no legal solution.

The issue of theory reasoning. A common issue in the competition was the battle
to solve the arising SMT problems. In the majority of cases, the solvers were
successful. When they were not (this was most notable in Invert), the stress
for the users was high. In the aftermath, we have seen a wide range of more or

The 1st Verified Software Competition: Experience Report 167

less elaborate workarounds for such cases. Better ways for the user to guide the
proof search (and for the system to give feedback) are needed. The inference
speed, on the other hand, was generally deemed adequate in this competition.

The issues of ADTs and modularity. For LinkedList and Queue, participants
have produced solutions of different flavors of modularity. An interesting solution
class were behavioral specifications, i.e., the ones completely separating interface
and implementation. In LinkedList, such separation required introducing ad-
ditional methods for constructing lists, even though they did not contribute to
the computation required in the problem. A desirable property of specifications
is a clear syntactic separation of interface and implementation (at best, keeping
them in separate files), as it makes understanding modularity concepts easier.

Concerning the use of abstract data types (ADTs), there is still a gap between
different reasoning traditions. Foundational systems like HOL have elaborate and
well-established ADT theories, while verification systems for imperative and OO
code mainly use ADTs in an ad hoc manner. A systematic connection between
the two realms remains a challenge.

Judging solutions and competition organization. The competition made appar-
ent that even a qualitative evaluation of solutions, with an informal setup and
no ranking, is not an easy task. Solutions varied greatly in their requirement for-
malization and proof methods. Understanding the details of a solution (let alone
validating it with a tool) requires a significant effort from an evaluation com-
mittee. Helpful in this regard could be holding a dialogue with the developers,
or using a structured questionnaire such as [6]. Certain merits of a solution can
be effectively measured [10] (the web version of this report contains statistics on
solution verbosity), while others (e.g., elegance) remain subjective. Discussing
verification solutions is not as standardized or automated as judging other rea-
soning tool competitions, but it is extremely instructive.

Other suggestions concerning organization were to include more advanced
programming concepts (e.g., concurrency), to allow remote participation thus
opening the competition to a wider public, or to assign a separate time slot to
each individual problem to achieve a clearer differentiation.

Relevance of the competition. The competition (and its aftermath) has shown
that all systems are—in the hands of an experienced user—capable of solving
any problem. At the same time, already the very “simple” problems posed have
exposed many practical issues with current verification tools. These issues are
typically not thematized by the way we judge progress in program verification to-
day, i.e., by how big a project can be verified with essentially unlimited resources.
The competition with its limited time slot offers a very useful complementary
perspective on verification’s way to wide practical use.

An afterword from the organizers. The first Verified Software Competition ex-
ceeded the expectations of its organizers. We were impressed by the interest the
competition received and by the enthusiasm of the participants, which is also
demonstrated by the effort spent in the aftermath of the competition to solve the

168 V. Klebanov et al.

remaining problems. There was a strong encouragement to continue organizing
such events. We hope the competition becomes a recurring part of the VSTTE
conference and contributes to the Verified Software Initiative.

References

1. Arthan, R., Jones, R.: Z in HOL in ProofPower. BCS FACS FACTS, 2005-1
2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A

modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364–387. Springer, Heidelberg (2006)

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS, vol. 4334. Springer, Heidelberg (2007)

4. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006)

5. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL (2005)

6. COST Action IC0701. Verification problem repository, www.verifythis.org
7. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

8. Hoare, C., Misra, J., Leavens, G.T., Shankar, N.: The verified software initiative:
A manifesto. ACM Comput. Surv. 41, 1–22 (2009)

9. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

10. Leino, K.R.M., Moskal, M.: VACID-0: Verification of ample correctness of invari-
ants of data-structures, edition 0. In: Proceedings of Tools and Experiments Work-
shop at VSTTE (2010)

11. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language:
Design and logical encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 312–327. Springer, Heidelberg (2010)

12. Schmitt, P.H., Ulbrich, M., Weiß, B.: Dynamic frames in Java dynamic logic. In:
Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 138–152.
Springer, Heidelberg (2011)

13. Sitaraman, M., Adcock, B., Avigad, J., Bronish, D., Bucci, P., Frazier, D., Fried-
man, H., Harton, H., Heym, W., Kirschenbaum, J., Krone, J., Smith, H., Weide,
B.: Building a push-button RESOLVE verifier: Progress and challenges. In: Formal
Aspects of Computing, pp. 1–20 (2010)

14. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008)

www.verifythis.org

Validated Compilation through Logic

Guodong Li�

Fujitsu Labs of America, CA

Abstract. To reason about programs written in a language, one needs
to define its formal semantics, derive a reasoning mechanism (e.g. a pro-
gram logic), and maximize the proof automation. Unfortunately, a com-
piler may involve multiple languages and phases; it is tedious and error
prone to do so for each language and each phase.

We present an approach based on the use of higher order logic to ease
this burden. All the Intermediate Representations (IRs) are special forms
of the logic of a prover such that IR programs can be reasoned about
directly in the logic. We use this technique to construct and validate an
optimizing compiler. New techniques are used to compile-with-proof all
the programs into the logic, e.g. a logic specification is derived automat-
ically from the monad interpretation of a piece of assembly code.

1 Introduction

Giving realistic programming languages like C a correct semantics is difficult. It
is even more so to make such semantics tractable so that we can reason about
non-trivial programs in a formal setting. Some widely used functional languages
have been given a formal semantics, e.g. ML has a formal operational semantics
[13]. However, these semantics do not as yet provide a practical basis for formal
reasoning about programs, although they are extremely valuable as reference
documents and for proving meta-theorems (like type preservation).

We may use logic to model practically useful systems, and then manipulate
the programs at the logic level. This method allows formal reasoning to the
maximum extent since applications are modeled directly in logic. In addition, to
connect the logic to realistic languages, we may translate programs written in
(a subset of) a realistic high level language such as ML or C to equivalent logic
specifications, then prove properties on them. This procedure is much easier than
working directly on source programs.

Furthermore, the properties proved on a high level program may not hold on
the binary form since compilers may introduce bugs and users often make over-
simplifying assumptions on the machine model. This requires the implementation
and validation of an extensible compiler, which is extremely tedious when it
involves multiple Intermediate Representations (IRs) and compilation phases.

In this paper we use higher order logic to represent IRs and use term rewriting
to perform program transformations. A typical application is a validated com-
piler from high level languages like ML or C to assembly code. All the IRs are
special forms of the term language dwelling within the logic of a theorem prover
� The presented work is done at the University of Utah.

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 169–183, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

170 G. Li

such that IR programs can be reasoned about using the ordinary mathematics
provided by the prover. Program transformations can be cleanly isolated and
specified as term rewrites. One of the keys is to compile-with-proof all the pro-
grams into the logic. For example, a logic specification is derived automatically
from the monad representation of a piece of assembly code.

The presented work is inspired by our software compiler [10,11,12] which pro-
duces assembly code for a subset of the specification language of the HOL theo-
rem prover — Total Functional Language (TFL) [20] — a pure, total functional
programming layer built on top of higher order logic and implemented in both
the HOL-4 [8] and Isabelle [17] systems. Its front-end [12] translates a source
function into a simpler intermediate format by compiling away many advanced
features, e.g. it performs monomorphisation and defunctionalization to elimi-
nate polymorphism and higher order functions. Its back-end [10] generates from
this intermediate format an equivalent imperative program, which will be trans-
lated to other imperative IRs and finally to the machine code. In particular, the
imperative IRs (with explicit syntax and semantics) include HSL, CFL and SAL.

This back-end turned out to be the bottleneck of the entire compiler due
mainly to the difficulty in reasoning about these IRs. For example, the veri-
fication of programs manipulating heaps and stacks is very tedious. It is also
inflexible, failing to accommodate extensions and modifications smoothly. For
instance, since the incorporation of some traditional optimizations requires the
formalization of relevant control flow and data flow analysis, almost all such
optimizations are opted out in the back-end.

The first goal of this paper is to present a new back-end based on target code
decompilation to solve these problems. Given a piece of target code (possibly with
tricky control flow and non-terminating), this back-end generates HOL functions
modeling the semantics of this code. These functions are then automatically
proved to be equivalent to the front-end outputs. The back-end also supports
the decompilation of unstructured code produced by third-party code generators
such as GCC. One big advantage is that we do not need any rule system or ad-
hoc reasoning framework. Instead the decompilation is basically a functional
interpretation of the imperative machine code. Such interpretation reveals the
intrinsic control flow of a flat program. We show that this method works for
arbitrary control flow while the reasoning mechanism is intuitive and natural.

The second goal is to extend the front-end to accept more realistic source
languages. Particularly, we present an approach to compile a small subset of C
to TFL by deductively synthesizing functions from imperative programs. This
allows a safe source translation from a simple C program to one accepted by our
compiler so that the big burden of implementing a validated C compiler is gone.
This tiny (but first) step allows us to reason about a C program (of the allowed
syntax) directly in the prover’s logic rather than using ad-hoc mechanisms.

The third goal is to use only a small number of succinct transformations to
bridge the gap introduced by the the new back-end and front-end, yet is able
to produce code of the same quality as modern compilers like GCC do. In sum,
this paper demonstrates the first attempt to unite all phases of an optimizing

Validated Compilation through Logic 171

compiler together in a logic: both high level and low level programs are compiled
into the logic; all transformations are performed and validated in the logic. Using
the logic as the universal IR makes easier the compilation and its validation.
Motivating Example. We show below the ML (or TFL) and C versions of a
program involving the calculation of the factorial of input x.

MLex Cex

fex (x, y)
.
=

let ffact (x, a) =
(if x = 0 then (x, a)
else ffact (x − 1, x ∗ a))

in

let (v0, v1) = ffact (x, 1) in
if v1 ≥ y then v1 − y
else v1 + 2 ∗ y

fex (unsigned x, unsigned y) {
unsigned a = 1;
while (x �= 0)

{a = x ∗ a; x = x − 1; }
if (a ≥ y) return a − y;
else return a + 2 ∗ y;

}
We may ask two questions: (1) do they terminate? and (2) are they equivalent

(with respect to their semantics)? Before answering these questions we have to
give them formal semantics and reasoning mechanisms. Our front-end is able
to translate the C version Cex to the ML version MLex, which is written in the
term language of the HOL logic. This leads immediately to the proof of their
equivalence. Moreover, HOL’s TFL package is able to automatically prove that
they terminate when x ≥ 0.

A compiler may generate the following ARM-style assembly code csex. This
code first sets register r1’s value to 1. It then checks whether r0 is 0; if yes then
jumps to label l+5 by increasing the program pointer by 4; and so forth.

l : mov r1 1
l+1 : beq r0 0 (+4)
l+2 : mul r1 r1 r0

l+3 : sub r0 r0 1

l+4 : b (−3)
l+5 : blt r1 r2 (+3)
l+6 : sub r1 r1 r2

l+7 : b (+3)

l+8 : mul r2 2 r2

l+9 : add r1 r1 r2

l+10 :

Our goal is to not only produce the assembly code, but also prove the compi-
lation correct. Specifically, the relation between the input in (r0, r2) before the
execution and the output in r1 after the execution shall be represented by fex.
Our compiler transforms fex into a lower level format shown below.

fex1 (r0, r2)
.
=

let f(r0, r1) =
if r0 = 0 then (r0, r1) else let r1 = r1 ∗ r0 in let r0 = r0 − 1 in f (r0, r1) in

let r1 = 1 in let (r0, r1) = f(r0, r1) in
if r1 < r2 then let r2 = 2 ∗ r2 in let r1 = r1 + r2 in r1 else let r1 = r1 − r2 in r1

It is not difficult to produce code csex from function fex1 (our compiler ap-
plies straight-forward translation to do this). The main challenge is to prove
their semantics equivalence. For this we might take another look at the relation
between the code and the function. Suppose we are given the code csex, can we
“decompile” it to a function like fex1? If yes then we obtain a logic function
of csex which is equivalent to fex1 as well as fex. We may do this for the code
produced by third-party generators such as GCC.

172 G. Li

2 Extended Front-End

TFL is a subset of the higher order logic built in HOL, thus their syntax and
the semantics have already been defined in the logic. So do all the IRs. That is,
programs written in TFL or IRs are simply mathematical functions defined in
the HOL logic. It is this feature that enables us to use standard mathematics
to reason about these languages. This supports much flexibility and allows the
meaning of a program to be transparent. Mimicing the ML language, TFL is
a polymorphic, higher order and terminating functional language supporting
algebraic datatypes and pattern matching.

Compiling Imperative Programs. Importing terminating ML programs into
TFL is easy due to the high similarity in their syntaxes and semantics. It is also
possible to import programs written in an imperative language such as a small
subset of C. As a demonstration, we develop a method for such a subset (denoted
here as C0) with the following structures, where e represents C expressions.

s ::= v := e | return v | s; s | IF e THEN s ELSE s | WHILE e s | v := pid s

In order to connect the semantics of a C0 structure S to a TFL function f ,
we introduce the following judgment to characterize S’s axiomatic semantics as
a predicate, where σ[x] returns the value of variable x in state σ; and eval S σ
returns the new state after S’s execution. Notation (i, f, o) specifies that: if
the initial value of input i is v, then in the state after the execution of S, the
value left in output o is equal to applying the function f to the initial value
v. Basically, a judgment can be obtained by instantiating the P and Q in a
Hoare triple {P} s {Q} to λσ. σ[i] = v and λσ. σ[o] = f v respectively. If a
judgment synthesizes f with respect to the input i and output o, then we claim
that structure S correctly implements function f .

S � (i, f, o)
.
= ∀σ∀v. (σ[i] = v) ⇒ ((eval S σ)[o] = f v)

In Figure 1 we show a couple of rules for synthesizing a function by composing
the judgments. A judgment may contain an extra field ex (explained later).
Notation v̂ generates a TFL variable for a C0 variable v; and ê returns the TFL

expression corresponding to a C0 expression e. Notation fv returns the free
variables in an expression. We use .= to introduce abbreviations. To mitigate the
burden on termination proof we axiomatize some of these rules.

Rule assgn builds a judgment for a C0 assignment v := e. The input con-
sists of all the free variables in e and the output is v; the synthesized function
calculates the expression e. Rule return synthesizes an identity function for the
same input and output v. Rules seq, cond, while and call are used to synthesize
functions for sequential structures, conditional structures, loops and procedure
calls respectively. The “while” in rule while is defined by while c f

.
= λx. if ¬ c x

then x else while c f (f x).
An important rule, frame, is used to match the inputs and outputs of differ-

ent judgments. For instance, suppose we want to use the seq rule to compose

Validated Compilation through Logic 173

i
.
= fv e

v := e � 〈i, λî. ê, v〉
assgn

return v � 〈v, λv̂. v̂, v〉 return

S1 � 〈i1, f1, o1〉 ↓ ex1 S2 � 〈o1, f2, o2〉 ↓ ex2

S1; S2 � 〈i1, f2 o f1, o2〉 ↓ (ex1 ∪ ex2)
seq

S1 � 〈i, f1, o〉 ↓ ex1 S2 � 〈i, f2, o〉 ↓ ex2

IF e THEN S1 ELSE S2 � 〈i, (λî. if ê then f1 î else f2 î), o〉 ↓ (ex1 ∪ ex2)
cond

S � 〈i, f, i〉 ↓ ex

WHILE e S � 〈i, while (λî. ê) f, i〉 ↓ ex
while

pid i := S S � 〈i, f, o〉 ↓ ex

w := pid v � 〈v, f, w〉 ↓ {v ∈ ex | v is global} call

S � 〈i, f, o〉 ↓ ex

S � 〈i, λî. let (ô1, ô2) = f î in ô1, o1〉 ↓ (ex ∪ {o2})
shrink

S � 〈i, f, o〉 ↓ ex v /∈ ex v /∈ o

S � 〈(i, v), (λ(̂i, v̂). (f î, v̂)), (o, v)〉 ↓ ex
frame

Fig. 1. Compositional rules for converting C0 to TFL

judgments S1 � 〈i1, f1, o1〉 and S2 � 〈i2, f2, o2〉. If o1 �= i2, we must adjust the
judgments to make o1 = i2. This is accomplished by the frame rule which allows
adding extra variables into the input and output.

Since all the variables updated in a structure will appear in the output, we
might safely assume that those not in the output are unchanged. As in separation
logic [18], we can add these unchanged variables into the input/output using the
frame rule if needed. On the other hand, as in the shrink rule, we may remove from
the output those variables which will not be referenced anymore. The exception
set ex records the updated variables, the application of frame should rule out
them. When the exception set is empty we do not present it.

The application of the composition rules is syntax directed, and proceeds in
a bottom-up manner. For illustration, consider the C version of the running
example. The judgments for the two statements within the loop are as follows.

a := x ∗ a � 〈(x, a), λ(x, a). x ∗ a, a〉 x := x − 1 � 〈x, λx. x − 1, x〉

Since the output of the first judgment is not the same as the input of the
second judgment, we apply the frame rule to adjust and then compose them.

a := x ∗ a � 〈(x, a), λ(x, a). (x, x ∗ a), (x, a)〉
x := x − 1 � 〈(x, a), λ(x, a). (x − 1, a), (x, a)〉
a := x ∗ a; x := x − 1 � 〈(x, a), λ(x, a). (x − 1, x ∗ a), (x, a)〉

Let g1 be an abbreviation of λ(x, a). (x−1, x∗a). Next we apply the while rule
to get a judgment for the loop. The composition of this judgment and the one
for a := 1 yields a new judgment, where g2

.
= (while (λ(x, a).x �= 0) g) o (λx.(x, 1)).

WHILE (x �= 0) {a := x ∗ a; x := x − 1; } � 〈(x, a), while (λ(x, a).x �= 0) g, (x, a)〉
a := 1; WHILE (x �= 0) {a := x ∗ a; x := x − 1; } � 〈x, g2, (x, a)〉

Similarly we obtain the judgment for the conditional statement.

174 G. Li

if (a ≥ y) return a − y; else a + 2 ∗ y; �
〈(a, y), λ(a, y). if a ≥ y then a − y else a + 2 ∗ y, (a, y)〉

We can eliminate the unused variable x (through rule shrink) from the judg-
ment. Then we add the y into the input and output through the frame rule.

a := 1; WHILE (x �= 0) {a := x ∗ a; x := x − 1; }
� 〈x, λ(x, a).let (x, a) = g2 (x, a) in a, a〉 ↓ {x}
� 〈(x, y), (λ((x, a), y). (let (x, a) = g2 (x, a) in a, y), (a, y))〉 ↓ {x}

Finally we synthesize a function for the entire program which can be rewritten
and simplified to MLex by applying some rewrite rules about “while” and “let”.

(λ(a, y). if a ≥ y then a− y else a + 2 ∗ y) o (λ((x, a), y). (let (x, a) = g2 (x, a) in a, y))

3 De-compiling Assembly Code

The back-end decompiles an assembly program to equivalent HOL functions.
The “decompilation with proof” trick is first used by us in [10] to synthesize a
function from an intermediate program. Magnus et al [16] extended this method
to decompile ARM code. Unfortunately, these methods are based on rule com-
position — as we show in the previous section — the function is constructed by
composing rules in a bottom-up manner. The code must be well structured since
these methods need to discover the control flow structures to guide the com-
position. What is worse, such methods require substantial effort on soundness
proof, as demonstrated in [19,15] where most of the space of a paper is used to
explain the rule system and its proof. They are also difficult to extend; and a
minor modification may demand redoing the entire proof of the rule system.

For example, it is difficult to identify the control flow (e.g. loops) of the
following Ackerman program, let alone coming up with rules to reason about it.

unsigned Ack (unsigned m, unsigned n)

{ if (m == 0) return n + 1;

if (n == 0) return Ack(m - 1, 1);

return Ack(m - 1, Ack(m, n - 1)); }

We present here a new way to model and decompile low level programs. The
operational semantics of machine instructions are modeled as state monads, and
the control flow is represented by monad binding. We use automatic deduction
and pure rewriting to translate monad representations to HOL functions. Our
method makes the soundness proof trivial and is able to handle unstructured
and non-terminating code that will fail the attempts made in [10,16].

Machine Language. We use a small subset of the ARM instructions and a
simplified machine model to illustrate the method. A code fragment consists of
a union (or list) of labeled instruction l : instr. The union of code fragments cs0

and cs1 is denoted as cs0 ∪ cs1 where ∪ is the usual set union operator which
is commutative and associative. Sometimes we write {l : [instr1, . . . , instrn]} for
{l : instr1} ∪ {l+1 : instr2} ∪ . . . ∪ {l+n−1 : instrn}.

Validated Compilation through Logic 175

The program semantics is described by an evaluation relation σ � cs → σ′,
which relates state σ at the moment of entry to a piece of code cs to the possible
states at the corresponding possible moments of exit σ′. A state σ consists of
a label l modeling the pc and a data state s. For a single instruction instr,
notation σ � instr → σ′ specifies that the execution of instr leads pre-state σ
to post-state σ′. We give below some examples, where s[x] returns x’s value in
data state s, s � (x, v) denotes the update of s by setting x’s value to v.

(l, s) � {l : sub r0 r1 n} → (l + 1, s � (r0, s[r1] − n)))

(l, s) � {l : blt r1 5 (+n)} →
{

(l + n, s) if s[r1] < 5
(l + 1, s) otherwise

The relation summerizes the operational semantics of a single instruction is
(l, s) � {l : instr} → (next instr s l, decode instr s), where next models label
undates, and decode models the transitions of the data state s.

Decompilation. We use monads to model side-effect computations. Essentially,
our monad is a state monad where the state is the data state s : state.

datatype MONAD = Monad of state → (’α # state)

exec (Monad f)
.
= f

The monad operations >>=, >> and return are defined as expected

f >>= g
.
= Monad (λs. let (v,s’) = exec f s in exec (g v) s’)

f >> g
.
= f >>= λ(). g

return x
.
= Monad (λ s. (x, s)) .

We record the program counter (pc) in the value of a monad by instantiating
type α to type MVALUE. Specifically, TO fl models how the pc is updated : suppose
the pc’s old value is l, then its new value becomes fl l. Constructor END is for
the case where the pc is out of the program domain.

datatype MVALUE = TO of (n → n) | END

The operational semantics of an instruction is modeled by a state monad.
Recall that next and decode return the next pc and the next state respectively.

[[inst]] = Monad (λs. (TO (λl. next inst s l), decode inst s))

We show below some examples. The dummy monad [[ε]] satisfies exec [[ε]] s =

(END, s).

[[sub r2 r1 r0]] = Monad (λs. (TO (λl.l+1), s � (r2, s[r1]-s[r0])))

[[b (+n)]] = Monad (λs. (TO (λl.n+l), s))

[[ε]] = return END

176 G. Li

Code Specification. Our decompiler derives functions from a code fragment in
a top down manner. The key is to associate each labeled instruction l : inst with
a monad f so as to generate an instruction specification of format (l, f, inst) such
that f models the computation (of the entire code) starting from label l. The
union of instruction specifications constitutes a code specification. For example,
in the following code specification, monads f1 and f2 are associated with the first
two instructions such that f1 and f2 model the code’s computation from l and
l+1 respectively. The trick here is we do not have to know what exactly f1 and f2

are; instead, it suffices to know the relation between them: f1 = [[mov r1 r0]] � f2.

{(l, f1, mov r1 r0), (l+1, f2, add r2 r1 r0), . . .}

The relation between all monads represents the well formedness of a code
fragment: it is well formed iff for any instruction specification (l, f, instr), the
monad f equals to the binding of the monad corresponding to instr and the
one at the the place to which the pc will go. In the following definition, function
f of returns the function in the monad value, i.e. f of (TO lf) = lf . Notation
get f code spec l returns the instruction specification at label l; if l is not in the
domain of the code, then the dummy monad [[ε]] is returned.

code wf code spec =
∀l∀f∀instr. (l, f, instr) ∈ code spec ⇒

f = [[instr]] �= (λfl. get f code spec ((f of fl) l))

Rewriting a code spec with code wf’s definition and the semantics of jump
instructions will give us a first order predicate depicting the relations between
the monads in code spec. We call this predicate monad representation (MR).
For example, the MR of the loop in the running example contains four monads,
where eq branch x y f1 f2

.
= Monad (λs. if s[x] = s[y] then exec f1 s else exec f2 s).

loop spec =

{
(l+1, f1, beq r0 0 (+4)), (l+2, f2, mul r1 r1 r0),
(l+3, f3, sub r0 r0 1), (l+4, f4, b (−3))

}
code wf loop spec =
(f1 = eq branch r0 0 [[ε]] f2) ∧ (f2 = [[mul r1 r1 r0]] � f3) ∧
(f3 = [[sub r0 r0 1]] � f4) ∧ (f4 = f1)

Not all monads in an MR are important. In the loop spec example, monad f1

is the most important one since it models the computation of the entire loop.
We call such monads anchor monads since they mark the important control
flow points in the code. Other monads (e.g. f2, f3 and f4 in loop spec) can be
absorbed into anchor monads. We are free to pick any subset as anchor monads;
different pickings will lead to derived functions of different formats (and the
same semantics). Our compiler’s picking is based on the IR’s control flow.

f1 = eq branch r0 0 [[ε]] ([[mul r1 r1 r0]] � [[sub r0 r0 1]] � f1) (1)

The next step is to eliminate the instruction monads within an anchor monad
to obtain the normal form of this anchor monad. This norm uses “let” and “if
then else” expressions to depict the control flow of the original code. In order
to distinguish a resource from the variable representing it, from now on we use

Validated Compilation through Logic 177

Ri to denote the the ith register, and M [i] the memory slot at i. We write x̂ for
the variable corresponding to resource x, e.g. R̂0 = r0 and R̂1 = r1. The rewrite
rules for converting an MR to its normal form include

[[mov x y]] = Monad (λs.(TO (l.l + 1), let x̂ = s[y] in s � (x, x̂)))
[[sub x y z]] = Monad (λs.(TO (l.l + 1), let x̂ = s[y] − s[z] in s � (x, x̂))) .

Function Derivation. This phase derives HOL functions from the normal
forms of anchor monads. Definition read monad read the value from the state
after the execution; de comp decompiles-with-proof monad f to function g.

read monad f s x = let (,s’) = exec f s in s’[x]

de comp f (in,g,out) = ∀x. g x = read monad f (s � (in,x)) out

The decompilation of monads not referring to other monads is straight-forward.
The monad f1 in loop spec refers to itself; this reference will be converted to the
call of the derived function associated with f1. The decompiler generates the
following theorem for the loop spec.

loop spec ∧ de comp f1 ((R0, R1), g, (R0, R1)) ⇒
g (r0, r1) = if r0 = 0 then r1 else let r1 = r1 ∗ r0 in let r0 = r0 − 1 in g (r0, r1)

A stronger theorem as below may be derived by inducting on g’s first ar-
gument. However the above theorem (which requires no induction) is sufficient
since it warrants that only correct code will produce the expected function.

loop spec ⇒ de comp f1 ((R0, R1), g, (R0, R1))

The MR of a piece of code (especially unstructured code) may contain multiple
anchor monads connected with respect to the control flow. The derived functions
should be connected in a similar way. Consider the following example.

(f1 = if . . . then · · · � [[ε]] else · · · � f2) ∧
(f2 = if . . . then · · · � f3 else · · · � f1) ∧
(f3 = if . . . then · · · � f2 else · · · � f3) .

The derived functions would look like the following, where i and o repre-
sent the input and output respectively, e1 and e2 are input patterns connecting
the derived functions. Input patterns can is obtained through a simple fix-point
calculation similar to the use-def analysis. That is, the input expression corre-
sponding to monad f contains all the resources which will be used later.

(g1 i = if . . . then . . . o else let . . . in g2 e1) ∧
(g2 e1 = if . . . then let . . . in g3 e2 else let . . . in g1 i) ∧
(g3 e2 = if . . . then let . . . in g2 e1 else let . . . in g3 e2)

Projective Functions. In essence, the process of function derivation is to
project monad functions onto specific inputs and outputs. The derived functions
maintain the same (control-flow) structures as the monad ones. We can further
extend the well-formedness definition to accommodating these functions. The

178 G. Li

(f, sig) in the following definition indicates that g is a projective function of
monad f over input/output signatures sig. The decompilation constructs such
functions automatically with respect to their signatures.

code proj wf code spec =
∀l∀f∀pj∀instr. (l, f, pj, instr) ∈ code spec ⇒

f = [[instr]] �= (λfl. get f code spec ((f of fl) l)) ∧
∀(g, sig) ∈ pj.∀s. read monad f s sig = g (s[sig])

This extension helps derive more readable functions by considering data sep-
aration [18]. Considering the following pseudo-code, where the first instruction
invokes a recursive function rf which does not modify r1’s value. The de-
compilation derives g1,1 = rf , g1,2 = λx.x, and g2,1(r0, r1) = let (r0, r1) =
(rf r0, (λx.x) r1) in r0 + r1, i.e. g2,1(r0, r1) = let r0 = rf r0 in (r0 + r1, r1).
The recursive function g1,1 is succinct since it does not take r1 as an extra ar-
gument. The fact that r1 is not changed is recorded by the identity function
g1,2. This technique performs the task of the “separation logic” in [15,16,14],
but again needs no ad-hoc and intractable program logic.

(l, f1, {(g1,1, r0), (g1,2, r1)}, r0 = rf r0)
(l+1, f2, {(g2,1, (r0, r1))}, add r0 r0 r1)

Procedure Call. The relation between monads represents the control flow.
Procedure call poses a challenge when the return address is not given statically.

In ARM, the caller stores the return address (i.e. the label of the next in-
struction after the call) into the link register lr, which will be fetched by the
callee upon exit. In the following code the procedure at l′ – l′+3 are called twice.
Instruction bl stores the returns address (l+1 or l+4) into the link register lr.

(l, f1, bl l′)
(l+1, f2, mul r2 r0 r1)
(l+2, , mov r0 r2)

(l+3, , bl l′)
(l+4, f3, mov r1 r0)
(l′, fc, beq r0 r1 (+3))

(l′+1, , sub r0 r0 r1)
(l′+2, , b (−2))
(l′+3, f ′

c, b lr)

In the MR below, monads fc and f ′
c model the computation starting from the

entry and the exit point of the procedure respectively. Monad f ′
c picks the next

monad according to the return address stored in lr, e.g. f2 is chosen when the
return address is l+1. The last case, which will never be encountered, handles
the situation where the return address is unknown.

(f1 = [[mov lr l+1]] � fc) ∧ (fc = eq branch r0 r1 f ′
c ([[sub r0 r0 r1]] � fc))

(f ′
c = Monad(λs. case s[lr] of

l+1 → exec f2 s
| l+4 → exec f3 s
| k → exec (get f code spec k) s)) ∧

(f2 = [[mov r2 r0 r1]] � [[mov r0 r2]] � [[mov lr l+4]] � fc) ∧ (f3 = [[mov r1 r0]] � . . .)

The decompilation of this MR is straightforward. Some derived functions are
curried and take lr as an extra argument (an alternative is to use a projective
function described above to model how lr is updated). We introduce function g′c

Validated Compilation through Logic 179

to model the recursive procedure. Note that ∀l ∈ {l+1, l+4}. gc l = g′
c. The derived

function gc is converted to a form in the procedure call style.

(g1 (r0, r1) = let lr = l+1 in gc lr (r0, r1)) ∧
(g2 (r0, r1) = let r2 = r0 + r1 in let r0 = r2 in let lr = l+4 in gc lr (r0, r1)) ∧
(g′

c (r0, r1) = if r0 = r1 then (r0, r1) else let r0 = r0 − r1 in g′
c (r0, r1))

gc l+1 (r0, r1) = if r0 = r1 then g2 (r0, r1) else let r0 = r0 − r1 in gc l+1 (r0, r1)
= let (r0, r1) = g′

c (r0, r1) in g2 (r0, r1)
gc l+4 (r0, r1) = let (r0, r1) = g′

c (r0, r1) in g3 r0 .

Then function g1 can be simplified to a format where function g′c is called
twice, which is consistent with the control flow structure of the source code.

g1 (r0, r1) = gc l+1 (r0, r1) = let (r0, r1) = g′
c (r0, r1) in g2 (r0, r1)

= let (r0, r1) = g′
c (r0, r1) in let r2 = r0 + r1 in

let r0 = r2 in let (r0, r1) = g′
c (r0, r1) in g3 r0

4 Example Program Transformations

In this section we show some examples of performing program transformations
in the logic which extend our previous work [10,11,12].

Lightweight Closure Conversion. This conversion captures the free variables
for nested functions in an environment as passed to the function as an extra
argument. The function body is modified so that references to free variables are
now references to the environment parameter. When a function is referenced,
the function is paired with the environment as a closure.

The clos init rule creates a closure for closing the first free variable v in the
body of function f . Administrative term clos is used to record the transformed
function and the environment. By definition ∀c. clos (f, c) = f . We uses tactics
(at the meta-level) to control the application of this rule such that it will not
be applied to functions without free variables. Rule clos one handles extra free
variables and builds the environment as a tuple. It is applied repeatedly until
no free variable remains in the function body.

[clos init] let f = g v in e f ⇐⇒ let f = clos (g, v) in e (f v)
[clos one] let f = clos ((λc. g v c), c) in e (f c) ⇐⇒

let f = clos ((λ(c, v). g v c), (c, v)) in e (f (c, v))

We show below a simple example, where f ′ is an abbreviation of λx. x+y+z.
The final step performs explicit tuple allocation, where #1 and #2 take the first
and second components of a tuple respectively.

let f = λx. x + y + z in f 1 =
let f = (λy. f ′) y in (λf. f 1) f ⇐⇒
let f = clos ((λy. f ′), y) in (λf. f 1) (f y) =
let f = clos ((λy. (λz. λy. f ′) z y), y) in (λf. f 1) (f y) ⇐⇒
let f = clos ((λ(y, z). f ′), (y, z)) in (λf. f 1) (f (y, z)) =
let f = λ(y, z). λx. x + y + z in f (y, z) 1 =
let f c x = let y = #1 c in let z = #2 c in x + y + z in f (y, z) 1

180 G. Li

Example Optimization: Common Subexpression Elimination. Working
on the normalized IR form, this optimization avoids redundant evaluation of the
same expression by reusing the result of the first evaluation.

[cse] let x = e in f e ←→ let x = e in f x

Exposing Heap and Stack. This phase places heap objects and stack objects
in the memory. To model the memory, we introduce a function m mapping
addresses to values. Heap variables and stack variables are indexed indirectly
through the heap register hp and frame register fp respectively. A stack variable
ti is represented by m[fp− i − 1]; and a heap variable a[ri] is by m[hp + â + ri]
where â is the starting address of heap object a.

The rewrite rules for heap allocation include the following, where ph marks
the starting address of the available heap space, and new is used to allocate
memory for n elements of type τ . An administrative term letm has the same
semantics as let does. It is used to mark the “let” expressions involving memory
accesses. To validate the transformation, it suffices to eliminate all the “letm”s.

[heap alloc]
letm a = new (τ, n) in e (a[i]) ←→
letm ph = ph + n ∗ (size τ) in letm a = ph in e (m[hp + a + i ∗ (size τ)])

5 Results

Our development contains around 12,000 lines of code (with 5,000 are legacy code
from the previous version of the compiler [10,11,12]) including the definitions,
proof and automation scripts. Most of the new theorems are for the formalization
of C0 and the target language together with reasoning mechanisms.

We compare our compiler with GCC. Each program is written in a TFL version
and a C version. TFL functions obtained from C versions are compared and
shown to be equivalent to the manually defined ones. Currently the conversion
succeeds in most cases but needs manual effort when the program is less TFL like
due to insufficient compositional rules or automaton scripts. The other phases
(e.g. de-compilation) are fully automated.

We tested several small programs including two block ciphers TEA and RC6.
Although these programs are not big, they exhibit non-trivial control flows and
tricky recursions. Essentially, our method goes in a per-function manner, thus is
able to scale to larger programs which are usually composed of small functions.

To compare the two compilers, we measure the size of the generated assembly
code in terms of executable instructions and the code’s execution time. The
time is normalized with respect to our compiler (regarded as 100%). We write
drivers iterating over various inputs and link the generated code to the drivers.
The time information may be inaccurate because (1) we run the programs on
an ARM emulator (i.e. use arm-elf-run provided by the GNU ARM Toolchain)
rather than a real processor; and (2) we pick only a fixed set of test cases.

Validated Compilation through Logic 181

Program Code Size Code Performance =?

Our Compiler GCC4 Our Compiler GCC4

Factorial 7 7 100% 90% *
Ackerman 17 21 100% 90% *
Fibonacci 15 14 100% 95% *
TEA 77 66 100% 80% *
RC6 92 104 100% 90% *

GCC 4.1.1 is given the option -O2 (thus function inlining and inter-procedure
optimizations are disabled). These programs barely exhibit such advanced fea-
tures as polymorphism and higher order functions. Our compiler tends to be
slower than GCC because GCC applies better flow analysis and instruction se-
lection/scheduling than our compiler does. However, since our compiler also ap-
plies many optimizations, e.g. convert tail recursive function calls into loops, it
can rival with GCC in performance for these programs. Note that our compiler
can beat GCC with less optimizations (e.g. no instruction merging).

An interesting point is to compare the functions derived from the codes gen-
erated by these compilers. These functions should be equal if the compilers are
correct. As indicated in column “=?”, we have proved that the compilers gen-
erate equivalent codes for all test programs by comparing the derived functions.
We notice that the code generated by our compiler and GCC are often similar
in terms of control flow structures; the main difference lies in the use of differ-
ent instruction selection and scheduling schemes for basic blocks. Currently this
equivalent proof is done manually (especially when two functions have different
control flows, which fails simple tactics that check only the equivalence of basic
blocks) and can be automated in the future. Note that, for our compiler, the
decompiled function g1 is alpha-equivalent to the IR function g2 produced by
the front-end since csg2 , the code from which g1 derives, inherits the control flow
structure from g2. Our compiler can serve as the canonical one when checking
the correctness of third-party compilers.

6 Related Work and Conclusions

There has been much work on translating functional languages; one of the most
influential has been the paper of Tolmach and Oliva [21] which developed a
translation from SML-like functional language to Ada. Hickey and Nogin [7]
worked in MetaPRL to construct a compiler from a full higher order, untyped,
functional language to Intel x86 code, based entirely on higher-order rewrite
rules. They use higher-order abstract syntax to represent programs and do not
define any semantics. These works do not prove the compilers correct.

Hannan and Pfenning [6] constructed a verified compiler in LF for the untyped
λ-calculus. The target machine is a variant of the CAM runtime and differs a lot
from real machines. Chlipala [4] considered compiling a simply-typed λ-calculus
to assembly language. He proved semantics preservation based on denotational
semantics assigned to the intermediate languages. These source languages are
the bare lambda calculus and is thus much simpler than TFL.

182 G. Li

Chlipala [5] further considered translating a simple impure functional lan-
guage to an idealized assembly language. One of main points is to avoid binder
manipulation by using a parametric higher-order abstract syntax to represent
programs; while in our case this is automatically taken care of by the prover. Its
representative optimization, common subexpression elimination, is accomplished
in our compiler by a one-line rewrite rule.

Benton and Hur [1] interprets types as binary relations to connect the de-
notational semantics of a simply typed functional language and the operational
behavior of low-level programs in a SECD machine. This allows, as we did, the
modeling of low-level code using a mathematical, domain-theoretic functions, as
well as the proof of a simple compiler. But we need not to define the semantics
in terms of tricky and customized interpretations.

Leroy [2,9] verified a compiler from a subset of C, i.e. Clight, to PowerPC
assembly code in the Coq system. The semantics of Clight is completely deter-
ministic and specified as big-step operational semantics. The proof of semantics
preservation for the translation proceeds by induction over the Clight evalua-
tion derivation; while our proofs proceed by verifying the rewriting steps. As
demonstrated in [22], his compiler needs extensive manual effort to verify new
optimizations; while our rewriting based approach is very flexible and easy to
accommodate non-trivial optimizations. In fact our modeling of IRs directly in
the logic is intended to mitigate the burden of manual proof.

The decompiler from ARM presented in this paper has same purpose as [16,14]
does, but uses a totally different reasoning method. We do not rely on a Hoare
Logic built for ARM, and overcome many limitations brought by composing
reasoning rules in a bottom-up style (e.g. unable to handle unstructured code).

Charguéraud [3] proposed a method to decompile pure Caml programs into
logical formulas that implies the programs’ post-conditions. Similar to our C0

front-end, this method supports performing the correctness proof of a source
program in the higher-order logic of a theorem prover. Such technique can also
be used to compile-with-proof Caml programs into TFL functions.

Conclusions and Future Work. We have presented an approach to com-
pile both high level and low level languages into a logic, and perform validated
program transformations to construct an optimizing compiler. We plan to aug-
ment the front-end to accept larger subsets of C, e.g. with support for structs
and pointers; and incorporate more aggressive optimization techniques into the
compiler. We also plan to generate code for other platforms such as X86, and
bytecode languages such as LLVM.

References

1. Benton, N., Hur, C.-K.: Biorthogonality, step-indexing and compiler correctness.
In: ACM International Conference on Functional programming, ICFP (2009)

2. Blazy, S., Dargaye, Z., Leroy, X.: Formal verification of a C compiler front-end.
In: Misra, J., Nipkow, T., Karakostas, G. (eds.) FM 2006. LNCS, vol. 4085, pp.
460–475. Springer, Heidelberg (2006)

Validated Compilation through Logic 183

3. Charguéraud, A.: Program verification through characteristic formulae. In: ACM
International Conference on Functional Programming, ICFP (2010)

4. Chlipala, A.: A certified type-preserving compiler from lambda calculus to assembly
language. In: Programming Language Design and Implementation, PLDI (2007)

5. Chlipala, A.: A verified compiler for an impure functional language. In: ACM Sym-
posium on the Principles of Programming Languages, POPL (2010)

6. Hannan, J., Pfenning, F.: Compiler verification in LF. In: 7th Symposium on Logic
in Computer Science, LICS (1992)

7. Hickey, J., Nogin, A.: Formal compiler construction in a logical framework. Journal
of Higher-Order and Symbolic Computation 19(2-3), 197–230 (2006)

8. The HOL-4 Theorem Prover, http://hol.sourceforge.net/
9. Leroy, X.: Formal certification of a compiler backend, or: programming a compiler

with a proof assistant. In: ACM Symposium on the Principles of Programming
Languages, POPL (2006)

10. Li, G., Owens, S., Slind, K.: Structure of a proof-producing compiler for a subset of
higher order logic. In: 16th European Symposium on Programming, ESOP (2007)

11. Li, G., Slind, K.: Compilation as rewriting in higher order logic. In: 21th Conference
on Automated Deduction, CADE-21 (2007)

12. Li, G., Slind, K.: Trusted source translation of a total function language. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 471–
485. Springer, Heidelberg (2008)

13. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML,
Revised Edition. MIT Press, Cambridge (1997)

14. Myreen, M.O.: Verified just-in-time compiler on x86. In: ACM Symposium on the
Principles of Programming Languages, POPL (2010)

15. Myreen, M.O., Gordon, M.J.C.: Hoare logic for realistically modelled machine code.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 568–582.
Springer, Heidelberg (2007)

16. Myreen, M.O., Gordon, M.J.C., Slind, K.: Machine-code verification for multiple
architectures: An application of decompilation into logic. In: Formal Methods in
Computer Aided Design, FMCAD (2008)

17. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL— A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

18. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
IEEE Symposium on Logic in Computer Science, LICS (2002)

19. Saabas, A., Uustalu, T.: A compositional natural semantics and hoare logic for
low-level languages. Theoretical Computer Science 373(3), 273–302 (2007)

20. Slind, K.: Reasoning about Terminating Functional Programs. PhD thesis, Institut
für Informatik, Technische Universität München (1999)

21. Tolmach, A., Oliva, D.P.: From ML to Ada: Strongly-typed language interoper-
ability via source translation. Journal of Functional Programming 8(4), 367–412
(1998)

22. Tristan, J.-B., Leroy, X.: Formal verification of translation validators: A case study
on instruction scheduling optimizations. In: ACM Symposium on the Principles of
Programming Languages, POPL (2008)

http://hol.sourceforge.net/

Certification of Safe Polynomial Memory

Bounds�

Javier de Dios and Ricardo Peña

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Spain

jdcastro@aventia.com, ricardo@sip.ucm.es

Abstract. In previous works, we have developed several algorithms for
inferring upper bounds to heap and stack consumption for a simple func-
tional language called Safe. The bounds inferred for a particular recursive
function with n arguments takes the form of symbolic n-ary functions
from (R+)n to R+ relating the input argument sizes to the number of
cells or words respectively consumed in the heap and in the stack. Most
frequently, these functions are multivariate polynomials of any degree,
although exponential and other functions can be inferred in some cases.

Certifying memory bounds is important because the analyses could be
unsound, or have been wrongly implemented. But the certifying process
should not be necessarily tied to the method used to infer those bounds.
Although the motivation for the work presented here is certifying the
bounds inferred by our compiler, we have developed a certifying method
which could equally be applied to bounds computed by hand.

The certification process is divided into two parts: (a) an off-line part
consisting of proving the soundness of a set of proof rules. This part is
independent of the program being certified, and its correctness is estab-
lished once forever by using the proof assistant Isabelle/HOL; and (b) a
compile-time program-specific part in which the proof rules are applied
to a particular program and their premises proved correct.

The key idea for the first part is proving an Isabelle/HOL theorem
for each syntactic construction of the language, relating the symbolic
information asserted by the proof-rule to the dynamic properties about
the heap and stack consumption satisfied at runtime. For the second part,
we use a mathematical tool for proving instances of Tarski’s decision
problem on quantified formulas in real closed fields.

Keywords: Memory bounds, formal certificates, proof assistants, Tarski’s
decision problem.

1 Introduction

Certifying program properties consists of providing mathematical evidence about
them. In a Proof Carrying Code (PCC) environment [17], these proofs should
� Work supported by the Spanish projects TIN2008-06622-C03-01/TIN (STAMP) and

S2009/TIC-1465 (PROMETIDOS).

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 184–199, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Certification of Safe Polynomial Memory Bounds 185

be checked by an appropriate tool. The certified properties may be obtained
either manually, interactively, or automatically, but whatever is the effort needed
for generating them, the PCC paradigm insists on their checking to be fully
automatic.

In our setting, the certified property (safe memory bounds) is automatically
inferred as the product of several static analyses, so that the certificate can
be generated by the compiler without any human intervention. Certifying the
inferred property is needed to convince a potential consumer that the static anal-
yses are sound and that they have been correctly implemented in the compiler.

Inferring safe memory bounds in an automatic way is a complex task, involving
in our case several static analyses:

• A region inference analysis [15] decides in which regions different data struc-
tures should be allocated, so that they could be safely destroyed when the
region is deallocated. At the same time, the live memory is kept to a mini-
mum (in other words, the analysis detects the maximum possible garbage).

• A size analysis infers upper bounds to the size of certain variables.
• A termination analysis [14] is used to infer upper bounds to the number of

internal calls of recursive functions.
• A space inference analysis [16], uses the results of the above analyses to infer

upper bounds to the heap and stack consumption.

Memory bounds could also be manually obtained, but in this case the computa-
tion must determine all the additive and multiplicative constants. This is usually
a tedious and error-prone task.

But, once the memory bounds have been obtained, certifying them should
be a simpler task. It is common folklore in the PCC framework that to find a
proof is always more complex than to check it. A good example of this is ranking
function synthesis in termination proofs of recursive and iterative programs. A
ranking function is a kind of certificate or witness of termination. To find them is
a rather complex task. Sometimes, linear methods [20] or sophisticated polyhedra
libraries are used [10,1]. Others, more powerful methods such as SAT solvers [3]
or non-linear constraint solvers [11] are needed. But, once the ranking function
has been obtained, certifying termination consists of ‘simply’1 proving that it
strictly decreases at each program transition in some well-founded order. This
shows that the certifying and the inference processes are not necessarily tied.

In this paper we propose a simple way of certifying upper memory bounds
whatever complex the method to obtain them has been. In the first part, we
develop a set of syntax-driven proof-rules allowing to infer safe upper memory
bounds to the execution of any expression, provided we have already upper
bounds for its sub-expressions. Then we prove their soundness by relating the
symbolic information inferred by a rule to the dynamic properties about the heap
and stack consumption satisfied at runtime. In order to get complete confidence
on the rules, we have used the Isabelle/HOL proof assistant [19] for this task.
1 If the ranking function is not linear, proving that it decreases may be not so simple,

and even it might be undecidable.

186 J. de Dios and R. Peña

In the second part we explain how, given a candidate upper bound for a
recursive function, the compiler can apply the proof-rules and infer a new upper
bound, which will be correct provided the candidate upper bound is correct. Our
main proof-rule states that if the derived bound is smaller than or equal to the
candidate one, then both are correct. In order to certify this latter inequality, we
propose to use a computer algebra tool for proving instances of Tarski’s decision
problem on quantified formulas involving polynomials over the real numbers
[21]. To our knowledge, this is the first time that the described method is used
to certify memory upper bounds.

The plan of the paper is as follows: after this introduction, in Sec. 2 we briefly
summarize the characteristics and semantics of our functional language Safe;
sections 3, 4, and 5 are devoted to presenting the proof-rules and to proving
their soundness; Sec. 6 explains the certification process and how a symbolic
algebra tool is used as a certificate checker; Sec. 7 presents a small case study
illustrating the certificate generation and checking; finally, Sec. 8 presents some
related work and draws the paper conclusions.

2 The Language

Safe is a first-order eager language with a syntax similar to Haskell’s. Fig. 1 shows
a mergesort algorithm written in Full-Safe. Its runtime system uses regions, i.e.
disjoint parts of the heap where the program allocates data structures. They
are automatically inferred [15] and made explicit in the intermediate language,
called Core-Safe, and in the internal types. For instance, the types inferred for
the functions of Fig. 1 are (the ρ’s are region types):

unshuffle :: [a]@ρ → ρ1 → ρ2 → ([a]@ρ1, [a]@ρ1)@ρ2

merge :: [a]@ρ → [a]@ρ → ρ → [a]@ρ
msort :: [a]@ρ′ → ρ → [a]@ρ

The meaning for e.g. unshuffle is that it receives a list in region ρ and two region
arguments of types ρ1, ρ2. The first one is used to return the two result lists, and
the second one for storing the tuple containing them. It is important to note that
the number of regions a function may deal with can be statically determined.
The Core-Safe versions of merge and msort can be seen in Sec. 7.

unshuffle [] = ([],[])
unshuffle (x:xs) = (x:ys2, ys1)

where (ys1,ys2) = unshuffle xs

merge [] ys = ys
merge (x:xs) [] = x:xs
merge (x:xs) (y:ys) | x <= y = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys

msort [] = []
msort [x] = [x]
msort xs = merge (msort xs1) (msort xs2)

where (xs1, xs2) = unshuffle xs

Fig. 1. mergesort algorithm in Full-Safe

Certification of Safe Polynomial Memory Bounds 187

E � (h, k), td , c ⇓ (h, k), c, ([]k, 0, 1) [Lit]

E[x �→ v] � (h, k), td , x ⇓ (h, k), v, ([]k, 0, 1) [Var]

j ≤ k fresh(p)

E[ai �→ vi
n, r �→ j] � (h, k), td , C ai

n @ r ⇓ (h � [p �→ (j, C vi
n)], k), p, ([j �→ 1]k, 1, 1)

[Cons]

(f xi
n @ rj

l = e) ∈ ΣD [xi �→ E(ai)
n
, rj �→ E(r′j)

l
, self �→ k + 1] � (h, k + 1), n + l, e ⇓ (h′, k + 1), v, (δ,m, s)

E � (h, k), td , f ai
n @ r′j

l ⇓ (h′|k, k), v, (δ|k, m, max{n + l, s + n + l − td})
[App]

E � (h, k), td , a1 ⇓ (h, k), v1, ([]k, 0, 1) E � (h, k), td , a2 ⇓ (h, k), v2, ([]k, 0, 1)

E � (h, k), td , a1 ⊕ a2 ⇓ (h, k), v1 ⊕ v2, ([]k, 0, 2)
[Primop]

E � (h, k), 0, e1 ⇓ (h′, k), v1, (δ1, m1, s1)
E ∪ [x1 �→ v1] � (h′, k), td + 1, e2 ⇓ (h′′, k), v, (δ2, m2, s2)

E � (h, k), td , let x1 = e1 in e2 ⇓ (h′′, k), v, (δ1 + δ2, max{m1, |δ1| + m2}, max{2 + s1, 1 + s2})
[Let]

C = Cr E ∪ [xri �→ vi
nr] � (h, k), td + nr, er ⇓ (h′, k), v, (δ, m, s)

E[x �→ p] � (h[p �→ (j, C vi
n)], k), td , case x of Ci xij

ni → ei
n ⇓ (h′, k), v, (δ, m, s + nr)

[Case]

Fig. 2. Resource-Aware Operational semantics of Core-Safe expressions

The smallest memory unit is the cell, a contiguous memory space big enough
to hold a data construction. A cell contains the constructor identity and a rep-
resentation of the free variables to which the constructor is applied. These may
consist either of basic values, or of pointers to other constructions. Each cell is
allocated at constructor application time. A region is a collection of cells. It is
created empty and it may grow up while it is active. Region deallocation frees
all its cells. The allocation and deallocation of regions are associated with func-
tion calls: a working region, denoted by the reserved identifier self, is allocated
when entering the call, and deallocated upon exiting it. Inside the function, data
structures not belonging to the output may be built there.

Fig. 2 shows the Core-Safe big-step semantic rules, with extra annotations
added in order to obtain the resources used by evaluating an expression. The ex-
pressions are self-explained and typical of most first-order functional languages.
A judgement of the form E � (h, k), td , e ⇓ (h′, k), v, (δ, m, s) means that expres-
sion e is evaluated in an environment E mapping variables to values, and in a
heap (h, k) with 0 . . . k active regions. As a result, a heap (h′, k) and a value v
are obtained, and a resource vector (δ, m, s), explained below, is consumed. Ar-
gument td refers to the number of positions used by E in the abstract machine
stack, and it plays a role in rule App.

We denote data constructors by C, constants by c, variables by x, and atoms
—an atom is either a constant or a variable— by a. ΣD is a global environment
containing all the function definitions. By h|k we denote the heap h with all
regions above k deleted. A heap (h, k) contains a mapping h between pointers
p and constructor cells (j, C vi

n), where j, 0 ≤ j ≤ k, is the cell region. The
allocation and deallocation of regions is apparent in rule App.

The first component of the resource vector is a partial function δ : N → N

giving for each active region i the difference between the cells in the final and
initial heaps. By dom δ we denote the subset {0 . . . k} in which δ is defined. By
[]k we denote the function λi ∈ {0 . . . k} .0. By |δ| we mean the sum

∑
i∈dom δ δ i

giving the total balance of cells. The remaining components m and s respectively
give the minimum number of fresh cells in the heap and of words in the stack

188 J. de Dios and R. Peña

needed to successfully evaluate e, i.e. the peak memory used during e’s evalu-
ation. When e is the main expression, these figures give us the total memory
needs of a particular run of the Safe program.

3 Function Signatures

A Core-Safe function f is defined as an n + m argument expression:

f :: t1 → . . . → tn → ρ1 → . . . → ρm → t
f x1 · · ·xn @ r1 · · · rm = ef

where r1 · · · rm are the region arguments. A function may charge space costs
to heap regions and to the stack. In general, these costs depend on the sizes of
the function arguments. We define the size of an algebraic type term to be the
number of cells of its recursive spine. This is always at least 1. We define the
size of a Boolean value to be zero. However, for an integer argument we choose
its size to be its value because frequently space costs depend on the value of a
numeric argument. As a consequence, all the costs and sizes of a function f can
be expressed as functions on f ’s argument sizes:

Ff = {ξ : (R+ ∪ {+∞})n → R+ ∪ {+∞,−∞} | ξ is monotonic}

Cost or size +∞ are used to represent that the analysis is not able to infer a
bound, while −∞ is used to express that the cost or size is not defined. For
instance, the following function, where xs is assumed to be a list size,

λxs.
{

xs − 3 if xs ≥ 4
−∞ otherwise

is undefined for sizes xs smaller than 4 (i.e. for lists with less than 3 elements).
They are ordered as expected, −∞ ≤ 0, and ∀x ∈ R+.x ≤ +∞, so −∞�x = x

and +∞� x = +∞. Arithmetic monotonic operations with ±∞ are defined as
follows, where x ∈ R+ while y ∈ R+ ∪ {+∞,−∞}:

−∞ + y = −∞ −∞ ∗ y = −∞ +∞ + x = +∞ +∞∗ x = +∞

The domain of cost functions (Ff ,�,⊥,�,�,�) is a complete lattice with the
usual order � between functions. The rest of the components are standard.
Notice that it is closed under the operations {+,�, ∗}.

Function f above may charge space costs to a maximum of m + 1 regions:
it may create cells in any output region r1 . . . rm, and additionally in its self
region. Each region r has a region type. We denote by Rf the set {ρ1 . . . ρm} of
argument region types, and by ρf

self the type of region self of function f .
Looked at from outside, the charges to the self region are not visible, so we

define Df = {Δ | Δ : Rf → Ff} as the complete lattice of functions describing
the space costs charged by f to visible regions. We will call abstract heaps to
these functions.

Certification of Safe Polynomial Memory Bounds 189

Definition 1. A function signature for f is a triple (Δf , μf , σf), where Δf

belongs to Df , and μf , σf belong to Ff .

The aim is that Δf is an upper bound to the cost charged by f to visible regions,
(i.e. to the increment in live memory due to a call to f), and μf , σf respectively
are upper bounds to the heap and stack peaks contributed by f ’s evaluation.

4 Proof-Rules

When dealing with an expression e, we assume it belongs to the body ef of a
function definition f xi

n @ rj
m = ef , that we will call the context function,

assumed to be well-typed.
We consider available a local type environment θ giving the types of all (free

and bound) variables in ef . It allows to type ef and all its sub-expressions. Also
a local environment φ giving for every (free and bound) variable its size as a
symbolic function of the sizes of f ’s formal arguments xi

n. Finally, a global type
environment ΣT giving for every function and data constructor of the program
their most general types.

Let Σ be a global signature environment giving, for each Safe function g in
scope, its signature (Δg, μg, σg), and let td (abbreviation of top-depth) be a
natural number. This is a quantity used by the compiler to control the size of
the runtime environment stored in the stack (it is the same argument used in the
operational semantics, see Sec. 2). It has an impact on the stack consumption
and so it will be needed in our judgements.

We inductively define a derivation relation as a set of proof-rules. The intended
meaning of a judgement of the form θ, φ, td �f e, Σ � (Δ, μ, σ) is that Δ, μ, σ are
safe upper bounds for respectively the live heap contributed by evaluating the
expression e, the additional peak heap needed by e, and its additional peak stack.
The context information needed is: a valid global signature environment Σ, two
valid local environments θ (for types) and φ (for sizes), a runtime environment
top depth td , and the name f of the context function.

In Figure 3 we show the proof-rules for the most relevant Core-Safe expres-
sions. Predicate def (ξ) expresses that the size ξ is defined according to its type:
if ξ has an algebraic type, def (ξ) ≡ ξ ≥ 1; if it is an integer, def (ξ) ≡ ξ ≥ 0;
otherwise def (ξ) ≡ True. We use the guarded notation [G → ξ], as equivalent
to ξ if G holds, and to −∞ otherwise. By []f we denote the constant function
λρ ∈ Rf ∪ {ρf

self } . λxi
n . [∧n

i=1def (xi) → 0], and by [ρ′ → ξ]f we denote:

λρ ∈ Rf ∪ {ρf
self } . λxi

n .

{
[∧n

i=1def (xi) → 0] if ρ �= ρ′

[∧n
i=1def (xi) → ξ] if ρ = ρ′

We abbreviate λxi
n . [∧n

i=1def (xi) → c] by c, when c ∈ R+. By |Δ| we mean∑
ρ∈dom Δ Δ ρ.
Rules [Lit], [Var], [Primop] and [Cons] exactly reflect the corresponding

resource-aware semantic rules shown in Fig. 2.

190 J. de Dios and R. Peña

When a function application g ai
l @ rj

q is found, its signature Σ g is applied

to the sizes of the actual arguments, φ ai xj
nl

. Some different region types of
g may instantiate to the same actual region type of f . This type instantiation
mapping ψ : Rg → Rf ∪ {ρf

self } is provided by the compiler, and we will require
it to be consistent with the typing environment θ and with the actual region
arguments of the application. We call this property argument preserving and
denote it as argP(ψ, ρj

q, θ, rj
q). In essence it says that the types of the actual

region arguments rj
q given by θ coincide with the formal region types ρj

q of g
after being instantiated by ψ.

The memory consumed by g in the formal regions mapped by ψ to the same
f ’s actual region must be accumulated in order to get the charge to this region
of f . In the [App] rule of Figure 3, function instancef converts an abstract heap
for g into an abstract heap for f . We define instancef (Δg, ψ, ai

l) as the abstract
heap Δ with domain Rf ∪ {ρf

self } such that:

∀ρ ∈ dom Δ . Δ ρ = λ xi
n . [G (ai

n) →
∑

ρ′∈Rg∧ ψ ρ′=ρ

Δg ρ′ (φ ai xi
nl

)]

where G (ai
n) ≡

∧l
i=1 def (φ ai xn). Notice that if any of the sizes φ ai xi

n is not
defined, then Δg applied to it is neither defined. It is easy to see that Δ, μ and
σ defined in rule [App] are monotonic. If ∃i ∈ {1 . . . l} . ¬def (φ ai xi

n), then Δ,
μ and σ return −∞, which guarantees monotonicity since −∞ is the smallest
value in the domain. For the rest of the arguments, monotonicity is guaranteed
by the monotonicity of Δg, μg and σg.

Rule [Let] reflects the corresponding resource-aware semantic rule, while rule
[Case] uses the least upper bound operator

⊔
in order to obtain an upper bound

to the cost of any of the branches.
In Fig. 4 we show the proof rule for recursive functions. In fact, it could also

be applied to non-recursive ones. By �Δ� we denote the projection of Δ over
Rf , obtained by removing the region ρf

self from Δ. This rule is the most relevant

θ, φ, td �f c, Σ � ([]f , 0, 1) [Lit]

θ, φ, td �f x,Σ � ([]f , 0, 1) [Var]

θ, φ, td �f a1 ⊕ a2, Σ � ([]f , 0, 2) [Primop]

θ, φ, td �f C ai
n @ r,Σ � ([θ r �→ 1]f , 1, 1) [Cons]

Σ g = (Δg, μg, σg) G (ai
n) ≡

∧l
i=1 def (φ ai xn) argP(ψ, ρj

q , θ, rj
q)

μ = λxn.[G (ai
n) → μg (φ ai xnl

)] σ = λxn.[G (ai
n) → σg (φ ai xnl

)] Δ = instancef (Δg, ψ, ai
l)

θ, φ, td �f g ai
l @ rj

q, Σ � (Δ, μ,�{l + q, σ + l + q − td})
[App]

θ, φ, 0 �f e1, Σ � (Δ1, μ1, σ1) θ, φ, td + 1 �f e2, Σ � (Δ2, μ2, σ2)

θ, φ, td �f let x1 = e1 in e2, Σ � (Δ1 + Δ2,�{μ1, |Δ1| + μ2},�{2 + σ1, 1 + σ2})
[Let]

(∀i) θ, φ, td + ni �f ei, Σ � (Δi, μi, σi)

θ, φ, td �f case x of Ci xij
ni → ei

n
, Σ � (

⊔n
i=1 Δi,

⊔n
i=1 μi,

⊔n
i=1(σi + ni))

[Case]

Fig. 3. Proof-rules for Core-Safe expressions

Certification of Safe Polynomial Memory Bounds 191

(f xi
l@ rj

q = ef) ∈ ΣD θ, φ, l + q �f ef , Σ � {f �→ (Δ, μ, σ)} � (Δ′, μ′, σ′) (�Δ′�, μ′, σ′) � (Δ, μ, σ)

θ, φ, l + q �f ef , Σ � (Δ′, μ′, σ′)
[Rec]

Fig. 4. Proof-rule for a (possibly) recursive Core-Safe function definition

contribution of the paper, since it reduces proving upper memory bounds to
checking inequalities between functions over the real numbers. In words, its says
that if a triple (Δ, μ, σ) (obtained by whatever means) is to be proved a safe
upper bound for the recursive function f , a sufficient condition is:

1. Introduce (Δ, μ, σ) in the environment Σ as a candidate signature for f .
2. By using the remaining proof-rules, derive a triple (Δ′, μ′, σ′) as a new upper

bound for f ’s body.
3. Prove (�Δ′�, μ′, σ′) � (Δ, μ, σ).

The rule asserts that (Δ′, μ′, σ′) is a correct bound for ef without any assumption
for f in Σ. By deleting the self region, then (�Δ′�, μ′, σ′) is a correct signature
for f , and so will it be (Δ, μ, σ), which is greater than or equal to it.

The first two steps are routine tasks. The only difficulty remaining is proving
the third. As we will see in Sec. 6, for polynomial functions this can be done by
converting it into a decision problem of Tarski’s theory of closed real fields.

5 Soundness Theorems

Let f xi
n @ rj

m = ef , be the context function and θ, φ the local type and size
environments for f . The steps we shall follow in this section are: (1) we shall
introduce a notion of semantic satisfaction of a memory bound by an expression;
(2) we shall define what a valid signature and a valid signature environment are;
(3) we shall refine the semantic satisfaction to a conditional one subject to the
validity of a global signature environment; and (4) we shall prove that the proof-
rules of figures 3 and 4 are sound with respect to the given semantic notions.

Definition 2. Given a pointer p belonging to a heap h, the following function
returns the number of cells in h of the data structure starting at p:

size(h[p → (j, C vi
l)], p) = 1 +

∑
i∈RecPos C

size(h, vi)

where RecPos C denotes the recursive positions of constructor C, given by the
global type environment ΣT . We agree that size(h, c) = 0 for any constant c,
except if c is an integer argument of f . In that case, size(h, c) = c.

For example, if p points to the first cons cell of the list [1, 2, 3] in the heap h
then size(h, p) = 4.

At runtime, a region type ρ becomes mapped to an active region i ∈ {0 . . . k}.
Let us call η :: Rf ∪ {ρf

self } → {0 . . . k} to this mapping. Our type system
guarantees that the following property holds across any evaluation:

192 J. de Dios and R. Peña

Definition 3. Assuming that k denotes the topmost region of a given heap, we
say that the mapping η is admissible, denoted admissible η k, if:

ρf
self ∈ dom η ∧ η ρf

self = k ∧ ∀ρ ∈ (dom η) − {ρf
self } . η ρ < k

The type system also guarantees a consistency property between types and values
that we will not define formally here2. By consistent θ η E h we mean that the
types given by θ to the free variables, the values of these variables in the runtime
environment E and heap h, and the mapping η, do not contradict each other.

Finally, by validf θ φ we intuitively mean that each variable of the body
ef has a type in θ, and a symbolic size in φ as a function of the domain Ff .
Moreover, in any evaluation of ef , the types are consistent with the values and
the region mapping η, this one is admissible, and the symbolic sizes are upper
bounds of the corresponding runtime sizes.

The semantic satisfaction of a memory bound by an expression is defined
as follows: whenever θ, φ are valid environments, and some minor static and
dynamic properties hold, then (Δ, μ, σ) is a correct bound for the memory con-
sumption of expression e in any of its possible evaluations.

Definition 4. Let f xi
n @ rj

m = ef be the context function, and e a sub-
expression of ef . We say that e satisfies the bound (Δ, μ, σ) in the context of
θ, φ, and td, denoted θ, φ, td �f e |= [[(Δ, μ, σ)]], if:

validf θ φ →Pdom ∧(∀E h k h′ v η δ m s si
n . P⇓ ∧Pdyn ∧Psize ∧Pη → PΔ ∧ Pμ ∧ Pσ)

Pdom
def
= dom Δ = Rf ∪ {ρf

self }
P⇓

def
= E � (h, k), td , e ⇓ (h′, k), v, (δ,m, s)

Pdyn
def
= (xi

n ∪ fv e ∪ rj
m ∪ self) ⊆ dom E ∧ dom η = dom Δ

Psize
def
= ∀i ∈ {1..n} . si = size(h, E xi)

Pη
def
= admissible(η, k)

PΔ
def
= ∀j ∈ {0 . . . k} .

∑
η ρ=j Δ ρ si

n ≥ δ j

Pμ
def
= μ si

n ≥ m

Pσ
def
= σ si

n ≥ s

Definition 5. A global bound environment Σ is valid, denoted |= Σ, if it belongs
to the following inductively defined set:

1. |= ∅, i.e. the empty environment is always valid.
2. If |= Σ, and (f xi

l @ rj
m = ef) ∈ ΣD, and there exist Δ, μ, σ such that for any

valid local environments θ and φ, property θ, φ, (l + m) �f ef |= [[(Δ, μ, σ)]]
holds, then |= Σ � {f → (�Δ�, μ, σ)}.

2 http://dalila.sip.ucm.es/safe provides an extended version of this paper with all
the formal definitions and hand-written proofs; http://dalila.sip.ucm.es/safe/
bounds provides the Isabelle/HOL proof-scripts of the lemmas of this section.

http://dalila.sip.ucm.es/safe
http://dalila.sip.ucm.es/safe/bounds
http://dalila.sip.ucm.es/safe/bounds

Certification of Safe Polynomial Memory Bounds 193

When proving a memory bound for an expression, we will usually need a valid
global environment in order to get from it correct signatures for the functions
called by the expression. We will then say that the satisfaction of the bound is
conditional to the validity of the environment.

Definition 6. An expression e conditionally satisfies a bound (Δ, μ, σ) with
respect to a signature environment Σ, in the context of θ, φ, and td, denoted
θ, φ, td �f e, Σ |= [[(Δ, μ, σ)]], if |= Σ → θ, φ, td �f e |= [[(Δ, μ, σ)]].

We are now in a position to state and prove the main theorem establishing that
the proof-rules of figures 3 and 4 are sound.

Theorem 1 (Soundness)

If θ, φ, td �f e, Σ � (Δ, μ, σ), then θ, φ, td �f e, Σ |= [[(Δ, μ, σ)]]

The proof of the theorem is rather involved (around 4500 Isabelle/HOL lines).
We sketch here the main steps:

1. We define a restricted big-step semantics with an upper bound n to the
longest chain of f ’s recursive calls: E � (h, k), td , e ⇓f,n (h′, k), v, (δ, m, s).

2. We prove that E � (h, k), td , e ⇓ (h′, k), v, (δ, m, s) if and only if ∃n . E �
(h, k), td , e ⇓f,n (h′, k), v, (δ, m, s).

3. We define appropriate notions of satisfaction θ, φ, td �f e |=f,n [[(Δ, μ, σ)]],
validity |=f,n Σ, and conditional validity θ, φ, td �f e, Σ |=f,n [[(Δ, μ, σ)]] in
which the longest chain of f ’s recursive calls is bounded by n.

4. We prove:

∀n . θ, φ, td �f e |=f,n [[(Δ, μ, σ)]] ≡ θ, φ, td �f e |= [[(Δ, μ, σ)]]
∀n . |=f,n Σ ≡ |= Σ
∀n . θ, φ, td �f e, Σ |=f,n [[(Δ, μ, σ)]] ⇒ θ, φ, td �f e, Σ |= [[(Δ, μ, σ)]]

5. By induction on the � derivation, and by cases on the last rule applied, we
prove: θ, φ, td �f e, Σ � (Δ, μ, σ) ⇒ ∀n . θ, φ, td �f e, Σ |=f,n [[(Δ, μ, σ)]].

6 Certification

The proof-rules presented in Sec. 4 are valid whatever are the monotonic func-
tions considered for describing sizes and costs. However, for certification purposes
we restrict ourselves to the smaller class of monotonic Max-Poly functions:

Definition 7. The class Max-Poly over xn is the smallest set of expressions
containing constants in R+, variables y ∈ xn, and closed under the operations
{+, ∗,�}. We will call any element of Max-Poly a max-poly.

We will call a max-poly function to a function of the form λxn.p in (R+)n → R+,
where p is a max-poly over xn.

194 J. de Dios and R. Peña

Notice that all the three operations are commutative and associative, and that
+ and ∗ distribute over � in R+. The latter makes that any max-poly can be
normalized to a form p1 � . . . � pn, where all the pi are ordinary polynomials.
This property extends also to max-poly functions.

In our case and disregarding +∞ (which in fact means absence of a bound),
the size and cost functions return a value in R+∪{−∞}. As they are monotonic,
in each dimension i they return −∞ in some (possibly empty) interval [0..ki),
and when (∀i . xi ≥ ki) they return a value greater than or equal to 0. This
property can be expressed by a Boolean guard on the xi. Inspired by this, we
restrict our elementary functions to have the form [G→ f], where G is a guard of
the form

∧n
i=1(pi ≥ ki), ki ∈ R+, and all the pi(xn) and f(xn) are multivariate

max-polys over the set xn of variables. The meaning of this notation, which we
will call atomic guarded function (AGF in what follows), is:

[G→ f] def= λxn .

{
−∞ if ¬G(xn)
f(xn) if G(xn)

Operating with AGFs satisfies the following properties (a, b, c denote AGFs):

1. [G1→ f1] + [G2→ f2] = [G1 ∧ G2→ f1 + f2]
2. [G1→ f1] ∗ [G2→ f2] = [G1 ∧ G2→ f1 ∗ f2]
3. [G1→ [G2→ f]] = [G1 ∧ G2→ f]
4. (a � b) + c = (a + c) � (b + c)
5. (a � b) ∗ c = (a ∗ c) � (b ∗ c)

As a consequence, any function obtained by combining AGFs with {+, ∗,�} can
be normalized to:

[G1→ f1] � . . . � [Gl→ fl]

We will call it a normalized AGF set. Now, coming back to the proof-rules of
figures 3 and 4, if we introduce in the environment Σ of the Rec rule a triple
(Δ, μ, σ) consisting of normalized AGF sets, and then derive a triple (Δ′, μ′, σ′),
the latter can be expressed also as normalized AGF sets. This is because the
operations involved in the remaining proof-rules are {+, ∗,�}, and the instanti-
ations of the App rule. The latter consists of substituting max-polys for variables
inside a max-poly. The result will also be a max-poly.

So, the check (�Δ′�, μ′, σ′) � (Δ, μ, σ) of the Rec rule reduces to checking
inequalities of the form:

[G1→ f1] � . . . � [Gl→ fl] � [G′
1→ f ′

1] � . . . � [G′
m→ f ′

m]

Assuming that all the AGFs are functions over xn, this is in turn equivalent to:

∀xn .

l∧
i=1

m∨
j=1

[Gi→ fi] � [G′
j→ f ′

j]

Then, the elementary operation is comparing two AGFs. This can be expressed
as follows:

[G→ f] � [G′→ f ′] = G → (G′ ∧ f ≤ f ′)

Certification of Safe Polynomial Memory Bounds 195

The comparison f ≤ f ′ consists of comparing two max-polys of the form p1 �
. . . � pr and q1 � . . . � qs, which we can decide by applying again the same idea:

f ≤ f ′ =
r∧

i=1

s∨
j=1

pi ≤ qj

Summarizing, to decide (�Δ′�, μ′, σ′) � (Δ, μ, σ) we generate first-order formu-
las in Tarski’s theory of real closed fields [21]. It is well known that this theory is
decidable, although the existent algorithms are not efficient at all. For instance,
Collins’ quantifier elimination algorithm [9], which is recognized to be a great
improvement over the original Tarski’s procedure, has still a worst case complex-
ity polynomial in the maximum degree of the involved polynomials and doubly
exponential in the number of quantified variables. It is implemented in several
symbolic algebra tools such as Mathematica. We have used the QEPCAD sys-
tem built by Collins’ group [7] which contains an improved version of original
Collins’ algorithm.

Fortunately, the number of quantified variables in our case is the number of
arguments of the Safe function being certified, and this is usually very small,
typically from one to three. So for practical purposes the QEPCAD system, or a
similar tool, can be used as a certificate checker. The Safe compiler is used, not
only to generate the initial triple (Δ, μ, σ) for every Safe function, but also to
derive the triple (Δ′, μ′, σ′), to normalize both, and eventually to generate the
proof obligations in the form of Tarski’s formulas. For the moment, the compiler
and the QEPCAD system have not been directly connected and some manual
intervention is required.

7 Case Study

In Fig. 5 we show the Core-Safe versions of the algorithms merge and msort, in
which regions are explicit. We will explain in detail how the proof-rules are

merge x y @ r = case x of
[] -> y
ex:x’ -> case y of

[] -> x
ey:y’ -> let c = ex <= ey in

case c of
True -> let z1 = merge x’ y @ r in

ex:z1 @ r
False -> let z2 = merge x y’ @ r in

ey:z2 @ r

msort x @ r = case x of
[] -> x
ex:x’ -> case x’ of

[] -> x
: -> let (x1,x2) = unshuffle x @ self self in

let z1 = msort x1 @ r in
let z2 = msort x2 @ r in
merge z1 z2 @ r

Fig. 5. functions merge and msort in Core-Safe

196 J. de Dios and R. Peña

applied to merge (a simple example which produces an uninteresting linear
Tarski problem), and then we will show in less detail the process for msort (which
produces a more interesting quadratic one). Let us assume that the candidate
memory bound obtained by the Safe compiler for merge live heap, assuming
θ r = ρ, is:

Δmerge ρ = [x ≥ 2 ∧ y ≥ 1 → x + y − 2] -- A
� [x ≥ 1 ∧ y ≥ 2 → x + y − 2] -- B
� [x ≥ 1 ∧ y ≥ 1 → 0] -- C

This signature gives 0 cells when both lists are empty, i.e. x = 1 ∧ y = 1, and
x + y − 2 cells otherwise.

Now, we introduce this signature in the environment Σ and apply the proof
rules of Fig. 3. Remember that the Cons proof-rule gets [x ≥ 1 ∧ y ≥ 1 → 1]
charged to region ρ. This is because, for a list l, def (l) ≡ l ≥ 1. The Let rule asks
for the addition of the involved Δ’s, and the Case one for � of the branches. Also,
the sizes of the internal call arguments are x′ = x − 1 and y′ = y − 1, because
of the pattern matching. All in all, we obtain as derived bound the following
function:

Δ′
merge ρ = [x ≥ 1 ∧ y ≥ 1 → 0]

� [x ≥ 1 ∧ y ≥ 1 → 0]
� (([x − 1 ≥ 2 ∧ y ≥ 1 → x − 1 + y − 2]�[x − 1 ≥ 1 ∧ y ≥ 2→x − 1 + y − 2]

� [x − 1 ≥ 1 ∧ y ≥ 1 → 0]) + [x ≥ 1 ∧ y ≥ 1 → 1])
� (([x ≥ 2 ∧ y − 1 ≥ 1 →x + y − 1 − 2]�[x ≥ 1 ∧ y − 1 ≥ 2 → x + y − 1 − 2]

� [x ≥ 1 ∧ y − 1 ≥ 1 → 0]) + [x ≥ 1 ∧ y ≥ 1 → 1])

The first two terms correspond to the branches ending in a variable, so the Var
rule applies. The other two correspond to the branches having internal calls, by
applying the rules App, Cons, and Let . The primitive operator ≤ adds a trivial
term not shown. After normalization and simplification, we get:

Δ′
merge ρ = [x ≥ 1 ∧ y ≥ 1 → 0] -- C′

� [x ≥ 3 ∧ y ≥ 1 → x + y − 2] � [x ≥ 2 ∧ y ≥ 1 → 1] -- A′ � A′′

� [x ≥ 2 ∧ y ≥ 2 → x + y − 2] -- D′

� [x ≥ 1 ∧ y ≥ 3 → x + y − 2] � [x ≥ 1 ∧ y ≥ 2 → 1] -- B′ � B′′

Obviously, for all x, y we get C′ � C, A′ � A, B′ � B, and both D′ � A and
D′ � B. It is also easy to convince ourselves that A′′ is dominated by A and B′′

is dominated by B. Then, the inequality �Δ′
merge� � Δmerge holds.

The candidate msort live memory bound inferred by our compiler, assuming
Δmerge as above, and the following bound obtained for unshuffle:

Δunshuffle =
[
ρ1 → [x ≥ 2 → x + 1] � [x ≥ 1 → 2]
ρ2 → [x ≥ 2 → x] � [x ≥ 1 → 1]

]
is

Δmsort ρ = [x ≥ 2 → 4
3
x2 − 3x] � [x ≥ 1 → 0]

Certification of Safe Polynomial Memory Bounds 197

Introducing this candidate bound in the environment, applying the proof-rules,
normalizing, and simplifying lead to:

Δ′
msort =

[
ρ → [x ≥ 3 → 2

3x2 − 3
2x − 17

6] � [x ≥ 1 → 0]
ρself → [x ≥ 2 → 2x + 1] � [x ≥ 1 → 3]

]
Notice that the charges to the self region are not needed in the comparison
�Δ′

msort� � Δmsort . The relevant inequality is then:

∀x

(
x ≥ 3 → x ≥ 2 ∧ (

2
3
x2 − 3

2
x − 17

6
≤ 4

3
x2 − 3x)

)
. . .

When this formula is given to QEPCAD, it answers True in about 100 msec.
Then, �Δ′

msort� � Δmsort holds.

8 Related Work and Conclusion

A seminal paper on static inference of memory bounds is [13]. A special type
inference algorithm generates a set of linear constraints which, if satisfiable,
they build a safe linear bound on the heap consumption. Afterwards, the au-
thors extended this work to certificate generation [4], the certificate being an
Isabelle/HOL proof-script which in essence was a proof of correctness of the
type system, specialized for the types of the program being certified.

One of the authors extended in [12] the type system of [13] in order to infer
polynomial bounds. Although not every polynomial could be inferred by this
system, the work was a remarkable step forward in the area. They do not pay
attention to certificates in this paper but there is an occasional comment on that
the same ideas of [4] could be applied here.

In [8] an abstract interpretation based algorithm for controlling that memory
is not allocated inside loops in Java programs is verified by using the Coq proof-
assistant [5]. Here there is no program-specific certificate, but a general proof of
correctness of the analysis algorithm.

With respect to our proof-rules, they clearly have an abstract interpretation
flavour, and that is the reason why the lattice points above or equal to the fix-
point of the interpretation are correct solutions. For recursive functions, we have
adapted to our framework the technique first explained in [18]. This technique
has also been used in other works (see e.g. [2]) where procedure global envi-
ronments occur, and recursive procedures must be verified. The main idea is to
explicitly introduce the depth of recursive call chains in the environment, and
then doing some form of induction on this depth.

We have found inspiration on some work on quasi-interpretations for charac-
terizing the complexity classes of rewriting systems [6], where Max-Poly plays
a role. The existence of a quasi-interpretation belonging to Max-Poly is used
to decide that some systems are in the classes PTIME or PSPACE. They show
that the problem is decidable by generating formulas in first-order Tarski’s the-
ory. The formulas are existentially quantified and they assert the existence of a
quasi-interpretation, although no attempt to synthesize one is done.

198 J. de Dios and R. Peña

Our work finds for the first time a way of separating the bound inference prob-
lem from the certification one. We have shown that certification need not be a
kind of proof of correctness of the inference algorithm. The Rec proof-rule and the
idea of certifying bounds by checking an inequality P � Q between polynomial-
like functions should work as well for other languages admitting syntax-driven
proof-rules monotonic in a complete lattice. It could then be applied to lan-
guages, such as the functional one used in [13,12], where other algorithms are
used to compute the candidate bounds. Additionally, our language deals with
the memory deallocation due to the region mechanism. Most of other approaches
infer and/or certify bounds to the total allocated memory, as opposed to the live
and peak memory, respectively reached after and during program evaluation.

Acknowledgements. We are grateful to our colleague Maria Emilia Alonso for
putting us on the tracks of the QEPCAD system.

References

1. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional Rankings, Pro-
gram Termination, and Complexity Bounds of Flowchart Programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010)

2. Aspinall, D., Beringer, L., Hofmann, M., Loidl, H.-W., Momigliano, A.: A program
logic for resources. Theoretical Computer Science 389, 411–445 (2007)

3. Ben-Amram, A.M., Codish, M.: A SAT-Based Approach to Size Change Termi-
nation with Global Ranking Functions. In: Ramakrishnan, C.R., Rehof, J. (eds.)
TACAS 2008. LNCS, vol. 4963, pp. 218–232. Springer, Heidelberg (2008)

4. Beringer, L., Hofmann, M., Momigliano, A., Shkaravska, O.: Automatic Certifica-
tion of Heap Consumption. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS
(LNAI), vol. 3452, pp. 347–362. Springer, Heidelberg (2005)

5. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development
Coq’Art: The Calculus of Inductive Constructions. In: Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Heidelberg (2004)

6. Bonfante, G., Marion, J.-Y., Moyen, J.-Y.: Quasi-interpretations. Technical Re-
port, Loria (2004), http://www.loria.fr/~moyen

7. Brown, C. W.: QEPCAD: Quantifier Elimination by Partial Cylindrical Algebraic
Decomposition (2004), http://www.cs.usna.edu/qepcad/B/QEPCAD.html

8. Cachera, D., Jensen, T., Pichardie, D., Schneider, G.: Certified Memory Usage
Analysis. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 91–106. Springer, Heidelberg (2005)

9. Collins, G.E.: Quantifier Elimination for Real Closed Fields by Cylindrical Alge-
braic Decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33,
pp. 134–183. Springer, Heidelberg (1975)

10. Colón, M., Sipma, H.: Practical Methods for Proving Program Termination. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 442–454.
Springer, Heidelberg (2002)

11. Contejean, E., Marché, C., Tomás, A.-P., Urbain, X.: Mechanically proving termi-
nation using polynomial interpretations. Journal of Automated Reasoning 34(4),
315–355 (2006)

http://www.loria.fr/~moyen
http://www.cs.usna.edu/qepcad/B/QEPCAD.html

Certification of Safe Polynomial Memory Bounds 199

12. Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polynomial
Potential. A Static Inference of Polynomial Bounds for Functional Programs. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 287–306. Springer, Heidel-
berg (2010)

13. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. In: Proc. 30th ACM Symp. on Principles of Programming Lan-
guages, POPL 2003, pp. 185–197. ACM Press, New York (2003)

14. Lucas, S., Peña, R.: Rewriting Techniques for Analysing Termination and Com-
plexity Bounds of SAFE Programs. In: LOPSTR 2008, Valencia, Spain, pp. 43–57
(2008)

15. Montenegro, M., Peña, R., Segura, C.: A Simple Region Inference Algorithm for
a First-Order Functional Language. In: Escobar, S. (ed.) WFLP 2009. LNCS,
vol. 5979, pp. 145–161. Springer, Heidelberg (2010)

16. Montenegro, M., Peña, R., Segura, C.: A space consumption analysis by abstract
interpretation. In: van Eekelen, M., Shkaravska, O. (eds.) FOPARA 2009. LNCS,
vol. 6324, pp. 34–50. Springer, Heidelberg (2010)

17. Necula, G.C.: Proof-Carrying Code. In: ACM SIGPLAN-SIGACT Principles of
Programming Languages, POPL1997, pp. 106–119. ACM Press, New York (1997)

18. Nipkow, T.: Hoare Logics for Recursive Procedures and Unbounded Nondetermin-
ism. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp.
103–119. Springer, Heidelberg (2002)

19. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL. A Proof Assistant for Higher-
Order Logic LNCS, vol. 2283. Springer, Heidelberg (2002)

20. Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear
Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 239–251. Springer, Heidelberg (2004)

21. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University
of California Press, Berkeley (1948)

Relational Verification Using Product Programs�

Gilles Barthe1, Juan Manuel Crespo1, and César Kunz1,2

1 IMDEA Software Institute
2 Universidad Politécnica de Madrid

Abstract. Relational program logics are formalisms for specifying and
verifying properties about two programs or two runs of the same pro-
gram. These properties range from correctness of compiler optimizations
or equivalence between two implementations of an abstract data type,
to properties like non-interference or determinism. Yet the current tech-
nology for relational verification remains underdeveloped. We provide a
general notion of product program that supports a direct reduction of re-
lational verification to standard verification. We illustrate the benefits of
our method with selected examples, including non-interference, standard
loop optimizations, and a state-of-the-art optimization for incremental
computation. All examples have been verified using the Why tool.

1 Introduction

Relational reasoning provides an effective mean to understand program behav-
ior: in particular, it allows to establish that the same program behaves similarly
on two different runs, or that two programs execute in a related fashion. Prime
examples of relational properties include notions of simulation and observational
equivalence, and 2-properties, such as non-interference and continuity. In the for-
mer, the property considers two programs, possibly written in different languages
and having different notions of states, and establishes a relationship between
their execution traces, whereas in the latter only one program is considered, and
the relationship considers two executions of that program.

In spite of its important role, and of the wide range of properties it covers,
there is a lack of applicable program logics and tools for relational reasoning.
Indeed, existing logics [4,20] are confined to reasoning about structurally equal
programs, and are not implemented. This is in sharp contrast with the more
traditional program logics for which robust tool support is available. Thus, one
natural approach to bring relational verification to a status similar to standard
verification is to devise methods that soundly transform relational verification
tasks into standard ones. More specifically for specifications expressed using pre
and post-conditions, one would aim at developing methods to transform Hoare
quadruples of the form {ϕ} c1 ∼ c2 {ψ}, where ϕ and ψ are relations on the states
� Partially funded by European Projects FP7-231620 HATS and FP7-256980 NESSoS,

Spanish project TIN2009-14599 DESAFIOS 10, Madrid Regional project S2009TIC-
1465 PROMETIDOS. C. Kunz is funded by a Juan de la Cierva Fellowship, MICINN,
Spain.

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 200–214, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Relational Verification Using Product Programs 201

of the command c1 and the states of the command c2, into Hoare triples of the
form {ϕ̄} c {ψ̄}, where ϕ̄ and ψ̄ are predicates on the states of the command c,
and such that the validity of the Hoare triple entails the validity of the original
Hoare quadruple; using |= to denote validity, the goal is to find c, ϕ̄ and ψ̄ s.t.

|= {ϕ̄} c {ψ̄} ⇒ |= {ϕ} c1 ∼ c2 {ψ}

Consider two simple imperative programs c1 and c2 and assume that they are sep-
arable, i.e. operate on disjoint variables. Then we can let assertions be first-order
formulae over the variables of the two programs, and achieve the desired effect
by setting c ≡ c1; c2, ϕ̄ ≡ ϕ and ψ̄ ≡ ψ. This method, coined self-composition
by Barthe, D’Argenio and Rezk [2], is sound and relatively complete, but it is
also impractical [19]. In a recent article, Zaks and Pnueli [21] develop another
construction, called cross-product, that performs execution of c1 and c2 in lock-
step and use it for translation validation [22], a general method for proving the
correctness of compiler optimizations. Cross-products, when they exist, meet the
required property; however their existence is confined to structurally equivalent
programs and hence they cannot be used to validate loop optimizations that
modify the control flow of programs, nor to reason about 2-properties such as
non-interference and continuity, because such properties consider runs of the
program that do not follow the same control flow.

The challenge addressed in this paper is to provide a general notion of product
programs which allows transforming relational verification tasks into standard
ones, without the setbacks of cross-products or self-composition. In our setting,
a product between two programs c1 and c2 is a program c which combines syn-
chronous steps, in which instructions from c1 and c2 are executed in lockstep,
with asynchronous steps, in which instructions from c1 or c2 are executed sep-
arately. Products combine the best of cross-products and self-composition: the
ability of performing asynchronous steps recovers the flexibility and generality
of self-composition, and make them applicable to programs with different con-
trol structures, whereas the ability of performing synchronous steps is the key
to make the verification of c as effective as the verification of cross-products
and significantly easier than the verification of the programs obtained by self-
composition. Concretely, we demonstrate how product programs can be com-
bined with off-the-shelf verification tools to carry relational reasoning on a wide
range of examples, including: various forms of loop optimizations, static caching
for incremental computation, SSE transformations for increasing performance
on multi-core platforms, information flow and continuity analyses. All examples
have been formally verified using the Why framework with its SMT back-end;
in one case, involving complex summations on arrays, we used a combination of
the SMT back-end and the Coq proof assistant back-end—however it is conceiv-
able that the proof obligations could be discharged automatically by declaring
suitable axioms in the SMT solver.

Contents. The paper is organized as follows: Section 2 introduces the product
construction and shows the need for a generalization of cross-product and self-
composition. Section 3 defines product programs and shows how they enable

202 G. Barthe, J.M. Crespo, and C. Kunz

reducing relational verification to existing standard logics. Section 4 illustrates
the usefulness of our method through examples drawn from several settings
including non-interference and translation validation of loop optimizations [1].
In particular, we provide a formal proof of Static Caching [14], a challenging
optimization used for incremental computation e.g. in image processing or com-
putational geometry.

2 Motivating Examples

Continuity is a relational property that measures the robustness of programs
under changes: informally, a program is continuous if small variations on its
inputs only causes small variations on its output. While program continuity is
formalized by a formula of the form ∀ ε>0. ∃ δ>0. P , see e.g. [6], continuity can
be often derived from the stronger notion of 1-sensitivity, see e.g. [18]. Informally,
a program is 1-sensitive if it does not make the distance grow, i.e. the variation
of the outputs of two different runs is upper bounded by the variation of the
corresponding inputs.

Consider the standard bubble-sort algorithm shown at the left of Figure 1.
Suppose that instead of the expected array a the algorithm is fed with an array
a′ satisfying the following relation: |a[i] − a′[i]| < ε for all i in the range of a and
a′ and for an infinitesimally small positive value ε. Clearly, the permutations
performed by the sorting algorithm over a and a′ can differ, as the variation ε
may affect the validity of the guard a[j−1] > a[j] that triggers the permutations.
Fortunately, this small variation on the input data can at most cause a small
variation in the final result. Indeed, one can verify the validity of the relational
judgment � {∀i. |a[i]−a′[i]|<ε} c∼ c′ {∀i. |a[i]−a′[i]|<ε}, where c stands for the
sorting algorithm in Figure 1 and c′ for the result of substituting every variable
v in c by its primed version v′. Instead of relying on a special purpose logic to
reason about program continuity, we suggest to construct a product program
that performs the execution steps of c and c′ synchronously. Since c and c′ have
the same structure, it is immediate to build the program d, shown at the left of
Figure 1, that weaves the instructions of c and c′1. The algorithm d simulates
every pair of executions of c and c′ synchronously, capturing all executions of
c and c′. Notice that the program product synchronizes the loops iterations of
its components, as their loop guards are equivalent and thus perform the same
number of iterations. This is not the case with the conditional statements inside
the loop body, as the small variations on the contents of the array a w.r.t. a′

may break the equivalence of the guards a[j−1]>a[j] and a′[j′−1]>a′[j′].
One can use a standard program logic to verify the validity of the non rela-

tional judgment � {∀i. |a[i]−a′[i]|<ε} d {∀i. |a[i]−a′[i]|<ε}. Since the program
product is a correct representation of its components, the validity of this judg-
ment over d is enough to establish the validity of the relational judgment over c
and c′.
1 This introductory section omits the insertion of assert statements described in

Section 3.

Relational Verification Using Product Programs 203

Source code:

i:= 0;
while (i<N) do

j:=N−1;
while (j>i) do

if (a[j−1]>a[j]) then
x:= a[j];
a[j]:= a[j−1];
a[j−1]:=x;

j--
i++

Program product:

i:= 0; i′:= 0;
while (i<N) do

j:=N−1; j′:=N−1;
while (j>i) do

if (a[j−1]>a[j]) then
x:= a[j]; a[j]:= a[j−1]; a[j−1]:=x;

if (a′[j′−1]>a′[j′]) then
x′
:= a′[j′]; a′[j′]:= a′[j′−1]; a′[j′−1]:=x′;

j--; j′--
i++; i′++

Fig. 1. Continuity of bubble-sort algorithm

As appears from the example above, it is possible to build a program product
from structurally equivalent programs by a total synchronization of the loops, as
in the example above. Structural equivalence is, however, a significant constraint
as it rules out many interesting cases of relational reasoning, including the trans-
lation validation examples in Section 4. Consider the case of the loop pipelining
optimization shown in Figure 6. The source and transformed programs have a
similar structure: a loop statement plus some initialization and clean-up code.
However, both programs cannot be synchronized a priori, since the number of
loop iterations in the source and transformed program do not coincide. A more
difficult situation arises when verifying the correctness of static-caching, shown
in Figure 7, since it involves synchronizing two nested loops with different depths.

A first intuition on the construction of products from structurally dissimilar
components is shown in the following basic example (assume 0≤N):

Source code:

i:= 0;
while (i≤N) do

x += i;
i++

Transformed code:

j:= 1;
while (j≤N) do

y += j;
j++

Program product (simplified):

i:= 0; x += i; i++; j:= 1;
while (i≤N) do

y += j; j++;
x += i; i++;

To build the product program, the first loop iteration of the source code is
unrolled before synchronizing the loop statements. This simple idea maximizes
synchronization instead of relying plainly on self-composition, which requires a
greater specification and verification effort. Indeed, the sequential composition
of the source and transformed program requires providing invariants of the form
x=X+ i(i−1)

2 and y=Y+ j(j−1)
2 , respectively (under the preconditions x=X and

y=Y). In contrast, by the construction of the product, the trivial loop invariant
i = j ∧ x = y is sufficient to verify that the two programs above satisfy the pre
and post-relation x=y.

In the rest of the paper, we develop a more flexible notion of program
products, extending the construction of products from components that are not
structurally equal or with a different number of loop iterations.

204 G. Barthe, J.M. Crespo, and C. Kunz

3 Program Products

Our reduction of relational verification into standard verification relies on the
ability of constructing, for any pair of programs c1 and c2, a product program c
that simulates the execution steps of its constituents. We first introduce a basic
program setting that will serve to formalize the ideas exposed in this article, and
then provide a formalization of product program.

3.1 Programming Model

Commands are defined by the following grammar rule:

c ::= x:= e | a[e]:= e | skip | assert(b) | c; c | if b then c1 else c2 | while b do c

in which x ranges over a set of integer variables Vi, a ranges over a set of array
variables Va (we assume Vi ∩ Va = ∅ and let V denote Vi ∪ Va), and e ∈ AExp
and b ∈ BExp range over integer and boolean expressions. Execution states are
represented as S = (Vi + (Va × Z)) ⇀ Z, and we let σ be a state in S. The
semantics of integer and boolean expressions are given by ([[e]])e∈AExp : S → Z

and ([[b]])b∈BExp : S → B, respectively. The semantics of commands is standard,
deterministic, and defined by a relation 〈c, σ〉�〈c′, σ′〉 in Figure 2, with 〈skip, σ〉
denoting final configurations. Notice that the execution of a statement assert(b)
blocks if b is not satisfied. We let 〈c, σ〉⇓σ′ denote 〈c, σ〉�� 〈skip, σ′〉.

An assertion φ is a first-order formula with variables in V . We let [[φ]] denote
the set of states satisfying φ. Finally, we let var(c)⊆V and var(φ)⊆V denote the
set of (free) variables of a command c and assertion φ, respectively.

In order to simplify the definition of valid relational judgment, we introduce
a notion of separable commands: two commands c1 and c2 are separable if they
have disjoint set of variables: var(c1)∩var(c2)=∅. Two states are separable if they
have disjoint domains. For all separable states σ1 and σ2, we define σ1�σ2 as the
union of finite maps: (σ1� σ2)x is equal to σ1 x if x ∈ dom(σ1) and equal to σ2 x
if x ∈ dom(σ2). Under this separability assumption, one can identify assertions
as relations on states: (σ1, σ2) ∈ [[φ]] iff σ1�σ2 ∈ [[φ]]. The formal statement of
valid relational specifications is then given by the following definition.

Definition 1. Two commands c1 and c2 satisfy the pre and post-relation ϕ and
ψ, denoted by the judgment � {ϕ} c1 ∼ c2 {ψ} if for all states σ1, σ2, σ

′
1, σ

′
2 s.t.

σ1�σ2 ∈ [[ϕ]] and 〈c1, σ1〉 ⇓ σ′
1 and 〈c2, σ2〉 ⇓ σ′

2, we have σ′
1�σ′

2 ∈ [[ψ]].

Our goal is to reduce validity of relational judgments to validity of Hoare triples,
hence we also define the notion of valid Hoare triple. For technical reasons,

〈assert(b), σ〉 � 〈skip, σ〉
[[b]]σ

〈c1, σ〉 � 〈c′1, σ′〉
〈c1; c2, σ〉 � 〈c′1; c2, σ

′〉
〈c1, σ〉 � 〈skip, σ′〉
〈c1; c2, σ〉 � 〈c2, σ

′〉

〈while b do c, σ〉 � 〈c;while b do c, σ〉
[[b]]σ

〈while b do c, σ〉 � 〈skip, σ〉
[[¬b]]σ

Fig. 2. Program semantics (excerpt)

Relational Verification Using Product Programs 205

we adopt a stronger definition of validity, which requires that the command
is non-blocking w.r.t. the precondition of the triple, where a command c is ϕ-
nonblocking if its execution can always progress under the precondition ϕ. That
is, for all states σ, σ′ and command c′ �= skip such that σ ∈ [[ϕ]] and 〈c, σ〉 ��

〈c′, σ′〉, there exists c′′ and σ′′ such that 〈c′, σ′〉�〈c′′, σ′′〉.
Definition 2. A triple {ϕ}c{ψ} is valid, denoted by the judgment � {ϕ} c {ψ},
if c is ϕ-nonblocking and for all σ, σ′∈S, σ∈ [[ϕ]] and 〈c, σ〉 ⇓ σ′ imply σ′∈ [[ψ]].

Such a notion of validity can be established using an extension of Hoare logic
with the following rule to deal with assert statements:

�{b ∧ φ} assert(b) {φ}

3.2 Product Construction

We start in this section with a set of rules appropriate for structurally equivalent
programs. Then, we extend the set of rules with a structural transformation to
deal with structurally dissimilar programs.

Figure 3 provides a set of rules to derive a product construction judgment
c1×c2 → c. The construction of products introduces assert statements to verify
that the resulting program simulates precisely the behavior of its components.
These validation constraints are interpreted as local assertions, which are dis-
charged during the program verification phase. For instance, in the rule that
synchronizes two loop statements, the insertion of the statement assert(b1 ⇔ b2)
just before the evaluation the loop guards b1 and b2 enforces that the number of
loop iterations coincide. The resulting product containing assert statements can
thus be verified with a standard logic. If a command c is the product of c1 and
c2, then the validity of a relational judgment between c1 and c2 can be deduced
from the validity of a standard judgment on c.

Proposition 1. For all statements c1 and c2 and pre and post-relations ϕ and
ψ, if c1×c2 → c and � {ϕ} c {ψ} then � {ϕ} c1 ∼ c2 {ψ}.

A constraint of the product construction rules in Fig. 3 is that two loops with
non-equivalent guards must be sequentially composed. In the rest of this section
we propose a structural transformation that extends relational verification by
product construction to non-structurally equivalent programs.

We characterize the structural transformations extending the construction of
products as a refinement relation, denoted with a judgment of the form c � c′.
It is a refinement relation in the sense that every execution of c is an execution
of c′ except when c′ blocks:

Definition 3. A command c′ is a refinement of c, if for all states σ, σ′:

1. if 〈c′, σ〉 ⇓ σ′ then 〈c, σ〉 ⇓ σ′, and
2. if 〈c, σ〉 ⇓ σ′ then either the execution of c′ with initial state σ blocks, or

〈c′, σ〉 ⇓ σ′.

206 G. Barthe, J.M. Crespo, and C. Kunz

c1×c2 → c1; c2

c1×c2 → c c′1×c′2 → c′

(c1; c
′
1)×(c2; c

′
2) → c; c′

c1×c2 → c

(while b1 do c1)×(while b2 do c2) → assert(b1 ⇔ b2);while b1 do (c; assert(b1 ⇔ b2))

c1×c2 → c c′1×c′2 → c′

(if b1 then c1 else c′1)×(if b2 then c2 else c′2) → assert(b1 ⇔ b2); if b1 then c else c′

c1×c → c′1 c2×c → c′2
(if b then c1 else c2)×c → if b then c′1 else c′2

Fig. 3. Product construction rules

� if b then c1 else c2 � assert(b); c1 � if b then c1 else c2 � assert(¬b); c2

� while b do c � assert(b); c; while b do c

� while b do c � while b ∧ b′ do c;while b do c � while b do c � assert(b); c; assert(¬b)

� c � c′

� while b do c � while b do c′
� c1 � c′1 � c2 � c′2

� if b then c1 else c2 � if b then c′1 else c′2
� c � c′ � c′ � c′′

� c � c′′ � c � c

� c1 � c′1 � c2 � c′2
� c1; c2 � c′1; c

′
2

Fig. 4. Syntactic reduction rules

We provide in Figure 4 a particular set of structural rules defining judgments
of the form � c � c′. From the rules given in the figure, one can see that the
executions of c and c′ coincide for every initial state that makes the introduced
assert statements valid. One can prove that the judgment � c � c′ establishes a
refinement relation by showing that for every assertion ϕ, if c′ is ϕ-nonblocking
then for all σ ∈ [[ϕ]] such that 〈c, σ〉⇓σ′ we have 〈c′, σ〉⇓σ′.

We enrich the set of rules defining the construction of products by adding
an extra rule that introduces a preliminary refinement transformation over the
product components:

c1 � c′1 c2 � c′2 c′1×c′2 → c

c1×c2 → c

Proposition 1 remains valid for the extended proof system. The following propo-
sition reduces the problem of proving the validity of a relational judgment into
two steps: the construction of the corresponding program product plus a stan-
dard verification over the program product.

Proposition 2. For all statements c1 and c2 and pre and post-relations ϕ and
ψ, if c1×c2 → c and �{ϕ} c {ψ} then � {ϕ} c1 ∼ c2 {ψ}.

Relational Verification Using Product Programs 207

4 Case Studies

This section illustrates the application of product construction for the verifi-
cation of relational properties, such as non-interference and the correctness of
program transformations. These program transformations include loop optimiza-
tions, and static-caching, a complex optimization described later in this section.
For each of the examples in this section, a product construction has been veri-
fied with the Why tool (and the Frama-C tool with the Jessie plugin). Building
a product program from a pair of components is undecidable in general, but
feasible in the scenarios we are considering. Products can be constructed in an
automatic manner for structure-preserving optimizations, as well as for the ver-
ification of non-interference properties, for which a type-system based approach
has already been suggested by Terauchi and Aiken. Some complex loop opti-
mizations require involved products, in which case templates can be provided.

As shown in Table 1, most of the examples could be automatically verified: the
column P.O. indicates the number of proof obligations generated, and the column
SMT those that have been automatically discharged by SMT solvers. For the
static-caching and loop interchange examples, the remaining proof obligations
have been discharged in the Coq proof assistant.

Logical Verification of Non-interference

Non-interference is a confidentiality policy defined in terms of two executions of
the same program. Given a program c and a set of public variables x1, . . . , xk,
the property ensures that two terminating runs of c starting in states with equal
public variables, end in states with equal public variables:∧

x∈{x1,...,xk}
σ1 x=σ′

1 x ∧ 〈c, σ1〉�σ2 ∧ 〈c, σ′
1〉�σ′

2 =⇒
∧

x∈{x1,...,xk}
σ2 x=σ′

2 x.

(For simplicity, we express non-interference w.r.t. scalar variables, the extension
to array variables being immediate.) Non-interference can thus be formulated as
a relational judgment:

� {x1=x′
1 ∧ .. ∧ xk=x′

k} c∼ c′ {x1=x′
1 ∧ .. ∧ xk=x′

k}

where c′ is the result of replacing every variable v in c by v′.

Table 1. Automatic validation of case studies

Example SMT/P.O.

Non-interference 42/42
Loop alignment 49/49
Loop pipelining 73/73
Loop unswitching 123/123
Code sinking 435/435
Static caching 162/176

Example SMT/P.O.’s

Loop reversal 13/13
Strength reduction 5/5
Loop interchange 36/37
Loop fission 15/15
Cyclic hashing 13/13
Bubble sort continuity 62/62

208 G. Barthe, J.M. Crespo, and C. Kunz

{Pre : es=es′ ∧ ∀i : 0≤ i<N : ps[i].P ID=ps′[i].P ID∧
ps[i].JoinInd=ps′[i].JoinInd ∧ (ps[i].JoinInd ⇒ ps[i].salary=ps′[i].salary)}
i:= 0; i′:= 0; assert(i<N ⇔ i′<N);
while (i<N) do

assert(ps[i].JoinInd ⇔ ps′[i′].JoinInd);
if (ps[i].JoinInd) then

j:= 0; j′:= 0; assert(j <M ⇔ j′ <M);
while (j <M) do

assert(ps[i].P ID=es[j].EID ⇔ ps′[i′].P ID=es′[j′].EID);
if (ps[i].P ID=es[j].EID) then

tab[i].employee:= es[j]; tab′[i′].employee:= es′[j];
tab[i].payroll:= ps[i]; tab′[i′].payroll:= ps′[i];

j++; j′++; assert(i<N ⇔ i′<N);
i++; i′++; assert(i<N ⇔ i′<N);

{Post : ∀i : 0≤ i<N : ps[i].JoinInd ⇒ tab[i]= tab′[i]}

Fig. 5. Non-interference product

We illustrate the application of relational verification by product construction
for the verification of an example drawn from [9]. Figure 5 shows the construction
of the program product (the original program can be obtained by slicing out the
statements containing primed variables). This simple algorithm merges a table
containing personal information with a table containing salary information. A
special field JoinInd indicates whether the personal information is private and
should not be included as the result of the join operation.

The pre and postcondition provided in Figure 5 establish that the input data
marked as private does not interfere with the final result: if the values stored in
the input arrays coincide for the public indices (i.e., for i s.t. ps[i].JoindInd is
true), then the return data coincides at the public indices (we let a formula of
the form a= ā stand for ∀i∈ [0, N−1]. a[i]= ā[i].)

Self-composition is another method that embeds the verification of non-
interference in standard program logics, by reducing it to the verification of se-
quential compositions of the form � {x1=x′

1∧..∧xk=x′
k} c; c′ {x1=x′

1∧..∧xk=x′
k}.

This method based on sequential composition is not amenable for automatic
tools, as it requires providing and verifying an intermediate assertion φ such
that the judgments

� {x1 =x′
1 ∧ . . . ∧ xk =x′

k} c {φ} and � {φ} c′ {x1 =x′
1 ∧ . . . ∧ xk =x′

k}
hold. In practice, this is a significant obstacle, as it may require understanding
and verifying a functional specification for the program c. Terauchi and Aiken
propose an alternative program composition [19], that can be seen as a particular
instance of our product construction, defined in terms of an information-flow
type system.

Translation Validation of Loop Pipelining

Loop pipelining is a non-trivial optimization that reduces the proximity of mem-
ory references inside a loop, in order to introduce parallelization opportunities.

Relational Verification Using Product Programs 209

Source program:
i:= 0;
while (i<N) do

a[i]++; b[i] += a[i];
c[i] += b[i]; i++

Transformed program:
j:= 0;
ā[0]++; b̄[0] += ā[0];
ā[1]++;
while (j <N−2) do

ā[j+2]++;
b̄[j+1] += ā[j+1];
c̄[j] += b̄[j]; j++

c̄[j] += b̄[j];
b̄[j+1] += ā[j+1];
c̄[j+1] += b̄[j+1]

Product program:

{a= ā∧ b= b̄∧ c= c̄}
i:= 0; j:= 0; assert(i<N);
a[i]++; b[i] += a[i];
c[i] += b[i]; i++;
ā[0]++; b̄[0] += ā[0];
assert(i<N);
a[i]++; b[i] += a[i];
c[i] += b[i]; i++; ā[1]++;
assert(i<N ⇔ j <N−2);
while (i<N) do

a[i]++; b[i] += a[i]; c[i] += b[i]; i++
ā[j+2]++; b̄[j+1] += ā[j+1];
c̄[j] += b̄[j]; j++
assert(i<N ⇔ j <N−2);

c̄[j] += b̄[j]; b̄[j+1] += ā[j+1]; c̄[j+1] += b̄[j+1]

{a= ā∧ b= b̄∧ c= c̄}

Fig. 6. Loop pipelining

Consider the simple example shown in Fig. 6 (drawn from [13].) Assume a, b,
and c are arrays of size N , with 2≤N .

The program product shown in Fig. 6 pairs the initialization statements over
ā[0], b̄[0], and ā[1] with the first and second loop iterations of the original pro-
gram. Similarly, the final assignments to b̄[N−2], c̄[N−2] and c̄[N−1] are ex-
ecuted synchronously with the final loop iteration of the original loop. The
remaining N−2 loop iterations are synchronized together. In order to verify that
a= ā ∧ b= b̄ ∧ c= c̄ is a valid pre and post condition, we require a specification
that establishes the equalities in b and b̄ and c and c̄, except for the indices j and
j+1. In particular, the loop invariant must state that b[j+1] = b̄[j+1]+a[j+1],
c[j] = c̄[j]+b[j], and c[j+1] = c̄[j+1]+b[j+1], and b[i′] = b̄[i′] and c[i′] = c̄[i′] for
any other index i′.

Static Caching

In this section we turn our attention to static caching [14], an optimization that
has not been considered from the perspective of translation validation. To the
best of our knowledge, we provide the first formal validation of such optimization.

Static caching removes redundant computations by exploiting memoized in-
termediate results. One of its applications is the row summation algorithm in
Fig. 7. The algorithm takes as input an N×L matrix a and returns an array s
of length N−M+1 (assume M ≤ N) such that s[i] =

∑M,L
i′,j′=i,0 a[i′, j′], for all

i ∈ [0, N−M]. The original program performs a significant amount of redundant
computation. Let b[i] stand for

∑N
j=0 a[i, j]. One can see that for all i, s[i] differs

from s[i+1] on the value b[i+M]−b[i]. The computations of the summations b[i′]
for i′∈[i+1, i+M−1] are thus redundant and can be removed. In the optimized
version of the algorithm, the array b of size N is used to store the intermediate

210 G. Barthe, J.M. Crespo, and C. Kunz

Source program:

i1:= 0;
while (i1≤N−M) do

s[i1]:= 0; k1:= 0;
while (k1≤M−1) do

l1:= 0;
while (l1≤L−1) do

s[i1]+=a[i1+k1, l1]; l1++;
k1++;

i1++

Transformed program:

t[0]:= 0; k2:= 0;
while (k2≤M−1) do

b[k2]:= 0; l2:= 0;
while (l2≤L−1) do

b[k2] += a[k2, l2]; l2++;
t[0] += b[k2]; k2++;

i2:= 1;
while (i2≤N−M) do

b[i2+M−1]:= 0; l2:= 0;
while (l2≤L−1) do

b[i2+M−1]+=a[i2+M−1, l2]; l2++;
z:= b[i2+M−1]−b[i2−1];
t[i2]:= t[i2−1]+z; i2++

Fig. 7. Static caching: source and optimized code

computation of row summations. The matrix summations are computed using
the computations saved in the array b, and then stored in the array t. As a result,
the transformed algorithm has a quadratic complexity, whereas the complexity
of the original algorithm is cubic.

Figure 8 shows the product of the original row-summation algorithm and of
its optimized version. The specification states that the output arrays s and t
coincide in the range [0, N−M] after the synchronous execution of the original
and optimized program. The correctness of the product w.r.t. its specification
can be verified by simple arithmetic reasoning.

5 Related Work

Relational logics provide a syntactical counterpart to semantic relational meth-
ods, and can be used for similar purposes. To date, relational logics have been ap-
plied to prove compiler correctness, program equivalence [3], and non-interference:

Program equivalence. Relational Hoare Logics [4] (RHL), and its cousin Rela-
tional Separation Logic [20], provide a set of elegant and intuitive judgment rules
to reason about program equivalence. The main drawback of RHL’s core rules
is that they can only account for structurally equal programs. This restriction
can be lifted by introducing one-sided rules to deal with each particular case;
such one-sided rules play a role similar to simulation in our setting. There is a
tight connection between relational Hoare logics and products: one can isolate
a core fragment cRHL of RHL such that derivability in this fragment coincides
with derivability of the product in Hoare logic: i.e. �cRHL {ϕ} c1 ∼ c2 {ψ} iff
c1×c2 → c and � {ϕ}c{ψ}. Moreover, one can define for every refinement rela-
tion � an extension cRHL� of the core logic such that �cRHL� {ϕ} c1 ∼ c2 {ψ}
iff c1×c2 → c and � {ϕ}c{ψ}.

Relational Verification Using Product Programs 211

Product program:

{true}
i1:= 0; assert(i1≤N−M); s[i1]:= 0; k1:= 0; t[0]:= 0; k2:= 0;
assert(k1≤M−1 ⇔ k2≤M−1);
while (k1≤M−1) {Inv1} do

l1:= 0; b[k2]:= 0; l2:= 0; assert(l1≤L−1 ⇔ l2≤L−1);
while (l1≤L−1) {Inv2} do

s[i1]+=a[i1+k1, l1]; l1++; b[k2] += a[k2, l2]; l2++;
assert(l1≤L−1 ⇔ l2≤L−1);

k1++; t[0] += b[k2]; k2++; assert(k1≤M−1 ⇔ k2≤M−1);
i1++; i2:= 1; assert(i1≤N−M ⇔ i2≤N−M);
while (i1≤N−M) {Inv3} do

b[i2+M−1]:= 0; l2:= 0;
while (l2≤L−1) {Inv4} do

b[i2+M−1]+=a[i2+M−1, l2]; l2++;
z:= b[i2+M−1]−b[i2−1]; t[i2]:= t[i2−1]+z; i2++;
s[i1]:= 0; k1:= 0;
while (k1≤M−1) {Inv5} do

l1:= 0;
while (l1≤L−1) {Inv6} do

s[i1]+=a[i1+k1, l1]; l1++;
k1++;

i1++
assert(i1≤N−M ⇔ i2≤N−M);

{∀ i∈ [0, N−M]. s[i]= t[i]}

Fig. 8. Static caching: Program product

Inv2
.
= i1=0 ∧ k1=k2 ∧ l1= l2 ∧ k1≤M ∧ l1≤L∧

s[i1]= t[0]+b[k1]=
∑k1−1

k′=0 b[k′]+b[k1]∧
∀ k′∈[0, k1). b[k′]=

∑L−1
l′=0a[k′, l′] ∧ b[k1]=

∑l1−1
l′=0 a[k1, l

′]

Inv3
.
= i1 = i2 ∧ i1≤N−M+1 ∧ ∀ i′∈[0, i1) ⇒ s[i′]= t[i′]=

∑M−1
k′=0 b[k′+i′]∧

∀ i′∈[0, i1+M−1). b[i′]=
∑L−1

l′=0a[i′, l′]

Inv4
.
= Inv3 ∧ k1≤M ∧ l2≤L ∧ b[i2+M−1] =

∑l2−1
l′=0 a[i2+M−1, l′]∧

s[i1] =
∑k1−1

k′=0 b[k′+i1]

Inv6
.
= Inv3 ∧ k1≤M ∧ l1≤L ∧ b[i2+M−1] =

∑L−1
l′=0a[i2+M−1, l′]∧

s[i1] =
∑k1−1

k′=0 b[k′+i1] +
∑l1−1

l′=0 a[i1+k1, l
′]

Fig. 9. Static caching: Loop invariants (excerpt)

Compiler correctness. Translation validation [17,22,1] is a general method for en-
suring the correctness of optimizing compilation by means of a validator which
checks after each run of the compiler that the source and target programs are
semantically equivalent. Pnueli et al. define Translation Validation for optimiza-
tions defined in terms of instruction replacement, reordering of loop iterations,
and elimination of loop iterations, handled by the proof rules (Validate),

212 G. Barthe, J.M. Crespo, and C. Kunz

(Permute), and (Reduce), respectively. A drawback of the (Permute) rule
is that it can only deal with reordering optimizations, i.e., relating loops with
the same number of iterations, disabling the verification of non-consonant loop
transformations, such as loop fusion and distribution. In a later work [11], the
permute rule is generalized to account for such optimizations.

In an independent line of work, Necula [16] develops a translation valida-
tion prototype based on GCC, in terms of a simulation relation between source
and transformed program points, and constrained to the validation of structure
preserving optimizations. Parametrized equivalence checking [13] lifts the limi-
tations of Necula’s relational validation approach to consonant optimizations by
combining it with Pnueli et al.’s Permute rule. However, they use a simplified
permute rule that restricts reasoning to loops in which every pair of iterations
is pair-wise independent, and thus can only account for basic transformations.

A combination of the work in [16] with the Permute rule is provided by
Kundu et al. [13]. A current deficiency of the correlation inference is the inability
to account for asynchronous steps as presented in our work.

Program products. The notion of program product has been previously exploited
for the verification of non-interference properties and compiler correctness.

Self-composition [2,8] provides a sound and complete means to capture non-
interference, by traditional verification of the sequential composition of a pro-
gram with a slightly modified version of itself. Terauchi and Aiken [19] suggested
to improve self-composition by a type directed transformation, a special case of
our product construction. Naumann [15] builds on Terauchi and Aiken results
to encompass the verification of programs with dynamic allocation.

A notion of program products is present in the work of Pnueli and Zack, i.e.
cross-products [21], for establishing compiler correctness by reducing the rela-
tional verification of the original and transformed programs to the analysis of a
single program. The restriction of cross-products to structurally equal programs
limits the application of the framework to structure preserving transformations.

Beyond properties Other applications of relational methods include regression
verification [10], verification of 2-safety properties [19,7], including determin-
ism [5]. Furthermore, quantitative properties such as continuity [6] or indistin-
guishability [12] appear as a natural generalization of 2-safety properties.

Clarkson and Schneider [7] provide a general theory of hyperproperties, i.e.
set of properties such as non-interference or average response time, which cannot
be described as properties, i.e., set of traces. This theory establishes a general
classification of policies, but does not (intend to) provide a verification method.

6 Further Work and Conclusions

Relational reasoning provides a mean to enforce a wide range of correctness and
security properties, but have lacked methods and tools that are available for
traditional program logics. This paper develops a notion of product between
programs and reduces verification of relational properties between two programs

Relational Verification Using Product Programs 213

to verification of functional properties of their product. The notion of prod-
uct program is general and flexible, and overcomes the limitations of previous
approaches.

In this paper, we have concentrated on product programs in the setting of
a simple imperative language. However, our constructions extend to products
across programs written in two different languages, and also accommodate non-
determinism and dynamic allocation. Moreover, we have achieved greater gener-
ality by relying on alternative representations of programs, such as flow graphs
or their generalizations.

An important goal for further work is to develop methods and tools for build-
ing products, and to connect them with off-the-shelf tools to provide a complete
framework for relational verification. In a separate line of work, we are investi-
gating applications of products to probabilistic programs, and intend to apply
the resulting formalism to provable security [3] and privacy [18].

References

1. Barrett, C.W., Fang, Y., Goldberg, B., Hu, Y., Pnueli, A., Zuck, L.D.: TVOC: A
translation validator for optimizing compilers. In: Etessami, K., Rajamani, S.K.
(eds.) CAV 2005. LNCS, vol. 3576, pp. 291–295. Springer, Heidelberg (2005)

2. Barthe, G., D’Argenio, P., Rezk, T.: Secure Information Flow by Self-Composition.
In: Foccardi, R. (ed.) Computer Security Foundations Workshop, pp. 100–114.
IEEE Press, Los Alamitos (2004)

3. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based
cryptographic proofs. In: Shao, Z., Pierce, B.C. (eds.) Principles of Programming
Languages, pp. 90–101. ACM Press, New York (2009)

4. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: Jones, N.D., Leroy, X. (eds.) Principles of Programming Lan-
guages, pp. 14–25. ACM Press, New York (2004)

5. Burnim, J., Sen, K.: Asserting and checking determinism for multithreaded pro-
grams. Communications of the ACM 53(6), 97–105 (2010)

6. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity analysis of programs. In:
Principles of Programming Languages, pp. 57–70 (2010)

7. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: Computer Security Founda-
tions Symposium, pp. 51–65 (2008)

8. Darvas, A., Hähnle, R., Sands, D.: A theorem proving approach to analysis of secure
information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS, vol. 3450,
pp. 193–209. Springer, Heidelberg (2005)

9. Dufay, G., Felty, A.P., Matwin, S.: Privacy-sensitive information flow with JML.
In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 116–130.
Springer, Heidelberg (2005)

10. Godlin, B., Strichman, O.: Regression verification. In: Design Meets Automation,
pp. 466–471. ACM Press, New York (2009)

11. Goldberg, B., Zuck, L.D., Barrett, C.W.: Into the loops: Practical issues in transla-
tion validation for optimizing compilers. Electr. Notes Theor. Comput. Sci. 132(1),
53–71 (2005)

12. Goldreich, O.: Foundations of Cryptography. Cambridge University Press,
Cambridge (2004)

214 G. Barthe, J.M. Crespo, and C. Kunz

13. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-
ized program equivalence. In: Programming Languages Design and Implementa-
tion, pp. 327–337 (2009)

14. Liu, Y.A., Stoller, S.D., Teitelbaum, T.: Static caching for incremental computa-
tion. ACM Transactions on Programming Languages and Systems 20(3), 546–585
(1998)

15. Naumann, D.A.: From coupling relations to mated invariants for checking informa-
tion flow. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS,
vol. 4189, pp. 279–296. Springer, Heidelberg (2006)

16. Necula, G.C.: Translation validation for an optimizing compiler. ACM SIGPLAN
Notices 35(5), 83–94 (2000)

17. Pnueli, A., Singerman, E., Siegel, M.: Translation validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)

18. Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for
differential privacy. In: Hudak, P., Weirich, S. (eds.) ICFP, pp. 157–168. ACM,
New York (2010)

19. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005)

20. Yang, H.: Relational separation logic. Theoretical Computer Science 375(1-3), 308–
334 (2007)

21. Zaks, A., Pnueli, A.: CoVaC: Compiler validation by program analysis of the cross-
product. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 35–51.
Springer, Heidelberg (2008)

22. Zuck, L.D., Pnueli, A., Goldberg, B.: Voc: A methodology for the translation
validation of optimizing compilers. J. UCS 9(3), 223–247 (2003)

Specifying Confidentiality in Circus

Michael J. Banks and Jeremy L. Jacob

Department of Computer Science, University of York, UK
{Michael.Banks,Jeremy.Jacob}@cs.york.ac.uk

Abstract. This paper presents an approach for extending the Circus
formalism to accommodate information flow security concerns. Working
with the semantics of Circus, we introduce a notation for specifying which
aspects of Circus processes are confidential and should not be revealed
to low-level users. We also describe a novel procedure for verifying that
a process satisfies its confidentiality properties.

Keywords: Circus, information flow security, confidentiality properties,
unifying theories of programming, verifying security.

1 Introduction

How can software engineers obtain robust assurances that a system does not
leak secret data to its users (and other entities) who lack an appropriate security
clearance? We say that information flows from a system to a user if that user
can analyse its interactions with the system to deduce details about the system’s
behaviour. The study of techniques for measuring and regulating information
flow is a central topic in theoretical studies of computer security [1,2].

When building a system that handles secret data — such as cryptographic
keys or classified documents — it is vital to ensure the system’s design does not
induce undesirable information flows about that data to low-level (untrusted
or unprivileged) users. A confidentiality property prescribes an upper bound
on information flow from a system to a low-level user, to prevent that user
from deducing secret information from its interactions with the system. These
properties are inherently non-functional, and so they cannot be specified using
the facilities provided by conventional formal methods.

The rationale for combining functionality and confidentiality requirements
within a formal framework is to simplify the task of building systems that are
“secure by construction”. Without systematic support for modelling confiden-
tiality properties alongside functional specifications, we can argue that a system
satisfies a given confidentiality property only by resorting to ad hoc reasoning.
In this paper, we outline how the Circus formalism [3,4,5] can be extended with
facilities for specifying the confidentiality properties that a system should satisfy,
in addition to a specification of the system’s desired behaviour.

The contributions of this paper are as follows. First, in Section 3, we present
a syntax for specifying confidentiality properties over Circus processes and de-
fine its semantics in Section 4. Second, in Section 5, we describe a method for

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 215–230, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

216 M.J. Banks and J.L. Jacob

verifying that a Circus process satisfies the confidentiality properties encoded in
its specification. Third, in Section 6, we identify how Circus processes can be
refined while preserving confidentiality properties. In Section 7, we compare our
approach with existing frameworks for integrating confidentiality properties into
formal software development. We summarise our work in Section 8.

2 Circus

Circus is a formal specification language which integrates the CSP process algebra
with the state-based specification facilities of Z to achieve a cohesive framework
for modelling state-rich concurrent and reactive systems.

A Circus process specifies an internal (private) state, a state invariant and a
collection of named actions, which can be grouped into Z schema expressions
and guarded commands (representing operations on the state), invocations of
other actions (by name) and CSP constructs (modelling interaction with the
environment). The behaviour of a Circus process is defined by a distinguished
nameless main action, which follows the declarations of the other actions.

Example 1. The following Circus process, Cell , represents a memory cell that
stores an integer value from the hin channel and broadcasts it on the hout
channel. The cell can be switched between two modes. In public mode, the value
currently stored in the cell is also broadcast on the lout channel; whereas in
private mode, an arbitrary value is broadcast on lout .

MODE == {PUB ,PRV }
channel on, off
channel hin, hout : N

channel lout : MODE × N

process Cell � begin
state Mem � [val : N,m : MODE]
Init � [Mem ′ | val ′ = 0 ∧ m ′ = PUB]

Read �

⎛⎝ m = PUB & lout !(PUB , val) → Skip
� m = PRV & �n∈N

lout !(PRV ,n) → Skip

� hout !val → Skip

⎞⎠
Write � hin?n → val := n?
Switch � (on → m := PRV) � (off → m := PUB)
• Init ; μX • (Read � Write � Switch) ;X

end

The denotational semantics of Circus is defined using Hoare and He’s Unifying
Theories of Programming (UTP) [6]. We describe this semantics here briefly, but
we encourage the reader to consult the definitive account by Oliveira et al. [5].

Each Circus action A is defined as a reactive design of the form R(Pre �
Post), where Pre is a condition over the state variables that must hold for
A to commence proper execution; and Post describes a relation between initial

Specifying Confidentiality in Circus 217

states of A (satisfying Pre) and all later states that A may reach at a stable
intermediate or final point in its execution.

In addition to the state variables of A, Circus features eight distinguished
observational variables to model the behaviour of A as visible to the environment:
ok records that A has been properly started; ok ′ records that A has reached a
stable (observable) intermediate or final state; wait records that A is waiting
to commence its execution; wait ′ indicates that A is awaiting interaction with
the environment, while ¬wait ′ indicates that A has terminated; tr records the
process trace up to the point when A is started; tr ′ records the trace up to the
intermediate or final state reached by A; ref ′ gives the set of events refused by
A at the state it has reached; and ref is included for consistency.

3 Specifying Confidentiality Properties

In this section, we outline a lightweight notation for specifying confidentiality
properties over Circus processes; we formalise its semantics in the next section.

Consider a Circus process P which interacts with a low-level user Low. We
assume that Low may possess two sources of information about the behaviour
of P : namely, (i) its own interactions with P (constituting partial observations
of P ’s behaviour); and (ii) its a priori knowledge of P ’s design.

We model Low’s interface to P in terms of the observational variables of P .
We expect that Low can perceive whether the process is running normally (the
ok and ok ′ variables) and whether the process is waiting for interaction with the
environment (the wait and wait ′ variables). However, Low cannot observe P ’s
state variables, because they are hidden from the environment [4].

We define Low’s window, L, to be the set of events communicated by P to the
environment that are visible to Low through its interface. We model each event
in L as a pair (c, i), where c is the channel name and i is the value transmitted
on the channel [5]. The portion of the process trace tr ′ − tr that is visible to
Low is given by (tr ′ − tr) 	L. Moreover, the set of events refused by P that Low
may perceive is given by ref ′ ∩ L.

We say that two behaviours of a process P are Low-indistinguishable if their
valuations of ok , ok ′ and wait ,wait ′ are equal, the projections of their respective
traces through L are identical and, if these behaviours are non-terminating, the
projections of their refusal sets through L are identical.

Definition 1 (Indistinguishability). The UTP predicate I (L) captures the
indistinguishability of two behaviours Φ and Φ̃ of P — where Φ̃ is expressed over
a renaming of P’s observational variables — as viewed through window L:

I (L) �
(

ok = õk ∧ ok ′ = õk ′ ∧ (tr ′ − tr) 	 L = (t̃r ′ − t̃r) 	 L
∧ wait = w̃ait ∧ wait ′ = w̃ait ′ ∧ (wait ′ ⇒ ref ′ ∩ L = r̃ef ′ ∩ L)

)
(1)

The notion of Low-indistinguishable behaviours is central to our formulation of
confidentiality. A confidentiality property stipulates that, for each behaviour Φ

218 M.J. Banks and J.L. Jacob

of P involving a confidential activity ψ, it must be possible for P to exhibit
alternative “cover story” behaviours that are Low-indistinguishable to Φ but do
not involve ψ. The purpose of these non-confidential cover stories is to conceal
occurrences of ψ from Low. If P may exhibit these cover story behaviours, then
Low cannot deduce from its interaction with P that ψ has occurred, because
Low is unable to rule out the possibility that any of the cover story behaviours
associated with Φ may have occurred instead.

We introduce a confidentiality annotation, or κ-annotation for short, as our
template for specifying confidentiality properties over Circus processes.

Definition 2 (κ-annotation). A κ-annotation is a tuple 〈C ,O ,L,D〉, where
L denotes the window of Low, C and D are Circus actions and O is a set of Z
schemata known1 as obligations.

The C action represents activities of the process over which a confidentiality
property applies. Each obligation θ ∈ O is used in combination with C to specify
— in terms of the initial and final states of C — which C activities of a process
are classed as confidential and which C activities serve as cover stories for those
confidential activities. θ is composed of two parts:

– The declaration part of θ specifies a frame of initial and final state variables
of C (and their types), together with any input or output variables associated
with events performed by C . These variables are partitioned into two classes:
the confidential variables are denoted by v and v ′; while the cover story
variables are denoted using a renaming (ṽ , ṽ ′) of v and v ′.

– The predicate part of θ describes a relation between activities of C : for each
confidential C activity expressed in terms of v and v ′, a range of cover story
C activities are expressed using the ṽ and ṽ ′ variables.

An obligation expresses a closure condition over the behaviours of P . For each
behaviour Φ of P featuring a C activity ψ that θ marks as confidential, θ de-
mands that P exhibits at least one alternative Low-indistinguishable behaviour
Φ̃ featuring a C activity ψ̃ that is marked as a cover story for ψ by θ. Since θ
may offer multiple cover stories, the designer of P has the flexibility to choose
which of those cover story activities are exhibited by P .

Given two obligations θ1 and θ2 with the same frame, we say θ2 is at least as
strong as θ1 if and only if (i) every activity ψ marked as confidential by θ1 is also
marked as confidential in θ2; and (ii) every cover story activity for ψ required
by θ2 is also required by θ1. Formally:

θ1 ≤ θ2 � [conf(θ1) ⇒ conf(θ2)] ∧ [(conf(θ1) ∧ θ2) ⇒ θ1] (2)

where conf(θ) is defined to be (∃ ṽ , ṽ ′ • θ) and [X] denotes the universal closure
of X over all variables [6].

The D parameter of a κ-annotation is a Circus action specifying activities of P
that serve to declassify any confidential C activities that took place previously
1 The term “obligation” is borrowed from Seehusen and Stølen [7].

Specifying Confidentiality in Circus 219

in P ’s execution. Hence, a κ-annotation becomes active when a C activity is
performed and then persists until it expires when a D activity is completed. To
specify that declassification does not takes place, we can write D = Stop, since
the Stop action (representing deadlock) never completes [5].

Example 2. Suppose we insist that whenever the Cell process (from Example 1)
is operating in private mode, no information about the value written to the cell
may be revealed to Low, until the cell reverts to public mode. We can specify a
κ-annotation κpr = 〈Cpr ,Opr ,L,Dpr 〉 to capture this requirement, where:

Cpr = hin?n → Skip
Dpr = off → Skip

Opr =
⋃

x∈N

{
[m, m̃ : {PRV } , ñ? : N | ñ? = x]

}
L = ({on, off } × {Sync}) ∪ ({lout} × (Mode × N))

By selecting the parameters of a κ-annotation carefully, we can encode a wide
range of security requirements over the state and behaviour of Circus processes.

We can compare the strength of κ-annotations by lifting the ≤ ordering
over their sets of obligations. Given two κ-annotations κ1 = 〈C ,O1,L,D〉 and
κ2 = 〈C ,O2,L,D〉 over the same window, we write κ1 � κ2 if and only if each
obligation θ1 ∈ O1 can be matched by an obligation θ2 ∈ O2 such that θ1 ≤ θ2.

Definition 3 (κ-ordering). κ2 is at least as strong as κ1 if and only if:

κ1 � κ2 � ∀ θ1 ∈ O1 • ∃ θ2 ∈ O2 • θ1 ≤ θ2 (3)

4 The Semantics of κ-Annotations

In previous work, we have described a generic framework for expressing confi-
dentiality properties over models of systems in the UTP [8]. We now adapt this
framework to define the semantics of κ-annotations over Circus processes.

The observational variables of a Circus process model the process’s behaviour
in terms of all interactions that it may make with its environment. However,
these variables do not record the multiple intermediate states that the process
may pass through during its execution. We need to extend the semantics of
Circus actions to capture these details.

A snapshot of an action A records the values of the observational variables of
a process (abbreviated to x) immediately prior to an invocation of A at some
point in the process’s execution, together with the values of the observational
variables of the process (abbreviated to x ′) at the intermediate or final state
reached by A. We record each snapshot i ≥ 1 by extending the alphabet of A
with new lists of (fresh) observational variables xi and x ′

i that are isomorphic
to x and x ′ respectively. We define a UTP healthiness condition Si to extend
Circus actions with the semantics of snapshots:

Si(A) �
(

A ∧ (si ⇒ s ′i) ∧ (x ′
i = xi
 s ′i = si � x ′

i = x ′ ∧ xi = x)
∧ (s ′i ∧ i > 1 ⇒ s ′i−1) ∧ (s ′i ∧ wait ⇒ si)

)
(4)

220 M.J. Banks and J.L. Jacob

The Boolean variables si and s ′i are used to record whether snapshot i is triggered
by the action. Each Si -healthy action triggers snapshot i only if si is unset and
s ′i is set. Otherwise, the xi and x ′

i variables are kept constant by the action.
The order in which snapshots are triggered is monotonically increasing: for

each i > 1, a Si -healthy action does not trigger snapshot i before snapshot i −1
is triggered. Finally, the (s ′i ∧ wait ⇒ si) condition ensures that an action does
not trigger a snapshot if the action is waiting to commence execution.

At the level of Circus processes, we write Pk to denote the process P , where
each action of P is made Si -healthy for each i ∈ 1..k . We restrict Pk to exactly
k snapshots by specifying ¬ si ∧ s ′i for each i ∈ 1..k and hiding those variables
from the environment:

P+
k � ∃ s1, s ′1, . . . , sk , s ′k • Pk ∧ ok ∧ (∀ i ∈ 1..k • ¬ si ∧ s ′i) (5)

In addition, the ok variable ensures that P+
k is properly started.

Given a κ-annotation 〈C ,O ,L,D〉, let θ denote an obligation in O and ψ de-
note an activity of C marked as confidential by conf(θ). Suppose that Low makes
an interaction φ with P that is consistent with a behaviour Φ of P featuring an
instance of ψ. The predicate encoding all such behaviours of P is:

Sec(P ,C , θ) � P+
2 ∧ (C ∧ ¬C f

f ∧ ¬wait ′ ∧ conf(θ))[x1, x ′
2/x , x ′] (6)

where C ∧ ¬C f
f ∧ ¬wait ′ ∧ conf(θ) denotes all non-diverging2 and terminating

activities of C that involve an activity described by conf(θ). The x1 and x ′
2

variables of P+
2 record the state of P before and after such activities.

We say that Φ fulfils θ if ψ also corresponds to at least one alternative Low-
indistinguishable behaviour Φ̃ of P featuring a cover story ψ̃ given by θ that
is related to ψ by θ. In other words, Φ fulfils θ if Low cannot establish that ψ
must have occurred from its observation of Φ, because Low cannot distinguish
Φ from Φ̃ and so cannot rule out that ψ̃ may have occurred instead. For this to
be the case, each confidential behaviour of P encoded by Sec must also satisfy
the predicate ∃ x̃ , x̃ ′ • Cov(P ,L,C , θ):

Cov(P ,L,C , θ) �
(
∃ x̃1, x̃ ′

1, x̃2, x̃ ′
2 • P̃+

2 ∧ I (L) ∧ J (L)

∧ (C̃ ∧ ¬C̃ f
f ∧ ¬ w̃ait ′ ∧ θ)[x1, x ′

2, x̃1, x̃ ′
2/x , x ′, x̃ , x̃ ′]

)
(7)

where Ã = A[x̃ , x̃ ′, x̃1, x̃2/x , x ′, x1, x2] and J (L) is a predicate over the tr1, tr ′
2

and t̃r1, t̃r ′
2 snapshot trace variables that is satisfied only if the confidential and

cover story activities of C take place at the same point of P ’s execution, as
observed through the L window. J (L) is defined as:

J (L) � (tr1 − tr) 	 L = (t̃r1 − t̃r) 	 L ∧ (tr2 − tr1) 	 L = (t̃r2 − t̃r1) 	 L (8)

2 Ab
c denotes A[b, c/ok ′,wait] [5]. For each Circus action A we have A = R(¬Af

f � At
f)

[5,6], so A ∧ ¬Af
f denotes all behaviours of A where A’s precondition is met.

Specifying Confidentiality in Circus 221

Alternatively, Φ fulfils θ if Φ also features a declassification activity encoded by
D that takes place in Φ after ψ is performed:

Dec(P ,D) � ∀ x3, x ′
4 • (D ∧ ¬D f

f ∧ ¬wait ′)[x3, x ′
4/x , x ′] ⇒ ∃ x ′

3, x
′
4 • P+

4 (9)

A process P satisfies a κ-annotation κ = 〈C ,O ,L,D〉 if and only if, for each
obligation θ ∈ O , each behaviour of P conforming to Sec(P ,C , θ) fulfils θ.

Definition 4 (Satisfaction). P satisfies κ if and only if P |= κ holds:

P |= 〈C ,O ,L,D〉 � ∀ θ ∈ O •
[

Sec(P ,C , θ) ∧ ¬ Dec(P ,D)
⇒ ∃ x̃ , x̃ ′ • Cov(P ,L,C , θ)

]
(10)

Example 3. The Cell process satisfies the κpr property. Informally, each be-
haviour of Cell featuring a hin event when m = PRV cannot be distinguished
by Low from every other hin event, so Low cannot rule out any of the cover
stories specified by κpr until after the declassification event off takes place.

Lemma 1 states that the condition for verifying that P satisfies a κ-annotation
is monotonic with respect to the κ-ordering; that is, if P satisfies κ, then it also
satisfies all κ-annotations weaker than κ.

Lemma 1 (Monotonicity of |=). If P |= κ2 holds, then P |= κ1 also holds
for all κ1 such that κ1 � κ2.

5 Propagation: Divide and Conquer!

Since the |= condition is defined over the whole space of a process’s behaviours,
applying it to any non-trivial process could be extremely difficult in practice.
In this section, we describe a procedure for verifying κ-annotations against a
restricted, but useful, class of Circus processes.

This procedure requires a process’s main action to consist of an initialisation
action followed by a recursive loop over a generalised external choice of labelled
guarded compound actions that we call blocks. Henceforth, we say that a process
following this form is a block-structured process (BSP). We can divide a BSP into
its component blocks and then identify proof obligations over individual blocks
that imply the |= condition.

Definition 5 (Block-structured process). The main action of a Circus BSP
with label set L is structured as follows:

Init ;
(
μX • �l∈L

(g .l & A.l) ;X
)

(11)

where the Init action initialises the process state and, for each l ∈ L, g .l is a
guard (on the v variables) and A.l is a divergence-free (compound) Circus action.
Each block B .l behaves as (g .l ∧ A.l) if g .l holds and as Stop otherwise [5].

222 M.J. Banks and J.L. Jacob

If process P is block-structured, we can safely assume (by Definition 5) that each
block B .l of P may only be started in states satisfying g .l .

Let δ ⊆ L × L denote a relation between block labels that maps i to j if and
only if P may perform B .j immediately following B .i ; that is, P may invoke B .i
in a state such that B .i terminates in a state that satisfies B .j ’s guard:

δ �
{

i �→ j
∣∣∣∣∃ x , x ′ •

(
Init ; μX •

(
�l∈L

B .l ;X
� (B .i ∧ ¬wait ′)

))
∧ g .j [v ′/v]

}
(12)

In addition, let AllDec(B .l ,D) denote a predicate that holds only if every termi-
nating behaviour of B .l started from a state satisfying g .l involves a declassifi-
cation activity specified by D :

AllDec(B ,D) �
(
∀ x , x ′ • B ∧ ¬B f

f ∧ ¬wait ′

⇒ ∃ x1, x ′
1, x2, x ′

2 • B+
2 ∧ (D ∧ ¬D f

f)[x1, x ′
2/x , x ′]

)
(13)

5.1 Block-Level Verification

Given a BSP P and a κ-annotation κ, we analyse each block of P individually
to verify that no sequence of blocks that P may perform can leak confidential
information to Low. In effect, this analysis assumes that Low is able to observe
the block sequence performed by P . This assumption is pessimistic but it is
sound — as it over-approximates Low’s observational abilities — and it enables
us to reason about information flow to Low on a block-by-block basis.

Throughout this section, we assume that C and D actions specified by κ are
enclosed by the blocks of P .

Definition 6 (Enclosure). An action A is enclosed by a BSP P if and only
if, whenever P can perform an activity described by A ∧ ¬ Af

f ∧ ¬ wait ′, that
activity is performed within a single block of P.

For each block B .l of P , we need to identify all behaviours of B .l featuring
confidential activities that are not subsequently declassified (as specified by D)
within B .l . These behaviours are given by the predicate R(κ, θ,B .l):

R(κ, θ,B) � ∃ x1, x ′
1, x2, x ′

2 • Sec(B ,C , θ) ∧ ¬ Dec(B ,D) (14)

For each of these behaviours of B .l featuring a confidential activity ψ, the pred-
icate Q(κ, θ,B .l) relates that behaviour to all Low-indistinguishable behaviours
of B .l featuring cover story activities related to ψ by θ:

Q(κ, θ,B) � ∀ x1, x ′
1, x2, x ′

2 •
(

Sec(B ,C , θ) ∧ ¬ Dec(B ,D)
⇒ Cov(B ,L,C , θ)

)
(15)

Observe that, if no C activity conforming to conf(θ) can take place within B .l ,
then R(κ, θ,B .l) will yield false.

It follows from the semantics of |= that, in order for each behaviour Φ of B .l
given by R(κ, θ,B .l) to fulfil θ within the context of B .l , there must exist at least

Specifying Confidentiality in Circus 223

one behaviour Φ̃ of B̃ .l that Q(κ, θ,B .l) associates with Φ. We define a proof
obligation po to capture this requirement:

po(B , (R,Q)) �
[
B ∧ R ⇒ ∃ x̃ , x̃ ′ • B̃ ∧ Q

]
(16)

po(B .l , (R(κ, θ,B .l), Q(κ, θ,B .l)) treats B .l in isolation from the other blocks
of P . Hence, discharging this proof obligation does not guarantee that all be-
haviours of P fulfil θ, because Low may analyse its full interaction with P to
obtain knowledge about the state of P before and after an invocation of B .l .

To ascertain that each P behaviour as a whole fulfils θ, we also need to
verify that all sequences of blocks that P can perform do not reveal confidential
information to Low about the behaviour of B .l . Hence, we introduce a procedure
for propagating the R and Q predicates across the blocks of P , to enable us to
verify in a piece-wise fashion that no possible execution of P can violate θ.

5.2 Forwards Propagation

Given a block B .i where R.i = R(κ, θ,B .i) and Q .i = Q(κ, θ,B .i), we can
calculate a pair of predicates (R′,Q ′) = fw (B .i , (R.i ,Q .i)) encoding all final
states of B .i that can be reached by all terminating behaviours of B .i classed
as confidential by R.i , together with the final states of all Low-indistinguishable
(and terminating) behaviours of B .i classed as cover stories by Q .i :

fw (B , (R,Q)) �
(

(∃ x • B ∧ R ∧ ¬wait ′)[x/x ′],
(∃ x , x̃ • B ∧ B̃ ∧ Q ∧ I ∗(L) ∧ ¬wait ′)[x , x̃/x ′, x̃ ′]

)
(17)

The I ∗(L) predicate denotes I (L) extended with Low’s ability to perceive dead-
lock of P when B .i terminates, which arises only if B .i reaches a final state in
which none of the guards of the blocks of P are enabled. Hence, if a behaviour of
B .i involving a confidential activity terminates in a deadlocking state, then the
associated cover story behaviours of B .i should also terminate in a deadlocking
state, to preserve Low-indistinguishability:

I ∗(L) � I (L) ∧ (¬wait ′ ∧ ∀ l ∈ L • ¬g .l [v ′/v] ⇒ ¬ ∀ l ∈ L • ¬ g̃ .l [ṽ ′/ṽ]) (18)

We have I ∗(L) = I (L) if every final state that a block of P may reach enables
one or more guards of P .

For each block B .j where i �→ j ∈ δ, we need to verify that Low’s interactions
with B .j do not provide Low with information about the behaviour of B .i that
allows Low to retrospectively rule out all cover stories given by Q .i . This is
guaranteed by po(B .j , fw (B .i , (R.i ,Q .i))), which implies that if B .j is started
from any final state of B .i marked as confidential, then each interaction with
B .j that Low may make could have instead been generated by B .j started from
any final state of B .i marked as a cover story.

Moreover, we need to prove that each sequence of blocks that P can perform
following B .i does not leak confidential information to Low. This can be done

224 M.J. Banks and J.L. Jacob

by verifying the last block in the sequence against the (R,Q) pair obtained by
recursively propagating (R.i ,Q .i) forwards through each block in the sequence.

We can incorporate declassification into forwards propagation by altering the
δ relation. For each block B .t where AllDec(B .t ,D) holds, we need not propagate
a confidentiality requirement further than B .t , because it is relaxed when B .t
terminates. Thus, we can remove from δ all transitions leading from B .t :

δD � δ \ {t �→ j | t , j ∈ L ∧ AllDec(B .t ,D)} (19)

We now formulate a verification condition for the forwards propagations of κ over
all blocks of a process. For each block B .l , the set of all forwards propagations
of the obligations contained within κ of all blocks of P that may lead to an
invocation of B .l is given by −→ρ (κ, l):

−→ρ (κ, l) � {ρ | i ∈ L ∧ θ ∈ O ∧ (l , ρ) ∈ fwds({(i , RQ(κ, θ,B .i))})} (20)

fwds(K) � K ∪ fwds ({(j , fw (B .i , ρ)) | i �→ j ∈ δD ∧ (i , ρ) ∈ K}) (21)

where ρ denotes (R,Q) and RQ(κ, θ,B) is shorthand for (R(κ, θ,B), Q(κ, θ,B)).
We calculate fwds(K) by iterating until a fixed point is reached.

The set −→ρ (κ, l) contains all forwards propagations of κ through all sequences
of blocks from B .i up to B .l . This set represents a sound approximation of κ
through the blocks of the process up to B .l . Hence, it is sufficient to discharge
po(B .l , ρ) for each ρ ∈ −→ρ (κ, l) in order to verify that B .l does not reveal in-
formation about the state of P to Low that could violate any instance of κ
applicable to the blocks that may take place prior to B .l .

5.3 Backwards Propagation

Forwards propagation is capable of verifying that confidential information about
the behaviour of each block B .i is not disclosed by any sequence of blocks that
may follow B .i . However, this procedure leaves open the possibility that a process
may have performed a sequence of blocks leading up to a state in which B .i
may perform a confidential activity but cannot instead perform the requisite
cover story activities required by κ. Again, it may be possible for Low to infer
confidential information about the behaviour of B .i by analysing its interaction
with the process to identify information about the initial state of B .i .

To ensure that Low cannot rule out cover stories for B .i based on its knowledge
about the behaviour of the previous blocks executed by a process, it suffices to
propagate each RQ(κ, θ,B .i) pair backwards to all blocks that may precede B .i .
The confidentiality requirement on the process state immediately prior to an
invocation of B .i is given by bw (B .i , RQ(κ, θ,B .i)):

bw (B , (R,Q)) �
(

(∃ x ′ • B ∧ R ∧ ¬wait)[x ′/x],
(∃ x ′, x̃ ′ • B ∧ B̃ ∧ Q ∧ I (L)) ∧ ¬wait)[x ′, x̃ ′/x , x̃]

)
(22)

←−ρ (κ, l) � {ρ | j ∈ L ∧ θ ∈ O ∧ (l , ρ) ∈ bwds({(j , RQ(κ, θ,B .j))})} (23)

bwds(K) � K ∪ bwds ({(i , bw (B .j , ρ)) | i �→ j ∈ δ ∧ (j , ρ) ∈ K}) (24)

Specifying Confidentiality in Circus 225

←−ρ (κ, l) gives the set of all backwards propagations of κ from the blocks of the
process to B .l . Again, discharging po(B .l , ρ) for each ρ ∈ ←−ρ (κ, l) suffices to
establish that B .l does not reveal information about the state of P to Low that
may violate the κ-annotations of the blocks following B .l .

It is also necessary to verify that all initial states of P satisfy the backwards-
propagated κ-annotations of the blocks that may be performed immediately after
Init . This is assured by discharging po(Init ,←−ρ (κ, Init)), where:

←−ρ (κ, Init) �
⋃
l∈L

{bw(B .l , ρ) | ρ ∈ ←−ρ (κ, l) ∧ (∃ x , x ′ • Init ∧ g .l [v ′/v])} (25)

5.4 Verifying Confidentiality

Forwards and backwards propagation can be applied together to a BSP P to
verify each block of P against κ. We now sketch a proof that this procedure —
with one important caveat — is sufficient to demonstrate that P satisfies κ.

First, we relate the po proof obligation to the |= condition. Given a κ-
annotation 〈C ,O ,L,D〉 and an individual block B , if we can demonstrate that
each behaviour of B conforming to Sec(B ,C , θ) fulfils θ for each θ ∈ O , then we
can conclude that B satisfies κ in isolation. This is formalised in Lemma 2.

Lemma 2 (po entails |=). For any block B and κ-annotation κ = 〈C ,O ,L,D〉:

∀ θ ∈ O • po(B , RQ(κ, θ,B)) implies B |= κ (26)

We now extend the scope of Lemma 2 to enclose multiple blocks. Consider any
two blocks B .i and B .j of P where i �→ j ∈ δ and B .i or B .j may exhibit an
activity marked as confidential by κ. To justify that (B .i ;B .j) |= κ holds, we
need to discharge four proof obligations over B .i and B .j for each θ ∈ O :

po(B .i , RQ(κ, θ,B .i)) po(B .j , RQ(κ, θ,B .j))
po(B .j , fw (B .i , RQ(κ, θ,B .i))) po(B .i , bw (B .j , RQ(κ, θ,B .j)))

Together, these four proof obligations imply that each behaviour of (B .i ;B .j)
marked as confidential by C and θ is concealed by at least one alternative Low-
indistinguishable behaviour of (B .i ;B .j) marked as a cover story.

In order to generalise this result to arbitrary sequences of blocks, we need to
restrict our attention to κ-annotations where each obligation features exactly one
cover story activity for each confidential activity. (This restriction ensures the
same cover story is propagated forwards and backwards through the process.)

Definition 7 (κ̂-annotation). A κ̂-annotation 〈C ,O ,L,D〉 is a κ-annotation
where the condition ∀ v , v ′ • conf(θ) ⇒ ∃1 ṽ , ṽ ′ • θ holds for each θ ∈ O.

Naturally, a κ̂-annotation can always be obtained from a κ-annotation κ by
strengthening each obligation of κ.

We say that P is κ̂-safe if we can prove the blocks of P uphold the respective
forwards and backwards propagations of κ̂ through P .

226 M.J. Banks and J.L. Jacob

Definition 8 (κ̂-safety). A BSP P is safe w.r.t. κ̂ = 〈C ,O ,L,D〉 if and only
if P encloses C and D; po(Init ,←−ρ (κ̂, Init)) holds and, for each l ∈ L, we have:

po(B .l , RQ(κ̂, θ,B .l)) and ∀ ρ ∈ −→ρ (κ̂, l) ∪←−ρ (κ̂, l) • po(B .l , ρ) (27)

If process P is κ̂-safe, then no sequence of blocks that P may perform may leak
confidential information to Low. It follows that, if P is κ̂-safe, then P must
satisfy κ. This result is encapsulated by Theorem 1.

Theorem 1. If a BSP P is κ̂-safe, then P |= κ̂ holds.

A trivial consequence of Theorem 1 and Lemma 1 that, if P is κ̂-safe and κ � κ̂
holds, then P must satisfy κ as well as κ̂.

6 Confidentiality-Preserving Refinement

Behavioural refinement maintains the functionality of Circus processes, but may
not preserve confidentiality properties [9]. This so-called “refinement paradox”
arises because näıvely refining away non-determinism within a process P may
remove behaviours from P that are required as cover stories by the κ-annotations
of P , without also removing the associated confidential behaviours. Such refine-
ment steps violate the |= condition.

Example 4. Consider the following refinement of the Read block of Cell :

Read �

⎛⎝ m = PUB & lout !(PUB , val) → Skip
� m = PRV & lout !(PRV , val mod 2) → Skip
� hout !val → Skip

⎞⎠
This refinement is manifestly insecure with respect to κpr specified in Example 2,
because if Low observes a lout event when m = PRV , it can deduce one bit of
information about the value of val , in violation of half of the obligations of κpr .

When developing a process by stepwise refinement, it would be wasteful to reach
a concrete process design that violates its κ-annotations. This problem can be
overcome by strengthening process refinement in Circus to uphold κ-annotations.

Definition 9 (Secure process refinement). For processes P1 and P2 we say
that P2 is a secure refinement of P1 w.r.t. a κ-annotation κ — written P1 �κ

P P2

— if P2 is a process refinement of P1 and P2 satisfies κ.

Observe that P1 �κ
P P2 requires only that P2 satisfies κ, whereas P1 itself need

not be secure. However, an insecure refinement may result in a process that
cannot be refined securely, so we propose that a BSP should be verified to satisfy
its κ-annotations by applying propagation at an early stage of its development.
Thereafter, each refinement step should maintain those κ-annotations. This can
be achieved by retaining the −→ρ and ←−ρ sets generated by propagation and re-
using them at each refinement step to verify that it preserves κ̂-safety.

Specifying Confidentiality in Circus 227

Consider a BSP P that has been proved to be κ̂-safe. By Definition 8, we
know that each block B .l of P upholds each member of −→ρ (κ̂, l) and ←−ρ (κ̂, l), as
well as RQ(κ, θ,B .l). Suppose we refine P to obtain a BSP P ′ by replacing B .l
in P with B .l ′, where B .l � B .l ′. If we have g .l = g .l ′, then P ′ can only feature
transitions between blocks that are possible for P (i.e. δP ′ ⊆ δP). In Theorem 2,
we present conditions on B .l ′ that are sufficient to establish that P ′ is κ̂-safe.

Theorem 2. If P is κ̂-safe and P ′ equals P except with B .l ′ in place of B .l
(where g .l = g .l ′ and B .l � B .l ′), then P ′ is κ̂-safe if for every cover story
behaviour of B .l specified by RQ(κ̂, θ,B .l) and each member of −→ρ (κ̂, l)∪←−ρ (κ̂, l)
where B .l ′ features an associated confidential behaviour, the same cover story
behaviour is present in B .l ′. These conditions are formalised as follows:

∀(R,Q) ∈ {RQ(κ̂, θ,B .l)} ∪ −→ρ (κ̂, l) ∪←−ρ (κ̂, l) • saferef(B .l ,B .l ′, (R,Q))

where saferef(B ,B ′, (R,Q)) �
[
B ′ ∧ R ∧ B̃ ∧ Q ⇒ B̃ ′

]

7 Related Work

In software engineering, it is conventional to implement security policies by build-
ing access control into the system design. However, the notion of information
flow security is more generally applicable than access control: while confiden-
tiality properties specify what information should not be disclosed to low-level
users, access control mechanisms describe how that information should be pro-
tected. Furthermore, access control does not account for Low inferring secret
information indirectly from its interaction with a system [1].

Our κ-annotations share the spirit of Jacob’s security specifications [9,10],
which are functions from low-level observations of a system to the minimal set
of system behaviours that a low-level user must be unable to distinguish from
those observations. The same idea underlies our earlier work on encoding confi-
dentiality properties in the UTP [8], where we define an abstract formulation of
confidentiality properties across the spectrum of UTP theories. By specialising
this formulation to the semantics of Circus, we have achieved a framework where
these properties can be integrated directly into formal software developments.

In many of the existing frameworks for expressing confidentiality properties,
such as Mantel’s MAKS [11], the occurrence (or non-occurrence) of particular
high-level events is taken to be confidential. We abstract from this event-centric
style by taking Circus actions over the state of processes as the basis of our
confidentiality encoding. In addition, our model of Low’s observational abilities
is based on the failures-divergences semantics of CSP — as encoded in the UTP
semantics of Circus — and is therefore richer than the trace-based models of
Low’s observations frequently employed in these frameworks.

The confidentiality properties encoded by our κ-annotations are (in general)
weaker than the noninterference property, which stipulates that no input from a
high-level user can influence any output to a low-level user [12]. We contend that
a more fine-grained approach to specify limits on information flow to low-level

228 M.J. Banks and J.L. Jacob

users is beneficial to software engineers, because it affords greater flexibility in
designing systems to meet their functionality and security requirements.

Unlike noninterference, our notion of confidentiality does not stop a trusted
(yet treacherous) high-level user from actively leaking secrets to low-level users
by influencing their interactions with the system using a pre-arranged signalling
protocol. While deliberate disclosure of secret data by malicious high-level users
is troublesome in security-critical environments, we contend that no technical
measures can prevent such users from leaking data outside the system domain.

Our propagation procedure is related to the unwinding technique [12], which
aims to simplify the task of verifying a system against a confidentiality property.
Unwinding transforms a global confidentiality property (typically expressed in
terms of trace sets) over a system into conditions over its individual state tran-
sitions, which can then be discharged using traditional proof methods [11].

Our work shares some ideas with Morgan’s recent shadow semantics [13,14],
which extends the refinement calculus for sequential programs to ensure that
refinement does not introduce new information flows about secret data to Low.
The shadow semantics assumes that Low can observe a program’s control flow;
likewise, we assume that Low can deduce the sequence of blocks performed by
a process. However, the shadow semantics goes a step further, by distinguishing
between atomic and composite non-determinism and allowing Low to monitor
how composite non-determinism is resolved in a program’s execution. This means
that refinement of composite non-determinism is security-preserving. We do not
grant Low that ability, because κ-annotations do not cleanly partition the whole
process state into secret and non-secret variables. Moreover, applying the shadow
semantics for refinement in our framework would require Circus to be extended
with an alternative semantics for non-determinism.

We have covered many of the topics discussed here in greater depth in earlier
work [8]. A fuller survey of the various approaches for formalising and reasoning
about information flow security can be found elsewhere [1,2].

8 Conclusions

In this paper, we have presented a framework for specifying confidentiality prop-
erties over Circus processes and a procedure for verifying that a Circus process
satisfies those properties. The close integration of our framework with the spec-
ification facilities of Circus is original and is supported by the UTP foundations
of Circus. While we have taken Circus as the formal foundation of our framework,
the underlying principles are general and could be translated to other formalisms
besides Circus (especially those with a UTP semantics).

Our ongoing research aims to elevate confidentiality properties to the sta-
tus of “first-class citizens” in Circus developments, with suitable techniques and
automated tools to support the verification of process designs against confi-
dentiality properties and for checking the correctness of refinement steps. We
hypothesise that the work presented in this paper, together with the underlying
Circus platform, may provide the foundations of a viable engineering approach for

Specifying Confidentiality in Circus 229

developing software in tandem with information flow security concerns. We are
currently working on a case study project to evaluate this hypothesis.

We have left several pertinent topics unexplored in this paper, such as the
consequences of concurrency and probabilistic behaviour for information flow
and confidentiality. We leave the investigation of these topics to future work.

Finally, taking a formal approach to security engineering can increase confi-
dence that a system does not leak secrets to low-level users, but it is unwise to
assume that any system implementation is secure in all circumstances. In partic-
ular, our framework does not address sources of information leakage that arise
at the hardware level, such as its responsiveness or power consumption [15].
The task of extending formal methods to address these factors is likely to be
challenging, but would be a significant step towards engineering secure systems.

Acknowledgements. Michael Banks is supported by a UK EPSRC DTA stu-
dentship. We are grateful to the anonymous referees for their helpful comments
and to Matthew Naylor for proofreading.

References

1. McLean, J.: Security models. In: Marciniak, J. (ed.) Encyclopedia of Software
Engineering, vol. 2, pp. 1136–1145. John Wiley & Sons, Inc., Chichester (1994)

2. Ryan, P.: Mathematical models of computer security. In: Focardi, R., Gorrieri, R.
(eds.) FOSAD 2000. LNCS, vol. 2171, pp. 1–62. Springer, Heidelberg (2001)

3. Cavalcanti, A., Sampaio, A., Woodcock, J.: A refinement strategy for Circus. For-
mal Aspects of Computing 15(2-3), 146–181 (2003)

4. Oliveira, M.V.: Formal Derivation of State-Rich Reactive Programs using Circus.
PhD thesis, Department of Computer Science, University of York (2005)

5. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Aspects of Computing 21(1), 3–32 (2009)

6. Hoare, C.A.R., He, J.: Unifying Theories of Programming. International Series in
Computer Science. Prentice Hall Inc., Englewood Cliffs (1998)

7. Seehusen, F., Stølen, K.: Information flow security, abstraction and composition.
IET Information Security 3(1), 9–33 (2009)

8. Banks, M.J., Jacob, J.L.: Unifying theories of confidentiality. In: Qin, S. (ed.)
UTP 2010. LNCS, vol. 6445, pp. 120–136. Springer, Heidelberg (2010)

9. Jacob, J.L.: On the derivation of secure components. In: Proceedings of the 1989
IEEE Symposium on Security and Privacy, pp. 242–247. IEEE Computer Society,
Los Alamitos (1989)

10. Jacob, J.L.: Security specifications. In: Proceedings of the 1988 IEEE Symposium
on Security and Privacy, pp. 14–23 (1988)

11. Mantel, H.: A Uniform Framework for the Formal Specification and Verification of
Information Flow Security. PhD thesis, Universität Saarbrücken (July 2003)

12. Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: Proceedings of
the 1984 IEEE Symposium on Security and Privacy, pp. 75–86. IEEE Computer
Society, Los Alamitos (1984)

13. Morgan, C.: The shadow knows: Refinement and security in sequential programs.
Science of Computer Programming 74(8), 629–653 (2009)

230 M.J. Banks and J.L. Jacob

14. Morgan, C.: Compositional noninterference from first principles. Formal Aspects
of Computing (to appear)

15. Clark, J.A., Stepney, S., Chivers, H.: Breaking the model: Finalisation and a taxon-
omy of security attacks. Electronic Notes in Theoretical Computer Science 137(2),
225–242 (2005)

A Proofs

Formal proofs of the theorems and lemmas presented in this paper are available from
http://www-users.cs.york.ac.uk/~mbanks/.

http://www-users.cs.york.ac.uk/~mbanks/

Formally Verifying Isolation and Availability in

an Idealized Model of Virtualization�

Gilles Barthe1, Gustavo Betarte2, Juan Diego Campo2, and Carlos Luna2

1 IMDEA Software, Madrid, Spain
2 InCo, Facultad de Ingenieŕıa, Universidad de la República, Uruguay

Abstract. Hypervisors allow multiple guest operating systems to run on
shared hardware, and offer a compelling means of improving the security
and the flexibility of software systems. We formalize in the Coq proof
assistant an idealized model of a hypervisor, and formally establish that
the hypervisor ensures strong isolation properties between the different
operating systems, and guarantees that requests from guest operating
systems are eventually attended.

1 Introduction

Hypervisors allow several operating systems to coexist on commodity hardware,
and provide support for multiple applications to run seamlessly on the guest
operating systems they manage. Moreover, hypervisors provide a means to guar-
antee that applications with different security policies can execute securely in
parallel, by ensuring isolation between their guest operating systems. In effect,
hypervisors are increasingly used as a means to improve system flexibility and
security, and authors such as [10] predict that their use will become ubiquitous
in enterprise data centers and cloud computing.

The increasingly important role of hypervisors in software systems makes
them a prime target for formal verification. Indeed, several projects have set
out to formally verify the correctness of hypervisor implementations. One of the
most prominent initiatives is the Microsoft Hyper-V verification project [8,16],
which has made a number of impressive achievements towards the functional
verification of the legacy implementation of the Hyper-V hypervisor, a large
software component that combines C and assembly code (about 100 kLOC of
C and 5kLOC of assembly). The overarching objective of the formal verification
is to establish that a guest operating system cannot observe any difference be-
tween executing through the hypervisor or directly on the hardware. The other
prominent initiative is the L4.verified project [14], which recently completed the
formal verification of the seL4 microkernel, a general purpose operating system

� Partially funded by European Project FP7 256980 NESSoS, Spanish project
TIN2009-14599 DESAFIOS 10, Madrid Regional project S2009TIC-1465
PROMETIDOS and project ANII-Clemente Estable PR-FCE-2009-1-2568 Virtual-
Cert.

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 231–245, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

232 G. Barthe et al.

of the L4 family. The main thrust of the formal verification is to show that an
implementation of the microkernel correctly refines an abstract specification.

Reasoning about implementations provides the ultimate guarantee that de-
ployed hypervisors provide the expected properties. There are however significant
hurdles with this approach, especially if one focuses on proving security proper-
ties rather than functional correctness. First, the complexity of formally proving
non-trivial properties of implementations might be overwhelming in terms of
the effort it requires; worse, the technology for verifying some classes of security
properties may be underdeveloped: specifically, liveness properties are notori-
ously hard to prove, and there is currently no established method for verifying
security properties involving two system executions, a.k.a. 2-properties [7], for
implementations. Second, many implementation details are orthogonal to the
security properties to be established, and may complicate reasoning without im-
proving the understanding of the essential features for guaranteeing isolation
among guest operating systems. Thus, there is a need for complementary ap-
proaches where verification is performed on idealized models that abstract away
from the specifics of any particular hypervisor, and yet provide a realistic setting
in which to explore the security issues that pertain to the realm of hypervisors.

This article initiates such an approach by developing a minimalistic model of
a hypervisor, and by formally proving that the hypervisor correctly enforces iso-
lation between guest operating systems, and under mild hypotheses guarantees
basic availability properties to guest operating systems. In order to achieve some
reasonable level of tractability, our model is significantly simpler than the setting
considered in the Microsoft Hyper-V verification project, it abstracts away many
specifics of memory management such as translation lookaside buffers (TLBs)
and shadow page tables (SPTs) and of the underlying hardware and runtime
environment such as I/O devices. Instead, our model focuses on the aspects that
are most relevant for isolation properties, namely read and write resources on
machine addresses, and is sufficiently complete to allow us to reason about iso-
lation properties. Specifically, we show that an operating system can only read
and modify memory it owns, and a non-influence property [18] stating that the
behavior of an operating system is not influenced by other operating systems. In
addition, our model allows reasoning about availability; we prove, under reason-
able conditions, that all requests of a guest operating system to the hypervisor
are eventually attended, so that no guest operating system waits indefinitely
for a pending request. Overall, our verification effort shows that the model is
adequate to reason about safety properties (read and write isolation), 2-safety
properties (OS isolation), and liveness properties (availability).

Contents of the paper. Section 2 provides a primer on virtualization, focusing
on the elements that are most relevant for our formal model, which we develop
in Section 3. Isolation properties are considered in Section 4, whereas availabil-
ity is discussed in Section 5. Section 6 considers related work; further work and
conclusions are presented in Section 7. The formal development is available at
http://www.fing.edu.uy/inco/grupos/gsi/proyectos/virtualcert.php, and can
be verified using the Coq proof assistant (version 8.2) [21].

Formally Verifying Isolation and Availability in an Idealized Model 233

Notation. We use standard notation for equality and logical connectives. We
extensively use record types, enumerated types, and (parametric) sum types.
Record types are of the form {l1 : T1, . . . , ln : Tn}, whereas their elements are of
the form 〈t1, . . . , tn〉. Field selection is abbreviated using dot notation. Enumer-
ated types and parametric sum types are defined using Haskell-like notation; for
example, we define for every type T the type option T

def= None | Some (t : T).
We also make an extensive use of partial maps: the type of partial maps from ob-
jects of type A into objects of type B is written A �→ B. Application of a map
m on an object of type a is denoted m[a] and map update is written m[a] := b,
where b overwrites the value, if any, associated to a. Finally, runs are modeled
co-inductively, using streams. The type of streams of type A is written [A]∞.
Objects of type [A]∞ are constructed with the (infix) operator ::, hence x :: xs
is of type [A]∞ whenever x is of type A and xs is of type [A]∞. Given s : [A]∞
we let s[i] denote the i-th element of s.

2 A Primer on Virtualization

Virtualization is a technique used to run on the same physical machine multiple
operating systems, called guest operating systems. The hypervisor, or Virtual Ma-
chine Monitor [11], is a thin layer of software that manages the shared resources
(e.g. CPU, system memory, I/O devices). It allows guest operating systems to
access these resources by providing them an abstraction of the physical machine
on which they run. One of the most important features of a virtualization plat-
form is that its OSs run isolated from one another. In order to guarantee isolation
and to keep control of the platform, a hypervisor makes use of the different exe-
cution modes of a modern CPU: the hypervisor itself and trusted guest OSs run
in supervisor mode, in which all CPU instructions are available; while untrusted
guest operating systems will run in user mode in which privileged instructions
cannot be executed.

Historically there have been two different styles of virtualization: full virtual-
ization and paravirtualization. In the first one, each virtual machine is an exact
duplicate of the underlying hardware, making it possible to run unmodified oper-
ating systems on top of it. When an attempt to execute a privileged instruction
by the OS is detected the hardware raises a trap that is captured by the hy-
pervisor and then it emulates the instruction behavior. In the paravirtualization
approach, each virtual machine is a simplified version of the physical architec-
ture. The guest (untrusted) operating systems must then be modified to run in
user CPU mode, changing privileged instructions to hypercalls, i.e. calls to the
hypervisor. A hypercall interface allows OSs to perform a synchronous software
trap into the hypervisor to perform a privileged operation, analogous to the use
of system calls in conventional operating systems. An example use of a hyper-
call is to request a set of page table updates, in which the hypervisor validates
and applies a list of updates, returning control to the calling OS when this is
completed.

In this work, we focus on the memory management policy of a paravirtual-
ization style hypervisor, based on the Xen virtualization platform [6]. Several

234 G. Barthe et al.

features of the platform are not yet modeled (e.g. I/O devices, interruption sys-
tem, or the possibility to execute on multi-cores), and are left as future work.

3 The Model

In this section we present and discuss the formal specification of the idealized
model. We first introduce the set of states, and the set of actions; the latter
include both operations of the hypervisor and of the guest operating systems. The
semantics of each action is specified by a precondition and a postcondition. Then,
we introduce a notion of valid state and show that state validity is preserved by
execution. Finally, we define execution traces.

3.1 Informal Overview of the Memory Model

The most important component of the state is the memory model, which we
proceed to describe. As illustrated in Figure 1, the memory model involves three
types of addressing modes and two address mappings: the machine address is
the real machine memory; the physical memory is used by the guest OS, and the
virtual memory is used by the applications running on an operating system.

The virtual memory is the

Fig. 1. Memory model of the platform

one used by applications running
on OSs. Each OS stores a partial
mapping of virtual addresses to
machine addresses. This will al-
low us to represent the transla-
tion of the virtual addresses of
the applications executing in the
OS into real hardware addresses.
Moreover, each OS has a desig-
nated portion of its virtual ad-
dress space (usually abbreviated
VAS) that is reserved for the hy-
pervisor to attend hypercalls. We
say that a virtual address va is

accessible by the OS if it belongs to the virtual address space of the OS which
is not reserved for the hypervisor. We denote the type of virtual addresses by
vadd.

The physical memory is the one addressed by the kernel of the guest OS. In
the Xen [6] platform, this is the type of addresses that the hypervisor exposes
to the domains (the untrusted guest OSs in our model). The type of physical
addresses is written padd.

The machine memory is the real machine memory. A mechanism of page clas-
sification was introduced in order to cover concepts from certain virtualization
platforms, in particular Xen. The model considers that each machine address
that appears in a memory mapping corresponds to a memory page. Each page

Formally Verifying Isolation and Availability in an Idealized Model 235

has at most one unique owner, a particular OS or the hypervisor, and is classi-
fied either as a data page with read/write access or as a page table, where the
mappings between virtual and machine addresses reside. It is required to register
(and classify) a page before being able to use or map it. The type of machine
addresses is written madd.

As to the mappings, each OS has an associated collection of page tables (one
for each application executing on the OS) that map virtual addresses into ma-
chine addresses. When executed, the applications use virtual addresses, there-
fore on context switch the current page table of the OS must change so that the
currently executing application may be able to refer to its own address space.
Neither applications nor untrusted OSs have permission to read or write page
tables, because these actions can only be performed in supervisor mode. Every
memory address accessed by an OS needs to be associated to a virtual address.
The model must guarantee the correctness of those mappings, namely, that every
machine address mapped in a page table of an OS is owned by it.

The mapping that associates, for each OS, machine addresses to physical ones
is, in our model, maintained by the hypervisor. This mapping might be treated
differently by each specific virtualization platform. There are platforms in which
this mapping is public and the OS is allowed to manage machine addresses. The
physical-to-machine address mapping is modified by the actions page pin and
page unpin, as shall be described in Section 3.3.

3.2 Formalizing States

The platform state consists of a collection of components that we now proceed
to describe.

Operating systems. We start from a type os ident of identifiers for guest op-
erating systems, and a predicate trusted os indicating whether a guest operating
system is trusted. The state contains information about each guest OS current
page table, which is a physical address, and information on whether it has a hy-
percall pending to be resolved. Formally the information is captured by a map-
ping oss map that associates OS identifiers with objects of type os, where os

def=
{curr page : padd, hcall : option Hyper call}, and oss map

def= os ident �→ os.

Execution modes. Most hardware architectures distinguish at least two execu-
tion modes, namely user mode (usr) and supervisor mode (svc). These modes are
used as a protection mechanism, where privileged instructions are only allowed
to be executed in supervisor mode. In our model, untrusted OSs execute in user
mode while trusted ones and the hypervisor execute in supervisor mode. When
an untrusted OS needs to execute a privileged operation, it requests the hyper-
visor to do it on its behalf. Execution modes are formalized by the enumerated
type exec mode, where exec mode

def= usr | svc.
Moreover, there is a single active OS in each state. After requesting the hy-

pervisor to execute some service, the active guest OS will turn in processor
execution mode waiting until the service is completed and the execution control

236 G. Barthe et al.

returned, switching then its execution mode to running. Active OS execution
mode is formalized by the type os activity

def= running | waiting.

Memory mappings. The mapping that, given an OS returns the correspond-
ing mapping from physical to machine addresses, is formalized as an object of the
type hypervisor map, where hypervisor map

def= os ident �→ (padd �→ madd).
The real platform memory is formalized as a mapping that associates to a ma-
chine address a page, thus system memory

def= madd �→ page. A page consists
of a page content and a reference to the page owner. Page contents can be either
(readable/writable) values, an OS page table or nothing; note that a page might
have been created without having been initialized, hence the use of option types.
Page owners can be the hypervisor, a guest OS or none. Formally:
content

def= RW (v : option V alue) | PT (va to ma : vadd �→ madd) | Other

page owner
def= Hyp | Os (osi : os ident) | No Owner

page
def= {page content : content, page owned by : page owner}

States. The states of the platform are modeled by a record with six components:

State
def= { active os : os ident,

aos exec mode : exec mode,
aos activity : os activity,
oss : oss map,
hypervisor : hypervisor map,
memory : system memory}

The component active os indicates which is the active operating system and
aos exec mode and aos activity the corresponding execution and processor mode.
The component oss stores the information of the guest operating systems of the
platform. hypervisor and memory are the mappings used to formalize the mem-
ory model described in the previous section.

In the sequel, we use the following notation. Given states s and s′, we define
s ∼map,idx s′ to be the relation that establishes that s and s′ differ at most in
the value associated to the index idx of the component map in the state s′,
and s ∼c1,...,cn = v1,...,vn s′ the relation that establishes that s and s′ differ at
most in the values v1, . . . , vn of the components c1, . . . , cn in state s′. Moreover,
we define the predicate os accessible(va), that holds if va belongs to the set of
virtual addresses accessible by any OS.

Valid state. We define a notion of valid state that captures essential properties
of the platform. Formally, the predicate valid state holds on state s if s satisfies
the following properties: i) a trusted OS has no pending hypercalls; ii) if the
active OS is in running mode then no hypercall requested by it is pending; iii) if
the hypervisor or a trusted OS is running the processor must be in supervisor
mode; iv) if an untrusted OS is running the processor must be in user mode;
v) the hypervisor maps an OS physical address to a machine address owned by
that same OS. This mapping is also injective; vi) all page tables of an OS o

Formally Verifying Isolation and Availability in an Idealized Model 237

map accessible virtual addresses to pages owned by o and not accessible ones to
pages owned by the hypervisor; vii) the current page table of any OS is owned by
that OS; viii) any machine address ma which is associated to a virtual address
in a page table has a corresponding pre-image, which is a physical address, in
the hypervisor mapping. All properties have a straightforward interpretation
in our model. For example, the first property is captured by the proposition:
∀ osi : os ident, trusted os(osi) → (s.oss[osi]).hcall = None. Valid states are
invariant under execution, as shall be shown later.

3.3 Actions

Table 1 summarises a subset of the actions specified in the model, and their
effects. Actions can be classified as follows: i) hypervisor calls new, delete, pin,
unpin and lswitch; ii) change of the active OS by the hypervisor (switch);
iii) access, from an OS or the hypervisor, to memory pages (read and write);
iv) update of page tables by the hypervisor on demand of an untrusted OS or

Pre s (read va)
def
= os accessible(va) ∧ s.aos activity = running ∧

∃ ma : madd, va mapped to ma(s, va, ma) ∧
is RW ((s.memory[ma]).page content)

Post s (read va) s′ def
= s = s′

Pre s (write va val)
def
= os accessible(va) ∧ s.aos activity = running ∧

∃ ma : madd, va mapped to ma(s, va, ma) ∧
is RW ((s.memory[ma]).page content)

Post s (write va val) s′ def
= ∃ ma : madd, va mapped to ma(s, va, ma) ∧

s′.memory = (s.memory[ma] := 〈RW (Some val), s.active os〉) ∧
s ∼memory,ma s′

Pre s (chmod)
def
= s.aos activity = waiting ∧ (s.oss[s.active os]).hcall = None

Post s (chmod) s′ def
=

(trusted os(s.active os) ∧ s ∼aos exec mode,aos activity = svc,running s′) ∨
(¬ trusted os(s.active os) ∧ s ∼aos exec mode,aos activity = usr,running s′)

Pre s (page pin untrusted o pa t)
def
=

¬ trusted os(o) ∧ s.aos activity = waiting ∧
(s.oss[o]).hcall = Some (Hyperv call pin(pa, t)) ∧
physical address not allocated(s.hypervisor[o], pa) ∧
∃ ma : madd, memory available(s.memory,ma)

Post s (page pin untrusted o pa t) s′ def
=

∃ ma : madd,memory available(s.memory,ma) ∧
newmem = (s.memory[ma] := newpage(t, o)) ∧
newoss = (s.oss[o] := 〈None, (s.oss[o]).curr page〉) ∧
newhyperv = (s.hypervisor[o, pa] := ma) ∧
s ∼oss,hypervisor,memory = newoss,newhyperv,newmem s′

Fig. 2. Formal specification of actions semantics

238 G. Barthe et al.

Table 1. Actions

read va A guest OS reads virtual address va.
write va val A guest OS writes value val in virtual address va.
new untrusted o va pa The hypervisor adds (on behalf of the OS o) a new or-

dered pair (mapping virtual address va to the machine
address ma) to the current memory mapping of the un-
trusted OS o, where pa translates to ma for o.

del untrusted o va The hypervisor deletes (on behalf of the o OS) the or-
dered pair that maps virtual address va from the current
memory mapping of o.

switch o The hypervisor sets o to be the active OS.
hcall c An untrusted OS requires privileged service c to be exe-

cuted by the hypervisor.
ret ctrl Returns the execution control to the hypervisor.
chmod The hypervisor changes the execution mode from super-

visor to user mode, if the active OS is untrusted, and
gives to it the execution control.

page pin untrusted o pa t The memory page that corresponds to physical address
pa (for untrusted OS o) is registered and classified with
type t.

page unpin untrusted o pa The memory page that corresponds to physical address
pa (for the untrusted OS o) is un-registered.

by a trusted OS directly (new and delete); v) changes of the execution mode
(chmod, ret ctrl); and vi) changes in the hypervisor memory mapping (pin and
unpin), which are performed by the hypervisor on demand of an untrusted OS
or by a trusted OS directly. These actions model (de)allocation of resources.

Actions Semantics. The behaviour of actions is specified by a precondition
Pre and by a postcondition Post of respective types: Pre : State → Action →
Prop, and Post : State → Action → State → Prop. Figure 2 provides the
axiomatic semantics of some relevant actions, namely, read, write, chmod and
page pin untrusted (the names of the auxiliary predicates used should be self-
explanatory). Notice that what is specified is the effect the execution of an action
has on the state of the platform. In particular, the action read does not return
the accessed value.

The precondition of the action read va requires that va is accessible by the
active OS, that there exists a machine address ma to which va is mapped, that
the active OS is running and that the page indexed by the machine address ma
is readable/writable. The postcondition requires the execution of this action to
keep the state unchanged. The precondition of the action write is identical to
that of the action read. The postcondition establishes that the state after the
execution of the action only differs in the value (val) of the page associated to
ma, which is owned by the active OS. The precondition of the action chmod
requires that there must not be a pending hypercall for the active OS. The
postcondition establishes that after the execution of the action, if the active OS
is a trusted one, then the effect on the state is to change its execution mode to

Formally Verifying Isolation and Availability in an Idealized Model 239

supervisor mode. Otherwise, the execution mode is set to user mode. In both
cases, the processor mode is set to running.

The execution of the action page pin untrusted requires, in the first place,
that the hypervisor is running and that the active OS is untrusted. In addition
to that, the OS o must be waiting for an hypercall to pin the physical address pa
of type t, pa must not be already allocated and there must be machine memory
available. The effect of the action is to create and allocate at machine address
ma a new page of type t whose owner is the OS o and bind, in the hypervisor
mapping, the physical address pa to ma. The rest of the state remains unchanged.

One-step execution. The execution of an action is specified by the ↪→ relation:

valid state(s) Pre s a Post s a s′

s ↪
a−→ s′

Whenever an action occurs for which the precondition holds, the (valid) state
may change in such a way that the action postcondition is established. The
notation s ↪

a−→ s′ may be read as the execution of the action a in a valid state s
results in a new state s′. Note that this definition of execution does not consider
the cases where the preconditions of the actions are not fulfilled.

Invariance of valid state. One-step execution preserves valid states, that is
to say, the state resulting from the execution of an action is also a valid one.

Lemma 1. ∀ (s s′ : State) (a : Action), s ↪
a−→ s′ → valid state(s′)

3.4 Traces

Isolation properties are eventually expressed on execution traces, rather than
execution steps; likewise, availability properties are formalized as fairness prop-
erties stating that something good will eventually happen in an execution traces.
Thus, our formalization includes a definition of execution traces and proof prin-
ciples to reason about them.

Informally, an execution trace is defined as a stream (an infinite list) of states
that are related by the transition relation ↪→, i.e. an object of the form s0 ↪

a0−→
s1 ↪

a1−→ s2 ↪
a2−→ s3 . . . such that every execution step si ↪

ai−→ si+1 is valid. Formally,
an execution trace is defined as a stream ss of pairs of states and actions, such
that for every i ≥ 0, s[i] ↪

a[i]−−→ s[i + 1], where ss[i] = 〈s[i], a[i]〉 and ss[i + 1] =
〈s[i + 1], a[i + 1]〉. We let Trace define the type of traces.

State properties are lifted to properties on pairs of states and actions in the
obvious way. Moreover, state properties can be lifted to properties on traces;
formally, each predicate P on states can be lifted to predicates � P (read always
P) and ♦ P (read eventually P). The former � P is defined co-inductively defined
by the clause �(P, s :: ss) iff P (s) and �(P, ss), whereas the latter ♦ P is defined
inductively by the clauses ♦(P, s :: ss) iff P (s) or ♦(P, ss); each modality has
an associated reasoning principle attached to its definition. Similar modalities
can be defined for relations, and can be used to express isolation properties. In
particular, given a relation R on states, and two traces ss1 and ss2, we have
�(R, ss1, ss2) iff R(ss1[i], ss2[i]) for all i.

240 G. Barthe et al.

4 Isolation Properties

We formally establish that the hypervisor enforces strong isolation properties:
an operating system can only read and modify memory that it owns, and its
behavior is independent of the state of other operating systems. The properties
are established for a single step of execution, and then extended to traces.

Read isolation. Read isolation captures the intuition that no OS can read
memory that does not belong to it. Formally, read isolation states that the
execution of a read va action requires that va is mapped to a machine address
ma that belongs to the active OS current memory mapping, and that is owned
by the active OS.

Lemma 2. ∀ (s s′ : State) (va : vadd),
s ↪

read va−−−−−→ s′ → ∃ ma : madd, va mapped to ma(s, va, ma) ∧
∃ pg : page, pg = s.memory[ma] ∧ pg.page owned by = s.active os

The property is proved by inspection of the pre and postcondition for the read
action, using the definition of valid state.

Write Isolation. Write isolation captures the intuition that an OS cannot mod-
ify memory that it does not own. Formally, write isolation states that, unless the
hypervisor is running, the execution of any action will at most modify memory
pages owned by the active OS or it will allocate a new page for that OS.

Lemma 3. ∀ (s s′ : State) (a : Action) (ma : madd),
s ↪

a−→ s′ → ¬hyper running(s) →
s′.memory[ma] = s.memory[ma] ∨ owner or free(s.memory, ma, s.active os)

where hyper running and owner or free respectively denote that the hypervi-
sor is running, and that the owner of the given machine address is either the
given OS or it is free.

The property is proved by case analysis on the action executed. The relevant
cases are the actions that are performed by the active OS and that modify the
memory; for each such action, the property follows from its pre and postcondi-
tions, and from the definition of valid state.

OS Isolation. OS isolation captures the intuition that the behavior of any
OS does not depend on other OSs states, and is expressed using the notion of
equivalence w.r.t. an operating system osi. Formally, two states s and s′ are osi-
equivalent, denoted s ≡osi s′, if the following conditions are satisfied: i) osi has
the same hypercall in both states, or no hypercall in both states; ii) the current
page tables of osi are the same in both states; iii) all page table mappings of osi
that maps a virtual address to a RW page in one state, must map that address
to a page with the same content in the other; iv) the hypervisor mappings of
osi in both states are such that if a given physical address maps to some RW
page, it must map to a page with the same content on the other state. Note that
we cannot require that memory contents be the same in both states for them

Formally Verifying Isolation and Availability in an Idealized Model 241

to be osi-equivalent, because on a page pin action, the hypervisor can assign
an arbitrary (free) machine address to the OS, so we consider osi-equivalence
without taking into account the actual value of the machine addresses assigned.
In particular, two osi-equivalent states can have different page table memory
pages, which contain mappings from virtual to arbitrary machine addresses, but
such that the contents of such an arbitrary machine address be the same on both
states, if it corresponds to a RW page. This definition bears some similarity with
notions of indistinguishable states used for reasoning about non-interference in
object-oriented languages [5].

OS isolation states that osi-equivalence is preserved under execution of any
action, and is formalized as a “step-consistent” unwinding lemma, see [20].

Lemma 4. ∀ (s1 s′1 s2 s′2 : State) (a : Action) (osi : os ident),
s1 ≡osi s2 → s1 ↪

a−→ s′1 → s2 ↪
a−→ s′2 → s′1 ≡osi s′2

The proof of OS isolation relies on write isolation, on Lemma 5, and on an
isolation lemma for the case where osi is the active OS of both states s1 and s2.

The next lemma formalizes a “locally preserves” unwinding lemma in the style
of [20], stating that the osi-component of a state is not modified when another
operating system is executing.

Lemma 5. ∀ (s s′ : State) (a : Action) (osi : os ident),
¬ os action(s, a, osi) → s ↪

a−→ s′ → s ≡osi s′

where os action(s, a, osi) holds if, in the state s, osi is the active and running
OS and therefore is executing action a, or otherwise the hypervisor is executing
the action a on behalf of osi.

Extensions to traces. All isolation properties extend to traces, using coinduc-
tive reasoning principles. In particular, the extension of OS isolation to traces
establishes a non-influence property [18]. Formally, we define for each operating
system osi a predicate same os actions stating that two steps have the same set
of actions w.r.t. osi: concretely, same os actions(osi, ss1, ss2) holds provided for
all i the actions in ss1[i] and ss2[i] are the same os action for osi, or both are
arbitrary actions not related to osi.

Lemma 6. ∀ (ss1 ss2 : Trace) (osi : os ident),
same os actions(osi, ss1, ss2) → (ss1[0] ≡osi ss2[0]) → �(≡osi, ss1, ss2)

For technical reasons related to the treatment of coinductive definitions in Coq
(specifically the need for corecursive definitions to be productive), our formaliza-
tion of non-influence departs from common definitions of non-interference and
non-influence, which rely on a purge function that eliminates the actions that
are not related to osi. One can however define an erasure function erase that
replaces actions that are not related to osi by silent actions, and prove for all
traces ss that �(≡osi, ss, erase(osi, ss)).

5 Availability

An essential property of virtualization platforms is that all guest operating sys-
tems are given access to the resources they need to proceed with their execution.

242 G. Barthe et al.

In this section, we establish a strong fairness property, showing that if the hy-
pervisor only performs chmod actions whenever no hypercall is pending, then no
OS blocks indefinitely waiting for its hypercalls to be attended. The assumption
on the hypervisor is satisfied by all reasonable implementations of the hypervi-
sor; one possible implementation that would satisfy this restriction is an eager
hypervisor which attends hypercalls as soon as it receives them and then chooses
an operating system to run next. If this is the case, then when the chmod action
is executed, no hypercalls are pending on the whole platform.

Formally, the assumption on the hypervisor is modelled by considering a re-
stricted set of execution traces in which the initial state has no hypercall pending,
and in chmod actions can only be performed whenever no hypercall is pending.
Then, the strong fairness property states that: if the hypervisor returns con-
trol to guest operating systems infinitely often, then infinitely often there is no
pending hypervisor call.

Lemma 7. ∀ (ss : Trace),¬ hcall(ss[0]) → �(chmod nohcall, ss) →
�(♦ ¬ hyper running, ss) → �(♦ ¬ hcall, ss)

where hcall and chmod nohcall respectively denote that there is an hypercall
pending and that chmod actions only arise when no hypercall is pending.

The proof of the strong fairness property proceeds by co-induction and relies
on showing that ¬ hyper running(s) → ¬ hcall(s) is an invariant of all traces
that satisfy the hypothesis of the lemma.

Note that our strong fairness property is independent of the scheduler: in
particular, the hypothesis �(♦ ¬ hyper running, ss) does not guarantee that
each operating system will be able to execute infinitely often. Further restricting
the implementation of the hypervisor so as to guarantee that the hypervisor is
fair to each guest operating system is left for future work.

6 Related Work

There have been many efforts to formally verify (parts of) operating systems,
see [15] for a survey. The Microsoft Hyper-V verification project focuses on
proving the functional correctness of the deployed implementation of the Hyper-
V hypervisor [8,16] or of a simplified, baby, implementation [2]. Using VCC,
an automated verifier for annotated C code, these works aim to prove that the
hypervisor correctly simulates the execution of the guest operating systems,
in the sense that the latter cannot observe any difference from executing on
their own on a standard platform. At a more specific level, these works provide
a detailed account of many components that are not considered in our work,
including page tables [1], devices [3] and cache [8]. The cache is of particular
interest from the point of view of security, and Cohen [8] reports on finding
cache attacks in the Microsoft Hyper-V verification project. Indeed, the cache
constitutes a shared resource which might leak information if not flushed when
changing of active operating system. Formalizing the cache and giving sufficient
conditions for proving isolation in its presence is a prime goal for future work.

Formally Verifying Isolation and Availability in an Idealized Model 243

The L4.verified project [14] focuses on proving that the functional correctness
of an implementation of seL4, a microkernel whose main application is as an
hypervisor running paravirtualized Linux. The implementation consists of ap-
proximately 9kLOC of C and 600 lines of assembler, and has been shown to be
a valid refinement of a very detailed abstract model that considers for example
page tables and I/O devices. Their current work focuses on showing isolation
properties; one difference is that in our model the access to a page is restricted
to a unique owner, whereas they rely on more flexible capability systems [9].

More recently, the Verve project [23] has initiated the development of a new
operating system whose type safety and memory safety has been verified using
a combination of type systems and Hoare logic. Outside these projects, several
projects have implemented small hypervisors, to reduce the Trusted Computing
Base, or with formal verification in mind [22], but we are not aware of any
completed proof of functional correctness or security.

Our work is also related to formal verification of isolation properties for sepa-
ration kernels. Earlier works on separation kernels [13,12,17] formalize a simpler
model where memory is partitioned a priori. In contrast, our model allows the
partition to evolve and comprises three types of addressing modes and is close to
those of virtualization platforms, where memory requested by the OSs is dynam-
icaly allocated from a common memory pool. Dealing with this kind of memory
management adds significant complications in isolation proofs.

Our work is also inspired by earlier efforts to prove isolation for smart-
card platforms. Andronick, Chetali and Ly [4] use the Coq proof assistant to
establish that the JavaCard firewall mechanism ensures isolation properties be-
tween contexts—sets of applications that trust each other. Oheimb and co-
workers [18,19] independently verify isolation properties for Infineon SLE 88
using the Isabelle proof assistant. In particular, their work formalizes a notion
of non-influence that is closely related to our isolation properties.

7 Conclusion and Future Work

We have developed an idealized model of a hypervisor and established within this
model isolation and availability properties that are expected from virtualization
platforms. The formal development is about 20kLOC of Coq (see Figure 3),
including proofs, and forms a suitable basis for reasoning about hypervisors.

There are several directions for future
Model and basic lemmas 4.8k
Valid state invariance 8.0k
Read and write isolation 0.6k
OS Isolation and lemmas 6.0k
Traces, safety and availability 1.0k
Total 20.4k

Fig. 3. LOC of Coq development

work: one immediate direction is to
complete our formalization with a proof
of correctness of the hypervisor, as in
the Hyper-V verification project. Indeed,
there are strong connections between OS
isolation and We also intend to enrich
our model with shared resources; con-
cretely, we intend to concentrate on the

244 G. Barthe et al.

cache and to provide sufficient conditions for isolation properties to hold in
its presence. Another immediate direction is to prove isolation and availability
properties on an implementation of the hypervisor, using recent work by the
authors. Finally, it is of interest to understand how to adapt our models to other
virtualization paradigms such as full virtualization and microvisors.

Acknowledgments. Thanks to Andres Krapf, Anne Pacalet, Francois Armand
and Christian Jacquemot for their involvement at early stages of the project,
Julio Pérez for his contribution on proof checking and June Andronick, Gerwin
Klein, Toby Murray, and FM reviewers for feedback on the paper.

References

1. Alkassar, E., Cohen, E., Hillebrand, M., Kovalev, M., Paul, W.: Verifying shadow
page table algorithms. In: Bloem, R., Sharygina, N. (eds.) 10th International Con-
ference on Formal Methods in Computer-Aided Design, FMCAD 2010. IEEE CS,
Switzerland (2010)

2. Alkassar, E., Hillebrand, M., Paul, W., Petrova, E.: Automated Verification
of a Small Hypervisor. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.)
VSTTE 2010. LNCS, vol. 6217, pp. 40–54. Springer, Heidelberg (2010)

3. Alkassar, E., Paul, W., Starostin, A., Tsyban, A.: Pervasive verification of an os
microkernel: Inline assembly, memory consumption, concurrent devices. In: Leav-
ens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp.
71–85. Springer, Heidelberg (2010)

4. Andronick, J., Chetali, B., Ly, O.: Using Coq to Verify Java Card Applet Isolation
Properties. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp.
335–351. Springer, Heidelberg (2003)

5. Banerjee, A., Naumann, D.: Stack-based access control for secure information flow.
Journal of Functional Programming 15, 131–177 (2005); Special Issue on Language-
Based Security

6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Pro-
ceedings of the Nineteenth ACM Symposium on Operating Systems Principles, pp.
164–177. ACM Press, New York (2003)

7. Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Secu-
rity 18(6), 1157–1210 (2010)

8. Cohen, E.: Validating the microsoft hypervisor. In: Misra, J., Nipkow, T.,
Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, p. 81. Springer, Heidelberg (2006)

9. Elkaduwe, D., Klein, G., Elphinstone, K.: Verified protection model of the seL4
microkernel. In: Shankar, N., Woodcock, J. (eds.) VSTTE 2008. LNCS, vol. 5295,
pp. 99–114. Springer, Heidelberg (2008)

10. Garfinkel, T., Warfield, A.: What virtualization can do for security. login: The
USENIX Magazine 32 (December 2007)

11. Goldberg, R.P.: Survey of virtual machine research. IEEE Computer Magazine 7,
34–45 (1974)

12. Greve, D., Wilding, M., Mark Van Eet, W.: A separation kernel formal security
policy. In: Proc. Fourth International Workshop on the ACL2 Theorem Prover and
Its Applications (2003)

Formally Verifying Isolation and Availability in an Idealized Model 245

13. Heitmeyer, C.L., Archer, M., Leonard, E.I., McLean, J.: Formal specification and
verification of data separation in a separation kernel for an embedded system.
In: Proceedings of the 13th ACM Conference on Computer and Communications
Security, CCS 2006, pp. 346–355. ACM, New York (2006)

14. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: Formal verification of an OS kernel. Communications of the ACM
(CACM) 53(6), 107–115 (2010)

15. Klein, G.: Operating system verification – an overview. Sādhanā 34(1), 27–69
(2009)

16. Leinenbach, D., Santen, T.: Verifying the microsoft hyper-V hypervisor with VCC.
In: Cavalcanti, A., Dams, D. (eds.) FM 2009. LNCS, vol. 5850, pp. 806–809.
Springer, Heidelberg (2009)

17. Martin, W., White, P., Taylor, F.S., Goldberg, A.: Formal construction of the
mathematically analyzed separation kernel. In: The Fifteenth IEEE International
Conference on Automated Software Engineering (2000)

18. von Oheimb, D.: Information Flow Control Revisited: Noninfluence = Noninter-
ference + Nonleakage. In: Samarati, P., Ryan, P., Gollmann, D., Molva, R. (eds.)
ESORICS 2004. LNCS, vol. 3193, pp. 225–243. Springer, Heidelberg (2004)

19. von Oheimb, D., Lotz, V., Walter, G.: Analyzing SLE 88 memory management
security using Interacting State Machines. International Journal of Information
Security 4(3), 155–171 (2005)

20. Rushby, J.M.: Noninterference, Transitivity, and Channel-Control Security Policies.
Technical Report CSL-92-02, SRI International (1992)

21. The Coq Development Team. The Coq Proof Assistant Reference Manual – Version
V8.2 (2008)

22. Tews, H., Weber, T., Poll, E., van Eekelen, M.C.J.D.: Formal Nova interface spec-
ification. Technical Report ICIS–R08011, Radboud University Nijmegen, Robin
deliverable D12 (May 2008)

23. Yang, J., Hawblitzel, C.: Safe to the last instruction: automated verification of
a type-safe operating system. In: Proceedings of PLDI 2010, pp. 99–110. ACM,
New York (2010)

The Safety-Critical Java Memory Model:

A Formal Account

Ana Cavalcanti, Andy Wellings, and Jim Woodcock

University of York, Department of Computer Science, York, UK

Abstract. Safety-Critical Java (SCJ) is a version of Java for real-time
programming that facilitates certification of implementations of safety-
critical systems. It is the result of an international effort involving indus-
try and academia. What we provide here is, as far as we know, the first
formalisation of the SCJ model of memory regions. We use the Unifying
Theories of Programming (UTP) to enable the integration of our the-
ory with refinement models for object-orientation and concurrency. In
developing the SCJ theory, we also make a contribution to the UTP by
providing a general theory of invariants (of which the SCJ theory is an in-
stance). Our results are a first essential ingredient to formalise the novel
programming paradigm embedded in SCJ, and enable the justification
and development of reasoning techniques based on refinement.

Keywords: semantics, UTP, integration, refinement.

1 Introduction

Two language (subsets) have dominated high-integrity real-time engineering.
Ada [2], which provides good support through its Spark [1] and Ravenscar sub-
sets [4] and the Spark Examiner Toolset, has a limited community. Safe(r) sub-
sets of C/C++ are often the choice, but lack support for formal development. In
both cases, various modern programming features found useful in other sectors
of the software industry are left out on the grounds of safety.

An international effort has produced a high-integrity real-time version of
Java: Safety-Critical Java (SCJ) [13]. It achieves a compromise between the
safety of Ada and the popularity of C/C++, and provides an ambitious novel
take on the combined safe use of object orientation and real-time programming.
SCJ lacks, however, a formal underpinning for its programming models. In this
paper, we provide a formalisation for its memory management model.

SCJ is based on a subset of Java augmented by the Real-Time Specification
for Java (RTSJ) [19]. To understand the full implications of the SCJ memory
model, it is necessary to appreciate the run-time data structures maintained by a
Java Virtual Machine. The main concern is the heap and the stacks. All objects
are placed on the heap, which is scanned by a garbage collector to remove any
that are unreachable. Variables that are local to methods are stored in a stack;
each thread of control has an associated stack. Variables and object fields can

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 246–261, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Safety-Critical Java Memory Model: A Formal Account 247

be of a primitive type (int, short, and so on) or of a reference type. We ignore
here all issues associated with native methods.

The RTSJ supplements Java’s garbage-collected heap memory model with
support for memory regions [18] called memory areas. As with the Java heap,
these regions are used to store dynamically created objects.

SCJ restricts the RTSJ memory model to prohibit use of the heap. The RTSJ
and SCJ introduce two new memory areas: scoped and immortal memory. Ob-
jects allocated in a scoped memory have a lifetime that is determined by the
number of threads that are currently using that scoped memory area. When there
are no such threads, all the objects are collected. In contrast, objects created in
immortal memory have a lifetime equal to that of the program. A program can
have many scoped memory areas, but only a single instance of immortal memory.
To avoid dangling references, there are rules that must be obeyed by reference
assignments. Violation of these rules results in runtime exceptions. SCJ defines
a fixed structure for the use of scoped memories.

In Java, programmers need not be concerned with memory management. In
contrast, in SCJ (and the RTSJ), a programmer must consider in which area to
create objects according to their anticipated lifetime. Tools and techniques are
needed to ensure efficient use of memory and absence of run-time errors.

SCJ includes annotations that can be used to document programs, and en-
able static verification of properties including memory safety. The work in [17]
presents rules for use of the annotations, and a tool that checks statically that
these rules are followed. It is not trivial to convince ourselves that the rules pro-
posed achieve the level of memory safety claimed. While we do not necessarily
expect to find any problems, the formalisation of the memory model is essential
for the justification of the soundness of such techniques.

Our first contribution is an informal description of the SCJ memory model
that explains the rationale for its design. (For a discussion of the design of
the concurrency model, we refer to [20].) As a second contribution, we provide
a relational semantics for this model; it is based on Hoare and He’s Unifying
Theories of Programming (UTP) [10]. Finally, we present a general UTP theory
for operation and state invariants, which we instantiate to capture in an elegant
and concise way the properties of the SCJ structure of memory areas.

The UTP is a relational framework that supports refinement-based reasoning
about a variety of paradigms. It covers models for concurrent, functional and
logic programming, for instance. It has also been used to define constructs related
to object-orientation [15] and time [16]. By casting the SCJ memory model in
the UTP, we pave the way for its integration with these theories, that cater for
other, also very important, aspects of an SCJ program.

Next, we present informally the SCJ memory model; an introduction to the
UTP is provided in Section 3. Section 4 presents a UTP theory for program
invariants. In Section 5, we use those results to formalise the SCJ memory model.
We draw our conclusions, and discuss related and future work in Section 6.

248 A.L.C. Cavalcanti, A.W. Wellings, and J.C.P. Woodcock

2 Safety-Critical Java Memory Model

SCJ recognises that safety-critical software varies considerably in complexity.
At one end of the spectrum, the application consists of a single thread execut-
ing a single function on a single processor with a simple timing constraint. At
the other end, it is multithreaded executing in multiple modes on multiple pro-
cessors. Consequently, there are three compliance levels for SCJ programs and
implementations. In this work, we are concerned with Level 1, which, roughly,
corresponds in complexity to the Ravenscar profile for Ada.

The SCJ programming model is based on the notion of missions, which are
managed by a mission sequencer (see Figure 1). At Level 1, missions may be
composed into sequences, but nested missions are prohibited. A Level 1 mission
consists of a bounded set of asynchronous event handlers (ASEH). Here, these
can be considered as being equivalent to real-time threads. Both periodic and
aperiodic threads are supported. Each thread executes a sequence of releases that
are either time triggered (periodic) or event triggered (aperiodic). Consequently,
an SCJ program is a concurrent program with threads of control for the main
program, the mission sequencer, and one for each of the ASEHs.

The main goal of the SCJ memory model is to support dynamic memory man-
agement. Traditionally, safety-critical systems do not allocate memory during the
execution of a mission due to (a) the error-prone nature of manual allocation and
deallocation schemes (typified by malloc and free in C), and (b) the complexity
of automatic deallocation schemes based on garbage collection.

The region-based approach of the RTSJ provides safer and more predictable
support for dynamic memory management, but the overall model is still complex.
SCJ, consequently, constrains the use of its features: garbage collection is not
supported, and only a restricted version of the scoped memory model is provided.

Basically, the structure of the memory areas is fixed as shown in Figure 2.
Every thread of control in an SCJ program has a default memory allocation
context. This is the area in which created objects are placed. The main program’s
thread of control has immortal memory as its default allocation context. It is
this thread that, for instance, creates the mission sequencer and any objects that
should exist throughout the lifetime of the program.

The mission sequencer’s thread of control is started with immortal memory
as its default allocation context. It creates the mission memory, a scoped area
that becomes the default allocation context for a mission. There is no thread
of control associated with a mission. Instead, the mission sequencer’s thread

Start HaltMission
Cleanup

Mission
Execution

Select
Mission Initialization

Mission

MissionSequencer

Fig. 1. Safety Critical Mission Phases (taken from [13])

The Safety-Critical Java Memory Model: A Formal Account 249

I t l MImmortal Memory

Per Mission Memory (a Scoped Memory Area)
X X

X

X

X X
X

Per
Release
Scoped

Per
Release
Scoped

Per
Release
Scoped

XPer
Release
Scoped

ASEH
1

Memory Memory

ASEH 3

Memory

Temporary
Private

Memory

Temporary
Private

ASEH 2

Private
Scoped
Memory

Private
Scoped
Memory

ASEH 4Valid
object
referencesKey:

Thread Stacks
(one per ASEH and one each

ASEH 1

an illegal
reference

X
y

for the mission sequencer and
main program)

Fig. 2. SCJ memory model

performs the mission initialisation, during which the ASEHs are created. The
mission memory is cleared at the end of each mission. Any objects that must
remain across missions must be stored in immortal memory.

Each ASEH has an associated per-release memory area: the default memory
allocation context for its releases. It is cleared at the end of each release, for
reuse in the next release. Any object that is required to live across releases must
be placed in mission memory. An ASEH can create a temporary private scoped
memory area and change its default allocation context to the newly created area.
More than one of these can be created and they are used in a LIFO manner. The
stack of private temporary memory areas arises from nested calls to a create
method. As the inner calls are finished, memory areas are popped off.

In the example shown in Figure 2 there are, therefore, six thread-of-control
stacks: one for the main program, one for the mission sequencer, and one for
each ASEH; a single immortal memory – accessible by all threads of control; a
single mission memory – accessible by the ASEHs and the mission sequencer;
one private per-release memory area for each ASEH – accessible only by the
associated ASEH; and a stack of temporary private scoped memory area for
each ASEH – accessible only by the associated ASEH.

The aim of this restricted model is to ensure that dangling references cannot
occur, and that programs are amenable to static analysis techniques that can
determine the absence of run-time errors, such as illegal-assignment errors. A
tool is provided in [17]. Section 5 formalises this model in the UTP.

250 A.L.C. Cavalcanti, A.W. Wellings, and J.C.P. Woodcock

3 Unifying Theories of Programming

In the UTP, relations are defined by predicates over an alphabet (set) of obser-
vational variables that record information about the behaviour of a program. In
the theory of general relations, these include the programming variables v , and
their dashed counterparts v ′, with v used to refer to an initial observation of
the value of v , and v ′ to a later observation. The set of undecorated (unprimed)
variables in the alphabet αP of a predicate P is called its input alphabet inαP ,
and the set of dashed variables is its output alphabet outαP . A condition is a
predicate whose alphabet includes only input variables.

Theories are characterised by an alphabet and by healthiness conditions de-
fined by monotonic idempotent functions from predicates to predicates. The
predicates of a theory with an alphabet A are all the predicates on A which are
fixed points of the healthiness conditions. As an example, we consider designs.

The general theory of relations does not distinguish between terminating and
nonterminating programs. This is achieved in the theory of designs, which in-
cludes two extra boolean observational variables to record the start and the
termination of a program: ok and ok ′. The monotonic idempotents used to spec-
ify the healthiness conditions for designs can be defined as follows.

H1 P = ok ⇒ P

H2 P = P ; J , where J =̂ (ok ⇒ ok ′) ∧ v ′ = v

If P is H1-healthy, then it makes no restrictions on the final value of variables
before it starts. If P is H2-healthy, then termination must be a possible outcome
from every initial state. The functional composition of H1 and H2 is named H.

Every design D can be written in the form P � Q , where P is its precondition,
and Q its postcondition; P � Q is defined as ok ∧ P ⇒ ok ′ ∧ Q . Precisely, every
design D can be written as ¬ D f � D t , where f is the boolean false, t is true,
and Db is the predicate D [b/ok ′] obtained by substituting b for ok ′ in D .

Typically, a theory defines a number of programming operators of interest.
Common operators like assignment, sequence, and conditional, are defined for
general relations. A conditional is written as P
b�Q ; its behaviour is (described
by) P if the condition b holds, else it is defined by Q .

P
 b � Q =̂ (b ∧ P) ∨ (¬b ∧ Q), where α(b) ⊆ α(P) = α(Q).

Sequence is relational composition.

P ; Q =̂ ∃w0 • P [w0/w ′] ∧ Q [w0/w], where outα(P) = inα(Q)′ = w ′

The relation P ; Q is defined by a quantification that relates the intermediate
values of the variables. It is required that outα(P) is equal to inα(Q)′, which is
named w ′. The sets w , w ′, and w0 are used as lists that enumerate the variables
of w and the corresponding decorated variables in the same order.

A central concern of the UTP is refinement. A program P is refined by a
program Q , written P � Q , if, and only if, P ⇐ Q , for all possible values of the

The Safety-Critical Java Memory Model: A Formal Account 251

variables of the alphabet. The set of alphabetised predicates form a complete
lattice with this ordering. Recursion is modelled by weakest fixed points.

The design that models skip, the program that terminates without chang-
ing any variable, is II =̂ (true � v ′ = v), where v is the list of programming
variables in the alphabet. Interestingly, II is the left identity of sequential compo-
sition, but not necessarily the right identity. This requires that the precondition
does not contain dashed variables, a property not adequate, for instance, in the
theory of reactive designs used as a concurrency model (for CSP).

A theory needs to be closed with respect to the programming operators: they
need to take healthy predicates to healthy predicates, so that they can be used
to define models compositionally. In the next section, we provide some general
results for the healthiness conditions of a theory of designs with invariants.

4 Invariants in the UTP

In [10], designs are used to construct more general relations to model, for ex-
ample, reactive programs. For these, even in the presence of divergence, some
properties hold. In [9], we take this approach in a theory for objects and sharing
as available in Java. Our theory, in that case, captures physical properties of
sharing; for instance, variables that share a location have the same value.

On the other hand, when an SCJ program aborts, there is no guarantee that its
restrictions on memory areas are maintained. We, therefore, present our theory
as a subset of the theory of designs. Other examples of subtheories of designs are
presented in the line of work established in [12], which provides UTP theories
for BPEL-like languages, with new forms of nontermination to handle excep-
tions. Here, we provide a general account of design subtheories characterised by
invariants and with the standard notion of termination.

It is in the spirit of the UTP to define theories for particular programming
features, and combine them to capture more complex paradigms. In this line,
it could be conceivable to treat the memory structure of SCJ programs and
termination separately. We would characterise a subtheory of relations using a
healthiness condition HSCJ, for instance, and then use H to embed it in the
theory of designs. For an HSCJ-healthy predicate P whose alphabet does not
include ok and ok ′, however, the design H(P) is ¬ P � false. Its precondition
considers the possibility of HSCJ not holding (even in an non-abortive state),
and, in this case, it is miraculous. What we need instead is a theory that allows
for the memory restrictions to be violated just in the case of nontermination.

In what follows, subtheories of designs are defined by healthiness conditions
that either capture operation invariants or invariants of a single state observa-
tion. In both cases, invariants are only broken by nontermination.

4.1 Operation Invariants

For an operation invariant defined by a predicate Ψ , the subtheory of designs
that satisfy this invariant is characterised by the healthiness condition OIH.

OIH(Ψ) D = D ∧ (ok ∧ ¬ D f ⇒ Ψ)

252 A.L.C. Cavalcanti, A.W. Wellings, and J.C.P. Woodcock

An OIH(Ψ)-healthy design ensures that, when its precondition holds, so does Ψ .

Theorem 1. OIH(Ψ) is a monotonic idempotent function on designs.

Proof. First, we show that OIH(Ψ)(D) is a design.

OIH(Ψ)(D)

= (¬ D f � D t) ∧ (ok ∧ ¬ D f ⇒ Ψ)
[property of designs and definition of OIH(Ψ)]

= (ok ∧ ¬ D f ⇒ ok ′ ∧ D t) ∧ (ok ∧ ¬ D f ⇒ Ψ) [definition]

= ¬ D f � D t ∧ Ψ [propositional calculus and definition of designs]

Since ok ∧ ¬ (¬ D f � D t ∧ Ψ)f = ok ∧ ¬ D f , then OIH(Ψ) is idempotent.
Finally, to establish monotonicity, we consider designs D1 and D2 such that
D1 ⇒ D2. That OIH(Ψ)(D1) ⇒ OIH(Ψ)(D2), follows from ¬ D f

2 ⇒ ¬ D f
1 . �

We define the healthy identity IIOI (Ψ) =̂ OIH(Ψ)(II). For reflexive Ψ , that is,
for those such that Ψ [v/v ′], we have that IIOI (Ψ) is the sequence left unit.

Theorem 2. If Ψ is reflexive, IIOI (Ψ); D = D, for every OIH(Ψ)-healthy D.

Proof

IIOI (Ψ); D
= OIH(Ψ)(II); OIH(Ψ)(D) [definition of IIOI and D is OIH(Ψ)-healthy]

= (true � v ′ = v ∧ Ψ); (¬ D f � D t ∧ Ψ) [Theorem 1]

= ok ∧ ¬ (Ψ [v/v ′] ∧ D f) ⇒ ok ′ ∧ Ψ [v/v ′] ∧ D t ∧ Ψ

[definition of sequence and design, and predicate calculus]

= ok ∧ ¬ D f ⇒ ok ′ ∧ D t ∧ Ψ [Ψ is reflexive]
= D [definition of design, Theorem 1, and D is OIH(Ψ)-healthy]

�

IIOI (Ψ) is not necessarily the right unit. Like in the theory of general designs,
this requires that the precondition refers to no dashed variables. Proofs of this
and other results mentioned below can be found in [6].

OIH(Ψ) is closed with respect to conjunction, disjunction (which models non-
determinism) and conditional. For closedness with respect to sequence, we need
Ψ to be transitive, that is, (Ψ ; Ψ) ⇒ Ψ . The set of OIH(Ψ)-healthy designs is
a complete lattice, since it is the image of a monotonic idempotent healthiness
condition [10]. So, recursion can still be defined using weakest fixed points. The
bottom and top of the lattice are the same as that for the lattice of designs: abort,
that is, the design (false � true), and magic, (true � false).

The Safety-Critical Java Memory Model: A Formal Account 253

4.2 State Invariants

For a state invariant defined by a condition ψ, the subtheory of designs whose
input variables satisfy ψ is characterised by the following healthiness condition.

ISH(ψ) D = D ∨ (ok ∧ ¬ D f ∧ ψ ⇒ ok ′ ∧ D t)

The invariant ψ is part of the precondition of ISH(ψ)-healthy D .

Theorem 3. ISH(ψ) is an idempotent function on designs.

Proof. First, we show that ISH(ψ)(D) is a design.

ISH(ψ)(D)

= (¬ D f � D t) ∨ (ok ∧ ¬ D f ∧ ψ ⇒ ok ′ ∧ D t)
[property of designs and definition of ISH(Ψ)]

= (ok ∧ ¬ D f ⇒ ok ′ ∧ D t) ∨ (ok ∧ ¬ D f ∧ ψ ⇒ ok ′ ∧ D t) [definition]

= ¬ ok ∨ D f ∨ ¬ ψ ∨ ok ′ ∧ D t [propositional calculus]

= ¬ D f ∧ ψ � D t [propositional calculus and definition of designs]

The arguments for idempotence and monotonicity are similar to those used in
Theorem 1. �

We define the healthy identity IIIS (ψ) =̂ ISH(ψ)(II). It is indeed the left-unit of
sequence; this is a simple consequence of the definitions of IIIS (ψ) and sequence,
and Theorem 3 above. Again, right unit does not hold in all cases.

ISH(ψ) is closed with respect to conjunction, disjunction, conditional, and
sequence. The bottom of the lattice that it defines is abort, but the top is
(ψ � false). This is miraculous only when ψ holds.

The subtheory of designs whose output variables satisfy ψ′ is characterised
by the following healthiness condition. The predicate ψ′ is that obtained by
substituting all output alphabet variables for their input counterparts in ψ.

OSH(ψ) D = D ∧ (ok ∧ ¬ D f ∧ ψ ⇒ ψ′)

We observe that OSH(ψ) can be defined as OIH(ψ ⇒ ψ′), and that ψ ⇒ ψ′ is
reflexive and transitive. So, it satisfies all the properties discussed in the previous
section. Most importantly, as shown below, ISH(ψ) and OSH(ψ) commute.

Theorem 4. ISH(ψ) and OSH(ψ) commute.

Proof

OSH(ψ) ◦ ISH(ψ)(D)

= OSH(ψ)(¬ ok ∨ D f ∨ ¬ ψ ∨ ok ′ ∧ D t)
[function composition, Theorem 3, and propositional calculus]

254 A.L.C. Cavalcanti, A.W. Wellings, and J.C.P. Woodcock

= ¬ (¬ ok ∨ D f ∨ ¬ ψ) � (¬ ok ∨ D f ∨ ¬ ψ ∨ D t) ∧ (ψ ⇒ ψ′)
[Theorem 1 and propositional calculus]

= ¬ D f ∧ ψ � ok ∧ ¬ D f ⇒ (D t ∧ (ψ ⇒ ψ′))
[propositional calculus and definition of designs]

= ¬ (¬ ok ∨ D f) ∧ ψ � ¬ ok ∨ D f ∨ D t ∧ (ψ ⇒ ψ′)
[propositional calculus and definition of designs]

= ISH(¬ ok ∨ D f ∨ ok ′ ∧ D t ∧ (ψ ⇒ ψ′))
[propositional calculus, definition of designs, and Theorem 3]

= ISH(¬ D f � D t ∧ (ψ ⇒ ψ′)) [definition of designs]
= ISH(ψ) ◦ OSH(ψ)(D) [Theorem 1 and function composition]

�

As shown above, an ISH(ψ) and OSH(ψ)-healthy design D can be written as
(¬ D f ∧ ψ � D t ∧ ψ′), so that ψ is assumed and established. Since ISH(ψ) and
OSH(ψ) are idempotent, by Theorem 4, so is SIH(ψ) =̂ ISH(ψ) ◦ OSH(ψ) [10];
this is our healthiness condition for a theory with state invariant ψ.

When healthiness functions C1 and C2 commute, then every predicate that is
(C1 ◦ C2)-healthy is also C1 and C2-healthy. From this and the theorems above
and in Section 4.1, we can conclude that SIH(ψ) distributes through conjunction,
disjunction, conditional, and sequence.

Finally, for operation and state invariants Ψ1 and ψ2, OIH(Ψ1) and SIH(ψ2)
commute. So, using an argument similar to that above, we can conclude that
a theory characterised by IH(Ψ1, ψ2) =̂ OIH(Ψ1) ◦ SIH(ψ2) is closed with re-
spect to conjunction, disjunction, conditional, and sequence. The same applies
to theories characterised by two operation invariants Ψ1 and Ψ2; OIH(Ψ1) and
OIH(Ψ2) commute, and define a theory with invariant Ψ1 ∧ Ψ2. A similar result
holds for state invariants ψ1 and ψ1. The UTP theory for the SCJ memory model
presented in the next section combines several operation and state invariants.

5 A Theory for the Safety-Critical Java Memory Model

In this section, we consider first a theory that captures the structure of memory
areas in SCJ. Afterwards, we extend it to take into account the values of the
variables stored in the memory areas.

Type definitions. The elements of the stacks (for the program, mission sequencer,
and handlers) are frames, which define a context of execution for a method. To
provide a model for a frame, we introduce the notion of a variable name as an
element of the unspecified set VName, and of a reference: from a set Ref . We
also define the set of values as Value = PValue ∪ Ref , where PValue is the
unspecified set of primitive values and the special value null . With these, we
can define Frame = VName �→ Value, so that a frame is a partial function
associating the names of the variables in scope to their values.

The Safety-Critical Java Memory Model: A Formal Account 255

A function refsIn : Frame → F Ref defines the finite set of references (to
objects in a memory area) in the stack. It is defined as refsIn f = ran(f � Ref),
using the range restriction operator �.

We identify a memory area with its contents; we do not capture issues related
to size. Concretely, we define the set MAreaC = Ref �→ OValue of memory con-
tents, where OValue is the set of record (object) values: functions that associate
fields to their values, that is, OValue = VName �→ Value.

We also define two functions refsRes , refsIn : MAreaC → FRef . For a mem-
ory area ma, the set refsRes ma contains the references that identify objects
that reside in ma. The references used in these objects (to refer to other ob-
jects in the same or in other memory areas) are those in refsIn ma. Precisely,
refsRes ma = domma, and refsIn ma =

⋃
(ran(| (� Ref)(| ranma |) |)). For a

memory area ma (or more precisely, for the contents ma of a memory area),
ranma gives its objects. By using relational image (| |) to apply the operator
(� Ref) to all of them, we project out all their fields with a primitive or null
value. The ranges of these objects are the references used in ma; distributed
union provides a single set containing all of them.

In order to identify the handlers of a mission, we consider the set HName. It
contains valid handler identifiers, or names.

The alphabet of our theory includes eight extra observational variables de-
fined below, and their dashed counterparts, in addition to ok , ok ′, and the pro-
gramming variables (and their dashed counterparts). We have nine healthiness
conditions, which are also specified and discussed in the sequel.

Alphabet. First, we have the stacks pStack ,msStack : stackFrame for the pro-
gram and the mission sequencer. The set handlers : F HName records the han-
dlers of the current mission, and the variable hStack : handlers → stackFrame
groups their stacks as a total function associating each handler to its stack.

To record the memory areas, we have first immortal ,mission : MAreaC .
The per-release memory areas are grouped in perR : handlers → MAreaC .
The temporary private memory areas are organised in a stack as recorded in the
alphabet variable tPriv : handlers → stackMAreaC . A simple model for a stack
is, of course, a sequence, whose last element is the top of the stack.

A stacked temporary private memory area is called a parent in relation to
all those areas of the same handler that are stacked afterwards. More generally,
the immortal memory area is the parent of the mission memory area, which is
a parent of all per-release memory areas. Additionally, the per-release memory
area of a handler is a parent of all its stacked temporary private memory areas.

Healthiness conditions. We can only add object values to the immortal area. This
is an operation invariant, and gives rise to our first healthiness condition HSCJ1.
To define it, we introduce a function profile : MAreaC → (Ref �→ FVName).
For a memory area ma, the function profile ma associates each reference residing
in ma with the set of fields of the object that it identifies in ma. This is the
domain of the function (in OValue) that defines that object. Formally, we have
profile ma = {r : domma • r �→ dom(ma r) }. Our healthiness condition HSCJ1
requires that the immortal memory is changed only by adding new references to

256 A.L.C. Cavalcanti, A.W. Wellings, and J.C.P. Woodcock

its profile. Existing references remain, and the structure of the objects to which
they point (as captured by their sets of field names) is preserved.

HSCJ1 =̂ OIH(profile immortal ⊆ profile immortal ′)

The operation invariant for HSCJ1 is reflexive and transitive, because ⊆ is.
The references in the program stack can only target objects in the immortal

memory. This is specified by the healthiness condition HSCJ2, which uses a
lifted version of refsIn : stackFrame → F Ref that applies to stacks of frames
sf (instead of frames or memory areas). We can define it in terms of the version
of refsIn for frames as refsIn sf =

⋃
(refsIn(| ran sf |)). The range of sf is a set of

frames; we use relational image to apply refsIn to all of them. The distributed
union collects together all references occurring in all frames of sf .

HSCJ2 =̂ SIH(refsIn pStack ⊆ refsRes immortal)

Analogously, the references in the immortal memory can only target objects in
the immortal memory itself. This is the state invariant specified below.

HSCJ3 =̂ SIH(refsIn immortal ⊆ refsRes immortal)

Similarly, the references in the mission-sequencer stack and in the mission mem-
ory area are for objects either in the immortal or in the mission memory areas.
To capture this healthiness condition, we define refsRes : FMAreaC → FRef ,
for a set of memory areas mas as refsRes mas =

⋃
(refsRes(| mas |)). It collects

the references in each of the memory areas in mas .

HSCJ4 =̂ SIH(refsIn msStack ⊆ refsRes {immortal ,mission})
HSCJ5 =̂ SIH(refsIn mission ⊆ refsRes {immortal ,mission})

For each handler, the references in its stack are for objects in its own temporary
private areas, in its own per-release area, or in the mission or immortal memory.

HSCJ6 =̂ SIH

⎛⎝∀ h : handlers •
refsIn (hStack h) ⊆

refsRes ({immortal ,mission, perR h} ∪ ran(tPriv h))

⎞⎠
For each handler, the references in its per-release memory area are for objects
in that same area, or in the mission or immortal memory areas.

HSCJ7 =̂ SIH

(
∀ h : handlers •

refsIn (perR h) ⊆ refsRes{immortal ,mission, perR h}

)
Finally, in a temporary private memory area of any handler, the references target
objects that can be in the immortal memory, in the mission memory, in the
associated per-release memory for the same handler, in a parent stacked area,
or in that same temporary private memory area.

HSCJ8 =̂

SIH

⎛⎝∀ h : handlers ; i : 1 . . #(tPriv h) •
refsIn (tPriv h i) ⊆

refsRes({immortal ,mission, perR h} ∪ {j : 1 . . i • tPriv h j})

⎞⎠

The Safety-Critical Java Memory Model: A Formal Account 257

We use #s to denote the size of the sequence (or stack) s.
Finally, the memory areas are disjoint in their use of the reference space.

HSCJ9 =̂
SIH(disjoint 〈refsRes immortal , refsRes mission〉
 seqPR perR
 seqTP tPriv)

We use seqPR perR and seqTP tPriv to denote the sequences of sets of references
residing in the per-release and temporary private memory areas in perR and
tPriv . We omit the formal definition of these functions.

Our theory contains the fixed points of the healthiness conditions above. They
are the fixed points of HSCJ, which we define as the composition of all the
healthiness functions. With the results in Section 4, we conclude that HSCJ is
closed with respect to conjunction, disjunction, conditional, and sequence.

The healthiness conditions HSCJ2 to HSCJ8 are enough to ensure that every
SCJ program makes a safe use of memory, in the sense that, at no point, it has
a variable in a stack whose value is a dangling reference or can be used to reach
a dangling reference. HSCJ10 justifies the treatment of the separate memory
areas as a single global memory. We take advantage of that in the sequel, when
we consider the value of the variables in the stacks.

What we have not captured is the fact that during the lifetime of a mission,
we can only add objects to the mission memory. Similarly, objects can only
be added to each of the per-release and temporary private memory areas until
they are cleared. For the immortal memory, we have HSCJ1. It is not the case,
however, that profile mission ⊆ profile mission ′, for example, is an invariant of
our theory. Since the mission area can be cleared, and later reused when a new
mission is started, then there is no guarantee that mission ′ is at all related to
mission in every pair of observations of an SCJ program. The same comments
apply to the per-release and private temporary memory areas in perR and tPriv
in relation to the handler releases and the calls to the create method.

To establish the required properties, we need to keep a record of the sequence
of missions that have been executed. Additionally, to restrict the use of the per-
release and temporary private memory areas, during the execution of a mission,
we need to keep the history of releases and calls to the create method for
each ASEH. Details of how history can be added to our theory can be found
in [6]. For instance, we keep a sequence of identifiers for the missions that have
been executed, with a special identifier used to indicate that there is no mission
currently executing. This approach is similar to that adopted in [16,5] to cater
for passage of time in the UTP theories for timed and synchronous processes.

Programming variables and their values. Programming variables in the alphabet
can be specification or allocated variables. Specification variables are used to
write abstract definitions of the behaviour of programs; they model, for instance,
inputs and outputs. Allocated variables are included in one of the stacks.

Our next three healthiness conditions require that the value of every allocated
variable in the alphabet is in accordance with what is recorded in the stacks. To
define them, we use a function vars : stackFrame → FVName that characterises
the set of active variables in a given stack: those in the domains of the frames;

258 A.L.C. Cavalcanti, A.W. Wellings, and J.C.P. Woodcock

formally, vars sf =
⋃

dom(| ran sf |), provided there are no redeclarations, that
is, disjoint {i : 1 . . #sf • i �→ dom(sf i)}. (As usual, we assume that variable
names are not reused to avoid handling stacks of values for alphabet variables.)

The value of a variable vn (according to a stack sf and its associated memory
areas mas) is characterised by a set A of sequences of variable names, and a
function V that associates some of these sequences to primitive values. If the
value associated with vn in sf is primitive or null , then 〈vn〉 is the only sequence
in A. If, on the other hand, the value of vn is a reference (to an object), then
we also have all the (possibly infinite) extensions of 〈vn〉 that identify a field of
that object, or a field of one of its fields, and so on. The function V associates
the sequences of variable names that identify a variable or an object field with a
primitive or null value to this value. This characterisation of values is the same
used in [9], where we have defined a UTP theory for the Java memory model
that captures the structure of objects and sharing.

Formally, we define the value !(vn, sf ,mas) using a dereferencing function
! : VName × stackFrame × F MAreaC → PSName × (SName � �→ PValue),
specified as !(vn, sf ,mas) = (A(vn, sf ,mas),V (vn, sf ,mas)). Here, SName is
the set of possibly infinite sequences of variable names (from VName). The set
SName � �→ PValue is that of the finite partial functions from SName to PValue.

The set A(vn, sf ,mas) is defined as shown below.

A(vn, sf ,mas) =⎧⎪⎪⎨⎪⎪⎩
sn : SName |⎛⎝head sn = vn ∧

let u == sval(vn, sf) •
u ∈ PValue ∧ tail sn = 〈 〉 ∨ path(tail sn,

⋃
mas , u)

⎞⎠
⎫⎪⎪⎬⎪⎪⎭

Here sval(vn, sf) = (
⋃

(ran sf)) vn is the value of vn as recorded in sf . The
fact that there are no variable redeclarations guarantees that (

⋃
(ran sf)) is a

function. The condition path(sn,ma, r) requires that the sequence of variable
names sn identifies a path in the memory area ma starting from the reference r .
We use it above to make sure that the extensions of 〈vn〉 are in accordance with
the information in the memory areas mas . With the assumption that they are
disjoint, we consider

⋃
mas . The starting reference is the value u of vn in sf .

The formal definition of path(sn,ma, r) is as follows. We require the existence
of a (possibly infinite) sequence sr of references that can be traversed using the
sequence of names sn. The last value of sn, if any, might be a primitive value,
rather than a reference, so the type of sr is SVal , the set of sequences of values.

path(sn,ma, r) ⇔⎛⎜⎜⎝∃ sr : SVal •

⎛⎜⎜⎝
head sr = r ∧⎛⎝∀ i : dom sn •(

(sr i) ∈ domma ∧ (sn i) ∈ dom(ma (sr i)) ∧
sr(i + 1) = ma (sr i) (sn i)

)⎞⎠
⎞⎟⎟⎠
⎞⎟⎟⎠

For each name sn i in sn, the corresponding value sr i in sr must be a reference
in ma to an object ma (sr i) with a field named sn i . Additionally, the next value
sr (i + 1) in sr must be the value ma (sr i) (sn i) of that field.

The Safety-Critical Java Memory Model: A Formal Account 259

The definition of V (vn, sf ,mas) is in many ways similar, and we omit it here.
The condition HV1 requires that the value of every variable v in the program

stack is given by pStack itself and its associated immortal area.

HV1 =̂ SIH(
∧

v : vars(pStack) • v =!(v , pStack , {immortal}))

The healthiness conditions HV2 and HV3 are similar. The former considers the
mission-sequencer stack, and the latter the handlers stacks.

HV2 =̂ SIH(
∧

v : vars(msStack) • v =!(v ,msStack , {immortal ,mission}))
HV3 =̂

SIH

(
∀ h : handlers • (

∧
v : vars(hStack h) •

v =!(v , hStack h, {immortal ,mission, perR h} ∪ ran (tPriv h)))

)
Implicitly, these conditions require that all variables v in the stacks are in the
alphabet, since they are in the alphabet of the conjunctions.

We define HV as the composition of the functions HV1-HV3.

6 Conclusions

To the best of our knowledge, we have presented here the only formal character-
isation of the SCJ memory model available so far. This is an essential ingredient
to justify the soundness of assertion-based static checking techniques (like that
in [17]). As a UTP theory, our model is also adequate for unification with existing
models of concurrency, object orientation, and timing.

We reuse the ideas of an existing UTP model for objects and sharing [9] to
address the relationship between the structure established by the references in
the memory areas and the values of the programming variables and attribute
accesses. What we do not cover are features of models like [11,7]; these do not
consider the issue of variable values, but provide support for reasoning about
the memory graph structure. For SCJ, we will need to build on such techniques
to take advantage of the separation enforced by the memory areas.

Another assertion-based technique proposed for SCJ is SafeJML [8]. It extends
the well-established JML [3] to cover functionality and timing properties. The
focus is on annotations that allow the use of existing technology for worst-case
execution-time analysis to reason about SCJ programs.

Another contribution of this paper is a general characterisation of subset
theories of designs. With this, we have given an elegant definition for the SCJ
theory. Our general results are useful for all theories for programs that do not
exhibit special forms of termination, and do not provide guarantees on abortion.

Our model does not capture the flow of control of an SCJ program, as partially
depicted in Figure 1. This is the subject of ongoing work, which formalises the
SCJ programming model in Circus [14], a refinement language based on Z and
CSP. The semantic model of Circus is based on the UTP, and it is our plan to
use the theory presented here as basis for the design of an extension of Circus
that is appropriate to reason about SCJ programs. The intended model of a

260 A.L.C. Cavalcanti, A.W. Wellings, and J.C.P. Woodcock

complete SCJ program will a predicate of the stateless CSP theory, just like
that of a complete Circus program. So, it will have the form shown below, where
the alphabet variables representing the memory structure are local.

var immortal ,mission . . . ; P ; end immortal ,mission . . .

In this case, P will be a predicate in the theory resulting from the embedding
of the SCJ model presented here in the Circus theory of reactive designs. In the
long run, we plan to provide a reasoning framework for SCJ programs that can
cater for concurrency, object-orientation, time, and sharing.

Acknowledgements. This work is funded by EPSRC (grant EP/H017461/1) and
UKIERI (grant SAO8-047).

References

1. Barnes, J.: High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley, Reading (2003)

2. Barnes, J.: Programming in Ada 95. Addison-Wesley, Reading (2005)
3. Burdy, L., et al.: An overview of JML tools and applications. Software Tools for

Technology Transfer 7(3), 212–232 (2005)
4. Burns, A.: The Ravenscar Profile. Ada Letters XIX, 49–52 (1999)
5. Butterfield, A., Sherif, A., Woodcock, J.C.P.: Slotted-circus. In: Davies, J.,

Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 75–97. Springer, Heidelberg
(2007)

6. Cavalcanti, A.L.C., Wellings, A., Woodcock, J.C.P.: The Safety-Critical Java Mis-
sion Model: a formal account – Extended Version. Technical report (2011),
http://www-users.cs.york.ac.uk/ alcc/CWW11b.pdf

7. Chen, Y., Sanders, J.: Compositional Reasoning for Pointer Structures. In:
Yu, H.-J. (ed.) MPC 2006. LNCS, vol. 4014, pp. 115–139. Springer, Heidelberg
(2006)

8. Haddad, G., Hussain, F., Leavens, G.T.: The Design of SafeJML, A Specification
Language for SCJ with Support for WCET Specification. In: JTRES. ACM, New
York (2010)

9. Harwood, W., Cavalcanti, A.L.C., Woodcock, J.C.P.: A Theory of Pointers for
the UTP. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008.
LNCS, vol. 5160, pp. 141–155. Springer, Heidelberg (2008)

10. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall,
Englewood Cliffs (1998)

11. Hoare, C.A.R., Jifeng, H.: A trace model for pointers and objects. Programming
methodology, pp. 223–245 (2003)

12. Jifeng, H.: UTP semantics for web services. In: Davies, J., Gibbons, J. (eds.)
IFM 2007. LNCS, vol. 4591, pp. 353–372. Springer, Heidelberg (2007)

13. Locke, D., et al.: Safety Critical Java Specification. The Open Group, UK (2010),
jcp.org/aboutJava/communityprocess/edr/jsr302/index.html

14. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: A UTP Semantics for
Circus. Formal Aspects of Computing 21(1-2), 3–32 (2009)

15. Santos, T.L.V.L., Cavalcanti, A.L.C., Sampaio, A.C.A.: Object-Orientation in the
UTP. In: Dunne, S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 18–37.
Springer, Heidelberg (2006)

The Safety-Critical Java Memory Model: A Formal Account 261

16. Sherif, A., et al.: A process algebraic framework for specification and validation of
real-time systems. Formal Aspects of Computing 22(2), 153–191 (2010)

17. Tang, D., Plsek, A., Vitek, J.: Static Checking of Safety Critical Java Annotations.
In: JTRES.ACM, New York (2010)

18. Tofte, M., Talpin, J.-P.: Region-based memory management. Information and Com-
putation 132(2), 109–176 (1997)

19. Wellings, A.: Concurrent and Real-Time Programming in Java. Wiley, Chichester
(2004)

20. Wellings, A., Kim, M.: Asynchronous event handling and safety critical Java. In:
JTRES. ACM, New York

Failure-Divergence Refinement of Compensating
Communicating Processes�

Zhenbang Chen1, Zhiming Liu2, and Ji Wang1

1 National Laboratory for Parallel and Distributed Processing, Changsha, China
2 International Institute for Software Technology, The United Nations University, Macao

Abstract. Compensating CSP (cCSP) extends CSP for specification and verifi-
cation of long running transactions. The original cCSP is a modest extension to
a subset of CSP that does not consider non-deterministic choice, synchronized
composition, and recursion. There are a few further extensions. However, it re-
mains a challenge to develop a fixed-point theory of process refinement in cCSP.
This paper provides a complete solution to this problem and develops a theory of
cCSP, corresponding to the theory of CSP, so that the verification techniques and
their tools, such as FDR, can be extended for compensating processes.

1 Introduction

Service-oriented architecture (SOA) is a critical enabling technology for programming
business processes composed of disparate services available on the web. These pro-
cesses are required to have the “transactional characteristic”: if a failure occurs in the
execution, the changes made before the failure must be undone or compensated. The
transactional property of business processes is different from the ACID properties of
atomic transactions (or short-life transactions). A general business process is usually
a long running transaction (LRT) [13] that takes a substantial amount of time to com-
plete, involving interactions across many systems and possibly requiring human in-
terventions [14]. The mechanism to ensure ACID by the holding of locks and tight
coordination of the participating systems cannot be applied to LRTs. Furthermore, it is
not required for such a business process to undo the entire change committed in case
of an occurrence of a failure. Instead, a weakened or partial recovery is often required
by the application. For example, when a flight booking is canceled, a cancelation fee
is charged and only part of the payment can be recovered. For this reason, models of
LRTs, such as Sagas [12] and BizTalk [15], allow programmer-specified undoing and
recovery actions that are called compensation.

Compensation supports flexible treatment of different exceptional scenarios, but the
flexibility makes the handling of failures complicated and ad-hoc. To help program-
mers master the complexity, Web Service languages, such as WS-BPEL and XLANG,
provide mechanisms for exception handling. A common design principle of these lan-
guages is a combination of exception handling and failure recovery. In some situations,
an exception is raised when a LRT is aborted and caught by a programmed handler.

� Supported in parts by projects NSFC 60725206, National 973 project 2011CB302603, NSFC
60970031, NSFC 61073022, and the MSTDF project GAVES.

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 262–277, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Failure-Divergence Refinement of Compensating Communicating Processes 263

In some other cases, actions of a LRT are programmed with the corresponding com-
pensatory actions so that when a failure occurs, the recovery actions of the committed
actions are activated and executed in their reverse order. This is the model of the back-
ward recovery in Sagas [12] implemented in BizTalk.

The need for better understanding of complex LRTs and their mission-critical ap-
plications motivate the research on formal theories of compensation programming,
e.g. [1,4,3,11]. They differ mostly in the features that they support. For examples, non-
deterministic choice and limited recursion are supported by the process calculus in [11],
but not by cCSP in [6]. However, little discussion is given by the designers of the lan-
guages about the decisions they made. This indicates an insufficient understanding on
what common features of LRTs should and can be formalized.

Contribution. We extend the version of cCSP in [6], with non-deterministic choices,
synchronization among parallel processes, and recursion (cf. Section 2). The main con-
tribution is a semantic theory of failures and divergences of LRTs (cf. Sections 3&4).
The theory includes a complete partial order (CPO) of the failure-divergences of pro-
cesses that allows the calculation of a unique fixed-point of any recursive compens-
able process. The CPO also characterizes programming of LRTs (cf. Section 5). It is a
well-known challenge to establish, or even to show the existence of, such a fixed-point
theory for a language like CSP with internal-choice and synchronization [18]. Litera-
ture, e.g. [8], also shows that if the internal choice is added to CCS, it is difficult to
define a partial order to characterize the notion of refinement. This problem is even
harder for the extended cCSP, due to the abstract mechanisms for exception handling
and compensation behavior. The technical details in Section 3&4 and the proofs of
the theorems and laws in the technical report [10] show the inventive thinking needed.
Because the application potential of cCSP, the extension and its well established failure-
divergence semantic theory are important. Similar to the unification role that the failure-
divergence semantics of CSP plays, the failure-divergence semantic theory integrates as
its sub-theories the operational semantics, trace semantics, stable failures semantics [9]
of cCSP. It completes the semantic theory of cCSP for specification of LRTs and can
be used to underpin the extension to FDR of CSP [17] and the cCSP theorem proving
tool [16] for verification of LRTs.

Related work. cCSP in [6] is an extension to CSP [17] for LRTs. The recovery mech-
anism in cCSP is the same as the backward recovery in Sagas [12]. There are two types
of processes in cCSP, the standard processes and compensable processes. The standard
processes are only a subset of CSP processes, but with additional processes for excep-
tion handling and transaction block. A compensable process specifies the behavior of
the recovery when an exception occurs. Non-deterministic choices and synchronization
are not allowed in cCSP and thus it only has a trace semantics [4] and an operational
semantics [7]. The consistency between these two semantics is studied in [16].

Our early work in [9] extends cCSP with the operators of non-deterministic choice,
synchronized parallel composition, hiding and renaming, and defines a stable failures
semantics. But that semantic model does not allows us to establish a fixed-point theory
for recursion with a meaningful CPO. Thus, a new semantic domain has to be defined,
instead of simple extension of the stable failures semantic domain with a divergence
set, so as to define refinement and calculate fixed-points.

264 Z. Chen, Z. Liu, and J. Wang

The main reason why we develop a semantic theory of LRTs by extending the orig-
inal cCSP is because that cCSP shares most of the common features of other formal
models [2,11]. Also, CSP-like process calculi are used to give formal semantics of pro-
tocol description languages and orchestration languages, e.g. [5].

2 Syntax of the Extended cCSP

Assume a finite set Σ of names representing the normal events that the cCSP processes
can perform, called the alphabet of processes. The syntax of the extended cCSP is
defined in Fig. 1, where a∈Σ represents an event, X⊆Σ is a finite subset, and R⊆Σ×Σ

is a renaming relation. cCSP defines two kinds of processes, the standard processes
ranged over by P , and the compensable processes ranged over by PP .

P ::= a | P ;P | P � P | P�P | P ‖
X

P | P \ X | P �R� | P � P | [PP] | skip | stop |

throw | yield | μ p.F (p)

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP ‖
X

PP | PP � PP | PP \ X |

PP �R� | skipp | throww | yieldd | μ pp.FF(pp)

Fig. 1. The standard processes add four additional kinds of processes to CSP: throw throws
an exception and interrupts the execution of the process, yield either terminates successfully
or yields to an interruption from environment to interrupt the execution, P � Q behaves like P
and it executes Q if there is an exception thrown by P , the transaction block [PP] represents a
long-running transaction specified by the compensable process PP

The standard processes extend those of the classical CSP processes with exception
handling, interruption and transaction block specified by a compensable process. A
compensable process is constructed from compensation pairs of the form P÷Q, in
which the execution of the process Q can compensate the effect of the execution of
P . P is called the forward (sub-) process and Q the compensation (sub-) process. The
internal and external choices in the compensable processes are made according to the
forward sub-processes. PP and QQ in PP ‖

X

QQ synchronize on the events in X oc-

curring in the behaviors of both forward and compensation sub-processes of PP and
QQ. It is written PP‖QQ when X is empty. PP � QQ is the speculative choice between
two compensable processes, in which PP and QQ run in parallel until one of them suc-
ceeds, and after that the other is compensated. Process skipp immediately terminates
successfully without the need to be compensated, and throww throws an exception and
yieldd either terminates successfully or yields to an interruption.

3 Failure-Divergence Semantics of Standard Processes

3.1 Basic Notations

Let A∗ denote the set of finite sequences of the elements in a set A of symbols. In par-
ticular, Σ∗ is the set of interaction traces of the cCSP processes. Let Ω={�, !, ?} be

Failure-Divergence Refinement of Compensating Communicating Processes 265

disjoint with Σ. Events in Ω are called terminals and they indicate different terminating
scenarios: “�” represents that the execution terminates successfully, “!” indicates that
the execution terminates with an occurrence of an exception, and “?” represents that
the execution terminates by yielding to an interruption from environment. The traces
of cCSP processes are thus formed from symbols in Γ=Σ∪Ω. Let s·t denote the con-
catenation of traces s and t, and T1·T2 the set of concatenated traces of the trace sets
T1 and T2. In particular, for a non-empty subset A of Ω, let Σ�

A =Σ∗·A denote the set
of traces terminated with events in A, and let Σ�

A=Σ∗ ∪ Σ�
A . Thus, Σ�

{�} is the set of
successfully terminated traces. We use Σ� and Σ� as the shorthands of Σ�

Ω and Σ�
Ω .

Processes need to follow different rules to synchronize on different terminals. We
order the three terminals such that ! ≺ ? ≺ � and define ω1‖ω2 = ω1 if ω1 � ω2, and
ω1‖ω2 = ω2‖ω1. Therefore, the synchronization of any terminal with an exception will
result in an exception, and composition terminates successfully iff both parties do.

For two traces s, t ∈ Σ� and a subset X ⊆ Σ, the set of synchronized traces s ‖
X

t,

s‖t when X = {}, is defined in the same way as in CSP [17] when s, t ∈ Σ∗, otherwise
terminals of s and t synchronize in the following two patterns, where s1, t1 ∈ Σ∗.

s1·〈ω〉 ‖
X

t1 = {} , s1·〈ω1〉 ‖
X

t·〈ω2〉 = {u·〈ω1‖ω2〉 | u ∈ s1 ‖
X

t1}

3.2 Semantics of Standard Processes

The FD semantics [[P]] of a process P is a pair (F(P),D(P)), where F(P) ⊆ Σ�× P(Γ)

is the failure set and D(P) ⊆ Σ� the divergence set. The sets of traces and terminated
traces of P are defined from the failures F(P) below.

traces(P) =̂ {s | (s, {}) ∈ F(P)}, tracet(P) =̂ traces(P) ∩ Σ�

We require that the FD semantics of P satisfies the axioms of the FD semantics of the
classical CSP processes given in [17], for example, the divergence set D(P) is suffix
closed and the trace set traces(P) is prefix closed. However, the axioms about terminated
traces need to be modified as follows.

s·〈ω〉 ∈ traces(P) ⇒ (s, Γ \ {ω}) ∈ F(P), where ω ∈ Ω (1)

s ∈ D(P) ∩ Σ∗ ∧ t ∈ Σ� ⇒ s·t ∈ D(P) (2)

s·〈ω〉 ∈ D(P) ⇒ s ∈ D(P), where ω ∈ Ω (3)

In what follows we define the failure function F : P → P(Σ� × P(Γ)) and the diver-
gence function D : P → P(Σ�), where P denotes the set of all standard processes.

Atomic and basic processes. The semantics of the processes a, skip and stop are the
same as their semantics in CSP. The divergence sets of processes throw and yield are
both empty, and their failure sets are defined below.

F(throw) = {(〈〉, X) | X ⊆ Γ∧ ! /∈ X} ∪ {(〈!〉, X) | X ⊆ Γ}
F(yield) = {(〈〉, X) | X ⊆ Γ∧ ? /∈ X} ∪ {(〈?〉, X) | X ⊆ Γ}

∪ {(〈〉, X) | X ⊆ Γ ∧ � /∈ X} ∪ {(〈�〉, X) | X ⊆ Γ}

We use div to represent the process diverging immediately, i.e. 〈〉 ∈ D(div).

266 Z. Chen, Z. Liu, and J. Wang

Choices. The semantics of the internal choice is the same as defined in CSP, but note
that yield � skip = yield holds. External choice is different from internal choice on
the empty trace 〈〉, at which P�Q can refuse an event only if both P and Q can refuse
it. Also, care should be taken about the terminals “?” and “!” when defining the failures
to ensure the axiom (1).

D(P�Q) = D(P) ∪ D(Q)
F(P�Q) = {(〈〉, X) | (〈〉,X) ∈ F(P) ∩ F(Q)}

∪ {(s, X) | (s, X) ∈ F(P) ∪ F(Q) ∧ s �= 〈〉}
∪ {(〈〉, X) | X ⊆ Γ \ {ω} ∧ 〈ω〉 ∈ traces(P) ∪ traces(Q) ∧ ω ∈ Ω}
∪ {(s, X) | s ∈ D(P�Q) ∧ X ⊆ Γ}

Sequential composition. The sequential composition here is also different from the
classic CSP [17] because of the terminals “!” and “?”.

D(P ; Q) = D(P) ∪ {s·t | s·〈�〉 ∈ traces(P) ∧ t ∈ D(Q)}
F(P ; Q) = {(s, X) | s ∈ Σ�

{?,!} ∧ (s, X ∪ {�}) ∈ F(P)}
∪ {(s·t, X) | s·〈�〉 ∈ traces(P) ∧ (t, X) ∈ F(Q)}
∪ {(s, X) | s ∈ D(P ;Q) ∧ X ⊆ Γ}

Parallel composition. We first define the divergence set of P ‖
X

Q, and then its failure

set. The composition diverges if either P or Q diverges, which is

D(P ‖
X

Q) = {u·v | v ∈ Σ� ,∃s ∈ traces(P), t ∈ traces(Q)•

u ∈ (s ‖
X

t) ∩ Σ∗ ∧ (s ∈ D(P) ∨ t ∈ D(Q))}

To define the failure set of the composition, we understand that P ‖
X

Q can refuse an

event in X ∪ Ω if either P or Q can, and it can refuse an event outside X ∪ Ω only if
both P and Q can refuse it. For a failure (s, Y) of P and a failure (t, Z) of Q, recall
classical definition in CSP of the synchronized failure set:

(s, Y) ‖
X

(t, Z) = {(u, Y ∪ Z) | Y \ (X ∪ Ω) = Z \ (X ∪ Ω) ∧ u ∈ s ‖
X

t} (4)

We need to adjust this definition for cCSP to take into account the following two differ-
ent cases of synchronization on terminals.

1. If P or Q cannot perform a terminal after executing s or t, the composition can-
not terminate. In this case Definition (4) applies. For example, let Σ = {a, b}, P

be the process a and Q the process b; throw. As (〈〉, {b, �, !, ?}) is a failure of P

and (〈b〉, {b, �, ?}) a failure of Q, P‖Q has the failure (〈b〉, {b, �, !, ?}). This case is
reflected in the upper case in the definition Equation 5.

2. If both P and Q can terminate, the synchronized terminal, represented by Θ in the
definition Equation 5, should be excluded from the refusal set. For example, let
Σ = {a}, P be the process a and Q the process a; throw. As (〈a〉, {a, !, ?}) is a
failure of P and (〈a〉, {a, �, ?}) a failure of Q, P can perform � and Q can perform
! to terminate, respectively. Their synchronization result is !, which does not appear
in the refusal set (〈a〉, {a, �, ?}) of P ‖ Q

{a}
. If Definition (4) were applied, the refusal

set would be (〈a〉, {a, �, ?, !}) and P ‖ Q
{a}

would deadlock after executing 〈a〉.

Failure-Divergence Refinement of Compensating Communicating Processes 267

The synchronized failure set of two failures is thus defined as

(s, Y) ‖
X

(t, Z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{(u, Y ∪ Z) | Y \ (X ∪ Ω) = Z \ (X ∪ Ω) ∧ u ∈ s ‖
X

t}

if (s, Y ∪ Ω) ∈ F(P) ∨ (t, Z ∪ Ω) ∈ F(Q)

{(u, (Y ∪ Z) \ Θ(ω1, ω2)) | Y \ (X ∪ Ω) = Z \ (X ∪ Ω)∧
u ∈ s ‖

X

t} otherwise

(5)

Two variables ω1 and ω2 are used in Equation (5). For the failure (s, Y) of P , ω1 is the
terminal event that P must perform after s, which is when the following condition holds

∀(s, Y1) ∈ F(P) • Y ⊆ Y1 ⇒ (ω1 ∈ Ω ∧ ω1 /∈ Y1) (6)

The value of ω1 is not defined, represented by ⊥, if there is no terminal event that P

must perform after s. The value of ω2 is determined in the same way for the failure
(t, Z) of Q. The function Θ that synchronizes ω1 and ω2 is defined as follows.

Θ(ω1, ω2) = Θ(ω2, ω1) =

{ {ω1‖ω2} ω1 ∈ Ω ∧ ω2 ∈ Ω
{ω1} ω1 ∈ Ω ∧ ω2 = ⊥
{} ω1 = ⊥ ∧ ω2 = ⊥

For example, consider P as the process skip � throw. P has the failures (〈〉, {�, ?})
and (〈〉, {?, !}). There is no ω1 satisfying the Equation (6) for the failure (〈〉, {?}) of P .

Now the failure set of P ‖
X

Q is defined below.

F(P ‖
X

Q) = {(u, E) | ∃(s, Y) ∈ F(P), (t, Z) ∈ F(Q) • (u, E) ∈ (s, Y) ‖
X

(t, Z)}

∪ {(u, Y) | u ∈ D(P ‖
X

Q) ∧ Y ⊆ Γ}

Consider a ‖
{a}

(a; throw) as an example, and Σ = {a}. Its divergence set is {}, and

its failure set is {(〈〉, X) | X ⊆ Ω} ∪ {(〈a〉,X) | X ⊆ {a, �, ?}} ∪ {(〈a, !〉, X) | X ⊆ Γ}.
Parallel composition is commutative, associative and distributive over internal choice.

Exception handling. P � Q behaves similarly to P ; Q, but Q starts to execute only
after an exception is thrown in P .

D(P�Q) = D(P)∪{s·t | s·〈!〉∈traces(P)∧t ∈ D(Q)}
F(P�Q) = {(s, X)|s∈Σ�

{�,?}∧(s,X∪{!}) ∈ F(P)}
∪ {(s·t, X)|s·〈!〉∈traces(P)∧(t,X)∈F(Q)}∪{(s, X)|s∈D(P�Q)∧X⊆Γ}

The exception handling is associative and distributive over internal choices to both left
and right sides of �. The hiding and renaming operators are not affected by the new
terminals, and their definitions remain the same as those in the classical CSP.

4 Failure-Divergence Semantics of Compensable Processes

The semantics [[PP]] of a compensable process PP consists of its forward behavior and
compensation behavior. It is thus defined as a tuple (F, D, F c, Dc) of four sets. (F, D)
are the forward failures and forward divergences (or forward FD sets), and (F c, Dc)

268 Z. Chen, Z. Liu, and J. Wang

the compensation FD sets of PP , where F c ⊆ Σ� × Σ� × P(Γ) and Dc ⊆ Σ� × Σ�

are called the compensation failures and compensation divergences of PP , respec-
tively. The forward FD sets satisfy the axioms of the semantics of the standard pro-
cesses given in Section 3.2. A compensation failure (s, s1, X) and a compensation
divergence (s, s1) record a failure and a divergence of the compensation behavior for
the forward execution trace s, respectively. We define the set of the forward terminated
traces tracef (PP)={s | (s, s1, X) ∈ F c} in F c (also denoted by tracef (F c)), and the set
tracen(PP) = tracef (PP)\D of the non-divergent forward terminated traces. The com-
pensation behavior (F c, Dc) is required to satisfy the following axioms.

tracef (F c) = {s | (s, s1) ∈ Dc}, tracef (F c) ⊆ Σ� ∩ {s | (s, {}) ∈ F} (7)

For an s in tracef (F c), let (F c, Dc)�s = ({(s1, X) | (s, s1, X) ∈ F c}, {s1 | (s, s1) ∈ Dc}),
which is a FD pair and required to satisfy the axioms of standard processes. For the
semantics (F, D, F c, Dc) of a PP , let fp(PP) denote the forward process behavior
(F, D), and cp(PP, s) the compensation behavior (F c, Dc)�s for s. We will overload the
semantic functions F and D and the process operators of standard processes and apply
them to fp(PP) and cp(PP, s). For example, F(fp(PP)) = F and D(fp(PP)) = D.

We are now to define the semantic function [[·]] on the set PP of all the compensable
processes in terms of four semantics functions (Ff ,Df ,Fc,Dc):

– the forward failure (FF) function Ff : PP → P(Σ� × P(Γ)),
– the forward divergence (DF) function Df : PP → P(Σ�),
– the compensation failure (FC) function Fc : PP → P(Σ� × Σ� × P(Γ)), and
– the compensation divergence (DC) function Dc : PP → P(Σ� × Σ�).

Compensation pair P ÷ Q. If the forward behavior specified by P terminates suc-
cessfully, the recovery behavior specified by Q is recorded so that it can be executed
to compensate the effect of P when triggered by an exception later. Otherwise, Q will
not be executed. In the semantics P÷Q, the successfully terminated forward behavior
defined by the traces in tracet(P) ∩ Σ�

{�} is to be compensated by the execution of Q,
and the non-successful terminated traces in Σ�

{!,?} by “nothing”, i.e. skip, respectively.

Ff (P÷Q) = F(P), Df (P÷Q) = D(P)

Fc(P÷Q) = ((tracet(P) ∩ Σ�
{�}) × F(Q)) ∪ ((tracet(P) ∩ Σ�

{!,?}) × F(skip))

Dc(P÷Q) = ((tracet(P) ∩ Σ�
{�}) ×D(Q)) ∪ ((tracet(P) ∩ Σ�

{!,?}) ×D(skip))

The forward sub-processes of skipp, throww and yieldd are skip, throw and yield,
respectively. Their compensation sub-processes are all skip. Because tracet(stop) is
empty, Fc(stop÷P) and Dc(stop÷P) are both empty for any P , we use stopp to de-
note any of these stop÷P whose forward behavior is stop.

Transaction block. A transaction block [PP] is a standard process, and its semantics
is derived from the semantics of the compensable process PP in the block.

D([PP]) = Df (PP)∪{s1·s2|(s, s2)∈Dc(PP)∧s = s1·〈!〉}
F([PP]) = {(s, X)|s∈Σ�

{�,?}∧(s, X ∪ {!})∈Ff (PP)}
∪ {(s1·s2,X)|(s,s2,X)∈Fc(PP)∧s=s1·〈!〉}∪{(s,X)|s∈D([PP])∧X⊆Γ}

The compensation of PP is executed to recover from an exception occurred in the
forward behavior. The divergences of [PP] contain the DF and DC sets of PP . The

Failure-Divergence Refinement of Compensating Communicating Processes 269

failures F([PP]) contain (a). the failures in the FF set that do not terminate with the
exception terminal, (b). the failures in the FF set that terminate with the exception
terminal extended with their corresponding compensation failures, and (c). the fail-
ures caused by the divergences. In general [P÷Q] = P � skip holds and in particular,
[throw÷P] = skip and [stopp] = stop.

Internal choice. The semantics of internal choice PP � QQ is as follows.

Df (PP � QQ) = Df (PP) ∪ Df (QQ), Ff (PP � QQ) = Ff (PP) ∪ Ff (QQ)
Fc(PP � QQ) = Fc(PP) ∪ Fc(QQ), Dc(PP � QQ) = Dc(PP) ∪ Dc(QQ)

For example, (a÷b1�a÷b2)=(a÷(b1�b2)), whose FC set is {〈b, �〉}×(F(b1)∪F(b2)),
and the DC set is {〈a, �〉}×(D(b1)∪D(b2)), i.e. {}. Internal choice is idempotent, com-
mutative and associative.

External choice. The external choice is also made during the forward behavior, but by
the environment.

Df (PP�QQ) = D(fp(PP)�fp(QQ)), Ff (PP�QQ) = F(fp(PP)�fp(QQ))
Fc(PP�QQ) = Fc(PP) ∪ Fc(QQ), Dc(PP�QQ) = Dc(PP) ∪ Dc(QQ)

For example, Dc(stopp�a÷b)=Dc(stopp�a÷b)={}, and the equality still holds if Dc

is replaced by Fc. For the corresponding FF sets however, Ff (stopp�a÷b)=F(a) but
Ff (stopp�a÷b)=F(a)∪F(stop). � is idempotent, commutative and associative.

Sequential composition. In a sequential composition PP ;QQ, the forward behaviors
of PP and QQ are composed first, and the corresponding compensation behaviors
cp(PP, s1) and cp(QQ, s2) are composed in the reverse direction, just like the model
of Sagas [12]. The forward behavior of PP ;QQ is the sequential composition of the
forward behaviors of PP and QQ.

Df (PP ;QQ) = D(fp(PP);fp(QQ)), Ff (PP ;QQ) = F(fp(PP);fp(QQ))

Let Tn be the set tracen(PP) × tracef (QQ). The compensation behavior of PP ;QQ is
defined by the two cases below.

1. The forward execution of PP terminates successfully and the compensation behav-
iors of PP and QQ will be sequentially composed in the reverse order.

D1
c = {(s·t, sc) | ∃(s·〈�〉, t) ∈ Tn • sc ∈ D(cp(QQ, t);cp(PP, s·〈�〉))}

F1
c = {(s·t, sc, Xc) | ∃(s·〈�〉, t) ∈ Tn • (sc, Xc) ∈ F(cp(QQ, t);cp(PP, s·〈�〉))}

2. PP fails or diverges in the forward behavior, process cannot reach QQ, and only
the compensation behavior of PP would be recorded.

D2
c = {(s, sc) | (s, sc) ∈ Dc(PP) ∧ (s �= t·〈�〉 ∨ s /∈ tracen(PP))}

F2
c = {(s, sc, Xc) | (s, sc, Xc) ∈ Fc(PP) ∧ (s �= t·〈�〉 ∨ s /∈ tracen(PP))}

Hence, the DC and FC sets of PP ;QQ are Dc(PP ;QQ)=D1
c∪D2

c and
Fc(PP ;Qq)=F1

c ∪F2
c . Sequential composition is associative and distributive over

internal choice.

270 Z. Chen, Z. Liu, and J. Wang

Parallel composition. In a composition PP ‖
X

QQ, the forward behaviors of PP and

QQ synchronize on X, so do their compensation behaviors.

Df (PP ‖
X

QQ) = D(fp(PP) ‖
X

fp(QQ)), Ff (PP ‖
X

QQ)=F(fp(PP) ‖
X

fp(QQ))

Dc(PP ‖
X

QQ) = {(s, sc) | ∃s1 ∈ tracef (PP), s2 ∈ tracef (QQ)•

s ∈ (s1 ‖
X

s2) ∧ sc ∈ D(cp(PP, s1) ‖
X

cp(QQ, s2))}

Fc(PP ‖
X

QQ) = {(s, sc, X) | ∃s1 ∈ tracef (PP), s2 ∈ tracef (QQ)•

s ∈ (s1 ‖
X

s2) ∧ (sc, X) ∈ F(cp(PP, s1) ‖
X

cp(QQ, s2))}

Consider two examples. First, the equation [(a÷b1 ‖ b÷b2
{a}

);throww] = a;b1 ‖ b2 shows

the synchronization between the forward behaviors. Then, a1÷b1‖a2÷b2
{a1,a2}

= stopp

demonstrates a deadlock in the forward behavior.

Speculative Choice. In a speculative choice PP � QQ, the forward behaviors of PP
and QQ will run in parallel first without synchronization. If one succeeds, the compen-
sation of the other will be invoked. The forward execution of PP � QQ fails if both
parties fail, and the compensation behaviors of PP and QQ will run in parallel to re-
cover. Let T be the set tracef (PP) × tracef (QQ), D1

f (or D2
f) be the divergences in the

case when the first party (or the second party, resp.) succeeds and the second party (or
the first party, resp.) has to recover, where ω ∈ Ω:

D1
f = {s | ∃(t1·〈�〉, t2·〈ω〉) ∈ T • s ∈ (t1‖t2)·D(cp(QQ, t2·〈ω〉))}

D2
f = {s | ∃(t1·〈ω〉, t2·〈�〉) ∈ T • s ∈ (t1‖t2)·D(cp(PP, t1·〈ω〉))}

The DF set of PP � QQ is thus defined as Df (PP � QQ) = D(PPf ‖ QQf) ∪ D1
f ∪ D2

f .
Similarly, we define F1

f (or F2
f) to be the failures when the second (or the first) party

succeeds and the first (or the second) party has to recover:

F1
f = {(s·t, X) | ∃(t1·〈�〉, t2·〈ω〉) ∈ T • s ∈ (t1‖t2) ∧ (t, X) ∈ F(cp(QQ, t2·〈ω〉))}

F2
f = {(s·t, X) | ∃(t1·〈ω〉, t2·〈�〉) ∈ T • s ∈ (t1‖t2) ∧ (t, X) ∈ F(cp(PP, t1·〈ω〉))}

The FF set of PP�QQ is thus the union of the following five sets, where ω1, ω2∈Ω\{�}.

Ff (PP � QQ) = {(s, X)|s ∈ Σ∗ ∧ (s, X ∪ Ω) ∈ F(PPf ‖ QQf)} ∪ F1
f∪F2

f

∪ {(s, X)|∃(t1·〈ω1〉, t2·〈ω2〉)∈T•s∈(t1‖t2)∧X⊆Γ\{ω1‖ω2}}
∪ {(s·〈ω1‖ω2〉, X)|∃(t1·〈ω1〉, t2·〈ω2〉)∈T•s∈(t1‖t2)∧X⊆Γ}

The first set includes the failures of the interleaving forward execution of PP and QQ,
and the last two sets handle the synchronization of the terminals if both parties fail.

There are the following three cases when compensation of PP � QQ diverges.

1. PP succeeds in the forward parallel execution of PP and QQ, and the compensa-
tion to the effect of PP diverges.

D1
c = {(s, sc)|∃(t1·〈�〉, t2·〈ω〉) ∈ T•s∈T1∧sc ∈ D(cp(PP, t1·〈�〉))}

where T1 = (t1‖t2)·tracet(cp(QQ, t2·〈ω〉)). Notice that the overall compensation of
PP by PP � QQ can only start after the effect of QQ is compensated.

Failure-Divergence Refinement of Compensating Communicating Processes 271

2. Symmetrically, QQ succeeds in the forward parallel execution of PP and
QQ, and the compensation to the effect of QQ diverges, where
T2=(t1‖t2)·tracet(cp(PP ,t1·〈ω〉)).
D2

c = {(s, sc)|∃(t1·〈ω〉, t2·〈�〉) ∈ T•s∈T2∧sc ∈ D(cp(QQ, t2·〈�〉))}

3. Both parties of the parallel forward execution of PP and QQ fail to termi-
nate successfully, and the parallel compensation of the parties diverges, where
ω1,ω2∈Ω\{�}.
D3

c= {(s,sc)|∃(t1·〈ω1〉,t2·〈ω2〉)∈T•s∈(t1·〈ω1〉‖t2·〈ω2〉)∧
sc∈D(cp(PP, t1·〈ω1〉)‖cp(QQ,t2·〈ω2〉))}

Therefore, the DC set of PP � QQ is defined as Dc(PP�QQ)=D1
c∪D2

c∪D3
c . Similarly,

Fc(PP�QQ) is F1
c ∪F2

c ∪F3
c , where

F1
c = {(s, sc, X)|∃(t1·〈�〉, t2·〈ω〉)∈T•s∈T1∧(sc, X)∈F(cp(PP, t1·〈�〉))}

F2
c = {(s, sc, X) | ∃(t1·〈ω〉, t2·〈�〉) ∈ T • s ∈ T2 ∧ (sc, X) ∈ F(cp(QQ, t2·〈�〉))}

F3
c = {(s, sc, X) | ∃(t1·〈ω1〉, t2·〈ω2〉) ∈ T • s ∈ (t1·〈ω1〉‖t2·〈ω2〉)∧

(sc, X) ∈ F(cp(PP, t1·〈ω1〉) ‖ cp(QQ, t2·〈ω2〉))}

Hiding and renaming. Hiding and renaming are defined in the standard way on the
forward behavior and the compensation behavior, respectively.

Df (PP\X) = D(fp(PP)\X), Ff (PP\X) = F(fp(PP)\X)
Dc(PP\X) = {(s,sc)|∃s1∈tracef (PP)•s=s1\X∧sc∈D(cp(PP, s1)\X)}
Fc(PP\X) = {(s, sc, X)|∃s1∈tracef (PP)•s=s1\X∧(sc, X) ∈ F(cp(PP, s1)\X)}

Similarly, the semantics of renaming is as follows.

Df (PP �R�) = D(fp(PP)�R�), Ff (PP �R�)=F(fp(PP)�R�)
Dc(PP �R�) = {(s, sc)|∃s1∈tracef (PP)•s1 R s∧sc∈D(cp(PP, s1)�R�)}
Fc(PP �R�) = {(s, sc, X)|∃s1∈tracef (PP)•s1 R s∧(sc, X)∈F(cp(PP, s1)�R�)}

Both hiding and renaming are distributive among internal choice. Not like renaming,
hiding is not distributive among external choice. For example, the compensable process
((a;a1)÷b�(a;a2)÷b) \ {a} equals a1 ÷ b � a2 ÷ b.

5 Refinement Theory and Recursion Semantics

We define an order � on the semantic domain of the standard processes, and a partial
order �c on that of the compensable processes. Each of the domains with the respec-
tive order forms a CPO, and their corresponding process operators are monotonic and
continuous. The two orders are linked by the transaction block constructor [PP]. These
form the theoretical foundation for the fixed-point theories of recursive standard and
compensable processes, and for the refinement calculus of cCSP. We refer the reader to
the technical report [10] for the proofs of theorems and laws.

5.1 Refinement of Standard Processes

The order (F1, D1) � (F2, D2) holds for the two FD pairs if F1 ⊇ F2 and D1 ⊇ D2. The
FD refinement of a standard process P1 by a standard process P2 is defined as

P1 � P2 =̂ F(P1) ⊇ F(P2) ∧ D(P1) ⊇ D(P2) (8)

272 Z. Chen, Z. Liu, and J. Wang

It means the refinement P2 is neither more likely to refuse an interaction from the
environment nor more likely to diverge than P1.

Theorem 1. The semantic domain of standard processes is a CPO under the refinement
order �, and div is the bottom (least) element. And the operators of standard processes
are continuous w.r.t. �.

Recursive standard processes. If μ p.F (p) is a constructive standard process, its se-
mantics is the least fixed point of the semantic function [[F]] of F . The semantics can
be calculated, according to Theorem 1, as

⊔
{F n(div) | n ∈ N}, where F 0(div) = div

and F (n+1)(div) = F (F n(div)), and
⊔

S represents the least upper bound of the set S.
For example, assume Σ is {a}, the failures F(μ p. (a; p)) = {(ai, X) | i ∈ N ∧ X ⊆ Ω},
where a0 = 〈〉 and ai+1 = 〈a〉·ai, and the divergences D(μ p. (a; p)) = {}.

5.2 Refinement Order of Compensable Processes

Given two tuples PPi = (Fi, Di, F
c
i , Dc

i), i ∈ {1, 2}, of the semantic domain of com-
pensable processes, we define the order

(F1,D1,F
c
1 ,Dc

1)�c(F2,D2,F
c
2 ,Dc

2) =̂ F1⊇F2∧D1⊇D2∧F c
1⊇F c

2∧Dc
1⊇Dc

2 (9)

A compensable process PP2 is a FD-refinement of PP1, also denoted by PP1 �c PP2,
if their semantics are related by the order �c.

Theorem 2. The semantic domain of compensable processes is a CPO w.r.t. �c and
div ÷ div is the bottom element. And the operators of compensable processes are con-
tinuous w.r.t. �c.

Theorem 3. The two refinement relations �c and � are consistently related.

1. If PP1 �c PP2 then [PP1] � [PP2].
2. Refinement of compensable processes can be constructed from the refinement of

forward or compensation processes.

Q1 � Q2 ⇒ P÷Q1 �c P÷Q2, P1 � P2 ⇒ P1÷Q �c P2÷Q

We thus can reduce refinement of compensable processes to that of standard processes.

Recursive compensable processes. Theorem 2 ensures the existence of the least fixed
point of a recursive compensable process μ pp.FF(pp), which is calculated as follows:⊔
{FFn(div ÷ div) | n ∈ N}. Consider μ pp.(a ÷ b ; pp) for example. Its forward se-

mantics is equal to the semantics of μp.(a ; p), and both the FC and DC sets are empty.

5.3 Laws of Long Running Transactions

The semantic theory provides the basis for proving fundamental laws of programming
of long running transactions. Figure 2 gives some basic laws.

Compensation. The Saga nature of the backward recovery is reflected by the two laws
below, where P , P1 and P2 are assumed not to terminate with an exception terminal.

[P÷Q;throww] = P ;Q, [P1÷Q1;P2÷Q2;throww] = P1;P2;Q2;Q1

Failure-Divergence Refinement of Compensating Communicating Processes 273

Units and zeros

skip;P = P, P ;skip = P, P � throw = P, throw � P = P
skipp;PP = PP, PP ;skipp = PP, throw;P = throw, throww;PP = throww
skip � P=skip, yield � P=yield, stop � P=stop

Basic terminal processes

skip�yield=yield, skip�throw=skip�throw, yield�throw = yield�throw
yield ‖

X

skip = yield, throw ‖
X

skip = throw, throw ‖
X

yield = throw

Distribution laws

[PP�QQ]=[PP] � [QQ], [PP�QQ]=[PP]�[QQ], P÷(Q � R)=P÷Q � P÷R
(P�Q)÷R=(P÷R) � (Q÷R), (P ÷ Q)\X=(P\X ÷ Q\X), [PP\X]=[PP]\X

Fig. 2. Basic laws of long running transactions

Furthermore, the parallel composition enjoys the following laws.

[(P÷Q)‖throww] = P ;Q, P1 ÷ Q1 ‖
X

P2 ÷ Q2 = (P1 ‖
X

P2) ÷ (Q1 ‖
X

Q2)

where P, Q, Pi, Qi, i ∈ {1, 2}, do not diverge and terminate successfully, and with the
same assumption, the following two laws hold.

[(P1÷Q1;P2÷Q2)‖throww] = P1;P2;Q2;Q1

[(P1÷Q1 ‖
X

P2÷Q2);throww] = (P1 ‖
X

P2);(Q1 ‖
X

Q2)

For P1, P2, Q1, Q2 that do not diverge and terminate successfully, the speculative choice
non-deterministically chooses one side to compensate if both succeed, which is

[(P1÷Q1�P2÷Q2);throww] = (P1‖P2);((Q1;Q2) � (Q2;Q1))

Interruption. In a composition of standard processes, the interruption of one pro-
cess by the other does not have priority over other events. That is, if P does not non-
divergently terminate in an yield terminal, i.e. tracet(P)∩Σ�

{?}={}, we have

throw ‖ (yield;P) = throw � (P ;throw)

A compensable process can be interrupted by yieldd to yield to an interruption from
the environment, but a compensable process will not be interrupted if no yieldd is used
(cf. the laws of Compensation). We thus have the following two laws, in which all the
standard processes will not diverge and are assumed to terminate successfully.

[(yieldd;P1÷Q1;yieldd;P2÷Q2)‖throww] = skip�(P1;Q1)�(P1;P2;Q2;Q1)
[(yieldd;P1÷Q1)‖(yieldd;P2÷Q2)‖throww] = skip�(P1;Q1)�(P2;Q2)�

((P1‖P2);(Q1‖Q2))

6 Case study

An Online Travel Agency provides Web Services for booking air tickets, reserving hotel
rooms and renting cars. It interacts with business partners including Travelers, Airlines,
Hotels, Car Rental Centers and Banks. The business processes are described below.

274 Z. Chen, Z. Liu, and J. Wang

A traveler makes a request to the Agency for arranging a travel. After receiving the
request, the Agency processes it and then starts the air ticket booking, hotel reservation
and car rental processes in parallel. Assume the Agency interacts with two airlines to get
air tickets. If tickets are available from both airlines, the Agency non-deterministically
chooses one. However, it is often that the Agency has to repeatedly request for the car
rental service from the center at the destination before a car is available. If all the three
processes succeed the Agency sends the booking information to the traveler and waits
for her confirmation. After receiving the confirmation, the Agency makes a request to
the bank, according to the information given by the traveler, for the payment service. If
this is successful, the Agency sends the completed booking to the traveler, including the
reservation details. If an exception occurs in any of the above steps, the whole business
process will be recovered by compensating the steps that have been carried successfully,
e.g. canceling the air tickets, room reservations or car rentals, and the Agency sends a
letter to the traveler for an apology. The alphabet Σ of the processes is

Σ = {reqTravel,letter,reqHotel,okRoom,noRoom,
cancelHotel,bookAir1,okAir1,noAir1,cancelAir1,
bookAir2,okAir2,noAir2,cancelAir2,reqCar,noCar,
hasCar,cancelCar,confirm,agree,disAgree,checkCredit,
valid,inValid,payment,refund,pValid,pInValid,result}

The processes Agency, Air1, Air2, Car, Hotel and Bank are as follows.

Agency = (reqTravel÷ letter);Res;
(confirm;(agree � (disAgree;throw))) ÷ skip;
(checkCredit;(valid � (inValid;throw))) ÷ skip;
(payment÷ refund);(pValid� (pInValid;throw)) ÷ skip;
result÷ skip

Res = (reqHotel;(okRoom�(noRoom;throw)))÷cancelHotel‖
((yieldd;(bookAir1;(okAir1�(noAir1;throw)))÷cancelAir1)�
(yieldd;(bookAir2;(okAir2�(noAir2;throw)))÷cancelAir2))‖
μ pp.(reqCar÷skip;((noCar÷skip);pp)�(hasCar÷cancelCar)))

Hotel = reqHotel÷skip;(okRoom÷cancelHotel�(noRoom÷skip;throww))
Air1 = bookAir1÷skip;(okAir1÷cancelAir1�(noAir1÷skip;throww))
Air2 = bookAir2÷skip;(okAir2÷cancelAir2�(noAir2÷skip;throww))
Car = μ pp.(reqCar÷ skip;((noCar÷skip);pp)�(hasCar÷cancelCar)))
Bank = (checkCredit;(valid � (inValid;throw))) ÷ skip ;

(payment÷refund);(pValid�(pInValid;throw))÷skip

The global business process (GBP) is the transaction block of the synchronized parallel
composition of the above five processes.

GBP = [(((((Agency ‖
X1

Hotel) ‖
X2

Air1) ‖
X3

Air2) ‖
X4

Car) ‖
X5

Bank)], where

X1 = {reqHotel, okRoom,noRoom,cancelHotel}
X2 = {bookAir1, okAir1,noAir1,cancelAir1}
X3 = {bookAir2, okAir2,noAir2,cancelAir2}
X4 = {reqCar,noCar,hasCar,cancelCar}
X5 = {checkCredit,valid,inValid,payment,refund,pValid,pInValid}

Failure-Divergence Refinement of Compensating Communicating Processes 275

Use of laws. GBP is a complex process. We thus hide some events in the forward be-
havior to get an abstract view, denoted by ABP =̂ GBP \ X, where

X= (X1 ∪ X2 ∪ X3 ∪ X4 ∪ X5 ∪ Y) \ Z, where
Y = {confirm,agree, disAgree,result}
Z= {noCar, payment, refund,cancelHotel,cancelAir1,

cancelAir2,cancelCar}

By the laws, we can transform the process ABP to the equivalent process ABP1 below.

ABP1 = reqTravel÷ letter;Cancel;PayRefund
Cancel = CH ‖ CA ‖ CC
CH = (throw � skip) ÷ cancelHotel
CA = CA1� CA2
CA1 = yieldd;((throw � skip) ÷ cancelAir1)
CA2 = yieldd;((throw � skip) ÷ cancelAir2)
CC = μ pp. ((noCar÷ skip;pp) � (skip÷ cancelCar))
PayRefund = (throww � skipp);payment÷ refund;(throww � skipp)

Analysis. The formal theory, including the formal semantics and laws, can be used for
rigorous analysis of progress GBP. For example, we can show the following results.

– GBP does not deadlock, may diverge if the car rental service cannot provide a car
for the Agency. In that case events reqCar and noCar will be performed for an
infinite number of times and they are in set X4 of synchronized events.

– There are five different cases when an exception is raised: 1). no ticket from the
airlines, 2). no room in the hotel, 3). the traveler refuses the offer, 4). credit card
checking fails, and 5). authorization of payment fails. In any case, there are different
cases for recovery because of the parallel composition in the reservation process.

– When there is no divergence but an exception, the compensation in GBP is
refund � skip;
(cancelAir1�cancelAir2�skip)‖(cancelHotel�skip)‖cancelCar;
letter

Therefore, event letter is the last action to be performed in the compensation
when an exception occurs. When an exception is raised after the air ticket booking,
e.g. when the traveler sends her disagreement, either cancelAir1 or cancelAir2
may be performed. The ticket booking can also be interrupted by an exception
outside the airlines, Air1 and Air2, e.g. when no room is available in the hotel.

7 Conclusion

The full theory of CSP [17] is extended for specification and verification of LRTs.
The extended theory of compensating CSP supports non-deterministic choice, parallel
composition with synchronization and recursion. It allows us to handle problems of
deadlock, livelock and nested LRTs. Its FD semantic theory also supports LRT program
design by refinement, and transformations of specifications through algebraic laws.

The theory contributes to improving fundamental understanding of LRTs, and to un-
derpinning the development of valid tool support to design and verification of LRTs.

276 Z. Chen, Z. Liu, and J. Wang

From the way that the theory is developed, it is feasible to extend FDR to support our
extended theory of cCSP. In addition, automated reasoning about LRTs can be devel-
oped based on our theory by following the ideas in the prototype theorem prover in [16].
Tool development along these two directions is part of our future research agenda.

Acknowledgement. We thank the referees for their valuable comments; our colleagues
C. Bertolini, L. Chen, A.P. Ravn and H. Wang for the discussions and comments. The
2nd author acknowledges the support of NSFC 61073022 to his visit to Miaomiao
Zhang at Tongji University in November 2010 when part of the research was done.

References

1. Bocchi, L., Laneve, C., Zavattaro, G.: A calculus for long-running transactions. In: Najm, E.,
Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 124–138. Springer,
Heidelberg (2003)

2. Bruni, R., Butler, M.J., Ferreira, C., Hoare, C.A.R., Melgratti, H.C., Montanari, U.: Com-
paring two approaches to compensable flow composition. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 383–397. Springer, Heidelberg (2005)

3. Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for compensations in flow
composition languages. In: Proc. POPL 2005, pp. 209–220. ACM Press, New York (2005)

4. Butler, M.J., Ferreira, C.: An operational semantics for StAC, a language for modelling
long-running business transactions. In: De Nicola, R., Ferrari, G.-L., Meredith, G. (eds.)
COORDINATION 2004. LNCS, vol. 2949, pp. 87–104. Springer, Heidelberg (2004)

5. Butler, M.J., Ferreira, C., Ng, M.Y.: Precise modelling of compensating business transactions
and its application to BPEL. J. UCS 11(5), 712–743 (2005)

6. Butler, M.J., Hoare, C.A.R., Ferreira, C.: A trace semantics for long-running transactions.
In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential Processes.
LNCS, vol. 3525, pp. 133–150. Springer, Heidelberg (2005)

7. Butler, M., Ripon, S.: Executable semantics for compensating CSP. In: Bravetti, M., Kloul,
L., Tennenholtz, M. (eds.) EPEW/WS-EM 2005. LNCS, vol. 3670, pp. 243–256. Springer,
Heidelberg (2005)

8. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services. In: Necula,
G.C., Wadler, P. (eds.) POPL, pp. 261–272. ACM, New York (2008)

9. Chen, Z., Liu, Z.: An Extended cCSP with Stable Failures Semantics. In: Cavalcanti, A.,
Deharbe, D., Gaudel, M.-C., Woodcock, J. (eds.) ICTAC 2010. LNCS, vol. 6255, pp. 121–
136. Springer, Heidelberg (2010)

10. Chen, Z., Liu, Z., Wang, J.: A theory of failure-divergence refinement for long running trans-
actions. Technical Report 447, UNU-IIST (2011), http://www.iist.unu.edu/www/
docs/techreports/reports/report447.pdf

11. Fischer, J., Majumdar, R.: Ensuring consistency in long running transactions. In: Proc.
ASE 2007, pp. 54–63. ACM, New York (2007)

12. Garcia-Molina, H., Salem, K.: SAGAS. In: Proc. SIGMOD 1987, pp. 249–259. ACM Press,
New York (1987)

13. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann,
San Francisco (1993)

14. Little, M.C.: Transactions and web services. Commun. ACM 46(10), 49–54 (2003)

http://www.iist.unu.edu/www/docs/techreports/reports/report447.pdf
http://www.iist.unu.edu/www/docs/techreports/reports/report447.pdf

Failure-Divergence Refinement of Compensating Communicating Processes 277

15. Microsoft. Biztalk server, http://www.microsoft.com/biztalk/default.asp
16. Ripon, S., Butler, M.J.: PVS embedding of cCSP semantic models and their relationship.

Electr. Notes Theor. Comput. Sci. 250(2), 103–118 (2009)
17. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR, Upper Saddle

River (1997)
18. Roscoe, A.W.: The three platonic models of divergence-strict CSP. In: Fitzgerald, J.S.,

Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 23–49. Springer,
Heidelberg (2008)

http://www.microsoft.com/biztalk/default.asp

Termination without � in CSP

Steve Dunne

School of Computing
University of Teesside, Middlesbrough, TS1 3BA, UK

s.e.dunne@tees.ac.uk

Abstract. We recast each of the three standard denotational models of
CSP, namely Traces, Stable Failures and Failures-Divergences, by replac-
ing the �pseudo-event in each of them by an explicit representation of
the termination traces of a process. The resulting recast models have
simpler axiomatisations than their respective original counterparts and
admit formulations of the compositional semantics of the basic processes
and operators of CSP which are arguably clearer and therefore more in-
tuitively appealing than those in the original models. Furthermore, the
recast models facilitate the resolution of certain longstanding problem-
atic issues, such as the offering of termination in an external choice along-
side other behaviours, without resort to any incongruous special-casing
which might compromise their regularity.

1 Introduction

Communicating Sequential Processes or CSP [5,11] is a well-known process al-
gebra typifying the event-based approach to concurrency, in which a process is
characterised entirely by its externally observable possible patterns of interac-
tion with its environment via shared primitive events drawn from a specified
alphabet of possible such events. The concurrent and reactive aspects of CSP
are by now surely widely appreciated, and yet –ironically, despite its name– the
sequential aspect of CSP is probably still less generally understood. Perhaps this
isn’t surprising given that introductory presentations of CSP tend to defer any
consideration of successful process termination and the sequential composition
of processes to a point where when these topics are finally touched on they come
across as something of an afterthought.

In this paper we attempt to redress the balance somewhat by focusing almost
entirely on the subject of termination of CSP processes. Our aim is to dispense al-
together with the problematic pseudo-event � (pronounced “tick” or “success”)
which has traditionally been incorporated into the semantics of CSP to signify
the termination of processes and define their sequentially composed behaviour.
To this end we will recast each of the three standard denotational models of
CSP, namely the Traces, Stable Failures and Failures-Divergences models, by re-
placing the � pseudo-event in each of them by an explicit representation of the
termination traces of a process. We will show how the resulting recast models
all have simpler axiomatisations than their respective original counterparts and

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 278–292, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Termination without � in CSP 279

admit formulations of the compositional semantics of the basic processes and op-
erators of CSP which are arguably clearer and therefore more intuitively appeal-
ing than their corresponding formulations in the original models. Furthermore
the recast models provide an appropriate context in which certain longstand-
ing problematic issues, such as the offering of termination in an external choice
alongside other behaviours, are naturally resolved without the need to resort to
incongruous special-casing which compromises the regularity of the model.

At the same time we will construct isomorphisms –that is, order-preserving
bijections– between each new model and its standard counterpart. These ensure
that the new models have precisely the same interpretive power as their standard
counterparts in giving meanings to the valid process expressions of the CSP
language.

The event alphabet. To simplify our presentation we will assume that all the
CSP processses we encounter share the same event alphabet Σ unless explicitly
stated otherwise. We denote the set of all finite traces of events in Σ by Σ∗ and
infinite traces by Σω. We will use Σ� as an abbreviation for Σ ∪{�}. Likewise,
we will use Σ∗� as an abbreviation for Σ∗ ∪ {s
 〈�〉 | s ∈ Σ∗}: that is, the set
of finite traces Σ∗ of regular events together with the further traces obtained by
appending � to each of them.

Compositions of traces. If s and t are traces in Σ∗ then s ||| t denotes the
set of all interleavings of s and t . Also, given a subset X ⊆ Σ of regular events
then s ‖

X

t is the interface parallel composition of s and t over X : that is, the set

of modified interleavings of s and t after synchronisation on the (shared) events
of X . Indeed s ||| t is equivalent to the empty-interface parallel composition
s ‖
{}

t . Formal definitions of these trace operators can be found in [11, chap. 2].1

2 A Selective Overview of CSP

We assume that the reader is already acquainted with CSP as a specification lan-
guage for concurrent communicating processes, so in this section we will merely
air some of our operational intuitions about CSP processes and briefly review
the standard denotational models of CSP. We hope this may be helpful in giving
some intuitive insight into the effectiveness of the recast denotational models
that we shall later present.

2.1 Deadlock, Divergence and Termination

From an operational perspective it is quite possible for a CSP process to be
immortal in the sense that it carries on interacting with its environment for ever
by successively engaging in and/or refusing the communication events which

1 Note that for us these trace operators need no modification as given in [11, chap. 6]
to accommodate �, since the traces we will compose are always �-free.

280 S. Dunne

that environment offers, albeit that such everlasting interactions of a process
might well dwindle in some cases to the living death of deadlock in which the
process thereafter consistently refuses to engage in any event whatsoever. The
significant point here, though, is that even a deadlocked process continues to
exist despite its moribund condition.

On the other hand, it is also quite possible for a CSP process to suffer a genuine
demise and thereby altogether cease to exist. This can occur in two ways: a
process may diverge or it may successfully terminate. Divergence is irrecoverable
in the sense that if it occurs it will fatally infect any larger system of which
the divergent process is part. In contrast, successful termination is benign in
that a terminating process thereby passes the processing baton to its sequential
successor within the larger system of which both processes form part.

2.2 The Standard CSP Semantic Models T , F and N

The three most prominent semantic models in the CSP literature are the Traces
model T , the Stable-Failures model F and the Failures-Divergences model N
[11]. Each of these induces its own particular congruence over process terms of
the CSP language, a congruence being an equivalence relation which is composi-
tional with respect to the language operators. Each of these congruences is fully
abstract with respect to some characteristic simple but significant operational
test which usefully distinguishes processes in some way.

– Traces (T). In this model each process P is denoted simply by its set
traces(P) of finite traces of events in which it may engage. This model com-
pletely ignores divergence, so much so that it equates the immediately di-
vergent process DIV with the immediately deadlocking process STOP. It is
adequate for reasoning about safety, i.e. whether any given event can occur,
but not liveness, i.e. in what circumstances any given event must occur.

– Stable Failures (F). In this model each process P is characterised by its
finite traces traces(P) and its stable failures, failures(P) . It is theoretically
and practically significant as the weakest congruence which preserves dead-
lock [13]. This model also largely ignores divergence, although the presence
of the latter can sometimes be inferred from the lack of any stable failure
associated with a particular trace of the process. For example, in this model
we can distinguish between STOP and DIV since although these have the
same traces, they have different stable-failure relations.

– Failures-Divergences (N). In this model each finitely nondeterministic
process P is characterised by its divergences-augmented failures relation
failures⊥(P), and its extension-closed set of divergences divergences(P) . N
is the de facto standard semantic model for finitely nondeterministic CSP.
It takes a drastic view of divergence which regards a process as utterly un-
predictable, and therefore capable of any other behaviour whatsoever, once
divergence becomes a possibility. Thus N interprets DIV as the least deter-
ministic of all processes, immediately capable of any behaviour whatsoever.

Termination without � in CSP 281

2.3 Infinite Traces

As has just been noted, the model N can only satisfactorily distinguish between
(at most)-finitely nondeterministic CSP processes. If unboundedly nondetermin-
istic processes are admitted into consideration then in order to satisfactorily
distinguish between these N has to be extended by introducing a further com-
ponent comprising the infinite traces of each process. Of course, a CSP process
doesn’t have to be unboundedly nondeterministic in order to possess infinite
traces, but the infinite traces of an at-most finitely nondeterministic CSP pro-
cess can always be inferred from its finite ones, so don’t have to be explicitly
represented in a model which confines its attention to such processes. Since the
infinite traces of a process are ipso facto irrelevant in regard to its terminating
behaviour, we do not consider them any further in this paper.

2.4 Process Refinement

In each of the models T , F and N the refinement relation between processes
is modelled by reverse containment of the corresponding components of their
denotations in that model. For example, a process P is refined in F by a pro-
cess Q , written formally as P �F Q , if and only if traces(Q) ⊆ traces(P) and
failures(Q) ⊆ failures(P) .

The refinement relations of T and F make these models complete lattices,
which allows us to give a recursive CSP process expression a greatest-fixed-
point semantics in each of them. On the other hand N ’s refinement relation
only induces a complete partial order (cpo) on processes, which obliges us to
interpret a recursive CSP process expression in N as a least fixed point.

2.5 Denoting Termination

In all three models T , F and N the successful termination of a process is
represented by the special signal event �, pronounced “tick” or “success”, by
which the process communicates to its environment that it has just terminated,
the � being duly appended to the trace of events in which the process has
engaged. The problem here is that � is quite different from all the other events
in the alphabet of a process.

For example, unlike those other events it is not really a mutual interaction
between the process and its environment since it doesn’t require the active co-
operation of the environment for it to occur. Nor does it seem to be meaningful
for a process to offer its environment a choice between � and any given ordinary
event of its alphabet, or for � to occur other than as the last event in a trace.
This has the unfortunate effect of considerably complicating the axiomatisations
of the three models with the need for special axioms constraining the role of �
in those models. It similarly complicates the semantics in each of the models
of many of the CSP operators. A number of the problems associated with the
existing treatment of termination in the Failures-Divergences semantic model of
CSP are identified in detail by Howells and d’Inverno [7].

282 S. Dunne

Intriguingly, Roscoe does mention in a footnote in [11, p144] the possibility of
including the termination traces as a separate component of the representation
of a process in N , although he seems to suggest this not as an alternative to the
use of � in the model, but rather as a way of augmenting � so as to avoid the
need to record refusals once a process has communicated a � . Roscoe’s remark
is nevertheless noted by Josephs [8], who incorporates “success traces” in his
Traces/Successes model for dataflow sequential processes in order to facilitate
his definition of sequential composition of such processes. He is obliged to do so
because, as he explains, the standard CSP approach of modelling termination
by the special event � would not work for his Data-Flow Sequential Processes.

3 Recasting the Denotational Models of CSP

In this section and the two succeeding ones we take the three standard denota-
tional models of CSP and recast each of them in turn by eliminating
the problematic special signal event � in favour of an explicit representation
of the terminating traces of each process. Our aim in doing so is not to enhance
the expressive power of any of these three models, but rather simply to clarify
their respective existing expressive capabilities. To distinguish them from their
standard counterparts T , F and N we will refer to the recast models respec-
tively as Tm, Fm and Nm, the subscript m in each case signifying that termination
traces are denoted explicitly therein.

3.1 The Model Tm

In the recast Traces model Tm each process P is represented by the pair

(trs(P), tms (P))

where trs(P) ⊆ Σ∗ and tms(P) ⊆ Σ∗. Here trs(P) is the set of all possible traces
of regular events in which P may engage, while tms(P) is the set of termination
traces of P : that is, the (possibly empty) subset of trs(P) comprising just those
traces after engaging in any of which P may then immediately terminate.

The components trs(P) and tms(P) must satisfy the following two axioms:

– T1. trs(P) is non-empty and prefix-closed.
– T2. tms(P) ⊆ trs(P) .

Since our next semantic model Fm is a refinement of Tm, we postpone considera-
tion of how to calculate the Tm semantics of individual CSP process expressions
until section 4.2.

3.2 The Isomorphism between Tm and T
Given the denotation of a process P in Tm we can extract its denotation in T
as follows:

traces(P) = trs(P) ∪ {s
 〈�〉 | s ∈ tms(P)} .

Termination without � in CSP 283

Conversely, given its denotation in T we can extract the denotation of P in Tm

as follows:

trs(P) = traces(P) ∩ Σ∗

tms(P) = {s | s
 〈�〉 ∈ traces(P)} .

3.3 Persistent Failures versus Stable Failures

In order to obtain apropriate intuitive operational insights into our next recast
models Fm and Nm , it is first necessary to introduce the concept of a persistent
failure which we will now describe.

From the operational viewpoint, an internal transition can cause a CSP pro-
cess unilaterally to withdraw an offer to engage in some specific event. A CSP
process is said to be stable if it is in a state where it can make no internal
progress via any internal transition. [12, p174]. Thus, there is no danger of a sta-
ble process withdrawing an offer previously made to engage in an event owing
to an internal transition. By extension, a stable failure of a CSP process is an
observation of the form s �→ X , where s ∈ Σ∗� and X ⊆ Σ�, denoting that
the process has been observed to engage in the trace of events s and thereby
reach a stable state in which it refused all the events in X . Unfortunately, this
intuitively reassuring notion of stability is compromised by the possibility of ter-
mination, which is associated in the standard CSP semantic models T , F and
N with the occurrence of the pseudo-event � rather than an internal transition.
This means that a nominally stable process which can terminate immediately
may effectively withdraw an offer to engage in some specified event simply by
unilaterally electing to terminate instead.

The problem is addressed in both F and N by the rather heavy-handed
resort of allowing a process to refuse any set of regular events of its alphabet
whenever it is immediately capable of terminating. Unfortunately, this really
only exchanges one problem for another, since such artificially contrived refusals
are not actually detectable by the process’s environment, in the sense that the
environment cannot thereby inhibit the process’s further progress as it can with
a normal refusal.

We provide a surer solution to the problem by replacing the notion of a stable
state by the stronger one of a persistent state. A CSP process is said to be
in a persistent state if it can neither make internal progress via any internal
transition nor terminate. The only way, therefore, that a process can escape from
a persistent state is by engaging in one of the regular events of its alphabet, which
of course requires the co-operation of its environment. The notion of a persistent
state leads on naturally to that of a persistent failure. A persistent failure of a
CSP process is an observation of the form s �→ X , where s ∈ Σ∗ and X ⊆ Σ,
denoting that the process has been observed to engage in the trace of events s
and thereby reach a persistent state in which it is refusing all the events in X
offered by the environment. The significant point here is that once such a state is
reached it must persist as long as the environment dictates, because the process
cannot extricate itself unilaterally by terminating.

284 S. Dunne

4 The Model Fm

In the recast Stable Failures model Fm
2 each CSP process P is represented by

the triple

(trs(P), tms (P), fails(P))

where trs(P) ⊆ Σ∗, tms(P) ⊆ Σ∗ and fails(P) ⊆ Σ∗ × P Σ . Here trs(P) and
tms(P) are the same as in Tm, while fails(P) is P ’s persistent-failures relation.

The components trs(P), tms(P) and fails(P) must satisfy axioms T1 and T2
as for Tm, plus the following three axioms:

– PF1. dom(fails(P)) ⊆ trs(P) .

– PF2. s �→ X ∈ fails(P) ∧ Y ⊆ X ⇒ s �→ Y ∈ fails(P) .

– PF3. s �→ X ∈ fails(P) ∧ Y ⊆ Σ ∧ (∀ a | a ∈ Y . s
 〈a〉 /∈ trs(P))
⇒ s �→ X ∪Y ∈ fails(P) .

4.1 The Isomorphism between Fm and F

Given the denotation of a process P in Fm , we can extract its denotation in F
as follows:

traces(P) = trs(P) ∪ {s
 〈�〉 | s ∈ tms(P)}

failures(P) = fails(P) ∪ {s �→ X ∪ {�} | s �→ X ∈ fails(P)}
∪ {s �→ X | s ∈ tms(P) ∧ X ⊆ Σ }
∪ {s
 〈�〉 �→ X | s ∈ tms(P) ∧ X ⊆ Σ� } .

Conversely, given P ’s denotation in F , we can extract that of it in Fm thus:

trs(P) = traces(P) ∩ Σ∗

tms(P) = {s | s
 〈�〉 ∈ traces(P)}

fails(P) = {s �→ X | s ∈ trs (P) ∧ s �→ X ∪ {�} ∈ failures(P)} .

4.2 Calculating the Fm Semantics of Processes

Here we show how to calculate the Fm semantics of basic CSP processes and
operators. Since the semantics is compositional, this permits us in principle to
calculate the Fm semantics of an arbitrarily complicated CSP process expression.
Note that since the first two components trs (P) and tms(P) of the denotation
of a process P here in Fm also comprise its denotation in Tm , this also shows
how to calculate the Tm semantics of any CSP process expression.

2 Since F ’s stable failures are superseded in Fm by persistent failures, perhaps we
could more accurately call Fm our Persistent Failures model.

Termination without � in CSP 285

Primitive processes. We note that of the three primitive CSP processes
STOP, SKIP and DIV, only STOP has any persistent failures at all. We also note
that STOP and DIV are only distinguished by their persistent failures, and hence
are identified in the T model, exactly as we would expect.

trs(STOP) = {〈〉} trs(SKIP) = {〈〉} trs (DIV) = {〈〉}
tms(STOP) = {} tms(SKIP) = {〈〉} tms(DIV) = {}
fails(STOP) = {〈〉} × P Σ fails(SKIP) = {} fails(DIV) = {}

Sequential composition. Since the termination traces of processes are ex-
plicitly recorded in Fm , this yields a pleasingly simple semantics of the sequential
composition (P ; Q) of processes P and Q without the need to hide an interme-
diate � occurring between P and Q as is necessary in F :

trs(P ; Q) = trs(P) ∪ {s
 t | s ∈ tms(P) ∧ t ∈ trs(Q)}
tms(P ; Q) = {s
 t | s ∈ tms(P) ∧ t ∈ tms(Q)}
fails(P ; Q) = fails(P) ∪ {s
 t �→ X | s ∈ tms(P) ∧ t �→ X ∈ fails(Q)}

Internal and external choice. Both these operators have straightforward
semantics in Fm . It can be seen that they differ only the calculation of their
initial persistent failures, i.e. those associated with the empty trace 〈〉 :

trs(P � Q) = trs(P) ∪ trs(Q)
tms(P � Q) = tms(P) ∪ tms(Q)
fails(P � Q) = fails(P) ∪ fails(Q)

trs(P � Q) = trs(P) ∪ trs(Q)
tms(P � Q) = tms(P) ∪ tms(Q)
fails(P � Q) = (fails(P) ∩ fails(Q))

∪ {s �→ X | s �= 〈〉 ∧ s �→ X ∈ fails(P) ∪ fails(Q)}

Interleaving. The traces of the interleaved composition (P ||| Q) of processes
P and Q are simply the interleaved traces of P and Q :

trs(P ||| Q) = {u | s ∈ trs(P) ∧ t ∈ trs(Q) ∧ u ∈ s ||| t } .

Modelling so-called distributed termination, the termination traces of (P ||| Q)
are simply the interleaved termination traces of P and Q :

tms(P ||| Q) = {u | s ∈ tms(P) ∧ t ∈ tms(Q) ∧ u ∈ s ||| t } .

The persistent failures of (P ||| Q) comprise those interleaved pairs of persistent
failures of P and Q which share a common refusal set, plus the persistent failures
of either process interleaved with the termination traces of the other:

fails (P ||| Q) = {u �→ X | s �→ X ∈ fails (P) ∧ t �→ X ∈ fails (Q) ∧ u ∈ s ||| t }
∪ {u �→ X | s �→ X ∈ fails (P) ∧ t ∈ tms(Q) ∧ u ∈ s ||| t }
∪ {u �→ X | s ∈ tms (P) ∧ t �→ X ∈ fails (Q) ∧ u ∈ s ||| t } .

286 S. Dunne

Interface parallel composition. The traces and termination traces of the
interface parallel composition (P ‖

X

Q) of processes P and Q are defined similarly

to their pure interleaving counterparts above, except of course that the pairs of
traces involved are now interface-parallel-composed rather than just interleaved:

trs(P ‖
X

Q) = {u | s ∈ trs(P) ∧ t ∈ trs(Q) ∧ u ∈ s ‖
X

t }

tms(P ‖
X

Q) = {u | s ∈ tms(P) ∧ t ∈ tms(Q) ∧ u ∈ s ‖
X

t } .

The persistent failures of (P ‖
X

Q) are defined similarly to those of (P ||| Q),

except that the refusal sets of interface-parallel-composed pairs of failures of P
and Q now only have to coincide in their portions outside the interface set X :

fails (P ‖
X

Q) =

{u �→ Y ∪ Z | Y \ X = Z \ X ∧ s �→ Y ∈ fails (P) ∧ t �→ Z ∈ fails (Q) ∧ u ∈ s ‖
X

t }

∪ {u �→ Y | s �→ Y ∈ fails (P) ∧ t ∈ tms(Q) ∧ u ∈ s ‖
X

t }

∪ {u �→ Y | s ∈ tms(P) ∧ t �→ Y ∈ fails (Q) ∧ u ∈ s ‖
X

t } .

In fact, pure interleaving is really just interface parallel composition with an
empty interface: that is to say, (P ||| Q) = (P ‖

{}
Q) .

5 The Model Nm

In the recast Failures-Divergences model Nm each CSP process P is represented
by the triple

(fails⊥(P) , tms⊥(P) , divs(P))

where fails⊥(P) ⊆ Σ∗ × P Σ, tms⊥(P) ⊆ Σ∗ and divs(P) ⊆ Σ∗ . Here divs(P) is
the set of extension-closed divergences of P : that is, the extension-closure of the
set of traces of regular events after engaging in which P may then immediately
diverge; tms⊥(P) is the set of terminating traces of P augmented by divs(P) ;
and fails⊥(P) is the divergence-augmented persistent-failures relation of P : it
thus comprises all the persistent failures of P together with all of divs(P)×P Σ .
We define the convenient abbreviation trs⊥(P)3, where

trs⊥(P) =df dom(fails⊥(P)) ∪ tms⊥(P) .

The axioms for Nm are as follows:

– F1. trs⊥(P) is non-empty and prefix-closed.
– F2. s �→ X ∈ fails⊥(P) ∧ Y ⊆ X ⇒ s �→ Y ∈ fails⊥(P) .
– F3. s �→ X ∈ fails⊥(P) ∧ Y ⊆ Σ ∧ (∀ a | a ∈ Y . s
 〈a〉 /∈ trs⊥(P))

⇒ s �→ X ∪ Y ∈ fails⊥(P) .
– D1. divs(P) is extension-closed.
– D2. s ∈ divs(P) ∧ X ⊆ Σ ⇒ s ∈ tms⊥(P) ∧ s �→ X ∈ fails⊥(P) .

3 But note that trs⊥(P) is not a primary component of the Nm semantics of P .

Termination without � in CSP 287

5.1 The Isomorphism between Nm and N
Given the denotation of a process P in Nm we can extract its denotation in N
as follows:

divergences(P) = divs(P) ∪ {s
 〈�〉 | s ∈ divs(P)}
failures⊥(P) = fails⊥(P) ∪ {s �→ X ∪ {�} | s �→ X ∈ fails⊥(P)}

∪ {s �→ X | s ∈ tms⊥(P) ∧ X ⊆ Σ }
∪ {s
 〈�〉 �→ X | s ∈ tms⊥(P) ∧ X ⊆ Σ� } .

Conversely, we can extract P ’s denotation in Nm from that of it in N thus:

divs(P) = divergences(P) ∩ Σ∗

tms⊥(P) = {s | s
 〈�〉 ∈ dom(failures⊥(P))}
fails⊥(P) = {s �→ X | s ∈ Σ∗ ∧ s �→ X ∪ {�} ∈ failures⊥(P)} .

5.2 Calculating the Nm Semantics of Processes

The Nm semantics of CSP process expressions are complicated by the need to
incorporate the effect of a process’s divergences, but otherwise their construction
follows similar principles to those we have already seen for Fm in Section 4.2.
We therefore give the following semantic formulations in Nm without further
comment:

Primitive processes

divs(STOP) = {} divs (SKIP) = {} divs(DIV) = Σ∗

tms⊥(STOP) = {} tms⊥(SKIP) = {〈〉} tms⊥(DIV) = Σ∗

fails⊥(STOP) = {〈〉} × P Σ fails⊥(SKIP) = {} fails⊥(DIV) = Σ∗ × P Σ

Sequential composition

divs(P ; Q) = divs(P) ∪ {s
 t | s ∈ tms⊥(P) ∧ t ∈ divs(Q)}
tms⊥(P ; Q) = {s
 t | s ∈ tms⊥(P) ∧ t ∈ tms⊥(Q)} ∪ divs (P)

fails⊥(P ; Q) = fails⊥(P) ∪ {s
 t �→ X | s ∈ tms⊥(P) ∧ t �→ X ∈ fails⊥(Q)}

Internal and external choice

divs(P � Q) = divs(P) ∪ divs(Q)
tms⊥(P � Q) = tms⊥(P) ∪ tms⊥(Q)
fails⊥(P � Q) = fails⊥(P) ∪ fails⊥(Q)

divs(P � Q) = divs(P) ∪ divs(Q)
tms⊥(P � Q) = tms⊥(P) ∪ tms⊥(Q)
fails⊥(P � Q) = (fails⊥(P) ∩ fails⊥(Q))

∪ {s �→ X | s �= 〈〉 ∧ s �→ X ∈ fails⊥(P) ∪ fails⊥(Q)}
∪ {〈〉 �→ X | 〈〉 ∈ divs(P) ∪ divs(Q) ∧ X ⊆ Σ }

288 S. Dunne

Interleaving

divs(P ||| Q) =
{u � v | s ∈ trs⊥(P) ∧ t ∈ trs⊥(Q) ∧ (s ∈ divs(P) ∨ t ∈ divs(Q)) ∧ u ∈ s ||| t ∧ v ∈ Σ∗ }

tms⊥(P ||| Q) = {u | s ∈ tms⊥(P) ∧ t ∈ tms⊥(Q) ∧ u ∈ s ||| t } ∪ divs(P ||| Q)

fails⊥(P ||| Q) = {u �→ X | s �→ X ∈ fails⊥(P) ∧ t �→ X ∈ fails⊥(Q) ∧ u ∈ s ||| t }
∪ {{u �→ X | s �→ X ∈ fails⊥(P) ∧ t ∈ tms⊥(Q) ∧ u ∈ s ||| t }
∪ {{u �→ X | s ∈ tms⊥(P) ∧ t �→ X ∈ fails⊥(Q) ∧ u ∈ s ||| t }
∪ (divs(P ||| Q)× P Σ)

Interface parallel composition

divs(P ‖
X

Q) =

{u � v | s ∈ trs⊥(P) ∧ t ∈ trs⊥(Q) ∧ (s ∈ divs(P) ∨ t ∈ divs(Q)) ∧ u ∈ s ‖
X

t ∧ v ∈ Σ∗}

tms⊥(P ‖
X

Q) = {u | s ∈ tms⊥(P) ∧ t ∈ tms⊥(Q) ∧ u ∈ s ‖
X

t } ∪ divs(P ‖
X

Q)

fails⊥(P ‖
X

Q) =

{u �→ Y ∪ Z | Y \X = Z \X ∧ s �→ Y ∈ fails⊥(P) ∧ t �→ Z ∈ fails⊥(Q) ∧ u ∈ s ‖
X

t }

∪ {u �→ Y | s �→ Y ∈ fails⊥(P) ∧ t ∈ tms⊥(Q) ∧ u ∈ s ‖
X

t }

∪ {u �→ Y | s ∈ tms⊥(P) ∧ t �→ Y ∈ fails⊥(Q) ∧ u ∈ s ‖
X

t }

∪ (divs(P ‖
X

Q)× P Σ)

6 Termination and External Choice

An external choice of the form P � SKIP has always been regarded in the CSP
literature as problematic because, as Roscoe [11, p140] says,

.....the concept of offering the environment the choice of the process
terminating or not is both strange in iself, and fits most uneasily with the
principle that � is something a process signals to say it has terminated.

Hoare [5] originally banned such choices altogether, while Roscoe introduces his
special �-SKIP resolve rule [11, p141] to accommodate them:

P � SKIP = (P � SKIP) � SKIP .

This is reflected in Roscoe’s denotational semantics of F by the incorporation
of the ad hoc component

{〈〉 �→ X | X ⊆ Σ ∧ 〈�〉 ∈ traces(P) ∪ traces(Q)}

in his definition of failures(P � Q) [11, p210], and in his denotational semantics
of N by the incorporation of the corresponding component

{〈〉 �→ X | X ⊆ Σ ∧ 〈�〉 ∈ traces⊥(P) ∪ traces⊥(Q)}

Termination without � in CSP 289

in his definition of failures⊥(P � Q) [11, p198]. Schneider [12], on the other hand,
elects not to special-case external choices such as P � SKIP , but has to sacrifice
the right-unit law P ; SKIP = P in consequence.

In contrast, the definitions of the external-choice operator � in our recast
models Fm and Nm contain no special provision for an immediately terminating
operand such as SKIP, and yet in each of them we can still easily infer Roscoe’s
above �-SKIP resolve rule. We demonstrate this for Fm as follows. First we note
from 5.2 that for any pair of CSP processes P and Q

trs(P � Q) = trs(P � Q) = trs(P) ∪ trs(Q)
and

tms(P � Q) = tms(P � Q) = tms(P) ∪ tms(Q) ,
and hence that

trs((P � Q) � Q) = (trs (P) ∪ trs(Q)) ∪ trs(Q)
= trs (P) ∪ trs(Q) = trs(P � Q)

and
tms((P � Q) � Q) = (tms(P) ∪ tms(Q)) ∪ tms(Q)

= tms(P) ∪ tms(Q) = tms(P � Q) .
Taking Q as SKIP then gives us that

trs((P � SKIP) � SKIP) = trs(P � SKIP)
and

tms((P � SKIP) � SKIP) = tms(P � SKIP) .
We also note from 5.2 that

fails(SKIP) = {} and fails(R � S) = fails(R) ∪ fails(S) .
Hence by taking R as (P � SKIP) and S as SKIP we have that

fails((P � SKIP) � SKIP) = fails(P � SKIP) ∪ fails(SKIP)
= fails(P � SKIP) ∪ {} = fails(P � SKIP) .

�

7 CSP in the Unifying Theories of Programming

In Hoare and He’s Unifying Theories of Programming (UTP) [6] CSP processes
over an event alphabet Σ are encoded as alphabetised binary relations over
a variable alphabet which includes (in addition to regular state variables v , v ′

encoding the internal parameterised state of a process and the fundamental UTP
boolean auxiliary variables ok ′, ok denoting the non-divergence of the current
process and its sequential predecessors) the following auxiliary variables:

– the trace variables tr , tr ′ of type Σ∗ denote the trace of events engaged in
by the current process’s sequential predecessors (tr), and also that trace ex-
tended by the events in which the current process itself has engaged (tr ′);

– the waiting status variables wait ,wait ′ of type Boolean denote whether the
current process’s immediate sequential predecessor had really terminated
(wait = false), and whether the current process itself has terminated (wait ′ =
false) or is merely awaiting interaction with its environment (wait ′ = true);

290 S. Dunne

– the refusal-set variables ref , ref ′ of type P Σ denote a set of events (ref)
which the current process’s immediate sequential predecessor was observed
to refuse, assuming it was in a waiting state, and a set of events (ref ′) which
the current process itself is observed to refuse, assuming it is awaiting inter-
action with its environment.

Any CSP process P can be encoded as a reactive design R(p � q) where R is
the idempotent “reactive healthifier” for UTP reactive processes [6, ch 8], and
p � q is a standard UTP design with an assumption p, which can refer to v , tr
and tr ′, and a commitment q which can refer to v , tr , v ′, tr ′, wait ′ and ref ′. A
reactive design A can always be re-expressed in the normalised form

R(¬ A[true, false, false/ok ,wait , ok ′] � A[true, false, true/ok ,wait , ok ′]) ,

which ensures that its commitment and assumption incorporate certain funda-
mental reactive properties –for example tr ≤ tr ′, which insists that the initial
trace tr is a prefix of the final trace tr ′.

Extracting the N semantics of a UTP reactive design. Cavalcanti and
Woodcock [3] show how to extract N ’s standard failures-divergences denotional
semantics of a UTP reactive design. If a CSP process A is represented by a UTP
reactive design R(p � q) in normalised form, then4

failures⊥(A) =
{(tr ′ − tr) �→ ref ′ | (p ⇒ q)}

∪ {(tr ′ − tr) �→ (ref ′ ∪ {�}) | (p ⇒ q) ∧ wait ′ }
∪ {((tr ′ − tr)
 〈�〉) �→ ref ′ | (p ⇒ q) ∧ ¬ wait ′ }
∪ {((tr ′ − tr)
 〈�〉) �→ (ref ′ ∪ {�}) | (p ⇒ q) ∧ ¬ wait ′ }

and
divergences(A) = {tr ′ − tr | ¬ p } ∪ {(tr ′ − tr)
 〈�〉 | ¬ p } .

It can be seen that these extractions of failures⊥(A) and divergences(A) are
significantly complicated by the need to account for the �pseudo-event in the N
semantics of A . Such complications reveal the underlying misalignment between
the UTP representation of a CSP process as a reactive design and its denotation
in N owing to the use of � in the latter.

Extracting the Nm semantics of a UTP reactive design. In contrast the
extraction of A’s semantics in Nm is much more straightforward:

divs(A) = {tr ′ − tr | ¬ p } .

tms⊥(A) = {tr ′ − tr | (p ⇒ q) ∧ ¬ wait ′ } .

fails⊥(A) = {(tr ′ − tr) �→ ref ′ | (p ⇒ q) ∧ wait ′ } .

4 The accidental omission of one of the terms here in the extraction of failures⊥(A)
originally given in [3] was subsequently rectified in [2].

Termination without � in CSP 291

This indicates how much more closely the UTP representation of a CSP pro-
cess as a reactive design is aligned to its Nm semantics than to its N semantics.

7.1 Correctness Perspectives

It may have occurred to the reader to wonder why we didn’t also seek to extract
the Tm and Fm semantics of the process A from its UTP reactive-design repre-
sentation. In fact this is because neither of those extractions is fundamentally
possible. A UTP reactive design only captures the total-correctness semantics of
the CSP process it represents, and a total-correctness semantics is characterised
by its strictness with respect to divergence. This means that divergence always
completely masks any specific non-divergent behaviour the artifact concerned
might otherwise have exhibited, by admitting all behaviours whatsoever in any
circumstance which potentially leads to divergence. This is exactly the case with
N/Nm, but not with the other models.

Indeed, by ignoring divergence altogether T /Tm in particular reveals itself as
being based on partial correctness rather than total correctness. On the other
hand the case of F/Fm is more complex since, as explained in [4], it turns out
to be based on a notion of correctness intermediate between partial and general
correctness.

8 Conclusion

Our recasting of the three CSP standard semantic models has revealed an im-
plicit termination-traces component which each of these has always tacitly pos-
sessed yet concealed by embedding it within the other denotational components
by means of the �-pseudo-event encoding trick. Our recast semantic models
should therefore be significant for developers of tools such as FDR [10], ProB
[1,9] and CSP-related theorem provers, since by making the termination traces
explicit they offer a cleaner denotational basis for exploring and reasoning about
CSP-formulated systems than do the standard semantic models with their more
problematic encoding of termination behaviour by means of �.

Acknowledgements. I wish to thank the anonymous referees for their com-
ments on the original draft of this paper, and also Phil Brooke and Bill Stoddart
for helpful discussions about this work.

References

1. Butler, M., Leuschel, M.: Combining CSP and B for specification and property
verification. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 221–236. Springer, Heidelberg (2005)

2. Cavalcanti, A.L.C., Gaudel, M.-C.: A note on traces refinement and the conf rela-
tion in the unifying theories of programming. In: Butterfield, A. (ed.) UTP 2008.
LNCS, vol. 5713, pp. 42–61. Springer, Heidelberg (2010)

292 S. Dunne

3. Cavalcanti, A.L.C., Woodcock, J.C.P.: A tutorial introduction to CSP in unifying
theories of programming. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.)
PSSE 2004. LNCS, vol. 3167, pp. 220–268. Springer, Heidelberg (2006)

4. Dunne, S.E.: Of wlp and CSP. Electron. Notes Theor. Comput. Sci. 259, 35–45
(2009)

5. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

6. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall, En-
glewood Cliffs (1998)

7. Howells, P., d’Inverno, M.: A CSP model with flexible parallel termination seman-
tics. Formal Aspects of Computing 21(5), 421–449 (2009)

8. Josephs, M.B.: Models for data-flow sequential processes. In: Abdallah, A.E., Jones,
C.B., Sanders, J.W. (eds.) Communicating Sequential Processes. LNCS, vol. 3525,
pp. 85–97. Springer, Heidelberg (2005)

9. Leuschel, M., Fontaine, M.: Probing the depths of CSP-M: A new fdr-compliant
validation tool. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS,
vol. 5256, pp. 278–297. Springer, Heidelberg (2008)

10. Formal Systems (Europe) Ltd. Failures-divergence refinement: FDR2 user manual
(2010), http://www.fsel.com/fdr2_manual.html

11. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood
Cliffs (1998)

12. Schneider, S.: Concurrent and Real-time Systems: The CSP Approach. Wiley,
Chichester (2000)

13. Valmari, A.: The weakest deadlock-preserving congruence. Information Processing
Letters 53, 341–346 (1995)

http://www.fsel.com/fdr2_manual.html

Timed Migration and Interaction
with Access Permissions

Gabriel Ciobanu1 and Maciej Koutny2

1 Institute of Computer Science, Romanian Academy
and A.I.Cuza University of Iasi

700506 Iasi, Romania
gabriel@iit.tuiasi.ro

2 School of Computing Science
Newcastle University

Newcastle upon Tyne, NE1 7RU, United Kingdom
maciej.koutny@newcastle.ac.uk

Abstract. We introduce and study a process algebra able to model the
systems composed of processes (agents) which may migrate within a dis-
tributed environment comprising a number of distinct locations. Two
processes may communicate if they are present in the same location and,
in addition, they have appropriate access permissions to communicate
over a channel. Access permissions are dynamic, and processes can ac-
quire new access permissions or lose some existing permissions while
migrating from one location to another. Timing constraints coordinate
and control both the communication between processes and migration
between locations. We completely characterise those situations when a
process is always guaranteed to possess safe access permissions. The con-
sequences of such a result are twofold. First, we are able to validate
systems where one does not need to check (at least partially) access per-
missions as they are guaranteed not to be violated, improving efficiency
of implementation. Second, one can design systems in which processes
are not blocked (deadlocked) because of the lack of dynamically changing
access permissions.

Keywords: distributed systems, mobile agents, communication, access
permissions, operational semantics, specification, static analysis.

1 Introduction

The increasing complexity of mobile applications in which the timing aspects
are important to the system operation means that the need for their effective
analysis and verification is becoming critical. In this paper we explore formal
modelling of mobile systems where one can also specify time-related aspects
of migrating processes and, crucially, security aspects expressed by access per-
missions to communication channels. Building on our previous work on TiMo
presented in [8], we introduce PerTiMo (Permissions, Timers and Mobility)

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 293–307, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

294 G. Ciobanu and M. Koutny

which is a process algebra supporting process migration (strong mobility), local
interprocess communication over shared channels controlled by access permis-
sions that processes must possess, and timers (driven by local clocks) controlling
the execution of actions. An important feature of the proposed model is that ac-
cess permissions are dynamic. More precisely, processes can acquire new access
permissions, or lose some of their current access permissions while moving from
one location to another, modelling a key security related feature. Processes are
equipped with input and output capabilities which are active up to pre-defined
time deadlines and, if these communications are not taken, alternative continu-
ations for the process behaviour are followed. Another timing constraint allows
one to specify the latest time for moving a process from one location to another.
These two kinds of timing constraints help in the control and coordination of
both migration and communication in distributed systems. We provide the syn-
tax and operational semantics of PerTiMo which is a discrete time semantics
incorporating maximally parallel executions of actions using local clocks.

To introduce the basic components of PerTiMo, we use a TravelShop running
example in which a client process attempts to pay as little as possible for a
ticket to a pre-defined destination. The scenario involves five locations and six
processes. The role of each of the locations is as follows: (i) home is a location
where the client process starts and ends its journey; (ii) travelshop is a main
location of the service which is initially visible to the client; (iii) standard and
special are two internal locations of the service where clients can find out about
the ticket prices; and (iv) bank is a location where the payment is made. The
role of each of the processes is as follows:

– client is a process which initially resides in the home location, and is deter-
mined to pay for a flight after comparing two offers (standard and special)
provided by the travel shop. Upon entering the travel shop, client receives
the location of the standard offer and, after moving there and obtaining this
offer, the client is given the location where a special offer can be obtained.
After that client moves to the bank and pays for the cheaper of the two
offers, and then returns back to home.

– agent first informs client where to look for the standard offer and then moves
to bank in order to collect the money from the till. After that agent returns
back to travelshop.

– flightinfo communicates the standard offer to clients as well as the location
of the special offer.

– saleinfo communicates the special offer to clients together with the location
of the bank. saleinfo can also accept an update by the travel shop of the
special offer.

– update initially resides at the travelshop location and then migrates to special
in order to update the special offer.

– till resides at the bank location and can either receive e-money paid in by
clients, or transfer the e-money accumulated so far to agent .

PerTiMo uses timers in order to impose deadlines on the execution of com-
munications and migrations. Moreover, processes need to possess appropriate

Timed Migration and Interaction with Access Permissions 295

�� ������� ���	
�������

home travelshop standard special bank

130

client

100

agent

60

update

110
special

flightinfo
90

bank

saleinfo

10

till

� ������������ ���	
�������

home travelshop standard special bank

130

client

100

agent update

110
special

flightinfo

60
bank

saleinfo

10

till

�� 	��� ���	
�������

home travelshop standard special bank

70

client

170

agent

update

110
special

flightinfo

60
bank

saleinfo

0

till

Fig. 1. Three snapshots of the evolution of the running example. In the initial configu-
ration we indicated the intended migration paths of three processes. The intermediate
configuration illustrates the phase of the evolution after some initial movements of
the client and after updating the second flight price. The final configuration shows the
state of the system after a successful payment has been made; the total sum of e-money
owned by the client (70), agent (170) and till (0) is exactly the same as the sum at
the beginning of the evolution when the client has 130 , agent 100 and till 10 . Note
that the channels used by processes to communicate information are not shown.

access permissions in order to send and receive information. Figure 1 portrays
three possible stages of the evolution of the TravelShop system.

Each location has its local clock which determines the timing of actions exe-
cuted at that location. The timeout of a migration action indicates the network
time limit for that action (similar to TTL in TCP/IP).

We use x to denote a finite tuple (x1, . . . , xk) whenever it does not lead
to a confusion, and if X is a tuple of sets (X1, . . . , Xk) then

∏
X denotes

X1 × . . .×Xk. We assume that the reader is familiar with the basic concepts of
process algebras [14]. All proofs of our results can be found in [9].

296 G. Ciobanu and M. Koutny

2 Syntax and Semantics of PerTiMo

Timing constraints for migration allow one to specify what is the time window for
a process to move from one location to another. E.g., a timer (such as Δ5) of a
migration action goΔ5home indicates that the process will move to home within
5 time units. It is also possible to constrain the waiting for a communication
on a channel; if a communication action does not happen before a deadline, the
waiting process gives up and switches its operation to an alternative. E.g., a
timer (such as Δ4) of an output action aΔ4 ! 〈13 〉 makes the channel available
for communication only for the period of 4 time units. We assume suitable data
sets including a set Loc of locations and a set Chan of communication channels.
We use a set Id of process identifiers, and each id ∈ Id has arity mid .

To communicate over a channel at a given network location, the sender process
should have a ‘put’ access permission, and the receiving process a ‘get’ access
permission. The set Γ of access permissions of a process is a subset of AccPerm
df= {put, get} × Chan × Loc. We use the notation get〈a@l〉 to denote an access
permission (get, a, l) ∈ AccPerm, and put〈a@l〉 to denote (put, a, l) ∈ AccPerm .
Intuitively, we work with access permissions to sockets where l represents an IP
address, and a represents a communication port.

We allow access permissions of a process to change while moving from one
location to another. To model this, we use the following four basic access per-
mission modification operations: put+

a@l, get+
a@l, put−a@l and get−a@l, where l is a

location and a is a communication channel. The first two (put+
a@l and get+

a@l)
add access permissions, while the latter two (put−a@l and get−a@l) remove access
permissions. For instance, put+

a@l(Γ) = Γ ∪ {put〈a@l〉}. Then an access permis-
sion modification operation is either the identity on AccPerm, or a composition
of some basic access permission modification operations such that if put+

a@l is
used in the composition then put−a@l is not used (giving and removing an access
permission at the same time do not make sense). For a given network, we then
specify what are the changes to the access permission sets of processes migrating
from one location to another. This is specified as a mapping apm which, for each
pair (l, l′) of locations, returns a permission modification operation; if a process
with the current access permissions Γ moves from location l to location l′, its
new set of access permissions becomes apm(l, l′)(Γ).

The syntax of PerTiMo is given in Table 1, where P are processes, PP
processes with (access) permissions, and N networks. Moreover, for each id ∈ Id ,
there is a unique process definition of the form:

id(u1, . . . , umid
: X id

1 , . . . , X id
mid

) df= Pid , (1)

where the ui’s are distinct variables playing the role of parameters, and the
X id

i ’s are data sets. Processes of the form stop and id(v) are called primitive.
In Table 1, it is assumed that:

– a ∈ Chan is a channel, and t ∈ N ∪ {∞} is a time deadline;
– each vi is an expression built from values, variables and allowed operations;
– each ui is a variable, and each Xi is a data set;

Timed Migration and Interaction with Access Permissions 297

Table 1. PerTiMo syntax. The length of u is the same as that of X , and the length
of v in id(v) is mid .

Processes P ::= aΔt ! 〈v〉 then P else P ′ � (output)
aΔt ? (u:X) then P else P ′

� (input)
goΔt l then P � (move)
P |P ′

� (parallel)
stop � (termination)
id(v) � (recursion)
� P (stalling)

Typed Processes PP ::= P : Γ � PP |PP ′

Networks N ::= l [[PP]] � N |N ′

Shorthand notation:

a ! 〈v〉 → P will be used to denote aΔ∞ ! 〈v〉 then P else stop

a ? (u:X) → P will be used to denote aΔ∞ ? (u:X) then P else stop .

– l is a location or a variable, and Γ a set of action permissions; and
– � is a special symbol used to express that a process is temporarily stalled.

The only variable binding construct is aΔt ? (u:X) then P else P ′ which binds
the variables u within P (but not within P ′). We use fv (P) to denote the free
variables of a process P (and similarly for processes with access permissions
and networks). For a process definition as in (1), we assume that fv (Pid) ⊆
{u1, . . . , umid

} and so the free variables of Pid are parameter bound. Processes
are defined up to the alpha-conversion, and {v/u, . . .}P is obtained from P by
replacing all free occurrences of a variable u by v, possibly after alpha-converting
P in order to avoid clashes. Moreover, if v and u are tuples of the same length
then {v/u}P = {v1/u1, v2/u2, . . . , vk/uk}P .

A network N is well-formed if the following hold:

– there are no free variables in N ;
– there are no occurrences of the special symbol � in N ;
– assuming that id is as in the recursive equation (1), for every id(v) occurring

in N or on the right hand side of any recursive equation, the expression vi is
of type corresponding to X id

i (where we use the standard rules of determining
the type of an expression).

Intuitively, a process aΔt ! 〈v〉 then P else P ′ attempts to send a tuple of
values v over the channel a for t time units. If successful, it then continues
as process P ; otherwise it continues as the alternative process P ′. Similarly,
aΔt ? (u:X) then P else P ′ is a process that attempts for t time units to input
a tuple of values from data set X, and substitute them for the variables u. Mo-
bility is implemented by a process goΔt l then P which moves from the current
location to the location given by l within t time units. Note that since l can
be a variable, and so its value is assigned dynamically through communication

298 G. Ciobanu and M. Koutny

Table 2. PerTiMo network modelling the running example together with the relevant
access permission modification operations (those omitted are all equal to the identity
mapping on AccPerm).

TravelShop
df
=

home [[client(130) : ∅]] |
travelshop [[agent(100) : {put〈flight@travelshop〉} | update(60) : ∅]] |
standard [[flightinfo(110 , special) : {put〈info@standard 〉, get〈info@standard 〉}]] |
special [[saleinfo(90 , bank) : {put〈info@special〉, get〈info@special〉}]] |
bank [[till(10) : {put〈pay@bank〉, get〈pay@bank〉}]]

apm(home, travelshop)
df
= get+

flight@travelshop

apm(travelshop , standard)
df
= get+

info@standard

apm(travelshop , special)
df
= put+

info@special

apm(standard , special)
df
= get+

info@special ◦ get−info@standard

apm(special , bank)
df
= put+

pay@bank ◦ get−info@special ◦ get−pay@bank

apm(travelshop , bank)
df
= get+

pay@bank

client(init:eMoney)
df
=

goΔ5 travelshop → flight ? (standardoffer :Loc) →
goΔ4 standardoffer → info ? (p1 :eMoney , specialoffer :Loc) →
goΔ3 specialoffer → info ? (p2 :eMoney , paying :Loc) →
goΔ6 paying → pay ! 〈min{p1 , p2}〉 →
goΔ4 home → client(init − min{p1 , p2})

agent(balance :eMoney)
df
=

flight ! 〈standard 〉 → goΔ10 bank →
pay ? (profit :eMoney) → goΔ12 travelshop →
agent(balance + profit)

update(saleprice :eMoney)
df
=

goΔ0 special → info ! 〈saleprice〉 → stop

flightinfo(price : eMoney ,next : Loc)
df
=

info ! 〈price,next〉 → flightinfo(price,next)

saleinfo(price : eMoney , next : Loc)
df
=

infoΔ10 ? (newprice :eMoney)
then saleinfo(newprice ,next)
else info ! 〈price ,next〉 → saleinfo(price ,next)

till(cash :eMoney)
df
=

payΔ1 ? (newpayment :eMoney)
then till(cash + newpayment)
else payΔ2 ! 〈cash〉 then till(0) else till(cash)

with other processes, migration actions support a flexible scheme for movement
of processes from one location to another.

A network l [[P : Γ]] specifies a process P with the access permissions Γ
running at a location l. Finally, process expressions of the form � P repre-
sent a purely technical device which is used in our formalisation of structural

Timed Migration and Interaction with Access Permissions 299

operational semantics of PerTiMo; intuitively, it specifies a process P which is
temporarily stalled and cannot execute any action.

One might wonder why a process can delay migration to another location. The
point is that by allowing this we can model in a simple way the non-determinism
in the movement of processes which is, in general, outside the control of a system
designer. Thus the timer in this case indicates the upper bound of the migration
time.

The specification of the running example which captures the essential fea-
tures of the scenario described in the introduction is given in Table 2. We
assume that Loc = {home, travelshop, standard , special , bank} and Chan =
{info,flight , pay}. Table 2 shows the process network TravelShop modelling the
scenario, as well as the access permission modification operations which are ap-
plied to the process expressions when they move around the five locations of the
network.

The first component of the operational semantics of PerTiMo is the struc-
tural equivalence ≡ on networks, similar to that used in [4]; it is the smallest
congruence such that the equalities (Eq1–Eq4) in Table 3 hold. Its role is to
rearrange a network in order to apply the action rules which are also given in
Table 3. Using (Eq1–Eq4), one can always transform a given network N into a
finite parallel composition of networks of the form:

l1 [[P1:Γ1]] | . . . | ln [[Pn:Γn]] (2)

such that no process Pi has the parallel composition operator at its topmost level.
Each subnetwork li [[Pi:Γi]] is called a component of N , the set of all components
is denoted by comp(N), and the parallel composition (2) is called a component
decomposition of the network N . Note that these notions are well-defined since
component decomposition is unique up to the permutation of the components
(see Remark 1 below).

Table 3 introduces two kinds of action rules, N
λ−→ N ′ and N

√
l−→ N ′. The

former is an execution of an action λ, and the latter a time step at location l.
In the rule (Time), N �−→l means that no l-action λ (i.e., an action of the form
id@l or l � l′ or @l or a〈v〉@l) can be applied to N . Moreover, φl(N) is obtained
by taking the component decomposition of N and simultaneously replacing all
components of the form l [[aΔtω then P else Q : Γ]] by l [[Q : Γ]] if t = 0,
and otherwise by l [[aΔt−1ω then P else Q : Γ]], where ω stands for ! 〈v〉 or
? (u:X). After that, the occurrences in N of the special symbol � are erased.

So far we defined located executions of actions. An entire computational step
is captured by a derivation N

Λ=⇒ N ′, where Λ = {λ1, . . . , λn} is a finite multiset
of l-actions for some location l such that

N
λ1−→ · · · λn−→

√
l−→ N ′ .

We also call N ′ directly reachable from N . In other words, we can capture the
cumulative effect of the concurrent execution of the multiset of actions Λ at
location l. Intuitively, networks evolution conforms to the locally maximally

300 G. Ciobanu and M. Koutny

Table 3. Four rules of the structural equivalence (Eq1-Eq4), and seven action rules
(Call, Move, Wait, Com, Par, Equiv, Time) of the operational semantics.

(Eq1) N |N ′ ≡ N ′ |N
(Eq2) (N |N ′) |N ′′ ≡ N | (N ′ |N ′′)

(Eq3) l [[PP |PP ′]] ≡ l [[PP]] | l [[PP ′]]

(Eq4) l [[P |Q : Γ]] ≡ l [[P : Γ |Q : Γ]]

(Call) l [[id(v) : Γ]]
id@l−→ l [[� {v/u}Pid : Γ]]

(Move) l [[goΔt l′ then P : Γ]]
l	l′−→ l′ [[� P : apm(l, l′)(Γ)]]

(Wait)

t > 0

l [[goΔt l′ then P : Γ]]
@l−→ l [[� goΔt−1 l′ then P : Γ]]

(Com)

put〈a@l〉 ∈ Γ get〈a@l〉 ∈ Γ ′ v ∈
∏

X

l [[aΔt ! 〈v〉 then P else Q : Γ | aΔt′ ? (u:X) then P ′ else Q′ : Γ ′]]
a〈v〉@l

−−−−−−−−−−−−−−→ l [[� P : Γ | � {v/u}P ′ : Γ ′]]

(Par)

N
λ−→ N ′

N |N ′′ λ−→ N ′ |N ′′

(Equiv)

N ≡ N ′ N ′ λ−→ N ′′ N ′′ ≡ N ′′′

N
λ−→ N ′′′

(Time)

N �−→l

N
√

l−→ φl(N)

parallelism paradigm since one executes in a single location l as many as possible
concurrent action before applying a local time rule which signifies the passage
of a unit of time at location l.

The two results below ensure that derivations are well defined. First, one
cannot execute an unbounded sequence of action moves without time progress.

Proposition 1. If N is a network and N
λ1−→ · · · λk−→ N ′, then k ≤ |comp(N)|.

Second, if we start with a well-formed network, execution proceeds through
alternating executions of time steps and contiguous sequences of local actions
making up what can be regarded as a maximally concurrent step (note the role
of the special symbols �). This intuition is reinforced by the following result.

Proposition 2. Let N be a well-formed network. If N
λ1−→ · · · λn−→ N ′, then we

have N
λi1−→ · · · λin−→ N ′, for every permutation i1, . . . , in of 1, . . . , n.

It is worth noting that the semantical treatment of PerTiMo — itself a con-
tinuation of the idea developed for TiMo — goes beyond interleaving semantics

Timed Migration and Interaction with Access Permissions 301

by introducing an explicit representation of local maximal parallelism and local
time progress in the network evolution.

Our last result in this section is that the rules of Table 3 preserve well-
formedness of networks.

Proposition 3. Networks reachable from a well-formed network are well-formed.

Table 4 illustrates execution steps based on the scenario illustrated in Figure 1
(note that Λ2 represents a parallel execution of two actions). We indicate only
the main rules used in the derivation of steps. Each execution step takes a single
unit of time in the location at which it has been executed and some timers are
decremented by one (e.g., the timer Δ3 of channel info in U0 is changed to Δ2
in U1). Other timers which have expired cause an immediate migration or the
selection of the alternative part of a communication action (see W1 which is
evolving to W2).

Note that the last network expression derived from TravelShop in Table 4
corresponds to the intermediate configuration shown in Figure 1(b). Note also
that in the representation of Figure 1(b) we show the home location, even though
it is not present in the last network expression in Table 4. The reason is that
the client process has moved to travelshop, and there is at present no process
residing at home. This situation changes in the final configuration of Figure 1(c)
where client has completed its migration and came back to its initial location.

Remark 1. Component decomposition is unique since the rule (Call) treats
recursive definitions as function calls which take a unit of time. Another conse-
quence of such a treatment is that it is impossible to execute an infinite sequence
of action steps without executing any time steps. Both these properties would
not hold if, instead of an action rule (Call), we would have a structural rule of
the form l [[id(v) : Γ]] ≡ l [[{v/u}Pid : Γ]]. ��

3 Safe Access Permissions

In this section we attempt to verify that a migrating process possesses a suf-
ficiently rich set of initial access permissions such that, whenever later on it
attempts to communicate over a channel, it has the required safe access per-
mission. While doing so we need to take into account that migrating processes
have their access permission sets modified according to the mapping apm . If
we succeed, then an important security problem related to migration and ac-
cess permissions is solved in the sense that never an unauthorised attempt to
communicate over a channel happens during network evolutions.

Throughout this section we assume that all the data sets are finite (see Re-
mark 2), and that the right hand side Pid of each recursive definition (1) is either
a primitive process (i.e., Pid = stop or Pid = id ′(w)) or Pid uses exactly one
application of one of the process operators to some primitive process(es). This
does not diminish the generality of the proposed method since we can always
transform all recursive definition into the simple form using additional process

302 G. Ciobanu and M. Koutny

Table 4. Execution steps for the running example where Λ1 = {client@home},
Λ2 = {agent@travelshop , update@travelshop}, Λ3 = {flightinfo@standard}, Λ4 =
{saleinfo@special} and Λ5 = {till@bank}

TravelShop
Λ1 Λ2 Λ3 Λ4 Λ5===⇒ 6 × (����)

home [[goΔ5 travelshop → P0 : ∅]] |
travelshop [[Q0 : {put〈flight@travelshop〉} | goΔ0 special → R0 : ∅]] |
standard [[U0 : {put〈info@standard〉, get〈info@standard〉}]] |
special [[V0 : {put〈info@special〉, get〈info@special〉}]] |
bank [[W0 : {put〈pay@bank〉, get〈pay@bank〉}]]

{home � travelshop} {travelshop � special}
===⇒ 2 × (����)

travelshop [[flight ? (standardoffer :Loc) → P1:{get〈flight@travelshop〉} |
flight ! 〈standard〉 → Q1:{put〈flight@travelshop〉}]] |

standard [[U1 : {put〈info@standard〉, get〈info@standard〉}]] |
special [[infoΔ9 ? (newprice : eMoney)

→ V1 : {put〈info@special〉, get〈info@special〉} |
info ! 〈60 〉 → stop : {put〈info@special〉}]] |

bank [[W1 : {put〈pay@bank〉, get〈pay@bank〉}]]
{flight〈standard〉@travelshop} {info〈60〉@special}

===⇒ 2 × (���)

travelshop [[P2:{get〈flight@travelshop〉} | Q1:{put〈flight@travelshop〉}]] |
standard [[U2 : {put〈info@standard〉, get〈info@standard〉}]] |
special [[V2 : {put〈info@special〉, get〈info@special〉} | stop : {put〈info@special〉}]] |
bank [[W2 : {put〈pay@bank〉, get〈pay@bank〉}]]

P0 = flight ? (standardoffer :Loc) → P1

P1 = go
Δ4 standardoffer → info ? (p1 :eMoney , specialoffer :Loc) →

go
Δ3 specialoffer → info ? (p2 :eMoney , paying :Loc) →

go
Δ6 paying → pay ! 〈min{p1 , p2}〉 →

go
Δ4 home → client(130 −min{p1 , p2})

P2 = {standard/standardoffer}P1

Q0 = flight ! 〈standard〉 → Q1

Q1 = go
Δ10 bank →

pay ? (profit :eMoney) → go
Δ12 travelshop → agent(100 + profit)

R0 = info ! 〈60 〉 → stop

U0 = infoΔ3 ! 〈110 , special〉 → flightinfo(110 , special)
U1 = infoΔ2 ! 〈110 , special〉 → flightinfo(110 , special)
U2 = flightinfo(110 , special)
V0 = infoΔ10 ? (newprice:eMoney) then saleinfo(newprice, bank)

else info ! 〈90 , bank〉 → saleinfo(90 , bank)
V1 = infoΔ9 ? (newprice:eMoney) then saleinfo(newprice, bank)

else info ! 〈90 , bank〉 → saleinfo(90 , bank)
V2 = saleinfo(60 , bank)
W0 = payΔ1 ? (newpayment :eMoney) then till(10 + newpayment)

else payΔ2 ! 〈10 〉 then till(0) else till(10)
W1 = payΔ0 ? (newpayment :eMoney) then till(10 + newpayment)

else payΔ2 ! 〈10 〉 then till(0) else till(10)
W2 = payΔ2 ! 〈10 〉 then till(0) else till(10)

Timed Migration and Interaction with Access Permissions 303

Table 5. Derivation rules for processes with safe access permissions

(TSub)

Γ ′ ⊆ Γ Γ ′ �l P

Γ �l P

(TStop) ∅ �l stop

(TMove)

apm(l, l′)(Γ) �l′ P

Γ �l go
Δt l′ then P

(TOut)

put〈a@l〉 ∈ Γ Γ �l P Γ �l Q

Γ �l aΔt ! 〈v〉 then P else Q

(TIn)

get〈a@l〉 ∈ Γ ∀v ∈
∏

X : Γ �l {v/u}P Γ �l Q

Γ �l aΔt ? (u:X) then P else Q

(TRec)

Γ �l id(v)↑H

Γ �l id(v)

(TPar)

Γ �l P Γ �l Q

Γ ∪ Γ �l P |Q

identifiers and recursive definitions without affecting the results that follow (e.g.,
P

df= a→ b→ P is replaced by P
df= a→ P ′ and P ′ df= b→ P).

We use judgements of the form Γ �l P to mean that a single-component
network l [[P :Γ]] has safe access permissions. We assume the open system context
which means that we cannot know precisely the migration patterns of a process
and its communication channels which can be acquired through interaction with
(unknown) processes. We plan to deal with close systems in future, and then
take into account the time aspects (here we use time for process coordination).

Given a set Loc of locations together with the apm mapping as well a process
P and location l, we want to devise rules for checking that a set of access per-
missions Γ satisfies Γ �l P . For instance, if P = goΔ0 l′ then aΔ1 ! 〈1〉 → stop
and apm(l, l′) = put−a@l′ then there is no Γ such that Γ �l P .

If P does not involve recursive definitions, the task is straightforward. One just
needs to follow the syntactic structure of the process and incrementally derive Γ .
Dealing with recursion is more complicated, and the solution we propose consists
in unfolding a recursive process expression sufficiently many times to cover all
possibilities resulting from migration. For all id ∈ Id , n ≥ 0 and v ∈

∏
Xid , the

n-th unfolding of id(v) is given by id(v)↑0 df= stop and, for n > 0, id(v)↑n df= P
where P is obtained from {v/u}Pid by replacing each subexpression of the form
id ′(w) with id ′(w)↑n−1.

The derivation rules for Γ �l P are given in Table 5. The (TMove) rule
concerns a migration from location l to l′. In order to have l [[goΔt l′ then P : Γ]]
with safe access permissions, it is necessary to have l′ [[P : Γ ′]] with safe access
permissions after applying the access permission modification to Γ when moving
from l to l′ (note that Γ ′ = apm(l, l′)(Γ)). The rule (TOut) simply requires
that a process attempting to send a message along a channel a should possess

304 G. Ciobanu and M. Koutny

the access permission put〈a@l〉. Similarly, the rule (TIn) requires that a process
attempting to receive a message along a channel a should possess the access
permission get〈a@l〉; moreover, after receiving this message, it should have safe
access permissions with the current Γ irrespective of the values carried by that
message. The constant H in the rule (TRec) is H

df= 2 · |Loc| ·
(
1+

∑
id∈Id |X id

1 | ·
. . . · |X id

mid
|
)
. The value of H comes from rather technical considerations needed

to prove results. We can always ensure that H is a well defined integer, and
(TIn) is a finitary rule according to the following argument.

Remark 2. The judgement system in Table 5 makes important use of data through
the (TOut) rule as a received message may carry a location or channel name
which may later be used by other rules. Other kinds of values carried by mes-
sages or present in process descriptions are ignored. Hence, for the purpose of
safe access permissions, we can replace all non-location and non-channel values
by a special value τ , and all the data types different from Loc and Chan by a
singleton type X = {τ}. In this way, all the data sets become finite. Hence, in
particular, H is an integer value, and

∏
X in (TIn) is a finite set. ��

We have defined what it means to have safe access permissions in the case of
a single-component network. In the general case, a network N has safe access
permissions if each of its components does. These two definitions are consistent
in the sense that Γ �l P iff Γ �l Pi for every component network l [[Pi:Γ]] of a
single-component network l [[P :Γ]]; this follows from the rule (TPar).

The first main result states that safe access permissions is preserved over the
network evolutions defined by the operational semantics.

Theorem 1 (soundness). If a well-formed network N has safe access permis-
sions, and N ′ is reachable from N , then N ′ has also safe access permissions.

The second main result is that in a network with safe access permissions there
are no attempt to access a communication channel without an appropriate access
permission. This result should be seen as a justification of our interest in the
notion of safe access permissions.

Theorem 2 (safety of communications). Let N be a well-formed network
with safe access permissions.

l [[aΔt ! 〈v〉 then P else Q : Γ]] ∈ comp(N) implies put〈a@l〉 ∈ Γ
l [[aΔt ? (u:X) then P else Q : Γ]] ∈ comp(N) implies get〈a@l〉 ∈ Γ .

As an immediate corollary of Theorem 2, for a network with safe access permis-
sions it is possible to simplify the operational rule for process communication by
deleting put〈a@l〉 ∈ Γ and get〈a@l〉 ∈ Γ ′ in rule (Com), and so simplifying the
implementation.

The third main result is that the notion of a network with safe access per-
missions is complete in the sense that a network which does not satisfy this
property can always be placed in an environment which reveals its potential to
break safety of interprocess communication.

Timed Migration and Interaction with Access Permissions 305

Theorem 3 (completeness). Let N = l [[P : Γ]] be a well-formed network
such that Γ ��l P . Then there is a well-formed network N ′ with safe access
permissions as well as a well-formed network N ′′ reachable from N |N ′ such
that one of the following holds:

– there is a component l′ [[aΔt ! 〈v〉 then P ′ else P ′′ : Γ ′]] of N ′′ such that
put〈a@l′〉 /∈ Γ ′;

– there is a component l′ [[aΔt ? (u:X) then P ′ else P ′′ : Γ ′]] of N ′′ such that
get〈a@l′〉 /∈ Γ ′.

We developed a sound and complete system for safe communication and migra-
tion in open networks. Hence we are able now to validate systems where one does
not need to check access permissions as they are guaranteed not to be violated,
improving implementation. Moreover, the results can be extended by allowing
systems in which processes are not blocked (deadlocked) because of the lack of
dynamically changing access permissions.

4 Conclusions and Related Work

We introduced a distributed process algebra with processes able to migrate be-
tween different locations and timing constraints used to control migration and
communication. We use local clocks and local maximal parallelism of actions.
Processes have appropriate access rights to communicate; the access permissions
are dynamic and can change. We have provided an operational semantics of this
model, and investigated the safety of communication and migration in terms of
access permissions. While we are not aware of any approach combining all these
aspects regarding mobility with timing constraints, local clocks, and dynamic
access permission mechanism, our work is related to a large body of literature
using process algebra in (type-based) security. Several systems encompass vari-
ous forms of access control policies in distributed systems; among them, the work
on Dpi calculus in [13] uses type systems to control statically the access to the
resources at the different locations of a distributed system. Other related work
on access control in distributed systems is done in the context of the language
Klaim and its extensions, using type systems that enable the dynamic exchange
of access rights. The paper [7] combines a weak form of information flow control
with typed cryptographic operations to ensure safe static access control and se-
cure network communications. The paper [5] use cryptographic operations and
capability types to get a secure implementation of a typed pi-calculus in or-
der to realise various policies for accessing the communication channels. None
of these systems, however, uses together mobility as a first class citizen con-
trolled by timing constraints, dynamic aspects of the access permissions, local
clocks and parallelism. These advantages of the new model can allow to spec-
ify and enforce more diverse and expressive security policies based on access
permissions. This could be done in the context of designing good programming
language supporting migration in a distributed environment [16]. On the other
hand, several prototype languages have been designed and experimental imple-
mentations derived from process calculi like Klaim [4] and Acute [15]. These

306 G. Ciobanu and M. Koutny

prototype languages did not become a practical programming language because
hard questions revolving mainly around issues relating to security. PerTiMo
is intended to help bridging the gap between the existing foundational process
algebras and forthcoming realistic languages. It extends some previous attempts
related to tDpi [10] and TiMo [8]. PerTiMo derives from TiMo model (a sim-
plified distributed π-calculus with explicit timeouts) presented in [8] by adding
a type system in order to express security aspects related to access permissions.
The basic notion of a timeout in TiMo seemed useful and elegant. PerTiMo
retains this notion and, in addition, it incorporates access permissions in order
to provide formal foundations for security problems relating to the adequate
protection of access control information in distributed environment.

As related work, we should mention distributed pi-calculus having an explicit
notion of location, and dealing with static resources access [12] by using a type
system. The paper [3] studies a π-calculus extension with a timer construct, and
then enriches the timed πt with locations. Other timed extensions of process
algebras have been studied in [2] and [11]. In [6] the authors present a typed π-
calculus with groups and group creation in which each name belongs to a group.
The rules for good environments ensure that the names and groups declared in
an environment are distinct, and that all the types mentioned in an environ-
ment are good. A consequence of the typing discipline is the ability to preserve
secrets, namely preventing certain communications that would leak secrets. The
type system is used for regulating the mobile computation, allowing to partition
the processes into disjoint groups in order to specify the behaviour of both com-
munication and mobility. Somehow related to our dynamic access permissions,
[1] presents a parametric calculus for processes exchanging code which may con-
tain free variables to be bound by the receiver’s code (called open mobile code).
Type safety is ensured by a combination of static and dynamic checks of such
an exchange of open code. In this way it is possible to express rebinding of code
in a distributed environment in a relatively simple way.

Deriving concrete implementation from PerTiMo is part of future work, and
the approach presented in this paper is just a first step in this direction. In our
future work we plan to extend the current model as follows:

– access permissions to locations to control migrations of processes;
– security levels for migrating processes to control access permissions to chan-

nels and locations;
– relaxing the synchronisation resulting from the maximally parallel semantics,

by retaining maximal parallelism within each location, but allowing locations
to proceed with different speed;

– rules for well-typing of values in exchanged messages;
– defining and analysing security policies for access and migration control; and
– introducing and analysing failures in process migration.

Acknowledgement. We would like to thank the anonymous reviewers for their
constructive suggestions. This research was supported by the International Joint
Project of the Royal Society of London, the Epsrc Verdad project, and Nsfc
Grants 60910004 and 2010CB328102.

Timed Migration and Interaction with Access Permissions 307

References

1. Ancona, D., Fagorzi, S., Zucca, E.: A Parametric Calculus for Mobile Open Code.
ENTCS 192, 3–22 (2008)

2. Baeten, J., Bergstra, J.A.: Discrete Time Process Algebra: Absolute Time, Relative
Time and Parametric Time. Fundamenta Informaticae 29, 51–76 (1997)

3. Berger, M.: Towards Abstractions For Distributed Systems Imperial College, De-
partment of Computing (2002)

4. Bettini, L., Kannan, R., De Nicola, R., Ferrari, G.-L., Gorla, D., Loreti, M., Moggi,
E., Pugliese, R., Tuosto, E., Venneri, B.: The klaim project: Theory and practice.
In: Priami, C. (ed.) GC 2003. LNCS, vol. 2874, pp. 88–150. Springer, Heidelberg
(2003)

5. Bugliesi, M., Giunti, M.: Secure Implementations of Typed Channel Abstractions.
In: Proc. of POPL, pp. 251–262. ACM, New York (2007)

6. Cardelli, L., Ghelli, G., Gordon, A.: Secrecy and Group Creation. Inf. Comput. 196,
127–155 (2005)

7. Chothia, T., Duggan, D., Vitek, J.: Type-based Distributed Access Control. In:
Proc. of CSFW 2003, pp. 170–184. IEEE Computer Society, Los Alamitos (2003)

8. Ciobanu, G., Koutny, M.: Modelling and verification of timed interaction and mi-
gration. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp.
215–229. Springer, Heidelberg (2008)

9. Ciobanu, G., Koutny, M.: TiMoTy: Timed Mobility with Types of Formal Methods
Laboratory Romanian Academy, Institute of Computer Science, Iasi (2010)

10. Ciobanu, G., Prisacariu, C.: Timers for Distributed Systems. ENTCS 164, 81–99
(2006)

11. Corradini, F., Ferrari, G.L., Pistore, M.: On the Semantics of Durational Actions.
Theoretical Computer Science 269, 47–82 (2001)

12. Hennessy, M.: A Distributed π-calculus. Cambridge University Press, Cambridge
(2007)

13. Hennessy, M., Riely, J.: Resource Access Control in Systems of Mobile Agents.
Information and Computation 173, 82–120 (2002)

14. Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press, Cambridge (1999)

15. Sewell, P., et al.: Acute: High-Level Programming Language Design for Distributed
Computation. Journal of Functional Programming 17, 547–612 (2007)

16. Thorn, T.: Programming Languages for Mobile Code. ACM Computing Surveys 29,
213–239 (1997)

From a Community of Practice to a Body of Knowledge:
A Case Study of the Formal Methods Community

Jonathan P. Bowen1 and Steve Reeves2

1 London South Bank University, Faculty of Business
Borough Road, London SE1 0AA, United Kingdom

jonathan.bowen@lsbu.ac.uk
http://www.jpbowen.com

2 The University of Waikato, Department of Computer Science
Hamilton 3240, New Zealand

stever@cs.waikato.ac.nz
http://www.cs.waikato.ac.nz/˜stever/

Abstract. A Body of Knowledge (BoK) is an ontology for a particular profes-
sional domain. A Community of Practice (CoP) is the collection of people de-
veloping such knowledge. In the paper we explore these concepts in the context
of the formal methods community in general and the Z notation community, as
has been supported by the Z User Group, in particular. The existing SWEBOK
Software Engineering Body of Knowledge is considered with respect to formal
methods and a high-level model for the possible structure of of a BoK is provided
using the Z notation.

1 Introduction

The increase of collective knowledge has been an important part of human progress
through the ages [30]. This increase has been possible with the development of commu-
nication through complex language that is able to capture and transmit thought between
people. The ability to record this in written form has enabled long-lasting knowledge
to be built upon through successive generations. The desire to record information is an
innate part of human nature, allowing knowledge to be passed on to others. An organi-
zation or community has information recorded in a distributed manner, whether using
information technology, paper, or human memory [9]. Capturing this collective memory
is a challenge, even with today’s modern technology.

Leading scientific institutions such as the Royal Society in London now recognize
the importance of using advanced web-based technology to aid in the public under-
standing of scientific knowledge [6]. Web-based communities can be a very effective
way to foster distributed creativity extremely quickly and without geographical con-
straints [22].

The success of Wikipedia (and there are critics, of course) is an example of a system
for distributed creativity, and reflection on Wikipedia shows how a “living” document
can defuse many of the criticisms that might be made of the idea of a Body of Knowl-
edge (BoK) [33] being compiled for some technical area in a distributed and cooperative
manner. For example, it is clearly never finished, continuously developing over time. It
is also very easily extensible and adaptable. But, it does also, at any moment in time,

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 308–322, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.jpbowen.com
http://www.cs.waikato.ac.nz/~stever/

From a Community of Practice to a Body of Knowledge 309

represent a platform that people can refer to and work from, even if only as a starting
point, thus driving the BoK forward, and subsequently adding to the record.

Wikis in general form an excellent framework for collaboratively developing infor-
mation and knowledge [10]. They enable a community of people to add to, update,
and correct information on a set of interlinked topics. As well as standard hyperlinks
between items of information, wikis can also allow these items to be organized into
categories that themselves can be organized in a lattice-like structure (not dissimilar to
bigraphs [26]), allowing an alternative way of transferring the information. Links are
normally added manually, although research has been undertaken on how this could be
automated using a machine-learning approach [25].

Formal methods have a significant amount of knowledge associated with them. This
has been developed over the last few decades, especially in the context of software
engineering [1,15,16]. However, the important underpinnings of formal methods have
not been formulated as a BoK, unlike IEEE’s SWEBOK for software engineering [18].

In Section 2, we consider the formal methods community in the context of a Com-
munity of Practice (CoP), a social science framework for the developmental stages of a
professional community. In Section 3, we consider the Body of Knowledge that could
be desirable for a professional software engineer in the area of formal methods. In Sec-
tion 4, we formalise some desirable properties of a Body of Knowledge using the Z
notation. Finally in Section 5, we draw some conclusions on the current state of the
formal methods Body of Knowledge and consider possible future directions.

2 Community of Practice

A critical part of knowledge development is learning. Increasingly it has been realised,
recently, that this is largely social in character, although it often takes place in the work-
place [12]. In this framework, the concept of legitimate peripheral participation (LPP)
has been developed [23]. This approach considers how individuals move from being
newcomers in a community, eventually becoming experienced in some collaborative
project or endeavour. Often the initial tasks undertaken by participants are small-scale
and low-risk. Nevertheless, the act of empowering these peripheral members to partic-
ipate in a large-scale collaborative project promotes interaction between novices and
experts. It has the potential to generate productive knowledge development within the
community involved in the overall effort.

Such social considerations have also led to the theoretical framework of CoP, with a
number of elements, principles, and developmental stages [31,32,17]. A CoP is a group
of people with a shared interest or profession, engaged in the enrichment of communal
knowledge. It involves situated learning, in which the people that are learning also apply
this knowledge in the same context (e.g., during practical experience). In this section,
the Z user community is used as an exemplar for the various elements, aspects, and
stages of a CoP.

2.1 Fundamental Elements of a CoP

The following three fundamental elements form the structural model of a community
of practice [32, chapter 2]:

310 J.P. Bowen and S. Reeves

1. Domain: A CoP must have a common interest to be effective. All the participants in
the group must be able to contribute in some way within this domain. Otherwise it
is just a collection of people with no particular purpose. For example, the Z notation
has formed the nucleus of a CoP in a formal methods context.

2. Community: A CoP also needs a group of people who are willing to engage with
at least some others in the group, so ultimately the entire group is transitively con-
nected as a single entity, from a global viewpoint. This aspect is critical to the
effective development of knowledge. The group of people interested in the Z nota-
tion started at the Oxford University Computing Laboratory through the inspiration
of Jean-Raymond Abrial in the late 1970s and early 1980s. It has gradually spread
around the world since then.

3. Practice: The CoP must explore both existing knowledge and develop new knowl-
edge, based on existing concepts, but expanded through actual application in a
practical sense. This leads to a set of common approaches and shared standards
in applying them. The Z notation is based on predicate logic and set theory, both
very standard concepts in mathematics that were originally formulated a long time
before the development of Z. Schema boxes were added to the mathematics for the
convenient structuring of realistic specifications. Initially case studies were spec-
ified. More recently, Z has been used for major industrial software engineering
projects of a significant scale where system integrity is an important factor.

Developing a healthy CoP requires the interplay of these three elements within a com-
munity in a balanced manner, because they are all dynamically changing over time,
rather than being unalterable. Whilst it is important to have the three elements controlled
to a degree in a CoP, perseverance in one element will help ease the potential problems
in another. As Wenger et al. have asserted, “The art of community development is to use
the synergy between domain, community, and practice to help a community evolve and
fulfil its potential.” [32, page 47] Without the three elements above, a true CoP can-
not evolve. With them, the community can develop a Body of Knowledge that can be
used by practitioners within a particular area of expertise. This may be through books,
courses, web resources, standards, etc.

2.2 Cultivating a CoP

The success or failure of a community of practice largely depends on the purpose and
objective of the community combined with its interests and resources. Wenger et al.
[32, chapter 3] have identified seven specific aspects that should be addressed to enable
a CoP to flourish:

1. Design the CoP to evolve naturally: communities are naturally dynamic and the
ability to adapt to the current needs of the CoP at different points in its development
is important. In the case of Z, the initial community was largely based in Oxford.
The Masters course at the Programming Research Group in Oxford included Z and
intensive courses were also offered.

2. Create opportunities for open discussion: often an outsider can add value to the
CoP by bringing in ideas that may not have evolved in the community if it was
completely isolated. An annual Z User Meeting was established in 1986, initially
in Oxford and later around the United Kingdom and then Europe. This aided the
spread of Z nationally and then internationally.

From a Community of Practice to a Body of Knowledge 311

3. Welcome and allow different levels of participation: some people will be able to
devote large amounts of time to the CoP, but a much larger number will be able
to commit to a small but nevertheless useful contribution. The core Z research was
initially at Oxford, but later other research centres such as the University of York
in the UK and the University of Queensland in Australia developed significant Z
experience and made major research contributions. Others taught Z in formal meth-
ods courses within university degree programmes, without necessarily undertaking
research.

4. Develop both public and private CoP facilities: public events are very useful for
community building and smaller private interactive discussions are important to
make the larger meetings more effective. The Z User Meeting, as previously
mentioned, formed the core of public events for Z. This developed into the ZB
Conference, with the related B-Method community, in 2000. These were important
networking events for interaction between individuals too. It has now become the
ABZ conference with the inclusion of ASM (Abstract State Machines) in 2008,
Alloy in 2010, and VDM in 2012, held every two years [8].

5. Focus on the value of the CoP: the value of a community may not be immediately
obvious, but it should be nurtured explicitly by creating suitable events, activities,
and relationships where the value can develop naturally. As well as the Z User
Meetings, there were also academic and industrial courses, available to this day.
A formal Z User Group (ZUG, http://zuser.org) was established in 1992 to act as a
focus for Z activities, with finance raised through the Z User Meetings. The produc-
tion of an ISO standard for Z occupied most of the 1990s, initially based on Spivey’s
“Z Reference Manual” (ZRM) [29], finally to appear in 2002 [19]. This formed the
focus for the Community Z Tools (CZT) project that has produced a number of
open source tools based on the Z standard (see http://czt.sourceforge.net).

6. Combine familiarity and excitement within the CoP: participants should feel com-
fortable with the day-to-day environment provided by the community, but there
should be additional events that provide a “buzz” to keep people involved. In ad-
dition to Z User Meetings, a ZFORUM mailing list was established in the 1980s,
which was later linked to a specially created newsgroup, comp.specification.z, and
is still available through Google Groups. A Z archive was established using FTP
and email access at Oxford, later augmented by web-based information from 1994,
including more general formal methods information, incorporated as part of the
Virtual Library initiated by Tim Berners-Lee, the inventor of the web. The informa-
tion is now accessible through a Formal Methods Wiki that can be updated online
by the entire formal methods community under http://formalmethods.wikia.com.

7. Find and nurture a regular rhythm for the CoP: there should be periodic events and
milestones that provide a temporal structure to the community, providing partici-
pants with a sense of progress and achievement. The Z User Meetings were held at
first annually, then on an 18 month cycle, and now a two year cycle.

The above seven principles are recurrent aspects of the life of a CoP itself, rather than
external rules that are to be imposed on the community, as is explained by Wenger
et al.: “The challenge of designing natural structures like communities of practice is
creating an approach to design that redefines design itself” [32, page 64]. If any of
these considerations are deficient in a particular CoP, it can lead to the ultimate failure
of the community.

312 J.P. Bowen and S. Reeves

2.3 Stages of Community Development

The community development of a CoP typically goes through the following five stages,
although it varies from case to case in the ways and sequence a community experiences
them [32, chapters 4–5].

1. Potential: an extant social and/or professional network is needed to bootstrap a
CoP and form a core of the community. An important aspect is for members to
sense enough commonality so that they feel connected. Initially for Z, there was
a group of people already interested in formal methods in general at Oxford. The
seed of Z formed when Jean-Raymond Abrial visited the Programming Research
Group in Oxford and found a group receptive to his ideas.

2. Coalescing: the CoP needs to combine a good understanding of existing knowl-
edge with visualization for what is possible in the future. The value of sharing
information must be appreciated by those involved. The group at Oxford were al-
ready expert in the underlying mathematics used by Z. They also had the vision of
applying this to the specification of computer-based systems.

3. Maturing: there must be a move from establishing goals to the first steps in realizing
these. The role of the CoP must be understood and defined in a wider context with
relation to the domain areas. The establishment of the Z User Meetings in 1986,
together with the Z FORUM electronic newsletter distributed via email around the
same time, was seminal in providing a focus for wider Z-based activities. Grad-
ually others interested in formal methods, both within the United Kingdom and
around the world, gravitated towards Z, especially through attendance of the early
Z User Meetings and communication via the newsletter. ZFORUM was initially
edited from contributions via email, but later messages could be submitted directly
by subscribers. The IBM CICS project in the 1980s provided an example of a real
industrial project that used Z successfully. During the maturing phase, a Body of
Knowledge (BoK) [33] is gradually formed and implicitly agreed by the commu-
nity, as least informally. In the case of Z, Spivey’s Z Reference Manual was issued
as a de facto standard in 1988, with a second edition in 1992 and finally an online
version in 2001 [29].

4. Stewardship: once a CoP has matured, a momentum must be maintained with
changes in personnel, etc. The knowledge of the CoP must remain relevant, up
to date, and be of continuing benefit to the people involved. The establishment of
the Z User Group in 1992 meant that Z had an organizational focus, with a consti-
tution providing a chair, secretary, treasurer, and committee. Over the next decade,
the ISO Z standard was produced [19]. This formalized the BoK related to Z devel-
oped by the community during the previous maturing phase.

5. Transformation: eventually a CoP will naturally transmogrify into some new form
or disappear at the end of its useful lifetime. A formal institution may be estab-
lished, several communities may form, it may become more social than profes-
sional, or the enthusiasm may die. After the production of the Z standard, the
Community Z Tools project acted as a focus for open source Z tools based on the
standard. The Z User Meeting became the ZB Conference and then the ABZ Con-
ference, with a wider scope as research in Z contracted. The Z User Group became
less active as conferences were organized and underwritten by the host institutions
directly. While a Z community still exists, and significant industrial projects are still

From a Community of Practice to a Body of Knowledge 313

using Z for high integrity applications, the focus of research and tool development
has now moved to the B-Method and Event-B, together with Z-related languages
and tools such as Alloy [20].

In general, the first two stages span the period of initiating and developing a community
of practice. The later three stages deal with the phases of maintaining, progressing,
making the community flourish; or it may falter, during its natural evolution. Any view
of an existing CoP will be a snapshot at one of these stages in its lifecycle. The Z
community has reached the final transformation stage.

3 Body of Knowledge

A Community of Practice (CoP) typically develops a Body of Knowledge (BoK) [33]
as part of the development of a mature CoP during the maturing and stewardship phased
mentioned in the previous section. A BoK provides a set of concepts, terms, activities,
etc., that are useful or essential in a particular professional domain. A BoK is typically
formulated by a relevant professional association and there are a number of examples
in existence, including SWEBOK [18].

Issues for a BoK include knowledge representation, knowledge acquisition, adequate
coverage of knowledge, and revisions to the BoK. Existing BoKs are typically presented
in a hierarchical tree structure. Often there are a number of sections with parts referring
to each other. Designers of BoKs are normally experts in the field who use their own
knowledge, augmented with a literature and lecture survey as required. Ensuring com-
pleteness can be problematic as a result. A more distributed and community-oriented
approach may be more successful in ensuring better completeness. It is possible that
data mining and machine learning techniques could be used to extract and generate
material for a BoK from online resources semi-automatically in the future [25].

A BoK is normally used for certification and education or training. The knowledge
must reflect current best practice, which inevitably changes over time. However, updates
cannot be undertaken in an uncontrolled manner since associated lecture and other ed-
ucation material needs to be maintained in line with the BoK.

There has been a certain amount of criticism of the very idea of developing and
recording a BoK in an area like, for example, software engineering (where the com-
plaints are based around the ever-changing nature of the subject, what “the subject”
even signifies, and the fact that no two people agree on what constitutes software en-
gineering). However, much of this criticism misses the point about the need to record
“how things are now” in order that, firstly, knowledge is not lost, and, secondly, the cur-
rent and future practitioners can build on the work of those from the past, as recorded.
One really only needs to look at formal methods and software engineering to see, even
in their highly specialised areas, and relatively short lifetimes, the continual repeating
of prior work and reinvention of prior knowledge. This, surely, shows that an accepted
record, no matter how partial, incomplete, imperfect, or contentious it may be, is sorely
needed if we are not to repeatedly rediscover knowledge.

This role of collective memory is an important contribution of a BoK. A BoK should
not merely be something against which to judge a particular academic course or a pro-
fessional in a specific field.

There is a very pragmatic point to be made here too. Many accreditation bodies sim-
ply do not have the expertise or time to listen to and argue sensibly with people who, for

314 J.P. Bowen and S. Reeves

“market” reasons have to achieve accreditation. Thus, they rely on documents like the
IEEE SWEBOK [18] and, often with little understanding, insist they are followed, ap-
plying them thoughtlessly when considering accreditation. From experience, no amount
of arguing with panels (backed-up by national bodies) about why their interpretation of
the SWEBOK is wrong has any effect; indeed, it is seen as special pleading from an
accreditation applicant who has not, according to the accreditation body, managed to
achieve the necessary level of competence. This could be seen as a strong argument for
not encouraging the development of BoKs: if accreditation bodies cannot find a BoK
document then they cannot misuse it, or hide their poor knowledge and methods so eas-
ily. However, we believe that a BoK’s ability to record knowledge in an authoritative
manner is a very strong point in its favour that cannot be dismissed lightly. (At least it is
something to argue against.) Thus, we are left with developing the best BoKs possible,
formulating them clearly and encouraging their acceptance, and aiming to ensure that
their misuse is minimised.

We would also support the conclusions in Boute’s 2008 paper from [4]:

We have argued that the most effective way for making Formal Methods an evident part
of everyday practice is not convincing the current practitioners but investing in the ed-
ucation of future generations. Formal Methods, in the sense of mathematical modeling,
can be the lever to lift the entire computing curriculum to the scientific and professional
level that would be considered acceptable in classical university-level engineering.

In addition, IEEE and ACM have realised that it is useful to consider how we might
recommend the content of an academic degree (or other course) that is designed to
prepare professionals for software engineering work.

A report of the Joint Task Force on computing curricula formed by the IEEE Com-
puter Society and the ACM has been produced [21]. This document (on Software Engi-
neering Education Knowledge or “SEEK”) specifically addresses the design and con-
tent of software engineering programmes, basing itself on the SWEBOK work. But,
whereas the SWEBOK is intended to describe the knowledge and experience that a
practising software engineer should have after four years of professional working, the
SEEK uses that as a target and lays out, in essence, how to educate a software engineer
so that they will be at the correct level, according to SWEBOK, in the required time.

We suggest that work on “FMEK” (Formal Methods Education Knowledge) and
an “FMBOK” (Formal Methods Body of Knowledge) starts hand-in-hand, following
the pattern that the wider software engineering community has successfully developed.
Even through the state of the art in formal methods is steadily advancing [7,8,3], formal
methods are now mature enough for such an initiative to be undertaken.

As the SEEK document states [21, section 2.6, page 12]:

– The SWEBOK is intended to cover knowledge after four years of practice.
– The SWEBOK intentionally does not cover non-software engineering knowledge

that a software engineer must have.

The Guide to the SWEBOK [18, Foreword, page vii] itself states:

The steering committee organized task forces in the following areas:
1. Define Required Body of Knowledge and Recommended Practices.
2. Define Ethics and Professional Standards.
3. Define Educational Curricula for undergraduate, graduate and continuing educa-

tion.

From a Community of Practice to a Body of Knowledge 315

This book supplies the first component: required body of knowledge and recommended
practices. [. . .] The educational curriculum for undergraduates is being completed by a
joint effort of the IEEE Computer Society and the ASM and is expected to be completed
in 2004.

The last mentioned effort has SEEK as its result [21].

3.1 Characterising Formal Methods

Perhaps the first step we should take is to agree on what formal methods are. SEEK
says of software engineering [21, section 2.2]:

A common misconception about software engineering is that it is primarily about process-
oriented activities (i.e., requirements, design, quality assurance, process improvement,
and project management). In this view, competency in software engineering can be
achieved by acquiring a strong engineering background, a familiarity with a software
development process and a minimal computing background, including experience using
one or more programming languages. Such a background is, in fact, quite insufficient;
the misconception that leads to such thinking is based on an incomplete view of the
nature and challenges of software engineering.

The section from which the quotation above is extracted goes on to point out that soft-
ware engineering is different from other engineering areas because it deals with an
intangible, abstract “material”, namely software, and needs to use discrete rather than
continuous mathematics due to the discrete way that software interacts with the world.

It is also noted that software engineering has to be based on computing and math-
ematics, and when educating software engineers we need to have a curriculum that
covers everything from theory and principles right up to development methods (which,
as the report states, “are the most visible [part of what we do] to those outside of the
discipline” [21]). This all applies to formal methods too.

Perhaps where the subjects notably diverge (though the boundary between theory and
practice is very blurred, and perhaps is a red-herring) is when the word “engineering”
is considered.

In [21, section 2.3], where the role of software engineering as an engineering disciple
per se is discussed, the following is noted:

We must also point out that although there are strong similarities between software
engineering and more traditional engineering [listed later in subsection 2.3.1 of the
document], there are also some differences (not necessarily to the detriment of software
engineering):

– Foundations are primarily in computer science, not in natural sciences.
– The focus is on discrete rather than continuous mathematics.
– The concentration is on abstract/logical entities instead of concrete/physical arte-

facts.
– There is no “manufacturing” phase in the traditional sense.
– Software “maintenance” primarily refers to continued development, or evolution,

and not to conventional wear and tear.

So, perhaps this is straying outside the boundaries of formal methods. However, SEEK
then states [21, section 2.3.2 on Engineering Design]:

316 J.P. Bowen and S. Reeves

Software engineering differs from traditional engineering because of the special nature
of software, which places a greater emphasis on abstraction, modeling, information
organisation and representation, and the management of change. Software engineer-
ing also includes implementation and quality control activities normally considered
in the manufacturing process design and manufacturing process steps of the product
cycle. Furthermore, continued evolution (i.e., “maintenance”) is also of more critical
importance for software. Even with this broader scope, however, a central challenge of
software engineering is still the kind of decision-making known as engineering design.
An important aspect of this challenge is that the supporting process must be applied at
multiple levels of abstraction.

Some of this again seems very relevant to formal methods.

3.2 Organizational Matters

SEEK sets out many templates for academic degree courses that, if followed, will guar-
antee that the students so educated will necessarily be on the path to the requirements
of SWEBOK (which, recall, states what a professional engineer with four years of ex-
perience should have achieved).

One of the patterns provided for possible software engineering course accreditation is
Aus1, a pattern suitable when the programme is based in a computer science department
and is delivered over four years. The pattern (from page 64 of the SEEK document [21])
is shown in Table 1.

The following paragraph from the SEEK [21] is a reasonable starting point when
considering the structure of an FMEK:

Chapter 2 discusses the nature of software engineering as a discipline, depicting some
of the history of software engineering education, and explaining how these elements
have influenced the recommendations in this document. Chapter 3 presents the guid-
ing principles behind the development of this document. These principles were adapted
from those originally articulated by the CC2001 Task Force as they began work on what
became the CCCS volume. Chapter 3 also provides the description of what every SE
graduate should know. Chapter 4 presents the body of Software Engineering Education
Knowledge (the SEEK) that underlies the curriculum guidelines and educational pro-
gram designs presented in Chapters 5 and 6, respectively. Chapter 7 discusses adap-
tation of the curriculum recommendations in Chapter 6 to alternative environments.
Finally, Chapter 8 addresses various curriculum implementation challenges and also
considers assessment approaches.

Table 1. From SEEK [21, page 61]. Software engineering programme based in a computer sci-
ence department and taught over four years. (NB: the codes used in each entry are explained
elsewhere in SEEK, but we present the template here just as an example.)

Year 1 Year 2 Year 3 Year 4
Sem1A Sem 1B Sem2A Sem2B Sem3A Sem 3B Sem4A Sem 4B

CS101 CS102 CS220 CS103 CS Team proj SE400 SE400
Calc1 Lin Alg CS270T SE SE Tech elect SE323 NT291 Tech elect

NT181/NT272 Dig Log SE201 Team proj Tech elect Tech elect Tech elect –
Intro EE CS015 CS106 MA271 – – – – –

From a Community of Practice to a Body of Knowledge 317

3.3 FMBOK Initiative

FMBOK (Formal Methods Body of Knowledge) is an initiative dedicated to the dis-
cussion on a BoK specifically concerned with formal methods [11]. This is an activity
within the Formal Methods Europe Subgroup on Education (FME-SOE). More gener-
ally, SWEBOK (Software Engineering Body of Knowledge) has been initiated and is
being standardized by the IEEE Computer Society [18].

Kenji Taguchi (National Institute of Advanced Industrial Science and Technology,
AIST, Japan) and Jose Oliveira (University of Minho, Portugal) organized a panel at the
TFM (Teaching Formal Methods) conference in Eindhoven in 2009 to discuss a BoK
for formal methods, and the issues surrounding it. This followed a similar initiative at
the FMET (Formal Methods Education and Training) workshop held in conjunction
with ICFEM 2008. Prior to that, a survey was carried out by FME-SOE on formal
methods courses in undergraduate degrees, and José Nuno Oliveira published a paper
on formal methods courses in European higher education at TFM’04 [28]. A Model
Checking Body of Knowledge (MCBOK) is now underway, aiming to follow the ISO
standardization process [27].

4 Formal Model in Z

Currently, BoKs are specified in a variety of informal and sometimes verbose and rather
opaque forms [33]. Typically there is some form of hierarchical structure. Here we
suggest an abstract framework that could be used to formulate any BoK and ensure
a number of desirable properties if followed. The framework is modelled using the
Z notation [5,29], based on predicate logic and set theory [13], together with schema
boxes for structuring the mathematics forming the specification. The choice of Z here
simply reflects the experience and background of the authors, and is not intended to be
a judgment on Z relative to other similar languages.

In modelling a BoK, we initially define two given sets, NAMES of entities in the
BoK and REFS , for references to external items that validate information in the BoK.
The name space is split disjointly between entries and categories that provide structure
for the entries.

[NAMES ,REFS] ENTRIES ,
CATEGORIES : P NAMES

ENTRIES ∩CATEGORIES = ∅

A basic BoK may be formulated as a finite set of entries, categories and references.
Entries may include links to other entries, be categorized in a number of categories, and
include citations to other literature verifying or augmenting the information:

BOK0

entries : FENTRIES
categories : FCATEGORIES
refs : F REFS

BOK1

BOK0

links : ENTRIES ↔ ENTRIES
cats : NAMES ↔ CATEGORIES
citations : ENTRIES ↔ REFS

dom links ⊆ entries
dom cats ⊆ entries ∪ categories
dom citations ⊆ entries

318 J.P. Bowen and S. Reeves

Links, categories, and citations should be valid. That is, links should be to actual
entries in the BoK, all categories should exist in the BoK, and all citations should be to
valid references. It is possible to specify entries that have no links, no categories, or no
citations:

BOK2

BOK1

ran links ⊆ entries
ran cats ⊆ categories
ran citations ⊆ refs

BOK2A

BOK2

nolinks : FENTRIES
nocats : FNAMES
nocites : F ENTRIES

nolinks = entries \ dom links
nocats =

entries ∪ categories \ dom cats
nocites = entries \ dom citations

It may be desirable for all entries to have links and categories and for all categories
to have entries and/or subcategories (i.e., for nolinks , nocats , and nocites all to be
empty).

Entries may be orphans (i.e., have no links to them) and references may be uncited
in any entry:

BOK2B

BOK2A

orphans : FENTRIES
uncited : FREFS

orphans = entries \ ran links
uncited = refs \ ran citations

It may be a desirable property for there to be no orphans or uncited references (i.e., for
orphans and uncited to be empty).

All entries have links, citations, and categories, although some categories may not
have any entries (but could have subcategories). All entries are linked, all categories are
used, and all references are cited somewhere.

BOK3

BOK2B

entries = dom links = dom citations
entries ⊆ dom cats

BOK4

BOK3

ran links = entries
ran cats = categories
ran citations = refs

Self-links and self-categories should be disallowed since these ate not helpful for
structuring and navigation. More strongly, loops are not desirable in categories:

BOK5

BOK4

id ENTRIES ∩ links = ∅

id CATEGORIES ∩ cats = ∅

BOK6

BOK5

id CATEGORIES ∩ cats+ = ∅

From a Community of Practice to a Body of Knowledge 319

There are some top-level categories that are not subcategories of any other category.
These top-level categories provide one or more high-level starting points for traversing
the information.

It is desirable for all categories to be used since an empty category does not serve
any useful purpose and may be confusing. All entries are interlinked in one direction at
least to provide convenient navigation around the information:

BOK7

BOK6

toplevelcats : F CATEGORIES

toplevelcats =
ran cats \ dom cats �= ∅

BOK8

BOK7

ran cats = categories

If entries are not interlinked, it is questionable why they are needed in the overall BoK.
More strongly, all entries may be linked in both directions:

BOK9

BOK8

dom links ∪ ran links+ = entries

BOK10

BOK9

dom links = ran links+ = entries

All the categories and entries in the BoK are interconnected from the top-level cate-
gories by traversing up and down the category lattice:

BOK
BOK10

(cats ∪ cats∼)∗(| toplevelcats |) = entries ∪ categories

(Note that the (| . . . |) notation indicates the relational image of a set.)
The above Z specification has gradually built up a number of desirable properties in

a framework that could be used to specify a Body of Knowledge. Existing BoKs have
no uniform framework for their formulation and presentation. Further restrictions such
as a strict hierarchical classification of categories could be deemed desirable but have
not been modelled here. It is suggested that an abstract framework such as this could be
useful for BoKs in general and a formal methods BoK in particular.

5 Conclusions and Future Work

The formal methods community, especially that associated with the Z notation, has
been explored using the framework of a Community of Practice (CoP). This is the
first time that CoP has been applied in a formal methods context. Mature scientific and
engineering disciplines have a generally accepted Body of Knowledge (BoK) associated
with them for the education and use of professionals in the field. It is posited, based on
the fact that Z, at least, appears to be in the last of the seven stages of development of

320 J.P. Bowen and S. Reeves

a CoP, that the formal methods community is reaching a level of maturity when such a
repository is necessary for the field to develop further.

In this paper, we have included a high-level model of a BoK using Z. Of course, there
are many existing ontological approaches to modelling knowledge, for example, the
General Formal Ontology (GFO), the Integrated Definition for Ontology Description
Capture Method (IDEF5), the Knowledge Interchange Format (KIF) language based on
first-order predicate calculus, the Protégé open source ontology editor, and many others
[34]. It has been beyond the scope of this paper to explore these languages, methods,
and tools.

The formal methods community is actually a set of interlinked communities of prac-
tice. Some, like the CoP associated with Z, are at the transformation stage of their devel-
opment in a CoP context. Others, such as the related B community, are at the stewardship
stage. Still others, such as the ASM community, are at the maturing stage. Overall, the
formal methods CoP is sufficiently mature to warrant the development of an FMBOK
Body of Knowledge and an associated FMEK (Formal Methods Educational Knowl-
edge) to support the application of formal methods by professional software engineers.

As a specific example, taking the Aus1 template in Table 1, we might suggest re-
placing “Dig Log” (digital logic), “Intro EE” (Introduction to Electronic Engineering)
and “NT181/NT272” (Group Dynamics and Communication/Engineering Economics)
with more foundational theoretical work, perhaps including further algebra (e.g., some
“electronic category theory”), further logic (e.g., what Kleene would have called “met-
alogic”) and a suitably adapted version of the NT181 paper with the addition of relevant
examples. Also, the emphasis of the software engineering papers and the team projects
should clearly be far more oriented towards high integrity systems than the mainstream
software engineering papers.

We would also expect to see some of these papers covering the foundations, imple-
mentation, and use of tools to support formal methods projects. Overall though, the
SEEK templates (of which Aus1 is just one example) are probably already very suitable
(certainly in terms of the short titles of the papers shown) for an FMEK: we simply need
to restrict (or enrich?) the existing software engineering papers (and their foundational
precursors) to be more oriented towards formal methods. At least the immense amount
of work that has been dedicated to the SEEK should be the starting point; it is certainly
not necessary to reformulate much of this material again. Given the wide acceptabil-
ity of the SWEBOK and SEEK work, we would suggest an immediate effort towards
adapting the SEEK templates would be a useful step along the way to an FMBOK.

It would also be useful, and interesting, to extend the Z specification for a BoK to
specify templates like Aus1 in Table 1, along with constraints on allowable or acceptable
curricula, and links back to the BoK. The aim of an FMEK, recall, would be to give a
plan for a (degree) course which, having been attained, will lead to attainment of the
BoK after four years (say) of practice. Having this formalised in Z, for example, would
allow the transition from education to practice to be more readily traced, as well as
supported.

Formal methods are not used in isolation and there are a number of other software
engineering approaches that could be combined with formal methods (e.g., agile soft-
ware development [2] and software testing [14], which may at first seem orthogonal to
and even incompatible with formal methods). A BoK or set of interlinked BoKs could
consider the combination of various software engineering approaches that could be used

From a Community of Practice to a Body of Knowledge 321

in together. Knowledge would include the appropriateness of various combinations in
different situations.

In summary, formal methods have developed over the past few decades though a num-
ber of interrelated communities. They have now reached a level of maturity when an as-
sociated Body of Knowledge would be a worthwhile part of the general effort to ensure
that formal methods find their rightful place in the software engineering profession.

Acknowledgements. This paper was initiated by an academic visit by the first author
in November 2010 to The University of Waikato, whose support is gratefully acknowl-
edged. Kenji Taguchi (AIST, Japan) provided useful suggestions concerning BoKs in
general and the FMBOK in particular. Alison H.-Y. Liu (National Taiwan Normal Uni-
versity) introduced the concept of CoP to us [24]. The referees also provided useful
input. Jonathan Bowen is grateful for financial support from Museophile Limited.

References

1. Bjørner, D.: Software Engineering. In: Texts in Theoretical Computer Science. An EATCS
Series, vol. 3, Springer, Heidelberg (2005–6)

2. Black, S.E., Boca, P.P., Bowen, J.P., Gorman, J., Hinchey, M.G.: Formal versus agile: Sur-
vival of the fittest. IEEE Computer 42(9), 37–45 (2009)

3. Boca, P.P., Bowen, J.P., Siddiqi, J. (eds.): Formal Methods: State of the Art and New Direc-
tions. Springer, London (2010)

4. Boute, R.: Formal Methods: Teaching and Practicing Computer Science at the University
Level. In: Davies, J., et al. (eds.) Proceedings of the First International Workshop on Formal
Methods Education and Training,Technical Report GRACE-TR-2008-03, GRACE Center,
Japan (October 2008),
http://www.grace-center.jp/downloads/GRACE-TR-2008-03.pdf

5. Bowen, J.P.Z.: A formal specification notation. In: Frappier, M., Habrias, H. (eds.) Software
Specification Methods: An Overview Using a Case Study. FACIT series, ch. 1, pp. 3–19.
Springer, London (2001)

6. Bowen, J.P., Borda, A.: Communicating the public understanding of science: The Royal So-
ciety website. International Journal of Technology Management 46(1/2), 146–164 (2009)

7. Bowen, J.P., Hinchey, M.G.: Ten commandments of formal methods . . . Ten years later. IEEE
Computer 39(1), 40–48 (2006)

8. Bowen, J.P., Hinchey, M.G.: Ten Commandments Ten Years On: Lessons for ASM, B, Z and
VSR-net. In: Abrial, J.-R., Glässer, U. (eds.) Rigorous Methods for Software Construction
and Analysis. LNCS, vol. 5115, pp. 219–233. Springer, Heidelberg (2009)

9. Derida, J.: Mal d’Archive: Une Impression Freudienne. Éditions Galilée, 1995. Translated
by E. Prenowitz, Archive Fever: A Freudian Impression (1996)

10. Ebersbach, A., Glaser, M., Heigl, M.: Wiki: Web Collaboration. Springer, Heidelberg (2006)
11. FMET. Towards Formal Methods Body of Knowledge (FMBOK). GRACE Center, Japan,

http://grace-center.jp/en/prj_fmbok.html (accessed March 31, 2010)
12. Hara, N.: Communities of Practice: Fostering peer-to-peer learning and informal knowledge

sharing in the work place, information science and knowledge management. Springer, Hei-
delberg (2009)

13. Henson, M.C., Reeves, S., Bowen, J.P.Z.: logic and its consequences. CAI: Computing and
Informatics 22(4), 381–415 (2003)

14. Hierons, R.M., Bogdanov, K., Bowen, J.P., Cleaveland, R., Derrick, J., Dick, J., Gheorghe,
M., Harman, M., Kapoor, K., Krause, P., Luettgen, G., Simons, A.J.H., Vilkomir, S.A.,
Woodward, M.R., Zedan, H.: Using formal specification to support testing. ACM Computing
Surveys 41(2), 1–76 (2009), doi:10.1145/1459352.1459354

http://www.grace-center.jp/downloads/GRACE-TR-2008-03.pdf
http://grace-center.jp/en/prj_fmbok.html

322 J.P. Bowen and S. Reeves

15. Hinchey, M.G., Bowen, J.P., Vassev, E.: Formal Methods. In: Laplante, P.A. (ed.) Encyclo-
pedia of Software Engineering, pp. 308–320. Taylor & Francis, Abington (2010)

16. Hinchey, M.G., Jackson, M., Cousot, P., Cook, B., Bowen, J.P., Margaria, T.: Software
engineering and formal methods. Communications of the ACM 51(9), 54–59 (2008),
doi:10.1145/1378727.1378742

17. Hughes, J., Jewson, N., Unwin, L. (eds.): Communities of Practice: Critical perspectives.
Routledge, New York (2007)

18. Abran, A., Moore, J.W., Bourque, P., Dupuis, R.: SWEBOK: Guide to the Software Engi-
neering Body of Knowledge. IEEE Computer Society, Los Alamitos (2004),
http://www.swebok.org

19. ISO. Information Technology – Z Formal Specification Notation – Syntax, Type System and
Semantics. ISO/IEC 13568:2002, International Organization for Standardization (2002)

20. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cam-
bridge (2006)

21. Joint Task Force on Computing Curricula. Software Engineering 2004: Curriculum Guide-
lines for Undergraduate Degree Programs in Software Engineering. Computing Curricula
Series, IEEE Computer Society and Association for Computing Machinery (August 23,
2004), http://sites.computer.org/ccse/SE2004Volume.pdf

22. Kommers, P.: Creativity in web-based communities. International Journal of Web Based
Communities 6(4), 410–418 (2010)

23. Lave, J., Wenger, E.: Situated Learning: Legitimate peripheral participation. Cambridge Uni-
versity Press, New York (1991)

24. Liu, A.H.-Y., McDaid, S., Bowen, J.P., Beazley, I.: Dulwich OnView: A museum blog
run by the community for the community. In: Trant, J., Bearman, D. (eds.) Muse-
ums and the Web 2010: Proceedings, Archives & Museum Informatics, Toronto (2010),
http://www.archimuse.com/mw2010/papers/liu/liu.html

25. Milne, D., Witten, I.H.: Learning to link with Wikipedia. In: Proc. ACM Conference on
Information and Knowledge Management (CIKM 2008), pp. 509–518. ACM Publications,
Napa Valley (2008), doi:10.1145/1458082.1458150

26. Milner, R.: Bigraphs and their algebra. In: Electronic Notes in Theoretical Computer Sci-
ence, vol. 209, pp. 5–19 (2008); Proceedings of the LIX Colloquium on Emerging Trends in
Concurrency Theory (LIX 2006), doi:10.1016/j.entcs.2008.04.002

27. Nishihara, H., Shinozaki, K., Hayamizu, K., Aoki, T., Taguchi, K., Kumeno, F.: Model check-
ing education for software engineers in Japan. ACM SIGCSE Bulletin 41(2) (June 2009),
doi:10.1145/1595453.1595461

28. Oliveira, J.N.: A Survey of Formal Methods Courses in European Higher Education. In:
Dean, C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 235–248. Springer, Heidel-
berg (2004)

29. Spivey, J.M.: The Z Notation: A reference manual (2001) (Originally published by Prentice
Hall, 1st edn. (1989) 2nd edn. (1992),
http://spivey.oriel.ox.ac.uk/˜mike/zrm/

30. Van Doren, C.: A History of Knowledge: Past, present, and future. Ballantine Books, New
York (1991)

31. Wenger, E.: Communities of Practice: Learning, Meaning, and Identity. Cambridge Univer-
sity Press, Cambridge (1998)

32. Wenger, E., McDermott, R.A., Snyder, W.: Cultivating Communities of Practice: A guide to
managing knowledge. Harvard Business School Press, Boston (2002)

33. Wikipedia. Body of Knowledge, Wikimedia Foundation,
http://en.wikipedia.org/wiki/BoK (accessed March 31, 2010)

34. Wikipedia. Ontology (information science), Wikimedia Foundation,
http://en.wikipedia.org/wiki/Ontology_information_science
(accessed March 31, 2010)

http://www.swebok.org
http://sites.computer.org/ccse/SE2004Volume.pdf
http://www.archimuse.com/mw2010/papers/liu/liu.html
http://spivey.oriel.ox.ac.uk/~mike/zrm/
http://en.wikipedia.org/wiki/BoK
http://en.wikipedia.org/wiki/Ontology_information_science

Verifying Linearisability with Potential

Linearisation Points

John Derrick1, Gerhard Schellhorn2, and Heike Wehrheim3

1 Department of Computing, University of Sheffield, Sheffield, UK
J.Derrick@dcs.shef.ac.uk

2 Universität Augsburg, Institut für Informatik, 86135 Augsburg, Germany
schellhorn@informatik.uni-augsburg.de

3 Universität Paderborn, Institut für Informatik, 33098 Paderborn, Germany
wehrheim@uni-paderborn.de

Abstract. Linearisability is the key correctness criterion for concurrent
implementations of data structures shared by multiple processes. In this
paper we present a proof of linearisability of the lazy implementation of a
set due to Heller et al. The lazy set presents one of the most challenging
issues in verifying linearisability: a linearisation point of an operation
set by a process other than the one executing it. For this we develop
a proof strategy based on refinement which uses thread local simulation
conditions and the technique of potential linearisation points. The former
allows us to prove linearisability for arbitrary numbers of processes by
looking at only two processes at a time, the latter permits disposing with
reasoning about the past. All proofs have been mechanically carried out
using the interactive prover KIV.

1 Introduction

The setting of this work are data structures such as sets, stacks and queues
that are shared by parallel processes. To increase the opportunities for concur-
rency (particularly relevant in a multicore context), implementations of these, so
called, concurrent objects usually apply fine-grained synchronisation schemes for
access. Fine-grained synchronisation disposes with locking the whole data struc-
ture during access, and locks only single elements (e.g., nodes in a linked list
representation). The extreme to this are implementations of operations taking
no locks at all.

Such highly concurrent algorithms are intrinsically difficult to prove correct,
the down-side of the performance gain from permitting concurrency is the much
harder verification problem: how can one verify that the implementation of a
concurrent object is correct? Here, the key correctness property to be shown is
linearisability [11]. It permits one to view operations on concurrent objects as
though they occur atomically, in some sequential order [11]:

Linearisability provides the illusion that each operation applied by con-
current processes takes effect instantaneously at some point between its
invocation and its response.

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 323–337, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

324 J. Derrick, G. Schellhorn, and H. Wehrheim

This “point” in between invocation and response of an operation is referred to
as the linearisation point (LP).

A number of different techniques have been employed to verify linearisability,
ranging from shape analysis [1], separation logic and rely-guarantee reasoning
[21] to simulation-based methods. The concurrent algorithm considered in this
paper (the lazy set of Heller et al. [9]) poses a particular challenge for verifica-
tion: the linearisation point for one of the operations does not coincide with the
execution of an instruction of the source code, but rather can be set by a process
other than the one executing the operation. As a consequence, the real LP of
this operation is only known when it finishes. This has lead to the development
of a number of proof techniques for the lazy set looking into the past: the first
approach in [20] argues that knowing the outcome of this operation its lineari-
sation point can be found, later approaches use backward simulation proofs [3]
or “hindsight” techniques [16].

In this paper we propose a new technique for verifying linearisability of the
lazy set which avoids having to look into the past. The technique extends our
previous approach [4,5] to cope with the class of algorithms like the lazy set.
In general, we carry out a proof of refinement: the concurrent implementation
is shown to be a valid refinement of the abstract data structure. Our proof
principle consists of two levels: we have local (i.e., thread modular) simulation
conditions which need to be verified for the concurrent implementation at hand,
and a general theory which links the local conditions with linearisability and thus
shows their soundness.

Both levels have been formally verified with KIV using standard higher-order
logic. A web presentation with all details can be found at [12]. Unfortunately we
are not able to describe the global part of the theory in this paper, where we
focus on the local simulation conditions and their application to the lazy set.

The key idea of the local conditions is to define potential linearisation points,
which solve the issue of LPs set by other processes. The next section gives our
running example of the lazy set. In section 3 we introduce our refinement tech-
nique, and in section 4 we show how we can derive local proof obligations that
can cope with the type of algorithm exemplified by our running example. In
Section 5 we discuss how these proof obligations can be discharged for this im-
plementation. Finally, Section 6 gives related work and concludes.

2 The Lazy Concurrent Set

Our running example is a concurrent implementation of a set data structure and
its access operations. The abstract data type A = (AS ,ASInit , (AOpi

p)i∈I ,p∈P)
uses a finite set of integers as abstract state: AS =̂ [set : F Z]. The set is initially
empty (ASInit), and then allows for three operations, I = {1, 2, 3} executed by
processes p ∈ P : integers can be added, removed, and we have a test of contain-
ment: contains. Abstractly, all these operations are atomic. They all return a
boolean result: add and remove return true if the set has been changed.

Here, we study the highly concurrent implementation proposed in [9]. The
set is implemented by a sorted linked list. Its elements appear in the nodes of

Verifying Linearisability with Potential Linearisation Points 325

add(e): remove(e):

A1 : n1, n3 := locate(e); R1 : n1, n2 := locate(e);

A2 : if n3.val != e then R2 : if n2.val = e then

A3 : n2 := new Node(e); R2b: n2.mrk := true;

A4 : n2.next := n3; R3 : n3 := n2.next;

A5 : n1.next := n2; R4 : n1.next := n3;

A6 : res := true; R5 : res := true;

A7 : else res := false R6 : else res := false

endif ; endif;

A8 : n1.unlock(); R7 : n1.unlock();

A9 : n3.unlock(); R8 : n2.unlock();

A10: return res R9 : return res

Fig. 1. Operations add and remove

the list in a strictly increasing order. The list has two sentinel nodes: head with
value −∞ and tail with value ∞. Every node has a val field with an integer,
a nxt field for the pointer to the next node and a mrk bit (used to mark nodes
that as logically deleted).

In the algorithm, atomicity is given up as to allow for concurrency. Concurrency
here means that several processes should be able to execute operations on the set
at the same time, thus the steps of operations of the algorithm in Fig. 1 can be
interleaved. To cope with this interleaving, each node in the list is associated with
a lock. Operations n.lock() and n.unlock() lock and unlock a node n.

Operations add and remove rely on an additional operation locate (see Fig. 2)
which finds the appropriate position of the element (to be added or removed)
and then locks the two adjacent nodes. Operation add then checks whether the
second locked node already contains the new element to be added, and if not,
creates a new node and inserts it (by redirecting the pointer of the previous node)
into the list. Operation remove proceeds in two steps (when locate has found the
element to be removed): first, it will mark the node as deleted using the mrk
bit in line R2b1 (lazy). Then it will physically remove the node by redirecting
pointers. Both add and remove unlock the nodes returned by locate at the end.

The locking scheme of operation locate (see Figure 2) is an optimistic one:
while traversing the list in search of the element, it does not lock nodes. Only
when the correct position has been found, the previous and current node is
locked. Since these nodes might have been removed by other processes while the
search loop was running, the locate always validates the found candidates. Vali-
dation has to check that neither of the locked nodes have already been logically
deleted (mrk bit set), and that the nodes are still adjacent. If this fails, locate
has to be restarted. Note that the marking bit is used to ensure that removal
can be done as one atomic step.

Finally, the most interesting operation is contains . The implementation of
contains is wait-free and uses no locks at all. It searches for the element itself

1 Line R2b is the only modification of remove compared to the pessimistic version
studied in [5].

326 J. Derrick, G. Schellhorn, and H. Wehrheim

locate(e): L11: then return pred, curr

while (true) { L12: else { pred.unlock()

L1: pred := Head; L13: curr.unlock(); }

L2: curr := pred.next; } /* end of while(true) */

L3: while (curr.val < e) {

L4: pred := curr;

L5: curr := curr.next; } contains(e):

L6: pred.lock(); I1: curr := Head;

L7: curr.lock(); I2: while (curr.val < e)

/* validate */ I3: curr := curr.next;

L8 : if ! pred.mrk I4: if curr.mrk then res:= false;

L9: and ! curr.mrk I5: else res := (curr.val = e)

L10: and pred.next = curr I6: return res

Fig. 2. Operations locate and contains

(without use of locate) and also checks for the mrk bit. It is this omission of
locking combined with the lazyness of remove which makes verification of lin-
earisability hard.

Our proof technique given in the next section relies on a proof of linearisability
via refinement of the abstract type defined above to a concrete data type C =
(CS ,CSInit , (COpj

p)j∈J ,p∈P) that we define now as a Z specification.
We start with modelling the global heap mem, which is a partial function from

a basic type Ref of references (with null ∈ Ref) to memory cells: cells consist of
a value of type Z (plus −∞,∞), can be locked by a process from a set P , can be
marked and have a (potentially null) reference to the next node. To access these
components of a cell with address r we write r .val , r .lck , r .mrk and r .nxt , respec-
tively. The heap mem together with the head reference forms the global state GS .
Initially, the global state (GSInit) just consists of a list with head and tail node.

The local state of one process LS consists of the tuple of the local variables of
the algorithms, together with a type pc : PC for the program counter. Its initial
state, given by LSInit (not shown) has pc = 1 to indicate that no operation is
running. All other values of the initial state are unused, so they can be arbitrary.

The complete concrete state space CS is defined by combining GS with a
local state function assigning a local state lsf (p) to every process p ∈ P .

GS

head : Ref

mem : Ref �→
(Z ∪ {−∞,∞}) ×
(P ∪ {none}) × B × Ref

LS

n1,n2, n3 : Ref

curr , pred : Ref

res : B, e : Z, pc : PC

GSInit

GS ′

nh ,nt ∈ Ref

mem ′ = {nh �→ (−∞,none, false,nt),

nt �→ (∞,none, false,null)}
head ′ = nh

CS

GS

lsf : P → LS

Verifying Linearisability with Potential Linearisation Points 327

To define the concrete operations, we first define operations COPj on one local
state. For this, each line of the algorithms is turned into one Z operation. The
following gives the Z specification of lines I1 and I4 of contains2.

containsI 1

ΞGS

ΔLS

pc = I 1 ∧ pc′ = I 2

curr ′ = head

containsI 4

ΞGS

ΔLS

pc = I 4 ∧ curr .mrk ∧ pc′ = I 6

¬res ′

These operations are then promoted (using the same standard schema as in [5])
to operations COpj

p on CS for each process p ∈ P , which work on the local state
lsf (p). Initialisation CSInit of the concrete state space is defined similarly.

3 Linearisability and Refinement

Linearisability requires that operations should appear as taking place atomically,
i.e., take effect instantaneously at some point in time, even though the atomicity
of operations has been given up in the implementation and an actual concrete
execution might be an arbitrary interleaving of steps from the above algorithm.
This “point in time” is the linearisation point (LP). Linearisability permits one
to view operations on concurrent data structures as though they occur in some
sequential order, namely the order of their linearisation points.

Our proof technique introduced in [4] and further elaborated in [5] relies on
a proof of linearisability via refinement. Basically, we show that the concurrent
implementation C = (CS ,CSInit , (COpj

p)j∈J ,p∈P) is a non-atomic refinement
[6] of the abstract data type A = (AS ,ASInit , (AOpi

p)i∈I ,p∈P).
Here, non-atomic means that a step of the concrete data type COpj

p that
is part of the implementation of AOpi

p can either match an empty step skip
or an execution of AOpi

p . Basically, the steps representing linearisation points
have to match with the abstract operations, and all other steps correspond to
skip steps. To do so, we first of all have to determine the linearisation points.
For some simpler classes of algorithms (e.g., stack and non-lazy set considered
in [5]), LPs can be determined from the current state of a process (basically,
its program counter), and in our methodology are fixed by defining a so-called
status function assigning values from a type STATUS :

STATUS ::= IDLE | IN | OUT

Therein, IDLE represents an idle process, and IN and OUT describe the status
of processes being before and after their linearisation points, respectively. With
the help of the status function we define specific status-dependent proof obliga-
tions in [4,5]. The proof obligations are local, i.e., they do not consider all the

2 We use the Object-Z approach and mention only those variables which are changed.

328 J. Derrick, G. Schellhorn, and H. Wehrheim

processes, but only two specific processes p and q. p is executing a step, and q
represents an arbitrary other process, which might be affected. Such local proof
obligations are possible for many linearizable algorithms, where typically it does
not matter for one process which other process affects the global state, but only
how the state is affected. This is true also for the lazy set, where the only rele-
vant information a process sees from others is new cells being introduced or old
cells being marked.

The proof obligations in [5] are particular instances of forward simulations.
The status tells us whether an individual concrete step has to be matched with a
skip or an operation of the abstract data type in the simulation. They prove that
the concurrent implementation is a non-atomic refinement of an abstract data
type (given that the LPs can be defined this way). In a second step, it has to be
proven that this kind of non-atomic refinement actually shows linearisability (the
general theory). Both the linearisability proofs for concrete data structures and
the general proof of soundness of our refinement theory have been mechanically
conducted using the interactive prover KIV [17]. None of the other approaches
for verifying linearisability has a mechanised proof that their proof obligations
imply Herlihy and Wing’s original definition of linearisability [11].

For our case study, the proof obligations of [5] are sufficient to verify the add
and remove operation, where the LP can be identified in the code. E.g., for add
the LP is either A5 or A7 (for return value true and false).

However, this technique is not applicable to the contains operation (which rep-
resents a whole class of similar concurrent operations). The issue is that it is not
possible to statically determine the linearisation point of contains as it depends on
future behaviour of processes other than the one currently executing contains .

An example can make this clearer. Consider the list representation of the set
{2, 4, 6} in Figure 3 (a). Assume that contains(4) has been started and executed
its while loop reaching I4. At this point, variable curr points to node 4 (see
figure). If the next step executed is I4, contains would return true and the LP
could have been the last I3, setting variable curr .

2 6 ∞

2 6 ∞4

curr

(b) remove(4)

−∞

2 6 ∞

curr

4

−∞

(c) add(4)

4

4−∞

curr

(a) contains(4) until I4

Fig. 3. Sample execution: contains(4) until I4 (a), then remove(4) (b), then add(4)

Verifying Linearisability with Potential Linearisation Points 329

However, assume that we do not take I4 next, but start another process exe-
cuting remove(4) (completing without any interleaving of operations from other
processes). At the end of remove we reach situation (b) of Figure 3, leaving the
node curr pointing at a marked node. If we would now execute I4 next, contains
would return false. Thus taking I3 as LP is wrong (at this point the return value
for contains would have been true). So let us assume, we choose I4 as LP. This
might however still be incorrect: if the next operation is add(4) which starts and
completes (bringing us into situation (c)), executing I4 would still give us the
wrong return value: now 4 is in the set again, so at this point in time it is not
correct for contains(4) to return false.

It turns out that for the sequence contains(4) (until I4), remove(4) (com-
pletely), add(4) (completely), contains(4) (rest), the only valid linearisation
point for contains is directly after the LP of remove. It gives the following valid
sequence of abstract operations: 〈remove(4, true), contains(4, false), add(4, true)〉.
However, not every remove is a linearisation point for a running contains . It cru-
cially depends on where the contains currently is, and whether some more adds
will appear in the future or not.

Such a case could not be tackled by our current technique, and for the lazy set
we need a proof technique which can show linearisability for (a) operations whose
linearisation point is set by another process and (b) are determined by future
operations. Moreover there is additional complexity in this example, and we
also need a technique for situations whereby (c) one step in the implementation
can linearise multiple operations (the remove can potentially set the LPs of all
running contains).

4 Local Proof Obligations

The proof obligations have to guarantee that the concrete data type is a refine-
ment of the abstract data type. This is usually shown by defining an abstraction
function (Abs : GS → AS) between concrete and abstract state space, and then
showing that initialisation and operation execution of concrete and abstract data
type match in a certain way (simulation).

Again, we aim at local proof obligations, which just consider local states lsp
and lsq of two representative processes p and q. Process p is executing a step of
its algorithm, and process q might be affected by having to execute its lineari-
sation point (the case in question being process p marking a cell, while process
q searches for its value).

Coping with potential linearisation points: To tackle this issue we need
to generalise our status function, with a new status INOUT to cover the situation
in which an operation has potentially linearised (the types in brackets describe
types of inputs and outputs). Thus for our example, a process p with status
INOUT (3, true) is a process which is potentially after its LP, has 3 as input and
will return true.

STATUS ::= IDLE | IN 〈〈Z〉〉 | OUT 〈〈B〉〉 | INOUT 〈〈Z× B〉〉

330 J. Derrick, G. Schellhorn, and H. Wehrheim

For every implementation, we need to define a status function

status : GS × LS → STATUS

assigning a status to a process with local state ls ∈ LS and current global state
gs ∈ GS . The status of a process can change several times during execution
of an operation. In particular, several status changes between INOUT (e, true)
and INOUT (e, false) are possible if another process executes a step which af-
fects the outcome. Every status change from IN to INOUT , INOUT (e, true) to
INOUT (e, false) (and vice versa) and INOUT to OUT is a potential linearisa-
tion point and has to match with the corresponding abstract operation. It may
seem odd that due to the status changes several abstract contains appear in a
thus constructed run. However, this is sound as contains is not modifying the
set: the last operation that affects the output value of the status executed in a
run is the linearisation point.

Defining the invariants: As in [5], in addition to the abstraction function
our theory requires a local invariant INV on GS × LS to capture constraints
which are always valid in our linked list implementation (e.g., that tail is always
reachable from head). Last, a disjointness predicate D over the local states of p
and q serves the purpose of keeping disjointness information about local states.

Defining the non-atomic simulation conditions: As in standard simula-
tion conditions, our local proof obligations need to match the behaviour of the
concrete and abstract operations. Since we do not have a 1-1 correspondence of
abstract and concrete operation anymore, and furthermore, a concrete opera-
tion can linearise several processes, and thus match with more than one abstract
operation, we have to capture different cases in our simulation conditions. The
latter point requires an extension to the theory developed in [5]. Basically, four
different types of matchings can occur, each being accompanied by particular
status changes.

The most basic type is the classic simulation diagram: process p executes
some concrete operation COpp (bringing us from state cs to cs ′), which is the
linearisation point, and matches with abstract operation AOpp (going from ab-
stract as to as ′) with input in and output out . Concrete and abstract states are
related via the abstraction function Abs . The left hand side of Figure 4 describes
this case. When process p executes a potential linearisation point, both lineari-
sation as well as a skip step must be possible. Therefore in this case the abstract
state is not allowed to change, as shown on the right hand side. The right hand

as as´

cs cs´

Abs Abs

COpp

AOpp
as

cs cs´

Abs Abs

COpp

AOpp ∨ skip

Fig. 4. Simulation types 1 and 2

Verifying Linearisability with Potential Linearisation Points 331

as as´

cs cs´

Abs Abs

COpp

AOpq

AOpp
as

cs cs´

Abs Abs

COpp

(AOpp ∨ skip); AOpq

Fig. 5. Simulation types 3 and 4

diagram (with skip) is also used when the concrete step does not execute an LP.
No processes other than p are affected in the two cases of Fig. 4.

The next two types (in Fig. 5) consider the case where a step of a process p (pos-
sibly) linearises itself as well as linearises a process q. The left diagram of Figure 5
shows the case where the execution of operation COp of process p definitely sets
its own as well as the linearisation point of process q. Thus the simulation has to
guarantee that abstractly the operation of p and q is possible. The right hand side
depicts the case where the abstract operation of process p is either no or a poten-
tial LP for p, and is therefore not allowed to change the abstract state. Both cases
require, that process q does not change the abstract state. This allows to lift the
proof to a global scenario, where p linearises a number of operations q1, . . . , qn ,
since their abstract operations can all start in the same state.

The simulation conditions have to formalise all these cases. In these, both
the status of p and q are used for deciding which case applies, i.e., which kind
of matching to show. Instead of writing several simulation conditions, one for
each possible status change, we accumulate all cases in one condition using a
so-called exec function. This function takes as an input the status of a process
before and after executing some operation COp (stat , stat ′), the corresponding
abstract states as and as ′, and the index i of the operation currently being run.
From this, it determines the verification condition to be shown.

exec(stat , i , stat ′, as, as ′) := ∃ in, in ′, out , out ′ •
(stat = IN (in) ∧ stat ′ = OUT (out ′) ∧ AOpi(in, as, as ′, out ′))

∨(stat = IN (in) ∧ stat ′ = INOUT (in ′, out ′) (∗)
∧ AOpi(in,as, as ′, out ′) ∧ in = in ′ ∧ as = as ′)

∨(stat = INOUT (in,out) ∧ stat ′ = OUT (out ′)
∧ AOpi(in,as, as ′, out ′) ∨ (as = as ′ ∧ out = out ′))

∨(stat = INOUT (in,out) ∧ stat ′ = INOUT (in ′, out ′)
∧as = as ′ ∧ (AOpi(in, as, as ′, out ′) ∨ out = out ′) ∧ in = in ′)

∨(stat = IN (in) ∧ stat ′ = IN (in ′) ∧ as = as ′ ∧ in = in ′)
∨(stat = INOUT (in,out) ∧ stat ′ = IN (in ′) ⇒ as = as ′ ∧ in = in ′)
∨(stat = OUT (out) ∧ stat ′ = OUT (out ′) ∧ as = as ′ ∧ out = out ′)

As an example, consider case (*) in the definition of exec. If the status of a
process changes from IN to INOUT , i.e., from before to potentially after the
linearisation point, then a corresponding abstract operation must be executed

332 J. Derrick, G. Schellhorn, and H. Wehrheim

which does not change the abstract state and gets exactly the same input and
output as those in the INOUT status. This ensures that e.g., a contains with
return value false cannot match with an abstract contains returning true.

The case following (*) gives two possibilities for going from INOUT (in, out)
to OUT (out ′). Either the potential linearisation is made permanent (as = as ′ ∧
out = out ′), or the potential linearisation is discarded and a new one is estab-
lished by executing AOp. In general, abstract state changes in AOp are allowed
when the operation definitely linearises by setting status to OUT (out ′).

This lets us finally define the simulation condition. Herein, we use a function
runs which returns the (index of the) abstract operation a process in local state
LS is currently executing (this can be determined from the value of the pc).

∀ gs, gs ′ : GS , lsp, lsq , lsp′, lsq ′ : LS •
INV (gs, lsp) ∧ INV (gs, lsq) ∧ D(lsp, lsq) ∧ COpj

p(gs, lsp, gs ′, lsp′)
⇒ (LPO)

INV (gs ′, lsp′) ∧ INV (gs ′, lsq) ∧ D(lsp′, lsq)

∧ exec(status(gs, lsp), runs(lsp), status(gs ′ , lsp′),Abs(gs), Abs(gs ′))
∧ exec(status(gs, lsq), runs(lsq), status(gs ′ , lsq),Abs(gs ′),Abs(gs ′))

Basically, (LPO) requires to show that (a) the invariant and the disjointness
properties are kept when a concrete operation is executed, and (b) the appropri-
ate matching as defined by exec can be carried out for both p and q. Please note
that lsq is left unchanged by COpp . Since (LPO) just refers to two local states
lsp and lsq , but never to the complete concrete state CS , we have obtained a
local proof obligation.

In addition to this simulation rule, we have two simpler proof obligations con-
sidering the special cases of invocation and return steps. These disallow abstract
state changes and status changes of q (no linearisation). The status of p is re-
quired to change from IDLE to IN (in) and from OUT (out) to IDLE with the
correct input resp. output value of COpp . Due to lack of space we will not give
them here. We also omit the simple initialisation conditions.

5 Verification of the Case Study

Verification of the case study requires to instantiate the predicates and functions
used in the proof obligation (LPO) . We start with the status function:

ls.pc = 1 ⇒ status(gs, ls) = IDLE

ls.pc ∈ {A1, . . . ,A5, A7, R1,R2,R2b,R6} ⇒ status(gs, ls) = IN (e)

ls.pc ∈ {A6, R3,R4,R5} ⇒ status(gs, ls) = OUT (true)

ls.pc ∈ {A8, A9,A10, R7, R8,R9} ⇒ status(gs, ls) = OUT (res)

ls.pc = I 1 ⇒ status(gs, ls) = IN (e)

ls.pc ∈ {I 2, I 3, I 4} ⇒ status(gs, ls) = INOUT (e,

∃ r .reachable(curr , r , mem) ∧ r .val = e ∧ ¬ r .mrk)

ls.pc = I 5 ⇒ status(gs, ls) = OUT (curr .val = e)

ls.pc = I 6 ⇒ status(gs, ls) = OUT (res)

Verifying Linearisability with Potential Linearisation Points 333

The definition gives the LPs of the add algorithm as A5 (for res = true) and A7.
Before and at this point in the algorithm the status is IN (e), after it OUT (res).
Similarly, the LPs for remove are the marking operation at R2b when true is
returned, and the negative case of R2 for false.

The interesting clauses are the last four for the contains algorithm. Initially
the status is IN (e) for pc = I 1, and at the end of the algorithm it has definitely
linearised: at I5 the cell curr has been fixed, so the test curr .val = e determines
the output, at I6 the output is already stored in res .

While the algorithm executes its main loop (I2,I3,I4) we exploit that contains
can potentially linearise at any time by using a status of the form INOUT (e, bv).
The correct output value bv is simple to determine: it is just the value that
contains would return if it would now run to completion without interruption
(i.e., no other process executing steps). Note that this uniform characterisation
should be applicable to every algorithm with potential LPs. For the contains
algorithm this specialises to the value bv being true iff an unmarked cell is
reachable from curr that contains e.

By using this status definition the algorithm “changes its mind” about the
linearisation point and its outcome as often as necessary. Our proof obligation
just requires that every change is justified by the current set representation. In
particular, a process p marking the element that is searched by process q (the
step from (a) to (b) in Fig. 3) will change bv in the status of process q executing
contains to false. This is justified, since it is removed from the set representation
too: executing an abstract contains with result false is possible after removal,
we have an instance of simulation type 3 in Fig. 5. A process q adding a cell with
e behind curr will change bv to true. Again this is justified, since the element is
also added to the set. Adding an element that does not become reachable (e.g.,
stepping from (b) to (c) in Fig. 3) will keep bv = false.

By using an INOUT status the problem of finding the right LP is no longer a
difficulty for the verification of the case study. The KIV proof of (LPO) just un-
folds the definition of exec and checks whether the abstraction function changes
correctly. All global reasoning and reasoning about the past has been moved into
the generic theory.

It remains to be shown how the rest of the predicates and functions used
in (LPO) are instantiated. Many of these instances are similar to the ones for
verifying the pessimistic algorithm in [5]. In particular, the abstraction function
just specifies that the abstract set consists of those values r .val �= ±∞, for which
a reference r is reachable from head . Also, the disjointness predicate D is solely
used to ensure that p and q never share their newly allocated cell before adding
it to the set representation (i.e., when both are at A4 or A5). The invariant
consists of three parts.

INV (gs, ls) := (∃ tail ∈ Ref • HEADTAILINV (gs, tail) ∧
∀ r ∈ dom(mem) • NODEINV (gs, tail , r)) ∧ INVL(gs, ls)

The first part, HEADTAILINV specifies the global invariant for the current data
structure: a unique cell tail is always reachable from head such that head .val =
−∞, tail .val =∞. Both head and tail are never marked.

334 J. Derrick, G. Schellhorn, and H. Wehrheim

The interesting part is the second. It gives a condition NODEINV for all allo-
cated references r . This condition is necessary, since in contrast to the pessimistic
version, the lazy algorithms for contains and locate may visit arbitrary old cells
that have been marked and may also have been removed from the current set
representation (as shown in Fig. 3 (b)).

NODEINV ((head , mem), tail , r) :=

(r .nxt
= null ⇒ r .nxt ∈ dom(mem) ∧ r .val < r .nxt .val) ∧
if r .mrk then r .val
= −∞ ∧ reachable(r , tail ,mem) /* class 1 */

else if ∃ r0 ∈ dom(mem) • r0.nxt = r

then reachable(head , r ,mem) ∧ reachable(r , tail ,mem) /* class 2 */

else if r .val = −∞ then head = r /* class 3 */

else r .val
= ±∞ ∧ (r .nxt = null ∨ reachable(r , tail ,mem)) /* class 4 */

NODEINV requires that even old cells are in strictly ascending order. It also
divides the allocated cells into four classes. The first class contains all marked
cells. These never contain −∞, and allow to reach tail in a finite number of
steps: the cells form a tree shape with pointers going upwards towards tail as
the root. This ensures that contains never accesses dangling references. The sec-
ond class are pointers that have a predecessor r0. All these cells are part of the
current set representation. Whenever contains or locate reach an unmarked cell
by computing a successor, the cell is definitely a member of the set representa-
tion. Finally, there are cells which have no predecessor. One cell is head (third
case). All remaining cells (fourth class) have just been allocated in add by some
process, but have not yet been inserted into the set representation. These cells
do not have a value −∞ and either their nxt pointer is still null (A4) or has
been set at A5, making tail reachable. Note that although we give the intuition,
that some process has allocated such a cell, our local predicate avoids this global
characterisation, which would have to quantify over existing processes. Figuring
out a simple3 classification of the allocated cells that works locally was the main
difficulty specific to this case study.

The full invariant finally contains a local invariant INVL with assertions for
intermediate states of the algorithms, typically by characterising the program
counter values, where they hold. The main assertion for contains

(ls .pc ∈ {I 2, I 3, I 5, I 6} ⇒
ls .curr ∈ dom(mem) ∧ (reachable(head , ls .curr ,mem) ∨ ls .curr .mrk)

ensures, that curr is always an allocated reference, and is either part of the
set representation or an old marked cell. A similar property is used for the local
variables pred and curr of locate. Note that NODEINV implies that this property
is preserved when stepping from curr to curr .nxt in the algorithm.

3 A generic, but more complex alternative is using an existentially quantified set of
local cells, that must be updated where necessary. This is the preferred solution
in separation logic, which hides the quantifier (and our D predicate) within the
semantics of separating conjunction.

Verifying Linearisability with Potential Linearisation Points 335

With these instances the verification of the proof obligation (LPO) in KIV is
now only slightly more difficult than for the pessimistic case, and the additional
complexity is solely due to the more complex invariant NODEINV . The technical
encoding of Z schemata in KIV is the same as described in Section 7 of [5].
The proof obligation is given in KIV as three goals, one that proves invariance
of INV (gs , lsp), a second that proves INV (gs , lsq) and D(lsp, lsq), and finally
one that checks the clauses about exec. Although an abstraction function is
sufficient for the case study, the three goals in KIV generalise (LPO) using
an abstraction relation, which shows that they are an instance of backward
simulation. The proofs for the case study split immediately into 67 cases (one for
each Z operation). Altogether the main proofs needed 276 interactions. Getting
the details of the case study right took the second author about a week of work.
All proofs and specifications (including the derivation from a global theory of
possibilities that we could not describe here) are available on the Web [12].

6 Conclusion

The only other mechanised proof of the lazy set implementation of [9] we are
aware of (except [2], which approximates a full linearizability proof by model
checking executions of two fixed operations) is given in [3] using PVS. Like our
approach (and [8]) it uses refinement (of IO automata) to prove linearisability.

Although the transition relation of the automaton in [3] corresponds to the
disjunction of our operations in Z, the proof strategy is rather different. First,
it considers the global automaton (with state CS) instead of a reduction to two
processes. Second it defines an intermediate automaton specific to the case study,
that splits the refinement into a forward and backward simulation, to cope with
the problem that the LP of contains cannot be determined by forward simulation
alone. Our approach solves the problem in the generic theory, and thus should
be applicable to a wide class of algorithms. Third, the proof strategy uses a
predicate public to distinguish locally available references from global ones, that
are or have been in the set representation: a cell is not public, if it has just
been allocated and is stored in the local variable n2 of some process p at A4 or
A5. Such iteration over all processes is incompatible with our reduction to two
processes. Finally, the proof idea follows [9]: when contains returns false, then
there must have been a time in the past when the element was not in the set.
Our theory completely avoids such reasoning about the past.

The same argument about the past is also used in [20]. In his PhD [18],
Vafeiadis continues this work, giving proof obligations using separation logic and
rely-guarantee reasoning. The approach has influenced our work, since Vafeiadis
argues (Sect. 5.2.3), that several LPs are acceptable for read-only operations.
Our mechanised proofs (that ensure that it is possible to change the out value
when status is INOUT) can be viewed as a formal justification. Vafeiadis’ work
is not based on refinement, but adds ghost code executing abstract operations
to the concrete algorithm at linearisation points. The approach is global, at the
LP of delete the auxiliary code has to iterate over all threads running contains.

336 J. Derrick, G. Schellhorn, and H. Wehrheim

It has been implemented and can verify several standard algorithms automati-
cally, though currently not the lazy set example (see [19]).

We did not have space to discuss the global theory underlying our local proof
obligations: Any linearizable algorithm can be verified using backward simu-
lation, when the abstract layer is defined using the possibilities from [11]. It is
related to Theorems 13.3-5 of N. Lynch’s book [14] (see also [13]) as well as to the
embedding of linearizability into observational refinement given in [7]. We have
mechanized the global theory in KIV and are not aware of any other approaches
that have mechanically verified the soundness of their proof technique.

We conjecture that our local proof strategy is applicable to all algorithms
which have potential linearisation points outside their thread and where the
abstraction function does not change. The optimistic version of the set algorithm
is another example of this class, as are algorithms where a potential LP exists
that is determined in the future. The latter includes the “dequeue with an empty
queue” case in Michael & Scott’s queue [15].

Of course there remains future work. For example, two algorithms which would
require further extensions include Herlihy & Wing’s original queue (which re-
quires a proof with the global theory) and the elimination stack [10], which uses
a handshake to linearise a push and a pop-operation at the same time. The latter
would need a reduction of the global theory to three processes (the two processes
participating, and one representing all others), and we leave this for the future.

References

1. Amit, D., Rinetzky, N., Reps, T.W., Sagiv, M., Yahav, E.: Comparison under
abstraction for verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 477–490. Springer, Heidelberg (2007)

2. Černý, P., Radhakrishna, A., Zufferey, D., Chaudhuri, S., Alur, R.: Model check-
ing of linearizability of concurrent list implementations. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 465–479. Springer, Heidelberg
(2010)

3. Colvin, R., Groves, L., Luchangco, V., Moir, M.: Formal verification of a lazy
concurrent list-based set algorithm. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 475–488. Springer, Heidelberg (2006)

4. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanizing a correctness proof for a
lock-free concurrent stack. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 78–95. Springer, Heidelberg (2008)

5. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanically verified proof obligations
for linearizability. ACM Trans. Program. Lang. Syst. 33(1), 4 (2011)

6. Derrick, J., Wehrheim, H.: Non-atomic refinement in Z and CSP. In: Treharne, H.,
King, S., Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 24–44.
Springer, Heidelberg (2005)

7. Filipovic, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent
objects. Theoretical Computer Science 411(51-52), 4379–4398 (2010)

8. Groves, L., Colvin, R.: Trace-based derivation of a scalable lock-free stack algo-
rithm. Formal Aspects of Computing (FAC) 21(1–2), 187–223 (2009)

Verifying Linearisability with Potential Linearisation Points 337

9. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N., Shavit, N.: A
lazy concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G., Watten-
hofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 305–309. Springer, Heidelberg
(2006)

10. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In:
SPAA 2004, pp. 206–215. ACM Press, New York (2004)

11. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM TOPLAS 12(3), 463–492 (1990)

12. Web presentation of linearizability theory and the lazy set algorithm (2010),
http://www.informatik.uniaugsburg.de/swt/projects/possibilities.html

13. Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model checking linearizability via refinement.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 321–337.
Springer, Heidelberg (2009)

14. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco
(1996)

15. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proc. 15th ACM Symp. on Principles of Dis-
tributed Computing, pp. 267–275 (1996)

16. O’Hearn, P.W., Rinetzky, N., Vechev, M.T., Yahav, E., Yorsh, G.: Verifying lin-
earizability with hindsight. In: 29th Annual ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC), pp. 85–94 (2010)

17. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and
interactive proofs with KIV. In: Automated Deduction—A Basis for Applications,
Interactive Theorem Proving, vol. II, ch. 1, pp. 13–39. Kluwer, Dordrecht (1998)

18. Vafeiadis, V.: Modular fine-grained concurrency verification. PhD thesis, University
of Cambridge (2007)

19. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg (2010)

20. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-
concurrent linearisable objects. In: PPoPP 2006, pp. 129–136. ACM, New York
(2006)

21. Vafeiadis, V., Parkinson, M.: A marriage of rely/Guarantee and separation logic.
In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–
271. Springer, Heidelberg (2007)

http://www.informatik.uniaugsburg.de/swt/projects/possibilities.html

Refinement-Based Verification of Local

Synchronization Algorithms

Dominique Méry1, Mohamed Mosbah2, and Mohamed Tounsi2

1 Loria, Université Henri Poincaré Nancy 1 France
2 LaBRI, Université Bordeaux 1 France

Abstract. Synchronization algorithms are mandatory for simulating lo-
cal computation models of distributed algorithms. Therefore, correctness
of these algorithms becomes crucial, because it gives confidence that lo-
cal computations are simulated as designed and do not behave harm-
fully. However, these algorithms are considered to be very complex to
prove since they are integrating both distributed and probabilistic as-
pects. We derive proofs of synchronization algorithms relied upon the
correct-by-construction paradigm; it is supported by a progressive and
incremental process controlled by the refinement techniques. We illus-
trate our approach by examples like the handshake and the LC1 algo-
rithms. These algorithms are designed for an asynchronous distributed
network of anonymous processes which use the message-passing feature
as a model for the communication.

Keywords: Synchronization algorithm, Probabilistic distributed algo-
rithm, Formal method, Event-B, Visidia.

1 Introduction

A distributed system consists of a collection of computation entities that com-
municate together to achieve a common task. This system gives rise to a big set
of distributed algorithms which are usually classified by :

1. The type of communication to apply (messages passing, shared memory..);
2. The computation entities to use (processors, mobile agents..);
3. The type of synchrony to employ (synchronous, asynchronous..).

Our work is based on asynchronous distributed network of anonymous proces-
sors, which use the messages exchange as a model for the communication. We
suppose that a processor can determine the origin of each message. Formally,
a distributed system can be represented by a simple, connected and undirected
graph where nodes denote processors, and edges denote communication links.
Distributed algorithms can be modelled using abstract entities which are simu-
lating the distributed computation by a set of rewriting rules acting on a graph.
Visidia [7] is an environment which implements this computation model and it
has synchronization algorithms which are providing the choice of the next pair
of adjacent nodes to modify according the set of rewriting rules. Our paper is

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 338–352, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Refinement-Based Verification of Local Synchronization Algorithms 339

focusing on these synchronization algorithms which are integrating features like
probabilistic choice.

Since, as shown in [19], local computations cannot be executed on asyn-
chronous networks without involving randomized synchronization algorithms.
In other words, each node in the graph tries to synchronize with its neighbor(s)
first, and if it is the case, then a local computation step can be done. Local
computations are of three different types; each one of them relies upon a specific
randomized synchronization algorithm. For more information about the three
types of local computations, the reader should see [16]:

1. Handshake: This synchronization type implies two neighboring nodes in a
local computation step.

2. LC1 (Local Computations of type 1): This synchronization type groups to-
gether nodes in a star (a star is a node with its neighbors) for executing a
local computation step.

3. LC2 (Local Computations of type 2): This synchronization type is like LC1
except that local computations are more advanced.

However, the simplicity and the elegance of randomized algorithms have a heavy
cost: the analysis of such systems become very complex, particularly in the con-
text of distributed computation [23]. This arises through the interplay between
probability and nondeterminism. In order to prove the correctness of these algo-
rithms, we use an approach which is directly related to the design of correct-by-
construction programs. The main idea relies upon the development of distributed
algorithms following a top/down approach, which is clearly well known in earlier
works of Dijkstra [10], and to use the refinement for controlling the correctness
of the resulting algorithm. It relies on a more fundamental question related to
the notion of problem to solve. The methodology can be based on incremental
proof-based developments, which gives a real help to justify in a very progressive
way the choices of design. Particularly, Event-B [2] is a formal modeling method
which supports the expression of our methodological proposal suggesting proof-
based guidelines. It is supported by a tool called ”RODIN” [24] which provides
an environment for developing correct-by-construction models for software-based
systems.

However, Event-B does not handle perfectly the probability, since probabilis-
tic Event-B is a new research trend. In fact, the first contributions in this con-
text were proposed by C. Morgan, Thai Son Hoang and Annabelle MacIver in
[21,13,17]. Annabelle MacIver et al.[17] add probability in a limited form to
the classical B method[1]. In this work, authors are concentrated on ”almost-
certain” properties which hold with probability one. After that, C. Morgan et
al. [21] spread the probability challenge to the Event-B method. Therefore, their
works are still a good reflection on the probabilistic theory argued by a practical
experience. Considered as the first and the most relevant work in the proba-
bilistic Event-B study; S. Hallerstede et al. [12] have extended Event-B to allow
expressing the qualitative aspect of probability. They introduce qualitative prob-
abilistic reasoning into Event-B by means of the qualitative probabilistic choice.

340 D. Méry, M. Mosbah, and M. Tounsi

More concretely, they extend Event-B by a new operator which assigns new
values to variables with some positive but generally unknown probability. In
fact, the probabilistic choice takes place where we already have nondeterminis-
tic choice in the assignment component. Contrary to [12], Tarasyu A. et al. [26]
introduce the quantitative probabilistic choice. They add a new operator which
gives some known probabilistic distribution to each particular choice should be
made. In this work, author’s interest was about integrating probabilistic as-
sessment of reliability into Event-B modeling. We assert that, approaches and
techniques for proving the correctness of quantitative properties is more complex
than the qualitative analysis [23]. Therefore, our work diverges in its goal and
its probabilistic analysis. It is mainly devoted to the synchronization algorithms
for the local computation models. Also, it proposes a new approach to develop
synchronization algorithms following a probabilistic refinement stepwise.

The remaining parts are organized as follows. Section 2 presents the local
computations model and gives an example of a distributed algorithm described in
this model. Section 3 sketches the Event-B methodology used for developing the
algorithms of synchronization. In section 4, we introduce the general structure of
the proof-based development and Section 5 describes the models developed for
obtaining synchronization algorithms. Section 6 concludes our paper and gives
future works.

2 Synchronization Algorithms for Local Computation
Models

In this section, we illustrate, in an intuitive way, the notion of local computa-
tions, and particularly that of graph relabelling systems by showing how some
algorithms on networks of processors may be encoded within this framework [15].
After that, we present some basic definitions of synchronization algorithms. As
usual, such a network is represented by a graph whose nodes stand for processors
and edges for (bidirectional) links between processors. At every time, each node
and each edge are in some particular state and this state will be encoded by a
node or edge label. According to its own state and to the states of its neigh-
bours, each node may decide to perform an elementary computation step. After
this step, the states of this node, of its neighbours and of the corresponding
edges may have changed according to some specific computation rules. Let us
recall that graph relabelling systems satisfy the following requirements:

(C1) they do not change the underlying graph but only the labelling of its com-
ponents (edges and/or nodes), the final labelling being the result,

(C2) they are local, that is, each relabelling changes only a connected subgraph
of a fixed size in the underlying graph,

(C3) they are locally generated, that is, the applicability condition of the rela-
belling only depends on the local context of the relabelled subgraph.

For such systems, the distributed aspect comes from the fact that several rela-
belling steps can be performed simultaneously on “far enough” subgraphs, giving

Refinement-Based Verification of Local Synchronization Algorithms 341

the same result as a sequential realization of them, in any scheduling. A large
family of classical distributed algorithms encoded by graph relabelling systems
is given in [6]. In order to make the definitions easy to read, we give in the fol-
lowing an example of a graph relabelling system for coloring a ring. Then, the
definition of local synchronization algorithms will be presented.

2.1 The 3-Coloring Problem of a Ring

Consider a ring with at least 3 nodes. The (node) 3-coloring problem consists in
assigning to each node a color from a set of three colors such that two neighbours
have different colors. In distributed computing, node coloring algorithms are
mainly used for resource allocation. A node coloring defines a partial order on
processors allowing them, for example, to execute their critical section according
to the order defined by their respective colors. We provide a relabelling system to
color a ring with 3 colors, starting from an arbitrary configuration. Let {x, y, z}
be the set of colors. Let S3 be the relabelling system defined by considering the
following rule R:

R:
a•−−−−−−−−b•−−−−−−−−c• −→ a•−−−−−−−−d•−−−−−−−−c•
a,b,c,d ∈ {x,y,z}; b ∈ {a,c} ; d /∈ {a,c}

Initially, nodes are labelled at random. This relabelling system, defined by the
previous rule, assigns a correct 3-coloring to the nodes of a ring.

2.2 Synchronization Algorithms

As shown in [19], local computations cannot be executed on asynchronous net-
works without involving randomized synchronization algorithms. In other words,
each node in the graph tries to synchronize with its neighbor(s) first, and if it
is the case, then a local computation step can be done. These algorithms are
randomized since, deterministic algorithms cannot implement synchronous mes-
sage passing in anonymous networks that passes messages asynchronously [4].
In addition, randomization offers a powerful tool for symmetry breaking and
leading to faster solutions [23].

Local computations are of three different types (Handshake, LC1 and LC2);
each one of them relies upon a specific randomized synchronization algorithm. In
this paper, we are concerned with the first local computation type (the handshake
algorithm). A handshake algorithm aims to match two neighboring nodes in the
graph in order to release a computation step. Its principle is described by J.
Reif et al. [25] as follows: Suppose that each process has a special resource called
channel which can be in one of two states open, closed. A handshake of two
processes p, q in time t is a combination of processes states at time t so that
both channels of p and q are open at the same time. Thus we are concerned by
local signals so that each process indicates to at most one neighbor its readiness
to send or receive data. An informal description of the algorithm is given as
follows: We suppose that each node v in the graph repeats forever the following
actions:

342 D. Méry, M. Mosbah, and M. Tounsi

The node v chooses at random one of its neighbors (we called c(v));
The node v sends 1 to c(v);
The node v receives messages from neighbors which have chosen it.

However, some nodes may not receive any message, as they were not chosen to
be a part of a handshake. Here, two different scenarios are possible: First, there
is a handshake between v and c(v), if v receives 1 from its chosen neighbor c(v).
Second, if c(v) had chosen another node different from v; c(v) must respond to
v by sending it a 0 message. This message is very important, since it allows the
node v to realize that it was not chosen by c(v) and to restart applying the
algorithm from the beginning.

The LC1 algorithm is accomplished by using 1-local election, presented as
follows: Every node v selects an integer rand(v) randomly from the set {1..N}
(The constant N is an integer strictly greater than 1). The node v sends to its
neighbors the value rand(v). The node v is elected in B(v,1) if for each node w
of B(v, 1) different from v, rand(v)>rand(w). In this case a computation step
on B(v,1) is allowed, therefore the center is able to collect labels of the leaves
and to change its label.

3 Event-B Overview

The Event-B modeling language [2] defines mathematical structures into con-
texts and formal model of system into machines. The modeling process starts
by identifying the domain of the problem expressed by means of contexts. A
context states the theatrical notions required to be able to express the problem
statement in a formal way[18]. It consists of the following elements: a name, a
list of distinct carrier sets, a list of distinct constants and a list of named prop-
erties. Beside the context, the second component in doing formal developments
in Event-B consists of the machine. It describes a reactive system characterized
by a finite list of events modifying a state variable; an operational interpretation
of an Event-B machine states that, traces of the current model can be generated
from the initial states by applying events. A machine may encapsulate a set of
mathematical items, variables, invariants and a set of events on these variables.
An invariant is defined to be a predicate preserved by each event. As for an event,
it is decomposed into first a guard that specifies under which circumstances it
might occur and then d actions modifying the current state variables. A context
associated with a given machines defines the way this machine is parameterized
and can thus be instantiated [1]. Machines and context relationships are defined
as follows: each machine may see a context. In other words, when a machine
M sees a context C, this means that all carrier sets and constants defined in
C can be used in M. A machine can be built and asserted to be a refinement
of another machine. Consequently, the new machine is named a refinement or
a concrete version of the first machine. The refinement [5] of a machine allows
us to enrich a model in a step-by-step approach, and is the foundation of our
correct-by-construction approach. Refinement provides a way to strengthen in-
variants and to add details to a model. It is also used to transform an abstract

Refinement-Based Verification of Local Synchronization Algorithms 343

model into a more concrete version by modifying the state description. This is
done by extending the list of state variables, by refining each abstract event into
a corresponding concrete version and by adding new events. Likewise, a context
can be extended to another context.

However, an Event-B model is considered as correct, when each machine,
as well as the process of refinement, are proved by adequate theorems named
Proof Obligations (PO); ie events preserve the invariant(s) and that each event
is feasible. The management of proof obligations is a technical task supported
by the RODIN tool [24], which provides an environment for developing correct-
by-construction models for software-based systems.

4 The Modelling Process

As we said above, we use the proof-based development approach to gradually
develop the algorithm. We start with a very abstract model and then we add de-
tails, to obtain a correct and concrete model. The development of a synchronous
algorithm is done following this stepwise refinement strategy:

Graph

EXTENDS

��
Problem

stating ��
SpecMachine

SEES ��
Synchro

ChoiceMachine

REFINES

��

MessageMachine

REFINES

��

Algorithm ProbabilisticMachine
Translates��

REFINES

��

1. The first model SpecMachine expresses the goal of the algorithm. It rep-
resents the specification of the problem to solve by events stating a relation
between initial states and the final states. It uses definitions and properties of
graph in the two contexts Graph and Synchro. For instance, a handshake
is stated by an event which computes the result in one shot.

2. The second model ChoiceMachine refines the first model SpecMachine.
It introduces events for expressing how nodes are making choice and refines
the events of the first level.

3. The third model MessageMachine provides further details about messages
exchange. More precisely, we can observe how nodes communicate together
to realize synchronization(s).

344 D. Méry, M. Mosbah, and M. Tounsi

4. The fourth model ProbabilisticMachine is refining the third model and
it emphasizes on the introduction of a probabilistic assumption to integrate
the effective probabilistic choice made by nodes.

5. An algorithm is extracted from the last model.

5 Implementing the Local Computations Model

This section presents the formal development of the handshake algorithm with
some proofs.

5.1 The Handshake Algorithm Development

The GRAPH Context. The Graph context describes the basic properties
of the network on which distributed algorithms are designed to run. Formally,
a network can be straightforwardly modeled as a connected, non-oriented and
simple graph where nodes denote processors and edges denote direct communi-
cation links. A graph is simple if does not have more than one edge between any
two nodes and no edge starts and ends at the same node (see axm4 and axm3).
An undirected graph, means that there is no distinction between two nodes as-
sociated with each edge (see axm3). A graph (oriented or not) is connected only
if, for each pair of nodes, there exists a set of edges joining them (see axm5).
According to Jean-Raymond Abrial et al. [9,3], a graph namely g is modeled by
a set of nodes namely ND can be presented as follows:

axm1 : g ⊆ ND × ND
axm2 : dom(g) = ND
axm3 : g = g−1

axm4 : id(ND) ∩ g = ∅

axm5 : ∀s.s ⊆ ND ∧ s �= ∅ ∧ g[s] ⊆ s ⇒ ND ⊆ s

The SYNCHRO Context. The Synchro Context is introduced as an ex-
tension of the graph context. It defines all the correct solutions that may result
from the execution of our algorithm. For this, we define all synchro to be a set
of all possible combinations of handshake in the graph (a possible combination
is called ”matching”). A matching in a graph is a subset of edges (see axm2),
in which no two edges are adjacent (or, alternatively no node is adjacent to two
edges in the matching (see axm5)) [11]. Like the graph, a matching is supposed
to be undirected (see axm3). We add the empty set to all synchro to include the
case where the execution of the algorithm gives no handshake (see axm4). By
means of the axm6, we state that any combination satisfying the axioms detailed
above must necessarily belong to all synchro.

axm1 : all synchro ⊆ ND ↔ ND
axm2 : ∀R·R ∈ all synchro ∧ R �= ∅ ⇒ R ⊆ g

axm3 : ∀R·R ∈ all synchro ⇒ R = R−1

axm4 : ∅ ∈ all synchro
axm5 : ∀R·R ∈ all synchro ∧ R �= ∅ ⇒ (∀x, y ·x �→ y ∈ R ⇒ {x} � R = {x �→ y})
axm6 : ∀R·R ⊆ g ∧ R = R−1 ∧ (∀x, y ·x �→ y ∈ R ⇒ {x} � R = {x �→ y}) ⇒ R ∈ all synchro

Refinement-Based Verification of Local Synchronization Algorithms 345

The first machine: SpecMachine

In the first level, the machine will express only the goal of the algorithm:
making a handshake between two neighboring nodes in the graph. To do this, we
need to define two variables : The first called actual state describes the current
matching of the graph. In other words, this variable contains all the already
existing handshake(s) in the graph. Formally, it is simply defined as an element
belonging to all synchro (see inv1). The second variable is called result. It is
introduced in order to contain the result of running the algorithm (see inv2).
Initially result is empty.

inv1 : actual state ∈ all synchro
inv2 : result ∈ ND ↔ ND

Beside initialization, this machine includes two events. The first, called syn-
chronize, models the case where two non synchronized nodes make handshake.
This event avows the result of the algorithm without giving any details about
how it was found. The answer is given later in the next refinements. The sec-
ond event that we can observe in this level is called free nodes. It handles the
case where synchronized nodes finish the handshake. The free nodes updates ac-
tual state and generates a new matching on the graph. It does not compute the
result of the algorithm.

EVENT synchronise
ANY x, y
WHERE

grd1 : x �→ y ∈ g ∧ result = ∅

grd2 : x /∈ dom(actual state)
grd3 : y /∈ dom(actual state)
Theorem1 : (actual state∪
{x �→ y, y �→ x}) ∈ all synchro

THEN

act1 : result := {x �→ y}
act2 : actual state :=
actual state ∪ {x �→ y, y �→ x}

END

EVENT free nodes
ANY x, y
WHERE

grd1 : x �→ y ∈ actual state
grd2 : result = ∅

Theorem2 : (actual state \ {x �→ y, y �→ x})
∈ all synchro

THEN

act1 : actual state :=
actual state \ {x �→ y, y �→ x}

END

The first, the second and the third guard of synchronize (grd1, grd2 and grd3)
check if the two neighboring nodes x and y are not synchronized and if it is the
case then the event declares the edge x �→ y as the result of the algorithm and
updates the actual state. We prove by means of the theorem Theorem1 that if
we add to the actual state a new edge of which the end-points don’t have any
synchronization; then actual state remains always correct and represents a new
matching on the graph. As the first event, we prove by the theorem Theorem2
that if we remove a handshake from the actual state, we preserve always the
correctness on the matching of the graph. We prove by the following theorem
that the deadlock cannot happen during the algorithm execution.

deadlock − free : result = ∅ ⇒
⎛⎝ (∃x, y ·x �→ y ∈ g ∧ x /∈ dom(actual state)

∧y /∈ dom(actual state))
∨(∃a, b·a �→ b ∈ actual state)

⎞⎠

346 D. Méry, M. Mosbah, and M. Tounsi

The second machine: ChoiceMachine

In this first refinement, we start introducing details of the handshake algo-
rithm. This machine adds the choice action which is considered as the first step
to realize a handshake. Also, it refines the other abstract events that are already
defined in the first level. We introduce a new variable called choice defined as a
set of nodes associated with their choice (it contains only nodes that have pre-
viously done their choice). The following invariants provide a formal definition
of the new variable:

(inv1) The choice variable is defined as a partial function from ND to ND which
means that some nodes may have no choice yet.

(inv2) A node can choose only one node from its neighbor(s).
(inv3) Synchronized nodes have made their choices before.
(inv4) If two neighboring nodes x and y are synchronized, this implies that each

of them has chosen the other.

inv1 : choice ∈ ND �→ ND
inv2 : ∀x·x ∈ dom(choice) ⇒ choice[{x}] ⊆ g[{x}]
inv3 : actual state ⊆ choice
inv4 : ∀x, y ·x �→ y ∈ actual state ⇒ choice[{x}] = {y} ∧ choice[{y}] = {x}

The following initialization establishes the invariants:

act1 : actual state, choice : |

⎛⎜⎜⎝
actual state′ ∈ all synchro∧
choice′ ∈ ND �→ ND∧
(∀x·x ∈ dom(choice′) ⇒ choice′[{x}] ⊆ g[{x}])∧
actual state′ ⊆ choice′

⎞⎟⎟⎠
act2 : result := ∅

Abstract events of the previous level still exist in this refinement, therefore they
become more concrete. In fact, the guard of the synchronise event is reinforced
by two new conditions to check if the nodes have already done the choice (x ∈
dom(choice) ∧ y ∈ dom(choice)) and if it is a mutual choice (choice[{x}]={y} ∧
choice[{y}] = {x}). For free node event, we add in the assignment component a
new action to precise that nodes can start again a new choice (choice:= {x,y} �−
choice). We note that ’�−’ is the Event-B domain subtraction operator. It removes
elements from choice, starting with x or y.

In this level, we introduce two new events, make choice and cannot synchronise,
which update the choice set. These events refine SKIP, which is intended to
model hidden actions over variables appearing in this refinement. make choice
event allows to a node to choose a neighbor in order to attempt synchronization.
Specifically, it selects in a nondeterministic way a node y from the neighbors
of x, then it adds the pair x �→ y to the choice set. The second event can-
not synchronise specifies the case where a node fails to make a handshake. As a
consequence, the node is withdrawn from the choice set and so a new synchro-
nization attempt is supposed to restart. These events are given by the following
specification:

Refinement-Based Verification of Local Synchronization Algorithms 347

EVENT make choice
ANY x
WHERE

grd1 : result = ∅

grd2 : x /∈ dom(choice)
THEN

act1 :

choice :| ∃y ·
(

y ∈ g[{x}]∧
choice′ = choice ∪ {x �→ y}

)
END

EVENT cannot synchronise
ANY x
WHERE

grd1 : x ∈ dom(choice) ∧ result = ∅

grd2 : x /∈ dom(actual state)

grd3 : choice[{x}] ∩ choice−1[{x}] = ∅

THEN

act1 : choice := {x} �− choice
END

The third machine: MessagesMachine

In the last level, we model the message exchange between nodes. In order to
reach this goal, we introduce a new variable message representing all the sent
messages over the graph (includes 0 and 1 message). This variable substitutes
the abstract one choice which is defined in the previous model. This will give
rise to a new event called answer which expresses when nodes should respond
to a synchronization request. The invariants concerning message variable are
specified as follows:

(inv1) The message variable is defined as a partial function from g to the {0,
1} set.

(inv2) choice variable is replaced by the subset of 1 messages. This invariant is
called gluing invariant which links together the abstract state variable and
the concrete ones.

(inv3) We check through this invariant that we cannot send more than 1 mes-
sage at the same time.

(inv4) A node x is able to send a 0 message to its neighbor y, if and only if y
has previously sent a 1 message.

inv1 : message ∈ g �→ {0, 1}
inv2 : dom(message � {1}) = choice
inv3 : ∀x, y ·x �→ y �→ 1 ∈ message ⇒ dom(message � {1})[{x}] = {y}
inv4 : ∀x, y ·x �→ y �→ 0 ∈ message ⇒ y �→ x �→ 1 ∈ message

Initialization event is refined in order to establish the new invariants. Here,
the variable choice is replaced with a concrete one by means of witness. In
Event-B, witness is defined as a simple equality predicate involving the abstract
parameters. choice′ = dom(message′ � {1})

(grd3) in synchronise event allows to check if the node x had received a
message from its neighbor y and vice versa. (grd4) specifies that the received
message must contain 1. (grd3) in make choice event guarantee that the node x
has not sent a 1 message which also means that, it does not have a synchroniza-
tion request in progress. In this case, a new synchronization attempt can take
place only if the request has been processed (by receiving a message containing
1 or 0 from the node that was requested to do synchronization). Replying to a
synchronization request is specified by the answer event.

348 D. Méry, M. Mosbah, and M. Tounsi

EVENT synchronise
ANY x, y
WHERE

grd1 : x �→ y ∈ g ∧ result = ∅

grd2 : x /∈ dom(actual state)
∧y /∈ dom(actual state)
grd3 : x �→ y ∈ dom(message)
∧y �→ x ∈ dom(message)
grd4 : message(x �→ y) = 1
∧message(y �→ x) = 1

THEN

act1 : result := {x �→ y}
act2 : actual state :=

actual state ∪ {x �→ y, y �→ x}
END

EVENT make choice
ANY x
WHERE

grd1 : result = ∅

grd2 : x /∈ dom(actual state)
grd3 : x /∈ dom(dom(message � {1}))
grd4 : ∀z ·x �→ z ∈ g⇒

x �→ z /∈ dom(message)
THEN

act1 : choice :| ∃y ·(
y ∈ g[{x}]∧
message′ = message ∪ {x �→ y �→ 1}

)
END

The answer event expresses when and how a node responds to a synchro-
nization request from a neighbor which it did not chose. We suppose that a
node x has chosen its neighbor y to establish a handshake (see grd3) and y did
not answer to the request of x yet: the node x did not receive a message from
y (see grd4). If there is a new message including ”1” from another neighbor z
different from y (see grd5); then x must send a ”0” message to its neighbors z
(provided that the node x has not yet responded (see grd6)). Below is the formal
description of the answer event:

EVENT answer
ANY x, y, z
WHERE

grd1 : x /∈ dom(actual state)
grd2 : result = ∅

grd3 : x �→ y ∈ dom(message � {1})
grd4 : y �→ x /∈ dom(message)
grd5 : y �= z ∧ z �→ x �→ 1 ∈ message
grd6 : x �→ z �→ 0 /∈ message

THEN

act1 : message := message ∪ {x �→ z �→ 0}
END

The probabilistic machine: ProbabilisticMachine The refinement of the
previous model introduces three kinds of choice:

– make good choice: the event allow to model when the choice is a good choice;
it means that it corresponds to the choice of the right neighbor which is
effectively handshaking. We may attach a probability to this event and this
probability is equal to 1/neighbors(x) where neighbors(x) is the number of
neighbors of x.

– make bad choice: x is making a bad choice and does not choose a neighboor
for the handshake.

– make bad/good choice models a choice which is either good or bad with
respect to the choice of the neighbor.

Refinement-Based Verification of Local Synchronization Algorithms 349

EVENT make good choice
ANY x
WHERE

grd1 : result = ∅

grd2 : x /∈ dom(actual state)
grd3 : x /∈ dom(dom(message � {1}))
grd4 :

∀z ·x �→ z ∈ g ⇒ x �→ z /∈ dom(message)
grd5 : ∃a·a �→ x �→ 1 ∈ message

THEN

act1 : message : |∃y ·(
y ∈ g[{x}] ∧ y �→ x �→ 1 ∈ message∧
message′ = message ∪ {x �→ y �→ 1}

)
END

EVENT make bad choice
ANY x
WHERE

grd1 : result = ∅

grd2 : x /∈ dom(actual state)
grd3 : x /∈ dom(dom(message � {1}))
grd4 :

∀z ·x �→ z ∈ g ⇒ x �→ z /∈ dom(message)
grd5 :

∃a·a �→ x ∈ dom(message � {1})
grd6 : ∃b·b ∈ g[{x}]
∧b �→ x /∈ dom(message � {1})

THEN

act1 : message : |∃y ·(
y ∈ g[{x}] ∧ y �→ x �→ 1 /∈ message∧
message′ = message ∪ {x �→ y �→ 1}

)
END

EVENT make bad/good choice
ANY x
WHERE

grd1 : result = ∅

grd2 : x /∈ dom(actual state)
grd3 : x /∈ dom(dom(message � {1}))
grd4 : ∀z ·x �→ z ∈ g ⇒ x �→ z /∈ dom(message)
grd5 : ∀c·c ∈ g[{x}] ⇒ c �→ x /∈ dom(message � {1})

THEN

act1 : message : |∃y ·
(

y ∈ g[{x}]
∧message′ = message ∪ {x �→ y �→ 1}

)
END

We assert that our development is considered correct since each refinement
level as well as the refinement process are proved by adequate theorems called
PO (Proof Obligation). PO(s) are generated by the Rodin tool [24] and can be
discharged either automatically by an integrated proof tool or through interac-
tive proof steps. Usually, the fail of Rodin in the proof of some PO(s) is justified
by the lack of appropriate automatic support in the tool for reasoning about
set comprehension, disjunctions, and strict subsets [14]. However, an unproved
proof obligation may indicate that a modification should be made on the current
model.

Algorithm. In the following, we give an algorithm which is extracted from the
last machine. To do so, we start by identifying variables which are only defined to
be used in the proof processes (the variable result for instance). These variables
will not be kept in the generated algorithm. Afterward, we translate events of
the machine except the initialization event. We simplify the generated algorithm
by grouping together actions which have the same conditions and by defining
a number of functions to encode some elementary operations. These functions
are defined as follows: SourceOf(m) reveals the node which has sent the message
m. The function Is1msg(m) returns true if the message m is a 1 message; false
otherwise. The function FindNeighbors() is used to select randomly a neighboring
node.

350 D. Méry, M. Mosbah, and M. Tounsi

Algorithm 1. Handshake algorithm

Input : messages// It contains the received messages

Vars: choice// It contains the choice of the node

Vars: synchro// It is true if the node is synchronized, false

otherwise

while synchro = false do
if choice = ∅ then

choice ← FindNeighbors();
Send a 1 message to choice;

else
foreach element m of messages do

if SourceOf(m)= choice then
if Is1msg(m)= true then

synchro ← true;
// Now, the node can execute a relabeling rule;
break;

else
choice ← ∅;

else
if Is1msg(m)=true then

Send a 0 message to SourceOf(m);

6 Conclusion and Future Works

The paper is an exercise in developing distributed algorithms under probabilistic
assumptions which are practically consistent. It aims to develop synchronization
algorithms which are used in the platform VISIDIA [28] to simulate, in a safe
way, rules of the local computations models. The summary of proof obligations
discharged either automatically or interactively is a measure of the complexity of
the development itself and we have postponed the management of probabilities
as far as possible in the concretization process of the refinement relationship:

Handshake Models Number of Automatically Interactively
proof obligations discharged discharged

SpecMachine 10 6 (60%) 4 (40%)
ChoiceMachine 23 12 (52%) 11 (48%)
MessageMachine 43 13 (30%) 30 (70%)

ProbabilisticMachine 4 0 (0%) 4 (100%)
Total 80 31 (38.75%) 49 (61.25%)

The mechanization score in not very good and the percentage of interactively
discharged Proof obligations is 61.25 %. The diagram of the refinement with ma-
chines as labels provides a general method for developing these algorithms. Now,
we can use our developments to benchmark the future plugin of S. Hallerstede
et al. [12] and it will be a very simple application of this technique. Other fu-
ture questions are related to the management of probabilistic assumptions which
may be harder to state and it is important to consider others case studies like

Refinement-Based Verification of Local Synchronization Algorithms 351

general coloring algorithms [20,22]. We can also explore the use of the probabilis-
tic model checking to analyze the distributed algorithms derived from Event-B
models; it may appear as a validation phase of the derived algorithm.

References

1. Abrial, J.R.: The B-book: assigning programs to meanings. Cambridge University
Press, New York (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Abrial, J.R., Cansell, D., Méry, D.: Formal derivation of spanning trees algorithms.
In: Bert, D., Bowen, J., King, S. (eds.) ZB 2003. LNCS, vol. 2651, pp. 457–476.
Springer, Heidelberg (2003)

4. Angluin, D.: Local and global properties in networks of processors (extended ab-
stract). In: Proceedings of the Twelfth Annual ACM Symposium on Theory of
Computing, STOC 1980, pp. 82–93. ACM, New York (1980),
http://doi.acm.org/10.1145/800141.804655, doi:10.1145/800141.804655

5. Back, R.: On correct refinement of programs. Journal of Computer and System
Sciences 23(1), 49–68 (1979)

6. Bauderon, M., Métivier, Y., Mosbah, M., Sellami, A.: From local computations to
asynchronous message passing systems. Tech. Rep. RR-1271-02, LaBRI (2002)

7. Bauderon, M., Mosbah, M.: A unified framework for designing, implementing and
visualizing distributed algorithms. Graph Transformation and Visual Modeling
Techniques (First International Conference on Graph Transformation) 72(3), 13–24
(2003)

8. Bjørner, D., Henson, M.C. (eds.): Logics of Specification Languages. EATCS Text-
book in Computer Science. Springer, Heidelberg (2007)

9. Cansell, D., Méry, D.: The Event-B Modelling Method: Concepts and Case Studies,
pp. 33–140. Springer, Heidelberg (2007); see [8]

10. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

11. ElHibaoui, A., Métivier, Y., Robson, J.M., Saheb-Djahromi, N., Zemmari, A.:
Analysis of a randomized dynamic timetable handshake algorithm. Pure Math-
ematics and Applications (PuMA) (0)

12. Hallerstede, S., Hoang, T.S.: Qualitative probabilistic modelling in event-B. In:
Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 293–312. Springer,
Heidelberg (2007), http://portal.acm.org/citation.cfm?id=1770498.1770514

13. Hoang, T.S., Jin, Z., Robinson, K., McIver, A., Morgan, C.: Development via re-
finement in probabilistic B - foundation and case study. In: Treharne, et al. (eds.)
[27], pp. 355–373

14. Hoang, T.S., Kuruma, H., Basin, D., Abrial, J.-R.: Developing topology discovery
in event-B. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp.
1–19. Springer, Heidelberg (2009)

15. Litovsky, I., Métivier, Y., Sopena, E.: Graph relabelling systems and distributed
algorithms. In: Ehrig, H., Kreowski, H., Montanari, U., Rozenberg, G. (eds.) Hand-
book of Graph Grammars and Computing by Graph Transformation, vol. 3, pp.
1–56. World Scientific, Singapore (1999)

16. Litovsky, I., Métivier, Y., Sopena, É.: Different local controls for graph relabelling
systems. Mathematical System Theory 28, 41–65 (1995),
http://www3.labri.fr/publications/combalgo/1995/LMS95

http://doi.acm.org/10.1145/800141.804655
http://portal.acm.org/citation.cfm?id=1770498.1770514
http://www3.labri.fr/publications/combalgo/1995/LMS95

352 D. Méry, M. Mosbah, and M. Tounsi

17. McIver, A.K., Morgan, C., Hoang, T.S.: Probabilistic termination in B. In: Bert,
D., Bowen, J., King, S. (eds.) ZB 2003. LNCS, vol. 2651, pp. 216–239. Springer,
Heidelberg (2003)

18. Méry, D.: A simple refinement-based method for constructing algorithms. SIGCSE
Bull. 41(2), 51–59 (2009)

19. Métivier, Y., Mosbah, M., Ossamy, R., Sellami, A.: Synchronizers for local compu-
tations. In: ICGT, pp. 271–286 (2004)

20. Métivier, Y., Robson, J.M., Saheb-Djahromi, N., Zemmari, A.: About randomised
distributed graph colouring and graph partition algorithms. Inf. Comput. 208(11),
1296–1304 (2010)

21. Morgan, C., Hoang, T.S., Abrial, J.R.: The challenge of probabilistic Event-B -
extended abstract. In: Treharne, et al. (eds.) [27], pp. 162–171

22. Yves, M., Robson, J.M., Nasser, S.-D., Zemmari, A.: An optimal bit complex-
ity randomized distributed MIS algorithm. In: Kutten, S., Žerovnik, J. (eds.)
SIROCCO 2009. LNCS, vol. 5869, pp. 323–337. Springer, Heidelberg (2010)

23. Norman, G.: Analysing randomized distributed algorithms. In: Baier, C.,
Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of
Stochastic Systems. LNCS, vol. 2925, pp. 384–418. Springer, Heidelberg (2004)

24. Project RODIN: Rigorous open development environment for complex systems
(2004–2007), http://rodin-b-sharp.sourceforge.net/

25. Reif, J., Spirakis, P.: Real time resource allocation in distributed systems. In:
PODC 1982: Proceedings of the first ACM SIGACT-SIGOPS symposium on Prin-
ciples of distributed computing, pp. 84–94. ACM, New York (1982)

26. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Towards probabilistic modelling in
event-B. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 275–289.
Springer, Heidelberg (2010)

27. Treharne, H., King, S., Henson, M.C., Schneider, S.A. (eds.): ZB 2005. LNCS,
vol. 3455, pp. 13–15. Springer, Heidelberg (2005)

28. ViSiDiA (2006), http://visidia.labri.fr

http://rodin-b-sharp.sourceforge.net/
http://visidia.labri.fr

Simulating Concurrent Behaviors with
Worst-Case Cost Bounds�

Elvira Albert1, Samir Genaim1, Miguel Gómez-Zamalloa1,
Einar Broch Johnsen2, Rudolf Schlatte2, and S. Lizeth Tapia Tarifa2

1 DSIC, Complutense University of Madrid, Spain
{elvira,samir.genaim,mzamalloa}@fdi.ucm.es
2 Department of Informatics, University of Oslo, Norway

{einarj,rudi,sltarifa}@ifi.uio.no

Abstract. Modern software systems are increasingly being developed
for deployment on a range of architectures. For this purpose, it is inter-
esting to capture aspects of low-level deployment concerns in high-level
modeling languages. In this paper, an executable object-oriented mod-
eling language is extended with resource-restricted deployment compo-
nents. To analyze model behavior a formal methodology is proposed
to assess resource consumption, which balances the scalability of the
method and the reliability of the obtained results. The approach applies
to a general notion of resource, including traditional cost measures (e.g.,
time, memory) as well as concurrency-related measures (e.g., requests to
a server, spawned tasks). The main idea of our approach is to combine
reliable (but expensive) worst-case cost analysis of statically predictable
parts of the model with fast (but inherently incomplete) simulations of
the concurrent aspects in order to avoid the state-space explosion. The
approach is illustrated by the analysis of memory consumption.

1 Introduction

Software systems today are increasingly being developed to be highly configurable,
not only with respect to the functionality provided by a specific instance of the
system but also with respect to the targeted deployment architecture. An exam-
ple of a development method is software product line engineering [20]. In order
to capture and analyze the intended deployment variability of such software, for-
mal models need to express and range over different deployment scenarios. For
this purpose, it is interesting to reflect aspects of low-level deployment in high-
level modeling languages. As our first contribution, in this paper, we propose a
notion of resource-restricted deployment component for an executable modeling

� This work was funded in part by the EU project FP7-231620 HATS
(http://www.hats-project.eu), by the Spanish Ministry of Science and Innova-
tion (MICINN) under the TIN-2008-05624 DOVES project, the HI2008-0153 (Acción
Integrada) project, the UCM-BSCH-GR35/10-A-910502 Research Group and by the
Madrid Regional Government under the S2009TIC-1465 PROMETIDOS project.

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 353–368, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

354 E. Albert et al.

language based on concurrent objects [8, 11, 14, 21, 24]. The main idea of resource-
restricted deployment components is that they are parametric in the amount of
resources they make available to their concurrently executing objects. This way,
different deployment scenarios can be conveniently expressed at the modeling level
and a model may be analyzed for a range of deployment scenarios.

As our main contribution, we develop a novel approach for estimating the
resource consumption of this kind of resource-constrained concurrent executions
which is reasonably reliable and scalable. Resource consumption is in this sense a
way of understanding and debugging the model of the deployment components.
Our work is based on a general notion of resource, which associates a cost unit
to the program statements. Traditional resources are execution steps, time and
memory, but one may also consider more concurrency-related resources like the
number of tasks spawned, the number of requests to a server, etc.

The two main approaches to estimating resource consumption of a program ex-
ecution are static cost analysis and dynamic simulation (or monitoring). Efficient
simulation techniques can analyze model behavior in different deployment scenar-
ios, but simulations are carried out for particular input data. Hence, they cannot
guarantee the correctness of the model. Due to the non-determinism of concurrent
execution and the choice of inputs, possible errors may go undetected in a sim-
ulation. Static cost (or resource usage) analysis aims at automatically inferring
a program’s resource consumption statically, i.e., without running the program.
Such analysis must consider all possible execution paths and ensures soundness,
i.e., it guarantees that the program never exceeds the inferred resource consump-
tion for any input data. While cost analysis for sequential languages exists, the
problem has not yet been studied in the concurrent setting, partly due to the in-
herent complexity of concurrency: the number of possible execution paths can be
extremely large and the resulting outcome non-deterministic. Statically analyz-
ing the concurrent behaviors of our resource-restricted models requires a full state
space exploration and quickly becomes unrealistic.

In this paper, we propose to combine simulations with static techniques for
cost analysis, which allows classes of input values to be covered by a single sim-
ulation. The main idea is to apply cost analysis to the sequential computations
while simulation handles the concurrent system behavior. Our method is devel-
oped for an abstract behavioral specification language ABS, simplifying Creol
[11, 14], which contains a functional level where computations are sequential and
an concurrent object-oriented level based on concurrent objects. This separation
allows a concise and clean formalization of our technique. The combination of
simulation and static analysis, as proposed in this paper, suggests a middle way
between full state space exploration and simulating single paths, which gives
interesting insights into the behavior of concurrent systems.

Paper organization. Sec. 2 describes the ABS modeling language and the run-
ning example. Sec. 3 discusses the worst-case cost analysis of the functional
parts of ABS. Sec. 4 introduces deployment components, which model resource-
containing runtime entities, and in Sec. 5 we apply our techniques to the running
example. Finally, Sec. 6 discusses related work and Sec. 7 concludes.

Simulating Concurrent Behaviors with Worst-Case Cost Bounds 355

Syntactic categories.
I in Interface type
D in Data type
x in Variable
e in Expression
b in Bool Expression
t in Ground Term
br in Branch
p in Pattern

Definitions.
Dd ::= data D = Cons ;

Cons ::= Co[(T)] | (Cons | Cons)

F ::= def T fn(T x) = e;
T ::= I | D

e ::= b | x | t | this | Co[(e)] | fn(e) | case e {br}
t ::= Co[(t)] | null

br ::= p ⇒ e;
p ::= _ | x | t | Co[(p)]

Fig. 1. ABS syntax for the functional level. Terms e and x denote possibly empty lists
over the corresponding syntactic categories, and square brackets [] optional elements.
Boolean expressions b include comparison by equality, greater- and less-than operators.

2 A Language for Distributed Concurrent Objects

Our method is presented for ABS, an abstract behavioral specification language
for distributed concurrent objects (simplifying Creol [11, 14] by excluding, e.g.,
class inheritance and dynamic class upgrades). Characteristic features of ABS
are that: (1) it allows abstracting from implementation details while remaining
executable; i.e., a functional sub-language over abstract data types is used to
specify internal, sequential computations; and (2) it provides flexible concurrency
and synchronization mechanisms by means of asynchronous method calls, release
points in method definitions, and cooperative scheduling of method activations.

Intuitively, concurrent ABS objects have dedicated processors and live in a
distributed environment with asynchronous and unordered communication. All
communication is between named objects, typed by interfaces, by means of asyn-
chronous method calls. (There is no remote field access.) Calls are asynchronous
as the caller may decide at runtime when to synchronize with the reply from a
call. Method calls may be seen as triggers of concurrent activity, spawning new
activities (so-called processes) in the called object. Active behavior, triggered
by an optional run method, is interleaved with passive behavior, triggered by
method calls. Thus, an object has a set of processes to be executed, which stem
from method activations. Among these, at most one process is active and the
others are suspended in a process pool. Process scheduling is non-deterministic,
but controlled by processor release points in a cooperative way.

An ABS model defines interfaces, classes, datatypes, and functions, and has
a main method to configure the initial state. Objects are dynamically created
instances of classes; their declared attributes are initialized to arbitrary type-
correct values, but may be redefined in an optional method init. This paper
assumes that models are well-typed, so method binding is guaranteed to succeed.

The functional level of ABS defines data types and functions, as shown in
Fig. 1. In data type declarations Dd , a data type D has at least one constructor
Cons , which has a name Co and a list of types T for its arguments. Func-
tion declarations F consist of a return type T , a function name fn, a list of
variable declarations x of types T , and an expression e. Expressions e include

356 E. Albert et al.

Syntactic categories.
C, m in Names
g in Guard
s in Statement

Definitions.
IF ::= interface I {Sg }
CL ::= classC [(T x)] [implements I] {T x; M}
Sg ::= T m (T x)

M ::= Sg { T x; s }
g ::= b | x? | g ∧ g | g ∨ g
s ::= s; s | x := rhs | release | await g | return e

| if b then { s } [else { s }] | while b { s } | skip
rhs ::= e | new C [(e)] | [e]!m(e) | x.get

Fig. 2. ABS syntax for the concurrent object level

Boolean expressions b, variables x, (ground) terms t, the (read-only) variable
this which refers to the object’s identifier, constructor expressions Co(e), func-
tion expressions fn(e), and case expressions case e {br}. Ground terms t are
constructors applied to ground terms Co(t), and null. Case expressions have a
list of branches p ⇒ e, where p is a pattern. The branches are evaluated in the
listed order. Patterns include wild cards _, variables x, terms t, and constructor
patterns Co(p). Remark that expressions may refer to object references.

Example 1. Consider a polymorphic data type for sets and a function in which
checks if e is an a member of the set ss.

data Set<A> = EmptySet | Insert(A, Set<A>);
def Bool in<A>(Set<A> ss, A e) =

case ss {EmptySet => False ;
Insert(e, _) => True;
Insert(_, xs) => in(xs, e); };

The concurrent object level of ABS is given in Fig. 2. Here, an interface IF
has a name I and method signatures Sg. A class implements a list of interfaces,
specifying types for its instances; a class CL has a name C, interfaces I, class
parameters and state variables x of type T , and methods M (The attributes of
the class are both its parameters and state variables). A method signature Sg
declares the return type T of a method with name m and formal parameters
x of types T . M defines a method with signature Sg, a list of local variable
declarations x of types T , and a statement s. Statements may access attributes of
the current class, locally defined variables, and the method’s formal parameters.

Right hand side expressions rhs include object creation new C(e), method
calls, and (pure) expressions e. Statements are standard for assignment x := rhs,
sequential composition s1; s2, and skip, if, while, and return constructs.
release unconditionally releases the processor, suspending the active process.
In await g, the guard g controls processor release and consists of Boolean
conditions b and return tests x? (see below). If g evaluates to false, the processor
is released and the process suspended. When the processor is idle, any enabled
process from the object’s pool of suspended processes may be scheduled. Explicit
signaling is therefore redundant. Like expressions e, guards g are side-effect free.

Simulating Concurrent Behaviors with Worst-Case Cost Bounds 357

Communication in ABS is based on asynchronous method calls, denoted
o!m(e). (Local calls are written !m(e).) After asynchronously calling x := o!m(e),
the caller may proceed with its execution without blocking on the call. Here x
is a future variable, o is an object (an expression typed by an interface), and
e are expressions. A future variable x refers to a return value which has yet to
be computed. There are two operations on future variables, which control ex-
ternal synchronization in ABS. First, a return test x? evaluates to false unless
the reply to the call can be retrieved. (Return tests are used in guards.) Second,
the return value is retrieved by the expression x.get, which blocks all execu-
tion in the object until the return value is available. The statement sequence
x := o!m(e); v := x.get encodes a blocking, synchronous call, abbreviated v :=
o.m(e), whereas the statement sequence x := o!m(e); await x?; v := x.get
encodes a non-blocking, preemptable call, abbreviated await v := o.m(e).

Example 2. Consider a model of a book shop where clients can order a list of
books for delivery to a country. Clients connect to the shop by calling the
getSession method of an Agent object. An Agent hands out Session ob-
jects from a dynamically growing pool. Clients call the order method of their
Session instance, which calls the getInfo and confirmOrder methods of a
Database object shared between the different sessions. Session objects return
to the agent’s pool after an order is completed. (The full model is available in [5].)

interface Agent { Session getSession(); Unit free(Session session);}
interface Session {

OrderResult order(List<Bname> books, Cname country);}
interface Database {

DatabaseInfo getInfo(List<Bname> books, Cname country);
Bool confirmOrder(List<Bname> books); }

class DatabaseImp(Map<Bname,Binfo> bDB, Map<Cname,Cinfo> cDB)
implements Database {
DatabaseInfo getInfo(List<Bname> books, Cname country){
Map<Bname,Binfo> bOrder:=EmptyMap; Pair<Cname,Cinfo> cDestiny;
bOrder:=getBooks(bDB, books); cDestiny:=getCountry(cDB, country);
return Info(bOrder, cDestiny);} ...

In the model, a DatabaseImp class stores and handles the information about
the books available in the shop (in the bDB map) as well as information about
the delivery countries (in the cDB map). This class has a method getInfo;
given an order with a list of books and a destination country, the getInfo
method extracts information about book availability from bDB and shipping
information from cDB by means of function calls getBooks(bDB, books)
and getCountry(cDB, country) The result from the method call has type
DatabaseInfo, with a constructor of the form: Info(bOrder, cDestiny).

2.1 Operational Semantics

The operational semantics of ABS is presented as a transition system in an SOS
style [19]. Rules apply to subsets of configurations (the standard context rules
are not listed). For simplicity we assume that configurations can be reordered
to match the left hand side of the rules (i.e., matching is modulo associativity

358 E. Albert et al.

and commutativity as in rewriting logic [18]). A run is a possibly nonterminating
sequence of rule applications. When auxiliary functions are used in the semantics,
these are evaluated in between the application of transition rules in a run.

Configurations cn are sets of objects, invocation messages, and futures. The
associative and commutative union operator on configurations is denoted by
whitespace and the empty configuration by ε. These configurations live inside
curly brackets; in the term {cn}, cn captures the entire configuration. An object
is a term ob(o, C, a, p, q) where o is the object’s identifier and C its class, a an
attribute mapping representing the object’s fields, p an active process, and q a
pool of suspended processes. A process p consists of a mapping l of local variable
bindings and a list s of statements, denoted by {l|s} when convenient. In an
invocation message invoc(o, f, m, v), o is the callee, f the future to which the
call’s result is returned, m the method name, and v the call’s actual parameter
values. A future fut(f, v) has a identifier f and a reply value v (which is ⊥
when the future’s reply value has not been received). Values are object and
future identifiers, Boolean expressions, and null (as well as expressions in the
functional language). For simplicity, classes are not represented explicitly in the
semantics, but may be seen as static tables.

Evaluating Expressions. Denote by σ(x) the value bound to x in a mapping
σ and by σ1 ◦ σ2 the composition of mappings σ1 and σ2. Given a substitution
σ and a configuration cn, denote by [[e]]cn

σ a confluent and terminating reduction
system which reduces expressions e to data values. Let [[x?]]cn

σ = true if [[x]]cn
σ = f

and fut(f, v) ∈ cn for some value v �= ⊥, otherwise [[x?]]cn
σ = false. The remaining

cases are fairly straightforward, looking up values for declared variables in σ. For
brevity, we omit the reduction system for the functional level of ABS (for details,
see [5]) and simply denote by [[e]]εσ the evaluation of a guard or expression e in the
context of a substitution σ and a state configuration cn (the state configuration
is needed to evaluate future variables). The reduction of an expression always
happens in the context of a given process, object state, and configuration. Thus,
σ = a ◦ l (the composition of the fields a and the local variable bindings l), and
cn the current configuration of the system (ignoring the object itself).

Transition Rules. Transition rules of the operational semantics transform state
configurations into new configurations, and are given in Fig. 3. We assume given
functions bind(o, f, m, v, C) which returns a process resulting from the method
activation of m in a class C with actual parameters v, callee o and associated
future f ; init(C) which returns a process initializing instances of class C; and
atts(C, v, o, n) which returns the initial state of an instance of class C with class
parameters v, identity o, and deployment component n. The predicate fresh(n)
asserts that a name n is globally unique (where n may be an identifier for an ob-
ject or a future). Let idle denote any process {l|s} where s is an empty statement
list. Finally, we define different assignment rules for side effect free expressions
(assign1 and assign2), object creation (new-object), method calls (async-call),
and future dereferencing (read-fut). Rule skip consumes a skip in the active
process. Here and in the sequel, the variable s will match any (possibly empty)
statement list. Rules assign1 and assign2 assign the value of expression e to a

Simulating Concurrent Behaviors with Worst-Case Cost Bounds 359

(skip)

ob(o, C, a, {l|skip; s}, q)
→ ob(o, C, a, {l|s}, q)

(release)

ob(o, C, a, {l|release; s}, q)
→ ob(o, C, a, idle,

enqueue({l|s}, q))

(activate)

p = select(q, a, cn)

{ob(o, C, a, idle, q) cn}
→ {ob(o, C, a, p, q\p) cn}

(Async-Call)

o′ = [[e]]ε(a◦l) v = [[e]]ε(a◦l) fresh(f)

ob(o, C, a, {l|x := e!m(e); s}, q)
→ ob(o, C, a, {l|x := f ; s}, q)
invoc(o′, f, m, v) fut(f,⊥)

(New-Object)

fresh(o′) p = init(B) a′ = atts(B, [[e]]εa◦l, o
′, n)

ob(o, C, a, {l|x := new B(e); s}, q)
→ ob(o, C, a, {l|x := o′; s}, q)

ob(o′, B, a′, p, ∅)

(return)

v = [[e]]ε(a◦l) l(destiny) = f

ob(o, C, a, {l|return e; s}, q) fut(f,⊥)
→ ob(o, C, a, {l|s}, q) fut(f, v)

(Read-Fut)

v
= ⊥ f = [[e]]ε(a◦l)

ob(o, C, a, {l|x := e.get; s}, q) fut(f, v)
→ ob(o, C, a, {l|x := v; s}, q) fut(f, v)

(Bind-Mtd)

p′ = bind(o, f, m, v, C)

ob(o, C, a, p, q)
invoc(o, f, m, v)

→ ob(o, C, a, p,
enqueue(p′, q))

(assign1)

x ∈ dom(l) v = [[e]]ε(a◦l)

ob(o, C, a, {l|x := e; s}, q)
→ ob(o, C, a, {l[x �→ v]|s}, q)

(assign2)

x ∈ dom(a) v = [[e]]ε(a◦l)

ob(o, C, a, {l|x := e; s}, q)
→ ob(o, C, a[x �→ v], {l|s}, q)

(await1)

¬[[g]]cn
(a◦l)

{ob(o, C, a, {l|await g; s}, q) cn}
→ {ob(o, C, a, {l|release; await g; s}, q) cn}

(await2)

[[g]]cn
(a◦l)

{ob(o, C, a, {l|await g; s}, q) cn}
→ {ob(o, C, a, {l|s}, q) cn}

Fig. 3. ABS Semantics

variable x in the local variables l or in the fields a, respectively. (We omit the
standard rules for if-then-else and while).

Process Suspension and Activation. Three operations are used to manipulate
a process pool q: enqueue(p, q) adds a process p to q, q \p removes p from q, and
select(q, a, cn, t) selects a process from q (which is idle if q is empty or no pro-
cess is ready [14]). The actual definitions are left undefined; different definitions
correspond to different process scheduling policies. Let ∅ denote the empty pool.
Rule release suspends the active process to the pool, leaving the active process
idle. Rule await1 consumes the await statement if the guard evaluates to true
in the current state of the object, rule await2 adds a release statement in order
to suspend the process if the guard evaluates to false. Rule activate selects a
process from the pool for execution if this process is ready to execute, i.e., if it
would not directly be resuspended or block the processor [14].

Communication and Object Creation. Rule async-call sends an invocation
message to o′ with the unique identity f (by the condition fresh(f)) of a new
future, the method name m, and actual parameters v. Note that the return value
of the new future f is undefined (i.e., ⊥). Rule bind-mtd consumes an invocation
method and places the process corresponding to the method activation in the
process pool of the callee. Note that a reserved local variable ‘destiny’ is used
to store the identity of the future associated with the call. Rule return places

360 E. Albert et al.

the return value into the call’s associated future. Rule read-fut dereferences the
future f in the case where v �= ⊥. Note that if this attribute is ⊥ the reduction
in this object is blocked. Finally, new-object creates a new object with a unique
identifier o′. The object’s fields are given default values by atts(B, v, o′, n), ex-
tended with the actual values v for the class parameters and o′ for this. In order
to instantiate the remaining attributes, the process p is loaded (we assume that
this process reduces to idle if init(B) is unspecified in the class definition, and
that it asynchronously calls run if the latter is specified).

3 Worst-Case Cost Bounds

The goal of this section is to infer worst-case upper bounds (UBs) from the
(sequential) functions in our sub-language. This problem has been intensively
studied since the seminal paper on cost analysis [23]. Thus, instead of a formal
development, we illustrate the main steps of the analysis on the running example.

Size of terms. The cost of a function that traverses a term t usually depends
on the size of t, and not on the concrete data structure to which t is bound.
For instance, the cost of executing dom(map) (which returns the domain of
a map) depends on the size of map (the number of elements). Therefore, in
order to infer worst-case UBs, we first need to define the meaning of size of a
term. This is done by using norms [7]. A norm is a function that maps terms
to their size. For instance, the term-size norm calculates the number of type
constructors in a given term, and is defined as |Co(t1, . . . , tn)|ts = 1+Σn

i=1|ti|ts ,
and, the term-depth norm calculates the depth of the term, and is defined as
|Co(t1, . . . , tn)|td = 1 + max(|t1|td , . . . , |tn|td). Consider the book shop model
described in Ex. 2; the database uses maps for storing information; a Map<A,
B> has two constructors Ins(Pair<A, B>, Map<A, B>) and EmptyMap (to represent
empty maps). For storing the information of a book sold by the shop, the model
uses a constructor of the form BInfo(Bquantity, Bweight, Bbackordertime) (A more
detailed description of this data type can be found in [5].). For a term:

t = Ins(Pair("b1",BInfo(5,1,2)),Ins(Pair("b2",BInfo(1,2,5)),EmptyMap))

which can represent the database of books in the shop, we have that |t|ts = 15
and |t|td = 5. Note that we count strings and numbers as type constructors.
Norms map a given variable x to itself in order to account for the size of the
term to which x is bounded. Any norm can be used in the analysis, depending
on the used data structures, w.l.o.g., we will use the term-size norm.

Size relations. The getBooks function (called from method getInfo in Ex. 2)
returns a sub-database (of booksDB) which contains only those books in books:

def Map getBooks(Map booksDB,List books) = case books {
Nil => EmptyMap;
Cons(b,t) => case in(dom(booksDB),b) {

False => getBooks(booksDB,t) ;
True => Ins(Pair(b,lookup(booksDB,b)),getBooks(booksDB,t)); };};

Simulating Concurrent Behaviors with Worst-Case Cost Bounds 361

Function dom returns the set of keys of the mapping provided as argument,
in is the one of Ex. 1, and, lookup returns the value that corresponds to the
provided key in the provided mapping. Observe that the return value of dom
is passed on to function in. Since the cost of in is part of the total cost of
getBooks, we need to express its cost in terms of booksDB. This is possible
only if we know which is the relation between the returned value of dom and
its input value booksDB. This input-output relation (or a post-condition) is a
conjunction of (linear) constraints that describe a relation between the sizes of
the input parameters of the function and its return value, w.r.t. the selected
norm. E.g., ret ≤ map is a possible post-condition for function dom, where map
is the size of its input parameter and ret is the size of the returned term. We
apply existing techniques [6] to infer such relations for our functional language.
In what follows, we assume that IP includes a post-conditions 〈fn(x̄), ψ〉 for
each function, where ψ is a conjunction of (linear) constraints over x̄ and ret.

Cost Model. Cost analysis is typically parametric on the notion of cost model
M, i.e., on the resource that we want to measure [2]. Informally, a cost model
is a function that maps instructions to costs. Traditional cost models are: (1)
number of instructions, which maps all instructions to 1, i.e., M(b) = 1 for all
instructions b; and (2) memory consumption, which can be defined as Mh(x =
t) = Mh(t) = mem(t) where mem(Co(t1, . . . , tn)) = Co + Σn

i=1mem(ti) and
mem(x) = 0. For any other instruction b we let Mh(b) = 0. The symbol Co
represents the amount of memory required for constructing a term of type Co.
Note that we estimate only the memory required for storing terms.

Upper bounds. In order to make the presentation simpler, we assume functions
are normalized such that nested expressions are flattened using let bindings.
Using this normal form, the evaluation of an expression e consists in evaluating
a sequence of sub-expressions of the form y = fn(x̄), y = t, match(y, t), fn(x̄),
t or x. We refer to such sequence as an execution path of e. In a static setting,
since variables are not assigned concrete values, and due to the use of case,
an expression e might have several execution paths. We denote the set of all
execution paths of e by paths(e). This set can be constructed from the abstract
syntax tree of e. Clearly, when estimating the cost of executing an expression e
we must consider all possible execution paths. In practice, we generate a set of
(recursive) equations where each equation accounts for the cost of one execution
path. Then, the solver of [1] is used in order to obtained a closed-form UB.

Definition 1. Given a function def T fn(T x) = e, its cost relation (CR)
is defined as follows: for each execution path p ≡ b1, . . . , bn ∈ paths(e), we
define an equation 〈fn(x̄) = Σn

i=1M(bi) + fni1(x̄i1) + · · ·+ fnik
(x̄ik

),∧n
i=1ϕi〉

where fni1(x̄i1), . . . , fnik
(x̄ik

) are all function calls in p; and ϕi ≡ y = |t|ts
if bi ≡ y = t, and ϕi ≡ ψ[ret/y] if bi ≡ y = f(x̄) and 〈f(x̄), ψ〉 ∈ IP , otherwise
ϕi = true. The CR system of a given program the set of all CRs of its functions.

362 E. Albert et al.

Example 3. The following is the CR of getBooks w.r.t the cost model mem:
getBooks(a, b) = EmptyMap {b = 1}
getBooks(a, b) = dom(a)+in(d, e)+getBooks(a, g) {b = 1+e+g, d≤a, d≥1, e≥1, g≥1}
getBooks(a, b) = Pair+Ins+dom(a)+in(d, e) {b = 1+e+g, d≤a, d≥1, e≥1, g≥1}

+ lookup(a, e)+getBooks(a, g)

The first equation can be read as “the memory consumption of getBooks is one
EmptyMap constructor if the size of b is 1”. Equations for functions in, lookup
and dom are not shown due to space limitations and have resp. constant, zero
and linear memory consumptions. Solving the above CR results in the UB
getBooks(a, b) = EmptyMap+nat(b−1

2
)∗(nat(a−1

4
)∗Ins+EmptySet+max(True, False))

Replacing, for example, EmptyMap, Ins, True and False by 1 results in
getBooks(a, b) = 1 + nat(b−1

2
) ∗ (2 + nat(a−1

4
))

4 Deployment Components

Deployment components make quantifiable deployment-level resources explicitly
available in the modeling language. A deployment component allows the logi-
cal execution environment of concurrent objects to be mapped to a model of
physical resources, by specifying an abstract execution context which is shared
between a number of concurrently executing objects. The resources available to a
deployment component are shared between the component’s objects. An object
may get and return resources from and to its deployment component. Thus, the
deployment components impose a resource-restricted execution context for their
concurrently executing objects, but not a communication topology as objects
still communicate directly with each other independent of the components.

Resource-restricted deployment components are integrated in the modeling
language as follows. Let variables x of type Component refer to deployment
components and allow deployment components to be statically created by the
statement x:=component(r) in the main method, which allocates a given quan-
tity of resources r to the component x (capturing the resource constraint of
x). Resources are modeled by a data type Resource which extends the natu-
ral numbers with an “unbounded resource” ω. Resource allocation and usage is
captured by resource addition and subtraction, where ω +n = ω and ω−n = ω.

Concurrent objects residing on components, may grow dynamically. All ob-
jects are created inside a deployment component. The syntax for object creation
is extended with an optional clause to specify the targeted deployment com-
ponent in the expression new C(e)@ x. This expresses that the new C object
will reside in the component x. Objects generated without an @ clause reside
in the same component as their parent object. Thus the behavior of an ABS
model which does not statically declare additional deployment components can
be captured by a root deployment component with ω resources.

Example 4. Consider the book shop model described in Ex. 2 instantiated inside
deployment components:

Simulating Concurrent Behaviors with Worst-Case Cost Bounds 363

Table 1. The non-trivial cost functions of memory-constrained ABS semantics. All
identifiers are the same as in the corresponding rule of Fig. 3, except vp (old value of
a variable), |v| (size of term v), P (size of a process), and O (size of an object).

Rule cost free
assign1, assign2 cost(e) |vp| − |v|
Read-Fut max(cost(e), |v|) 0
Bind-Mtd P + |v| −(P + |v|)
Async-Call cost(e) + |f | 0
New-Object-Create O + P + |v| −(O + P + |v|)

Component c := component(200);
Database db := new DataBaseImp(...) @ c;
Agent agent := new AgentImp(db) @ c;

The Session objects created and handed out by the Agent object will then
be created inside c as well, without further changes to the model.

The execution inside a component d with r resources can be understood as
follows. An object o residing in d may execute a transition step with cost c if

– o can execute the step in a context with unbounded resources, and
– c ≤ r; i.e., the cost of executing the step does not exclude the transition in

an execution context restricted to r resources.

After the execution of the transition step, the object may return free resources to
its deployment component. Thus, for each transition rule the resources needed to
apply this rule to a state t, resulting in a state t′, can be characterized in terms of
two functions over the state space, one computing the cost of the transition form
t to t′ and one computing the free resources after the transition. The allocation
and return of resources for objects in a deployment component will depend on
the specific cost model M for the considered resource, so the exact definitions
of costM(t, t′) and freeM(t, t′) depend on M.

Example 5. Table 1 shows the costM(t, t′) and freeM(t, t′) functions for the mem-
ory cost model of the ABS semantics, using the symbols of Fig. 3. There are some
subtle details in these functions – for example, message invocations and future
variables are considered to be outside any one deployment component, so the
memory required to execute the Read-Fut rule can be larger than evaluat-
ing the future variable expression e since the deployment component must have
enough memory to accommodate the incoming value v. Also, object creation
affects two places, so was split into two rules, similar to method invocation.

Semantics of Resource Constrained Execution. Let M be a cost model. The
operational semantics ofM-constrained execution in deployment components is
defined as a small-step operational semantics, extending the semantics of ABS
given in Sec. 2.1 to resource-sensitive runtime configurations forM. We assume
given functions costM(t, t′) and freeM(t, t′).

364 E. Albert et al.

(Context)

mycomp(o) = id costM(o msg, o′ msg′ config
′
) ≤ r

o msg −→ o′ msg′ config
′

r′ = r + freeM(o msg, o′ msg′ config
′
)

{comp(id, r) o msg config} −→M {comp(id, r′) o′ msg′ config config
′}

Fig. 4. An operational semantics for resource-constrained deployment components

(assign1-rsc)

x ∈ dom(l) v = [[e]]ε(a◦l) vp = l(x) cost(e) ≤ r mycomp(o) = dc

dc(r) ob(o, C, a, {l|x := e; s}, q)
→ dc(r + |vp| − |v|) ob(o, C, a, {l[x �→ v]|s}, q)

Fig. 5. Resource-aware assignment rule, with an object ob and deployment component
dc. The assignment statement is only executed if e can be evaluated with the current
r, which is adjusted afterwards.

Let −→ denote the single-step reduction relation of the ABS semantics, de-
fined in Sec. 2.1. A resource-constrained run of an ABS model consists of zero or
more applications of a transition relation −→M, which is defined by the context
rule given in Fig. 4. Runtime configurations are extended with the representation
of deployment components comp(id, r), where id is the identifier of the compo-
nent and r its currently available resources. Each object has a field mycomp,
instantiated to its deployment component at creation time (we omit the rede-
fined object creation rule). Let config denote a set of objects and futures. The
context rule expresses how an object o may evolve to o′ given a set of invoca-
tion messages msg in the context of a deployment component with r available
resources. Since o may consume an invocation message and create new objects,
futures, or invocation messages, the right hand side of the rule returns o′ with a
possibly different set of messages msg′ and a configuration config

′
.

5 Simulation and Experimental Results

To validate the approach presented in this paper, an interpreter for the ABS lan-
guage was augmented with a resource constraint model that simulates systems
with limited memory. The semantics of this ABS interpreter is given in rewriting
logic [18] and executes on the Maude platform [10]. Note that the semantics of
Sec. 4, when implemented directly, leads to a significant amount of backtracking
in an actual simulation. For this reason, our Maude interpreter was modified to
incorporate deployment components and use the costs of Table 1 for the execu-
tion of statements. One such modified rule is shown in Fig. 5: An assignment to x
can only proceed if the cost of evaluating the right-hand side e of the assignment
statement is less than the currently free memory r. In this case, x is bound to
the new value v, and r is adjusted using Table 1 (here, the difference between v
and the previous value vp). All other transition rules which evaluate expressions
are modified in the same way.

Simulating Concurrent Behaviors with Worst-Case Cost Bounds 365

0

100

200

300

400

1 2 3 4 5 6 0

50

100

150

200

Time

Fig. 6. Final and peak memory use as a function of the size of input (left) and pro-
gression of memory use for execution using input size 2 (right)

Simulation results. Deployment component declarations were added to the book
shop model described in Ex. 2, restricting the memory available to all objects of
type Database, Agent, and Session (i.e., the server part of the model). Cost
functions were computed for all functions in the model, as described in Sec. 3
(UBs for all functions in the book shop model can be found in [5]). With this
interpreter, creating a deployment component with too little memory leads to
the expected deadlock.

To obtain quantitative results, the interpreter was instrumented to record
current memory r and peak memory usage r+cost(s) during the evaluation of its
resource-aware rules. This instrumentation yields both maximum resource usage
and a time series of memory usage for a simulation run. Fig. 6 (left) shows the
peak intermediate memory usage and memory use at the end of the simulation for
various input sizes (i.e., how often to run book orders of constant size). Fig. 6
(right) shows the memory use over time of one single run of the model. The
“peaks” in the right-hand side graph occur during evaluation of functions with
large intermediate memory usage (the blue line represents memory use between
execution steps, when the transient memory has been freed again).

6 Related Work

Static cost inference for sequential programming languages has recently received
considerable attention. A cost analysis for Java bytecode has been developed
in [2], for C++ in [12], and for functional programs in [13]. Our approach for
inferring cost for the functional part of ABS is based on [2], which follows the
classical approach of [23]. Inference of worst-case UBs on the memory usage
of Java like programs with garbage collection is studied in [4]. The analysis
accounts for memory freed by garbage collection, and thus infers more tight
and realistic bounds. The analysis supports several GC schemes. The analysis
of [13] supports inference of memory usage, and accounts for memory freed by
destructive matching. In [16] live heap space analysis for a concurrent language
has been proposed. However it uses a very limited model of shared memory.
Recently, a cost analysis for X10 programs [9] has been developed [3], which infers

366 E. Albert et al.

UBs on the number of tasks that can be running in parallel. The concurrency
primitives of X10 are similar to ABS, but X10 is not based on concurrent objects.

Formal resource modeling happens mainly in the embedded domain. For ex-
ample, Verhoef et al. [22] use the timed VDM++ to model processing time,
schedulability and bandwidth resources for distributed embedded systems, but
their approach is less general and not used for memory consumption. Johnsen
et al. modeled processing resources in the context of deployment components in
previous work [15], but this work does not use cost analysis methods. There is
not much work combining static cost analysis and simulation to analyze resource
usage. However, Künzli et al. [17] combine exact simulation and arrival curves to
model processing costs, decreasing the needed simulation time by using arrival
curves in their simulations to abstract from some of the components in a Sys-
temC model of specific hardware. In contrast, we use cost analysis to generalize
simulations on abstract, formally defined object-oriented models.

7 Discussion

Software is increasingly being developed to be configured for different architec-
tures, which may be restricted in the resources they provide to the software.
Therefore, it is interesting to capture aspects of low-level deployment concerns
at the abstraction level of a software modeling language. In this paper, we have
shown how a formally defined executable concurrent object-oriented modeling
language can be extended with a notion of deployment component, which im-
poses a resource-constraint on the execution of objects in the model.

In order to validate the behavior of the resource-restricted model, we propose
to combine static cost analysis with simulations. This combination is achieved by
applying static cost analysis to the sequential parts of the modeling language, for
which practical cost analysis methods exist, while using simulation for the con-
current part, for which static approaches would lead to a state-space explosion.
Thus, the complexity of applying static cost analysis to concurrent executions is
avoided, and, in addition, we obtain better results than concrete simulations be-
cause the sequential parts of the model are simulated by the worst-case bounds.
The technique is demonstrated for memory consumption analysis on an example.
The analysis of memory consumption considered here could be strengthened by
allowing explicit scheduling and garbage collection policies to be included in the
model. This is left for future work.

Another interesting issue is how resource analysis carries over from executable
models to generated code. A code generator from ABS to Java is under devel-
opment that translates user defined abstract data types in ABS into object
structures. Hence, the symbolic UBs inferred for memory consumption of the
ABS models correspond to bounds on the number of objects in the correspond-
ing Java code. Note that it might not be possible to find similar correlations
for other cost models such as the number of execution steps. Another line of
interesting future work is to set up actual measurements on generated code and
use these results to profile our analysis approach for a given cost model.

Simulating Concurrent Behaviors with Worst-Case Cost Bounds 367

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning 42(6), 161–203 (2011)

2. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
java bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007)

3. Albert, E., Arenas, P., Genaim, S., Zanardini, D.: Task-Level Analysis for a Lan-
guage with Async-Finish parallelism. In: LCTES. ACM Press, New York (2011)

4. Albert, E., Genaim, S., Gómez-Zamalloa, M.: Parametric Inference of Memory
Requirements for Garbage Collected Languages. In: ISMM. ACM Press, New York
(2010)

5. Albert, E., Genaim, S., Gómez-Zamalloa, M., Johnsen, E.B., Schlatte, R., Tapia
Tarifa, S.L.: Simulating concurrent behaviors with worst-case cost bounds. Re-
search Report 403, Dept. of Informatics, Univ. of Oslo (January 2011),
http://einarj.at.ifi.uio.no/Papers/rr403.pdf

6. Benoy, F., King, A.: Inferring Argument Size Relationships with CLP(R). In: Gal-
lagher, J.P. (ed.) LOPSTR 1996. LNCS, vol. 1207, pp. 204–223. Springer, Heidel-
berg (1997)

7. Bossi, A., Cocco, N., Fabris, M.: Proving Termination of Logic Programs by Ex-
ploiting Term Properties. In: Abramsky, S. (ed.) TAPSOFT 1991, CCPSD 1991,
and ADC-Talks 1991. LNCS, vol. 494. Springer, Heidelberg (1991)

8. Caromel, D., Henrio, L.: A Theory of Distributed Object. Springer, Heidelberg
(2005)

9. Charles, P., Grothoff, C., Saraswat, V.A., Donawa, C., Kielstra, A., Ebcioglu, K.,
von Praun, C., Sarkar, V.: X10: An Object-Oriented Approach to Non-Uniform
Cluster computing. In: OOPSLA, pp. 519–538. ACM, New York (2005)

10. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

11. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

12. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: Precise and Efficient Static
Estimation of Program Computational Complexity. In: POPL. ACM, New York
(2009)

13. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
In: POPL, pp. 357–370. ACM, New York (2011)

14. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

15. Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Dynamic resource real-
location between deployment components. In: Dong, J.S., Zhu, H. (eds.) ICFEM
2010. LNCS, vol. 6447, pp. 646–661. Springer, Heidelberg (2010)

16. Kero, M., Pietrzak, P., Nordlander, J.: Live heap space bounds for real-time sys-
tems. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 287–303. Springer,
Heidelberg (2010)

17. Künzli, S., Poletti, F., Benini, L., Thiele, L.: Combining simulation and formal
methods for system-level performance analysis. In: DATE. European Design and
Automation Association, pp. 236–241 (2006)

http://einarj.at.ifi.uio.no/Papers/rr403.pdf

368 E. Albert et al.

18. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science 96, 73–155 (1992)

19. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 61, 17–139 (2004)

20. Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, Heidelberg (2005)

21. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299.
Springer, Heidelberg (2010)

22. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and validating distributed em-
bedded real-time systems with VDM++. In: Misra, J., Nipkow, T., Karakostas,
G. (eds.) FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006)

23. Wegbreit, B.: Mechanical Program Analysis. Comm. of the ACM 18(9) (1975)
24. Welc, A., Jagannathan, S., Hosking, A.: Safe futures for Java. In: Proc. OOPSLA

2005, pp. 439–453. ACM Press, New York (2005)

Automatically Refining Partial Specifications

for Program Verification�

Shengchao Qin1, Chenguang Luo2, Wei-Ngan Chin3, and Guanhua He1,2

1 Teesside University
2 Durham University

3 National University of Singapore

Abstract. Automatically verifying heap-manipulating programs is a
challenging task, especially when dealing with complex data structures
with strong invariants, such as sorted lists and AVL/red-black trees. The
verification process can greatly benefit from human assistance through
specification annotations, but this process requires intellectual effort
from users and is error-prone. In this paper, we propose a new approach
to program verification that allows users to provide only partial specifi-
cation to methods. Our approach will then refine the given annotation
into a more complete specification by discovering missing constraints.
The discovered constraints may involve both numerical and multi-set
properties that could be later confirmed or revised by users. We further
augment our approach by requiring only partial specification to be given
for primary methods. Specifications for loops and auxiliary methods can
then be systematically discovered by our augmented mechanism, with
the help of information propagated from the primary methods. Our work
is aimed at verifying beyond shape properties, with the eventual goal of
analysing full functional properties for pointer-based data structures. Ini-
tial experiments have confirmed that we can automatically refine partial
specifications with non-trivial constraints, thus making it easier for users
to handle specifications with richer properties.

1 Introduction

Human assistance is often essential in (semi-) automated program verifica-
tion. The user may supply annotations at certain program points, such as loop
invariants and/or method specifications. These annotations can greatly narrow
down the possible program states at that point, and avoid fixed-point calculation
which could be expensive and may be less precise than the user’s insight.

However, an obvious disadvantage of user annotation concerns its scalability,
since programs to be analysed may be complicated and with significant diversity.
Therefore, it may be unreasonable to expect user to provide specification for
every method and invariant for every loop when verifying larger software systems.
Furthermore, to err is human. A programmer may under-specify with too weak

� This work is supported in part by EPSRC project EP/G042322 and MoE ARF grant
R-252-000-411-112.

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 369–385, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

370 S. Qin et al.

a precondition or over-specify with too strong a postcondition. Such mistakes
could lead to failed verification, and it may be difficult to distinguish between a
real bug or an inappropriate annotation.

To balance verification quality and human effort, we provide a novel approach
to the verification of heap manipulating programs, which has long since been
a challenging problem. To deal with such programs, which manipulate heap-
allocated shared mutable data structures, one needs to keep track of not only
“shape” information (for deep heap properties) but also related “pure” proper-
ties, such as structural numerical information (size and height), relational numer-
ical information (balanced and sortedness properties), and content information
(multi-set of symbolic values). Under our framework, the user is expected to
provide partial specifications for primary methods with only shape information.
Our verification will then take over the rest of the work to refine those partial
specifications with derived (pure) constraints which should be satisfied by the
program, or report a possible program bug if the given specifications are rejected
by our verifier. This is an improvement over previous works [23], where users
must provide full specifications for each method and invariants for each loop.
This is also significantly different from the compositional shape analysis [5,9,32].
In spite of a higher level of automation, their analysis focuses on pointer safety
only and deals primarily with a few built-in predicates over the shape domain
only. Our work targets at both memory safety and functional correctness and
supports user-defined predicates over several abstract domains (such as shape,
numerical, multi-set).

Our approach allows the user to design their predicates for shapes and relative
properties, to capture the desired level of program correctness to be verified. For
example, with a singly-linked list structure data node { int val; node next; },
a user interested in pointer-safety may define a list shape predicate (as in [5,9]):

list(p)≡ (p=null)∨(∃i, q · p �→node(i, q)∗list(q))

Note that in the inductive case, the separation conjunction ∗ ([28]) ensures that
two heap portions (the head node and the tail list) are domain-disjoint.

Yet another user may be interested to track also the length of a list to analyse
quantitative measures, such as heap/stack resource usage, using

ll(p, n)≡ (p=null∧n=0)∨(p �→node(, q)∗ll(q, m)∧n=m+1)

Note that unbound variables, such as q and m, are implicitly existentially quan-
tified, and is used to denote an existentially quantified anonymous variable.
This predicate may be extended to capture the content information, to support
a higher-level of correctness with multi-set (bag) property:

llB(p, S)≡(p=null∧S=∅)∨(p �→node(v, q)∗llB(q, S1)∧S={v}�S1)

where the length of the list is implicitly captured by the cardinality |S|. A further
strengthening can capture also the sortedness property:

sllB(p, S)≡(p=null∧S=∅)∨(p�→node(v, q)∗sllB(q, S1)∧S={v}�S1∧(∀x∈S1·v≤x))

Automatically Refining Partial Specifications for Program Verification 371

Therefore, the user can provide predicate definitions w.r.t. various correctness
level and program properties, which can be as simple as normal lists or as com-
plicated as AVL trees, depending on their requirements. These predicates are
non-trivial but can be reused multiple times for specifications of different meth-
ods. We have also built a library of predicates with respect to commonly-used
data structures and useful program properties.

Based on these predicates, the user is expected to provide partial specifications
for some primary methods which are the main objects of verification. Say, for a
sorting algorithm taking x as input parameter that is expected to be non-null,
the user may provide llB(x, S1) as precondition and sllB(x, S2) as postcondition,
and our approach will refine the specification as llB(x, S1) ∧ x �=null for pre,
and sllB(x, S2) ∧ S1=S2 for post. Here we need user annotations as the initial
specification, because we reserve the flexibility of verification w.r.t. different
program properties at various correctness levels. For example, our approach can
verify the same algorithm, but for different refined specifications, such as:

requires list(x) ∧ x �=null ensures list(x)
requires ll(x, n1) ∧ n1>0 ensures ll(x, n2) ∧ n1=n2
requires llB(x, S1) ∧ x �=null ensures llB(x, S2) ∧ S1=S2
requires llB(x, S) ∧ x �=null ensures ll(x, n) ∧ |S|=n

where the discovered missing constraints are shown in shaded form.
To summarise, our proposal for refining partial specification is aimed at har-

nessing the synergy between human’s insights and machine’s capability at auto-
mated program analysis. In particular, human’s guidance can help narrow down
on the most important of the different specifications that are possible with each
program code, while automation by machine is important for minimising on the
tedium faced by users. Our proposal has the following characteristics:
– Specification completion: We discover three types of constraints added into

the user-given incomplete specification: constraints in the precondition for
memory safety, (relational) constraints in postcondition to link the method’s
pre- and post-states, and constraints that the method’s post-state satisfies.

– Flexibility: We allow the user to define their own predicates for the program
properties they want to verify, so as to provide different levels of correctness.
Meanwhile we aim at, and have covered much of, full functional correctness
of pointer-manipulating programs such as data structure shapes, pointer
safety, structural/relational numerical constraints, and bag information.

– Reduction of user annotations: Our approach uses program analysis tech-
niques effectively to reduce users’ annotations. As for our experiments, the
user only has to supply the partial specifications for primary methods, and
the analysis will compute pre- and postconditions for loops and auxiliary
methods as well as refine primary methods’ specifications.

– Semi-Automation: We classify our approach as semi-automatic, because the
user is allowed to interfere and guide the verification at any point. For in-
stance, they may provide invariant for a loop instead of our automated in-
variant generation, or choose some other constraints as refinement from what
the verification has discovered.

372 S. Qin et al.

0 data node2 { int val; node2 prev; node2 next; }

1 node2 sdl2nbt(node2 head,

node2 tail)

2 requires sdlB(head, p, q, S)
3 ensures nbt(res, Sres)
4 {node2 root = head;

5 node2 end = head;

6 while(end != tail) {

7 end = end.next;

8 if (end != tail) {

9 end=end.next; root=root.next;}

10 }

11 if (head == root) root.prev = null;

12 else root.prev = sdl2nbt(head,root);

13 node2 tmp = root.next;

14 if (tmp == tail) root.next = null;

15 else { tmp.prev = null;

16 root.next = sdl2nbt(tmp, tail);}

17 root;}

Fig. 1. The method to convert a sorted doubly-linked list to a node-balanced tree

We have built a prototype implementation and carried out a number of experi-
ments to confirm the viability of the approach as described in Section 5. In what
follows, we will first depict our approach informally using a motivating exam-
ple and present technical details thereafter. More related works and concluding
remarks come after the experimental results.Technical details not covered here
can be found in our report [27].

2 Illustrative Example

We illustrate our approach with an example (given in a C-like language). We show
how our analysis infers missing constraints to improve the user-supplied incom-
plete specification, and how it analyses the while loop without user-annotations.

1 2 3 4 5 6
null

head root

tail

end

1

2

3

4

5

6

root
(a)

(b)

1

2

3

4

5

6

root

(c)

Fig. 2. sdl2nbt

The method sdl2nbt (Fig 1) converts
a doubly-linked sorted list into a node-
balanced binary search tree, as indicated
by the shape-only specification in lines 2
and 3. It first finds the “centre” node in
the list (root), where the difference be-
tween numbers of nodes to the left and to
the right of the centre node is at most one
(lines 5-10), as Fig 2 (a) shows. It then ap-
plies the algorithm recursively on both list
segments to the left and to the right of the centre node, and regards the centre
node as the tree’s root, whose left and right children are the resulted subtrees’
roots from the recursive calls (lines 11-17), as in Fig 2 (b) and (c). As the data
structures of doubly-linked list and binary tree are homomorphic (line 0), the
algorithm reuses the nodes in the input instead of creating a new tree, making
itself in-place. The parameter head in line 1 denotes the first node of the input
list, and tail is where the last node’s next field points to. When using this
method tail should be set as null initially.

The predicate for doubly-linked sorted list (segment) is defined as follows:

sdlB(root, p, q, S) ≡ (root=q ∧ S=∅) ∨ (root�→node2(v, p, r) ∗
sdlB(r, root, q, S1) ∧ root�=q ∧ S={v} � S1 ∧ (∀x∈S1·v≤x))

Automatically Refining Partial Specifications for Program Verification 373

where the parameters p and q denote resp. the prev field of root and the next
field of the last node in the list, and S represents the list’s content. And below
is the predicate specification for node-balanced binary search trees:

nbt(root, S) ≡ (root=null ∧ S=∅) ∨
(root�→node2(v, p, q) ∗ nbt(p, Sp) ∗ nbt(q, Sq) ∧ S={v} � Sp � Sq ∧

(∀x∈Sp·x≤v) ∧ (∀x∈Sq·v≤x) ∧ −1≤|Sp|−|Sq|≤1)
where S captures the content of the tree. We require the difference in node
numbers of the left and right sub-trees be within one, as the node-balanced
property indicates.

To refine sdl2nbt’s specification, our analysis proceeds in two steps. Firstly,
starting from the partial precondition (line 2 of Fig 1), a forward analysis is
conducted to compute the postcondition of the method in the form of a constraint
abstraction [15]. This constraint abstraction is effectively a transfer function for
the method, which may be recursively defined (e.g. in this example). Secondly,
instead of a direct fixpoint computation in the combined abstract domain (with
shape, numerical and bag information), a “pure” constraint abstraction (without
heap shape information) is derived from the generated constraint abstraction and
the user-given partial postcondition. This pure constraint abstraction is then
solved by fixpoint solvers in pure (numerical/bag) domains, such as [24,25].

As for the example, when the forward analysis reaches the while loop at line 6,
it discovers that the loop has no user-supplied annotations. In that case, it uses
an augmented technique (details follow slightly later) to synthesise the loop’s pre-
and post-shapes, and invoke the analysis procedure recursively to find additional
pure constraints. In this way, we can infer the while loop’s postcondition as

sdlB(head, null, root, Sh) ∗ sdlB(root, p, tail, Sr) ∧
end=tail ∧ S=Sh�Sr ∧ (∀x∈Sh, y∈Sr·x≤y) ∧ 0≤|Sr|−|Sh|≤1 (1)

which indicates that the original list starting from head is cut into two sorted
pieces with a cutpoint root. Meanwhile, the essential constraint (the underlined
part, saying the list segment beginning with head is at most one node shorter
than that with root) to ensure the node-balanced property is derived as well.

When the symbolic execution finishes, it generates the following constraint
abstraction as the postcondition of the method:

Q(head, p, q, S, res, Sres) ::= (†)
root �→node2(v, null, null)∧head=root=res∧tmp=q=tail∧p=null∧S={v}

∨ head �→node2(s, null, root) ∗ root �→node2(v, resh, null) ∧ res=root ∧
tmp=q=tail ∧ p=null ∧ S={s, v} ∧ s≤v

∨ root �→node2(v, resh, resr) ∗ Q(head, p, root, Sh, resh, Shres) ∗
Q(tmp, null, tail, Sr, resr, S

r
res) ∧ head
=root ∧ root=res ∧ tmp
=tail ∧

q=tail ∧ S=Sh�{v}�Sr ∧ (∀x∈Sh, y∈Sr·x≤v≤y) ∧ 0≤|Sr|−|Sh|≤1

where the first two disjunctive branches are base cases of the method’s invocation
(where there are only one and two nodes in the returned tree res, respectively),
and the last denotes the effect of recursive calls combined into the postcondition
(where root’s both branches are node-balanced trees). Note that the two Q’s
in the last branch correspond to the invocations of sdl2nbt in lines 12 and 16.

374 S. Qin et al.

Constraints of some logical variables (like Sres) will not show up until the next
step.

In the second step, to derive the definition of the pure constraint abstraction
P from the above post-state Q, we use each disjunctive branch of Q to entail
the user-given post-shape (with appropriate instantiations of the parameters).
During this process, all occurrences of Q are replaced by the post-shape conjoined
with the P according to the entailment relation

Q(head, p, q, S, res, Sres) � nbt(res, Sres) ∧ P(head, p, q, S, res, Sres)
The obtained frames (from the Sleek prover [23]) are used to form (via disjunc-
tion) the definition of P:

P(head, p, q, S, res, Sres) ::= (‡)
head=root=res ∧ tmp=q=tail ∧ p=null∧ S=Sres={v}
∨ head �=root ∧ res=root ∧ tmp=q=tail ∧ p=null∧S=Sres={s, v} ∧ s≤v
∨ P(head, p, root, Sh, resh, Shres) ∧ P(tmp, null, tail, Sr, resr, Srres) ∧

head �=root ∧ root=res ∧ tmp �=tail ∧ q=tail ∧ S=Sh�{v}�Sr ∧
Sres=Shres�{v}�Srres ∧ (∀x∈Sh, y∈Sr·x≤v≤y) ∧ 0≤|Sr|−|Sh|≤1

We then use pure fixpoint solvers to obtain a closed-form formula p=null ∧
q=tail ∧ S=Sres ∧ |S|≥1 for P, and refine the method’s specifications as

requires sdlB(head, p, q, S) ∧ p=null ∧ q=tail∧ |S|≥1
ensures nbt(res, Sres) ∧ S=Sres

which proposes more requirements in the precondition, as the head’s prev field
should be null, and the whole list’s last node’s next field must point to tail
for termination. Meanwhile, there should be at least one node in the list for
memory safety. With those obligations, the method guarantees that the result
is a node-balanced binary search tree, with the same content as the input list.1

Analysis for the while loop. The while loop in sdl2nbt (lines 6-10) discovers
the centre node of the given list segment referenced by head. It traverses the list
segment with two pointers root and end. The end pointer goes towards the list
segment’s tail twice as fast as root. When end arrives at the tail of the segment
(tail), root will point to the list segment’s centre node.

Instead of requiring users to supply the loop invariant, our analysis regards
the loop as a tail-recursive method and computes its specifications based on the
program state in which the loop starts. Our analysis first synthesises its pre- and
post-shapes, and then continues the analysis in the same way as for the main
method. The pre-shape can be abstracted from the program state in which the
loop starts. The post-shape synthesis is done by checking the symbolic execu-
tion result of the loop body (unrolled once) against possible abstracted shapes.
For this example, we first generate shape candidates according to the variables
accessed by the loop, such as (a) sdlB(head, ph, qh, Sh) ∗ sdlB(root, pr, qr, Sr),
and (b) sdlB(head, ph, qh, Sh)∗nbt(root, hr, br, Sr). Then the unrolled loop body
is symbolically executed to filter out those shapes that are not valid to be an
abstraction of postcondition. For this example, executing the loop body yields
1 We will explain how to attach the fixpoint result to both pre and post in Sec 4.

Automatically Refining Partial Specifications for Program Verification 375

head�→node2(v, p, end)∧ head=root ∧ end=tail ∨
head�→node2(vh, p, root) ∗ root�→node2(vr, head, end)∧ end=tail

(2)

where (b) is directly filtered out since (2) � (b) ∗ true fails. However (a) remains
a candidate, as (2) � (a) ∗ true holds. Therefore, regarding (a) as a possible post-
shape, we can employ the same approach to generate a constraint abstraction
for the while loop, and solve it to obtain formula (1) in page 373.

3 Language and Abstract Domain

We focus on a strongly-typed C-like imperative language in Fig 3. A program
Prog consists of type declarations tdecl, which can define either data type datat
(e.g. node) or predicate spred (e.g. llB), and some method declarations meth.
The language is expression-oriented, so the body of a method is an expression e,
where d (resp. d[v]) denotes a heap insensitive (resp. heap sensitive) atom expres-
sion. We also allow both call-by-value and call-by-reference method parameters
(which are separated with a semicolon ;).

Our specification language (in Fig 4) allows (user-defined) shape predicates
to specify both separation and pure properties. The shape predicates spred are
constructed with disjunctive constraints Φ. We require that the predicates be
well-formed [23]. A conjunctive abstract program state, σ, is composed of a
heap (shape) part κ and a pure part π, where π consists of γ and φ as aliasing

Prog ::= tdecl∗ meth∗ tdecl ::= datat | spred
datat ::= data c { field∗ } field ::= t v t ::= c | τ
meth ::= t mn ((t v)∗; (t v)∗) mspec∗ {e} τ ::= int | bool | void
e ::= d | d[v] | v=e | e1; e2 | t v; e | if (v) e1 else e2 | while (v) {e}
d ::= null | kτ | v | new c(v∗) | mn(u∗; v∗)
d[v] ::= v.f | v.f :=w | free(v)

Fig. 3. A Core (C-like) Imperative Language

spred ::= pred(v∗) ≡ Φ
mspec ::= requires Φpr ensures Φpo

Δ ::= Q(v∗) | Φ | Δ1∨Δ2 | Δ∧π | Δ1∗Δ2 | ∃v·Δ
Φ ::=

∨
σ∗ σ ::= ∃v∗·κ∧π

Υ ::= P(v∗) |
∨

ω∗ | Υ1∧Υ2 | Υ1∨Υ2 | ∃v·Υ
κ ::= emp | v �→c(v∗) | pred(v∗) | κ1 ∗ κ2

ω ::= ∃v∗·π π ::= γ∧φ
γ ::= v1=v2 | v=null | v1
=v2 | v
=null | γ1∧γ2

φ ::= ϕ | b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1 =b2 a ::=s1=s2 | s1≤s2

s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2) | min(s1,s2) | |B|
ϕ ::= v∈B | B1=B2 | B1�B2 | B1�B2 | ∀v∈B·φ | ∃v∈B·φ
B ::= B1�B2 | B1�B2 | B1−B2 | {} | {v}

Fig. 4. The Specification Language

376 S. Qin et al.

and numerical (size and bag) information, respectively. We use SH to denote
the set of such conjunctive states. During the symbolic execution, the abstract
program state at each program point will be a disjunction of σ’s, denoted by Δ.
Note that constraint abstractions (e.g. Q(v∗)) may occur in Δ during the analysis.
A closed-form Δ (containing no constraint abstractions) can be normalised to
the Φ form [23]. Pure constraint abstraction P is analogously defined to Q.

Our memory model is adapted from that of separation logic [28], except that
we consider memory cells to be structured records. The detailed model definitions
can be found in Nguyen et al. [23]. Meanwhile, for program variables in abstract
states, we use unprimed ones to denote their initial values and primed ones for
current values [23,27].

4 The Analysis

In this section, we first formulate the main analysis for (primary) methods with
given shape specifications. We then show how the analysis is extended to handle
auxiliary methods (including loops) without user annotations.

4.1 Refining Specifications for Primary Methods

The algorithm for refinement (CA Gen Solve) is given in Fig 5. As illustrated in
Section 2, the analysis proceeds in two steps for a primary method with shape
information given in specification, namely (1) forward analysis (at lines 1-2) and
(2) pure constraint abstraction generation and solving (at lines 3-10).

The forward analysis is captured as algorithm Symb Exec to the right of Fig 5.
Starting from a given pre-shape Φpr, it analyses the method body e to compute
the post-state in constraint abstraction form. Due to space constraints, the sym-
bolic execution rules are given in our technical report [27]. They are similar to

Algorithm CA Gen Solve(T , mn, e,Φpr,Φpo,u
∗,v∗)

1 Δ := Symb Exec(T , mn, e,Φpr)

2 if Δ = fail then return fail end if

3 Normalise Δ to DNF, and denote as
∨m

i=1 Δi

4 w∗:={u∗,v∗,v′∗}∪ pureV({u∗,v∗,v′∗}, Φpr∨Φpo)

5 ΔP := Pure CA Gen(Φpo, Q(w
∗)::=

∨m
i=1 Δi)

6 if ΔP = fail then return fail end if

7 π := Pure CA Solve(P(w∗)::=ΔP)

8 R := t mn ((t u)∗; (t v)∗) requires
! ex quan(Φpr, π) ensures ex quan(Φpo, π)

9 if Verify(T , mn, R) then return T ∪ {R} \
! { t mn ((t u)∗; (t v)∗) requires Φpr ensures Φpo }

10 else return fail end if

end Algorithm

Algorithm Symb Exec
! (T , mn, e, Φpr)

11 errLbls := ∅
12 do

13 (Δ, l) := |[e]|mn
T (Φpr, 0)

14 if l>0∧l /∈errLbls then

15 Φpr:=ex quan(Φpr,Δ);

16 errLbls := errLbls∪{l}
17 else if l>0 ∧ l∈errLbls

! then return fail

18 end if

19 while l > 0

20 return Δ

end Algorithm

Fig. 5. Refining method specifications

Automatically Refining Partial Specifications for Program Verification 377

symbolic rules used in [23], except for a novel mechanism to derive pure precon-
dition, which we refer to as pure abduction.

This pure abduction mechanism is invoked whenever symbolic execution fails
to prove memory safety based on the current prestate. For example, if the current
state is ll(x, n) (a list that is possibly empty) but x �→node(, p) is required by
the next program instruction, our pure abduction mechanism will infer n≥1
to add to the current state to satisfy the requirement. The variable errLbls
(initialised at line 11) is to record the program locations in which previous pure
abductions occurred. Whenever the symbolic execution fails, it returns a state
Δ that contains the pure abduction result and the location l where failure was
detected, as shown in line 13. If the current abduction location l is not recorded
in errLbls, it indicates that this is a new failure. The abduction result is added
to the precondition of the current method to obtain a stronger Φpr, before the
algorithm enters the symbolic execution loop with variable errLbls updated to
add in the new failure location l. This loop is repeated until symbolic execution
succeeds with no memory error, or a previous failure point was re-encountered.
The latter may indicate a program bug or a specification error, or may be due
to the possible incompleteness of the underlying Sleek prover we use.

Back to the main algorithm CA Gen Solve, the analysis next builds a heap-
based constraint abstraction mechanism, named Q(w∗), for the post-state in steps
3-4. This constraint abstraction is possibly recursive. (Definition † in page 5 is an
example of this heap-based abstraction.) We then make use of another algorithm
in Fig 6, named Pure CA Gen, to extract a pure constraint abstraction, named
P(w∗), without any heap property. (Definition ‡ in page 6 is an instance of this
pure abstraction.) This algorithm tries to derive a branch Pi for each branch
Δi of Q. For every Δi it proceeds in two steps. In the first step (lines 22-24), it
replaces the recursive occurrence of Q in Δi with σ ∗ P(w∗). In the second step
(lines 25-26) it tries to derive Pi via the entailment. If the entailment fails, then
pure abduction is used to discover any missing pure constraint σ′

i for ρΔi to allow
the entailment to succeed. In this case, σ′

i is incorporated into σi (and eventually
Pi). Once this is done, we use some existing fixpoint analysis (e.g. [25]) inside
Pure CA Solve to derive non-recursive constraint π, as a simplification of P(w∗).
This result is then incorporated into the pre/post specifications in line 8, before
we perform a post verification in line 9 using the Hip verifier [23], to ensure the
strengthened precondition is strong enough for memory safety.

Two auxiliary functions used in the algorithm are described here. The func-
tion pureV(V, Δ) retrieves from Δ the shapes referred to by all pointer vari-
ables from V , and returns the set of logical variables used to record numerical
(size and bag) properties in these shapes, e.g. pureV({x}, ll(x, n)) returns {n}.
This function is used in the algorithm to ensure that all free variables in Φpr

and Φpo are added into the parameter list of the constraint abstraction Q. The
function ex quan(Δ, π) is to strengthen the state Δ with the abduction result
π: ex quan(Δ, π) =df Δ ∧ ∃(fv(π) \ fv(Δ)) · π. It is used to incorporate the dis-
covered missing pure constraints into the original specification. For example,
ex quan(ll(x, n), 0<m ∧ m≤n) returns ll(x, n) ∧ 0<n.

378 S. Qin et al.

Algorithm Pure CA Gen(σ, Q(w∗)::=
∨m

i=1 Δi)

21 for i = 1 to m

22 Denote all appearances of Q(w∗) in Δi as Qj(w
∗
j), j = 1, ..., p

23 Denote substitutions ρj = [([w∗
j /w∗]σ ∗ P(w∗

j))/Qj(w
∗
j)]

24 Let substitution ρ := ρ1 ◦ ρ2 ◦ ... ◦ ρp as applying all substitutions
! defined above in sequence

25 if (ρΔi � σ ∗ σi or ρΔi ∧ [σ′
i] � σ ∗ σi) and ispure(σi) then Pi := σi

26 else return fail end if

27 end for

28 return
∨m

i=1 Pi

end Algorithm

Fig. 6. Pure constraint abstraction generation algorithm

σ � σ1 ∗ true σ1 � σ ∗ σ′ ispure(σ′) σ ∧ σ′ � σ1 ∗ σ2

σ ∧ [σ′] � σ1 ∗ σ2

(R1)

σ � σ1 ∗ true σ1 � σ ∗ true σ0 ∈ unroll(σ) data no(σ0) ≤ data no(σ1)
(σ0 � σ1 ∗ σ′ or σ0 ∧ [σ′

0] � σ1 ∗ σ′) ispure(σ′) σ ∧ σ′ � σ1 ∗ σ2

σ ∧ [σ′] � σ1 ∗ σ2

(R2)

σ � σ1 ∗ true σ1 � σ ∗ true σ1 ∧ [σ′
1] � σ ∗ σ′ ispure(σ′) σ ∧ σ′ � σ1 ∗ σ2

σ ∧ [σ′] � σ1 ∗ σ2

(R3)

Fig. 7. Pure abduction rules

Pure abduction mechanism. We use the Sleek prover [23] to check Δ1

entails Δ2. If the entailment holds it also derives Δ3 (a.k.a. frame) such that
Δ1 � Δ2 ∗Δ3. However, if it fails, we assume that the shape information is
sufficiently provided, and use our pure abduction mechanism (σ1 ∧ [σ′] � σ2 ∗ σ3

in Fig 7) to discover missing pure constraints σ′ so that σ1 ∧ σ′ � σ2 ∗ σ3.
Our pure abduction deals with three different cases. The first rule (R1) applies

when the LHS (σ) does not entail the RHS (σ1) but the RHS entails the LHS
with some pure formula (σ′) as the frame; e.g. in ll(x, n) � x �→node(, null),
the RHS can entail the LHS with pure frame n=1. The abduction then checks to
ensure ll(x, n)∧ n=1 � x �→node(, null)∗σ2 for some σ2, and returns the result
n=1. Note the check ispure(σ′) ensures that σ′ contains no heap information.

In the second rule (R2), neither side entails the other but the LHS term could be
unfolded. An example is σ = sllB(x, S), σ1 = x �→node(u, p) ∗ p �→node(v, null).
As the shape predicates on the LHS are of disjunctive forms (i.e. sllB in σ), cer-
tain branches of σ may entail σ1. As the rule suggests, to accomplish abduction
σ ∧ [σ′] � σ1 ∗ σ2, we first unfold σ and try entailment or further abduction with
the results (σ0) against σ1. If it succeeds with a pure frame σ′, then we confirm
the abduction by checking σ ∧ σ′ � σ1 ∗ σ2. For the example above, the abduction
returns |S|=2 (σ′) and discovers the nontrivial frame S={u, v} ∧ u≤v (σ2). Note

Automatically Refining Partial Specifications for Program Verification 379

Algorithm SynPre
! (S , f, u∗, v∗, σ, x∗, y∗)

1 C := ShpCand(S , u∗, v∗)
2 for σC ∈ C do
3 if σ � [x∗/u∗, y∗/v∗]σC

4 thenC:=C\{σC} end if
5 end for
6 return C

end Algorithm

Algorithm SynPost (T ,S , f, e, Φpr, u
∗, v∗)

7 C := ShpCand(S , u∗, v∗)
8 T ′:=T ∪{f(u∗,v∗) requires Φpr ensures false {e}}
9 Δ := Symb Exec(T ′, f, syn unroll(f, e), Φpr)

10 for σC ∈ C do

11 if Δ∧[σ] � σC then C := C\{σC} end if

12 end for

13 return pair spec list(Φpr, C)
end Algorithm

Fig. 8. Shape synthesis algorithms

that function data no returns the number of data nodes in a state, e.g. it returns
one for x �→node(v, p) ∗ ll(p, m). (This syntactic check is important for the termi-
nation of the abduction.) The unroll operation unfolds all shape predicates once
in σ, normalises the result to a disjunctive form (

∨u
i=1 σi), and returns the result

as a set of formulae ({σ1, ..., σu}).
In the third rule (R3), neither side entails the other and the LHS term cannot

be unfolded. e.g., σ = x �→node(u, p) ∗ p �→node(v, null), σ1 = ∃S · sllB(x, S). In
this case, the rule swaps the two sides of the entailment and applies the second
rule to uncover the pure constraints σ′

1 and σ′. It checks that adding σ′ to the
LHS (σ) entails the RHS (σ1) before it returns σ′. For the example, the abduction
returns u≤v which is essential for the two nodes to form a sorted list (RHS).

4.2 Inferring Specifications for Auxiliary Methods and Loops

For auxiliary methods2, we conduct a pre-analysis (Fig 8) to synthesise the pre-
and post-shapes before we conduct the refinement analysis from Fig 5. Loops
are dealt with by analysing their tail-recursive versions in the same way. This
approach alleviates the need for users to provide specification annotations for
both loops and auxiliary methods.

The pre-shape synthesis algorithm SynPre (Fig 8 left) takes in as input the set
of shape predicates (S), the auxiliary method name (f), its formal parameters
(u∗, v∗), the current symbolic state in which f is called (σ), and the correspond-
ing actual parameters (x∗, y∗) of the invocation. The algorithm first obtains
possible shape candidates from the parameters u∗, v∗ with ShpCand (line 1),
then picks up a sound abstraction for the method’s pre-shape with entailment,
and filter out the ones which fail (line 4). Finally the pre-shape abstraction is re-
turned. While we use an enumeration strategy here, the number of possible shape
candidates per type is small as it is strictly limited by what the user provides in
the primary methods, and then filtered and prioritised by our system.

To synthesise post-shapes (SynPost, Fig 8 right), we also assign C as possi-
ble shape candidates (line 7). We unroll f ’s body e once (i.e. replace recursive
2 In practice, we treat methods without user-specified shape specifications as auxiliary.

380 S. Qin et al.

calls to f in e with a substituted e) and symbolically execute it (line 9), as-
suming f has a specification requires Φpr ensures false (line 8). The postcon-
dition false is used to ensure that the execution only considers the effect of
the program branches with no recursive calls (to f itself). We then use Δ to
find out appropriate abstraction of post-shape (line 11), which is paired with
Φpr and returned as result. Here we use pure abduction to filter post-shapes to
preserve as many shapes that are potentially refinable as possible. The func-
tion pair spec list(Φpr, C) forms an ordered list of pre-/post-shape pairs, each of
which has Φpr as pre-shape and a Φpo in C as post-shape.

We illustrate our procedure to generate and confirm candidate shape abstrac-
tions (ShpCand) with an example. If we have two parameters x and y with type
node, and two compatible shape predicates llB and sllB, then the list of all pos-
sible shape candidates for the two variables (C) will be [sllB(x, S) ∗ sllB(y, T),
llB(x, S) ∗ sllB(y, T), sllB(x, S) ∗ llB(y, T), llB(x, S) ∗ llB(y, T), sllB(x, S),
sllB(y, S), llB(x, S), llB(y, S), emp]. Elements of this list will be checked against
appropriate abstract states (line 3-4 in Fig 8 left and line 11 in Fig 8 right) where
unsound elements will be eliminated. For example, in the previous list, only
llB(x, S) ∗ llB(y, T) remains in the list and participates in further verification,
given σ = x �→node(u, p)∗p �→node(v, null)∗y �→node(s, q)∗q �→node(t, null).

The initial experimental results confirm that our shape synthesis keeps only
highly relevant abstractions. For the while loop in Section 2, we filtered out
24 (of 26) abstractions. Generally, in case that there are several abstractions
as candidate specifications, we employ some other mechanisms to reduce them
further. Firstly, we prioritise post-shapes with same (or stronger) predicates as in
precondition since it is more likely that the output will have the same or similar
shape predicates as the input, e.g. x is expected to remain as sllB (or stronger)
if it points to sllB as input. Secondly, we employ a lazy scheme when refining
the synthesised pre/post-shapes (to complete specifications). We retrieve (and
remove) the pre/post-shape pair from the head of the list, (1) use the refinement
algorithm (Fig 5) to obtain a specification for the auxiliary method, and (2)
continue the analysis for the primary method. If the analysis for the primary
method succeeds, we will ignore all other synthesised pre/post-shapes from the
list. These mechanisms help to keep attempts over candidate specifications at a
minimum level.

Soundness. Based on the soundness of the following: the entailment prover [23],
the abstract semantics (w.r.t. the concrete semantics), the pure constraint ab-
straction generation, and the fixpoint calculation [24,25], we have

Theorem 1 (Soundness). Our analysis is sound with respect to the underlying
operational semantics.

The proof and more details can be found in the technical report [27].

Automatically Refining Partial Specifications for Program Verification 381

5 Experiments and Evaluation

We have implemented a prototype system for evaluation. Our experimental re-
sults were achieved with an Intel Core 2 CPU 2.66GHz with 8Gb RAM. The
four columns in Fig 9 describe, resp., the analysed programs, the analysis time
in seconds, and the primary methods’ (given and inferred) preconditions and
postconditions. All formulae with a grey background are inferred by our anal-
ysis. For some programs, we have verified them with different pre/post shape
templates. More results and details are available in the report [27].

The results highlight the refinement of both pre- and postconditions based
on user-provided shape specifications, even for complicated data structures such
as AVL and red-black trees. Firstly, our approach can compute non-trivial pure
constraints for postcondition, e.g. for delete we know the content of the result
list is subsumed by that of the input list, for list-sorting algorithms we confirm
the content of the output is the same as that of the input, and for tree-processing
programs (insert, delete and avl ins), we obtain that the height difference
between the input and output trees is at most one. Meanwhile, we can calcu-

Prog. Time Pre Post

List processing programs

sort

insert

0.591 ll(x, n) ∧ n≥1 ll(x, m) ∧ m=n+1

0.504 sll(x, n, xs, xl)∧ v≥xs sll(x, m, mn, mx)∧ xs=mn∧mx=max(xl,v)∧m=n+1

rand

insert

0.522 ll(x, n) ∧ n≥1 ll(x, m) ∧ m=n+1

— sll(x, n, xs, xl)∧ (fail) sll(x, m, mn, mx)∧ (fail)

delete 1.024 sllB(x, S) ∧ |S|≥2 sllB(x, T) ∧ ∃a.S=T	{a}
travrs 0.296 ll(x, m)∧ n≥0∧m≥n ls(x, p,k)∗ll(res, r)∧ p=res∧k=n∧m=n+r

append

0.512 ll(x, xn)∗ll(y, yn)∧ xn≥1 ll(x, m) ∧ m=xn+yn

0.948
sll(x, xn, xs, xl)∧ xl≤ys
∗ sll(y, yn, ys, yl) sll(x, m, rs, rl) ∧ yl=rl ∧ m≥1+yn ∧ m=xn+yn

Sorting (main) llB(x, S) ∧ |S|≥1 sllB(res, T) ∧ T=S (�)

merge 4.107 sllB(x, Sx) ∗ sllB(y, Sy) sllB(res, T) ∧ T=Sx	Sy
flatten 2.693 bstB(x, S) sllB(res, T) ∧ T=S

Binary tree, binary search tree, AVL tree and red-black tree processing programs

insert 1.276 bt(x, S, h) ∧ |S|≥1 ∧ h≥1 bt(x, T, k) ∧ T=S	{v} ∧ h≤k≤h+1

delete 0.970 bt(x, S, h) ∧ |S|≥2 ∧ h≥2 bt(x, T, k) ∧ ∃a.S=T	{a} ∧ h−1≤k≤h
search 1.583 bst(x, sm, lg) bst(x, mn, mx) ∧ sm=mn ∧ lg=mx ∧ 0≤res≤1
bst

insert
1.720 bst(x, sm, lg)

bst(x, mn, mx) ∧ (v<sm∧v=mn∧lg=mx∨
lg<v∧v=mx∧sm=mn ∨ sm=mn∧lg=mx)

avl ins 11.12 avl(x, S, h) avl(res, T, k) ∧ T=S	{v} ∧ h≤k≤h+1

rbt ins 8.76 rbt(x, S) rbt(res, T) ∧ T=S	{v}

Fig. 9. Selected Experimental Results

382 S. Qin et al.

late non-trivial requirements in precondition for memory safety or functional
correctness. As an example, the travrs method, taking in a list with length m
and an integer n, traverses towards the tail of the list for n steps. the analysis
discovers m≥n in the precondition to ensure memory safety. Another example
is the append method concatenating two sorted lists into one. To ensure that
the result list is sorted, the analysis figures out that the minimum value in the
second list must be no less than the maximum value in the first list.

A second highlight is our flexibility by supporting multiple predicates. Our
analysis tries to refine different specifications for the same program at various
correctness levels (with different predicates), e.g. sort insert and append. For
rand insert, which inserts a node into a random place (after the head) of a list,
we confirm that the list’s length is increased by one, but cannot verify the list
is kept sorted if it was before the insertion, as the result indicates.

Another highlight is that we can reduce user annotations by synthesising
specifications for auxiliary methods, given raw specifications of primary methods.
For example, we have analysed a number of list-sorting algorithms with at least
one auxiliary method each. We list two auxiliary methods (merge for merge sort
and flatten for tree sort) and their discovered specifications. Note that these
sorting algorithms have the same specification for their primary methods (line
�). As another example, avl ins also has some auxiliary (recursive) methods
such as calculation of tree’s height, which are automatically analysed as well.

We have also tried our approach over part of the FreeRTOS kernel [2]. For
its list processing programs list.h and list.c (472 lines with intensive manip-
ulation over composite sorted doubly-linked lists) it took 2.85 seconds for our
prototype to refine all the specifications given for the main functions, which
further confirms the viability of our approach.

6 Related Work and Conclusion

Related works. The local shape analysis [9] infers loop invariants for list-
processing programs, followed by the SpaceInvader tool to verify larger industrial
codes [5,32]. Gulavani et al. [12] propose a stronger bi-abduction algorithm to
compute the shape pre/post-condition at the same time. The SLAyer tool [11]
implements an interprocedural shape analysis. To infer also size information,
THOR [19,20] is armed with additional numerical analysis to gain better pre-
cision. Gulwani et al. [13] combine a set domain with its cardinality domain
in a general framework. Magill et al. [21] instrument programs with numeri-
cal instructions from which pure numerical programs are generated for further
analysis. Compared with these, our approach can handle additional data struc-
tures with stronger invariants like sortedness, height-balanced and bag-related
invariants. Relational inductive shape analysis [6] employs inductive checkers to
express shape and numerical information, where they only demonstrate how to
analyse a program with one particular shape. Our previous loop invariant syn-
thesis [26] also infers strong loop invariants. Compared with them, this work is
inter-procedural and addresses specification refinement with pure properties in

Automatically Refining Partial Specifications for Program Verification 383

both pre- and postconditions in two phases (for shape and pure resp.) with pure
abduction.

There are also other approaches to expressing heap-based domains than sepa-
ration logic. Hackett and Rugina [16] can deal with AVL-trees but is customised
to handle only tree-like structures with height property. TVLA [30] can handle
complicated data structure properties like sortedness. Bouajjani et al. [3] syn-
thesise list-related invariants over infinite data domains using graph heap rep-
resentation. Comparatively, separation logic based approach benefits from the
frame rule and local reasoning. Meanwhile, our approach aims at full functional
correctness including both quantitative and content properties of shapes.

Automated assertion discovery techniques [8,14,31] mainly find numerical
program properties. Our work is complementary to them as we focus more
on refining specifications for heap-manipulating programs. Semi-automatic ap-
proaches [17,29] are also used to infer numerical constraints for given type tem-
plates in functional programs, where data structures are mostly immutable.

On the verification side, the Hip/Sleek verification system [23] supports
user-defined shape predicates over a combined domain. The PALE system [22]
transforms constraints in the pointer assertion logic (PAL) into monadic second-
order logic (MSOL) and discharge them with MONA. JML [4] uses model/ghost
fields and model methods to specify/model Java program properties. Jahob [18]
also verifies Java and focuses more on heap shape. Spec# [1] is for C# by enforc-
ing object invariants and method specifications. Havoc [7] is another verification
tool for C language about heap-allocated data structures, using a novel reachabil-
ity predicate. Compared with these works, we can free users from writing whole
specifications by requiring only partial specifications, and omit annotations for
loops and auxiliary methods.

Concluding remarks. We have reported a new approach to program verifica-
tion that accepts partial specifications of methods, and refines them by discover-
ing missing constraints for numerical and bag properties, aiming at full functional
correctness for pointer-based data structures. We further augment our approach
by requiring only partial specification for primary methods. Specifications for
loops and auxiliary methods can then be systematically discovered. We have
built a prototype system and the initial experimental results are encouraging.

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

2. Barry, R.: FreeRTOS — a free RTOS for small embedded real time systems (2006)

3. Bouajjani, A., Dragoi, C., Enea, C., Rezine, A., Sighireanu, M.: Invariant synthesis
for programs manipulating lists with unbounded data. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 72–88. Springer, Heidelberg
(2010)

4. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G., Leino, K.: An
Overview of JML Tools and Applications. STTT 7(3), 212–232 (2005)

384 S. Qin et al.

5. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: POPL (2009)

6. Chang, B., Rival, X.: Relational inductive shape analysis. In: POPL (2008)

7. Chatterjee, S., Lahiri, S., Qadeer, S., Rakamaric, Z.: A reachability predicate for
analyzing low-level software. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 19–33. Springer, Heidelberg (2007)

8. Cousot, P., Cousot, R.: On abstraction in software verification. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 37. Springer, Heidelberg (2002)

9. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 287–302. Springer,
Heidelberg (2006)

10. Giacobazzi, R.: Abductive analysis of modular logic programs. In: ILPS (1994)

11. Gotsman, A., Berdine, J., Cook, B.: Interprocedural shape analysis with sepa-
rated heap abstractions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 240–260.
Springer, Heidelberg (2006)

12. Gulavani, B., Chakraborty, S., Ramalingam, G., Nori, A.: Bottom-up shape analy-
sis. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 188–204. Springer,
Heidelberg (2009)

13. Gulwani, S., Lev-Ami, T., Sagiv, M.: A Combination Framework for Tracking Par-
tition Sizes. In: POPL (2009)

14. Gupta, A., Majumdar, R., Rybalchenko, A.: From tests to proofs. In: Kowalewski,
S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 262–276. Springer,
Heidelberg (2009)

15. Gustavsson, J., Svenningsson, J.: Constraint abstractions. In: Danvy, O., Filinski,
A. (eds.) PADO 2001. LNCS, vol. 2053, p. 63. Springer, Heidelberg (2001)

16. Hackett, B., Rugina, R.: Region-based shape analysis with tracked locations. In:
POPL (2005)

17. Kawaguchi, M., Rondon, P., Jhala, R.: Type-based data structure verification. In:
PLDI (2009)

18. Kuncak, V.: Modular Data Structure Verification. PhD thesis, EECS Department,
Massachusetts Institute of Technology (February 2007)

19. Magill, S., Berdine, J., Clarke, E., Cook, B.: Arithmetic strengthening for shape
analysis. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 419–
436. Springer, Heidelberg (2007)

20. Magill, S., Tsai, M., Lee, P., Tsay, Y.: THOR: A tool for reasoning about shape
and arithmetic. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
428–432. Springer, Heidelberg (2008)

21. Magill, S., Tsai, M., Lee, P., Tsay, Y.: Automatic numeric abstractions for heap-
manipulating programs. In: POPL (2010)

22. Møller, A., Schwartzbach, M.: The pointer assertion logic engine. ACM SIGPLAN
Notices 36(5), 221–231 (2001)

23. Nguyen, H.H., David, C., Qin, S., Chin, W.-N.: Automated verification of shape
and size properties via separation logic. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

24. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — a proof assistant for
higher-order logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

25. Popeea, C., Chin, W.-N.: Inferring disjunctive postconditions. In: Okada, M.,
Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 331–345. Springer, Heidelberg
(2008)

Automatically Refining Partial Specifications for Program Verification 385

26. Qin, S., He, G., Luo, C., Chin, W.-N.: Loop invariant synthesis in a combined
domain. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 468–
484. Springer, Heidelberg (2010)

27. Qin, S., Luo, C., Chin, W.-N., He, G.: Automatically Refining Partial Specification
for Program Verification. Technical Report, Teesside University (2010),
http://www.scm.tees.ac.uk/s.qin/papers/refine.pdf

28. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: LICS
2002 (2002)

29. Rondon, P., Kawaguci, M., Jhala, R.: Liquid types. In: PLDI (2008)
30. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.

ACM Transactions on Programming Languages and Systems 24(3), 217–298 (2002)
31. Srivastava, S., Gulwani, S.: Program verification using templates over predicate

abstraction. In: PLDI (2009)
32. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,

P.W.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

http://www.scm.tees.ac.uk/s.qin/papers/refine.pdf

Structured Specifications for Better Verification
of Heap-Manipulating Programs

Cristian Gherghina1, Cristina David1, Shengchao Qin2, and Wei-Ngan Chin1

1 Department of Computer Science, National University of Singapore
2 School of Computing, University of Teesside

Abstract. Conventional specifications typically have a flat structure that is based
primarily on the underlying logic. Such specifications lack structures that could
have provided better guidance to the verification process. In this work, we pro-
pose to add three new structures to a specification framework for separation logic
to achieve a more precise and better guided verification for pointer-based pro-
grams. The newly introduced structures empower users with more control over
the verification process in the following ways: (i) case analysis can be invoked
to take advantage of disjointness conditions in the logic. (ii) early, as opposed
to late, instantiation can minimise on the use of existential quantification. (iii)
formulae that are staged provide better reuse of the verification process.

Initial experiments have shown that structured specifications can lead to more
precise verification without incurring any performance overhead.

1 Introduction

Recent developments of the specification mechanisms have focused mostly on expres-
siveness [2,1,5] (to support verification for more properties), abstraction [16,18] (to
support information hiding in specification) and modularity [14,7,8] (to support more
readable and reusable specifications). To the best of our knowledge, there has been
hardly any attempt on the development of specification mechanisms that could support
better verifiability (in terms of both efficiency and effectiveness). Most efforts on bet-
ter verifiability have been confined to the verification technology; an approach that may
lead to less portability (as we become more reliant on clever heuristics from the verifica-
tion tools) and also more complex implementation for the verification tools themselves.
In this paper, we shall propose a novel approach towards better verifiability that focuses
on new structures in the specification mechanism instead.

To illustrate the need for an enhanced specification mechanism, we will make use
of separation logic, which allows for a precise description of heap-based data struc-
tures and their properties. As an example, consider a data node node2 and a predicate
describing an AVL tree that captures the size property via s and the height via h:

data node2 { int val; int height; node2 right; node2 left; }
avl〈root, h, s〉 ≡ root=null ∧ h=0 ∧ s=0
∨ root �→ node2〈 , h, r, l〉 ∗ avl〈r, h1, s1〉∗avl〈l, h2, s2〉∧h = max(h1, h2)+1
∧ − 1≤h1−h2≤1∧s=s1+s2+1

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 386–401, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Structured Specifications for Better Verification 387

Formula p �→ c〈v∗〉 denotes a points-to fact of the heap where c is a data node with
v∗ as its arguments, while spatial conjunction Φ1∗Φ2 denotes a program state with two
disjoint heap spaces described by sub-formulae Φ1 and Φ2, respectively. These two no-
tations of separation logic allow heap states to be expressed in a succinct manner.

The aforementioned definition asserts that an AVL tree is either empty (the base case
root=null ∧ h=0 ∧ s=0), or it consists of a data node (root �→ node2〈 , h, r, l〉) and
two disjoint subtrees (avl〈r, h1, s1〉∗avl〈l, h2, s2〉). Each node is used to store the actual
data in the val field, and the maximum height of the current subtree in the height

field. The constraint −1≤h1−h2≤1 states that the tree is balanced, while s=s1+s2+1

and h=max(h1, h2)+1 compute the size and height of the tree pointed by root from the
properties s1, s2 and h1, h2, respectively, that are obtained from the two subtrees. The ∗
connector ensures that the head node and the right and left subtrees reside in disjoint
heaps. Our system automatically generates existential quantifiers for local values and
pointers, such as r, l, h1, h2, s1, s2.

Next, we specify a method that attempts to retrieve the height information from the
root node of the data structure received as argument. In case the argument has the value
null, the method returns 0, as captured by res=0. To provide a suitable link between
pre- and post-conditions, we use the logical variables v, h, lt, lr that have to be instan-
tiated for each call to the method. As a first try, we capture both the null and non-null
scenarios as a composite formula consisting of a disjunction of the two cases, as shown
below:

int get height(node2 x)
requires x=null ∨ x �→ node2〈v, h, lt, lr〉
ensures (x=null∧ res=0) ∨ (x �→node2〈v, h, lt, lr〉 ∧ res=h);
{if (x = null) then 0 else x.height}

This specification introduces disjunctions both in the pre and post-conditions, which
would make the verification process perform search over the disjuncts[17]. Basically,
each disjunct corresponds to an acceptable scenario of which at least one needs to be
proven. However, there are situations when the program state does not contain enough
information to determine which of the scenarios applies. For illustration, let us consider
that we are interested in retrieving the height information for an AVL tree pointed by
x and the program state before the call to the get height method is avl〈x, h1, s1〉. We
have to verify that the current program state obeys the method’s precondition. However,
when verifying the null and non-null scenarios separately, both checks fail as the
program state avl〈x, h1, s1〉 does not contain sufficient information to conclude neither
that x
=null, nor that x=null. We provide the two failing verification conditions in the
form of the entailment procedure from [17]: Φa � Φc ∗ Φr, where the antecedent Φa and
consequent Φc are given, while the residue Φr is to be computed. This entailment finds
a subheap in Φa that satisfies Φc and returns the unused subheap from Φa as residue
Φr. Getting back to the current get height example, the two failing entailments are
given below. As none of the following two entailments succeeds, the verification of the
method call fails.

avl〈x, h1, s1〉�(x=null)∗Φr1
avl〈x, h1, s1〉�(x �→ node2〈v, h, lt, lr〉)∗Φr2

388 C. Gherghina et al.

As a second try, we write the specification in a modular fashion by separating the two
scenarios as advocated by past works [14,7]. In [14], Leavens and Baker proposed for
each specification to be decomposed into multiple specifications (where it is called case
analysis) to capture different scenarios of usage. Their goal was improving the readabil-
ity of specifications, as smaller and simpler specifications are easier to understand than
larger ones. In [7] multiple specifications were advocated to help achieve more scalable
program verification. By using multiple pre/post conditions, we obtain the following
specification:

int get height(node2 x)
requires x=null ensures res=0;
requires x �→ node2〈v, h, lt, rt〉 ensures x �→ node2〈v, h, lt, rt〉 ∧ res=h;

During the verification process, each scenario (denoted by a pre/post-condition pair)
is proven separately [7]. However, neither of the two entailments (for each of the two
scenarios) succeeds, causing the verification of the method call to fail.

A possible solution is to perform case analysis on variable x: first assume x=null,
then assume x
=null, and try to prove both cases. For soundness, these cases must be
disjoint and exhaustively cover all scenarios. Accordingly, the following two provable
entailments are obtained, and the verification succeeds:

avl〈x, h1, s1〉∧x=null�(x=null)∗Φr1
avl〈x, h1, s1〉∧x �=null�(x �→ node2〈v, h, lt, lr〉)∗Φr2

However, case analysis is not always available in provers, as it might be tricky to decide
on the condition for a case split. Traditionally, the focus of specification mechanism
has been on improving its ability to cover a wider range of problems more accurately,
while the effectiveness of verification is left to the underlying provers. In this paper,
we attempt a novel approach, where the focus is on determining a good specification
mechanism to achieve better expressivity and verifiability.

Often, a user has an intuition about the proving process. In the current work, we
provide the necessary utensils for integrating this intuition in the specification in order
to guide the verification. Instead of writing a flat (unstructured) specification, the user
can use insights about the proof for writing a structured specification that will trigger
different techniques during the proving process:

– Case analysis is conventionally captured as part of the proving process. The user
typically indicates the program location where case analysis is to be performed
[23]. This corresponds to performing a case analysis on some program state (or
antecedent) of the proving process. In our approach, we provide a case construct to
distinguish the input states of pre/post specifications instead. This richer specifica-
tion can be directly used to guide the verification process. For the aforementioned
get height method, the case structured specification will automatically force a case
split on x:

case{x=null → ensures res=0;
x �=null → requires x �→ node2〈v, h, lt, lr〉

ensures x �→node2〈v, h, lt, lr〉 ∧ res=h};

Structured Specifications for Better Verification 389

– Early vs. late instantiations denote different types of bindings for the logical vari-
ables (of consequent) during the entailment proving process. Early instantiation
is an instantiation that occurs at the first occurrence of its logical variable, while
late instantiation occurs at the last occurrence of its logical variable. While late in-
stantiation can be more accurate for variables that are constructed from inequality
constraints, early instantiation can typically be done with fewer existential quanti-
fiers since instantiation converts these existential logical variables to quantifier-free
form at an earlier point. We propose to use early instantiation, by default, and only
to resort to late instantiation when explicitly requested by the programmer.

– Staged formulae allows the specification to be made more concise through sharing
of common sub-formulae. Apart from better sharing, this also allows verification
to be carried out incrementally over multiple (smaller) stages, instead of a single
(larger) stage. The need for early/late instantiations, as well as for staged formulae
will be motivated in more details later in Sec 2.

In the rest of the paper we shall focus on the apparatus for writing and verifying (or
checking) structured specifications. Sec 2 provides examples to motivate the need for
two other aspects of structured specifications. Sec 3 formalizes the notion of structured
specifications. Sec 4 formalizes the verification rules to generate Hoare triples and en-
tailment proving for structured specifications, while Sec 5 presents our experimental
results before some concluding remarks in Sec 6.

2 Motivating Examples

In the current section we present two more examples that motivate our enhancements
to the specification mechanism.

2.1 Example 1

Consider a method that receives two AVL trees, t1 and t2, and merges them by recur-
sively inserting all the elements of t2 into t1. By using the case construct introduced in
Sec 1 we may write a case structured specification, which captures information about
the resulting tree size when t1 is not null, and about the resulting size and height,
whenever t1 is null:

case{t1 = null → requires avl〈t2, s2, h2〉ensures avl〈res, s2, h2〉;
t1 �=null → requires avl〈t2, s2, h2〉 ∗ avl〈t1, s1, 〉

ensures avl〈res, s1+s2, 〉};

However, let us note that there is a redundancy in this specification, namely the same
predicate avl〈t2, s2, h2〉 appears on both branches of the case construct. After the need
for a case construct which was already discussed in Sec 1, this is the second deficiency
we shall address in our specification mechanism, that is due to a lack of sharing in
the logic formula which in turn causes repeated proving of identical sub-formulae. To
provide for better sharing of the verification process, we propose to use staged formulae
of the form (Φ1 then Φ2), to allow sub-formula Φ1 to be proven prior to Φ2.

Though (Φ1 then Φ2) is semantically equivalent to (Φ1 ∗ Φ2), we stress that the
main purpose of adding this new structure is to support more effective verification with

390 C. Gherghina et al.

the help of specifications with less redundancy. By itself, it is not meant to improve the
expressivity of our specification, but rather its effectiveness. Nevertheless, when it is
used in combination with the case construct, it could support case analysis of logical
variables to ensure successful verification. The same structuring mechanisms can be
used by formulae in both predicate definitions and pre/post specifications.

Getting back to the AVL merging example, the redundancy in the specification can
be factored out by using a staged formulae, as follows:

requires avl〈t2, s2, h2〉 then
case{t1 = null → ensures avl〈res, s2, h2〉;

t1 �=null → requires avl〈t1, s1, 〉 ensures avl〈res, s1+s2, 〉};

During the verification process, when reaching a call to the AVL merging method, the
current program state must entail the method’s precondition. Since the entailment pro-
cess needs to explore both branches of the specification, the avl〈t2, s2, h2〉 node will be
proven twice for each method call. By using staged formulae, the second specification
will force the common formula to be proved only once. Although the two specifications
capture the same information, the second version requires much less proving effort. For
this example, there was a 40% reduction in verification time by our system, due solely
to the presence of staged formulae.

For the general case, if x denotes the number of heap nodes/predicates that are shared
in the consequent formula, and y the number of possible matchings from the antecedent,
then the number of redundant matchings that are eliminated is (x − 1) ∗ y. An analogy
can be made between the use of the staged formula and the use of the binary decision
diagram (BDD) as an intermediate representation for SAT formulae to support better
sharing of identical sub-formulae [4]. Where applicable, we expect staged formulae to
improve the effectiveness of verification.

2.2 Example 2

Parameter instantiation is needed primarily for connecting the logical variables between
precondition and postcondition of specifications. Traditionally, manual instantiation of
ghost variables has played this role. In this paper, we propose two new mechanisms,
early and late instantiations, to support automatic instantiations of logical variables. As
an example, consider a data node cell and a predicate cellPred defined as follows:

data cell { int val}
cellPred〈root, i〉 ≡ root=null∧ i≤3 ∨ root �→ cell〈 〉 ∧ i>3

To highlight the difference between early and late instantiations, we shall consider
two separate proof obligations. The first one is given below.

p �→ cell〈 〉 � (cellPred〈p, j〉∧j>2)∗Φr

At this point, we first need to match a heap predicate cellPred〈p, j〉 on the RHS
with a data node p �→ cell〈 〉 on the LHS to obtain an instantiation for the variable j.
A fundamental question is whether the variable instantiation could occur for just the
predicate cellPred〈p, j〉 (we refer to this as early instantiation), or it has to be for
the entire formula cellPred〈p, j〉 ∧ j>2 (known as late instantiation). By default, our

Structured Specifications for Better Verification 391

system uses early (or implicit) instantiation for variables that are not explicitly declared.
In this scenario, early instantiation j>3 is obtained when folding with the predicate
cellPred〈p, j〉. This instantiation is transferred to the LHS. Consequently, we obtain a
successful proof below.

j>3 � (j>2)∗Φr
Now, let us consider a second proof obligation that will require late instantiation:

p=null � (cellPred〈p, j〉∧j>2)∗Φr

Similar to the previous case, we will first use a default early instantiation mechanism.
After matching cellPred〈p, j〉, we obtain the instantiation j≤3. However, moving only
this binding to the LHS is not enough, causing the proof below to fail.

p=null ∧ j≤3 � (j>2)∗Φr

To support late instantiation for variable j, we declare it explicitly using [j] below:

p=null � ([j] cellPred〈p, j〉∧j>2)∗Φr

This time variable j is kept on the RHS until the end of the entailment. As its proof
below succeeds, the instantiation for j will be captured in the residue as Φr=j≤3∧j>2.

p=null � (∃j.j≤3∧j>2)∗Φr

Though late instantiation is more general, it may require existential quantifications over
a larger formula. Hence, by default, we prefer to use early instantiation where possible,
and leave it to the user to manually declare where late instantiation is mandated.

3 Structured Specifications

We shall now focus on the structured specifications mechanism. Fig 1 provides a syn-
tactic description where Z denotes structured (pre/post) specifications, while Q denotes
structured formulae that may be used for pre/post specifications, as well as for predicate

Pre/Post. Z ::= ∃v∗1·Y1 . . .∃v∗n·Yn multiple specs
Y ::= case{π1⇒Z1; . . . ; πn⇒Zn} case construct

| requires [w∗] Φ [then] Z staged spec
| ensures Q post

Formula Q ::=
∨

∃v∗·R multiple disjuncts
R ::= case{π1⇒Q1; . . . ; πn⇒Qn} case construct

| [w∗] Φ [then Q] staged formula
Φ ::=

∨
∃v∗ · (κ ∧ π)

Heap formula κ ::= emp | v �→ c〈v∗〉 | p〈v∗〉 | κ1 ∗ κ2

Pure formula π ::= . . .

Fig. 1. Syntax for Structured Specifications

392 C. Gherghina et al.

definitions. Apart from multiple specifications, our new syntax includes case constructs
and staged formulae.

For structured specification, the requires keyword introduces a part of precondi-
tion through a staged specification. The postcondition is captured after each ensures

keyword, which must appear as a terminating branch for the tree-like specification
format. We support late instantiation via variables w∗, from requires [w∗] Φ Z and
[w∗] Φ [then Q] at the end of proving Φ. To minimise user annotations, our system au-
tomatically determines the other unbound variables (different from those to be late in-
stantiated) as either existential or to be early instantiated.

Our construct to support case analysis is case{π1⇒Z1; . . . ; πn⇒Zn} for specifi-
cation, and case{π1⇒Q1; . . . ; πn⇒Qn} for formula. We impose the following three
conditions on π1, . . . , πn:

(i) are restricted to only pure constraints, without any heap formula.
(ii) are exclusive, meaning that ∀i, j · i �=j → πi∧πj=false.

(iii) are exhaustive, meaning that π1∨ . . .∨πn=true.

Condition (i) is imposed since pure formula can be freely duplicated. Condition (ii) is
imposed to avoid conjunction over the heap-based formula. If absent, each heap state
may have to satisfy multiple case branches. Condition (iii) is needed for soundness of
case analysis which requires all scenarios to be considered. To illustrate, consider:

[(w : t)∗] Φ case{x=null⇒Q1; x �=null⇒Q2}

The first condition holds as the two guards, x=null and x �=null, are pure. Further-
more, our system checks successfully that the guards are exclusive
((x=null∧x �=null)=false) and exhaustive ((x=null ∨ x �=null) = true).

3.1 Semantic Model for Structured Formulae

The semantics of our structured formula is similar to those given for separation logic
[21], with extensions for the new structured formulae.

To define the model we assume sets Loc of locations (positive integer values), Val
of primitive values, with 0 ∈ Val denoting null, Var of variables (program and logi-
cal variables), and ObjVal of object values stored in the heap, with c[f1 �→ν1, .., fn �→νn]

denoting an object value of data type c where ν1, .., νn are current values of the corre-
sponding fields f1, .., fn. Let s, h |= Q in Fig 2 denote the model relation, i.e. the stack
s and heap h satisfy the constraint Q, with h, s from the following concrete domains:

h ∈ Heaps =df Loc ⇀fin ObjVal
s ∈ Stacks =df Var→ Val∪Loc

Note that each heap h is a finite partial mapping while each stack s is a total mapping, as
in the classical separation logic [21,9]. Function dom(f) returns the domain of function
f . The model relation for separation heap formulas is defined below. The model relation
for pure formula s |= π denotes that the formula π evaluates to true in s. Note that
h1⊥h2 indicates h1 and h2 are domain-disjoint, h1·h2 denotes the union of disjoint heaps
h1 and h2. For the case of a data node, v �→ c〈v∗〉, h has to be a singleton heap. On the
other hand, a shape predicate defined by p〈v1..n〉≡Q may be inductively defined.

Structured Specifications for Better Verification 393

s, h |=Q iff Q=
∨n

i=1 ∃v∗·Ri and s, h |=
∨n

i=1 ∃v∗·Ri

s, h |=
∨n

i=1 ∃vi1..im·Ri iff ∃k∈{1, .., n}·∃αk1..km·
s[vk1 �→αk1, .., vkm �→αkm], h |= Rk

s, h |=[wn
i=1]Φ then Q iff ∃h1, h2 · h1⊥h2 and h = h1·h2

and ∃α1..n·s[w1 �→α1, .., wn �→αn], h1 |= Φ and s, h2 |= Q
s, h |=case{(πi⇒Qi)

n
i=1} iff ∀k∈{1, .., n}·(s, h |= πk → s, h |= Qk)

s, h |=Φ1∨Φ2 iff s, h |= Φ1 or s, h |= Φ2

s, h |=∃v1..n·κ∧π iff ∃α1..n·s[v1 �→α1, .., vn �→αn], h |= κ
and s[v1 �→α1, .., vn �→αn] |= π

s, h |=κ1∗κ2 iff ∃h1, h2 · h1⊥h2 and h = h1·h2

and s, h1 |= κ1 and s, h2 |= κ2

s, h |=emp iff dom(h) = ∅
s, h |=p �→ c〈v∗〉 iff exists a data type decl. data c {t1 f1, .., tn fn}

and h=[s(p) �→r] and r=c[f1 �→s(v1), .., fn �→s(vn)]
s, h |=p〈v1..n〉 iff exists a pred. def. p〈v1..n〉≡Q and s, h |= Q

Fig. 2. Model for Structured Formulae

With the semantics of the structured formulae in place, we can provide a translation
from a structured formula to its equivalent unstructured formula. This translation is
formalised with Q �T Φ, as shown below:

∀i ·Qi �T Φi

case{πi⇒Qi}∗ �T

∨
(Φi∧πi)

Q �T Φ

[w∗] Φ1 then Q �T Φ1 ∗ Φ

∀i · Ri �T Φi∨
∃v∗·Ri �T

∨
∃v∗·Φi [w∗] Φ�T Φ

We make use of the semantics for structured formulae Q and for unstructured formula
Φ to prove the correctness of the given translation rules.

Theorem 3.1 (Correctness of Translation). Given Q and Φ such that Q �T Φ: for
all s, h, s, h |= Q if and only if s, h |= Φ.

Proof: By structural induction on Q.

4 Modular Verification

The main goal of structured specification is to support a modular verification process
that could be carried out efficiently and precisely. In this section, we propose a set of
rules to help generate Hoare-style triples for code verification, together with entailment
checking to support proof obligations over the structured formulae domain.

4.1 Building Verification Rules

Program verification is typically formalised using Hoare triples of the form {pre}e{post},
where pre and post are the initial and final states of the program code (e) in some
logic. Our verification system uses separation logic, where a Hoare-style specification

394 C. Gherghina et al.

{pre}e{post} is valid, denoted as |= {pre}e{post}, if and only if, for all states (s, h) that
s, h |= pre, if the execution of e starting from (s, h) does not lead to memory errors and
terminates in a state (s1, h1), then s1, h1 |= post.

To better support structured specifications and case analysis, we propose a new triple
of the form {|Φ|} e {|Z|}, with pre being an unstructured formula and Z being the struc-
tured specification. We use structured specifications in the poststate because our case
analysis is guided from the post-states. In contrast, unstructured formulae are used in
the prestate since the structured form is unnecessary here. The semantic meaning of this
new triple is defined as follows:

Definition 4.1. The validity of {|Φ|} e {|Z|} is defined inductively over the structure of Z.
That is:

– if Z ≡ ensuresQ : |= {|Φ|} e {|Z|} ⇐⇒ |= {Φ}e{Q};
– if Z ≡ requiresΦ1 [then] Z1 : |= {|Φ|} e {|Z|} ⇐⇒ |= {|Φ∗Φ1|} e {|Z1|};
– if Z ≡ case{π1⇒Z1; . . . ; πn⇒Zn}: |={|Φ|} e {|Z|}⇐⇒
⇐⇒ ∀i∈{1, .., n}·|={|Φ∧πi|} e {|Zi|};

– if Z ≡ (∃v∗1·Y1 . . .∃v∗n·Yn) : |= {|Φ|} e {|Z|} ⇐⇒
⇐⇒ ∀i∈{1, .., n}· |= {|Φ|} e {|∃v∗i ·Yi|})�

Our main verification rules are given in Fig. 3. Note that G records a list of variables
(including res as result of the code) visible to the code verifier. Our specification formu-
lae use both primed and unprimed notations, where primed notations represent the latest
values of program variables, and unprimed notations denote either logical variables or
initial values of program variables.

The verification of method declarations is described by the [FV−METH] rule. It ver-
ifies the method body code against the specification Z, as indicated by the rule. The
function prime({v1, .., vm}) returns the primed version {v′

1, .., v
′
m}. The third line of the

premise deals with the verification task G � {|
∧

(v′=v)∗ ∧
∧

(u′=u)∗|} code {|Z|}, where

[FV−METH]
H=[(v:t)∗, (u:t)∗]

G = prime(H)+H + [res:t0]
G � {|

∧
(v′=v)∗ ∧

∧
(u′=u)∗|} code {|Z|}

� t0 mn ((t v)∗, (ref t u)∗) Z { code }

[FV−MULTI−SPECS]
fresh nv∗

ρ=[(v→nv)∗]
∀i · G�{|Φ|} code {|ρYi|}

G�{|Φ|} code {|∃v∗1·Y1..∃v∗n·Yn|}

[FV−REQUIRES]
{w∗} ∩ Vars(G) = {}
G1 = G + [(w : t)∗]

G1 � {|Φ1∗Φ2|} code {|Z|}
G � {|Φ1|} code {|requires [(w : t)∗] Φ2 Z|}

[FV−ENSURES]
V =PassByValue(G)
� {Φ} code {Φ2}

∃prime(V) · Φ2 �emp

{} Q∗S S
={}
G � {|Φ|} code {|ensures Q|}

[FV−CASE]
∀i∈{1, .., n} · G � {|Φ ∧ πi|} code {|Zi|}

G�{|Φ|} code {|case{π1⇒Z1; . . . ; πn⇒Zn}|}

Fig. 3. Building Verification Rules for Structured Specifications

Structured Specifications for Better Verification 395

the precondition indicates that the latest values of program variables are the same as
their initial values. The other rules are syntax-directed and rely on the structure of the
specification Z.

The rule [FV−MULTI−SPECS] deals with the case where the post-state is a multi-
specification. It verifies the code against each of the specifications. Note that the substi-
tution ρ replaces variables v∗ with fresh variables nv∗. The rule [FV−REQUIRES] deals
with the case where the post-state starts with a requires clause. In this case, the for-
mula in the requires clause is added to the pre-state (by separation conjunction) before
verifying the code against the remaining part of the specification in the post-state. The
variables for late instantiation (w∗) are also attached to the end of the list G. The rule
[FV−ENSURES] deals with the case where the post-state starts with an ensures clause.
It invokes our forward verification rules to derive the strongest postcondition Φ2 for the
normal Hoare triple {Φ}code{Φ2} and invokes the entailment prover (described in the
next section) to check that the derived post-state Φ2 subsumes the given post-condition
Q (The test S
= {} signifies the success of this entailment proof). Note that V denotes
the set of pass-by-value parameters that are not modified by the procedure. Hence, their
values (denoted by primed variables) are ignored in the postcondition, even if the pro-
gram code may have updated these parameters. The last rule [FV−CASE] deals with the
case where the post-state is a case specification. It verifies in each case the specification
Zi is met when the guard πi is assumed in the pre-state.

To illustrate the generation of the verification tasks, consider the AVL merging given
in Section 2.1. By applying the rules from Figure 3, two Hoare triples are produced.

� {avl〈t2, s2, h2〉 ∧ t1=null} code{avl〈res, s2, h2〉}
� {avl〈t1, s1, 〉∗avl〈t2, s2, h2〉∧t1 �=null} code{avl〈res, s1+s2, 〉}

Theorem 4.1 (Soundness of Verification). Our verification rules are sound. That is,
given a program code, an unstructured formula Φ, and a structured specification Z, if
our system derives a proof, � {|Φ|} code {|Z|}, then we have |= {|Φ|} code {|Z|}.

Proof: It follows from the soundness of our underlying verification system (i.e. the
one without structured specifications) [17], the definition 4.1, and the soundness of the
entailment prover enriched with structured formulae (described in the next section).

4.2 Entailment for Structured Formula

Given formulae Φ1 and Q2, our entailment prover checks if Φ1 entails Q2, that is if in
all heaps satisfying Φ1, we can find a subheap satisfying Q2.

The main features of our entailment prover are that, besides determining if the en-
tailment relation holds, it also infers the residual heap of the entailment, that is a for-
mula ΦR such that Φ1 � Q2 ∗ ΦR and derives the predicate parameters. The relation
is formalized using a judgment of the form Φ1�κ

V Q2 ∗ΦR, which is a shorthand for
Φ1∗κ � ∃V · (Q2∗κ)∗ΦR. Note that κ denotes the consumed heap, while V is a set,
{v∗, E:w∗}, containing the existential variables encountered, v∗, together with the vari-
ables w∗ for late instantiation, .

To support proof search, we have also generalised the entailment checking procedure
to return a set of residues SR: Φ1�κ

V Q2 ∗SR.This entailment succeeds when SR is non-
empty, otherwise it is deemed to have failed. The multiple residual states captured in SR

396 C. Gherghina et al.

[ENT−FORMULA]
Φ �κ

mark(V,w∗) (Φ1) ∗ S

Φ �κ
V [w∗] Φ1 ∗ S

[ENT−CASE]
∀i · Φ ∧ πi �κ

V Qi ∗ Si

Φ �κ
V case{πi⇒Qi}∗ ∗ (

∨
Si)

[ENT−ENSURES]
Q �T Φ1

Φ �κ
V (ensures Q) ∗ (Φ ∗ Φ1)

[ENT−STAGED−FORMULA]
Φ �κ

mark(V,w∗) (Φ1) ∗ S S �κ
V −{w∗} (Q) ∗ S2

Φ �κ
V ([w∗] Φ1 then Q) ∗ S2

[ENT−RHS−OR]
∀i · Φ �κ

V Ri ∗ Si

Φ �κ
V

∨
Ri ∗ (

⋃
Si)

[ENT−EXIST]
Φ �κ

V ∪{v∗} R ∗ S

Φ �κ
V ∃v∗ · R ∗ S

Fig. 4. Entailment for Structured Formula

signify different search outcomes during proving. Our entailment procedure relies on
unfolding and folding of the predicate definitions. Unfolding refers to a single inlining
of a predicate in the antecedent, while folding is a recursive entailment with the body of
a predicate in the consequent. In the current paper, we enhance the entailment proving
procedure to handle structured formulae in the consequent. The main rules are given
in Figure 4. Take note that we make use of a method mark(V, w∗) , which marks the
variables to be late instantiated, w∗, by removing them from the existential variables
stored in V and adding them as E : w∗:

mark(V, w∗) = (V−{w∗})∪{(E : w)∗}
The rule [ENT−FORMULA] makes use of the aforementioned marking method in order
to mark the fact that variables w∗ are to be late instantiated, whereas rule [ENT−EXIST]

adds the existentially quantified variables v∗ to the set V .
In the rule for staged formula, [ENT−STAGED−FORMULA], the instantiation for the

variables w∗ takes place in the first stage, Φ1. As instantiation moves the correspond-
ing bindings to the LHS (or antecedent of entailment), the variables w∗ must be re-
moved from the set of existentially quantified variables when entailing the rest of the
formula, Q. At the end of the entailment proving, the variables that were marked as
late-instantiated are existentially quantified in the residue state. The generalised entail-
ment with a set of n formulae in the antecedent is an abbreviation of the n entailments,
as illustrated below: ∀i∈{1, .., n} · Φi �κ

V (Q) ∗ Si

{Φ1, .., Φn} �κ
V (Q) ∗

⋃n
i=1 Si

The rule [ENT−CASE] adds the pure term πi to the antecedent. This rule requires a
lifted disjunction operation defined as S1∨S2≡{Φ1∨Φ2|Φ1∈S1, Φ2∈S2} when applied
to two sets of states, S1, S2.

While a successful entailment of one disjunct suffices for the entailment of a disjunc-
tive formula, our entailment rule [ENT−RHS−OR] facilitates a proof search by trying to
entail each of the RHS disjuncts separately. Therefore, the residue state must contain
the union of all residues corresponding to the proof search from a set of entailments,
∀i · Φ �κ

V Ri ∗ Si.
Take note that, at each call site, the forward verification procedure ensures that

the method’s precondition is satisfied and assumes the method’s postcondition. This

Structured Specifications for Better Verification 397

is achieved by entailing a formula denoting a specification of the Z form. As the corre-
sponding entailment rules are similar to those for the entailment of a structured formula
given in Figure 4, we omit them for brevity. The only unusual rule is [ENT−ENSURES]

that is needed when entailing the actual postcondition ensures Q. In this case, the post-
condition is added to the residual state in unstructured form, immediately after the trans-
lation Q �T Φ1 to unstructured form.

Theorem 4.2 (Soundness of Entailment). Given Φ, Q such that s, h |= Φ, if Φ �κ
V Q∗Φr

for some Φr, then s, h |= Q∗Φr. That is, for all program states in which Φ holds if
Φ �κ

V Q∗Φr then Q∗Φr holds.

Proof: By structural induction on Q.

5 Experiments

We have built a prototype system using Objective Caml. The proof obligations gen-
erated by our verification are discharged using some off-the-shelf constraint solvers
(like Omega Calculator [20]) or theorem provers (like MONA [13]). The specification
mechanism works with any constraint domain, as long as a corresponding prover for
the domain is available. The specific domains that our verifier currently supports, in-
cludes linear (Omega Calculator, Z3, CVC-lite) and non-linear arithmetic (Redlog), set
(MONA, Isabelle bag tactic) and list properties (a Coq tactic). Though the current paper
highlighted mostly simpler specifications, our benchmark included the verification of
functional correctness properties, such as sortedness and permutation.

We have conducted preliminary experiments by testing our system on a suite of ex-
amples summarized in Figure 5. These examples are small but can handle data struc-
tures with sophisticated shape and size properties such as sorted lists, balanced trees,
etc., in a uniform way. Methods “insert” and “delete” refer to the insertion and deletion
of a value into/from the corresponding data structure, respectively. Method “del first”
deletes the node at the head in a circular list. Moreover, we verify a suite of sorting
algorithms, which receive as input an unsorted singly-linked list and return a sorted list.
Verification time for each function includes the time to verify all functions that it calls.
We compare the timings obtained with and without case analysis.

Take note that for each of the verified methods, in order to compare the results ob-
tained with and without case analysis, we provided specifications with the same level of
modularity through specifications with multiple pre/post. FAIL for the ”without case”
means it did not verify functional correctness (including memory safety). This is due
the absence of case analysis that would have been provided by the missing case spec.

Preliminary results indicate that case analysis improves both the completeness and
the performance of our system. From the completeness point of view, case analysis is
important for verifying a number of examples that would fail otherwise. For instance,
the method implementing the selection sort algorithm over a linked list fails when it
is written with multiple specification instead of the case construct. The same scenario
is encountered for the method inserting/deleting a node of red black tree, and for the
method appending two list segments. The case construct thus helps our system to verify
more examples successfully. Regarding the performance, the timings obtained when
using case analysis are smaller, taking on average 21% less computation time than those

398 C. Gherghina et al.

Program Timings (in seconds) speed
Codes LOC with case without case gain (%)

Linked List verifies length
delete 20 0.65 0.89 26
append 14 0.30 0.39 23

List Segment verifies length
append 11 0.95 failed -

Circular Linked List verifies length + circularity
del first 15 0.35 0.41 15
insert 10 0.28 0.35 20

Doubly Linked List verifies length + double links
insert 18 0.35 0.52 33
delete 29 0.94 1.27 26

Sorted List verifies bounds + sortedness
insert 17 0.71 0.96 26
delete 21 0.60 0.68 22

insertion sort 45 0.92 1.35 32
selection sort 52 1.24 failed -
bubble sort 42 1.95 2.92 43
merge sort 105 2.01 2.53 31
quick sort 85 1.82 2.47 26

AVL Tree verifies size + height + balanced
insert 169 32.27 39.48 19
delete 287 85.1 97.30 13

Perfect Tree verifies height + perfectness
insert 89 0.73 0.99 26

Red-Black Tree verifies size + black-height
insert 167 5.44 failed -
delete 430 22.43 failed -

Fig. 5. Verification Times for Case Construct vs Multiple Pre/Post

obtained without case analysis. The improvements are due to earlier pruning of false
contexts with the help of case constructs and optimizations of the case entailment rule.

We also investigated the performance gain that can be attributed to the use of staged
formulae. We observed that the timings improved on average by 20%. Noteworthy ex-
amples include the AVL insertion (from 32.27s to 22.93s) and AVL deletion (from 85.1s
to 81.6s).

We may conclude from our experiments that structured specifications together with
case analysis give better precision to our verification system while also improving its
performance, when compared to corresponding unstructured specifications.

6 Related Work and Conclusion

Previous works on enhancing pre/post specifications [14,12] were mainly concerned
with improving modularity to allow easier understanding of specifications. With this
objective, multiple specifications and redundant representations were advocated as the

Structured Specifications for Better Verification 399

primary machinery. In the context of shape analysis, Chang and Rival [6] make use
of if notation for defining inductive checkers. However, the conditional gets approxi-
mated to disjunction during the actual analysis. Verification wise, the three structured
specification mechanisms that we have proposed are not available in existing tools,
such as JML [5], Spec# [1], Dafny [15], JStar [8] and VeriFast [10]. The closest re-
lationships may be summarized, as follows. JML supports specification cases, in the
form of multiple pre/post conditions, for better modularity and clarity of specifications.
Our case constructs also intend to provide better guidance to the verification process.
Spec#/Dafny supports ghost variables for manual instantiation (by user) of logical vari-
ables. In contrast, our early/late instantiation mechanisms provided two solutions to
automatic instantiation of logical variables. Overall, little attempt has been made to add
specification structures that can help produce a better verification outcome.

On timings, we did not compare with Spec# and Dafny, since our benchmark on
heap-manipulating programs is not properly covered by their specification logic. Re-
garding JStar, it currently uses logics involving only shapes and equalities, it does
not support more expressive properties, like set and numeric properties, needed by our
benchmark. Lastly, VeriFast requires more user intervention in the form of explicit un-
folding and folding of the abstract predicates through ghost statements.

In a distributed systems setting, Seino et al [22] present a case analysis meant to im-
prove the efficiency of protocol verification, which involves finding appropriate pred-
icates and splitting a case into multiple sub-cases based on the predicates. In order to
cover all the possible case splits, they use a special type of matrix. Pientka [19] argues
for the need of case analysis in inductive proofs. The potential case splits are selected
heuristically, based on the pattern of the theorem. A case split mechanism has been used
by Brock et al [3] to guide case analysis during proving. Jhala and McMillan [11] used
a temporal case splitting in order to specialize the properties to be proven, so that they
depend on only a finite part of the overall state. As opposed to the previous works, our
current proposal is to incorporate structured mechanisms within the specification mech-
anism itself for guiding the case analysis, existential instantiation or staged proving.

Some existing theorem provers use tactics as a way to automate or semi-automate
proofs, and our system can take advantage of them through lower-level pure proofs.
However, for Hoare-style specification and verification, we have chosen to design a
structured specification (rather than another tactic language) for the following reasons:

– It can be provided at a higher-level that users can understand more easily, since it
is closer to specification mechanism rather than the (harder) verification process.

– It is more portable, as specification are tied to program codes, while tactic language
tend to be prover-specific requiring the invoked prover to understand the relevant
commands. Our approach basically breaks down larger (hard) proofs into smaller
(simpler) proofs that any prover could more easily and more effectively handle, as
confirmed by our experiments.

– Specification can be transformed (or restructured) which allows us to heuristically
infer structured specifications from unstructured counterparts. A version of this
translation from unstructured formula to structured formula has been implemented
in our system. Though this can never be as good as that provided by expert users,

400 C. Gherghina et al.

it can nevertheless be used to handle most of the straightforward cases for legacy
specifications, leaving the harder unverified examples to be handled by users.

The current paper has pioneered a novel approach towards resolving two key problems
of verification, namely better modularity and better completeness through a new form
of structured specification. Our proposal has been formalized and implemented with a
promising set of experimental results.

Acknowledgement. We thank the anonymous reviewers for their insightful feedback
on this work. The work was supported by NUS Grant R-252-000-366-112, MoE Grant
R-252-000-444-112 and EPSRC Grant EP/G042322.

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic assertion checking
with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer, Heidelberg (2006)

3. Brock, B., Kaufmann, M., Strother Moore, J.: ACL2 Theorems About Commercial Micro-
processors. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 275–293.
Springer, Heidelberg (1996)

4. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers 35, 677–691 (1986)

5. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino, K.R.M.,
Poll, E.: An overview of JML tools and applications. Software Tools for Technology Transfer
(2005)

6. Chang, B.-Y.E., Rival, X.: Relational inductive shape analysis. In: POPL, pp. 247–260 (2008)
7. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Multiple pre/post specifications for heap-

manipulating methods. In: HASE, pp. 357–364 (2007)
8. Distefano, D., Parkinson, M.J.: jStar: Towards Practical Verification for Java. In: OOPSLA

(2008)
9. Ishtiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In: ACM

POPL, London, pp. 14–26 (January 2001)
10. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the veriFast program verifier. In: Ueda,

K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg (2010)
11. Jhala, R., McMillan, K.L.: Microarchitecture verification by compositional model check-

ing. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 396–410.
Springer, Heidelberg (2001)

12. Jonkers, H.B.M.: Upgrading the pre- and postcondition technique. In: Prehn, S., Toetenel, H.
(eds.) VDM 1991. LNCS, vol. 551, pp. 428–456. Springer, Heidelberg (1991)

13. Klarlund, N., Moller, A.: MONA Version 1.4 - User Manual. BRICS Notes Series (January
2001)

14. Leavens, G.T., Baker, A.L.: Enhancing the pre- and postcondition technique for more ex-
pressive specifications. In: Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1709,
p. 1087. Springer, Heidelberg (1999)

15. Rustan, K., Leino, M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370. Springer,
Heidelberg (2010)

Structured Specifications for Better Verification 401

16. Parkinson, M.J., Bierman, G.M.: Separation logic and abstraction. In: ACM POPL, pp. 247–
258 (2005)

17. Nguyen, H.H., David, C., Qin, S.C., Chin, W.-N.: Automated verification of shape and
size properties via separation logic. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS,
vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

18. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and Information Hiding. In: ACM
POPL, Venice, Italy (January 2004)

19. Pientka, B.: A heuristic for case analysis. Technical report (1995)
20. Pugh, W.: The Omega Test: A fast practical integer programming algorithm for dependence

analysis. Communications of the ACM 8, 102–114 (1992)
21. Reynolds, J.: Separation Logic: A Logic for Shared Mutable Data Structures. In: IEEE LICS,

Copenhagen, Denmark, pp. 55–74 (July 2002)
22. Seino, T., Ogato, K., Futatsugi, K.: Mechanically supporting case analysis for verification of

distributed systems. In: IJPCC (2005)
23. Zee, K., Kuncak, V., Rinard, M.C.: An integrated proof language for imperative programs.

In: PLDI, pp. 338–351. ACM, New York (2009)

Verification of Unloadable Modules

Bart Jacobs, Jan Smans�, and Frank Piessens

Department of Computer Science, Katholieke Universiteit Leuven, Belgium
{bart.jacobs,jan.smans,frank.piessens}@cs.kuleuven.be

Abstract. Programs in unsafe languages, like C and C++, may dy-
namically load and unload modules. For example, some operating sys-
tem kernels support dynamic loading and unloading of device drivers.
This causes specific difficulties in the verification of such programs and
modules; in particular, it must be verified that no functions or global
variables from the module are used after the module is unloaded.

We present the approach we used to add support for loading and un-
loading modules to our separation-logic-based program verifier VeriFast.
Our approach to the specification and verification of function pointer
calls, based on parameterizing function types by predicates, is sound in
the presence of unloading, but at the same time does not complicate
the verification of programs that perform no unloading, and does not
require callers to distinguish between function pointers that point into
unloadable modules and ones that do not.

We offer a machine-checked formalization and soundness proof and
we report on verifying a small kernel-like program using VeriFast. To
the best of our knowledge, ours is the first approach for sound modular
verification of C programs that load and unload modules.

1 Introduction

In statically typed safe programming languages, code is immutable and perma-
nent. That is, both statically bound and dynamically bound routine calls always
succeed and are bound to code that satisfies the static type of the call. Also, if
an object reference or function value satisfies a given contract at one point in
time, it continues to do so forever.

This is not the case in dynamically typed languages and in unsafe languages
like C and C++. In C, if at one point during execution at a given address
there is a function that satisfies a given contract, this does not mean this will
remain the case indefinitely. The module containing the function may be part of
a dynamically linked library (DLL, also known as a shared object) that may be
unloaded, or the function’s code may reside on the stack or in a malloc’ed piece
of memory.

Existing verification approaches for C programs (Caduceus/Frama-C [7],
HAVOC [5], VCC [4], Smallfoot [1], our own verifier VeriFast [8]) assume that
the program is unchanging and is not part of the mutable state. As a result,
� Jan Smans is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO).

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 402–416, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Verification of Unloadable Modules 403

these approaches cannot be used for sound verification of programs that involve
the unloading of code.

In this paper, we propose a separation-logic-based approach for extending a
verification approach for C programs to enable verification of the memory-safety,
data-race-freedom, and compliance with preconditions, postconditions, and other
assertions of programs involving code unloading. Specifically, our contributions
with respect to existing verification tools for C are the following features, which
none of the existing tools have:

– Soundness in the presence of unloading. Verification of an unloadable
module checks that when execution of code in the module is attempted, a
permission indicating that the code is present is owned by the current thread.

– Predicate-parameterized function types. In the absence of unloading,
abstract predicate families [11] indexed by function pointer could be used to
enable abstraction for function pointer contracts. However, in the presence
of unloading, a function pointer no longer immutably refers to a specific
function. Predicate-parameterized function types solve this problem, and
furthermore allow callers to be agnostic as to whether a function pointer
points into an unloadable module or not.

– Modular support for global variables. A module, even an unloadable
one, may declare global variables. It is checked that these are not used after
the module is unloaded.

We implemented the approach in our prototype verifier, VeriFast, and we verified
a small server written in C that allows clients to load modules, unload modules,
and use services provided by the modules, mimicking operating system kernels
that may dynamically load and unload device drivers. Also, we developed a
formalization and a machine-checked soundness proof of the approach.

The remainder of the paper is structured as follows. In Section 2, we illustate
the problem by means of an example. In Section 3, we formalize the relevant
subset of C. In Section 4, we present our approach. In Section 5, we discuss the
implementation. Finally, in Section 6, we conclude and discuss related work.

2 Problem Statement

We illustrate the verification challenges addressed by our approach using the ex-
ample C program shown in Figure 1. The example program adopts some aspects
of an operating system kernel that loads and unloads device drivers as kernel
modules. It consists of a simple “kernel module”, RamDisk.c, that implements a
file abstraction backed by memory, and a simple “kernel”, that loads the kernel
module, tests its functionality, and unloads it. Like most kernel modules, the
example module uses kernel resources that should be cleaned up properly when
the client is done using the module. The example uses a simple byte vector re-
source (i.e. a growable array of bytes) as backing for its file abstraction. While
the example is kept simple on purpose, it contains the essential ingredients of
dynamic loading and unloading of modules that offer services to clients and that

404 B. Jacobs, J. Smans, and F. Piessens

// Modules.h
struct module;

struct module ∗load module
(char ∗name,
void ∗∗init,void ∗∗exit);

void unload module
(struct module ∗m);

// KernelModule.h
typedef int read(

int offset , char ∗buffer , int count);
typedef void write(

int offset , char ∗buffer , int count);

struct file ops {
read ∗read ;
write ∗write;

};

typedef struct file ops ∗module init();
typedef void module exit();

// Kernel.c
#include ”Modules.h”
#include ”KernelModule.h”

void testOps(struct file ops ∗o) {
o→write(0, "Hello", 6); char b[10];
int n = o→read(0, b, 10);
assert(n ==6 &&

memcmp(b, "Hello", 6) ==0);
}

void main() {
module init ∗init ;
module exit ∗exit ;
struct module ∗m = load module(
"RamDisk", &init, &exit);

struct file ops ∗o = init();
testOps(o); exit();
unload module(m);

}

// ByteVector.h
struct vector ;

struct vector ∗create vector ();
int vector read(struct vector ∗v,

int offset , char ∗buffer , int count);
void vector write(struct vector ∗v,

int offset , char ∗buffer , int count);
void vector dispose

(struct vector ∗v);

// RamDisk.c
#include ”KernelModule.h”
#include ”ByteVector.h”

struct vector ∗vector = 0;

int myRead(int o, char ∗b, int c) {
return vector read(vector , o, b, c);

}

int myWrite(int o, char ∗b, int c) {
vector write(vector , o, b, c);

}

struct file ops o = {0, 0};

struct file ops ∗module init() {
o.read = myRead ;
o.write = myWrite;
vector = create vector ();
return &o;

}

void module exit() {
vector dispose(vector);

}

Fig. 1. Example C program that loads and unloads a module

Verification of Unloadable Modules 405

potentially use resources not directly visible to the client in the implementation
of these services.

The kernel dynamically loads the RamDisk module using an API declared in
Modules.h. This API assumes each dynamically loaded module exports a func-
tion called module init and a function called module exit , and it returns pointers
to these functions through its by-reference parameters init and exit . The client
program performs implicit casts of these void pointers to pointers to function
types module init and module exit , respectively, declared in KernelModule.h.

After loading RamDisk, the client program tests its functionality using an
assert statement, in function testOps . Specifically, it writes the zero-terminated
string "Hello" to the file and then checks that reading the file yields the same
string. If the condition of the assert statement evaluates to false, the program
aborts. Finally, the program unloads the module and terminates.

The challenge we take up in this paper is to come up with an approach,
suitable for implementation in a semi-automatic program verifier like VeriFast,
for verifying modularly that programs that load and unload modules, such as
the example program, execute safely. Executing safely is a strong property: it
means that the program does not access (i.e., read, write, or execute) unallocated
memory and that all assert statements succeed.

Support for unloadable modules introduces additional safety risks, including
for instance:

– Programs should not use a function pointer pointing into an unloadable
module after this module has been unloaded. For example, if the two final
calls in function main are swapped, the program is unsafe.

– Programs should not access a global variable declared by an unloadable
module after this module has been unloaded. For example, if an access of o
is added at the end of function main , the program is unsafe.

The verification approach should be modular and sound. Modularity implies
that:

– Unloadable modules and client programs should be verifiable separately, with
minimal assumptions about each other and with proper information hid-
ing. For example, the verification of a client program should not depend on
whether a module it loads and unloads declares global variables.

– The verification of code that uses a function pointer should not depend on
whether the function pointer points into an unloadable module or into static
code. For example, verification of function testOps should be agnostic as to
whether function pointer o→write points to an unloadable module or not.

Soundness in such a modular setting means: If all modules and client programs
involved in a run of the system have been verified, then the run is safe (as defined
above).

3 Formal Programming Language

We will present our approach in the context of a simple formal programming
language that retains only the relevant aspects of C. In this section, we introduce

406 B. Jacobs, J. Smans, and F. Piessens

the syntax and the semantics of the programming language. In the next section,
we present our specification formalism and proof system.

The formal programming language is an extension of the standard separation
logic language [14] with function pointer call and module load and unload com-
mands, and with function values L. The latter are used to represent pieces of
code in the heap; they are a higher-level analog of assembly language instruc-
tions. The language’s syntax is as follows:

n ∈ Z, x ∈ Vars, τ ∈ FunTypeNames
e ::= n | x | e + e | e− e b ::= e = e | e < e
c ::= x := cons(e) | x := [e] | [e] := e | dispose(e) | x := e | (c; c)

| if b then c else c | x := call e(e) | x := load e as τ | unload(e)
L ::= lambda (x) c

We adopt the standard run-time state of separation logic, consisting of a store
s, a total function that maps program variable names to integers, and a heap
h, a partial function that maps positive integer addresses to integer values. The
domain of the heap coincides with the allocated addresses. In order to be able to
store function values in the heap, we assume an injective encoding �·� of function
values L into integers; this corresponds to the encoding of assembly instructions
as byte sequences on real architectures.

To model the loading and unloading of modules, we assume the existence of a
module repository Modules , which is a finite map from module names to module
definitions. A module name is simply an integer. A module definition consists of
the module’s contract, which is a function type name τ ∈ FunTypeNames, and a
module image. The module image is simply a tuple of one or more integers. The
first element of the tuple is the encoded function value for the module’s entry
point; the other elements may be encoded function values or data (corresponding
to global variables in C).

We describe the semantics of the new commands. For a formal big-step se-
mantics of the language, see the extended version of this paper [9].

Function pointer call command x := call e(e) executes the function value at
address e in the heap. Specifically, if at address e there is a function value with
parameters x and body c, it executes c under a store that binds the parameters
to the arguments specified in the call and the variable ip (for instruction pointer)
to the target address, and it assigns the result of the call, conventionally stored
in local variable result by the function, to variable x. The call aborts if address
e is not allocated, if the value at address e is not an encoded function value, or
if there are more or fewer parameters than arguments. It also aborts if c aborts.

Command x := load e as τ , where e is an expression and τ is a function type
name, loads the module named e and stores its address in variable x. Specifically,
loading a module whose image is v1, . . . , vn means allocating n + 1 consecutive
addresses, storing the image size n at the first address (used by unload), and
the image itself at the subsequent addresses. The address x returned by the load
command is the address where the image size is stored; it follows that the first
element of the image is at address x + 1.

Verification of Unloadable Modules 407

If there is no module named e in the repository, or if the module’s contract
is not τ , no module is loaded and the load command stores the value zero in x.
We do not abort here; this, together with the module contract check, allows us
to verify scenarios where the identity of the module being loaded is not known
statically, such as when the module name is taken from user input.

Command unload(e) deallocates the loaded module at address e. It aborts if
address e is not allocated, or if the value n at address e is not positive, or if any
of the n subsequent addresses are not allocated; otherwise, it deallocates all of
these n + 1 addresses.

3.1 Example Program

We illustrate the language by translating the example C program of Figure 1
into it; the result is shown in Figure 2.

The module repository of the example contains a single module, corresponding
to module RamDisk of the C example. Its name is 100, its contract is module init,
and its image consists of seven values, the first four of which are the encodings
of function values corresponding to functions module init , module exit , myRead ,
and myWrite, respectively, and the last three correspond to the global variables
vector , o.read , and o.write of the C example.

There are four minor differences between the C example and the formal ex-
ample. The first is that instead of specifying the specific module RamDisk as the
module to be loaded, the formal example uses the value of variable M, whose
initial value is arbitrary; imagine it was initialized by the user. If the value of
this variable equals 100, the module named 100 in the repository will be loaded;
otherwise, the load command will return zero and the rest of the program will
be skipped. We will verify that the program is safe for arbitrary initial values
of the variables; and during verification of the main program, we will make no
assumptions about the module repository other than that each module has been
verified.

Modules = {
(100, (module init,

(�MI �, �ME�, �MR�, �MW �,
V0,OR0,OW 0)))

}
main =

m := load M as module init;
if m = 0 then skip else (

init := m + 1; o := call init();
write := [o + 1]; := call write(42);
read := [o]; x := call read();
assert(x = 42);
exit := m + 2; := call exit();
unload(m)

)

where
MI = lambda ()

[ip + 5] := ip + 2; [ip + 6] := ip + 3;
v := cons(0); [ip + 4] := v;
result := ip + 5

ME = lambda () v := [ip + 3]; dispose(v)
MR = lambda () v := [ip + 2]; result := [v]
MW = lambda (x) v := [ip + 1]; [v] := x
V0 = OR0 = OW 0 = 0

skip = x := x
assert(b) = if b then skip else [0] := 0

Fig. 2. Example program in the formal language

408 B. Jacobs, J. Smans, and F. Piessens

// s = {M: 100, . . .}, h = ∅
m := load M as module init;
// s = {m: 1, . . .}, h = {1: 7, 2: �MI�, 3: �ME�, 4: �MR�, 5: �MW�, 6: 0, 7: 0, 8: 0}
if m = 0 then skip else (

// s = {m: 1, . . .}, h = {1: 7, 2: �MI�, 3: �ME�, 4: �MR�, 5: �MW�, 6: 0, 7: 0, 8: 0}
init := m + 1; o := call init();
// s = {m: 1, init: 2, o: 7, . . .}
// h = {1: 7, 2: �MI�, 3: �ME�, 4: �MR�, 5: �MW�, 6: 50, 7: 4, 8: 5, 50: 0}
write := [o + 1]; := call write(42);
// s = {m: 1, init: 2, o: 7, write: 5, . . .}
// h = {1: 7, 2: �MI�, 3: �ME�, 4: �MR�, 5: �MW�, 6: 50, 7: 4, 8: 5, 50: 42}
read := [o]; x := call read();
// s = {m: 1, init: 2, o: 7, write: 5, read: 4, x: 42, . . .}
// h = {1: 7, 2: �MI�, 3: �ME�, 4: �MR�, 5: �MW�, 6: 50, 7: 4, 8: 5, 50: 42}
assert(x = 42);
exit := m + 2; := call exit();
// s = {m: 1, exit: 3, . . .}, h = {1: 7, 2: �MI�, 3: �ME�, 4: �MR�, 5: �MW�, 6: 50, 7: 4, 8: 5}
unload(m)
// s = {. . .}, h = ∅

)

Fig. 3. An example run of the example program. In this run, the value of M is 100,
the module is allocated at address 1, and the “vector” is allocated at address 50.

The second difference is that in the formal example, the module init and
module exit functions are at fixed offsets 0 and 1 in the module image, so their
addresses can be obtained by adding 1, resp. 2 to the address returned by the
load command.

The third difference is that in the formal example, for simplicity the contents
of a “file” consist of a single integer. Therefore, instead of a byte vector, the
module uses a simple memory cell to back its file abstraction. The write function
takes the new file contents as its argument, and the read function returns the
file contents as its return value.

The fourth difference is that the testOps function has been inlined into the
main program.

Notice that the functions in the example module use their instruction pointer
ip (i.e., the address of the function in memory) to compute the address of the
module’s other functions and global variables. For example, in the module init
function, the address of the global variable vector equals ip+4 since module init
is the first element of the module image and vector is the fifth element. This is
a common technique for achieving position-independent code.

An example run of the example program is shown in Figure 3. The symbols
MI , ME , MR, and MW refer to the function values defined in Figure 2. No-
tice that the init call initializes the module’s global variables and allocates the
“vector” (at address 50). The write call updates the vector, and the exit call
de-allocates it.

Verification of Unloadable Modules 409

4 Specification and Verification Approach

In this section, we present an approach for specifying and modularly verifying
modules and programs that satisfies the soundness and modularity goals identi-
fied in Section 2. The approach is separation logic [14] with abstract predicates
[11], extended with

– special built-in abstract predicates lib, module0, and module to allow
programs that load and unload modules to reason about loaded modules
abstractly, and

– parameterized function types and partial predicate applications for reasoning
about function pointers in a way that allows abstraction over whether a
function pointer points into an unloadable module.

We first introduce the specification language and we illustrate it with a specifi-
cation for the example module. We then define the proof system and outline a
proof of the example program.

4.1 Specification Language

As in separation logic and in Hoare logic, a correctness judgment is of the form
{P} c {Q}, where c is a command and P and Q are assertions, i.e. conditions
on the program state. It means: if command c is executed in an initial state that
satisfies precondition P , then it executes safely and if it terminates, the final
state satisfies Q.

Assertions may contain the usual logical operators ∧,∨, ∃, and equality be-
tween assertion expressions. The assertion expressions include the program ex-
pressions as well as logical variable occurrences. As in Hoare logic, logical vari-
ables are universally quantified across correctness judgments, and serve to con-
nect the precondition and the postcondition.

In Hoare logic, an assertion is interpreted under a store and a logical vari-
able interpretation (a total function from logical variable names to integers). In
separation logic, an assertion is interpreted under a store, a logical variable in-
terpretation, and a heap. Separation logic introduces three operators to describe
the heap: emp states that the heap is empty; the points-to assertion E �→ E′

states that the heap consists of a single memory cell at address E containing
value E′; and the separating conjunction A ∗ A′ states that the heap can be
split up into two disjoint parts, such that one part satisfies A and the other part
satisfies A′.

Abstract predicates (or predicates for short) are named, parameterized asser-
tions. They serve to describe a piece of state abstractly, without revealing the
details. For example, the predicate Q(�, x) defined below describes the resources
used by the example module after initialization, when loaded at address � and
when the file contents are x:

predicate Q(�, x) = � + 1 �→ �MI� ∗ � + 2 �→ �ME� ∗ � + 3 �→ �MR�
∗ � + 4 �→ �MW� ∗ ∃v • � + 5 �→ v ∗ v �→ x

410 B. Jacobs, J. Smans, and F. Piessens

It encompasses the module image (at � + 1 through � + 7), plus the vector (at
v), minus the memory cells containing the function pointers (at �+6 and �+7).

To specify function pointers, we introduce function type definitions and func-
tion type assertions. A function type definition associates a function type name
with a precondition and a postcondition. A function type assertion E : τ states
that function pointer E may be safely called with the contract associated with
function type τ . We allow function types to be parameterized by a list of integer-
valued parameters. Therefore, the general form of function type judgments is
E : τ(E), where E are the function type arguments.

For example, consider the function type definition

funtype addN(n)(x) req P() ens P() ∧ result = x + n

where P is some predicate. It defines a function type addN with one function
type parameter n. It applies to functions of one argument. Given this definition,
the function type assertion 100 : addN(5) implies that calling the function at
address 100 with argument 10, in a state where P holds, returns value 15.

We need to be able to parameterize function types by predicates, in order to
abstractly specify the state required by a function pointer. In order to avoid a
type system, we assume an encoding of predicate names to integers, and we allow
predicate assertions of the form E(E), where E is the encoding of the predicate
name and E are the predicate arguments. This way, we can use a predicate name
as a function type argument.

For example, we can abstract the function type addN defined above over the
predicate P by adding a function type parameter p:

funtype addN′(p, n)(x) req p() ens p() ∧ result = x + n

Given this definition, we can restate the earlier assertion as 100 : addN′(P, 5).
In general, we wish to instantiate predicate-parameterized function types not

just by fixed predicate names, but also by predicate names to which one or more
arguments have already been applied. To enable this, we assume an encoding �·�
of partial predicate applications, of the form p(n), where n are the pre-applied
predicate arguments, to integers. The meaning of a predicate assertion E(E),
where E is the encoding of a partial predicate application p(n) and E evaluates
to m, is p(nm).

For example, we can specify the read and write functions from the example
program using the following function types:

funtype read(filePred)()
req filePred(X)
ens filePred(X) ∧ result = X

funtype write(filePred)(x)
req filePred()
ens filePred(x)

The function types are parameterized by a predicate that describes the resources
that implement the file abstraction. The predicate takes as an argument the con-
tents of the file. The contract of read states that it returns the current contents;
the contract of write does not care about the old contents (denoted by the un-
derscore, shorthand for ∃y • filePred(y)) and sets its argument x as the new
contents.

Verification of Unloadable Modules 411

As we will prove later, the read and write functions of the example module
satisfy this contract when instantiated with the predicate Q defined above, par-
tially applied to the location � where the module was loaded. Formally, we will
prove � + 3 : read(Q(�)) and � + 4 : write(Q(�)). (Remember that if the module
is loaded at �, then the myRead function is at � + 3 and the myWrite function
is at � + 4.)

Besides parameterized function types and partial predicate applications, we
introduce three special built-in abstract predicates to reason abstractly about
modules. lib(E, E′) describes the memory cell holding the image size of a module
named E′ loaded at address E. module0(E, E′) describes the memory cells
holding the module image of the module named E′ loaded at address E, in their
initial state. Finally, module(E, E′) describes the memory cells that initially
held the module image of the module named E′ loaded at address E. The latter
predicate states only the allocatedness of these cells; it does not describe their
contents.

Formally, if (M, (τ, (v1, . . . , vn))) ∈ Modules , i.e., there is a module named M
with contract τ and whose image consists of the n values v1, . . . , vn, then we
have

lib(�, M) = � �→ n
module0(�, M) = � + 1 �→ v1 ∗ · · · ∗ � + n �→ vn

module(�, M) = � + 1 �→ ∗ · · · ∗ � + n �→
Using these constructs, we can now specify the module init and module exit

functions of the example program:

funtype module init(l, m)()
req module0(l, m)
ens ∃filePred, r, w •

result �→ r ∗ result + 1 �→ w ∗ filePred(0)
∧ r : read(filePred) ∧ w : write(filePred)
∧ l + 2 : module exit(result, filePred, l, m)

funtype module exit(o, filePred, l, m)()
req o �→ ∗ o + 1 �→ ∗ filePred()
ens module(l, m)

The function type module init serves as the module’s contract; the auxiliary
function types module exit, read, and write are referred to in the definition of
module init. As with all function types that serve as module contracts, module init
is parameterized by the address l where the module is loaded and the module
name m. The precondition requires the module’s image in its initial state. The
postcondition states that the return value points to two consecutive memory
cells, the first holding a pointer to a read function and the second a pointer to
a write function. It further provides the resources filePred(0) that the read and
write functions require; the predicate argument 0 indicates the file contents. The
module exit function takes back the memory cells holding the function pointers,
as well as the resources denoted by filePred(), and yields back the module image,
in an unspecified state, ready to be unloaded.

4.2 Proof System

Our proof system extends separation logic’s assertion logic with rules for deriving
function type judgments and for folding and unfolding predicate assertions and

412 B. Jacobs, J. Smans, and F. Piessens

A-FunType

funtype τ (y)(x) req P ens Q
� P [v/y] ⇒ � �→ �lambda (x) c� ∗ true

{P [v/y] ∧ ip = �} c {Q[v/y]}
� � : τ (v)

A-PredAsn

predicate p(y) = A

� p(v)(w) ⇔ A[vw/y]

A-Module-Unfold

(M, (τ, (v1, . . . , vm))) ∈ Modules

� module0(y, M) ⇒
y + 1 �→ v1 ∗ . . . ∗ y + m �→ vm

A-Module-Fold

(M, (τ, (v1, . . . , vm))) ∈ Modules

� y + 1 �→ ∗ · · · ∗ y + m �→
⇒ module(y,M)

C-Call

funtype τ (y)(x) req P ens Q

{e : τ (y) ∧ e = z ∧ P [z/x]} x := call e(e) {Q[z/x, x/result]}

C-Load

{emp ∧ e = y}
x := load e as τ{
x = 0 ∧ emp ∨

x > 0 ∧ lib(x, y) ∗module0(x, y) ∧ x + 1 : τ (x, y)

}
C-Unload

{lib(e, y) ∗ module(e, y)}
unload(e)
{emp}

Fig. 4. Proof rules

module assertions; and it extends separation logic’s program logic with rules for
verifying function pointer call and module load and unload commands. The new
rules are shown in Figure 4.

Per rule A-FunType, proving a function type assertion � : τ(v) requires prov-
ing a) that the function type’s precondition implies that there is some function
value with the correct number of parameters at location �, and b) that this
function value’s body satisfies the function type’s contract.

Using this rule and rule A-PredAsn, we can easily prove the assertions �+3 :
read(Q(�)) and � + 4 : write(Q(�)), which express the correctness of the read
and write functions of the example module. Indeed, Q(�, X) implies � + 3 �→
�MR� ∗ true, and it is a straightforward separation logic exercise to verify the
body of MR against the contract {Q(�, X)} · {Q(�, X) ∧ result = X}; similarly
for the write function.

By additionally using rule A-Module-Fold, we can prove the assertion �+2 :
module exit(� + 6, Q(�), �, 100), where 100 is the name of the example module.
This states the correctness of the module exit function of the example module.
Finally, using all of these results and rule A-Module-Unfold, we can prove
the correctness of the example module: � + 1 : module init(�, 100).

This correctness condition, which our proof system imposes on all modules in
the module repository, justifies Rule C-Load: it states that the module’s entry
point satisfies the module’s contract, instantiated with the address where the
module is loaded and the module’s name.

Verification of Unloadable Modules 413

{emp}
m := load M as module init;
{m = 0 ∧ emp ∨ lib(m, M) ∗module0(m, M) ∧ m + 1 : module init(m, M)}
if m = 0 then skip else (

{lib(m, M) ∗module0(m, M) ∧ m + 1 : module init(m, M)}
init := m + 1; o := call init();{

lib(m, M) ∗ ∃p, r, w • o �→ r ∗ o + 1 �→ w ∗ p(0) ∧
r : read(p) ∧ w : write(p) ∧ m + 2 : module exit(o, p, m, M)

}

write := [o + 1]; := call write(42);{
lib(m, M) ∗ ∃p, r, w • o �→ r ∗ o + 1 �→ w ∗ p(42) ∧

r : read(p) ∧ w : write(p) ∧ m + 2 : module exit(o, p, m, M)

}

read := [o]; x := call read();{
lib(m, M) ∗ ∃p, r, w • o �→ r ∗ o + 1 �→ w ∗ p(42) ∧

r : read(p) ∧ w : write(p) ∧ m + 2 : module exit(o, p, m, M) ∧ x = 42

}

assert(x = 42);
exit := m + 2; := call exit();
{lib(m, M) ∗module(m, M)}
unload(m)

)
{emp}

Fig. 5. Proof outline of the example program

Figure 5 shows a proof outline for the main program. This proof makes no
assumptions about the module repository, other than that each module satisfies
its contract.

Our proof system is sound: if each module in the module repository and the
main program are provably correct, then the main program does not abort.

A full formal treatment of the specification and verification approach is in the
extended version of this paper [9]. We developed a mechanically checked proof
of its soundness in Coq (see http://www.cs.kuleuven.be/˜bartj/unload/).

5 Verification Tool

We implemented the approach in our prototype verifier, VeriFast [8]. VeriFast
takes a set of C and Java source files, annotated with preconditions, postcondi-
tions, loop invariants, mathematical datatype and function definitions, separa-
tion logic predicate definitions, inductive proofs in the form of lemma routines,
and in-line explicit proof steps, and then symbolically executes each function in
turn, where the symbolic state consists of the symbolic heap, the symbolic store,
and the path condition. The symbolic heap is a separating conjunction of heap
chunks of the form p(a), where p is a term of first-order logic denoting the name
of a separation logic predicate or a partially applied predicate, and a are terms
denoting the predicate arguments. The symbolic store maps local variable names
to terms, and the path condition is a set of formulae that are true on the current
execution path. The SMT solver Z3 [6] is used to check boolean conjuncts in
assertions, whereas spatial conjuncts, i.e. predicate assertions, are dealt with in
the tool itself through simple pattern matching with the symbolic heap.

414 B. Jacobs, J. Smans, and F. Piessens

In order to fit more naturally with the C language, the approach as imple-
mented in VeriFast differs from the formalization in this paper as follows.

Firstly, module assertions unfold to a more abstract representation of the
module image. In particular, all code of a module M is represented using a
built-in predicate code(M). For example:

module0(RamDisk) = code(RamDisk) ∗ vector �→ 0 ∗ o.read �→ 0 ∗ o.write �→ 0

Note that a VeriFast module name such as RamDisk denotes both the address
where the module was loaded and the module name proper, which identifies its
contents.

Secondly, the derivation of a function type judgment f : τ(v) for a function f
declared in an unloadable module M is split into two steps. In a first step, f is
verified with respect to its declared contract, using the following proof rule.

P ⇒ [π]code(M) ∗ P ′ {P ′} c {Q′} [π]code(M) ∗Q′ ⇒ Q

M � fun f(x) req P ens Q do c

That is, the declared precondition P must imply some fractional (i.e., read-only)
permission π for the module’s code, and the function’s body c is verified against
the remainder of the precondition. The removed code fraction is added back to
verify the declared postcondition Q.

In a second step, VeriFast simply verifies that the declared contract implies
the function type contract:

fun f(x) req P ens Q do c
funtype τ(y)(x) req P ′ ens Q′ P ′[v/y]⇒ P Q⇒ Q′[v/y]

f : τ(v)

Notice that this latter step does not need to take unloadability into account.
We used the approach of this paper to verify a small multithreaded server

that allows clients to concurrently load DLLs, unload DLLs, and use services
provided by the DLLs, mimicking operating system kernels that may dynamically
load and unload device drivers. Specifically, a loaded DLL can register “devices”
with the “kernel”, by supplying function pointers that open, read, write, and
close the device. Multiple concurrent clients can then access these devices. A
reference counting mechanism prevents a module from being unloaded while
devices provided by the module are open; furthermore, it is verified that a module
unregisters all devices it registered before it unloads. Considering the complexity
of this program, the annotation overhead is not excessive: 467 lines of annotations
for 245 lines of code. Our tool verifies this program in 0.75 seconds. Website:
http://www.cs.kuleuven.be/˜bartj/verifast/.

6 Conclusion and Related Work

We presented the first approach for integrating verification of unloadable mod-
ules into a semi-automatic verification tool for C. It supports global variables,

Verification of Unloadable Modules 415

and its approach to function pointers enables mixing unloadable and non-unload-
able code transparently. We reported on verifying a small but complex kernel-like
program using our implementation. A formalization, a machine-checked sound-
ness proof, the implementation, and the verified code are available on line.

Cai et al. [3] propose a separation-logic-based approach for verifying self-
modifying assembly language programs. They formalize a generic target machine
in Coq, and instantiate it with x86 and MIPS. They prove a number of assembly
programs, including a boot loader, that loads a kernel image from disk and
executes it. Their proof rule for well-formedness of a code block with respect to
a given precondition is very similar to our A-FunType rule: the precondition
must imply the presence of some code that executes safely. Their soundness proof
uses a notion of safety for n steps, very similar to ours. A more recent work in
a similar vein is Myreen’s [10] on verifying a just-in-time compiler on x86, this
time using Isabelle/HOL. Our main contribution with respect to these results is
to adapt these ideas to C’s system of modules, and to integrate it into a program
verification tool for C.

Another, more theoretical, line of work on separation logic for stored code goes
under the name of separation logic for higher-order store [13, 2, 15]. Instead of
representing stored code as an integer-encoded syntactic lambda expression or
machine instruction sequence, the authors adopt a higher-order heap: the heap
maps addresses to integers and to semantic commands, which are themselves
relations from heaps to heaps. This recursive domain equation is solved using
techniques from category theory and domain theory, leading to a less accessible
formalization. Another difference in focus is that the authors attempt not just to
abstract over state required by stored code, e.g. using abstract predicates, but to
hide such requirements, using higher-order frame rules. Whereas such hiding is
preferable over mere abstraction, there are unsolved problems of modularity [12],
and furthermore concurrency is not currently supported. Our contribution here
is an instantiation in the context of C’s modules, and a simpler formalization.

Acknowledgements

The authors would like to thank Raoul Strackx for helpful comments. This re-
search is partially funded by the Interuniversity Attraction Poles Programme
Belgian State, Belgian Science Policy, by the Research Fund K.U.Leuven, and
by the EU FP7 project SecureChange.

References

[1] Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic assertion
checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006)

[2] Birkedal, L., Reus, B., Schwinghammer, J., Yang, H.: A simple model of sepa-
ration logic for higher-order store. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 348–360. Springer, Heidelberg (2008)

416 B. Jacobs, J. Smans, and F. Piessens

[3] Hongxu Cai, Zhong Shao, and Alexander Vaynberg. Certified self-modifying code.
In: PLDI (2007)

[4] Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

[5] Condit, J., Hackett, B., Lahiri, S.K., Qadeer, S.: Unifying type checking and prop-
erty checking for low-level code. In: POPL (2009)

[6] de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

[7] Filliâtre, J.-C., Marché, C.: The why/Krakatoa/Caduceus platform for deduc-
tive program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

[8] Jacobs, B., Smans, J., Piessens, F.: A quick tour of the veriFast program ver-
ifier. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer,
Heidelberg (2010)

[9] Jacobs, B., Smans, J., Piessens, F.: Verification of unloadable modules (Extended
version). Technical Report CW604, Dept. Computer Science, Katholieke Univer-
siteit Leuven (March 2011)

[10] Myreen, M.O.: Verified just-in-time compiler on x86. In: POPL (2010)
[11] Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL (2005)
[12] Pottier, F.: Three comments on the anti-frame rule (July 2009) (unpublished note)
[13] Reus, B., Schwinghammer, J.: Separation logic for higher-order store. In: Com-

puter Science Logic (2006)
[14] Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:

LICS 2002 (2002)
[15] Schwinghammer, J., Birkedal, L., Reus, B., Yang, H.: Nested hoare triples and

frame rules for higher-order store. In: Grädel, E., Kahle, R. (eds.) CSL 2009.
LNCS, vol. 5771, pp. 440–454. Springer, Heidelberg (2009)

A Multi-encoding Approach for
LTL Symbolic Satisfiability Checking�

Kristin Y. Rozier1�2��� and Moshe Y. Vardi2

1 NASA Ames Research Center, Mo�ett Field CA, 94035, USA
����������	
����
������
�

��������������������
����
��������
�����
2 Rice University, Houston, Texas 77005, USA

�����
�����������

������������������������������

Abstract. Formal behavioral specifications written early in the system-design
process and communicated across all design phases have been shown to increase
the eÆciency, consistency, and quality of the system under development. To pre-
vent introducing design or verification errors, it is crucial to test specifications
for satisfiability. Our focus here is on specifications expressed in linear temporal
logic (LTL).

We introduce a novel encoding of symbolic transition-based Büchi automata
and a novel, “sloppy,” transition encoding, both of which result in improved scal-
ability. We also define novel BDD variable orders based on tree decomposition of
formula parse trees. We describe and extensively test a new multi-encoding ap-
proach utilizing these novel encoding techniques to create 30 encoding variations.
We show that our novel encodings translate to significant, sometimes exponential,
improvement over the current standard encoding for symbolic LTL satisfiability
checking.

1 Introduction

In property-based design formal properties, written in temporal logics such as LTL
[31], are written early in the system-design process and communicated across all de-
sign phases to increase the eÆciency, consistency, and quality of the system under de-
velopment [34, 36]. Property-based design and other design-for-verification techniques
capture design intent precisely, and use formal logic properties both to guide the design
process and to integrate verification into the design process [24]. The shift to specifying
desired system behavior in terms of formal logic properties risks introducing specifi-
cation errors in this very initial phase of system design, raising the need for property
assurance [30, 34].

� A full version of this paper with appendices is available at http:��ti.arc.nasa.gov�m�profile�
kyrozier�papers�RozierVardiFM2011.pdf.

�� Work contributing to this paper was completed at Rice University, Cambridge University, and
NASA, was supported in part by the Shared University Grid at Rice (SUG@R), and was funded
by NSF under Grant EIA-0216467, NASA’s Airspace Systems Program, and a partnership
between Rice University, Sun Microsystems, and Sigma Solutions, Inc.

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 417–431, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

418 K.Y. Rozier and M.Y. Vardi

The need for checking for errors in formal LTL properties expressing desired system
behavior first arose in the context of model checking, where vacuity checking aims at
reducing the likelihood that a property that is satisfied by the model under verification
is an erroneous property [2, 27]. Property assurance is more challenging at the initial
phases of property-based design, before a model of the implementation has been spec-
ified. Inherent vacuity checking is a set of sanity checks that can be applied to a set of
temporal properties, even before a model of the system has been developed, but many
possible errors cannot be detected by inherent vacuity checking [19].

A stronger sanity check for a set of temporal properties is LTL realizability checking,
in which we test whether there is an open system that satisfies all the properties in the set
[32], but such a test is very expensive computationally. In LTL satisfiability checking,
we test whether there is a closed system that satisfies all the properties in the set. The
satisfiability test is weaker than the realizability test, but its complexity is lower; it has
the same complexity as LTL model checking [39]. In fact, LTL satisfiability checking
can be implemented via LTL model checking; see below.

Indeed, the need for LTL satisfiability checking is widely recognized [14, 23, 25,
28, 35]. Foremost, it serves to ensure that the behavioral description of a system is in-
ternally consistent and neither over- or under-constrained. If an LTL property is either
valid, or unsatisfiable this must be due to an error. Consider, for example, the speci-
fication always(b1 � eventually b2), where b1 and b2 are propositional formulas. If
b2 is a tautology, then this property is valid. If b2 is a contradiction, then this prop-
erty is unsatisfiable. Furthermore, the collective set of properties describing a system
must be satisfiable, to avoid contradictions between di�erent requirements. Satisfiabil-
ity checking is particularly important when the set of properties describing the design
intent continues to evolve, as properties are added and refined, and have to be checked
repeatedly. Because of the need to consider large sets of properties, it is critical that the
satisfiability test be scalable, and able to handle complex temporal properties. This is
challenging, as LTL satisfiability is known to be PSPACE-complete [39].

As pointed out in [35], satisfiability checking can be performed via model checking:
a universal model (that is, a model that allows all possible traces) does not satisfy a
linear temporal property � f precisely when f is satisfiable. In [35] we explored the
e�ectiveness of model checkers as LTL satisfiability checkers. We compared there the
performance of explicit-state and symbolic model checkers. Both use the automata-
theoretic approach [43] but in a di�erent way. Explicit-state model checkers translate
LTL formulas to Büchi automata explicitly and then use an explicit graph-search algo-
rithm [11]. For satisfiability checking, the construction of the automaton is the more
demanding task. Symbolic model checkers construct symbolic encodings of automata
and then use a symbolic nonemptiness test. The symbolic construction of the automaton
is easy, but the nonemptiness test is computationally demanding. The extensive set of
experiments described in [35] showed that the symbolic approach to LTL satisfiability
is significantly superior to the explicit-state approach in terms of scalability.

In the context of explicit-state model checking, there has been extensive research on
optimized construction of automata from LTL formulas [12, 13, 20, 21, 22, 38, 40, 41],
where a typical goal is to minimize the size of constructed automata [42]. Optimiz-
ing the construction of symbolic automata is more diÆcult, as the size of the symbolic

A Multi-encoding Approach for LTL Symbolic Satisfiability Checking 419

representation does not correspond directly to its optimality. An initial symbolic encod-
ing of automata was proposed in [6], but the optimized encoding we call CGH, proposed
by Clarke, Grumberg, and Hamaguchi [10], has become the de facto standard encoding.
CGH encoding is used by model checkers such as CadenceSMV and NuSMV, and has
been extended to symbolic encodings of industrial specification languages [9]. Surpris-
ingly, there has been little follow-up research on this topic.

In this paper, we propose novel symbolic LTL-to-automata translations and utilize
them in a new multi-encoding approach to achieve significant, sometimes exponen-
tial, improvement over the current standard encoding for LTL satisfiability checking.
First we introduce and prove the correctness of a novel encoding of symbolic automata
inspired by optimized constructions of explicit automata [12, 22]. While the CGH
encoding uses Generalized Büchi Automata (GBA), our new encoding is based on
Transition-Based Büchi Automata (TGBA). Second, inspired by work on symbolic sat-
isfiability checking for modal logic [29], we introduce here a novel sloppy encoding of
symbolic automata, as opposed to the fussy encoding used in CGH. Sloppy encoding
uses looser constraints, which sometimes results in smaller BDDs. The sloppy approach
can be applied both to GBA-based and TGBA-based encodings, provided that one uses
negation-normal form (NNF), [40], rather than the Boolean normal form (BNF) used
in CGH. Finally, we introduce several new variable-ordering schemes, based on tree
decomposition of the LTL parse tree, inspired by observations that relate tree decompo-
sitions to BDD variable ordering [17]. The combination of GBA�TGBA, fussy�sloppy,
BNF�NNF, and di�erent variable orders yields a space of 30 possible configurations of
symbolic automata encodings. (Not all combinations yield viable configurations.)

Since the value of novel encoding techniques lies in increased scalability, we evalu-
ate our novel encodings in the context of LTL satisfiability checking, utilizing a compre-
hensive and challenging collection of widely-used benchmark formulas [7, 14, 23, 35].
For each formula, we perform satisfiability checking using all 30 encodings. (We use
CadenceSMV as our experimental platform.) Our results demonstrate conclusively that
no encoding performs best across our large benchmark suite. Furthermore, no single
approach–GBA vs. TGBA, fussy vs. sloppy, BNF vs. NNF, or any one variable order,
is dominant. This is consistent with the observation made by others [1, 42], that in the
context of symbolic techniques one typically does not find a “winning” algorithmic con-
figuration. In response, we developed a multi-encoding tool, PANDA, which runs sev-
eral encodings in parallel, terminating when the first process returns. Our experiments
demonstrate conclusively that the multi-encoding approach using the novel encodings
invented in this paper achieves substantial improvement over CGH, the current standard
encoding; in fact PANDA significantly bested the native LTL model checker built into
CadenceSMV.

The structure of this paper is as follows. We review the CGH encoding [10] in Section
2. Next, in Section 3, we describe our novel symbolic TGBA encoding. We introduce
our novel sloppy encoding and our new methods for choosing BDD variable orderings
and discuss our space of symbolic encoding techniques in Section 4. After setting up our
scalability experiment in Section 5, we present our test results in Section 6, followed by
a discussion in Section 7. Though our construction can be used with di�erent symbolic

420 K.Y. Rozier and M.Y. Vardi

model checking tools, in this paper, we follow the convention of [10] and give examples
of all constructions using the SMV syntax.

2 Preliminaries

We assume familiarity with LTL [16]; For convenience, Appendix A defines LTL se-
mantics. We use two normal forms:

Definition 1. Boolean Normal Form (BNF) rewrites the input formula to use only �,
�, �, �, and � . In other words, we replace �, �, �, and 	 with their equivalents:

g1 � g2
 �(�g1 � �g2)

g1 � g2
 �g1 � g

g1 � g2
 �(�g1 � �g2)

	g1
 ���g1

Definition 2. Negation Normal Form (NNF) pushes negation inwards until only
atomic propositions are negated, using the following rules:

��g
 g

�(g1 � g2)
 (�g1) � (�g2)

�(g1 � g2)
 (�g1) � (�g2)

(g1 � g2)
 (�g1) � g2

�(�g)
 �(�g)

�(g1�g2)
 (�g1��g2)

�(g1�g2)
 (�g1��g2)

�(g)
 � (�g)

�(� g)
 	(�g)

In automata-theoretic model checking, we represent LTL formulas with Büchi au-
tomata.

Definition 3. A Generalized Büchi Automaton (GBA) is a quintuple (Q� �� Æ� Q0� F),
where:

� Q is a finite set of states.

� � is a finite alphabet.

� Æ � Q
 �
 Q is a transition relation.

� Q0 � Q is a set of initial states.

� F � 2Q is a set of accepting state sets.

A run of a Büchi automaton A over an infinite trace � � �0� �1� �2� � � � � � is a sequence
q0� q1� q2� � � � of states such that q0 � Q0, and �qi� �i� qi�1� � Æ for all i � 0. A accepts
� if the run over � visits states in every set in F infinitely often. We denote the set of
infinite traces accepted by A by ��(A).

A trace satisfying LTL formula f is an infinite run over the alphabet � � 2Prop, where
Prop is the underlying set of atomic propositions. We denote by models(f) the set of
traces satisfying f . The next theorem relates the expressive power of LTL to that of
Büchi automata.

Theorem 1. [44] Given an LTL formula f , we can construct a generalized Büchi au-
tomaton A f �

�
Q� �� Æ� Q0� F

�
such that �Q� is in 2O(� f �), � � 2Prop, and��(A f) is exactly

models(f).

This theorem reduces LTL satisfiability checking to automata-theoretic nonemptiness
checking, as f is satisfiable i� models(f) � � i� ��(A f) � �.

LTL satisfiability checking relates to LTL model checking as follows. We use a uni-
versal model M that generates all traces over Prop such that ��(M) � (2Prop)�. The
code for this model appears in [35] and Appendix B. We now have that M does not sat-
isfy � f i� f is satisfiable. We use a symbolic model checker to check the formula � f
against M; f is satisfiable precisely when the model checker finds a counterexample.

A Multi-encoding Approach for LTL Symbolic Satisfiability Checking 421

CGH encoding In this paper we focus on LTL to symbolic Büchi automata compilation.
We recap the CGH encoding[10], which assumes that the formula f is in BNF, and then
forms a symbolic GBA. We first define the CGH-closure of an LTL formula f as the set
of all subformulas of f (including f itself), where we also add the formula �(g � h)
for each subformula of the form g � h. The �-formulas in the CGH-closure of f are
called elementary formulas.

We declare a Boolean SMV variable EL�g for each elementary formula �g in the
CGH-closure of f . Also, each atomic proposition in f is declared as a Boolean SMV
variable. We define an auxiliary variable S h for every formula h in the CGH-closure
of f . (Auxiliary variables are substituted away by SMV and do not required allocated
BDD variables.) The characteristic function for an auxiliary variable S h is defined as
follows:
S h � p if p � AP S h �!S g if h � �g
S h � ELh if h is a formula �g

S h � S g1�S g2 if h � g1 � g2

S h � S g2�(S g1&S�(g1 � g2)) if h � g1 � g2

We now generate the SMV model M f :
������ ��	

��

�� ������
� ��������� � ������
 ��� ��� ���� ����	� ���� 	
 � ��

��� !� ������
� ��������� � ������
 ��� ��� ����" ����#�� ! 	
 ��� $%&'���(#����

��)*+� ���#,	�	��" ���(������	
! �� ���������	(�	� �#
��	�
 ��

-�� �. ///

0
�+- ����� ����" ����#�� ! 	
 ��� $%&'���(#��1 ��� � ���
(�	�
 ��
(���	
���

2-� ! .
�,�2-�!33

)�*
+�-- 4-�!�� 5 -�� ����� ���� (#�����#�� !�� ��

)�*
+�-- 0
�� ���� � !�
��	� ��	�
�((��
�	�	�
 �����6	(���

-7�$ 42-�� 8 �% ��#�3 ���
� 6	�� � -7�$ (������
���

The traces of M f correspond to the accepting runs of A f , starting from arbitrary states.
Thus, satisfiability of f corresponds to nonemptiness of M f , starting from an initial
state. We can model check such nonemptiness with ���� ��� � � �	
��
�. A coun-
terexample is an infinite trace starting at a state where S f holds. Thus, the model checker
returns a counterexample that is a trace satisfying f .

Remark 1. While the syntax we use is shared by CadenceSMV and NuSMV, the precise
semantics of CTL model checking in these model checkers is not fully documented and
there are some subtle but significant di�erences between the two tools. Therefore, we
use CadenceSMV semantics here and describe these subtleties in Appendix C.

3 A Symbolic Transition-Based Generalized Büchi Automata
(TGBA) Encoding

We now introduce a novel symbolic encoding, referred to as TGBA, inspired by the
explicit-state transition-based Generalized Büchi automata of [22]. Such automata are
used by SPOT [15], which was shown experimentally [35] to be the best explicit LTL
translator for satisfiability checking.

Definition 4. A Transition-Based Generalized Büchi Automaton (TGBA) is a quin-
tuple (Q� �� Æ� Q0� F), where:

422 K.Y. Rozier and M.Y. Vardi

� Q is a finite set of states.

� � is a finite alphabet.

� Æ � Q
 �
 Q is a transition relation.

� Q0 � Q is a set of initial states.

� F � 2Æ is a set of accepting transitions.

A run of a TGBA over an infinite trace � � �0� �1� �2� � � � � � is a sequence �q0� �0� q1�,
�q1� �1� q2�, �q2� �2� q3�, � � � of transitions in Æ such that q0 � Q0. The automaton accepts
� if it has a run over � that traverses some transition from each set in F infinitely often.

The next theorem relates the expressive power of LTL to that of TGBAs.

Theorem 2. [12, 22] Given an LTL formula f , we can construct a TGBA A f �
�
Q� �� Æ�

Q0� F
�

such that �Q� is in 2O(� f �), � � 2Prop, and ��(A f) is exactly models(f).

Expressing acceptance conditions in terms of transitions rather than states enables a
significant reduction in the size of the automata corresponding to LTL formulas [12, 22].

Our new encoding of symbolic automata, based on TGBAs, assumes that the input
formula f is in NNF. (This is due to the way that the satisfaction of �-formulas is
handled by means of promise variables; see below.) As in CGH, we first define the
closure of an LTL formula f . In the case of TGBAs, however, we simply define the
closure to be the set of all subformulas of f (including f itself). Note that, unlike in the
CGH encoding,�- and� - formulas do not require the introduction of new�-formulas.

The set of elementary formulas now contains: f ; all �-, �-, � -, 	-, and 	� -
subformulas in the closure of f , as well as all subformulas g where �g is in the closure
of f . Note that we treat the common 	� combination as a single operator.

Again, we declare a Boolean SMV variable ELg for every elementary formula g
as well as Boolean variables for each atomic proposition in f . In addition, we declare
a Boolean SMV promise variable Pg for every �-, � -, and 	� -subformula in the
closure. These formulas are used to define fairness conditions. Intuitively, Pg holds
when g is a promise for the future that is not yet fulfilled. If Pg does not hold, then the
promise must be fulfilled immediately. To ensure satisfaction of eventualities we require
that each promise variable Pg is false infinitely often. The TGBA encoding creates fewer
EL variables than the CGH encoding, but it does add promise variables.

Again, we define an auxiliary variable S h for every formula h in the closure of f .
The characteristic function for S h is defined as in the CGH encoding, with the following
changes:

S h � S g1&S g2 if h � g1 � g2

S h � next(ELg) if h � �g

S h � S g2�(S g1&Pg1 � g2&(next(ELg1 � g2))) if h � g1 � g2

S h � S g2&(S g1�(next(ELg1 � g2))) if h � g1 � g2

S h � S g&(next(EL� g)) if h � 	 g

S h � S g�(P� g&next(EL� g)) if h � � g

S h � (next(EL�� g))&(S g�P�� g) if h � 	� g

Since we reason directly over the temporal subformulas of f (and not over �g
for temporal subformula g as in CGH), the transition relation associates elementary

A Multi-encoding Approach for LTL Symbolic Satisfiability Checking 423

formulas with matching elements of our characteristic function. Finally, we generate
our symbolic TGBA; here is our SMV model M f :

������ ��	

��
 ��������� � ������
 ���	���� ��� ���� ����	� �����(�	�
 	
 ���

� � ������
�

///

��
 ��������� �
�6 ���	���� ��� ���� �����
���" ����#����

���� � ������
� ��� 	(��� 	
�#� �0� ����#����

���!9 � ������
� ��! 	(�
 '1)'1 �'1 �� %)'����#����

///

��)*+� �����������	(�	� �#
��	�
 ���	
	�	�
��

-�! . ///

///

0
�+- ����� ���� ��'���1 !�
����� � �	
� ������

2 ���!9 . -�!9 3 8 ��� �	
� ��� ����" �� ���	������

///

)�*
+�-- 247�!93 ����	�
�((��
(���	
� ��� ���� ����	(� ���	������

///

)�*
+�-- 0
�� ���
�"
����� 	� ����� ���
� ����	(� ���	����(��

-7�$ 42���� 8 �% 0
��3

Symbolic TGBAs can only be created for NNF formulas because the model checker
tries to guess a sequence of values for each of the promise variables to satisfy the subfor-
mulas, which does not work for negative �-formulas. (This is also the case for explicit
state model checking; SPOT also requires NNF for TGBA encoding [12].) Consider
the formula f � �(a � b) and the trace ���� ���� ���� ������� Clearly, (a � b)
holds in the trace, so f fails in the trace. If, however,we chose � ��� to be false at time
0, then �� ��� is false at time 0, which means that f holds at time 0. The correctness
of our construction is summarized by the following theorem.

Theorem 3. Let M f be the SMV program made by the TGBA encoding for LTL formula
f . Then M f does not satisfy the specification ���� � � �� �	
�� i� f is satisfiable.

The proof of this theorem appears in Appendix D.

4 A Set of 30 Symbolic Automata Encodings

Our novel encodings are combinations of four components: (1) Normal Form: BNF or
NNF, described above, (2) Automaton Form: GBA or TGBA, described above, (3) Tran-
sition Form: fussy or sloppy, described below, and (4) Variable Order: default, naı̈ve,
�� !, �� ", "#$%"&', "#$%"(, described below. In total, we have 30 novel encodings,
since BNF can only be used with fussy-encoded GBAs, as explained below. CGH cor-
responds to BNF�fussy�GBA; we encode this combination with all six variable orders.

Automaton Form. As discussed earlier, CGH is based on GBA, in combination with
BNF. We can combine, however, GBA also with NNF. For this, we need to expand the
characteristic function for symbolic GBAs in order to form them from NNF formulas:

S h � S g1&S g2 if h � g1 � g2

S h � S g2&(S g1�S�(g1 � g2)) if h � g1 � g2

S h � S g&S�(�g) if h � 	g

S h � S g�S�(� g) if h � � g

Since our focus here is on symbolic encoding, PANDA, unlike CadenceSMV, does
not apply formula rewriting and related optimizations; rather, PANDA’s symbolic au-
tomata are created directly from the given normal form of the formula. Formula rewrit-
ing may lead to further improvement in PANDA’s performance.

424 K.Y. Rozier and M.Y. Vardi

Sloppy Encoding: A Novel Transition Form. CGH employs i�-transitions, of the form
����� ��� ���� ���. We refer to this as fussy encoding. For formulas in NNF, we can
use only-if transitions of the form ����� ��� ����� ���, which we refer to as sloppy
encoding. A similar idea was shown to be useful in the context of modal satisfiability
solving [29]. Sloppy encoding increases the level of non-determinism, yielding a looser,
less constrained encoding of symbolic automata, which in many cases results in smaller
BDDs. A side-by-side example of the di�erences between GBA and TGBA encodings
(demonstrating the sloppy transition form) for formula f � ((�a)&(b � (!a))) is given
in Figures 1-2.

������ ��	

������#��� 22 2� 33 8 22� 3� 242� 3333��

��
 ��� ������
 ��� ��� ���� ���� 	
 ���

� � ������
�

� � ������
�

��
 ��� ��� ��� �! ��� ���� ����#�� 2 !3 	

����	(� 6���	���" �� 1 �1
1 %1 ��)��

��� �� � ������
�

��� ������+�0�� � ������
�

��)*+�

������ -�� 	
 ��� ���������	(�	� �#
��	�
��

-�� �����+�������+�0�� �.

2��� ��3 8 2-������+�0��3�

-������+�0�� �.

242� 33 5 2� 8 ��� ������+�0��3�

0
�+- ��� �	
� ��� ���� 2 !3 	
 ����	(���

2 ��� �� ': 2
�,�2�3 3 3 8

2 ��� ������+�0�� ': 2
�,�2-������+�0��3 33

)�*
+�-- 24-������+�0�� 5 242� 333

-7�$ 42-�� �����+�������+�0�� 8 �% 0
��3

Fig. 1. NNF�sloppy�GBA encoding for
CadenceSMV

������ ��	

������#��� 22 2� 338 22� 3� 242� 3333��

��
 ��� ������
 ��� ��� ���� ���� 	
 ���

� � ������
�

� � ������
�

��
 ��� ��� ��� ���� ������ 	
 ����	(���

���� �����+�������+�0�� � ������
�

7������+�0��� ������
�

��������+�0�� � ������
�

��)*+�

������ -�� 	
 ��� ���������	(�	� �#
��	�
��

-�� �����+�������+�0�� �.

2-� ��3 8 2��������+�0��3�

-� �� �. 2
�,�2�33�

-������+�0�� �. 2 2242� 333

5 2�8 7������+�0�� 8 2
�,�2��������+�0��3333�

0
�+- ��� �	
� ��� ���� ������ 	
 ����	(���

2 ���� �����+�������+�0�� ':

2-�� �����+�������+�0��3 3 8

2 ��������+�0�� ': 2-������+�0��3 3

)�*
+�-- 247������+�0��3

-7�$ 42���� �����+�������+�0�� 8 �% 0
��3

Fig. 2. NNF�sloppy�TGBA encoding for Ca-
denceSMV

A New Way of Choosing BDD Variable Orders. Symbolic model checkers search for
a fair trace in the model-automaton product using a BDD-based fixpoint algorithm, a
process whose eÆcacy is highly sensitive to variable order [5]. Finding an optimal BDD
variable order is NP-hard, and good heuristics for variable ordering are crucial.

Recall that we define state variables in the symbolic model for only certain subfor-
mulas: p � AP, EL g, and P g for some subformulas g. We form the variable graph by
identifying nodes in the input-formula parse tree that correspond to the primary opera-
tors of those subformulas. Since we declare di�erent variables for the GBA and TGBA
encodings, the variable graph for a formula f may vary depending on the automaton
form we choose. Figure 3 displays the GBA and TGBA variable graphs for an example
formula, overlaid on the parse tree for this formula. We connect each variable-labeled
vertex to its closest variable-labeled vertex descendant(s), skipping over vertices in the
parse tree that do not correspond to state variables in our automaton construction. We
create one node per subformula variable, irrespective of the number of occurrences of
the subformula; for example, we create only one node for the proposition a in Figure 3.

We implement five variable ordering schemes, all of which take the variable graph
as input. We compare these to the default heuristic of CadenceSMV. The naı̈ve variable
order is formed directly from a pre-order, depth-first traversal of the variable graph. We

A Multi-encoding Approach for LTL Symbolic Satisfiability Checking 425

(a) GBA variable graph (b) TGBA variable graph

Fig. 3. Graphs in (a) and (b) were both formed from the parse tree for f � ((�a) � (b � �a))

derive four additional variable-ordering heuristics by repurposing node-ordering algo-
rithms designed for graph triangulation [26].1 We use two variants of a lexicographic
breadth-first search algorithm: variants perfect (�� !) and minimal (�� "). �� ! labels
each vertex in the variable graph with its already-ordered neighbors; the unordered
vertex with the lexicographic largest label is selected next in the variable order. �� "
operates similarly, but labels unordered vertices with both their neighbors and also all
vertices that can be reached by a path of unordered vertices with smaller labels. The
maximum-cardinality search (���) variable ordering scheme di�ers in the vertex selec-
tion criterion, selecting the vertex in the variable graph adjacent to the highest number
of already ordered vertices next. We seed MCS with an initial vertex, chosen either to
have the maximum ("#$%"() or minimum ("#$%"&') degree.

5 Experimental Methodology

Test Methods. Each test was performed in two steps. First, we applied our symbolic
encodings to the input formula. Second, each symbolic automaton and variable order
file pair was checked by CadenceSMV. Since encoding time is minimal and heavily
dominated by model-analysis time (the time to check the model for nonemptiness to
determine LTL satisfiability) we focus exclusively on the latter here.

Platform. We ran all tests on Shared University Grid at Rice (SUG@R), an Intel Xeon
compute cluster.2 SUG@R is comprised of 134 SunFire x4150 nodes, each with two
quad-core Intel Xeon processors running at 2.83GHz and 16GB of RAM per processor.
The OS is Red Hat Enterprise 5 Linux, 2.6.18 kernel. Each test was run with exclusive
access to one node. Times were measured using the Unix
 !
 command.

Input Formulas. We employed a widely-used [7, 14, 23, 35] collection of benchmark
formulas, established by [35]. All encodings were tested using three types of scalable
formulas: random, counter, and pattern. Definitions of these formulas are repeated for
convenience in Appendix B. Our test set includes 4 counter and 9 pattern formula varia-
tions, each of which scales to a large number of variables, and 60,000 random formulas.

Correctness. In addition to proving the correctness of our algorithm, the correctness
of our implementation was established by comparing for every formula in our large
benchmark suite, the results (either SAT or UNSAT) returned by all encodings studied
here, as well as the results returned by CadenceSMV for checking the same formula as
an LTL specification for the universal model. We never encountered an inconsistency.

1 Graph triangulation implementation coded by the Kavraki Lab at Rice University.
2 ���������������������������

http://rcsg.rice.edu/sugar/

426 K.Y. Rozier and M.Y. Vardi

6 Experimental Results

Our experiments demonstrate that the novel encoding methods we have introduced sig-
nificantly improve the translation of LTL formulas to symbolic automata, as measured
in time to check the resulting automata for nonemptiness and the size of the state space
we can check. No single encoding, however, consistently dominates for all types of for-
mulas. Instead, we find that di�erent encodings are better suited to di�erent formulas.
Therefore, we recommend using a multi-encoding approach, a variant of the multi-
engine approach [33], of running all encodings in parallel and terminating when the
first job completes. We call our tool PANDA for “Portfolio Approach to Navigate the
Design of Automata.”

Seven configurations are not competitive. While we can not predict the best encodings,
we can reliably predict the worst. The following encodings were never optimal for any
formulas in our test set. Thus, out of our 30 possible encodings, we rule out these seven:
– BNF�fussy�GBA��� " (essentially CGH with �� ")
– NNF�fussy�GBA��� "
– NNF�fussy�TGBA��� "
– NNF�sloppy�GBA��� "

– NNF�fussy�TGBA�"#$%"(
– NNF�sloppy�TGBA�"#$%"(
– NNF�sloppy�TGBA�"#$%"&'

NNF is the best normal form, most (but not all) of the time. NNF encodings were
always better for all counter and pattern formulas; see, for example, Figure 4. Figure 5
demonstrates the use of both normal forms in the optimal encodings chosen by PANDA
for random formulas. BNF encodings were occasionally significantly better than NNF;
the solid point in Figure 5 corresponds to a formula for which the best BNF encoding
was more than four times faster than the best NNF encoding. NNF was best much more
often than BNF, likely because using NNF has the added benefit that it allows us to
employ our sloppy encoding and TGBAs, which often carry their own performance
advantages.

No automaton form is best. Our TGBA encodings dominated for R2, S , and U pattern
formulas and both types of 3-variable counter formulas. For instance, the log-scale plot
in Figure 6 shows that PANDA’s median model analysis time for R2 pattern formulas
grows subexponentially as a function of the number of variables, while CadenceSMV’s
median model analysis time for the same formulas grows exponentially. (The best of
PANDA’s GBA encodings is also graphed for comparison.) GBA encodings are better
for other pattern formulas, both types of 2-variable counter formulas, and the majority
of random formulas; Figure 7 demonstrates this trend for 180 length random formulas.

No transition form is best. Sloppy is the best transition form for all pattern formulas.
For instance, the log-scale plot of Figure 8 illustrates that PANDA’s median model anal-
ysis time for U pattern formulas grows subexponentially as a function of the number
of variables, while CadenceSMV’s median model analysis time for the same formulas
grows exponentially. Fussy encoding is better for all counter formulas. The best encod-
ings of random formulas were split between fussy and sloppy. Figure 9 demonstrates
this trend for 140 length random formulas.

A Multi-encoding Approach for LTL Symbolic Satisfiability Checking 427

Number of Variables

M
ed

ia
n

M
o

de
lA

na
ly

si
s

T
im

e
(s

ec
on

ds
)

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

PANDA-bnf
CadenceSMV
PANDA-nnf

R Pattern Formulas

PANDA-bnf

PANDA-nnf

CadenceSMV

Fig. 4. Median model analysis time for
R(n) �

�n
i�1 (�� pi � ��pi�1) for PANDA

NNF�sloppy�GBA���)*��, CadenceSMV, and
the best BNF encoding

BNF Encodings Model Analysis Times (sec)

N
N

F
E

n
co

di
ng

s
M

od
el

A
na

ly
si

s
T

im
es

(s
ec

)

10-1 100 101 102 10310-1

100

101

102

103

Best BNF encoding vs best NNF encoding:
3-variable, 160 length random formulas

Fig. 5. Best encodings of 500 3-variable, 160
length random formulas. Points fall below the
diagonal when NNF is better.

Number of Variables

M
ed

ia
n

M
o

de
lA

na
ly

si
s

T
im

e
(s

ec
on

ds
)

0 100 200 300 400 500 600 700 800 900 1000

10-2

10-1

100

101

102

103

PANDA-tgba
PANDA-gba
CadenceSMV

R2 Pattern Formulas

PANDA-tgba

CadenceSMV

PANDA-gba

Fig. 6. R2(n) � (��(p1 � p2) � � � �) � pn.
PANDA’s NNF�sloppy�TGBA��� ! encoding
scales better than the best GBA encod-
ing, NNF�sloppy�GBA�naı̈ve, and exponen-
tially better than CadenceSMV.

GBA Encodings Model Analysis Times (sec)

T
G

B
A

E
nc

od
in

gs
M

od
el

A
na

ly
si

s
T

im
es

(s
ec

)

100 101 102 103100

101

102

103

Best TGBA encoding vs best GBA encoding:
3-variable, 180 length random formulas

Fig. 7. Best encodings of 500 3-variable, 180
length random formulas

No variable order is best, but ��
� is worst. The best encodings for our benchmark
formula set were split between five variable orders. The naı̈ve and default orders proved
optimal for more random formulas than the other orders. Figure 10 demonstrates that
neither the naı̈ve order nor the default order is better than the other for random formulas.
The naı̈ve order was optimal for E, Q, R, U2, and S patterns. "#$%"(is optimal for 2-
and 3-variable linear counters. The �� ! variable order dominated for C1, C2, U, and
R2 pattern formulas, as well as for 2- and 3-variable counter formulas, yet it was rarely

428 K.Y. Rozier and M.Y. Vardi

Number of Variables

M
ed

ia
n

M
o

de
lA

na
ly

si
s

T
im

e
(s

ec
on

ds
)

200 400 600 800 1000
10-2

10-1

100

101

102

103

PANDA-sloppy
CadenceSMV

U Pattern Formulas
CadenceSMV

PANDA-sloppy

Fig. 8. U(n) � (� � � (p1 � p2) � � � �) � pn.
PANDA’s NNF�sloppy�TGBA��� ! scalables
exponentially better than CadenceSMV.

Fussy Encodings Model Analysis Times (sec)

S
lo

pp
y

E
nc

od
in

gs
M

od
el

A
na

ly
si

s
T

im
es

(s
ec

)

10-2 10-1 100 101 102 10310-2

10-1

100

101

102

103

Best fussy encoding vs best sloppy encoding:
3-variable, 140 length random formulas

Fig. 9. Best encodings of 500 3-variable, 140
length random formulas. Points fall below the
diagonal when sloppy encoding is best.

Naive Encodings Model Analysis Times (sec)

D
ef

au
lt

E
nc

od
in

gs
M

o
de

lA
na

ly
si

s
T

im
es

(s
ec

)

100 101 102 103 104100

101

102

103

104

Best encodings with naive vs default variable orders
3-variable, 195 length random formulas

Fig. 10. Best encodings of 500 3-variable, 195
length random formulas. Points fall above the
diagonal when naı̈ve variable order is best.

M
ax

im
u

m
S

ta
te

S
p

ac
e

A
n

al
yz

ed

0

100000

200000

300000

400000

500000

CadenceSMV

PANDA-lexp

3-variable Counter Formulas

Fig. 11. Maximum states analyzed before
space-out. CadenceSMV quits at 10240 states.
PANDA’s NNF�fussy�TGBA��� ! scales to
491520 states.

best for random formulas. Figure 11 demonstrates the marked di�erence in scalability
provided by using the �� ! order over running CadenceSMV on 3-variable counter
formulas; we can analyze much larger models with PANDA using �� ! than with the
native CadenceSMV encoding before memory-out. We never found the �� " order to
be the single best encoding for any formula.

A formula class typically has a best encoding, but predictions are diÆcult. While each
of our pattern and counter formulas had a best (or a pair of best) encodings, which
remained consistent as we scaled the formulas, we found that we could not reliably
predict the best encoding using any statistics gathered from parsing, such as operator

A Multi-encoding Approach for LTL Symbolic Satisfiability Checking 429

counts or ratios. For example, we found that the best encoding for a pattern formula
was not necessarily the best for a randomly-generated formula comprised of the same
temporal operators. We surmise that the best encoding is tied to the structure of the
formula on a deeper level; developing an accurate heuristic is left to future work.

There is no single best encoding; a multi-encoding approach is clearly superior. We
implement a novel multi-encoding approach: our new PANDA tool creates several en-
codings of a formula and uses a symbolic model checker to check them for satisfiability
in parallel, terminating when the first check completes. Our experimental data supports
this multi-encoding approach. Figures 4, 6, and 8 highlight the significant decrease in
CadenceSMV model analysis time for R, R2, and U pattern formulas, while Figure 11
demonstrates increased scalability in terms of state space using counter formulas. Al-
together, we demonstrate that a multi-encoding approach is dramatically more scalable
than the current state-of-the-art. The increase in scalability is dependant on the spe-
cific formula, though for some formulas PANDA’s model analysis time is exponentially
better than CadenceSMV’s model analysis time for the same class of formulas.

7 Discussion

This paper brought attention to the issue of scalable construction of symbolic automata
for LTL formulas in the context of LTL satisfiability checking. We defined novel en-
codings and novel BDD variable orders for accomplishing this task. We explored the
impact of these encodings, comprised of combinations of normal forms, automaton
forms, transition forms, and combined with variable orders. We showed that each can
have a significant impact on performance. At the same time, we showed that no single
encoding outperforms all others and showed that a multi-encoding approach yields the
best result, consistently outperforming the native translation of CadenceSMV.

We do not claim to have exhaustively covered the space of possible encodings of
symbolic automata. Several papers on the automata-theoretic approach to LTL describe
approaches that could be turned into alternative encodings of symbolic automata, cf.
[4, 18, 20, 37]. The advantage of the multi-encoding approach we introduced here is
its extensibility; adding additional encodings is straightforward. The multi-encoding
approach can also be combined with di�erent back ends. In this paper we used Ca-
denceSMV as a BDD-based back end; using another symbolic back end (cf. [14]) or
a SAT-based back end (cf. [3]) would be an alternative approach, as both BDD-based
and SAT-based back ends require symbolic automata. Since LTL serves as the basis for
industrial languages such as PSL and SVA, the encoding techniques studied here may
also serve as the basis for novel encodings of such languages, cf. [8, 9].

In this paper we examined our novel symbolic encodings of LTL in the context of sat-
isfiability checking. An important di�erence between satisfiability checking and model
checking is that in the former we expect to have to handle much larger formulas, since
we need to consider the conjunction of properties. Also, in model checking the size of
the symbolic automata can be dwarfed by the size of the model under verification. Thus,
the issue of symbolic encoding of automata in the context of model checking deserves
a separate investigation.

430 K.Y. Rozier and M.Y. Vardi

References

1. Amla, N., Du, X., Kuehlmann, A., Kurshan, R.P., McMillan, K.L.: An analysis of SAT-based
model checking techniques in an industrial environment. In: Borrione, D., Paul, W. (eds.)
CHARME 2005. LNCS, vol. 3725, pp. 254–268. Springer, Heidelberg (2005)

2. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: EÆcient detection of vacuity in ACTL formu-
las. FMSD 18(2), 141–162 (2001)

3. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. In: FMICS,
vol. 66(2) (2002)

4. Bloem, R., Cimatti, A., Pill, I., Roveri, M.: Symbolic implementation of alternating au-
tomata. IJFCS 18(4), 727–743 (2007)

5. Bryant, R.E.: Graph-based algorithms for Boolean-function manipulation. IEEE TC C-35(8),
677–691 (1986)

6. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. Inform. and Computation 98(2), 142–170 (1992)

7. Cichon, J., Czubak, A., Jasinski, A.: Minimal Büchi automata for certain classes of LTL
formulas. In: DepCoS, pp. 17–24 (2009)

8. Cimatti, A., Roveri, M., Semprini, S., Tonetta, S.: From PSL to NBA: A modular symbolic
encoding. In: FMCAD (2006)

9. Cimatti, A., Roveri, M., Tonetta, S.: Syntactic optimizations for PSL verification. In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 505–518. Springer, Heidelberg
(2007)

10. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking. Formal
Methods in System Design 10(1), 47–71 (1997)

11. Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory eÆcient algorithms for
the verification of temporal properties. In: Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS,
vol. 531, pp. 233–242. Springer, Heidelberg (1991)

12. Couvreur, J.-M.: On-the-fly verification of Linear Temporal Logic. In: Woodcock, J.C.P.,
Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer, Heidelberg (1999)

13. Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved Automata Generation for Linear Tempo-
ral Logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 249–260.
Springer, Heidelberg (1999)

14. De Wulf, M., Doyen, L., Maquet, N., Raskin, J.-F.: Antichains: Alternative algorithms for
LTL satisfiability and model-checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 63–77. Springer, Heidelberg (2008)

15. Duret-Lutz, A., Poitrenaud, D.: SPOT: An extensible model checking library using
Transition-Based Generalized Büchi Automata. In: MASCOTS, pp. 76–83 (2004)

16. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer Science,
vol. B, ch. 16, pp. 997–1072. Elsevier, MIT Press (1990)

17. Ferrara, A., Pan, G., Vardi, M.Y.: Treewidth in verification: Local vs. Global. In: Sutcli�e,
G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 489–503. Springer, Hei-
delberg (2005)

18. Fisher, M.: A normal form for temporal logics and its applications in theorem-proving and
execution. J. Log. Comput. 7(4), 429–456 (1997)

19. Fisman, D., Kupferman, O., Sheinvald-Faragy, S., Vardi, M.Y.: A framework for inherent
vacuity. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394, pp. 7–22. Springer,
Heidelberg (2009)

20. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H.,
Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)

A Multi-encoding Approach for LTL Symbolic Satisfiability Checking 431

21. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of
Linear Temporal Logic. In: PSTV, pp. 3–18. Chapman and Hall, Boca Raton (1995)

22. Giannakopoulou, D., Lerda, F.: From states to transitions: Improving translation of LTL for-
mulae to Büchi automata. In: FORTE (November 2002)

23. Goranko, V., Kyrilov, A., Shkatov, D.: Tableau tool for testing satisfiability in LTL: Imple-
mentation and experimental analysis. ENTCS 262, 113–125 (2010)

24. Habibi, A., Tahar, S.: Design for verification of SystemC transaction level models. In: De-
sign, Automation and Test in Europe, pp. 560–565. IEEE, Los Alamitos (2005)

25. Kesten, Y., Manna, Z., McGuire, H., Pnueli, A.: A decision algorithm for full propositional
temporal logic. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 97–109. Springer,
Heidelberg (1993)

26. Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.P.M.: Treewidth: Computational experi-
ments. ZIB-Report 01–38, ZIB (2001)

27. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. STTT 4(2),
224–233 (2003)

28. Merz, S., Sezgin, A.: Emptiness of Linear Weak Alternating Automata. Technical report,
LORIA (December 2003)

29. Pan, G., Sattler, U., Vardi, M.Y.: BDD-based decision procedures for K. In: Voronkov, A.
(ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 16–30. Springer, Heidelberg (2002)

30. Pill, I., Semprini, S., Cavada, R., Roveri, M., Bloem, R., Cimatti, A.: Formal analysis of
hardware requirements. In: DAC, pp. 821–826. ACM, New York (2006)

31. Pnueli, A.: The temporal logic of programs. In: IEEE FOCS, pp. 46–57 (1977)
32. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190 (1989)
33. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified Boolean formu-

las. Constraints 14(1), 80–116 (2009)
34. Roveri, M.: Novel techniques for property assurance. Technical report, PROSYD deliverable

1.2�2 (2004)
35. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. In: Bošnački, D., Edelkamp, S. (eds.)

SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007)
36. Ruah, S., Fedeli, A., Eisner, C., Moulin, M.: Property-driven specification of VLSI design.

Technical report, PROSYD deliverable 1.1�1 (2005)
37. Schneider, K.: Improving automata generation for Linear Temporal Logic by considering the

automaton hierarchy. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI),
vol. 2250, pp. 39–54. Springer, Heidelberg (2001)

38. Sebastiani, R., Tonetta, S.: “More deterministic” vs. “smaller” Büchi automata for eÆcient
LTL model checking. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp.
126–140. Springer, Heidelberg (2003)

39. Sistla, A.P., Clarke, E.M.: The complexity of Propositional Linear Temporal Logic. J.
ACM 32, 733–749 (1985)

40. Somenzi, F., Bloem, R.: EÆcient Büchi automata from LTL formulae. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)

41. Thirioux, X.: Simple and eÆcient translation from LTL formulas to Büchi automata.
ENTCS 66(2), 145–159 (2002)

42. Vardi, M.Y.: Automata-theoretic model checking revisited. In: Cook, B., Podelski, A. (eds.)
VMCAI 2007. LNCS, vol. 4349, pp. 137–150. Springer, Heidelberg (2007)

43. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.
In: LICS, Cambridge, pp. 332–344 (June 1986)

44. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computa-
tion 115(1), 1–37 (1994)

On Combining State Space Reductions with Global
Fairness Assumptions�

Shao Jie Zhang1, Jun Sun2, Jun Pang3, Yang Liu1, and Jin Song Dong1

1 National University of Singapore
{shaojiezhang@,liuyang@comp.,dongjs@comp.}nus.edu.sg

2 Singapore University of Technology and Design
sunjun@sutd.edu.sg

3 University of Luxembourg
jun.pang@uni.lu

Abstract. Model checking has established itself as an effective system analysis
method, as it is capable of proving/dis-proving properties automatically. Its appli-
cation to practical systems is however limited by state space explosion. Among
effective state reduction techniques are symmetry reduction and partial order re-
duction. Global fairness often plays a vital role in designing self-stabilizing pop-
ulation protocols. It is known that combining fairness and symmetry reduction
is nontrivial. In this work, we first show that global fairness, unlike weak/strong
fairness, can be combined with symmetry reduction. We extend the PAT model
checker with the technique and demonstrate its usability by verifying recently
proposed population protocols. Second, we show that partial order reduction is
not property-preserving with global fairness.

1 Introduction

In the area of system verification and model checking, liveness means something good
must eventually happen. A counterexample to a liveness property is typically a loop (or
a deadlock state which can be viewed as a trivial loop) during which good things never
occur. Fairness, which is concerned with a fair resolution of non-determinism, is often
necessary and important to prove liveness properties. Fairness is an abstraction of the
fair scheduler in a multi-threaded programming environment or the relative speed of the
processors in distributed systems. Without fairness, verification of liveness properties
often produces unrealistic infinite system executions during which one process or event
is unfairly favored. It is important to systematically rule out those unfair counterexam-
ples so as to identify real bugs.

The population protocol model has recently emerged as an elegant computation
paradigm for describing mobile ad hoc networks [2]. A number of population proto-
cols have been proposed and studied [2,16]. Fairness plays an important role in these
protocols. For instance, it was shown that the self-stabilizing population protocols for
the complete network graphs only work under weak fairness, whereas the algorithm

� This research was partially supported by a grant “SRG ISTD 2010 001” from Singapore Uni-
versity of Technology and Design.

M. Butler and W. Schulte (Eds.): FM 2011, LNCS 6664, pp. 432–447, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On Combining State Space Reductions with Global Fairness Assumptions 433

for network rings only works under global fairness [14]. Different from weak/strong
fairness, global fairness requires that a transition (instead of an event or process) must
be infinitely often taken if infinitely often enabled. It has been further proved that with
only strong fairness or weaker, uniform self-stabilizing leader election in rings is im-
possible [14]. In order to verify (implementations of) those algorithms, model checking
techniques must take the respective fairness constraints into account.

In our previous work [27], we developed a unified approach to model checking con-
current systems with a variety of fairness constraints. It was later applied to recently
proposed population protocols [19] and previously unknown bugs are detected success-
fully. Nonetheless, it is limited by the state space explosion problem, like any model
checking algorithm. Previous work has identified and solved the problem combining
weak/strong fairness with state space reduction techniques like symmetry reduction [12]
and partial order reduction [6]. In this work, we examine a combination of model check-
ing with global fairness with symmetry reduction and partial order reduction. The con-
tributions are stated below:

First, we investigate the problem of model checking with global fairness and sym-
metry reduction. Symmetry reduction is a natural choice to population protocols, or
network protocols, which in general often contain many behaviorally similar or iden-
tical network nodes. Symmetry reduction has been investigated by many researchers
for many years [8,11,3]. In [12,15], it has been shown that combining weak/strong fair-
ness with symmetry reduction is non-trivial. In this paper, we prove that different from
weak/strong fairness, symmetry reduction and global fairness can be integrated with-
out extra effort. Adding symmetry reduction slightly changes the algorithm for model
checking with global fairness. We present the combined reduction algorithm based on
Tarjan’s strongly connected component algorithm [29].We extend our home-grown PAT
model checker with symmetry reduction and show its scalability by verifying recently
proposed population protocols.

Second, partial order reduction is an effective state reduction technique for concur-
rent systems with independent transitions. It is shown that partial order reduction pre-
serves the behaviors with weak fairness, but not with strong fairness [22,6]. In this
paper, we examine the combination of partial order reduction and global fairness, and
show that partial order reduction is not property preserving with global fairness.

2 Preliminaries

We present our work in the setting of Labeled Kripke structures (LKS) [7].

Definition 1 (LKS). An LKS is a 6-tuple L = (S , init , Σ,→,AP ,L) where: S is a
finite set of states; init ∈ S is the initial state; Σ is a finite set of events; AP is a finite
set of atomic state propositions;→: S × Σ × S is a transition-labeling relation with
events; L : S → 2AP is a state-labeling relation with atomic propositions.

For simplicity, we write s e→ s ′ to denote that (s , e, s ′) is a transition in →; s → s ′

to denote there exists some e in Σ such that s e→ s ′. Figure 1 shows an LKS, where
transitions are labeled with event names and states are denoted by numbers, and 0 is the
initial state. The dash-lined circles will be explained later.

434 S.J. Zhang et al.

0

3

4

512

x=1;y=1

x=0;y=0

x=1; y=2

a
c e

x=1;y=1

x=0;y=0

x=2;y=2

c

ad

d

g
g

6

x=0;y=5

Fig. 1. Labeled Kripke system

We say that L is finite if and only if S is finite. A run of L is a finite or infinite
sequence of alternating states and events 〈s0, e0, s1, e1, · · ·〉 such that s0 = init and
si

ei→ si+1 for all i . Because fairness affects infinite not finite system behaviors, we
focus on infinite system runs in this paper. A state s is reachable if and only if there
exists a finite run that reaches s . Throughout the paper, we assume that LKSs are always
reduced, i.e., all states are reachable.

We assume properties are stated in the form of state/event linear temporal logic (SE-
LTL) formulae [7]. Given an LKS L = (S , init , Σ,→,AP ,L), an SE-LTL formula φ
can be constituted by not only atomic state propositions but also events.

φ ::= p | a | ¬φ | φ ∧ φ | Xφ | Fφ | Gφ | φUφ, where p ∈ AP and a ∈ Σ.

Definition 2. Let π = 〈s0, e0, s1, e1, · · ·〉 be a run in L and πi the suffix of π starting
at si . The path satisfaction relation is defined as follows:

– π |= p iff s is the first state of π and p ∈ L(s).
– π |= a iff a is the first event of π.
– π |= ¬φ iff π �|= φ.
– π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2.
– π |= Xφ iff π1 |= φ.
– π |= Fφ iff there exists a k ≥ 0 such that πk |= φ.
– π |= Gφ iff for all i ≥ 0 such that πi |= φ.
– π |= φ1Uφ2 iff there exists a k ≥ 0 s.t. πk |= φ2 and for all 0 ≤ j < k , πj |= φ1.

An example is G(d ⇒ F(x > 1)) where d is an event and x > 1 is an atomic propo-
sition. The formula states that event d is always followed by a run such that x > 1 is
eventually satisfied.

3 Model Checking with Fairness

A fairness constraint restricts the set of system behaviors to only those fair ones. With-
out fairness constraints, a system may behave freely as long as it starts with an initial
state and conforms to the transition relation. There are a variety of fairness constraints,
i.e., event-level or process-level weak fairness, event-level or process-level strong fair-
ness, global fairness, etc. In the following, we briefly review weak and strong fairness
and then focus on global fairness. For simplicity, we focus on event-level fairness.

On Combining State Space Reductions with Global Fairness Assumptions 435

3.1 Fairness

Event-level weak fairness [17] states that if an event becomes enabled forever after
some steps, then it must be engaged infinitely often. An equivalent formulation is that
every run should contain infinitely many positions at which the event is disabled or
has occurred. Given the LKS presented in Figure 1, the run 〈0, c, 1, g〉ω where the
superscript ω indicates an infinite number of repetitions does not satisfy event-level
weak fairness because event d is always enabled (i.e., at both state 0 and 1) but never
occurs during the run. The run which loops through state 3, 4 and 5 satisfies weak
fairness as no event is enabled forever. Event-level strong fairness states that if an
event is infinitely often enabled, it must infinitely often occur. This type of fairness
is particularly useful in the analysis of systems that use semaphores, synchronous com-
munication, and other special coordination primitives. It has been identified by differ-
ent researchers [18,14,24]. Given the LKS presented in Figure 1, the run which loops
through state 3, 4 and 5 does not satisfy strong fairness because event g is infinitely
often enabled but never occurs. It can be shown that strong fairness implies weak fair-
ness. Model checking with weak or strong fairness, or combing weak/strong fairness
with state space reduction techniques has been well investigated [10,25,26,27,28].

Definition 3 (Global fairness). Let E = 〈s0, e0, s1, e1, · · ·〉 be a run of an LKS L. E
satisfies global fairness if and only if, for every s , e, s ′ such that s e→ s ′, if s = si for
infinitely many i , then si = s and ei = e and si+1 = s ′ for infinitely many i .

Global fairness1 was proposed by Fischer and Jiang in [14]. It is in fact a restricted form
of extreme fairness proposed by Pnueli [23]. Global fairness states that if a step2 (from s
to s ′ by engaging in event e) can be taken infinitely often, then it must actually be taken
infinitely often. Many population protocols rely on global fairness [2,14]. Compared
to event-level strong fairness, global fairness requires that an infinitely enabled event
must be taken infinitely often in all contexts, whereas event-level strong fairness only
requires the enabled event to be taken in one context. Thus, global fairness is stronger
than strong fairness. Their difference is illustrated in the following figure.

(a)

a

b

a

b
01 2

a

b
01 2

c

a
(b)

Under event-level strong fairness, state 2 in (a) may never be visited because all events
occur infinitely often if the left loop is taken infinitely. With global fairness, all states in
(a) must be visited infinitely often. Their difference when there is non-determinism is
illustrated in (b). Both transitions labeled a must be taken infinitely with global fairness,
which is not necessary with event-level strong or weak fairness. It can be shown that
global fairness coincides event-level strong fairness when every transition is labeled
with a different event. This observation implies that we can uniquely label all transitions

1 In [14], it is called strong global fairness and defined for unlabeled transition systems. We
slightly changed it so as to suit the setting of LKS.

2 Step and transition are used interchangeably in this paper.

436 S.J. Zhang et al.

with different events and then apply model checking algorithm for strong fairness to
deal with global fairness. We show however, model checking with global fairness can be
solved using a more efficient approach. In contrast to nontrivial combination of strong
fairness and symmetry reduction [12], we show that using our approach model checking
with global fairness can be straightforwardly combined with symmetry reduction.

3.2 Model Checking with Fairness

Given an LKS L and a liveness property φ, model checking is to search for a run of L
which fails φ. In automata-based model checking, the negation of φ is translated to an
equivalent Büchi automaton B. Model checking with fairness is to search for a system
run which is accepting by B whilst satisfying the fairness constraints. In the following,
we write L � φ to mean that L satisfies the property (without fairness assumption) and
write L �gf φ to mean that L satisfies the property with global fairness, i.e., every run
of L which satisfies global fairness also satisfies φ. We define a loop in the product of
L and B is a sequence of alternating states/events:

〈(s0, b0), e0, (s1, b1), e1, · · · , (sn−1, bn−1), en , (sn , bn)〉ω

such that for all 0 ≤ i ≤ n , si is a state of L, bi is a state of B, (s0, b0) is reachable,
sn = s0 and bn = b0 . A loop is accepting if and only if there exists at least one
accepting state of B in 〈b0, b1, · · · , bn〉. Furthermore, we define the following sets for a
loop l whose projection on L is lL = 〈s0, e0, s1, e1, · · · , sn−1, en−1, s0〉.

onceStep(l) =
⋃n−1

k=0 enabled(sk)
engagedStep(l) =

⋃n−1
k=0 engaged(sk , l)

enabled(s) = {(s , e, s ′) | s e→ s ′}
engaged(sk , l) = {(sk , ek , sk+1) | 〈sk , ek , sk+1〉 is a subsequence of lL}

Intuitively, onceStep(l) is the set of steps which are enabled at least once during the
loop, and engagedStep(l) is the set of steps which are engaged during the loop. By
definition, the proposition follows immediately.

Proposition 1. Let E = m(lω) be a run in L where m is a finite run. E satisfies global
fairness if and only if onceStep(l) = engagedStep(l). �

3.3 Algorithm for Model Checking with Global Fairness

Model checking with fairness can often be reduced to search for strongly connected
components (SCC). In graph theory, an SCC is defined as a maximum subgraph such
that every pair of vertices in the subgraph is connected by a path in the subgraph. A
terminal SCC is an SCC such that all of its edges lead to vertices contained in the
SCC. Naturally, an LKS can be viewed as a directed graph and therefore the concept
of SCC can be extended to LKS. For instance, the LKS presented in Figure 1 contains
four SCCs, indicated by dash-lined circles. Among the four, the one containing state
2 is terminal, whereas the one containing state 0 and 1 is not. For simplicity, we refer
to a set of states of an LKS as an SCC if the subgraph containing the states and the

On Combining State Space Reductions with Global Fairness Assumptions 437

transitions among them forms an SCC. We write that ‘an SCC fails a liveness property
φ’ as equivalent to that a run which reaches any state in the SCC and infinitely often
traverses through all states and transitions of the SCC fails φ. For instance, the SCC
containing state 2 fails the property G(d ⇒ F(x > 1)).

In our previous work [27], we proved that the problem of model checking with global
fairness can be reduced to the problem of searching for a terminal SCC which fails the
given property. Formally, it can be stated as the following theorem.

Theorem 1. Let L be an LKS; φ be a property. L �gf φ if and only if there does not
exist a terminal SCC S in L such that S fails φ. �

The theorem implies that we can use a simple procedure to find a counterexample by
enumerating all terminal SCCs and then testing each one of them. The approach imple-
mented in the PAT model checker is based on Tarjan’s algorithm for on-the-fly identifi-
cation of SCCs. Its complexity is linear in the number of edges in the graph. Given the
LKS presented in Figure 1 with the property G(d ⇒ F(x > 1)), the SCC containing
state 2 is identified as a counterexample with global fairness. Note that the SCC con-
taining state 3, 4, and 5 is a counterexample only with no fairness or weak fairness. It
is not a counterexample with global fairness because it does not satisfy global fairness,
i.e., the step from state 5 to 6 by performing g is enabled infinitely often but never
occurs.

4 Model Checking with Symmetry Reduction

Distributed/concurrent systems, especially communicating protocols, often exhibit con-
siderable symmetry. Symmetry reduction aims to explore the symmetry in order to re-
duce state space. Intuitively, the idea is that states which are symmetric exhibit similar
or even identical behaviors and therefore exploring one representative would suffice in
proving/dis-proving a property. In the following, we briefly introduce symmetry reduc-
tion (refer to Chapter 14 of [9] for details), using the following running example.

Example 1. In [14], a self-stabilizing leader election protocol is proposed for complete
networks. The system contains multiple network nodes which interact with each other
following a number of simple rules. The system is modeled in the following form.

System = Controller ‖ Node(0) ‖ Node(1) ‖ · · · ‖ Node(N)

where Controller is a controlling process distinguished from the network nodes;
Node(i) models a network node with a unique identity i ; ‖ denotes parallel compo-
sition. A node is marked as either a leader or not. Two nodes can interact according to
the rules and start/quit being a leader. For instance, one of the rules states that if two
interacting nodes are both leaders, then one of the nodes quits being a leader. The net-
work nodes (i.e., process Node(i)) are indistinguishable in the protocol and therefore
they are all symmetric. One essential property of the protocol is that all nodes must
eventually converge to the correct configuration. That is, eventually always there is one
and only one leader in the network, i.e., FG one leader .

438 S.J. Zhang et al.

A permutation σ on a finite set of objects is a bijection (i.e., a function that is one-to-
one and onto). For instance, a permutation of the process identities in the above example
is: σ0 = 0 �→ 1, 1 �→ 2, · · · ,N − 1 �→ N ,N �→ 0 where 0 �→ 1 reads as ‘0 maps to 1’.
A permutation group is a group of permutations. For instance, the group containing all
permutation of process identities in the leader election example is a permutation group.
Given an LKS L = (S , init , Σ,→,AP ,L), let G be a permutation group of process
identities acting on S . We first assume any event in Σ is not allowed to be permuted.
A permutation σ is said to be an automorphism of L if and only if it preserves the
transition relation and initial state. Formally, σ satisfies the following condition.

(∀ s1, s2 ∈ S ; e ∈ Σ. s1
e→ s2 ⇔ σ(s1)

e→ σ(s2)) ∧ σ(init) = init

A group T is an automorphism group of L if and only if every σ ∈ T is an automor-
phism of L. A permutation σ is said to be an invariance of an SE-LTL formula φ if and
only if σ(φ) ≡ φ where ≡ denotes logical equivalence under all propositional inter-
pretations [11]. For instance, given any permutation of process identities in the leader
election example, the truth value of proposition one leader remains the same and there-
fore the permutation is an invariance of FG one leader . A permutation σ is said to be
an invariance of L and property φ if and only if it is an automorphism of L and it is an
invariance of φ. G is an invariance group of L and φ if and only if every σ ∈ G is an
invariance of L and φ.

Given a state s ∈ S , the orbit of s is the set θ(s) = {t | ∃σ ∈ G. σ(s) = t}, i.e., the
equivalence group which contains s . From each orbit of state s , a unique representative
state rep(s) can be picked such that for all s and s ′ in the same orbit, rep(s) = rep(s ′).
Intuitively, if σ is an invariance of φ, states of the same orbit are behaviorally indistin-
guishable with respect to φ. For instance, the states of the 0-node being the only leader
and the 1-node being the only leader in the leader election protocol are indistinguish-
able to the property FG one leader . Based on this observation, an LKS can be turned
into a quotient LKS where states in the same orbit are grouped together. Formally, a
quotient LKS is defined as follows.

Definition 4. Let L = (S , init , Σ,→,AP ,L) be an LKS; G be an automorphism
group. The quotient LKS LG = (SG , initG , Σ, funG ,AP ,L) is defined as follows:

– SG = {rep(s) | s ∈ S} is the set of representative states of orbits.
– initG = {rep(init)} is the initial representative state.
– (r , e, r ′) ∈→G iff there exists r ′′ ∈ S such that r e→ r ′′and rep(r ′′) = r ′.

It has been proved [9] that if G is an invariance group of L and φ, then L satisfies φ if
and only if LG satisfies φ. Formally, it is stated as the following theorem. It is proved
by showing that the relation (s , θ(s)) is a bi-simulation relation between L and LG .

Theorem 2. Let L = (S , init , Σ,→,AP ,L) be an LKS; φ be an SE-LTL formula. If
G be an invariance group of L and φ, then L � φ if and only if LG � φ. �

5 Symmetry Reduction with Global Fairness

In the following, we prove that global fairness is orthogonal with symmetry reduction
by showing that there is a run which satisfies global fairness and fails φ in L if and only

On Combining State Space Reductions with Global Fairness Assumptions 439

if there is a run which satisfies global fairness and fails φ in LG . For convenience, we
fix that φ is an SE -LTL formula to be checked, B is the Büchi automaton constructed
by the negation of φ, L is LKS of the original system, G is invariance group of L and φ
and LG is LKS of the abstract system after applying symmetry reduction.

Lemma 1. There exists a run p = 〈s0, a0, s1, a1, · · ·〉 in L if and only if there exists a
run q = 〈r0, a0, r1, a1, · · ·〉 in LG such that ri = rep(si) for all i .

Proof. It follows from the proof of Lemma 3.1 in [11]. �

Theorem 3. There exists an accepting loop in the product of L and B which satisfies
global fairness if and only if there also exists an accepting loop in the product of LG

and B which satisfies global fairness.

Proof: (Sufficient condition). We first prove the sufficient condition. The proof is di-
vided into two parts. In the first part, we prove (1) if there exists an accepting loop l ′ in
the product of LG and B, then there exists an accepting loop l in the product of L and
B. Then we prove (2) if l ′ satisfies global fairness, so does l .

Let l ′ = 〈(r0, b0), a0, (r1, b1), a1, · · · , (rn−1, bn−1), an−1, (r0, b0)〉 be an accepting
loop. Without loss of generality we assume that b0 is an accepting state. Then there
exists in the product of LG and B a path arriving at (r0, b0). By Lemma 1 there exists
a corresponding path in the product of L and B to state (s0, b′0) where r0 = rep(s0).
Because G is the invariance group of L and φ, b′0 = b0 which is also an accepting
state. By Lemma 1 again, for l ′ there exists in the product of L and B a path p0 =
〈(s0, b0), a0, (s1, b1), a1, · · · , (sn−1, bn−1), an−1, (s1

0 , b0)〉 such that for all i in p0 we
have ri = rep(si). Notice that p0 is not necessarily a loop. Since r0 = rep(s1

0), we can
unfold l ′ again according to Lemma 1, but this time beginning at s1

0 , which will pro-
duce the path p1 = 〈(s1

0 , b0), a0, (s1
1 , b1), a1, · · · , (s1

n−1, bn−1), an−1, (s2
0 , b0)〉, and

for all i in p1 we still have ri = rep(s1
i). We can repeat this unfolding arbitrary many

times which will give us a sequence of path p0, p1, p2, · · · with the corresponding end
states (s1

0 , b0), (s2
0 , b0), (s3

0 , b0), · · · which are all accepting. As the orbit of the states
s0, s1

0 , s2
0 , · · · is finite, s i

0 = s j
0 for some i and j . Obviously, the concatenation of the

paths pi to pj−1, say l , is an accepting loop in the product of L and B.
Because l ′ satisfies global fairness, onceStep(l ′) = engagedStep(l ′). We define

a function recover such that given (s , e, s ′) ∈→G and some permutation σ ∈ G ,
recover((s , e, s ′), σ) = (t , e, t ′) such that sσ−1 = t ∧ t e→ t ′. Intuitively, recover
returns the corresponding transition of (s , e, s ′) in L with respect to a specific permu-
tation σ. For 0 ≤ m ≤ n , rm in loop l ′ corresponds to s t

m (i.e., rm = s t
mσt

m) in each
path pt (i ≤ t < j). Then

– enabled(s t
m) = recover(enabled(rm), σt

m);
– engaged(s t

m , pt) = recover(engaged(rm , l ′), σt
m).

Thus, onceStep(l) = {recover(enabled(rm), σt
m), 0 ≤ m < n , i ≤ t < j} and

engagedStep(l) = {recover(engaged(rm , pt), σt
m), 0 ≤ m < n , i ≤ t < j}.

Since onceStep(l ′) = engagedStep(l ′), onceStep(l ′) = {enabled(rm), 0 ≤ m ≤ n ,
i ≤ t < j} and engagedStep(l ′) = {engaged(rm , pt), 0 ≤ m ≤ n , i ≤ t < j}, we
have onceStep(l) = engagedStep(l).

440 S.J. Zhang et al.

(Necessary condition). Let l = 〈(s0, b0), a0, (s1, b1), a1, · · · , (sn−1, bn−1), an−1,
(s0, b0)〉 be an accepting loop in the product of L and B. There exists a path arriv-
ing at (s0, b0). Assume b0 is an accepting state in B. By Lemma 1 there exists a path
in the product of LG and B leading to state (rep(s0), b0). By Lemma 1, there exists in
the product of LG and B a corresponding loop l ′ = 〈(s0σ0, b0), a0, (s1σ1, b1), a1, · · · ,
(sn−1σn−1, bn−1), an−1, (s0σ0, b0)〉 such that σi ∈ G and rep(si) = siσi for all
0 ≤ i < n .

Because l satisfies global fairness, onceStep(l) = engagedStep(l). We define a
function twist such that given s e→ s ′, twist(s , e, s ′) = rep(s) e→G rep(s ′). Intu-
itively, twist returns the corresponding transition in LG of (s , e, s ′). For all 0 ≤ i < n ,
si in loop l corresponds to rep(si) in l ′. Then

– enabled(rep(si)) = twist(enabled(si));
– engaged(rep(si), l ′) = twist(engaged(si , l)).

Thus, onceStep(l ′) = {twist(enabled(si)), 0 ≤ i < n} and engagedStep(l ′) =
{twist(engaged(si , l ′)), 0 ≤ i < n}. Because onceStep(l) = engagedStep(l), we
have onceStep(l) = {enabled(si), 0 ≤ i < n } and engagedStep(l) = {engaged
(si , l), 0 ≤ i < n }. Thus, we have onceStep(l ′) = engagedStep(l ′). �

Note that we did not allow the events to be permuted in the definition of permutation
given at the beginning of this section, which seems too restrictive. Now we relax the def-
inition of permutation to permute states and events simultaneously. It is proved in [13]
that the new definition is equivalent to the one given before. By a simple argument, it
can be shown that Theorem 3 still holds.

Based on Theorem 3, we present a practical algorithm for searching the reduced state
space for accepting globally fair loops, based on Tarjan’s SCC algorithm. Underlin-
ing shows the differences compared with the usual algorithm for model checking with
global fairness. Assume that G is a permutation group of process identities which is an
invariance group of L and φ. Let rep be a function which, given a state, returns a unique
representative. Using function rep, we can tell whether two states are in the same orbit
or not. Note that identifying an optimal representative function rep can be non-trivial.
We adopt the automata-theoretic approach and perform the following. Firstly, a Büchi
automaton B is generated from the negation of φ. Next, the synchronous product of B
and L is computed on-the-fly. Tarjan’s SCC algorithm is used to identify SCC in the
product along the construction. Note that a state of the product is a pair (s , b) where
s is a state of L and b is a state of B. Assume that the initial state of the product is
(inits , initb) where inits is the initial state of L and initb is the initial state of B3.

The detailed algorithm is presented in Figure 2. It resembles the standard Tarjan’s
SCC algorithm [29]. Note that we use the iterative version of Tarjan’s SCC algorithm
in the practice implementation for performance reason. Three data structures are used
to identify SCCs: path is a stack containing states along a path from the initial state
to the current one; index and lowlink are hash tables which assign two numbers to a
state. A state is a root of an SCC if and only if the two numbers are equivalent. To
apply symmetry reduction, instead of working with concrete states, Tarjan’s algorithm

3 For simplicity, we assume there is only one initial state in B.

On Combining State Space Reductions with Global Fairness Assumptions 441

is applied to representatives of orbits. For instance, path contains only rep(v) (line
10) and lowlink and index map rep(v) to numbers (line 7 and 8). Whenever an SCC
is identified (line 17), we check whether the SCC is terminal in L and accepting. If
it is, then we prove existence of at least one counterexample. We skip the details on
generating a concrete counterexample. Note that an SCC is terminal in L if and only
if, for every state (s , b) in the SCC, if s → s ′, then there exists (s ′, b′) in the SCC.
An SCC is accepting if and only if it contains a state (s , b) such that b is an accepting
state in B. The algorithm terminates when all states have been checked. The correctness
of the algorithm follows from the theorems presented in previous sections. It is always
terminating because the number of un-explored states are monotonically decreasing and
the number of states are finite. Its complexity is linear in the edges of transitions in the
product of L and B.

The following claims establish the correctness of the algorithm.

Lemma 2. In the product of L (resp. LG) and B, there exists an accepting loop which
satisfies global fairness if and only if there exists an accepting SCC which is also a
terminal SCC in L (resp.LG).

Proof: (Necessary Condition). Suppose l is an accepting loop which satisfies global
fairness. so onceStep(l) = engagedStep(l). The states in l forms a strongly connected
subgraph S in the product and S is a terminal SCC inL. Let S ′ be the SCC that contains
the states in S . Suppose l ′ be the loop which traverses all transitions in S . Because S
is a terminal SCC in L, onceStep(l ′) = engagedStep(l ′) = onceStep(l). So S ′ is also
a terminal SCC in L. On the other hand, because l is accepting, there is an accepting
state in S ′.

(Sufficient Condition). Suppose S is an accepting SCC in the product of L and B, and
it is a terminal SCC in L. Let l be the loop which traverses all transitions in S . We get
onceStep(l) = engagedStep(l). so l is a globally fair loop. Since there is an accepting
state in l , l is an accepting loop which satisfies global fairness.

Using same argument one can show the lemma holds for product of LG and B. �

Theorem 4. Let φ be an SE-LTL formula. If G is an invariance group of L and φ, then
L �gf φ if and only if LG �gf φ.

Proof. By Theorem 1, L ��gf φ if and only if there exists an accepting SCC in the
product of L and B which is also a terminal SCC in L. Similarly, LG ��gf φ if and only
if there exists an accepting SCC in the product of LG and B which is also a terminal
SCC in LG . By Theorem 3 and Lemma 2, there exists an accepting SCC S such that S
is a terminal SCC in L if and only if there exists an accepting SCC S ′ such that S ′ is a
terminal SCC in LG , which proves the theorem. �

6 Partial Order Reduction with Global Fairness

In this section, we show that partial order reduction is not property-preserving with
global fairness, which means that partial order reduction cannot be applied in our
setting.

442 S.J. Zhang et al.

1. int counter := 0;
2. stack path := an empty stack;
3. hashtable index := an empty hash table;
4. hashtable lowlink := an empty hash table;
5. TarjanModelChecking((inits , initb));

6. procedure TarjanModelChecking(v)
7. index [rep(v)] := counter ;

8. lowlink [rep(v)] := counter ;

9. counter := counter + 1;
10. push rep(v) into path

11. forall v → v ′ do
12. if (rep(v ′) is not in index)
13. TarjanModelChecking(v ′)
14. lowlink [rep(v)] = min(lowlink [rep(v)], lowlink [rep(v ′)]);
15. else if (rep(v ′) is in path)
16. lowlink [rep(v)] = min(lowlink [rep(v)], index [rep(v ′)]);
17. endif
18. endfor
19. if (lowlink [rep(v)] = index [rep(v)])
20. set scc := an empty set;
21. repeat
22. pop an element v ′ from path and add it into scc;
23. until (v ′ = v)
24. if (scc forms a terminal SCC in L and scc is accepting)
25. generate a counterexample and return false;
26. endif
27. endif
28. endprocedure

Fig. 2. Tarjan’s algorithm with symmetry reduction

We begin by fixing notations and terminology. Given an LKS L = (S , init , Σ,→,
AP ,L), the function α(s) returns the set α-successors of s in L. That is, s ′ ∈ α(s) iff
s α→ s ′. Two fundamental relations are first defined for partial order reduction.

Definition 5. An independence relation I ⊆→ ×→ is a symmetric, antireflexive rela-
tion, satisfying the following two conditions for each state s ∈ S and for each (α, β) ∈
I : (1) If α, β ∈ enabled(s), then α ∈ enabled(β(s)). (2) If α, β ∈ enabled(s), then
α(β(s)) = β(α(s)). The dependency relation is the complement of I .

Definition 6. Let L : S → 2AP be the function that labels each state with a set of
atomic propositions. A transition α ∈ T is invisible with respect to a set of propositions
AP ′ ⊆ AP if for each pair of states s , s ′ ∈ S such that s ′ = α(s),L(s) ∩ AP ′ =
L(s ′) ∩ AP ′.

On Combining State Space Reductions with Global Fairness Assumptions 443

Fig. 3. Model and its reduction

The state space reduction is achieved by only exploring a subset of enabled(s), called
ample(s) for any visiting state s . The following conditions on ample(s) are used to
preserve properties to be verified [9].

C0 ample(s) = ∅ iff enabled(s) = ∅.
C1 Along every path in the full state space starting from s , a transition that is dependent

on a transition in ample(s) cannot occur without one in ample(s) occurring first.
C2 If enabled(s) �= ample(s), then every α ∈ ample(s) is invisible.
C3 A cycle is not allowed if it contains a state in which some transition α is enabled,

but is never included in ample(s) for any state s on the cycle.

It is proved in [9] that when satisfying the above four conditions, the following holds.

Theorem 5. The original state space and reduced state space are stuttering equivalent.

Based on Theorem 5, for any globally fair path in the full state space, there is a stut-
tering equivalent path in the reduced state space. Unfortunately, this path may be not
globally fair. Figure 3 shows a part of the full state graph. The transition from s1 to s2
is not present in the reduced state graph. Let transitions labeled with a and b be inde-
pendent and all other transitions be mutually dependent. Further let b, b′ be invisible
and a, c1, c2, c3 visible. For the globally fair path λ = (abc3bc1c2b′ac3)ω in the full
state space, there is no stuttering equivalent globally fair path in the reduced state space.
Because any globally fair path π in the reduced one has to traverse the transition labeled
with b from state s2 to s5, π must include a segment stuttering-equivalent path to c2c3

whereas λ does not have such segment.

7 Implementation and Evaluation

In the following, we evaluate the effectiveness of our combined method. We extend the
PAT4 model checker with our algorithms for model checking with global fairness and
symmetry reduction.

Previously in [19], PAT has been applied to model checking population protocols
with global fairness without symmetry reduction. It is evidenced that only small net-
works can be checked. In the population protocol model, one protocol consists of N
nodes, numbered from 0 to N − 1. A protocol is usually described by a set of interac-
tion rules between an initiator u and a responder v . Such rules have conditions on the

4 http://pat.comp.nus.edu.sg

http://pat.comp.nus.edu.sg

444 S.J. Zhang et al.

Table 1. Experiment Results

Model Network Size Without Reduction With Reduction
States Time (Sec) States Time (Sec) Gain

two-hop coloring 3 122856 36.7 42182 16.7 54.5%

orienting rings (prop 1) 3 19190 2.27 6398 0.53 76.7%

orienting rings (prop 2) 3 19445 2.23 6503 0.97 56.5%

orienting rings (prop 1) 4 1255754 267.2 313940 70.5 73.6%

orienting rings (prop 2) 4 1206821 267.1 302071 63.6 79.6%

orienting rings (prop 1) 5 11007542 9628.1 2201510 1067.4 88.9%

orienting rings (prop 2) 5 10225849 8322.6 2045935 954.5 88.5%

leader election (complete) 3 6946 0.87 2419 0.51 41.4%

leader election (complete) 4 65468 11.6 16758 5.00 56.9%

leader election (complete) 5 598969 176.1 120021 45.9 73.9%

leader election (odd) 3 55100 6.27 18561 2.56 59.2%

leader election (odd) 5 − − 6444097 5803.96 ×
token circulation 3 728 0.12 244 0.09 25.0%

token circulation 4 4466 0.35 1118 0.19 45.7%

token circulation 5 24847 1.86 4971 0.77 58.6%

token circulation 6 129344 10.7 21559 3.03 71.7%

token circulation 7 643666 77.2 91954 16.2 79.0%

token circulation 8 3104594 740.8 388076 97.1 86.9%

state and the input of the initiator and the responder, and specify the state of the initiator
and the responder if a transition can be taken. Interested readers are referred to [19] for
protocol details. Note that many of the protocols are designed for network rings. It has
been noticed that protocols designed for network rings often require global fairness. All
relevant experiment information is provided online [1].

8 Related Work

This work is related to research on combining fairness and symmetry reduction. A solu-
tion for applying symmetry reduction under weak/strong fairness was discussed in [12].
Their method works by finding a candidate weak/strong fair path in the abstract transi-
tion system and then using annotations of state permutation details for each transition, in
order to resolve the abstract path to a threaded structure which then determines whether
there is a corresponding fair path in the concrete transition system. A similar approach
was presented in [15]. Another close work is a nested depth first search algorithm that
combines symmetry reduction with weak fairness [5]. Unfortunately, the combined al-
gorithm cannot guarantee to preserve all behaviors under weak fairness and thus may
produce false positives.

We compare our algorithm with the one which handles strong fairness in [12]. Since
global fairness can be regarded as a kind of strong fairness, the algorithm is applicable
to global fairness. It is the only algorithm for combining strong fairness and symmetry
reduction that we could find in literature. First, Theorem 3.11 in [12] shows its time
complexity is O(| M | ×n3× | g | ×a), where | M | is the size of the reduced graph

On Combining State Space Reductions with Global Fairness Assumptions 445

M , n is the number of processes, | g | is the length of the checked property g , and a
is the maximum size of the automaton for any basic modality of g . Our algorithm is
almost identical to Tarjan’s SCC algorithm except for adding line 24, 25 in Figure 2.
For a found SCC c the condition checking in line 24 can be implemented in time lin-
ear in the number of edges in c. As a result our algorithm can be implemented in time
O(| M | × | g | ×a). Second, in our approach it is not necessary to record permu-
tations appearing on each path (unless unwinding an abstract counterexample) and to
construct threaded structure for each strong connected subgraph B , of which the size is
O(| B | ×n). Hence our algorithm outperforms theirs in space and time. Further, an
important practical advantage of our algorithm, unlike [12], is that our algorithm reuses
the original algorithm for model checking with global fairness with slight changes.

This work is also related to our previous work on combining weak/strong fairness
with counter abstraction [28]. The idea is to show that model checking with process-
level weak/strong fairness is feasible even if process identities are abstracted away. It
is achieved by systematically keeping track of the local states from which actions are
enabled/executed within any infinite loop of the abstract state space. Different from the
above work, our approach works with global fairness and we show that global fairness
and symmetry reduction can be integrated in a relatively easy way. Additionally, this
work is remotely related to work on combining state reduction techniques and fairness,
evidenced in [20,30,4]. Our work explores one kind of state reduction and shows that it
works with global fairness.

Closest to our work on combination of partial order reduction and fairness is that of
Peled [22,21] and Brim et al. [6]. Peled proposes equivalence robust property to guar-
antee that all behaviors under certain fair assumption remain in the reduced state space.
However, since only weak fair is equivalence robust, stronger fair assumption need to
add more dependency relations to achieve equivalence robustness. In his later work [21],
he presents on-the-fly reduction algorithms with/without fairness assumptions. The au-
thors in [6] define two partial order reduction strategies, safe and aggressive reduc-
tion, and demonstrate that each weakly fair behavior is preserved in safe reduction
but not in aggressive one, while not all strongly fair behaviors are preserved in either
reductions.

9 Conclusion and Future Work

The contribution of this work is threefold. First, we show that unlike weak/strong fair-
ness, global fairness can be combined with symmetry reduction. Next, we present a
practical fair model checking algorithm with symmetry reduction. Lastly, we prove that
classic partial order reduction can not guarantee to preserve properties with global fair-
ness. An interesting line of future work is to identify sufficient condition that allows
combination of fairness and abstraction in general. In the current implementation, sym-
metry relationships are assumed to be known or easily detected. In the future, we plan to
develop symmetry detection technique (as well as reduction techniques) for hierarchical
complex systems.

446 S.J. Zhang et al.

References

1. http://www.comp.nus.edu.sg/
2. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing Population Protocols. In:

Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp.
103–117. Springer, Heidelberg (2006)

3. Bosnacki, D., Dams, D., Holenderski, L.: Symmetric Spin. In: Havelund, K., Penix, J., Visser,
W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 1–19. Springer, Heidelberg (2000)

4. Bosnacki, D., Ioustinova, N., Sidorova, N.: Using Fairness to Make Abstractions Work. In:
Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 198–215. Springer, Heidelberg
(2004)

5. Bošnački, D.: A light-weight algorithm for model checking with symmetry reduction and
weak fairness. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 89–103.
Springer, Heidelberg (2003)

6. Brim, L., Cerná, I., Moravec, P., Simsa, J.: On combining partial order reduction with fairness
assumptions. In: Brim, L., Haverkort, B.R., Leucker, M., van de Pol, J. (eds.) FMICS 2006
and PDMC 2006. LNCS, vol. 4346, pp. 84–99. Springer, Heidelberg (2007)

7. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/Event-Based Software
Model Checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999,
pp. 128–147. Springer, Heidelberg (2004)

8. Clarke, E.M., Filkorn, T., Jha, S.: Exploiting Symmetry In Temporal Logic Model Checking.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 450–462. Springer, Heidelberg
(1993)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge
(2000)

10. Delzanno, G.: Automatic Verification of Parameterized Cache Coherence Protocols. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 53–68. Springer, Hei-
delberg (2000)

11. Emerson, E.A., Sistla, A.P.: Symmetry and Model Checking. Formal Methods in System
Design 9(1-2), 105–131 (1996)

12. Emerson, E.A., Sistla, A.P.: Utilizing Symmetry when Model-Checking under Fairness As-
sumptions: An Automata-Theoretic Approach. ACM Transactions on Programming Lan-
guages and Systems 19(4), 617–638 (1997)

13. Allen Emerson, E., Jha, S., Peled, D.: Combining partial order and symmetry reductions. In:
Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 19–34. Springer, Heidelberg (1997)

14. Fischer, M., Jiang, H.: Self-stabilizing Leader Election in Networks of Finite-State Anony-
mous Agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 395–
409. Springer, Heidelberg (2006)

15. Gyuris, V., Sistla, A.P.: On-the-Fly Model Checking Under Fairness That Exploits Symmetry.
In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 232–243. Springer, Heidelberg
(1997)

16. Jiang, H.: Distributed Systems of Simple Interacting Agents. PhD thesis, Yale Uni (2007)
17. Lamport, L.: Proving the Correctness of Multiprocess Programs. IEEE Transactions on Soft-

ware Engineering 3(2), 125–143 (1977)
18. Lamport, L.: Fairness and Hyperfairness. Distributed Computing 13(4), 239–245 (2000)
19. Liu, Y., Pang, J., Sun, J., Zhao, J.H.: Verification of Population Ring Protocols in PAT. In:

TASE, pp. 81–89. IEEE, Los Alamitos (2009)
20. Nitsche, U., Wolper, P.: Relative Liveness and Behavior Abstraction (Extended Abstract). In:

PODC, pp. 45–52. ACM, New York (1997)

http://www.comp.nus.edu.sg/

On Combining State Space Reductions with Global Fairness Assumptions 447

21. Peled, D.: Combining Partial Order Reductions with On-the-fly Model-Checking. In: Dill,
D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg (1994)

22. Peled, D.: All from one, one for all: on model checking using representatives. In: Courcou-
betis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993)

23. Pnueli, A.: On the Extremely Fair Treatment of Probabilistic Algorithms. In: STOC, pp.
278–290. ACM, New York (1983)

24. Pnueli, A., Sa’ar, Y.: All you need is compassion. In: Logozzo, F., Peled, D.A., Zuck, L.D.
(eds.) VMCAI 2008. LNCS, vol. 4905, pp. 233–247. Springer, Heidelberg (2008)

25. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0, 1,∞)-Counter Abstraction. In: Brinksma,
E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122. Springer, Heidelberg
(2002)

26. Pong, F., Dubois, M.: A New Approach for the Verification of Cache Coherence Protocols.
IEEE Transactions on Parallel and Distributed Systems 6(8), 773–787 (1995)

27. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer,
Heidelberg (2009)

28. Sun, J., Liu, Y., Roychoudhury, A., Liu, S., Dong, J.S.: Fair model checking with process
counter abstraction. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp.
123–139. Springer, Heidelberg (2009)

29. Tarjan, R.: Depth-first Search and Linear Graph Algorithms. SIAM Journal on Computing 2,
146–160 (1972)

30. Ultes-Nitsche, U., James St., S.: Improved Verification of Linear-time Properties within Fair-
ness: Weakly Continuation-closed Behaviour Abstractions Computed from Trace Reduc-
tions. Software Testing, Verification & Reliability 13(4), 241–255 (2003)

Author Index

Albert, Elvira 353
Alkassar, Eyad 154
Amálio, Nuno 149
Arthan, Rob 154

Banks, Michael J. 215
Barringer, Howard 57
Barthe, Gilles 200, 231
Betarte, Gustavo 231
Bonakdarpour, Borzoo 88
Bowen, Jonathan P. 308
Boyer, Fabienne 103
Bronish, Derek 154

Campo, Juan Diego 231
Cavalcanti, Ana 246
Chapman, Rod 154
Chen, Zhenbang 262
Chin, Wei-Ngan 369, 386
Ciobanu, Gabriel 293
Cohen, Ernie 154
Crespo, Juan Manuel 200

Damm, Werner 12
David, Cristina 386
de Dios, Javier 184
Derrick, John 323
Dietsch, Daniel 27
Dong, Jin Song 432
Dunne, Steve 278

El Ghazi, Aboubakr Achraf 133

Finkbeiner, Bernd 12
Fischmeister, Sebastian 88
Fisher, Jasmin 3

Genaim, Samir 353
Gherghina, Cristian 386
Glodt, Christian 149
Gómez-Zamalloa, Miguel 353
Gruber, Olivier 103

Harel, David 2
Havelund, Klaus 57

Haxthausen, Anne E. 118
He, Guanhua 369
Hillebrand, Mark 154

Jacob, Jeremy L. 215
Jacobs, Bart 154, 402
Johnsen, Einar Broch 353

Kelsen, Pierre 149
Kjær, Andreas A. 118
Klebanov, Vladimir 154
Koutny, Maciej 293
Kunz, César 200

Leavens, Gary T. 154
Le Bliguet, Marie 118
Leino, K. Rustan M. 154
Li, Guodong 169
Liu, Yang 432
Liu, Zhiming 262
Loos, Sarah M. 42
Luna, Carlos 231
Luo, Chenguang 369

Méry, Dominique 338
Monahan, Rosemary 154
Mosbah, Mohamed 338
Müller, Peter 73, 154

Navabpour, Samaneh 88
Nistor, Ligia 42

Pang, Jun 432
Peña, Ricardo 184
Piessens, Frank 154, 402
Piterman, Nir 3
Platzer, André 42
Podelski, Andreas 27
Polikarpova, Nadia 154

Qin, Shengchao 369, 386

Reeves, Steve 308
Ridge, Tom 154
Rozier, Kristin Y. 417
Ruskiewicz, Joseph N. 73

450 Author Index

Salaün, Gwen 103
Schellhorn, Gerhard 323
Schlatte, Rudolf 353
Shankar, Natarajan 154
Smans, Jan 154, 402
Sun, Jun 432
Sztipanovits, Janos 1

Taghdiri, Mana 133
Tarifa, S. Lizeth Tapia 353
Tobies, Stephan 154
Tounsi, Mohamed 338
Tuerk, Thomas 154

Ulbrich, Mattias 154

Vardi, Moshe Y. 3, 417

Wang, Ji 262
Wehrheim, Heike 323
Weiß, Benjamin 154
Wellings, Andy 246
Westphal, Bernd 27
Woodcock, Jim 246
Wüstholz, Valentin 154

Zhang, Shao Jie 432

	Title
	Preface
	Organization
	Table of Contents
	Invited Talks
	Model Integration and Cyber Physical Systems: A Semantics Perspective
	Some Thoughts on Behavioral Programming
	The Only Way Is Up
	Introduction
	The Process of Hardware Design
	Hardware and Wetware
	The Software of Life
	References

	Cyber-Physical Systems
	Does It Pay to Extend the Perimeter of a World Model?
	Introduction
	A Motivating Example
	From Correctness to Dominance
	Verification and Synthesis

	Foundations
	World Models
	Strategic Objectives
	Strategy Classes
	Winning Strategies

	Remorsefree Dominance
	An Automata-Theoretic Characterization of Remorsefree Dominance
	Preliminaries: Automata over Infinite Words and Trees
	Dominant Computations
	Dominant Strategies

	Verifying and Synthesizing Dominant Strategies
	Towards Optimal World Models
	Conclusions
	References

	System Verification through Program Verification
	Introduction
	Preliminaries
	Kripke Structure
	LTL Syntax
	LTL Semantics

	The Interface between Requirements and Software
	The Class of Memory-Mapped Systems
	Case Study
	Related Work
	Conclusion
	References

	Adaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified
	Introduction
	Related Work
	Preliminaries: Quantified Differential Dynamic Logic
	The Distributed Car Control Problem
	Local Lane Control
	Global Lane Control
	Local Highway Control
	Global Highway Control
	Conclusion and Future Work
	References

	Runtime Analysis
	TRACECONTRACT: A Scala DSL for Trace Analysis
	Introduction
	The TraceContract DSL
	The DSL and a First Example
	State Machines
	Future Time Temporal Logic
	Past Time Temporal Logic
	Using Monitors

	Implementation
	Formulas and Linear Temporal Logic
	State-Oriented Constructs
	Properties, Formulas, and Error Traces

	Conclusion
	References

	Using Debuggers to Understand Failed Verification Attempts
	Introduction
	Approach
	State Construction
	Type Mocking
	Program Stubs
	Driver

	Verification Semantics
	Method Calls
	Loops

	Extended Runtime Checking
	Error Validation
	Spurious Errors
	Invalid Counterexamples

	Experience
	Related Work
	Conclusions
	References

	Sampling-Based Runtime Verification
	Introduction
	Preliminaries
	Formal Semantics of Sampling-Based Monitoring
	Calculating the Sampling Period
	Constructing and Composing Sampling-Based Monitor

	Optimizing Sampling Period and Its Complexity
	Mapping to Integer Linear Programming
	Experimental Results
	Related Work
	Conclusion
	References

	Case Studies / Tools
	Specifying and Verifying the SYNERGY Reconfiguration Protocol with LOTOS NT and CADP
	Introduction
	Component Assembly
	The Reconfiguration Protocol
	Specification in LOTOS NT
	Verification Using CADP
	Related Work
	Concluding Remarks
	References

	Formal Development of a Tool for Automated Modelling and Verification of Relay Interlocking Systems
	Introduction
	The Railway Application Domain
	Track-Side Equipment
	Route Based Interlocking
	Relay Circuits
	Relay Circuit Diagrams
	Dynamic Behaviour of Relay Circuits
	Required System Properties

	Informal Description of the Model Generator Tool
	Development Overview
	Abstract Specification
	Circuit Diagrams
	Paths in a Diagram
	Models
	Generator Function

	Refinement into a Concrete Specification
	Refinement of Sorts
	Refinement of Functions

	Experiments
	Conclusions
	References

	Relational Reasoning via SMT Solving
	Introduction
	Background
	The Alloy Language
	The SMT2 Language

	Approach
	Type and Relation Declarations
	Formulas
	Transitive Closure
	Integer Expressions
	Simplifications
	Correctness

	Experiments
	Related Work
	Conclusions
	References

	Building VCL Models and Automatically Generating Z Specifications from Them
	Introduction
	VCL Tool
	Illustration
	Discussion
	Related Work
	Conclusions and Future Work
	References

	Experience
	The 1st Verified Software Competition: Experience Report
	Introduction
	The Challenge Problems
	The Team Reports
	Team anonymousHolHacker (Tom Ridge)
	Team Holfoot (Thomas Tuerk)
	Team KeY (Vladimir Klebanov, Mattias Ulbrich, Benjamin Weiß)
	Team Leino (Rustan Leino)
	Team SPARKuLike (Rod Chapman)
	Team MonaPoli (Rosemary Monahan, Nadia Polikarpova)
	Team Resolve (Derek Bronish)
	Team RobArthan (Rob Arthan)
	Team VC Crushers (Eyad Alkassar, Ernie Cohen, Mark Hillebrand, Stephan Tobies)
	Team VeriFast (Bart Jacobs, Frank Piessens, Jan Smans)

	Conclusions
	References

	Program Compilation and Transformation
	Validated Compilation through Logic
	Introduction
	Extended Front-End
	De-compiling Assembly Code
	Example Program Transformations
	Results
	Related Work and Conclusions
	References

	Certification of Safe Polynomial Memory Bounds
	Introduction
	The Language
	Function Signatures
	Proof-Rules
	Soundness Theorems
	Certification
	Case Study
	Related Work and Conclusion
	References

	Relational Verification Using Product Programs
	Introduction
	Motivating Examples
	Program Products
	Programming Model
	Product Construction

	Case Studies
	Related Work
	Further Work and Conclusions
	References

	Security
	Specifying Confidentiality in Circus
	Introduction
	Circus
	Specifying Confidentiality Properties
	The Semantics of -Annotations
	Propagation: Divide and Conquer!
	Block-Level Verification
	Forwards Propagation
	Backwards Propagation
	Verifying Confidentiality

	Confidentiality-Preserving Refinement
	Related Work
	Conclusions
	References

	Formally Verifying Isolation and Availability in an Idealized Model of Virtualization
	Introduction
	A Primer on Virtualization
	The Model
	Informal Overview of the Memory Model
	Formalizing States
	Actions
	Traces

	Isolation Properties
	Availability
	Related Work
	Conclusion and Future Work
	References

	The Safety-Critical Java Memory Model: A Formal Account
	Introduction
	Safety-Critical Java Memory Model
	Unifying Theories of Programming
	Invariants in the UTP
	Operation Invariants
	State Invariants

	A Theory for the Safety-Critical Java Memory Model
	Conclusions
	References

	Process Algebra
	Failure-Divergence Refinement of Compensating Communicating Processes
	Introduction
	Syntax of the Extended cCSP
	Failure-Divergence Semantics of Standard Processes
	Basic Notations
	Semantics of Standard Processes

	Failure-Divergence Semantics of Compensable Processes
	Refinement Theory and Recursion Semantics
	Refinement of Standard Processes
	Refinement Order of Compensable Processes
	Laws of Long Running Transactions

	Case study
	Conclusion
	References

	Termination without \surd in CSP
	Introduction
	A Selective Overview of CSP
	Deadlock, Divergence and Termination
	The Standard CSP Semantic Models T, F and N
	Infinite Traces
	Process Refinement
	Denoting Termination

	Recasting the Denotational Models of CSP
	The Model Tm
	The Isomorphism between Tm and T
	Persistent Failures versus Stable Failures

	The Model Fm
	The Isomorphism between Fm and F
	Calculating the Fm Semantics of Processes

	The Model Nm
	The Isomorphism between Nm and N
	Calculating the Nm Semantics of Processes

	Termination and External Choice
	CSP in the Unifying Theories of Programming
	Correctness Perspectives

	Conclusion
	References

	Timed Migration and Interaction with Access Permissions
	Introduction
	Syntax and Semantics of PerTiMo
	Safe Access Permissions
	Conclusions and Related Work
	References

	Education
	From a Community of Practice to a Body of Knowledge: A Case Study of the Formal Methods Community
	Introduction
	Community of Practice
	Fundamental Elements of a CoP
	Cultivating a CoP
	Stages of Community Development

	Body of Knowledge
	Characterising Formal Methods
	Organizational Matters
	FMBOK Initiative

	Formal Model in Z
	Conclusions and Future Work
	References

	Concurrency
	Verifying Linearisability with Potential Linearisation Points
	Introduction
	The Lazy Concurrent Set
	Linearisability and Refinement
	Local Proof Obligations
	Verification of the Case Study
	Conclusion
	References

	Refinement-Based Verification of Local Synchronization Algorithms
	Introduction
	Synchronization Algorithms for Local Computation Models
	The 3-Coloring Problem of a Ring
	Synchronization Algorithms

	Event-B Overview
	The Modelling Process
	Implementing the Local Computations Model
	The Handshake Algorithm Development

	Conclusion and Future Works
	References

	Simulating Concurrent Behaviors with Worst-Case Cost Bounds
	Introduction
	A Language for Distributed Concurrent Objects
	Operational Semantics

	Worst-Case Cost Bounds
	Deployment Components
	Simulation and Experimental Results
	Related Work
	Discussion
	References

	Dynamic Structures
	Automatically Refining Partial Specifications for Program Verification
	Introduction
	Illustrative Example
	Language and Abstract Domain
	The Analysis
	Refining Specifications for Primary Methods
	Inferring Specifications for Auxiliary Methods and Loops

	Experiments and Evaluation
	Related Work and Conclusion
	References

	Structured Specifications for Better Verification of Heap-Manipulating Programs
	Introduction
	Motivating Examples
	Example 1
	Example 2

	Structured Specifications
	Semantic Model for Structured Formulae

	Modular Verification
	Building Verification Rules
	Entailment for Structured Formula

	Experiments
	Related Work and Conclusion
	References

	Verification of Unloadable Modules
	Introduction
	Problem Statement
	Formal Programming Language
	Example Program

	Specification and Verification Approach
	Specification Language
	Proof System

	Verification Tool
	Conclusion and Related Work
	References

	Model Checking
	A Multi-encoding Approach for LTL Symbolic Satisfiability Checking
	Introduction
	Preliminaries
	A Symbolic Transition-Based Generalized Büchi Automata (TGBA) Encoding
	A Set of 30 Symbolic Automata Encodings
	Experimental Methodology
	Experimental Results
	Discussion
	References

	On Combining State Space Reductions with Global Fairness Assumptions
	Introduction
	Preliminaries
	Model Checking with Fairness
	Fairness
	Model Checking with Fairness
	Algorithm for Model Checking with Global Fairness

	Model Checking with Symmetry Reduction
	Symmetry Reduction with Global Fairness
	Partial Order Reduction with Global Fairness
	Implementation and Evaluation
	Related Work
	Conclusion and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

