

IFIP Advances in Information
and Communication Technology 354

Editor-in-Chief

A. Joe Turner, Seneca, SC, USA

Editorial Board

Foundations of Computer Science
Mike Hinchey, Lero, Limerick, Ireland

Software: Theory and Practice
Bertrand Meyer, ETH Zurich, Switzerland

Education
Arthur Tatnall, Victoria University, Melbourne, Australia

Information Technology Applications
Ronald Waxman, EDA Standards Consulting, Beachwood, OH, USA

Communication Systems
Guy Leduc, Université de Liège, Belgium

System Modeling and Optimization
Jacques Henry, Université de Bordeaux, France

Information Systems
Jan Pries-Heje, Roskilde University, Denmark

Relationship between Computers and Society
Jackie Phahlamohlaka, CSIR, Pretoria, South Africa

Computer Systems Technology
Paolo Prinetto, Politecnico di Torino, Italy

Security and Privacy Protection in Information Processing Systems
Kai Rannenberg, Goethe University Frankfurt, Germany

Artificial Intelligence
Tharam Dillon, Curtin University, Bentley, Australia

Human-Computer Interaction
Annelise Mark Pejtersen, Center of Cognitive Systems Engineering, Denmark

Entertainment Computing
Ryohei Nakatsu, National University of Singapore

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First
World Computer Congress held in Paris the previous year. An umbrella organi-
zation for societies working in information processing, IFIP’s aim is two-fold:
to support information processing within its member countries and to encourage
technology transfer to developing nations. As its mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development, ex-
ploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees, which organize events and
publications. IFIP’s events range from an international congress to local seminars,
but the most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited
and contributed papers are presented. Contributed papers are rigorously refereed
and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and
papers may be invited or submitted. Again, submitted papers are stringently ref-
ereed.

The working conferences are structured differently. They are usually run by a
working group and attendance is small and by invitation only. Their purpose is
to create an atmosphere conducive to innovation and development. Refereeing is
less rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP
World Computer Congress and at open conferences are published as conference
proceedings, while the results of the working conferences are often published as
collections of selected and edited papers.

Any national society whose primary activity is in information may apply to be-
come a full member of IFIP, although full membership is restricted to one society
per country. Full members are entitled to vote at the annual General Assembly,
National societies preferring a less committed involvement may apply for asso-
ciate or corresponding membership. Associate members enjoy the same benefits
as full members, but without voting rights. Corresponding members are not rep-
resented in IFIP bodies. Affiliated membership is open to non-national societies,
and individual and honorary membership schemes are also offered.

Jan Camenisch Simone Fischer-Hübner
Yuko Murayama Armand Portmann
Carlos Rieder (Eds.)

Future Challenges in
Security and Privacy
for Academia and Industry

26th IFIP TC 11 International
Information Security Conference, SEC 2011
Lucerne, Switzerland, June 7-9, 2011
Proceedings

13

Volume Editors

Jan Camenisch
IBM Zurich Research Laboratory
Säumerstr. 4, 8803 Rüschlikon, Switzerland
E-mail: jca@zurich.ibm.com

Simone Fischer-Hübner
Karlstad University, Department of Computer Science
Universitetsgatan 1, 65188 Karlstad, Sweden
E-mail: simone.fischer-huebner@kau.se

Yuko Murayama
Iwate Prefectural University, Faculty of Software and Information Science
152-52 Sugo, Takizawa, Takizawa-mura, Iwate 020-0193, Japan
E-mail: murayama@iwate-pu.ac.jp

Armand Portmann
Carlos Rieder
Lucerne University of Applied Sciences and Arts
Zentralstr. 9, 6002 Lucerne, Switzerland
E-mail: {armand.portmann, carlos.rieder}@hslu.ch

ISSN 1868-4238 e-ISSN 1868-422X
ISBN 978-3-642-21423-3 e-ISBN 978-3-642-21424-0
DOI 10.1007/978-3-642-21424-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011927858

CR Subject Classification (1998): C.2, K.6.5, D.4.6, E.3, H.4, J.1

© IFIP International Federation for Information Processing 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This book contains the proceedings of the 26th IFIP TC-11 International Infor-
mation Security Conference (IFIP/SEC 2011) on “Future Challenges in Secu-
rity and Privacy for Academia and Industry”held during June 7–9, 2011, at the
Lucerne University of Applied Sciences and Arts, Switzerland.

The SEC conferences are in a series of well-established international confer-
ences on security and privacy organized annually by the Technical Committee
11 (TC-11) of IFIP (International Federation for Information Processing). IFIP
SEC 2011 aimed at bringing together primarily researchers, but also practi-
tioners from academia, industry and governmental institutions to elaborate and
discuss the IT security and privacy challenges that we face today and in the
future. Papers offering novel and mature research contributions, on any aspect
of information security and privacy, were solicited for submission to the 26th
IFIP TC-11 International Information Security Conference.

IFIP SEC 2011 received 100 submissions which were all reviewed by at least
three members of the international Program Committee (PC). Based on an in-
tensive discussion among the reviewers and other PC members, 24 papers were
selected for presentation at the conference. Topics addressed by the accepted pa-
pers published in these proceedings include authentication, intrusion detection,
malware, information flow and DoS attacks, network security and security proto-
cols, policy compliance and obligations, privacy attacks and privacy-enhancing
technologies, risk analysis and security metrics as well software security.

Further highlights of IFIP SEC 2011 were the three invited keynote presenta-
tions by high-ranked IT security and privacy experts: The recipient of the 2011
Kristian Beckman award granted by IFIP TC-11—Ann Cavoukian, Information
and Privacy Commissioner (IPC) of Ontario, Canada, as well as Michael Waid-
ner, Director of Fraunhofer SIT Darmstadt, Germany, and René Hüsler from the
Lucerne University of Applied Sciences and Arts, Switzerland. The paper for the
invited keynote by Ann Cavoukian is also included in these proceedings.

In addition to the invited keynote and accepted paper sessions, IFIP SEC
2011 also included an industrial track on “Research Meets Industry”as well as
the following four workshops and sub-conferences: The workshops organized by
the EU FP7 projects PrimeLife and PICOS, the iNetSec 2011 organized by
IFIP Working Group 11.4, as well as the 7th World Conference on Informa-
tion Security Education WISE7 organized by IFIP Working Group 11.8. WISE7
and iNetSec 2011 were organized autonomously by the respective IFIP Working
Groups. They had their own Call for Papers and Program Committees and the
accepted papers are published in their own proceedings.

IFIP SEC 2011 was organized by Lucerne University of Applied Sciences and
Arts. We would like to thank UBS AG, Zurich/Switzerland, Crypto AG, Zug/
Switzerland, Elsevier Limited, Oxford/UK and isec ag, Lucerne/Switzerland, for

VI Preface

sponsoring IFIP SEC 2011. Besides, we gratefully acknowledge all authors, mem-
bers of the Program Committee and additional reviewers for their contributions
to the scientific quality of this conference. Last but not least, we owe thanks to
the Organizing Committee, and especially to its Chair Carlos Rieder, for all the
efforts and dedication in preparing this conference.

June 2011 Jan Camenisch
Simone Fischer-Hübner

Yuko Murayama
Armand Portmann

Organization

Program Committee Chairs

Jan Camenisch IBM Research - Zurich, Switzerland
Simone Fischer-Hübner Karlstad University, Sweden
Yuko Murayama Iwate Prefectural University, Japan

Publication Chair

Armand Portmann Lucerne University of Applied Sciences and
Arts, Switzerland

Program Committee Members

Ejaz Ahmed Queensland University of Technology, Australia
Colin Armstrong Gailaad Pty. Ltd., Australia
Vijay Atluri Rutgers University, USA
Richard Baskerville Georgia State University, USA
Bharat Bhargava Purdue University, USA
Katrin Borcea-Pfitzmann T.U. Dresden, Germany
Reinhardt Botha NMMU, South Africa
David Chadwick University of Kent, UK
Nathan Clarke University of Plymouth, UK
Roger Clarke Xamax Consultancy Pty. Ltd., ANU and

UNSW, Australia
Nora Cuppens-Boulahia TELECOM Bretagne, France
Ed Dawson QUT, Australia
Sabrina de Capitani di

Vimercati Università degli Studi di Milano, Italy
Bart de Decker K.U. Leuven, Belgium
Yves Deswarte LAAS-CNRS, France
Ronald Dodge U.S. Military Academy, USA
Jan Eloff University of Pretoria, South Africa
Sarah Foresti Università degli Studi di Milano, Italy
Felix Freiling Mannheim University, Germany
Lothar Fritsch Norwegian Computer Center, Norway
Steven Furnell University of Plymouth, UK
Mark Gasson University of Reading, UK

VIII Organization

Dieter Gollmann TU Hamburg-Harburg, Germany
Dimitris Gritzalis Athens University of Economics and Business,

Greece
Stefanos Gritzalis University of the Aegean, Greece
Marit Hansen Independent Center for Privacy Protection,

Germany
Alejandro Hevia University of Chile, Chile
Jaap-Henk Hoepmann University of Twente, The Netherlands
René Hüsler Lucerne Univiversity of Applied Sciences and

Arts, Switzerland
Cynthia Irvine Naval Postgraduate School, Monterey, USA
Sushil Jajodia George Mason University, USA
David-Olivier Jaquet-Chiffelle Bern University of Applied Sciences,

Switzerland
Lech Janczweski University of Auckland, New Zealand
Dogan Kesdogan University of Siegen, Germany
Valentin Kisimov University of World and National Economy

Sofia, Bulgaria
Stefan Köpsell T.U. Dresden, Germany
Stewart Kowalski DSV/Stockholm University (and Huawei),

Sweden
Ioannis Krontiris Goethe University Frankfurt, Germany
Lam-For Kwok City University of Hong Kong, Hong Kong
Costas Lambrinoudakis University of the Aegean, Greece
Carl E. Landwehr University of Maryland, USA
Ronald Leenes Tilburg University, The Netherlands
Herbert Leitold Technical University of Graz, Austria
Stefan Lindskog Karlstad University, Sweden
Javier López Universidad de Malaga, Spain
Luigi Lo Iacono EUFH Bruehl, Germany
Steve Marsh Communications Research Center Canada,

Canada
Fabio Martinelli National Research Council, Italy
Leonardo Martucci CASED, Germany
Václav Matyás Masaryk University, Brno, Czech Republic
Carlos Maziero University of Parana, Brazil
Natalia Miloslavskaya MEPHI, Russia
Refik Molva Institut Eurecom, France
Eiji Okamoto University of Tsukuba, Japan
Rolf Oppliger eSecurity, Switzerland
Jakob-Illeborg Pagter Alexandra Instituttet AS, Denmark

Organization IX

George Pangalos University of Thessaloniki, Greece
Jong-Hyuk Park Kyungnam University, South Korea
Philippos Peleties Universal Bank Ltd., Cyprus
Günther Pernul University of Regensburg, Germany
Ulrich Pinsdorf Microsoft EMIC, Germany
Hartmut Pohl University of Applied Sciences

Bonn-Rhein-Sieg, Germany
Roland Portmann Lucerne University of Applied Sciences and

Arts, Switzerland
Kai Rannenberg Goethe University Frankfurt, Germany
Marc Rennhard Zurich University of Applied Sciences,

Switzerland
Carlos Rieder Lucerne University of Applied Sciences and

Arts, Switzerland
Rodrigo Roman University of Malaga, Spain
Andrei Sabelfeld Chalmers University of Technology, Sweden
Pierangela Samarati University of Milan, Italy
Ingrid Schaumüller-Bichl Upper Austria University of Applied Sciences,

Austria
Anne Karen Seip Financial Supervisory Authority of Norway,

Norway
Nahid Shahmehri Linköping University, Sweden
Siraj Shaikh Coventry University, UK
Einar Snekkenes Gjøvik University College, Norway
Miquel Soriano UPC, Spain
Sandra Steinbrecher Technical University of Dresden, Germany
Rama Subramaniam Valiant Technologies, India
Willy Susilo University of Wollongong, Australia
Stephanie Teufel University of Freiburg, Switzerland
Bill Tsoumas Ernst & Young, Greece
Pedro-Manuel Veiga Universidade de Lisboa, Portugal
Hein Venter University of Pretoria, South Africa
Teemupekka Virtanen Helsinki University of Technology, Finland
Melanie Volkamer CASED, Germany
Rossouw von Solms Nelson Mandela Metropolitan University,

South Africa
Jozef Vyskoc VaF, Slavak Republic
Christian Weber Goethe University Frankfurt, Germany
Tatjana Welzer University of Maribor, Slovenia
Rigo Wenning W3C, France
Sven Wohlgemuth National Institute of Informatics, Japan

X Organization

Louise Yngström University of Stockholm, Sweden
Jianying Zhou I2R, Singapore

Additional Reviewers

Gergely Alpár
Gökhan Bal
Mohamed Bourimi
Christian Broser
Laurent Bussard
Sebastian Clauß
Denise Demirel
Anthony Dessiatnikoff
Andreas Dewald
Stelios Dritsas
Thomas Fielenbach
Christoph Fritsch
Viiveke F̊ak
Dimitris Geneiatakis
Mariana Gerber
Shkodran Gerguri
Stephan Groß
Daniel Hedin
Stephan Heim
Christos Ilioudis
Maarten Jacobs
Thomas Jakobsen
Fatih Karatas
Jonathan Katz
Mohamed Kaâniche
Benjamin Kellermann
Nizar Kheir
Marc-Olivier Killijian
Leanid Krautsevich
Harsha Kumara
Jorn Lapon

Anja Lehmann
Dimitrios Lekkas
Jonas Magazinius
Ilaria Matteucci
Nasir Memon
Vincent Naessens
Michael Niedermeier
Janus Dam Nielsen
Alexandros Papanikolaou
Vinh Pham
Franz-Stefan Preiss
Klaus Rechert
Andreas Reisser
Moritz Riesner
Panagiotis Rizomiliotis
Jan Schlüter
Andriy Stetsko
Tim Storer
Petr Svenda
Marianthi Theoharidou
Aggeliki Tsohou
Pavel Tucek
Simeon Veloudis
Nikolaos Virvilis
Stefan Voemel
Carsten Willems
Lars Wolos
Hau-San Raymond Wong
Erik Wästlund
Thomas Zefferer
Bernd Zwattendorfer

Table of Contents

Kristian Beckman Award Keynote

Patience, Persistence, and Faith: Evolving the Gold Standard in
Privacy and Data Protection . 1

Ann Cavoukian

Malware, Information Flow and DoS Attacks

iSAM: An iPhone Stealth Airborne Malware . 17
Dimitrios Damopoulos, Georgios Kambourakis, and
Stefanos Gritzalis

TCP Ack Storm DoS Attacks . 29
Raz Abramov and Amir Herzberg

Detecting Hidden Storage Side Channel Vulnerabilities in Networked
Applications . 41

Felix C. Freiling and Sebastian Schinzel

Authentication

Breaking reCAPTCHA: A Holistic Approach via Shape Recognition 56
Paul Baecher, Niklas Büscher, Marc Fischlin, and Benjamin Milde

From Multiple Credentials to Browser-Based Single Sign-On: Are We
More Secure? . 68

Alessandro Armando, Roberto Carbone, Luca Compagna,
Jorge Cuellar, Giancarlo Pellegrino, and Alessandro Sorniotti

Quantifying the Effect of Graphical Password Guidelines for Better
Security . 80

Mohd Jali, Steven Furnell, and Paul Dowland

Network Security and Security Protocols

A Case Study in Practical Security of Cable Networks 92
Amir Alsbih, Felix C. Freiling, and Christian Schindelhauer

Ceremony Analysis: Strengths and Weaknesses . 104
Kenneth Radke, Colin Boyd, Juan Gonzalez Nieto, and
Margot Brereton

XII Table of Contents

Preventing Board Flooding Attacks in Coercion-Resistant Electronic
Voting Schemes . 116

Reto Koenig, Rolf Haenni, and Stephan Fischli

Piracy Protection for Streaming Content in Home Networks 128
Hongxia Jin and Jeffrey Lotspiech

Software Security

JITDefender: A Defense against JIT Spraying Attacks 142
Ping Chen, Yi Fang, Bing Mao, and Li Xie

Retrofitting Security in COTS Software with Binary Rewriting 154
Pádraig O’Sullivan, Kapil Anand, Aparna Kotha,
Matthew Smithson, Rajeev Barua, and Angelos D. Keromytis

Generating Optimised and Formally Checked Packet Parsing Code 173
Sebastien Mondet, Ion Alberdi, and Thomas Plagemann

Policy Compliance and Obligations

Organizational Power and Information Security Rule Compliance 185
Ella Kolkowska and Gurpreet Dhillon

Delegation of Obligations and Responsibility . 197
Meriam Ben Ghorbel-Talbi, Frédéric Cuppens,
Nora Cuppens-Boulahia, Daniel Le Métayer, and
Guillaume Piolle

Distributed Security Policy Conformance . 210
Mirko Montanari, Ellick Chan, Kevin Larson, Wucherl Yoo, and
Roy H. Campbell

Privacy Attacks and Privacy-Enhancing Technologies

Scalable Privacy-Preserving Data Mining with Asynchronously
Partitioned Datasets . 223

Hiroaki Kikuchi, Daisuke Kagawa, Anirban Basu, Kazuhiko Ishii,
Masayuki Terada, and Sadayuki Hongo

Privacy-Enhanced Web-Based Event Scheduling with Majority
Agreement . 235

Benjamin Kellermann

Analyzing Key-Click Patterns of PIN Input for Recognizing VoIP
Users . 247

Ge Zhang

Table of Contents XIII

Risk Analysis and Security Metrics

Problem Analysis of Traditional IT-Security Risk Assessment Methods –
An Experience Report from the Insurance and Auditing Domain 259

Stefan Taubenberger, Jan Jürjens, Yijun Yu, and Bashar Nuseibeh

On Computing Enterprise IT Risk Metrics . 271
Sandeep Bhatt, William Horne, and Prasad Rao

A Kolmogorov Complexity Approach for Measuring Attack Path
Complexity . 281

Nwokedi Idika and Bharat Bhargava

Intrusion Detection

Extending LSCs for Behavioral Signature Modeling 293
Sven Patzina, Lars Patzina, and Andy Schürr

Detecting Illegal System Calls Using a Data-Oriented Detection
Model . 305

Jonathan-Christofer Demay, Frédéric Majorczyk, Eric Totel, and
Frédéric Tronel

Appendix

IFIP Technical Committee 11: Security and Privacy Protection in
Information Processing Systems . 317

Kai Rannenberg, SH (Basie) von Solms, and Leon Strous

Author Index . 327

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 1–16, 2011.
© IFIP International Federation for Information Processing 2011

Patience, Persistence, and Faith: Evolving the Gold
Standard in Privacy and Data Protection

Ann Cavoukian

Information and Privacy Commissioner, Ontario

Abstract. Privacy by Design (PbD) is a concept that was developed by On-
tario’s Information and Privacy Commissioner, Dr. Ann Cavoukian, in the ’90s.
It prescribes that privacy be embedded directly into the design and operation,
not only of various technologies, but also of business processes and networked
infrastructure. Instead of treating privacy as an after-thought – “bolting it on af-
ter the fact” – PbD is proactive and preventative in nature.

Through years of advocacy and encouragement, PbD is now being widely
adopted globally by a growing number of organizations and jurisdictions. This
paper outlines the foundations of PbD, and traces its evolution from a concep-
tual framework into a practical one that has been recognized internationally as
the gold standard in privacy and data protection.

Personal information, be it biographical, biological, genealogical, historical, transac-
tional, locational, relational, computational, vocational, or reputational, is the
substance that makes up our modern identity. Our digital footprints and shadows are
being gathered together, bit by bit, megabyte by megabyte, terabyte by terabyte, into
personas and profiles and avatars – virtual representations of ourselves that exist in
thousands of simultaneous locations. These technologies give us access to extraordi-
nary new services, conveniences, efficiencies and benefits, undreamt of by our par-
ents. At the same time, novel risks and unimagined threats are emerging from this
digital cornucopia. Identity fraud and theft are the diseases of the Information Age,
along with new forms of deception and social engineering made possible by the
surfeit of data.

These developments have prompted some critics to pronounce that privacy is either
dead or dying1. I don’t believe that to be the case, but there is no question that our
fundamental ideas about identity and privacy, the strategies that we have collectively
pursued, and the technologies that we have adopted, must evolve and adapt to keep
apace with our rapidly changing world of connectivity, networking, participation,
sharing, and collaboration.

1 See, for example, SimsonGarfinkel, Database Nation: The Death of Privacy in the 21st

Century. O'Reilly Media, California (2000); Robert O'Harrow, No Place to Hide: Behind the
Scenes of our Emerging Surveillance Society. Free Press, New York (2005); David Brin, The
Transparent Society. Addison-Wesley, New York (1998); and Jerry Rosenberg, The Death of
Privacy.Random House, New York (1969).

2 A. Cavoukian

At stake is not only our privacy, but also the consumer confidence and trust that
underpins and enables today’s information society. What will privacy mean, and how
will privacy survive, and hopefully thrive, as a viable human right, operational value,
and critical enabling trust factor, in a world where the individual is increasingly re-
moved from personal involvement in data-rich transactions? What will informational
self-determination – the basis of current privacy laws and practices – mean when data
is increasingly stored and processed away from personal computing devices, in the
world of a nebulous “Cloud?”

These are precisely the kinds of questions I have been grappling with in my 20
year career in privacy. My attempts to answer these questions – to imagine a future
where privacy continues to exist in some form we find recognizable – are the founda-
tions of the work for which I am honoured to have received the Kristian Beckman
Award. Privacy by Design – the concept I pioneered relating to engineering privacy
directly into the design of new technologies, accountable business practices, and net-
worked infrastructure as a core functionality – is an approach I have advocated for
many years. It has, only recently, reached a tipping point, and now appears to be
gathering momentum around the world.

This paper traces the roots of the concept, and chronicles some of the highlights in
my ongoing crusade to see Privacy by Design implemented with sufficient breadth and
depth that it effectives assures a future for privacy and all the social values it enables.

Privacy Will Always Matter

Privacy is not dead, and will never die, given the essential role it plays in preserving
our freedoms, but it is, perhaps, beleaguered. Practical obscurity – the basis for
privacy norms throughout much of history – is fast disappearing. The functional
impediments to surveillance that once protected privacy, by default – such as data
processing and storage costs, and the difficulty of linking files from multiple
databases – are increasingly irrelevant.

Privacy, famously described by American Justices Samuel Warren and Louis
Brandeis as “the right to be let alone,”2 is closely related to individual dignity and
integrity, personal autonomy, freedom of association, and independence. It is the
underpinning of many of the rights and values we hold dear, and has long been – and
still remains – a vital component of free and democratic societies. Historically, when
a society devolves from a free and democratic one into a totalitarian state, privacy is
the first thread to unravel.

Our need to preserve private spaces in our lives, to permit intimacy, and to enjoy
solitude, is as relevant now as it has ever been. Indeed, it is perhaps more relevant
now that our lives are so networked, inter-connected, and “plugged in.”

The idea that privacy is under attack is not new, but the weapons of choice have
changed over time. Over hundreds of years, critics have raised concerns about the
privacy implications of almost every new technology, from the camera to the tele-
phone to the personal computer. And those who have taken it upon themselves to
protect our privacy have been forced to innovate similarly, developing new strategies
and expanding their arsenals as new threats emerge.

2 Warren, S. and Brandeis, L.: The Right to Privacy. Harvard Law Review 4, 193-220 (1890).

 Patience, Persistence, and Faith 3

One Giant Leap: The Story of PETs

If privacy is gasping for air, it is most certainly, at least in part, because traditional
ways of preserving privacy are no longer sufficient or relevant. This has been the
case for quite some time.

But in the 1990’s, the seeds of a way forward were planted when it began to
become clear that our dated approach to protecting privacy, which was based on the
assumption that privacy and technology were necessarily opposed to one other, had
no viable future. The forward march of technology could not – and arguably should
not – be stopped. Somehow, privacy had to find a way to live on.

This led to the development of Privacy-Enhancing Technologies (PETs), which are
predicated on the idea of enlisting the support of technology to enhance privacy,
rather than encroach upon it. Believe it or not, the idea was a radical one at the time.

PETs are information and communications technologies that strengthen the
protection of personal privacy in an information system by preventing the unneces-
sary or unlawful collection, use, and disclosure of personal data, or by offering tools
to enhance an individual’s control over his/her personal data.

The concept grew, in part, out of feeling that encryption technologies could help
individuals and organizations protect personal information in the face of the
widespread dissemination of personal computers and the advent of the Internet as a
(then) new medium of communications. Western governments, however, were trying
to restrict the use and export of encryption products, and engineer surveillance “back-
doors” into the emerging digital telecommunications infrastructures. This met with
fierce resistance from cryptographers, privacy advocates, rights groups, and business
interests. If new information and communications technologies threatened to invade
individual privacy, the thinking went, then these types of privacy-enhancing tech-
nologies, that could empower individuals and restore trust, were the solution.

We first advanced the concept of “PETs” in a collaborative work between my of-
fice and the Netherlands Data Protection Authority in 1995.3 From the outset, PETs
emphasized the need to incorporate the universal principles of Fair Information Prac-
tices (FIPs) – universal privacy principles for handling personal data –into the actual
code and operation of information processing technologies and systems.

First codified by the OECD in 1980, there are many articulations of Fair Informa-
tion Practices, including the E.U. Directive on Data Protection, Canada’s CSA
Privacy Code, the Asia-Pacific Economic Cooperation (APEC) Privacy Framework,
the U.S. Safe Harbor Principles, and the harmonized Global Privacy Standard.4
Despite minor differences in language and emphasis, these FIPs all reflect the
following fundamental concepts:

3 Information and Privacy Commissioner/Ontario, Registratiekamer/TheNetherlands: Privacy-

Enhancing Technologies: The Path to Anonymity (Volume I). (1995) http://www.ipc.
on.ca/English/Resources/Discussion-Papers/Discussion-Papers-
Summary/?id=329

4 Information and Privacy Commissioner/Ontario, Creation of a Global Privacy Standard
(2006): www.ipc.on.ca/images/Resources/gps.pdf

4 A. Cavoukian

─ Purpose Specification and Use Limitation – reasons for the collection, use,
disclosure and retention of personally identifiable information should be identi-
fied at or before the time of collection. Personal information should not be used
or disclosed for purposes other than those for which it was collected, except
with the consent of the individual or as required by law;

─ User participation – individuals should be empowered to play a participatory
role and exercise controls during the life cycle of their own personal data;

─ Strong security – the confidentiality, integrity and availability of personal data
should be safeguarded, as appropriate to the sensitivity of the information.

In their design and implementation, PETs should ideally promote all of these meta-
principles. The use of strong encryption technologies to secure detailed customer
records against unauthorized access, for example, is extremely valuable, but it speaks
little to data minimization and user participation. Building in privacy principles early
and comprehensively into information technologies and systems is central to good
PETs and would later, through a process of incremental refinement, become the an-
chor for my trademark Privacy by Designapproach.

Traditional PETs contribute to the achievement of the privacy ideal of informa-
tional self-determination – the individual’s ability to exercise a measure of control
over the collection, use and disclosure of their personal information. They have
typically been defined as performing the following functions:

─ preventing unauthorized access to personal communications and stored files;
─ automating the retrieval of information about data collectors’ privacy practices

and automating users’ decision-making on the basis of these practices;
─ preventing automated data capture through cookies, HTTP headers, web bugs,

spyware, etc.;
─ preventing communications from being linked to a specific individual;
─ facilitating transactions that reveal minimal personal information; and
─ filtering unwanted messages.

As PETs are user-centric tools and functions, this list has not been significantly
lengthened in over a decade. Over time, we began to wonder whether we had perhaps
placed unnecessary boundaries around PETs. Were they cryptographic primitives,
software or hardware applications, components embedded in larger systems, or entire
information systems? Should PETs be understood to include only technologies under
the exclusive control of the individual, or was there room for a more expansive defini-
tion that included important and complementary infrastructure components beyond
the control of the individual?

PETs Plus: Putting a Positive Spin on Privacy

Within 10 years of the concept of PETs being clearly articulated, the “new normal” of
surveillance – deeper and broader than ever before – was such that the limitations of
PETs were becoming clear. The door to a more expansive understanding had to be
opened.

 Patience, Persistence, and Faith 5

PETs embody fundamental privacy principles by minimizing personal data use,
maximizing data security, and empowering individuals. They are useful, but no
longer sufficient in and of themselves to assure sustained, meaningful privacy protec-
tion. And while FIPs remained relevant, a significant challenge was that the early
drafters and adopters of FIPs clearly had in mind large mainframe computers and
centralized electronic databases. They could never have imagined how leapfrogging
revolutions in sensors, bandwidth, storage, and processing power would converge into
our current hyper-connected Web 2.0 world of ubiquitous data availability.

A second challenge with the PETs approach was that it kept the privacy conversa-
tion contained to a relatively small suite of technologies, and therefore marginalized.
Further, organizations were inclined to think that they could have technology systems
that either protected privacy or were effective in meeting their business objectives –
not both. The kinds of arguments that were being made in support of PETs did little
to disabuse them of this notion.

As surveillance technologies continued to expand throughout the 1990’s, I
observed that privacy was constantly losing out in debates that pitted it against values
like public safety, security, and even efficiency. Some of the surveillance control
technologies that privacy was losing out to at the time included (typical objectives
shown in brackets):

─ Public and private video surveillance (public safety)
─ Employee monitoring and surveillance (corporate data security)
─ Network monitoring, profiling and database analytics (network forensics, mar-

keting)
─ Device location tracking (safety, resource allocation, marketing)
─ “Whole of customer” transaction aggregation (customer service)
─ Creation and uses of “enriched” profiles to identify, verify and evaluate (secu-

rity)
─ Creation and uses of interoperable biometric databases (access control/security)

These types of surveillance systems were being built around the basic assumption that
users/subjects had to give up some of their privacy in order to benefit from improved
system security and functionalities. This is how privacy was being increasingly
“trumped” by social, legal, and economic imperatives: it was being characterized as a
zero-sum tradeoff – always coming at the expense of other interests against which it
had to be “balanced.”

But balance metaphors assume that the two interests being balanced are always in
conflict, and that an increase in one necessarily translates into a decrease in the other.
More privacy equals less security; more security equals less privacy.5 This simply
isn’t the case.6

5 See Julian Sanchez’s excellent blog posting (February 4, 2011) on the shortcomings of bal-

ance metaphors at www.juliansanchez.com, which is based on Orin Kerr’s An
Equilibrium-Adjustment Theory of the Fourth Amendment. Harvard Law Review, Vol. 125
(forthcoming) http://papers.ssrn.com/sol3/papers.cfm?abstract_id=
1748222.

6 Indeed, the balance metaphor is coming under growing criticism. See, for example, Daniel
Solove: Nothing to Hide: The False Tradeoff Between Privacy and Security. Yale University
Press (forthcoming, 2011).

6 A. Cavoukian

Ultimately, PETs were effective in some situations, but less so in others, and their
long-term strategic value to advancing the cause of privacy into the mainstream
appeared to be limited. In my view, PETs Plus – Privacy-Enhancing Technologies
applied in the context of a positive-sum, not zero-sum paradigm – represented the
next evolution of PETs.

By adding a “positive-sum” outlook to the design and use of information and com-
munication technologies, PETs Plus made it possible to conceive of achieving goals
beyond privacy, while also achieving privacy goals. It recognized the legitimate goals
of other participants or stakeholders in the development process, such as, for example,
those of the system owner and operator, in a positive-sum rather than zero-sum, “ei-
ther/or” model. Thus the functional and operational objectives of a system (e.g., to
transport and route electronic communications, to process a payment, or provide a
service), and other security, surveillance, and anti-fraud detection goals, could be
achieved while also protecting privacy. It was a conceptual shift that would, over time,
prove critical in engaging organizations meaningfully in the privacy issue. The time
had come to move beyond false dichotomies and short-sighted “balancing acts.”

Beyond Individual Responsibility

Throughout this period, changes in information technology were making it increas-
ingly difficult for individuals to exert meaningfulcontrol over the collection, use, and
disclosure of their personal information. Significantly, at about the same time,
organizations were beginning to face pressure to provide better privacy assurances,
for a number of reasons.7

By the mid-’90s, there was considerable public discussion in the European Union,
Canada and the United States about the merits of good privacy practices flowing from
the anticipated coming into force of the European Data Protection Directive.8The EU
Directive sought to strike a balance between a high level of protection for the privacy
of individuals and the free movement of personal data. Significantly, when transposed
to EU Member national law, the EU Directive would require foreign jurisdictions and
businesses to meet its “adequacy” requirements in order to receive transfers of any
personal information about EU citizens.

In Canada, a broad coalition of business and consumer interests was meeting to
establish a national, voluntary privacy code to guide the legitimate information
requirements of business, industry and institutions operating in the information age.
Their efforts would ultimately be legislated in the Personal Information Protection
and Electronic Documents Act (PIPEDA). In the United States, negotiations began
with the EU on a “SafeHarbor” framework agreement to establish similar ground
rules for the processing of personal information by U.S. businesses.

7 In 1995, Don Tapscott and I co-authored Who Knows: Safeguarding your Privacy in a

Networked World. Random House, Toronto (1995) that captures the spirit of this time.
8 European Parliament and Council Directive 95/46/EC of 24 October 1995 on the protection of

individuals with regard to the processing of personal data and on the free movement of such
data.Official Journal L 281 of 23.11. (1995).

 Patience, Persistence, and Faith 7

Aside from these regulatory developments, growing interest in electronic com-
merce was also putting a new spotlight on privacy. The fulfillment of the promise of
the Information Age would rely, in large measure, on the ability to foster the
confidence and trust necessary for active consumer participation. Against this back-
ground, my office published several white papers such as,Privacy Protection Makes
Good Business Sense,9 and Privacy: The Key to Electronic Commerce10that argued
that any organization that collects, uses and/or discloses personal information should
proactively accommodate the privacy interests and rights of individuals, throughout
its operations. More than a moral imperative, respecting privacy would offer a busi-
ness “payoff” to organizations in the form of: improved customer satisfaction and
trust; enhanced reputations; reduced legal liabilities; more efficient operations; com-
mercial gains and enhanced ROI; and, ultimately, an enduring competitive advantage.

Toward a New Paradigm: Privacy by Design

Against this backdrop, the Ontario Government, like many other public and private
sector organizations, had, since the mid 1990’s, begun to adopt increasingly sophisti-
cated information and communications technologies in an effort to leverage the
benefitsof the emerging “Information Highway,” as it was then called. Of course, the
collection, use, sharing and retention of more and more personal information, made
possible by these large-scale IT projects, posed significant privacy issues.

Given my office’s role in overseeing provincial and municipal government compli-
ance with access to information and privacy laws, and my position on privacy and
technology issues, I was increasingly being consulted by the government, as well as
other public and private sector organizations, for advice and guidance on how, ex-
actly, to proceed. The answer involved being proactive and building privacy inearly
on — at the design stage of these new systems, namely, Privacy by Design.

What followed was a succession of joint collaborations11 on groundbreaking new
technology-enabled projects that focused on developing and applying Privacy by
Design principles into the development process so that any privacy-invasive risks
could either be minimized or eliminated altogether.

9 Information and Privacy Commissioner/Ontario, Privacy Protection Makes Good Business

Sense, www.ipc.on.ca/english/Resources/Discussion-Papers/Discussi
on-Papers-Summary/?id=327

10 Information and Privacy Commissioner/Ontario, Privacy: The Key to Electronic Commerce,
www.ipc.on.ca/images/Resources/e-comm.pdf

11 See, for example, Information and Privacy Commissioner/Ontario publications: Smart, Opti-
cal and Other Advanced Cards: How to do a Privacy Assessment, www.ipc.on.
ca/english/Resources/Discussion-Papers/Discussion-Papers-
Summary/?id=297; 407 Express Toll Route: How You Can Travel the 407
Anonymously,www.ipc.on.ca/english/Resources/Discussion-Papers/
Discussion-Papers-Summary/?id=335; Intelligent Software Agents: Turning a
Privacy Threat into a Privacy Protector, www.ipc.on.ca/images/Resources/up-
isat.pdf; Privacy Design Principles for an Integrated Justice System - Working Paper,
www.ipc.on.ca/english/Resources/Discussion-Papers/Discussion-
Papers-Summary/?id=318

8 A. Cavoukian

All of these elements came together that year in my presentation, Privacy by
Design: Building Trust into Technology to the 1st Annual Privacy and Security Work-
shop by the Centre for Applied Cryptographic Research (CACR) in 2000.12

At the same time, market changes, technological developments, and evolutions
within the privacy community converged such that by 2000, when the deeply influen-
tial Computers, Freedom and Privacy (CFP) conference held its 10th annual meeting
in Toronto, organizers and participants set aside – for the first time – their traditional
focus on legislative privacy protections.

In an exploratory Workshop on Freedom and Privacy by Design, participants con-
sidered how technology could be leveraged to bring about strong protections of civil
liberties that would be guaranteed by the technologies themselves.13 The workshop
aimed at developing principles for designing and implementing information architec-
tures, strategies and evaluation criteria that could be inherently privacy protective. To
do so, it brought together programmers, cryptographers, and systems architects with
lawyers, social scientists, writers and user/experts.

Still, their focus remained largely technological. By contrast, my office’s work on
Privacy by Design, though rooted in PETs, recognized the need to embed privacy at
the design stages of information technologies, architectures, and systems. By apply-
ing 7 foundational principles, the objectives of Privacy by Design could be met in all
of these areas.

These principles are applied within the context of data minimization – the idea that
the collection, use, disclosure and retention of personal information should be mini-
mized wherever, and to the fullest extent, possible. This concept, which had been
missing from most articulations of Fair Information Practices, appeared in the Global

12 Presentation by Ann Cavoukian, Ph.D. to the 1st Annual Privacy and Security Conference,

Centre for Applied Research, Privacy by Design: Building Trust into Technology,
www.cacr.math.uwaterloo.ca/conferences/2000/isw-
sixth/cavoukian.ppt

13 Computers, Freedom and Privacy workshop proceedings,
 www.cfp2000.org/ workshop/materials/

The 7 Foundational Principles of

Privacy by Design

1. Proactive not Reactive; Preventative not Remedial
2. Privacy as the Default Setting
3. Privacy Embedded into Design
4. Full Functionality – Positive-Sum, not Zero-Sum
5. End-to-End Security – Full Lifecycle Protection
6. Visibility and Transparency – Keep it Open
7. Respect for User Privacy – Keep it User-Centric

 Patience, Persistence, and Faith 9

Privacy Standard that was developed by a Working Group of Commissioners that I
chaired, and that had as its sole focus the creation of an internationally harmonized set
of FIPs.14

My broader, more holistic approach to protecting privacy, by design, would begin
to take hold in the first decade of the new millennium. Privacy by Design would also
begin to move the privacy debate out of the win/lose, zero-sum paradigm. As a result,
it would challenge organizations to think creatively about how all system objectives –
including privacy – could be met. This opened the door for actively bringing privacy
into the development process – a substantial break with traditional approaches that
often left privacy to the last minute or later (to the extent that it was addressed at all),
placing the bulk of the responsibility in the hands of individual consumers.

Privacy by Design in the Post-9/11 World: Challenges and
Opportunities

In the meantime, the events and consequences of September 11, 2001 challenged
assumptions among many privacy advocates, freedom fighters and technologists that
individual privacy was necessarily paramount to all other interests in society. They
found it increasingly difficult to defend privacy interests in an atmosphere character-
ized by visceral public fear and a collective desire for security.

Almost overnight, the privacy threat model changed. Governments enacted legisla-
tion and put in place initiatives that trumped traditional information privacy legisla-
tion and individual rights, often enlisting private-sector organizations to collect and
use more granular personal information than ever before.

This was the classic zero-sum paradigm writ large: the more we have of one inter-
est (public security), the less we can have of another (individual privacy). Privacy
could never win out – and arguably could not even survive – within this zero-sum
framework.

Unpopularly at first, I challenged the underlying premise that privacy necessarily
had to be ceded in order to gain security benefits, arguing that both could be achieved
at the same time. I posited that many security technologies could be redesigned to
remain effective, while minimizing or eliminating their privacy invasive features. By
substituting a new premise - that privacy and security were two complementary sides
of an indivisible whole (not opposites), I argued that we could design technologies
that protect public safety without sacrificing privacy. What a concept!

My approach during this period was three-pronged:

1. Challenging the privacy community to question existing paradigm assumptions,
and to raise the level of debate on security and privacy above traditional, simplis-
tic, either/or viewpoints.

2. Challenging two distinct groups: 1) legislators, policy analysts and legal counsel
that draft legislation focused on security and public safety, and 2) directors, man-
agers, individuals, who develop Requests for Proposals (RFPs) and set the

14 Information and Privacy Commissioner/Ontario, Creation of a Global Privacy Standard.

(2006), www.ipc.on.ca/images/Resources/gps.pdf

10 A. Cavoukian

procurement ‘specs’ for security technologies, to be more mindful of how privacy
interests could be accommodated in their work.

3. Challenging solution providers – engineers, technologists, software designers, and
other developers of technology and their industry associations - to introduce pri-
vacy concepts into the policy statements of their organizations and associations,
and, more importantly, to embed privacy directly into the concept, design and im-
plementation of their technology solutions. Namely, add privacy features into code,
making it a core functionality.

Over time, this view gained credence, and privacy principles began to be introduced
into otherwise security-focused frameworks.

The Privacy Payoff: Taking Privacy by Design into the Business
Community

While the security community remained an essential focus in the aftermath of Sep-
tember 11, it was clear to me that, in order to ensure meaningful privacy protection
well into the future, I had to continue my work to entrench privacy as a basic business
practice. So, during the early 2000’s, I redoubled my efforts to engage the business
community.

My arguments were published in 2002 as The Privacy Payoff,15 a book I co-
authored with Tyler Hamilton. The premise was simple: businesses were collecting
information about their customers through knowledge-based technology, hoping to
better serve their customers and, in turn, increase their profits. But most were over-
looking one key point – customers didn’t like how they went about this.

Going beyond quick fixes, The Privacy Payoff offered companies concrete steps to
avoid the risks of the privacy minefield and reap the advantages of a privacy-sensitive
corporation. It discussed global regulations and trends, drafting and implementing a
privacy policy, and more. The central message – that adopting good privacy and secu-
rity practices paid back multiple dividends and was highly desirable, regardless of
legal and regulatory requirements – remains to this day a core axiom of the Privacy by
Design approach.

The business case for privacy that we outlined in The Privacy Payoff focused, in
essence, on gaining and keeping customer trust and loyalty, which, in turn, leads to
repeat and higher-value business, and avoids "churn." Good privacy leads to solid
ROI (return on investment). We also outlined how the privacy payoff could work in
reverse: poor privacy practices could result in additional costs and foregone opportu-
nities and revenues, along with a host of other negative consequences. These could
include:

─ harm to clients or customers whose personal data was used or disclosed inap-
propriately;

─ costly damage to an organization's reputation and brand;

15 Ann Cavoukian & Tyler Hamilton, The Privacy Payoff: How Successful Businesses Build

Customer Trust. McGraw-Hill Ryerson (2002).

 Patience, Persistence, and Faith 11

─ financial losses associated with deterioration in the quality or integrity of per-
sonal data;

─ financial losses due to a loss of business or delay in the implementation of a new
product or service, due to privacy concerns;

─ loss of market share or a drop in stock prices following negative publicity;
─ violations of privacy laws and regulations;
─ diminished confidence and trust in the industry.

The Privacy Payoff was followed by a joint publication between my office and
Deloitte &Touche16 that clarified the central issues and challenges for organizations,
such as the critical distinctions and interplay between information security and pri-
vacy, and provided advice for developing strategies to enhance information security
and privacy protections.

A year later, my office commissioned a study by the Ponemon Institute on corporate
privacy practices.17 The report compared what Canadian and U.S. companies were
doing to achieve privacy programs and also looked at what companies were doing to
move beyond simple compliance with regulations in order to build trusted relationships
with stakeholders, increase revenue, and strengthen reputation and brand.

The study showed that leading companies were more likely to execute the follow-
ing business practices as an integral part of their enterprise privacy program:

─ Integrate information security and privacy into one virtual team
─ Incorporate perspectives of legal, marketing, human resources and IT into pri-

vacy strategy
─ Centralize privacy program responsibility under one senior executive sponsor
─ Whenever feasible, consider using privacy enabling technologies,
─ Empower local managers to get involved, especially in communications, train-

ing and outreach,
─ Obtain real budget authority to implement enterprise programs,
─ Build process standards that resemble six sigma or ISO programs,
─ Establish upstream communication and fair redress,
─ Conduct privacy impact assessments to objectively identify issues, problems

and risks,
─ Provide good reporting and disclosure tools to all stakeholders,
─ Listen to customers about their privacy preferences, concerns and issues,
─ Ensure both privacy goals and practical business objectives are met.

This practical understanding of what successful execution of privacy programs looked
like from the inside would shape and focus my work over the next several years. As
always, I seized opportunities to partner with thought leaders, captains of industry,
privacy professionals, and government leaders. Through the 2000’s, these opportuni-
ties were plentiful, and my office was busy!

16 Information and Privacy Commissioner/Ontario and Deloitte &Touche, The Security-Privacy

Paradox: Issues, Misconceptions and Strategies. (2004), www.ipc.on.ca/images/
Resources/sec-priv.pdf

17 Information and Privacy Commissioner/Ontario and Ponemon Institute, Cross-National
Study of Canadian and U.S. Corporate Privacy Practices. www.ipc.on.ca/images/
Resources/cross.pdf

12 A. Cavoukian

We partnered, for example, with the Schulich School of Business at YorkUniversity
on a paper entitled Privacy and Boards of Directors: What You Don’t Know Can Hurt
You,18which argued that privacy protection starts at the top and must have a C-suite
level presence to provide real and effective organizational accountability. The paper
outlined specific steps businesses should take, including conducting a self-assessment,
educating staff about privacy, appointing a Chief Privacy Officer, making privacy an
integral part of performance evaluations and compensation packages, executing regular
privacy audits, and asking senior management the right questions about privacy.

We also contributed, in 2005, to an international business research syndicate, led
by Don Tapscott, which was investigating the changing shape of businesses and ways
in which to achieve new competitive advantages by adopting strategic information
technologies into and business practices. The resulting paper19 outlined the five major
privacy challenges facing organizations for the next generation and offered solutions
based on our Privacy by Design approach.

In 2009, we partnered with leading US firms to describe and illustrate how Privacy
by Design could be applied to enhance organizational accountability to, and compli-
ance with, international privacy laws and other requirements.20 This publication was
one of a series of joint papers applying Privacy by Design principles to illustrative
concrete case studies in diverse areas such as remote health care21, biometric sys-
tems22, and the emerging “smart grid.”23

Throughout the mid to late 2000’s, there were countless speaking engagements,
publications, partnerships, think pieces, web resources, and working relationships
being built. During this period, my focus remained the same: to lay the foundation
for protecting privacy well into the future by encouraging, entreating, and enabling
organizations to implement Privacy by Design.

18 Information and Privacy Commissioner/Ontario, Privacy and Boards of Directors: What You

Don't Know Can Hurt You, http://www.ipc.on.ca/English/Resources/
Discussion-Papers/Discussion-Papers-Summary/?id=648

19 Information and Privacy Commissioner/Ontario, Privacy and the Open-Networked Enterprise
(2005), www.ipc.on.ca/images/Resources/priv-opennetw.pdf

20 Ann Cavoukian, Ph.D., Marty Abrams, & Scott Taylor, Privacy by Design: Essential for
Organizational Accountability and Strong Business Practices (2009), www.ipc.
on.ca/images/Resources/pbd-accountability_HP_CIPL.pdf

21 Information and Privacy Commissioner/Ontario & HP Canada, RFID and Privacy: Guidance
for Health-Care Providers (2008), http://www.ipc.on.ca/images/
Resources/up-1rfid_HealthCare.pdf

22 Ann Cavoukian, Ph.D., and Alex Stoianov, Ph.D., Biometric Encryption: A Positive-Sum
Technology that Achieves Strong Authentication, Security AND Privacy (2007),
http://www.ipc.on.ca/images/Resources/bio-encryp.pdf

23 Information and Privacy Commissioner/Ontario and The Future of Privacy Forum,Smart
Privacy for the Smart Grid: Embedding Privacy into the Design of Electricity Conservation,
http://www.ipc.on.ca/images/Resources/pbd-smartpriv-
smartgrid.pdf; Information and Privacy Commissioner/Ontario, Hydro One, & To-
ronto Hydro, Privacy by Design: Achieving the Gold Standard in Data Protection for the
Smart Grid, http://www.ipc.on.ca/images/Resources/achieve-gold
stnd.pdf; and Information and Privacy Commissioner/Ontario, Hydro One, GE, IBM
&TelventOperationalizing Privacy by Design: The Ontario Smart Grid Case
Study,http://www.ipc.on.ca/images/Resources/pbd-ont-smartgrid-casestudy.pdf

 Patience, Persistence, and Faith 13

2010: Privacy by Design Reaches a Tipping Point

By 2010, it was clear that the advocacy work of the past ten years was starting to pay
off, as tremendous strides were made in evolving PbD from a conceptual framework
into a practical one that was actually being applied by industry leaders. Organizations
were no longer asking “why?” but “how?” The slide decks I had been using to pre-
sent the business case for privacy went into retirement. They were replaced, instead,
with slides about the growing momentum gathering behind Privacy by Design.

A high point for PbD, and for me personally, was the unanimous adoption of a
landmark Privacy by Design resolution24 by the full assembly of international Privacy
Authorities and Regulators at the International Conference of Data Protection and
Privacy Commissioners in Jerusalem.

The resolution recognizes Privacy by Design as an “essential component of fun-
damental privacy protection.” It also:

─ Encourages the adoption of the principles of Privacy by Design as part of an
organization’s default mode of operation; and

─ Invites Data Protection and Privacy Commissioners to promote Privacy by
Design, foster the incorporation of its Foundational Principles in privacy policy
and legislation in their respective jurisdictions, and encourage research into
Privacy by Design.

To help support that work, I released a Privacy by Design Curriculum.25 The Curricu-
lum provides resources that enable virtually anyone to understand and teach others
about Privacy by Design and how its principles may be applied in particular settings.

Furthering the work of implementation, I involved my office in several ground-
breaking projects in this field. One of them, a joint paper26 with the Ontario Lottery
and Gaming Corporation (OLG), focused on a very novel application of PbD in the
field of Biometric Encryption.

2010 also saw significant privacy gains through the application of PbD in other
arenas. Near the end of 2009, for example, my office worked closely with Google to
develop a tip sheet on encrypting Gmail messages. Through that process, Google
decided, in early 2010, to set the default so that it automatically encrypted all email
messages sent by users of its Gmail service – a significant advancement!

We also did some work on implementing PbD in the hot-button area of targeted
advertising. This kind of advertising brings with it a host of privacy issues, from
those directly connected with the practice (e.g. the tracking of online behaviour, the
use of location data as reported by mobile devices, etc.) to broader, Internet-wide
topics (e.g. IP addresses as personal information, etc.).

24 Information and Privacy Commissioner/Ontario, Landmark Resolution passed to preserve the

Future of Privacy, http://www.ipc.on.ca/images/Resources/2010-10-29-
Resolution-e_1.pdf

25 All available at: www.privacybydesign.ca
26 Information and Privacy Commissioner/Ontario, Privacy-Protective Facial Recognition: Bio-

metric Encryption Proof of Concept,
http://www.ipc.on.ca/english/Resources/Discussion-
Papers/Discussion-Papers-Summary/?id=1000

14 A. Cavoukian

In October 2010, we issued a joint paper27 on one facet of the rapidly-evolving
field of targeted advertising: precise IP geolocation, and the potential role of ISPs in
the ad serving model. Our paper described the innovative technology developed by a
highly innovative company, Bering Media, Inc., which allows ISPs to partner with an
ad server to provide IP geolocation services without any disclosure of personally
identifiable information about subscribers. Using their privacy architecture, the ISP
can partner with an ad server without the server reading or modifying any packets
travelling through the ISP’s network.

While these and other PbD projects spanned widely disparate fields, all of them
demonstrated the extent to which Privacy by Design fosters innovation by challenging
system designers and engineers to think creatively. These projects have confirmed what
I have long held to be true: rejecting the widespread but misguided view that privacy
and other objectives are necessarily in conflict, opens up a world of possibilities.

The Long Road Ahead: Launching a Decade of Privacy by Design

At the start of 2011, the Future of Privacy Forum, a Washington-based think tank that
promotes responsible data privacy practices, posted its First Annual List of Privacy
Ins and Outs. I was delighted (and gratified) to see PbD make the list of what’s “in.”

2010 was an excellent year for Privacy by Design. We had clearly reached a tip-
ping point. But this is not the time to rest on our laurels. There is much to look for-
ward to, and there is yet much work to be done. Indeed, I am predicting that this year
will launch the decade of Privacy by Design, and put in place a solid foundation for
assuringthe future of privacy. Here are a few of the developments that I am hoping
for and will be working towards in this decade:

1 PbD as a Fundmanetal Component of Privacy Frameworks

There is a growing momentum to enshrine the 7 Foundational Principles of PbD into
privacy policies and regulatory frameworks. The U.S. Federal Trade Commission’s
noteworthy paper, Protecting Consumer Privacy in an Era of Rapid Change: A Pro-
posed Framework for Businesses and Policy Makers,28 named PbD as one its three
recommendations.

Similarly, the European Commission’s (EC) recent consultation paper29 proposed
PbD as a way to enhance the responsibilities of organizations. Peter Hustinx, Euro-
pean Data Protection Supervisor, has said "Privacy by Design needs to be explicitly

27 Information and Privacy Commissioner/Ontario, Redesigning IP Geolocation: Privacy by

Design and Online Targeted Advertising, http://www.ipc.on.ca/images/
Resources/pbd-ip-geo.pdf

28 Federal Trade Commission, Protecting Consumer Privacy in an Era of Rapid Change: A
Proposed Framework for Business and Policymakers, http://www.ftc.gov/opa/
2010/12/privacyreport.shtm

29 Consultation on the Commission's comprehensive approach on personal data protection in
the European Union,
http://ec.europa.eu/justice/news/consulting_public/news_consul
ting_0006_en.htm

 Patience, Persistence, and Faith 15

included as a general binding principle into the existing data protection legal frame-
work. This would compel its implementation by data controllers and ICT designers
and manufacturers while offering more legitimacy to enforcement authorities to re-
quire its effective application in practice...Privacy by Design should also be fully
endorsed by the forthcoming European Digital Agenda and become a binding princi-
ple in future EU policies."30

In 2011, we are witnessing further movement toward embedding PbD into regula-
tory instruments, voluntary codes, and ”best practices” all around the world. Among
other things, this will significantly expand the understanding of how the principles of
PbD may be interpreted in specific contexts, and applied to particular industries and
technologies. And with the translation of the 7 Foundational Principles into 14 lan-
guages, PbD will truly become a global standard.31

2 PbD as a Fixture within Public and Private Sector Ecosystems

The signs are already beginning to appear: market leaders are starting to embrace
Privacy by Design, and are, in turn, reaping the benefits. Recently, thought leaders
Don Tapscott and Anthony D. Williams, authors of Macrowikinomics: Rebooting
Business and the World, joined the ranks of strong voices in support of PbD, in an
article32 urging companies to adopt its principles. “Cavoukian's Privacy by Design
playbook explains how to build privacy protections into everyday business practices.
Every business needs to design privacy principles and practices into their operations.”

Organizations that act proactively stand to gain a sustainable competitive advan-
tage from their early adoption of responsible information practices, and enjoy savings
of time and resources by building privacy in from the outset, rather than trying to
retrofit an ill-fitting solution, after the fact.

3 A Generation of “Privacy Heroes”

Over the past few years, my office’s annual PbD Challenge33, our Developers Challenge
(co-sponsored with Microsoft) and the PbD Ambassador program have begun to stimu-
late and recognize emerging leadership in the area of Privacy by Design. Armed with
forward vision, technical expertise and respect for consumers and citizens, a committed
pool of individuals and organizations, who we call “privacy heroes” – including re-
searchers, academics, engineers, regulators, captains of industry, and privacy advocates
– are emerging as forerunners in the implemention of Privacy by Design.

We look to these privacy heroes to expand the pool of PbD expertise, commitment,
and innovation in 2011 and beyond, as the ranks of PbD supporters continue to swell.

30 Privacy advisor calls for 'privacy by design' laws, http://www.out-law.com/page-
10851

31 The 7 Foundational Principles are being translated into a growing number of languages,
including French, German, Italian, Spanish, Czech, Dutch, Estonian, Hebrew, Hindi, Chinese,
Japanese, Arabic, Armenian, and Russian.

32 Don Tapscottand Anthony D. Williams: Social media's unexpected threat, www.ctv.ca/
 generic/generated/static/business/article1854656.html

33 Find information about the PbD Challenge at http://www.privacybydesign.ca/
 events/upcoming-events/

16 A. Cavoukian

4 Innovative Applications of PbD

2010 saw PbD grow from a conceptual framework to a practical methodology that
organizations are increasingly implementing. Significant projects in the areas of
Smart Grid34 and Privacy-Protective Biometric Facial Recognition35, and mobile ap-
plications36 marked the beginning of true innovation in applying the principles of
Privacy by Design.

With market leaders like GE, HP, IBM, Microsoft, Oracle, Intel, Hydro One, the On-
tario Lottery and Gaming Corporation, and new talent like Bering Media paving the
way, 2011 promises to be a banner year for new and innovative applications of PbD.

 5 Consistent Alignment between Business Practices and Consumer
Expectations

Many organizations have lengthy, “legalistic” privacy policies that are difficult for
consumers to read, let alone understand. Nonetheless, many consumers assume –
incorrectly – the fact that a site posts a policy means that it will not share their per-
sonal information with unauthorized third parties. These expectations are certainly
not well-founded, nor are they always consistent with current business practices.

Embedding privacy proactively will bring business practices into much better
alignment with consumer expectations. While this process may take some time, I
think we can look forward to seeing many positive steps in the coming year. And that
will be good for everyone – consumers and businesses – because when consumers
trust that their personal information is being protected, they will continue to support
the growth of new forms of web-based commerce, without fearing for their informa-
tion. Consumer confidence and business development – positive sum, win/win!

The road behind me may feel like a long one, but it has only just begun. Along the
way, the cause of Privacy by Design has been greatly helped by our allies, partners,
collaborators, and colleagues. Together we have fought to retain the ability to con-
tinue to enjoy privacy while enjoying the benefits of the modern age, win/win, not
zero-sum.

The road ahead promises to be just as long. I invite all of you to join me in realiz-
ing the vision of a future world where privacy lives on by striving to implement inno-
vative Privacy by Design solutions in your own organizations and lives. Our freedom
and privacy may be at stake – what could be more important?

34 Information and Privacy Commissioner/Ontario, Hydro One, & Toronto Hydro, Privacy by

Design: Achieving the Gold Standard in Data Protection for the Smart Grid, http:
//www.ipc.on.ca/images/Resources/achieve-goldstnd.pdf and Informa-
tion and Privacy Commissioner/Ontario, Hydro One, GE, IBM &TelventOperationalizing
Privacy by Design: The Ontario Smart Grid Case Study, http://www.ipc.
on.ca/images/Resources/pbd-ont-smartgrid-casestudy.pdf

35 Information and Privacy Commissioner/Ontario and Ontario Lottery and Gaming Corpora-
tion, Privacy-Protective Facial Recognition: Biometric Encryption Proof of Concept,
http://www.ipc.on.ca/images/Resources/pbd-olg-facial-recog.pdf

36 Information and Privacy Commissioner/Ontario & Arizona State University’s Privacy by
Design Research Lab, The Roadmap for Privacy by Design in Mobile Communications: A
Practical Tool for Developers, Service Providers, and Users. (2010), http://www.
ipc.on.ca/images/Resources/pbd-asu-mobile.pdf

iSAM: An iPhone Stealth Airborne Malware

Dimitrios Damopoulos, Georgios Kambourakis, and Stefanos Gritzalis

Info-Sec-Lab Laboratory of Information and Communications Systems Security,
University of the Aegean, Samos, Greece
{ddamop,gkamb,sgritz}@aegean.gr

http://www.icsd.aegean.gr/info-sec-lab

Abstract. Modern and powerful mobile devices comprise an attractive
target for any potential intruder or malicious code. The usual goal of an
attack is to acquire users’ sensitive data or compromise the device so as to
use it as a stepping stone (or bot) to unleash a number of attacks to other
targets. In this paper, we focus on the popular iPhone device. We create a
new stealth and airborne malware namely iSAM able to wirelessly infect
and self-propagate to iPhone devices. iSAM incorporates six different
malware mechanisms, and is able to connect back to the iSAM bot master
server to update its programming logic or to obey commands and unleash
a synchronized attack. Our analysis unveils the internal mechanics of
iSAM and discusses the way all iSAM components contribute towards
achieving its goals. Although iSAM has been specifically designed for
iPhone it can be easily modified to attack any iOS-based device.

Keywords: Malware, iPhone, iOS, Jailbreak, Stealth, Airborne,
Rootkit.

1 Introduction

Mobile devices have evolved and experienced an immense popularity over the
last few years. These devices have penetrated the market due to the variety
of data services they offer, such as texting, emailing, browsing the Internet,
documents editing, listening to music, watching videos and playing games in
addition to the traditional voice services. As a result, analysts are expecting a
mobile device population of 5 billion by 2015 [1]. Moreover, these devices are
capable of performing sophisticated tasks and communicating through various
wireless interfaces. As mobile devices hardware functionality and performance
get improved, Operating Systems (OS) have similarly evolved. Modern mobile
devices run sophisticated OS like Google Android, Apple iOS, Symbian, Palm
OS, Blackberry RIM, Windows Mobile 7, that need to confront almost the same
risks as desktop computers. It is thus apparent that this growth has exposed
mobile devices to an increasing number of security threats. According to Chow
and Jones [2], the only difference between desktop computers and mobile devices
in terms of security risk is the challenge to understand the inner workings of the
OS on different hardware processor architectures.

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 17–28, 2011.
c© IFIP International Federation for Information Processing 2011

http://www.icsd.aegean.gr/info-sec-lab

18 D. Damopoulos, G. Kambourakis, and S. Gritzalis

Very recently, Kaspersky Lab identified 39 new mobile malware families (SMS
trojans, iPhone malware, Android spyware) with 143 variants [3] which try to
compromise mobile device security. Also, according to a ScanSafe report, mal-
ware volume grew 300% in 2008, and it is noted that several of the legitimate
web pages crawling on the Internet maybe infected by different kind of viruses
[4]. In the same report it is stated that malicious image files comprised 10% of
all Web malware encountered in 2009.

In this paper, we focus on iPhone device security. We create a smart malware
namely iSAM to expose possible vulnerabilities of modern mobile devices and
OS, and demonstrate that is relative easy to bypass any security control. To-
wards achieving its goals, iSAM employs a variety of programming techniques
(pubic and private frameworks, override OS functions), backgrounding methods
(daemons, dynamic libraries), as well as open source iPhone malware resources
(e.g. Star exploit, iKee scanner logic). The aim of iSAM is to stealthily execute,
six malware mechanisms, self-propagate wirelessly to other iPhone targets and
finally connect back to the iSAM bot master server to update its programming
logic or to obey commands and unleash a synchronized attack. Although specif-
ically designed for iPhone 2G and iPhone 3G with the 3.1 and 4.0.1 iOS version
respectively, iSAM can be easily adapted to attack other Apple iOS devices
(iPhone 3GS/4 and all generations of iPod Touch). To the best of our knowl-
edge this is the first rootkit-similar, airborne and stealth multifarious malware
that is capable of infecting iPhone devices.

The rest of the paper is structured as follows. The next section presents pre-
vious work on the topic. Section 3 provides basic mobile malware design require-
ments and attributes. Section 4 describes the iSAM overall architecture and
presents an analysis of the six proof-of-concept malicious iSAM’s subroutines.
The last session concludes the paper and gives pointers to future work.

2 Preliminaries and Related Work

Soon after the first iPhone was released, hardware and software modules were
developed to bypass root privileges and overcome any restrictions. That is, only
software signed by Apple’s Certificate Authority is allowed to run on iPhone.
This process is generally referred to as “Jailbreak”. Upon jailbreaking, the en-
tire iPhone file system becomes open for use. Jailbreaking allows to create and
execute third-party software without an official SDK from Apple. The first aim
after jailbreaking was to bypass SIM-Lock. Specifically, every iPhone is locked
to a particular network provider. Unlocking allows the user to place calls with
any GSM/3G carrier by inserting a different SIM into the device.

The installer created by the development team RipDev, and Cydia created by
J. Freeman were the first two package managers that allowed a user to browse and
download third-party applications for jailbroken iPhones. The open-source Cydia
became very popular after iPhone firmware version 2.0. Since then, every time
a hacking team discovers a new iPhone exploit, they publish the corresponding
software that jailbreaks the device. Also, the same software installs a version of
Cydia, a SSH server, and enables the default root login password “alpine”.

iSAM: An iPhone Stealth Airborne Malware 19

In July 2007, T. Ormandy discovered “libtiff”, a buffer overflow method that
has already been used to attack Sony’s PSP device. Hackers inspected Apple’s
Mobile Safari web browser in order to test and take advantage of the same vul-
nerability that lay in the Tag Image File Format (TIFF) library, which is used
for viewing TIFFs. Finally, they managed to successfully attack iPhone. Capital-
izing on this vulnerability they created the web site jailbreakme.com. There, by
selecting the “Slide-to-Unlock” button, a malicious TIFF file was simply opened
from Mobile Safari leading to injection and execution of an arbitrary code and
a straightforward Jailbreak. Once the iPhone has been jailbroken, the exploit
patched the libtiff vulnerability in order to avoid future attacks. Apple patched
this vulnerability with iOS 1.1.2 firmware. Vaibhav in his Project Report [6],
discuses and analyzes the libtiff security breach in detail. Moreover, Chavez in
[7] discusses how an intruder can successfully attack a network using a jailbro-
ken iPhone. To perform the attack, she installs and uses a collection of powerful
tools (e.g. Metasploit, Nmap, Whois, tcpdump, a terminal, WifiStumbler).

A year later, Apple introduce the new iPhone 3G that incorporates firmware
version 2.0. Also, it offered a powerful Software Development Kit (SDK) that
gave the opportunity to developers to create and deploy software under cer-
tain public frameworks so as to create the AppStore. In the end of July 2008,
one of the iPhone third-party games namely Aurora Feint was removed from
AppStore due to privacy concerns. Actually, the game was uploading to the de-
velopers server all contacts stored in the host iPhone. In 2009, serious privacy
concerns appeared within the AppStore applications. MogoRoad and Storm8 are
only two of the AppStore applications that have been removed after users’ com-
plaints about privacy concerns. In July 2009, users have raised serious concerns
about their privacy in regard of the behavior of four tracking providers namely
Pinch Media, Flurry, Medialets and Mobclix. J. Freeman tried to protect iPhone
users by creating PrivaCy, an application for jailbroken iPhones, which blocks
AppStore applications from tracking usage information.

The authors in [8] presented a vulnerability in SMS messages, which enables
an attacker to inject fuzzed SMS messages into iPhones, Android and Windows
Mobile devices. This vulnerability leads to a Denial-of-Service (DoS) attack re-
maining at the same time invisible to the service provider. This weakness was
patched with the new 3.0.1 iOS firmware.

In 2009, researchers were trying to gain access to private information (i.e. con-
tacts, photos, mails, SMS messages, passwords) stored in iPhone devices using var-
ious forensics methodologies. J. Zdziarski was the first one who using proper tools
was able to retrieve unencrypted the full iPhone disk image. The same year he pub-
lished a white paper with forensics techniques and tools that could be used to re-
trieve information from an iPhone device. During the same period, the first iPhone
worm namely Ikee was released and a wave of worm attacks started. Ikee was sim-
ply changing the iPhone’s wallpaper. Note that, Ikee was a self-propagating worm
attacking only jailbroken iphones using the installed SSH server and the default
root password. The same vulnerability was also used by Dutch 5e ransom, a worm
that locked the iPhone screen asking 5e on a PayPal account in order to remove

20 D. Damopoulos, G. Kambourakis, and S. Gritzalis

the worm. Privacy.A, was another worm running in stealth mode and be able to
steal personal data from the iPhone. In November 2009, a new highly disastrous
version of Ikee, namely iKee.B appeared in several Europe countries. SRI Inter-
national analysed iKee.B in [9] and provided technical details about the logic and
the internal mechanics of the first iPhone Botnet. Although iKee.B acts similar to
Ikee, it includes a Command & Control (C&C) logic to control all infected iPhones
via a Lithuanian botnet server. Moreover, it is able to periodically update its mal-
ware behaviour. Finally, iKee.B, changes the default SSH password into “ohshit”,
and collects and sends all SMS messages stored in the device to the bot server.
The iKee.B source code is published in [10].

Recently in [11] Seriot, presented some interesting attack scenarios on how a
malicious application can use official and public frameworks, provided by Apple,
to collect users private information (e.g., phone number, email account setting,
keyboard cache entries, Mobile Safari searches and the most recent GPS location)
programmatically. This happens without the user’s knowledge and without being
rejected by the AppStore review.

On July 2010, the United States government and the new Digital Mille-
nium Copyright Act (DMCA) legislation announced that modifications of smart-
phones, like jailbreak or Unlock are legal as long as they obey the copyright law
[12]. Based on the new law, in August 2010, Comex, an iPhone exploit devel-
oper, with the help of several other hackers introduced the exploit namely Star
or JailbreakMe 2.0. This new exploit can jailbreak all Apple’s products which
incorporate iOS firmware versions from 3.1.2 to the current 4.0.1. Until then,
all previous iOS firmwares have been jailbroken using offline exploits. Star, like
JailbreakMe, is a remote browser-based jailbreak that uses two security flaws
[13]. The first one, uses a corrupted font embedded in PDF files that crash the
Compact Font Format (CFF) to allow arbitrary code execution, while the second
one uses a vulnerability in kernel to escalate the code execution to unsandboxed
root privileges. Any iOS mobile device that opens a jailbroken PDF file from a
website, email, SMS, or Apple’s iBook can be automatically jailbroken. A few
days after Star was released, Comex published the source code [14].

3 Designing Principles and Requirements for iPhone

The primary aims of a smart malware is to infect the target, self-propagate to
other targets and finally connect back to a bot master server. The latter action is
highly desirable to update the malwares programming logic by improving already
existed features and adding new ones, or to obey commands and unleash a syn-
chronized attack. To achieve the affomentioned goals, the malware needs to fulfill
some basic design requirements. First off, it needs to infect the device and gain
root permissions. Also, it needs to run continuously in the background of the OS
and has smart malware behaviour remaining stealthy to the legitimate user.

The only way to infect an iPhone and gain root permissions is by exploiting
a vulnerability on an iOS jailbroken device. In case the target iPhone is already

iSAM: An iPhone Stealth Airborne Malware 21

jailbroken, the malware may attempt to use the SSH vulnerability1 to wirelessly
connect and infect the device. According to Cydia developer, J. Freeman, over
10% of the 50 million iPhones worldwide are jailbroken [15]. Although these
devices constitute a large proportion for possible targets, it is necessary to find
new ways to infect non-jailbroken iPhones.

To do so, we propose to create a malicious version of Star exploit [14] that is
able to work wirelessly. As already mentioned, Star exploit consists of a PDF,
which uses two security flaws allowing arbitrary code execution and gaining
root privileges, and of a website “JailbreakMe” which stores the PDFs caring
the exploits (one PDF for each iPhone version and one for each iOS version)
[13]. Once the PDF is opened, a dynamic library (dylib) named “installui.dylib”
provides graphic interface and downloads from the corresponding website a file
named “wad.bin”. After that it proceeds to jailbreak the iOS and install Cydia
using a second dylib named “install.dylib”. The file “wad.bin” is a binary file
that contains any type of data; in this case it contains the “install.dylib” and
the Cydia package. According to F-secure, any iOS mobile device that opens an
exploited PDF file from a website, an email, an Apple’s iBook application or
accesses a website directly from an SMS message, can be jailbroken [16]. Note
that iOS is capable of recognizing automatically hyperlinks sent via SMS.

Once a malicious Star PDF file is opened by an iPhone using our malicious
Star version, it is being automatically jailbroaken and installed stealthily mali-
cious software. Also, once an iPhone visits our website or opens the malicious
PDF, the exploit procedure begins, stealthily, without providing any graphical
interface or any information popups. Furthermore, we inject our malware into
the “wad.bin”. This means that once the jailbreaking procedure ends, Cydia and
our malware will be both installed in the iPhone.

In order to create our malicious version of Star, it was necessary to modify the
open source version of Star exploit [14]. Firstly, we decided to pack our malware
as a Debian package. Once Cydia is installed in the iPhone, any file with the
“.deb” extension stored in the folder “/var/root/Media/Cydia/AutoInstall”, will
be also automatically installed in the device. To inject our malicious package in
the “wad.bin” file, it was necessary to modify the Star source class, named
“install” and the python script “wad.py”. Also, it was necessary to modify the
source file “installui.m” which is used to build the dylib named “installui.dylib”.
In the source file “installui.m” we deactivated all displayed graphics interfaces
making the exploit behave stealthily. Moreover, we edited the domain name from
where our malicious “wad.bin” can be downloaded and we recalculated the size
of our malicious “wad.bin” file editing the source where it was necessary. Last,
after the installation of Cydia we shift our malware package into Cydia’s auto-
install directory. It is stressed that all these operations are possible because the
Safari browsing process has acquired root access using the kernel bug.

The second requirement when designing our malware was the ability to run
continuously in the background of the underlying OS. Until iOS version 4,

1 The SSH vulnerability, allows intruders to remotely access a jailbroken device’s file
system using the SSH server and the default password “alpine”.

22 D. Damopoulos, G. Kambourakis, and S. Gritzalis

multitasking was not officially supported. Unofficially, jailbroken iOS could sup-
port applications that run in the background as deamons or use
Objective-C dylib. iOS being a Unix-based OS, can provide multitasking us-
ing launchd, a launch system that supports daemons and per-user agents as
background-services. Once an iOS has been jailbroken, any installed applica-
tion or shell script is able to behave as daemon by creating a launch plist and
placing it into the “/Library/LaunchDaemons” iOS directory. Another way to
support multitasking is with dylib. When an application is launched, the iOS
kernel loads the application’s code and data into the address space of a new
process. At the same time, the kernel loads the dynamic loader i.e., “/Sys-
tem/MobileSubstrate/DynamicLibraries” into the process and passes control to
it. In addition, it is possible to load a dylib at any time through Objective-C
functions. Finally, from iOS version 4 and later, Apple provided seven APIs that
allow applications to run in the background. Although these APIs are the native
way for providing multitasking, it is not the best way to create and launch a
malware. A program that uses the native way for backgrounding can be easily
spoted by the user from the corresponding menu.

The last requirement is to design a smart malware that will remain stealthy
and invisible to the user at all time. These smart malwares need to achieve their
purpose stealthily by modifying OS code, functions and/or data. Officially, Apple
does not provide any frameworks that override iOS functions. To fill the gap, J.
Freeman has created and incorporated into Cydia MobileSubstrate extension, a
framework that allows developers to deliver run-time patches to system functions
using Objective-C dynamic libraries [17]. By creating a dylib, developers are able
to build applications that run in the background and be able to replace internal
system functions at the same time.

4 The iSAM Malware

Given the aforementioned requirements and possible solutions, we created iSAM.
The iSAM malware has been implemented, using Objective-C source code com-
piled for iPhone ARM CPU. Also, iSAM was build using the unofficial ways
(see Section 3) for backgrounding (daemons and dylibs), the public and private2

frameworks and the MobileSubstrate framework with the “substrate.h” header
that overrides iOS functions. This means that certain modules of iSAM can be
classified as rookit.

iSAM consists of a main daemon written in Objective-C and combined with a
proper launch plist (activated at device boot time) and six subroutines written
as Objective-C functions, dylibs or shell scripts. The iSAM main daemon is re-
sponsible to manage all subroutines which are in charge of the propagation logic
(iSAMScanner), the botnet control logic (iSAMUpdate) and the smart malware
behaviour (iCollector, iSMSBomber, iDoSApp, iDosNet). iSAMScanner is acti-
vated during the device boot time and runs as a deamon in the background.
2 Unsupported frameworks, which were retrieved directly from a jailbroken iPhone

and have been dumped to get the headers.

iSAM: An iPhone Stealth Airborne Malware 23

iSAMUpdate is activated once per day and only if an Internet connection is
available, while the rest four subroutines are activated once per week but at
random times. Figure 1 depicts the overall iSAM architecture. Important pseu-
docode segments of all the iSAM subroutines discussed in this section can be
found in [22].

Fig. 1. iSAM architecture

In addition to iSAM, we setup a bot master server namely iSAM Server
(iSAMS) having multiple functionality. iSAMS incorporates two basic modules:
(a) a repository server where the newer or special customized version of iSAM
is stored, and (b) a multithread socket server used to communicate with the
infected devices to update iSAM program logic, to collect sensitive information
and to control and execute commands directly on the iPhones. Also, iSAMS
stores our malicious version of Star exploit namely mStar.

4.1 iSAM Infection Methods

As already mentioned iSAM uses two different methods to wirelessly attack
and infect iPhone devices. The first method is by using iSAMScanner (see next
section) which tries to detect jailbroken iPhones having the SSH vulnerability
and infects them directly. Alternatively, we employ mStar, a modified version of
the exploit Star, which is able to jailbreak the device and simultaneously infect
it with iSAM. A recent report by F-Secure showed that nearly 79.8% of mobile
phones infections were as a result of content downloaded from malicious websites
or delivered by Bluetooth and SMS messages [18]. Capitalising on these results
we use iSMSBomber (see section 4.5) as part of the second infection method to
contaminate iPhone devices. iSMSBomber is able to read any telephone numbers
stored in the device and send to them stealthly a SMS message with the domain
of iSAMS. This is to trick the user into visiting iSAMS. In addition, mStar

24 D. Damopoulos, G. Kambourakis, and S. Gritzalis

can be delivered to an iPhone when visiting our iSAMS via a web link, email
attachment or a legal popular AppStore application that uses a website link
to redirect to iSAMS. Once 195.251.166.50 (iSAM.samos.icsd.gr) hyperlink is
opened via a SMS message, mStar PDF is downloaded from iSAMS and loaded
via Mobile Safari. After that, installui.dylib downloads wad.bin and install.dylib
jailbreaks the iPhone and installs iSAM.

4.2 iSAMScanner: Scan, Connect, Infect

iSAMScanner is responsible for the propagation logic of iSAM. iSAMScanner
driven by iSAM daemon, is activated at iPhone boot time. The iSAMScanner
subroutine has three methods: iScan, iConnect and Infector. iScan is conducting
three independent network scans just like iKee.B. Firstly, it scans iPhone’s local
WiFi network address space, then scans in a random way computer subnetworks
on the Internet and finally scans a list of IP address range that belongs to a set of
mobile phone companies in Greece (e.g. 195.167.65.0-195.167.65.255, GR, Cos-
mote) or in other European countries (e.g. 139.7.0.0-139.7.255.255, DE, Voda-
fone). When a vulnerable iPhone is detected, iConnect connects directly to the
SSH Server using the default root password and by using Infector
downloads the iSAM.deb package to the directory “/private/var/root/” of the
target-device. Finally, Infector installs the package using the command dpkg -i
–refuse-downgrade –skip-same-version iSAM.deb. From this step forward, the
victim’s device is under the control of iSAM.

4.3 iSAMUpdate: Update, Command, Control

iSAMUpdate, is responsible for the botnet control logic of iSAM. It is also used
for connecting iSAM back to iSAMS to check whether a newer iSAM version
is available. This allows iSAM to be updated e.g., with a new programming
logic or follow commands directly from the server in order to unleash an at-
tack. iSAMUpdate is connected back to iSAMS once every day as soon as an
Internet connection is detected. Every time iSAMUpdate is activated, it re-
trieves some useful information from the device and sends them as a textmes-
sage to iSAMS to be stored in the local database. The message is consisted
of the iSAM version, the Unique Device Identifier (UDID), which is a unique
serial number for each iPhone, the IP address from the e0 interface (WiFi
connection on the iPhone) and the GPS coordinates, as long as a GPS is en-
abled. The following quintuplet gives an example of such a message {version016
||3bdf7jc607h1j7te441sc02f5h5j6229db66hh63||62.217.70.167||26.700039||37.7941
86}. In case a newer iSAM version is detected, the server answers back with the
name of this version, else it sends back a null message. It is not necessary for the
server to respond with the latest version; instead it can answer with a customized
response based on the UDID or the georgraphical coordinates if it wants to ma-
nipulate the phone in a special way or to attack devices selectively (e.g. attack
all devices that roam to a certain area). Once the iSAM client receives the name
of the version, it executes a Unix shell script named “iUpdate.sh” which is called

iSAM: An iPhone Stealth Airborne Malware 25

with the name of the version as a parameter. The shell script executes two script
commands: the “curl -O iSam.samos.icsd.gr/debs/$1.deb”, which downloads the
newer iSam version directly from iSAMS and the “dpkg –i –refuse –downgrade
–skip –same –version $1.deb”, that uses the Debian package manager to install
the new version. We should note that the name of the iSAM version, which the
server has sent, is stored in the variable $1. It is also stressed that once the server
has the client’s IP address, is able to connect directly to the client’s SSH service
using the default root password.

An infected iPhone with iSAM is able to search for jailbroken iPhones into
three different subnetworks (local subnet, random Internet subnet, mobile
provider IP subnet) in order to infected them as well. Moreover, an infected
iPhone can be updated or controlled by iSAMS. Lastly, if a non-jaibroken iPhone
opens iSAM.samos.icsd.gr hyperlink through a SMS message, will get infected
by mStar PDF.

4.4 iCollector: Gathers Private Information from the Device

The purpose of this attack module is to collect stealthily confidential information
directly from the device. iPhone stores all user’s data in SQLite databases and
plist files without providing any encryption mechanism to secure their contents.
Once an iPhone has been jailbroken, the iOS sandbox collapses and all databases
and plists stored in the path “/var/mobile/Library/” are exposed to the attacker.

iCollector is an iSAM subroutine that collects stealthily sensitive information
from iPhone’s databases (call, sms, calendar, note) and from Safari’s plist files
(bookmarks and Web browsing history), storing them into a new database named
iCollection.db. After the data collection takes place (see line #1-3 in [22]) and
when an Internet connection is detected (line #3-6), iCollector is connected back
to the iSAMS using the Client/Server model and TCP sockets in order to send
the collected information (line #7-8). iCollector is a dylib written in Objective-C
and uses an SQLite library to read, create and write to databases.

4.5 iSMSBomber: Sends Malicious SMS Messages in Stealth Mode

Like all GSM mobile devices, iPhone uses a set of commands, called AT (attention),
to dial a number or exchange SMS messages. In addition to AT commands, iPhone
employs a high level private framework, named “CoreTelephone” (incorporated to
iOS), in order to communicate with the Baseband using Objective-C functions.
However, this framework is neither available by the iOS SDK nor documented. The
onlyway to overcome this issue is to retrieve theCoreTelephone frameworkdirectly
from the files of a jailbroken iPhone and then use class-dump utility. Class-dump
examines Objective-C runtime information stored in Mach-O files in order to gen-
erate the header files [19]. This procedure is necessary to execute every time a pri-
vate framework is used.Once theCoreTelephone framework and the header files are
available, a direct communication with the Baseband can be placed.

To take advantage of such a powerful framework, we create iSMSBomber. This
is an iSAM dylib subroutine that sends silently say 1000 malicious SMS messages

26 D. Damopoulos, G. Kambourakis, and S. Gritzalis

using the private CoreTelephone framework and more specifically the CTMes-
sageCenter header (line #1-3). Firstly, iSMSBomber makes an SQL query to the
iPhone’s address book database to retrieve telephone numbers from user contacts
(line #4-5). In case no contact exists or the contacts are less than 1000, then
random numbers are created to reach 1000. Every random number begins with
the standard “003069” digit sequence, which represent a mobile phone number in
Greece. Then iSMSBomber creates the following message: “Hello, how are you?
I have found an interesting website: 195.251.166.50 - Please send it to all’!’ and
by using the sharedMessageCenter function, it sends the message to all the ex-
isting (plus random numbers if any) (line #6). Once an iPhone user receives this
message and visits the website link, Mobile Safari web browser opens automati-
cally and accesses the site. Recall that this domain is redirected to iSAMS that
stores the mSTAR exploit, which in turn contains iSAM. Also note that this mes-
sage is malicious only for iPhones iOS. Normally, once a SMS message is sent or
received, automatically it is stored to the SMS database and a tone rings. iSMS-
Bomber sends stealthily all the 1000 messages without storing them in the SMS
database and without playing any tone. The only way to expose its presence is by
the end of the month, when the mobile user receives his telephone bill assuming
that the user does not usually send a high amount of messages.

4.6 iDoSApp: Denial of Application Services

Modern mobile devices are designed to increase the efficiency and the produc-
tivity of mobile users on the go. Therefore, by default, all mobile devices come
bundled with some basic pre-installed applications or utilities. iPhone is offered
with seventeen pre-installed applications. Additionally, AppStore contains more
than 3 ∗ 105 iOS applications [20] offering the user the necessary on the go pro-
ductivity. One of the main iOS applications is SpringBoard that manages the
iOS home screen by displaying all icons of the available applications, starts the
WindowServer and launches and bootstraps other applications [21]. For exam-
ple, once a user touches the icon of an application, SpringBoard launches it.
The goal of iDoSApp subroutine is to cause DoS in application launching by
overriding some system functions required by SpringBoard.

In this context, iDoSApp is a dylib, which is activated at random time frames,
is short-term (say 1-minute) and causes real DoS by non-loading an application.
To achieve this, it is necessary to replace SpringBoard system functions, by
class-dump SpringBoard in order to get the private headers and create a dylib.
The headers used by iDoSApp are the substrate.h (used for overriding systems
functions using the MobileSubstrate framework), the SpringBoard.h and the
SBApplicationIcon.h headers (derived from the class-dump of SpringBoard (line
#1-3)). SBApplicationIcon is a system function responsible for the behavior of
all icons displayed by the SpringBoard. iDoSApp hooks, modifies and replaces
SBApplicationIcon only when the selector is a launch message. A selector in
Objective-C language is a message that can be sent to an object or class (4).
Normally, every time the user touches on an application icon, a launch message is
sent to SBApplicationIcon to load the application. In our case, once the iDoSApp

iSAM: An iPhone Stealth Airborne Malware 27

is activated, it blocks all launch messages that are sent to SBApplicationIcon
causing DoS (line #5-7). iDoSApp will not compromise iSAM existence, as some
applications can automatically close when an application is written for older or
newer iOS versions or when they fail to manage the memory correctly.

4.7 iDoSNet: Denial of Network Services

The aim of iDoSNet subroutine is to cause DoS by deactivating for - say 30 sec-
onds - all communication services (line #3-6). iSAM will activate iDoSNet at ran-
dom times during a random day of the week. iDoSNet is using a private framework,
namely Preferences.framework which can enable/disable the Airplane mode that
controls 3G/GSM functions. Furthermore, iDoSNet uses the Apple80211.
framework, a private framework that configures all 802.11 network interfaces, to
cause DoS (line #1-2). We make the hypothesis that the duration of 30 seconds will
not expose the existence of iSAM and the vast majority of users will suppose that
it happend due to a temporary interruption to the wireless signal.

5 Conclusion

The evolution of malwares is a continuous race between intruders and defend-
ers. Both use the same programming methods, tools and resources either to
create a smart malware or to develop an intelligent malware detection mech-
anism. Overall, with the increasing risk of mobile malware, designing a highly
secure mobile device is still a very challenging task. This paper concentrates on
the very popular iPhone device. We design and implement iSAM a new multi-
functional malware that is able to wirelessly infect and self-propagate to iPhone
devices. iSAM is able to override OS functions and uses a variety of advanced
programming methods (public and private frameworks), backgrounding methods
(daemons, dynamic libraries), and open source iPhone malware resources (e.g.
Star exploit, iKee scanner logic) towards achieving its goals. It is also able to
hide its presence, and update its logic via the iSAM bot master server. iSAM in-
corporates six different malware mechanisms and utilises two different methods
to wirelessly infect other devices. The purpose of our study is to highlight iOS
weaknesses and offer in-depth information towards combating such threats.

Our future work will concentrate on obtaining detailed experimental results e.g.
infection and untraceability rates, collector effectiveness etc as well as into modify-
ing iSAM core so as to be able to automatically infect any iOS-based device.

References

1. Liu, L., Yan, G., Zhang, X., Chen, S.: VirusMeter: Preventing your cellphone from
spies. In: Balzarotti, D. (ed.) RAID 2009. LNCS, vol. 5758, pp. 244–264. Springer,
Heidelberg (2009)

2. Chow, G.W., Jones, A.: A framework for anomaly detection in OKL4-Linux
based smartphones. In: Proceedings of the 6th Australian Information Security
Management Conference (2008)

28 D. Damopoulos, G. Kambourakis, and S. Gritzalis

3. Kaspersky lab at mobile world congress 2009 in Barcelona,
http://www.securelist.com/en/analysis/204792100/Kaspersky Security

Bulletin 2009 Malware Evolution 2009

4. Landesman, M.: The world’s largest security analysis of real-world web traffic:
annual global threat report, ScanSafe STAT,
http://www.scansafe.com/downloads/gtr/2009_AGTR.pdf

5. Apple introduction to security overview,
http://developer.apple.com/library/ios/�documentation/Security/
Conceptual/Security Overview/Introduction/Introduction.html

6. Pandya, V.R.: iPhone security analysis. Project Report, Department of Computer
Science, San Jose State University (2008)

7. Chavez, A.: A jailbroken iPhone can be a very powerfull weapon in the hands of an
attacker. Project Report, Purdue University, Calumet’s CIT Department (2008)

8. Miller, C., Mulliner, C.: Fuzzing the Phone in your Phone. In: BlackHat, USA
(2009)

9. An analysis of the Ikee.B (Duh) iPhone botnet, http://mtc.sri.com/iPhone
10. iKee, http://vx.netlux.org/src_view.php?file=ikee.zip
11. Seriot, N.: iPhone Privacy. In: Black Hat, USA (2010)
12. Copyright, http://www.copyright.gov/1201
13. Technical analysis on iPhone jailbreaking,

http://community.websense.com/blogs/securitylabs/archive/2010/08/06/

technical-analysis-on-iphone-jailbreaking.aspx

14. Comex/Star, https://github.com/comex/star
15. The point of jailbreaking, http://www.saurik.com/id/12
16. How many ways can you remotely exploit an iPhone?,

http://www.f-secure.com/weblog/archives/00002003.html

17. Mobilesubstrate, http://cydia.saurik.com/package/mobilesubstrate
18. The state of cell phone malware,

http://www.usenix.org/events/sec07/tech/hypponen.pdf

19. Code the Code, http://www.codethecode.com/projects/class-dump
20. iTunes U downloads top 300 million,

http://www.apple.com/pr/library/2010/08/24itunes.html

21. SpringBoard, http://www.iphonedevwiki.net/index.php/SpringBoard
22. iSAM: An iPhone Stealth Airborne Malware, Online Material,

http://www.icsd.aegean.gr/postgraduates/ddamop/iSAM/iSAM.pdf

http://www.securelist.com/en/analysis/204792100/Kaspersky_Security_Bulletin_2009_Malware_Evolution_2009
http://www.securelist.com/en/analysis/204792100/Kaspersky_Security_Bulletin_2009_Malware_Evolution_2009
http://www.scansafe.com/downloads/gtr/2009_AGTR.pdf
http://developer.apple.com/library/ios/#documentation/Security/Conceptual/Security_Overview/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/Security/Conceptual/Security_Overview/Introduction/Introduction.html
http://mtc.sri.com/iPhone
http://vx.netlux.org/src_view.php?file=ikee.zip
http://www.copyright.gov/1201
http://community.websense.com/blogs/securitylabs/archive/2010/08/06/technical-analysis-on-iphone-jailbreaking.aspx
http://community.websense.com/blogs/securitylabs/archive/2010/08/06/technical-analysis-on-iphone-jailbreaking.aspx
https://github.com/comex/star
http://www.saurik.com/id/12
http://www.f-secure.com/weblog/archives/00002003.html
http://cydia.saurik.com/package/mobilesubstrate
http://www.usenix.org/events/sec07/tech/hypponen.pdf
http://www.codethecode.com/projects/class-dump
http://www.apple.com/pr/library/2010/08/24itunes.html
http://www.iphonedevwiki.net/index.php/SpringBoard
http://www.icsd.aegean.gr/postgraduates/ddamop/iSAM/iSAM.pdf

TCP Ack Storm DoS Attacks

Raz Abramov and Amir Herzberg

Bar Ilan University

Abstract. We present Ack-storm DoS attacks, a new family of DoS
attacks exploiting a subtle design flaw in the core TCP specifications.
The attacks can be launched by a very weak MitM attacker, which can
only eavesdrop occasionally and spoof packets (a Weakling in the Middle
(WitM)). The attacks can reach theoretically unlimited amplification; we
measured amplification of over 400,000 against popular websites before
aborting our trial attack.

Ack storm DoS attacks are practical. In fact, they are easy to de-
ploy in large scale, especially considering the widespread availability of
open wireless networks, allowing an attacker easy WitM abilities to thou-
sands of connections. Storm attacks can be launched against the access
network, e.g. blocking address to proxy web server, against web sites,
or against the Internet backbone. Storm attacks work against TLS/SSL
connections just as well as against unprotected TCP connections, but
fails against IPsec or link-layer encrypted connections.

We show that Ack-storm DoS attacks can be easily prevented, by a
simple fix to TCP, in either client or server, or using a packet-filtering
firewall.

Keywords: Denial of service, TCP, secure network protocols.

1 Introduction

Most works in cryptography today adopt the all-powerful Man In The Middle
(MitM) attacker model. The MitM attacker controls all of the traffic in the chan-
nels under him, with the ability to see, block and modify any package in the chan-
nel. In contrast, most works on Denial of Service (DoS) attacks, investigate the
damage which much weaker attackers can cause, in order to focus on the most
feasible and realistic attacks. Such weak attackers may only have the ability to
send spoofed packets, or even weaker abilities - sending raw packets, sending only
well-formed packets, or even merely issuing HTTP requests (e.g., puppets, see [5]).

In this work, we present and investigate the Weakling In The Middle (WitM)
attacker model. The WitM attacker can eavesdrop on communication, but with
significant limitations, mainly: eavesdropping only to one side of the connection,
and receiving only a small percentage of the packets sent. These limitations are
inspired by real-world wireless eavesdropping abilities, especially to open wireless
networks; the ‘one-sided’ limitation is due to the fact that often the attacker
is only able to eavesdrop to communication from the access point, and the low
percentage is due to the weak reception by a remote eavesdropper. Open wireless

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 29–40, 2011.
c© IFIP International Federation for Information Processing 2011

30 R. Abramov and A. Herzberg

networks are becoming more and more common, whether its in restaurants, malls
or even as a city-wide infrastructure [9]. Attackers today can eavesdrop on public
networks from a distance without the need for special equipment, and with poor
reception quality (capturing low percentage of packets). It is widely known how
to make a directional(‘Yagi’) antenna, that can reach up to 12 miles of range
and cost no more than a few dollars (see [2] or numerous web pages).

In addition to their limited eavesdropping capabilities, WitM attackers can
also send spoofed packets to the network. This ability is very common, since
many ISPs fail to properly deploy Ingress filtering [1]. However, we restrict the
number of packets that the attacker can send into the network per attack; real
attackers will try to restrict the number of packets they send, in order to stay
hidden and avoid capture. Note also that sending few packets per attack in-
creases the number of attacks that the attacker can perform simultaneously.
These aspects are similar to the stealth attacker model of [3].

We present several ‘Ack-Storm DoS Attacks’ that, by injecting (two or more)
packets into an existing TCP connection, cause a long exchange of TCP packets
between a client and a server, terminated only by connection reset or packet
losses. This way enables a WitM attacker to disrupt services to local and regional
junctions in the Internet infrastructure, as well as well as to individual web sites
and services.

The Ack-storm behavior of TCP has been mentioned before in [4] and [10] as
a side effect of TCP hijacking attacks, and thus as something to be minimized
and prevented.

We present a typical scenario in Fig. 1, with a client Alice connected to an
open wifi network AliceNet. Alice is connected to a remote web server Bob,
over a standard TCP based connection, such as HTTP, SSL etc. The attacker

Eve

AliceNet

Bob

Alice

Bob

Fig. 1. Example attacker model - Alice
is connected through the wireless access
point AliceNet, to a remote web server
Bob. Eve is able to receive occasional
traffic from Alice’s network. In addition,
Eve’s ISP does not filter traffic, so Eve
is able to send spoofed packets to the
Internet.

Attack Highest Ampl.
Measured Attacker

Ampl.

Two-Pkt 261, 000 WitM
Ack

Storm

N 261, 000 WitM
Ack

Storm

Everlasting 400, 000 WitM
Ack

Storm

Opt Ack [7] 251.6 Client

Smurf [8] ≤ 1000 Spoofer

DNS Amp. [8] 73 Spoofer

Fig. 2. Comparing DoS Amplification
Attacks

TCP Ack Storm DoS Attacks 31

(Eve) has two abilities: eavesdropping and spoofing. Eve has a receiver antenna,
with which she able to eavesdrop on (a small percentage of) packets sent by
the access point over AliceNet. Eve in not able to inject packets into AliceNet,
because of the long distance between them. Eve is also able to send raw packets
into the Internet via its ISP. We assume that Eve’s latency to both Alice and
Bob is higher than the latency between them. Also, Eve cannot delay, drop, or
otherwise affect any traffic sent in the network.

The Ack-storm attacks are based on the fact that, upon receiving a packet
with the acknowledge number field (the receiver’s sequence number) larger than
the one sent by the receiving client, the client must, according to the TCP
standard [6], resend the last sent acknowledgment packet to the other side, and
discard the received packet. A design flaw in TCP causes the client and the server
to be trapped in an infinite loop of sending and receiving empty acknowledgment
packets.

The basic attack - Two Packets Ack Storm, as performed by the attacker,
consists of three main stages:

1. Pick up (at least) one packet from a TCP connection between a client and
a server.

2. Generate two packets, each addressed to one party and with sender address of
the other party (i.e. spoofed). The packets must be inside the TCP windows
of both sides. The packets should have content - at least one byte of data.

3. Send the packets to the client and the server at the same time. The connec-
tion will then enter an infinite loop of sending ack packets back and forth
between both parties.

The N -packets Ack Storm attack and the Everlasting Ack Storm attack offer
further amplification to the Two-packets Ack Storm attack, consuming more
bandwidth and increasing the duration of the session. In our experiments, we
measured an amplification factor of over 400,000, when performing the Everlast-
ing Ack Storm attack - the highest amplification rate measured until today (see
Fig. 2 for comparison with existing amplification attacks).

Contributions. This paper presents the following contributions:

1. We present the WitM attack model and demonstrate how a WitM attacker
can preform DoS attacks.

2. We present the Ack-storm DoS attacks. These are powerful attacks, requir-
ing low resources (low probability to intercept packets from the network,
low bandwidth requirements) from the attacker and providing the highest
amplification factor measured until today.

3. The Ack-storm DoS attacks demonstrate an advantage of the use of IPSec
over the use of TLS/SSL. SSL connections are vulnerable to the Storm at-
tacks, and even help the attacker target the servers and not the web proxy.
IPSec, on the other hand, is immune to the attack, as it does not reveal TCP
connection details to an eavesdropper attacker.

32 R. Abramov and A. Herzberg

2 Two-Packets Ack-Storm Attack

In this section we present the flaw in the TCP standard that enables the Ack-
storm DoS attacks, describe the Two-Packets Ack-Storm attack and explain the
strengths and weaknesses of this attack.

2.1 The TCP RFC Flaw

The TCP RFC [6] defines all states and actions in a TCP connection. According
to the RFC, the way to handle false data is, usually, to drop the packet. This
behavior is recommended as it does not allow an attacker to trigger a response
from either party by injecting false packets into the stream. However, there is
one exception: When a TCP connection in ESTABLISHED state, and a packet
is received with an ACK field that acknowledges data not yet sent, the client
must act as follows (described in page 71 of the RFC):

1. Send an ACK (the last sent).
2. Stop processing (‘drop’) the segment. In particular, ignore the payload in

the segment.

Sending an acknowledge packet in response to a malformed packet is not recom-
mended - as such packet is clearly not a result of normal traffic. This behavior
is what makes the Storm attacks possible.

2.2 Attack Description

To initiate the Two-Packets Ack-Storm the attacker sends two packets contain-
ing data: one to either side of a TCP connection. The attack uses the RFC flaw
described above in order to cause the client and server to send false acknowledg-
ment packets back and forth. No additional data could be sent once the attack
takes place: every packet sent from now on will contain ack number higher then
the one the receiving party has, and hence will only cause generation of another
(malformed) ACK. If either side trys to send additional data over the chan-
nel (assuming the TCP send window is not full), the packets will increase the
strength of the attack by creating additional ‘sub sessions’ of acknowledge pack-
ets (additional explanation can be found in the next section). Since according
to the standard such packet must be dropped, and its data discarded, neither
side can increase its sequence number, making it impossible for the sequence
numbers to re-synchronize.

Figure 3 demonstrates the message passing between the client, server and
attacker. By sending packets to both sides simultaneously, the attacker raises
both the client and server’s reserved ack numbers. This will make it impossible
for them to overcome the false data sent, as all packets sent from that point will
be considered false due to the ACK field being too high.

By sending a minimum of two packets, the Two-Packets Ack-Storm attack
can cause hundreds of thousands of acknowledgment packets to be sent over a
single TCP session. The figures, presented in the experiments section (Tab. 2)

TCP Ack Storm DoS Attacks 33

Fig. 3. The Two-Packets Ack-Storm attack. Numbers are for illustration only. The
attacker sends both the client (impersonating as the server) and server (as the client) a
message with length 10. Both sides send an ACK, while advancing their ACK number
by 10. When the packets arrive at the other side, they contain an ACK field higher
than the actual data sent. The client and server then send (according to the standard)
the last ack sent by them, which triggers the loop all over again.

show that by sending only two packets, each with the minimal length of an
Ethernet packet size (64 bytes), we can cause an amplification factor of over
261,000 times the original sending size.

The attack scenario is illustrated below (and in Fig. 3); to illustrate, we assume
initial values of A.SEQ = 1000(= B.ACK), and B.SEQ = 2000(= A.ACK).

1. Eve sends A and B packets of length 10, each on behalf of the opposite side.
2. Upon receiving the packet, A advances A.ACK to be 2010, and sends an ack

to B. B advances B.ACK to be 1010 and sends an ack to A.
3. When B receives a packet with A.ACK = 2010, when B.SEQ = 2000, he

acts according to the standard: discards the packet and re-sends A the ack
(in which B.ACK = 1010 > A.SEQ). A does the same, as it received a
packet from B with B.ACK = 1010.

4. Both A and B receive packets with the ACK number bigger than their SEQ.
The behavior in step 3 is performed again.

5. The loopcontinueswhenbothpartieskeepreceivingpacketswithanACKlarger
than their sequence numbers, stopping only when both packets are dropped, or
when one side reaches a timeout and ends the connection by RST.

2.3 Analysis

The attacker sends one packet to the client and one to the server, both with length
of the minimum Ethernet packet size - 64 bytes. Each of the two packets sent by
the attacker causes ACK packets (each of length 64 bytes) to be sent back and forth
until the connection is terminated by the server, after T imeR seconds. We are using
the fact that the minimal length of an Ethernet packet is 64 bytes, while the size of

34 R. Abramov and A. Herzberg

an empty TCP packet is only 60 bytes.This allows the attacker to send up to 4 bytes
of data without adding to the length of the packet.

The two packets sent at the beginning of the attack are sent back and forth
between the client and server, creating two ‘sub sessions’ of traveling packets.
The attack continues until a RST packet terminates the attack after the maxi-
mal number R of retransmissions is sent; let T imer denote the time of the rth

retransmission (and T imeR the time of the last retransmission before reset).
During the total time of the attack, i.e., (T imeR), these two ‘sub sessions’ of
packets would have caused a total of 128 × R

ρ bytes sent, where ρ denotes the
round trip time (RTT). Notice that the shorter ρ (the RTT between the client
and server), the more effective the attack.

Since the attack interrupts an active session, altering the sequence numbers as
it does so, acknowledgments of already sent packets are dropped. Therefore, the
unacknowledged packets will be retransmitted by the sender. Since no retrans-
mission will succeed, the sender will eventually give up and abort the connection.

Table 1 shows the retransmission scheme of Apache web server - the most
common web server in the Internet today. Transmission times are all based on
our experiments. From the table we can see that after T imeR =225 seconds the
server resets the connection. The server would have retransmitted ten times, in
each the time waited between retransmissions is roughly doubled1.

Table 1. Apache Server Retransmissions During the Attack

Retr. Attempt (r) 1 2 3 4 5 6 7 8 9 10 R=11

‘sub sessions’ 3 4 5 6 7 8 9 10 11 12 13

T imer(sec.) 0 0.24 0.68 1.56 3.32 6.84 13.88 27.96 56.12 112.44 224.88

T imer − T imer−1 (sec) 0 0.24 0.44 0.88 1.76 3.52 7.04 14.08 28.16 56.32 112.44

Each retransmission packet that the server sends contains an acknowledgment
number higher then the client’s actual sequence number. Therefore, each retrans-
mission attempt that the server sends starts a new ‘sub session’ of acknowledge
packets sent between the client and server. Since the server makes 10 retrans-
mission attempts, by the end of the last timeout there are 13 ‘sub sessions’ of
packets traveling back and forth. We mark Tr = T imer−T imer−1 as the current
retransmission duration, ρ being the RTT, R the maximum retransmissions be-
fore connection abortion (for Apache R=11). The amplification factor that the
attacker achieves, with the first retransmission sent roughly at the beginning of
the attack, is therefore:

AmpTwo (R, T, ρ) =
1
2
×

R∑
r=1

(
Tr

ρ
× (r + 2)

)
(1)

1 The retransmission policy of Microsoft IIS server is different: an IIS server will at-
tempt a retransmission once every ten seconds, and initiate a connection abortion af-
ter sixteen unsuccessful retransmission attempts. In the analysis, we use the Apache
retransmission properties, since it is more common, but the calculation could easily
be modified to fit IIS (and other servers).

TCP Ack Storm DoS Attacks 35

2.4 Experiments

In this section we present the results achieved both when we tested the Two-
Packets Ack-Storm attack in the lab, and when we tested the attack on popular
sites in the Internet. We tested the attacks on both HTTP and HTTPS sites,
using both Apache and IIS web servers. The results from the experiments can
be seen in Table 2. In the tests we measures the RTT to the site, the number
of packets the attack generated and the time passed until the server reset the
connection2.

Table 2. Comparison of 2-Packet Storm Attacks on Different Sites

Site Total Dur. RTT Server Total Ampl. Ampl.
Packets (sec) (sec) Type Bytes By

(T imeR) (ρ) Analysis

live (SSL) 13,000 229 0.270 IIS 832,000 7,500 5,002
oranim 20,000 120 0.180 IIS 1,280,000 10,000 16,000
yahoo 50,000 225 0.170 Ap. 3,200,000 25,000 25,415.5
facebook 60,000 225 0.160 Ap. 3,840,000 30,000 27,004
google 140,000 225 0.110 Ap. 8,960,000 70,000 39,299
bbc (uk) 190,000 225 0.060 Ap. 12,160,000 95,000 72,000
il.msn (p) 234,000 225 0.030 Ap. 14,976,000 117,000 144,098
bing (p) 320,000 225 0.018 Ap. 20,480,000 160,000 240,163.5
Lab 522,000 225 0.001 Ap. 33,408,000 261,000 4,322,944

In Tab. 2 we can see that while attacking sites running Apache, the time
until termination of the attack remains constant - 225 seconds. This value is the
connection abortion after maximum failed retransmissions. Once the attack takes
place, no data is acknowledged in the session. That causes the server (usually the
one sending the data over HTTP sessions) to retransmit the data 10 times, when
each time the retransmission timeout doubles. Table 1 shows us the times of the
retransmissions in relation to the beginning of the attack, and the termination
of the connection occurred after the 10th timeout expired.

The Two Packet Storm attack presents a substantial amplification factor to
the data sent by the attacker. The attack, however, has two main limitations:

1. The attack causes a constant number of ‘sub sessions’ , consuming a lim-
ited amount of network resources. If an attacker wishes to attack a high
bandwidth target, he would have to use a large number of connections.

2. This attack is time limited, since a server will terminate the connection
after reaching the maximum failed retransmissions attempts. After T imeR

seconds, the server will abort the connection, terminating the attack in the
process. In order to attack a target for a time larger than T imeR, he would
have to start new attacks to replace the old ones.

2 We focused on Apache servers, because they are the most common. IIS and
SSL(live.com) were tested for the attack but comparative research was not done
on them.

36 R. Abramov and A. Herzberg

Fig. 4. Attack results when attacking various Apache-based sites (T imeR = 225), in
comparison to analysis. We measured the number of packets sent and compared to
the analysis. The graph shows the correlation between the analysis results, and the
ones achieved in real attacks. Differences can occur due to packet loss/duplication,
retransmission time deviations etc.

In the following sections we present two variations of the Two-packets Ack-storm
DoS attack, which address the limitations described above.

3 The N -Packet Ack-Storm DoS Attack

The N -packet Ack-storm DoS attack enables the attacker to increase the number
of packets sent over an attacked session.When using the N -packetsAck-stormDoS
attack, the attacker can consume all of the bandwidth available for the session.

By Injecting additional ack packets to an attack already in progress, the at-
tacker increases the bandwidth consumed by the attack. For every additional
acknowledgment packet the attacker injects into the stream, another ‘sub ses-
sion’ is created, and the client and server start passing the packet between them.
This method bypasses the latency limitations of the client and server, since more
‘sub sessions’ simulate a shorter distance between the client and server: for the
affective RTT to decrease by 0.5, the attacker doubles the number of ‘sub ses-
sions’ in the connection.

3.1 Analysis

In order to maximize the effectiveness of the additional ‘sub session’ he creates,
the attacker sends the additional Storm packets at the beginning of the attack.
The number of ‘sub sessions’ at the end of the attack, for 2 packets sent in order
to trigger the attack, N additional Storm packets and retransmission generated
packets is 2 + N + R. The amplification achieved would be, for R maximum
retransmissions and 64 bytes acknowledgment packet length:

TCP Ack Storm DoS Attacks 37

Fig. 5. The N-packets Ack-storm DoS attack. The storm packets sent by the attacker
are in bold. Every new packet triggers another ‘sub session’ of acknowledge packets
sent back and forth.

AmpN (N, R, ρ) =
1

2 + N
×

R∑
r=1

(
Tr

ρ
× (r + 2 + N)

)

The attack minimizes the sessions needed to reach a high bandwidth consump-
tion. Using storm packets, we were able to trigger 485,000 packets sent over a
single session (with Yahoo.com), when the Two Packet Storm generated only
50,000.

When reaching the bandwidth limitations of a connection, packet losses will
start to occur. Each packet loss will end the ‘sub session’ of that packet in the
stream, while the rest of the ‘sub sessions’ will continue executing.

Table 3 presents the amplification results when attacking Yahoo.com. Number
of packets increases as a function of packets sent, until reaches a point where
packets losses start occurring (at about 42 Storm packets sent). Notice that
packet losses do not stop the attack, but only limit the maximum bandwidth
it can consume. We did not send over 42 packets in order to avoid causing real
harm to users in the network, as would result from causing congestion on a live
network).

Table 3. The N Packet Storm on Yahoo.com

Storm Packets Packets In Attack Bandwidth Amplification
Sent Session Duration (T) Consumption Factor

(Max.)
(

Bytes
Sec

)
2 (Two 50,000 225 4,517 25,000
Packet Storm)
6 103,000 225 6,023 17,166
10 153,000 225 7,579 15,300
22 283,000 225 12,047 12,863
42 485,000 225 19,576 11,547

38 R. Abramov and A. Herzberg

While bandwidth consumption increases as a function of the Storm packets
sent, the amplification factor decreases. The attacker has to send an additional
packet for every ‘sub session’ he wants to create, but the number of retrans-
missions (and the number of ‘sub sessions’ they create) remains the same. The
disadvantage of lower amplification factor is balanced by the lack of need to
manage multiple attacks in order to achieve the same amount of bandwidth
usage.

4 Everlasting Ack Storm Attack

The main limitation of the two attacks presented so far is the the maximal
connection duration T imeR. The attacker can avoid a connection abortion by
artificially sending data over the channel, preventing the client or server from
reaching a timeout. The Everlasting Ack Storm data packets should contain
at least one byte of data, which will not add to their size because it is below
the Ethernet packet size minimum. The packets should be sent at least every
T imeR seconds, in order to avoid the timeout. When data is being sent over the
connection (however considered retransmission by both the client and server),
the connection timeout is not triggered, allowing us to continue the attack until
reset by application layer or any other network entity.

4.1 Analysis

The number of initial packets sent by the attacker is the same as the Two Ack
Storm attack. The additional packets are sent every T imeR seconds in order
to maintain the connection. The amount of total data sent over the channel
is composed of the initial T imeR seconds, in which the amount of packets is
identical to those of the Two Packet Storm attack, and the following minutes,
in which the attack continues with the number of ‘sub sessions’ increases for
every storm packet sent. The amplification achieved when sending EveR storm
packets (for R maximum retransmissions of server):

Amp∞ (R, T, ρ) =
1

EveR

(
×

R∑
r=1

(
Tr

ρ
× r + 2

)
+

EveR∑
r=R

(
T imeR

ρ
× (r + 2)

))

In Tab. 4 we show the different abilities the attacker can achieve by using the
attacks described above. Notice that the amplification factor when sending storm
packets without data decreases, but the total bandwidth increases as a function
of the packets sent. Also notice that when sending storm packets with data, the
attacker increases both the duration of the attack (by avoiding timeout), and
the bandwidth consumed by it (as it opens another ‘sub session’)).

Using Storm packets with data, sent every 1 minute, we maintained an at-
tack on Google.com for over 26 minutes, causing over 10,000,000 packets (over
640,000,000 bytes of data) to be sent before terminating the connection - an
amplification factor of 400,000. We terminated the attack as part of our policy
to avoid causing damage to the attacked sites.

TCP Ack Storm DoS Attacks 39

Table 4. Amplification Types - Assuming No Bandwidth Limitation

Attack Data Attack Attack Time Until Ampl.
type Sent Intervals Duration Full Bandwidth Factor

Consumption

Two 128 B Once T imeR Never AmpTwo

N 128 × Q Once T imeR Immediate AmpN ≤ AmpTwo

Everl. 128 × L Every Trst T imeR × L (T imeR) × (BW
64

− (2 + R)
)

Amp∞ >> AmpTwo

5 Preserving the Attack during Losses

When the attack reaches the bandwidth limitations of the channel, packet losses
start to occur. For every dropped ack packet, one ‘sub session’ is stopped and
the attacks consumed bandwidth drops by 64

ρ Bps. In order to maintain the
bandwidth of the attack, the attacker must generate an storm packet for every
dropped ack packet.

When a TCP connection encounters losses, the TCP window size decreases
rapidly. In the full version of the article, we present an experiment demonstrating
the depredation in TCP bandwidth when performing an attack.

6 Conclusion and Future Work

In the article we presented the the WitM attacker model. We showed the Storm
attacks, which can cause DoS to network infrastructure, as well as individual
web sites and services. We showed both in analysis and in experiment results
the high amplification factors the Storm attacks achieve.

The Storm attacks are just the beginning of a wide rage of attacks possible for
the WitM attacker. Zombie-based DoS attacks can be accomplished by a WitM
without the need to control the node itself, but only by using its connection
details. Injection attacks are also possible to the WitM attacker, however the
ability to inject the data in the correct timing requires further work, due to the
high latency the attacker has. Finding additional DoS attacks and uses for a
WitM attacker will add additional impact for the WitM attacker model.

Acknowledgments. Many thanks to Charlie Kaufman, Amit Klien and Ben
Laurie for their important feedback and encouragement. Amit also introduced
us to the earlier work discussing Ack storms (as an undesirable side-effect of
TCP hijacking attacks), e.g.[4]

References

1. Borella, M., Grabelsky, D., Lo, J., Taniguchi, K.: Realm Specific IP: Protocol
Specification. RFC 3103 (Experimental) (October 2001),
http://www.ietf.org/rfc/rfc3103.txt

http://www.ietf.org/rfc/rfc3103.txt

40 R. Abramov and A. Herzberg

2. Chandra, P.: How To Make A WiFi Antenna Out of A Pringles Can. makeuseof.com
(August 2009), http://www.makeuseof.com/tag/how-to-make-a-wifi-antenna-

out-of-a-pringles-can-nb/

3. Herzberg, A., Shulman, H.: Stealth DoS attacks on secure channels. In: NDSS
(March 2010)

4. Joncheray, L.: A simple active attack against TCP. In: Proceedings of the 5th
Symposium on UNIX Security, pp. 7–20. USENIX Association, Berkeley (June
1995)

5. Lam, A., Akritidis, A.: Puppetnets: Misusing web browsers as a distributed attack
infrastructure. In: SIGSAC: 13th ACM Conference on Computer and Communi-
cations Security. ACM SIGSAC (2006)

6. Postel, J.: Transmission Control Protocol. RFC 793 (Standard) (Sep 1981),
http://www.ietf.org/rfc/rfc793.txt, updated by RFCs 1122, 3168

7. Sherwood, B.: Braud: Misbehaving TCP receivers can cause internet-wide conges-
tion collapse. In: SIGSAC: 12th ACM Conference on Computer and Communica-
tions Security. ACM SIGSAC (2005)

8. Vaughn, R., Evron, G.: DNS amplification attacks. ISOTF (March 2006),
http://www.isotf.org/news/DNS-Amplification-Attacks.pdf

9. Wong, M., Clement, A.: Sharing wireless internet in urban neighbourhoods.
In: Steinfield, C., Pentland, B.T., Ackerman, M., Contractor, N. (eds.)
Communities and Technologies 2007, pp. 275–294. Springer, London (2007),
http://dx.doi.org/10.1007/978-1-84628-905-7_15, doi:10.1007/978-1-84628-
905-7 15

10. Wu, B., Chen, J., Wu, J., Cardei, M.: A survey of attacks and countermeasures
in mobile ad hoc networks. In: Xiao, Y., Shen, X.S., Du, D.Z. (eds.) Wireless
Network Security. Signals and Communication Technology, pp. 103–135. Springer,
US (2007), http://dx.doi.org/10.1007/978-0-387-33112-6_5, doi:10.1007/978-
0-387-33112-6 5

http://www.makeuseof.com/tag/how-to-make-a-wifi-antenna-out-of-a-pringles-can-nb/
http://www.makeuseof.com/tag/how-to-make-a-wifi-antenna-out-of-a-pringles-can-nb/
http://www.ietf.org/rfc/rfc793.txt
http://www.isotf.org/news/DNS-Amplification-Attacks.pdf
http://dx.doi.org/10.1007/978-1-84628-905-7_15
http://dx.doi.org/10.1007/978-0-387-33112-6_5

Detecting Hidden Storage Side Channel

Vulnerabilities in Networked Applications

Felix C. Freiling and Sebastian Schinzel�

University of Mannheim, Laboratory for Dependable Distributed Systems

Abstract. Side channels are communication channels that were not
intended for communication and that accidentally leak information. A
storage side channel leaks information through the content of the channel
and not its timing behavior. Storage side channels are a large problem
in networked applications since the output at the level of the protocol
encoding (e.g., HTTP and HTML) often depends on data and control
flow. We call such channels hidden because the output differences blend
with the noise of the channel. Within a formal system model, we give a
necessary and sufficient condition for such storage side channels to exist.
Based on this condition, we develop a method to detect this kind of side
channels. The method is based on systematic comparisons of network
responses of web applications. We show that this method is useful in
practice by exhibiting hidden storage side channels in three well-known
web applications: Typo3, Postfix Admin, and Zenith Image Gallery.

1 Introduction

Covert Channels and Side Channels. A covert communication channel is
a communication channel that was not intended to transfer information at all
[15]. Today it is accepted that covert channels are impossible to avoid and hard
to control. In practice, the sender P often does not intend to communicate with
C but still leaks information. To distinguish this from the scenario of covert
channels, the term side channel was used. Side channels abound and have been
the focus of much research in areas like cryptographic hardware [11], API design
[5] or non-electronic media [3].

In this paper we focus on side channels in applications running in the World
Wide Web (web applications). Web applications are a prime communication
mechanism today and side channels in web applications are relevant. Side chan-
nels are known as a special type of covert channel and covert channels are cate-
gorized into timing and storage channels. We thus adopt this discrimination for
side channels and extend the general area of covert channels by distinguishing
storage side channels from timing side channels. Whereas timing side channels
are well researched in the World Wide Web, to our knowledge there is no well-
founded research on the detection of storage side channels in web applications.
� Sebastian Schinzel was supported by Deutsche Forschungsgemeinschaft (DFG) as

part of SPP 1496 “Reliably Secure Software Systems”.

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 41–55, 2011.
c© IFIP International Federation for Information Processing 2011

42 F.C. Freiling and S. Schinzel

To fill this gap, we give a general method by which storage side channels
can be detected in web applications. As main example we show that in many
existing web applications with user management it is possible to find out whether
a certain high-privileged user account exists or not. This information is usually
treated as confidential because knowledge of high-privileged user names eases
password guessing and phishing attacks.

Side Channels in Web Applications: Related Work. Most related work
has focused on constructing or detecting timing channels on the web (see for
example Felten and Schneider [12], Bortz, Boneh and Nandy [7] or Nagami et
al. [17]). A timing covert channel appears when one “process signals information
to another by modulating its own use of system resources (e.g., CPU time) in
such a way that this manipulation affects the real response time observed by the
second process” [18].

Only comparatively few authors have investigated possible storage channels
on the web, i.e., channels that reside in the direct output of web applications.
Bowyer [8] and Bauer [4] describe the possibility of hidden channels in HTTP.
Bowyer suggests using superfluous URL parameters to form an upstream
connection, and HTTP header fields or image steganography as downstream
connection. Bauer chooses HTTP redirects, Cookies, referrer headers, HTML
elements or active content to hide communication over the HTTP protocol.
Kwecka [14] summarizes five different methods that were used to create covert
channels within application layer headers: Reordering of headers, case modifica-
tions, use of optional fields and flags, adding a new field, and using linear white
space characters.

We are aware of only two papers on the detection of hidden storage channels
on the web. Chen et al. [9] detected a side channel in the packet size of encrypted
traffic between browser and several web applications that process critical infor-
mation such as healthcare information. Their target was to detect side channels
that are visible for a man-in-the-middle who has access to the encrypted network
traffic. Borders and Prakash [6] present a method to determine the maximum
bandwidth of covert channels. They focus on covert channels where P is the web
browser and C is the web server, which is the opposite direction of our approach.
Their method neither detects, nor prevents covert channels, but focuses on de-
termining the upper boundary of a covert channel’s bandwidth. They analyze
storage covert channels that enabled P to purposefully pass information to C.
However, storage side channels appear if P accidentally and unknowingly passes
information to C.

Detecting Storage Side Channels in Web Applications. In this paper,
we exhibit a method for detecting storage side channels by comparing the differ-
ences in multiple responses. We call a storage side channel hidden if users will
not detect it by observing only the visible elements of responses. In contrast to
timing attacks, we measure differences in the content of the responses of web
applications. The idea is to correlate the differences of web application responses
with some secret information stored in the web server. Storage side channels are

Detecting Hidden Storage Side Channel Vulnerabilities 43

noisy, i.e. if a user performs the same requests multiple times, many web applica-
tions will seemingly display the same content in the user’s web browser. However,
looking closely at the data of the web server’s responses, one discovers that the
responses differ slightly in many cases. We show that by a structured analysis it
is possible to detect those differences that correlate with secret information, and
are thus leaking information. Applying this method to three practical systems
(Typo3, Postfix Admin, and Zenith Image Gallery), we were able to extract
confidential information about existing user names and private images in public
galleries.

Contributions. In this paper, we study deterministic hidden storage side chan-
nels in web applications and make the following three contributions:

– We formalize the context in which side channels in networked applications
occur and identify necessary and sufficient conditions for hidden storage side
channels to exist.

– We develop a general method to detect hidden storage side channels in net-
worked applications and apply the method to web applications.

– We use our method to identify side channels in three common web appli-
cations: the popular content management system Typo3 [2], Postfix Admin
[1], which is a web-based administration system for the popular email server
Postfix, and Zenith Image Gallery [10], a web-based image gallery.

Outlook. The paper is structured as follows: In Sect. 2 we introduce a formal
model of hidden storage side channels and give a necessary and sufficient con-
dition for their existence. In Sect. 3 we derive a detection technique for such
channels in networked applications and apply the method to three well-known
web applications in Sect. 4. We conclude in Sect. 5.

2 Hidden Storage Side Channels in Networked
Applications

We now abstract from concrete network protocols and investigate general net-
worked applications and their susceptibility to side channels.

System Model. Our system model, depicted in Fig. 1, consists of an information
producer P and an information consumer C. Both are modelled as deterministic
state automata. Both P and C are connected through a shared resource R. In
our case, R can be thought of as a network connection such as one using TCP
over the Internet. Abstractly, R just allows to reliably transport a stream of bytes
from P to C. The information that P sends to C can be any “high-level” digital
object, e.g., a graph, a web page or a spreadsheet. P carefully constructed the
high-level object in a way so that it only contains information that C is allowed to
see. Producer P uses an encoding function ϕ that maps the high-level object into
a bytestream suitable for transport over R. Similarly, C uses a decoding function

44 F.C. Freiling and S. Schinzel

P C

R
bytestream

high-level
object

ϕ

low-level
object

secret

high-level
object

ψ

low-level
object1 2 3

1

2 3

1

2 3

1 2 3

secret
?

Fig. 1. System model

ψ that transforms the received bytestream into the same high-level object again.
Note that P ’s high-level object is the same as C’s high-level object.

Formally, let H denote the set of all abstract “high-level” objects and L denote
the set of all allowed byte-sequences that can be transported over R. We assume
that L is closed under subsequences, i.e., if x ∈ L and x′ is a subsequence of
x then x′ ∈ L as well. We use x · y to denote the concatenation of two byte-
sequences x, y ∈ L.

Using this notation, ϕ is a function that maps elements from H to L, and ψ
is a function that maps elements from L to H.

Definition of Hidden Storage Side Channels. A covert channel is a unidi-
rectional communication channel that allows P to covertly communicate with C
over R. P and C agreed on ϕ and ψ beforehand. The purpose of those channels
is to hide the fact that P communicates with C over R.

A side channel is a special covert channel in which P unintentionally com-
municates with C over R. Side channels do not appear on purpose but appear
accidentally during system construction. C’s challenge is to discover and decode
the side channel in order to get the information from P .

Intuitively, a storage side channel allows C to infer a secret value from the
content that P sent. A hidden storage side channel is a storage side channel
that can only be detected in low-level values from L, as the high-level values are
identical so that an observer of H will not detect the differences.

In general, we assume that the decoding function ψ is the inverse of the
encoding function ϕ, i.e., ∀h ∈ H : ψ(ϕ(h)) = h. However, many encoding
formats in practice contain redundancy in the sense that the same high level
objects can be encoded differently by ϕ. This can cause hidden storage side-
channels, as we now explain.

Abstractly, a storage side channel regarding some secret information exists
if P encodes some object h ∈ H dependent on some secret (see Fig. 1). For
example, if the secret consists of just one bit, P could encode h into l0 if the bit
is 0, and into l1 �= l0 if the bit is 1. If both l0 and l1 will be decoded into the same
high-level object h again, hidden storage side channels appear. Investigating the
encoding of l0 and l1 reveals the secret.

Detecting Hidden Storage Side Channel Vulnerabilities 45

A Necessary and Sufficient Requirement. Note that our system model
subsumes the scenario of Kemmerer [13] since P and C are connected through
a direct communication link. Therefore, it is clear that side channels may exist.
However, we refine Kemmerer’s conditions to our case and derive a sufficient
requirement for hidden storage side channels to exist in our system model.

It is sufficient for storage side channels to exist in our system model if there
exist ψ-synonyms in L, i.e. there exist distinct values l1 and l2 in L that ψ maps
into the same value in H, formally:

∃l1, l2 ∈ L : l1 �= l2 ∧ ψ(l1) = ψ(l2)

To prove that this is a sufficient condition we have to show how a hidden storage
side channel can be constructed. This is rather straightforward, as explained
above: Depending on the secret s, the producer (possibly unintentionally) selects
either l1 (for s = 0) or l2 (for s = 1). By investigating the low-level encoding of
the message, i.e., before applying ψ, the consumer can learn the value of s.

We now argue that the condition of ψ-synonyms is also a necessary condition.
For this we have to prove that the existence of hidden storage side channels
implies that ψ-synonyms hold on the encoding.

So assume that we have a system in which hidden storage side channels exist.
From the definition of storage side channel and in contrast to timing side channel,
we know that information is transported using the content of messages exchanged
over R. Since the channel is hidden, the channel is not visible on the level of H.

There are two cases to consider:

1. The content directly reflects secret information, i.e., a value l1 implies s = 0
and l2 implies s = 1. In this case, we directly have the condition of ψ-
synonyms.

2. The content reflects secret information via the order of byte sequences ex-
changed over R. In the simplest case, this means that there are two byte
sequences l and l′ such that l · l′ encodes s = 0 and l′ · l encodes s = 1. Note
that ψ(l · l′) must be equal to ψ(l′ · l). In this case, choose l1 = l · l′ and
l2 = l′ · l and the condition of ψ-synonyms holds again.

So overall, if hidden storage side channels exist, then the requirement of ψ-
synonyms must hold. Therefore, the requirement is not only sufficient but also
necessary.

Attacker Model. We assume that the attacker is in full control over the the
information consumer. The goal of the attacker is to deduce the secret that
resides in the information producer P . The allowed interactions between the
attacker and P must conform to the protocol used on the shared resource (e.g.,
HTTP), i.e., we do not consider protocol-specific attacks.

3 Detecting Storage Side Channels in Networked
Applications

We now study the question, how to detect the existence of storage side channels
for a given networked application. This is a non-trivial task since the dependency

46 F.C. Freiling and S. Schinzel

of the low-level encoding on the secret may not be known or may be time or
context dependent.

Secret-dependent and Secret-independent Differences. Consider the case
where P leaks secret information over a storage side channel to C and this secret
consists of one bit s. Now assume two possible worlds a and b that are identical
in all aspects except the value of the secret bit s: In world a we have s = 0 and
in world b we have s = 1. P now sends a message via R to C. Let A denote the
message sent in world a, and let B denote the message sent in world b. If a and
b are identical except for the values of s, then any difference between A and B is
a direct influence of the difference of the secret value. (Recall that both P and
C are deterministic automata.) Hence, measuring the differences between A and
B yields secret-dependent differences in messages.

Ideally, we want to identify secret-dependent differences since they can be
used to infer the value of s. However, in practice, it is difficult to construct two
identical worlds a and b in which P has absolutely the same state (even using
virtualization). To make our method more robust and practical, we allow ob-
serving messages at different points in time as shown in Fig. 2. If we send two
successive messages A0 and A1 in world a, for example, then we can measure
the differences between these two messages. Since s = 0 for both messages, any
differences between A0 and A1 must be secret-independent. Secret-independent
differences can result from different times or relative orders of the sending of
A0 and A1. Now assume that a message in world a is sent at time t0 and an-
other message in world b is sent at time t1. Let A0 denote the former and B1

denote the latter message. If we compare A0 and B1, we find a composition of
secret-dependent and secret-independent differences (see Fig. 2). The challenge
is to identify the secret-dependent differences and associate them with particular

X

X

s-independent
differences

s-dependent
differences

t1t0

1
(world b)

0
(world a)

X
A0 A1

B0
s

T

B1

s-independent
differences

+
s-dependent
differences

X

t2

Fig. 2. Realistic measurements yield a mix of secret-dependent and secret-independent
differences. The challenge is to reliably extract secret-dependent differences from the
mix.

Detecting Hidden Storage Side Channel Vulnerabilities 47

values of s. In the following section, we describe our method that we used to
successfully uncover storage side channels in web applications.

Definitions and Notation. Let A be a byte sequence A = a0, a1, a2, We
define an edit e of A to be a tuple (p, q) such that

1. p ∈ N : 0 ≤ p < |A| and
2. q ∈ N : 0 ≤ q ≤ |A| − p.

Intuitively, an edit describes a “change” of the byte sequence, more specifically
a removal of q bytes starting at position p. We formalize this by defining what
it means to apply an edit to a byte sequence.

Let e = (p, q) be an edit of A. The application of e to A, denoted A|e is the
byte sequence resulting from removing q bytes starting at index p in A, formally:

A|e = a0, a1, . . . , ap−1, ap+q, ap+q+1, . . .

Here are some examples: Assume A is the byte sequence “01234”. Then A|0,2 =
234, A|1,3 = 04, A|4,1 = 0123, A|2,1 = 0134 and A|1,0 = 01234. In contrast, both
A|2,4 and A|5,0 are undefined because both (2, 4) and (5, 0) are not edits of A.

We now describe what it means to apply multiple edits to A. We say that an
edit (p, q) is compatible with edit (p′, q′) iff (if and only if) p+ q < p′. Intuitively,
two edits are compatible if they affect different parts of A. They are not com-
patible (incompatible) if they overlap. For example, for A = 01234, edit (1, 3)
and (4, 1) are compatible whereas (1, 4) and (4, 1) are incompatible.

Let E be the set of all possible edits of A and E = e1, e2, e3, . . . , en be a
sequence of n edits of A such that for all i, 0 < i < n, ei is compatible with ei+1.
The application of E to A, denoted A|E , is defined as:

(. . . ((A|en)|en−1)|en−2 . . .)|e1

Note that the definition applies edits in reverse order, i.e., starting with en. This
is not a necessary requirement as edits could be applied in any order. However, it
simplifies the definition since index numbers for subsequent edits en−1, en−2, . . .
remain the same.

In the next step, we use the notion of edits to define the longest common
subsequence and a special difference operator Δ. Let A and B be two byte
sequences. The byte sequence x is a common subsequence (CS) of A and B iff
there exists two sequences of compatible edits EA and EB such that A|EA = x
and B|EB = x. In other words, x can be constructed from A by applying EA to
A and x can be constructed from B by applying EB to B.

The byte sequence x is a longest common subsequence (LCS) of A and B if
x is a common subsequence of A and B and |x| is maximal. We denote this by
writing x = LCS (A, B).

Note that there can be multiple LCS s for pairs of byte sequences. For example,
for A = 212 and B = 121 there are two longest common subsequences, namely
21 and 12. In our implementation, we chose to return the “leftmost” LCS of the
left parameter, i.e. LCS (212, 121) = 21 and LCS (121, 212) = 12.

48 F.C. Freiling and S. Schinzel

We are now ready to define the “difference” operator Δ that will be impor-
tant in our method to detect storage side channels. Let A and B be two byte
sequences. The operation A Δ B results in a compatible sequence of edits E of
A such that A|E = LCS (A, B). In other words, E is the sequence of edits needed
to produce out of A a longest common subsequence of A and B. For example,
let A = 212 and B = 121, then A Δ B = (2, 1) and A|(2,1) = 21.

The Difference Algorithm. In practice, secret-independent differences of-
ten result from dynamic values like session identifiers or time stamps. Note
that for time dependent values, the time period during which the measure-
ments were taken is important. For example, if the day field of a time stamp
changes only after 24 hours (once every day), we will not be able to observe
this dependency if all measurements are taken within the same day. For two
such byte strings A1 and A2, we must expect |LCS (A1, A2)| > 0, i.e., even
two randomly generated byte strings are likely to have an LCS with non-zero
length. So the idea is to incrementally compute the LCS of a sequence of byte
strings A1, A2, A3, . . ., i.e., first LCS (A1, A2), then LCS (LCS (A1, A2), A3), then
LCS (LCS (LCS (A1, A2), A3), A4), etc. At some point, say while going from Ai

to Ai+1, the length of the resulting byte sequence will not change any more. This
means that all random elements have been eliminated from all Ai, i.e., we have
computed the “static core” of the response sequence Ai.

In the following, we will now generalize our observations into an algorithm to
identify secret-dependent differences. Fig. 3 shows a graphical representation of
the steps.

A1, A2, ..., An

LCS LCS

B1, B2, ..., Bn

Δ

XA XB

E

Step 1:

Step 2:

Step 3:

s=0 s=1

Fig. 3. The difference algorithm

1. Record n responses with s = 0 (denoted A1, A2, . . . , An) and n responses
with s = 1 (denoted B1, B2, . . . , Bn). The value of n depends on how many
responses are required to detect all dynamic parts in the response’s content.
Section 4 introduces empirical values of n for different applications.

2. For all 1 ≤ i ≤ n recursively calculate

XA =
{

A1 for i = 1
Ai|AiΔXi−1 for 1 < i ≤ n

Compute XB similarly using responses Bi. Intuitively, the byte sequences XA

andXB correspond to the “static” parts ofAiandBi, respectively, inwhich any
secret-independent differences are removed. Finding the secret-independent
differences EA of a response A1 is straight forward: EA = XA Δ A1.

Detecting Hidden Storage Side Channel Vulnerabilities 49

3. Now compute E = XA Δ XB. The set E contains an approximation of
all secret-dependent differences. If E �= ∅ the probability of a storage side
channel is high.

Looking closely at the edits in E it is often possible to decode the storage side
channel, as we show in the following sections where we apply this method to
real-world web applications.

4 Application of Method to HTTP/HTML

We now apply our method to web applications in which we wish to detect storage
side channels. Such side channels can be, for example, the information whether
a certain user account exists in a web application. Another example is the fact
whether certain data items (such as images) are stored in a database. We start
by verifying whether the condition of ψ-synonyms is satisfied in HTTP/HTML.
Then, the attacker has to perform two steps. First, the attacker needs to find out
whether the targeted application leaks the required information over a storage
channel. Second, given that the targeted application is vulnerable to storage side
channels, the attacker creates a search pattern. If the search pattern is applied
to a single response, the attacker can find out the secret.

Storage Side Channels in HTTP and HTML. We now apply our system
model to HTTP and HTML, and define that P is the web server, C is the
web client, and R is the TCP channel between C and P . The set of high-level
objects H consists of all web pages in the form of bitmaps displayed in C’s web
browser. The set of low-level objects L is the set of all ASCII sequences sent over
R. Therefore, ϕ is the function used by P that “turns” a web page’s intended
bitmap into a valid HTML document and attaches it to a HTTP response before
it is sent via R to C. The function ψ is the parser in C’s web browser that reads
the content of the HTTP response, creates the page’s bitmap, and displays it on
the screen of C.

HTTP responses contain a set of common headers, one of which is the Server
header. The value of this data field is usually set to the particular type and
version of the web server. However, this value is almost never used by the client
and can therefore be set arbitrarily without affecting the web page displayed
in C’s web browser. Other examples for synonyms come from the fact that
HTTP header fields are not case sensitive, i.e. “date” and “dATe” denote the
same header field name. Moreover, HTML allows including meta information
(e.g., author) in the HTML header which can be set to arbitrary values without
affecting the content displayed in the browser.

To summarize, HTML as well as HTTP allow synonymous values and are
therefore potentially vulnerable to storage side channels.

Detecting Storage Side Channels in Web Applications. As a precondition
for our first attack scenario, the attacker needs to know at least two existing user
names and two non-existent user names in one instance of the targeted software.

50 F.C. Freiling and S. Schinzel

The attacker performs n login requests with known to be valid user names and
records the responses Ai. All login requests in this scenario will fail because the
attacker does not know any valid password in the target system. Thus, the system
will always return an error message. He then calculates XA from all responses
and observes the decreasing length of the static part. In parallel, the attacker
performs n login requests with invalid user names and records the responses
(Bi). Again, these login attempts will fail because the user name does not exist.
Then, he calculates XB. n was large enough if the LCS of the responses stays
constant for larger n.

The attacker then calculates the set of edits (E) representing secret-dependent
differences. If E �= ∅, the application leaks information about whether a user
name exists through a storage side channel.

For our second attack scenario, the attacker needs to have access to at least
one gallery containing no private pictures (A) and another gallery with at least
one private picture (B). The attacker records n responses of A and n responses
of B and calculates XA, XB, and E. If E �= ∅, the application leaks information
about whether private images exist in a gallery through a storage side channel.

For the implementation of our algorithm, we chose Myers’ LCS algorithm
[16]. It has near linear time and space requirements with regard to the size of the
two responses that need be compared. A Java implementation of the algorithm
performed around 70 LCS operations per second on responses with 12 Kilobytes.

Exploiting Storage Side Channels in Web Applications. The attacker
now creates a search pattern from the secret-dependent edits in E. The appli-
cation of this pattern to the response of a login request to any instance of the
vulnerable web application determines whether the login request was performed
using a valid or invalid user name.

The calculation of E was a one time effort. From now on, the attacker can
learn about the existence of a chosen user name with a single request and on
any system on the web which runs the vulnerable software. The quality of the
results is independent of the network conditions and of the amount of changed
bytes in the secret-dependent difference.

In the following, we apply our method to three real-world examples.

Example 1: Storage Side Channels in Typo3. In our first example, we
analyze whether the user authentication logic of the backend administration
interface of Typo3 [2] version 3.6.0rc2-0.0.1, an open source and well-known
content management system (CMS), is vulnerable of storage side channels. For
this, we installed a copy of Typo3 in our lab. By default, Typo3 already creates
one administrative user account (admin) during installation. It is possible to
delete or rename this user name after installation, but we can assume that not
all web administrators do this. Although we performed the measurements in our
lab, this measurement could have been performed at any Typo3 instance on the
web.

Let s be the boolean value denoting whether a user name exists. We now
record a set of responses from login attempts with valid user names and another

Detecting Hidden Storage Side Channel Vulnerabilities 51

set with invalid user names. We then generate the “static core” of both sets,
namely XA and XB. The set of edits E = XAΔXB yields the set of secret-
dependent differences.

Interestingly, the different sizes of XA and XB correlates with s and therefore
suggests that the analyzed functionality is vulnerable of storage side channels.
Unfortunately, the size of the response will most certainly differ among sev-
eral installations because of site-specific customizations of the web page and the
web server type and configuration. An attacker would therefore need to ana-
lyze the response size for each target before performing the actual attack, which
makes the attack easier to detect. Furthermore, if the web page contains secret-
independent dynamic data with differing size, e.g. from a news ticker or changing
ads, the response size is dynamic as well, which would require additional proba-
bilistic analysis and even more measurements. Our method is immune to these
disturbances as it produces the exact positions of secret-dependent differences,
which allows the creation of search patterns for this particular change.

Fig. 4 shows the positions of secret-independent differences in the byte stream
of XA. It is apparent that some values in the header, presumably time stamps,
and one position in the HTML body change independently of s. Fig. 5 shows
secret-dependent differences which form a storage side channel. This storage
side channel leaks the existence of a given administrative user name. Note, that
our method distinguishes secret-independent differences and secret-dependent
differences even if they overlap, as it is the case here. It seems that the differences
are located in the HTTP headers, because the positions of the secret-dependent
differences are far to the left.

Secret-independent differences Secret-independent differences

0 40001000 2000 3000 5000

Fig. 4. The positions of secret-independent differences in a response of Typo3

0

Secret-dependent difference

40001000 2000 3000 5000

Fig. 5. The positions of secret-dependent differences in a response of Typo3

Fig. 6 shows a direct comparison of the HTTP headers generated with s = 0
and s = 1, respectively. The secret-dependent differences are highlighted in both
responses. A manual analysis of these exposed secret-dependent differences yields
that not only the values of the HTTP headers in Typo3 change depending on
s but also the order in which the headers are declared. Note that the content
sizes of both responses are equal, i.e. the change of response size we observed
earlier in this section does not affect the HTML content but solely happens in
the HTTP header.

52 F.C. Freiling and S. Schinzel

HTTP/1.1 200 OK
Date: Mon, 25 Jan 2010 11:47:45 GMT
Server: Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny4 with Suhosin-Patch
X-Powered-By: PHP/5.2.6-1+lenny4
Expires: 0
Cache-Control: no-cache, must-revalidate
Pragma: no-cache
Last-Modified: Mon, 25 Jan 2010 11:47:45 GMT
Vary: Accept-Encoding
Content-Type: text/html;charset=iso-8859-1
Content-Length: 5472

HTTP/1.1 200 OK
Date: Mon, 25 Jan 2010 11:47:55 GMT
Server: Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny4 with Suhosin-Patch
X-Powered-By: PHP/5.2.6-1+lenny4
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Last-Modified: Mon, 25 Jan 2010 11:47:55 GMT
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache
Vary: Accept-Encoding
Content-Type: text/html;charset=iso-8859-1
Content-Length: 5472

Non-existent user name (s=0) Existing user name (s=1)

Fig. 6. Secret-dependent changes in Typo3’s HTTP header that depend on whether a
user name exists

Example 2: Storage Side Channels in Postfix Admin. In our second
example, we analyze whether the user authentication logic of Postfix Admin [1]
version 2.3 rc7, an open-source Email administration frontend [1], is vulnerable
of storage side channels. We calculated XA, XB, and E as described previously.
After roughly n = 15 comparisons, the sizes of XA and XB do not change any
more.

Fig. 7 shows the positions of the secret-dependent and the secret-independent
differences in the responses. Fig. 8 shows a direct comparison of the secret-
dependent differences in the HTTP headers and in the HTML content generated
with s = 0 and s = 1, respectively. The secret-dependent differences are high-
lighted in both responses. A manual analysis of the exposed secret-dependent
differences yields that Postfix Admin automatically fills a user name in the form
field of the response if and only if the user name exists in the database and is
an administrative user. Strictly speaking, by the definition given in this paper,
this vulnerability does not qualify as a hidden storage side channel, as it can be
observed in the browser. In practice, however, it is unlikely that this storage side
channel is detected in a manual security test, because of the subtle nature of
the difference. Actually, common web browsers may remember user names that
a user filled in the same login form earlier, in order to automatically fill in the
same user name for subsequent requests. We thus want to highlight, that our
method will also detect “visible” storage side channels that would probably slip
through most manual security analysis.

0

Secret-dependent differences

Secret-independent differences

40001000 2000 3000

Fig. 7. The positions of secret-dependent and secret-independent differences in a
response of Postfix Admin

Detecting Hidden Storage Side Channel Vulnerabilities 53

Non-existent user name (s=0) Existing user name (s=1)

...
Content-Length: 3626
...
 <tr>
 <td>Login (email):</td>
 <td><input class="flat" type="text" name="fUsername"

value="admin@admin.de" /></td>
 </tr>

...
Content-Length: 3612
...
 <tr>
 <td>Login (email):</td>
 <td><input class="flat" type="text" name="fUsername"

value="" /></td>
 </tr>

Fig. 8. Secret-dependent changes in Postfix Admin’s HTTP header and HTML content
that depend on whether a user name exists

Example 3: Storage Side Channels in Zenith Image Gallery. In our last
example, we analyze whether the Zenith Image Gallery [10] version v0.9.4 DEV,
a well-known open source picture gallery, is vulnerable of storage side channels.
Zenith allows administrators to upload pictures, which anonymous users can
view. Administrators can also delete pictures from the gallery or mark them
as private pictures. Private pictures are still shown to administrators but are
hidden for anonymous users. Here, we analyze if an attacker can find out the
existence of private pictures in the public gallery.

Let s be the boolean value denoting whether private pictures exist in a chosen
gallery with seven public images and one additional private picture. We then
record a set of responses B from this gallery with the additional private picture
(s = 1) and another set A from the same gallery in which the private picture
is deleted (s = 0). The measurements are performed as anonymous users and
only 7 pictures are visible during both measurements. We then calculate XA,
XB, and E. After roughly n = 11 comparisons, the sizes of XA and XB do not
change any more.

Fig. 9 shows a comparison of the HTML content of a gallery web page. In-
terestingly, only a single number depends on s. A-responses (no private im-
ages) have a constant size of 12460 bytes. B-responses (1 private image) have
the same size with 12460 bytes. A-responses as well as B-responses have 35

7 public images, 1 private image (s=1)

<div style='float:left'>Pictures -

 Other

</div>

7 public images, 0 private image (s=0)

<div style='float:left'>Pictures -

 Other

</div>

Fig. 9. The secret-dependent difference in Zenith’s HTML content of a gallery that
depends on the existence of private pictures in a gallery

54 F.C. Freiling and S. Schinzel

secret-independent bytes. Only a single byte forms the hidden storage side chan-
nel. A manual analysis yields that the secret-dependent number represents the
sum of public image and private images. In case of s = 1, the number is 8 as
there are 7 public pictures plus 1 private picture in the gallery. Thus, the hidden
storage side channel not only leaks the fact that there are private pictures in a
gallery, but also the amount of private pictures in the gallery.

5 Conclusions

The success of our detection method critically depends on the secret that is to be
observed and therefore it is hard to automate. This makes it extremely difficult
to quantitatively assess the significance of side channel vulnerabilities in web
applications in general. For this paper, we analyzed 15 applications for hidden
storage side channels and quickly identified the three examples documented here.

In principle, it is rather straightforward to avoid storage side channels by
avoiding the condition of ψ-synonyms that we identified in this paper. This can
be done, for example, by “fixing” the encoding function ϕ so that there are no
synonymous values in L. In reality, however, the encoding scheme is often given
and, for the case of HTTP and HTML, it is not feasible to remove the general
existence of synonymous values.

So in practice, more pragmatic approaches are necessary, such as trying to
remove the relation between s and the choice of the synonymous values, to
make the inference from L objects to the value of s (and vice versa) impossible.
This approach, however, largely depends on the vulnerable application and on
how this application chooses synonymous values depending on s. In practice,
therefore, side channels in web applications will have to be treated in a similar
way as covert channels in other systems: Educate developers and give them
effective techniques for detecting such channels in their systems. Furthermore,
future protocol designers should carefully avoid conditions in which synonymous
values are acceptable.

Acknowledgments. We thank Martin Johns for the helpful comments on a
previous version of this paper.

References

1. Admin, P.: Web based administration interface (2010),
http://postfixadmin.sourceforge.net/

2. The TYPO3 Association: Typo3 content management system (2010),
http://www.typo3.org/

3. Backes, M., Dürmuth, M., Unruh, D.: Compromising reflections-or-how to read
LCD monitors around the corner. In: IEEE Symposium on Security and Privacy,
pp. 158–169. IEEE Computer Society, Los Alamitos (2008)

4. Bauer, M.: New covert channels in HTTP. CoRR, cs.CR/0404054 (2004)
5. Bond, M., Anderson, R.: API-level attacks on embedded systems. Computer 34(10),

67–75 (2001)

http://postfixadmin.sourceforge.net/
http://www.typo3.org/

Detecting Hidden Storage Side Channel Vulnerabilities 55

6. Borders, K., Prakash, A.: Quantifying information leaks in outbound web traffic.
In: Proceedings of the IEEE Symposium on Security and Privacy (May 2009)

7. Bortz, A., Boneh, D.: Exposing private information by timing web applications. In:
Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) WWW,
pp. 621–628. ACM, New York (2007)

8. Bowyer, L.: Firewall bypass via protocol stenography (2002),
http://web.archive.org/web/20021207163949/,
http://networkpenetration.com/protocol_steg.html

9. Chen, S., Wang, R., Wang, X., Zhang, K.: Side-channel leaks in web applications:
a reality today, a challenge tomorrow, Oakland, CA. IEEE, Los Alamitos (May
2010)

10. CyberiaPC.com. Zenith picture gallery (2007),
http://zenithpg.sourceforge.net/

11. European Network of Excellence (ECRYPT). The Side Channel Cryptanalysis
Lounge. Internet (April 2010), http://www.crypto.rub.de/en_sclounge.html

12. Felten, E.W., Schneider, M.A.: Timing attacks on web privacy. In: SIGSAC: 7th
ACM Conference on Computer and Communications Security. ACM SIGSAC
(2000)

13. Kemmerer, R.A.: Shared resource matrix methodology: An approach to identifying
storage and timing channels. ACM Transactions on Computer Systems 1(3), 256–
277 (1983)

14. Kwecka, Z.: Application layer covert channel - analysis and detection (2006),
http://www.buchananweb.co.uk/zk.pdf

15. Lampson, B.W.: A note on the confinement problem. ACM 16(10), 613–615 (1973)
16. Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica 1(2),

251–266 (1986)
17. Nagami, Y., Miyamoto, D., Hazeyama, H., Kadobayashi, Y.: An independent eval-

uation of web timing attack and its countermeasure. In: Third International Con-
ference an Availability, Reliability and Security (ARES), pp. 1319–1324. IEEE
Computer Society, Los Alamitos (2008)

18. Department of Defense Standard: Department of Defense Trusted Computer
System Evaluation Criteria (December 1985)

http://web.archive.org/web/20021207163949/
http://networkpenetration.com/protocol_steg.html
http://zenithpg.sourceforge.net/
http://www.crypto.rub.de/en_sclounge.html
http://www.buchananweb.co.uk/zk.pdf

Breaking reCAPTCHA: A Holistic Approach via

Shape Recognition

Paul Baecher, Niklas Büscher, Marc Fischlin, and Benjamin Milde

Darmstadt University of Technology, Germany
www.minicrypt.de

Abstract. CAPTCHAs are small puzzles which should be easily
solvable by human beings but hard to solve for computers. They build a
security cornerstone of the modern Internet service landscape, deployed
in essentially any kind of login service, allowing to distinguish autho-
rized human beings from automated attacks. One of the most popular
and successful systems today is reCAPTCHA. As many other systems,
reCAPTCHA is based on distorted images of words, where the distortion
system evolves over time and determines different generations of the sys-
tem. In this work, we analyze three recent generations of reCAPTCHA
and present an algorithm that is capable of solving at least 5% of the
challenges generated by these versions. We achieve this by applying a spe-
cialized variant of shape contexts proposed by Belongie et al. to match
entire words at once. In order to handle the ellipse shaped distortions
employed in one of the generations, we propose a machine learning algo-
rithm that virtually eliminates the distortion. Finally, an improved shape
matching strategy allows us to use word dictionaries of a reasonable size
(with approximately 20,000 entries).

1 Introduction

CAPTCHAs—Completely Automated Public Turing tests to tell Computers and
Humans Apart—are used to prevent automated use of online services. Typically,
this is a challenge/response protocol where the user is, for example, required to
read and submit a heavily distorted image of a word. While there exists an
unmanageable number of such systems, upon closer examination most of them
turn out to be insecure against automated solvers. This usually happens as soon
as the system is used on a popular website and exposed to many users. Since
CAPTCHAs are omnipresent and constitute an integral security mechanism in
today’s Internet services, this situation is highly unsatisfying. It is thus even more
important to investigate promising systems and determine the level of security
they provide.
The reCAPTCHA System. In contrast to the vast number of broken schemes,
one particular implementation, reCAPTCHA [1], has been successfully in use for
several years now. Two distinct key features are seemingly responsible for this
comparatively long lifespan. First, the generation algorithm of reCAPTCHA
challenges is proprietary and not public, meaning that challenges are provided

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 56–67, 2011.
c© IFIP International Federation for Information Processing 2011

Breaking reCAPTCHA: A Holistic Approach via Shape Recognition 57

via a centralized infrastructure. This allows reCAPTCHA to adjust their system
at any given time, for example in the event of a successful attack on the system.
Since such adjustments immediately affect all users of reCAPTCHA, no legacy
installations exist that could still be prone to the attack. Moreover, since the
algorithm is kept secret, it is tedious to analyze the variance of the challenges.
Second, every challenge is guaranteed to have a minimum level of resistance
against common OCR techniques. This is due to the way challenges are gen-
erated: instead of artificially rendered and distorted characters, reCAPTCHA
uses words on which two OCR systems failed; a by-product of digitizing huge
amounts of text.

The answer to such challenges is thus inherently unknown to the system. In
order to verify the user’s response, reCAPTCHA follows a statistic approach
and presents two words in each challenge. One word is the unknown scan word,
the other word is a known verification word. As long as the user provides the
correct answer for the verification word, the response is considered correct and
the given solution to the scan word is recorded. It is important to observe that
the solution to the scan word, when viewed separately, is not relevant to pass the
test. This is a critical detail when it comes to estimating success rates. Ideally,
both classes of words should be indistinguishable, but this is not the case. For
instance, it is entirely possible to have an algorithm that reliably recognizes scan
words but performs poorly on verification words. Clearly, such an algorithm will
not be suitable to break the system.

The centralized system makes it also hard to analyze the security of re-
CAPTCHA, since there are no public distinct and explicit versions of the gener-
ation algorithm. Hence, subtle modifications and revisions of the algorithm are
not necessarily visible to the user. It is, however, possible to identify a set of
major generations as shown in Figure 1. In the first generation, for example,
words are struck through with a horizontal line; the third generation adds in-
verted ellipse-shaped blobs. Although the challenges of the second and fourth
generation look similar, the distortion of the latter is more regular and exhibits a
compact mathematical description. Furthermore, it seems that the fourth gener-
ation also uses less common words which tend to be excluded from dictionaries.

In this work, we focus on the security of the third and fourth1 generations of
reCAPTCHA.

Our Contributions. We present an implementation to break the latest generation
of reCAPTCHA using shape contexts [2]. As opposed to previous work in this
area, our algorithm is quite efficient with reasonably sized dictionaries of 20,000
words (i.e., shapes). To our best knowledge, this is also the first attempt to break
reCAPTCHA using shape contexts and, in particular, to do this in a holistic
fashion where entire words are matched atomically at once. Since reCAPTCHA
is based upon the hardness of character recognition our results may therefore
also stimulate new approaches for OCR.

In order to attack the third generation of reCAPTCHA, which includes an
ellipse-shaped distortion object, we propose a machine learning framework that

1 This is the latest version of reCAPTCHA as of November 2010.

58 P. Baecher et al.

is able to detect and remove this distortion almost entirely. This allows us to
treat challenges from the second to the fourth generation uniformly with one
algorithm since the challenges of these generations are then sufficiently similar.
Finally, we employ a novel method to quickly match a given query shape against
a large list of dictionary words. This is done by taking the first and last character
of the challenge word into account (which are considerably easier to segment)
and then subsequently reducing the search space logarithmically.

2 Related Work

Attacks on reCAPTCHA. As mentioned before, reCAPTCHA has been immune
against major attacks for a long time. Wilkins [16] announced in 2009 to have
broken the first generation in Figure 1 of the reCAPTCHA system with a success
rate of 5% (conservative estimate) to 17.5% (optimistic estimate) in early 2008.
The two types of estimates stem from the fact that reCAPTCHA offers two
classes of words for which it only knows the solution to the verification words.
In 5% of the cases Wilkins got both words on his 200 test data right, in another
25% he got only one word correctly. Making the optimistic assumption that in
half of these cases this is indeed the verification word yields the bound of 17.5%.

Wilkins essentially uses three techniques for his attack: the distortion line is
removed by applying some combination of erode/dilate matrices, then he runs an
OCR program, and finally he uses a dictionary to make a guess for the word. This
is iterated for several matrices and the most likely answer about all these runs
is output. Wilkins also ran tests again the second generation of reCAPTCHA
(without the distortion line). Here, he was able to solve in a data set of 40 about
5% of the puzzles, simply running an OCR program. He concluded that the new
system should be even weaker than the previous generation but this claim seems
to be hard to formally back up by the restricted experiments.

At DefCon 2010, and independently of our work, Houck [7] announced success-
ful attacks on the third generation reCAPTCHA (with the ellipse). He estimates
to achieve a success rate of about 10%, based on experiments on about 5, 000
CAPTCHAs. However, this optimistic estimate is again based on the assump-
tion that, in about 75% of the cases, the solution for one word only is indeed
for the verification word. Houck’s approach is based on removing the ellipse,

(a) (b)

(c) (d)

Fig. 1. Major generations of reCAPTCHA, in chronological order

Breaking reCAPTCHA: A Holistic Approach via Shape Recognition 59

segmenting the word into characters via “dips” in the upper margin—making
this attack fundamentally different from our holistic approach—and running an
OCR program.

Soon after these attacks became public, reCAPTCHA changed to the fourth
generation. Houck also briefly discussed extensions of his attack to this gener-
ation, yielding an estimated success rate of 30%. In this sense, reCATPCHA
became actually weaker.
Segmentation vs. Recognition. Text-based CAPTCHAs—the overwhelming ma-
jority of today’s systems—present strings of letters and digits, possibly forming
words of a natural language. These strings are rendered onto a rastered image
and presented to the user. The exact process of how strings are rendered is crucial
to the security of the system. Specifically, it is vital that subsequent characters
overlap not only by their bounding box, but also touch each other such that the
string forms one large connected component. This is absolutely necessary for
security because, as Chellapilla et al. discuss in [5], recognizing single characters
is a solved problem where computers even outperform humans. The task of seg-
mentation on the other hand, where one is interested in partitioning a string in
terms of a connected component into its individual characters, is still considered
fairly resistant against automated attacks [4].
Shape Contexts. Recognition and comparison of shapes is a recurring problem in
computer vision. Typically, shapes are transformed to a compact feature vector
or descriptor which allows for fast comparison under slight variations of shapes.
Belongie et al. propose a descriptor called shape contexts in [2] and efficient
retrieval methods in [12]. A shape is described by a set of histograms, where each
histogram corresponds to the distribution of vectors from one contour point to
all other contour points. Shape matching against the database is then done by
matching the sets of histograms of two shapes, where histograms are compared
with a χ2-metric. Clearly, this technique can be used to match characters and
digits in a CAPTCHA. In [14] Mori and Malik successfully attack the EZ-Gimpy
CAPTCHA using shape contexts; their approach is able to match the correct
word in 93% of the time. Lladós et al. investigate this technique to spot words
in historical documents from a predefined set of keywords in [9]. Although this
can be viewed as a direct application to the OCR task, it is not designed to
digitize entire documents. Rather, they are interested in metadata extraction by
looking for specific words. Unfortunately, they do not mention the size or order
of magnitude of their reference dictionary.

3 Our Techniques

In this section, we present our framework to break the recent reCAPTCHA
generations 2–4. Our system can be divided roughly into two phases. In an
offline “learning” phase, we create synthetic challenges based on a dictionary of
English words. Each challenge is transformed to a descriptor that consists of a
set of shape context histograms. We then create a database that contains all
histograms for all words in the dictionary. A given (real) challenge in the online

60 P. Baecher et al.

phase is transformed exactly the same way and the resulting histograms are
matched against the database; the closest match is the output of our algorithm.

Note that this basic version of our attack operates on entire words only, thus
circumventing the task of segmentation. This technique is commonly known as
holistic word recognition [6,10,11,8]. One can interpret this as a recognition task
on a large alphabet, i.e., where entire words are the letters.

Figure 2 gives an overview of the transformation process from challenge images
to descriptors.

scale 200% Canny Edge remove ellipse histograms

(no ellipse)

Fig. 2. High-level overview of the descriptor creation

3.1 Database Creation

In order to create the database of reference shapes, we would ideally use actual
challenges generated by reCAPTCHA. However, since reCAPTCHA is propri-
etary, we neither have access to this data nor to the underlying dictionary2. To
overcome this limitation, we select a reasonably sized dictionary of frequently used
words and create our own reference shapes. In order to mimic the real challenges
which originate from printed text, our system uses a standard serif font face to
render synthetic challenges. Even though this is only a rough and imperfect ap-
proximation, its resemblance is sufficient to be covered by the shape context vari-
ance. Note that these synthetic challenges are only used for the database; the final
performance measurements are derived from real reCAPTCHA challenges.

3.2 Preprocessing

Verbatim challenge images generated by reCAPTCHA contain too much noise
and redundancy for shape contexts. This includes JPEG compression artifacts
(noise) and the inner area of the stems of characters (redundancy). Therefore we
apply a sequence of preprocess steps as depicted in Figure 2. The first step scales
the image to 200% of its original size. A subsequent binarization operation then
eliminates compression artifacts. Since only the contour of characters is relevant
to their shape, we run the Canny edge detector [3] to obtain a contour image.
At this point the third generation of reCAPTCHA needs another step to remove
the ellipse shaped distortion object which we describe in the next section.

An observant reader may argue that the initial scaling step is technically
not necessary since it cannot increase the information available in the image.
However, since this is followed by a highly lossy binarization operation, we reduce
the loss by this measure. Experimental evaluations confirm this by exhibiting
higher success rates if the scaling step is performed.
2 In fact, since the words originate from scanned text where OCR failed, the exact dic-

tionary is not even known to the reCAPTCHA system.

Breaking reCAPTCHA: A Holistic Approach via Shape Recognition 61

3.3 Ellipse Elimination

Third generation reCAPTCHA challenges (see Figure 1c for an example) con-
tain an ellipse-shaped object under which the colors are inverted. It seems that
this object is first drawn as a perfect ellipse and then, along with the challenge
word, transformed. Sometimes it is also cut off, apparently because the ellipse
extends—or extended prior to the transformation—over the border of the im-
age. Nevertheless, the area still resembles roughly an ellipse. As mentioned in
Section 2, precisely this property has been exploited successfully in [7]. We take
a slightly different approach here. Instead of trying to directly fit an ellipse onto
a set of points, we run a machine learning algorithm that classifies pixels as
“ellipse” and “not ellipse.” We now describe this mechanism in greater detail.

Ellipse Center Approximation. In order to classify pixels we first require a ref-
erence point relative to the ellipse. We use the center of the ellipse for that
and present an algorithm to estimate this point. Our algorithm stems from the
observation that wherever the ellipse is located, a huge number of black pixels
concentrate. It operates as follows. First, repeat the morphological erode op-
eration until only one single connected component of black pixels is left over.
Now repeat the dilate operation until the entire image consists of white pixels
only. Undo one dilate iteration and finally calculate the center of the remaining
black pixels; this is the output of the estimation algorithm. See Figure 3 for an
example of the algorithm’s operation.

Features. Once the ellipse center has been estimated, a number of features rela-
tive to this center p is calculated for every black pixel qi in the original contour
image. These features, arranged in a vector, include amongst others

– the distance and angle from p to qi,
– the tangent of the edge in qi,
– pixel density on a line from p to the center point,
– pixel density in the neighborhood of p,

and a number of variations of these features.

Classification Training. Once these features have been calculated, we are inter-
ested in learning the mapping that maps each feature vector to its correct class
(“ellipse”, “not ellipse”). For this we use standard machine learning techniques.

(a) (b) (c) (d)

Fig. 3. Ellipse center estimation. After 7 iterations of erosion only one connected com-
ponent is left (b). After 58 iterations of dilation only a few pixels close to the center
are left over (c). Figure (d) shows these pixels in relation to the original image.

62 P. Baecher et al.

To obtain labeled training data, we classified a set of preprocessed challenges
manually by removing the ellipse contour in an image editor. Using OpenCV’s
boosting algorithm with weak decision tree classifiers on this data then yields a
strong classifier.

While this already gives a solid classification result (see Figure 4, left column),
there is still room for improvement. For example, each classification decision is
made only locally and independently of spatially surrounding classifications. This
gives away prior knowledge such as the geometric shape of an ellipse. In order to
take this into account, we employ a cascade of classifiers where the ith iteration
makes use of knowledge obtained from the (i− 1)th iteration. Moreover, in each
iteration, we calculate a feature that measures the distance to a fitted ellipse for
all ellipse-classified pixels.

Accuracy. The fraction of pixels that are classified correctly is denoted by ac-
curacy. We estimate this value with a 10-fold cross validation using 150 weak
classifiers and reach a total accuracy of 91.5% after 9 cascade iterations. It takes
roughly two hours to train this classifier and less than 300 milliseconds to classify
a new example on standard off-the-shelf hardware. Figure 4 presents a classifi-
cation instance after different iterations of the cascade.

Fig. 4. Cascaded ellipse pixel classification. First row: pixels classified as “not ellipse,”
second row: pixels classified as “ellipse.” From left to right: Classification after iteration
1, 4, and 9.

3.4 Shape Contexts

Once the challenge images are preprocessed, possibly including the ellipse re-
moval step, we are ready to obtain a compact description of the word. As men-
tioned earlier, our attack uses shape contexts to represent the rendered words.

The key idea of shape contexts is as follows. Let p1, . . . , pn ∈ R2 be the points
that form the contour line of a shape. For an arbitrary point pi, called reference
point, there are n − 1 vectors vi,j that describe the location of the other points
relative to pi. Consider now a histogram of the distribution of these vectors vi,j

in a polar system3 centered at pi. This two dimensional histogram—consisting
of angle/distance bins—constitutes a compact but lossy description of the shape

3 We note that shape contexts are usually associated with log-polar systems (as op-
posed to polar-linear systems). In our experiments however, we were able to obtain
better results with linear distance.

Breaking reCAPTCHA: A Holistic Approach via Shape Recognition 63

with respect to reference point pi and is called its shape context. Figure 5 visu-
alizes the histogram bins and the resulting histogram when this transformation
is applied to a rendered word. Note that there are n such histograms per shape,
one histogram for each contour line point.

Fig. 5. Histogram bins and the corresponding angle/distance histogram for the center
point of the contour line of the word “cosiest”

To measure the similarity between two shapes, one could simply match their
corresponding sets of histograms, i.e., find a one-to-one mapping between both
sets such that the sum of the distances between each two histograms is minimal
with respect to some distance metric. However, it is inefficient and highly redun-
dant to do this on the full set of contour line points. Thus, it makes sense to work
with a randomly selected fixed-size subset consisting of, say, 100 histograms. Fur-
thermore, it is not strictly necessary to require a one-to-one mapping between
two sets of histograms. Simply selecting the closest match is an acceptable strat-
egy if additional constraints are introduced. One such constraint is the location
of the corresponding reference points; requiring a maximal distance here ensures
that no points in completely different locations are matched.

In order to further improve the descriptive quality of shape contexts, we use
an extended concept called generalized shape contexts as proposed in [13] that
allows for arbitrary features. Here, Mori et al. additionally record the average
tangent of shape points in each histogram bin. This results in a richer description
of the shape at the cost of a second set of histograms.

3.5 Efficient Word Matching

We now turn to the online phase of our attack. Given a database of associated
shape contexts for each word, our goal is to find the most similar shape for a
new query shape. A naive approach comes to mind immediately: compare the
query shape with each database shape and output the closest database shape in
terms of the distance function. This, however, results in enormous computational
cost. Recall that each shape description consists of a set of histograms and that
shapes are dictionary words in our case. Matching the histograms of two shapes
results in quadratic complexity; a reasonable dictionary size is 20, 000 words. In
order to distinguish the many similar words from such a dictionary, the number
of reference points/histograms needs to be accordingly high.

64 P. Baecher et al.

To manage this complexity, we propose a search algorithm along the lines of
“fast pruning” described in [13]. The general strategy of our algorithm is to start
with the full set of database shapes and perform a crude, but fast, comparison
against the query shape. Then, the algorithm prunes the most dissimilar shapes
from the working set and increases the exactness of the search. Repeated appli-
cation of this step results in a logarithmic search space reduction. As the shapes
become more similar, more time is invested in the comparison. Finally, as soon
as the number of shapes in the working set drops below a certain threshold, the
algorithm switches to the naive search strategy and outputs the closest match.

The exactness of the search is controlled by the number of reference points
used for comparison. For a given number of reference points, the algorithm draws
a random subset from all available reference points. A noteworthy consequence
is that the algorithm is probabilistic, but this is not so bad because the closest
match is not always the correct solution.

Another CAPTCHA-specific pruning strategy which greatly reduces the search
space makes use of the fact that the first character and last character are con-
siderably easier to segment. It is immediately clear where the first character
starts and the last character ends. A simple and basic approach is to consider an
averaged fixed-width section from the start/end of the word. If a character can
be detected within this area, a huge portion of the search space is superfluous
and thus pruned. In fact, it is already helpful to be able to restrict these key
characters to a small set. This is done by employing the shape context matching
framework for single characters and selecting the best k matches.

4 Results

Data acquisition. Recall that reCAPTCHA is a proprietary and closed system.
This complicates the acquisition of (labeled) challenge/response pairs that are
needed for the performance evaluation. One of our methods to collect data is to
have humans solve a number of reCAPTCHA challenges and, in the background,
record the solution. The advantage of this tedious method is that a human
can quickly learn the difference between verification and scan words by close
observation. This means that we can deliberately provide a wrong solution for the
suspected scan word. If reCAPTCHA confirms this hypothesis by accepting the
response, we can be certain that the other word was indeed the verification word.
Consequently, we obtain a data set that is not only labeled, but consists also of
verification words only, allowing us to derive true performance measurements. In
contrast, many reported figures on reCAPTCHA attacks are in fact estimations
where the—possibly hidden—underlying assumption is that the attack works
equally well on scan and verification words.
Database creation. To build the database of reference words we use a word list
prepared by Keith Vertanen [15] which is the intersection of 10 popular word
lists. This list contains 22,282 words from the English language. The artificial
challenges are then rendered using the Times typeface with negative inter char-
acter distance to reflect the overlap situation of real challenges. Shape contexts
are created for a 6 × 6 histogram, i.e., 6 angle bins times 6 distance bins.

Breaking reCAPTCHA: A Holistic Approach via Shape Recognition 65

Final Results. We stress that our results have been collected from verification
words only and thus reflect precisely the success rate of a real attack. See Figure
6 for detailed results. The dictionary success rate in this figure is the (ideal)
success rate of our attack if the challenge word is present in our dictionary. We
are also able to obtain substantially shorter run times in exchange for slightly
lower recognition rates.

reCAPTCHA generation 2 3 4

Test set size 496 1005 301

Total success rate 12.7% 5.9% 11.6%

Run time 24.5s 17.5s 15.4s

Dictionary success rate 22% 10.43% 23.5%

First character detected 90.2% 73.2% 84.6%

Fig. 6. Experimental results of our implementation

5 Conclusions

The reCAPTCHA system has been one of the few systems achieving the right
balance between usability and security. So far. With its increasing popularity
reCAPTCHA has become a major target and the recent attacks reveal significant
cracks. Still, because of the centralized system reCAPTCHA allows to switch to
a new generation instantaneously. While the concrete attacks may then become
ineffective the attack techniques nonetheless improve.

Our attacks for example, achieving a success rate of 5%, show that holistic
approaches are feasible, whereas most other attacks are based on segmentation.
This is interesting because many systems and techniques so far have been de-
signed to thwart segmentation, e.g., striking out the word. We note that our
attacks have not been optimized and thus leave space for improvements. An
example is the combination of our holistic approach with partial segmentation,
which is—in its current version—only a crude proof of concept of the general
technique.

However, we also stress that resistance against automated attacks is not the
only concern for CAPTCHAs. Two other dimensions are usability, the ability of
humans to solve the CAPTCHA easily, as well as practicality, describing the abil-
ity to realize the CAPTCHAs efficiently. For instance, from the security perspec-
tive, dictionary-based CAPTCHAs should be used cautiously as they facilitate
attacks significantly. It must be said, though, that using dictionaries supports
humans in recognizing words. Another worthwhile point is that reCAPTCHA is
based on the idea that solving a CAPTCHA helps digitizing books. This idea
may incite users to solve such otherwise unpopular puzzles, thus improving the
overall acceptance of CAPTCHAs.

Overall, the recent attacks on reCAPTCHA somehow leave us in a vague state.
It remains an open problem if there exist CAPTCHAs which are simultaneously
secure, usable, and practical. Given the status of CAPTCHAs in modern login
services, a CAPTCHA system meeting all these requirements is of great demand.

66 P. Baecher et al.

On a slightly positive note, however, even though our results indicate that the
security of yet another CAPTCHA system has become dubious, there is also an
upside in the particular case of reCAPTCHA. By design, any system that breaks
reCAPTCHA is a step towards better OCR software.4 Our results indicate that
Shape Contexts could be a valuable fallback solution in the domain of character
recognition.

Acknowledgements

We thank the anonymous reviewers for valuable comments. Paul Baecher and
Marc Fischlin are supported by the Emmy Noether Grant Fi 940/2-1 of the
German Research Foundation (DFG).

References

1. von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: reCAPTCHA:
Human-based character recognition via web security measures. Science 321(5895),
1465–1468 (2008) Cited on page 1

2. Belongie, S., Malik, J., Puzicha, J.: Shape context: A new descriptor for shape
matching and object recognition. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.)
NIPS, pp. 831–837. MIT Press, Cambridge (2000) Cited on pages 2 and 4

3. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal.
Mach. Intell. 8, 679–698 (1986),
http://portal.acm.org/citation.cfm?id=11274.11275 Cited on page 6

4. Chellapilla, K., Larson, K., Simard, P.Y., Czerwinski, M.: Building segmentation
based human-friendly human interaction proofs (HIPs). In: Baird, H.S., Lopresti,
D.P. (eds.) HIP 2005. LNCS, vol. 3517, pp. 1–26. Springer, Heidelberg (2005) Cited
on page 4

5. Chellapilla, K., Larson, K., Simard, P.Y., Czerwinski, M.: Computers beat humans
at single character recognition in reading based human interaction proofs (HIPs).
In: CEAS (2005) Cited on page 4

6. Govindaraju, V., Krishnamurthy, R.K.: Holistic handwritten word recognition
using temporal features derived from off-line images. Pattern Recognition Let-
ters 17(5), 537–540 (1996) Cited on page 5

7. Houck, C.W.: Decoding recaptcha (2010), http://www.n3on.org/projects/

reCAPTCHA/docs/reCAPTCHA.docx Cited on pages 3 and 6

8. Lavrenko, V., Rath, T.M., Manmatha, R.: Holistic word recognition for handwrit-
ten historical documents. In: DIAL, pp. 278–287. IEEE Computer Society Press,
Los Alamitos (2004) Cited on page 5

9. Lladós, J., Roy, P.P., Rodŕıguez, J.A., Sánchez, G.: Word spotting in archive doc-
uments using shape contexts. In: Mart́ı, J., Bened́ı, J.M., Mendonça, A.M., Serrat,
J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 290–297. Springer, Heidelberg (2007)
Cited on page 4

4 It must be said, though, that a successful attack may only achieve a recognition rate
of say, 10% of the challenges, which is too low for a full-fledged OCR program.

http://portal.acm.org/citation.cfm?id=11274.11275
http://www.n3on.org/projects/reCAPTCHA/docs/reCAPTCHA.docx
http://www.n3on.org/projects/reCAPTCHA/docs/reCAPTCHA.docx

Breaking reCAPTCHA: A Holistic Approach via Shape Recognition 67

10. Madhvanath, S., Govindaraju, V.: Contour-based image preprocessing for holistic
handwritten word recognition. In: ICDAR, pp. 536–539. IEEE Computer Society
Press, Los Alamitos (1997) Cited on page 5

11. Madhvanath, S., Govindaraju, V.: The role of holistic paradigms in handwritten
word recognition. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 149–164 (2001)
Cited on page 5

12. Mori, G., Belongie, S., Malik, J.: Shape contexts enable efficient retrieval of similar
shapes. In: CVPR, vol. 1, pp. 723–730. IEEE Computer Society Press, Los Alamitos
(2001) Cited on page 4

13. Mori, G., Belongie, S.J., Malik, J.: Efficient shape matching using shape contexts.
IEEE Trans. Pattern Anal. Mach. Intell. 27(11), 1832–1837 (2005) Cited on page 9

14. Mori, G., Malik, J.: Recognizing objects in adversarial clutter: Breaking a visual
CAPTCHA. In: CVPR, vol. 1, pp. 134–144. IEEE Computer Society Press, Los
Alamitos (2003) Cited on page 4

15. Vertanen, K.: Words in 10 lists (2010), http://www.keithv.com/software/ Cited
on page 10

16. Wilkins, J.: Strong CAPTCHA guidelines v1.2 (2009), http://www.bitland.net/
Cited on page 3

http://www.keithv.com/software/
http://www.bitland.net/

From Multiple Credentials to Browser-Based

Single Sign-On: Are We More Secure?�

Alessandro Armando1,2, Roberto Carbone2, Luca Compagna3, Jorge Cuellar4,
Giancarlo Pellegrino3, and Alessandro Sorniotti5

1 DIST, Università degli Studi di Genova, Italy
2 Security & Trust Unit, FBK, Trento, Italy

3 SAP Research, Mougins, France
4 Siemens AG, Munich, Germany

5 IBM Research Zurich, Rüschlikon, Switzerland

Abstract. Browser-based Single Sign-On (SSO) is replacing conven-
tional solutions based on multiple, domain-specific credentials by offering
an improved user experience: clients log on to their company system once
and are then able to access all services offered by the company’s part-
ners. By focusing on the emerging SAML standard, in this paper we
show that the prototypical browser-based SSO use case suffers from an
authentication flaw that allows a malicious service provider to hijack a
client authentication attempt and force the latter to access a resource
without its consent or intention. This may have serious consequences, as
evidenced by a Cross-Site Scripting attack that we have identified in the
SAML-based SSO for Google Apps: the attack allowed a malicious web
server to impersonate a user on any Google application. We also describe
solutions that can be used to mitigate and even solve the problem.

1 Introduction

To provide access to restricted services, web applications assign digital creden-
tials to registered users and require users to prove possessions of these credentials
to receive access to protected resources. As web applications become more and
more widespread, users must handle an increasing number of authentication cre-
dentials to establish security contexts with web applications. This is not only
an annoying aspect of the current state of affairs, but has serious implications
on the security of these systems as users tend to use weak passwords and/or to
reuse the same password on different web applications.

Browser-based SSO solutions aim at improving this state of affairs by allowing
users to log in once and by giving them subsequent access to multiple web
applications. At the core of a browser-based SSO solution lies a browser-based
� This work has partially been supported by the FP7-ICT Projects AVANTSSAR

(no. 216471) and SPACIOS (no. 257876), and by the project SIAM funded in the
context of the FP7 EU “Team 2009 - Incoming” COFUND action. Furthermore the
authors would like to thank Brian Eaton, Scott Cantor, Matteo Grasso, and the SAP
NetWeaver SIM team for the valuable discussions and feedback they provided.

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 68–79, 2011.
c© IFIP International Federation for Information Processing 2011

From Multiple Credentials to Browser-Based Single Sign-On 69

authentication protocol. Three roles take part in the protocol: a client (C), an
identity provider (IdP) and a service provider (SP). The objective of C, typically
a web browser guided by a user, is to get access to a service or a resource provided
by SP. IdP authenticates C and issues corresponding authentication assertions.
Finally, SP uses the assertions generated by IdP to decide on C’s entitlement to
the requested resource.

A number of solutions for browser-based SSO have been put forward, e.g.
Microsoft R© Passport [11], the Liberty Alliance project [12], the Shibboleth Ini-
tiative [9], and OpenId [15]. The OASIS Security Assertion Markup Language
(SAML) 2.0 Web Browser SSO Profile (SAML SSO, for short) [13] is an emerging
standard in this context: it defines an XML-based format for encoding security
assertions as well as a number of protocols and bindings that prescribe how
assertions must be exchanged in a variety of applications and/or deployment
scenarios. Prominent software companies base their SSO implementations on
SAML SSO. For example, Google has developed a SAML-based SSO service for
its popular web applications (namely Gmail, Google Calendar, Talk, Docs and
Sites), called the SAML-based SSO for Google Apps [5].

The security of SAML SSO critically relies on a number of assumptions on
the trustworthiness of the principals involved as well as on the security of the
transport protocols used to exchange messages. In this paper we argue that one of
the assumptions on the security of the transport layer (i.e., that communication
between the client and the service provider must be carried over a unilateral
SSL 3.0 or TLS 1.0 connection) can only be met in practice in a way that leaves
the protocol vulnerable to an authentication flaw. We discuss how this flaw can
be exploited in general as well as on a number of prominent SAML-based SSO
solutions, including the SAML-based SSO for Google Apps that is used by over
one million business customers. Our findings show that the authentication flaw
can be seriously exploited in actual deployments of SAML SSO. For instance,
a severe attack could be mounted on the SAML-based SSO for Google Apps in
which a malicious web server could impersonate the victim user on any Google
application. In the paper we also provide solutions that allow the authentication
flaw and its exploitations to be mitigated or even eliminated.

To the best of our knowledge neither the authentication flaw on the SAML
SSO nor the vulnerability of the SAML-based SSO for Google Apps reported
in this paper are publicly known. We are currently informing US-CERT and
the relevant vendors about our findings. In response to our vulnerability report
Google has already patched their implementation of their SAML SSO solution.

What about the original question in the title, are we more secure with SAML
SSO than with multiple credentials? This question does not have a trivial answer
and certainly a positive answer cannot be given as long as there are unaddressed
issues such as the vulnerability we present in this paper. In addition, since the
security considerations brought forward by this paper do not apply to SAML
SSO only, we believe that other browser-based SSO protocols may suffer from
similar vulnerabilities. We are currently extending our analysis to other SSO
solutions to ascertain this.

70 A. Armando et al.

Structure of the paper. In the next section we introduce the SAML SSO profile
for web-based authentication. In Section 3 we present the authentication flaw
on the SAML SSO, and in Section 4 describe how it can be exploited on actual
implementations. In Section 5 we provide a number of solutions for the flaw.
Last but not least, in Sections 6 and 7 we discuss some of the related work and
present conclusions.

2 The SAML 2.0 Web Browser SSO Profile

SAML SSO provides a standardized, open, interoperable SSO solution applicable
in a multitude of environments and situations, and can therefore be instantiated
according to the specific requirements posed by the application scenario. In this
paper we focus on one of its most widely used instantiations, the SP-Initiated
SSO with Redirect/POST Bindings, whose typical use case is described in [14].
In the remainder of this paper we will refer to this use case as the SAML SSO
use case and to the associated protocol as the SAML SSO Protocol.

In Figure 1 we capture the most important steps of the SAML SSO Protocol,
abstracting away the steps that are irrelevant for our analysis, such as—among
others—the IdP discovery phase. In step S1, C asks SP to provide the resource
located at URI, say Resource(URI), without having a valid, active logon session
(i.e. security context) with SP. SP then initiates the SAML Authentication Proto-
col by sending to C an HTTP redirect response (status code 302) to IdP, contain-
ing an authentication request AuthReq(ID,SP), where ID is a (pseudo-)randomly
generated string uniquely identifying the request (steps A1 and A2). A frequent
implementation choice is to use the RelayState field to carry the original URI
that the client has requested (see [14]).

SAML Authentication Protocol

C IdP SP

S1. GET URI

A1. HTTP302 IdP?SAMLRequest=AuthReq(ID, SP)&RelayState=URI

A2. GET IdP?SAMLRequest=AuthReq(ID, SP)&RelayState=URI

IdP builds an authentication assertion
AA = AuthAssert(ID, C, IdP, SP)A3. HTTP200 Form(. . .)

A4. POST SP, Response(ID, SP, IdP, {AA}
K−1

IdP
), RelayState(URI)

S2. HTTP200 Resource(URI)

Fig. 1. SAML SSO Protocol: SP-Initiated SSO with Redirect/POST Bindings

From Multiple Credentials to Browser-Based Single Sign-On 71

If C does not have an existing security context with the IdP, then IdP chal-
lenges C to provide valid credentials. If the authentication succeeds, the IdP
creates the local security context, builds an authentication assertion as the tuple
AA = AuthAssert(ID, C, IdP, SP), and places it in a response message Resp =
Response(ID, SP, IdP, {AA}K−1

IdP
), where {AA}K−1

IdP
is the assertion signed with

K−1
IdP, IdP’s private key. IdP then places Resp and the value of RelayState re-

ceived from the SP into an HTML form (indicated as Form(. . .) in Figure 1) and
sends the result back to C in an HTTP response (step A3) together with some
script that automatically posts the form to the SP (step A4). This completes
the SAML Authentication Protocol. SP can then deliver the requested resource,
Resource(URI), to C (step S2), and the SAML SSO Protocol completes as well.

Note that the steps at message S1 and S2 admittedly fall outside of the scope
of the standard, and their implementation is left free. In this paper we capture
steps S1 and S2 as described in the SAML SSO use case; a number of commercial
SAML SSO solutions indeed adopt similar approaches to implement those steps.

As pointed out in [2] the security of the protocol critically relies on (unstated)
assumptions about the trustworthiness of the participants involved and about
the transport protocols used to exchange the protocol messages; we shall review
these in the next Sections.

2.1 Trust and Transport Protocol Assumptions

The above protocols work under the assumption that (i) IdP is not compromised,
i.e. it is not under the control of an intruder and it abides by the rules of the
protocol and (ii) IdP is trusted by SP to generate authentication assertions
about C. Even if they are not explicitly stated in the SAML 2.0 specifications,
these are very reasonable assumptions to make and, in fact, both protocols are
useless if the IdP is not trusted to generate authentication assertions about C or
if there is the doubt that the IdP is compromised. However, we do not assume
that all SPs which C may play the protocol with are uncompromised. In other
words, unlike [8], we want to consider also those situations in which C runs the
protocol with compromised SPs in order to determine whether they affect the
security of sessions of the protocol played with other uncompromised SPs. This
is very important as SPs are usually managed by different organizations that do
not always share trust relationships.

The SAML 2.0 specifications repeatedly state the following assumptions of
the transport protocols used to carry the protocol messages:

(TP1) Communication between C and SP is carried over a unilateral SSL 3.0 or
TLS 1.0 channel (henceforth called SSL), established through the exchange
of a valid certificate (from SP to C).

(TP2) Communication between C and IdP is carried over a unilateral SSL
channel that becomes bilateral once C authenticates itself on IdP. This is
established through the exchange of a valid certificate (from IdP to C) and
of valid credentials (from C to IdP).

72 A. Armando et al.

2.2 Security Requirements

The SAML specifications do not explicitly state the security properties that the
SAML SSO Protocol and the SAML Authentication Protocol are expected to
achieve. By comparison with classic web authentication schemes, it is however
natural to expect that at the end of the SAML SSO Protocol, the following
security property is fulfilled:

(P1) SP and C mutually authenticate and agree on the value URI

As pointed out in [10], different definitions of authentication are possible. The
notion of authentication we consider in this paper includes recentness, i.e. the
fact that the principal being authenticated recently took part in the protocol
run so as to exclude replay attacks.

We note that the SAML Authentication Protocol, the building block of the
SAML SSO Protocol, is only able to guarantee the property

(P2) SP authenticates C

The converse is not true, i.e., the SAML Authentication Protocol does not pro-
vide to C any guarantee on SP’s identity; indeed in message A1, SP may instruct
IdP to force C to redirect message A4 to an arbitrary location. Even the use of
SSL certificates only guarantees that there is no man-in-the-middle in the com-
munications between C and the recipient of message A4.

In the remainder of this paper, we will investigate whether the SAML SSO
Protocol, constructed with a building block that only guarantees (P2), is able
to fulfill the original property (P1), and we will show that the fulfillment of
this property is not automatically guaranteed; in particular depending on the
implementation choices, a malicious SP may be able to hijack C’s authentication
attempt and force the latter to access a resource without its consent or intention.

3 An Authentication Flaw in the SAML SSO Protocol

An analysis of the SAML specifications reveals that the standard does not specify
whether the messages exchanged at steps S1 and A4 must be transported over
the same SSL channel or whether two different SSL channels can be used for
this purpose. In other words, there is a certain degree of ambiguity on how
assumption (TP1) of Section 2 can be interpreted.

The reuse of the SSL channel established at step S1 to also transport the
message at step A4 is at first sight the most natural option. However this is
difficult to achieve in practice for a number of reasons:

Resuming SSL sessions. The use of a single SSL session for the exchange of
different messages cannot be guaranteed as, e.g., the underlying TCP connection
might be terminated (e.g. timeout, explicitly by one of the end points), an SSL
server could not resume a previously established session, or a client might be
using a browser that very frequently renegotiates its SSL session.1

1 See, for instance, http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/

index.jsp?topic=/com.ibm.itame2.doc_5.1/am51_webseal_guide54.htm

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame2.doc_5.1/am51_webseal_guide54.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame2.doc_5.1/am51_webseal_guide54.htm

From Multiple Credentials to Browser-Based Single Sign-On 73

Software modularity. Nowadays, software is designed to be increasingly mod-
ularized, capitalizing on layering and separation of concerns. This may result in
the fact that—within SP implementations—the software module that handles
SAML messages has no access to the internal information of the transport mod-
ule that handles SSL. Thus, the information on whether the client has used a
single SSL session or two different ones may not be available.

Distributed SPs. The SAML SP may be distributed over multiple machines,
for instance, for work-balancing reasons. This results in physically different SSL
endpoints, with the inherent impossibility of enforcing a single session for all
communications between SP and C.

We have extended the formal model discussed in [2] to faithfully capture
the SAML SSO use case in which the messages of steps S1 and A4 can be
transported over different SSL sessions and fed it to a state-of-the-art model-
checker for security protocols [1]. (See Section 6 for more details.) The model
checker detected the attack depicted in Figure 2, thereby witnessing a violation
of property (P1) in the SAML SSO Protocol.

The attack involves four principals: a client (c), an honest IdP (idp), an honest
SP (sp) and a malicious service provider (i). The attack is carried out as follows: c
initiates the protocol by requesting a resource urii at SP i. Now i, pretending to be c,
requests adifferent resourceuriat spand spreacts according to the standardbygen-
erating an Authentication Request, which is then returned to i. Now i maliciously
replies tocbysendinganHTTPredirectresponseto idpcontainingAuthReq(id, sp)
and uri (instead of AuthReq(idi, i), and urii as the standard would mandate). The
remaining steps proceed according to the standard. The attack makes c consume a
resource from sp, while c originally asked for a resource from i.

Note that the attack is possible essentially because the client—usually a nor-
mal browser with no knowledge of the SAML protocol—has no means of verifying
whether the authentication request and the authentication assertion are related
to the initial request.

c idp i sp

S1. GET urii S1. GET uri

A1. HTTP302 idp?
SAMLRequest=AuthReq(id, sp)
&RelayState=uri

A1. HTTP302 idp?
SAMLRequest=AuthReq(id, sp)
&RelayState=uri

A2. GET idp?SAMLRequest=AuthReq(id, sp)&RelayState=uri

idp builds an authentication assertion
AA = AuthAssert(id, c, idp, sp)A3. HTTP200 Form(. . .)

A4. POST sp, Response(id, sp, idp, {AA}
K−1

idp
), RelayState(uri)

S2. HTTP200 Resource(uri)

Fig. 2. Authentication Flaw of the SAML 2.0 Web Browser SSO Profile

74 A. Armando et al.

Interestingly enough, standardusername/passwordauthenticationmechanisms
do not suffer from this authentication flaw. To see this, let us assume that C has
no active sessions with service providers SP1 and SP2; let us also assume that C’s
usernames and passwords are different for each SP.2 Then under no circumstance
can SP1 hijack C’s authentication attempt and unawarely and automatically force
it to consumea protected resource at SP2.From this point of view, the advantage of
domain-specific credentials in the control of the user is that the user knows exactly
for whom the credentials are intended upon providing them. With SSO, “binding”
the views of the user and of the service provider is not so easy.

Note that the attack would be prevented if sp could enforce that the initial
request and authentication response are carried over the same secure channel, but
we have previously explained why this requirement is very difficult to achieve in
practice. Note also that requiring digitally signed authentication requests would
not fix the vulnerability; indeed the authentication request is actually generated
by the honest service provider, and only blindly forwarded to the client by the
attacker; the signature is therefore valid and will be accepted.

Even more interestingly, the attack does not strictly require a malicious service
provider in order to be successful. Any malicious web server i would be able, upon
a request from c, to mount the attack provided that (i) c is a client of sp and
(ii) c has an active authentication context with idp.

The attack in Figure 2 can be exploited in a number of ways:

Delivery of an unrequested resource. The most trivial exploitation of the
flaw consists in the attacker forcing the client to receive a different protected
resource from the initially requested one. The same exploitation may also be
mounted if a malicious web server redirects the browser to a legitimate SP be-
fore the SAML SSO Protocol starts. However this attack can be prevented by
using well-known browser-side plugins that restrict HTTP redirections (e.g., the
NoRedirect addon for Firefox). By allowing only IdP-to-SP and SP-to-IdP redi-
rections, the delivery of an unrequested resource upon redirection outside of the
SAML SSO Protocol is prevented, but a malicious SP can still mount the one
depicted in the Figure 2.

Launching pad for cross-Site Request Forgery (XSRF) attacks. This
attack assumes that the URI that was initially requested did not point to a
resource, but rather contained a URL-encoded command, such as a request for
the change of some settings or user’s preferences, for the deletion of some resource
or for the annulment of/committing to an action, such as the purchase of a paid
good. Depending on the output provided by the execution of the command,
the client may or may not be able to detect the attack. This type of attack is
even more pernicious than classic XSRF, because XSRF requires C to have an
active session with SP, whereas in this case, the session is created automatically
hijacking C’s authentication attempt.

2 If this assumption does not hold, C is vulnerable to a number of other trivial attacks
anyway.

From Multiple Credentials to Browser-Based Single Sign-On 75

Launching pad for cross-Site Scripting (XSS) attacks. It is straightfor-
ward to see that this attack also constitutes a launching pad to reflected XSS
attacks, i.e. XSS attacks that can be triggered by visiting a maliciously-crafted
URL. In addition, a vanilla implementation of the SAML SSO protocol exposes
the RelayState field to a possible injection of malicious code that may be ex-
ecuted at the honest SP side. Although the SAML standard recommends to
protect the integrity of this field, our experience shows that this often is not
the case (see Section 4). In addition, unlike normal XSS attacks, where the
attacker has to rely on social engineering (phishing, spam and so forth) to lure
a victim into clicking on a malicious link, an exploitation of the vulnerability
paves the way for systematically luring victims into visiting URIs that may be
vulnerable to cross-site scripting attacks. Note also that in this case, unlike in
the previous exploitations, the client is not suspicious about receiving a different
resource than the one requested. On the contrary, because arbitrary code can
be embedded in uri, a redirection to urii, the page that c initially requested, can
be eventually forced at the end of the attack. As an example, if uri is forged as
javascript:window.open(’urii’+document.cookie) the client would be vic-
tim of the theft of its cookies for the domain sp through a visit to the requested
urii.

Although in this paper we focus on the SP-initiated SSO protocol, it is worth
mentioning that IdP-Initiated flows may suffer from login CSRF attacks [3],
whereby the attacker forges a cross-site request to the login form and, logs the
victim into a honest web site as the attacker.

4 Exploitations in Actual Deployments

An interesting question that we also address in this paper is whether exploita-
tions of the abstract weakness of the standard are possible in actual deployments
of the SAML SSO Protocol. To this end, we have analyzed various SAML-based
SSO solutions available on the market, including SAML-based SSO for Google
Apps, SimpleSAMLphp as deployed for Foodle (see https://foodl.org), and
a deployment of the Novell Access Manager 3.1 in a real industrial environment.
All these deployments support the SAML SSO use case; not surprisingly, by in-
specting SSL messages we verified that the SPs employed in these deployments
accept and process a SAML response flowing on a different SSL channel than
the one used to deliver the SAML request.

Our analysis of the SAML-based SSO for Google Apps shows that by ex-
ploiting the weakness of the standard, a malicious SP can force C to consume a
resource from Google, for instance, visiting any page of the gmail service. mail-
box. This trivial attack is however easily detected by C, and does not bring any
real advantage to the attacker. Definitely more serious for the over one million
business customers of Google Apps was the XSS attack we were able to execute
and that allowed the malicious SP to steal the C’ cookies for the Google do-
main and thus to impersonate C on any Google application. The abstract flaw
of Figure 2 served indeed as launching pad for this XSS: because of missing

https://foodl.org

76 A. Armando et al.

sanitization, an attacker could inject malicious code into the RelayState field
and have it successfully executed on the client’s browser as if coming from the
Google domain (thus circumventing the same origin policy). In other words, the
combination of the abstract flaw and the missing sanitization was the key to
mount the XSS attack. The past tense is in order here since, as soon as we found
this attack, we informed Google, who promptly patched the issue.

We have been able to mount a similar XSS attack on the SAML SSO solution
of the Novell Access Manager 3.1 as deployed in a real industrial environment.
In this deployment RelayState is not used to store the URI;instead, a URL-
encoded parameter is used to this end, and this parameter is not sanitized.

The SimpleSAMLphp, as deployed in Foodle, stores the initially requested
URI into the URL parameter ReturnTo. Although that field is not sanitized, we
have not been able to mount any XSS. The reason is that SPs running Simple-
SAMLphp additionally use cookies that block the abstract flaw we discovered.
We will detail this solution in the next section.

The findings presented above show that the authentication flaw we discovered
can be exploited on actual deployments of the SAML SSO Protocol, even leading
to major security issues. We have informed Novell and UNINETT (the developer
and maintainer of SimpleSAMLphp) about these findings as well as the US-
CERT so that other vendors implementing and deploying SAML-based SSO
solutions can get advantage of this information.

5 Fixing the Vulnerability

The root of the problem of the authentication flaw presented earlier lies in the
following two main factors:

1. Clients are not able to link the Authentication Request they receive from
the SP in step A1 with their initial requests for a resource issued in step S1;

2. The SP is not able to enforce that the messages exchanged with C (cf. steps
S1, S2, A1, and A4) are carried over the same channel.

We have verified that—could one of the two causes be removed—the vulnerabil-
ity would no longer be exploitable. We emphasize nonetheless that the SAML
SSO Protocol alone neither achieves property (P1) nor mandates the imple-
mentation of any of these solutions, thus leaving a vanilla implementation in
principle flawed.

The challenge is to fix the vulnerability with minimal changes so that existing
solutions can be secured without radical modifications to the software compo-
nents (e.g. SAML ECP profile) or to the standard. In what follows, we outline
a number of possible solutions, highlighting their strengths and shortcomings.

Cookies. A standard way of enforcing bindings on sessions is implemented
using session cookies. With reference to Figure 1, by setting a session cookie in
step A1 and expecting to receive it back on message A4, SP could check that
the communication has occurred with the same client. However, cookies only

From Multiple Credentials to Browser-Based Single Sign-On 77

provide means to mitigate the problem—albeit sufficient in many scenarios—
and do not represent a complete countermeasure. Indeed cookies are designed
to be difficult to steal and it is not as hard to set them. For instance, cookies
with the “Secure” flag on (which instructs the browser not to transmit them
over unencrypted channels) can be set over unprotected connections. (The latest
versions of IE and of Firefox allow this.) In practice an attacker could circumvent
the protection offered by cookies by (i) setting a cookie for the victim SP through
injected Javascript or HTML META tags; (ii) corrupting the proxy discovery
phase setting up a rogue wpad or dhcp server, thus becoming the user’s proxy;
(iii) performing ARP poisoning thus becoming the victim’s default gateway.

Feedback from the user. As seen in the preceding Sections, the user may
initiate the SAML SSO profile, authenticating to an SP without actually having
explicited requested anything from it. This can be avoided if the IdP informs
the user about the attempt to access URI on the SP during the authentication
and asks for an explicit consent before issuing the authentication assertion to
SP. In this way, the user may realise that the authentication is going to be
sent to a different SP than expected and may be given the possibility to stop
the protocol. This solution has a number of drawbacks: first of all, it forces a
security decision upon a (possibly technically unaware) user, who is asked to
tell apart legitimate SP-to-SP redirections from malicious ones. In addition, it
breaks the seamlessness of SSO, in which the authentication process is supposed
to be carried out with minimal interactions with the user.

Self-signed client certificates. A simple, yet effective way to ensure SP that
it is interacting with the same client is to provide the latter with a self-signed
certificate. The solution goes as follows: during the first SSL session (cf. steps A1
and A2 in Figure 1) C is asked to present the certificate. SP will then generate an
Authentication Request and its ID field is set to n || HMACK ||n(RSA modulus),
where n is a nonce, K is a secret known only to SP, RSA modulus is the RSA
modulus of the public key contained in the client’s certificate. HMAC is the well-
known HMAC keyed hash function [4] and || denotes the concatenation. After
this, SP deletes all state information and sends the Authentication Request to
C. During the second SSL session (cf. steps A3 and A4), C is again asked for the
certificate and the same certificate will be delivered to SP. The standard requires
the InResponseTo field of the Response message to contain the same value of
the ID field of the Authentication Request message: therefore SP can parse such
field as n′ and H ′ and then check whether H ′ = HMACK ||n′(RSA modulus).

Note that (i) the client can easily self-generate a certificate; alternatively,
the SP can offer the client to forge one on his behalf; (ii) the certificate is not
expected to carry information about the identity of the user; in particular, it
is not used to assess the user identity; and (iii) during the SSL handshake, the
browser proves knowledge of the private key; the approach therefore guarantees
with overwhelming probability that a malicious third party cannot forge a copy
of the same certificate since – in case of certificates that use RSA encryption for
instance – it would entail breaking the RSA hardness assumption.

78 A. Armando et al.

6 Related Work

Pfitzmann et al. [16,17,7] lay the theoretical basis for a rigorous analysis of web-
based federated identity-management protocols (e.g. the SSO protocol proposed
by Liberty Alliance in 2002). They discuss some security vulnerabilities and
possible preventive measures. Some of these results have been fed into the Liberty
Alliance project and indirectly into the SAML 2.0 standard.

Security analyses of the SAML SSO v1.0 are presented in [6] and in [8]. The
security analysis presented in our paper refers to SAML SSO v2.0, the latest
version of the standard. Moreover, in our work we focus on scenarios that are
most likely to occur in actual deployments. For instance, unlike [8] we do not
assume that SPs are trustworthy and unlike [6] we assume that messages are
exchanged over secure channels as recommended by the standard.

In [2] we provide a formal model of the SAML SSO protocol as well as of a
variant implemented in the SAML-based SSO for Google Apps. By using a model
checker, we discovered a subtle man-in-the-middle attack on the SAML-based
SSO for Google Apps. In reaction to this discovery Google has modified the
implementation of the protocol. The version of the protocol used by the SAML-
based SSO for Google Apps we described in Section 4 is the one currently in
use by Google and therefore does not suffer from the attack reported in [2].
Interestingly, in [2] we did not find any attack on the Web Browser SAML
2.0 SSO profile as in our analysis we assumed that communication between C
and SP is carried over a single unilateral SSL channel. We have adapted that
formal model so to allow the messages of steps S1 and A4 to be transported
over different SSL sessions and used the SATMC model-checker to analyze this
new specification. This has allowed us to discover the previously unknown attack
described in Section 3.

7 Conclusions

Authentication protocols are notoriously difficult to get right, even more so for
browser-based authentication protocols because “browsers, unlike normal proto-
col principals, cannot be assumed to do nothing but execute the given security
protocol” [7]. In this paper we have showed that browser-based SSO protocols
are no exception. We have presented an authentication flaw in the SAML SSO,
discussed how this flaw can be generally exploited, and reported related security
issues that we have detected in actual SAML-based SSO solutions developed by
prominent software companies, including a severe attack on the SAML-based
SSO for Google Apps. We have finally presented a number of possible solutions
that mitigate or even solve the problem. As a part of our future work we plan
to extend our analysis to other SSO solutions.

References

1. Armando, A., Carbone, R., Compagna, L.: LTL Model Checking for Security
Protocols. Journal of Applied Non-Classical Logics, special issue on Logic and
Information Security, 403–429 (2009)

From Multiple Credentials to Browser-Based Single Sign-On 79

2. Armando, A., Carbone, R., Compagna, L., Cuéllar, J., Tobarra, M.L.: Formal
Analysis of SAML 2.0 Web Browser Single Sign-On: Breaking the SAML-based
Single Sign-On for Google Apps. In: FMSE. ACM, New York (2008)

3. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
In: 15th ACM Conference on Computer and Communications Security (CCS 2008)
(2008)

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

5. Google. Web-based SAML-based SSO for Google Apps (2008), http://code.

google.com/apis/apps/sso/saml_reference_implementation_web.html

6. Groß, T.: Security analysis of the SAML Single Sign-on Browser/Artifact profile.
In: Proc. 19th Annual Computer Security Applications Conference. IEEE, Los
Alamitos (December 2003)

7. Groß, T., Pfitzmann, B., Sadeghi, A.-R.: Browser model for security analysis of
browser-based protocols. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D.
(eds.) ESORICS 2005. LNCS, vol. 3679, pp. 489–508. Springer, Heidelberg (2005)

8. Hansen, S.M., Skriver, J., Nielson, H.R.: Using static analysis to validate the SAML
single sign-on protocol. In: WITS 2005. ACM Press, New York (2005)

9. Internet2. Shibboleth Project (2007), http://shibboleth.internet2.edu/
10. Lowe, G.: A hierarchy of authentication specifications. In: Proc. CSFW. IEEE, Los

Alamitos (1997)
11. Microsoft. Windows Live ID, https://www.passport.net/
12. OASIS. Identity Federation. Liberty Alliance Project (2004), http://www.

projectliberty.org/resources/specifications.php

13. OASIS. SAML V2.0 (April 2005), http://docs.oasis-open.org/security/saml/
v2.0/

14. OASIS. SAML V2.0 – Technical Overview (March 2007), http://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=security

15. OpenID Foundation. OpenID Specifications (2007), http://openid.net/

developers/specs/

16. Pfitzmann, B., Waidner, M.: Analysis of Liberty Single-Sign-on with Enabled
Clients. IEEE Internet Computing 7(6) (2003)

17. Pfitzmann, B., Waidner, M.: Federated identity-management protocols. In:
Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols
2003. LNCS, vol. 3364, pp. 153–174. Springer, Heidelberg (2005)

http://code.google.com/apis/apps/sso/saml_reference_implementation_web.html
http://code.google.com/apis/apps/sso/saml_reference_implementation_web.html
http://shibboleth.internet2.edu/
https://www.passport.net/
http://www.projectliberty.org/resources/specifications.php
http://www.projectliberty.org/resources/specifications.php
http://docs.oasis-open.org/security/saml/v2.0/
http://docs.oasis-open.org/security/saml/v2.0/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://openid.net/developers/specs/
http://openid.net/developers/specs/

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 80–91, 2011.
© IFIP International Federation for Information Processing 2011

Quantifying the Effect of Graphical Password Guidelines
for Better Security

Mohd Jali1,3, Steven Furnell1,2, and Paul Dowland1

1 Centre for Security, Communications and Network Research (CSCAN),
Room A304, Portland Square, University of Plymouth, Plymouth PL4 8AA, UK

2 School of Computer & Security Science, Edith Cowan University,
Perth, Western Australia

3 Faculty of Science & Technology, Universiti Sains Islam Malaysia,
Nilai, 71800, Negeri Sembilan, Malaysia

zalisham@usim.edu.my

Abstract. Authentication using images or graphical passwords is one of the
possible alternatives for traditional authentication based upon passwords. This
study aims to investigate the practicality of giving guidelines or advice to users
before they start choosing their image passwords, the effectiveness of using a
smaller tolerance (clickable areas) and the optimum combination of click and
image passwords. An alternative graphical prototype known as the Enhanced
Graphical Authentication Scheme (EGAS) was developed in order to achieve
these aims which implemented two different types of data collection (internal
and external). From the findings, both internal and external groups indicated
that the implementation of guidelines alone cannot guarantee the security of im-
age passwords created by participants; but, in combination with other usability
measurements this study has shown positive outcomes.

Keywords: Graphical passwords, Authentication, Usability, Security, HCI.

1 Motivation

Using images to authenticate users is one possible alternative for password-based
authentication. Previous work has divided image-based authentication into three cate-
gories; namely ‘click-based’, ‘choice-based’ and ‘draw-based’. The click-based ap-
proach refers to the action of clicking on the provided/chosen image(s) (i.e. selecting
an element of the image), choice-based refers to the action of selecting a series of
images (i.e. choosing images from a selection on screen) and draw-based refers to the
action of drawing/sketching in order to be authenticated.

Regardless of the methodologies, previous studies have reported positive results,
especially in the aspects of recall and memorability (i.e. participants were able to
remember their secrets (i.e. image passwords) accurately after long periods of time)
and usability (i.e. using images is user friendly) [1], [2] and [3]. Conversely, studies
have also reported the disadvantages. Davis et al. [7] and Tullis and Tedesco [8]
found that users chosen secrets were influenced by gender. Chiasson et al. [4] re-
ported that the concept of clicking on images (e.g. Passpoint [5]) was not secure as

 Quantifying the Effect of Graphical Password Guidelines for Better Security 81

users tended to create hotspots (i.e. focussing upon one area in an image) and generat-
ing similar patterns (e.g. a straight line from top-bottom or left-right). Oorchot et al.
[6] claimed that it was possible to crack users’ secrets regardless of the background
image, with the study by Everitt et al. [9] reporting that having multiple secrets
resulted in more errors when compared with password-based authentication.

With respect to security, the main problem with the click-based method can be re-
ferred to as ‘hotspot’ while the problem with the choice-based method can be referred
to as ‘hot-image’. The problem of hot-image happens when a similar image is
selected by many users. This problem could also be associated when users choose
similar categories/themes or through gender preferences (e.g. males choose cars and
females choose flowers). The hotspot problem could occur in two conditions. Firstly,
the user clicks within the same or similar point on the given image or clicks on the
same point or area when two or more images are given. Secondly the user produces
predictable shapes such as straight lines and clicks on obvious/predictable objects
within the image. Studies related to security in graphical passwords can be found in
[10], [11], [12] and [13].

In an attempt to address or reduce the aforementioned problems and at the same
time maintain users’ memorability, many studies have been published with regards to
the effect of using various types of images. Examples include using images of cartoon
characters [3], images of geometric shapes [14] and using images that were later
transformed into unclear or distorted forms during login [15] and [16]. With respect to
the click-based method, a technique known as persuasion has been proposed [17]
where the software recommends to the user possible ‘safe’ areas in which to create
their secrets.

As far as the authors are aware, no study was found to have investigated or intro-
duce user guidelines as part of the enrolment process. Therefore, the authors intro-
duced a set of guidelines for graphical authentication, referred to as the Graphical
Password Guidelines (GPG) which was presented to the user before they began
choosing their secrets.

The authors also conjectured that GPGs on their own (Table 1) would not be a uni-
versal solution due to inherent human behaviour (i.e. certain users, although aware of
the guidelines, sometimes violate the rules). To address this, restrictions were applied
during registration. Two restrictions implemented in this study are as follows:

1. Users were only permitted to choose one image per category.

2. Users were not permitted to click on the same areas within an image. If they
choose more images, they were also not permitted to click on the same area within
the images.

The above restrictions together with the GPG were integrated into a software proto-
type. The software applied these restrictions by displaying warning messages if the
software identified the user attempting to breach the rules.

The study was conducted in order to examine the impact on usability as well as
user perception towards the introduction of the GPGs and image selection restrictions.
Each participant had two types of secret; namely click-secrets (based upon the action
of clicking on an image) and image-secrets (based upon the action of choosing a
sequence of images). In addition to this, the study aimed to find ideal (usable and
secure) combinations of click and image-secrets. A third investigation was undertaken

82 M. Jali, S. Furnell, and P. Dowland

to evaluate the impact of reducing the tolerance of the click positions. Tolerance can
be explained as the extent of the area surrounding the users’ secret clicks which are
still accepted as legitimate. Prior research has indicated that participants were quite
good when entering their secrets, both during registration and login [19]. Thus, the
authors believed that using a smaller tolerance is possible and for this reason, users’
performance when using smaller tolerance was investigated.

Table 1. Graphical password guidelines

Task Guideline Explanation

Choosing
images

Choose different
themes and images

Users perceives image differently and previous studies
have found gender bias in user image selections [7], [8]
and [18]. As a result, the user is advised to choose
different images, the image itself should not related to
gender and more importantly, they are advised to choose
images that they think could offer them memorable areas
for placing their secret clicks.

Try to avoid
imagery that could
be associated with
your gender
Please choose
images that offer
you various
memorable areas for
placing your secret
clicks

Clicking
on images

Try not to click
within the same or
adjacent areas Oorchot et al., [6] showed that some users’ secret were

predictable. To reduce this, the user is advised to create
their secret randomly. Specifically, they are not permitted
to click on or within the same area (also applied to many
images), advised not to create an easy to guess pattern
(e.g. straight line) and encouraged not to click on obvious
objects (e.g. edge, centre of each image).

Try to click on
various areas, not
only on an obvious
object
Please avoid
predictable patterns
(e.g. straight line,
edges, central of
images, etc)

The next section of this paper highlights the methodology, followed by the results,
discussion and conclusions.

2 Methodology

A graphical software prototype known as the Enhanced Graphical Authentication
System (EGAS) was developed using Microsoft Visual Basic 2008. EGAS is an alter-
native graphical authentication employing a combination of both click and choice-
based methods. In the EGAS software prototype, users are given the freedom to
choose their preferred number of clicks (secret clicks), with the software assigning the
number of images (secret images) they need to choose. Table 2 shows the combina-
tion of secret clicks and secret images.

 Quantifying the Effect of Graphical Password Guidelines for Better Security 83

Table 2. Click and Image details used in the software prototype

Secret click chosen Secret image assigned Image size/Tolerance
1 6 200x200 / 7x7
2 5 200x200 / 7x7
3 4 200x200 / 7x7
4 3 200x200 / 7x7
5 2 200x200 / 7x7

Two types of data collection were implemented; named as ‘internal’ and ‘external’.

Internal means the experimenter observed participants during trial (similar with the
one to one usability testing) and they had to complete current task before proceeding
to the next (controlled by the software prototype). Participants within the external
group had to install the software prototype into their personal computer and use it for
three weeks, with all of their activities recorded into a database (no means of control
was enforced by the software prototype).

Participants for both groups (internal and external) had to register their details
(username and secrets) in the software prototype, were then required to log into the
software using their chosen secrets and finally provide feedback via a questionnaire.
All tasks were done within the software prototype.

During the secret registration (enrolment), the GPG were first displayed to them
(by which they had to acknowledge the GPG) before they chose their secret. During
image selection, participants were able to choose images from 10 different themes
(buildings, abstract, food, animals, flowers, view, people, sport, transport and fruits),
with each of them consisting of 9 distinct images (arranged in 3x3 grids).

Participants within the internal group were asked to login three times, while the ex-
ternal group needed to login on four different days in week 1, two different days in
week 2 and finally login once in week 3. This aimed to examine their familiarity and
competency (e.g. login time, clicking accuracy, total attempts).

The trial was conducted over two months with the participants of the internal group
recruited via an open call for volunteers within the authors’ university. Participants of
the external group were colleagues/friends of the author (external to the University)
and invited via email, chat messengers and text messages.

The data were interpreted and reported into five main categories; namely number
of attempt, timing, pattern, accuracy and finally users’ feedback. The number of at-
tempt looks upon participants’ failure and success trials during both registration and
login tasks while timing reports the time needed for these tasks. Pattern discusses the
occurrences of ‘hotspot’ and ‘hot-image’, with accuracy mainly focuses upon the
participants’ ability to click on their secret clicks and finally users’ feedback reports
participants’ perception on the questionnaire.

3 Results and Discussion

In total, there were 48 participants participated. Table 3 gives information for both
groups highlighting the gender split and number of participants who had previously
participated in graphical password studies [18].

84 M. Jali, S. Furnell, and P. Dowland

Table 3. Participants’ information

Demographic Internal group External group
Male participant 12 10

Female participant 18 8
Experienced using GA 10 2

3.1 Number of Attempt

3.1.1 Internal Group
Members of this group undertook 356 of authentication attempts. Of these, 94 logins
were successful and 47 failed, 156 failed during registration and 66 were able to regis-
ter successfully (note that software recorded two trials for each participant if they
managed to register).

Participants who changed their click decided to choose the lowest click. Of the to-
tal seven participants who initially chosen three clicks on each image, five of them
went to one click, while the remaining chosen two clicks. Moreover, all five partici-
pants who initially chosen two clicks and one participant who initially chosen four
clicks also decided to choose one click.

During login, all participants within all click groups performed well where they
managed to login, these results improved with experience. Only ten participants re-
corded a complete failure to login. There were six occurrences of failed attempts for
login one, four occurrences for login two and only three occurrences for login three.
The ability of participants to login with fewer failed attempts suggests participants
performance improved with experience.

3.1.2 External Group
With eighteen participants within this group, the software recorded a total of 283
login attempts in week one, 61 trials for week two and finally 30 for week three. Of
these, there were 92 successful logins for week one, 51 for week two and 20 for week
three (note that there were participants who logged into the software more than was
asked for).

Investigation of successful usernames who continued with the login tasks found
mixed results. It was found only 12 participants followed the login interval task, with
the remaining 6 participants using the software occasionally. For those who logged
into the software according to specified tasks, 9 participants had chosen one click, 1
participant chose two clicks and 2 participants chose five clicks. Analysis has also
found that 6 participants (who did not complete the login tasks) infrequently login
during week one, with three of them logged twice for week two and finally all of them
logged into the software in the third week. Five of them had chosen one click, while
the remaining participant went for five clicks.

Only eight of the external group participants managed to register by using their
first username. Of the remaining 10 participants who used a second username, six of
them changed their secret click to the least click. Unless otherwise stated, most of the
analysis for this group was based upon 18 participants who completed the specified
tasks.

 Quantifying the Effect of Graphical Password Guidelines for Better Security 85

 3.2 Timing

3.2.1 Internal Group
The time for participants to register and then log into the software prototype was
recorded with the time during registration calculated from the point when they
pressed the ‘register account’ button until to the result for registration is displayed.
The time for login was calculated from when the participant started to enter their
username until the last click for their secret images.

Table 4 shows participants’ time (average, shortest, longest and standard deviation)
during registration and three logins, in minutes, (m) and seconds, (s).

Table 4. Timing for the internal group

Click Participant Time Registration Login One Login Two Login Three

1 18

Average 5m 23s 24 20 18
Shortest 1m 43s 15 11 9
Longest 21m 58s 42 42 4

SD 4m 43s 8 8 6

2 5

Average 10m 29s 40 35 27
Shortest 2m 23s 28 25 18
Longest 23m 33s 71 69 40

SD 7m 56s 17 18 8

3 3

Average 9m 56s 39 33 33
Shortest 5m 47s 36 23 22
Longest 16m 46s 43 39 42

SD 5m 58s 4 9 10

5 2

Average 2m 56s 26 20 23
Shortest 1m 12s 24 19 21
Longest 4m 40s 28 21 24

SD 2m 27s 3 1 2

For all click groups, the registration time can be considered long due to the action
of selecting images and then clicking on the chosen images. It can be reported that for
all click groups, the time to login during login attempts one to three are significantly
shorter. The study also found that participants do not immediately select their click
area, often taking several seconds before they start clicking on it. This action is be-
lieved to be due to the small tolerances used, which suggests it could directly affect
login time and security if the users were observed.

3.2.2 External Group
Table 5 shows the time for 12 participants as they managed to login according to the
specified login intervals. L1 to L5 refers to the login times (measured in seconds, (s))
for week one, L6 and L7 are login times for week two and finally L8 refers to the
login time for the third week. It was found that the login time across the three weeks
varied, although with one click, participants showed little change.

86 M. Jali, S. Furnell, and P. Dowland

Table 5. Timing for the external group

Click Participant Time Register L1 L2 L3 L4 L5 L6 L7 L8

1 9

Average 11m 17s 17 20 17 20 14 17 17 14
Shortest 2m 15s 14 14 13 11 12 10 10 9
Longest 47m 23s 23 39 28 37 22 31 43 21

SD 14m 2s 4 8 7 10 3 6 11 3

2 1

Average 3m 22s 19 26 21 31 16 15 18 24
Shortest 3m 22s 19 26 21 31 16 15 18 24
Longest 3m 22s 19 26 21 31 16 15 18 24

SD n/a n/a n/a n/a n/a n/a n/a n/a n/a

5 2

Average 10m 2s 33 29 23 35 25 28 20 27
Shortest 2m 39s 29 24 22 22 23 23 19 26
Longest 17m 25s 37 34 23 48 27 32 20 28

SD 10m 26s 6 7 1 18 3 6 1 1

3.3 Accuracy

As reported earlier, the numbers of failed attempts during registration were high. As a
result, participants had to use other usernames and changed their preference secret
click or image. The authors discovered two main errors associated with such scenario,
as indicates below.

a) Participant was unable to click within the allowable tolerance.

b) Participant did not click in sequence order, as the result of forgetting their
secret order or areas.

From the data for both internal and external groups, it can be revealed that errors
during both registration and login were correlated with participants who selected more
clicks. In specific, there were slightly more participants who made tolerance errors
than order errors. This is probably due to the software prototype using a small click
tolerance.

Particularly within the external group, participants were unable to click accurately
when they first started using the prototype. However, they managed to click within
the clickable areas as they became familiar with using the software and understood
what they needed to accomplish.

3.4 Pattern

Patterns are created during image selection when participants chose the same images
(in the case of changing username of click), gender skew selection (e.g. men choosing
sports car while women chose flowers) and following image order (e.g. participants
choosing the first image in each theme). Moreover, patterns during the click selection
are created when participants clicked on the same area across all images, producing
obvious shapes or clicking their secrets in a straight line (e.g. top, bottom and left side
of image area), and clicked on the image that appeared to be offering a pattern. Re-
sults for both groups are reported together within this section as they used similar
software prototype.

 Quantifying the Effect of Graphical Password Guidelines for Better Security 87

With the internal group, the study found the majority of participants who changed
their username or secrets (click or image) used their previously chosen images. One
participant from the five clicks group used both of his previous images while two
participants from the two clicks group used three and one of their previous images
respectively. Of all the participants from the one click group who changed their user-
name or clicks, only one did not used their previous image. Specifically for the one
click group, two participants used four of their previous images while the others were
ranging from one to three. In addition, it was also found one of these participants
selected the first image for each theme as their secret images.

The external group also used their previous secret images with one participant us-
ing all of their previous images, with six other participants using between one to two
of their previous chosen images .It was also found that two participants of the one
click group chose their images in sequence (choose the first six themes); however
their chosen images were different with each other.

Table 6. Image popular with their associated number of male and female

Theme Number of participants
choosing popular image

Male Female

Buildings 11 3 8
Abstract 12 6 6

Food 8 4 4
Animals 7 3 4
Flower 10 4 6
View 14 7 7

People 5 2 3
Sport 13 8 5

Transport 4 1 3
Fruits 7 2 5

Table 6 presents the number of participants who chose popular images for each

theme. It was found that the view and sport themes are the most popular, with the
transport and people themes as the least popular selection.

Although it was found that a number of participants clicked within similar areas
when creating their secret clicks, such action was eliminated due to the software pro-
totype preventing participants from clicking on the same area within multiple images.
Analysis was carried out to examine the area of clicking for participants who chose
more clicks and although it can be reported that participants with two or three click
groups create less obvious pattern, participants of the five clicks group clearly create
patterns. The authors deduced that such scenarios are related to the images them-
selves, which clearly offer a pattern to be created.

Analysis was also done to examine the click areas in popular images for each
theme. Analysis on the one-click group who chose the most popular image revealed
that ten of the twelve participants who chose popular images in the sports theme
clicked on the three most popular areas (see left side of the fig. 1), with seven out of
twelve participants who chose the most popular image for the ‘view’ theme clicked on
the same area (see right side of the fig. 1). Equally, all other popular images have
shown a pattern where participants clicked on similar spots.

88 M. Jali, S. Furnell, and P. Dowland

Fig. 1. Participants click areas for the popular image of the ‘sport’ (left) and ‘view’ (right)
themes

From the collected data, the authors summarised that participants who chose more
clicks tended to create patterns during their clicking task, while the existence of pat-
tern during image selection was unidentified. Meanwhile, participants who chose
more images (fewer clicks) tended to create patterns during both image and click
selection. Patterns where users chose the first or last image for each theme was also
reported. Although the authors’ approach of not implementing restrictions for image
selections and depending solely upon the guidelines is less effective then the introduc-
tion of guidelines. The GPG itself has resulted in the reduction of gender bias image
selection and image order patterns.

It can, however, also be said that the restrictions together with the guideline during
secret click selection played a minor role during the click selection task. Although not
representative, participants with a higher number of clicks created more patterns (pos-
sibly as it is easier for them to remember), with analysis towards one click partici-
pants revealing the existence of hotspot.

 3.5 Users’ Feedback

A Likert five points scale rating was used to obtain participant feedback with the
lowest score indicating participants’ agreement with the statements while the highest
score indicating disagreement. Table 7 reports the mean score of feedbacks for the
first three questions within the internal group.

Table 7. Questionnaire results

Question Mean score
Perception towards graphical password guidelines (GPG) 1.6

Perception towards restrictions 1.8
Perception towards combining GPG with the restrictions 1.8

When asked about participants average login time (with the software prototype

displaying their average login time), it can be revealed that twenty participants found
their login time were acceptable, with eight unacceptable. Seventeen participants
agreed that their total registration time was acceptable while the remaining eleven
disagreed. With the statement on the optimum combination of image and click,
twenty two of the participants felt that having more images was more memorable than

 Quantifying the Effect of Graphical Password Guidelines for Better Security 89

having more clicks, while five participants felt that the balance between both click
and images were still memorable.

Participants who were new to the graphical method felt the method could be very
useful and provided excellent protection. However, the majority of the participants
who were involved in the previous trial felt that having larger clickable areas was
more usable. In addition, they felt that having more clicks could be troublesome as
they had to memorise too many spots and finally all participants agreed that in order
for them to perform better, they needed to become more familiar with the method.

4 Conclusions and Future Work

This paper presented an investigation of the practicability of giving guidelines to a
user before they chose their secrets for a graphical authentication system as well as
evaluating user attitudes and opinions to the enhanced techniques.

During the registration task, participants struggled to click accurately within the al-
lowable click tolerance and those who chose more clicks often failed to click in the
correct order. As the result, they had to change to create new accounts or change to
fewer clicks. The login task had shown improvement as they managed to login with
fewer failed attempts, and the time to login to the software prototype was reduced
marginally across login interval. The above findings reflect participants’ familiarity
with the software prototype as they used the software regularly.

Introducing guidelines to the participants before they start selecting their secrets
had obtained positive perception from the majority of participants. However, this
study has shown that guidelines on their own cannot guarantee the security and safety
of the method itself. This is because participants used their previous images and cre-
ated secret clicks using easy to remember spots, which resulted in predictable click-
areas. By combining the introduction of guidelines with restrictions, user behaviour
can be controlled to safeguard the method. This was proven where cases such as
clicking on similar areas within the same or multiple images and where creating pre-
dictable pattern were reduced.

Finally, this paper has shown that the click patterns created by users who chose
more clicks had a direct relationship with the nature of the image itself. It could be
said that the introduction of guidelines gave no effect on participants’ usability per-
formance, but might give positive or negative effects on the security. The study also
suggests that using one click per image is an ideal combination. This is because using
one click per image requires less memorisation (i.e. it is more suitable for users with
multiple accounts), less time to authenticate, convenience and significantly safer from
predictability. The study also suggests that using a small tolerance without giving
sufficient opportunity for familiarity to the user could result in a lack of usability of
the proposed method.

It is suggested that future work could include a larger and more varied participant
based for conducting significance testing to validate the collected data, testing differ-
ent restrictions with the GPG, further evaluation of the claim that ‘one click per image
is better’ and evaluating the technique known as the ‘graphical-passwords-strength-
meter’, for safer secret creation based upon feedback from the system itself.

90 M. Jali, S. Furnell, and P. Dowland

References

1. De Angeli, A., Coventry, L., Johnson, G., Renaud, K.: Is a picture really worth a thousand
words? Reflecting on the usability of graphical authentication systems. International
Journal of Human Computer Studies 63(2), 128–152 (2005)

2. Chiasson, S., Oorschot, P.C.V., Biddle, R.: Graphical password authentication using cued
click points. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp.
359–374. Springer, Heidelberg (2007)

3. Hinds, C., Ekwueme, C.: Increasing security and usability of computer systems with
graphical password. In: ACM Southeast Regional Conference, Winston-Salem, North
Carolina, USA, pp. 529–530. ACM, New York (2007)

4. Chiasson, S., Forget, A., Biddle, R., Oorschot, P.C.V.: User interface design affects
security: Patterns in click-based graphical passwords. International Journal of Information
Security 8(6), 387–398 (2009)

5. Wiedenbeck, S., Waters, J., Birget, J.-C., Brodskiy, A., Memon, N.: PassPoints: design and
longitudinal evaluation of a graphical password system. International Journal of Human
Computer Studies 63, 102–127 (2005)

6. Oorschot, P.C.V., Salehi-Abari, A., Thorpe, J.: Purely automated attacks on Passpoints-
style graphical passwords. Transactions on Information Forensics and Security 5(3), 393–
405 (2010)

7. Davis, D., Monrose, F., Reiter, M.K.: On user choice in graphical password schemes. In:
Proceedings of the 13th USENIX Security Symposium, California, USA, August 9-13, pp.
1–11. USENIX Association (2004)

8. Tullis, T.S., Tedesco, D.P.: Using personal photos as pictorial passwords. In: CHI 2005
Extended Abstracts on Human Factors in Computing Systems, Portland, Oregon, USA, pp.
1841–1844. ACM, New York (2005)

9. Everitt, K.M., Bragin, T., Fogarty, J., Kohno, T.: A comprehensive study of frequency, in-
terference, and training of multiple graphical passwords. In: Proceedings of the 27th
International Conference on Human Factors in Computing Systems, Boston, MA, USA,
pp. 889–898. ACM, New York (2009)

10. Dirik, A.E., Memon, N., Birget, J.-C.: Modelling user choice in the Passpoints graphical
password scheme. Paper presented at the Symposium on Usable Privacy and Security,
Pittsburgh, PA, USA, July 18-20 (2007)

11. Gołofit, K.: Click passwords under investigation. In: Biskup, J., López, J. (eds.) ESORICS
2007. LNCS, vol. 4734, pp. 343–358. Springer, Heidelberg (2007)

12. Golofit, K.: Picture passwords superiority and picture passwords dictionary attacks. Jour-
nal of Information Assurance and Security 2, 179–183 (2007)

13. Peach, S., Voster, J., Heerden, R.V.: Heuristic Attacks against graphical password genera-
tors. In: Clarke, N., Furnell, S., Solms, R.V. (eds.) Proceedings of the South African
Information Security Multi-Conference (SAISMC 2010), Port Elizabeth, South Africa, pp.
272–284. University of Plymouth (2010)

14. Lin, P.L., Weng, L.T., Huang, P.W.: Graphical password using images with random tracks
of geometric shapes. In: Proceedings of the 2008 Congress on Image and Signal Process-
ing, pp. 27–31. IEEE Computer Society, Los Alamitos (2008)

15. Harada, A., Isarida, T., Mizuno, T., Nishigaki, M.: A User Authentication System Using
Schema of Visual Memory. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds.) BioADIT
2006. LNCS, vol. 3853, pp. 338–345. Springer, Heidelberg (2006)

 Quantifying the Effect of Graphical Password Guidelines for Better Security 91

16. Hayashi, E., Dhamija, R., Christin, N., Perrig, A.: Use Your Illusion: secure authentication
usable anywhere. In: Proceedings of the 4th Symposium on Usable Privacy and Security,
Pittsburgh, Pennsylvania, pp. 35–45. ACM, New York (2008)

17. Chiasson, S., Forget, A., Biddle, R., Oorschot, P.C.V.: Influencing users towards better
passwords: persuasive cued click-points. In: Proceedings of the 22nd British HCI Group
Annual Conference on HCI 2008: People and Computers XXII: Culture, Creativity, Inter-
action, Liverpool, United Kingdom, vol. 1, pp. 121–130. British Computer Society (2008)

18. Jali, M.Z., Furnell, S.M., Dowland, P.S.: Assessing image-based authentication techniques
in a web-based environment. Information Management & Computer Security 18(1), 43–53
(2010)

19. Chiasson, S., Biddle, R., Oorschot, P.C.V.: A second look at the usability of click-based
graphical passwords. In: Proceedings of the 3rd Symposium on Usable Privacy and
Security, Pittsburgh, Pennsylvania, pp. 1–12. ACM, New York (2007)

A Case Study in Practical Security of Cable

Networks

Amir Alsbih1, Felix C. Freiling2, and Christian Schindelhauer1

1 Albert-Ludwigs-Universität Freiburg, Germany
2 Universität Mannheim, Germany

Abstract. Cable networks are complex systems that have evolved over
years and in which new features like Internet access and Voice over IP
(VoIP) have been integrated. We argue that threat models must evolve
together with such systems and show that inadequate threat models
can be used to explain known and unknown vulnerabilities in today’s
cable networks. We do this by demonstating an attack on the DOCSIS
provisioning standard in cable networks. By exploiting this weakness, an
attacker can hijack VoIP accounts. We also show how to mitigate the
attack.

1 Introduction

1.1 Motivation

Cable networks were initially deployed as a low-cost means to broadcast tele-
vision programs to customers, first analog and then also digital. Today, almost
all cable networks have been re-engineered so that they are able to additionally
transport arbitrary digital data both to and from the end user. The number of
Internet users in Germany and elsewhere that access the network in this way
is rising sharply [5]. Within the system of cable networks there are three main
stakeholders: First of all, there is the user (customer) who wishes to enjoy dig-
ital media and network access in high quality at low cost. Second, there is the
cable network provider (CNP), a company running the physical cable network
infrastructure. Third, there is the Internet service provider (ISP) who provides
access to the global Internet. Traditionally, the context and mindset of the CNP
is a closed, physical network with static functionality. Since the services of an
ISP were added to the portfolio of the CNP only rather recently, the original
mindset of the CNP may be reflected in the way the ISP is managed. Since the
Internet is an open, virtualizable and dynamic network, there is a potential for
misconceptions regarding security assumptions that can lead to many surprises.
In this paper we show that this is in fact the case.

1.2 Context

Technically, the user’s cable modem acts as bridge between the customers home
network and the backbone of the ISP. The cable modem is a rather simple device

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 92–103, 2011.
c© IFIP International Federation for Information Processing 2011

A Case Study in Practical Security of Cable Networks 93

that downloads its configuration after every reboot from a server at the ISP. This
is called provisioning and the relevant standard is the Data Over Cable Service
Interface Specification (DOCSIS) [7]. So there is a way to access the ISP servers
from the customer’s home networks and therefore the ISP has to secure the
provisioning process to restrict the possibilities of a service abuse. In this paper,
we document a weakness in the way the provisioning process is handled today.

1.3 Related Work

There is relatively little work that investigated cable networks security from
an academic viewpoint. Existing work mainly comes from industrial or rather
applied forums and deals with possibilities of service theft, e.g., possibilities of
achieving higher service bandwidth without paying for it (so-called “uncapping”)
by manipulating the cable modem [1–3, 11, 15]. Other threats to ISPs have been
formulated as well [1] and refer to attacks on confidentiality and weak endpoints:
The classical attack to confidentiality of network traffic through eavesdropping
is omnipresent in shared medium networks like the cable network is. Since the
downstream traffic is broadcast across the shared medium, network providers
have to enforce rigid access control techniques at the endpoints of the network
to ensure confidentiality. A related threat is network access through stolen au-
thentication credentials, e.g., cloning of MAC addresses, a problem that is hard
to tackle in networks where endpoints are under complete control of the customer
[2]. In this paper, we give another example for this fact. Since one of the main
applications of cable networks is digital telephony (voice over IP, VoIP), attacks
on the corresponding protocols like the Session Initiation Protocol (SIP) have
also been investigated in the cable network environment [3, 8]. These attacks
include tampering of SIP message bodies like malformed SIP messages, hijack-
ing dedicated SIP accounts or interrupting sessions by injecting fake messages
into the network traffic. While being relevant to VoIP technology, they are only
specific to cable networks as far as these attacks use access techniques that only
exist in cable networks. In this paper, we present such an attack on SIP that is
specific to cable networks.

1.4 Contributions

In this paper, we describe the context and specifics of the system of cable net-
works as an evolving complex system that is in regular use all over the world. We
show that different mindsets and threat models can be used to explain past and
present vulnerabilities in such networks. As a confirmation, we present a new at-
tack on VoIP in cable networks that allows an attacker to extract SIP credentials
and therefore misuse the VoIP system in such networks. More specifically, our
attack exploits the DOCSIS provisioning requirement that every cable modem
needs a provisioning file that contains the configuration of SIP credentials. By
gaining access to the management network and partial exhaustive search of the
namespace of configuration file names, we are able to extract SIP credentials and
take over telephone acounts of other customers. We also show how this attack

94 A. Alsbih, F.C. Freiling, and C. Schindelhauer

can be mitigated by adjusting network management policies in cable networks.
At the time of writing, our attack was possible in one major (cooperating) cable
network in Germany. Since many other CNPs all over the world use the same
hardware and software configurations, we believe that the attack is relevant not
only in Germany. However, the wish to point out that the attack is just a vehicle
to transport the another insight, namely that threat models must be checked
regularly. And if they turn out to be unrealistic, they (and all affected security
procedures) must be adapted.

1.5 Paper Outline

This paper is structured as follows: We give a brief introduction into cable net-
work technology in Sect. 2. In Sect. 3 we show how threat models for cable net-
works have evolved in the past and the effect of this process on the provisioning
process. We present the resulting attack in Sect. 4 and possible countermeasures
in Sect. 5. We conclude in Sect. 6.

2 Background

In this section we give a brief introduction into the basics of modern cable
networks.

2.1 System Overview

The cable network is a complex system consisting of multiple interconnected
networks (see Fig. 1). The customer network connecting the end user devices

Fig. 1. Cable network reference figure

A Case Study in Practical Security of Cable Networks 95

with each other is a broadcast network that can be used to transport analog and
digital signals in an integrated fashion over distinguishable frequency bands.
It can be thought of as a long wire to which many receiving stations can be
connected, similar to the early Ethernet technology (10BaseT). Technically, the
customer network is a hybrid network consisting of optical fiber and coaxial
cables that is connected in a tree-like topology. Consequently, this network is
called hybrid fiber coax (HFC).

2.2 Physical Aspects and Frequency Bands

Inside the HFC network, the frequency spectrum is divided into channels. The
channels can be divided into downstream (towards end user) and upstream (from
end user). Originally, all channels were downstream and carried either radio or
television signals. Subsequently, frequencies were defined for data (i.e., Internet)
communication. Since this communication is bidirectional, the CNP will need
to provide at least one channel in each direction. On top of this digital channel,
digital telephony services (VoIP) can be offered. For Internet communication,
the digital signal has to be modulated on to and demodulated from the physical
medium at each connected station. This is done at the side of the end user by a
cable modem. At the side of the cable network provider, this is done by the cable
modem termination system (CMTS). This is similar to how DSL technologies
work over the telephone network.

2.3 The Interfaces of the Cable Modem

Internally, the cable modem consists at least of two interfaces, each with its own
MAC address:

– The first interface is used for remote management of the cable modems from
the side of the CNP. It has a unique MAC address called C-MAC.

– The second interface is used for realizing the Internet service for the cus-
tomer. It’s MAC address is called E-MAC.

After the cable modem has been connected to the cable and turned on, the
cable modem will configure itself. This process is called provisioning and will be
explained later, since it is in the center of our attack. The result of a correct
provisioning process is that both interfaces will receive its own IP address, each
IP address being in a seperate IP address range.

2.4 CMTS and Access Control

If a cable modem is provisioned and tries to communicate, every communication
request of the cable modem is handled by the CMTS. The CMTS plays the role
of a central router, guiding network packets from the customer network to the
Internet and vice versa. At the same time, the CMTS acts as a firewall, enforcing
filter rules to, for example, separating the network traffic from the different IP
address ranges belonging to the different interfaces of the cable modem. Filtering

96 A. Alsbih, F.C. Freiling, and C. Schindelhauer

is even performed on packets that are “routed back” into the customer network.
This happens, for example, if two cable customers communicate with each other.
So even if the cable network environment is a shared medium every upstream
communication is only possible over the CMTS. The filtering rules of the CMTS
are one of the most important parts of cable network security. For example, one
of the most important rules is one that forbids normal users (via their E-MAC)
access via SNMP to the management interface of the cable modem (C-MAC) of
other customers. Without this rule it would be possible for every customer to
access (and manage) the cable modem of other customers via SNMP. Since the
filtering rules on the CMTS are the only reliable way to restrict the customer’s
communication abilities, it is important to invest a lot of time into the right
setup, making sure that the customer is only able to act in the way intended by
the CNP [9, 14].

2.5 IP Layer

As mentioned above, the cable modem and the CMTS function as endpoints to
transport data over the physical HFC network. The CMTS routes the IP data
from the fast Ethernet backbones of the ISP to the cable network and vice versa.
The cable modem works as a bridge between the network of the ISP and the
local area network of the customer (see Fig. 2).

Fig. 2. IP traffic via cable modem and CMTS based on[6]

2.6 VoIP via SIP

The Session Initiation Protocol (SIP) is the most commonly used VoIP protocol
today. SIP phone calls use two different protocols, SIP for the connection han-
dling of the calls, and Realtime Transport Protocol (RTP) for the voice stream.
SIP was designed for the IP world, and since IP addresses are not as static as
telephone numbers, the clients have to register themselves at a SIP server, to let
the SIP server know where it should route the incoming call to. To register an
account on a SIP server, the customer needs (1) his own phone number, as well

A Case Study in Practical Security of Cable Networks 97

as (2) the corresponding username and (3) the password for that phone number.
He also needs to know the SIP server managing the connection. Note that these
three items have to be known to the cable modem in order to allow seamless
telephone service over VoIP for the cable network customer. Therefore, these
credentials are contained within the configuration file during the provisioning
process (see below).

3 Different Threat Models and Their Effects on the
Provisioning Process

A threat model is a precise description of the possible threats to the system
[16]. It usually consists of a set of security issues a system designer cares about
together with a set of expected attacks. Often, threat models only exist implicitly
in the mindset of the people working at the network operator and are therefore
not documented within organizations. In such cases the threat model used in an
organization can only be inferred through interviews and from analyzing existing
security mechanisms.

3.1 Traditional Threat Model of the CNP

Traditionally, the context and mindset of the CNP is a closed, physical network
with rather static functionality. Before upstream data communication was possi-
ble, the cable network was a pure “broadcast” network. The endpoints (antenna
sockets in houses) were usually protected by physical means like tamper-evident
seals. This was also the way how access control to the cable network worked. Since
the transmitted data was the same for everyone and the selection of which chan-
nel to watch was performed at the endpoint (the television set), there were also no
real privacy or confidentiality problems. Possible attacks involved only physically
breaking the seal of the endpoint and accessing the service without paying.

3.2 Adapted Threat Model of the CNP/ISP

The threat situation changes dramatically if individual communication is han-
dled via the cable network both upstream and downstream. The typical threat
model used by CNP/ISP in these scenarios, however, is very similar to the orig-
inal threat model. As mentioned above and from our experiences, the threat
model is usually not explicitly documented. So we inferred the following as-
sumptions from interviews and an analysis of the literature on known attacks
[1–3, 11, 15]:

– The endpoint is physically protected. This means that only original cable
modems are attached to the cable endpoints and these cable modems always
correctly follow the provisioning process.

– The end users are untrustworthy, i.e., they may send and receive arbitrary
packets via their E-MAC to/from the Internet. This implies that the man-
agement network (accessed using the C-MAC) needs good protection from
the user network (accessed using the E-MAC).

98 A. Alsbih, F.C. Freiling, and C. Schindelhauer

The second point is realistic and the main reason for the complex filtering rules
within the CMTS. The first point, however, does not hold in todays networks
and can be exploited in most cable networks today, as we now explain.

3.3 The Provisioning Process and Its Weaknesses

The DOCSIS standard describes the steps each modem has to fulfill to register
itself on the cable network. If a step in the process fails, the modem has to
repeat the step until it succeeds. Since it is up to the CNP where he will place
the digital channels that are in use for realizing the Internet service, the first
step of the cable modem is a large frequency scan to search for the downstream
channel. After that, the cable modem will get the parameters for the upstream
by searching for a special packet in the downstream channel called upstream
channel descriptor. Since the cable modem now has knowledge about both the
down- and the upstream channels, the modem now has to synchronize itself to
the channels in a step called ranging. In this step, the cable modem adjusts the
timing, power, and frequency to balance the network delay. Subsequently, the
cable modem establishes IP connectivity. Therefore it sends a Dynamic Host
Configuration Protocol (DHCP) discover packet with option code 60 (vendor
class identifier) for the C-MAC and a normal DHCP (without option 60) for
the E-MAC interface. The cable modem listens for a DHCP offer packet that
contains the needed data. Option 60 of DHCP allows the interfaces to tell the
DHCP server which kind of network devices they are [4] by attaching a message
to the DHCP request. This is used to ensure that every interface gets an IP
address in a separate IP address pool. The DHCP offer for the cable modem
contains an IP address that is assigned to the cable modem management part
(C-MAC). Usually, this IP address comes from the cable modem address pool
10.61.0.0/16 [7]. The DHCP offer also includes the IP address of a TFTP server
in the management network and the name of a configuration file residing on
the TFTP server. The content of a typical DHCP offer is shown in Fig. 3. The
client IP address (assigned to the C-MAC) is the entry in the field “your client
IP address”, in this case it is 10.61.151.101. The name of the TFTP server that
hosts the configuration file for this cable modem is contained in the field “Next
server IP address” and is 172.30.*.* in this case. The name of the configuration
file itself is encoded in the “Boot file name” field.

As next step, the cable modem will download the configuration file from the
TFTP server. After this step the modem has to send the file to the CMTS
in a step that is called transferring the operational parameters. This has to be
done to authenticate the modem as modem of the CNP. If the modem is in
the database of the CNP, the CMTS sends a message to the modem that it has
passed registration. Now the modem is fully provisioned and able to act as bridge
between the cable network and the LAN of the customer. A sample configuration
file is shown in Fig. 4 where critical data (like passwords) has been sanitized.
The SIP username (“0305338890”) and the SIP password (“ABCDE123456”) are
directly stored in cleartext. This shows that access to configuration files opens
complete access to a SIP account.

A Case Study in Practical Security of Cable Networks 99

Fig. 3. Excerpt from the DHCP offer sent by the DHCP server within the configuration
process (captured and visualized using Wireshark, identifable data is obfuscated)

PCMA

comm1

public

comm1

@mtaprov

comm1

comm1

comm2

5g21wm7sdl

comm2

@mtaprov

comm2

comm2

’x[0-9]*.[t#]|11[025]|[*#][2-9]x|[*#]1xx

&My Small Company

My-Small-Company.com

SIP.Registrar.IP

SIP.Registrar.IP

ABCDE123456

0305338890

0305338890

0305338890

Fig. 4. Example DOCSIS configuration file extracted with strings

4 Attacking the Provisioning Process

There are many reasons for an attacker to steal configurationfiles, but only the SIP
credentials are profitable for an attacker. Therefore, we aim to steal the configura-
tion files that contain SIP credentials from the provisioning servers. With the SIP
credentials, the attacker canmake free telephone calls, hijack and spoof phone calls,
and do anything that the real owner of the SIP account can do.

4.1 The Attack

The steps of an attacker are as follows:

1. In a first step the attacker fakes the MAC address of his own computer using
standard tools [13] for anonymity and maybe also to avoid access control
restrictions in the CMTS (for example, if only certain vendors are allowed).

100 A. Alsbih, F.C. Freiling, and C. Schindelhauer

Then he attaches his own computer to the HFC network to the LAN port
of the cable modem.

2. Now the attacker accesses the provisioning network. The attacker has to
spoof the device information of his computer in a way that the DHCP server
that is responsible for the cable modems “thinks” that the attacker is in fact
a part of the cable modem. This can be realized by configuring the DHCP
client to send the right form of option 60 with his DHCP request. One
correct form of this option is for example to set the vendor class identifier
to the value "pktc1.0" [7]. This tells the provisioning server that the device
sending the request is a cable modem that is only capable of the DOCIS 1.0
provisioning process. After issuing this request using appropriate tools [4],
the attacker will receive the corresponding DHCP response including an IP
address inside the HFC access network. The DHCP response also includes
the IP address of the TFTP server hosting the configuration files, and a
route through the CMTS to the provisioning network.

3. Depending on the MAC address of the attacker, the name of the config-
uration file within the DHCP response will be some default configuration
file name pointing to a location on the TFTP server that will not contain
anything important. If by chance, the MAC address is known to the TFTP
server, it will point to a configuration file containing the credentials of the
corresponding user. Since the name scheme of the configuration files is up to
the CNP, it could require some reverse engineering to find out the mapping of
MAC addresses to configuration file names. One approach, for example, is to
sniff the provisioning process by using the real MAC address of the attacker.
In practice we observed different naming schemes. One scheme concatenated
the MAC address with the suffix d u.cfg. Using this knowledge about the
configuration file naming scheme and with access to the TFTP server, the
attacker can easily enumerate configuration file names by using tools like
TFTP brute to brute force MAC.

4. After the successful download of one or more configuration files, the attacker
can extract the SIP credentials from the configuration files easily, e.g., by
using the Linux command strings.

Now it is possible to abuse that SIP account.

4.2 Why Is the Attack Possible?

There are two specific points in the attack that are critical for its success. First,
the names of configuration files are deterministic and can be enumerated. This
problem can be easily fixed by giving configuration files a new random name
when they are distributed. In a sense, this also ties a specific configuration file
to a specific MAC address. But even if this is done, the second problem remains,
namely that end users can impersonate any other device by spoofing their MAC
address. In summary, the attack exploits exactly those weaknesses that result
from an inadequate threat model. The main point is the inadequate assumption
that endpoints are physically protected and therefore impersonation is impos-
sible. That this attack exists is surprising since it is well known how easy it is

A Case Study in Practical Security of Cable Networks 101

to attach computers instead of cable modems to the network endpoints. Simi-
larly, it is usually possible to reprogram cable modems by installing manipulated
firmware. As shown in the attack, this opens the path for MAC address spoofing
and impersonation of specifically weak end devices.

5 Countermeasures

There are many obvious technical countermeasures to the attack described above.
The basis for good countermeasures, however, is a more realistic threat model.

5.1 Adapted Threat Model

The adequate threat model for cable networks takes into consideration that
the CMTS is the last (physically) controllable point in the cable network and
that the cable modem is an untrustworthy device that could do anything and
act different from the way that is expected. In particular, it is not possible to
bind service usage to particular physical endpoints as it can be done in classical
telephone networks.

5.2 Technical Countermeasures

Binding service usage to particular users is known as the problem of authoriza-
tion. A prerequisite for authorization is authentication. The DOCSIS standard
specifies a set of features that can enforce authentication within the provisioning
process (BPI+ and DOCSIS shared secret [1, 10]). Most of these features are,
however, not used or only optional and not enforced in practice. These features
at least prevent other known attacks such as uncapping of cable modems, clear
text network traffic on the downstream side and normal protocol attacks that
are not specific to cable networks by not only enforcing authentication but also
encryption. The fact that they are almost never turned on points again to an
insufficient threat model but possibly also can be explained by the cumbersome
effort to set up a public key infrastructure and equip modems with certificates.
While enforcing authentication, both BPI+ and DOCSIS Shared Secret do not
prevent the mass downloading of configuration files. One approach to prevent
this is to hide the location of the TFTP server from the customer. By using
cable dynamic-secret mode (DMIC), the CMTS will change the DHCP offer in
the way that it will point to the CMTS and not to the TFTP server. The CMTS
then will download the configuration file from the real TFTP server and insert
a HMAC based on a onetime password and a cryptographic hash of the file. The
modem then only is allowed to register itself if it contains the correct HMAC.
The important aspect is that the TFTP server is hidden from the customer.
This makes it impossible for the attacker to brute-force configuration files and
extract the SIP credentials [12].

A similar result can be achieved by using randomization in the following way:
Whenever a cable modem sends a DHCP request, the name of the configuration

102 A. Alsbih, F.C. Freiling, and C. Schindelhauer

file is chosen in a random fashion and uploaded to the TFTP server. The space
from which the filename is chosen must be large enough so that it is hard to guess
real filenames (e.g., a 64 bit number). But this method has not been standardized
in DOCSIS yet. The DOCSIS standard also does not specify any procedures for
the secure provisioning of cable modems that use VoIP since there is no well-
tested and accepted procedure for this yet. It is not clear whether there will be a
clean and working solution in the near future. Therefore, at least a fast detection
approach for such attacks has to be implemented.

6 Conclusion

As shown in this paper and in the literature, the security problems of cable
networks are not only the result of a weak DOCSIS standard, it is the way how
DOCSIS is “implemented” within an organization that causes the attack vectors
to persist. Many security features such as BPI+ are often not enabled. Since
such actions are consistent with the current threat model that assumes the user
endpoint as trustworthy, we have argued that the risks in modern cable networks
are mainly due to inadequate threat models at the side of the CNP. While this
point is true in general for all systems that allow attacks, cable networks offer a
particularly interesting case study because they show how adding certain features
(Internet access) to a secure system (TV cable networks) results in an insecure
system if the threat model does not evolve too.

Acknowledgments. We thank Andreas Dewald and Martin Mink for helpful
comments on a previous version of this paper.

References

1. Security on Data-over-Cable Systems: DOCSIS, BPI+ and Beyondm (November
2000), http://www.3com.com/other/pdfs/infra/corpinfo/en_US/50301102.pdf

2. Hacking the Cable Modem: What Cable Companies Don’t Want You to Know. No
Starch Press, San Francisco (2006)

3. PacketCable 2.0: Security Technical Report. Technical Report PKT-TR-SEC-V05-
080425, Cable Television Laboratories, Inc. (April 2008)

4. Alexander, S., Droms, R.: DHCP Options and BOOTP Vendor Extensions. RFC
2132 (1997)

5. Bundesnetzagentur. Tätigkeitsbericht 2008/2009 Telekommunikation (December
2009)

6. Cable Television Laboratories, Inc., Cable Modem to Customer Premise Equipment
Interface. Technical Report CM-SP-CMCI-C01-081104 (November 2008)

7. Cable Television Laboratories Research Consortium. DOCSIS Website (2010),
http://www.cablelabs.com/cablemodem/

8. Endler, D., Collier, M.: Hacking Exposed VoIP: Voice Over IP Security Secrets &
Solutions, 1st edn. McGraw-Hill, Inc., New York (2007)

9. Johns, M.S.: DOCSIS Cable Device MIB Cable Device Management Informa-
tion Base for DOCSIS compliant Cable Modems and Cable Modem Termination
Systems. RFC 2669 (1999)

http://www.3com.com/other/pdfs/infra/corpinfo/en_US/50301102.pdf
http://www.cablelabs.com/cablemodem/

A Case Study in Practical Security of Cable Networks 103

10. Latini, P.S.: Avoiding Piracy in DOCSIS Networks. Canitec Conference and
Exhibition (April 2010)

11. McKelvey, J.: Combating security risks on the cable IP network. Cisco Systems,
Inc., Whitepaper (June 2002)

12. Millet, M.: Theft of Service — Inevitable? CableFAX: The Magazine (December
2005)

13. Pahwa, P., Tiwari, G., Chhabra, R.: Spoofing Media Access Control (MAC) and its
Counter Measures. International Journal of Advanced Engineering & Application
(January 2010)

14. Raftus, D., Cardona, E.: Radio Frequency (RF) Interface Management Information
Base for Data over Cable Service Interface Specifications (DOCSIS) 2.0 Compliant
RF Interfaces. RFC 4546 (2006)

15. Shah, N., Kouvatsos, D., Martin, J., Moser, S.: A Tutorial on DOCSIS: Protocol
and Performance Models. In: International Working Conference on Performance
Modeling and Evaluation of Heterogeneous Networks (July 2005)

16. Swiderski, F., Snyder, W.: Threat modeling. Microsoft Press, Redmond (2004)

Ceremony Analysis: Strengths and Weaknesses

Kenneth Radke, Colin Boyd, Juan Gonzalez Nieto, and Margot Brereton

Information Security Institute and School of Design,
Queensland University of Technology, Australia

{k.radke,c.boyd,j.gonzaleznieto,m.brereton}@qut.edu.au

Abstract. We investigate known security flaws in the context of security
ceremonies to gain an understanding of the ceremony analysis process.
The term security ceremonies is used to describe a system of protocols
and humans which interact for a specific purpose. Security ceremonies
and ceremony analysis is an area of research in its infancy, and we explore
the basic principles involved to better understand the issues involved. We
analyse three ceremonies, HTTPS, EMV and Opera Mini, and use the
information gained from the experience to establish a list of typical flaws
in ceremonies. Finally, we use that list to analyse a protocol proven secure
for human use. This leads to a realisation of the strengths and weaknesses
of ceremony analysis.

Keywords: Ceremony, EMV, HTTPS, Opera Mini, security, privacy,
provable security, humans.

1 Introduction

In 1993 Bellare and Rogaway introduced a model for reductionist security proofs
for cryptographic key exchange protocols [4]. Since this time, many crypto-
graphic protocols have been accompanied by a reductionist security proof.

A reductionist security proof means that the security of the protocol is re-
duced to a known hard mathematical problem, such that if an advantage is
achieved over the protocol, then there will be some significant advantage over
the known hard problem. If a protocol is proven secure in this way then, as long
as the “hard” mathematical problems remain sufficiently hard, the protocol is
unbreakable within the defined security model.

Unfortunately, many protocols so proven to be secure in theory, have been
found to be insecure in practice, when deployed in the real world. This inequality
between the theoretical security and the actual security can be traced back to a
deficiency in the security proof model. The mathematical security models while
useful, especially for examining the security of a protocol in isolation, do not
take into account the wide range of side channel attacks, social engineering, and
interfaces to other protocols and the environment, which occur in the real world.

In 2007, Ellison wrote that a more robust method for examining the security
of a protocol was to consider a security ceremony [7]. Ellison wrote with reference
to network protocols, but we can extend that work to any group of protocols.

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 104–115, 2011.
c© IFIP International Federation for Information Processing 2011

Exploring Security Flaws with Ceremony Analysis 105

A security ceremony may be described as protocols in their context of use. For
example, the protocol HTTPS provides a connection secure from eavesdroppers
between two nodes on a network. However a security ceremony would include
a user, viewing a website on their computer, and using HTTPS via their web
browser running on the computer to securely connect to another computer on
the network. We will show that while ceremony analysis is powerful enough to
capture known attacks, each use case of a given set of protocols is a new ceremony
and requires its own ceremony analysis.

1.1 Related Work

The concept of a ceremony was developed earlier than 2007 [8]. In the years
since 2007, there has been an increasing trend to meld information security
with the social sciences, as indicated by conferences both in the U.S.A1 and
in Europe2. This multi-disciplinary approach brings into context the human
usage of information security systems. As Shostack and Stewart state, “. . . our
approach to information security is flawed” and “the way forward cannot be
found solely in mathematics or technology” [18].

Although little progress has been made regarding ceremonies since 2007, a
number of researchers in different areas have agreed that ceremony analysis is
a promising research direction. These research areas include formal methods,
network security, and applied cryptography.

In the formal methods’ security community, there has been a call to include
parts of ceremony analysis in the formal methods’ analysis of protocols [12]. This
work has been further developed in Martina et al’s more recent work in the PKI
context [13]. Martina et al used the verification method outlined by Ruksenas et
al. [16,17], adapted using Bella’s goal availability principles [2], to address the
open question that Ellison posed as to how to model human behaviour.

In the network security community, the concept of a ceremony has been used
to describe protocols which include humans, and thus to create more robust
security ceremonies [11]. Karlof et al. describe a concept of conditioned-safe cer-
emonies, based on a defence-in-depth approach adapted from the human relia-
bility community. Central to their approach is the use of forcing functions whose
property is to prevent a user from proceeding, until a critical step is completed.

In the applied cryptography community, Ellison’s ceremonies have been used
as a basis for modelling authentication ceremonies involving humans [5]. In the
authentication ceremony described by Brainard et al., a human who still has
their primary authentication details intact, the helper, vouches for another per-
sonally known human who has lost their authentication details (the asker). This
vouching process, an extra factor in identification of the asker, allows emergency
authentication details to be provided.

There is a large body of work on such topics as phishing on the internet,
and social engineering in general [6,10]. This reflects the common understanding
that many security decisions are based on trust, such as trust in a brand, rather
1 http://weis2010.econinfosec.org
2 http://www.cl.cam.ac.uk/~rja14/shb10/

http://weis2010.econinfosec.org
http://www.cl.cam.ac.uk/~rja14/shb10/

106 K. Radke et al.

than the mathematical assurances of a correctly executed protocol. For this
reason, ceremony analysis provides a more complete understanding of the issues
surrounding the use of a protocol by a human, than protocol analysis alone.

1.2 Contribution

We reinterpret recently identified security flaws in the context of ceremonies, and
use this information to establish a list of typical flaws in ceremonies. We apply the
knowledge learned from analysing previously identified security flaws to analyse
a protocol including a human which has been proven secure. In doing so, we
show that ceremony analysis is powerful, in that it can capture and describe all
of the known issues investigated, and highlight flaws in a protocol proven secure.
However, the process yielded the knowledge that ceremony analysis is analysis
of one particular “use case” of a (set of) protocol(s). This knowledge leads to
the realization of a limitation of ceremony analysis, which is that if the context
of the set of protocols is changed then what was secure may no longer be secure
(a different context, even for the same set of protocols, is a different ceremony).

1.3 Outline

In the next section we give an overview of ceremonies and reinvestigate the
Hypertext Transfer Protocol Secure (HTTPS) ceremony from Ellison. After this
introduction to ceremonies, the analysis of the Opera Mini ceremony is shown.
We analyse three ceremony investigations, including an investigation of an EMV
(Europay, MasterCard and VISA) ceremony not shown due to space constraints,
and discuss the findings. We then use the lessons learned from the analysis of
these known flaws to analyse a protocol which has been proven secure using an
adversarial security model. Finally, we outline the strengths and weaknesses of
ceremony analysis.

2 Ceremonies

Ellison wrote about security ceremonies in 2007 [7]. In this paper, he attributed
the name ceremony as being coined for this purpose by Jesse Walker. Ellison
provided several central ideas in a network security context, which can be di-
rectly applied to cryptographic protocols in general. The properties of a security
ceremony that we distil from Ellison’s work are as follows:
– a ceremony is a superset of protocols;
– there is nothing out-of-band; and
– humans, when part of the ceremony, are explicitly included.

2.1 Ceremonies Example: HTTPS with MITM Attack

HTTPS is a protocol used on the internet to provide confidentiality and in-
tegrity to messages between two parties. An example HTTPS ceremony derived
from Ellison’s paper is shown in Figure 1. This ceremony has a number of parts,
between multiple “nodes” or parties. First, on the right hand side of Figure 1,

Exploring Security Flaws with Ceremony Analysis 107

11. r1-A1

12. r2-S; N((aS, K1-S), KR
-1)

13. E(pA1, K1-S); NE(VC-A1, KS-S)
14. NE(VS-S, KC-A1)

HTTPS Ceremony (showing man in the middle attack)

Legend:

CA Certificate Authority
R Human
C Human
CC C’s Computer
A2 Attacker Machine 1
A1 Attacker Machine 2
S Server
N Signed
E Encrypted
NE Encrypted and Signed for Verification (eg MAC)
r Random value
KC Session key for “client”
KS Session key for “server”
VC Verification value for KC

VS Verification value for KS

KR Root Key

CA

C CC

A2

A1

S

1. KR

2. KR

3. KR

5. S

6. Click

4. S, a1

R

This is extra
to the
protocol
(part of
ceremony)

This initiates
the attack by

A1 and A2

This root key
distribution
has many
more links
than is
shown here,
and if
wished, the
analyser
could add
more links
(need both
nodes and
channels to
be secure)

7. r1-CC

8. r2-A1; N((aA1, K1-A1), KR
-1)

9. E(pCC, K1-A1); NE(VC-CC, KS-A1)

10. NE(VS-A1, KC-CC)

11. 12. 13. 14.

HTTPS

HTTPS

15. GET page at a1

16. GET page at aS

17. login
22. password

16.

18. login

19. login

20. password 21. password

17. 22.

K1-S and K1-A1 were
pre-provisioned

(and not
considered as part

of this analysis,
but could be)

Fig. 1. HTTPS Ceremony, of Ellison (2007)

is the root key distribution part of the ceremony. The nodes in this key distribu-
tion process have been denoted by CA, R and C. Here the certificate authority
is represented by CA, and R represents the registration authority which involves
a number of human steps between the CA and the human party C. The human
C will use the key from the CA on C’s computer CC. The messages for placing
the key on C’s computer CC are shown in messages 1 to 3. Notice that there is
no time scale on the ceremony.

The attack is shown between the user C, and the user’s computer CC and the
serverS, inmessages 4 to 6.Theattack is carriedoutvia twoadversaries,A1andA2.
At some time after the user’s computer CC is set up ready to take part in HTTPS,
adversary A2 sends a name (server S’s name) and an address (adversary A1’s ad-
dress) to the computer CC. User C decides whether or not to proceed to the server
based on the server’s name alone, because the software running on CC does not
present both the name and address to user C, only the name.

From here, the ceremony proceeds as expected through messages 7 to 22, and
hence the attack. User C’s computer, CC, securely connects to adversary A1
(messages 7 to 10) using HTTPS, adversary A1 securely connects to server S
(messages 11 to 14) using HTTPS, and then the adversary A1 faithfully relays
communication between the user’s computer CC and the server S. Specifically

108 K. Radke et al.

A1 passes on the login and password information, which adversary A1 now has
in plaintext form for the future (note the decryption and re-encryption between
messages 21 and 22 for the password, and similarly for the login). After message
22, adversary A1 is securely logged into server S, and is free to proceed as desired.

Ellison’s example ceremony presumes that only the name of the target, and
not the target’s web address, is passed on to the human through the web browser
in message 5, for the human to make their decision on. If this is the case, then
this is clearly an issue that will result in the security of the ceremony being
compromised. Some readers may suggest that this should not be the case any
longer, due to such advances as extended certificates which have been introduced
since 2007 (http://www.cabforum.org/). However, in a recent study by the
authors which asked the participants to log their web usage security decisions
for a week, not one participant based any of their security decisions in a week
of web use on any of the information made available by the extended certificate
enhancements [15]. Also, extended certificates are not yet mandated for use in
HTTPS. Hence the issue remains current. Further, even if the address, as well as
the name, is displayed to the user to base their security decision on, Ellison asks
whether the human user will be provisioned ahead of time with the association
between the address of the server and the name of the server, and the correctness
of the name [7].

The above means that, in the ceremony shown in Figure 1, the user (C)
believes that their computer (CC) is securely connected to the server (S). Indeed,
CC is securely connected to something, just not the intended server. The point
is that the HTTPS protocol is not broken, there are successful usages of the
protocol between CC and A1, and between A1 and S. But the security ceremony,
which includes the HTTPS protocol, is fatally flawed.

3 Opera Mini Ceremony

Opera Software ASA is a company which develops a suite of multi-platform
web browsing software programs (http://www.opera.com/company/). Opera
has had the greatest market share of any mobile web browser in the world,
for the last 12 months 3. There are different versions of Opera web browsers for
different purposes. The three main variations of the browser being:

– standard Opera for PC/Mac
– Opera Mini for mobile telephones
– Opera Mobile for devices such as PDAs

3.1 Opera Mini Design

Opera Mini is the version for devices such as mobile telephones, which have
restricted computing power and resources. Opera Mini has no full rendering
engine on the device (http://www.opera.com/mobile/specs/). Instead, Opera
has proprietary servers which handle the internet requests made on the mobile.
3 http://gs.statcounter.com/#mobile_browser-ww-monthly-200911-201010

http://www.cabforum.org/
http://www.opera.com/company/
http://www.opera.com/mobile/specs/
http://gs.statcounter.com/#mobile_browser-ww-monthly-200911-201010

Exploring Security Flaws with Ceremony Analysis 109

This process of sending requests to the internet via a server which handles
the rendering and compresses the data before sending the resulting page back to
the mobile telephone, has benefits both in a reduction of the computing power
required on the device, and also reduced bandwidth requirements to the device
which is running Opera Mini. The issue from a security point of view is that there
is no end-to-end security. The requests from the mobile telephone to Opera’s
server are encrypted using Opera’s proprietary encryption, but the messages are
decrypted from Opera’s proprietary encryption at the Opera server, and then
the data is re-encrypted using standard HTTPS and the certificate of the actual
target website (http://www.opera.com/mobile/help/faq/#security). As the
Opera Mini FAQ on security reads:

“To be able to do this translation, the Opera Mini server needs to have
access to the unencrypted version of the webpage. Therefore no end-to-
end encryption between the client and the remote web server is possi-
ble. If you need full end-to-end encryption, you should use a full web
browser. . . ”
(http://www.opera.com/mobile/help/faq/#security)

3.2 Opera Mini Ceremony Analysis

Opera mini’s use in a mobile phone is a quintessential security ceremony. There is
one protocol between Opera’s server and the internet, another protocol between
the mobile telephone and Opera’s server, and finally there is a human user
making security decisions based on what they see on the browser on their mobile
telephone.

Of particular interest in the Opera Mini ceremony is the use of standard icons
to indicate security to the user. In, for example, Internet Explorer, which almost
one in two desktop users currently use worldwide4, the use of the padlock symbol
means that the connection between the user and the website the user is inter-
acting with is secure via use of HTTPS. By secure, we mean that confidentiality
and integrity are assured such that no computer on the path between the user
and the website can decrypt any of the information or change the message that
is sent by the user or the website. The padlock icon is used similarly in all other
major browsers.

However, as shown in Figure 2, Opera Mini displays a padlock symbol (top
right of picture) when there is not end-to-end security. This means that Opera
Mini users, who know what the padlock symbol means in other browsers, are
led to believe that they have a confidential connection to the website they are
viewing, when they do not.

Figure 3 describes the Opera Mini ceremony. The ceremony begins with the
user of a mobile telephone typing the address of their bank’s website into the
Opera Mini web browser (message 1). A process similar to HTTPS then occurs
between the mobile telephone and Opera’s Server (approximated by messages 2
to 5). As Opera ASA states:
4 http://gs.statcounter.com/#browser-ww-monthly-200907-201008

http://www.opera.com/mobile/help/faq/#security
http://www.opera.com/mobile/help/faq/#security
http://gs.statcounter.com/#browser-ww-monthly-200907-201008

110 K. Radke et al.

Fig. 2. Opera Mini Secure Connection (http://www.opera.com/mobile/demo/ viewing
NAB’s secure logon page)

Fig. 3. Opera Mini Ceremony

The communication is protected by 256-bit RC4 and the key exchange
is done by 1280-bit RSA. All hashes are created using SHA-256. These
are the algorithms used by most SSL sites today. (http://www.opera.
com/mobile/help/faq/#security)

http://www.opera.com/mobile/demo/
http://www.opera.com/mobile/help/faq/#security
http://www.opera.com/mobile/help/faq/#security

Exploring Security Flaws with Ceremony Analysis 111

A HTTPS connection is also formed between Opera’s server and the bank’s
server (messages 6 to 9). Once this is complete, the request for the page is
passed through to the bank (messages 10 and 11), and the bank replies with
its customer login page (message 12). The Opera server renders this page, and
sends the compressed output to the user’s mobile telephone device (message 13).
On the mobile telephone, Opera Mini then displays the webpage, including the
padlock symbol (message 14). The user sees the padlock symbol, and chooses
whether to input their login information and password. If the user does enter
their login and password (message 15), then this is sent back to the bank’s server
via the Opera encrypted channel (message 16), decrypted at the Opera Server,
and then re-encrypted and sent on to the bank’s server via the HTTPS encrypted
channel (message 17).

In a recent study, our research team investigated security decisions made by
users in a week of standard web usage. We found that most users made the choice
of whether or not to interact with websites that had direct financial interfaces,
such as banks or online retail, based on whether or not the padlock symbol
was shown [15]. Users presumed that a padlock meant that no one, apart from
the website they were communicating with, could see their financial details and
confidential information, such as login and password, in plaintext form. Opera’s
intimation of confidentiality by the depiction of the padlock symbol is not in
keeping with Opera’s statement in the Opera Mini FAQ which says “if you need
full end-to-end encryption, you should use a full web browser. . . ” (http://www.
opera.com/mobile/help/faq/#security).

Interestingly, while the plaintext state of messages through the Opera Server
clearly is a security issue and probably not realised by most Opera Mini users,
the design has some security benefits. If the user trusts Opera Mini with all
their communication with every party they communicate with on the internet,
then this design of accessing the internet through a proxy provides essentially
anonymous internet usage, as well as protection against various JavaScript-based
malicious software (malware).

4 Lessons Learned

By re-investigating known security flaws from a ceremony point of view, we
identified a set of common flaws. These ceremonies included the EMV ceremony
described by Murdoch et al., but these were left out of this paper due to space
constraints [14]. This list included:

– each individual protocol remained secure, but the critical security informa-
tion was not passed from one protocol to the next;

– the information passed on to the human was inadequate for the human to
have any chance of making a correct decision;

– it is clear that lessons long since learned for protocols, have not been trans-
ferred into security ceremony knowledge.

While ceremony analysis has been demonstrated to capture known flaws, and
therefore is useful, the technique is not without pitfalls. The most significant

http://www.opera.com/mobile/help/faq/#security
http://www.opera.com/mobile/help/faq/#security

112 K. Radke et al.

flaw is highlighted by our definition for a ceremony, stated in Section 1, which
was that security ceremonies were protocols in their context of use. This means
that, even if the underlying protocols are found to be secure for a given context,
they may well not be secure in even a slightly different context, leading to the
situation of requiring a new ceremony analysis for the same set of protocols in
each new context.

All of the ceremonies examined have been use cases, the context of use, of the
underlying protocols, and therefore the first job of the ceremony analyser is to
create a list of use cases to create a rigorous security proof for. Of particular
concern for the ceremony analysis technique are areas where the context of use
for the protocols, for a specific ceremony, do not yet exist. Ceremony analysis will
therefore, by necessity, trail behind users’ use of any given system. For example,
the people responsible for the security of new smart card driver licenses will
only be able to analyse certain security ceremonies once users of the smart card
have been interacting with (potentially previously unknown) third parties. This
interaction with new third parties may be a new context, and hence a new
ceremony will be created which will be able to be analysed only in retrospect.
This is a significant step down from the ideals of provable security, which aims
to ensure that, once a protocol is proven secure, it will be secure regardless of
how it is used.

Therefore the common flaws revealed in the ceremonies analysed to date sug-
gest these assessments which should be completed on security ceremonies prior
to deployment.

– Look for protocol-like deficiencies, such as outlined in [1]. Treat each con-
stituent protocol as a node in the ceremony, and check that nonces and
identification are being passed between nodes.

– Ensure that key cryptographic information is being transferred between
nodes in the ceremony.

– If the ceremony includes a protocol including a human as part of the protocol,
and if the protocol comes with a proof of security, re-examine the proof of
security for the assumptions that were made concerning the human.

– Examine the human’s role in the ceremony. If the only way for the human
to accomplish their goal is via a particular route through a security decision
point, the human will take that route.

– Examine the human-factor considerations of the ceremony. These issues in-
clude how many items a human can remember (for example, web address and
store name pairs, as per the HTTPS ceremony) and the prior knowledge and
education required. For example, in approving the usage of a HTTPS cere-
mony, do humans realise that the most critical information is the address?
Our recent study indicated that they did not.

5 Investigation of a Provably Secure Protocol

In 2008, Gajek et al. expanded on Bellare and Rogaway’s concept of practice
oriented provable security [3]. The significant enhancement that Gajek et al.

Exploring Security Flaws with Ceremony Analysis 113

made to previous security models was that they proved a protocol including a
human to be secure [9]. They achieved this by adding formal actions render and
recognise to a security model. Render is the process of a web browser rendering a
HTML page, based on the browser’s state, and presenting that page to the user.
Recognise is the process of a user viewing the webpage, judging if the Human-
Perceptable Authenticator (HPA) is correct, and outputting either true or false
depending on the results of that test.

The protocol that Gajek et al. proved to be secure, what they called browser-
based user-aware mutual authentication over TLS, is a non-trivial security cer-
emony. In the protocol, there is a user who has a computer, a browser running
on the user’s computer, and the user is interacting with a server via their com-
puter’s browser. Gajek et al. take the important step of extending the definition
of the underlying TLS (Transport Layer Security) protocol to include the human
user. In the protocol, the user types the address of the server into their browser,
the TLS HTTPS connection is created between the server and the browser, the
server then sends a HPA to the user via the browser (which renders the HPA).
If the user recognises the HPA, then they type in their login credentials. In this
way, the server is authenticated to the user (via the HPA) and the user is au-
thenticated to the server (via the traditional login and password technique). For
the full Gajek et al protocol, see [9].

We analysed the Gajek protocol using the lessons learned via our analysis of
the previously outlined security ceremonies. We make the following observations.

– The protocol begins with the human typing in the web address of the server.
This immediately removes one significant source of failing by the user (web
address of target incorrect), which was specifically outlined in the HTTPS
Ceremony shown in section 2.1. So the question is only, “Could an adversary,
who is not the server, supply the user with a HPA which will cause the user
to enter their username and password?”

– Many assumptions are rolled into the browser’s render and the human’s
recognise capabilities. For example, since it is not specified in the protocol,
there is every chance that a website (and browser) designer implementing
this protocol would not put in any check to ensure that the HPA (typically
a picture) is fully shown before the user can type in their user name and
password. On a slow connection, users may well type in their details prior
to seeing some, or all, of the HPA. Further, even if such a check was put in
place (picture fully downloaded and shown prior to displaying login details
entry form), the protocol could still be broken via sending an all black or
all grey with a red cross in the middle picture. Many users may view these
pictures as a download or rendering fault, and still enter their user name
and password.

– Another potential attack is to degrade or pixelate the picture. There will
be storage space and bandwidth decisions made concerning the file format,
size, and resolution of the HPA, by at least all three of the owners of the
server, the webpage developer, and the web browser developer. As written,
these decisions are left to the individual developers with no necessity for

114 K. Radke et al.

a common technique. The essential message, from both this and the prior
point, is the need for protocol developers to include in their protocol design,
and hence protocol proof, the specification of the critical elements of the
designs of the interface to the human.

– How does the user know that this is the protocol? The user does not know
the algorithm, does not know that suddenly they should be waiting for a
HPA. This suggests that there is no need to attack this protocol at all, and
the adversary should create a different protocol. Therefore, once this issue
is realised, as part of a security ceremony potential solutions such as side-
channel instructions to the user about the protocol may be necessary.

6 Conclusion

We have shown that security flaws in complex systems of protocols, with human
interaction, can be analysed using security ceremonies. The analysis of the EMV
smart card ceremony (omitted due to space constraints) and the Opera Mini
ceremony, followed by the analysis of the TLS protocol which had been proven
secure for human use, shows that a ceremony analysis is capable of capturing a
greater range of security flaws than protocol analysis alone.

In the process of analysing these ceremonies, we have constructed an approach
for analysing further security ceremonies. We also highlight the role that the
designer plays in ensuring that the ceremony is secure. This role necessitates a
grounding in security considerations, and similarly that creators of protocols are
aware of typical design considerations at the human-computer interface.

Finally, the realisation that security ceremonies are essentially use cases of
the underlying protocols, warns against the presumption that a protocol shown
secure in one ceremony will mean that the same protocol is secure in another
ceremony. The development of a list of use cases for the protocol, or device
such as a smart card, becomes critical, as is the use standardized protocols that
either are provably secure or have been rigorously scrutinized. This work may
be similar to the construction of a safety case for mission critical systems.

Acknowledgments. The authors acknowledge and appreciate the suggestions
by Jason Reid and Douglas Stebila as to appropriate real-world groups of pro-
tocols we could conduct ceremony analysis on. The authors also appreciate the
quality and differing viewpoints exhibited by the blind reviewers, which have
directly lead to improvements in this paper.

References

1. Abadi, M., Needham, R.M.: Prudent engineering practice for cryptographic
protocols. IEEE Trans. Software Eng. 22(1), 6–15 (1996)

2. Bella, G.: Formal correctness of security protocols. Springer, Heidelberg (2007)
3. Bellare, M.: Practice-oriented provable-security. In: Damg̊ard, I. (ed.) EEF School

1998. LNCS, vol. 1561, pp. 1–15. Springer, Heidelberg (1999)

Exploring Security Flaws with Ceremony Analysis 115

4. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

5. Brainard, J.G., Juels, A., Rivest, R.L., Szydlo, M., Yung, M.: Fourth-factor
authentication: somebody you know. In: ACM Conference on Computer and Com-
munications Security, pp. 168–178. ACM, New York (2006)

6. Dhamija, R., Tygar, J., Hearst, M.: Why phishing works. In: Proceedings of the
SIGCHI conference on Human Factors in computing systems, p. 590. ACM, New
York (2006)

7. Ellison, C.: Ceremony Design and Analysis. Cryptology ePrint Archive, Report
2007/399 (2007), http://eprint.iacr.org/

8. Ellison, C., Dohrmann, S.: Public-key support for group collaboration. ACM Trans.
Inf. Syst. Secur. 6(4), 547–565 (2003)

9. Gajek, S., Manulis, M., Sadeghi, A.R., Schwenk, J.: Provably Secure Browser-
Based User-Aware Mutual Authentication over TLS. In: Abe, M., Gligor, V.D.
(eds.) ASIACCS, pp. 300–311. ACM, New York (2008)

10. Herzberg, A.: Why Johnny can’t surf (safely)? Attacks and defenses for web users.
Computers & Security 28(1-2), 63–71 (2009)

11. Karlof, C., Tygar, J.D., Wagner, D.: Conditioned-safe ceremonies and a user study
of an application to web authentication. In: Proceedings of the Network and
Distributed System Security Symposium, NDSS 2009. The Internet Society, San
Diego (2009)

12. Martina, J., Carlos, M.: Why should we analyze security ceremonies. In:
Applications of Logic in Computer Security. In: The 15th International Confer-
ence on Logic for Programming, Artificial Intelligence and Reasoning (2008)

13. Martina, J.E., de Souza, T.C.S., Custodio, R.F.: Ceremonies Formal Analysis in
PKI’s Context. In: CSE 2009: Proceedings of the 2009 International Conference
on Computational Science and Engineering, pp. 392–398. IEEE Computer Society,
Washington, DC, USA (2009)

14. Murdoch, S.J., Drimer, S., Anderson, R.J., Bond, M.: Chip and pin is broken. In:
IEEE Symposium on Security and Privacy, pp. 433–446. IEEE Computer Society,
Los Alamitos (2010)

15. Radke, K., Boyd, C., Brereton, M., Nieto, J.G.: How HCI Design Influences Web
Security Decisions. In: OzCHI. ACM, New York (2010)

16. Ruksenas, R., Curzon, P., Blandford, A.: Detecting cognitive causes of confiden-
tiality leaks. Electr. Notes Theor. Comput. Sci. 183, 21–38 (2007)

17. Ruksenas, R., Curzon, P., Blandford, A.: Modelling and analysing cognitive causes
of security breaches. ISSE 4(2), 143–160 (2008)

18. Shostack, A., Stewart, A.: The New School of Information Security. Addison-Wesley
Professional, Upper Saddle River (2008)

http://eprint.iacr.org/

Preventing Board Flooding Attacks in

Coercion-Resistant Electronic Voting Schemes

Reto Koenig1,2, Rolf Haenni1, and Stephan Fischli1

1 Bern University of Applied Sciences, CH-2501 Biel, Switzerland
{rolf.haenni,stephan.fischli}@bfh.ch

2 University of Fribourg, CH-1700 Fribourg, Switzerland
reto.koenig@unifr.ch

Abstract. This paper addresses the board flooding problem of Juels et
al.’s coercion-resistant electronic voting scheme. A key property of this
scheme is the possibility of casting invalid votes to the public board,
which are indistinguishable from proper votes. Exactly this possibility
is crucial for making the scheme coercion-resistant, but it also opens
doors for flooding the board with an enormous amount of invalid votes,
therefore spoiling the efficiency of the tallying process. To prevent such
attacks, we present an adaption of the scheme in which each voter receives
—in addition to the proper credential—some dummy credentials from the
election registrars. Dummy credentials may be used to deceive possible
coercers. The list of all dummy credentials is published along with the
electoral register. Based on the electoral register and the list of dummy
credentials, the system is now capable of making a distinction between
invalid votes generated from dummy credentials and invalid votes gener-
ated from fake credentials. While the former are kept until the tallying
phase, the latter are immediately rejected by the public board. If the
public board additionally rejects all incoming duplicate votes, then its
maximum size is bounded by the total number of issued credentials. This
guarantees an efficient linear-time tallying phase even in case of a mas-
sive board flooding attack with a very large number of invalid votes.
Although the solution presented in this paper does not yet entirely rule
out vote selling or coercion, it makes it at least unbearable for the vast
majority of voters.

1 Introduction

One of the most challenging problems in remote electronic voting is the design
of a system that prevents voters from selling their votes or from being coerced.
The first scheme that is resistant against both the selling of votes and the coer-
cion of voters has been proposed by Juels, Catalano, and Jakobsson in [7]. To
achieve coercion-resistance (which implies mere receipt-freeness), the so-called
“JCJ-scheme” uses an anonymous authentication mechanism to guarantee that
the identities of the voters remain hidden during the whole voting and tally-
ing process. The anonymous authentication mechanism requires that during the
registration phase each voter receives a secret credential over an untappable

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 116–127, 2011.
c© IFIP International Federation for Information Processing 2011

Preventing Board Flooding Attacks 117

channel. The knowledge of the secret credential allows the voter then to post an
encrypted vote anonymously to the public board, such that its inclusion in the
final tally is guaranteed. It is also possible to post invalid votes based on fake
credentials, but those will be filtered out later during the tallying phase. Since
board entries created from proper credentials are indistinguishable from those
created from fake credentials, it is always possible to lie about the secret cre-
dential or to supply a coercer with a fake credential. The vote buyer or coercer
will then see the posted invalid vote on the public board, but at this early stage
of the protocol, there is no way to tell whether a particular board entry will be
included in the final tally or not. This is the principal mechanism that renders
the JCJ-scheme coercion-resistant.

The JCJ-scheme is the point of departure of most advanced protocols for re-
mote electronic voting today dealing with coercion-resistance, but the protocol
as presented in [7] has at least two major open problems.1 The first problem
is the quadratic running time of the tallying process, where duplicate and in-
valid votes need to be eliminated. Detecting duplicate votes requires so-called
plaintext equivalence tests (PET) [6] for every pair of votes cast, and detecting
invalid votes requires each vote cast to be checked against the public electoral
register, thus making the scheme quite inefficient for large scale elections. The
Civitas system [3], an implementation of the JCJ-scheme, weakens this prob-
lem by breaking up the electoral register into various independent blocks of a
given fixed size. Several other improvements based on hash tables were proposed
by Smith, Weber, and others [8,13,14,16,17], but they have been shown to be
vulnerable to Pfitzmann’s attack against anonymous channels [12]. More recent
developments in this direction are based on group signatures [1,2] or fake votes
generated by the talliers [15].

The second major problem of the JCJ-scheme results from the aforementioned
possibility of posting invalid votes based on fake credentials to the public board.
Exactly this possibility is crucial for making the scheme coercion-resistant, but
it also opens doors for flooding the public board with an enormous amount
of invalid votes. Because invalid votes are indistinguishable from proper votes
from the perspective of the public board, there are no direct counter-measures
against such types of attack, i.e., as long as the incoming votes cast are well-
formed and comply with the protocol, the public board needs to treat them
all in the exactly same manner. A massive application-level flooding attack of
that kind may therefore both jeopardize the availability of the public board and
spoil the efficiency of the tallying process. To our best knowledge, no practical
solution to this problem has yet been proposed in the literature. The problem
itself seems to be intrinsic to the chosen approach.

In this paper, we propose an extension of the JCJ-scheme that addresses
both aforementioned problems. The key idea is to equip the public board with
a stronger filter on what is an acceptable vote cast. For this, the voters receive
during the registration phase some dummy credentials (in addition to the secret
credential), which may then be used to mislead potential vote buyers or coercers.

1 Further major and minor problems of the JCJ-scheme are discussed in [9,14].

118 R. Koenig, R. Haenni, and S. Fischli

Invalid votes generated from these dummy credentials will be accepted by the
public board (and filtered out later), but invalid votes from fake credentials will
be rejected immediately. As we will see, enhancing the JCJ-scheme in such a way
has a number of potential pitfalls. These pitfalls will be discussed and possible
solutions will be presented.

The major benefit of our method results from the public board’s ability to
separate invalid votes created by fake credentials from those created by dummy
credentials. Let n denote the number of voters, m the number of issued dummy
credentials, and s the number of votes cast using fake credentials. Note that
n and m are fixed during the registration phase, whereas s is unbounded (and
possibly orders of magnitude larger than n + m). If we further assume that the
public board is also capable of eliminating duplicate votes, we can introduce an
upper limit n + m for the size of the public board.

Another important benefit of our approach is the fact that the known attacks
against the linear-time improvements proposed by Smith [14] and Weber [16,17]
are no longer possible. The reintroduction of these improvements allows the
elimination of all types of invalid votes (duplicate, fake, and dummy) in linear
time, which reduces the total running time of the original JCJ tallying phase
from O(n2 + s2) to O(n + m). If furthermore m = d · n for some constant d > 0
(the average number of dummy credentials issued per voter), then the tallying
phase even runs in O(n) time.

Unfortunately, this unprecedented leap in performance and robustness has
some negative effect with respect to perfect coercion-resistance. It is possible to
minimize this effect to a small subset of unfortunate voters, which receive the
minimum amount of dummy credentials, but some residual affliction will remain.
The same holds true for vote buying. We will discuss this topic and see how to
further minimize this problem.

The paper is organized in the following way. In Section 2, we give a short
overview of the original JCJ-scheme and discuss its properties and problems.
The proposed solution for the board flooding problem and the corresponding
extension of the JCJ-scheme is discussed in Section 3. We first exhibit the general
idea, then give a semi-formal sketch of the adapted protocol, and finally discuss
some of the above-mentioned pitfalls. Section 4 concludes the paper.

2 Coercion-Resistant E-Voting

The goal of the scheme proposed by Jules, Catalano, and Jakobsson in [7] is to
make remote electronic voting resistant against all sorts of coercion. Coercion-
resistance is defined as a stronger form of privacy. While privacy is defined
in terms of an adversary that cannot interact with voters during the election
process, it is assumed that a coersive adversary may interact with voters at any
time. Thus an election scheme is called private, if the adversary cannot guess
the vote of any voter better than an adversarial algorithm whose only input is
the final tally, and the scheme is called coercion-resistant, if the adversary can
be deceived into thinking that a coerced voter has behaved as instructed. Such

Preventing Board Flooding Attacks 119

a scheme thus prevents voters from selling their votes or from being coerced in
various ways, e.g. to vote in a particular way, to vote at random, to abstain from
voting, or even to divulge the private keying material [7].

The JCJ-scheme is the first electronic voting protocol that offers full coercion-
resistance under minimal assumptions. While many other protocols assume the
existence of an untappable channel during the voting phase to offer mere receipt-
freeness, an untappable channel is only required during the registration phase of
the JCJ-scheme. Note that this assumption is realistic, because the registration
process often requires the voters to visit the registration office in person. We will
now briefly describe the JCJ-scheme in a semi-formal way. The main entities in
the protocol beside the voters are the following:

Registrars. They issue the secret credential to voter Vi and pronounce corre-
sponding encryptions publicly to the system. A threshold encryption system
guarantees that the secret credential is only known to the voter and that
the protocol is safe even if a minority of the registrars is corrupted or under
attack.

Tallying Authorities. They are responsible for processing the votes cast, jointly
decrypting and counting the votes, and publishing the final tally. Again, a
threshold encryption systems guarantees the safety of the protocol even if a
minority of the tallying authorities is corrupted or under attack.

The votes cast are published on an append-only public board. Its task is to
accept and publish every well-formed vote cast that complies with the protocol.
To guarantee the integrity and availability of the board, it may be replicated in
such a way that a minority of unavailable or corrupted board servers does not
prevent its functioning properly as a whole [5,11].

The whole voting protocol is divided into three major phases, during which the
voters are authenticated anonymously. The protocol uses numerous cryptographic
primitives such as encryption, digital signatures, non-interactive zero-knowledge
proofs of knowledge, plaintext equivalence tests, re-encryption mix-nets, anony-
mous channels, etc. A first overview of the protocol is given in Figure 1.

Registration. Each voter Vi, 1 ≤ i ≤ n, receives a secret credential σi jointly
generated by the registrars. This credential constitutes a proof of eligibil-
ity, which is used in the voting phase to cast the vote. Additionally, an
encryption Si = Encε(σi, γi) of σi with randomness γi is appended to the
(digitally signed) electoral register on the public board. ε denotes the tally-
ing authorities’ common public key. The protocol assumes the majority of
the registrars to be trustworthy and the channel between the registrars and
Vi to be untappable.

Voting. The voters cast their candidate selection ci ∈ C via an anonymous
channel to the public board. The message posted to the board consists of
Ai = Encε(σi, αi) and Bi = Encε(ci, βi) along with corresponding zero-
knowledge proofs of knowledge of σi and ci. It is important that the candidate
set C is finite and that an additional disjunctive proof that ci represents
a valid candidate choice is provided. This proof is needed to prevent the
construction of receipts based on invalid candidate choices.

120 R. Koenig, R. Haenni, and S. Fischli

Electoral
Register

Voters

Registrars

Tallying
Authorities

Encrypted
Votes

Re-
Encryption
Mix-Net

Re-
Encryption

Mixnet

Fi
lte

r 1 Encrypted
VotesFi

lte
r 2 Decrypted

Votes

D
ec

ry
pt

Fig. 1. Overview of the original JCJ-scheme: the first filter eliminates votes with invalid
proofs and duplicate votes from the public board, while the second filter checks the
votes cast against the electoral register (and thus eliminates votes created from fake
credentials)

Tallying. The tallying authorities check the proofs included in the votes cast
and jointly perform pairwise PETs on the encrypted credentials to eliminate
duplicates. The resulting adjusted list of votes cast is shuffled in a verifi-
able re-encryption mix-net to anonymize the votes and credentials included.
Respective proofs of correct shuffling are published on the public board.
Another verifiable re-encryption mix-net is applied to the electoral regis-
ter, which finally allows the tallying authorities to jointly check the validity
of the encrypted credentials involved in the votes cast (without decrypting
them). Votes accompanied with fake credentials are discarded. The resulting
adjusted list of proper votes is decrypted and tallied.

What makes this particular system coercion-resistant is the fact, that any posted
entry to the public board is accepted if it is well-formed and complies with the
protocol. It must thus consist of a valid candidate selection and some credential
encrypted by the tallying authorities’ common public key (together with cor-
responding proofs of knowledge). But the credential must not necessarily be a
proper credential issued by the registrars and thus constituting a proof of eli-
gibility, it simply needs to have the format of a proper secret credential. This
enables the voter to deceive potential coercers with a fake credential, simply
by choosing one at random. Votes accompanied with such fake credentials are
discarded during the tallying phase. The two mix-nets involved in the tallying
phase guarantee that no voter can prove to a third party whether a particu-
lar vote cast has been discarded before tallying or not. This feature makes the
system resistant against selling votes or coercing voters.

Scheme by Smith and Weber [14,16,17]. Instead of applying PETs on
all pairs of distinct votes for removing duplicates, both Smith and Weber in

Preventing Board Flooding Attacks 121

essence suggest computing and decrypting Az
i = Encε(σz

i , αz
i), where z ∈ Zq is a

random value shared among the talliers. The resulting blinded credentials σz
i are

stored in a hash table for collision detection in linear time (clearly, σi = σj , iff
σz

i = σz
j). Both authors propose using the same procedure for eliminating votes

created from fake credentials, but since the same exponent z is used across all
ciphertexts Ai, the coercer gets an attack strategy to identify whether a vote
with known σi is counted, namely by posting two votes, one that includes an
encryption of σi and one an encryption of σ2

i [1,3,12]. Note that this attack is
not applicable to the mere removal of duplicates.

3 Preventing Board Flooding Attacks

In this section, we describe a way of modifying the JCJ-scheme to become re-
sistant against board flooding attacks and to allow a linear-time tallying phase.
As this implies several major and minor changes to the JCJ-scheme throughout
various parts of the scheme due to different reasons, we uncover them step by
step. A discussion of some important related questions follows in the second part
of this section.

3.1 The Modified JCJ-Scheme

To protect the public board against application-level flooding attacks, it needs
to be equipped with a stronger filter on what to accept. The main idea of our
approach is to accept only votes cast from legitimate voters. Since it is crucial
for the original JCJ-scheme to accept any vote cast, even those accompanied
with a fake credential, it seems to be impossible in the first place to make such a
distinction between legitimate and non-legitimate voters. But by introducing a
third category of credentials, so-called dummy credentials, which are distributed
to the voters during the registration phase (together with the proper secret
credential), it is possible to reject all votes accompanied by fake credentials
right from the beginning. Thus the idea is that the dummy credentials take over
the role of deceiving potential vote buyers or coercers. This means that during
the vote casting phase, they need to be treated in the same way as the secret
credentials, whereas fake credentials are immediately rejected. In other words,
voters are equipped with several access keys for posting votes to the public board,
but only one of them is a key to include votes in the final tally. A first overview
of the extended protocol is given in Figure 2.

More formally, let {τij : 1 ≤ j ≤ di} be the set of dummy credentials for voter
Vi (note that that di might be different for every voter, see Subsection 3.2). They
are generated jointly by the registrars during the registration phase, together
with Vi’s secret credential σi. Corresponding encryptions Tij = Encε(τij , γij)
with randomness γij are published on the public board together with Si =
Encε(σi, γi). The public board thus contains two separate lists of encrypted
credentials: the original electoral register S = {Si : 1 ≤ i ≤ n} and the new set
T = {Tij : 1 ≤ i ≤ n, 1 ≤ j ≤ di} of dummy credentials. With ST = S ∪ T we

122 R. Koenig, R. Haenni, and S. Fischli

Electoral
Register

Voters

Registrars

Tallying
Authorities

Dummy
Credentials

Encrypted
Votes

Re-
Encryption
Mix-Net

Re-
Encryption
Mix-Net

Re-
Encryption
Mix-Net

Fi
lte

r 1 Encrypted
VotesFi

lte
r 3 Decrypted

Votes

D
ec

ry
pt

Fi
lte

r 2

Fig. 2. Overview of the extended JCJ-scheme: the first filter discards votes created
from fake credentials, the second filter removes duplicates, and the third filter checks
the votes against the electoral register (and thus eliminates votes created from dummy
credentials). The final list of proper votes is decrypted and counted.

denote the complete set of encrypted credentials. Furthermore, we denote the
number of all issued dummy credentials by m = |T | =

∑n
i=1 di, which implies

that a total of |ST | = n + m credentials have been issued in all. Those are the
ones that will be accepted by the public board during the vote casting phase.

To detect fake credentials for filtering out corresponding invalid votes, the
public board needs to check for each incoming vote cast whether the included
encrypted credential matches with one of the entries in the list ST . We can safely
apply Smith’s and Weber’s linear-time scheme here, because all votes based on
arbitrarily fake credentials are already dropped at this early stage. Note that
to install this first filter, we require the help of the talliers already during the
voting phase. Compared to the original JCJ-scheme, this is a true disadvantage
of our approach, but it is the key for restricting the size of the public board to an
upper limit. To do so, the detection and removal of duplicate votes needs to be
performed simultaneously, again by applying safely Smith’s and Weber’s scheme
and with the help of the tallying authorities. In Figure 2, these tasks of the public
board are called “Filter 1” and “Filter 2”, respectively. Note that ST needs to
be shuffled in a verifiable re-encryption mix-net, similar to the shuffling of S in
the original JCJ-scheme. This is important for disguising the links between the
voters and their entries in ST .

The rest of the tallying phase is similar to the original JCJ-scheme, except
that the elimination of duplicate votes has already been conducted. Therefore
both, the list of encrypted votes registered on the public board and the list
S of encrypted secret credentials, are shuffled in corresponding re-encryption
mix-nets. Respective proofs of correct shuffling are published. The output of the
two mix-nets are then used to separate the valid votes from those generated by
dummy credentials, again by applying safely Smith’s and Weber’s linear-time

Preventing Board Flooding Attacks 123

scheme. In Figure 2, this task is called “Filter 3”. At the end, the adjusted list
of encrypted votes is jointly decrypted and tallied by the tallying authorities.

3.2 Discussion

The above description of the adapted JCJ-scheme outlines the general ideas of
our approach. The modifications raise several important questions. Some of them
will be discussed below.

How many dummy credentials are needed? To answer this question, sup-
pose first that each voter receives exactly d ≥ 1 dummy credentials from the
registrars, i.e., let di = d for all 1 ≤ i ≤ n. Each voter would then have d extra
credentials to deceive potential vote buyers or coercers. The problem of such a
scenario is that the secret credential could only be withhold as long as not all
d dummy credentials are “expended”. A coercer could thus force the voter to
release all d + 1 credentials and use them to cast d + 1 identical votes. If all
d + 1 votes cast appear on the public board, it follows that one of them (the
one that includes the proper credential σi) will be included in the final tally.
Otherwise, if some of the votes cast do not appear on the public board, then the
coercer knows that the voter was lying about some of the credentials. Using a
similar line of reasoning, votes could be sold by passing all d + 1 credential to
a vote buyer. Therefore, a constant number of dummy credentials clearly ruins
the coercion-resistance property of the scheme.

The above argument leads to the conclusion that the registrars have to gen-
erate a varying number of dummy credentials for each voter. Suppose that Vi

receives di ∈R {1, . . . , d} dummy credentials, i.e., di is chosen at random between
1 and a fixed upper limit d. If the scheme guarantees that di is unknown to po-
tential coercers (which includes the registrars and the tallying authorities), then
Vi may lie about di, for example by passing all di (or less) dummy credentials
to the coercer and by claiming that the secret credential is included in that list.
This argument works for every Vi with di > 1, but unfortunately not for those
with di = 1. Under coercion, such (unfortunate) voters could only give away a
single dummy credential, but they could not claim it to be the secret credential.
Note that this problem does not disappear by increasing the lower limit of the
interval {1, . . . , d} to some value c < d or by decreasing it to 0. Even worse, a
similar problem exists for the upper bound d, because voters with di = d dummy
credentials could sell their votes by simply handing over all d + 1 credentials to
the vote buyer (as in the case of a constant number of dummy credentials). This
problem could be solved by not imposing an upper limit to the interval, but this
brings up new problems of practicability in cases where di becomes very large.

As an answer to the above question, we suggest here that di, the number of
dummy credentials for voter Vi, is determined according to some non-uniform
probability distribution over sets Nd = {1, . . . , d} or N = {1, . . . ,∞} of natural
numbers.2 The most natural candidate distribution with an upper limit d is
2 We explicitly exclude the borderline case di = 0, because it would completely disallow

Vi to deceive a passive coercer who does nothing but directly observing Vi’s vote
casting process (shoulder surfing attack).

124 R. Koenig, R. Haenni, and S. Fischli

a binomial distribution B(d, p) with shape parameters d and p. The idea is to
choose d and p such that only a very small fraction of voters get the minimum
number (di = 1) or the maximum number (di = d) of dummy credentials. This
is the case if the variance of the distribution is relatively small compared to d.
In this way, we cannot entirely rule out vote selling or coercion, but we can at
least make it unbearable for the vast majority of voters.

The most natural candidate distribution with no upper limit is a normal
distribution N (μ, σ2) with some reasonable values for the mean and the variance.
Since normal distributions are density functions defined over R, they need to be
applied in some discretized manner over N. Many other distributions are possible,
but a more exhaustive discussion of this questions is beyond the scope of this
paper.

How do the registrars generate a random number of dummy creden-
tials? The näıve approach for the registrars to generate a random number of
dummy credentials for voter Vi is to jointly apply the chosen probability distri-
bution to determine di and to generate each of the di dummy credentials using
the same distributed procedure as for the secret credential σi. The problem of
this simple approach is that di is not a secret of Vi alone, i.e., Vi cannot lie
about it towards potential voter buyers or coercers if they collude with one of
the registrars.

As a solution to this problem, we suggest to split up the group of registrars into
r sub-groups. Each of these sub-groups is then responsible for generating roughly
di/r dummy credentials, but without informing the other groups about the exact
number. To do so, we need to decompose the chosen probability function into a
sum of r probability functions with parameters adapted accordingly. In the case
of a binomial distribution B(d, p), for example, each sub-group may simply use
the distribution B(d/r, p) to determine their numbers independently, because
B(d, p) = r·B(d/r, p). Similarly, a normal distribution N (μ, σ2) can be split up
into a sum of r normal distributions N (μ/r, σ2/r2), because normal distributions
are closed under linear combination. Note that we need to assume a majority of
each sub-group to be trustworthy.

How should the public board store the encrypted dummy credentials?
In the original JCJ-scheme, the encrypted credentials Si are published on the
public board together with the plaintext identities of the voters. The list S
plays thus the role of a electoral register, which can be inspected and verified
by everybody. By doing the same with the encrypted dummy credentials, i.e.,
by linking each Tij ∈ T publicly with Vi’s identity, we would allow potential
coercers or vote buyers to derive the secret number di = |{Tij ∈ T }| from T .
But as already discussed above, coercion-resistance can only be guaranteed as
long as di is Vi’s secret, since otherwise Vi looses the ability to lie about it.

As a simple solution to this problem, we suggest that the set T of encrypted
dummy credentials is published anonymously without any links to the voters.
Since T does not serve as an electoral register, it does not necessarily need to be
treated in exactly the same way as S. However, this solution is only applicable
if deleting entries from the electoral register is prohibited over multiple voting

Preventing Board Flooding Attacks 125

events. Otherwise, additional mechanisms need to be introduced to delete the
entries in T that belong to the deleted entry in S.

What is the benefit of the modified scheme? The original JCJ-scheme
has three critical time-consuming components: the elimination of duplicates, the
mixing of the votes in the re-encryption mix-net (as well as the verification
of the proofs produced by the mix-net), and the elimination of invalid votes
(see Figure 1). The input size of each of these components depends directly
on the number of votes, not the number of voters. Since costly cryptographic
computations such as zero-knowledge proofs and multi-party computations are
needed to perform these tasks, processing a single additional vote is expensive.
Techniques that avoid the processing of votes that will not appear in the final
tally are therefore inherently appealing.

Let n = |S| denote the number of voters (or the number of proper votes if all
voters participate in the election) and s the number of duplicate or invalid votes.
In the original JCJ-scheme, eliminating duplicates by performing pairwise PETs
over all n+s votes requires O(n2+s2) relatively expensive steps. If no duplicates
are removed (worst case), n+s is the input size for both the re-encryption mix-net
and the final procedure for eliminating fake votes. In the literature of verifiable
mix-nets, we find techniques with proofs of linear size [4,10,18], but all of them
involve relatively high constant factors. The final elimination of fake votes again
requires O(n2+n·s) expensive PETs. In total, the JCJ-scheme runs in O(n2+s2)
time and O(n + s) space.

Our modified approach improves the overall performance of the scheme in re-
spect of both, computation time and memory space. Note that we have the same
three critical components, only arranged in a different order. If m =

∑n
i=1 di =

|T | denotes the total amount of dummy credentials issued during the registra-
tion phase, we get an O(n+m) upper limit for both the size of the public board
and the input of the mix-net. As s may become orders of magnitudes larger than
m in case of a large scale board flooding attack, this states a major improve-
ment over the original scheme. It prevents situations where the system becomes
unavailable due to a memory overflow of the public board.

The modified scheme also eliminates the need for the quadratic number of
PETs for eliminating invalid votes. Here we benefit from the methods proposed
by Smith [14] and Weber [16,17], which allow duplicate and fake votes to be
detected in linear time. Therefore, all components involved in the tallying phase
run in O(n + m) time and space, which implies an overall O(n + m) running
time for the whole modified scheme. This is a considerable improvement over
the original scheme under all possible circumstances.

What is the downside of the modified scheme? In the presented form, our
scheme allows statistical attacks which may possibly influence the outcome of a
voting event. For example, a vote buyer may offer a certain amount of money
for each additional credential (dummy or proper) handed over by the voter. In
this way, a potential vote seller gets a personal interest in handing over as many
credentials as possible—including the proper one. An analogous strategy may
be applied by the coercer. However, depending on the total number of dummy

126 R. Koenig, R. Haenni, and S. Fischli

credentials and the parameters of the chosen distribution function, these attacks
may become very cost-intensive for both, the vote buyer and the coercer. This
raises the question of finding the optimal distribution function to maximize the
cost of such statistical attacks. Answering this question is beyond the scope of
this paper and is left for future work.

4 Conclusion

In this paper, we have discussed the board flooding problem in the JCJ-scheme
for remote electronic elections. As a solution, we propose that each voter re-
ceives a set of dummy credentials along with the proper secret credential during
the registration phase. For this enhancement to work, it is important that the
number of dummy credentials varies from one voter to an other, and that only
few voters will get the minimum or maximum number of dummy credentials.
The votes posted to the public board can then be filtered such that only votes
created from proper or dummy credentials are retained. Duplicate votes are also
immediately eliminated in linear time. In this way, there will never be more en-
tries on the public board than the total number of issued (proper and dummy)
credentials. The lack of such a filter leads to the board flooding problem in the
JCJ-scheme.

This paper is a first step in transforming the impractical JCJ-scheme—
applicable under the assumption of unrealistic computing power only—into a
practical scheme. Our proposal allows the voting authorities to trade-off the effi-
ciency of the tallying procedure against the obtained level of coercion-resistance.
Future work will focus on the residual statistical vulnerability for coercion and
vote buying. Currently, we are studying the possibility of obtaining additional
dummy credentials on demand during the voting phase, for example by exchang-
ing dummy credentials between voters.

Acknowledgments. Research supported by the Hasler Foundation (project
No. 09037).

References

1. Araújo, R., Foulle, S., Traoré, J.: A practical and secure coercion-resistant scheme
for remote elections. In: Chaum, D., Kutylowski, M., Rivest, R.L., Ryan, P.Y.A.
(eds.) FEE 2007, Frontiers of Electronic Voting, Schloss Dagstuhl, Germany, pp.
330–342 (2007)

2. Araújo, R., Ben Rajeb, N., Robbana, R., Traoré, J., Youssfi, S.: Towards practical
and secure coercion-resistant electronic elections. In: Heng, S.-H., Wright, R.N.,
Goi, B.-M. (eds.) CANS 2010. LNCS, vol. 6467, pp. 278–297. Springer, Heidelberg
(2010)

3. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system.
In: SP 2008, 29th IEEE Symposium on Security and Privacy, Oakland, USA, pp.
354–368 (2008)

Preventing Board Flooding Attacks 127

4. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. Journal of
Cryptology 23(4), 546–579 (2010)

5. Heather, J., Lundin, D.: The append-only web bulletin board. In: Degano, P.,
Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 242–256.
Springer, Heidelberg (2009)

6. Jakobsson, M., Juels, A.: Mix and match: Secure function evaluation via
ciphertexts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–
177. Springer, Heidelberg (2000)

7. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Atluri, V., De Capitani di Vimercati, S., Dingledine, R. (eds.) WPES 2005, 4th
ACM Workshop on Privacy in the Electronic Society, Alexandria, USA, pp. 61–70
(2005)

8. Meister, G., Hühnlein, D., Eichholz, J., Araujo, R.: eVoting with the European
citizen card. In: Brömme, A., Busch, C., Hühnlein, D. (eds.) BIOSIG 2008, Special
Interest Group on Biometrics and Electronic Signatures, Darmstadt, Germany, pp.
67–78 (2008)

9. Meng, B.: A critical review of receipt-freeness and coercion-resistance. Information
Technology Journal 8(7), 934–964 (2009)

10. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: Samarati, P.
(ed.) CCS 2001, 8th ACM Conference on Computer and Communications Security,
Philadelphia, USA, pp. 116–125 (2001)

11. Peters, R.A.: A Secure Bulletin Board. Master’s thesis, Department of Mathemat-
ics and Computing Science, Technische Universiteit Eindhoven, The Netherlands
(2005)

12. Pfitzmann, B.: Breaking an efficient anonymous channel. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 332–340. Springer, Heidelberg (1995)

13. Schweisgut, J.: Coercion-resistant electronic elections with observer. In: Krimmer,
R. (ed.) EVOTE 2006, 2nd International Workshop on Electronic Voting, Bregenz,
Austria, pp. 171–177 (2006)

14. Smith, W.D.: New cryptographic voting scheme with best-known theoretical
properties. In: FEE 2005, Workshop on Frontiers in Electronic Elections, Milan,
Italy (2005)

15. Spycher, O., Koenig, R., Haenni, R., Schläpfer, M.: A new approach towards
coercion-resistant remote e-voting in linear time. In: FC 2011, 15th International
Conference on Financial Cryptography, St. Lucia (2011)

16. Weber, G., Araujo, R., Buchmann, J.: On coercion-resistant electronic elections
with linear work. In: ARES 2007, 2nd International Conference on Availability,
Reliability and Security, Vienna, Austria, pp. 908–916 (2007)

17. Weber, S.: Coercion-Resistant Cryptographic Voting: Implementing Free and
Secret Electronic Elections. VDM Verlag, Saarbrücken (2008)

18. Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., González
Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 407–421. Springer, Heidelberg
(2009)

Piracy Protection for Streaming Content in

Home Networks

Hongxia Jin1 and Jeffrey Lotspiech2

1 IBM Alamein Research Center
San Jose, CA 95120, USA

jin@us.ibm.com
2 Lotspiech.com LLC

Henderson, Nevada, USA

Abstract. In this paper we study content protection techniques to de-
fend against piracy for streaming content in home networks where mul-
tiple digital devices are connected into a peer-based cluster and seam-
lessly work together. We are particularly interested in the anonymous re-
broadcasting attack where pirates re-distribute the per-content encrypt-
ing key or the decrypted plain content. In literature, to defend against
an anonymous attack, content is usually built with different variations.
For example, content is divided into multiple segments, each segment
comes with multiple variations (e.g., watermarks), and each variation is
differently encrypted. Each device only has the key to decrypt and play
back one variation per segment through the content. The re-distributed
keys can be linked back and used to identify the original devices (terms
as traitors) who were given those keys and involved in the piracy.

This technology works well for prerecorded content scenarios in which
a trusted party outside the device pool can deliberately author the con-
tent with multiple variations. However it cannot be applied to a peer-
based home network when the streaming content is brought into the
home network via a peer device who is not a special trust party and
who is not allowed to know the secret keys of other peer devices. On
the other hand, the trend of the consumer appetite for digital content
is increasingly switching from physical media to streaming and internet
consumption. In this paper we have designed the first content protection
system that allows a recording device inside the home network to bring
the streaming content into the home network in a secure way that devices
and only devices in the same home network can playback the recording.
More importantly, the recorded content without variations can still be
used to obtain forensic information, when anonymous piracy attacks oc-
curs, to identify the source devices that participated in the piracy attack.
The identified traitorous devices can be revoked for future content ac-
cess. The technology described in this paper is used to enable the secure
sharing of premium quality High Definition content across a consumer’s
all audio-video devices at its home networks.

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 128–141, 2011.
c© IFIP International Federation for Information Processing 2011

Piracy Protection for Streaming Content in Home Networks 129

1 Introduction

Home networks become more and more popular where people connect multiple
digital devices together at home. For example, people have multiple audio-video
recording and play-back devices in different rooms and connect them into a clus-
ter (or a home entertainment network). The goal of a home entertainment net-
work is to enable people to access their content anytime anywhere. For example,
one device may do the recording in one room, another device may play back the
recording in another room. To facilitate this, industry standard such as High-
Definition Audio-Video Network Alliance (HANA) [1] was formed to provide
consumers with a simple way to connect and enjoy High Definition (HD) en-
tertainment anywhere. While consumers want to enjoy the convenience brought
by a home network, one of the biggest concern is the security of the content.
If it is not secure, the content owners will not allow the copy-righted movies to
be placed onto people’s home network. Similarly, software providers will not al-
low their copy-righted software to be downloaded into people’s home computer
networks. On the other hand, streaming becomes increasingly a way to bring
content into a home network. It has the obvious convenience that people do not
have to leave their home in order to obtain the content. As one can imagine, the
content may be encrypted and the digital devices posses secret device keys that
enable them to decrypt and play back the content.

1.1 Piracy Threat for Streaming Content in Home Network

An anonymous attack in the home network scenario is as follows. The attackers
compromise one or more sets of device secret keys and set up a server with those
keys. They also sell a client with the following value proposition: the client will
rip any content in your home network cluster for you, allowing you to make
unauthorized copies of purchased content for your friends (or more seriously sell
them to anybody on the Internet) or to rip rental content so you can permanently
add it to your library after only paying the rental fee.

When evidences of this type of illegal sharing (piracy) are recovered, it is
highly desirable to design a content protection system that can detect those com-
promised device secret keys used in the above pirate server and revoke them for
future content access. Such a trace-and-revoke system is what this paper is con-
cerned with. In literature, forensic technology used to detect piracy is generally
termed as “traitor tracing”. The original devices whose keys are compromised
and used in the piracy is called “traitors”.

1.2 Existing Traitor Tracing Schemes for Physical Media

“Traitor tracing” for prepared content, (eg, physical media) has been extensively
studied. In order to trace traitors, different versions of the content need to be
prepared before distributing to devices. Content is divided into multiple segments
and some segments are chosen to have multiple differently watermarked and
encrypted variations. The different encrypting keys allow different devices to

130 H. Jin and J. Lotspiech

access content through different pathes. Each different path becomes one content
version. The recovered pirated variation encrypting keys or the content version
can link back to the actual traitorous devices who were assigned those keys or
content versions. Various traitor tracing schemes [3] [8] [9] for anonymous attacks
have been designed. Advanced Access Content System (AACS) [5] deployed the
”Sequence Keys” traitor tracing scheme for prerecorded Blu-Ray DVD disc. All
these schemes followed the same paradigm above.

A license agency is responsible for assigning tracing keys to devices and also
responsible for detecting traitors using the assigned and recovered tracing keys.
For AACS type of system for prerecorded content, the content is prepared with
multiple variations by a trusted entity outside the device pool before distribut-
ing to all devices/users. This entity has knowledge of every tracing key that
was assigned to devices in the system, so it is possible to encrypt the content
variations in such a way that every device in the system can only decrypt one
variation of the content.

However, one cannot directly apply such a scheme for streaming content. There
does not exist a special trusted party (license agency) inside the network cluster.
Every device is a peer. As a peer device, the recording device, who records and cre-
ates multiple variations for the content, is not allowed to know the secret tracing
keys owned by other peer devices. Furthermore, there does not exist an online li-
cense agency outside the network cluster that the recording device can contact and
do authorization when recording occurs. Therefore it cannot prepare the multiple
variations of the recording content in the same way as the license agency in the pre-
recorded content scenarios and still guarantee that every other devices in the same
network can playback the recording.

The main contribution of this paper is that we will present the first content
protection system that allows one peer device (not a central trusted party) to
make a recording of streaming content in a secure way that all other peer de-
vices in the network can play back the recording. Furthermore, the recorded con-
tent without pre-streaming-prepared variations can still be used to obtain useful
forensic information against the above anonymous key-redistribution attack. The
detected traitorous tracing keys can be revoked/disabled from accessing future
content. Our scheme achieves the same traceability as the counter part of the
prerecorded content. Our scheme can be used in HANA [1] to provide secure
sharing of premium high definition content across audio and video devices in a
consumer’s home network.

In rest of the paper, in Section 2, we will introduce our ”recording keys”,
”recording key table”, and ”title key blocks” concepts to use in our content
protection system. Then in Section 3 we will present the overall architecture of
our content protection system for peer-based home networks. In Section 4 we will
show how to assign recording keys in our system and then in Section 5, we will
present our nested traitor tracing scheme using recording keys. In Section 6, we
will discuss revocation of detected guilty devices, analyze tracing efficiency and
also present some optimizations to improve feasibility during implementation.
We conclude in Section 7 for future work.

Piracy Protection for Streaming Content in Home Networks 131

2 Preliminaries

In our system, we assign a sequence number 1...n to each piece of content. When
every sequence number is used, it repeats itself from beginning again.

1. Tracing Key Ks

Each device is assigned a set of tracing keys. Each tracing key corresponds
to one content sequence number. For example, for a device, tracing key
Ksi corresponds to its tracing key for content sequence #i. The tracing
key assignment is from a matrix with each cell being a randomly generated
tracing key. The cells in one column represents all the different tracing keys
for one content sequence (eg, movie number one) in the sequence of content.
Each device gets assigned exactly one tracing key from each column (eg.,
for each movie). In other words, each device only knows one tracing key for
each content sequence number.

2. Title Key Kt

The title keys are randomly generated for each content and are the actual
keys used to encrypt the content. The entire content may be encrypted by
one title key; or the content can be divided into multiple segments, and each
segment encrypted by a different title key.

3. Recording Key Kr

Recording keys are used to encrypt the title keys for the content. Recording
keys can be static to a cluster of devices in one home network and be same for
all content brought into the home network; or more preferably dynamically
created for each streaming content brought into the home network.

If it is dynamic and specific to each streaming content, the recording key
table comes into the home network together with the content during stream-
ing, for example, as a header of the streaming content. The recording keys
are brought into the home network in the encrypted format in a recording
key table.

4. Recording Key Table
An encrypted recording key table comes with a piece of streaming content.
Suppose that streaming content is assigned to be sequence number #i, in
each row of the recording key table, it contains a set of recording keys en-
crypted by the tracing keys for content sequence number #i. The device can
use its assigned tracing key for content sequence number #i to decrypt one
row of the Recording Key Table and obtain its set of recording keys for this
piece of streaming content.

Figure 1 shows a sample recording key table for streaming movie #i. Each
recording key in row #j is actually encrypted by Ksij . A device possessing
tracing key Ksij can go to row #j of the recording key table and decrypt to
get its set of recording keys, namely Krj1, Krj2...

The name of “recording key” comes from the fact that for streaming con-
tent, it is required that one device makes a recording and all other legitimate
devices in the same home network cluster should be able to playback the
recording. For this reason, the recording keys must have the property that

132 H. Jin and J. Lotspiech

E(Kr11)Ksi1 E(Kr12)Ksi1

E(Kr21)Ksi2 E(Kr22)Ksi2

E(Krj1)Ksij E(Krj2)Ksij

Ksi1

Ksi2

Ksij

.

.

.

...

...

...

Fig. 1. Encrypted Recording Key Table for movie #i

any two devices must share at least one recording key in common. We will
discuss more details on recording key assignment in Section 4.

5. Title Key Blocks TKB
TKB is created by the recording device in the home network when making
the recording. For each title key Kt used to encrypt the streaming content,
the recording device encrypts that title key with every recording keys it
obtains from the recording key table for this content. Each such encrypted
title key is an entry of the title key block.

Figure 2 shows a sample TKB for one title key Kt. It is possible to use
multiple title keys to encrypt the content. As one can imagine, different parts
of the content may be encrypted using different title keys. For example, a
video recording could change the title key every minute of video. In that
case, each title key will be encrypted by all the recording keys assigned to
the recording device for this content, resulting in multiple TKBs, each TKB
looks like the one shown in Figure 2. The recording device can insert the
title key blocks as a header for the recording content.

E(Kt)Kr1

E(Kt)Kr3

E(Kt)Krj

Kr1

Kr3

Krj

.

.

.

Fig. 2. Title Key Block for a title key Kt used in a recorded movie

3 Content Protection System for Streaming Content

Figure 3 illustrates an overall architecture of a content protection system for
streaming content.

In this overall architecture, there are four types of components in the system,
the first one is the license agency, similar to that in the prerecorded content
case; and the second one is the streaming content provider. The two other com-
ponents are inside the peer-based home network corresponding to the two types
of devices in the home network, one type of devices can record/download the
streaming content (for example, a video recorder and a computer); the other

Piracy Protection for Streaming Content in Home Networks 133

License Agency

Streaming
content
provider recording

Streaming
Content +
Recording
Key Table

Recording Keys
Recording Key Table

downloading

Body: Encrypted content
Header: Title Key Blocks

Home Network
Cluster

(Peer Based)

Body: Encrypted content E(C)K_t
Header: Title Key Blocks (TKB)

Tracing Keys

Detect traitors & revoke traitors

Fig. 3. Architecture for Content Protection system for Streaming Content

type of devices can only playback the recorded content (for example, a high-
definition DVD player). Also note that the home network is peer-based. The
content streamed by the content provider does not come with multiple varia-
tions, instead it is brought into the home network by a recording device inside
the home network. The requirement of a home network is that a recording device
can record the streaming content in a secure way that only devices inside the
same home network can playback the recorded content. Now we will show how
components in this system interplay with each other in this architecture.

3.1 License Agency: Manage Secure Content Sharing in Home
Network

License agency is a trusted party, it assigns the tracing keys to all devices in a
home network cluster. The assignment can be done from a matrix as discussed
in last section.

The license agency is responsible for assigning the recording key and creat-
ing the recording key table for the content provider. The process takes in the
following steps:

1. Assign/create recording keys based on the approach detailed in Section 4.
2. Suppose the current streaming content is sequence number #i, use tracing

keys associated with sequence number #i to encrypt the recording keys and
create the encrypted recording key table as shown in Figure 1.

134 H. Jin and J. Lotspiech

We discussed above, in a home network, it requires that one device does the
recoding and all other devices in the system can play back the recording. In
turn, it requires that recording keys for any piece of streaming content must be
created/assigned in such a way that any two sets of the recording keys must
share at least one recording key in common. We will discuss the assignment in
more details in Section 4.

When piracy occurs, the license agency is responsible for tracing traitors and
revoking the guilty tracing keys for future content use. We will discuss these
functionalities in Section 5 and Section 6.

3.2 Content Provider: Distribute Streaming Content

As one can imagine, the content provider will stream the content to its users.
In addition to the content, it will also provide to the user a recording key table
assigned from the license agency for this piece of streaming content. Recall that
the recording key table is encrypted by the tracing keys as described in the
previous section.

3.3 Recording Devices: Encrypt Streaming Content

A recording device in the home network brings the streaming content into the
network cluster. It can record/download the streaming content and bind the con-
tent into a secure format. For example, a video recorder may record a streaming
movie off the air onto a disc; a computer may download a copy-righted software
onto a secure file.

Note that the license agency only exist outside the device cluster and only
exist offline. For the operations inside the cluster, there does not exist such
a trusted party. When recording operation occurs, the device cannot contact
license agency to do authorization. In fact, during the recording and binding,
the recording device performs the following steps:

1. Use its tracing key to decrypt the recording key table for this streaming
content and obtain its set of recording keys Kr1, Kr2...Krx.

2. Randomly pick title keys Kt and use them to encrypt the streaming content.
3. Encrypts each title key with all the recording keys it has Kri for this piece

of content and create the Title Key Blocks.

As a result, the newly recorded content is encrypted with the title keys and the
TKBs become the header of recorded content. In summary, the recorded content
package contains the following:

1. The encrypted recording key table coming together with this streaming
content

2. The encrypted (i.e., re-bound) content: EKt(content)
3. The encrypted title key block: 〈Ekr1 (Kt), Ekr2 (Kt), . . . , Ekrx(Kt)〉

Piracy Protection for Streaming Content in Home Networks 135

3.4 Play-Back Devices: Decrypt Content

When a playback device in the home network cluster tries to playback the
recorded content, the decryption process consists of the following steps:

1. Use its tracing key to decrypt the recording key table and obtain its set of
recording keys for this piece of content

2. Use one of its recording key to decrypt the Title Key Blocks and obtain the
title key Kt

3. Use Kt to decrypt the content and play back the content

Because of the recording key assignment properties which guarantees that a
device shares at least one recording key with the recording keys known/used by
the recording device during the recoding, the playback device can decrypt at
least one of the entries in the TKB for each title key and obtain the title key to
playback the content.

4 Recording Keys Assignment

The license agency is responsible for creating/assigning recording keys to a piece
of streaming content.

There are various techniques to ensure the above mathematical property for
recording key assignment, i.e., two sets of recording keys share at least one
key. For example, a randomly-generated code can be filtered to have the de-
sired property. Furthermore, each row can be thought of as a “codeword” and
each recording key is thought of as a “symbol”. A systematic assignment like a
Reed-Solomon code is guaranteed to have the minimum difference. For a specific
example, if we need to create 1024 codewords of length 15 (15 recording keys
per device) and with 16 different symbols in each column (16 different recording
keys in each column), we can use a Reed-Solomon code to create 4096 codewords
and any two codewords will differ at at least 13 positions. We can filter those
4096 codewords and get the 1024 codewords among which any two codewords
are either one or two symbols (recording keys) in common.

A sample recording key assignment from a matrix is shown in Figure 4. The
number of columns corresponds to how many recording keys each device will be
assigned. Each row corresponds to how many different recording keys in each
column.

X

 X

 X

X

A sample set of recording key:
(K12,K24,K36,K43)

Fig. 4. Recording Key assignment for a movie content

136 H. Jin and J. Lotspiech

It is worth note that while the above mathematical property has to hold in the
normal operational case, it does not have to hold in the forensic case. For that
reason, in the forensic case it is possible to assign recording keys using codewords
that are maximally apart so as to increase the efficiency of the traitor detection.
For example, a Maximal-Distance-Separate code like Reed Solomon code using
the assignment shown in Figure 4 can serve the forensic situation very well.

It is also possible to design a recording key assignment that is good for both
operational and forensic case. For example, one can have K keys spread over C
columns. If C > K/2, then the code is guaranteed to be overlapping. However,
one can also use a larger K if one can do some filtering. An example with 15
keys spreading over 5 columns can generate 317 unique codewords. The most
any single key used was 269 times. If we do not need that many codewords, we
can filter further. For example, it is possible to obtain 45 unique codewords with
the most-used key used only 20 times. This provides a codeword assignment that
satisfies the above mathematical property and yet still has very nice spread of
the keys. If the license agency uses this kind of recording key assignment for
operational and forensic case, the pirate server will have no way to distinguish
between the operational and the forensic situation.

5 Traitor Tracing Using Recording Keys

The license agency is responsible for identification of traitors (guilty devices that
use their tracing keys in piracy) and revoke those guilty tracing keys for future
use.

As mentioned in Section 1.1, we are mainly concerned with the following style
of attack: the attackers compromise one or more sets of device secret keys and
set up a server with those keys. They also sell a client that will rip any protected
recording you have made: allowing you to make unauthorized copies of protected
recording and sell them. The licensing agency wants to detect which devices and
their sets of tracing keys are compromised by the pirate server, and revoke those
compromised devices tracing keys for future content access.

Our proposed forensic scheme for streaming media is a nested traitor tracing
scheme that consists of two sub-schemes, namely Inner Tracing scheme and Outer
Tracing scheme. As shown below, the Inner Tracing sub-scheme contains Inner
assignment and Inner coalition-detection tasks. The Outer Tracing sub-scheme
contains Outer assignment and Outer coalition-detection tasks.

1. Outer assignment: How to assign the recording keys and tracing keys to
devices

2. Inner assignment: how to assign different title key blocks
3. Inner coalition-detection: Repeatedly discover pirated title keys, and trace

back to the guilty tracing keys
4. Outer coalition-detection: Based on the detected guilty tracing keys from

Inner Tracing, trace back to the guilty devices that were assigned those
tracing keys

Piracy Protection for Streaming Content in Home Networks 137

In a forensic situation, the licensing agency buys such a client from the pirate
server and carefully crafts some forensic content to probe the pirate client and
detect what devices have been compromised and used inside the pirate client.

5.1 Inner Tracing Scheme

The goal of Inner tracing scheme is for a particular content sequence number,
detect the guilty tracing keys. Recall the tracing keys are assigned from a matrix
and each column corresponds to a particular sequence number. Inner tracing
scheme needs to detect the compromised tracing key for a particular column.

This Inner Tracing scheme to detect guilty tracing keys is termed as ”forensic
analysis based on recording keys” and is shown in Figure 5. The inner tracing
process consists of the following steps.

1. License agency constructs a recording key table for a particular content
sequence number #i and encrypts it with those tracing key Ks from column
#i of the matrix.

2. (a) License agency builds forensic (recorded) content: pick different title keys
Kt to encrypt different content (or different portions of the same con-
tent); randomly pick a set of recording key from the above recording key
table (for example, from row #j) to encrypt each of the title keys and
create the Title key blocks

(b) Feed the above crafted recorded content to the pirate client for it to
decrypt

(c) The pirate client successfully decrypts the Title Key Block using a
recording key it knows and plays back the content

(d) The content version it plays back reveals which recording key the pirate
client has on row #j to the license agency.

(e) Iterate the probe by creating another forensic content using a set of
recording keys chosen from another row of the above recording key table.

pirate server

pirate server

Coalition detection algorithm [4] to detect
guilty tracing keys for content sequence #i

pirate server

forensic content j

forensic content 2
Recover a guilty recording key known by pirate

Construct recording key table for
content sequence #i

forensic content 1

Recover a guilty recording key known by pirate

Fig. 5. Inner Tracing based on recording keys to detect guilty tracing keys

138 H. Jin and J. Lotspiech

3. After recovering enough number of pirated recording keys, use Traitor De-
tection algorithm [4] to identify the guilty tracing keys for that column. We
will briefly explain the algorithm [4] in Section 5.3.

5.2 Outer Tracing Scheme

Our scheme has an Outer Tracing sub-scheme called “Forensic analysis based
on tracing keys” as illustrated in Figure 6. This procedure repeatedly invoke
the Inner Tracing sub-scheme to detect guilty tracing keys in different content
sequence numbers (i.e., columns from the tracing key assignment matrix). When
enough number of guilty tracing keys are recovered from different columns, the
license agency can again use the coalition detection approach shown in [4] to
detect the guilty devices.

Inner tracing based on recording keys to
detect guilty tracing key on column #2

Coalition detection algorithm [4] to detect
Compromised devices used in the pirate server

Inner tracing based on recording keys to
detect guilty tracing key on column #1

Inner tracing based on recording keys to
detect guilty tracing key on column #j

...

Fig. 6. Outer Tracing based on tracing keys to detect guilty devices

5.3 Coalition Detection Algorithm [4]

In this section, we will briefly explain the coalition detection algorithm that we
use in our Inner tracing and Outer tracing scheme. It appeared in [4].

The traitor detection task is the second step of a typical traitor tracing scheme.
The first step is how to assign the different keys (or content versions) to different
devices. For example, it can be assigned from a matrix, each device gets assigned
exactly one key from each column. For example, if a device is assigned a key Kij ,
it means, for content sequence number #j, this device is assigned key #i for that
sequence number. In other words, for each content sequence number, there are
multiple (versions of) keys, each device gets exactly one key/version.

When different keys (or content versions) are recovered from piracy on dif-
ferent sequence numbers (i.e., columns), the traitor detection task is to link the
recovered keys/versions back to those devices who were originally assigned those
keys/versions. The traitor detection is made difficult because of the possibility
of attacker collusion. For example, for content sequence number #1, the attack-
ers can redistribute using the version available to colluder #i; when pirating for
content sequence #2, the attackers can use and redistribute the version available
to colluder #j.

Piracy Protection for Streaming Content in Home Networks 139

In a typical traitor detection approach, the recovered keys/versions are
matched against the keys/versions assigned to the devices. The detection ap-
proach will incriminate the devices with the highest number of matchings (some-
times called scores).

In the coalition detection algorithm [4], instead of scoring each individual
device, authors proposed to score a set of devices. Their algorithm is based on
one important observation: an individual device may score high due to chance
alone, while it is much less likely that a coalition (set) of high scoring devices
would match all recovered pirate keys/versions due to chance alone.

So the main aim in their algorithm is to find the minimum sized coalition
that can explain/match all recovered keys/versions. It is basically the classic Set-
Cover algorithm. Given an attack, the tracing algorithm runs by first searching
for a coalition of size 1, i.e., a single device. If no such device is found, then the
algorithm searches for coalitions of size 2 that explain the attack. If none are
found, it searches for coalitions of size 3 that explain it. Eventually, a coalition
will be found as long as the number of recovered keys/versions are enough. The
authors claimed several advantages of using their algorithm. One of the main
advantage is the efficiency measured by the number of recovered keys/versions
needed in order to determine the guilty devices with high confidence. Their al-
gorithm achieves almost linear traceability, meaning, for T attackers involved
in a collusion attack, their algorithm takes O(T) number of tests/probes (re-
covered keys/versions) to identify traitors in that coalition. Due to its superior
traceability we employ this algorithm in our traitor tracing scheme.

6 Discussion

6.1 Traceability Analysis

As with all other traitor tracing schemes, the traceability of our traitor tracing
scheme is measured by the number of forensic testings it takes to probe the
pirates and recover forensic feedbacks. In both sub-schemes, we employ the al-
gorithm shown in [4] for the coalition detection task. It takes O(t) number of
times to recover forensic feedbacks from pirates when there are t pirates collude
in the attack. As a result, the “forensic analysis based on tracing keys” needs to
be invoked O(t) times, each invocation in turn needs to invoke “forensic analysis
based on recording keys” O(t) times. Therefore, the total number of probes it
takes to detect traitors in a coalition of size t in anonymous attack is O(t2).

6.2 Revocation after Traitor Detection

As mentioned earlier, the license agency is responsible for assigning the tracing
keys to devices; assigning recording keys and creating recording key tables to give
to content providers; tracing traitorous devices involved in piracy; and revoking
traitorous devices for future content access.

In our system, assigning tracing keys to devices in the cluster is static. The
recording keys and recording key tables are dynamic and specific to each content.

140 H. Jin and J. Lotspiech

In order to disable/revoke those identified traitorous devices and their compro-
mised tracing keys for future content access, the license agency will generate
garbage entries associated with those tracing keys when it creates a recording
key table for future content. When content provider streams content together
with such a recording key table, every guilty device using their tracing keys can
only decrypt some garbage (invalid recording keys) out of the recording key ta-
bles. Those invalid recording keys will disable the guilty devices from accessing
the new content coming together with those recording key tables. That is how
revocation works in our system.

6.3 Implementation Considerations

From implementation point of view, there are some optimizations we can do to
improve the feasibility of our scheme.

We believe it is possible to improve processing efficiency. For example, one
can label or name each recording key entry in the recording key table. These
labels are encrypted in the table just like the keys. Then, when a device records
a header by encrypting the title key with each of its recording keys, it also
stores the labels of those keys in the clear. Then, another device can process the
header more rapidly, by searching for labels for which it knows the recording key.
Otherwise, the device would have to perform all the decryptions and determine
which decryption yields the valid title key by some other means.

We also believe it is possible to reduce the size of the recording key table
without reducing security. For example, rather than using full-length keys in the
recording table, it is possible to store smaller-length values, and then crypto-
graphically combine those values with the media key to produce a full-length
key. For example, if the stored recording keys were 64-bits, and the media key
was 128-bits, and the system was using 128-bit AES encryption, the device could
expand the 64-bits by concatenating a 64-bit constant defined by the system,
and then use the media key to decrypt the resulting value. This “decryption”
would be suitably random, and could serve as the actual 128-bit recording key.
Thus, the size of the recording key table can be reduced.

7 Conclusion

In this paper we are concerned with piracy protection for the anonymous attack
for streaming content in home networks. Unlike traitor tracing schemes for phys-
ical media where there exists a trusted party knowing all device secret keys in
the system, in a peer-based home network with streaming content, the recording
device does not know other peer devices’ secret keys, and therefore cannot create
the content variations in the recording so that other peer devices can playback
the recording later.

In this paper we presented the first content protection system that does not
require building multiple variations before the content is streamed. We intro-
duced the concept of “recording keys” that allows one recording device in the

Piracy Protection for Streaming Content in Home Networks 141

network to make a recording in a secure way that all other devices in the network
can playback. We proposed a traitor tracing scheme that makes use of recording
keys to gain useful forensic information. Our nested tracing scheme takes O(t2)
probes to the pirate server in order to detect guilty pirates of coalition size t.

As future work, we would like to continue improving the feasibility of the
scheme. While this itself is not a concern at the cryptographic traitor tracing
scheme level, we would like to improve the practicality of our scheme by com-
bining other approaches including signal processing level technologies.

References

1. http://www.hanaalliance.org/

2. http://www.4centity.com/

3. Jin, H., Lotspiech, J., Nusser, S.: Traitor tracing for prerecordable and recordable
media. In: ACM DRM Workshop, Washington, D.C (2004)

4. Jin, H., Lotspich, J., Meggido, N.: Efficient Coalition Detection in Traitor Trac-
ing. In: Proceeding of IFIP International Conference on Information Security 2008,
Milan, Italy, September 8-10 (2008)

5. http://www.aacsla.com/specifications

6. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

7. Naor, D., Naor, M., Lotspiech, J.: Revocation and Tracing Schemes for Stateless
Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

8. Fiat, A., Tassa, T.: Dynamic traitor tracing. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, p. 354. Springer, Heidelberg (1999)

9. Safani-Naini, R., Wang, Y.: Sequential Traitor tracing. IEEE Transactions on
Information Theory 49 (2003)

http://www.hanaalliance.org/
http://www.4centity.com/
http://www.aacsla.com/specifications

JITDefender: A Defense against JIT Spraying Attacks

Ping Chen, Yi Fang, Bing Mao, and Li Xie

State Key Laboratory for Novel Software Technology, Nanjing University
Department of Computer Science and Technology, Nanjing University, Nanjing 210093

{chenping,fangyi,maobing,xieli}@nju.edu.cn

Abstract. JIT spraying is a new code-reuse technique to attack virtual machines
based on JIT (Just-in-time) compilation. It has proven to be capable of circum-
venting the defenses such as data execution prevention (DEP) and address space
layout randomization(ASLR), which are effective for preventing the traditional
code injection attacks. In this paper, we describe JITDefender, an enhancement
of standard JIT-based VMs, which can prevent the attacker from executing arbi-
trary JIT compiled code on the VM. Thereby JITDefender can block JIT spraying
attacks. We prove the effectiveness of JITDefender by demonstrating that it can
successfully prevent existing JIT spraying exploits. JITDefender reports no false
positives when run over benign actionscript/javascript programs. In addition, we
show that the performance overhead of JITDefender is low.

1 Introduction

In recent years, attackers have resorted to code-reuse techniques instead of injecting
their own malicious code. Typical techniques are Return-oriented Programming (ROP)
[21], BCR [12] and Inspector [11]. Different code-reuse attacks launch the attack based
on different codebases, including the application, shared libraries or even the kernel.
However, all the techniques need to find useful instruction sequence in the codebase,
and the task is tedious and costly in practice.

Recently, a new code-reuse attack named JIT (Just-In-Time) spraying was proposed
by Blazakis [10]. It reuses JIT-compiled code on the Flash VM’s heap in accordance
with the attacker’s wish to construct the attack. Later, Sintsov published several real-
world JIT spraying attacks on Flash VM [26] and further proposed advanced shellcode
which leverages the code on Safari’s Javascript engine [25]. JIT spraying can circum-
vent the techniques such as data execution prevention (DEP) [6] and address space
layout randomization (ASLR) [6, 9], which are effective for preventing the traditional
code injection attacks. The JIT compiler improves the runtime performance of the VM
by translating bytecodes into native machine code. A JIT spraying attack is the pro-
cess that it coerces the JIT compiler to generate native code with the malicious code
on the heap of VM, then it exploits the bugs in the browser or its plug-ins to hijack the
control and uses the injected malicious code to achieve the attack. JIT spraying attack
have become a big threat to Web Security, because the browser often enables dynamic
languages (e.g., actionscript and javascript). JIT spraying attacks have two advantages
compared with other code-reuse techniques: First, the malicious code is generated by
the JIT compiler, so the attacker needs not to piece up useful code snippets for con-
structing the attack in the codebase. Second, malicious code is generated on the heap.

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 142–153, 2011.
© IFIP International Federation for Information Processing 2011

JITDefender: A Defense against JIT Spraying Attacks 143

This can be combined with heap spraying techniques [29] to increase the probability of
the attack.

In this paper, we describe JITDefender, a defense of JIT spraying attacks, which en-
forces the JIT-code execution control policy for the VM. To defend against JIT spraying
attacks, JITDefender changes the VM in the following way: the VM’s heap is gener-
ally set non-executable so that W ⊕ X protection applies. If a specific part of JIT-code
has to be executed on the VM based on the definition of the program, the heap is set
to be executable, before the code is executed, and immediately set to non-executable
afterwards. This paper makes the following contributions:

– We propose JITDefender, an effective technique for defending JIT spraying attacks
by controlling the execution of the JIT-code. This techniques distinguishes the be-
nign usage of JIT-code from malicious usage of the attacker.

– We implement and evaluate JITDefender on several commonly used VMs that use
JIT compilation (Tamarin flash VM, the V8 javascript engine and Safari’s javascript
engine). We show that JITDefender can defend against JIT spraying attacks on VMs
based on JIT compilation, although the performance overhead of JITDefender is
less than 1%.

– We also show that JIT spraying attacks are not only available on flash/javascript
VMs, but also available on other VMs based on a JIT compiler, such as QEMU.
Our technique is effective for defending against JIT spraying on arbitrary VMs
based on JIT compilation.

2 Background: JIT Spraying

JIT Spraying is a code-reuse technique that uses the code generated by the VM based on
JIT compilation to launch the attack. By writing the objects using dynamic languages
(e.g., javascript, actionscript), the attacker coerces the JIT compiler to generate the ma-
licious code on the heap of VM, and hijacks the control flow to the malicious code
snippet. However, different from the existing code reuse techniques, the malicious code
does not need to be found within an existing codebase (e.g., libraries, kernel), instead,
the attacker predictably defines the objects which are intended to be compiled into the
malicious code on the heap of VM, and uses the heap spraying technique to populate the
heap with a large number of objects containing the malicious code. Therefore, when the
attacker drives the control flow to arbitrary addresses on the heap, with high probability
the jump will land inside one of malicious code snippets.

Figure 1 illustrates the JIT spraying attack on Flash VM. First, the attacker defines
the actionscript object (ret in Figure 1) which contains many uniform statements (XOR
in Figure 1) with dedicated constructed integers (0x3c909090 in Figure 1) in the
source code. Then the JIT compiler will dynamically translate the source code and gen-
erate the native code. In this example, the flash VM will translate the XOR as 0x35 and
the integer as the original value in the native code. If the attacker carefully constructs
the integer value, the native code may be transferred into the malicious code with one
byte offset. Suppose the attacker lays out many such objects on the heap, and the at-
tacker can turn the control flow to the malicious snippet (e.g., through a buffer overflow
attack), finally this results in the JIT spraying attack.

144 P. Chen et al.

var ret=(0x3C909090^
0x3C909090^
0x3C909090^
0x3C909090^

…);

Flash Object

359090903C XOR EAX, 3C909090
359090903C XOR EAX, 3C909090
359090903C XOR EAX, 3C909090
359090903C XOR EAX, 3C909090

Native Code

90 NOP
90 NOP
90 NOP

3C35 CMP AL, 35
…

Native Code with one byte offset

The heap of VM

pad

shellcode

pad

shellcode

pad

shellcode

pad

shellcode

pad

shellcode

Fig. 1. JIT Spraying Attack

The JIT spraying example illustrated in Figure 1 shows that the code translated by
the JIT compiler can be leveraged to launch the JIT Spraying attack. In fact, many other
VMs based on a JIT compiler have the same problem. Furthermore, browsers such
as IE8 and Chrome are particularly vulnerable to JIT spraying because actionscript/-
javascript programs embedded in a web page greatly simplify such attacks.

3 Overview of JITDefender

VMs based on JIT compilation (e.g., Flash VM, Javascript VM) often dynamically
translate the source code into the native code on the heap. They necessarily have to
mark the page containing the JIT-code as executable and reuse the code repeatedly
without re-compiling or interpreting in order to boost the performance. This mecha-
nism implicitly turns the W ⊕ X protection off and gives the attacker the opportunity
to launch JIT spraying attacks which were illustrated in Section 2. In this paper, we
describe the idea of JITDefender, a method to prevent the compiled code from being
executed by the attacker. The main idea is to re-enforce W ⊕ X protection within the
VM. More precisely, we generally mark the native code pages as non-executable. When
the VM executes JIT-code, we change the corresponding code pages to executable, after
executing the code, the code pages are reset to non-executable again.

When designing JITDefender, we need to identify two points in the the code base of
the JIT execution: (1) the code compilation point, i.e., the point when the JIT compiler
generates the native code, and (2) the code execution point, the point when the VM ex-
ecutes the native code. The workflow of JITDefender is that we mark the code pages as
non-executable at the first point. Shortly before the second point we mark the pages as
executable, and shortly after we mark the pages as non-executable again. This mecha-
nism can be applied to arbitrary VMs based on JIT compiler. Under this protection of

JITDefender: A Defense against JIT Spraying Attacks 145

JITDefender, if the attacker hijacks the control flow to the code snippet on the heap for
JIT spraying attack the access will be blocked because the VM keeps the code pages
non-executable. In fact, JITDefender provides different views of the compiled code for
the VM and the attacker with the native code execution control policy.

4 Design and Implementation

In this section, we firstly take the Flash VM as an example to illustrate our method. We
identify code parts in the VM that define code compilation and code execution points.
Then we demonstrate that our method can be applied to Javascript VM.

4.1 Introduction of the Flash Engine

The source code of flash is written in the actionscript language. Through the differ-
ent actionscript compilers, the source code is translated into the actionscript byte code
(ABC) or the ShockWave File (SWF). The code can be JIT compiled or interpreted on
the flash engine. Flash engine handles the ABC or SWF file in the following steps as
shown in Figure 2: first it passes through the ABC or SWF files, translates them into
the objects which are stored in the object pool. Then it steps into the compiling phase
or interpreting phase. In this paper, we only focus on the compiling phase where the JIT
compiler fetches the object from the pool, then compiles it into the native code. This is
the code compilation point defined above. JIT compiling can be divided into MIR code
generation and Machine Code (MD) generation. The native code is stored in the newly
allocated heap memory of flash VM. Third, the flash VM provides the loop monitoring
whether there is the compiled code on the heap. If so, it will execute the native code.
This is the code execution point defined above. In order to prevent JIT spraying attack,

.abc/.swf parser

Bytecode Verifier

Interpreter

JIT Compiler

MIR Code Generator

MD Code Generator

Native Code
Execution Controller

Runtime System

Memory Manager / Garbage Collector

Fig. 2. Tamarin Flash Engine

146 P. Chen et al.

we manipulate the Native Code Execution Controller on VMs, which is between the
MD code generation and Runtime code execution. In the following subsection, we will
illustrate the mechanisms implemented in Flash/Javascript VMs in details.

4.2 Adapting the Flash Engine

In Flash Engine Tamarin, when an ABC or SWF file is loaded, the JIT compiler will
translate the source code into native code at the unit of a function. More specifically,
Tamarin uses the class MethodInfo to store the information of the functions that can
be executed by the VM, including user-defined functions, native functions and so on.
Another key class named CodeMgr is used to manage memory for compiled code,
including the code itself (in a nanojit::CodeAlloc), and any data with code life-
time (in a nanojit::Allocator), such as debugging info and inline caches. In
order to set the attributes of the code pages, we should get the the compiled code in-
formation at the unit of function. Therefore, we add the variable CodeMgr* mgr in
the MethodInfo class. It will provide us the convenience for setting attributes of the
code pages, because we can get the information of the function including the native code
generated by this function. We now give more details how to set the page attributes.

First, we need to get related information at the code compilation point when native
code has been generated. We find that, after Tamarin generates the compiled code for
one function, it will store the compiled code information in the codeMgr which is the
member variable of the class PoolObject, and PoolObject is a container for the
pool of resources decoded from an ABC file. Therefore, we will transfer the compiled
code information into the new variable mgr we defined in MethodInfo. Then we
extract the start and end address of the compiled code memory, and invoke the function
named VMPI setPageProtection to set the related pages as non-executable.

Second, we need to find the code execution point. As mentioned in Section 3, we
should set the related code pages as executable before executing the compiled code, and
after executing the compiled code, we set the compiled code pages as non-executable
again. In the Tamarin flash engine, the function coerceEnter is used to execute
the compiled code, at the end of this function, the specific handler function is in-
voked by endCoerce(argc, ap, ms). As such, we leverage the function VMPI
setPageProtection to set the related pages as executable, and after executing the
function, we use the same function to set the related pages as non-executable. Note
that we calculate the related pages based on the recorded information of mgr in the
MethodInfo.

The method mentioned above can successfully protect the compiled code on the heap
of the VM. Because the compiled code can be only executed by the VM itself, but can
not be executed by the attacker.

4.3 Javascript Engine

Sintsov [25] shows that JIT Spraying can be also mounted on the Javascript Engine in
Safari [4]. Similar to the flash engine, the attacker can construct the Javascript object
using the XOR operation with the specific integer operands. Then the Javascript Engine
will compile the Javascript objects into the native code which contains the malicious

JITDefender: A Defense against JIT Spraying Attacks 147

code. We find that the same problem occurs in the V8 Javascript engine – the javascript
engine of Chrome [18]. We could leverage a known buffer overflow [1] to launch a JIT
spraying attack. In this section, we demonstrate that JITDefender can be implemented
on both Javascript engines.

V8 Javascript Engine. As we mentioned in Section 3, we need to identify the code
compilation and the code execution point. The V8 Javascript engine provides two API
function for compilation and execution respectively. The Compile function is used to
compile the Javascript program into the native code on the heap, and the Run function
is used to execute the compiled native code.

In the compilation phase, the V8 Javascript engine parses the Javascript files and
divides the code into two parts, one is the specific function such as the eval, the
global function, and other functions are regarded as the shared function. Then it com-
piles the Javascript code into the native code according to the function categories.
And the native code is stored as SharedFunctionInfo at the unit of the func-
tion. SharedFunctionInfo is the child class of HeapObject, which maintains
the information of the Javascript objects.

In the execution phase, V8 gets the compiled code by using the Code::GetCode
method, and finds the entry to the code by the Code::entrymethod, then it jumps to
the code entry to execute the code on the heap using Execution::Call. Note that
the class Code is the child class of HeapObject, it contains the native code generated
at the compilation point. Similar with the flash engine, the compiled code is laid out on
the heap and its page is marked as executable, which is independent of whether the code
is executed by the Javascript engine or not.

We applied our code control policy to the V8 javascript engine. First, at the end of
Compiler::Compile, we use the Windows API function VirtualProtect to
set the compiled code pages as non-executable. Then before the Execution::Call,
we use VirtualProtect to set the code pages as executable, and after executing the
compiled code, we set the code pages as non-executable again.

Safari’s Javascript Engine. Similar to the V8 Javascript Engine, at the code com-
pilation point, Safari’s Javascript Engine compiles the Javascript code into the native
code according to the function definition. The native code is saved in the structure of
JITcode. At the code execution point, Safari Javascript Engine will query the na-
tive code base, invoke the entry to the current executed function and then execute it.
We modify Safari’s Javascript Engine (JavascriptCore) at these two points: First, Sa-
fari’s Javascript Engine gets the JITed code by the method JIT::compile in memory
space in the form of JITcode. Then we set the code pages as non-executable. Second,
the Javascript Engine executes the JITed code by using the method JITStubCall::
call. Before we invoke this function to execute the JIT-code, we first set the code
pages as executable. After we executed the code, we reset the code page as no-
executable again.

5 Evaluation

In this section, we describe the experimental evaluation of our JITDefender proto-
type. First, we test JITDefender’s ability to dynamically defend the JIT spraying attack.

148 P. Chen et al.

Second, we measure the performance overhead of JITDefender. The evaluation is per-
formed on an Intel Pentium Dual E2180 2.00GHz machine with 2GB memory and
Windows 7. Tested programs are compiled by Microsoft Visual Studio 2008.

5.1 Effectiveness

Since JIT spraying is a new attack, there are little attack samples published. Therefore
we used existing JIT spraying attacks published by Sintsov for Tamarin flash engine and
Safari’s Javascript engine and wrote samples for the V8 javascript engine by ourselves.
Morespecifically,wechose two JITspraying attack sampleswritten by Sintsov to evaluate
Tamarin flash engine: “SAP-Logon7-System” [24] and “QuikSoft-STAGE0” [23]. The
two JIT spraying attacks leverage the buffer overflow vulnerability in SAPGUI 7.10 Ac-
tiveX and Oracle Document Capture (EasyMail Objects EMSMTP.DLL 6.0.1) ActiveX
Control respectively, and can successfully launch attacks on IE8. Note the two original
JIT spraying attacks leverage Flash Player 10’s flash engine [26]. In our experiment, we
use the Tamarin Flash engine instead. For Safari, we chose the JIT Spraying attack “Sa-
fari parent close sintsov” published by Sintsov [22]. It exploits the vulnerabilities in Sa-
fari 4.0.5parent.close() to launch attacks. In addition, in order to test the effective-
ness of our tool on the V8 Javascript engine, we wrote one JIT spraying code by leveraging
the buffer overflow “SaveAs” in Chrome [1]. We named the attack as “SaveAs-JITSpray”.
With all the attacks mentioned above, we tested the effectiveness of JITDefender for de-
tecting the JIT spraying attacks, including Tamarin, V8, and Safari’s javascript engine.
Experimental results in Table 1 show that JITDefender can successfully defend JIT spray-
ing in VMs based on JIT compilation. We also tested JITDefender on benign code, namely
the performance benchmarks embedded in the JIT VMs. The actionscript/javascript pro-
grams are listed in Table 2. Overall, we found no false positives.

Table 1. JIT Spraying Attacks Tested on JITDefender

VMs JIT Spraying Attacks LOC(K) Description JITDefender

Tamarin
SAP-Logon7-System [24] 3K SaveViewToSessionFi ActiveX Buffer Overflow �
QuikSoft-STAGE0 [23] 3K SubmitToExpress ActiveX Buffer Overflow �

V8 SaveAs-JITSpray 3K “SaveAs” Buffer Overflow in Chrome �
Safari’s JS Engine Safari parent close sintsov [22] 3K Safari 4.0.5 parent.close() (memory corruption) �

5.2 Performance Overhead

We also measured the performance overhead of JITDefender. Because JITDefender
modifies the JIT-code page attributes of the VM at runtime, it will bring some overhead
to the VMs. In this section, we chose the three VMs based on JIT compilation to evalu-
ate the performance overhead of JITDefender, including Tamarin Flash Engine, Safari’s
Javascript Engine and V8 Javascript Engine. Table 2 shows the performance overhead
of JITDefender when it is applied to the VMs when executing the actionscript/javascript
programs. For each VM, we run the benchmark of it, and compare the time costs when
the tested program running on the original VMs and the modified VMs. By comparison,
we can see that JITDefender has less than 1% costs on VMs. Generally speaking, the
performance overhead is proportional to the number of function chunks in the program.

JITDefender: A Defense against JIT Spraying Attacks 149

Table 2. Performance Overhead of the JIT VMs under JITDefender

VMs Benchmarks LOC(K) Original VM JITDefender Performance Overhead

Tamarin

SOR.as 3 72.844s 72.999s 0.2%
Heapsort.as 3 9.980s 10.325s 3.5%

SparseMatmult.as 4 0.958s 0.983s 2.6%
FFT.as 5 10.334s 10.552s 2.1%

Series.as 6 4.661s 4.763s 2.2%
LUFact.as 12 27.827s 27.989s 0.6%
Moldyn.as 14 6.101s 6.276s 2.9%
Crypt.as 15 0.314s 0.322s 2.5%

RayTracer.as 22 1.566s 1.573s 0.4%
Euler.as 81 0.246s 0.249s 1.2%
Average 13.483s 13.603s 0.9%

V8

crypto.js 48 5.189s 5.196s 0.1%
richards.js 16 2.107s 2.112s 0.2%
deltablue.js 26 2.100s 2.113s 0.6%
raytrace.js 28 2.129s 2.134s 0.2%

earley-boyer.js 195 5.198s 5.213s 0.3%
regexp.js 105 4.274s 4.287s 0.3%
splay.js 11 3.575s 3.629s 1.5%
Average 3.510s 3.526s 0.5%

Safari’s JS Engine

crypto.js 48 5.336s 5.419s 1.6%
richards.js 16 2.277s 2.288 0.5%
deltablue.js 26 2.246s 2.301s 2.4%
raytrace.js 28 4.309s 4.339s 0.7%

earley-boyer.js 195 12.496s 12.792s 2.4%
regexp.js 105 15.944s 15.959s 0.1%
splay.js 11 4.911s 4.918s 0.1%
Average 6.788s 6.859s 0.1%

This is because the more function chunks of the program exist, the more frequently
JIT VMs will transfer the JIT objects into different functions’ native code and execute
these codes individually. Since we modify the code pages’ attributes, the more function
chunks of the programs there are, the more performance overhead will be introduced to
program’s execution. Take the experimental results in Table 2 for instance, the test case
“Heapsort.as” uses recursion techniques to sort arrays. It frequently invokes the small
function NumHeapSort, which performs a heap sort on an array. Therefore, when the
Tamarin flash engine compiles “Heapsort.as” into native code, the code pages will be
marked as “non-executable” or “executable” alternatively. This is the reason why the
performance overhead of executing “Heapsort.as” under JITDefender is 3.5%, which is
more than the average.

6 Discussion

6.1 JITDefender on Other VMs

QEMU [3] is the commonly used CPU-emulator, which leverages the JIT techniques.
We discovered that the programs running in QEMU will cast their code on the heap

150 P. Chen et al.

and mark it as executable. We note that JIT spraying attacks may be constructed on it
too. To perform such an attack, we need to install a VM on QEMU. Within the VM,
we need to construct a malicious program, which contains the shellcode. Then we fork
several processes for running the program that keep on spraying malicious code on
the heap of QEMU. In order to construct the attack, we need to leverage one of the
bugs in QEMU and drive control to the malicious code [28]. Since QEMU is used as
CPU-emulator in KVM [2], this effectively means that the approach can be leveraged
to construct an attack on Cloud Computing. So JIT spraying may threaten the security
of the Clouds. Similarly with to flash and javascript engine, it should be possible to
implement JITDefender on QEMU. In fact, we believe JITDefender can be applied to
arbitrary VMs based on a JIT compiler to defend against JIT Spraying exploits.

6.2 Circumventing JITDefender

The method proposed in this paper addresses the problem that most Just-In-Time com-
pilers leave a large window of opportunity for exploiting code “sprayed” into the com-
piled code. We reduce the window to the minimum time so that only the VM based
on JIT compilation can set the compiled code as executable at page granularity. People
may argue that is it possible that the attacker exploits the vulnerability within the win-
dow which spans from VM setting the page as executable to VM executing the code
on the page. We think this potential JIT spraying attack is feasible in theory but we did
not find it in practice. The potential JIT spraying attack is that the malicious code is on
the same page with the code that is executing on VM when the attacker exploits. In that
case, JITDefender will keep the page as executable, as such, JIT spraying will make JIT-
Defender ineffective. Although we did not find such attacks till now, we consider the
attack is possible. For example, the attacker introduces the delay method (e.g., loop)
in certain function to keep the code executing and the page containing the malicious
code. Even worse, if the program is asynchronous, for example, it uses multi-threaded
methods to load multiple objects on the heap, and keep all the pages executable by the
delay method, it will give a big opportunity for the attacker to circumvent JITDefender.
Although nobody has proposed the attack till now, in theory, it will be a threat to JIT-
Defender. To counter the attack, we consider to add some optimization to the VM, for
example, we can pre-calculate the XOR operation, and get the result directly without
translating its operands on the heap.

7 Related Work

7.1 Heap Spraying Defenses

Heap spraying [29] is a technique that will increase the probability to land on the desired
memory address. The act of spraying simplifies the JIT spraying attack and increases
its likelihood of success. There are several defenses specifically designed against heap-
spraying attacks [20, 16, 14]. Nozzle [20] is the countermeasure specifically designed
against heap-spraying attacks by the analysis of the contents of any object allocated
by the Web browser. Similarly, Egele et al. [14] propose an emulation method to de-
tect heap spraying attacks with drive-by downloads. Based on libemu [5], it emulates

JITDefender: A Defense against JIT Spraying Attacks 151

the code download and checks whether there is malicious code. Bubble [16] is the
Javascript engine level countermeasure against Heap-spraying attacks. It introduces the
diversity of the heap by inserting special interrupting values in strings at random posi-
tions when the string is stored in memory and removing them when the string is used
by the application. All the existing Heap spraying defenses all rely on the assumption
that the malicious code is introduced from the outside (network, keyboard), therefore
they may be circumvented by JIT spraying attack.

7.2 JIT Spraying Mitigation

Concurrently and independently, Bania [8] proposed a heuristic detection method, based
on the assumption that JIT spraying attacks use arithmetic operations. They detect JIT
spraying by calculating the number of bad instructions. However, JIT spraying may not
use the arithmetic operations to generate the malicious code. Tao et al. [27] propose
the code randomization techniques on VMs based on JIT compilation. However, it has
5.9% space and 5% runtime overhead. In addition, they currently implemented the pro-
totype on V8 engine only. Our techniques are quite different compared to theirs. First,
we do not assume any particular form of JIT spraying attack (e.g., using XOR). Second,
our method can prevent JIT spraying with less performance overhead (less than 1%).
Third, our method has been implemented and tested on different VMs, and proved to be
easily deployed on other VMs in practice. Most recently, de Groef et al. [17] proposed
a kernel patch JITsec that defeates JIT spraying based on testing certain restrictions
when invoking a system call. Different from JITDefender, JITsec can only defeat the
malicious code that uses the system call not general code.

7.3 Other Defenses

Most recently, Payer [19] summarized the different attack types and defenses. Gener-
ally speaking, all the attacks leverage software bugs and maliciously craft the control or
non-control objects to achieve malicious behavior. To defeat these attacks, researchers
proposed CFI [7] and DFI [13] that protect against sensitive objects. XFI [15], a ker-
nel module, leverages static analysis for the guard and checks the jump’s target, in
addition, it uses two stacks to guarantee the return address. There are intrinsic differ-
ences between XFI and JITDefender. First, JITDefender prevents the code snippet in the
function from being reused from outside, while XFI controls the function callsites and
prevents it being maliciously invoked. Second, JITDefender prevents the JIT spraying
attack, while XFI prevents the code injection attacks.

8 Conclusions

In this paper, we present the design, implementation, and evaluation of JITDefender,
a tool for defeating JIT spraying attacks. JITDefender applies code execution control
on the VMs, and to the best of our knowledge, it is the comprehensive defense for JIT
spraying. The evaluation of JITDefender shows that it has no false positives, and the
performance overhead is low.

152 P. Chen et al.

Acknowledgements

We thank our shepherd Felix Freiling for his help on the final paper. We also thank
the anonymous reviewers for their constructive and helpful feedbacks and suggestions.
This work was supported in part by grants from the Chinese National Natural Science
Foundation (60773171, 61073027, 90818022, and 60721002), the Chinese National
863 High-Tech Program (2007AA01Z448), and the Chinese 973 Major State Basic
Program(2009CB320705).

References

1. Google chrome 0.2.149.27 ’saveas’ function buffer overflow vulnerability,
http://seclists.org/bugtraq/2008/Sep/70

2. KVM, www.linux-kvm.org/
3. QEMU, http://wiki.qemu.org/Main_Page
4. The Webkit open source project, webkit.org/
5. x86 shellcode detection and emulation, http://libemu.mwcollect.org/
6. The Pax project (2004), http://pax.grsecurity.net/
7. Abadi, M., Budiu, M., Ligatti, J.: Control-flow integrity. In: Proceedings of the 12th ACM

Conference on Computer and Communications Security (CCS), pp. 340–353. ACM, New
York (2005)

8. Bania, P.: JIT spraying and mitigations (2010), http://arxiv.org/abs/1009.1038
9. Bhatkar, E., Duvarney, D.C., Sekar, R.: Address obfuscation: an efficient approach to com-

bat a broad range of memory error exploits. In: Proceedings of the 12th USENIX Security
Symposium, pp. 105–120 (2003)

10. Blazakis, D.: Interpreter exploitation. In: Proceedings of tth USENIX Workshop on Offensive
Technologies (WOOT 2010), pp. 1–9 (2010)

11. Kolbitsch, C., Holz, T., Kruegel, C., Kirda, E.: Inspector gadget: Automated extraction of
proprietary gadgets from malware binaries. In: Proceedings of the 30th IEEE Symposium on
Security and Privacy, pp 29–44 (2010)

12. Caballero, J., Johnson, N.M., McCamant, S., Song, D.: Binary code extraction and inter-
face identification for security applications. In: Proceedings of the 17th Annual Network and
Distributed System Security Symposium (2010)

13. Castro, M., Costa, M., Harris, T.: Securing software by enforcing data-flow integrity. In:
Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implemen-
tation, vol. 7, p. 11. USENIX Association, Berkeley (2006)

14. Egele, M., Wurzinger, P., Kruegel, C., Kirda, E.: Defending browsers against drive-by
downloads: Mitigating heap-spraying code injection attacks. In: Flegel, U., Bruschi, D. (eds.)
DIMVA 2009. LNCS, vol. 5587, pp. 88–106. Springer, Heidelberg (2009)

15. Erlingsson, U., Valley, S., Abadi, M., Vrable, M., Budiu, M., Necula, G.C.: XFI: Soft-
ware guards for system address spaces. In: Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation, vol. 7, p. 6. USENIX Association, Berkeley
(2006)

16. Gadaleta, F., Younan, Y., Joosen, W.: BuBBle: A javascript engine level countermeasure
against heap-spraying attacks. In: Massacci, F., Wallach, D., Zannone, N. (eds.) ESSoS 2010.
LNCS, vol. 5965, pp. 1–17. Springer, Heidelberg (2010)

17. de Groef, W., Nikiforakis, N., Younan, Y., Piessens, F.: Jitsec: Just-in-time security for code
injection attacks. In: Benelux Workshop on Information and System Security (WISSEC
2010), pp. 1–15 (2010)

http://seclists.org/bugtraq/2008/Sep/70
www.linux-kvm.org/
http://wiki.qemu.org/Main_Page
webkit.org/
http://libemu.mwcollect.org/
http://pax.grsecurity.net/
http://arxiv.org/abs/1009.1038

JITDefender: A Defense against JIT Spraying Attacks 153

18. Google Inc.: V8 javascript engine, code.google.com/apis/v8/intro.html
19. Payer, M.: I control your code attack vectors through the eyes of software-based fault

isolation. In: 27C3 (2010)
20. Ratanaworabhan, P., Livshits, B., Zorn, B.: Nozzle: A defense against heap-spraying code

injection attacks. In: Proceedings of 18th USENIX Security Symposium (2009)
21. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without function

calls (on the x86). In: Proceedings of the 14th ACM Conference on Computer and Commu-
nications Security (CCS), pp. 552–561. ACM, New York (2007)

22. Sintsov, A.: JIT spraying attack on safari,
http://www.exploit-db.com/exploits/12614/

23. Sintsov, A.: Oracle document capture (easymail objects emsmtp.dll 6.0.1) activex con-
trol bof - JIT-spray exploit, http://dsecrg.com/files/exploits/QuikSoft
-reverse.zip-reverse.zip

24. Sintsov, A.: SAP GUI 7.10 webviewer3d Activex - JIT-spray exploit,
http://dsecrg.com/files/exploits/SAP-Logon7-System.zip

25. Sintsov, A.: JIT-spray attacks & advanced shellcode (2010),
http://dsecrg.com/files/pub/pdf/HITB%20-%20JIT-Spray%
20Attacks%20and%20Advanced%20Shellcode.pdf

26. Sintsov, A.: Writing JIT-spray shellcode for fun and profit. In: Technical Report of Digital
Security (2010)

27. Tao, W., Tielei, W., Lei, D., Jing, L.: Secure dynamic code generation against spraying. In:
CCS 2010 Poster, pp. 738–740. ACM, New York (2010)

28. Wang, T.: Integer overflow on QEMU, http://lists.nongnu.org/archive/
html/qemu-devel/2008-08/msg01052.html

29. Wikipedia: Heap spraying (2010),
http://en.wikipedia.org/wiki/Heap_spraying

code.google.com/apis/v8/intro.html
http://www.exploit-db.com/exploits/12614/
http://dsecrg.com/files/exploits/QuikSoft
http://dsecrg.com/files/exploits/QuikSoft-reverse.zip
http://dsecrg.com/files/exploits/SAP-Logon7-System.zip
http://dsecrg.com/files/pub/pdf/HITB%20-%20JIT-Spray%20Attacks%20and%20Advanced%20Shellcode.pdf
http://dsecrg.com/files/pub/pdf/HITB%20-%20JIT-Spray%20Attacks%20and%20Advanced%20Shellcode.pdf
http://lists.nongnu.org/archive/html/qemu-devel/2008-08/msg01052.html
http://lists.nongnu.org/archive/html/qemu-devel/2008-08/msg01052.html
http://en.wikipedia.org/wiki/Heap_spraying

Retrofitting Security in COTS Software with
Binary Rewriting

Pádraig O’Sullivan 1, Kapil Anand 1, Aparna Kotha 1, Matthew Smithson 1,
Rajeev Barua 1, and Angelos D. Keromytis 2

1 Electrical and Computer Engineering Department, University of Maryland
2 Department of Computer Science, Columbia University

Abstract. We present a practical tool for inserting security features against
low-level software attacks into third-party, proprietary or otherwise binary-only
software. We are motivated by the inability of software users to select and use
low-overhead protection schemes when source code is unavailable to them, by
the lack of information as to what (if any) security mechanisms software pro-
ducers have used in their toolchains, and the high overhead and inaccuracy of
solutions that treat software as a black box.

Our approach is based on SecondWrite, an advanced binary rewriter that oper-
ates without need for debugging information or other assist. Using SecondWrite,
we insert a variety of defenses into program binaries. Although the defenses
are generally well known, they have not generally been used together because
they are implemented by different (non-integrated) tools. We are also the first to
demonstrate the use of such mechanisms in the absence of source code availabil-
ity. We experimentally evaluate the effectiveness and performance impact of our
approach. We show that it stops all variants of low-level software attacks at a very
low performance overhead, without impacting original program functionality.

1 Introduction

Despite considerable research and work on programmer education and tools, program-
ming language and compiler support for security, hardware and operating system fea-
tures, low-level software vulnerabilities remain an important source of compromises
and a perennial threat to system security. While other sources of vulnerability have
emerged more recently, such as SQL injection, cross-site scripting (XSS) and cross-site
request forgery (XSRF), binary-level vulnerabilities continue to be discovered in very
popular software and to be exploited for fun and profit [12].

The lack of convergence to a comprehensive solution can be attributed to several fac-
tors, consisting of a mix of the technical and non-technical. At the core, there exists a
fundamental dichotomy in the capabilities and motivation of producers and consumers
of software, vendors and end-users/administrators respectively. On the one hand, soft-
ware producers are probably in the best position to both proactively and reactively pre-
vent and mitigate such vulnerabilities: they have access to the source code, the compiler
tool chain, and the developers themselves. As a result, they can apply security mech-
anisms that offer high coverage and effectiveness at low overhead, because they are

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 154–172, 2011.
c© IFIP International Federation for Information Processing 2011

Retrofitting Security in COTS Software with Binary Rewriting 155

applied at the point where the most semantic knowledge about the program and the
code is available. On the other hand, it is software consumers that face the risk and bear
the costs of compromise due to software vulnerabilities and are the most motivated
to take action, often localized, to mitigate a newly discovered vulnerability. However,
consumers often only have access to the program binary and configuration files. Thus,
absent vendor patches (which can often take a long time and may contain bugs [32])
consumers can only use security mechanisms that treat the software as a black box.
Inevitably, such mechanisms resort to isolation (e.g., through a virtual machine) or to
behavioral detection (e.g., system call monitoring), with attendant costs, complexity
and risk. Even security-conscious software consumers often cannot properly evaluate
the risks they face because they do not know what security mechanisms, if any, a pro-
ducer has used in their development process and tool-chain [22].

We present a new mechanism based on advanced binary rewriting that seeks to
bridge the gap between incentive/motivation and capabilities on the consumer side. Our
approach allows end users to retrofit powerful security mechanisms into third-party,
binary-only software. These mechanisms are well-known, and some of them have been
partially integrated in separate tools and development environments (e.g., ProPolice in
gcc and the optional /GS flag in Visual Studio). Our system allows end-users to ensure
that the software they run on their systems uses any and all such features, regardless of
the choices or capabilities of vendors1. Furthermore, our approach allows end-users to
selectively apply different defense mechanisms to different parts of the program, based
on their own analysis, risk assessment, and knowledge of potential or actual vulnerabil-
ities in the code. Essentially, we provide the nearly the same self-defense capabilities
that open-source software users can utilize to users of binary-only software2.

The contributions of this paper are twofold. First, we present a powerful binary-
rewriting framework in the context of software security. Specifically, we investigate the
ability of such a system to retrofit known invasive, powerful and low-overhead secu-
rity mechanisms to program binaries, in the absence of source code or even debugging
symbols. Second, we evaluate the effectiveness and efficiency of our scheme and of the
retrofitted security mechanisms, as compared to other ways in which these and similar
security mechanisms can be applied to software. We conclude that a system such as ours
would enable software consumers to protect themselves at the same level of effectiveness
as if vendors had taken similar steps (i.e., used thesame security techniques) and at equally
low overhead. Thus, we believe that we have removed a significant factor in improving
the overall security posture of systems against low-level software compromises.

An additional contribution of this paper is that we have carefully chosen a set of
complementary and effective schemes that, taken together, achieve the goal of defend-
ing against all types of buffer overflow attacks at the lowest combined run-time cost.
The totality of our schemes protect against buffers on the global, stack, and heap seg-
ments from overflowing onto a variety of (usually code) pointer locations that are

1 Not all development tool-chains support a given security feature, while vendors and products
are often intimately tied to them. As a result, there is considerable reluctance by vendors to
switch to a “better” compiler, for example, even if such existed.

2 Just because open-source software users can, does not mean they generally do assess or
modify/secure their installations.

156 P. O’Sullivan et al.

vulnerable to attack, including return addresses, function pointers, indirect branch
pointers, longjmp buffers, and base pointers. This is an important practical contribution
in itself, as this is the first solution in the literature to retrofit a comprehensive set of
protections against buffer overflow attacks, which are still very common, into arbitrary
new and legacy binaries. We intend to make this tool available publicly soon.

The remainder of this paper is organized as follows. Section 2 gives an overview of
related work in binary rewriting and binary-only software security mechanisms. Sec-
tion 3 presents background on binary rewriting, and how rewriting relates to security.
We describe the methods we have chosen in Section 5, and discuss experimental results
in Section 6. We conclude with our thoughts for future work in Section 7.

2 Related Work

Our work is related to many techniques that attempt to defend against attacks on vul-
nerabilities in applications. In this section, we elaborate on some of the pieces of work
most closely related to ours. We present the various attack techniques utilized by attack-
ers that are relevant for this research and then we go on to present various techniques
proposed for mitigating these attack techniques. We also briefly discuss related work in
binary rewriting.

2.1 Catalog of Attack Techniques

Buffer Overflow Attacks. A buffer overflow refers to a situation that can occur when
code writes into a bounded array, or buffer, and the writes are not correctly guarded
against overflow. Data copied into the buffer whose length is larger than the buffer’s size
is referred to as a buffer overflow. Writes into a buffer that are not correctly guarded may
overwrite and corrupt a variety of vulnerable locations that may also be stored nearby
the buffer, including return addresses, base pointers, function pointers, and longjmp
buffers. Although buffer overflows have historically most often occurred on the stack,
they are also possible on heap and global segment buffers. For example a global buffer’s
overflow may overwrite a function pointer or longjmp buffer also in the global segment.

Buffer overflow attacks work by changing the value of the code pointer stored in
vulnerable locations such as return addresses, function pointers and longjmp buffers.
The code pointer is overwritten by a new value pointing to code of the attacker’s choice.
Base pointers are also vulnerable even though they are not code since they can be used
for attacks [31]. A return address attack was first described in detail by AlephOne in
1996 [1]. However, attacks of this kind date back to before 1988 when the technique
was used in the fingerd exploit of the Morris worm.

Commonly, an attacker would choose their input data so that the machine code for
an attack payload would be present at the modified return address. When the vulnerable
function returns, and execution of the attack payload begins, the attacker has gained
control of the behavior of the target software. The attack payload is often called shell-
code, since a common goal of an attacker is to launch a command line interpreter (re-
ferred to as a shell in UNIX like environments) under their control.

Return-to-libc Attacks. As an alternative to supplying executable code (referred to as
direct code injection), an attacker might be able to craft an attack that executes existing

Retrofitting Security in COTS Software with Binary Rewriting 157

machine code (indirect code injection). This class of attacks has been referred to as
jump-to-libc or return-to-libc (arc injection [9] has also been used to refer to this class
of attacks) because the attack often involves directing execution towards machine code
in the standard C library (libc) [9]. The standard C library is often the target for attacks
of this type since it is loaded in nearly every UNIX program and it contains routines
of the sort that are useful for an attacker. This technique was first suggested by Solar
Designer in 1997 [27]. Attacks of this kind can evade defense mechanisms that protect
the stack such as stack canaries and it is also effective against defenses that only allow
memory to be writable or executable.

Traditionally, attacks of this kind have targeted the system function in the standard
system library which allows the execution of an arbitrary command with arguments. In
this case, the return address of a vulnerable function would be modified to point to the
address of the system function which would then be executed with attacker supplied
arguments. Since the system function executes a command on a system, if an attacker
can control the arguments to this function, they could execute an arbitrary command on
the system under attack. However, recent attacks have been demonstrated which do not
depend on calling functions in the standard C library.

2.2 Catalog of Defense Techniques

Compile Time Defenses. StackGuard [8] places a ’canary’ (a memory location) on the
stack between local variables and the return address. This canary value is designed to
warn of stack corruption since validating the integrity of the canary value is an effective
means of ensuring that the function return address has not been corrupted. Microsoft’s
compiler also supports the insertion of stack canaries with the /GS option.

ProPolice [10] is similar to StackGuard in that it places a canary value on the stack.
However, ProPolice also changes the stack layout to place arrays and other function-
local buffers above all other function-local variables. Copies of all function arguments
are also made into new, function-local variables that also sit below any buffers in the
function. As a result, these variables and arguments are not subject to corruption through
an overflow of these buffers.

PointGuard [7] protects all code pointers within a program. The defense consists of
encrypting pointer values in memory and only decrypting the pointers when they are
loaded into CPU registers. The encryption key used is a randomly generated during
process creation and is thus unknown to an attacker. Without knowledge of the encryp-
tion key, an attacker can not modify any value stored in memory. As a result, pointer
values are not subject to corruption.

StackGuard, PointGuard, and ProPolice involve compile-time analysis and transfor-
mation. Thus, unless the source code for an application is available, these techniques
can not be used thereby hindering the ability to easily deploy these techniques. In prac-
tice only the developer can use these defenses, and only if the compiler his or her or-
ganization uses supports it. Our techniques do not suffer from this drawback since they
can be easily deployed on any binary produced from any source language and compiler,
by not only the developer, but the end-user as well.

Instruction Set Randomization. Instruction-set randomization [5] is a technique for
protecting against buffer overflows (and many kinds of code injection attacks). This

158 P. O’Sullivan et al.

approach randomizes the underlying system’s instructions so that foreign code injected
by an attacker would fail to execute correctly since the attacker does not know the
instruction set of the target system. However, as mentioned by the authors in [5], the
main drawback of this technique as applied to binary code that it needs specialized
hardware support in the processor. Thus, even though instruction-set randomization
offers a strong defense against buffer overflow attacks the fact that unless it is supported
by specialized hardware, it incurs significant overheads means that it is unlikely to see
adoption in practice for the foreseeable future.

Strata (a dynamic binary translation framework) and Diablo (a link-time binary
rewriter) were used to implement instruction set randomization [16]. Diablo is used
to prepare a binary for string encryption and introduce the information necessary to
detect foreign code. Strata is then used to provide the necessary virtual execution envi-
ronment for safe execution. The main contribution of this work is that the instruction-set
randomization implementation is efficient while requiring no special hardware support.
However, the runtime overheads reported are still high because of the necessary soft-
ware ISA translation at run-time, and the inherent overheads of a dynamic translator.
These run-time overheads and likely to limit the practical adoption of such a system.
Moreover any user of a dynamic binary rewriter must install it in addition to the appli-
cation desired, making it inconvenient to use.

The static (off-line) binary rewriter we use suffers from none of these issues. No
special hardware is required to utilize a binary rewriter and overheads are relatively low
since no ISA translation is done, and since no dynamic translator is used, no additional
software in addition to the application is needed for execution. In our system, if an
original binary was compiled without optimizations, we often see a significant run-time
improvement when rewritten.

Address Space Layout Randomization. Address Space Layout Randomization
(ASLR) can be seen as a relatively coarse-grained form of software diversity. ASLR
shuffles, or randomizes, the layout of software in the memory address space. The com-
mon implementation of this scheme is at the OS level. Thus, when a process is launched
the address space layout of the process will be different from a previous invocation of
the same process. It is effective at preventing remote attackers that have no existing
means of running code on a target system from crafting attacks that depend on ad-
dresses. ASLR is not intended to defend against attackers that are able to control the
execution of a piece of software; it is mainly intended to hamper remote attackers from
attempting to use the same attack repeatedly. Finally, its utility on 32-bit architectures
is limited by the number of bits available for address randomization [25].

A binary rewriter could easily be used to provide a similar defense mechanism as
ASLR. An interesting future avenue of research is to investigate software diversity
through binary rewriting.

Control Flow Integrity. Control Flow Integrity (CFI) [3] is a basic safety property
that can prevent attacks from arbitrarily controlling program behavior. CFI dictates that
software execution must follow a path of a control-flow graph that is determined ahead
of time by analysis (in this case, static binary analysis is performed). CFI is enforced
using static verification and binary rewriting (with Microsoft’s Vulcan [28] tool) that

Retrofitting Security in COTS Software with Binary Rewriting 159

instruments software with runtime checks. These checks aim to ensure that control flow
remains within a given control-flow-graph. CFI is a very effective defense against buffer
overflow attacks (and any attack which attempts to change a program’s control flow)
since any attempt by an attacker to divert the control flow of a program will be caught by
CFI. However, the main barrier to CFI’s adoption seems to be the overhead associated
with the scheme. The average overhead of CFI in the prototype implementation is 16%
on the SPEC2000 benchmarks. Also, unlike SecondWrite, the binary rewriter used by
CFI depends on a binary being compiled with debug information which is usually not
available in production binaries. If a binary is not compiled with debug information
then CFI cannot be currently applied.

Our schemes implemented through our binary rewriter can provide the same level
of protection as CFI. An additional advantage of our scheme is that our binary rewriter
does not require access to any special information in an input binary unlike all previous
binary rewriters (including the binary rewriter used in CFI) which require access to
relocation or debug information.

Program Shepherding. Program Shepherding [17] employs an efficient dynamic
software machine-code interpreter (DynamoRIO [6]) for implementing a security en-
forcement mechanism. A broad class of security policies can be implemented using a
machine interpreter such as DynamoRIO. For example, DynamoRIO could be used to
enforce control-flow integrity. Program shepherding enforces a similar policy that im-
poses certain runtime restrictions on control flow such that an attacker can not alter a
program’s flow of control.

Program Shepherding can experience significant memory and runtime overheads,
particularly on the Windows platform. The scheme requires an application and inter-
preter to be run simultaneously. The high overheads of interpretation in some cases are
likely to limit adoption of Program Shepherding. Further, unlike using off-line rewrit-
ers like SecondWrite, Program Shepherding requires the installation of an extra piece
of heavyweight software (DynamoRIO) in addition to the application to be run.

2.3 Related Work in Binary Rewriting

Binary rewriting and link time optimizers have been considered by a number of re-
searchers. Binary rewriting research is being carried out in two directions: static rewrit-
ing and dynamic rewriting. Dynamic binary rewriters rewrite the binary during its
execution. Examples are PIN [19], BIRD [20], DynInst [13], DynamoRIO [6], Val-
grind [21], and the translation phase of VMWare [2]. Dynamic rewriters are hobbled
since they do not have enough time to perform complex compiler transformations; they
have been primarily used for code instrumentation and simple security checks in the
past. Moreover dynamic rewriters do not have the time to perform deep code analysis
needed to discover program features needed for static optimization of security checks.
Finally dynamic rewriters encounter run-time overhead from the act of rewriting, which
can be substantial. Given these drawbacks, we do not discuss dynamic rewriters further.

The methods in this research are primarily directed at static binary rewriters such
as our rewriter, SecondWrite. Existing static binary rewriters include Etch [23], ATOM
[11], PLTO [24], Diablo [29], and Vulcan [28]. Three points of novelty for our work are
as follows. First, we are not aware of any rewriter adding our particular set of existing

160 P. O’Sullivan et al.

compile-time security schemes to binaries. Second, none of the existing rewriters em-
ploy a compiler level intermediate representation; rather they define their own low-level
machine-code-like custom intermediate representation. This has several downsides: (i)
most existing rewriters cannot modify the stack layout since they do not distinguish
individual objects on the stack. Hence they cannot implement security schemes that
modify the stack; and (ii) most existing rewriters recognize functions, but not their ar-
guments or return values, and hence cannot deploy security schemes that employ these
schemes. SecondWrite overcomes both these problems as we will describe in section 4.

A third point of novelty of our work is that all existing rewriters can only
rewrite binaries that contain relocation or debug information. This information,
present at link-time, is usually discarded in COTS binaries for two reasons – it is
not needed for execution; and vendors legitimately fear it can be used to reverse
engineer their binaries. Indeed of twenty commercial and open-source binaries
we surveyed, none contained either relocation or debug information. As a re-
sult, existing binary rewriters would not be able to rewrite those binaries at all.
In effect, existing binary rewriters can only be deployed by developers, not end-users.
In contrast our rewriter (SecondWrite) can rewrite arbitrary binaries even without
relocation or debug information, as we will describe in section 4. This renders our
platform a uniquely powerful tool for allowing anyone to rewrite binaries from any
source to enable any security scheme they want.

3 Background on Binary Rewriting

This section presents some background on binary rewriting and discusses how secu-
rity enforcement interacts with it. Our approach relies on innovative binary rewriting
schemes [26, 4] incorporated into our binary rewriting infrastructure called Second-
Write. Binary rewriters are pieces of software that accept a binary executable program
as input, and produce an improved executable as output. The output executable typi-
cally has the same functionality as the input, but is improved in one or more metrics,
such as run-time, energy use, memory use, security or reliability.

Advantages of binary rewriting. In recognition of its potential, binary rewriting has
seen much active research over the last decade. The reason for great interest in this area
is that binary rewriting offers additional advantages over compiler-produced optimized
binaries:

– Ability to do inter-procedural optimization. Although compilers in theory can do
whole-program optimizations, the reality is that they do little if any. Many commer-
cial compilers - even highly optimizing ones - limit themselves to separate compi-
lation, where each file (and sometimes each function) is compiled in isolation. In
contrast, binary rewriters have access to the complete application all at once, includ-
ing libraries. This allows them to perform aggressive whole-program optimizations
to exceed the performance of even optimized code. This ability can be useful for se-
curity schemes as well; in particular for those schemes that rely on whole-program
information such as call graphs and inter-procedural properties to either work at all,
or to optimize fully.

Retrofitting Security in COTS Software with Binary Rewriting 161

– Ability to do optimizations missed by the compiler. Some binaries, especially
legacy binaries or those compiled with inferior older compilers, often miss certain
optimizations. Binary rewriters can perform these optimizations missed by the com-
piler while preserving the optimizations the compiler did perform. This property
may help the rewriter overcome some of the overheads of security enforcement by
improvements in program run-time.

– Increased economic feasibility. It is cheaper to implement a code transformation
once for an instruction set in a binary rewriter, rather than repeatedly for each com-
piler for the instruction set. For example, the ARM instruction set has over 30 com-
pilers available for it, and the x86 has a similarly large number of compilers from
different vendors and for different source languages. The high expense of repeated
compiler implementation often cannot be supported by a small fraction of the de-
mand. This implement-once property is useful for security schemes as well.

– Portable to any source language and any compiler. A binary rewriter works for
code produced from any source language by any compiler. This is a significant ad-
vantage for a security scheme such as the one presented in this paper. A scheme
would not need to be ported to various compilers but would instead only need to
be implemented once within a binary rewriter. Portability of rewriters aids security
schemes implemented in them as well.

– Works for hand-coded assembly routines. Code transformations cannot be applied
by a compiler to hand-coded assembly routines, since they are never compiled. In
contrast, a binary rewriter can transform such routines. Applying security in a binary
rewriter has the advantage of working for hand-coded assembly versus compiler
implementation of security, which does not.

Architecture of Binary Rewriter. The binary rewriter developed by our group and
utilized for this research is named SecondWrite. Figure 1 presents an overview of the
SecondWrite system. SecondWrite’s custom binary reader and de-compiler modules
translate the input x86 binary into the intermediate representation (IR) of the LLVM
compiler. LLVM is a well-known open-source compiler [18] developed at the Uni-
versity of Illinois, and is now maintained by Apple Inc. LLVM IR is language- and

Ada�
C++�
C�

LLVM�
front�end�

LLVM�IR�
optimizations�

OUR�NEW�CODE�

Original�
input�
binary�

Binary�reader�
&�
disassembler�

Format�
library�

Binary�aware�
LLVM�IR�
optimizations

Binary�layout�
modifications�

LLVM�IR

LLVM�IR

LLVM�IR Optimized LLVM�code�
generation�

ISA�
XML�

EXISTING�LLVM�COMPILER

Output�
binary

Fortran�
.�.�.�

Fig. 1. SecondWrite system

162 P. O’Sullivan et al.

machine-independent. Thereafter the LLVM IR produced is optimized using LLVM’s
pre-existing optimizations, as well as our enhancements, including security enforce-
ment in this paper. Finally, the LLVM IR is code generated to output x86 code using
LLVM’s existing x86 code generator.

The front-end module consists of a disassembler and a custom binary reader which
processes the individual instructions and generates an initial LLVM IR. This module
reads the format of instructions from Instruction Set Architecture (ISA) XML files for
the ISA in question, allowing for targeting of the rewriter to different ISAs. Currently
SecondWrite rewrites x86 and ARM binaries. To give an idea of the effort needed for
retargeting, consider that the sizes of the x86 and ARM XMLs are approximately 14000
and 1500 lines of code (LOC), respectively. The XML for x86 is much larger since it
is a complex CISC ISA whereas ARM is RISC. This is a relatively small portion of the
total size of SecondWrite, which exceeds 120,000 LOC (mostly C++). From this we
can see the effort required for retargeting to a new RISC ISA is relatively modest (1-2
person-months in our estimate).

4 Innovations in SecondWrite

SecondWrite has three innovations that make it especially powerful, and a good platform
for security enforcement. To be practical for security enforcement, a rewriter must satisfy
three requirements. First, it must be able to rewrite stripped binaries (i.e., those without
relocation information) since most real-world binaries are stripped. Second, it must be
able to rewrite the entire code, not just discoverable parts of it, thus achieving 100% code
coverage. Third, it should rewrite the code to high-level IR, since some security schemes
rely on high-level constructs such as functions, arguments, return values, and symbols.
Below we describe why existing static rewriters do not provide any of these three capa-
bilities, but SecondWrite does. We note that SecondWrite (and any similar tool) does not
work with software that is either self-modifying or performs integrity self-checks.

Rewriting without relocation information. A key innovation in SecondWrite is that
it can rewrite stripped binaries, i.e., those without relocation or symbolic information,
unlike existing rewriters such as ATOM [11], PLTO [24], Diablo [29], and Vulcan [28]
which cannot. Relocation information is generated by the compiler to help the linker
in resolving addresses that can change when files are linked. Symbolic information
may be inserted for debugging. However, production binaries almost never contain such
information since linkers delete relocation information by default. The programmer
may instruct the linker to retain such information. However corporations almost never
release binaries with relocation and symbolic information since they are unnecessary for
execution, and they fear such information can be used to reverse-engineer information
about their code.

The requirement for relocation information in existing rewriters arises from the need
to update the target addresses of control-transfer instructions (CTIs) such as branches
and calls. When rewriting binaries, code may move to new locations because instruc-
tions may be added, deleted or changed compared to the original code. Hence the tar-
gets of CTIs must be changed to their new locations. Doing so is easy for direct CTIs,
since their targets are available in the CTI itself; the target can be changed to its new

Retrofitting Security in COTS Software with Binary Rewriting 163

address in the output binary. However for indirect CTIs, the target may be computed
many instructions before at an address creation point (ACP). It is impossible to find all
possible ACPs for each CTI using dataflow analysis since they may be in different func-
tions and/or propagated through memory (memory is not tracked by dataflow analysis.)
Hence existing rewriters require relocation information to identify all possible ACPs.
All ACPs must be present in relocation information since ACPs are precisely the list of
addresses that need relocation during linking.

SecondWrite has devised technologies to rewrite binaries without relocation infor-
mation. Details are in [26]; here we briefly summarize the intuition of our method.
Rather than trying to discover ACPs, our basic method relies on inserting run-time
checks at indirect CTIs that translate the old target to its corresponding new address
using metadata tables that store such translations for all possible old branch and call
targets. Aggressive alias analysis on the indirect CTI target is used to prune the list of
such possible targets to a small number. Further, compile-time optimizations are ap-
plied when possible to reduce the number of run-time checks. The result is a method
than can rewrite arbitrary binaries without relocation or symbolic information with very
low overhead. The rewriter can then perform security enforcement on arbitrary binaries
for the first time.

Achieving 100% speculative code coverage. A key challenge in binary rewriters is
discovering which parts of the code section in the input binary are definitely code, and
thus should be rewritten. This is complicated since code sections often contain em-
bedded data such as literal tables and jump tables which if rewritten by mistake will
result in an incorrect program. The only way to be sure a portion of the code section is
indeed code is to find a control-flow path from the entry point of execution to that por-
tion. However portions of code may be reachable only through indirect control-transfer
instructions (CTIs). Unfortunately the precise value set of CTI targets cannot be dis-
covered statically in all cases; hence not all code may be discovered. Existing rewriters
may not discover all the code, yielding incomplete code coverage – undiscovered code
cannot be rewritten, and thus security cannot be enforced on it.

SecondWrite overcomes this problem by speculatively rewriting portions of the code
segment which cannot be determined to be surely code, thus achieving 100% specula-
tive code coverage. The detailed scheme is in [26]; but the intuition is that portions of
the code segment which cannot be proven to be code are speculatively disassembled as
if they are code anyway. If the speculative code turns out to indeed be code at run-time,
then it is executed, achieving 100% speculative code coverage. Instead, if the specu-
lative code arose from disassembling data bytes, that incorrect speculative code will
never be executed since control will never transfer to it at run-time; preserving correct-
ness. Instead the data is accessed from a copy of the original binary maintained in the
rewritten binary. Maintaining this code copy increases code-size, but not the I-cache
footprint since only the data portions of it are actually accessed, thus run-time is not
affected. Since machines today have vastly more resources than even a few years ago,
an increase in code size without increasing run-time is tolerable, especially given the
payoff of being able to rewrite any binary.

164 P. O’Sullivan et al.

Rewriting to high-level intermediate representation (IR). Unlike SecondWrite
which represents programs in the high-level compiler IR, existing rewriters represent
the binary using binary-like low-level code in the rewriter, making the program harder
to analyze and modify. For example, high-level program features required for some
security schemes, such as function arguments and return values, are not apparent in
the binary. Further, existing rewriters retain register and memory accesses as-is, unlike
SecondWrite which replaces both by symbolic accesses. Having memory accesses is
problematic since it forces the layout of memory to be retained exactly in the rewritten
binary, preventing modifications and optimizations of the stack and global segments,
and additions to the stack segment. This too is inconvenient for security check insertion
since such checks may allocate their own stack memory in some cases.

SecondWrite overcomes these programs by representing the binary code internally in
compiler IR. Our method, described in [4], relies primarily on two technologies. First,
high-level program features such as functions, and their arguments and return values are
discovered from the binary using deep static analysis. Second, registers and memory
locations are replaced by symbols as in high-level programs, allowing easy compiler
modification of the memory allocation. With the resulting high-level IR, security checks
become easy to apply.

5 Methods

One of the contributions of this paper is that we have carefully chosen a set of com-
plementary and effective schemes that, taken together, achieve the goal of defending
against all types of buffer overflow attacks at the lowest combined run-time cost. The
totality of our schemes protect against not only the commonly known stack buffer over-
flow into return addresses, but is much more general than that, in that they protect against
buffers on the global, stack and heap segments from overflowing onto a variety of code
pointer locations that are possible in any data segment, including return addresses, func-
tion pointers, indirect branch pointers, longjmp buffers, and base pointers3.

We implement our scheme by adding various passes that operate on high-level IR
inside our binary rewriter. Our overall scheme consists of a number of components that
we describe in detail in this section.

Stack Canary Insertion. The first component of our scheme is the simplest. LLVM
provides the ability to insert stack canaries during code generation. Utilizing this capa-
bility allows us to provide nearly the same level of protection to an un-protected binary
as StackGuard [8] would provide when given an application’s source code.

Essentially, a random canary value is generated at run-time and placed on the stack
during a function’s prologue. In the function epilogue, the value stored on the stack
is compared with the random canary value for this process. If there is any difference,
execution is halted as the canary value has been corrupted.

Base Pointer Elimination. The old base pointer which resides on thestack is a data pointer
thatpoints to thebaseof theparent function’sstack frame.Compilers sometimes introduce
it since it makes it convenient to restore the stack pointer at the end of the function and to

3 Base pointers are not code pointers but lead to a similar vulnerability [31].

Retrofitting Security in COTS Software with Binary Rewriting 165

address different stack locations with the same offset even as the stack grows and shrinks
in the function. When it is present in the input binary, it introduces a vulnerability just
as dangerous as a code pointer [31]. This is because the old base pointer can be attacked
by building a fake stack frame with a return address pointing to attack code, followed by
overflowing the buffer to overwrite the old base pointer with the address of this fake stack
frame. Upon return, control will be passed to the fake stack frame which immediately
returns again redirecting flow of control to the attack code.

Given our unique use of LLVM IR in SecondWrite, the elimination of the base
pointer in the output binary becomes a simple matter even when the input binary has
base pointers. LLVM is an optimizing compiler and the binaries produced by LLVM are
highly optimized. One common optimization applied by modern compilers on the x86
platform is to free up the EBP register for register allocation by removing the base (or
frame) pointer. We used this LLVM pass to eliminate the base pointer from the binary.

When the base pointer is eliminated by LLVM, any attack relying on overwriting the
base pointer is immediately prevented. There will be no base pointer for an attacker to
modify. While corruption of the stack may still occur if an attacker overflows a buffer
in order to attempt to overwrite the base pointer, no attack will be successful.

Return Address Protection. Given that stack canaries as inserted by LLVM do not pro-
vide the same level of protection as the ProPolice mechanism that comes with GCC,
we decided to implement a more complete solution similar to the protection scheme in
StackShield [30], that protects against corruption of the return address. The basic idea
of our return address protection scheme is as follows:

1. During the function prologue, push the return address of the current function in
a return address stack implemented in a global data structure. For multi-threaded
applications, multiple “shadow” stacks are maintained.

2. In function epilogue, compare the current return address on the stack with the value
popped from the top of the return address stack.

3. If there is any difference between these values, execution is halted.

This simple scheme will detect if the return address has been modified either directly
or indirectly. We implemented this scheme as it is relatively simple and protects against
both direct and in-direct modifications of the return address. It also requires no mod-
ification of the stack layout and prevents modifications of the return address through
buffer overflows in the heap or global segments.

Two challenges with this scheme are as follows. First, its overhead might be signif-
icant since every function has an associated security overhead incurred every time it is
called. We found this overhead to be especially significant for recursive functions since
they tend to short-running. Second, the size of the return address stack might be sig-
nificant for deeply nested recursive functions, and we would have to bound it a-priori,
which is hard to do.

We applied an optimization for relieving this problem which we call the return ad-
dress check optimization. We observed that this protection mechanism is only necessary
if a function contains a write to a stack buffer since return addresses only exist on the
stack. This is hard to determine without symbolic information, so we conservatively
try to prove that a function only has directly addressed memory references to constant

166 P. O’Sullivan et al.

addresses. If it finds any indexed write (base + runtime-variant offset), then it conserva-
tively assumes that it could be a buffer write, and disables the optimization. If all writes
are provably non-indexed writes to a constant offset, it enables the optimization, i.e.,
the protection mechanism is turned off in the function. Thus the optimization saves on
run-time overhead without sacrificing any protection.

We found this optimization surprisingly effective since it works best for small leaf
functions in the call graph, and for recursive functions, which happen to be precisely
the functions dynamically called most frequently. During our experimental evaluation
of our scheme, of the many recursive functions we found, every one of them had its
check optimized away. This is unsurprising since recursive functions tend to be short
running, and unlikely to allocate stack arrays (although they may access portions of
global arrays, such as in quicksort, but those still are optimized.) As a result of the
optimization, the run-time overhead for scheme is greatly reduced, and the required
return address stack depth is also greatly reduced. Of course, the overflow of the return
address stack is not an error as we add extensions to it on the heap upon overflow,
which slows execution, but is extremely rarely invoked even for small return address
stack sizes of (say) 256 addresses.

Function Pointer Protection. One common attack method used by attackers is to over-
write a function pointer so that when it is de-referenced, code of the attacker’s choosing
will be executed. In a binary executable, function pointers will appear as indirect calls.
Thus, another component of our scheme concentrates on protecting all indirect calls
and branches similar to how function pointers are protected in StackShield [30].

Our scheme adds checking code before all indirect calls and branches. A global
variable is declared at the beginning of the data segment and its address is used as a
boundary value. The checks inserted before any indirect call or branch ensure that the
target of the indirect call or branch points to memory below the address of the global
boundary variable. If the target points above the address of this global boundary variable
then execution is halted.

An assumption in the above scheme is that a process follows the standard UNIX
layout with the data segment above the code segment. This scheme does not protect
against return-to-libc attacks since the target of the indirect call will still be within the
code segment.

Protection for longjmp buffers. The paired functions setjmp and longjmp, present in
most C and C++ libraries, provide a means to alter a program’s control flow in addition
to the usual subroutine call and return sequence. First, setjmp saves the environment of
the calling function (say foo())into a data structure, and then longjmp in another function
(say bar()) can use this structure to jump back to the point it was created, at the setjmp
call. As a result, execution will return from bar() to foo() even when foo() is not the
immediate parent of bar(). A typical use for setjmp/longjmp is exception handling.

The data structure used by setjmp for saving the execution state is referred to as a
jmp buf. Within this structure, enough information is stored to restore a calling environ-
ment. In particular, one member of this structure saves the value of the program counter
which is used when restoring the calling environment. An attack method used by attack-
ers is to overwrite the value of the program counter stored in the jmp buf structure after
a call to setjmp and before a call to longjmp. If this happens, control will be transferred

Retrofitting Security in COTS Software with Binary Rewriting 167

to an address of the attacker’s choosing when the longjmp is executed. Our method for
defending against attacks of this kind is as follows:

1. Create a hash table within the global segment of the rewritten binary. Protect the
hash table with write-protected (via mprotect()) guard pages, to mitigate attacks
against it.

2. After each call to setjmp store the current value of the program counter in the
jmp buf structure into the hash table.

3. Before a call to longjmp get the current value of the jmp buf structure that will be
used. Attempt to perform a lookup in the hash table for the value of the program
counter.

4. If the lookup in the hash table fails, then the value of the program counter has been
modified and so we abort; otherwise execution continues

We expect the run-time overhead of this scheme to be very low in practice, since setjmp
and longjmp calls are very rare. To the best of our knowledge, this scheme is the first
protection scheme designed to protect against longjmp buffer attacks in the manner
described. We intend to extend our scheme to cover the ucontext t buffers and the
getcontext(), setcontext(), swapcontext() API that is meant eventually to replace the
setjmp/longjmp API.

6 Experimental Evaluation

We now present and discuss experimental results from our evaluation of our sys-
tem. First, we examine the effectiveness of our security schemes as implemented in
SecondWrite on a set of security benchmarks previously proposed by Wilander and
Kamkar [31] for evaluating the effectiveness of buffer overflow defenses. Second, we
examine how effective our scheme is in protecting against real-world attacks on widely-
used real code (not benchmarks). Third, we examine the overheads of both the binary
rewriter and our security scheme on some SPEC2006 and other benchmarks.

Synthetic Results. In order to test how effective our scheme is, we utilized the bench-
marks provided by Wilander and Kamkar [31]. Twenty buffer overflow attack forms
were developed, in order to evaluate the effectiveness of tools available at the time that
aimed to mitigate buffer overflow attacks. The attack forms covered every combination
of buffer overflow attacks on global, stack, and heap buffers overflowing to a return ad-
dresses, base pointers, function pointers, and longjmp buffers. An attack form is defined
as a combination of a technique, location, and an attack target. Of the twenty attack
forms, we obtained the source code to only eighteen of these (i.e., the other two were
not available to us for evaluation). We then compiled the programs into binary code
which we then rewrote using SecondWrite. Our schemes in SecondWrite successfully
defended against all attack forms in the Wilander and Kamkar benchmarks.

Real World Attacks. Ultimately, the success of our scheme depends on whether or
not attacks that are observed in the real world can be prevented or not. Two real-world
attacks were tested.

168 P. O’Sullivan et al.

The first application we tested was GHTTPD – an HTTP server. This web server has
a stack buffer overflow vulnerability in its logging function [15]. We obtained an exploit
for GHTTPD which overflows a stack-based buffer and corrupts the return address.
Using the return address protection component of our scheme, we were able to protect
the return address and prevent the attack that uses the buffer overflow vulnerability to
corrupt the return address. When our scheme is enabled, the return address corruption
is detected when the attack occurs and the application is aborted.

The second application we tested was another HTTP server named CoreHTTP. This
application contains a buffer-overflow vulnerability where it fails to adequately check
user-supplied data before copying it to an insufficiently sized buffer [14]. We obtained
an exploit for this application and applied our protection scheme to the application.
Again, when our protection scheme is enabled, the attack is detected and the application
is aborted.

Binary Rewriting Overhead. A subset of SPEC benchmarks and other benchmarks
were selected to substantiate the performance of our binary rewriter. The benchmarks
were selected at random, and are limited only by the criteria that they are correctly
rewritten by our still-early prototype. Table 1 lists the set of benchmarks that are used in
the experiments. All the benchmarks are compiled with gcc 4.4.1. At this point, Second-
write is not mature enough to rewrite large real-world commercial applications which
are hence not included; debugging is ongoing. There are no fundamental limitations we
know of in rewriting such programs.

Table 1. Application Characteristics

Application Source Lines of C Source Code
lbm SpecFP2006 1155
art OMP2001 1914

mcf SpecInt2006 2685
libquantum SpecInt2006 4357

sjeng SpecInt2006 13847
hmmer SpecInt2006 35992
h264 SpecInt2006 51578

In the first experiment, all binaries executed correctly after rewriting thus demon-
strating SecondWrite’s robustness. The standard suite of LLVM optimization passes ran
without any changes in SecondWrite. These include CFG simplification, global opti-
mization, global dead-code elimination, inter-procedural constant propagation, instruc-
tion combining, condition propagation, tail-call elimination, induction variable simpli-
fication and selective loop unrolling.

Besides correctness, the next most important metrics are the run-time speedup or
overhead of the rewritten binaries versus the input binaries. For this paper, we study
the performance of our rewriter on already optimized binaries. Figure 2 shows the nor-
malized execution time of each rewritten binary compared to an input binary produced
using GCC with the highest available level of optimization (-O3 flag). The results are

Retrofitting Security in COTS Software with Binary Rewriting 169

mixed, with most benchmarks nearly breaking even or showing a small slowdown, one
benchmark showing a larger slowdown of 20%, and one benchmark actually shows a
speedup of 16%. The average is 2.7% slowdown.4

Fig. 2. Normalized runtime of rewritten
binary as compared to optimized input
binary (runtime=1.0)

Fig. 3. Normalized runtime of rewritten
binary with security scheme added

We consider this near break-even performance on highly optimized binaries a good
result for three reasons:

– Our initial goal was not necessarily to get a speedup, but to generate correct IR with-
out without introducing too much overhead. This would enable the IR to be a starting
point for various custom compiler transformations we wanted to perform thereafter,
such as automatic parallelization or security as covered in this paper. Ultimately,
these optimizations determine the utility of the rewriter.

– These numbers represent our first-cut implementation devoid of any attempt at pro-
ducing a better IR more geared towards optimization. We believe these numbers can
be substantially improved with more detailed IR and are exploring several related
avenues.

– We have currently not implemented any custom serial optimizations that might
improve performance further, such as the inter-procedural versions of common
sub-expression elimination and loop-invariant code motion, changing the compiler-
enforced calling convention for registers for better run-time, and more aggressive
inlining. We believe these optimizations hold promise as the inter-procedural op-
timization abilities of current compilers are very limited compared to their intra-
procedural performance.

One additional advantage of the binary rewriter is that it accumulates optimizations
across two compilers—rewritten binaries have an optimization if it is either present in
the compiler that produced the input binary, or in the rewriter. In our case, if either GCC
or LLVM had an optimization, the output binary should have it. This is why, for exam-
ple, one of our rewritten binaries (hmmer) had a 16% speedup versus the input binary.
Although GCC with the -O3 optimization flag is known to produce good code, in some
cases it missed promoting structure fields to registers whereas LLVM did, explaining
the speedup in hmmer. With better IR and more aggressive optimizations, we expect to
see more consistent speedups in output binaries in the future.

4 Rewriting unoptimized input binaries produced using GCC -O0 yields an average speedup of
27% using SecondWrite (not shown) due to its optimizations.

170 P. O’Sullivan et al.

Security Related Overheads. The overhead of the security schemes was measured
on the same applications as used for measuring the overhead of the binary rewriter. The
results are presented in Figure 3 and show overhead versus rewritten binaries without
security schemes inserted. As seen, the average run-time overhead of 6.7% introduced
by the protection scheme is low.

7 Conclusions

We have presented a new mechanism using an advanced binary rewriter that allows end
users to retrofit powerful security features into third-party, binary-only software. The
particular mechanisms we used are well known, and some have been partially imple-
mented in other tools. Our system will allow end-users to retrofit program-level security
protections for the first time in a highly customizable manner according to their needs
and environment.

We demonstrated the effectiveness of our mechanism via experimental evaluation,
begining with the benchmarks developed by Wilander and Kamkar. We successfully
mitigated all the attack forms in the benchmarks. We then went on to demonstrate how
our mechanism successfully defends against multiple real-world attacks. We also mea-
sured the overheads of our binary rewriter in isolation and then we showed what the
overhead of adding the security mechanism to a binary is. In both cases, we demon-
strated that the overhead introduced is quite low.

Future work involves extending the binary rewriter to work on more substantial
applications and demonstrating that the mechanism defends against more real-world
attacks and to better handle multi-threaded code and the new ucontext t API. Other
interesting avenues for future research are software diversification and self-healing tech-
niques using the binary rewriter we have developed.

Acknowledgements. This work was supported by the Air Force, DARPA and the
NSF through Contracts AFRL-FA8650-10-C7024, AFOSR-MURI-FA9550-07-1-0527,
DARPA-FA8750-10-2-0253 and NSF-CNS-09-14845, respectively. Any opinions, find-
ings, conclusions or recommendations expressed herein are those of the authors, and do
not necessarily reflect those of the US Government, the Air Force, DARPA, or the NSF.

References

1. Smashing the stack for fun and profit. Phrack magazine 7(49) (1996)
2. List of VMWare White Papers,

http://communities.vmware.com/docs/DOC2601
3. Abadi, M., Budiu, M., Erlingsson, U., Jigatti, J.: Control-flow integrity. In: Proceedings of

the 12th ACM Conference on Computer and Communications Security (CCS), pp. 340–
353. ACM, New York (2005)

4. Anand, K., Smithson, M., Kotha, A., Elwazeer, K., Barua, R.: Decompilation to Compiler
High IR in a Binary Rewriter. Tech. rep., University of Maryland (November 2010),
http://www.ece.umd.edu/˜barua/high-IR-technical-report10.pdf

5. Boyd, S., Kc, G., Locasto, M., Keromytis, A., Prevelakis, V.: On The General Applicability
of Instruction-Set Randomization. IEEE Transactions on Dependable and Secure Comput-
ing (TDSC) 7(3) (July-September 2010)

http://communities.vmware.com/docs/DOC2601
http://www.ece.umd.edu/~barua/high-IR-technical-report10.pdf

Retrofitting Security in COTS Software with Binary Rewriting 171

6. Bruening, D.: Efficient, transparent, and comprehensive runtime code manipulation. Ph.D.
thesis (2004)

7. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: PointGuardTM: Protecting pointers from
buffer overflow vulnerabilities. In: Proceedings of the 12th Usenix Security Symposium
(2003)

8. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle, P., Zhang,
Q., Hinton, H.: StackGuard: Automatic Adaptive Detection and Prevention of Buffer-
Overflow Attacks. In: Proceedings of the 7th USENIX Security Symposium, pp. 63–78.
USENIX Association (1998)

9. Cowan, C., Wagle, P., Pu, C., Beattie, S., Walpole, J.: Buffer overflows: Attacks and
defenses for the vulnerability of the decade. In: Proceedings of DARPA DISCEX, p. 1119.
IEEE Computer Society, Los Alamitos (2000)

10. Eto, H., Yoda, K.: propolice: Improved Stack-smashing Attack Detection. Transactions of
Information Processing Society of Japan 43(12), 4034–4041 (2002)

11. Eustace, A., Srivastava, A.: Atom: a flexible interface for building high performance pro-
gram analysis tools. In: Proceedings of the USENIX Technical Conference, pp. 25–25
(1995)

12. Foster, J.: Buffer Overflow Attacks: Detect, Exploit, Prevent. Syngress Media Inc. (2005)
13. Hollingsworth, J.K., Miller, B.P., Cargille, J.: Dynamic program instrumentation for

scalable performance tools. In: Proceedings of the Scalable High-Performance Computing
Conference, pp. 841–850 (1994)

14. CoreHTTP Http.C Buffer Overflow Vulnerability,
http://www.securityfocus.com/bid/25120/info

15. ghttpd log() Function Buffer Overflow Vulnerability,
http://www.securityfocus.com/bid/5960/info

16. Hu, W., Hiser, J., Williams, D., Filipi, A., Davidson, J., Evans, D., Knight, J.,
Nguyen-Tuong, A., Rowanhill, J.: Secure and practical defense against code-injection at-
tacks using software dynamic translation. In: Proceedings of the USENIX Conference on
Virtual Execution Environments (VEE) (2006)

17. Kiriansky, V., Bruening, D., Amarasinghe, S.: Secure execution via program shepherding.
In: Proceedings of the 7th USENIX Security Symposium (2002)

18. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analysis &
transformation. In: Proceedings of the International Symposium on Code Generation and
Optimization (GCO), pp. 75–87 (2004)

19. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J.,
Hazelwood, K.: PIN: Building Customized Program Analysis Tools with Dynamic Instru-
mentation. In: Proceedings of the ACM SIGPLAN conference on Programming Language
Design and Implementation (PLDI). pp. 190–200 (2005)

20. Nanda, S., Li, W., Lam, L.C., Chiueh, T.: BIRD: Binary Interpretation using Runtime
Disassembly. In: Proceedings of the International Symposium on Code Generation and Op-
timization (CGO), pp. 358–370 (2006)

21. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. ACM SIGPLAN Notices 42(6) (2007)

22. Rescorla, E.: Security Holes...Who Cares? In: Proceedings of the 12th USENIX Security
Symposium, pp. 75–90 (August 2003)

23. Romer, T., Voelker, G., Lee, D., Wolman, A., Wong, W., Levy, H., Bershad, B., Chen, B.:
Instrumentation and optimization of Win32/Intel executables using Etch. In: Proceedings
of the USENIX Windows NT Workshop on The USENIX Windows NT Workshop (1997)

24. Schwarz, B., Debray, S., Andrews, G., Legendre, M.: Plto: A link-time optimizer for the
Intel IA-32 architecture. In: Proceedings of the Workshop on Binary Translation (WBT)
(2001)

http://www.securityfocus.com/bid/25120/info
http://www.securityfocus.com/bid/5960/info

172 P. O’Sullivan et al.

25. Shacham, H., Page, M., Pfaff, B., Goh, E., Modadugu, N., Boneh, D.: On the effectiveness
of address-space randomization. In: Proceedings of the 11th ACM conference on Computer
and Communications Security (CCS), pp. 298–307 (2004)

26. Smithson, M., Anand, K., Kotha, A., Elwazeer, K., Giles, N., Barua, R.: Binary Rewriting
without Relocation Information. Tech. rep., University of Maryland (November 2010),
http://www.ece.umd.edu/ barua/without-relocation-technical
-report10.pdf

27. Solar Designer: “return-to-libc” attack. Bugtraq Mailing List (August 1997)
28. Srivastava, A., Edwards, A., Vo, H.: Vulcan: Binary transformation in a distributed environ-

ment. Tech. Rep. MSR-TR-2001-50, Microsoft Research (2001)
29. Van Put, L., Chanet, D., De Bus, B., De Sutter, B., De Bosschere, K.: Diablo: a reliable,

retargetable and extensible link-time rewriting framework. In: Proceedings of the IEEE
International Symposium On Signal Processing And Information Technology, pp. 7–12
(December 2005)

30. Vendicator: Stack shield technical info file v0.7. (2001),
http://www.angelfire.com/sk/stackshield/

31. Wilander, J., Kamkar, M.: A comparison of publicly available tools for dynamic buffer
overflow prevention. In: Proceedings of the 10th Network and Distributed System Security
Symposium, pp. 149–162 (2003)

32. Witten, B., Landwehr, C., Caloyannides, M.: Does open source improve system security?
IEEE Software 18(5), 57–61 (2001)

http://www.ece.umd.edu/~barua/without-relocation-technical-report10.pdf
http://www.ece.umd.edu/~barua/without-relocation-technical-report10.pdf
http://www.angelfire.com/sk/stackshield/

Generating Optimised and Formally Checked
Packet Parsing Code

Sebastien Mondet, Ion Alberdi, and Thomas Plagemann

University of Oslo, Norway
{smondet,plageman}@ifi.uio.no, ion.alberdi.research@gmail.com

Abstract. While implementing distributed applications, the parsing of
binary packets is a very difficult and error-prone task the developer has to
face. Moreover, these programming mistakes are often the source of dis-
tant vulnerabilities. In this paper we present a code-generation library,
called Promiwag, for creating optimised and safe packet parsing code.
Its input is concise human-readable descriptions of the protocols and the
interests of the application in specific pieces of information. Promiwag
follows a dependency-based algorithm, and uses high-level optimisation
techniques to generate minimal parsing automatons. These automatons
can be compiled into C or OCaml code for efficient execution, and to an-
notated Why code. This latter output is then used to automatically prove
that for any possible input packet, the generated code cannot perform
any illegal memory access, and that no infinite loop can be triggered. We
have used our code generator to implement a pretty-printer for Internet
protocols, and we provide experimental results on the performance of the
generated code.

1 Introduction

One of the currently observable trends for future distributed applications is the
convergence of Internet and Mobile networks. More and more small, mobile,
and cheap electronic devices must be able to communicate with personal lap-
tops, servers, and/or clouds. Therefore, one needs to implement specialised and
complex software for many different platforms. Some of these platforms require
special attention to be given to performance. Indeed, computing resources may
be very limited, e.g., on mobile devices. In parallel, the error-proneness and the
lack of static guaranties of the common tools and languages used by developers
(unsafe memory accesses, dynamic typing, etc.) lead to a very large amount of
bugs and security vulnerabilities present in distributed applications1.

One commontask thatmanydistributedapplicationdevelopershave tohandle is
the parsing of binary protocols. For example, this is the case in almost every piece of
protection software (firewalls, intrusiondetection systems, etc.).The codehandling
these aspects, especially when hand-written in C or C++, is very often swarming
with implementation mistakes. The latter often lead to exploitable buffer over-flow
vulnerabilities or easy-to-trigger denial-of-service attacks [18].
1 c.f. CVE (Common Vulnerabilities and Exposures); cve.mitre.org

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 173–184, 2011.
c© IFIP International Federation for Information Processing 2011

http://cve.mitre.org/

174 S. Mondet, I. Alberdi, and T. Plagemann

Code generation techniques (a.k.a. Meta-Programming) have already been of-
ten used to automate programming tasks. Examples range from the lex and
yacc tools developed in the 70s, to the compiler of the “Fastest Fourier Trans-
form in the West” [11]. Generating code from a higher level representation allows
adapting the output specifically to the target platform. It also allows providing
aggressively optimised code while keeping the required level of safety. From the
initial input representation, one can also generate additional output which may
assist the developer in other ways; e.g. for testing or documentation extraction.

The safety provided by code generation will often be much better than with
hand-written code. However, the code generator itself is generally a piece of
software developed by one or more human beings. As such, it can (and will) be
the victim of many programming mistakes. How can one trust the code gen-
erated by an external tool? Expert and careful proof-reading of thousands of
lines of generated code is by far too expensive for most software projects; and
testing requires identifying in advance all the possible ways to make a program
go wrong. When dealing with input as binary packets which can be erroneous,
or maliciously crafted, both approaches are not realistic. We address this issue
by mathematically ensuring the safety of the generated code against any pos-
sible input. Formal properties are automatically proved on the output of the
Promiwag library.

In this paper, we focus on the generation of code for parsing network packets.
From a high-level representation of network protocols and their handling by the
user, our code generator creates optimised code on which safety and security
properties are formally proved. The user describes i) the binary formats of the
packets, ii) the transitions between (micro-)protocols (e.g. how to pass from IP
to TCP), iii) a few logical properties to insure, iv) which pieces of information
he is interested in, and v) what user-function to call with the parsing results
as arguments. Out of these concise declarations, the Promiwag library builds a
parsing automaton which parses only the necessary fields (i.e. the fields required
by the user and their dependencies). This intermediate representation also con-
tains logical properties about the algorithms involved. It is then compiled into
i) C code for high performance parsing, ii) OCaml code, and iii) annotated Why
code [10]. This latter output allows, thanks to the Alt-Ergo theorem prover [8],
automatically proving that, for any possible input packet, no wrong memory
accesses can be provoked, and no infinite loops can be triggered.

In Section 2, we detail and discuss the design of our code generation approach.
Then, in Section 3, we assess the performance of the code through experiments.
We discuss related projects in Section 4, before concluding and suggesting future
work (Section 5).

2 Packet Parsing Code Generation

Figure 1 illustrates the high-level idea of the structure of the code generation
process in the Promiwag library. We have developed our code generation tool as

Generating Optimised and Formally Checked Packet Parsing Code 175

Fig. 1. The Structure of the Code Generation Process in the Promiwag Library

an Objective Caml2 library. The user can link their programs with the library to
generate the code. A dedicated and independent input language could be easily
implemented, but the slight benefit of readability would not overcome the loss in
flexibility. Indeed, as Promiwag can generate code for different target platforms,
and can adapt the code to the needs of the user, having a powerful programming
language can be very practical for code reuse and maintainability.

We present the code generation process from an input/output point of view
in Sections 2.1 and 2.2. Afterwards, we discuss the limitations and some issues
related to the current state of our implementation in Sections 2.3 and 2.4.

2.1 Input

For each protocol or micro-protocol (e.g. for a given type of packet header, and
its links to the “upper” layers), the input required from the user is composed
of two declarative pieces of code; the (micro-)protocol description and the user
handler.

The first, is the description of the (micro-)protocol itself. The user gives a
precise definition of the binary format, i.e., they name the fields and their size(s).
A field can be an integer of any size between 0 and 32 bits, or a string of any byte
size. They also provide the “parsing transitions”, which are a sequence of switch-
like statements to tell the generator how to continue the parsing. For example,
given the value of a protocol field, the parser has to continue with another
(micro-)protocol included in a given payload. Finally, the user can provide “run-
time checks” that tell the generator to include assertion checking code, about
the fields of the parsed packet. The goal of the run-time checks is not to write a
full stateless firewall, but to insure a few consistency properties needed for the
formal proofs on the code. For example, the soundness of the binary format may
depend on assumptions about certain fields in a given (micro-)protocol.

The second declaration, the user-handler, is optional. It describes the user’s
interest in specific parsable values and their handling by an external function.
Each user-handler refers to a described (micro-)protocol. The user specifies their
request for values, offsets, pointers, and/or sizes in the binary format, and pro-
vides a function in the target programming language (C or OCaml) which ex-
pects these values as arguments. The function returns a boolean/integer deciding
whether to continue parsing or not.

2 ocaml.org

http://ocaml.org

176 S. Mondet, I. Alberdi, and T. Plagemann

let ipv4_format = packet_format [
fixed_int_field "version" 4;
fixed_int_field "header_length" 4;
fixed_int_field "tos_precedence" 3;
fixed_int_field "tos_delay" 1;
fixed_int_field "tos_throughput" 1;
(∗ . . . Skipped . . . ∗)
fixed_int_field "dest" 32;
string_field "options "

(size (‘align32 (‘sub
(‘mul (‘var "header_length", ‘int 4),
‘add (‘offset "dest", ‘int 4)))));

payload ~name:"ip_payload"
~size:(size (‘sub (‘var "length",

‘mul (‘var "header_length", ‘int 4))))
]

let ipv4_transitions = switch "protocol " [
(∗ . . . Skipped . . . ∗)
case_int_value 6 tcp "ip_payload";
case_int_value 17 udp "ip_payload";
(∗ . . . Skipped . . . ∗)
case_int_value 47 gre "ip_payload";

]
let ipv4_checks = [check_range "header_length" 5 15]

Listing 1.1. Example of Description of IPv4’s Protocol

(ipv4_name , [‘value "src"; ‘value "dest"; ‘size " ip_payload"],
call_target_handler "ipv4_handler_function")

Listing 1.2. Example of User-Handler for IPv4

Listings 1.1 and 1.2 show (shortened) examples of user code regarding the IP
protocol (version 4). The first is a (micro-)protocol description; the binary for-
mat, the parsing transitions, and a single run-time check. The second listing is the
corresponding user-handler specification. In the binary format description, one
can see how variable-length fields like the “options” are created with arithmetic
expressions. This particular case requires a run-time check. Indeed, the positive-
ness of the size of the field depends on the fact that the field “header_length”
is between 5 and 15 as required by the RFC 791. If the corresponding run-time
check is not provided by the user, the formal proving of the parsing code will
fail. This non-provability matches a hypothetical malicious attack of crafted IP
packets containing wrong “header_length” fields. Note that this run-time check
is the only one needed to implement and prove the Tcpdump-lite experiment in
Section 3.

2.2 Output

From the previously described declarations, Promiwag builds the parsing au-
tomaton code. It starts from the fields required by the user request, the parsing
transitions, and the run-time checks, and then follows their dependencies to min-
imise the amount of code. This parsing automaton is expressed in an internal
representation. This representation contains the parsing algorithm in a strictly-
typed imperative language. The language is low-level as it can handle pointer

Generating Optimised and Formally Checked Packet Parsing Code 177

arithmetic, bit-wise operations, etc., but platform independent (for example, en-
dianness is explicit). It is also annotated with logical properties gathered during
its construction. Many human-readable comments are also kept for debugging or
proof-reading purposes. During the code-generation, the library performs rela-
tively high-level code optimisations, including constant propagation, partial eval-
uation, common sub-expression elimination, and “factorisation” of buffer access
verifications. The lowest-level optimisations are left to the back-end compilers of
the output languages; implementing them would be redundant.

In the example presented in Listings 1.1 and 1.2, the initial “required fields”
correspond to the ones requested by the user (the values of “src” and “dest”, and
the size of the “ip_payload”), the field “header_length” for the run-time check,
the value of “protocol” and the offset of the “ip_payload”. The generator needs
the last two to be able to continue the parsing with the next protocol. Then, the
computation of, for instance, the length of the “options” field will be required
as a dependency in order to compute the offset of the payload.

The internal representation of the parsing code can then be “compiled” into
the three targets shown in Figure 1. On the one hand, the two “programming
language” targets are C and OCaml. The former may be seen as the main target,
as the code generator was originally designed for C. The transformation to this
language is parametrised by a representation of the target platform (endianness,
sizes of the types, etc.). The OCaml output was implemented in order to show
that adding other target languages is a relatively easy task. Implementing this
transformation from scratch took only 4 hours for one developer. After this time,
the OCaml version of the Tcpdump-lite application presented in Section 3 was
successfully tested. Generating OCaml is useful by itself: it is used for some
experiments for instance to count the buffer accesses in Table 1.

On the other hand, Promiwag’s code generator uses the intermediate represen-
tation to generate input for the Why tool. Why3 is a “verification condition gen-
erator” created by Jean-Christophe Filliâtre. For a given annotated algorithm,
it propagates “weakest preconditions” [9] and generates “proof goals” when an
assertion needs to be proved. The annotations are, generally, intermediary proof
goals or “hints” to guide the proving steps. The generated proof goals must then
be proved by another tool, an automatic prover and/or a proof assistant.

In our case, we use the “fast” weakest precondition algorithm presented by
Barnett and Leino [2]. Thanks to the annotations, the proof goals can be auto-
matically proved by the Alt-Ergo4 theorem prover [8]. The Why code generated
by the Promiwag library represents the algorithm of the parsing automaton. The
user-handlers for the protocols are ignored; we prove only the code we generate.
The accesses to the packet buffer are abstracted as logical functional parameters.
They are modelled in order to require a proof that they are not out of bounds
each time they are “called/used”, and at the same time, to express that accessing
a packet can lead to any arbitrary value, i.e., there is absolutely no assumption
on the content of the packet. The automaton is able to parse “protocol loops”,

3 why.lri.fr
4 alt-ergo.lri.fr

http://why.lri.fr/
http://alt-ergo.lri.fr/

178 S. Mondet, I. Alberdi, and T. Plagemann

like IP/GRE/IP, but we provide enough annotations to guide the proof that
the parser always strictly “advances” in the packet. Hence, given that a packet
has constant arbitrary size, the tools can prove that the parsing always finishes
eventually.

At the end of a successful proving process, we can assert that the generated
parsing automaton verifies the following theorem:

For any possible input packet,
– no unsafe memory accesses can happen, and
– no infinite loops can be triggered.

2.3 Current Limitations

As work-in-progress, the Promiwag library currently does not implement any ad-
hoc “parsing state” management. This means that the generated code cannot yet
use information from previous packets, and/or from other (micro-)protocols in the
same packet. The implementation of features like the handling of IP fragmentation
or the transitions present inside protocols like DNS or DHCP are subject to future
work. They have to be implemented for now within the user’s handlers; note that
the user can still use generated code for the low-level parsing related to this.

The theorem which can be proved on the code, is certainly a huge benefit over
most other implementations of packet parsing; especially from a security stand-
point. The proof asserts that the code cannot be used to provoke a fatal error.
However, we do not have yet any formal proof that the code does what it is actu-
ally supposed to do. This means that checking the correctness of the computation
of a given field of a (micro-)protocol requires testing. Of course, testing for exam-
ple that the “header length” field parsed for an IP packet has the expected value
is much easier than trying to imagine all the possible ways to alter it in order to
make the program crash. Moreover, in C or C++ programs, the error reporting of
unsafe memory accesses depends on the exact memory layout at the time of test-
ing. They may be completely silent in some cases and appear later in production;
this problem is completely addressed by the current proof.

Finally, from an ergonomics point of view, the error reporting related to formal
proving is still quite difficult to understand. In the example of Listings 1.1 and
1.2, if one forgets the run-time check on the “header length”, the theorem prover
just fails saying “I don’t know” about a possibly very long proof goal. Then,
tracking down the error to find the original mistake is not an easy task. For now,
we have implemented a very explicit naming of generated variables together with
high-level comments which are propagated to the different outputs. While these
are helpful, more sophisticated techniques will be needed in the future.

2.4 Trust Issues

When hearing about mechanised and/or automated proofs, one has to ask the
question: ‘Who and what do we really have to trust?’ Regarding the theorem
proved on the generated code, apart from the soundness of the underlying math-
ematical framework, one has to trust our work in some respects, and the external
tools in others.

Generating Optimised and Formally Checked Packet Parsing Code 179

On the one hand, the trust bottleneck in the Promiwag library is the final
compilation stage. Currently, there is no proof that the different outputs are
semantically equivalent. This means that when the theorem prover succeeds,
one has to trust us that the C and OCaml outputs are equivalent, and actually
proved by the proof on the Why code. To address this, we have restricted the
size of the critical code to the minimum. We also note that implementing the
OCaml output in half a day (c.f. Section 2.2) partially shows that this part of
the code is quite straight-forward.

On the other hand, the whole tool-chain depends on many external tools.
First, one has to trust the theorem proving tools; Why and Alt-Ergo them-
selves. Both rely on formally proved algorithms, but their implementations are
not. Note that other theorem provers can be used with Why if needed. Second,
every software project has to trust its compilers; in our case, the C and OCaml
compilers. For C, we use the GNU Compiler Collection (GCC). Even though it
is widely tested, at least for the C language within the mainstream architectures,
many bugs are often found in official releases. As a side note, we have successfully
tested the compilation of the C code generated for our Tcpdump-lite example
with Compcert5. Compcert is a formally proved compiler for a subset of the C
language [13]. For OCaml, we use the standard compilers. They may also be a
trust issue but a substantial part of the system (compiler and run-time) has al-
ready been qualified under the DO-178B standard to be used as tool for critical
aircraft software development [16].

3 Experimental Results

In this section, we provide the results of our experimental study into the perfor-
mance of the generated code. We aim to show that the use of a code generator
does not degrade the performance compared to hand-written code, and that the
size of the generated code is still quite controllable by the user.

We have used the Promiwag library to implement a pretty printer for Internet
protocols (Ethernet, IPv4, ARP, GRE, TCP, UDP, etc.). As previously men-
tioned, we have named it “Tcpdump-lite”. It is based on libpcap6, and uses our
code generator to call user-handlers which are only pretty-printing the requested
values (printf). We have generated three different “flavours” of Tcmpdump-lite:

– Full: requests various meaningful fields for every (micro-)protocol, and dis-
plays them.

– Muted: requests the same fields as Full but does not print them;
(micro-)protocol user-handlers are just empty, it just prints “error” messages
(i.e. alerts when packets are malformed).

– Light: requests and prints fields only for UDP and TCP.

To estimate the running times of the tool-chain, we just measure the times taken
by the different programs on an old Pentium 4 desktop computer for the Full
5 compcert.inria.fr
6 www.tcpdump.org

http://compcert.inria.fr
http://www.tcpdump.org/

180 S. Mondet, I. Alberdi, and T. Plagemann

version: i) compiling a code generation program and linking against our library:
0.12 s; ii) running the code generation: 0.04 s; iii) compiling the C code output
with GCC: 0.13 s; iv) running the Why tool: 13.8 s; and v) proving all the goals
with Alt-Ergo: 21 s.

We have done experiments listening to “live” network interfaces and with many
“PCAP capture files” (generated by us or found on the Web). To simplify their
presentations, we present here the results obtained with two characteristic files.
We call the first one Fuzz-10K, it is a capture of 10 000 packets, where many are
malformed, and contain potential “attacks”. The second one is 24GRE-132 which
is composed of 132 packets among which many are using 24 encapsulated GRE
tunnels. This means that for those packets the “protocol stack” is: Ethernet/
IPv4/GRE/IPv4/GRE/IPv4/.../GRE/IPv4/UDP where there are 24 GRE encap-
sulations. Note that handling multiple encapsulations is an important feature [1]
which many networking tools cannot handle; explicitly or not. For example the
Section 1.8.1 of the Snort manual [19] states that for more than one GRE tunnel,
packets will not be inspected, and the Linux kernel simply crashes for more than
36 encapsulations (c.f. Debian bug number 599816).

The first experiment is an analysis of the control the user has on the generated
code. Table 1 shows a comparison between the Full and Light versions of our
Tcpdump-lite. We provide the raw size of the whole program, and the number of
buffer accesses actually executed during the parsing of both capture files. This
shows that, from the same set of (micro-)protocol descriptions, just by removing
requests and user-handlers, the user can lighten the application significantly. It
matches the goal of writing software adapted to the resources of the target device.
For example, one can make a special version of a firewall application for mobile
phones with a more affordable development effort.

Table 1. Code Comparison of The Full and Light Versions

Size (bytes) Buffer Accesses
Binary C File Fuzz-10K 24GRE-132

Full 19 157 35 027 242 050 8 457
Light 14 378 22 272 65 482 2 921

We also provide results for brute performance evaluation. We compare the run-
ning times of the different versions of Tcpdump-lite, against an “empty” PCAP
application (i.e., the same code as Tcpdump-lite but without any parsing of
the packets) and different options of the original Tcpdump application. To be
less unfair with the latter, we use the options -n so that IP addresses are not
converted to host names and -K so that checksums are not computed. We also
redirected all outputs to /dev/null. We measure Tcpdump’s (noted “T”) run-
ning times for the different verbosity levels: the default, -v, -vv, and -vvv. In
order to try to reduce the entropy of the measurements, we run them 2000 times
on an old machine (Pentium 4) and on a more recent one (Core 2 Duo P8700).

The results are presented in Table 2. Note that the Fuzz-10K capture involves
some malformed packets which trigger error-message printing even for the Muted

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=599816

Generating Optimised and Formally Checked Packet Parsing Code 181

Table 2. Results for 2000 runs (times in seconds)

Machine: Pentium 4 Core 2 Duo P8700
File: Fuzz-10K 24GRE-132 Fuzz-10K 24GRE-132
Empty 10.97 6.88 5.16 2.40
Full 113.35 11.02 84.32 5.64
Muted 13.49 7.36 6.94 2.52
Light 19.71 7.44 11.97 2.61
T 122.38 10.79 86.57 5.86
T -v 168.76 14.67 123.49 8.69
T -vv 169.14 15.16 127.49 9.18
T -vvv 168.46 15.17 127.67 9.20

version, and that the 24GRE-132 one induces a lot of parsing logic compared to
the display of information. If we assume the two following approximations: i) the
Empty program represents the operating system plus the “PCAP machinery”, and
ii) the difference between Full and Muted measures the time spent in printing,
then we can compute the following statistics (for the Pentium 47):

– For the capture Fuzz-10K, the distribution of the time spent is: OS+Pcap:
9.7 %, Generated code: 2.2 %, Printing: 88.1 %; and the average time per
packet for the Full version is: 5.67 μs.

– For the capture 24GRE-132 the distribution of the time spent is: OS+Pcap:
62.4 %, Generated code: 4.4 %, Printing: 33.2 %; and the average time per
packet for the Full version is: 41.7 μs.

The running times for the original Tcpdump are given as a comparative indica-
tion. Indeed, the application is more feature-full, and dynamically configurable
(i.e. on command line).

4 Related Work

The use of code-generation techniques in order to improve the performance and/
or the safety of distributed systems has been gaining a lot of interest in literature.
For instance, with the Statecall Policy Language presented by Madhavapeddy et
al. [14], one can describe statefull automatons which are compiled into three dif-
ferent targets: OCaml code to embed in an application, Promela code to check
temporal properties with the SPIN8 model checker, and HTML/Ajax code for
real-time monitoring of the application. Another example is the declarative sen-
sor networks (DSN) platform (Chu et al. [7]). There, the user describes appli-
cation overlays using a declarative language (paradigm similar to Prolog) and

7 The results for the Core 2 Duo P8700 are slightly better for the generated code but
the true parallelism of the architecture may make these computations less meaning-
ful.

8 spinroot.com

http://spinroot.com/

182 S. Mondet, I. Alberdi, and T. Plagemann

the compiler generates code for sensors in NesC (the C dialect for the TinyOS
operating system).

Regarding the management of packet streams, two projects use meta-
programming for high-level packet filtering purposes. First, the BPF+ packet
filter [3] uses a high-level language to describe boolean predicates on packet
flows. This language is compiled to bytecode which can be verified or interpreted
(or JIT-assembled). Among the verifications, the halting of the application is in-
sured by forbidding any kind of cycles or loops in the filtering program. Second,
the FFPF project (Fairly Fast Packet Filter [5]) implements a filtering language
which allows one to “chain” (mostly independent) packet analysis applications
while sharing kernel-space buffers to avoid copying.

Examples of projects using code-generation especially for packet parsing are
Binpac, GAPAL, and Melange’s MPL. Binpac [17] is a C++ code generator
for the Bro intrusion detection system9. It uses a yacc-like language to mix
the specification of binary formats and user’s C++ code in order to help them
in their task. State and parsing transitions are written directly by the user as
well as bit-level accesses, e.g. by including inline C++ code. GAPAL [4] is a
high-level language for analysing application protocols which is evaluated by a
C++ interpreter. The Meta-Packet Language of the Melange framework [15], is
a domain specific language to describe Internet protocols. Its compiler generates
optimised OCaml pieces of code for each protocol; the use of a memory-safe
language naturally avoids wrong buffer accesses. It also features ad-hoc parsing
state management for situations commonly found in Internet protocols. Parsing
transitions between protocols are left to the developer (but they fit well with
ML-style programming).

Even though these projects may handle more complex protocols and/or frag-
mentation thanks to ad-hoc parsing-state management, they all have a unique
output language and they do not give any formal proof on the generated code.
Moreover, they all generate code for the whole defined set of protocols, i.e. even
for non-used portions. As they rely on a lot of hand-written code, brute perfor-
mance comparisons would be quite meaningless. For example, to compare the
performance of the Tcpdump-lite, implemented with Promiwag, against another
one implemented with Binpac, the developer would have to implement the pars-
ing transitions or the “bit-level” accesses directly in C++. This would mean
comparing a lot of generated code against hand-written code.

5 Conclusion

Our goal is to provide reduced development costs while keeping performance and
enforcing safety. We have presented a code-generator which, from concise and
high-level descriptions, can generate optimised code for parsing binary packets.
The code is safe-by-construction thanks to automated formal proofs done on
the output. The user control the amount and the performance of the generated
code. Indeed, the generation is dependency-based; we build only the code that is
9 www.bro-ids.org

http://www.bro-ids.org/

Generating Optimised and Formally Checked Packet Parsing Code 183

actually needed by the user. The experiments we provide assess that the run-time
performance will not be degraded by the use of our library.

Future work will be divided in three directions. First, state, persistence, and
memory management are needed to add features to the parsing generation. This
problem is much more generic than just packet parsing and will have to be
treated as such to be used in other aspects of distributed applications. Second,
more aggressive optimisations on the code could be implemented. As the perfor-
mance of a given program transformation depends on the actual code, potential
optimisations could be evaluated on the generated code in order to choose the
right option at the last time. Finally, the formal proving framework gives us a
lot of room for interesting improvements. More properties could be proved on
the code, e.g. the accuracy of the computations regarding the user’s requests,
or the absence of dead code. The “trust bottleneck” of the Promiwag library,
i.e. the code which transforms the (last) internal representation to the different
targets, could be re-implemented in a directly certified way with a proof assis-
tant like Coq10. This family of formal tools have “executable code extraction”
capabilities, and these kinds of program transformations, even if they require a
lot of specification and proving work, are well suited for programming with proof
assistants [12,6].

References

1. Alberdi, I., Owezarski, P., Nicomette, V.: Luth: composing and parallelizing
midpoint inspection devices. In: NSS 2010: Proceedings of the 4th International
Conference on Network and System Security, pp. 9–16. IEEE Computer Society,
Melbourne (September 2010)

2. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In:
PASTE 2005: Proceedings of the 6th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, pp. 82–87. ACM, New York
(2005)

3. Begel, A., McCanne, S., Graham, S.L.: Bpf+: exploiting global data-flow optimiza-
tion in a generalized packet filter architecture. In: SIGCOMM 1999: Proceedings
of the Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, pp. 123–134. ACM, New York (1999)

4. Borisov, N., Brumley, D., Wang, H.J., Dunagan, J., Joshi, P., Guo, C.: Generic
application-level protocol analyzer and its language. In: NDSS (2007)

5. Bos, H., de Bruijn, W., Cristea, M., Nguyen, T., Portokalidis, G.: FFPF: Fairly Fast
Packet Filters. In: OSDI 2004: Proceedings of the 6th Conference on Symposium
on Opearting Systems Design and Implementation (2004)

6. Chlipala, A.: Certified Programming with Dependent Types. Online in-progress
textbook (2009)

7. Chu, D., Popa, L., Tavakoli, A., Hellerstein, J., Levis, P., Shenker, S., Stoica,
I.: The design and implementation of a declarative sensor network system. In:
Proceedings of the 5th International Conference on Embedded Networked Sensor
Systems (2007)

10 coq.inria.fr

http://coq.inria.fr

184 S. Mondet, I. Alberdi, and T. Plagemann

8. Conchon, S., Contejean, E., Kanig, J., Lescuyer, S.: Lightweight integration of the
ergo theorem prover inside a proof assistant. In: AFM 2007: Proceedings of the
Second Workshop on Automated Formal Methods, pp. 55–59. ACM, New York
(2007)

9. Filliâtre, J.C.: Verification of non-functional programs using interpretations in type
theory. J. Funct. Program. 13(4), 709–745 (2003)

10. Filliâtre, J.: Why: A Multi-Language Multi-Prover Verification Tool. Research Re-
port 1366, LRI, Université Paris Sud (2003)

11. Frigo, M.: A fast Fourier transform compiler. ACM SIGPLAN Notices 34(5) (1999)
12. Leroy, X.: Mechanized semantics. In: Logics and Languages for Reliability and

Security. NATO Science for Peace and Security Series D: Information and Com-
munication Security, vol. 25, pp. 195–224. IOS Press, Amsterdam

13. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

14. Madhavapeddy, A.: Combining Static Model Checking with Dynamic Enforcement
using the Statecall Policy Language. In: International Conference on Formal Engi-
neering Methods (2009)

15. Madhavapeddy, A., Ho, A., Deegan, T., Scott, D., Sohan, R.: Melange: Towards a
functional Internet. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems (2007)

16. Pagano, B., Andrieu, O., Moniot, T., Canou, B., Chailloux, E., Wang, P., Manoury,
P., Colaço, J.L.: Experience report: using Objective Caml to develop safety-critical
embedded tools in a certification framework. In: ICFP 2009: Proceedings of the
14th ACM SIGPLAN International Conference on Functional Programming, pp.
215–220. ACM, New York (2009)

17. Pang, R., Paxson, V., Sommer, R., Peterson, L.: binpac: a yacc for writing appli-
cation protocol parsers. In: IMC 2006: Proceedings of the 6th ACM SIGCOMM
Conference on Internet Measurement, pp. 289–300. ACM, New York (2006)

18. SANS Institute: Top 20 internet security problems, threats and risks. section 5
anti-virus software (2007), http://www.sans.org/top20/2007/#s5

19. Snort Team: Snort Users Manual. The official documentation produced by the
Snort team at Sourcefire (2010)

http://www.sans.org/top20/2007/#s5

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 185–196, 2011.
© IFIP International Federation for Information Processing 2011

Organizational Power and Information Security
Rule Compliance

Ella Kolkowska and Gurpreet Dhillon

Swedish Business School, Örebro University, Sweden
School of Business, Virginia Commonwealth University, USA
ella.kolkowska@oru.se, gdhillon@vcu.edu

Abstract. This paper analyzes power relationships and the resulting failure in
complying with information security rules. We argue that inability to
understand the intricate power relationships in the design and implementation
of information security rules leads to a lack of compliance with the intended
policy. We conduct the argument through an empirical, qualitative case study
set in a Swedish Social Services organization. Our findings suggest a relation-
ship between dimensions of power and information security rules and the
impact there might be on compliance behavior. This also helps to improve con-
figuration of security rules through proactive information security management.

Keywords: dimensions of power, information security, security compliance.

1 Introduction

Lack of compliance with security policies occurs because of a number of reasons.
Foremost amongst them are the inability of the policy to reflect current practices [1]
and stakeholder resistance to security rules [2]. The organizational studies literature
has intricately linked the concept of resistance to organizational power [3, 4]. Follow-
ing on from the arguments presented in the dominant literature, we make a call to
better understand organizational power in the context of information security policy
compliance. Information security policy consists of a number of rules for protecting
information in an organization. Whenever security rules are implemented or modified,
there is a resultant organizational change - business processes get re-engineered, re-
porting structures get modified, technical controls get redesigned. However as Hardy
[5] suggests, organizational power provides the energy to realize change. Thus, we
argue that by developing a good understanding of organizational power dimensions it
would be possible to ensure better security rule compliance. Correspondingly we also
argue that a better appreciation for organizational power will ensure correct configu-
ration of security rules.

The objective of the paper is to apply Hardy’s dimensions of power to understand
compliant and non-compliant behavior. Our findings also suggest how managers can
use such an understanding to improve compliance with security rules. Three classes of
definitions ensue from our argument - organizational power, information security and
compliance. In this paper we refer to organizational power as “the probability within a

186 E. Kolkowska and G. Dhillon

social relationship of being able to secure one’s own ends even against opposition”
[6]. We refer to information security as the protection of all information handling
activities, may these be technical or non technical [7]. And compliance refers to a
“relationship in which an actor behaves in accordance with a directive supported by
another actor’s power, and to the orientation of the subordinated actor to the power
applied” [8 pg3].

2 Security Rule Compliance and Organizational Power

In a seminal paper, Ranson et al [9] while discussing specialization of tasks in organi-
zations, have argued that over time the path of internal differentiation leads to a
“process of perpetual fission that fragments the collective enterprise of adequate un-
derstanding”. This means that over time, in any enterprise, as complexity sets in,
organization power is bound to get manifested. Hence compliance with a certain
“paradigm or problematics” [cf. 9] is an attempt to articulate the latent relationships
amongst stakeholders.

In the context of our research, and in using Ranson et al [9] terminology, a security
rule is a form of organizational structure, which has its own “devotees”. With time
security rules get transformed (i.e structures evolve) as do the “devotees”. The con-
stant interplay between the evolving structures and those who believe in them results
in power, which as Hardy [5] notes, helps in “bringing about strategic action”. In the
literature this interplay has been termed as structures being “constituted and constitu-
tive” [see 9, 10].

Therefore in this section we explore the relationship between organizational power
and security rule compliance. It is important to address this issue since dominant
literature illustrates a rather consistent pattern of lack of compliance with security rules
[11-14]. The notion of lack of compliance as a consequence of organizational power
manifestations has been well documented in the literature. Lapke and Dhillon [2] identi-
fied resistance to security policies as one of the major reasons for failure. Lapke and
Dhillon [15] also consider the importance of understanding organizational power in
formulation and implementation of security policies. While aspects of compliance have
been touched upon in the work of Lapke and Dhillon [2, 15], they do not explicitly
focus on organizational power and it’s utility (or limitation) in security rule compliance.

Another stream of security rule compliance research has focused on sanctions. The
emphasis of this stream has been on studying the relationship of penalties and pres-
sures that one party might apply on the other. Organizational power that comes into
play in the context of penalties and sanctions is generally coercive in nature [16].
Coercive power and rewards have been extensively researched in the management
literature. In the context of information security, a number of researchers have argued
that coercion, sanctions and rewards have a significant impact on compliance or non
compliance [17, 18]. This orientation has lead to using deterrence theory to suggest
that individual expectations about external contingencies (e.g., rewards, punishments,
etc.) are a driving force that directs their compliant behaviors [19, 20]. The emphasis
within such behavioral research [17] is on the modification of one kind of attribute
(value congruence, legitimacy, etc) or another, to ensure compliance [see 21, 22, 23].

 Organizational Power and Information Security Rule Compliance 187

Some behavioral studies emphasize the importance of value correspondence and
cultivation of a security culture. According to these studies compliance can be
improved if employees internalize information security values in their daily work
practices [24]. In this way “proper” security behavior will become a natural part of an
employees’ daily work activities [23, 25]. A similar approach is also suggested in
‘awareness studies’ [26]. These studies suggest that increased security awareness of
employees and educational programs leads to better compliance with information
security rules [27, 28].

There is no doubt that compliance with security rules can be achieved by any or all
of the above identified approaches and clearly there may be more. However a limited
number of current studies in the area emphasize the relationship between compliance
behaviors and the sociological constructs such as power, which can be utilized to
enforce these behaviors. Our study addresses this gap showing the value of applying
the dimensions of power to understand compliant and non-compliant behaviors. This
is because it allows for clarity on the nature and scope of exiting domination and how
it plays out in the context of a strategic change, particularly when a new security rule
gets instituted.

Organizational power and its implications on various aspects of business have been
well researched and there are a number of conceptions of power. In recent years the
work of Cynthia Hardy has had a profound impact on organizational [see 5] and
information systems research [see 29]. From Hardy’s [5] perspective, power is de-
fined in neutral terms as a force that affects outcomes and allows beneficial results for
all involved actors. She suggests a four dimensional framework that helps in under-
standing the consequences of organizational power from multiple perspectives. While
other conceptions of power, particularly Clegg’s [30] Circuits of Power have been
widely used in information systems and security research, their discussion and com-
parison with Hardy’s conceptualization goes beyond the scope of the current paper.

3 Theory and Methodology

In this section we present theory and methodology used in the conduct of our
research.

3.1 Dimensions of Power

According to Hardy’s [5] conceptualization of organizational power, it operates along
four dimensions: resources, process, meanings and systems. While such an
understanding of power has not been used in the information security literature, Dhil-
lon [29] has articulated the dimensions to address IT implementation issues. The
dimensions are discussed below.

Resource based power. Hardy contends that resource based power relates to the con-
trol that a given individual, group or a role might have on a range of resources avail-
able in an organization. Such accumulation of power results in a “carrot” and “stick”
situation, which translates to an ability to offer rewards, punish or impose sanctions.
Proponents of resource-based power argue that leveraging such power can result in
behavioral modification. Critics however argue that repeated use of resource-based
power can be counter-productive.

188 E. Kolkowska and G. Dhillon

Process based power. Business processes embody the values and norms of organiza-
tions. The power of processes challenges the notion that the decision process is open
to participation by all interested parties in an organization. In fact, decision processes
may be carefully designed to prevent those without power from gaining power by
participating, thus protecting the status quo. Process based power can be changed by
creating awareness and by opening up processes to new participants, issues and agen-
das. Such awareness helps sustain new behavior as long as it remains within existing
values and norms.

Meaning based power. Power residing in meanings focuses on preventing conflict
(i.e. resistance). Conversely, a lack of appreciation of meaning of action, causes resis-
tance. Proper “indoctrination” of less powerful members in organizational customs
and hierarchies leads to unquestioning acceptance of their role in the organization,
thus preserving the status quo. Through the symbolic use of icons, rituals and lan-
guage, change is given a new meaning, making it appear legitimate, desirable, rational
or inevitable. Changes in some underlying values and norms may be possible. How-
ever changes in behavior are usually difficult.

System based power. Townley [31] succinctly describes system based power as “con-
stituted through correlative elements of power and knowledge” p. 522. Power of a
system is intertwined throughout all aspects of an enterprise. It cannot be mobilized
without the other three dimensions: resources, processes and meanings. System based
power is often taken for granted since it lies in the unconscious acceptance of “way
things get done” in an organization. System based power is the backdrop against
which decisions get taken.

In this paper we show the value of applying the dimensions of power to understand
compliance and non-compliance and also to show how managers can mobilize those
power dimensions to improve compliance with a security policy. Our contribution in
relation to the earlier studies is thus the normative knowledge about how compliance
can be improved by mobilizing suitable power dimensions. In the study we apply
Hardy’s [5] multidimensional framework of power. The framework was successfully
used in earlier studies [29] related to IS implementations. We chose this framework
for this study because of its value in realizing strategic changes in organizations. We
argue that enforcement of security policy in an organization results in radical change
i.e. enforcement of security policy is often met with resistance because it necessitates
changes in business logic and existing business practices. Such situations are usually a
consequence of a combination of resources certain stakeholders may have access to or
a lack of clarity in the formal organizational procedures. As a result, meaning of
stakeholder actions often remains ambiguous.

3.2 Research Methodology

The study was conducted via a qualitative case study [32, 33] at one of the Swedish
Municipality Social Service Divisions responsible for helping vulnerable children and
their families. The case study was divided in two parts. The aim of the first part is to
create an understanding about the organization and to identify relevant actor groups
for studying power relationships. The second part focuses on finding power
dimensions that were utilized to influence employee action, their awareness and
values related to information security rules.

 Organizational Power and Information Security Rule Compliance 189

Data was collected in two phases. In phase one, interviews were conducted and
project documents reviewed. Sixteen group interviews with eight different stake-
holder groups (including management, system owners, IT-technicians and five user
groups) were conducted. Each group included 5-6 people. The interviews focused on
identifying and evaluating information flows as handled by the integrated computer
based systems within the organization. In our initial analysis, two stakeholder groups
emerged as central to use of power in security policy compliance. These were (a)
managers who enforced the new security rules and processes through the information
system and (b) care providers who did not comply with these rules.

In phase two, document analysis and in-depth interviews were conducted with two
actor groups: managers and care providers. The emphasis was on finding different
means of power that managers utilized to enforce new security processes and rules.
Interviews with social service care providers were also conducted. These helped in
interpreting what the respondents felt regarding their actions, awareness, values and
perceptions with respect of security rules and processes. The respondents were cho-
sen from all treatment centers. The number of respondents was not pre-determined.
Once a saturation level was achieved, further interviews were not conducted. An
interview guide helped in conducting the interviews, which mapped onto areas corre-
sponding to information security rules within social services. This helped us in being
comprehensive in our data collection efforts. Suitable probes were used and the data
was correlated with informant insights. Each interview lasted approximately 1-2
hours. All interviews were tape recorded and transcribed. The data was also related
to Hardy’s [5] theory on dimensions of power. Particular attention was placed on
identifying different means by which power was utilized. These were then classified
as per the dimensions. The impact of power on actions, awareness and values was
also interpreted.

4 Analyzing Power Dimensions and Information Security
Compliance

In this section we analyze the case from a power perspective to understand how
different dimensions of power were mobilized to drive the change of work practices in
social services and how the changes resulted in compliant and non-compliant behaviors.

4.1 Case Background

In the information security policy at our case study organization, security was defined
as: protection of information and information systems to achieve organizational re-
quirements for availability, integrity, confidentiality and traceability. To meet the
requirements for information security the municipality board decided that all actor
groups working in the municipality’s social services were obligated to use an imple-
mented IS for communication and exchange of information. According to the system
owners, the information security rules and legal requirement were implemented in the
system. Though all actor groups were obligated to comply with the decision taken by
the municipality board, it was noticed that one actor group, the care providers at
treatment centers, did not comply with the new rules. This lack of compliance caused

190 E. Kolkowska and G. Dhillon

information security problems related to confidentiality, availability, integrity and
traceability. As a result managers were concerned about confidentiality of information
and privacy of the clients. Other actor groups also could not access the up-to-
date information and consequently their job performance suffered. Because of the
problem, the organization was also exposed to significant legal consequences, which
could potentially have an impact on the viability of the enterprise.

4.2 Power of Resources

To improve information security, the municipality board decided that all actor groups
within social services were obligated to use a computer-based information system for
communication and exchange of information. The information system was imple-
mented in all divisions of the social services. A special module supporting care pro-
vider work processes was included in the system. Significant time was allocated for
training users. Resources were also allocated to IT-support teams. This ensured sup-
port of new users with respect to the system. Furthermore consultants who would be
responsible for training of the users were hired.

After implementation of the computer-based information system, all documenta-
tion of social work at the treatment centers was supposed to be done in the system.
However the care providers were confused about the processes, goals and require-
ments related to the new way of documenting. Before implementation of the system,
paper-based documentation was mainly used as a means for communication between
care providers working at a treatment centre. It was therefore clear as to what and why
with respect to documentation. However following the implementation it was unclear
as to what should be documented and to what extent. It was also unclear what the
main goal with the documented information was. The system had also some serious
deficiencies. For instance templates for some important documents were missing in
the system and also the system did not support all work processes at treatment centers
forcing users to use other resources such as word (for templates) and USB sticks for
exchanging information.

In summary, resource based power utilized by managers partially influenced care
providers behaviors related to documentation of social work. Care providers did begin
documenting information using the implemented system. And they did find the sys-
tem easy to use and were very satisfied with the technical support they got. However
because of confusion regarding the new processes and the deficiencies in it, the users
developed their own routines relating to handling of information. Moreover there
were no information security rules that regulated these routines. Consequently confi-
dential information was exchanged with help of insecure portable devices and saved
as Word files on local unprotected hard drivers. Same information could be docu-
mented at different places (manually and digitally) at the same time with risk for loss
of integrity. The information was also registered in the system too seldom and conse-
quently not available for the other actor groups when they needed it.

4.3 Power of Processes

Using the information system to communicate and exchange information meant
changes in care provider work processes and responsibilities. Care providers were

 Organizational Power and Information Security Rule Compliance 191

used to very detailed, paper-based notes to exchange information within a team and at
treatment centers. All care providers were responsible for preparing these notes so
that no information would be missing. They also had frequent contact with other actor
groups. During these contacts it was possible to explain and clear up eventual
misunderstandings, as well as to communicate the interpretive dimension of the work.
According to care providers this dimension was very important in their work. At
meetings with other stakeholders, care providers were responsible for presenting a
rich picture of the situation, while care officers were responsible for choosing the
relevant information and registering it in the system. In case of exceptional circum-
stances the responsible care officer was informed immediately by phone or e-mail and
then the situation was discussed.

After the system was implemented the care providers were responsible for
choosing the relevant information for other actor groups and for registration of that
information in the information system. Awareness about the new processes for docu-
mentation was created by training and educational courses. The courses focused on
functionality in the system and also explained that the registered information should
be short and focus on facts. Although the new awareness was created during the
courses, care providers still used the old way for communicating and exchanging
educational information. The reason for this was conflict between the new processes
and care provider work values. Documentation in the system was considered as limit-
ing because it required formal reporting (only facts), while their work was based on
interpretation and observations. For the care providers, integrity and availability of
information meant that information was detailed and included both facts and interpre-
tations. These values were impossible to achieve according to the new rules because it
was difficult to communicate the emotional and interpretive dimension through the
system. In summary, the process-based power utilized by management did create
awareness about new processes, however the awareness did not satisfactorily
influence care providers behavior because it clashed with their own work values.

4.4 Power of Meaning

Power of meaning was not utilized by management in this case. The implemented in-
formation system was supposed to improve information security in the organization by
enforcement of embedded information security rules. It was assumed that
employees in social services were both aware of and aligned with existing information
security rules. There was also a strong security culture amongst care providers at the
studied treatment centers. In particular confidentiality and privacy were emphasized as
two core values. Care providers pointed out that security awareness was very important
in their work. Even prior to the computerized systems, sensitive client information was
handled very carefully - paper-based notes were locked in special rooms; the old paper-
based notes were destroyed, etc. In spite of high information security awareness, care
providers did not usually comply with the security rules, since the rules clashed with
their own values related to integrity and availability of information.

4.5 Power of System

Power in the system is considered as the status quo and exists in “taken for granted”
values, traditions, cultures and structures [5]. This dimension of power is often

192 E. Kolkowska and G. Dhillon

beyond the reach of organizational members. Hence to make a change, managers
must utilize the other three dimensions of power: resources, processes and meanings.

In our case study organization, managers wanted to improve information security
through the implementation of a computer-based information system. The managers
relied mostly on power of resources in trying to change employee behavior. By creat-
ing a suitable environment and allocating resources for implementing the system and
for training of the employees, managers did succeed to partially change employee
behavior. However the ambiguity regarding the new processes and responsibilities
created confusion amongst employees. Because of the unclear requirements for the
new behavior, it was also impossible to fully deploy the power of resources to direct
the behavior to support new processes. While the power of resources did create some
awareness about new processes and responsibilities, the training rendered was insuffi-
cient to change underlying values concerning communication and exchange of infor-
mation. Thus the management failed to use power of meanings to change employee
underlying values and norms so as to give the processes a new meaning. This resulted
in information security goals remaining under achieved.

5 Discussion

Four implications seem to emerge. These are based on our case study data. Space
limitations however forbid us from going into sufficient details.

1. It is important to consider that an information security rule might involve strate-
gic changes. As described in the case study section, the social services organization
implemented most of the security rules as part of the computer based information
systems. While some of the rules already existed in the organization, many new ones
were also created. From a system administration perspective, implementing security
rules simply amounted to careful design of rules into the computer-based systems and
then implementing them in the organization. The ongoing argument in the organiza-
tion was that if the integrated system were used for communication and exchange of
information, it would ensure compliance with the security rules. As one of the admin-
istrators succinctly put it:

Compliance with security rules is really a function of ensuring that all [em-
phasis added] organizational communications and information handling
took place through the technical system.

This meant that the organization never saw the need to focus on establishing respon-
sibility structures or establishing process descriptions, particularly when new rules
were instituted. In the information security literature such perspectives have been
termed as ‘technically skewed’ for a largely socio-technical problem [34]. In our case
study organization, the implementation of the system largely occurred because of the
power that resided with the administrators. Hence a combination of resource based
and process based power was exerted. While the power ensured the implementation,
the system forced differing interpretations of rules across the social services. One of
the case-workers noted:

 Organizational Power and Information Security Rule Compliance 193

It is practically impossible to use the system since it does not reflect the
way we work. The checks and balances that have been built into the system
are not necessarily the way in which any of the case-workers operate.

In dealing with such situations, Hardy [5] suggests that by managing meanings, re-
sources and process, it is possible to “redefine the strategic initiative and the changes
on which it hinges, as legitimate” (Pg. S10). This helps in creating awareness about
the new structures and processes and hence making it possible to control behavior
through the deployment of specific resources.

2. New security rules come embedded with structural changes, which require mo-
bilization of power residing in the systems to ensure success. Implementation of a
security rule constitutes significant structural changes. Since such changes are typi-
cally institutionalized in the organization, it requires a careful consideration of values,
traditions and sub cultures. Failure to do so, results in systematic bypassing of the
rules or circumventing controls. It occurs largely because of the “we don’t do things
in such a way here” attitude. In our case study organization, a social worker noted:

We have been given the new system to undertake work in an efficient man-
ner. I must say that it is not working. The new access rules mean that we
have to wait for approvals through the chain of command. Unfortunately
when one is with a client, they have to take decisions instantaneously. In
such instances, we simply do not use the system.now I know that this
can have possible security and compliance ramifications, but at the same
time I have a job to do and services to render.

A typical approach of the management is to come in with a heavy hand, thus using
either the power by virtue of the resources or their control of the processes. This how-
ever can be counterproductive. Hardy [5] suggests that instituting changes of this kind
are a laborious task where work needs to be done in establishing proper buy-in. This
ensures that there is a gradual shift in the prevalent ways of working.

3. New security rules have the potential to introduce value conflicts. Mobilizing
power of meaning is important to avoid such conflicts. Whenever new security rules
are implemented, they challenge the conventional interactions amongst organizational
stakeholders. This usually has the potential for causing value conflicts. Value con-
flicts result in misinterpretation of meanings. From a dimension of power perspective,
the power that resides in the meanings needs mobilization such that there is correct
interpretation of the rules. In the literature, such misinterpretations have been linked
to information security problems [see 35]. In our case study as well, the IT staff felt
that there seemed to be a lack of common understanding as to how the work needs to
be carried out. One IT staffer noted:

I don’t understand this. There are usually no complaints about the system.
Everything works. However many people do not seem to use it. The new
social workers who use the system seem to come up with interpretations
that are either different or in disagreement with the experience of the older
social workers.

Various researchers stress that conflict and resistance is a natural consequence of
applying power of resources and processes for realization of strategic change.

194 E. Kolkowska and G. Dhillon

Consequently managers who want to avoid employee resistance have to engage in
power of meanings to legitimize their decisions. Lukes [36] has argued that power of
meanings is often used to shape perceptions and cognition so that individuals do not
question the status quo. The literature also terms this kind of power as “management
of meaning” [37] where an individual may legitimize and de-legitimize so as to accept
the viewpoint. Various symbols are typically used in this process - redundancy com-
pensation, consultation, good will etc.

4. Power residing in resources, processes, meanings and systems needs to be mobi-
lized to ensure awareness of values to achieve compliance with information security
rules. In the studied case, the management failed to create an understanding of the
new security processes and the new security rules. Moreover they did not succeed in
changing underlying employee values that would affect change in employee behav-
iors. Consequently the new rules were not fully accepted and employees did not
comply with these rules causing problems related to confidentiality, integrity and
availability of information. In response to this problem, the organization got involved
with a major awareness campaign, focusing on consequences of non-compliance.
However the employees did not receive the awareness campaigns. This resulted in
significant resistance among the user cadre. One user noted:

They were bombarding us with all this awareness literature. They were also
threatening us about the consequences of non-compliance. Nobody however
focused on the reasons why people were not complying to the security
rules.

The above observation by one user is a reflection of the state of affairs. In the literature,
researchers have argued for awareness about the values rather than awareness about
consequences of non-compliance [38]. Hardy [5] suggests that managers can redefine
the strategic initiative by mobilizing power in a coordinated manner so as “to influence
actions, awareness and values, and avoid both inertia and confusion” (Pg. S11)

6 Conclusion

In this paper we have evaluated power relationships in a social services organization
and analyzed their impact on information security rule compliance. While majority of
information security research has focused on overcoming resistance through sanc-
tions, we take the position that a better understanding of power relationships helps
overcoming resistance to information security rules and hence improve compliant
behavior.

In our case study organization the management had failed to realize their plan to
improve information security and had fallen short of improving the structures, proc-
esses and values. Problems occurred because of two issues. First, the power residing
in the organizational structures was not adequately understood. Second, power was
only understood in terms of resources. This meant that majority of power exercise
resulted in curbing access to resources. While resource based power may work in
many cases, it has to be articulated in light of other kinds of power as well. In
summary, the paper offers four key findings: 1) It is important to consider that an
information security rule might involve strategic changes; 2) Strategic change

 Organizational Power and Information Security Rule Compliance 195

requires mobilization of power of resources, processes and meanings and understand-
ing of power embedded in the existing system; 3) Mobilizing power of meaning is
important to avoid value conflicts; 4) All dimensions of power need to be mobilized
to change actions, awareness and values. This will help in achieving compliance with
information security rules.

References

1. Mattia, A., Dhillon, G.: Applying Double Loop Learning to Interpret Implications for
Information Systems Security Design. In: The IEEE Systems, Man & Cybernetics Confer-
ence, Washington DC, October 5-8 (2003)

2. Lapke, M., Dhillon, G.: A Semantic Analysis of Security Policy Formulation and Imple-
mentation: A Case Study. In: The Americas Conference on Information Systems (AMCIS
2006), Acapulco, Mexico (2006)

3. McFarland, D.A.: Resistance as a Social Drama: A Study of Change-Oriented Encounters.
The American Journal of Sociology 109(6), 1249–1318 (2004)

4. Markus, M.L.: Power, politics and MIS implementation. Communications of the
ACM 26(6), 430–444 (1983)

5. Hardy, C.: Understanding power: bringing about strategic change. British Journal of
Management 7, Special issue, S3–S16 (1996)

6. Parson, T.: The structure of social action. Free Press, New York (1968)
7. Dhillon, G.: Principles of information systems security: text and cases. Wiley Inc.,

Hoboken (2007)
8. Etzioni, A.: A comparative analysis of complex organizations: On power, involvement,

and their correlates. Free Press, New York (1975)
9. Ranson, S., Hinings, B., Royston, G.: The Structuring of Organizational Structures.

Administrative Science Quarterly 25(1), 1–17 (1980)
10. Benson, J.K.: Organizations: A Dialectical View. Administrative Science Quarterly 22(1),

1–21 (1977)
11. PWC: Security Breaches Survey 2008. Enterprise and Regulatory Reform (BERR).

PricewaterhouseCoopers on behalf of the UK Department of Business (2008)
12. Whitman, M.E., Mattord, H.: Principles of Information Security, 3rd edn. Course

Technology, Boston (2008)
13. Nash, K.S. Greenwood, D.: The global state of information security. CIO Magazine (2008)
14. Stanton, J.M., Stam, K.R., Mastrangelo, P., Jolton, J.: Analysis of end user security behav-

iors. Computers & Security 24(2), 124–133 (2005)
15. Lapke, M. Dhillon, G.: Power relationships in information systems security policy formu-

lation and implementation. In: The 16th Annual European Conference on Information
Systems (ECIS 2008), Galway, Ireland (2008)

16. Kim, S.H., Lee, J.: A contingent analysis of the relationship between IS implementation
strategies and IS success. Information Processing & Management 27(1), 111–128 (1991)

17. Herath, T., Rao, H.R.: Encouraging information security behaviors in organizations: Role
of penalties, pressures and perceived effectiveness. Decision Support Systems 47(2),
154–165 (2009)

18. Kankanhalli, A., Teo, H.H., Tan, B.C., Wei, K.K.: An Integrative Study of Information
Systems Security Effectiveness. International Journal of Information Management 23(2),
139–154 (2003)

196 E. Kolkowska and G. Dhillon

19. Straub, D.: Effective IS security: an empirical study. Information System Research 1(2),
225–270 (1990)

20. Straub, D., Welke, R.J.: Coping with systems risks: security planning models for manage-
ment decision making. MIS Quarterly 22(4), 441–469 (1998)

21. Boss, S.R., Kirsch, L.J., Angermeier, I., Shingler, R.A., Boss, R.W.: If someone is watch-
ning, I’ll do what I’m asked: mandatoriness, control, and information security. European
Journal of Information Systems 18, 151–164 (2009)

22. Phanila, S., Siponen, M., Mahmood, A.: Employees’ Behavior towards IS Security Policy
Compliance. In 40th Annual Hawaii International Conference on System Sciences (HICSS
2007) (2007)

23. Thomson, K.L., von Solms, R., Louw, L.: Cultivating an organizational information secu-
rity culture. Computer Fraud and Security (10), 7–11 (2006)

24. Thomson, K.L.: Information Security Conscience: a precondition to an Information Secu-
rity Culture. In: 8th Annual Security Conference, Las Vegas, NV, USA, April 15-16
(2009)

25. Vroom, C., von Solms, R.: Towards information security behavioural compliance. Com-
puters & Security 23(3), 191–198 (2004)

26. Puhakainen, P.: A Design Theory for Information Security Awareness. University of Oulu,
Oulu (2006)

27. Siponen, M.: A Conceptual Foundation for Organizational Information Security Aware-
ness. Information Management & Computer Security 8(1), 31–41 (2000)

28. Furnell, S.M., Gennatou, M., Dowland, P.S.: A prototype tool for information security
awareness and training. Logistics Information Management 15(5), 352–357 (2002)

29. Dhillon, G.: Dimensions of power and IS implementation. Information & Management 41,
635–644 (2004)

30. Clegg, S.: Frameworks of power. Sage Publications, London (1989)
31. Townley, B.: Foucault, power/knowledge and its relevance for Human Resource Manage-

ment. Academy of Management Review 18(3), 518–545 (1993)
32. Benbasat, I., Goldstein, D.K., Mead, M.: The case research strategy in studies of informa-

tion systems. MIS Quarterly 11(3), 369–388 (1987)
33. Myers, M.D.: Qualitative research in business & management. Sage Publications, London

(2009)
34. Hedström, K., Dhillon, G., Karlsson, F.: Using Actor Network Theory to Understand In-

formation Security Management. In: The 25th Annual IFIP TC 11, Brisbane, Australia,
September 20-23 (2010)

35. Dhillon, G.: Managing Information System Security. Macmillan, London (1997)
36. Lukes, S.: Power: a radical view. Macmillan, London (1974)
37. Pettigrew, A.M.: On studying organizational cultures. Administrative Science

Quarterly 24, 570–581 (1979)
38. von Solms, R., von Solms, B.: From policies to culture. Computers & Security 23(4), 275–

279 (2004)

Delegation of Obligations and Responsibility

Meriam Ben Ghorbel-Talbi1, Frédéric Cuppens1, Nora Cuppens-Boulahia1,
Daniel Le Métayer2, and Guillaume Piolle3

1 Institut TELECOM/Télécom Bretagne
2, rue de la Châtaigneraie, 35576 Cesson-Sévigné Cedex, France

{meriam.benghorbel,frederic.cuppens,nora.cuppens}@telecom-bretagne.eu
2 INRIA Rhône-Alpes

Inovallée, 655 avenue de l’Europe, 38334 Saint-Ismier Cedex, France
daniel.le-metayer@inria.fr

3 Supélec
Avenue de la Boulaie, CS 47601, 35576 Cesson-Sévigné Cedex, France

guillaume.piolle@supelec.fr

Abstract. In this paper, we discuss the issue of responsibilities related
to the fulfillment and the violation of obligations. We propose to formally
define the different aspects of responsibility, namely causal responsibil-
ity, functional responsibility, liability as well as sanctions, and to examine
how delegation influences these concepts. Our main aim is to identify the
responsibility of each agent that is involved in the delegation of obliga-
tions. More precisely, we try to answer to the following questions: who is
responsible for the obligation fulfillment? When a violation occurs, which
agents are causally responsible for this violation? Who is liable for this
violation and to whom? And finally, who must be sanctioned?

Keywords: Responsibility, Obligations, Delegation.

1 Introduction

Obligations are important means to specify security control, in particular us-
age control [14,15,3]. Obligations must usually be fulfilled by a fixed deadline,
otherwise violations occur and punitive sanctions are inflicted upon agents (for
instance through the activation of prohibitions or new obligations). Yet, agents
can violate their obligations due to various causes that can be related to agents
themselves (e.g. lack of time or competence), or to other agents who have per-
formed (or not) actions such that they have blocked out the fulfillment of the
obligation, or finally to system faults, such as a system dysfunctioning or in-
sufficient authorization/resource [10]. For these reasons, it is necessary to have
means to clearly identify the responsibility of agents that are involved in the
obligation violation, especially when obligations are delegated to one or more
other agents.

Indeed, identifying the responsibility of agents in the case of violations is a
fundamental part of security and is central to the determination of liability and
sanctions. For this purpose, we focus here on these two issues and we propose,

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 197–209, 2011.
c© IFIP International Federation for Information Processing 2011

198 M. Ben Ghorbel-Talbi et al.

in section 2, a formal model that defines different levels of responsibilities [4],
namely functional responsibility which is the operational aspect of an obligation,
causal responsibility which expresses the link of causality between an agent’s
actions and a given fact, and liability which is related to the notion of blame,
sanction or damage reparation. In section 3, we propose a model of the concept
of obligation delegation. We examine how to deal with the different kinds of
responsibilities, and we give a concrete example to illustrate our approach. We
give, in section 4, a discussion on related work and concluding remarks.

2 Logical Model of Obligation and Responsibility

In the following, propositions will be noted by lower case italic letters (a, b, p
. . .), variables by roman strings starting with a capital letter (Var) and litterals
by strings in fixed width font (litt). Indifferent variables are noted with an
underscore (), using Prolog-like notation.

Basic structure of the model. Our framework is based on the notion of orga-
nization. Organizations will be noted a, b, c . . . ∈ O. They do not have any kind
of property, but we will introduce a way to define arbitrary binary relations be-
tween them. This allows to nest organizations, to define roles and other high-level
concepts. We choose to represent agents and organizations at the same level, by
considering that an agent is itself an organization. Another core component is
the notion of obligation. We consider that obligations always come from a nor-
mative source (noted x ∈ X), which is an object shared by a set of organizations.
It can be a contract, an order, a law or any kind of normative document. For in-
stance, an organization can publish internal regulations, or several organizations
can agree on a contract. Normative sources will be used as references for obliga-
tions and associated concepts. The logic does not make any distinction between
obligations to be and obligations to do, nor between actions, events and states.
These distinctions are abstracted away by the notion of fact (noted p ∈ P). A
fact is a proposition describing a situation or an action. It can be an observation
of the system or the object of an obligation. In the remaining of section 2, we will
consider a simple obligation (i.e. without any delegation), between two agents
(or organizations) a and b, coming from a normative source x. We will present
the various constructs related to obligations and responsibility, before discussing
the impact of obligation delegation in section 3.

Obligations and organizations. Obligation is represented by the modality
class O, differentiated in a four-parameter predicate. O(a, p, b, x) represents the
fact that a has the obligation, towards b, to ensure p, and that this obligation
comes from the normative source x. As our goal is to model the various kind of
underlying responsibilities in a fine-grained way, the obligation modality has been
emptied of most of its usual meaning, and is best described as the representation
of a speech act, the acknowledgment that an obligation has been expressed.
Formally, each tuple (O, a, b, x) is a monadic obligation modality, applied to
facts. They are defined like in SDL, with a KD axiomatics [21]. The abstract

Delegation of Obligations and Responsibility 199

relation structure is brought by a relation predicate. relation(relationName, a, b)
means that a is in relation relationName with b. Binary relations on O×O can
be introduced this way. For instance, relation(playsRole, a, r, b) can mean that
a plays a given role r in the organization b.

Functional responsibility is the operational aspect of an obligation, the fact
that the obligated agent is actually expected to perform a task itself. We note
FR(a, p, b, x) the fact that a has the functional responsibility, for which it is ac-
countable to b, to ensure p, and that this responsibility comes from normative
source x. In simple cases, functional responsibility is directly derived from the
expressed obligation: if an agent is obliged to ensure p then it has the corre-
sponding functional responsibility. This is why, in this simple (delegation-free)
version of the framework, functional responsibility is formally equivalent to obli-
gation (eq. 1). The predicate is introduced to make a distinction between the
responsibility and the mere speech act.

FR(a, p, b, x)
def
= O(a, p, b, x) (1)

Causal responsibility is not necessarily derived from an obligation, but will
contribute to the definition of more complex notions. It expresses the link of
causality between an agent’s actions and a fact, without any assumption of any
kind of “fault”. We note CRa p the fact that agent a is causally responsible for
the fact p. It implies p itself. It means that a has contributed, in some way to
the fact that p is true: there is a causality link between a’s behaviour and p. It
does not mean that a is the sole responsible agent for p.

We choose to distinguish “material causal responsibility” (MCRa p) from
“causal responsibility by direct influence” (CRDIa p). The former means that p
occured, and that there is a causality link between a’s actions or inaction and
the fact p. The latter means that a made another agent or organization b do
something (by the means of an obligation) which made b causally responsible for
the fact p. In other words, a used its influence to cause p. Material causal respon-
sibility can be more precisely specified in many ways, by introducing complex
relations between the actions and their results. In the version of the formalism
presented here however, the notion remains abstract and the individual actions
are hidden, because our only need here is to decide wether the causal link exists
or not. In the context of this presentation, MCRa will therefore be considered a
primary operator. Yet, we should keep in mind that it is possible to distinguish
between various grades of material causal responsibility, which might lead to
various grades of other kinds of responsibility. Causal responsibility by direct
influence, on the other hand, is defined on the basis of an obligation and of the
material causal responsibility of another agent or organization (2). To conclude,
this first version of causal responsibility is simply the disjunction of material
causal responsibility and causal responsibility by direct influence (3).

CRDIa p
def
= O(b, p, a, x) ∧ MCRb p (2)

CRa p
def
= MCRa p ∨ CRDIa p (3)

200 M. Ben Ghorbel-Talbi et al.

Liability. We understand liability with respect to an undesirable fact as the
possibility, for an agent or an organization, to be blamed for the fact, to be
imposed a sanction. This notion is inspired from the legal concept of liability
as it appears in the French legal context, for instance, where a person is held
liable if its (faulty) behaviour is causally related to a damage (to another agent
or to society). In our model, the damage is represented by a fact p, the fault by
a violated interdiction on p and the causal relation by our dedicated operator. It
means that if an agent has not violated any norm, then it cannot be blamed or
sanctioned. Therefore it may be considered that the system contains very general
norms, such as the obligation not to cause a harm or loss to another agent. In
our language, L(a, p, b, x) means that a is liable for p towards b, because of
obligations coming from normative source x. In a first version its direct form
(DL’(a, p, b, x)), it is defined as the conjunction between a causal responsibility
and a violated obligation (4).

DL’(a, p, b, x)
def
= CRa p ∧ O(a,¬p, b, x) (4)

This direct liability is personal in essence, but in some cases one may be liable
for somebody else’s actions. For instance, parents often bear civil liability in the
name of their children. We need to take this kind of relationship into account,
because it can also occur in many organizations, where employers, under certain
circumstances, may be liable instead of their employees. In order to model this,
we will use a relation accountableFor, which we need to be built-in. In short,
if a is accountable for b, then we consider that a is liable when b should be.
This allows us to define indirect liability IL(a, p, b, x) as in (5). Overall liability
(6) is therefore the disjunction between direct and indirect liability, where direct
liability DL is redefined as the conjunction between DL’ and the absence of a
relation accountableFor.

IL(a, p, b, x)
def
= CRc p ∧ O(c,¬p, b, x) ∧ relation(accountableFor, a, c) (5)

L(a, p, b, x)
def
= DL(a, p, b, x) ∨ IL(a, p, b, x) (6)

If different levels of causal responsibility are defined, then different levels of
liability will arise. For instance, one can imagine a weaker causal responsibility
CR1 (denoting a partial responsibility) and a stronger one CR2 (denoting a full,
exclusive responsibility). CR1 and CR2 could give rise to two levels of liability L1

and L2. In some context, a L1 liability could be considered too weak to give rise
to a sanction, while an agent with L2 liability would be considered “blamable”.
For simplicity, we will work only with one kind of causal responsibility here.
However, several existing propositions could be useful in designing a gradation
of causal responsibility, like constructions based on Pörn’s D and D′ modalities
[16], and in particular the recent proposal by Marek Sergot [19].

Sanction. As mentioned above, in the case of obligation violation an agent
or an organization has to make good for this violation. We use the predicate
sanction(s, c, p, x) to say that sanction s is associated to fact p by normative

Delegation of Obligations and Responsibility 201

source x and may be imposed by agent c. Note that we use this predicate to
define sanctions in the sense of punishment (penal responsibility), but also to
define blame and the reparation of damage or loss (civil responsibility). We
choose not to formally differentiate the two notions. In our language, sanctions
are associated to the agent liable for the violation according to the normative
source. S(a, p, b, s, c) means that sanction s can be imposed by agent c to a
following fact p, for which a is liable towards b:

S(a, p, b, s, c)
def
= L(a, p, b, x) ∧ sanction(s, c, p, x) (7)

Some discussion remarks. One question that remains to be answered, for
the sanction to be just: is the agent actually able to fulfill the obligation or to
avoid its violation? For this purpose, one has to define the concept of the agents’
ability [5,12] to fulfill a given obligation, as well as the parameters influencing
this ability. Thus, when a violation occurs we can tell whether a liable agent
was actually able to fulfill the obligation in that moment. Many concepts have
to be defined and considered to define agents’ ability. For instance, is the agent
considered able to do some task if it is able to delegate it to another agent?

Another issue is the possibility of sanctions for agents which are causally
responsible for the violation, but which bear no liability with respect to the
current source of norms. For instance, organization b may deem agent a liable
for a given violation with respect to a source of norms x, but agent c, belonging
to a foreign organization on which b has no influence, may have a greater causal
responsibility because it prevented a from doing its job properly. No liability
of c towards b can apparently be derived, because c is not concerned by x and
therefore it has not violated any norm of x. Yet, it would seem just that c could
be blamed. No liability can be built upon x, but there may be other applicable
normative sources. On the first hand, if a and c share a source forbidding an
agent to harm another in the way c did, then a liability can be derived from
that, and the corresponding sanction will be considered independently from x.
It can also be the case that c broke one of its own norms and is sanctionned for
that [10], but that its liability is not towards b. On the other hand, if c has not
violated any norm applying to it, then it is not faulty in any way and has neither
to be sanctionned nor to provide a reparation. In other words, an agent with no
functional responsibility for a given fact cannot be judged liable and therefore
cannot be blamed. It matches real world situations, in which a fault must be
exhibited for a sanction to be applied. For instance, two shops operating in the
same street may have a negative impact on each other’s income, thus generating
a damage, but as long as none of them breaks the general rules of commerce, no
civil reparation or penal sanction can be sought.

3 Modelling Obligation Delegation

Now that the notions of obligation, causal responsibility, functional responsibility
and liability are available, we will propose a model of the concept of obligation

202 M. Ben Ghorbel-Talbi et al.

delegation and examine its influence on the former notions. We say that an
obligated agent b delegates its obligation to another agent a when b obliges a to
what b was initially obliged. Depending on the options of this delegation, this
may or may not influence the functional responsibility and the liability of both
a and b with respect to the obligated fact.

The delegation predicate. The delegation of an obligation is represented by
an instance of the delOb predicate. delOb(a, p, b, c, x,FRoption, Loption) means
that b delegates to a the obligation on p that it had towards c, coming from the
normative source x. The last two parameters are the options of the delegation
related to functional responsibility and liability. Functional responsibility can
be either shared (FRoption = fr share) or forwarded (fr forward). In the
first case, both a and b have functional responsibility: they are both in charge of
ensuring p. This is for instance the case if the obligation delegation is a request for
help on a complex task. In the second case, a alone gets functional responsibility.
b does not have to take actions anymore, it is a’s role to actually ensure p. It
is not possible that b keeps functional responsibility for itself alone, as the key
idea about delegation is giving someone else something to do.

Liability can be kept (Loption = l keep), shared (l share) or forwarded
(l forward). If liability is kept, then the delegatee will accept no other liability
than towards the delegator. It means that if b is liable towards c and delegates
to a with l keep, then a will not be liable to c, only b will. On the other hand,
a will still be locally liable to b: it is a way to acknowledge that the speech act
of delegation itself generates its own liability. If liability is shared, then both a
and b will be liable to c (and a will still be “locally” liable to b). If liability is
forwarded, then only b will be liable to c (and to a, locally).

For instance, in a conference program committee a reviewer a can delegate
the obligation to review a given paper to an external reviewer b, using options
fr forward and l keep. In this case, b has the functional responsibility to review
the paper, a is liable to the PC chair if the review deadline is not met, and
b is liable to a. We can also imagine the opposite situation: a PhD student
delegates the obligation to review a paper to his/her advisor (obviously with
his/her consent) using options fr share and l forward. In this case, the student
transfers the obligation, i.e. he/she is no more liable to the PC chair, but will help
his/her professor to review the paper. Note that there is a hierarchical authority
between the professor and the student, therefore the student must request the
consent of the professor before delegating the obligation (see [2] for more details
about consent negotiation).

Formally, to be valid a delegation from a delegator b to a delegatee a on p
necessitates the existence of a prior obligation O(b, p, c, x) (i.e. an obligation to
b towards another agent c), and it creates a new obligation for the delegatee
a towards b. Note that this obligation is also coming from the same normative
source x. Equation (8) illustrates this derivation mechanism. The prior formula
says that B delegates to A its obligation on P, coming from source X, with

Delegation of Obligations and Responsibility 203

options LRoption and Loption. The derived formula is the new obligation of A,
towards B, to ensure P according to normative source X.

delOb(A, P, B, , X, FRoption, Loption)

O(A, P, B, X)
(8)

Rights system. Depending on the context of an obligation, it is not always
possible or desirable to delegate it. The initial obligator may demand that the
initial obligee keeps either liability or full functional responsibility, for instance.
It is therefore necessary to install a rights system over obligation delegation: each
normative source will also enacts a number of rights formulae, and depending
on the active rules, a specific delegation will be authorized or not. More details
about how to set up such contextual rights about delegation are given in [1]. It
is currently assumed that normative sources properly define these rights, in that
rights enacted by a given source should not interfer with the obligations coming
from another one (see [8] for more details about conflict management).

Rights enacted by a normative sources are represented by allow and
deny predicates. allow(a, b, p, c, x,FRoption, Loption, Recursivity) means that
an obligation O(a, p, c, x) can be delegated to b with the options FRoption
and Loption. If Recursivity = recursive, then this permission propagates
to any delegated obligation. It does not if Recursivity = nonrecursive
deny(a, b, p, c, x,FRoption, Loption, Recursive) means that this same initial obli-
gation cannot be delegated with these options. If deny is recursive, it means that
any delegated obligation is also subject to it. It can be relevant, for instance, if
another set of options is authorized for the delegation. Recursivity in the rights
system is defined by (9).

deny(a, b, p, c, x, FRoption, Loption, recursive)
→ deny(b, , p, a, x, FRoption, Loption, recursive)

allow(a, b, p, c, x,FRoption, Loption, recursive)
→ allow(b, , p, a, x, FRoption, Loption, recursive)

(9)

When an agent delegates an obligation, it does not directly instantiate delOb,
but rather creates an instance of a delObAttempt predicate, which generates
the corresponding delOb only if the delegation is valid according to the existing
rights. It should be noted that allows and denys are terms which can be more or
less instantiated (parameters can be ground litterals or uninstantiated variables),
and thus more or less specific. By default, any delegation that is not allowed is
forbidden, and deny has priority over allow. The overall rule for deriving an
obligation delegation from a delegation attempt is described by (10).

delObAttempt(A, P, B, C, X, FRoption, Loption),
O(B, P, C, X), allow(B, A, P, C, X, FRoption, Loption,),

¬deny(B, A, P, C, X, FRoption, Loption,)

delOb(A, P, B, C, X, FRoption, Loption)
(10)

Obligation chains. We have seen that an obligation can be delegated with
or without delegating (or sharing) liability towards the original obligator.

204 M. Ben Ghorbel-Talbi et al.

In order to decide whether an agent is liable towards another for a given obli-
gation, one must know whether there is a chain of obligations (including both
the initial one and the delegated ones) between them, and whether liability has
been shared or forwarded at each step. This is what the obChain predicate does.
obChain(a, p, b, x, L chain) means that there is a chain of obligations between b
(obligator) and a (obligatee) about p, coming from the normative source x. The
last parameter can be l propagated, if liability has been kept (so that a may
be liable to b), or l lost if liability has been lost somewhere between a and b.
This predicate is a convenience abbreviation defined as (11).

obChain(a, p, b, x, l propagated)
def
=⎧⎨

⎩
O(a, p, b, x)

∨
(

obChain(c, p, b, x, l propagated)
∧ (

delOb(a, p, c, , x, , l share) ∨ delOb(a, p, c, , x, , l forward)
))

obChain(a, p, b, x, l lost)
def
={(

obChain(c, p, b, x, l lost)
∧ delOb(a, p, c, , x, ,)

)
∨
(

obChain(c, p, b, x, l propagated)
∧ delOb(a, p, c, , x, , l keep)

)
(11)

Functional responsibility (with delegation). Functional responsibility must
be redefined in order to take obligation delegation into account. Now an agent
or organization has functional responsibility for p if it is obliged to ensure p, but
only if that it has not delegated this obligation with the fr forward option (12).

FR(a, p, b, x)
def
= obChain(a, p, b, x,) ∧ ¬delOb(, p, a, x, fr forward,) (12)

Causal responsibility by indirect influence (with delegation). Causal
responsibility by influence is the only component of causal responsibility which
is related to obligations, so it is the only one we need to reconsider in the light
of obligation delegation. So far, we have only defined causal responsibility by
direct influence, when the agent we have ordered to ensure p is itself materially
responsible for it. We introduce causal responsibility by indirect influence, which
captures the fact that this obligation can be further delegated. CRIIa p (reading
“a is causally responsible, by indirect influence, for p”) means that there is
a chain of delegated obligations on p between a and some agent b, that b is
materially responsible for p, and that this is not a causal responsibility by direct
influence (13). Causal responsibility by direct influence and by indirect influence
are then grouped in a same “causal responsibility by influence” CRIa p (14).

CRIIa p
def
= ¬CRDIa p ∧ obChain(b, p, a, , ,) ∧ MCRb p (13)

CRIa p
def
= CRDIa p ∨ CRIIa p (14)

It can be interesting to introduce a variant operator: causal responsibility by
primitive influence CRPIa p, meaning that the issued obligation has not been
inherited by delegation (15). Overall causal responsibility is then redefined as
the disjunction between material causal responsibility and causal responsibility
by influence (16).

Delegation of Obligations and Responsibility 205

CRPIa p
def
= CRIa p ∧ ¬delOb(a, p, , , ,) (15)

CRa p
def
= RCMa p ∨ CRIa p (16)

Liability (with delegation). The last notion to be redefined is liability, for
which the obChain predicate has been specially tailored. An agent or organiza-
tion a is directly liable for p towards b if and only if a is causally responsible for
p, there is an obligation chain propagating liability from b to a, this liability has
not been lost by delegation and no other agent is accountable for a (17). Indirect
liability (18) can be defined in the same way, with overall liability remaining the
disjunction of direct and indirect liability.

DL(a, p, b, x)
def
= CRa p ∧ PDL(a, p, b, x) (17)

IL(a, p, b, x)
def
= CRc p ∧ PIL(a, p, b, x) (18)

Concrete Example 1. Let us assume that agent a has the obligation, towards
b, to fulfill p, and a is allowed to delegate this obligation with recursive option
(figure 1). If the obligation to ensure p is violated then we have to identify
agents that are responsible of this violation, namely, functional responsibility
and liability (which is derived from causal responsibility). As shown in figure 1,
agent a delegates the obligation to c and shares both the functional responsibility
and the liability towards b, so we can derive that FR(a, p, b, x) and L(a, p, b, x).
Agent c delegates the obligation to d with fr share option and keeps the liability,
so d has the functional responsibility towards b. Then, c delegates the obligation
to e and forwards both the functional responsibility and the liability. Therefore,
c is no more responsible towards b. Finally, agent e forwards the functional
responsibility to f . Thus, e is liable for p and f has the functional responsibility
towards b. To summarize, if the obligation O(a, p, b, x) is violated then we have
FR(act, p, b, x), for act in {a, d, f}, and L(act′, p, b, x) for act′ in {a, e}. Moreover,
as mentioned above, agents are also “locally” responsible towards the agent who
delegated to them the obligation (directly or indirectly), but only if they have
not forwarded this responsibility to another agent. This is why, agent d has the
functional responsibility towards agents c and a, and is liable towards c. Agent
e is also liable towards agents c and a. Finally, agent f is liable towards e and
has functional responsibility towards e, c and a. Note that if the obligation is
fulfilled by an agent belonging to the obligation chain, then we consider that all
the other agents have fulfilled their obligations [1]. In addition, we consider that
only agents having functional responsibility are obliged to perform the obligation.
Otherwise, the obligation is inactivated, i.e. the obligations of agents c and e.
After identifying agents that are liable towards b, namely a and e, sanctions
are derived. According to the sanction defined by norm x and according to the
liability level (i.e. blameworthiness) and kind (i.e. penal or civil liability), a and e

1 We give here a basic example to illustrate our approach. Real life situations will be
given in the next section 4 to help to understand the issues of our work.

206 M. Ben Ghorbel-Talbi et al.

a

b

c

d

e

f

O(a, p, b, x)
Regular obligation

O(c, p, a, x)

O(d, p, c, x) O(e, p, c, x) O(f, p, e, x)

delOb(c, p, a, b, x, fr-share, l-share)

delOb(d, p, c, a, x, fr-share, l-keep)
delOb(e, p, c, a, x,
fr-forward, l-forward) delOb(f, p, e, c, x, fr-forward, l-keep)

FR(a, p, b, x)
L(a, p, b, x)

FR(d, p, {c, a, b}, x)
L(d, p, c, x)

L(e, p, {c, a, b}, x)

FR(f, p, {e, c, a, b}, x)
L(f, p, e, x)

Fig. 1. The obligation chain

will be (or not) sanctioned, asked to repair a damage or a loss. “Local” sanctions
can also be defined by norm x for agents who did not fulfill the delegation
contract. Thus, agent d, which is “locally” liable to c, can be sanctioned by c
if the obligation is violated. Obviously, this liability is inactivated if there is
a hierarchical authority relation between the obligatee and the obligator (i.e.
relation(bossOf, d, c)). In the same way for agents e and f .

4 Related Work and Discussion

In the literature, some works [13,18,6] have studied the issue of the delegation
of obligations, such as the share, the transfer or the split of obligations, oth-
ers [5,17,20,12] have focused on the definition of responsibilities, such as direct,
causal or task-based responsibility, and in [7] authors have addressed the issue
of accountability within delegation protocols. But, none of them has explored
the delegation of responsibility as we have done in this paper. These works have
only considered the basic levels of delegation, namely the delegation of the obli-
gation without responsibility or the transfer of the obligation together with the
responsibility. In our work, we have proposed a distinction between functional
responsibility and liability, in order to give agents the means to delegate their
obligations according to their requirements and abilities. Moreover, this distinc-
tion allows us to identify, in the case of delegation, agents that are responsible
for the violation, agents that are liable (or indirectly liable) for this violation
and finally agents who are to be sanctioned.

Even though the word delegation has been used (and defined) in a technical
sense in this paper, our notion of delegation can be applied in real life situations
in which a proper distinction between functional, causal and legal responsibil-
ities could help clarifying the issues and drawing appropriate conclusions. As
an illustration, existing privacy protection regulations (such as the European
Directive) impose strong obligations on any entity which collects personal data
(the “data controllers”). In particular, data controllers are responsible for the

Delegation of Obligations and Responsibility 207

security of the data and must ensure that the data subject can effectively exer-
cise their rights, for example their rights to get access to their data or to have
them corrected in case of error, or deleted if they are no longer necessary for
the purpose. If the data controller subcontracts some or all the treatment of the
personal data, certain responsibilities are transferred when others are shared or
kept by the data controller. For example the functional responsibility to ensure
the security of the data is shared (the data controller must implement appro-
priate security measures for the collection of the data and their transfer to the
subcontractor and the subcontractor must ensure the protection of the data stor-
age and access) but the legal responsibility for security (w.r.t. the data subject)
may remain with the data controller, so that the data subject could potentially
sue the data controller for security breaches actually due to the subcontractor.
On the other hand, the functional responsibility on the exercise of the rights
of the subject may be completely transferred (if the data controller does not
store any data by himself) and both the data controller and the subcontractor
must address any request from the subjects concerning their personal data, thus
sharing legal responsibility.

Another illustration of the generality of our framework is the application
to software contracts and responsibilities for defective software. As stated in
section 2, different notions of causal responsibility can be defined, which may
correspond to different levels of severity. The notion of causality has also been
studied for a long time in computer science, but it is usually seen essentially as
a temporal property. In [9], we have defined several variants of logical causality
allowing us to express the fact that an event e2 (e.g. a damage) would not have
occurred if another event e1 had not occurred (“necessary causality”) or the fact
that e2 could not be avoided as soon as e1 had occurred (“sufficient causality”).
These causality properties are expressed in terms of execution traces of the
software components. We have shown that they are decidable and proposed trace
analysis procedures to establish them. These notions of causality are examples of
causal responsibilities relations CR which can be used to apply the framework
presented here to software liability. This would make it possible to formalize
legal aspects of the liability framework proposed in [11] and to distinguish, for
example, the technical commitments of a subcontractor (e.g. providing a software
component with a given functionality) and the cases of misbehaviour giving rise
to a legal liability on his part (e.g. if the output of the component exceeds a
given threshold, which might put the system or its environment at risk). An
interesting avenue for further work to this respect is the introduction of group
liability allowing us to make a distinction between “joint liability” (when each
party is considered fully responsible for the obligation) and “several liability”
(when the parties are responsible for their respective part of the obligation).

Acknowledgments. This research has been supported by the ANR 07 SESUR
FLUOR project.

208 M. Ben Ghorbel-Talbi et al.

References

1. Ben-Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N.: An extended
role-based access control model for delegating obligations. In: Fischer-Hübner, S.,
Lambrinoudakis, C., Pernul, G. (eds.) TrustBus 2009. LNCS, vol. 5695, pp. 127–
137. Springer, Heidelberg (2009)

2. Ben-Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N.: Negotiating and
delegating obligations. In: International Conference on Management of Emergent
Digital Eco-Systems (MEDES) (2010)

3. Bettini, C., Jajodia, S., Wang, X.S., Wijesekera, D.: Provisions and obligations in
policy rule management. Network and Systems Management 11(3) (2003)

4. Cholvy, L., Cuppens, F., Saurel, C.: Towards a logical formalization of responsi-
bility. In: 6th International Conference on Artificial Intelligence and Law. ACM
Press, Australia (1997)

5. Cholvy, L., Garion, C., Saurel, C.: Ability in a multi-agent context: A model in
the situation calculus. In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI),
vol. 3900, pp. 23–36. Springer, Heidelberg (2006)

6. Cole, J., Derrick, J., Milosevic, Z., Raymond, K.: Author obliged to submit paper
before 4 july: Policies in an enterprise specification. In: Sloman, M., Lobo, J., Lupu,
E.C. (eds.) POLICY 2001. LNCS, vol. 1995, p. 1. Springer, Heidelberg (2001)

7. Crispo, B., Ruffo, G.: Reasoning about Accountability within Delegation. In: Qing,
S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, p. 251. Springer,
Heidelberg (2001)

8. Cuppens, F., Cuppens-Boulahia, N., Ghorbel, M.B.: High level conflict manage-
ment strategies in advanced access control models. Electronic Notes in Theoretical
Computer Science, vol. 186 (2007)

9. Gössler, G., Le Métayer, D., Raclet, J.-B.: Causality analysis in contract violation.
In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G.,
Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 270–
284. Springer, Heidelberg (2010)

10. Irwin, K., Yu, T., Winsborough, W.H.: Assigning responsibility for failed obliga-
tions. In: IFIP Trust Management Conference (2008)

11. Le Métayer, D., Maarek, M., Mazza, E., Potet, M.L., Frénot, S., Viet Triem Tong,
V., Craipeau, N., Hardouin, R.: Liability in software engineering - overview of the
lise approach and illustration on a case study. In: 3rd International Conference on
Software Engineering (2010)

12. Mastop, R.: Characterising responsibility in organisational structures: The problem
of many hands. In: Governatori, G., Sartor, G. (eds.) DEON 2010. LNCS, vol. 6181,
pp. 274–287. Springer, Heidelberg (2010)

13. Pacheco, O., Santos, F.: Delegation in a role-based organization. In: Lomuscio,
A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol. 3065, pp. 209–227. Springer,
Heidelberg (2004)

14. Park, J., Sandhu, R.: The UCONABC Usage Control Model. ACM Transactions
on Information and System Security 7(1), 128–174 (2004)

15. Pretschner, A., Hilty, M., Basin, D.: Distributed usage control. Communications
of the ACM 49(9), 39–44 (2006)

16. Pörn, I.: Action theory and social science: Some formal models. Synthese Library
120 (1977)

Delegation of Obligations and Responsibility 209

17. Royakkers, L., Grossi, D., Dignum, F.: Responsibilities in organizations. In:
Computer Supported Activity Coordination (2006)

18. Schaad, A., Moffett, J.D.: Delegation of obligations. In: Policies for Distributed
Systems and Networks, USA (2002)

19. Sergot, M.: Norms, action and agency in multi-agent systems. In: Governatori,
G., Sartor, G. (eds.) DEON 2010. LNCS, vol. 6181, pp. 2–2. Springer, Heidelberg
(2010)

20. Strens, R., Dobson, J.: How responsibility modelling leads to security requirements.
In: Workshop on New Security Paradigms, United States (1993)

21. von Wright, G.H.: Deontic Logic. Mind 60, 1–15 (1951)

Distributed Security Policy Conformance

Mirko Montanari, Ellick Chan, Kevin Larson,
Wucherl Yoo, and Roy H. Campbell

Department of Computer Science
University of Illinois at Urbana-Champaign

{mmontan2,emchan,klarson5,wyoo5,rhc}@illinois.edu

Abstract. Security policy conformance is a crucial issue in large-scale
critical cyber-infrastructure. The complexity of these systems, insider
attacks, and the possible speed of an attack on a system necessitate an
automated approach to assure a basic level of protection.

This paper presents Odessa, a resilient system for monitoring and vali-
dating compliance of networked systems to complex policies. To manage
the scale of infrastructure systems and to avoid single points of fail-
ure or attack, Odessa distributes policy validation across many network
nodes. Partial delegation enables the validation of component policies
and of liveness at the edge nodes of the network using redundancy to in-
crease security. Redundant distributed servers aggregate data to validate
more complex policies. Our practical implementation of Odessa resists
Byzantine failure of monitoring using an architecture that significantly
increases scalability and attack resistance.

1 Introduction

Security management and policy compliance are critical issues in modern in-
frastructure systems. Regulatory and security organizations introduce policies
and best practices to raise the minimal level of security required for power grid
systems, government systems, and airport systems. We have studied industrial
security policies [11, 12] that have complex challenging compliance and audit-
ing concerns at the network level at the scale of the system concerned. Manual
attempts to audit these systems are tedious, error prone, and potentially vulner-
able to insider attacks or credential theft. Therefore a more principled solution
to this problem is required.

The formalization of security policies and the use of hardened automated
systems that validate compliance can improve the quality and efficiency of this
auditing process. Although previous approaches analyzed the representation of
these policies [1] and described centralized systems for collecting network infor-
mation and analyzing it [6, 16], neither has adequately addressed the issue of
scaling to networks of thousands of nodes or of resilience to attacks.

To address these issues, we have implemented and evaluated our policy com-
pliance monitoring system Odessa. Our approach addresses the scaling problem
by decomposing policies and distributing the validation process. Each of the

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 210–222, 2011.
c© IFIP International Federation for Information Processing 2011

Distributed Security Policy Conformance 211

complex rules that define the compliant and non-compliant states of the system
is decomposed into local components and an aggregate component. We securely
delegate the validation of local components to secure agents installed on hosts.
These agents are able to reliably monitor the state of the system using virtual
machine introspection. Using this information, we partition the validation of ag-
gregate components across several distributed servers. Resilience toward attacks
aimed at compromising the validation process uses Byzantine failure resistant,
redundant information acquisition employing multiple agents and independent
critical policy validation in multiple server style monitors.

The contributions of this paper include:

1. An algorithm for determining which portion of each policy can be validated
on devices.

2. A resilient tree-based architecture that distributes to multiple servers the
validation of the aggregate components of the policies and that delegates to
several hosts the load of monitoring for the liveness of each device.

3. An evaluation of the scalability of our solution.

The rest of the paper is structured as follows. Section 2 describes related work
in the area. Section 3 defines policy compliance and presents several examples
of policies. Section 4 describes the Odessa architecture. Section 5 presents our
algorithm for distributing policy evaluation. Section 6 describes our experimental
evaluation. Finally, Section 7 summarizes our contributions and results.

2 Related Work

Several agent-based systems have been introduced for monitoring the security
configurations of systems. NetQuery [16] and the DMTF Web Based Enterprise
Management (WBEM) framework1 provide a unified view of the configuration of
a system and create notifications in case of changes in the state. However, none
of these approaches provide automatic methods for distributing the evaluation
of policies or decentralized mechanisms for detecting the failure of hosts.

Other non-agent based systems have been proposed for performing specific
security assessments. Network scanners and security assessment tools such as
TVA [6], or MulVAL [13] acquire information about the configuration of the
system by using port scans or direct access to hosts. These systems have several
limitations. First, changes to host configurations are detected with considerable
delay because of the polling approach. Second, their architecture is centralized:
the evaluation of policy compliance is performed in a central host. For very large
networks, this can become both a bottleneck and a vulnerability as a single su-
pervisory node audits, monitors, and checks remote operations that may impact
integrity. ConfigAssure [10] takes a top-down approach and synthesizes network
configurations from high-level specifications. However, the top-down approach is

1 http://www.dmtf.org

212 M. Montanari et al.

not always applicable, as the organizational network is often managed by differ-
ent divisions and it is not always possible to centralize the control into a single
entity. Additionally, this paper focuses on policy-compliance validation. Previous
work [7] discusses hardening techniques.

3 Policy Compliance

Policy compliance is a basic security and regulatory requirement for infrastruc-
ture systems. Although policy compliance cannot guarantee security, it still offers
a minimal level of assurance against attacks that would be avoidable had proper
security measures been taken. These policies can be specified as constraints
created from regulatory requirements, or from the formalization of organization-
specific security requirements. Policies are often posed as high-level specifica-
tions, and they are implemented in the system using a set of processes or rules
that specify constraints on the states of the system. We focus on a set of rules
that are in place to protect the industrial infrastructure against a wide-range
of known types of attacks. For example, NIST specifies a set of best practices
in their Security Content Automation Protocol (SCAP) [12] for regulating the
configurations of government systems, and the North American Electric Relia-
bility Corporation (NERC) provides policies about the configuration of power
grid systems. For example, a policy might require all remote access points to the
system to be monitored and logged at all times, or that all critical systems need
to be placed within an enclosed electronic security perimeter. Changes in the
configuration of the system or failures could create violations to such security
policies and open it to potential attacks.

Many of these policies can be translated into rules and formalized in a logic
language [1]. Odessa detects violations of these rules by representing configura-
tion information and state information using Datalog statements [13]. Using Dat-
alog, configurations are expressed as sets of ground statements (i.e., statements
without variables). Without loss of generality, we represent configurations using
the Resource Description Framework (RDF) language2 [8]. Following RDF con-
vention, statements are represented as subject-predicate-object triples (s, p, o).
A set of statements connected with conjunctions is a knowledge base (KB).
For example, we can represent the fact that a server time.gov provides the ser-
vice ntp using the following KB: (time.gov, istype, server), (ntp, istype, service),
(time.gov, provides, ntp). Statements indicate conditions on the state of a host,
and KBs integrate statements to reason about policy violations.

Datalog rules represent implications defined over the state of the infrastruc-
ture. The conditions of these implications are specified by a conjunction of
statement patterns, i.e., statements that have variables as subject or object.
Statement patterns are matched (i.e., unified) against the statements represent-
ing the state, and if the condition is true a new statement is added to the
KB. Uppercase characters indicate variables and lowercase characters represent

2 http://www.w3.org/TR/rdf-concepts/

Distributed Security Policy Conformance 213

resources. For example, we can consider a simple rule which specifies that crit-
ical servers should not run applications with known vulnerabilities without an
exception. By acquiring information about the running program on each ma-
chine, annotations about the importance of each server, and information about
vulnerabilities, we represent this rule by specifying that we have a violation if
a critical server provides a vulnerable service as following: (S, istype, server),
(A, istype, service), (S, provides, A), (S, criticality, high), (A, hasvuln, V), ¬
(S, hasexception, E) → (r1, violation, V). The last statement, called the con-
sequence of the rule, is specified by a statement pattern which have variables
that appear in the condition (body) of the rule. The consequence can represent
a violation as in our example, or it can represent a statement which can be used
by other rules for validating compliance.

4 The ODESSA System

The objective of Odessa is to check if the state of the infrastructure as a whole is
compliant to all policies defined by the organization and represented as Datalog
rules. The architecture of the system was designed to distribute the evaluation
of these rules in a scalable manner. To achieve this, Odessa uses a distributed
evaluation protocol which includes the following elements: a set of monitoring
agents that monitor the configuration of hosts and validate local portions of the
organizations’ policies; a set of distributed verifiers that validate global rules,
and a set of predicate groups which are distributed index structures that provide a
scalable support for the communication between verifiers and monitoring agents.

Agents represent the state of hosts using Datalog statements and share state-
ments relevant to global policies with verifiers. Distributed verifiers integrate
information across multiple hosts and perform the validation of policies with con-
figuration information gathered from multiple machines. For a subset of policies
critical to the security of the infrastructure, we require configuration information
to be acquired independently from multiple agents and we replicate the policy
validation on several verifiers which use Byzantine fault tolerance [5] to reach
an agreement. By virtue of using FreePastry3, our system inherits secured SSL
communications and heartbeat-based liveness measurement. The architecture of
Odessa is depicted in Figure 1.

Monitoring Agents. Monitoring agents run in a secure environment on each
host. We developed agents running in the Dom0 VM of a Xen system [2]. Virtual
machines running on the same physical hosts are monitored using VM intro-
spection [14]. Traditional hosts are monitored remotely by one of the agents
using standard protocols. TPM can be used with SSL to provide a root of trust
and validate the authenticity of the agent. The set of policy violations that our
system detects depends on the type of information that monitoring agents can
acquire from the systems.

3 http://www.freepastry.org

214 M. Montanari et al.

Fig. 1. Architecture of Odessa. End-hosts are organized in predicate groups. Verifiers
register to the root of the group.

Verifiers. Verifiers are hosts that securely collect information shared by moni-
toring agents to validate rules. Each verifier manages a subset of the rules of the
organization. The set of rules is partitioned across verifiers to minimize the over-
lap between the information required by each verifier. Critical rules are analyzed
redundantly by multiple verifiers.

Predicate Group. To link monitoring agents and verifiers, we use predicate
groups. Each predicate group connects monitoring agents that share a specific
type of configuration statements and, hence, participate in the evaluation of the
same rules. These groups distribute the processes of distributing information
about new verifiers, integrating new hosts, and monitoring their liveness. Moni-
toring liveness is required because the state of failed hosts needs to be promptly
removed from the state of the verifiers to detect correctly policy violations.

A predicate group is formed for every predicate p in the system. Membership
in the group is distributed to several hosts by organizing agents into trees: each
host maintains knowledge about a few other agents and monitors their liveness.
The processes of constructing and maintaining these trees are inspired by the
Scribe dissemination trees [4]. Communications are built on a Pastry Distributed
Hash Table (DHT) [15] system, and the agent assigned to the DHT key H(p)
is the root of the tree for predicate p. When a new verifier starts monitoring
compliance to a rule, it contacts the roots of the trees for the predicates involved
in the rule to distribute its registration to all agents in the groups.

Resilience. Odessa has several design features that increase the difficulty of
attacks when compared to centralized solutions. Attacks can target monitor-
ing agents to compromise the information used for policy validation. To protect
them, we run the monitoring agent in a separated secure environment, and we
validate critical policies using redundant information. The separation isolates
monitoring agents from possible compromises of hosts. In our implementation,
we use VM-based separation but other techniques such as hardware based pro-
tections can be used without affecting the rest of the architecture. By running
only monitoring agents in a separate VM, we provide a smaller attack surface
for agents. For these reasons, we assume that agents behave according to our

Distributed Security Policy Conformance 215

protocol. However, while techniques have been developed for introspecting the
state of machines without malware mediation [14], clever attackers could em-
ploy anti-forensics techniques and potentially conceal malicious processes. As an
additional level of protection, we use redundant information acquired from inde-
pendent sources in the validation of critical policies. For example, network traffic
can be used to infer the presence of services on a specific machine, and multiple
voltage sensors on a power line provide redundant information about the line’s
state. By acquiring information from multiple agents, an attacker would need to
compromise several agents to thwart the validation process.

Attacks can target verifiers to conceal existing policy violations or to insert
fictitious violations. We handle these cases by replicating the verification of the
same policy on multiple verifiers. We use Byzantine fault tolerance for the val-
idation of critical policies to reach an agreement even when a small subset of
the verifiers is compromised. Attacks targeting predicate groups can compromise
the infrastructure for distributing new verifiers registration, or for delaying the
detection of failed and of new hosts. Even if agents are separated from the mon-
itored hosts, attackers might still able to perform DoS attacks that affect one
or more entire physical hosts. However, the DHT infrastructure automatically
reconfigures itself to the new situation and notifies verifiers about failed hosts
for triggering rule violations. Even when malicious users target the roots of the
predicate groups, the DHT reassigns the failed agent role to other agents. Such
attack only delays the registration of new verifiers, and it is easily detectable.

5 Rule Decomposition and Validation

To be scalable, our policy validation process detects policy violations through the
coordination of monitoring agents and verifiers. We use our rule decomposition
algorithm (RDA) to transform the organization’s rules into an equivalent set of
rules which takes advantage of information locality. This process allows Odessa
to push a partial execution of the rules to each monitoring agent and hence,
reduces configuration information transferred between machines.

The intuition behind the algorithm is to use information about the source of
configuration statements (i.e., which agents can generate a particular configu-
ration statement) for limiting the places where possible configurations that can
trigger the body of a rule can be found. For example, if we are checking for
the presence of a particular application on a host h1, we know that information
about running applications is generated only by host h1. Using this locality ra-
tionale, we identify a portion of each rule. The execution of this portion that
considers only local statements on each agent is equivalent to an execution that
considers all statements in the system. Such a portion is executed independently
on each agent, and only the results are shared with the rest of the system.

Our validationprocess is composed of two phases: decomposition and execution.
The decomposition phase uses the RDA algorithm to integrate information about
the locality of agents’ configuration statements with the rules of the organization.
The result of this process is a decomposition of each rule into local sub-rules and

216 M. Montanari et al.

aggregate sub-rules. In the execution phase, monitoring agents use local sub-rules
to perform partial processing of the rule and use predicate groups to send processed
state information. Verifiers use aggregate sub-rules to control the process of aggre-
gating information acquired from multiple agents. A more detailed description of
the algorithm can be found in the extended version of this paper [9].

5.1 Decomposition

The decomposition phase takes a rule and information about the statements gen-
erated by agents to decompose the rule into local and aggregate sub-rules. This
process uses an RDF-graph representation of the rules which is more suitable for
our analysis. Each rule is transformed in a rule graph, a labeled directed graph
describing the explicit relationship between variables, resources, and predicates
used in the rule. The graph has a node for each resource or variable and an
edge from subject to object for every statement pattern. The statement pattern
defined in the rule head is marked as the head edge.

Locality. For each agent, we say that a statement pattern is local if all its
potential matching statements are always found locally, independently from the
current state of the system. For identifying the local portion of the rule, we for-
malize our knowledge about the locality of the statement patterns using a RDF
graph we call the locality graph. One of the nodes of the graph, called the anchor,
identifies a specific type of agent as the information source (e.g., Host). Each
undirected path starting from the root represents a conjunction of statement
patterns: all the statements matching such combination of patterns are found
locally on each agent. For example, we can consider a path with two statement
patterns (H, hasnetworkinterface, C),(C, connectedTo, N). Statements match-
ing these conditions represent the list of network interfaces and networks at
which the host H is connected. For a specific host H = h1, the only statements
that can match these conditions are generated by h1. The locality graph depends
on the semantics of the statements that are generated by the agent. Statements
used in the validation of critical policies should not be part of the local graph.

Using the locality graph we can identify subgraphs of the rule graph which
can be processed locally. For clarity, we consider only one type of anchor, Host.
We generate a different subgraph for each node of type Host in the rule graph.
We include in this subgraph all edges and nodes that are connected to it which
match edges and nodes in the locality graph. We recursively consider all paths in
the locality graph. We call these subgraphs agent-local subgraphs. Agent-local
subgraphs could have anchors which are not local for an agent. For example,
given a locality graph (H, p, A) and a rule (h2, p, A) → (h2, violation, A), the
subgraph is local only for host h2. Without loss of generality, for every agent we
choose one of the agent-local subgraph to be local.

Transformation into sub-rules. Once the local subgraph is identified, we
generate local and aggregate sub-rules to use for the distributed rule processing.
These sub-rules specify the location of the computation for the validation of
rules and the structure of the communication between agents and verifiers.

Distributed Security Policy Conformance 217

A sub-rule is a pair < β → η, μ > formed by a rule β → η (β is the body, η
the conclusion) and a query μ. For local sub-rules, the rule β → η represents a
portion of the original rule, and the query μ identifies the statements generated
by local processing which are sent to verifiers. For aggregate sub-rules, the query
identifies the information received by the agents, and the rule identifies the
remaining portion of the policy validation.

Local sub-rules. For each rule graph we consider its local subgraphs. There
are several cases. (i) If the local subgraph covers the entire rule β → η, then we
create a sub-rule < β → η, ∅ >. In this case, the entire processing of the rule
can be local and the agent only needs to raise an alarm for violations. (ii) If
only the head η statement of the rule graph is not part of the local subgraph,
we create a local sub-rule < β → η, η >. i.e., we locally compute the entire rule,
and we share with the verifiers only the consequences. (iii) If the local subgraph
covers only a portion of the rule, then we create several local sub-rules. For each
edge π of the rule graph not in the local subgraph, we create a local sub-rule
< ∅, π >, and we generate a single local sub-rule < βl → ηl, μl > for the entire
local subgraph as follows.

The body of the rule βl is constructed by taking all edges in the local sub-
graph and converting them into a conjunctive query of predicate patterns. Be-
cause all edges are part of the local subgraph, all statements that match the
body of the rule are found locally. For example, each match of a rule body
(A, p1, B), (B, p2, C) creates a tuple (A, B, C) containing the values of the vari-
ables. These tuples need to be shared with the verifiers to complete the validation
of the rule. However, we do not need to share the entire set of variables, but only
the variables which are used in statement patterns outside the local subgraph.
Their variables are identified by considering the nodes at the boundary of the
local subgraph (i.e., nodes which have an edge in the local subgraph and an edge
outside it). For example, if only the variables A and C are used in statements
outside the local subgraph, we only need to share the tuple (A, C).

This tuple, which represents the information to share, is used as the head ηl

of the rule. However, because the size of the tuple can change depending on the
number of variables in the body, we represent the head using a variable number of
statements which share the same RDF blank node as the subject. We can think
of blank nodes as resources with a unique name generated automatically by the
system. The object of each statement is one of the variables in the body, and the
name of the predicate depends on the rule and on the name of the variable. We
call these statements rulematch statement patterns. For example, the rulematch
statements that we define for the body in the example are (: k, rmr,′A′ , A), (:
k, rmr,′C′ , C). The blank node : k is substituted with the same random string
for all statements, r is a unique identifier of the rule and ′A′ and ′C′ are strings
representing the variable names. By combining body and head of the example, we
have the rule (A, p1, B), (B, p2, C) → (: k, rmr,′A′ , A), (: k, rmr,′C′ , C). The
last piece of the local sub-rule, the query μl, selects these rule match statements.
An example of rule graph and local sub-rules is shown in Figure 2.

218 M. Montanari et al.

Fig. 2. Example of the conversion of a rulegraph into a set of local sub-rules

Aggregate Sub-Rules. The analysis for the generation of aggregate sub-rules
is similar to the generation of local sub-rules. Even if aggregate sub-rules are
executed on verifiers, we still use the concept of “locality” as locality for the
agents. For edges π = (A, p, B) not in the local subgraph we create an aggregate
sub-rule with only a query < ∅, π >. This aggregate sub-rule specifies that
all statements matching this pattern should be delivered to the verifier. If the
rule graph ρ does not have a local subgraph, we add an aggregate sub-rule
< ρ, ∅ > which introduces the rule in the verifier’s KB. Hence, for rules with no
local subgraphs, the verifiers simply collect all statements matching any of the
statement patterns of the rules and perform local reasoning.

For rule graphs with a local subgraph, we need to account for the partial
processing performed on the agents. We create an aggregate sub-rule with a
rule ρ′ where the local subgraph edges have been substituted with rulematch
statements, and we create a set of queries that collects such statements.

5.2 Execution

The execution is driven by local sub-rules and aggregate sub-rules. For each
aggregate sub-rule < ρ, μ > the verifier adds the rule ρ to its local KB. Consid-
ering μ = (A, p, B), it sends a message to the root of the predicate group of p,
H(p). The message contains the query μ which the root nodes disseminates to
all agents in the group. On the agents, for each local sub-rule < ρ, μ > we add
the rule ρ to the local KB and we select all statements matching μ. Assuming
μ = (A, p, B), the agent sends a message toward H(p) to register itself as part of
the predicate group. In the DHT, the path toward such a node travels through
multiple other monitoring agents. At each step, agents on the path keep track of
the subscription and form a new branch of the tree used to maintain the pred-
icate group. When an agent that is already part of the same tree is found, the
branch is connected as a child of such agent. The agent receives from the new
parent the registered verifiers and sends them its configurations.

For the validation of critical policies, we require verifiers to collect statements
from a minimum number of different agents. A Byzantine agreement on the
result is reached by broadcasting the result of local validations to other verifiers.

Distributed Security Policy Conformance 219

The DHT infrastructure supports the monitoring for liveness. Each monitor-
ing agent is registered to several predicate groups, and the agents periodically
send heartbeat messages to their neighbors. When the failure of an agent is de-
tected, a message is sent to the registered verifiers so that all statements that
had been generated by the failed agent are removed from the verifiers’ state. As
each host is registered to several trees, even the failures of all hosts in a branch
of the tree are detected by the parent hosts in other trees.

6 Implementation and Evaluation

We implemented the components of the Odessa system using a combination
of C and Java. The communication between monitoring agents and verifiers is
implemented on the FreePastry system. Inference is performed by using the rule-
based inference system Jena [3]. The monitoring agents run in the Dom0 virtual
machine of a Xen installation. They monitor guest VMs by accessing the host
state using an extension of XenAccess [14]. A Linux kernel module is installed
on guest VMs to provide additional information about the state of the system
which is not easily accessible using XenAccess.

We ran the system on a real network and we validated a set of test rules
which include (i) checking the presence of specific programs, (ii) checking NFS
authorization for access control misconfigurations that give unprivileged users
access to restricted files, (iii) and validating that critical machines are protected
from external attacks. Our system was able to delegate the validation of rules
(i) and (ii) to each host, and it was able to decompose rule (iii) into a local
portion and a global portion. The local portion shares statements about the
host address and about vulnerable programs running on the system, which are
identified using the National Vulnerability Database (NVD)4. The global portion
integrates this information across the network and using logic attack graphs it
computes if a specific host can be compromised by an external attacker. We use
our prototype to measure the possible delay in the verification that an attacker
can introduce by performing DoS on predicate group roots before a new verifier
is registered. We found that the FreePastry implementation already provides a
delay limited to an average in the order of tens of seconds. The tradeoff between
message frequency and delay in the detection of failures is shown in Figure 3.
The parameter p represents the number of communication attempts made before
declaring an agent dead. The results are an average of 20 executions.

To measure the scalability characteristics of Odessa, we performed several sim-
ulations using random models of large-scale systems. The first experiments focus
on the ability of Odessa of distributing rule validations, and the second on the
scalability of the system. We use the number of statements shared by monitoring
agents as a metric for measuring the distribution of rule validation. We create a
synthetic configuration with a structure similar to the configuration data found
in real hosts (e.g., process list and associated sockets, network file system data).
The configuration is composed of a constant number of statements organized in
4 NVD: National Vulnerability Database V2.2 http://nvd.nist.gov/

220 M. Montanari et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30

A
vg

 d
el

ay
 [s

]

Msgs / min

p=3
p=5

Fig. 3. Delay in the detection of agent
failures

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

%
 C

ha
ng

es
 tr

an
sm

itt
ed

Rule size

k=1
k=3

Fig. 4. Agents’ statements transferred as
consequences of configuration changes

tree structures where the object of the parent statement is the subject of the
children. We vary the number of children at each level with a parameter k, and
we vary the number of levels. Random statements have constants as objects. We
consider a rule body (A1, p1, A2), . . . , (Ai, pi, Ai+1), . . . , (Am, pm, Am+1) and
we changed the local sub-rule by varying the index i to represent different types
of configurations and to represent the use of critical policies (which decrease
the local portion of the rule). We consider a system where agent configurations
change periodically by randomly adding or removing statements and we measure
the effects of the size of the sub-rule in the number of statements transmitted.
We found that the number of statements decreases linearly with the increase of
the local portion of the rule, as shown in Figure 4.

The next set of experiments shows that, independent from the advantages
of delegating rule processing, the use of predicate groups significantly reduces
the load on the verifiers for monitoring the liveness of hosts and, hence, enables
an increased scalability of the system. To quantify this gain, we perform sim-
ulations to compare our architecture with an agent-based solution which relies
on a central server for integrating data. We set the parameters of the two so-
lutions (e.g., frequency of messages used for keep-alive purposes) to obtain an
equivalent delay in the detection of failed hosts, and we consider both a static
network (odessa-p50-static) and a network where a host is added or removed

 10

 100

 1000

 10000

 100000

 0 500 1000 1500 2000 2500 3000 3500 4000

M

sg
s

/ m
in

Hosts

baseline
odessa-p50-dyn

odessa-p50-static

Fig. 5. Maximum number of messages
sent and received by any hosts (log y)

 10

 11

 12

 13

 14

 15

 16

 0 500 1000 1500 2000 2500 3000 3500 4000

M

sg
s

/ m
in

Hosts

baseline
odessa-p50-dyn

odessa-p100-dyn

Fig. 6. Average number of messages sent
by each single host

Distributed Security Policy Conformance 221

from the system so that 20% of the hosts change every hour (odessa-p50-dyn).
We measure the maximum amount of messages sent and received by each host.
We find that our solution reduces by orders of magnitude the maximum load on
any single host (shown as in Figure 5) and has a limited effect on the average
load of each single host (shown in Figure 6). We also find that the number of
predicate groups at which hosts are connected does not significantly affect the
average number of messages exchanged. In the figures, odessa-p100-dyn repre-
sents a network where each host is connected to 100 predicate groups, while in
odessa-p50-dyn each host is connected to 50 predicate groups.

7 Concluding Remarks

This paper shows that resilient and large-scale policy validation is possible by
introducing an architecture and an algorithm for decomposing policies and dis-
tributing their validation across multiple machines. We assess that our technique
is viable and practical for deployment in large infrastructure systems.

In our future work we are planning to employ reactive agents that can harden
the host according to security policies to reduce the time window of vulnerability
of the system. Our approach focuses on rules for which violations have a long
lifespan. Short-lived false negatives from message reordering pose a limited threat
to security because they already have a small time window for attack. However,
we are planning to address these issues for a more general monitoring system.

References

1. Anwar, Z., Campbell, R.H.: Automated Assessment of Critical Infrastructures
for Compliance to CIP Best Practices. In: Second IFIP WG 11.10 International
Conference on Critical Infrastructure Protection. IFIP (2008)

2. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP. ACM, New
York (2003)

3. Carroll, J., Reynolds, D., Dickinson, I., Seaborne, A., Dollin, C., Wilkinson, K.:
Jena: implementing the semantic web recommendations. In: WWW. ACM, New
York (2004)

4. Castro, M., Druschel, P., Kermarrec, A., Rowstron, A.: SCRIBE: A large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected
Areas in Communications (2002)

5. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS) (1982)

6. Jajodia, S., Noel, S., Berry, B.: Topological analysis of network attack vulnerability.
In: Managing Cyber Threats: Issues, Approaches and Challenges (2005)

7. Johnson, C., Montanari, M., Campbell, R.H.: Automatic Management of Logging
Infrastructur. In: CAE Workshop on Insider Threat. CAE (2010)

8. Montanari, M., Campbell, R.H.: Multi-Aspect Security Configuration Assessment.
In: SafeConfig Workshop. ACM, New York (2009)

222 M. Montanari et al.

9. Montanari, M., Chan, E., Larson, K., Yoo, W., Campbell, R.H.: Distributed
Security Policy Conformance. Technical Report, University of Illinois (February
2011)

10. Narain, S., Levin, G., Malik, S., Kaul, V.: Declarative Infrastructure Configuration
Synthesis and Debugging. Journal of Network and Systems Management (2008)

11. North American Electric Reliability Corporation, Critical Infrastructure Protec-
tion Standard, CIP-001 to CIP-009 (2010)

12. NIST. SP800-126: The Technical Specification for the Security Content Automa-
tion Protocol (SCAP) (2009)

13. Ou, X., Boyer, W., McQueen, M.: A scalable approach to attack graph generation.
In: CCS. ACM, New York (2006)

14. Payne, B.D., Carbone, M., Lee, W.: Secure and Flexible Monitoring of Virtual
Machines. In: ACSAC. IEEE, Los Alamitos (2007)

15. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Liu, H. (ed.) Middleware 2001.
LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)

16. Shieh, A., Kennedy, O., Sirer, E., Schneider, F.: NetQuery: A General-Purpose
Channel for Reasoning about Network Properties. In: OSDI. USENIX (2008)

Scalable Privacy-Preserving Data Mining with

Asynchronously Partitioned Datasets

Hiroaki Kikuchi1, Daisuke Kagawa1, Anirban Basu1, Kazuhiko Ishii2,
Masayuki Terada2, and Sadayuki Hongo3

1 Graduate School of Engineering, Tokai University,
1117, Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan

kikn@tokai.ac.jp, {nagomin03,abasu}@cs.dm.u-tokai.ac.jp
2 NTT DoCoMo Inc.

3-5 Hikarinooka, Yokosuka-shi, Kanagawa, 239-8536, Japan
{ishiikaz,teradama}@nttdocomo.co.jp

3 Department of Frontier Information Engineering,
Faculty of Advanced Engineering, Hokkaido Institute of Technology 7-15 Maeda,

Teine-ku, Sapporo, Hokkaido, 006-8585, Japan
hongo@hit.ac.jp

Abstract. In the Näıve Bayes classification problem using a vertically
partitioned dataset, the conventional scheme to preserve privacy of each
partition uses a secure scalar product and is based on the assumption
that the data is synchronised amongst common unique identities. In this
paper, we attempt to discard this assumption in order to develop a more
efficient and secure scheme to perform classification with minimal dis-
closure of private data. Our proposed scheme is based on the work by
Vaidya and Clifton[1], which uses commutative encryption to perform
secure set intersection so that the parties with access to the individual
partitions have no knowledge of the intersection. The evaluations pre-
sented in this paper are based on experimental results, which show that
our proposed protocol scales well with large sparse datasets.

1 Introduction

Privacy-preserving data mining aims to allow computation of useful aggregate
statistics over the entire dataset without compromising the privacy of individual
data. The parties collaborating to obtain aggregate results may not fully trust
each other, such as a Sybil attack[2] resistant recommendation system [3] or the
Näıve Bayes classifier [1]. Such parties may also be competitors in the same field,
for example companies which may have privacy policies restricting access to each
other’s customer datasets.

Vertically partitioned data is an important data distribution model often found
in real life. For example, Table 1 illustrates two datasets partitioned vertically
where attributes A1 and A2 are owned by Alice (A); and Bob (B)1 owns the at-
tribute A3 and a target class C, which indicates whether or not to play tennis on
1 From this point forward, we use Alice, A, and party A interchangeably; and the

same for Bob, B or party B.

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 223–234, 2011.
c© IFIP International Federation for Information Processing 2011

224 H. Kikuchi et al.

the day. Alice and Bob separately collect the different features, e.g. temperature,
humidity, etc. for each day. Collaboratively performing Näıve Bayes classifica-
tion allows them to accurately predict the decision to play or not, i.e. predict C
given A1, A2 and A3, although they can not share each other’s datasets.

Syncronous and Asynchronous Partitions: Vaidya and Clifton presented, in [1],
a secure protocol for Näıve Bayes classification for vertically partitioned datasets
without revealing the individual partitions. Their protocol combines homomor-
phic public-key encryption algorithm to compute scalar product of two vectors,
with the secure function evaluation [4] for comparison of class c ∈ C in terms of
conditional attributes, i.e. Pr(C = c|a1, a3).

Their protocol assumes that the input vectors are of the same dimensions.
Hence, the partitioned datasets are synchronous with the days (in our exam-
ple in Table 1) when the attributes are observed. However, datasets may not
always be synchronous. For example, the dataset in Table 2 is vertically but
asynchronously partitioned, where attributes are stored with common IDs. This
type of asynchronous partitions are of frequent occurrences in our daily lives.
Examples include some content service providers with common user IDs, while
hospitals and pharmacies may share some common patient identities.

Before delving further, we define few terms that we use in this paper:

asynchronous partitions are vertical partitions of a dataset which are more
generalised cases of synchronous partitions. Asynchronous partitions do not
necessarily exhibit a coherent sequence of data between the partitions, for
example, by having missing and duplicate instances, or not being indexed
by the same identity column.

index set is a set, denoted by ID, of values for identities of all instances in a
dataset or its partition.

Table 1. Synchronously (vertically) partitioned dataset

Alice Bob
day A1 A2 A3 C
1 sunny hot high no
2 sunny hot low yes
3 rainy hot high yes
4 rainy cool low yes

Table 2. Asynchronously partitioned dataset

Alice Bob
ID A1 A2 ID A3 C
1 sunny hot 1 high no
2 sunny hot - - -
3 rain hot 3 low yes
4 rain cool 4 low yes
- - - 5 high yes
- - - 3 high yes

Scalable Privacy-Preserving Data Mining 225

The simplest solution to the problem of asynchronously partitioned datasets is to
sort instances by IDs so as to make the two datasets consistent by IDs, and then
perform secure scalar product protocols on the vectors. However, it is not so easy.
Attributes may be missing for certain IDs, e.g. for id = 2 in Bob’s partition. One
ID may have multiple instances, e.g. the 3rd and the 6th instances conflict for the
common id = 3 in Bob’s partition. The most significant issue in asynchronous par-
titions is scalability. The conventional vector-based approaches are not efficient for
datasets in which most instances are empty, i.e. sparse datasets and this leads us to
what is often called the sparsity problem, e.g. [5].

missing values. Datasets may consist of missing values for some IDs, which
contributes to low density of data. For example, the density is only 0.03 in
“EachMovie” dataset2 [6]!

duplicate assignment. Datasets may assign the same ID to distinct instances.
The arbitrary assignment of IDs can make datasets inconsistent.

scalability. Vector-based approach requires processing for each element of the
input vector even if most elements are empty. Such schemes do not scale well
as the computational costs increase dramatically with increases in dataset
size in sparse datasets.

Our goal and approaches: The goal of this paper is to construct a privacy-
preserving protocol for applying the Näıve Bayes classifier to vertically and
asynchronously partitioned datasets, which deals with the issues of (1) miss-
ing values, (2) duplicate assignments, and (3) scalablity.

In order to address these issues in asynchronous partitions, we introduce the se-
cure set intersection schemepresentedbyAgrawal et al. in [7], whichuses commuta-
tive public-key encryption. The particular advantage of the scheme is that it works
only on non-zero elements and is, therefore, appropriate for sparse datasets.

The contributions of this paper are: (1) first work of its kind, to our knowledge,
to consider asynchronously partitioned datasets; (2) a secure privacy preserving
scheme which scales well with the size of data and works efficiently with sparse
datasets; (3) a performance based evaluation of an experimental implementation
of the proposed scheme; and (4) an analytical evaluation of the scheme in terms
of the how much information is revealed.
Organisation: This paper is organised as follows. In Section 2, we review some
of the fundamental concepts and the existing work in privacy-preserving data
mining. In section 3, we present our proposed scheme. In Section 4, we evaluate
our scheme based on an experimental implementation.

2 Building Blocks

2.1 Näıve Bayes Classifier

Näıve Bayes is a widely used classifier based on the Bayes theorem, where the
class with the highest likelihood is chosen. Since the algorithm is simple but
efficient to implement, it is widely used for many purposes including email spam
filtering, prediction of credit scoring, and so on.
2 EachMovie dataset in the Grouplens project: http://www.grouplens.org/node/76

226 H. Kikuchi et al.

2.2 Secure Scalar Product Based Scheme

Vaidya and Clifton proposed a privacy-preserving scheme for the Näıve Bayes
classifier in [1]. The method allows two parties, each having access to only one
partition of a vertically partitioned dataset to predict the most likely target class
for any given instance without revealing data from each other’s partitions.

Algorithm 1. Secure Scalar Product
Input: Alice has n-dimentional vector x = (x1, . . . , xn). Bob has n-dimentional y =
(y1, . . . , yn).
Output: Alice has sA and Bob has sB such that sA + sB = x · y.

1. Alice generates a homomorphic public-key pair and sends public key to Bob.
2. Alice sends to Bob n ciphertexts E(x1), . . . , E(xn).
3. Bob chooses sB at random, computes

c = E(x1)
y1 · · ·E(xn)yn/E(sB)

and send c to Alice.
4. Alice decrypts c to get sA = D(c) = x1y1 + · · · + xnyn − sB.

The drawback of the protocol is the strong assumption of a synchronous par-
tition, i.e. (1) vectors a and c have the same dimension, (2) elements correspond
to each other for two vectors.

The secure scalar product based methods, hence, can not simply be applied
to asynchronously partitioned datasets such as Table 2.

3 Proposed Scheme

3.1 Idea

In order to perform Näıve Bayes in a scalable way, we introduce a secure set
intersection protocol, which allows Alice and Bob with subsets X and Y , respec-
tively, to compute X ∩ Y without revealing X or Y . Intersection is an useful
primitive for many data mining algorithms and hence has been studied so far
in [8,9]. The scheme presented in [8] uses oblivious polynomial evaluation that
suffers from the linear relation between computational cost and the order of the
polynomial. It is, therefore, not appropriate for our purpose. For our study, we
focus on the scheme presented by Agrawal, et. al. in [7], which uses commuta-
tive public-key encryption, which is performed only for active (i.e. not missing)
elements and therefore is more appropriate for sparse datasets.

The aforementioned intersection protocol, however, reveals intermediate
results to get the final prediction for the class variable, because one party must
learn how many elements belong to both Alice and Bob in order to proceed with
the protocol. On the other hand, the existing secure scalar product preserves the
secrecy about the size of intersection |X ∩Y | through an additional random num-
ber (sB at Step 3 in Algorithm 1). The revealed information is critical to privacy
preservation. Therefore, we propose a new secure protocol based on [7] in order to
improve both privacy and scalability for privacy-preserving data mining.

Scalable Privacy-Preserving Data Mining 227

3.2 Secure Set Intersection Protocol

Agrawal, et. al. proposed, in [7], a secure intersection protocol using a public-
key encryption algorithm that is commutative, i.e. f(g(x)) = g(f(x)) and proved
its security under assumption of semi-honest model and random-oracle model.
For concrete discussion, we illustrate the scheme in Algorithm 2 using a power
function fe(x) = xe mod p defined under Decisional Diffie-Hellman hypothesis
as commutative encryption3.

Algorithm 2. Secure Intersection Protocol
Input: Alice has subset X = {x1, . . . , xnA}, Bob has subset Y = {y1, . . . , ynB}.
Output: Intersection |X ∩ Y |.

Let Zq be a multiplicative group with prime order q and H be a secure hash function
that maps into range G.

1. Alice chooses random u ∈ Zq and send to Bob H(x1)
u, . . . , H(xnA)u in random

order.
2. Bob chooses random v ∈ Zq and send to Alice H(y1)

v, . . . , H(ynB)v and
(H(x1)

u)v, . . . , (H(xnA)u)v as well.
3. Alice computes (H(y1)

v)u, . . . , (H(ynB)v)u and selects pairs (xj , yi) such that
H(yi)

vu = H(xj)
uv; the number of pairs being the size of intersection = |X ∩ Y |.

Algorithm 2 with an input of set of n elements requires n hash value evalua-
tion, 2n modular exponentiations for each party4, and n-element set comparison,
which runs in n log n time with any appropriate algorithm. So, total complexity
is O(n) + O(n log n) = O(n log n), but the most significant cost is that for mod-
ular exponentiation. Supposing te be a processing time for exponentiations, the
cost of 2n exponentiations is 2nte.

While the polynomial interpolation based algorithm in [8], known as pop-
ular intersection protocol, requires O(n log log n) modular exponentiations for
oblivious polynomial evaluation, we will show, later in this paper, that the com-
putational cost is considerably large and hence the commutative encryption is
proper for large-scale data mining.

3.3 Proposed Protocol: Distorted Intersection

The goal of our protocol is to compute a conditional probability of c ∈ C given
a ∈ Aj , Pr(c|a), where party A has the attribute Aj and B has the target class
C. We denote as index sets, X and Y , defined over the ranges of Aj and C, as

Xa,Aj = {id ∈ ID|Aj(id) = a}, Yc = {id ∈ ID|C(id) = c}.
3 For easy understanding, we describe a simplified protocol where only Alice learns

the results.
4 n = max(nA, nB) + ε where ε is a positive integral constant; thus n is bigger than

both nA and nB .

228 H. Kikuchi et al.

For instance, the datasets in Table 2 define the corresponding index sets for
a = sunny and c = yes as Xsunny,A1 = {1, 2} and Yyes = {3, 4, 5} respectively.

In order to hide the size of intersection from Alice (A), Bob (B) wishes to
add random noise to his secret input. However, B does not know which elements
belong to the intersection prior to the execution of the protocol. Hence, he makes
his own input distorted by discarding some elements with random probability
p = sB/nB so that A cannot learn the exact size of the intersection without
knowledge of the random probability distribution.

With the randomisation step, the resulting size of the intersection is skewed
with p as sA = |X ∩Y |sB/nB, which is known to A who does not know p; while,
B knows p but does not know sA. Therefore, both parties participate in Yao’s
secure multi-party protocol to compute the multiplication

sA · nB

sB
= |X ∩ Y |,

which gives the conditional probability

Pr(X |Y) =
|X ∩ Y |

|C| .

Finally, the prediction of target class for a given instance, cNB, is obtained from
Näıve Bayes classifier. Yao’s protocol allows them to compare several candidates
of the class without revealing any partial intermediate information.

Our proposed protocol is described in Algorithm 3.

4 Evaluation

4.1 Performance evaluation

In order to evaluate performance improvement of the proposed scheme in com-
parison with others, we implement the following schemes for the secure Näıve
Bayes classifier:
1. Scalar product based scheme, Vaidya and Clifton [1], which requires a ho-

momorphic encryption and a secure function evaluation of comparison of
additively shared value (SFE1),

2. Set intersection schemes, proposed by Freedman, Nissim and Pinkas [8], re-
quiring a secure polynomial evaluation, and

3. Commutative encryption scheme, proposed in this paper, which requires a
homomorphic encryption and a secure function evaluation of comparison of
multiplicatively shared value (SFE2).

Test implementation. Our trial experimental system is implemented using
Java (SDK 1.6.0) running on Intel Core2 Duo CPU 2.53 GHz, 2GB, Windows 7
(32 bit). We use the Paillier encryption with |n2| = 2048 bit modulus for additive
homomorphic property, with a proprietary public key format. Our implementa-
tion has the average processing time of our trial implementation for encryption,
decryption and modular exponentiation, denoted by tE = 1.1, tD = 1.6 and
tP = 0.15, respectively. Note that the cost of decryption is higher than that of
encryption because of property of Paillier encryption [10].

Scalable Privacy-Preserving Data Mining 229

Algorithm 3. Distorted Intersection
Input: Alice has subset X = {x1, . . . , xnA}, Bob has subset Y = {y1, . . . , ynB}.
Output: shares of intersection, such that sA · sB = |X ∩ Y |.

1. Alice chooses random u ∈ Zq, computes H(x1)
u, . . . , H(xnA)u and send to Bob in

random order. Alternatively, she can sort these values in numerical order.
2. Bob chooses random v ∈ Zq, computes H(x1)

uv, . . . , H(xnA)uv and send to Bob
in random order.

3. Bob chooses random sB(< nB) and for i = 1, . . . , nB , compute

wi =

{
H(yi)

v with probability = sB/nB ,
ri otherwise,

where ri is randomly chosen from Zq except H(yi)
v for every i. Then Bob sends

w1, . . . , wnB in random order to Alice.
4. Alice finds pairs xj , yi such that H(yi)

vu = H(xj)
uv, and where sA is the number

of pairs, i.e. sA(= |X ∩ Y |(sB/nB)).

Secure Scalar Product. The secure scalar product based scheme requires N
encryptions and one decryption plus secure function evaluation of comparison of
shared sum (SFE1), i.e.

T1 = NtE + tD + SFE1

where N is the dimension of the vectors. Note that mostly N � n, where n is
the number of active IDs in the asynchronously partitioned dataset.

Secure Function Evaluation (SFE). We use the generic two-party secure
function evaluation evaluation system, Fairplay[11]. Fairplay consists of a com-
piler of a high level procedural definition language, SFDL, into a one-pass
Boolean circuit in a language called SHDL.

With Fairplay, we can perform secure function without revealing inputs.
Figure 1 is the source code ‘SharedCmp’ to securely test sA0 + sB0 > sA1 + sB1

where sA0, sA1 are owned by Alice and values s0 and s1, additively shared as
s0 = sA0 + sB0 are compared. The bit size is 16.

The example shows that Fairplay allows us to code arbitrary functions easily.
However, due to the processing cost, multiplication and division are not provided
as primitive operations[11]. We have to code those as programmed functions to
perform comparison for multiplicatively shared values as sA0 · sB0 > sA1 · sB1.
(In our trial implementation, we omit the division since we can replace it by
multiplication with some constant).

Table 3 shows the average processing time measured by Alice and Bob for
several classes. Both parties have almost the same overhead to jointly evaluate
comparison. In this experiment, we use 16-bit integers.

230 H. Kikuchi et al.

program SharedCmp {

const size = 20; type int = Int<16>;

type AliceInput = int[size]; type BobInput = int[size];

type AliceOutput = int; type BobOutput = int;

type Output = struct {AliceOutput alice, BobOutput bob};

type Input = struct {AliceInput alice, BobInput bob};

function Output output(Input input) {

if(input.alice[0] + input.bob[0] > input.alice[1] + input.bob[1]){

output.alice = input.alice[0];

output.bob = input.bob[0];

}else{

output.alice = input.alice[1];

output.bob = input.bob[1];

}

}

}

Fig. 1. Fairplay program (in SFDL) ’SharedCmp’: shared integer comparison sA0 +
sB0 > sA1 + sB1

Table 4 gives our estimation of performance for SFE1 (addition) and SFE2

(multiplication) based on the experimental measurement. Based on the runtime
complexity, the curve fitting polynomial in terms of size of input x and the
processing time when x = 10bits(= 1024) are given. Figure 2 illustrates the
estimation. We observe that the cost for secure multiplication increases with
respect to the input size, and hence the our proposed scheme has a considerable
large constant time overhead.

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25

P
ro

ce
ss

in
g

tim
e

[s
]

bit length

Sum
Multiply

Fig. 2. Processing Time in Yao’s SFE (Secure Function Evaluation) for sum and
multiplication

Scalable Privacy-Preserving Data Mining 231

Table 3. Processing Time SFE1 (Shared Comparison)

Alice Bob

Mean processing time (sec) 0.80 0.82

Table 4. Processing Time for SFE1 (addition) and SFE2 (multiplication) with size of
10 bit (= 1024) interger

circuit fitting Time (sec)

SFE1 (addition) 0.97 + 0.106x 2.03
SFE2 (multiplication) 1.77 + 0.003e0.89x 23.76

Scalability of Proposed Scheme. Our proposed Algorithm 3 requires as
many encryptions as the number of active users, n, and runs in time

T2 = 2tP n + tcn log n + SFE2,

where tc is the cost of comparison of n size lists. We may omit the overhead
for comparison because tc � te, td. Since n � N , it runs faster than the secure
scalar product based protocol (T1). However, the constant overhead for secure
function evaluation of multiplicatively shared values (SFE2) is higher than that
of additive shared values (SFE1). The proposed protocol is scalable in terms of
the entire size of dataset, N , but suffers the constant overhead of SFE.

Therefore, we conclude that the proposed scheme is efficient only for large
sparse datasets such that

N∗ ≥ SFE2 − SFE1 − tD
tE − 2tP α

,

where α = n/N assuming n is proportional to the entire size of dataset. We
illustrate the scalability of our proposed scheme in Figure 3, where the proposed
one is more efficient than the secure scalar product based scheme [1] when N
is large. Most of asynchronously partitioned datasets are considered as ones
with small fractions of intersection. Consequently, we can say that the proposed
scheme improves the performance for large scale sparse datasets.

4.2 Security

In [7], assuming the random oracle model and no hash collisions, and in semi-
honest model, there is no polynomial-time algorithm that can distinguish be-
tween a random value and H(x)u given x. This means that Algorithm 2 pre-
serves the privacy of input subsets X and Y . With zero-knowledge proof, the
security in the random oracle model can even be extended to a malicious model
where parties behave arbitrarily.

Algorithm 1 is also proved as secure even after one party (Alice) learns the
result of the protocol, sA = x1y1 + · · · + xnyn − sB, which is randomised with

232 H. Kikuchi et al.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

P
ro

ce
ss

in
g

tim
e

[s
]

Size of database (domain) N

Secure scalar product(SFE Sum)
Proposed (SFE Multiply, n/N = 0.01)

Fig. 3. Scalability in terms of processing time for the size of database (set of indexes)
N

sB chosen uniformly by the other party (Bob). More formally, learning partial
result sA reveals nothing about the distribution of sA + sB, which is distributed
uniformly over group Zq of order q, that is, the conditional probability of the sum
given sA is identical to apriori probability, i.e. Pr(sA + sB|sA) = Pr(sA + sB) =
1/q. SFE also preserves the secrecy of shared inputs under the assumptions of
semantically secure public key algorithm.

However, the distortion in Algorithm 3 is not uniform. Let z be the size of
intersection |X ∩ Y |, and p be a probability to apply commutative encryption
in the algorithm, defined as p = sB/nB. The conditional probability of the
algorithm outputs sA given z is computed with the binomial distribution as:

Pr(sA|z) =

⎧⎨
⎩

0 if sA > z,(
z
sA

)
psA(1 − p)z−sA otherwise. (1)

Then, what can Alice guess about z after she learns the output of the algorithm,
sA?

Table 5. Summary of proposed scheme

scheme: Vaidya & Clifton [1] Proposed
based on: Secure Scalar Product[12] Commutative encryption [7]

input N-dimension binary vectors integer subset of size n
computation cost T1 = tEN + tD + SFE1 T3 = tP n + n log n + SFE2

accuracy accurate accurate with probability sB/nB

security Pr(z|X.Y) = 1/N Pr(z|sA) > 1/n

Scalable Privacy-Preserving Data Mining 233

Bayes theorem gives to her an useful hint, i.e. the probability distribution of
z as

Pr(z|sA) =
Pr(sA|z)Pr(z)

Pr(sA)
=

Pr(sA|z)1/(n + 1))∑
z Pr(sA|z)Pr(z)

,

where we assumes Pr(z) = 1/(n + 1).

5 Conclusion

We have proposed a scalable privacy-preserving Näıve Bayes classifier for asyn-
chronously partitioned datasets. Our proposed scheme is based on the work pre-
sented in [7] using a public-key encryption algorithm that satisfies commutative
property. The performance of our proposed protocol is shown to be better than
the scheme based on the secure scalar product [1] when the matrix is sparse, i.e.
most entries are missing and the fraction of active data is small, that is n � N ,
which frequently happens in asynchronously partitioned datasets. Table 5 gives
the summary of the features of our proposed protocol.

References

1. Vaidya, J., Clifton, C.: Privacy Preserving Näıve Bayes Classifier for Vertically Par-
titioned Data. In: SIAM International Conference on Data Mining, Lake Buena
Vista, Florida, pp. 522–526. Society of Industrial and Applied Mathematics,
Philadelphia (2004)

2. Douceur, J.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

3. Yu, H., Shi, C., Kaminsky, M., Gibbons, P.B., Xiao, F.: DSybil: Optimal Sybil-
resistance for Recommendation Systems. In: 30th IEEE Symposium on Security
and Privacy, pp. 283–298. IEEE, Los Alamitos (2009)

4. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science, pp. 162–167. IEEE, Los Alamitos (1986)

5. Zhou, J., Luo, T.: A novel approach to solve the sparsity problem in collabora-
tive filtering. In: International Conference on Networking, Sensing and Control
(ICNSC), pp. 165–170. IEEE, Los Alamitos (2010)

6. GroupLens: GroupLens Research, http://www.grouplens.org/ (2010)
7. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private

databases. In: The ACM SIGMOD International Conference on Management of
Data, pp. 86–97. ACM, New York (2003)

8. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersec-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 1–19. Springer, Heidelberg (2004)

9. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to as-
sociation rule mining. Journal of Computer Security 13(4), 593–622 (2005)

10. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

11. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay – a secure two-party compu-
tation system. In: The 13th USENIX Conference on Security Symposium, p. 20.
USENIX Association (2004)

http://www.grouplens.org/

234 H. Kikuchi et al.

12. Du, W., Atallah, M.J.: Privacy-preserving cooperative statistical analysis. In: 17th
Annual Computer Security Applications Conference, ACSAC, pp. 102–110. IEEE,
Los Alamitos (2001)

13. Kikuchi, H., Kizawa, H., Tada, M.: Privacy-Preserving Collaborative Filtering
Schemes. In: International Conference on Availability, Reliability and Security,
ARES 2009, pp. 911–916. IEEE, Los Alamitos (2009)

14. Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering
recommendation algorithms. In: The 10th International Conference on World Wide
Web, pp. 285–295. ACM, New York (2001)

Privacy-Enhanced Web-Based Event Scheduling

with Majority Agreement

Benjamin Kellermann

Technische Universität Dresden, Faculty of Computer Science,
D-01062 Dresden, Germany

Benjamin.Kellermann@tu-dresden.de

Abstract. Applications which help users to schedule events are becom-
ing more and more important. A drawback of most existing applications
is, that the preferences of all participants are revealed to the others. Pre-
viously proposed privacy-friendly solutions could only schedule meetings
if all participants were available at the same time slot.

We propose a new scheme, which overcomes this limitation, i.e., the
meeting can be scheduled at the time slot, where just the majority of par-
ticipants is available. Dudle (http://dudle.inf.tu-dresden.de), a web-
application which implements the protocol is presented. We measured its
performance in order to show that the protocol is practical and feasible.

Keywords: event scheduling, electronic voting, superposed sending,
anonymity, privacy-enhanced application design.

1 Introduction

There are numerous Web 2.0 applications (e.g., doodle.com, moreganize.ch, . . .),
which allow users to create polls. The most important use case of these applica-
tions is to schedule events. They all have in common, that they disclose detailed
availability patterns of their users. These patterns contain sensible information in
at least two respects. First, one is able to read information directly out of such a
pattern (“Does my boss work after 3pm?”). Secondly, due to the fact, that these
patterns contain much entropy, one is able to connect them with other informa-
tion sources easily to read indirect information and re-identify participants who
would otherwise remain pseudonymous (“This availability pattern looks like Pe-
ters who goes to lunch everyday at 11:30.”). All existing applications for event
scheduling allow some privacy settings, but none of them tries to overcome the
need of complete trust in the application server and the poll initiator.

A privacy-friendly and verifiable solution for scheduling a single event, which
reveals only the sum of available participants at every time slot was proposed [1].
Despite being efficient enough for a Web 2.0-implementation, it has the drawback
that unanimous agreement is required for resisting internal attacks.

In this paper we present, a better solution for the problem of internal at-
tackers. Therefore we discuss two extensions to the original protocol described
in [1]. These extensions prevent internal attacks and allow majority agreement
simultaneously.

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 235–246, 2011.
� IFIP International Federation for Information Processing 2011

mailto:Benjamin.Kellermann@tu-dresden.de
http://dudle.inf.tu-dresden.de
http://doodle.com
http://moreganize.ch

236 B. Kellermann

2 Related Work

There are several approaches dealing with event scheduling. It can be seen as
distributed constraint satisfaction/ optimization problem (DCSP/DCOP) or as
an instance of electronic voting.

Many algorithms for DCSP [2,3,4] and DCOP [5,6,7] exist and measurements
of the information leakage were done [8, 9]. With the help of these algorithms,
complex scheduling problems may be solved (e. g., scheduling of many events,
where different subsets of the participants participate in each event with con-
straints about place, travel time etc.). However, all DCOP algorithms share the
problem that they are complex in terms of message exchanges even for basic
scenarios. To solve the problem of message exchanges, agents are used, which
send and receive the messages. As users do not want to setup such an agent at
some server, they have to run it locally and have to be online at the same time.
Therefore, the DCOP approach is too complex in terms of message exchanges
to be implemented in a web application and a simpler solution for the simpler
problem of scheduling a single meeting would be appropriate.

There is a lot of literature about electronic voting [10,11,12,13,14,15,16], someof
them lead to implementations [17,18,19]. 4 observations occur,when event schedul-
ing is done with e-voting: (1) Only the sum of available participants, not the single
availabilities, can be used to schedule the time slot. (2) The short ballot assump-
tion [20] does not hold as the availability pattern contains much entropy and there
are few voters (participants). (3) All participants have to be voting officials to min-
imize trust in other entities. (4) Coercion resistance is not necessarily required.

To overcome the short ballot assumption, one has to apply an e-voting scheme
for every time slot, which is scheduled. However, if the computational complexity
of the scheme depends on the number of time slots and the number of partici-
pants (voting officials, assumption 3), an application will exceed the possibilities
of current browsers. To illustrate this, we implemented a performance measure-
ment for a discrete exponentiation modulo a 786bit long integer using different
libraries and browsers. We measured 3 of the 5 investigated libraries. The re-
maining two were too slow to be mentioned here. If, e.g., a scheme would need
only one asymmetric operation per time slot and participant and a concrete poll
would ask for 20 time slots for a meeting with 5 participants, the scheme would
need only for the asymmetric operations about 5 · 20 · 0.78 s = 78 s, using the
BigInteger Library of Wu on a Firefox 3.6, IE 8 would be blocked for at least 4
minutes. Having a low computation complexity is even more important consid-
ering small mobile devices like smartphones (cp. the last column of Table 1).

Besides e-voting, there are two specific schemes, which try to solve event
scheduling in a privacy-friendly way [24, 1], both offering unanimous agreement
only. The main idea of [1] is to use DC-Net [25] to calculate the sum of available
participants to the time slots. Therefore, a dedicated DC-Net round is executed
for every nominated time slot. Each participant sends an encrypted 1 in the
specific round if he is available at the time slot, and 0 otherwise. Through the
homomorphism in the DC-Net, the sum of the votes is calculated. The result of
one DC-Net round is the number of available participants at this time slot.

Privacy-Enhanced Web-Based Event Scheduling with Majority Agreement 237

Table 1. Execution time for an exponentiation modulo a 786 bit long integer in
JavaScript with different libraries. The first 5 columns were measured on an Intel
Pentium 4 Duo with 2.8 GHz, 2GB RAM running Windows XP SP3. The last one was
measured on a Motorola Milestone running Android.

IE Firefox Safari Opera Chrome Android
8.0.6001 3.6.12 5.0.3 10.63 8.0.552 Firefox 4.0b2

Wu [21] 2.80 s 0.78 s 0.91 s 0.31 s 0.10 s 7.87 s
Baird [22] 5.05 s 0.43 s 0.15 s 0.18 s 0.16 s 5.10 s
Shapiro [23] 21.47 s 2.12 s 1.18 s 0.99 s 0.61 s (crashes)

The main problem of using the DC-Net is that a participant may send values
different from 0 or 1. I.e., a participant may send values below 0 to lower the
chance for a specific time slot of being chosen, and values above 1 to increase
it. An example of this is illustrated in Fig. 1. The tables show two polls with 3
participants and 4 time slots (t0, . . . , t3). The unencrypted votes are shown inside
each table (vu,t ∈ {0, 1}). Mallory manipulates the poll in a way that time slot t3
results in the largest sum. Because of the anonymization of all messages through
the DC-Net, Mallory’s attack is hidden to Alice and Bob.

In the following, we will discuss how to extend the original protocol [1] in a
way that sending values different from 0 or 1 can be prevented without the need
of unanimous agreement (which was used there to overcome the problem).

t0 t1 t2 t3

Alice 0 1 0 0
Bob 1 1 0 1
Mallory −1 −1 −1 1
∑

0 1 −1 2

(a) attacking with −1

t0 t1 t2 t3

Alice 0 1 0 0
Bob 1 1 0 1
Mallory 0 0 0 2
∑

1 2 0 3

(b) attacking with +2

Fig. 1. Different ways to attack a poll if Mallory wants t3 to win. The plain text votes
(vu,t) are displayed.

3 Preventing (−1)-Attacks

The main idea for preventing (−1)-attacks is the fact that the results of a DC-Net
at some time slot must not be lower than 0. I.e., in Fig. 1a the attack cannot be
detected at time slot t0 and t1, but it is visible at time slot t2, where the result
is −1. If all participants are honest, the result of every time slot should be a
value between 0 and the number of all participants.

Instead of using one dedicated DC-Net round for every time slot, we use
several simultaneously running DC-Net rounds. Let I be the number of simulta-
neously running DC-Net rounds (we will see later in this section, that I should

238 B. Kellermann

be chosen in some dependence of the number of participants). Every participant
u splits each vote vu,t ∈ {0, 1} into I partial votes v̄u,t,0, . . . , v̄u,t,I−1 such that:

1. An index j ∈ �I for one partial vote is chosen randomly and kept secret.
2. The partial vote with index j (v̄u,t,j) is equal to the actual vote vu,t .
3. The remaining I − 1 partial votes are equal to 0.

Let T be the set of time slots, U the set of participants of the poll, σt the
number of available participants at time slot t, k̄u,u′,t,i the DC-Key between two
voters, and d̄u,t,i the encrypted vote within a DC-Net round (d̄u,t,i = v̄u,t,i +∑

u′∈U,u′ �=u k̄u,u′,t,i). If all participants are honest, the following properties result
from the construction:

1. For all time slots t ∈ T and partial vote indices i ∈ �I , the sum of all
partial votes of all participants is an element between 0 and the number of
participants (∀t, i :

∑
u∈U v̄u,t,i =

∑
u∈U d̄u,t,i ∈ {0, . . . , |U |}).

2. At one time slot, the sum of all partial votes of all participants is the sum
of all available participants at this time slot (σt =

∑
u∈U,i∈�I

v̄u,t,i).

In Fig. 1, we have seen that an attacker has to guess at which time slot a honest
participant will send a 1. With the proposed extension it is not sufficient for the
attacker Mallory to guess the availability of another participant, she further has
to guess at which partial vote the actual vote was sent. This is difficult as long as
the chosen partial vote index is random, kept secret, and the number of partial
votes per time slot �I is sufficiently high.

Fig. 2 shows an example of the vote vector splitting with I = 3, where Mallory
tries to send a −1 at t1 (vum,t1 = −1). The left table shows the original protocol.

t0 t1 t2 t3

Alice 0 1 0 0
Bob 1 1 0 1
Mallory 0 −1 0 1
∑

1 1 0 2

t0 t1 t2 t3

Alice 0 1 0 0 i
=

0

Bob 0 0 0 0
Mallory 0 0 0 0∑

0 1 0 0

Alice 0 0 0 0 i
=

1

Bob 0 1 0 1
Mallory 0 0 0 1∑

0 1 0 2

Alice 0 0 0 0 i
=

2

Bob 1 0 0 0
Mallory 0 −1 0 0∑

1 −1 0 0
∑

1 1 0 2

Fig. 2. Split the votes into several partial votes. While Mallory’s attack remains unde-
tected in the left table, Alice and Bob are able to detect it in the right one.

Privacy-Enhanced Web-Based Event Scheduling with Majority Agreement 239

There the attack would remain undetected as all elements of the result vector
are in the allowed range. The right table shows the same vote vectors split into
several vectors. There, for time slot t1 Alice has chosen the first table (i = 0) for
her vote (v̄ua,t1,0 = vua,t1 = 1) and Bob has chosen the second one. As Mallory
has chosen the third table (i = 2) her attack can be detected.

Note, that the enrypted vote vectors must not be published until the last
participant has sent his vector. Otherwise, if the server would cooperate with
Mallory, she may wait until all other participants sent their vote and then calcu-
late the preliminary result before casting her own vote. This allows her to state
−1s where other participants sent a 1. As already stated in the original proto-
col, this restriction can be relaxed with one additional communication phase in
which all voters have to commit to their votes [1].

3.1 Verifiability

When verifying that no attack occurred, we can distinguish two cases: (1) In the
simpler case, one DC-Net round results −1 (

∑
u∈U d̄u,t,i = −1). This case oc-

curred in the example in Fig. 2. (2) In a more complex scenario, some participant
sent a 1 in some DC-Net round, but the result equals 0 due to a (−1)-attack.
This may also occur in the original protocol. Bob for example can detect that
Mallory has cheated at t0 in Fig. 1a. However, to prove that Mallory has cheated
at t0, Bob has to give up his privacy. In such a case, Bob can decide for himself
what is worth more, his privacy or to unmask Mallory.

We first discuss the case where privacy is the most valuable good, and we
discuss situations later where participants are willing to give up their privacy for
unmasking attackers. For reasons of simplicity, we write all calculations which
are done in the DC-Net without the modulo operations. We consider only 1
attacker.

Without Privacy-Loss. Checking the correctness of a poll can be expressed
by a function. It takes all messages sent within the poll and returns true if
the poll was correct, and false otherwise V : �|U|×|T |×I → {true, false}. Let
d̄ ∈ �

|U|×|T |×I be the 3-dimensional array of all DC-Net messages containing
elements of d̄u,t,i for a DC-Net message from participant u at time slot t and
partial vote index i. The function which checks the correctness of the poll is
defined as:

V(d̄) =

{
true if ∀t ∈ T, i ∈ �I :

∑
u∈U d̄u,t,i ∈ {0, . . . , |U |}

false otherwise.
(1)

We assume one attacker Mallory (um) who tries to send a −1 at time slot t. With
an increasing amount of participants, voting for t, the probability of detection
would decrease. In a worst case scenario w.r.t. detecting attackers all honest
participants (|U | − 1) send a 1 for all time slots and therefore the lower bound
of the probability to detect the attack is

P (V(d̄) = false | vum,t = −1) ≥
(

I − 1
I

)|U|−1

. (2)

240 B. Kellermann

The probability of successfully performing an attack would increase with an
increasing number of participants. Therefore, one should choose the number of
DC-Net rounds I dependent on the number of participants. If Mallory tries to
send a −2 the chance of detection increases, but this is out of scope of this paper.

With Privacy-Loss. We already discussed that a person who sent a 1 in a
DC-Net which results in 0 is in the position to unmask the attacker with the
drawback of giving up his privacy.1 For such a case, we can define another func-
tion checking the correctness of the poll. This function will return false if there
exists a participant up, who can prove that he sent a 1 at a time slot t and
DC-Net round with partial vote index i which resulted in 0 (

∑
u∈U d̄u,t,i = 0).2

Let k̄ ∈ �
|U|×(|U|−1)×|T |×I be the 4-dimensional array of all keys used in all

DC-Nets of the poll. The function which checks the correctness of the poll under
the assumption that all participants are willing to disclose their availability at
one time slot to unmask an attacker is defined as

B
(
d̄, k̄

)
=

⎧⎪⎪⎨
⎪⎪⎩

true if ¬∃up ∈ U, t ∈ T, i ∈ �I :(∑
u∈U d̄u,t,i = 0

)
∧
(
d̄up,t,i +

∑
u∈U,u�=up

k̄up,u,t,i = 1
)

false otherwise.
(3)

Now, Mallory needs two honest participants sending a 1 in the same DC-Net
round to hide her (-1)-attack under these assumptions.3 The probability that
this attack is detected is calculated by adding the probabilities of the two cases
(1) nobody choses Mallory’s DC-Net, and (2) one participant choses Mallory’s
DC-Net. For case 1, the sum of the attacked DC-Net will be −1 and therefore
V(d̄) will fail (see Equation 2). The lower bound4 for the probability of case 2 is
the probability where the output of B

(
d̄, k̄

)
is false and can be calculated with

P (B
(
d̄, k̄

)
= false | vu,t = −1) ≥ (|U | − 1) · 1

I
·
(

I − 1
I

)|U|−2

. (4)

Note that it is not possible, that V(d̄) = false and B
(
d̄, k̄

)
= false (cp. Footnote 2)

if we stick to only one attack at one time and therefore we can add the probabilities
ofEquations 2 and4 to get the overall probability of detecting a (−1)-attack if users
are willing to disclose their availability to unmask attackers.

Summary. Table 2 illustrates these formulas with some example values. One
can see that splitting the vote vector into 20 partial vote vectors makes it rather
unlikely to perform an undetected attack against small polls with 5 participants.
1 E. g., Bob could detect that Mallory cheated at t0 in Fig. 1a.
2 If this sum is lower than 0, an attack occurred as well. However, as this attack would

be discovered by function V(d̄) (Equation 1), we want to neglect this case here.
3 This is like trying to perform a (−2)-attack without privacy-loss, but choosing one

partial DC-Net to send the −2.
4 All |U | − 1 honest participants voted for the attacked time slot.

Privacy-Enhanced Web-Based Event Scheduling with Majority Agreement 241

Table 2. Lower bounds for the probability of successfully detecting an attack

I |U | (a) (b) (c)

20 15 48.8 % 84.7 % (35.9 %)
20 5 81.5 % 98.6 % (17.1 %)
50 15 75.4 % 96.9 % (21.5 %)
50 5 92.2 % 99.8 % (7.5 %)

100 15 86.9 % 99.2 % (12.3 %)
100 5 96.1 % 99.9 % (3.9 %)

(a) without giving up privacy
P (V(d̄) = false | vu,t = −1)

(b) with privacy-loss P (V(d̄) =
false ∨ B (d̄, k̄

)
= false | vu,t = −1)

(c) probability of privacy-loss
P (B (d̄, k̄

)
= false | vu,t = −1)

The chance to detect a (−1)-vote at each time slot is at least5 81.5 %. Addition-
ally to these 81.5 %, the attack can be discovered with a probability of 17.1 % by
one of the participants. If all participants are willing to disclose their availability
at the attacked time slot, the detection probability is at least 98.6 %.

In case of V(d̄) = false, the decryption of the DC-Net round can be requested
where the invalid value occured. Therefore every participant has to reveal his key
for the DC-Net round. The single votes can be decrypted with the keys which
identifies the attacker. The attacker may modify her key to hide her attack in
this phase. However, this can be prevented in the same way as it was proposed
for the verification phase of the original protocol.

However, if availabilities should not be disclosed under any circumstances, the
attacker identification phase may be skipped. One has to accept in this case that
attackers are able to perform denial of service attacks anonymously. Then one
may decide with function V(d̄) (Equation 1) that some attack occurred, but skip
revealing keys to avoid possible decryption of votes. Note that the decision to
perform a poll with identification phase or without has to be accepted by all
participants. If every participant may decide on his own, an attacker will always
refuse to reveal her keys, stating she has to cover some vote.

If a participant discovers an attack with the function B
(
d̄, k̄

)
, he may decide

on his own if he gives up his privacy to unmask the attacker. Therefore, the lower
bound for the probability of detecting an attack is between both lower bounds.

3.2 Privacy

The possible decryption in the identification phase to detect the attacker may
be a privacy problem. The original protocol had the same decryption in the
verification phase. However, unlike in the original protocol, the probability that
this really is a privacy problem is very low, as the attacker has to guess the
index for the DC-Net round where the victim sent his vote. The probability of
guessing the index of a specific victim is 1

I .
Attacking more than one DC-Net round with negative values to increase the

probability of hitting the victim’s DC-Net does not help the attacker, because
the goal of the honest participants is to find only one DC-Net which was attacked.
Therefore, it is enough to disclose the keys for one attacked round. The algorithm

5 if all 4 honest participants vote for a time slot.

242 B. Kellermann

to choose the DC-Net round to be disclosed should choose one of the rounds with
the lowest sum. The function D : �|U|×|T |×I

n → P(T × �I) which takes all DC-
Net messages as input, and results a set of time slot-partial vote index-pairs (t, i)
which should be disclosed, can be defined as

D(d) =

{
(t, i) :

∑
u∈U

d̄u,t,i = min
t′∈T,i′∈�I

{∑
u∈U

d̄u,t′,i′

}}
. (5)

However, as already discussed in Section 3.1, one may decide to skip attacker
identification, with the drawback, that denial of service attacks are possible then.

The privacy of a message in the DC-Net depends only on the secrecy of the
keys. This is the same for the original as well as the new protocol but splitting
the vote vector into several parts introduces a new point of attack. Now, the
anonymity of the message also depends on the randomness and secrecy of the
partial vote index. If an attacker can predict at which DC-Net rounds messages
from some participants occur, she can separate the other messages into smaller
anonymity sets. If all participants distribute their votes randomly over all rounds,
Mallory needs the cooperation of the other participants to deanonymize her
victim. However, deanonymization can be done without the help of the different
partial DC-Nets, if participants disclose their shared DC-Net keys.

In a successful schedule with no attacker, one sum for every time slot with
the number of all available participants is disclosed.

4 Preventing (+2)-Attacks

In the example of Fig. 1b, Alice can detect a (+2)-attack of Mallory as she knows
that the sum is an element of {0, . . . , |U | − 1}. However, it may be the case that
nobody voted for a time slot (cp. e.g., time slot t2 of Fig. 1b) where a 2 is sent.
In such a case neither Alice nor Bob can detect the attack on their own.

A simple solution to this attack would be to request the verification phase
in any case for the agreed time slot. This would neither be privacy-friendly nor
efficient in terms of message exchanges.

In the following, another solution is proposed. The main idea is to reduce the
problem of preventing (+2)-attacks to the already solved problem of preventing
-1-attacks. Therefore, in addition to the normal poll, every participant sends his
votes for the same time slots in a check poll. Every participant u calculates for
every time slot t a check vote v′u,t which depends on his vote vu,t such that

vu,t + v′u,t = 1. (6)

With the check votes v′u,t , a check poll is done like for the normal poll.
The sum of both result vectors, the one from the normal poll and the one

from the check poll, should be a vector where all elements are equal to the
number of participants |U |. By checking this property, it is ensured that every
participant calculated the check vote vector according to Equation 6. If Mallory
wants to send a 2 for some time slot, she then has to send a −1 in the check poll.

Privacy-Enhanced Web-Based Event Scheduling with Majority Agreement 243

normal poll

t0 t1 t2 t3

Alice 0 1 0 0
Bob 1 1 0 1
Mallory 0 0 0 2
∑

1 2 0 3

check poll

t0 t1 t2 t3

Alice 1 0 1 1
Bob 0 0 1 0
Mallory 1 1 1 −1
∑

2 1 3 0

∑
3 3 3 3

Fig. 3. By the use of a check poll, the (+2)-attack can be reduced to the (−1)-attack.
Mallory has to send a −1 at t3 in the right table, because the sum regarding t3 of both
tables would not be equal to the number of participants otherwise.

However, splitting the check vote vector into several ones, this attack can be
prevented in the same way (−1)-attacks were prevented within the vote vector.
Fig. 3 illustrates the whole process.

Let d̄ be the 3-dimensional array of all DC-Net messages sent to the normal
poll and d̄′ be the 3-dimensional array of all DC-Net messages sent to the check
DC-Nets. The verification function of correctness is defined as

C(d̄, d̄′) =

{
true if ∀t ∈ T : |U | =

∑
u∈U,i∈�I

(
d̄u,t,i + d̄′u,t,i

)
false otherwise.

(7)

4.1 Verifiability

When evaluating the result, two kinds of inconsistencies may occur: the sum
of both polls may be lower or higher than the number of participants. As we
split the votes into several ones (cp. Section 3), we do not consider (−1)-attacks
at this point. Therefore, a value lower than the number of participants may
occur only if one or more participants sent vu,t = v′u,t = 0. Having such a case
would mean that the number of available participants σt would be the result of
the normal poll at least. The difference of the sum of both polls and the total
number of participants are wrongly cast votes.

The second kind of inconsistency is if the sum of both polls is higher than the
number of participants. As we prevented (−1)-votes, the result of the normal
poll at a time slot t should be greater or equal than the number of available
participants at this time slot. In addition, the number of available participants
is greater or equal than the total number of participants minus the result of the
check poll at a certain time slot. Putting both inequations together, one obtains
a range which expresses the possible number of available participants:∑

i∈I,u∈U

d̄u,t,i ≥ σt ≥ |U | −
∑

i∈I,u∈U

d̄′u,t,i. (8)

However, as an attacker may manipulate his vote in a way that this range results
in {0, . . . , |U |}, he may attack the availability of the poll in such a way. To unmask
the attacker, all DC-Net rounds for the inconsistent time slot can be decrypted
as shown before. If the attack discovery goes along with some cost (penalty,
reputation loss, etc.), it makes such attacks unattractive.

244 B. Kellermann

4.2 Privacy

During the verification phase of an inconsistent check poll, the availability of
all participants at the inconsistent time slot are disclosed. To avoid disclosure
of all availabilities, one may disclose the DC-Net rounds step by step and stop
when the attacker is found. The sequence of disclosure should therefore be a
fixed order, which is not known before every participant stated his vote.6

In a successful run, no more information is disclosed than in the original
protocol, the check poll contains only redundant information.

4.3 Computational Complexity

The extension presented in this paper affects the computational complexity of
the original protocol only in terms of symmetric cryptographic operations, i.e.,
the amount of asymmetric cryptographic operations is not affected. The num-
ber symmetric operations of the original scheme increases with the number of
DC-Net rounds I and is doubled due to the check poll. Table 3 compares the
complexity of our extension with the complexity of the original protocol.

Table 3. Comparison of the computational complexity of the original protocol with
unanimous agreement and the scheme with our extension (assuming no attack)

discrete exp. symmetric decr. hash values

original protocol |U | − 1 |T | · (|U | − 1) |T | · (|U | − 1)
new scheme |U | − 1 2 · I · |T | · (|U | − 1) 2 · I · |T | · (|U | − 1)

5 Implementation

An implementation of the protocol is available at dudle.inf.tu-dresden.de.
The cryptographic operations are implemented in JavaScript; no installation on
the client side is needed.

The implementation has been done using the JavaScript BigInteger library
from Tom Wu [21]. Like in the original protocol, a symmetric cipher and a hash
function is used for key generation. AES-128 and SHA-256 from the JavaScript
libraries of B. Poettering are used here [26].

Table 4 shows a performance measurement of the key calculation for an exam-
ple poll. One can see, that the calculation needs about 23 s, using Firefox 3.6.12.
If browsers run a script which needs longer calculation time, it is usual that the
browser asks the user if he wants to stop the script. To avoid these pop-ups, the
BigInteger library was modified in a way that it calculates exponentiations asyn-
chronously with a callback function. This enables the calculation to be forked in

6 E.g., every participant may commit himself to a random number together with his
vote vector. In case of verification all commitments are revealed and the random
numbers are added to one single seed which is used to bootstrap a sequence.

http://dudle.inf.tu-dresden.de

Privacy-Enhanced Web-Based Event Scheduling with Majority Agreement 245

Table 4. Performance measurement of the key calculation in a poll with |U | = 5,
|T | = 20 and I = 20. The first 5 columns were measured on an Intel Pentium 4 Duo
with 2.8 GHz, 2GB RAM running Windows XP SP3. The last one was measured on a
Motorola Milestone running Android.

IE Firefox Safari Opera Chrome Android
8.0.6001 3.6.12 5.0.3 10.63 8.0.552 Firefox 4.0b2

AES-128+SHA-256 18.4 s 7.7 s 2.9 s 1.4 s 2.8 s 31.7 s
DH 15.0 s 11.7 s 8.2 s 2.0 s 2.5 s 40.5 s
total 37.6 s 22.5 s 13.5 s 4.3 s 6.3 s 84.2 s

the background and the browser remains responsive. The user can enter his avail-
abilities, while the browser calculates the keys. The submit button is enabled after
the calculation has been done. Assuming, that a user needs some time to enter his
preferences (look up the time slots in his personal calendar, click the buttons etc.),
there is no extra waiting time.

6 Conclusion

We proposed a scheme, which is able to schedule events in a privacy-enhanced
way. Our scheme prevents attacks to neglect or promote certain time slots, has no
negative influence on the privacy and affect the computational complexity only
in terms of symmetric cryptographic operations. To demonstrate that the scheme
performs in practice, we presented Dudle, an implementation of the scheme in
JavaScript. Due to the use of JavaScript for all client side operations, no instal-
lation is needed for the user. We therefore showed, that complex cryptography
is possible in zero footprint applications.

Acknowledgments. The author wants to thank the whole DuD-Group in Dres-
den for the fruitful coffee breaks. Special thanks goes to Rainer Böhme, Sebastian
Clauss, Stefan Köpsell and Sandra Steinbrecher. The research leading to these re-
sults has received funding from the European Community’s Seventh Framework
Programme (FP7/2007–2013) under grant agreement � 216483.

References

1. Kellermann, B., Böhme, R.: Privacy-enhanced event scheduling. In: CSE, vol. 3,
pp. 52–59. IEEE Computer Society, Los Alamitos (2009)

2. Silaghi, M.C., Sam-Haroud, D., Faltings, B.: Asynchronous search with aggrega-
tions. In: AAAI/IAAI, pp. 917–922. AAAI Press / The MIT Press (2000)

3. Yokoo, M., Hirayama, K.: Algorithms for distributed constraint satisfaction: A
review. Autonomous Agents and Multi-Agent Systems 3(2), 185–207 (2000)

4. Léauté, T., Faltings, B.: Privacy-preserving multi-agent constraint satisfaction. In:
CSE, vol. 3, pp. 17–25. IEEE Computer Society, Los Alamitos (2009)

246 B. Kellermann

5. Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed
constraint optimization with quality guarantees. Artif. Intell. 161, 149–180 (2005)

6. Maheswaran, R.T., Tambe, M., Bowring, E., Pearce, J.P., Varakantham, P.: Taking
DCOP to the real world: Efficient complete solutions for distributed multi-event
scheduling. In: AAMAS, pp. 310–317. IEEE Computer Society, Los Alamitos (2004)

7. Mailler, R., Lesser, V.: Solving distributed constraint optimization problems using
cooperative mediation. In: AAMAS, pp. 438–445. IEEE, Washington, DC (2004)

8. Franzin, M.S., Freuder, E.C., Rossi, F., Wallace, R.: Multi-agent meeting schedul-
ing with preferences: Efficiency, privacy loss, and solution quality. AAAI Technical
Report (2002)

9. Greenstadt, R., Pearce, J.P., Bowring, E., Tambe, M.: Experimental analysis of
privacy loss in DCOP algorithms. In: AAMAS, pp. 1424–1426. ACM Press, New
York (2006)

10. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981), doi:10.1145/358549.358563

11. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp.
244–251. Springer, Heidelberg (1993)

12. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections (extended abstract).
In: STOC, pp. 544–553. ACM, New York (1994)

13. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer,
Heidelberg (1995)

14. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient
multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

15. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556. Springer,
Heidelberg (2000)

16. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
WPES, pp. 61–70. ACM, New York (2005)

17. Herschberg, M.A.: Secure electronic voting over the world wide web. Master’s thesis,
Massachusetts Institute of Technology (May 1997)

18. Adida, B.: Helios: Web-based open-audit voting. In: USENIX, pp. 335–348 (2008)
19. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system.

In: Security and Privacy, pp. 354–368. IEEE, Los Alamitos (2008)
20. Rivest, R.L., Smith, W.D.: Three voting protocols: Threeballot, vav, and twin. In:

USENIX, p. 16. USENIX Association, Berkeley (2007)
21. Wu, T.: BigIntegers and RSA in JavaScript (July 2010), http://www-cs-students.

stanford.edu/~tjw/jsbn/
22. Baird, L.: BigIntegers in JavaScript, Version 5.4. (July 2010), http://www.leemon.

com/crypto/BigInt.html
23. Shapiro, D.: BigInt, a suite of routines for performing multiple-precision arithmetic

in JavaScript, Version 5.4. (July 2010), http://ohdave.com/rsa/BigInt.js
24. Herlea, T., Claessens, J., Preneel, B., Neven, G., Piessens, F., De Decker, B.: On

securely scheduling a meeting. In: SEC. IFIP Conference Proceedings, vol. 193, pp.
183–198. Kluwer, Dordrecht (2001)

25. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. Journal of Cryptology 1(1), 65–75 (1988)

26. Poettering, B.: The AES block cipher and the SHA256 message digest in JavaScript,
Version 0.1. (July 2010), http://point-at-infinity.org/

http://www-cs-students.stanford.edu/~tjw/jsbn/
http://www-cs-students.stanford.edu/~tjw/jsbn/
http://www.leemon.com/crypto/BigInt.html
http://www.leemon.com/crypto/BigInt.html
http://ohdave.com/rsa/BigInt.js
http://point-at-infinity.org/

Analyzing Key-Click Patterns of PIN Input for

Recognizing VoIP Users

Ge Zhang

Karlstad University, Universitetsgatan 2,
65188, Karlstad, Sweden

ge.zhang@kau.se

Abstract. Malicious intermediaries are able to detect the availability
of VoIP conversation flows in a network and observe the IP addresses
used by the conversation partners. However, it is insufficient to infer the
calling records of a particular user in this way since the linkability be-
tween a user and a IP address is uncertain: users may regularly change
or share IP addresses. Unfortunately, VoIP flows may contain human-
specific features. For example, users sometimes are required to provide
Personal identification numbers (PINs) to a voice server for authentica-
tion and thus the key-click patterns of entering a PIN can be extracted
from VoIP flows for user recognition. We invited 31 subjects to enter
4-digital PINs on a virtual keypad of a popular VoIP user-agent with
mouse clicking. Employing machine learning algorithms, we achieved av-
erage equal error rates of 10-29% for user verification and a hitting rate
up to 65% with a false positive rate around 1% for user classification.

1 Introduction

Current Internet users heavily rely on distributed networking intermediaries to
transmit packets. These networking intermediaries might be compromised and
thus cannot be simply trusted by users. Malicious intermediaries can wiretap
their relayed packets for man-in-the-middle attacks. This threat is also an issue
for Voice over IP (VoIP) services. Previous research [28] shows that it is easy
for an intermediary to detect the availability of VoIP conversation flows between
two hosts without reading the flow details. This actually reveals the VoIP call-
ing records which include the IP addresses used by the conversation partners,
the starting and ending time of the conversations. Other work [27,26] proposed
more advanced method using watermark to increase the robustness and accu-
racy of the calling records detection. Calling records could reveal daily life of
a user. For instance, spammers may infer the requirements and preference of
a particular user from the calling records (e.g, a recent calling record showing
that a user calls a dentist reveal that the user might have dental problems) so
that they can send advertisements more effectively. Recently news report that
third parties offer traditional telephone calling records for profit [1]. With the
increasingly deployment and usage of VoIP services, it can be predicted that the
confidentiality of calling records will be an important issue on VoIP as well.

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 247–258, 2011.
c© IFIP International Federation for Information Processing 2011

248 G. Zhang

Nevertheless, previous VoIP tracking methods [27,26] at most enable interme-
diaries to find out the calling records between two hosts identified with their IP
addresses (IP-level calling records). The linkability between a VoIP user and a IP
addresses is usually unstable: VoIP users may move from one network to another
network with their laptops, or switch between devices (e.g., the user switches
from the home computer to an office workstation). Therefore, a user may use
different IP addresses at different times. In addition, even one IP address might
be shared by several users due to current limited IP address space [18]. Thus, the
IP-level calling records are not accurate enough to attack a particular user. In
this case, attackers require user-level calling records. To solve this, attackers need
to extract human-specific characteristics from flows for user recognition. Previ-
ous papers [20] [8] verified that speech features can be extracted to re-identify
a user if the user employs a specific codec. This paper investigate another al-
ternative by taking advantage of user key-click patterns: Some automated voice
services require users to provide their Personal identification numbers (PINs) for
authentication (e.g., access a voice mailbox or a configuration setup). In this sit-
uation, users enter their PINs on their VoIP user-agents so that the user-agents
generate specific packets to indicate which keys have been clicked. Thus, the
key-click pattern for PIN input is a potential characteristic for user recognition.
We addresses the following research questions in this paper: (1) How can a ma-
licious intermediary recover the key-click patterns from intercepted VoIP flows?
(2) How to minimize the impact from networking conditions (e.g., jitter, packet
loss)? (3) Is the recovered key-click patterns accurate enough for user recogni-
tion? To answer these questions, we invited 31 subjects to participate in the
experiments. Each of them entered 4-digital PIN codes on a popular VoIP user-
agent by mouse clicking. Employing machine learning algorithms, we achieved
average equal error rates of 10-29% for user verification and a hitting rates up
to 65% with a false positive rate around 1% for classification. Finally, we also
discuss corresponding countermeasures to prevent user recognition.

The rest of this paper is organized as follows. Section 2 introduces some back-
ground information about VoIP. Section 3 introduces the general idea of the
attack method. Section 4 presents the preparation, procedure and results of the
experiments that we conducted. Section 5 lists related work. Finally, we sum-
marize this paper in Section 6.

2 Background in VoIP Flows

The Realtime Transport Protocol (RTP) [24] standardizes the packet format
for VoIP conversations. RTP provides end-to-end delivery schemes for data with
real-time characteristics over IP networks. It supports a variety of payload types,
two of which are especially related to this paper.

– Voice payload: In a conversation, a user-agent constantly encodes acoustic
signal into digital data as voice payloads using a codec. The user-agent on

Analyzing Key-Click Patterns of PIN Input for Recognizing VoIP Users 249

the other side recovers the acoustic signal by decoding the payloads from
the received RTP packets. We name this kind of RTP payloads as RTP
voice packets. In many cases, a user-agent continuously generates RTP voice
packets at a constant time interval (e.g., 20 ms) in a conversation unless
other types of RTP packets with higher priority are triggered.

– Event payload [25]: When a user clicks a phone key in a conversation, the
user-agent generates RTP packets with event payloads to indicate which key
has been clicked. The RTP packets with event payloads are called RTP event
packets. RTP event packets have higher priority than RTP voice packets.

The Secure Realtime Transport Protocol (SRTP) scheme [10] has been widely
applied to protect RTP packet payloads by encrypting. However, it does not
protect RTP headers1. This means that RTP header fields are available to in-
termediaries despite of the protection. Several RTP header types are introduced
as follows:

– Marker bit: It indicates the beginning of a new event. For instance, a user
presses a key “4” may span a series of RTP event packets, but only the
first packet has the marker bit set. We define that a RTP event packet with
marker bit set is a key-down packet and the others are key-holding packets.

– Payload type: It identifies the type of the RTP payload.
– Sequence number: The RTP sequence number is incremented by one in each

successive RTP packet sent. The sequence numbers are assigned to RTP
packets to allow the receiver to restore the original sequence in case of un-
reliable transmission.

Figure 1 plots a typical RTP flow with both event and voice packets. The
packet inter-arrival time is around 20 ms. It can be predicted that 4 events are
represented in this flow. Each event contains 1 key-down packet and a set of
key-holding packets.

 0 0.5 1 1.5 2

Packets Arrival Time (Sec)

RTP voice packet
RTP event packet: key-holding

RTP event packet: key-down

Fig. 1. The packet inter arrival time of an example RTP flow

1 RTP headers are sent in the clear to allow for billing purposes and header
compression.

250 G. Zhang

3 Attacking Method

Image the following scenario illustrated in Figure 2(b): There are several users
whose user-agents share the same IP address. An attacker is a malicious interme-
diary which intercepted a number of RTP flows originated from this IP address.
The packets arrival time in the flows are recorded. Some flows have been already
correctly labeled with their originator users (we call these flows as testing flows).
The rest without being labeled are called testing flows. The attacker aims to fur-
ther profile user-level calling records using the testing flows. Thus, the attacker
may want to (1) label the flows for a particular user; or (2) label the flows for all
users. We assume that the users occasionally access their voice mail by providing
their PINs on a virtual keypad of a user-agent using a mouse2 (see Figure 2(a)).
In addition, all RTP flows in the environment are encrypted by using SRTP [10].

(a) The virtual
keypad (b) The network topology

Fig. 2. The environment of experiments

If the attacker detects a VoIP flow for PIN input and recognizes its originator
user, it is highly possible that the calls at the time around are done by the
same user. In this way, we consider to recognize a user by key-click patterns.
The challenge is how to recover the key-click patterns from RTP flows? Given
an encrypted RTP flow, the attacker firstly needs to distinguish the RTP event
packets and RTP voice packets. Actually it is rather simple: Despite of the
protection by SRTP, the RTP headers are still in plain text. Thus, the attacker
can distinguish them directly by reading the “Payload-Type” header fields. After
picking RTP event packets from a flow, the next step is to restore the key-click
behavior. To input 4-digital PIN code, 4 key-click events are generated. The
attack can observe 4 key-down packets with following key-holding packets from
the marker bits in headers. Moreover, we define the last key-holding packet for
each event as the key-up packet. The attacker can restore a key-click pattern
by guessing 4 key-holding periods (The period between a key-down packet and
its following key-up packet) and 3 key-switching periods (the period between a
key-up packet and the next key-down packet). Let us take the example flow in

2 Some user-agents may also support keyboard input, but in this paper we only
consider virtual keypad input.

Analyzing Key-Click Patterns of PIN Input for Recognizing VoIP Users 251

Figure 1, the 4 key-holding periods are: 0.17-0.28s, 0.45-0.58s, 0.85-0.92s and
1.3-1.5s. The 3 key-switching periods are 0.28-0.45s, 0.58-0.85s and 0.92-1.3s.

The 4 key-holding periods and 3 key-switching periods are taken as variables
for training and testing. Then, the attacker can employ a learning algorithm to
construct a classifier, which builds key-click pattern using the training data and
classifies the testing flows into correct classes. We did several experiments and
the detailed work will be introduced in the next section.

Nevertheless, current Internet does not guarantee the quality of packet trans-
mitting. Since this attack needs exact inter-packet arrival time of RTP event
packets, the varying network quality (namely jitter and packet loss) could lead
to an inaccurate observation. (1) Jitter indicates latency variations for different
packets in a flow. For instance, a packet sent earlier may arrive the destination
later. A large jitter on RTP event packets could make the key-click pattern recov-
ering unreliable. Nevertheless, the sequence number on packet header field can
help attackers to restore the original packet sequence. Moreover, attackers know
what the fixed time interval between two successive packets should be (e.g., 20
ms). In this way, attackers can restore the packet inter-arrival time and sequence.
Thus, the impact of jitter is not vital. (2) Packet loss indicates the amount of
packets which are accidentally dropped in the transmission. Although attackers
can detect packet loss rate by reading sequence number, they do not know the
type of the lost packet for key-click pattern recovery. However, the attacker can
heuristically guess it by the types of its neighbor packets. For example, if the
lost packet is a key-holding packet in the middle, it is also easy for attackers to
guess since the packets before and after are the same type.

4 Experiments

4.1 Data Collecting

To test the performance of this kind of attack, we did a series of experiments. We
invited 31 students as test subjects who are denoted by S = {s1, s2, · · · , s31}. All
of them have experience with using a computer, a mouse and a VoIP client. Each
subjectwas asked to input two kinds of PIN codes. First,we randomly generated 31
different 4-digital PIN codes and thus assigned these PIN codes to the subjects one
byone.Each subjectwas asked to inputhis/her uniquePINcodeusing themouse on
the virtual-keypadof the X-Lite [7], a popular user-agent for 50 repetitions. We call
these repetitions as unique input repetitions and let du(si)j to denote repetition j
donebysubjectsi.Furthermore, someusersmayhave the samePINcode since there
is only a 104 space for a 4-digital PIN code. Taking this into account, we arbitrarily
selected a particularPIN code (“9913”)and again asked each subject to input it for
50 repetitions. Similarly,we call the repetitions asa shared input repetitions anduse
ds(si)j to denote these repetitions.

We employed two computers: one ran X-Lite (version 3.0) as the user-agent.
It is equipped with a DELL 19-inch flat panel LCD screen with 1024x768 pixel
resolution. The mouse is a HP USB optical wheel mouse with the default speed
setup on Windows XP platform. Another ran TCPDump [5] to simulate attackers
to intercept RTP flows.

252 G. Zhang

4.2 Data Processing

Following the method introduced in Section 3, we first extract RTP event packets
from each flow. Figure 3(a) and Figure 3(b) illustrate the arrival time of RTP event
packets of the unique input repetitions done by s12 and s17. (du(s12)j and du(s17)j ,
1 ≤ j ≤ 50).Ata glance, readers canfind thegeneral key-clickpatternsaredifferent
for the two users. Then, we restore the 4 key-holding periods and 3 key-switching
periods for each repetition using the method introduced in Section 3.

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2 2.5

R
e
p

e
ti

ti
o

n

Time (Sec)

(a) du(s12)j , 1 ≤ j ≤ 50

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2 2.5

R
e
p

e
ti

ti
o

n

Time (Sec)

(b) du(s17)j , 1 ≤ j ≤ 50

Fig. 3. Generated RTP event packets of the unique input repetitions done by s12

and s17: one dot indicates one RTP event packet and the x-axis indicates packets
inter-arrival time

4.3 Learning Algorithms

We employ three popular learning algorithms in this paper since these algorithms
have been widely tested and performed well in previous work on keystroke bio-
metrics [23,22]:

– Supporting Vector Machine (SVM) [11]: SVM works by constructing an N-
dimensional hyperplane that groups the data into two spaces. In principle, it
only solves the two-class problems. For multi-class problems, the algorithm
can repeatedly perform the operations over all the possible two-class pairs
and then find the suspect class by a voting mechanism.

– Random Forest (RF) [12]: Random forest is an ensemble learning method by
generating a large number of bootstrapped classification trees and aggregat-
ing them during the training. Different to SVM, random forest can perform
variable selection by itself and thus it is robust against noise. In a previous
comparison, random forest provides a better predictive accuracy than other
learning algorithms [14].

– Recursive partitioning (RPart) [13]: Recursive partitioning is a tree-based
method for classifying data. It creates a classification tree and further splits
the tree based on the condition of variables. The split process will be repeated
for each leaf node until a certain stop splitting condition is met. Recursive
partitioning is a fast classification algorithm.

Analyzing Key-Click Patterns of PIN Input for Recognizing VoIP Users 253

We implemented the classifiers in the R platform (version 2.12.0) [6], which
provides a wide variety of statistical functions including classification based on
the S language. In this paper, we implemented our classifiers using e1071 (SVM)
[2], random forest [3] and recursive partitioning [4] packages. By using these
packages, we can focus on our classification problems rather than the detail
implementation of the algorithms.

4.4 Analysis and Results

We recovered the 7 variables (4 key-holding periods and 3 key-switching peri-
ods) from each repetition. For each subject, we selected the first 30 repetitions
(du(si)j and ds(si)j , 1 ≤ i ≤ 31 ∧ 1 ≤ j ≤ 30) for training and took the rest 20
repetitions (du(si)j and ds(si)j , 1 ≤ i ≤ 31 ∧ 31 ≤ j ≤ 50) for testing. In this
paper, we focus on two problems, namely user verification and user classification.

– User verification: Given a testing repetition and a specific user sx, the at-
tacker asks the classifier whether the testing repetition was done by sx.
Thus, it is a binary classification problem (the real user sx and imposters
si�=x). In this way, we split the training repetitions into 2 classes. One con-
tains the repetitions done by user sx (du(si)j or ds(si)j , i = x ∧ 31 ≤ j ≤
50) and another contains all the remaining repetitions (du(si)j or ds(si)j ,
i �= x ∧ 31 ≤ j ≤ 50). Given the testing repetitions (du(si)j or ds(si)j ,
1 ≤ i ≤ 31 ∧ 31 ≤ j ≤ 50), the classifiers calculate the scores showing how
likely these repetitions were done by the user sx. Finally, attackers can set
a decision threshold to distinguish the real user and the imposters.

– User classification: In this case, there are 31 classes, each of which represents
one subject. The attacker trains the classifiers with the training repetitions
which have been correctly labeled their classes. Given the testing repetitions
(du(si)j or ds(si)j , 1 ≤ i ≤ 31 ∧ 31 ≤ j ≤ 50), the classifiers distinguish
them into the 31 classes using the default decision threshold. Finally, we
create a 31 by 31 dimensional confusion matrix in which the element in row
si, column sj is a count of the number of times the subject with true ID si

was classified into ID sj .

Like most previous work on classification problems, we evaluate the performance
of the implementation by the classification errors, in more detail, false positive,
which mistakenly takes the imposter’s data as the real user’s; and false negative,
which mistakenly classifies the real user’s data into the imposter’s class. For
evaluating the user verification problem, we also concern the Equal Error Rate
(EER). In a binary classification problem, false positive rate and false negative
rate usually varies depending on the decision threshold. EER, as the crossover
point at which the false positive rate equals the false negative rate, is an impor-
tant value to judge the classifier. The lower the EER, the better performance
for the classifier. We run the implementation of our classifiers several times for
the experiments. Figure 4 shows the result.

254 G. Zhang

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
 p

o
s
it

iv
e
 r

a
te

False positive rate

RF
SVM

RPart

(a) The ROC curve for verifying s10

(unique input repetitions)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
 p

o
s
it

iv
e
 r

a
te

False positive rate

RF
SVM

RPart

(b) The ROC curve for verifying s10

(shared input repetitions)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

RPart RF SVM

A
v
e
ra

g
e
 E

E
R

(c) Average EER with standard deviation
for verifying si, 1 ≤ i ≤ 31 (unique input
repetitions)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

RPart RF SVM

A
v
e
ra

g
e
 E

E
R

(d) Average EER with standard deviation
for verifying si, 1 ≤ i ≤ 31 (shared input
repetitions)

 0

 0.2

 0.4

 0.6

 0.8

 1

RPart RF SVM

average false positive rate
average true positive rate

(e) Average TPR and FPR with stan-
dard deviation for classifying (unique in-
put repetitions)

 0

 0.2

 0.4

 0.6

 0.8

 1

RPart RF SVM

average false positive rate
average true positive rate

(f) Average TPR and FPR with stan-
dard deviation for classifying (shared in-
put repetitions)

Fig. 4. Statistical results of our experiments on verification and classification using the
3 algorithms

Analyzing Key-Click Patterns of PIN Input for Recognizing VoIP Users 255

Figure 4(a) and 4(b) illustrate the Receiver Operating Characteristic (ROC)
curves with subject s10 as the genuine user when we did user verification. The
repetitions are du(s10)j and ds(s10)j respectively. The True Positive Rate (TPR)
is the frequency with the repetitions of subject s10 has been correctly detected.
The False Positive Rate (FPR) is the frequency with which the imposters are
mistakenly detected as the genuine users. Both of them varies depending on the
decision threshold. We observe that the RF gives the best result and the RPart
gives the worst result for both unique and shared input repetitions. The EER in
unique input repetitions is from 0.08 to 0.18 and that in shared input repetitions
is from 0.3 to 0.4. Figure 4(c) and 4(d) show that the average EER with standard
deviation for all the subjects. The RF gives the average EERs around 0.1 and
0.14 for unique and shared input repetitions. The EERs given by SVM are 0.12
and 1.5 respectively. RPart gives the highest EER, around 0.25 and 0.29. As
said, the lower the EER, the better performance for the classifier. Therefore, RF
gives the best result. Figure 4(e) and 4(f) show the result of the classification
problem. The best performance is still given by RF, with the lowest average
TPR around 0.65 and FPR around 0.01 for unique input repetitions. The TPR
for unique and shared input repetitions are 0.52 with 0.02 FPR. SVM has the
similar results to RF. The worst case is still given by the RPart: its average
TPR is around 0.52 for unique input repetitions and only 0.32 for shared input
repetitions. The results show that VoIP user recognition by key-click patterns is
possible. RF algorithm gives better performance than the other two. It is easier
to recognize users if they have different PIN codes to input.

4.5 Discussion on Countermeasure

One countermeasure is to insert random delay between key-click events. When a
user-agent receives a key-click event, it does not immediately process the event.
Instead, it puts all information of the event (e.g., the holding time) in a First
In First Out (FIFO) queue. The user-agent constantly checks the queue and
fetches a event from it after a random time delay for processing. It obscures
real key-click patterns. Yet another defending method is to encrypt the whole
RTP packet using IPSec. We know that the attacks take advantage of the factor
that SRTP does not encrypt RTP headers, which enable attackers to restore
key-click patterns. The attacks do not work if the RTP headers are encrypted.
RFC 3711 [10] suggests IPSec (ESP method) [19] if users would like both the
RTP headers and contents to be protected. Nevertheless, users may particularly
worry about the performance overhead and configuration complexity by using
IPSec. Although it is possible to effectively reduce the performance overhead by
using packet header compression [9], configuration complexity might be a barrier
to widely deploy IPSec in VoIP.

5 Related Work

Keystroke dynamics is a method to recognize individual users by using their
typing characteristics, with the time stamps of key-down and key-up. Many

256 G. Zhang

previous work has been done in this domain and a broad overview can be found
in [23]. This section only summarizes the work most relevant in the context of
ours. Maxion et al. [22] asked 28 volunteers to type 200 repetitions of the same
10-digital code using only the index finger on the number pad of a standard
keyboard. They intercepted the keystroke information on key-down and key-
up time locally and analyze them using random forest classifier. Half of the
data were selected for training and the rest were used for testing. The classifier
achieved a hitting rate of 99.54% and false alarm rate of 12.50%. Kotani, et
al., [21] performed experiments using a special pressure sensitive keypad with
9 subjects. Each subject typed 20 repetitions of the same 4-digital PIN code.
Besides key-down and key-up times, stroking force was chosen as a third element.
Their classifier gives a equal error rate at 2.4%. Clarke et al., [17,15,16] performed
several tests in which they asked different number of subjects (from 16 to 32) to
type the same 4-digital PIN code for 30 repetitions on the keypad of a mobile
phone. 20 repetitions are used for training and the rest is used for testing. Their
neural network classifier gives an equal error rate from 5.5% to 8.5%. Our work
is on a different scenario. We recover key-click pattern from VoIP flows and the
subjects use a mouse and virtual keypad for input. Moreover, our method needs
to take the networking condition impact into account.

On VoIP user recognition, Khan et al. [20] proposed a scheme exploiting
patterns on the sizes distribution of RTP voice packets. Their classifier achieved
a hitting rate of 75% for 10 speakers and 51% for 20 speakers. Similarly, Backes et
al. [8] proposed an approach using the periods of speech and silence of a speaker
in a conversation. This speaker specific pattern is modeled using the speaker’s
talking speed and frequency. The identification rates obtained were 65% for 13
speakers and 48% for 20 speakers. Nevertheless, their method requires specific
codec being applied. Our work achieves the same goal but in another way: We
exploit the side channels in RTP event flows rather than RTP voice flows.

6 Conclusion

This paper proposed an attacking method to recognize VoIP users for user-level
calling records profiling. It takes advantage of user-specific key-click patterns.
Even if a VoIP flow are protected by SRTP, attackers can still recover key-click
patterns from the flow by reading packet header fields. The impact introduced by
varying network conditions (jitter, packet loss) can be minimized. In an empirical
setup with 31 users our analysis is able to correctly classify unknown RTP flows
in about 65%. For user verification, the average equal error rate is from 10%
to 29%. The result raises serious concerns about anonymity for VoIP users. To
prevent this attack, users can consider to either randomize the time interval
between key-clicks or use another security scheme (e.g., IPSec) which not only
encrypts the whole part of a RTP packet, but also pads all RTP packets to an
equal size.

There are still some limitations on our currant experiments. First, we only
asked subjects to enter PINs using the virtual keypad by mouse clicking so far.

Analyzing Key-Click Patterns of PIN Input for Recognizing VoIP Users 257

Nevertheless, some user-agents also support standard keyboard input. Second,
we let all subjects to enter the same PIN “9913” for collecting shared input rep-
etitions. The results with only one PIN instance may difficult to be generalized.
In future work, we will investigate this problem further not only using virtual
keypad, but also standard keyboard. In addition, we will try several shared PIN
candidates for collecting shared input repetitions.

References

1. 40 websites offering telephone calling records and other confidential information,
http://epic.org/privacy/iei/attachment a.pdf (visited at November 15, 2010)

2. e1071: Misc Functions of the Department of Statistics (e1071), TU Wien,
http://cran.r-project.org/web/packages/e1071/index.html (visited at September
18, 2010)

3. randomForest: Breiman and Cutler’s random forests for classification and
regression, http://cran.r-project.org/web/packages/randomForest/ (visited at
September 18, 2010)

4. rpart: Recursive Partitioning, http://cran.r-project.org/web/packages/rpart/
(visited at September 18, 2010)

5. TCPDump, http://www.tcpdump.org/ (visited at July 20, 2010)
6. The R project for statistical computing, http://www.r-project.org/ (visited at July

18, 2010)
7. X-Lite, http://www.counterpath.com/x-lite.html (visited at July 18, 2010)
8. Backes, M., Doychev, G., Dürmuth, M., Köpf, B.: Speaker Recognition in

Encrypted Voice Streams. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.)
ESORICS 2010. LNCS, vol. 6345, pp. 508–523. Springer, Heidelberg (2010)

9. Barbieri, R., Bruschi, D., Rosti, E.: Voice over ipsec: Analysis and solutions. In:
Proceedings of ACSAC 2002. IEEE, Los Alamitos (2002)

10. Baugher, M., McGrew, D., Naslund, M., Carrara, E., Norrman, K.: The Secure
Real-time Transport Protocol (SRTP), RFC 3711 (2004)

11. Bennett, K.P., Campbell, C.: Support vector machines: hype or hallelujah?
SIGKDD Explor. Newsl. 2(2), 1–13 (2000)

12. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)
13. Breiman, L., Stone, C.J., Friedman, J., Olshen, R.A.: Classification and Regression

Trees. Chapman & Hall/CRC, Boca Raton (1984)
14. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning

algorithms. In: Proceedings of ICML 2006. ACM, New York (2006)
15. Clarke, N., Furnell, S.: Advanced user authentication for mobile devices. Computer

& Security 26, 109–119 (2007)
16. Clarke, N., Furnell, S.: Authenticating mobile phone users using keystroke analysis.

International Journal of Information Security 6, 1–14 (2007)
17. Clarke, N., Furnell, S., Lines, B., Reynolds, P.: Using keystroke analysis as a mech-

anism for subscriber authentication on mobile handsets. In: Proceedings of SEC
2003. Kluwer, Dordrecht (2010)

18. Egevang, K., Francis, P.: The IP Network Address Translator (NAT), RFC 1631
(2006)

19. Kent, S., Seo, K.: Security Architecture for the Internet Protocol, RFC 4301 (2005)
20. Khan, L.A., Baig, M.S., Youssef, A.M.: Speaker Recognition from Encrypted VoIP

Communications. Digital Investigationg (2009)

http://epic.org/privacy/iei/attachment_a.pdf
http://cran.r-project.org/web/packages/e1071/index.html
http://cran.r-project.org/web/packages/randomForest/
http://cran.r-project.org/web/packages/rpart/
http://www.tcpdump.org/
http://www.r-project.org/
http://www.counterpath.com/x-lite.html

258 G. Zhang

21. Kotani, K., Horii, K.: Evaluation on a keystroke authentication system by keying
force incorporated with temporal characteristics of keystroke dynamics. Behaviour
& IT 24(4), 289–302 (2005)

22. Maxion, R.A., Killourhy, K.S.: Keystroke biometrics with number-pad input. In:
Proceedings of DSN 2010. IEEE, Los Alamitos (2010)

23. Peacock, A., Ke, X., Wilkerson, M.: Typing patterns: A key to user identification.
IEEE Security and Privacy 2(5), 40–47 (2004)

24. Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A transport protocol
for real-time applications, RFC 3550 (2003)

25. Schulzrinne, H., Taylor, T.: RTP Payload for DTMF Digits, Telephony Tones, and
Telephony Signals, RFC 4733 (2006)

26. Sengar, H., Ren, Z., Wang, H., Wijesekera, D., Jajodia, S.: Tracking skype voip
calls over the internet. In: Proceedings of INFOCOM 2010. IEEE, Los Alamitos
(2010)

27. Wang, X., Chen, S., Jajodia, S.: Tracking anonymous peer-to-peer VoIP calls on
the Internet. In: Proceedings of CCS 2005. ACM, New York (2005)

28. Wu, C., Chen, K., Chang, Y., Lei, C.: Speaker Recognition in Encrypted Voice
Streams. In: Schulzrinne, H., State, R., Niccolini, S. (eds.) IPTComm 2008. LNCS,
vol. 5310. Springer, Heidelberg (2008)

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 259–270, 2011.
© IFIP International Federation for Information Processing 2011

Problem Analysis of Traditional IT-Security Risk
Assessment Methods – An Experience Report from the

Insurance and Auditing Domain

Stefan Taubenberger1, Jan Jürjens2, Yijun Yu3, and Bashar Nuseibeh3, 4

1 MunichRe, Munich, Germany
Staubenberger@munichre.com

2 TU Dortmund and Fraunhofer ISST, Germany
http://www.jurjens.de/jan

3 Lero, University of Limerick, Ireland
y.yu@open.ac.uk

4 The Open University, Milton Keynes, United Kingdom
b.nuseibeh@open.ac.uk

Abstract. Traditional information technology (IT) security risk assessment
approaches are based on an analysis of events, probabilities and impacts. In
practice, security experts often find it difficult to determine IT risks reliably
with precision. In this paper, we review the risk determination steps of tradi-
tional risk assessment approaches and report on our experience of using such
approaches. Our experience is based on performing IT audits and IT business
insurance cover assessments within a reinsurance company. The paper con-
cludes with a summary of issues concerning traditional approaches that are re-
lated to the identification and evaluation of events, probabilities and impacts.
We also conclude that there is a need to develop alternative approaches, and
suggest a security requirements-based risk assessment approach without events
and probabilities.

 Keywords: IT risk analysis, IT risk assessment, Security requirements.

1 Introduction

Companies and governmental organizations are interested in detecting and mitigating
the risks of possible profit and image losses. Many quantitative and qualitative meth-
ods and toolkits for Information Technology (IT) security risk analysis have been
developed using, such as normal probability, Bayesian probability, Fuzzy theories,
Annual Loss Expectancy (ALE), all of which are based on probabilities and events as
the risk is “measured in terms of a combination of the likelihood of an event and its
consequence” in the ISO 27005 standard [19]. Estimating risks reliably with precision
is difficult because of their unpredictability according to this definition: in each
traditional risk assessment method or toolkit, probabilities about the events and the
possible consequences have to be determined, and each of the steps to determine risk
– identifying events, determining probabilities and impacts – has weaknesses, making
risk assessments prone to errors, unreliable, and results questionable.

260 S. Taubenberger et al.

The objective of this paper is to discuss the general issues of determining risk with
events and probabilities within traditional approaches. We report on our experiences
in IT risk assessments in the insurance and auditing domain. The main contribution of
the paper is the thorough analysis of the problems of traditional risk assessment ap-
proaches based on the literature and our experiences. The paper is structured as fol-
lows: in section 2 we present problems of traditional approaches related to underlying
methods and risk assessment steps. In section 3 we report on our problem experiences
applying a traditional approach by hand on a real world example. We summarize the
issues of traditional risk assessment approaches in section 4 and in section 5 we sug-
gest developing alternative risk assessment approaches, such as based on security
requirements and business process models.

2 Traditional Approaches to IT-Security Risk Assessment

In the literature many approaches for IT security risk assessment are available to re-
searchers and practitioners. Discussions of available approaches can be found in Ral-
ston et al. [23], Alter and Sherer [3], ENISA [7], and Putnam [21]. We discuss these
methods from the perspective of the used underlying assessment methods (qualitative
or quantitative), risk assessment activities, and the selection of assessment methods.
In the following, we present our critiques based on a literature review.

2.1 Qualitative and Quantitative Methods

Quantitative risk assessment methods use numeric probability where the probability
expresses the knowledge that the event occurs. With quantitative approaches risk is
determined by the probability of an event and the likelihood of a loss. Examples of use
of quantitative methods are: normal probability, Bayesian probability, Fuzzy theories
and Dempster Shafer theory, Monte Carlo Simulation [15], Annual loss expectancy
(ALE), and stochastic dominance [22]. The advantages of quantitative methods are that
IT assets are identified most likely for damages [22], measures can be used for the
impact magnitude and be directly compared, [8]. The disadvantages of quantitative
methods are that there are no exact probability values of loss at the time when they are
estimated and half of the estimates are statistically either too high or too low [22].
Furthermore, the probability function that usually follows a normal distribution may be
deformed because it represents average values of a few extremes and many low ones
[22]. Additionally, a scale has to be provided for what the value of “x” percent means.
These values have to be translated to a literal meaning.

Qualitative risk assessment methods use non-numeric values or number ranges to
express the risk as descriptive values [22]. Examples for qualitative methods are:
scenario analysis, fuzzy metrics, questionnaires [22], preliminary risk analysis (PHA),
hazard and operability study (HAZOPS), and failure mode and effects analysis
(FMEA/FMECA) [24]. The advantages of qualitative methods are that these ap-
proaches are time and cost efficient because no exact value has to be determined and
they are valuable in estimating risk approximately [22] as well as areas of improve-
ment can be easily identified. However, the disadvantage of qualitative methods is

 Problem Analysis of Traditional IT-Security Risk Assessment Methods 261

that they are not precise as the value is expressed within a spectrum that has to be
understood by all involved parties [22]. Additionally, methods provide no measure-
ment for the impact and therefore it is difficult to conduct a cost benefit analysis [30].
Although quantitative and qualitative methods can be combined and used together
[17], results combination and interpretation become more difficult because different
rating scales, underlying assessment principles or the variances in risk weighting are
difficult to mix up.

2.2 Risk Determination

In internationally accepted standards or methods like Octave [2], CORAS [29],
AS/NZS 4360 [6] or ISO 27000 standards, the principal steps to determine risks are
asset identification, event/threat identification, vulnerability/control identification,
likelihood determination and impact analysis. Within the literature many issues of or
critique on traditional approaches are provided. We can categorise all of these into
three areas: identification, data and assessment.

(1) The identification category is about activities to determine, e.g. an event. A threat
that uses vulnerabilities is defined as an event [19]. The identification of threats and
vulnerabilities is challenging as underlying conditions change constantly e.g. devel-
opment of new technologies, new competitors, new laws, etc. [16], [14] Therefore,
threats and vulnerabilities are not static, with their behaviour and seriousness change
within days. Threats and vulnerabilities are identified based on security expert knowl-
edge, usage of security scanning tools and public available data. Security experts use
implicit knowledge and experiences as well as explicit data such as vulnerability lists
for the risk identification. But how do we know and how can we verify whether or not
all threats and vulnerabilities have been identified correctly and completely? Further-
more, events in associated companies (e.g. outsourcing partners or inter-company
process chain partners) could not be discovered as there are beyond company bounda-
ries. However, these events could negatively affect a company as business processes
and systems are heavily interconnected nowadays [16].

(2) The data category is about data needed for the evaluation of risks. For the impact
and probability assessment of a risk, data regarding the impact and probability of
event in a given situation for systems is needed. The major issues here are that ex-
haustive public available data of occurred events, impacts and their probabilities are
not available [27], and the internal historic data are not available for the estimation of
possible change impacts on the company. For example, the event has not occurred in
this type of industry yet, within the company or the scope in this situation. If no com-
parable data is available, best guesses must be used for determining the change impact
and probability. But how to make such a best guess in an environment where we do
know little about the basic population to determine the occurrence rates, effects or the
change impacts of the events? In case that event data is available, internal data about
events in companies can still be incomplete or may represent a “lucky” history [9] and
get quickly obsolete. In addition, internal historic event data may not represent a true
view and events recorded could be lower-than-average [9]. For example, the claims
data recorded regarding the occurrence rate and extent of loss is often below the
average of the reference industry or competitors. Another issue is that probability

262 S. Taubenberger et al.

distributions get incorrect as they are based on historic data not representing event
behaviour changes [28]. For example, the 100-year events reoccur nowadays for
every 10 years in fat-tailed distributions. How can we ensure or verify that the data
used for the assessment based on such data is still correct?

(3) The assessment category is about activities or models to evaluate the change im-
pacts. Risk assessment is based on the impact and the probability of the event. The
models used to determine risks and dependencies are poor because co-occurrence of
risks, uncertainty between event relations and different assessment scales are not
considered. Co-occurrence of events within different or the same risk leads to inde-
terminable impacts and damages because the events might occur in associated com-
panies that may have an impact on other risks that are not considered when they are
evaluated on their own. In current methods, the assessments are performed on decom-
posed model elements but do not consider the organization as a whole. Furthermore,
there is uncertainty between the relation of an event and the impact by its nature. For
example, the impact of the event is not known or dependent on other condi-
tions/parameters. However, side effects (multiple impacts or dependencies) or pa-
rameters are not considered and uncertainty is assessed by gut feelings or subjective
security expert knowledge [27]. Although safeguards put in place are considered in
the impact assessment, they are evaluated for a particular threat/vulnerability, and the
side effects of other events are not considered. How do we determine that safeguards
are operated as intended? A systematic assessment of the safeguards regarding secure
operation, secure design and effectiveness is currently missing. Furthermore, prob-
abilities are measured by different techniques; for example, by quantitative and quali-
tative methods. But the comparability of qualitative and quantitative assessments of
risks or probabilities within an assessment method is not validated. Furthermore,
assessments are influenced by perceptions. Behavioural biases outgoing of the educa-
tional background, organizational level or positive/negative attitude of the assessor
may affect the assessment of events, probabilities of occurrence or the impact
estimation [16],[27],[25]. In addition, current risk assessment proceedings lead to
simplification and are focused to strong on technical issues rather than on information
or business issues [11]. For procedural reasons the assessor will usually simplify oth-
erwise he will be lost in detail and forget the objectives [12]. Additionally, methods
follow the waterfall model and therefore are not capable of considering changes dur-
ing the lifetime of the assessment [31].

2.3 Selection and Classification of IT-Security Risk Assessment Methods

In the literature many approaches for IT security risk assessment are available by
researchers and practitioners and in general “published work related to risk assess-
ment is very difficult to categorize.” ([23], p.6) and “There are more than 200 risk
management methods making it a challenge to select the most adequate one” ([18],
p.1). These difficulties to categorize and select an appropriate risk assessment ap-
proach arise because the risk assessment process consists of different phases namely:
risk identification, risk analysis, risk assessment (evaluation and ranking) and risk
management (treatment and mitigation), and developed approaches cover different
phases as well as concentrate on different aspects, problems or business areas. An
issue in classifying approaches is to determine how much of the risk assessment

 Problem Analysis of Traditional IT-Security Risk Assessment Methods 263

process is covered by the proposed approach. Another issue is the great variety and
profundity of the approaches and their description how they perform and to apply in a
given situation. Researches tried to classify approaches like Campell and Stamp [5]
who provided a classification scheme consisting of two dimensions “level” and “ap-
proach” divided further into subcategories, however lacks a classification regarding
the elements of the risk assessment approach. The five basic classes used by Siponen
[26] misses any further distinguishing characteristics and are therefore not expedient
for a classification. In an ENISA working group paper [1] as well as in the thesis of
Poettinger [20], risk exposure, risk impact and impact segment are used to determine
the most appropriate risk assessment methodology. Although Spider diagrams are
used to compare the methods with organizational requirements, currently there is no
general accepted and proven classification scheme in existing approaches. Further on,
developed or criticized approaches are typically not classified or categorized making
it hard for researches to apply the approach in the correct setting or to select the most
appropriate one.

3 Our Experiences with Traditional Approaches

In Information System (IS) audits as well as for providing insurance cover for busi-
ness interruptions auditors have to evaluate IT risks. They evaluate IT systems, proc-
esses and risk prevention capabilities. The purpose of these risk assessments is to
determine significant risks that are associated with the design, implementation and
operation of IT systems of a company. The audit committee or the insurer commis-
sions these assessments. The audit team presents these significant risks to the
management or underwriters and reports to the audit committee or insurer. The sig-
nificance of risks is determined qualitative by the impact of the threat and the results
are used to decide about risk acceptance/ mitigation or about insurance cover. How-
ever, auditors face the problem that data about events, probabilities are rarely avail-
able in public or in the company assessed. Furthermore, these audits have to be cost
and time efficient and the results should be reliable regarding future events to acquire
profitable business as well as for the annual financial statement.

3.1 IT-Security Risk Assessment with a Traditional Approach

In this section we describe the context and the results of applying a traditional ap-
proach on a simplified real world example.

Context: We have applied a proven traditional approach such as [30] more than ten
times to determine IT security risks in subsidiaries and branches of a reinsurance
company within audits as well as at companies that applied for business interruption
insurance. These assessments conducted by an IT auditor and an independent security
expert, focus on IT management, systems, and normally last one week. The assess-
ment team is independent of the IT operation or IT management of the assessed
company or branch. IT departments of different sizes and organizational forms were
assessed. In a centralized environment the assessments stopped at the service inter-
face; however service quality and service agreements were considered.

264 S. Taubenberger et al.

Approach selection: We selected the NIST 800-30 approach [30] because it is well
known and documented, learnt in less than three days [4] and the tendency to rate
threats as medium or low [4]. Especially, the tendency to have a few high risks is
important to direct management/companies efforts to the most critical issues.

Limitations: With risk assessments not all risks may be identified neither can we
guarantee that. However, we adjusted our assessments to identify significant risks
regarding best practices within a confidence level of professional experience.

The following is a simplified real world example: The main sales channel of an inter-
net retailer for clothes is their online web store. The customer has to provide all ship-
ping and payment data before an order via the online store is processed. Customers
can make payments by credit card or on delivery. After providing and verification of
all necessary data, the order is stored and processed. The web store is a web applica-
tion with a connected database containing all order data and has an interface to a third
party service to verify credit card data. As we have thorough knowledge about vul-
nerabilities, we know that the web application has an SQL injection problem and an
encryption problem in the communication with the costumer and third party service.

An IT security risk assessment with a traditional approach such as [30] would pro-
ceed with asset- , threat-, vulnerability- and impact-analysis to determine risks.

(1) Asset identification and analysis: Hardware, software, data, people have to be
identified as well as their criticality or value to the organization. In our example we
identified the online web store, the external service provider, customer, credit card
and order data. People involved include customers and order handling personnel.
(2) Threat identification and analysis: All potential threat sources have to be identi-
fied. We identified natural disaster threats such as tornados, floods and earthquakes,
and human behaviour threats from hackers, computer criminals, terrorists or espio-
nage and insiders/disgruntled employees. Technical threats include blackouts, fire,
and chemical pollution.
(3) Vulnerability identification and analysis: All weaknesses that can result in secu-
rity breaches in the system security procedures, design or operation have to be deter-
mined. A system design analysis revealed that the web server application has an SQL
injection problem and that the communication with the database is unencrypted. The
external service provider was not analysed as an external report showed no vulner-
abilities. Employees were not considered as vulnerable as there is no customer contact
and no indications of disgruntled employees.
(4) Likelihood determination and impact analysis: The impact and the likelihood of
a successful security breach have to be determined with regard to the criticality of the
asset. The probability ratings were defined as low (0-30%); medium (30-70%) and
high (70-100%). The impact scale was defined as low (<1 million Euro), medium (1
to 5 million Euro) and high (>5 million Euro).

Natural disaster threats were not considered because the data centre is not exposed
and estimated probabilities are < 1 percent. The power blackout from the technical
threats was rated as probable (low) but with low impact. Fire is no risk as it is treated
by a sprinkler system. Chemical pollution was rated as unlikely. The web server en-
cryption issue was rated with low probability for criminals, medium for hackers and
the impact was rated medium for both. The web server injection issue was rated with

 Problem Analysis of Traditional IT-Security Risk Assessment Methods 265

low probability and medium impact. Terrorists and espionage was not considered
because the business is not critical. Table 1 shows some of the risk ratings.

Table 1. Risks and risk ratings in our scenario

Traditional approach
Risk Probability Impact
Power Blackout Low Low
Web server encryption criminal Low Medium
Web server encryption hacker Medium Medium
Web server SQL injection Low Medium

3.2 Methodological and Estimation Problems

In the following we describe general and probability estimation issues we experienced
by applying the steps of the NIST 800-30 [30] approach. In the asset identification
phase, the business process is decomposed into single elements. But any dependen-
cies between elements are neither considered nor modelled. In the threat and vulner-
ability identification phases the main problem is uncertainty. We do not know
whether the threats listed or the identified vulnerabilities are complete and compre-
hensive and how to verify them. We are dependent on publicly available data and the
assessor knowledge and experience. For the likelihood determination and the impact
analysis of threats there is no detailed guidance available. For example, NIST 800-30
does not describe how to link threat sources with vulnerabilities and how to derive or
evaluate any probabilities. Our probability estimates may not represent a true view as
the behaviour of attackers and defenders changes. The aggregation of probability
values causes further problems as the probability of occurrence might be misrepre-
sented. In addition, the consequences and the existence of misestimating are not
considered. Misestimating or unknowingly influenced assessors [27] as well as the
existence of ambiguity and the aggregation of risk creates an estimation risk that is
not considered. As a result, events and impacts may be under-/over-represented.

In what follows we demonstrate the divergence of probability estimates. Therefore,
we try to verify our probability ratings of section 3.1. We attempt to determine the
probability that a malicious user exploits the encryption weakness of the web server
and the probability not exploiting any weakness. For determining these probabilities
the following parameters should be considered:

• Number of known exploits and not secured exploits for the web server version:
Determinable by publicly reported bugs/vulnerabilities and a security analysis.

• Criticality of exploits: Determinable as exploits are rated.
• Detection rate of all vulnerabilities by malicious user: Not determinable as the

ratio is dependent on the knowledge of vulnerabilities, the used/ available tools
and number of exploits/ vulnerabilities available.

• Number of users: Determinable by page views and IP-address matching.
• Ratio of successful exploiting: Not determinable as the ratio is dependent on

malicious user’s knowledge, the complexity of vulnerabilities as well as the mo-
tive, resources and time of the malicious user.

266 S. Taubenberger et al.

• Relation of friendly and malicious users accessing the web server: Not determin-
able and dependent on e.g. popularity of the company, monetary gain.

• Impact of controls: Is implicitly considered in the successful exploiting ratio.

Fig. 1. Dependency tree with probability ratings

A parameter tree showing dependencies and assigned probabilities values for our
example in section 3.1 looks like figure 1. The percentages in the probability tree
were assigned by us based on available data and estimates. The probabilities for
events as asked in the beginning are as follows, if one computes the probabilities
down the probability tree for a hacker or a criminal.

• A criminal exploits the encryption weakness in the web server in 0.144%.
• A hacker exploits the encryption weakness in the web server in 0.384%.
• A malicious user exploits the encryption weakness in the web server in 0.528%.
• The likelihood that a malicious user does not exploit any weakness is 97.36%.

The values express the probability of occurrence of exploiting the vulnerability by a
malicious user. Notice, that there is a major discrepancy between the results of section
3.1 and this calculation. These result variations maybe caused by us because of bad
estimates or mistakes. Therefore, we also tried changing ratios besides the variations
while we recognized the following:

Dependencies: There is a direct dependency of the result to single parameters e.g. a
reduction/increase of one parameter from 5 to 10 (100 percent change) leads to a
reduction/increase of the result in the same percentage. We recognized that the per-
centage of misestimating is relevant not the absolute amount.

Baseline: The total population has to be specified because a, for example, 12% or
medium probability has no significance. This is especially important when popula-
tions are linked like the malicious users to normal user’s ratio.

Probability: In a chain of parameters the total probability inclines against 0 or 100
percent as it is below or above the minimum or maximum values. These high or low
values blur the total probability exceptionally.

Tree diagram: Generally, it is difficult to determine the dependencies of parameters,
the correct tree diagram and to verify the diagram as there is no data available.

 Problem Analysis of Traditional IT-Security Risk Assessment Methods 267

Perception: The perception of the results is dependent on the probability question and
the result value. A higher percentage and positive statement (e.g. an event is 80 per-
cent likely instead of 20 percent unlikely) is assumed to provide more confidence.

3.3 Result Presentation and Perception

Traditional approaches present risks as threats or threat diagrams. Categories such as
high, medium and low indicate the severity and probability of the threat like shown in
table 1. However, without further information, like basic population, countermeasures
costs, required security, and effects on operations and the security of the application,
data or transaction, a reasonable decision on risk mitigation or acceptance is hardly
possible. Furthermore, the decision on risk mitigation or acceptance is a second as-
sessment influenced by subjective factors and on individual’s perception of risk [27]
representing constraints to countermeasure implementation.

Risk attitude and perception: The perception of risk is influenced by e.g. personal
experiences, media, social groups [27] as well as a person’s risk attitude - risk taker
vs. risk aware person.

Frequency: Countermeasure implementation is dependent on costs, impact, probabil-
ity and frequency. But the frequency in a period of time is not specified in the risk
analysis results.

Cost objectives: The implementation of measures depends on company internal cost
objectives as personal or departmental objectives may not be accomplished. Further-
more, measures that are not planned in the current year budget may not be imple-
mented immediately.

Prioritization: Business critical projects or security issues in daily operations have a
higher priority than proposed countermeasures as an event has materialized.

All these factors are influencing the overall assessment results and arise due to the
representation of risk and the possibility to interpret results. As a result the optimal
security level is not achieved and the company’s security standard was defined,
changed (without notification) or violated by the acceptance of risk.

4 Problem Analysis - Summary

In the literature review as well as through our experiences we have identified a num-
ber of issues related to used methods and activities in traditional risk assessments.

Methods: Quantitative methods base on data that is not reliable available in practice
with a certain precision and qualitative methods provide results within a range with
deviations that have to be interpreted. Interpretation is subject to misjudgment and the
selection of an approach in a given situation is not supported by any of the developed
methods making it difficult to choose the appropriate approach.

Guidance and identification: Current standards are missing guidance on likelihood
determination, event correlation and linking of threats, probabilities and impact.
However, such guidance would be highly beneficial for risk analysts. The concept
used for identification of, threats, vulnerabilities or correlations “you know one when

268 S. Taubenberger et al.

you see one” applied in most methods does not work on new risks as this concept is
based on implicit experience, thresholds and occurred damages.

Dependencies: In current approaches, the assessor conducts the risk assessment on
decomposed single model elements. However, that proceeding neglects design or
interrelated risks as well as organizational coherences.

Probabilities: The assessor mostly estimates probability values in assessments, as
there is no reliable and true data. But estimates are mostly biased, statistically incor-
rect or the data base of the distribution might be incorrect because of behavioural
changes or a “lucky” history. In addition, we experienced that already small deriva-
tions or unconsidered parameters such as the timeframe or total population have a
material impact on the result. There is no feasible way to verify the correctness and
completeness of probability dependencies (tree) and positive and high probability
statements are perceived as more trustworthy by people.

Assessment: Assessments are conducted on uncertainty regarding events, probabilities
and impact. However, uncertainty, co-occurrence as well as dependencies are not
modelled and properly considered. Furthermore, assessments are specific to a point of
time not considering environment changes or prevention capabilities of the company.

Risks results: We experienced that low and a few medium risks were not mitigated
because of personal and company specific constraints such as perception, cost objec-
tives and prioritization of activities. Furthermore, the impact on the companies
security level or polices is not appropriately considered when risk is accepted.

Environment: To identify and to determine events, probabilities and impacts correctly
we must have comprehensive knowledge about the environment of the risk, the com-
pany and outside world. This would require that all parameters, corresponding prob-
abilities, the basic population as well as correlations are known, are immediately
updated, base on enough statistic data and could be modelled. But comprehensive
knowledge about the environment is not available, may be compromised, cannot be
verified and cannot be modelled as the real world is too complex and unpredictable.
This applies to all risk assessments and is not specific to our problem domain.
Furthermore, risk is about people. Their behaviour is not objective or rational, may
follow personal interests or herd-instincts and be biased.

5 Conclusion

Due to the nature of risk - its unpredictability and complexity - risk assessment is diffi-
cult. Our problem analysis of traditional approaches based on the literature and our
experiences in the insurance and auditing domain showed that such issues like uncer-
tainty, wrong estimation and perception are mainly associated with determining events,
probabilities and change impacts, affecting adversely the risk results. We therefore
suggest that future approaches should attempt to determine risk by alternative concepts.

One possible and promising direction is to use security requirements (SR) [10], [13]
not only for determining the impact of a threat or the seriousness of vulnerabilities but
considering organizational needs in the risk assessment. An alternative risk assessment
approach with SR could manage to determine risk without using events and

 Problem Analysis of Traditional IT-Security Risk Assessment Methods 269

probabilities and considering the organizations capability to handle and prevent events.
This could be achieved, for example, by specifying the business process data security
needs and by evaluating these requirements by hand of process model activities con-
cerning the actors related to the system. Security requirements and corresponding secu-
rity controls are evaluated at individual process activities for validating whether or not
the system implementation, the actor’s process activities (operation) and the process
design adheres to the requirements. In addition to business process evaluation, IT proc-
ess maturity and performance are evaluated to detect weaknesses, to determine operat-
ing effectiveness and prevention capabilities. The IT process evaluation results can be
used to evaluate the adherence of business process data security requirements from an
infrastructure perspective as well as to indicate the time invariance of the risk results.
However, to determine risks only using security requirements without having to deter-
mine events and probabilities would lead to a redefinition of risk as “the non-adherence
of security requirements thereby causing harms to the organization regardless of a point
in time”. An advantage of such an approach would be that assessment results are more
time independent and results probably more accurate and linked to organizational secu-
rity needs. Before developing such an approach we believe we need a better understand-
ing of the interaction of security requirements, risk treatments, risks, assets and assur-
ance as a foundation. We are confident that a security requirement based approach has
the potential to overcome the limitations of traditional approaches and we hypothesise
that an entity would face no substantial risks from any events/threats if the evaluated
security requirements have been adhered to.

Acknowledgement. Supported, in part, by the EU as part of the SecureChange pro-
ject and SFI grant 03/CE2/I303_1.

References

[1] ENISA 2007-2008 ad hoc Working Group on Risk Assessment/Risk Management.
Determining your organization’s information risk assessment and management require-
ments and selecting appropriate methodologies (2008)

[2] Alberts, C., Dorofee, A., Stevens, J., Woody, C.: Introduction to the OCTAVE Approach.
Carnegie Mellon Software Engineering Institute, Pittsburgh, USA (August 2003)

[3] Alter, S., Sherer, S.: A general, but readily adaptable model of information system risk.
Communications of the Association for Information Systems 14, 1–28 (2004)

[4] Buyens, K., DeWin, B., Joosen, W.: Empirical and statistical analysis of risk analysis-
driven techniques for threat management. IEEE Computer Society, Los Alamitos (2007)

[5] Campbell, P., Stamp, J.: A classification scheme for risk assessment methods. Sandia Re-
port, Sand2004-4233 (2004)

[6] Australian/New Zealand Standards Comittee. Risk management ASNZ 4360:1999 (1999)
[7] ENISA. Inventory of risk assessment and risk management methods, ENISA ad hoc

working group on risk assessment and risk management (March 2006)
[8] Feather, M., Cornford, S.: Relating risk and reliability predictions to design and develop-

ment choices. In: Proceedings of the Annual Reliability and Maintainability Symposium
(RAMS), Newport Beach, CA, January 23-26 (2006)

[9] Frachot, A., Roncalli, T.: Mixing internal and external data for managing operational risk
(2002)

[10] Gerber, M., von Solms, R.: From risk analysis to security requirements. Computers &
Security 20, 577–584 (2002)

270 S. Taubenberger et al.

[11] Gerber, M., von Solms, R., Overbeek, P.: Formalizing information security requirements.
Information Management & Computer Security 9(1), 32–37 (2001)

[12] Halliday, S., Badenhorst, K., von Solms, R.: A business approach to effective information
technology risk analysis and management. Information Management &Computer Secu-
rity 4(1), 19–31 (1996)

[13] Houmb, S., Jürjens, J.: Developing secure networked web-based systems using model-
based risk assessment and UMLsec. In: 10th Asia-Pacific Software Engineering Confer-
ence (APSEC 2003), Chiangmai, Thailand, December 10-12 (2003)

[14] Jackson, M.: NII-OU Security Workshop @ The Open University (November 2007)
[15] Kaplan, S.: The words of risk analysis. Risk Analysis 17(4) (1997)
[16] Kinney, W.: Research opportunities in internal auditing - chapter 5 auditing risk

assessment and risk management process. The Institute of Internal Auditors Research
Foundation (2003)

[17] Zhang, Y., Jiang, S., Cui, Y., Zhang, B., Xia, H.: A qualitative and quantitative risk as-
sessment method in software security. In: 2010 3rd International Conference on Ad-
vanced Computer Theory and Engineering (ICACTE), vol. 1, pp. V1-534–V1-539 (2010)

[18] Matulevius, R., Mayer, N., Mouratidis, H., Dubois, E., Heymans, P., Genon, N.: Adapt-
ing Secure Tropos for Security Risk Management in the Early Phases of Information Sys-
tems Development, pp. 541–555. Springer Publishing, Heidelberg (2008)

[19] International Organization of Standardization (ISO). ISO 27005 Information technology -
Security techniques - Information security risk management, International Organization
of Standardization (ISO) (2008)

[20] Pöttinger, J.: Self assessed risk management. Master’s thesis, Fachhochschul-
Masterstudiengang Sichere Informationssysteme (2009)

[21] Information Security Management References, Corporate Information Security Working
Group, Chairman: A. Putnam, Subcommittee on Technology, Information Policy, Inter-
governmental Relations and the Census, Government Reform Committee, United States
House of Representatives, Mapping of Existing Work on Infosec (Best Practices) Sub-
group: C. Kreitner, M. Rasmussen, Coordinators (2004)

[22] Rainer, R., Snyder, C., Carr, H.: Risk analysis for information technology. Journal of
Management Information Systems 8(1), 129–147 (1991)

[23] Ralston, P., Graham, J., Patel, S.: Literature review of security and risk assessment of
SCADA and DCS systems, Technical Report TR-ISRL-06-01 (July 2006)

[24] Rausand, M.: Risk Analysis An Introduction. In: System Reliability Theory, 2nd edn.
Wiley, Chichester (2004)

[25] Redmill, F.: Risk analysis - a subjective process. Engineering Management Journal 12(2),
91–96 (2002)

[26] Siponen, M.: An analysis of the traditional is security approaches: implications for
research and practice. European Journal of Information Systems 14, 303–315 (2005)

[27] Stewart, A.: On risk: perception and direction. Computers & Security 23, 362–370 (2004)
[28] Stiglitz, J.: Making globalization work: Global financial markets in an era of turbulence.

Frankfurt (February 2008)
[29] Stølen, K., den Braber, F., Dimitrakos, T., Fredriksen, R., Gran, B.A., Houmb, S., Lund,

M., Stamatiou, Y., Aagedal, J.: Model-based risk assessment – the CORAS approach. In:
NIK Informatics Conference 2002, Kongsberg (2002)

[30] Stoneburner, G., Goguen, A., Feringa, A.: NIST Special Publication 800-30: Risk
Management Guide for Information Technology Systems. National Institute of Standards
and Technology (NIST), Gaithersburg, MD 20899-8930 (July 2002)

[31] Vidalis, S.: A critical discussion of risk and threat analysis methods and methodologies.
Technical Report CS-04-03, University of Glamorgan, Pontypridd (2004)

On Computing Enterprise IT Risk Metrics

Sandeep Bhatt, William Horne, and Prasad Rao

Cloud and Security Lab
HP Laboratories

5 Vaughn Drive, Princeton NJ 08540, USA
{sandeep.bhatt,william.horne,prasad.rao}@hp.com

Abstract. Assessing the vulnerability of large heterogeneous systems
is crucial to IT operational decisions such as prioritizing the deploy-
ment of security patches and enhanced monitoring. These assessments
are based on various criteria, including (i) the NIST National Vulner-
ability Database which reports tens of thousands of vulnerabilities on
individual components, with several thousand added every year, and (ii)
the specifics of the enterprise IT infrastructure which includes many com-
ponents.

Defining and computing appropriate vulnerability metrics to support
decision making remains a challenge. Currently, several IT organizations
make use of the CVSS metrics that score vulnerabilities on individ-
ual components. CVSS does allow for environmental metrics, which are
meant to capture the connectivity among the components; unfortunately,
within Section 2.3 of [1] there are no guidelines for how these should be
defined and, consequently, environmental metrics are rarely defined and
used.

We present a systematic approach to quantify and automatically com-
pute the risk profile of an enterprise from information about individual
vulnerabilities contained in CVSS scores. The metric we propose can be
used as the CVSS environmental score. Our metric can be applied to
the problem of prioritizing patches, customized to the connectivity of an
enterprise. It can also be used to prioritize vulnerable components for
purposes of enhanced monitoring.

1 Introduction

Deciding which subsystems within a large enterprise system should be prioritized
for patching or should be monitored more closely is an art. Patching involves
more than the deployment of a patch, which is itself a non-trivial task. It also
involves assessing the risks of a vulnerability; planning, scheduling, testing and
qualifying the patches in a staging environment; and finally assembling the re-
sources needed for deployment, and for handling patch distribution failures and
help desk calls from end users. It is estimated that every patching event costs
anywhere between 0.0025 and 0.5513 person hours per system [3]. For large or-
ganizations with many tens of thousands of systems to be managed, the cost of
security patch management can be excessive.

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 271–280, 2011.
c© IFIP International Federation for Information Processing 2011

272 S. Bhatt, W. Horne, and P. Rao

As a result, organizations cannot address every known vulnerability, but
rather must prioritize them, based on the risk they pose to the enterprise. How
should an IT organization assess the risk posed by component vulnerabilities?
The key concern is to design a rational risk assessment scheme that can be
automated.

Several IT organizations, prioritize security patches using the Common Vul-
nerabilities and Exposure (CVE) system. CVE is a system for disseminating
vulnerability information against various types of IT assets. CVE reports are
coupled with a set of metrics defined by the Common Vulnerability Scoring Sys-
tem (CVSS). CVSS includes a base score, which rates the vulnerability in isola-
tion. CVSS also specifies environmental metrics intended to allow organizations
to account for the relevance of the vulnerability in their environment. Unfortu-
nately within Section 2.3 of [1], there are no guidelines to develop environmental
metrics and so they are rarely, if ever, used.

The risk presented by a component vulnerability depends on the context in
which the component is used, as well as the location of the component within the
enterprise topology. A component with a severe vulnerability in an isolated part
of a network that has little relevance to business operations may not pose as much
risk as a component with a mild vulnerability, but which plays a critical role in
an important business service. A second deficiency of the CVSS metrics is that
it does not account for multi-stage attacks which exploit vulnerable components
to launch attacks on components deeper within the network that are not directly
accessible to the attack source.

Our goal is to utilize the CVSS base scores to define and compute environ-
mental metrics for components within an enterprise. The requirement is that
the metric be intuitive and efficiently computable. The metric we define in this
paper meets both requirements and captures both the difficulty of launching
an attack on a component, and the impact that a successful attack can have
by opening up exploits on components downstream from the component. We
demonstrate scalable algorithms to compute our metrics, and give examples on
enterprise-scale networks with several thousand components.

Our metrics can be used to prioritize vulnerabilities, so that system adminis-
trators need focus only on those vulnerabilities that have the most significant im-
pact on their business. Additionally, our methods can also be used for “what-if”
analyses to track changes in security levels as changes are made to applications
and networks.

2 Related Work

A number of recent papers address the problem of evaluating network vulnera-
bility. The closest work in spirit to ours is the NetSpa system [4, 5]. Similar to
our approach, NetSpa also computes the reachability matrix of a network, albeit
using somewhat different techniques. The main difference is our definition of
the impact metric based on least-effort attack paths which captures multi-stage
attacks in an intuitive manner.

On Computing Enterprise IT Risk Metrics 273

Singhal and Ou [10] suggest treating exploit metrics, such as CVSS scores,
as probabilities, but does not define an associated probability space, nor does it
justify assumptions in treating these metrics as probabilities.

We interpret the CVSS exploitability score from Section 3.2.1 of [1](not Sec-
tion 2.2.1) as a measure of effort rather than as probabilities, the latter being
hard to justify for various reasons. While we remain agnostic about the validity
of the CVSS scoring scheme itself, we take the operational view that since many
IT organizations are comfortable with the CVSS scores, it makes sense to build
on them.

Less closely related is the work on efficient generation of attack graphs [6, 7,
8, 9, 10]. These do not, however, explicitly model network router and firewall
configurations to calculate the end-to-end reachability matrix, and do not focus
on the problem of defining an aggregate impact metric.

A number of vendors, such as Qualys Guard, Red Seal Systems, and Skybox
offer vulnerability assessment products. Some of the publicly available literature
on these products claim to use “attack paths” in their assessment calculations,
but beyond that it is unclear exactly how their methods work.

3 Defining Environmental Metrics

We build on the CVSS metrics; our innovation is that our metrics also account
for the topological interconnections between components within the enterprise
network. This builds on previous work [2].

Another innovation of our work is that we account for the possibility of multi-
stage attacks. An attacker can launch an attack on any component if it has
end-to-end connectivity to the component. Once a component vulnerability has
been exploited and root access gained on the underlying machine, the attacker
can launch further attacks inside the enterprise. Such multi-stage attacks can
have devastating impact because exploited machines deep within the network
generally have greater network connectivity to internal machines than available
directly to the attacker.

Each application component can have multiple vulnerabilities. For each vul-
nerability, CVSS assigns an exploitability metric that captures the level of dif-
ficulty of exploiting the vulnerability. For this paper, we scale the CVSS ex-
ploitability metric to a number in the range [0,1]; smaller exploitability scores
indicate a less easily exploited vulnerability while a higher value indicates a more
easily exploited vulnerability.

In addition, we require that every component application be assigned a crit-
icality metric by an IT administrator; this metric can, for example, be based
on the relative criticality of business services that depend on this component.
For example, a service, such as corporate email service, a corporate portal, or
a general ledger system is made up of multiple applications. Our assumption is
that an IT organization can assign a criticality metric to each of the services it
provides that reflects the business priorities of the business functions supported
by each service. For example, we may determine that the accounts receivable

274 S. Bhatt, W. Horne, and P. Rao

service is more important than the employee portal. Identifying services and
their associated priorities must be done manually by IT and business units. We
assume that the criticality metric is a number 0 or greater; larger criticality
scores indicate components that are more critical to the enterprise.

3.1 Exposure and Impact

For any component within an enterprise, there are two fundamental metrics that
we wish to capture:

– Exposure: how easy is it for the adversary to exploit the component
vulnerability?

– Impact: what is the aggregate criticality of all the vulnerabilities that can
be exploited by the adversary?

To measure the exposure of a component, we consider all possible attack paths
from the adversary to the component. In order to do this, we first compute the
reachability graph of the enterprise.

Our abstract graph-theoretic model of an enterprise includes a node < a, m >
for every application component a deployed on a machine m. We include a
directed edge from node < a, m > to every node < a′, m > corresponding to
applications that share the same underlying machine. We also include directed
edges from < a, m > to < a′, m′ > if the port corresponding to application a′ on
machine m′ is reachable from machine m within the network. This calculation is
enabled by previous work, for example [2] which demonstrated how all end-to-
end connectivities can be computed efficiently from the configurations of network
routers and firewalls. Reachability calculations along similar lines, with some
minor differences, also appear in [4, 5].

Each component a can have multiple vulnerabilities. Let Ei,a,m denote the
CVSS exploitability score for vulnerability i that is associated with component
a and deployed on machine m. We define the quantity Wi,a,m = 1/(Ei,a,m + ε),
where ε > 0 is chosen to be extremely small (essentially to rule out the possibility
of division by 0).

The quantity Wi,a,m can be interpreted as the work required of an adversary
to exploit the vulnerability, assuming that the adversary has direct access to the
vulnerable application.

When the adversary does not have direct access to a component, it may still
have indirect access. The attacker can launch an attack on any component if it
has end-to-end connectivity to the component. Moreover, once a component vul-
nerability has been exploited and root access gained on the underlying machine,
the attacker can launch further attacks inside the enterprise. Such multi-stage
attacks can have devastating impact because exploited machines deep within the
network generally have greater network connectivity to internal machines than
available directly to the attacker.

We capture multi-stage attacks as paths in our graph from the adversary to the
component. In this paper we restrict attention to vulnerabilities whose successful

On Computing Enterprise IT Risk Metrics 275

exploit results in privilege escalation, i.e., root access. Thus, an adversary can
launch an indirect, multi-stage attack by attacking components one-by-one along
the path. Of course, launching multi-stage attacks requires additional work, and
our goal is to capture the extra work in an intuitive way.

Consider a path p = v0, ...vk from the adversary v0 to a component vk. Let Wi

be the work required of the adversary to successfully exploit component vi when
he has direct access to vi. We define Wp the work required along path p as:

Wp = W1 + cW2 + c2W3 + · · · + ck−1Wk,

where c > 1 is a constant amplification factor.
The amplification factor captures the additional step in a multi-stage attack

amplifies the work of an adversary to attack downstream nodes. The intuition
behind path weight is that the likelihood of a multi-stage attack depends not
only on the exploitability of the intermediate nodes, but also on the length of
the path; multi-stage exploits need to be much more sophisticated, and therefore
require more work, to succeed.

Next, we define the exposure of a component vk as exp(vk) = 1
minpWp

, the
minimum work path, over all paths from the adversary to the component. This
captures the intuition that any component is as exposed as the weakest attack
path to it from the adversary.

Note that the exposure metric can be efficiently computed for large networks
using well-known shortest path algorithms.

Finally, the impact of an adversary on a network is defined as

I(A, N) =
∑

v:nodes∈N

exp(v) ∗ C(v),

where C(v) is the criticality of node v. Using this measure as opposed to Col-
lateral Damage Potential in Section 2.3.1 of CVSS [1] has the advantage of
accounting for multistage attacks.

3.2 An Application: Prioritizing Patches

Suppose that we have computed the exposure of all nodes in a network, and the
impact of an adversary. How do we use these metrics to prioritize vulnerable
components for patching?

A simple method is to compute, for each patch, the reduction in adversarial
impact if the patch were applied. This requires recalculating all the shortest paths
and adversarial impact for each patch, and choosing the one which reduces the
impact by the largest amount. This process can be iterated in a greedy manner
to prioritize all patches.

Besides prioritizing patches, the metrics can also be used to evaluate alterna-
tive designs to update the network and applications.

4 Experimental Results

We have implemented our techniques above; specifically, in addition to algo-
rithms for computing the metrics outlined, we automatically scrape CVSS feeds

276 S. Bhatt, W. Horne, and P. Rao

to gather exploitability metrics used in our calculations. On networks with sev-
eral thousand nodes, the algorithm to compute the metrics take under one
minute. This supports our view that our techniques can be useful for performing
what-if analyses as part of change management planning, and for re-evaluating
risks in response to new CVE reports in real time.

We have also run tests, described below, to validate that the scoring functions
are consistent with intuition. In an initial test on a simplified scenario, the met-
rics indicated that a component with lower CVSS vulnerability was given higher
patching priority than another component with a higher CVSS score. This was
indeed correct, as the component with lower CVSS score was easier to exploit
and, unlike the other component, was upstream of critical components.

4.1 Network Description

The networks we tested our ideas on were synthetically generated from a tem-
plate; the topology and applications were designed to be representative of large
enterprise networks.

The network template has components consisting of one adversary, and end-
users connected to a mirrored infrastructure. Each mirror consists of a 3-tier
architecture (replicated copies of web, application, and data base servers), and
different categories of administrator machines connected via a separate adminis-
trator network. The number of end-users, mirrors, and administrators and servers
within each mirror are parameterized so we can easily scale the sizes of the net-
works for our purposes. For example, for the experiments reported here, each mir-
ror site consisted of fifty data base servers, twenty five application servers (ASA,
ASB), and twenty five web servers(WSA, WSB). These mirrors were adminis-
tered by three categories of administrators with ten(admS), twenty(admDb) and
five machines(admAll) respectively. The number of end-users was one thousand.

A schematic diagram of the network is depicted in Figure 1. The network has
three compartments: (a) the end-users network, (b) the infrastructure network
and (c) the administrative network. The connectivity (number of reachable pairs)
between nodes varied by experiment; a typical set of numbers is shown in Table 1.
In this table each cell (other than in the first row or first column) contains the
number of edges that connect the source component(the first cell of its row) with
the destination component (first cell of its column).

For a fixed choice of the connectivity matrix, we generated 25 test networks,
with randomly chosen edges according to the connectivity requirements. Thus,
each data point in our result corresponds to 25 runs.

This network schema is meant to represent the network structure of a medium
size enterprise. It captures the kind of compartmentalization and connectivity
encountered in in-house networks. The connectivity numbers can be adjusted as
desired. The adversary is a single node with connectivity to the internal parts
of the enterprises – all of them, and varied by experiment.

On Computing Enterprise IT Risk Metrics 277

Fig. 1. Schema for synthetic experimental networks

Table 1. Typical connectivities for the synthetic test networks

End WSA WSB ASA ASB DBA DBB admS admDb admAll
Users

Adversary 1 - 10 1-10 1-10 1

EndUsers 100k 40k 40k 1k 1k

WSA 500 50 50 50 50 50

WSB 500 50 50 50 50 50

ASA 250 50 250 50 200 25

ASB 50 250 50 250 200 25

DBA 250 50 250 50 200 25

DBB 50 250 50 250 200 25

admS 2000 500 500 50 50 5

admDb 1000 500 500 10 50 5

admAll 5000 125 125 125 125 250 250 100 50 25

4.2 Experimental Approach

Our goal is to validate our metric by showing that the formalism yields plausible
results for a variety of networks that resemble enterprise networks under our
assumptions about how malware propagates and how critical administration
deem their resources such as server and end user machines to be.

In particular we want to show that the downstream impact of the adversary
varies with respect to input parameters in a manner consistent with our intu-
ition. The specific question we address is: how many end-user machines must an
adversary be able to directly exploit in order to have the same impact that he
can achieve by exploiting one web server directly?

278 S. Bhatt, W. Horne, and P. Rao

The experiment was to measure the downstream impact of varying the number
of edges from the adversary to (a)end user machines versus (b) web servers. This
experiment was carried out for various average values of exploitability of end user
machines and various average values of exploitability of web server machines.

In generating our networks we specified the average criticality of different com-
ponent types. For example, while the average criticality of an end user node was
0.202, individual end user node criticialities deviated from the mean randomly.
For completeness, the criticalities of all the component types were set as follows
– endUsers:0.20239, WSA:85.68, WSB:85.44, ASB:83.56, ASA:86.0, DBA:843.6,
DBB:848.8, adminDB:677.0, adminS:724.0, adminAll: 743.0.) Thus, for example,
the average web server was 425 times more critical than an end user node. Choos-
ing different numbers affected the magnitude, but not the nature of the results.

We carried out two series of experiments – one in which the number of edges
from the adversary to the end user was varied in steps of 100 and another in which
the number of edges between the adversary to the web servers was added in steps
of 2. In Figure 2(a) the average user exploitability takes values from the set {0.01,
0.21, 0.29, 0.42. 0.63, 0.76}. In Figure 2(b) the average web-server exploitability
takes the values from the set {0.002, 0.133, 0.26, 0.47, 0.67, 1.0}. As noted earlier,
for each choice of parameters and connectivity, we computed the metrics over 25
networks generated at random according to the connectivities chosen.

For running the experiments we chose c = 1.25. Changing the value of c
between 1.1 and 1.75 did not significantly alter the nature of the results.

(a) (b)

Fig. 2. Changes in downstream impact of adversary as a result of changing the number
of edges from the adversary to (a)End user machines and (b) Web servers. The implicit
family of curves in (a) and (b) represent the effect of changing average exploitability
– in (a) the average user machine exploitability takes values from the set {0.01, 0.21,
0.29, 0.42. 0.63, 0.76}, and in (b) the average web server exploitability takes values
from the set the set {0.002, 0.133, 0.26, 0.47, 0.67, 1.0}.

On Computing Enterprise IT Risk Metrics 279

4.3 Results and Their Interpretation

The graphs in Figure 2 show how increasing the exposure of web servers has much
greater impact than increasing the exposure of end user nodes. Each experiment
was run 25 times with the edges between the adversary and web-servers or end-
user machines generated at random. Each dot in the figure is actually a composite
of twenty five values, one from each run.

In the first graph the impact saturates. This can be explained by the fact that
end user nodes are not particularly highly connected. The advantage gained by
the adversary by connecting to more end users quickly tapers off. On the other
hand web servers are well connected and hence the impact scales linearly.

The graphs can also answer the question: How much should the average vul-
nerability of a web-server be decreased in order to bound adversarial impact in
case of a web server compromise to a desired level? From these figures it can
be seen that to have the same downstream impact as increasing the connectiv-
ity between the web server and the adversary by about ten connections, it takes
roughly two orders of magnitude of increased connectivity between the adversary
and the end users.

This is in line with our intuitive expectations. Firstly, the web servers are
more critical. Secondly, they are well connected to other critical components
such as application servers and database servers. Thus our metric quantifies the
advantage the adversary gains by connecting to web servers as opposed to end
users.

5 Conclusions

In this paper we proposed a new way to define the CVSS environmental metric.
The definition we propose can be efficiently computed, and the experiments show
that the metric behaves in an intuitive way as network parameters are varied.
Further evaluation on large-scale production networks is needed to see if these
ideas can be fruitful in practice.

In the future, we anticipate that such metrics could be computed by integrat-
ing the analysis algorithms (reachability and metric evaluation) with an asset
management system such as a Universal CMDB (Common Management Data
Base), to get access to each of the components and their configurations,and with
CVE feeds, for example from the National Vulnerability Database.

References

1. Common Vulnerability Scoring System,
http://www.first.org/cvss/cvss-guide.html

2. Bandhakavi, S., Bhatt, S., Okita, C., Rao, P.: End-to-end network access analysis.
In: HP Laboratories Technical Report HPL-2008-28R1. HP Labs (2008)

3. Forbath, T., Kalaher, P., O’Grady, T.: The total cost of security patch manage-
ment. Technical report, Wipro Technologies (2005),
http://wipro.com/webpages/insights/security_patch_mgmt.htm

http://www.first.org/cvss/cvss-guide.html
http://wipro.com/webpages/insights/security_patch_mgmt.htm

280 S. Bhatt, W. Horne, and P. Rao

4. Ingols, K., Chu, M., Lippmann, R., Webster, S., Boyer, S.: Modeling modern
network attacks and countermeasures using attack graphs. In: ACSAC 2009:
Proceedings of the 22nd Annual Computer Security Applications Conference. IEEE
Computer Society, Washington, DC, USA (2009)

5. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for
network defense. In: ACSAC 2006: Proceedings of the 22nd Annual Computer
Security Applications Conference. IEEE Computer Society, Washington, DC, USA,
pp.121–130 (2006)

6. Noel, S., Jajodia, S.: Optimal ids sensor placement and alert prioritization using
attack graphs. Journal of Network and Systems Management 16 (2008)

7. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph gener-
ation. In: CCS 2006: Proceedings of the 13th ACM Conference on Computer and
Communications Security, pp. 336–345. ACM, New York (2006)

8. Pamula, J., Jajodia, S., Ammann, P., Swarup, V.: A weakest-adversary security
metric for network configuration security analysis. In: 2nd ACM Workshop on
Quality of Protection. ACM Press, New York (2006)

9. Sawilla, R.E., Ou, X.: Identifying critical attack assets in dependency attack
graphs. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp.
18–34. Springer, Heidelberg (2008)

10. Singhal, A., Ou, X.: Techniques for enterprise network security metrics. In: Cyber
Security and Information Intelligence Research Workshop. ACM, New York (2009)

A Kolmogorov Complexity Approach for

Measuring Attack Path Complexity

Nwokedi Idika and Bharat Bhargava

Purdue University, Department of Computer Science
305 North University Street,

West Lafayette, IN 47907 USA
{nidika,bb}@cs.purdue.edu

Abstract. The difficulty associated with breaching an enterprise net-
work is commensurate with the security of that network. A security
breach, or a security policy violation, occurs as a result of an attacker
successfully executing some attack path. The difficulty associated with
this attack path, then, is critical to understanding how secure a given
network is. Currently, however, there are no consistent methods for mea-
suring attack path complexity that make the assumptions of a modeler
explicit while providing flexibility in how the modeler models the at-
tack path. To provide these desirable attributes, we propose a regular-
expressions-inspired language whose rationale for attack path complexity
measurement is based on Kolmogorov Complexity. After detailing our
Kolmogorov Complexity-based method, we demonstrate how it can be
applied to a novel security metric: the K-step Capability Accumulation
metric–a metric that defines the security of a network in terms of the
network assets attainable for attack effort exerted.

Keywords: security, security metrics, attack graphs, exploitability.

1 Introduction

A completely secure network is one where no attacker can violate a security
policy of that network. Since such a system is currently impractical, an approx-
imation to it would be one where the attacker has extreme difficulty violating
the network’s security policies. Thus, one way of asking “how secure is this net-
work?” would be to ask “how difficult is it to violate a security policy in this
network?” When violations occur, they happen as result of a weakness, or a se-
ries of weaknesses, that the attacker leverages. These weaknesses in the network
are referred to as vulnerabilities. The complexity associated with exploiting a
vulnerability is then critical to the security of a network.

The ease with which an attacker can successfully take advantage of a vul-
nerability is referred to as exploitability. The importance of exploitability is
reflected by its inclusion in all the well-known vulnerability scoring systems.
For instance, the Common Vulnerabilities Scoring System (CVSS) [1] computes
exploitability as a linear combination of qualitative values. The Computer Emer-
gency Response Team/Coordination Center (CERT/CC) [2] produces a numeric

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 281–292, 2011.
c© IFIP International Federation for Information Processing 2011

282 N. Idika and B. Bhargava

vulnerability score based on a series of questions–one of which is, “How easy is it
[the vulnerability] to exploit?” The SANS Critical Vulnerability Analysis Scale
Rating [8] includes the ease of exploitation in defining two of its four ratings.

Security metrics that rely on exploitability measure security in terms of the
effort or skill the attacker needs to cause a security policy violation. When secu-
rity violations occur as a series of vulnerability exploits, the dependencies among
these exploits can be incorporated into security metrics that utilize the attack
graph. An attack graph is an abstraction that reveals the ways an attacker can
use identified vulnerabilities interdependently in a network to violate a security
policy. In this paper, we use condition-oriented attack graphs [9] where nodes
correspond to hosts, and edges correspond to vulnerabilities. Examples of attack
graphs are displayed in Figure 3. Security metrics based on attack graphs are
referred to as attack graph-based security metrics. An instance of such a metric
would the Shortest Path metric. This metric [4] denotes the security of a network
as the path from the attack graph that is of least of resistance. Another example
attack graph-based security metrics is the Average Path Length metric. This
metric [10] denotes the security of a network as the mean difficulty associated
with all paths from the attack graph.

In the attack graph, attack path difficulty (or complexity) is represented as
path length. Path length may be represented as the number of edges between the
attacker’s initial state and goal state or as a more complicated algebraic permu-
tation of vulnerability scores along attack paths. While such flexibility in path
length representation may be appropriate and necessary for a network adminis-
trator to model the threat of a given network, such flexibility hinders consistent
communication across organizations and among researchers. If a method more
complex than simply counting the edges along a path is used, some qualita-
tive information is being employed. Because quality can be subjective, different
organizations and researchers may score vulnerabilities differently and poten-
tially compute path length differently. These differences are fine as long as the
assumptions being made are explicit and grounded in theory.

We propose an approach to maintain flexibility in how attack path complex-
ity is modeled, make associated modeling assumptions explicit, and provide a
theoretical basis for attack path measurement. Our approach is called the Kol-
mogorov Complexity Method (KCM). KCM allows attack paths to be modeled
quantitatively or qualitatively using a regular-expressions-inspired language. Af-
ter describing this methodology, we show how these methods can be applied to a
novel security metric called the K-step Capability Accumulation (KCA) metric.

The remainder of the paper will have the following organization. Section 2 de-
scribes KCM. Section 3 specifies the KCA metric and how KCM can be used with
themetric. Section 4 gives relatedwork associatedwith attack path complexity and
with our novel attack graph-based securitymetric. Section 5 details our conclusion.

2 Kolmogorov Complexity Method (KCM)

Given an alphabet and the infinite number of strings that can be produced
from that alphabet, some strings are more complex than others. Kolmogorov

A Kolmogorov Complexity Approach for Measuring Attack Path Complexity 283

Complexity is an approach for determining string complexity. Thus, given two
strings, Kolmogorov Complexity determines which string is more complex.

Kolmogorov Complexity determines a string’s complexity using the size of the
smallest programthat can produce that string [5]. LetK represent the Kolmogorov
Complexity function. In comparing two strings, x1 and x2, if K(x1) < K(x2), then
x2 is more complex than x1, because a larger program is needed to describe x2.
The use of Kolmogorov Complexity to monitor security was first promulgated by
Evans et al. in [6]. Kolmogorov Complexity has also been applied to spam filtering
[14] by Spracklin and Saxton. We are applying KolmogorovComplexity to security
assessment–and more specifically, the complexity of attack paths.

Kolmogorov Complexity provides a systematic approach for determining com-
plexity of attack paths. There is, however, a caveat to its use. Ming et al., in [5], have
shown that determining a lower boundK is impossible.With respect to attack path
complexity, this finding means that we can never find the “true” effort needed for
any attacker to exploit a vulnerability. This constraint need not be a hindrance to
its use if reasonable effort estimates can be obtained. Nonetheless, KCM provides a
standardway for communicatingattackpathcomplexity that isbasedupona sound
theoryof complexity. Such formalismprovides consistencyamongresearcherswhen
comparingmeasurements.Below,weprovideanattackpathcomplexitydescription
language inspired by the language of regular expressions.

Alphabet

1. A corresponds to the exploits (i.e., instances of vulnerabilities) found in all
attack graphs being considered.

Constants

1. ε corresponds to the empty string.
2. ei ∈ A denotes an exploit from one of the attack graphs being considered.
3. ∅ corresponds to the empty set.

Operations

1. Let S and T be two strings comprised of characters from A.
2. Let E1 and E2 be expressions of the language.
3. ST evaluates to the concatenation of strings S and T .
4. () provides priority ordering of evaluation.
5. (S)+ states that the expression S may repeat one or more times but must

appear once.
6. Sk evaluates to k instances of S concatenated together.
7. E

[k]
1 E2 evaluates to inserting E1 at index k in E2, where the first char-

acter in E2 corresponds to the zeroth index. This can be generalized to
E

[k1],[k2],[k3],...,[kn−1],[kn]
1 E2. Note: In general, this rule would not be used in-

dependently. It would only be used as part of the following two rules.
8. E

l,[k]
1 E2 evaluates to concatenating El

1 to E2, and inserting E1 into index k
of E2.

9. E
l[k]
1 E2 evaluates to inserting El

1 into index k of E2.

284 N. Idika and B. Bhargava

The above KCM language is flexible in its ability to model the complexity of at-
tack paths. For instance, the attack path in Figure 1 can be represented multiple
ways. H1 through H6, Attacker, and Target in Figure 1 correspond to hosts, and
vj corresponds to vulnerability j. Based on operations 8 and 9 from the KCM lan-
guage, a qualitative representation, KCM-qual, of this path can be represented
as v

3,2[2]
1 v2v3 yielding an attack path length of 3 vulnerabilities. An equivalent

representation would be v
3,[2],[2]
1 v2v3 yielding an attack path length of 3 vulnera-

bilities. In both representations, E1 and E2 from operations 8 and 9 corresponds
to v1 and v2v3 respectively. This representation suggests that once the attacker
exploits H1 via v1, attacking hosts H2, H3, H6, and Target is trivial because they,
for example, require the same credentials to have their vulnerabilities exploited.
Such a representation may also be appropriate if known scripts can be used to
exploit vulnerabilities in the system. Ultimately the qualitative representation
used depends on the subjective decision of the modeler. For instance, the attack
path can alternatively be represented as v

3,[2]
1 v2v3v1. The path length of this rep-

resentation is 4 vulnerabilities. This representation suggests that the attack path
in Figure 1 is more secure than what is suggested by the two representations ini-
tially described for this attack path. The semantics of this latter representation
suggests that while the same information can be used in exploiting hosts H2, H3,
H4, and H6, different information is required to exploit Target. If the attack path
is represented as v1v1v1v2v3v1v1, then this would, for instance, suggest that dif-
ferent credentials are required for compromising each host. This representation
corresponds to the quantitative representation, KCM-quant, which is equivalent
to counting the edges along attack paths.

Fig. 1. A single attack path with Attacker, H1–H6, and Target corresponding to hosts
and vj corresponding to vulnerabilities

2.1 Representing Cycles in Attack Graphs

It is possible for an attack graph to contain cycles. A cycle in an attack graph
corresponds to an infinite number of paths. Thus, it can be difficult to reason
about such attack paths (e.g., determining attack path length). Typically, cycles
are ignored when performing attack graph analysis. Using KCM-qual, a modeler
can account for the path length of attack paths containing cycles.

Figure 2 shows a infinite number of attack paths because there is a cycle. Using
KCM-qual, we can represent such attack paths. The infinite number of attack
paths appearing in Figure 2 can be, for example, captured with v2

1(v1v2v3)+v2
1 .

The attack path length of this cyclic attack path is 5 vulnerabilities.

A Kolmogorov Complexity Approach for Measuring Attack Path Complexity 285

Fig. 2. An attack path containing a cycle

2.2 Qualitative versus Quantitative Representations

The decision of whether to use the qualitative representation of KCM, KCM-
qual, or the quantitative representation, KCM-quant, is predicated on the amount
of information available for the security assessment. If the security engineer
has no information regarding exploitation difficulty, KCM-quant is appropriate.
KCM-quant assumes all vulnerabilities require distinct, yet, equal amounts of
effort. This assumption is overly restrictive in practice. Therefore, practitioners
may find KCM-qual most amenable for measuring attack path complexity.

If the security engineer has exploitability information about the vulnerabilities
in the network under inspection, then KCM-qual would be appropriate. If the se-
curity engineer knows that two vulnerabilities require the same exact actions and
information to be exploited, these exploits can be coalesced into a single vulnera-
bility in KCM-qual. An example of this scenario would be when the attacker uses
the same credentials to access different hosts within a network.Another example of
when two exploits may be coalesced in KCM-qual is when some information (e.g.,
host name) that the attacker has already acquired or that is publicly known is all
that is required to be changed when needing to exploit the second vulnerability. If
the security engineer assumes that the attacker is rational, then KCM-qual corre-
sponds more closely to what the attacker will actually experience.

The assumptions the modeler uses can be reflected in the names used for dif-
ferent qualitative representations. KCM-qual-C corresponds to the KCM-qual
representation where nodes in an attack path are coalesced only when the same
credentials can be used at each node to realize an exploitation. KCM-qual-S
corresponds to the KCM-qual representation where nodes in an attack path are
coalesced only when there exists some publicly accessible software that reduces
the effort of vulnerability exploitation at each node. Under KCM-qual-S, even if
two nodes require different software, each node would be coalesced. However, un-
der KCM-qual-S−, a less conservative formulation of KCM-qual-S, nodes would
only be coalesced if the same software could be used to exploit vulnerabilities at
different nodes. KCM-qual-CS corresponds the combination of KCM-qual-C and
KCM-qual-S. Under KCM-qual-CS, nodes on an attack path will be coalesced if
with KCM-qual-C holds or KCM-qual-S holds. When KCM-qual is used in this
paper, it is referring to the KCM-qual-CS formulation. Naturally, there is also
a KCM-qual-CS−. KCM-qual-CS− will coalesce two nodes on the same attack
path if either KCM-qual-C holds or KCM-qual-S− holds.

If truly quantitative complexity or probability values were known for each dis-
tinct vulnerability in the attack path, then these values could be incorporated

286 N. Idika and B. Bhargava

with KCM. By assigning these values to the nodes in the KCM-quant represen-
tation, algebraic operators would be available to manipulate the values along
these paths. If the KCM-qual representation is used, algebraic operators would
be unavailable for manipulating the values along attack paths as the result would
be mathematically unsound. This soundness issue could be practically bypassed
if empirical results showed KCM-qual to be in closer alignment with reality than
KCM-quant. The problems of determining the complexity of exploiting a vul-
nerability or determining the probability of a vulnerability being exploited are
critical issues, open problems, and outside the scope of this paper.

3 K-Step Capability Accumulation (KCA) Metric

The K-step Capability Accumulation (KCA) metric specifies the “power” the
attacker can obtain on a network in K steps. Practically, “power” refers to access
level. Users with the highest access level have the most capability in a network.
Such users also have the most opportunity for violating the network’s security
policy due to their level of access. The granularity of access levels ranges from
system-level access to application-level access. This granulation is necessary in
some instances as the attacker may successfully obtain system level access to
machines on a network and yet still require access to specific authenticated
applications. We show how to integrate such application-level accesses in the
following subsection. These semantic variations in access level is best captured
by the term “capability.” This term differs from the notion of capability defined
by Phillips and Swiler in [4]. In [4], capability is used broadly to include not
only privileged actions within a network, but it also includes the skill level of
the attacker and the tools or resources available to the attacker. The capabilities
KCA is concerned with are those derived from the network under inspection,
that is, privileges and privileged actions. The examples in this paper usage of
access levels follows the concept of privileges in [12,13] by using system-level
access on machines to represent power.

3.1 Evaluating with KCA

In determining which of two networks Sys1 and Sys2 are most secure using KCA,
one procedure would resemble the following. First, generate attack graphs G1

and G2 for Sys1 and Sys2 respectively. Choose an integer for K that corresponds
to the maximum number of steps the analysis should be carried out for if needed.
K should be no greater than the minimum of the maximum path length for both
attack graphs. One evaluation method is that if an attacker can obtain more
capabilities on G1 in K steps, than the attacker can on G2 in K steps, then Sys2

is more secure than Sys1. KCA is given below.

Caph(G) = ∪hcapabilities(n) (1)

KCAk(G) = ∪k
i=1Capi(G) (2)

A Kolmogorov Complexity Approach for Measuring Attack Path Complexity 287

capabilities(n) returns the set of capabilities available at node n. If more granular-
ity is desired, the capabilities functionmaybe extendedwith a set of vulnerabilities
as an input parameter. Different vulnerabilities may provide different capabilities
for an attacker. This extension may be captured by extending capabilities(n) as
capabilities({v1, v2, v3..., vm−1, vm}, n). Vulnerabilities v1 through vm correspond
to the vulnerabilities that an attacker may exploit to compromise node n. This
extended representation allows for application-level access control to be modeled.
Such a model also allows for different attacker profiles. That is, not all attackers
have the same skill level or resources [11]. Therefore, depending on the assump-
tions made about the attacker, potentially only a subset of the vulnerabilities may
be exploitable. Using our extended representation this scenario can be captured.
Caph(G) represents the capabilities obtained at level h in attack graph G. h rep-
resents the distance from the attacker’s initial state. KCAk(G) is then simply the
union of capabilities obtained at each level up to k.

Applying KCA to the attack graph in Figure 3(a), we obtain different values at
each level of theattackgraph.Thenodesof theattackgraphcorrespondtohostsand
access levels. The labels have the format of host:access level. U corresponds to user-
level access. A refers to administrator-level access. If access level is not specified,
the attacker is assumed to have administrator-level access on the machine. In com-
puting KCA for the attack graph in Figure 3(a), we obtain the following. Cap1 =
user-level access onH1 andH2, administrator-level access onH3.Cap2 = Cap1 and
administrator-level access onH1 andH2, anduser-level access onH4.Cap3 = Cap2

and administrator-level access on the Target host. The attacker can accumulate all
privileges in the network in 3 levels.

When comparing two network configurations to decide which is most secure
with respect to this metric, we have two options. One option is to compare
the two networks’ corresponding attack graphs only after k steps. A second
option is to compare the two network’s corresponding attack graphs at each
level up to k. The second option is useful when a security engineer is interested
in how quickly the attacker attains capabilities. For instance, after k steps in
the two attack graphs being compared, the attacker may have attained the same
level of capabilities. This information does not help the security engineer decide
which of the two attack graphs is more secure. However, if the security engineer
were to examine the two attack graphs using KCA at each level up to k the
security engineer may find that in one attack graph, the attacker accumulates
all of the network’s capabilities after 1 step, whereas in the other attack graph
the attacker accumulates all of the network’s capabilities after 5 steps. This
additional information would suggest to the security engineer that the network
corresponding to the latter attack graph is more secure because it requires the
attacker to take more steps to acquire all of the network’s capabilities.

An alternative method for comparing two network configurations using KCA
would be to compare KCA at each step. That is, in comparing two networks, the
security engineer deems the network whose attack graph allows for the same or
more valuable assets attainable in fewer steps to be less secure. This method of
comparison is best exemplified through an example. Observe the attack graph

288 N. Idika and B. Bhargava

(a) A 3 path attack graph

(b) A 7 path attack graph

Fig. 3. Two attack graphs

A Kolmogorov Complexity Approach for Measuring Attack Path Complexity 289

in Figure 3(b). The KCA at level 1 for the attack graph in Figures 3(a) and 3(b)
is the same. However, we can see that in Figure 3(b) that Target can be reached
in two steps. Assuming that this is the most important host to protect, then the
attack graph in Figure 3(b) is less secure because the attacker is able to obtain
more power in fewer steps.

3.2 Applying Kolmogorov Complexity Method to KCA

The KCA metric uses steps or levels within the attack graph to obtain its values.
The KCA metric as previously defined utilizes KCA-quant. To accommodate
KCA-qual, we need to redefine Cap.

Cappi = ∪capabilities(pi) (3)

This path-oriented version of Cap extracts all capabilities along an entire path pi.
A step or level in KCA under KCM-qual uses the characters in the string

representation to determine levels. If an attacker exploits a vulnerability vj that
is followed immediately by 0 ≤ m < k vj ’s, then the attacker has the capabilities
associated with each host that vj violates. If any new vulnerability vl is encoun-
tered on the path, then for any vj or vl immediately following this vulnerability
the attacker has the capabilities associated with each host that is violated by
vl or vj . This pattern continues when evaluating KCA with KCM-qual. If using
a KCM-qual representation that involves KCM-qual-S, then any vulnerabilities
the software enables exploitation for can belong to a vulnerability superclass
that would allow these vulnerabilities to be coalesced.

Let s1 to sn correspond to the KCM-qual string representations of attack
paths p1 to pn. Let q1 to qn correspond to the KCM-quant string representations
of attack paths p1 to pn. Let q0..i

j correspond to the substring of qj that includes
indices 0 through i. A similar definition exists for sj . Let si

j correspond to the
ith character position in sj . A similar definition exists for qj . Let e(s0..i

j) = q0..m
j ,

for some integer m such that the vulnerability at index si
j and qm

j are the same,
and the vulnerability does not appear in qm+1

j , and the vulnerabilities present
before qm

j all appear in s0..i
j . Then the equation for KCA using KCM-qual is

given by the following:

KCAk(G) = ∪k
i=1Cape(s0..i

j)(G), (4)

for all attack paths j.
This manifestation ofKCAcaptures the fact that an attackermay obtain knowl-

edge fromoneattackpathandapply this knowledge to a completely separate attack
path. If this version of KCA is applied to Figure 3(a), we must first determine how
to represent eachpath. We will then define eachpath from left to right as the follow-
ing: v1v

2
2v3, v1v5v3, v1v4v6. Thus, after one iteration, the attacker will have H1:U,

H2:U, and H3:A. After two iterations, H1:A, H2:A, and H4:U will be unioned with
the attacker’s previous capabilities. Note that the attacker is able to obtain H2:A
throughbothv2 andv5.Bothareaccounted for in this iteration. In thefinal iteration
Target:A is added to the capabilities of the attacker.

290 N. Idika and B. Bhargava

4 Related Work

Because this work proposes an attack path complexity measurement method and
a security metric, this section has two parts. The first subsection is dedicated
to attack path complexity. The second subsection is focused on relevant attack
graph-based security metrics.

4.1 Attack Path Complexity

In the authors’ literature search, attack path complexity is a topic that has not
been directly addressed. An attack path’s length can simply be the number of
edges (i.e., vulnerabilities) between the attacker’s initial state and goal state [4].
If complexity values are assigned to each vulnerability in the form of probabili-
ties, then the product of a given attack path would correspond to the complexity
of that attack path [4]. Complexity may also be summed [3,4].

Wang et al., in [3], noted that a relation could exist between two vulnerabil-
ities such that the exploitation of one vulnerability decreases the complexity in
exploiting the other vulnerability. KCM-qual captures this notion as the modeler
is given the ability to show that exploiting one vulnerability decreases the dif-
ficulty of exploiting other vulnerabilities to zero with use of our language (e.g.,
operation 6 from the KCM language). The relation in [3], allows for more flex-
ibility within the proposed framework in that the complexity of other affected
vulnerabilities can change to arbitrary values. We believe that this flexibility,
unfortunately, lends itself to the type of subjectivity that hinders the sharing
of security metric data. With no rules for how vulnerability complexity values
should change due to a vulnerability exploitation, there can be no expectation
that researchers will assign changes in complexity values in any uniform way.

4.2 Attack Graph-Based Security Metrics

There are two security metrics that have inspired KCA: the Shortest Path metric
and the Network Compromise Percentage (NCP) metric. If the Shortest Path met-
ric [4], from Phillips and Swiler, is being used under KCM-quant, then the shortest
attack path in the attack graph corresponds to the path with the fewest number
of edges. If KCM-qual is used, then the shortest path in the attack graph corre-
sponds to the path that produced, through arithmetic/algebraic manipulations,
the value considered to have the least resistance in comparison to other paths.

KCA and the Shortest Path metric can be similar when using a goal-oriented
attack graph. However, KCA can be applied to attack graphs with no goal states.
The Shortest Path metric, on the other hand, cannot be applied to attack graphs
with no goal states. Thus, KCA is more versatile in its applicability to different
types of attack graphs.

When there is a goal state and the semantics of the attack graph are such that
this goal state has all of the asset value in the network, the KCA metric may
degenerate to the Shortest Path metric. For instance, if the attacker can reach
the goal state in single step and the non-attacker nodes are of little value with

A Kolmogorov Complexity Approach for Measuring Attack Path Complexity 291

respect to the target node, then using the Shortest Path metric without KCA
would be sufficient for determining which of the two networks is most secure.
However, if other nodes are perceived as being relevant to the network’s security,
then the KCA metric can be used to obtain more information about the security
of the network than what the Shortest Path metric can provide.

The NCP metric [7] proposed by Lippmann et al. denotes the security of the
network as the percentage of compromised hosts within the network. A NCP
of 100% means that the entire network can be compromised by the attacker. A
NCP of 0% means that none of the network assets can be compromised by the
attacker. NCP can be extended/modified to include assets that are more fine-
granular than hosts, and therefore has the same representational ability as KCA.
Thus, KCA’s differentiating feature is its inclusion of attack effort exerted.

5 Conclusion

Measuring network security in terms of the difficulty experienced by an attacker
in attempting to violate a security policy is an intuitive perspective. However,
without systematic and flexible methods for modeling the complexity associated
with any given attack path, such a perspective will have limited value. In this
paper, we have proposed the well-founded theory of Kolmogorov Complexity
to serve as a foundation for measuring attack path complexity. We have also
proposed a novel security metric that specifies network security in terms of the
assets gained for the attack effort expended.

References

1. Mell, P., Scarfone, K., Romanosky, S.: Common Vulnerability Scoring System.
IEEE Security and Privacy 4, 85–89 (2006)

2. Computer Emergency Response Team (CERT), http://www.cert.org

3. Wang, L., Singhal, A., Jajodia, S.: Measuring Overall Security of Network
Configurations Using Attack Graphs. In: Barker, S., Ahn, G.-J. (eds.) Data and
Applications Security 2007. LNCS, vol. 4602, pp. 98–112. Springer, Heidelberg
(2007)

4. Phillips, C.A., Swiler, L.P.: A Graph-based System for Network-vulnerability Anal-
ysis. In: Proceedings of the 1998 Workshop on New Security Paradigms, pp. 71–79.
ACM, New York (1998)

5. Ming, L., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its
Applications. Springer, Heidelberg (1997)

6. Evans, S., Bush, S., Hershy, J.: Information Assurance Through Kolmogorov
Complexity. In: DARPA Information Survivability Conference and Exposition
(2001)

7. Lippmann, R., Ingols, K., Scott, C., Piwowarski, K., Kratkiewicz, K., Artz, M.,
Cunningham, R.: Validating and Restoring Defense in Depth Using Attack Graphs.
In: Military Communications Conference (2006)

8. SANS, http://www.sans.org/newsletters/risk/

http://www.cert.org
http://www.sans.org/newsletters/risk/

292 N. Idika and B. Bhargava

9. Noel, S., Jajodia, S.: Managing Attack Graph Complexity Through Visual
Hierarchical Aggregation. In: Proceedings of the 2004 ACM Workshop on Visu-
alization and Data Mining for Computer Security, pp. 109–118. ACM, New York
(2004)

10. Li, W., Vaughn, R.: Cluster Security Research Involving the Modeling of Net-
work Exploitations Using Exploitation Graphs. In: Proceedings of the Sixth IEEE
International Symposium on Cluster Computing and Grid Workshops (2006)

11. Dantu, R., Kolan, P.: Risk Management Using Behavior Based Bayesian Networks.
In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang, F.-Y., Chen, H.,
Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp. 115–126. Springer, Heidelberg
(2005)

12. Dacier, M., Deswarte, Y., Kaâniche, M.: Models and Toos for quantitative assess-
ment of operational security. In: Proceedings of the 12th International Information
Security Conference, pp.177–186 (1996)

13. Ortalo, R., Deswarte, M., Kaâniche, M.: Experimenting with Quantitative
Evaluation Tools for Monitoring Operational Security. IEEE Transactions on Soft-
ware Engieering 25, 633–650 (1999)

14. Spracklin, L.M., Saxton, L.V.: Filtering spam using kolmogorov complexity
estimates. In: Advanced Information Networking and Applications Workshops, pp.
321–328 (2007)

Extending LSCs for Behavioral Signature

Modeling

Sven Patzina1, Lars Patzina2, and Andy Schürr1

1 Real-time Systems Lab, TU Darmstadt, Darmstadt, Germany
{sven.patzina,andy.schuerr}@es.tu-darmstadt.de

2 Center for Advanced Security Research Darmstadt (CASED), Germany
lars.patzina@cased.de

Abstract. Driven by technical innovation, embedded systems are
becoming increasingly interconnected and have to be secured against
failures and threats from the outside world. For this purpose, we have de-
fined an integrated model-based development process for security moni-
tors which requires an expressive, formally well-defined, and easy to learn
behavioral signature language. In this paper, we demonstrate that Live
Sequence Charts (LSCs) are adequate for the specification of behavioral
signatures. To satisfy all requirements and enable compact modeling, we
extend LSCs by concepts that fit well to the spirit of LSCs.

1 Introduction

Driven by technical innovation, embedded systems are becoming increasingly
interconnected. Thus, they cannot be considered as being separated from the
outside world, even though many of them were developed as such. Often, little
attention has been paid to security mechanisms, such as encryption and safe
component design for defense against attacks. Groll and Ruland [3] show such
weaknesses for passive and active attacks in modern networks in the automotive
domain and postulate that additional security measures are needed. Further-
more, Koscher et al. [7] identify the CAN bus protocol as a major security
drawback in modern automobiles. For subsequent protection of these systems
Papadimitratos et al. [12] propose secured communication in the car and the
development of a secure architecture to improve privacy and security.

Even when all these proposed techniques are applied during the development
of an embedded system, in the majority of cases it is impossible to eliminate
all security vulnerabilities and to foresee all possible attacks. Considering huge
heterogeneous systems or components, it is often economically or technically
infeasible to secure them against external adversaries retroactively. Therefore,
systems cannot be considered as safe, either due to unknown vulnerabilities, or
due to the required integration of legacy components.

To secure such systems, Kumar [8] proposes monitoring the system at run-
time, which permits the detection of attacks that exploit previously unknown
errors and security vulnerabilities. The two most common approaches for this

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 293–304, 2011.
c© IFIP International Federation for Information Processing 2011

294 S. Patzina, L. Patzina, and A. Schürr

purpose are, firstly, signature-based detection, which uses predefined attack de-
scriptions and, secondly, anomaly detection, which recognizes the faulty behav-
ior of a system by detecting deviations from the intended behavior. However,
signature-based detection is only able to detect attacks that are similar to known
vulnerabilities and attack classes, which leads to a low false-positive rate, but
also to an insufficient number of matches. In contrast, anomaly detection is able
to reveal unknown attacks by observing their impact on the system, but suffers
from a high false-positive rate. These false matches have to be handled by user
interaction to evaluate the threat or by self-healing techniques to transfer the
system to a secure and stable state.

Our goal is a comprehensible, model-based development process, based on the
Model Driven Architecture concept, to automatically generate security monitors
from a specification consisting of Live Sequence Charts (LSCs) structured by use
andmisuse cases.Theprocess –depicted inFig. 1– starts in the requirementsphase,
where the intended system behavior is modeled as use cases and known attack pat-
terns and attack classes are modeled as misuse cases [15]. These abstract

A:=acceleate(param1,param2);
B:=forwAccel(...);
C:=backwAccel(...);
Integer:=<SystemTypeInteger>
String:=<SystemTypeString>

Code-
Generators

Monitors

Interpreter

Structure

Mapping

Hierarchy

A
param1:Integer
param2:String

BC

Use-/Misuse
Cases

A

Requirements

System-specific
Mapping

Translated
Requirements

s.A

r.A

Generic
Result

System-specific
Result

Event Hierarchy

Monitor Petri Nets (MPNs)

Live Sequence Charts (LSC)

e

Signatures

transformation

Fig. 1. Model-based security engineering process

Extending LSCs for Behavioral Signature Modeling 295

specifications are described in more detail with LSCs. Through automatic
transformation and weaving of system-specific information, a security monitor is
automatically generated, using the intermediate Monitor Petri net language [13].

Our contributions in this paper are:

• the evaluation of LSCs as a signature language.
• the proposal of extensions to classic LSCs, to overcome their limitations.
• the application of extended LSCs to an example scenario.

In this paper, we show that LSCs are applicable to the description of behav-
ioral signatures. In Sect. 2, various approaches for modeling policies, together
with their advantages and disadvantages, are presented. Subsequently, the re-
quirements that have to be satisfied by a behavior specification language are
introduced in Sect. 3. According to these, we present in Sect. 4 the required con-
ditions and extensions to satisfy the requirements for a policy language. Section
5 draws a conclusion and describes starting points for future work.

2 Related Work

The development process we present for security monitors requires a language
to specify intended and forbidden behavior as signatures. This language must be
able to describe functional and non-functional requirements (NFRs) that need to
be monitored. Specifying NFRs is more challenging than specifying functional
requirements. These NFRs are often described in a natural language and are
therefore very abstract. To obtain a more formal description of these policies and
behavioral signatures, special policy languages or temporal logic are commonly
used for Intrusion Detection Systems (IDSs).

One of these concepts are expert systems (ES) such as CLIPS [2] and
P-BEST [9]. These systems are based on inference rules with an if-then structure.
If the guard of a rule is satisfied, then the specified action is performed on facts
that describe the monitored system. Thus, the basis of facts is modified by the
system and by the rules, which can trigger new actions. Furthermore, temporal
rules have to be formulated over the facts, which is not at all intuitive. Another,
better fitting, approach to formulate temporal aspects is the usage of temporal
logic as Linear Temporal Logic (LTL) or Computation Tree Logic (CTL).

These languages are often hard to learn and are not comprehensible for non-
practitioners. To overcome these shortcomings, several extensions to the de facto
standard of the OMG – the UML – have been proposed. A lightweight extension
of the UML, called UMLsec [6], extends the system specification by security
properties, such as encryption of communication. Therefore, it provides a UML
profile, defining stereotypes and tagged values, to annotate the system model. In
contrast, SecureUML [10] is a heavyweight extension of the UML that changes
the meta model. This dialect of the UML is designed for modeling role-based
access control restrictions. Both were developed for extending UML to describe
non-functional security constraints in a model-based development process. How-
ever, they lack the ability to describe behavioral signatures needed for an IDS.

296 S. Patzina, L. Patzina, and A. Schürr

To close this gap, Hussein et al. [5] propose a UML profile providing stereotypes
to annotate several UML diagrams. They employ use cases for the scenario de-
scription, classes for the structure of the system, and state machines to model
potential steps of the behavior of the system.

Beside UML statecharts, other state/transition-oriented languages are used
to model behavioral signatures. A variant with a simple structure is used by
STAT [19], where states are specified by invariants, and actions and transitions
are annotated by conditions, events, and actions. By omitting fork and join,
a transition can only have one predecessor and one successor, to ease the in-
terpretation. This results in an explosion of states when modeling concurrent
behavior, because every permutation has to be modeled as a separate state. In
contrast to STAT, IDIOT [8] uses expressive Coloured Petri nets, annotated
with the general purpose functional programming language ML. This complex
syntax, consisting of Petri nets and a functional programming language, leads
to powerful, but hard to understand, specifications.

To ease the modeling and allow non-practitioners to understand the specifica-
tion, a more high-level approach for signature modeling is desirable. So Massacci
and Naliuka [11] use UML sequence diagrams (SDs) extended with linear tem-
poral logic for modeling behavioral signatures. However, the semantics of SDs
is not suited to model deontic constraints (obligation, permission and prohibi-
tion). Therefore, they use them in a not UML fashioned way, which conflicts
with the use of the standard and hampers the developer in using existing UML
knowledge. With the same drawbacks, Solhaug et al.[18] pursue a very similar
approach, by using SDs to define policy specifications. However, they use the
STAIRS semantics to interpret their SDs and state that Live Sequence Charts
“could serve as an alternative for interpreting policy rules”.

If LSCs[4] can be used to describe the semantics of policies, why not use them
as a specification in their original semantics? In the following, we will examine
what the requirements for our monitor development process are and describe
how these requirements can be satisfied by LSCs.

3 Requirements

To be able to define and evaluate a signature language, it is necessary to identify
its requirements that have to be met. As discussed in Sect. 2, there are different
possibilities to model attacks and intended behavior. Since we use the specifi-
cation language in a model-based development process that should be also un-
derstandable to non-practitioners, it has to possess a graphical syntax. Though,
Live Sequence Charts satisfy this high-level requirement, we take a closer look
on important requirements for a software engineering process and especially for
a policy (signature) language.

In this context Smith et al. [17] propose several criteria for security and software
engineering processes. Adopted to our monitor development process these are:

1 - Easy to learn. The access to the modeling language should be easy. So a
flat learning curve for software developers is desirable.

Extending LSCs for Behavioral Signature Modeling 297

2 - Comprehensible. A fundamental comprehension of the modeled systems
should be possible for non-practitioners.

3 - Predictive. The modeled specifications should have a defined semantics to
be able to analyze or simulate them in order to reveal non-obvious properties.

4 - Effective transition to implementation. The transitions between mod-
els up to the code generation have to be properly defined and implemented.

5 - Cost-effective. Building the model has to be less expensive than other
appropriate ways of building the system.

6 - Expressive. The language has to be expressive enough to represent all
kinds of key concepts without losing important details.

(1) Most of the diagram types used for our specification are known by soft-
ware engineers because they are based on diagrams borrowed from the UML 2.0.
So UML use cases are extended by the concept of misuse cases, which allow the
modeling of unintended behavior and attacks. Class diagrams are used to build
a hierarchy of messages and describe the structure of the system. Live Sequence
Charts are an extension of Message Sequence Charts and UML 2 Sequence di-
agrams and preserve the graphical appeal and intuitiveness of MSCs [20]. This
enables the developer to start modeling right away by extending his knowledge
stepwise for the special properties of the languages.

(2) In contrast to many existing special policy languages like expert systems
or state/transition-based approaches, where the human readability is no core
issue [16], the LSCs can be easier understood by non-practitioners.

(3) LSCs are well defined and posses a strict formal semantics [1]. These de-
scriptions are translated in the formally defined Monitor Petri nets [13] to enable
a generic code generation for different target platforms. For this reason, simula-
tion and analysis can be performed to verify the correctness of the specification.

(4) In our development process, we use the concept of the Model Driven
Development proposed by the OMG1 for the UML. The transformations are
defined by a graphical graph transformation language (Story Driven Modeling)
working on repositories generated by MOFLON2.

(5) Costs can be reduced, because the system developers do not have to learn
a special unintuitive language and can use specifications from the early require-
ments phase through the whole development process by refining them.

(6) In our case, it is important that we support all necessary constructs for
behavioral signature modeling. Therefore, Schmerl [14] has evaluated several
policy languages and proposed requirements that a general policy language based
on Petri nets has to fulfill. He has categorized event patterns with respect to
several aspects of the semantics model listed in Table 1. In the next section, we
show how these requirements are met by LSCs.

Beside these requirements, the modeling of obligations, permissions, and prohi-
bitions have to be supported. As Soulhaug et al. [18] have stated, these deontic
modalities can be expressed by LSC by nature. So obligations can be expressed

1 Object Management Group: www.omg.org
2 MOFLON meta-CASE tool: www.moflon.org

298 S. Patzina, L. Patzina, and A. Schürr

Table 1. Requirements for a behavioral signature language

Type of sequences

Sequence Several events with a strict sequential order.
Conjunction Several event patterns that can occur in arbitrary order.
Negation An event pattern that must not occur.
Disjunction One event pattern of several is possible.
Simultaneous Two events that occur at the same time.

Type of Iterations

Exact A pattern has to occur n times.
At least A pattern has to occur at least n times.
At most A pattern has to occur at most n times.

Continuity

Continuous Every event that occurs has to be modeled in the signature.
Non-continuous The signature is matched if all modeled events have occurred.

All additional events between are ignored.

Concurrency

Non-overlapping Two or more sequences of events have to occur sequentially.
They must not share events during matching.

Overlapping Two or more sequences of events are allowed to share events
during matching .

Context conditions

Intra-step conditions A simple boolean expression on an event occurrence.
Inter-step conditions A complex condition between properties of several events.

Matching rules

First The first event matching is bounded.
Last The last event of several occurrences is bounded.
All All matching events are bounded.

Type of consumption

Consuming In a signature an occurred event is only used for one match in
the modeled pattern.

Non-Consuming In a signature an occurred event is used for several matches in
one pattern.

by use cases described by existential charts, permissions by use cases with uni-
versal charts (composed of pre- and mainchart), and prohibitions by misuse cases
with universal charts.

Extending LSCs for Behavioral Signature Modeling 299

4 LSCs as Behavioral Signature Modelling Language

In the requirements phase of our development process, Live Sequence Charts
are used in combination with structural specifications. Therefore, UML class
diagrams describe the structure of the system and specify the participants and
their relations. To model the relation between single signatures, UML use cases
extended with the concept of misuse cases are used. They declare whether the
signature describes an intended behavior (use case) or a faulty behavior or attack
(misuse case).

As a detailed specification language for modeling use and misuse cases, we
exploit the expressiveness of Live Sequence Charts. After pointing out the re-
quirements that are crucial for a policy language in Sect. 3, we demonstrate by
example how LSCs can satisfy these. In the following, we use a scenario, shown in
Fig. 2a), based on a CAN bus. Koscher et al. [7] have shown that there are security
threats in modern automobiles. Many of them result from the weaknesses of the
CAN bus protocol, because packets of this protocol do not include authenticator
fields or identifiers for the source. The CAN ID header only contains information
about the packet type. Additionally, these packets are broadcast to every node in
the network that decides by itself if the packet is relevant. So one compromised
component is enough to inject messages on the CAN bus and, thereby, control
other nodes of the network. In this way, false information could be displayed on the
Driver Information Center (DIC) that is connected to the bus. These corrupted
messages are injected by two control units communicating with the outside world.
One is a wireless communication module for toll collection (TBM) and the other
communicates with some enterprise roadside units (EM).

Before discussing how the requirements raised in Sect. 3 are complied by
LSCs, we explain the basic concepts of LSCs by the example in Fig. 2b. In
this signature, three instances are involved called DIC, TBM and EM. The
vertical lines are lifelines defining a partial order in time from the top to the
bottom. The dashed hexagon, a prechart, is special to LSC universal charts
and represents a precondition that has to be fulfilled before the main chart,
the rectangle below, is valid. As in message sequence charts, function calls or
messages are modeled by arrows between the lifelines of the instances, conditions

DIC TBM EM

CAN

(a) System Architecture

DIC TBM

activate()

getServices(sS)

display(speedSuggestion)

speedSuggestion > 50

EM

DIC.sS = speedSuggestion

(b) LSCs (Universal Chart)

Fig. 2. Car2X Example Scenario

300 S. Patzina, L. Patzina, and A. Schürr

as hexagons and assignments of values in rectangles. Thereby, all dashed lines
represent cold (optional) and solid lines hot (mandatory) elements. The prechart
evaluates to true when the TBM sends a speed suggestion to the DIC module and
the suggested speed is greater than 50. At this speed, the car is considered to be
out of town, where additional services are available. Now the main chart has to
match. First the speed suggestion is saved in the variable DIC.sS. Then the DIC
has to send an activate message to the EM and is allowed to request a service,
whereby, the variable sS has to be sent as payload. In contrast, signatures that
describe obligations can be modeled as an existential chart, an LSC without a
prechart.

To show how LSCs satisfy the requirements evaluated in the previous section,
we will use existential charts for simplicity. In all examples in Fig. 3 single
messages can be also considered as complex patterns.

Patterns that describe the type and order of events, are depicted in Fig. 3a) to
e). The LSC in a) shows a sequence of events that have a fixed partial order on
every lifeline and between the sending and receiving of a message. The TBM first
sends an authentication status to the display of the DIC, followed by the operator
name of the toll bridge and the result of the negotiation. The next chart describes
a conjunction, where two messages can be sent in an arbitrary order. To realize
this, we have to introduce a construct available for message sequence charts, but
missing for LSCs – the par fragment. This describes a concurrent occurrence of
patterns and will be reused to satisfy further requirements. The property of nega-
tion is modeled in c) as a forbidden fragment. This can be associated with the
whole chart as used in the example or limited to a sub chart. So a message to
display the time is not allowed during the modeled signature. In Fig. d) a disjunc-
tion, where only one of the messages is allowed to be sent, is depicted. Therefore,
two sub charts are combined to one or-structure. Finally, in subfigure e) the par
fragment is used to model a simultaneous occurrence of two messages. After the
messages are sent by DIC the time is stored and, afterwards, evaluated by a hot
condition. Because CAN buses do not allow sending two or more messages at the
same time, a time interval that has to be less than 100ms is tested.

Beside these patterns, a behavioral signature language has to be able to ex-
press different kinds of iterations as depicted in Fig. 3f) to h). To model iterations
with the properties exact, at least, and at most, standard loop fragments of LSCs
are used. Thereby, the annotations n, n..∗, and n..m define the lower and upper
bound of repetitions.

When using a signature language, it is important to define how the modeled
signatures have to be interpreted. One aspect is the kind of pattern matching
that can be continuous or non-continuous. In the continuous case, all messages
occurring in the system during the monitoring of the signature have to be ex-
plicitly modeled. Therefore, we have introduced an additional ignore fragment
that can be used similar to the forbidden fragment, but describes messages that
are not relevant to the signature and can be ignored. In this way, signatures
can be modeled concisely, without allowing every message that is not explicitly
modeled as in the non-continuous case. To express that all additional messages

Extending LSCs for Behavioral Signature Modeling 301

DIC TBM

display(authStatus)

display(operatorName)

display(result)

(a) Sequence

DIC TBM

getCurrentTime()

getLastReceipt()

par

(b) Conjunction

DIC TBM

display(authStatus)

display(operatorName)

forbidden
display(currentTime)

(c) Negation

DIC TBM

getCurrentTime()

getCurrentTime()

EM

(d) Disjunction

DIC TBM

startModule()

startModule()

par

t1=t

t2=t

EM

abs(t1 - t2) < 100ms

(e) Simultaneous

DIC TBM

3
display(operatorName)

(f) Iteration (exact)

DIC TBM

3..*
send(currentPos)

display(speedSuggestion)

(g) Iteration (at least)

DIC EM

0..3 display(externalService)

decline(externalService)

(h) Iteration (at most)

DIC TBM

display(authStatus)

display(operatorName)

ignore
getCurrentTime()

(i) Continuous

DIC TBM

display(authStatus)

display(operatorName)

ignore
allMessages

(j) Non-continuous

DIC TBM

authentification

dataExchange

ref

ref

(k) Non-overlap

DIC TBM

timeSyncronisation

informationService

ref

ref

par

(l) Overlap

DIC TBM

display(speedSuggestion)

getOperatorId()

spSug < 130

(m) Intra-step Cond.

DIC TBM

performAuthentification()

display(authStatus)

abs(DIC.time - TBM.time) <100ms

(n) Inter-step Cond.

Fig. 3. Required Patterns as Live Sequence charts

302 S. Patzina, L. Patzina, and A. Schürr

should be ignored, an ignore fragment can be used, marked with “allMessages”.
Another aspect is, if two or more patterns can occur concurrently or one after
the other. Figure 3k) and l) show how this is realized using the LSC syntax. For
non-overlapping sequences the patterns are placed in subcharts – here references
to other LSCs or for overlapping sequences a par fragment is used.

The ability to distinguish between intra-step and inter-step conditions is an-
other essential concept for signature languages. An example for an intra-step
condition is presented in subfigure m). There, the received suggested speed is
checked to be less than 130 before the next message is allowed to occur. A more
global condition is the inter-step condition, depicted in n), which compares the
time on both instances with each other.

The matching rules – first, last, and all – can be modeled as single messages
or by using loops. To describe a signature that matches all occurrences of an
event type, can be specified as loop fragment – shown in Fig.3 f) to h). A single
message as depicted in a) is used to match the first and a loop followed by a
different event type is used to match the last occurrence.

For the type of consumption we decided to model signatures that are matched
in a consuming manner, because this fits to the standard LSC syntax. The
matching of a signature consumes the occurred events.

As presented in this section, we were able to satisfy all requirements that
have been postulated by us and the referred authors in Sect. 3. To accomplish
a compact modeling of signatures with LSCs, we had to extend the language
by two new concepts, that fit the spirit of LSCs. These are the par fragment
to describe concurrent patterns and the ignore fragment to achieve a compact
description of signatures in a continuous pattern matching scenario.

5 Conclusion and Future Work

In this paper, we have shown that Live Sequence Charts already cover most of the
crucial properties that a behavioral policy language must possess. Additionally,
we have proposed some extensions that are needed to satisfy all the postulated
requirements stated in Sect. 3. These extended LSCs are used in our proposed
development process for security monitors as an abstract behavioral signature
language in the requirements phase. With these extensions, it is possible to model
policies in an easy and even to non-practitioners understandable way.

In the future, the LSC descriptions have to be extended by timing constraints,
as they are described, e.g., for UML Sequence charts in the MARTE profile. We
are currently working on a prototype case tool that supports the whole pro-
cess from the modeling of policies in the requirements phase until the automatic
generation of monitors for different target platforms. It is based on the UML
modeling tool Sparx Systems Enterprise Architect that is tailored for the mod-
eling of all diagram types included in our process. Thereby, model-to-model
transformations are specified by graph transformations by the meta-modeling
tool MOFLON3.
3 MOFLON meta-CASE tool: www.moflon.org

Extending LSCs for Behavioral Signature Modeling 303

Acknowledgements

This work was supported by CASED (http://www.cased.de).

References

1. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal
Methods in System Design 19(1), 45–80 (2001)

2. Giarratano, J., Riley, G.: Expert Systems: Principles and Programming, 3rd edn.
Course Technology (1998)

3. Groll, A., Ruland, C.: Secure and Authentic Communication on Existing In-Vehicle
Networks. In: Proc. of IEEE IV 2009, pp. 1093–1097 (2009)

4. Harel, D., Maoz, S., Segall, I.: Some Results on the Expressive Power and Com-
plexity of LSCs. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of
Computer Science. LNCS, vol. 4800, pp. 351–366. Springer, Heidelberg (2008)

5. Hussein, M., Zulkernine, M.: UMLintr: A UML Profile for Specifying Intrusions.
In: 13th Annual IEEE International Symposium and Workshop on Engineering of
Computer Based Systems, ECBS 2006, pp. 8–288. IEEE, Los Alamitos (2006)

6. Jürjens, J.: UMLsec: Extending UML for Secure Systems Development. In:
Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp.
412–425. Springer, Heidelberg (2002)

7. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,
D., Kantor, B., Anderson, D., Shacham, H., et al.: Experimental Security Analysis
of a Modern Automobile. In: 2010 IEEE Symposium on Security and Privacy (SP),
pp. 447–462. IEEE, Los Alamitos (2010)

8. Kumar, S.: Classification and Detection of Computer Intrusions. Ph.D. thesis,
Purdue University (1995)

9. Lindqvist, U., Porras, P.: Detecting Computer and Network Misuse through the
Production-based Expert System Toolset (P-BEST). In: Proceedings of the 1999
IEEE Symposium on Security and Privacy, 1999, pp. 146–161. IEEE, Los Alamitos
(2002)

10. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-Based Modeling
Language for Model-Driven Security. In: Jézéquel, J.-M., Hussmann, H., Cook,
S. (eds.) UML 2002. LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

11. Massacci, F., Naliuka, K.: Towards Practical Security Monitors of UML Policies
for Mobile Applications. In: Proc. of IEEE POLICY 2007, pp. 278 (2007)

12. Papadimitratos, P., Buttyan, L., et al.: Secure Vehicular Communication Systems:
Design and Architecture. IEEE Commun. Mag. 46(11), 100–109 (2008)

13. Patzina, L., Patzina, S., Piper, T., Schürr, A.: Monitor Petri Nets for Security
Monitoring. In: Proc. of S&D4RCES (2010)

14. Schmerl, S.: Entwurf und Entwicklung einer effizienten Analyseeinheit
für Intrusion-Detection-Systeme. Diplomarbeit, Lehrstuhl Rechnernetze, BTU
Cottbus (2004)

15. Sindre, G., Opdahl, A.L.: Capturing Security Requirments through Misuse Cases.
In: NIK 2001 (2001), http://www.nik.no/2001

16. Sloman, M., Lupu, E.: Security and Management Policy Specification. IEEE
Network 16(2), 10–19 (2002)

http://www.nik.no/2001

304 S. Patzina, L. Patzina, and A. Schürr

17. Smith, S., Beaulieu, A., Phillips, W.G.: Modeling Security Protocols Using UML
2. In: Workshop – Modeling Security 2008 (2008)

18. Solhaug, B., Elgesem, D., et al.: Specifying Policies Using UML Sequence
Diagrams–An Evaluation Based on a Case Study. In: Proc. of IEEE POLICY
2007, pp. 19–28 (2007)

19. Vigna, G., Eckmann, S., Kemmerer, R.: The STAT Tool Suite. In: Proc. of DISCEX
2000, DARPA Information Survivability Conference and Exposition, 2000, vol. 2,
pp. 46–55. IEEE, Los Alamitos (2002)

20. Westphal, B., Toben, T.: The Good, the Bad and the Ugly: Well-Formedness of
Live Sequence Charts. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922,
pp. 230–246. Springer, Heidelberg (2006)

Detecting Illegal System Calls Using a Data-Oriented
Detection Model

Jonathan-Christofer Demay1, Frédéric Majorczyk2,
Eric Totel1, and Frédéric Tronel1

1 Supelec, Rennes, France
first_name.last_name@supelec.fr

2 IRISA / Université de Rennes 1, Rennes, France
first_name.last_name@irisa.fr

Abstract. The most common anomaly detection mechanisms at application level
consist in detecting a deviation of the control-flow of a program. A popular
method to detect such anomaly is the use of application sequences of system
calls. However, such methods do not detect mimicry attacks or attacks against the
integrity of the system call parameters. To enhance such detection mechanisms,
we propose an approach to detect in the application the corruption of data items
that have an influence on the system calls. This approach consists in building au-
tomatically a data-oriented behaviour model of an application by static analysis
of its source code. The proposed approach is illustrated on various examples, and
an injection method is experimented to obtain an approximation of the detection
coverage of the generated mechanisms.

1 Introduction

Generally speaking, an attack against an application consists in exploiting a vulnera-
bility in order to violate the confidentiality or integrity properties of the system or the
application under attack. In the context of intrusion detection methods at application
level, a lot of existing work focuses on the detection of the violation of the integrity
property. Attacks against a process can consist in corrupting either the control-flow
of the program (e.g., to execute injected code), or the data items manipulated by the
program during its execution. A lot of papers focus on the detection of the program
control-flow corruption, either considering the process as a white box, or seeing it as a
black box. An exemple of a white box approach is to verify during the execution that
the control-flow graph of the program is legal. An example of the black box approach
consists in verifying that the trace of the process execution in the system is correct (e.g.,
the sequence of system calls [1]). Both approaches can be subject to false negatives, as
the attacker can either corrupt data items that do not influence the control-flow of the
program, or perform attacks that mimic [2] the normal behaviour of the application.
Various papers [3,4,5,6] have enhanced the black box approach in order to detect these
types of refined attacks.

In this paper, we propose a white box approach for intrusion detection that aims at
detecting the corruption of the data items in an application, so as to detect erroneous
system calls (e.g., their arguments are not correct, or the data that led to their execution

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 305–316, 2011.
c© IFIP International Federation for Information Processing 2011

306 J.-C. Demay et al.

were incorrect). The approach relies on the building of a data-oriented behaviour model.
This method can be presented as an interesting complement to the usual control-flow
corruption detection method, in order to detect data oriented attacks. To attain this goal
we use static analysis to build constraints on intrusion sensitive data items, then we
instrument the software with executable assertions that check these constraints during
the execution of the program.

The contribution of this paper is not to provide new static analysis techniques, as our
work relies on an off-the-shelf static analyser called Frama-C [7]. However, we want
to show on real-life examples that a detection model can be built by static analysis and
detect data attacks (even unknown ones).

The paper is organized in the following way: after a short related work section on
white-box attack detection, we show how to build the behaviour model and emphasize
the accuracy of the model on a previously known attack. Then we show the results of the
software instrumentation on various examples. At the end we evaluate on an example
the detection rate we can expect from the generated detection mechanisms.

2 Related Work

We believe that white box mechanisms can help improving the detection performance
as they are able to take advantage of the internal state of the monitored program. Indeed,
they have access to all the internal data structures and algorithms used by the program.

That is the case, for example, with Control-Flow Integrity [8] and Program Shepherd-
ing [9]. These generic techniques verify the integrity of the control-flow of a program.
A control-flow graph of the program is computed prior to its execution and then used
at run time to check the integrity of the process control-flow. Because mimicry attacks
still need to force the program control-flow to deviate from valid execution paths, they
are caught by these approaches. However, unlike our approach, all those techniques are
completely ineffective against computation data attacks (also called non-control data
attacks [10]), since these attacks are performed using a valid execution path.

Other white box approaches that focus on non-control-data attacks and that do not
exhibit this weakness have been proposed. For example, Write-Integrity Testing [11]
enforces control-flow and data-flow integrity in a program. In the work on Data Flow
Integrity [12], a data-flow graph is computed prior to the execution. It contains, for each
data item read by an instruction, the set of instructions that may have written its current
value. This data-flow graph is then used at run time to verify the integrity of the data
flow of the process. If the program has a vulnerability that is exploited to corrupt some
data, the next time this data is read a deviation from the data-flow graph will be ob-
served allowing thus the detection of the attack. This type of approach is very effective
against all kinds of non-control-data attacks, but use a very different philosophy than
our approach. They focus on the illegal modification of the data, whereas in our ap-
proach we focus on the correctness of the data. As a consequence some attacks missed
by the data-flow integrity method (such as an illegal value stored in a correct variable)
can be detected by our approach. Conversely some illegal writes can be missed by our
approach (a legal value can be written in an incorrect variable), making both approaches
complementary.

Detecting Illegal System Calls Using a Data-Oriented Detection Model 307

3 Intrusion Detection

In this section, we explain how non-control-data attacks are real threats and how a
data-oriented behavior model can detect them. We also present SIDAN 1 (Software In-
strumentation for the Detection of Attacks on Non-control-data) [13], a tool we have
developed that implements our detection model.

3.1 An Attack against Non-Control-Data

Chen et al. [10] have demonstrated that non-control data attacks can be as severe as
control-data attacks on various real world vulnerabilities. Among them, a vulnerability
found in the implementation of the open source ftp server wu_ftpd will serve as an
example to illustrate our approach. Figure 1 (left column) is an excerpt of the original
code exhibiting the same vulnerability. Line 10, a string taken as user input (line 7) is
printed without using a string format. Consequently, a user can forge an incorrect buffer
containing string formats that allows to write directly in memory. In this case, the target
could be the uid variable. As a consequence, the attacker can elevate its privilege at
line 12, without corrupting the execution path, by forcing the parameter of the seteuid
call to be the administrator identifier (zero). This example shows how such an attack
violates a very simple constraint on the uid variable. Indeed, the uid variable should
remain constant during the execution of the loop (lines 7 to 13) and should be equal to
the value it has been assigned at uid (line 2). The problem we tackle in this paper is to
automatically build such constraints in order to detect attacks at runtime.

00. int main(int argc, char ** argv){
01. char buffer[256];
02. uid_t uid = 5;
03.
04.
05. seteuid(uid);
06.
07. while(aux = fgets(buffer, 256, stdin))
08. {
09. seteuid(0);
10. printf(buffer);
11.
12. seteuid(uid);
13. }
14. }

00. int main(int argc, char ** argv){
01. char buffer[256];
02. uid_t uid = 5;
03.
04. assert(uid == 5);
05. seteuid(uid);
06.
07. while(aux = fgets(buffer, 256, stdin))
08. {
09. seteuid(0);
10. printf(buffer);
11. assert(uid == 5);
12. seteuid(uid);
13. }
14. }

Fig. 1. Example of string format vulnerability and useful assertions

3.2 Data Oriented Detection Model

In our approach, we consider that an attacker aims at modifying data items in the mem-
ory space of a process in order to execute one or more incorrect system calls. This
objective can be fulfilled in two ways: either the attacker alters variables that influence
the internal control-flow of the program (and thus executes system calls in an incorrect
context), or the attacker modifies directly or indirectly the values of the parameters of
one or more system calls (and thus executes legal system calls with incorrect values).

1 http://www.rennes.supelec.fr/ren/rd/ssir/outils/sidan/

308 J.-C. Demay et al.

Both types of attacks aims at modifying non-control data items in the program. Note
here that non-control data items are all variables used by the program source code, and
can thus have an impact on the control-flow of the application. They are opposed to
control-data items that are used by the system (and not the application) to control the
execution flow of the application (e.g., a return adress on the stack).

In order to detect these modifications, we propose to identify the set of constraints
that should be verified at runtime for these items. Generally speaking, these constraints
can be divided in two classes: the variation domain of the variables (e.g., a variable can
take a restricted set of values), and the relationship between the variation domains of the
variables (i.e., when a variable has particular values, other variables take a defined set of
values). If we only check if a variable is within its variation domain, it may be easy for
an attacker to impose a reasonable value that would fit in the variation domain, but that
is incorrect in the context of the program. Clearly, if we can maintain the relationship
with other variables, it will be more difficult for an attacker to modify simultaneously
several variables that depend on each other while keeping the program in a consistent
state. As a consequence, we propose to define a data behaviour model for intrusion
detection that aims at taking into account these requirements.

Formally, we define for a given system call SCi its data behavior model by a triple
(SCi,Vi,Ci) where Vi is the set of variables the system call depends on, and Ci the set
of constraints on these variables that can be deduced from the program analysis. We
can define the normal data behavior model of the program by the set of all triples,
DBM = {∀i,(SCi,Vi,Ci)}. In the following section, we address the two problems faced
to build this model: how to determine the set of variables a system call depends on, and
how to obtain the constraints that must be verified on these variables at runtime.

Building the set of variables. Building Vi requires the ability to determine in the pro-
gram which are the variables that influence the execution of the particular system call
SCi. Generally speaking, a system call can depend on a variable in two different ways:
a variable either has an influence on the path in the program that leads to the execu-
tion of SCi or influences the parameters of SCi. These sets of variables can be built by
using a static analysis technique called program slicing [14]. A program slice can be
defined as the parts of a program that potentially affect the values computed at some
point of interest of this program. In our case, we are looking for all the variables that
influence a system call, and thus all variables that are in the program slice whose point
of interest is the system call itself. In the static analysis field, the computation of a
program slice is generally based on the computation of a program dependency graph
(PDG) [15]. The PDG is a directed graph whose vertices correspond to statements and
control predicates, and edges correspond to data and control dependencies. This graph
can be used to exhibit the set of variables a particular system call depends on, and the
type of dependency. In our implementation, we directly use the PDG notion to discover
in the program all variables a system call depends on. To illustrate this paragraph, we
can consider the example on Figure 1: the seteuid call at line 5 depends on one vari-
able: uid. However, the seteuid call at line 12 depends indirectly on the aux variable and
directly on the uid variable.

Constraint discovery. Automatically discovering constraints in the source code on
the variables that are defined in the previous paragraph requires to use static analysis

Detecting Illegal System Calls Using a Data-Oriented Detection Model 309

techniques. We could imagine any types of constraints, including for example temporal
constraints. In practice, static analysis techniques often compute constant constraints,
also called invariants. Indeed, any static analysis technique that is able to compute in-
variants from the source code fits our needs. Moreover, a popular technique for cal-
culating such invariants is the abstract interpretation method [16]. In practice, abstract
interpretation provides a way to find properties on the variables of a program by com-
puting abstract domains that represent abstractions of the real properties of the pro-
gram. Several models have been developed to discover such invariants. Among them,
we have chosen to focus on the build of numerical abstract domains, i.e., we intend
to find numerical invariants. These types of domains can be classified in two groups:
non-relational domains that find numerical properties on variables individually, and re-
lational domains that permit to find numerical properties on logically linked variables.
Non-relational domains include for example the interval domain [16] (wich permits
to find invariants of the form vi ∈ [c1,c2] where vi is a variable of the program and
c1 and c2 are numerical constants), the constant propagation domain (vi = c) and the
congruence domain [17] (vi ∈ aZ + b). Example of relational domains can be cited
such as the polyhedron domain [18] (α1v1 + ... + αnvn ≤ c), the linear equality do-
main [19] (α1v1 + ... + αnvn = c) and the linear congruence equality domain [20]
(α1v1 + ...+ αnvn ≡ a[b]). The problem with relational domains is that the algorithms
they use usually do not scale on large programs. That is why Frama-C uses computa-
tional methods that are based on non-relational domains.

SIDAN Plugin in the Frama-C framework. We implemented in SIDAN the com-
putation of numerical constraints for a given system call. Frama-C provides a Value
Analysis plugin that is able to provide a computation of the variation domains of the
variables that influence the function calls. This plugin provides constraints of the type
"integer variable x lies within the domain [0,5] in all executions" as a result. If we con-
sider the example Figure 2, the assertion generated for the call to the function f , using
the Value Analysis plugin of Frama-C alone would be a ∈ {1,2} and b ∈ {0,1}. Indeed,
as the Value Analysis plugin uses a non-relational abstract domain, his result misses the
relation between the variables a and b.

If we consider the program Figure 2, we see that when b == 0 then a == 1, and
when b == 1 then a == 2. Actually, to obtain this result we have to consider that there
are two paths leading to the call to the function f , and that the constraint to verify at
the call to f should take these two paths into account. The Value Analysis plug-in uses
an algorithm that can potentially keep in memory several invariants computation on

00: extern int a, b;
01: void f(int);

03: void g(){
04: if (b == 0) a = 1;
05: else if(b == 1) a = 2;
06: else return;

09: f(a);
10: }

00: extern int a, b;
01: void f(int);

03: void g(){
04: if (b == 0) a = 1;
05: else if(b == 1) a = 2;
06: else return;

08: assert((a == 1 && b == 0) || (a == 2 && b == 1))
09: f(a);
10: }

Fig. 2. C code sample that emphasises relations between variables

310 J.-C. Demay et al.

several execution paths. The plug-in can be parametrized to define the number of paths
explored in parallel by the Value Analysis plug-in, which is related to the number of
states it keeps in memory before computing an union. If the number of paths explored
in parallel is sufficient, the Value Analysis plug-in now has internally the information
required to build these kinds of constraints. By using a hook in the Value Analysis plug-
in, it is possible for our plug-in to access this internal information while the analysis is
performed. Thus, it allows us to build the invariant by using the variation domain of all
the variables on each path. In the example we have described, the invariant generated
for line 08 is (((b == 0)∧ (a == 1))∨ ((b == 1)∧ (a == 2))).

Note that the example we give here focuses on invariants computed for integers. In
practice, the Value Analysis plug-in performs well on integers and floats, but is not very
efficient for pointer analysis (at best, it detects access to an unallocated buffer and some
out-of-bound access). Discovering constraints on strings is also unavailable due to the
fact that the specification of the standard string functions is not included in Frama-C.
In order to build some constraints on strings, we have preprocessed the source code
to replace standard string comparisons by a set of character comparisons whenever
possible (see Figure 3 line 3). As a result, some constraints on string buffers have been
obtained in the programs we tested our approach on.

3.3 Generated Assertions

In order to verify the constraints in the program, we insert executable assertions (see
Figure 2 line 08), which is a technique heavily used in the dependability domain, and
more precisely in defensive programming [21,22].

The constraints that we can compute for a given system call deal with the variables
that are available locally in the context of the system call. However, this call generally
depends not only on the local variables but also on the variables manipulated by pre-
vious functions in the call stack. That is why it is necessary to compute invariants for
all function calls that are on the path that leads to the system call. This implies that we
must distribute the executable assertions on all the paths that lead to system calls. More-
over, some system calls can be performed in functions located in external libraries. As
a consequence, we choose to insert executable assertions in front of each function call.

To demonstrate the assertion generation capabilities of our data-oriented detection
model, we first use as an example a vulnerable version of OpenSSH.

The code in Figure 3is inspired by this vulnerable version of OpenSSH and reproduces
the basic structure of the real code.The vulnerability is located in thepacket_read function
and can be used to overwrite the value of the passwd variable with an empty string during
the execution of do_authloop.This allows a successful authentication on the system with
any known account (e.g., root) and without having to provide a valid password.

Among the assertions generated, the one located at line 11 in the example in Figure 3
has been produced by our plug-in and detects this attack against the program state.

In order to figure out the capability of our tool to generate assertions on common pro-
grams, we have applied it on SSH servers (OpenSSH and Dropbear SSH), http servers
(fnord and ihttpd), and a smtp server (ssmtp). The results are summarized in Table 1.
As a result, we could say that the number of assertions generated is obviously heavily
dependant on the program source code.

Detecting Illegal System Calls Using a Data-Oriented Detection Model 311

00: void do_authentication(){
01: int auth = 0;

...
03: if(!strcmp(pwd, ""))

/* for users with no password */
05: else

/* do_authloop(); */
07: while(auth != 1) {
08: type = packet_read(data);
09: switch (type) {
10: case SSH_CMSG_AUTH_PASSWORD:
11.
12: auth = auth_password(pwd, data);
13: break;
14: ...
15: }
16: }
17: do_authenticated(user);
18: }

00: void do_authentication(){
01: int auth = 0;

...
03: if(pwd[0] != ’\0’)

/* for users with no password */
05: else

/* do_authloop(); */
07: while(auth != 1) {
08: type = packet_read(data);
09: switch (type) {
10: case SSH_CMSG_AUTH_PASSWORD:
11: assert(pwd[0] != ’\0’);
12: auth = auth_password(pwd, data);
13: break;

...
15: }
16: }
17: do_authenticated(user);
18: }

Fig. 3. Example inspired from OpenSSH

Table 1. Assertions generated

OpenSSH DropbearSSH ihttpd fnord ssmtp

Number of lines 38000 11000 1043 2303 2976

Number of assertions 291 91 145 41 240

Computation time 6 hours 3 hours 45 minutes 1 minute 17 seconds 5 hours 22 minutes

4 Assessment of the Detection Mechanisms

Even though it is possible to test our detection mechanism against various real world
attacks such as those described in [10], such a method would only cover a very small
subset of all possible attacks. In order to evaluate the detection coverage of our ap-
proach, we would need to know all the vulnerabilities that afflict a program as well as
every possible way of exploiting them. As it is not possible to automatically compute
this from the source code, we need to define another method to evaluate the detection
coverage of our model. In this section we propose a method to assess the detection
mechanisms by simulating attacks against non-control-data items without prior knowl-
edge of the vulnerabilities. Our goal is to simulate the consequences of non-control-data
attacks by directly modifying in the process memory space the data items it is currently
manipulating. In this section, we propose an approach to evaluate our detection mech-
anism that is similar to the ones proposed in the security field to help discover new
vulnerabilities (fuzzing) and in the dependability field to evaluate fault detection and
tolerance mechanisms (fault injection).

4.1 Simulation of Attacks against Non-Control Data

Generally speaking, a particular vulnerability usually allows the attacker to access a
limited part of a process memory. However, in the worst case scenario it can give to an
attacker an access to the whole memory space of a process. For that reason, our injection
mechanism is given access to potentially every internal data item of the program under

312 J.-C. Demay et al.

test. However, to accurately simulate a real non-control-data attack, we want to restrict
(1) the locations and (2) the instants where an injection can occur during the execution
of a program. Firstly, during such an attack not every data item is a potential target. The
data items that may be of interest for an attacker are within the subset of data items that
can influence the execution of the system calls. Consequently, we target only these data
items (they define the locations of potential injections). Other data items are irrelevant
for our simulation approach. Secondly, we will modify such items only when they are
currently in use (i.e., when they are influencing the current execution of the program).

4.2 Code Instrumentation and Fault Injection

To simulate this injection model, two problems have to be addressed: how do we de-
termine the set of data items that are potential targets for a non-control-data attack, and
how do we determine for each one of them when it is appropriate to inject a corrupted
value. Clearly, the set of data we want to modify is the very same set of data items we
have defined in Section 3.2.

The simplest way to determine the memory address of a variable we want to inject is
to obtain it at execution time. This is why we have choosen to also embed the corrupting
mechanisms within the source code. Moreover we have decided to distribute the injec-
tion mechanisms when the corresponding variables are reachable, that is right before
every function call that depends on them. We used the same approach as described in
Section 3.3 where we discussed the distribution of the detection mechanisms. In the
end, each candidate function call is preceded by a call to the corrupting function imple-
mented by a single external function called inject().

Each injection point is assigned a unique identifier. This identifier is passed as a pa-
rameter to the injection function. The remaining arguments are the number of variables
that can be corrupted and for each one of them, its address and its size. The corrupting
function is controlled by an external process using environment variables. This process
controls the unique identifier of the injection that is to be activated, the variable that
will be corrupted and the value used to perform the injection. An injection is triggered
only once, even when the call to the corrupting function happens many times (e.g., in
a loop). The tool presented in Section 3 has been modified in order to perform the in-
strumentation needed by our injection mechanism. Note that the set of variables A used
in an assertion is always a subset of the set of variables I used in the injection process
(see Figure 4). Indeed, the injection can be performed in any variable that influences
the function call, unlike the assertions that only concern variables for which value con-
straints have been discovered.

Our goal is to evaluate our detection mechanism presented in Section 3. To do that,
we need to cover a large set of memory corruptions that might be used by a malicious
user to perform an intrusion. Very much like a fuzzing technique, we are going to ran-
domly put the internal state of the process in an erroneous state. We perform various
injections during the execution of the program used in our test environment in order to
simulate the result of a vulnerability exploitation.

To activate a maximum of function calls in the program, we have written a set of
scenarios whose goal is to make the control-flow pass through a maximum number of
function calls. In the case of Dropbear SSH, we have written a set of 24 scenarios that
allows us to reach 92% of the function calls.

Detecting Illegal System Calls Using a Data-Oriented Detection Model 313

extern int a;
const int b = 1;

if (a == 0) {
inject(0,2,&a,sizeof(a),&b,sizeof(b));
assert(b == 1 && a == 0);
f(b);

}

A ≡ I

extern int a;
extern int b;

if (a) {
inject(0,2,&a,sizeof(a),&b,sizeof(b));
assert(a != 0);
f(b);

}

A ⊂ I

extern int a;
extern int b;

if (a == b) {
inject(0,2,&a,sizeof(a),&b,sizeof(b));

f(b);
}

A ≡ /0

Fig. 4. Different cases of injections and assertions

During the injection process, for each function call that can be reached by a scenario,
a random variable from the set of variables that influences the execution of this function
call is chosen to be injected with a random value. Each time an attack is simulated, the
controller logs if the scenario ended properly or if the process exited unexpectedly or
found itself in a deadlock and needed to be killed after a time-out. The controller also
logs the behavior of the process during the attack (in terms of system calls and their
arguments). The whole test setup is shown in Figure 5.

Logs

Controller

Process

SynchronisationInjection
Random injection function

Random variable
Random value

End of scenario
End of process

Time-out

Scenarios Logs

Execution
System calls

alerts

SIDAN
alerts

Logs

process outputs

Fig. 5. Experimentation protocol

4.3 Evaluation Results

Using the experimentation protocol described in Section 4.2, we have performed a to-
tal of 120 000 injections on the Dropbear SSH server. As explained before for each
injection, we have logged three kinds of information. Firstly, we have compared the
output generated by the server during the injection with respect to the output generated
without injection. These observations can be considered as an extremely accurate indi-
cator of a potential attack. Indeed, in these cases, the modification of a single variable
has been able to modify the execution of the SSH server upto the point its external be-
haviour (as seen by an SSH client) was changed. Note that 69.36% of the injections
have lead to such an alert (either a deviation of output, or a crash of the server). Of
course, while being an extremely accurate way of detecting intrusions, this approach is
difficult to generalize in real life settings, since it would require to compare the output

314 J.-C. Demay et al.

produced by the server for each command it receives with a reference output. Con-
sidering the generally extremely large set of outputs such a server can produce, this
approach is hopeless. Here we were able to use such an approach because of the limited
set of scenarios we have used during the assessment. Secondly, we also recorded the
set of system calls (with their arguments) that were generated during normal executions
of the different scenarios (training), and during injections. These recordings have been
submitted afterward to an offline intrusion detection mechanism [3]. Once again, this
IDS was settled in optimum conditions, since it was trained for a given scenario. And
even in these optimal conditions, note that it only detects 22.48% of injections.

Finally we have recorded the alerts generated by our SIDAN tool. The results of all
these measures are summarized in Table 2. A more detailed version of the obtained
results is given by the Figure 6. We can see that SIDAN detects 62.36 % of the injec-
tions. This detection rate is comparable to the one obtained by the first IDS based on
the comparison of the output generated by the server (but recall here, that we claim that
this kind of IDS is extremely difficult to build in real settings). However, SIDAN is still
prone to false negatives with at most 37.64% of injections missed. We can refine these
figures by taking into account the fact that within these 37.64% of cases where SIDAN
raised no alert, 10.63% where cases where : (1) neither the output generated by the SSH
server deviated from the reference output. (2) nor the system call trace deviated from
the reference trace. We can be highly confident that these cases do not correspond to
exploitable attacks. Hence we can subtract these 10.63% from the figures obtained for
false negatives for SIDAN. All in all, we can claim that the rate of false negatives for
SIDAN lies within a 27.01% and 37.64%.

Table 2. Injection results on Dropbear SSH

SIDAN alert Unexpected server exit Incorrect server output Strace alert

Injection detected 74827 21574 61470 26970

Detection rate 62.36% 18.13% 51.23% 22.48%

]
]

]

]

]

]

]
]

Fig. 6. Distribution of alerts

Detecting Illegal System Calls Using a Data-Oriented Detection Model 315

5 Conclusion and Future Work

In this article, we propose a sofware-level intrusion detection approach based on the
internal state of the process that detects data attacks, which are missed by traditional
control-flow approaches. Our mechanism relies on a data-oriented behavior model to
detect erroneous states that could lead to illegal system calls. We present a tool that
implements our approach by analyzing and instrumenting a program’s source code.
This tool has proved that our approach is useable in the context of real software and
that it can detect real world non-control-data attacks (such as the null password attack
on OpenSSH). We also propose a method to assess these intrusion detection systems
against data attacks by using a fault injection mechanism. In the particular case of Drop-
bear SSH, by using our evaluation method, we have estimated, without prior knowledge
of any attacks, an approximation of the detection coverage of our detection model.

However, the current implementation of our tool computes the constraints needed by
our detection model using only variation domains. This is clearly a limitation, because
it does not permit the detection of data attacks on variables whose variation domain
is statically unknown in the source code. That is why in the future we intend to use
additional static analysis techniques to discover more constraints. We also plan to in-
vestigate for our evaluation method the possibility of replacing the set of hand written
scenarios by automatically generated scenarios using fuzzing techniques [23].

References

1. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system calls.
Journal of Computer Security (1998)

2. Kruegel, C., Kirda, E., Mutz, D., Robertson, W.: Automating mimicry attacks using static
binary analysis. In: 14th Conference on USENIX Security Symposium (2005)

3. Kruegel, C., Mutz, D., Valeur, F., Vigna, G.: On the detection of anomalous system call
arguments. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, pp.
326–343. Springer, Heidelberg (2003)

4. Bhatkar, S., Chaturvedi, A., Sekar, R.: Dataflow anomaly detection. In: 2006 IEEE
Symposium on Security and Privacy (S&P 2006) (2006)

5. Mutz, D., Robertson, W., Vigna, G., Kemmerer, R.: Exploiting execution context for the
detection of anomalous system calls. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID
2007. LNCS, vol. 4637, pp. 1–20. Springer, Heidelberg (2007)

6. Feng, H., Kolesnikov, O., Fogla, P., Lee, W., Gong, W.: Anomaly detection using call stack
information. In: IEEE Symposium on Security and Privacy, p. 65 (2003)

7. CEA: Frama-c, framework for modular analysis of c
8. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: CCS 2005:

Proceedings of the 12th ACM Conference on Computer and Communications Security
(2005)

9. Kiriansky, V., Bruening, D., Amarasinghe, S.: Secure execution via program shepherding.
In: Proceedings of the Usenix Security Symposium (2002)

10. Chen, S., Xu, J., Sezer, E., Gauriar, P., Iyer, R.: Non-control-data attacks are realistic threats.
In: Usenix Security Symposium (2005)

11. Akritidis, P., Cadar, C., Raiciu, C., Costa, M., Castro, M.: Preventing memory error exploits
with wit. In: 2008 IEEE Symposium on Security and Privacy (2008)

316 J.-C. Demay et al.

12. Castro, M., Costa, M., Harris, T.: Securing software by enforcing data-flow integrity. In: 7th
USENIX Symposium on Operating Systems Design and Implementation (2006)

13. Demay, J.C., Totel, E., Tronel, F.: Sidan: a tool dedicated to software instrumentation for
detecting attacks on non-control-data. In: 4th International Conference on Risks and Security
of Internet and Systems (CRISIS 2009), Toulouse (October 2009)

14. Weiser, M.: Program slicing. IEEE Transactions on Software Engineering (1982)
15. Kuck, D.J., Kuhn, R.H., Padua, D.A., Leasure, B., Wolfe, M.: Dependence graphs and its use

in optimization. In: 8th ACM Symposium on Principles of Programming Languages (1981)
16. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of

programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages (1977)

17. Granger, P.: Static analysis of arithmetical congruences. International Journal of Computer
Mathematics 30, 165–190 (1989)

18. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (1978)

19. Karr, M.: Affine relationships among variables of a program. Acta Informatica, 133–151
(1976)

20. Granger, P.: Static analysis of linear congruence equalities among variables of a program. In:
TAPSOFT 1991, pp. 169–192 (1991)

21. Goloubeva, O., Rebaudengo, M., Reorda, M.S., Violante, M.: Soft-error detection using con-
trol flow assertions. In: Proceedings of the 18th IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems (DFT 2003) (2003)

22. Vemu, R., Abraham, J.A.: Ceda: Control-flow error detection through assertions. In:
Proceedings of the 12th IEEE International On-Line Testing Symposium (2006)

23. Neves, N., Antunes, J., Correia, M., Verissimo, P., Neves, R.: Using attack injection to
discover new vulnerabilities. In: Conference on Dependable Systems and Networks (2006)

J. Camenisch et al. (Eds.): SEC 2011, IFIP AICT 354, pp. 317–325, 2011.
© IFIP International Federation for Information Processing 2011

IFIP Technical Committee 11
Security and Privacy Protection

in Information Processing Systems*

Kai Rannenberg, SH (Basie) von Solms, and Leon Strous

Abstract. IFIP Technical Committee 11 (TC-11) on Security and Privacy
Protection in Information Processing Systems was created in 1983 under the
chairship of the late Kristian Beckman of Sweden. Representatives from more
than 30 IFIP member societies are members of TC-11 and meet at least once a
year at the IFIP/Sec conferences that are held in different member countries.

This text gives an overview on the state of TC-11 and its development over
the last 28 years. It starts with a snapshot on the current situation of TC-11, fol-
lowed in Section 2 by an overview of the historical background and trends of
TC-11 and its flagship conference IFIP/Sec. Section 3 is dedicated to the main
development trends in the field of TC-11, while Section 4 honours the awardees
of TC-11’s Kristian Beckman Award, many of them TC-11 Pioneers. Section 5
then gives an outlook on the future role of TC-11.

Keywords: Security, Privacy, Protection, Information Processing Systems, IT
Systems, ICT Systems, IFIP, IFIP Technical Committee 11.

1 TC-11 – A Snapshot

TC-11 can to some degree be recognized by its aims, scope, and last but not least its
working groups, which are introduced in the following sections. All three underwent
some significant changes over the past 28 years, which are documented in the
remainder of this article.

1.1 TC-11 Aims

To increase the trustworthiness and general confidence in information processing and
to act as a forum for security and privacy protection experts and others professionally
active in the field.

* This text is an updated version of “IFIP Technical Committee 11 Security and Privacy

Protection in Information Processing Systems”, pp. 302–310 in: Kai Rannenberg, Vijay Va-
radharajan, Christian Weber (Eds.): “Security and Privacy - Silver Linings in the Cloud”,
Proceedings of the 25th IFIP TC 11 International Information Security Conference, SEC
2010, held as part of WCC 2010, Brisbane, Australia, September 20-23, 2010, IFIP Advances
in Information and Communication Technology, Vol. 330, 2010, ISBN 978-3-642-15256-6,
and pp. 153–161 in Klaus Brunnstein and Heinz Zemanek (Eds.): “50 years of IFIP -
Development and Visions”, ISBN: 978-3-901882-43-2, www.ifip.org.

318 K. Rannenberg, S.H. von Solms, and L. Strous

1.2 TC-11 Scope

Work towards:

• the establishment of a common frame of reference for security and privacy protec-
tion in organizations, professions and the public domain;

• the exchange of practical experience;
• the dissemination of information on and the evaluation of current and future pro-

tective techniques;
• the promotion of security and privacy protection as essential elements of informa-

tion processing systems;
• the clarification of the relation between security and privacy protection.

1.3 TC-11 Working Groups

Already in 1985 TC-11 established its first working groups. Since then number and
activity of TC-11’s WGs underwent a non-linear but steady growth with two new
WGs being established in 2010 driving the number of TC-11s WGs up to twelve, of
which two WGs are shared with fellow TCs. The current WG list reads as follows:

1. WG 11.1: Information Security Management (established 1985)
2. WG 11.2: Pervasive Systems Security (established 1985 as the WG on Office

Automation and from 1992 until 2009 named Small System Security)
3. WG 11.3: Data and Application Security (established 1987 under the name of Da-

tabase Security and renamed 2001)
4. WG 11.4: Network & Distributed Systems Security (established 1985 under the

name of Crypto Management and from 1992 until 2003 named Network Security)
5. WG 11.6: Identity Management (established 2006)
6. WG 9.6 / 11.7: IT Misuse and The Law (established 1990)
7. WG 11.8: Information Security Education (established 1991)
8. WG 11.9: Digital Forensics (established 2004)
9. WG 11.10: Critical Infrastructure Protection (established 2006)

10. WG 11.11: Trust Management (established 2006)
11. WG 11.12: Human Aspects of Information Security and Assurance (established

2010)
12. WG 8.11 / 11.13: Information Systems Security Research (established 2010)

2 The Historical Background of TC-11 and Its Flagship
Conference

In May 1983, the 1st International Conference on Information Security, IFIP/Sec '83,
took place in Stockholm, Sweden. This conference was organized by members of the
Swedish Special Interest Group on Information Security, as well as a number of further
people, including some from existing IFIP Committees. The organization was under
the chairman-ship of Kristian Beckman of Sweden. A proposal was submitted to IFIP's
General Assembly (GA), and at its meeting in September 1983 in Paris, TC-11 was
formally established. Kristian Beckman was appointed as the first Chairman of TC-11.

 IFIP TC 11: Security and Privacy Protection in Information Processing Systems 319

The 2nd International Conference on Information Security, IFIP/Sec '84, took place
in May 1984 in Toronto with the motto “Computer security: a global challenge”.
During this conference, the first official meeting of TC-11 was held. Unfortunately,
because of ill health, Kristian Beckman could not attend that meeting. He asked Per
Hoving from Sweden to act as Chairman, but during the conference, the sad news that
Kristian Beckman passed away, reached TC-11.

The next TC-11 meeting took place in Dublin during IFIP/Sec 85, which had the
motto “Computer security: The practical issues in a troubled world”. Per Hoving was
elected as Chairman for a three year term, with Willis Ware from the USA as Vice-
Chairman.

Subsequent IFIP/Sec Conferences took place as follows and show the real global
approach of TC-11 both with regards to its flagship conference as well as its man-
agement teams:

• IFIP/Sec 86 Monte Carlo: “Security and protection in information systems”
• 1987: No IFIP/Sec Conference took place, but a TC-11 meeting was held in Vi-

enna (Austria) in conjunction with a TC-11 Working Group conference.
• IFIP/Sec 88 Gold Coast, Australia: “Computer security in the age of information“.

At the corresponding TC-11 meeting Bill Caelli from Australia was elected as new
Chair, Willis Ware re-elected as Vice-Chair, and David Lindsay from the UK as
Secretary.

• 1989: No IFIP/Sec conference was held, and efforts were combined with the IFIP
Congress which took place in San Francisco, USA.

• IFIP/Sec 90 Helsinki, Finland: “Computer security and information integrity”
• IFIP/Sec 91 Brighton, England: “Information security”
• IFIP/Sec 92 Singapore: “IT security: the need for international cooperation”
• IFIP/Sec 93 Toronto, Canada: “Computer security”. Unfortunately David Lindsay

died before IFIP/Sec 93. Bertil Fortrie from the Netherlands took over as Secretary.
• IFIP/Sec 94 Curaçao: At the TC-11 meeting during this conference Sebastiaan von

Solms from South Africa was elected as Vice-Chair and David Bachelor from
Canada as Secretary. Later that year Sebastiaan von Solms was appointed as acting
Chair of TC-11 by the IFIP President.

• IFIP/Sec 95 Cape Town, South Africa: “Information security - the next decade”. At
the TC-11 meeting preceding the conference Sebastiaan von Solms was elected as
new Chair with Reinhard Posch from Austria as Vice-Chair.

• IFIP/Sec 96 Samos Island, Greece: “Information systems security: facing the in-
formation society of the 21st century”

• IFIP/Sec 97 Copenhagen, Denmark: “IT Security in Research and Business”
• IFIP/Sec 98 Vienna/Budapest, Austria/Hungary with the motto “Global IT security

“ and as part of the IFIP World Computer Congress
• 1999: No IFIP/Sec Conference took place, but a TC-11 meeting was held in Am-

sterdam (Netherlands) in conjunction with a TC-11 Working Group conference.
• IFIP/Sec 2000 Beijing, China with the motto “Information Security for global

information infrastructures “as part of the IFIP World Computer Congress: Geoff
Fairall from Zimbabwe was appointed as new Secretary of TC-11.

320 K. Rannenberg, S.H. von Solms, and L. Strous

• IFIP/Sec 2001 Paris, France: “Trusted information: the new decade challenge“. At
the TC-11 meeting preceding the conference Leon Strous from the Netherlands
was elected as new Chair with Kai Rannenberg from Germany as Vice-Chair. Ros-
souw von Solms from South Africa was appointed as WG coordinator.

• IFIP/Sec 2002 Cairo, Egypt: “Security in the information society: visions and per-
spectives”

• IFIP/Sec 2003 Athens, Greece: “Security and privacy in the age of uncertainty”
• IFIP/Sec 2004 Toulouse, France with the motto “Security and protection in infor-

mation processing systems “ as part of the IFIP World Computer Congress
• IFIP/Sec 2005 Tokyo-Chiba, Japan: “Security and privacy in the age of ubiquitous

computing“. Lech Janczewski from New Zealand, representing SEARCC, was ap-
pointed as Secretary.

• IFIP/Sec 2006 Karlstad, Sweden: “Security and privacy in dynamic environments”
• IFIP/Sec 2007 Johannesburg-Sandton, South Africa: “New approaches for security,

privacy and trust in complex environments”. At the TC-11 meeting preceding the
conference Kai Rannenberg from Germany was elected as new Chair with Ros-
souw von Solms from South Africa as Vice-Chair.

• IFIP/Sec 2008 Milano, Italy as part of the IFIP World Computer Congress: At the
TC-11 meeting preceding the conference Yuko Murayama from Japan was ap-
pointed as WG Coordinator.

• IFIP/Sec 2009 Pafos, Cyprus: “Emerging Challenges for Security, Privacy and
Trust”

• IFIP/Sec 2010 Brisbane, Australia with the motto “Security & Privacy − Silver
Linings in the Cloud“ as part of the IFIP World Computer Congress: At the TC-11
meeting preceding the conference Yuko Murayama from Japan was appointed as
Vice Chair in addition to Rossouw von Solms from South Africa.

• IFIP/Sec 2011 Lucerne, Switzerland with the motto “Future Challenges in Security
and Privacy for Academia and Industry”

• IFIP/Sec 2012 scheduled for Greece

TC-11's annual IFIP/Sec conferences are established as an integral and well-reputed
part of the international Information Security conference scene. The same holds for
many Working Group conferences.

3 Main Development Trends in the Field of TC-11

3.1 The 80es

The early eighties were the years when personal computers started to invade people's
lives. One saw an increasing concern about several issues like privacy and witnessed
the “birth” of computer viruses. The attention for security started to evolve from the
closed defence and mainframe environments to business and small computer
environments, from confidentiality towards integrity, from technical security to
managerial issues. This was clearly an era where establishing a TC dedicated to secu-
rity was an obvious thing to do. The founders made it clear by the name and aims and
scope of TC-11 that security is not limited to computers but encompasses computers,

 IFIP TC 11: Security and Privacy Protection in Information Processing Systems 321

applications, data and the organization. That was more or less a visionary view be-
cause in those days the term computer security was more common than the term in-
formation security.

3.2 The 90es

The increasing trend towards distributed systems, and the associated use of communi-
cation networks, as well as the tendency to use such systems and networks for more
and more highly sensitive applications like electronic commerce and medical applica-
tions, catapulted the absolute importance of the securing and protecting of electronic
information during storage, processing and transmission right into the forefront of
Information Technology research and implementation.

It became clear that a very large number of such systems would not be acceptable
if proper solutions would not exist for the security and protection of such systems.
Developments in cryptography showed to be essential to provide non-reputability and
proof of origin in electronic messages. Without digital signatures, provided by
cryptography, electronic purchasing was deemed to be not possible.

Security in distributed systems became known to be much more difficult and com-
plex than in centralized systems. Authentication and Authorization in distributed
systems are of extreme importance, and must be given the necessary attention.

New techniques to implement and to specifically manage Information Security
were constantly needed, and with the growing complexity of IT systems, the internal
control of the systems became ever more important. The same held for the growing
role, importance and commitment of senior management of companies, up to Board
level, towards the security of their companies' IT systems. Special efforts were needed
to provide skilled people to be able to evaluate, address and manage security risks
involved in IT systems, and to ensure that such systems are operated within the
necessary secure environment.

With the fact that computers became so much more user friendly than before, and so
much more were being used by the public in general, a serious effort showed up as
being needed to make these people aware of the importance of Information Security on
their systems, and to show them the risks if such security measures were ignored.

In the application field, Information Security became ever more essential for the
growing use of systems in medical applications. Standardization efforts and cryptology
policies in different countries also required attention. All in all, Information Security
had never before been a more important and essential part of IT systems and networks.

These developments were reflected in TC-11’s work mainly by the expanding ac-
tivities in the respective TC-11’s Working Groups, but also by public statements from
TC-11. One statement concerns IFIP's position on crypto policies and was drafted in
the second half of the nineties. It reflected that cryptography was a hot topic from a
policy point of view and discussions concentrated on questions such as whether gov-
ernments should have access to the keys in encryption systems used by companies
and individuals. A second statement concerned information security assessment and
certification and addressed TC-11's opinion that the information security status of IT
systems and the information security management of such systems should be assessed
against specified standards related to information security management and that
members of IFIP should be instrumental to ensure that such standards, for systems
and individuals, be harmonized on an international level.

322 K. Rannenberg, S.H. von Solms, and L. Strous

3.3 The Beginning of the New Millennium

The early beginning of the new Millennium was driven by the Internet and mobile
Communication becoming more and more mainstream. “E-words” such as “E-
Commerce” and “E-Business” became and more popular. While many of them were
just buzzwords, as almost everything from the “old” world became e-d there was little
doubt that some of these areas would have significant impact on business and society
as a whole. Following this it stepwise became clear that trust and confidence in the
security and reliability of all those “e-words” was necessary for them to become the
success that everybody was hoping (and waiting) for. So many topics within the scope
of TC-11 were influential in that respect, e.g. identification and authentication means
(biometrics and smart(er) cards), integrity of messages, secure business transactions
and payments.

The events of September 11, 2001 pointed strongly to further aspects of security
such as cyber terrorism and (critical) infrastructure protection (CIP). Not only did
these issues require new technologies or larger scale use of known technologies (bio-
metrics and smart(er) cards again?) they also shed a different light on privacy issues
and human aspects.

To address these issues in an effective way even more cooperation between the dif-
ferent IFIP disciplines was required. Topics of most of the TC's became relevant such
as topics like software quality (TC-2), training people (TC-3), safety-critical systems
(TC-10), and social aspects and human-computer interaction (TC-9 and TC-13). And
although those issues may have seemed to be of a technical nature, one could not hide
from the fact that cultural and political aspects also do play a role. IFIP had to con-
sider this when addressing the issues and trying to find a way to deal with them in an
as “neutral” as possible fashion. New successful WGs such as WG 11.9 Digital Fo-
rensics (established 2004) and the trio of WG 11.6: Identity Management, WG 11.10
Critical Infrastructure Protection, and WG 11.11 Trust Management (all three estab-
lished 2006) reflected these developments.

A related achievement concerned the objective to promote security and protection
as essential elements of information processing systems. TC-11 had been successful
in this area, which can be measured directly within the IFIP community by the fact
that more and more TC's and working groups were including security in their aims
and scopes. This also resulted in an increasing cooperation between TC's and working
groups on security topics such as the Communications and Multimedia Security
(CMS) conferences of TC-6 and TC-11 and the E-Commerce, E-Government and E-
Business (I3E) conferences of TC-6, TC-8 and TC-11, and last but not least the joint
WG with TC-9 on legal, privacy and social issues (WG 9.6/11.7 IT Misuse and the
Law), a very successful example of an active cooperation.

At the same time some “old” issues did not disappear and one did not succeed in
eliminating them. Although their “hot” days were over and they were no longer in the
focus of attention (with the exception of an occasional short hype), these activities
still had and continued to have a significant impact. Hackers and viruses continued to
cost society a lot of money and the security professionals kept trying to find ways to
limit the effects as much as possible.

 IFIP TC 11: Security and Privacy Protection in Information Processing Systems 323

Another important issue was attention for developing countries. While IFIP as a
whole supported the work of the Developing Countries Support Committee (DCSC)
and the World IT Forum (WITFOR) TC-11 was one of the TCs actively participating
in these initiatives by e.g. actively strengthening its activities in developing countries
and encouraging participation from the respective member societies to also review
and revise traditional (maybe “northern” or “western”) views.

Moreover in 2002 TC-11 agreed on another statement which contains a request to
all member societies of IFIP to urge their relevant government and education bodies
to ensure that proper education and certification requirements are set for those people
who intend to become information technology security professionals and including
those who audit the security of IT systems.

3.4 Current Challenges

Especially the Internet but also other Information and Communication Technology
(ICT) systems such as Mobile Communication systems have moved even further on:
From popular and established mainstream technologies to the information and com-
munication backbones for many societies and countries and moreover as the essential
infrastructures for global and international cooperation.

The rapid and radical movement towards new and Internet based ICT systems was
partially supported by the decline of some established technologies, but also by the
changing habits of users. It has raised major questions of trust in to the ICT systems
and into information security as such and demonstrated the importance of projection
of citizens, consumers and their privacy. TC-11 reflected this development in more
and more IFIP/Sec mottos since 2003 and moreover with its first TC name change
since its inception: In 2007 the term “Privacy” was added to TC-11’s name and sub-
sequently the aims and scope were adapted accordingly. This was preferred to simply
establishing a new WG on Privacy as the deep and delicate relations between security
and privacy were considered where information security sometimes supports privacy
and sometimes endangers it. These delicate relations affect the work of most WGs in
IFIP TC-11.

The further miniaturisation and the pervasive use of ICT lead WG 11.2 to changing
its name from “Small System Security” to “Pervasive Systems Security” reflecting the
fact, that almost every aspect of (human) life is now exposed to ICT. This trend also
led to the founding of WG 11.12 “Human Aspects of Information Security and Assur-
ance”. At the same time it became clear, that Information Security is also important
for researchers and in the information systems field leading to a new WG 8.11 / 11.13
“Information Systems Security Research” together with TC-8.

4 The Kristian Beckman Award

TC-11 established the Kristian Beckman Award in 1992 to commemorate the first
chair of the committee, Kristian Beckman from Sweden, who had also been responsi-
ble for promoting the founding of TC-11 in 1983. This award is granted not more than
annually to a successful nominee and is usually presented at IFIP/Sec. The objective

324 K. Rannenberg, S.H. von Solms, and L. Strous

of the award is to publicly recognise an individual, not a group or organisation, who
has significantly contributed to the development of information security, especially
from an international perspective. However this particular requirement will not
necessarily preclude nominations of those whose main achievements have been made
on a national level. Many of the awardees can be considered IFIP (TC-11) Pioneers.

TC-11 was honoured to award the Kristian Beckman Award to:

• Harold Highland (USA) in 1993, presented in Toronto (Canada)
• Per Hoving (Sweden) in 1995, presented in Cape Town (South Africa)
• Sushil Jajodia (USA) in 1996, presented in Samos (Greece)
• Donald Davies (UK) in 1997, presented in Copenhagen (Denmark)
• Richard Sizer (UK) in 1998, presented in Vienna and Budapest (Austria and

Hungary)
• Willis W. Ware (USA) in 1999, presented in Amsterdam (Netherlands)
• William Caelli (Australia) in 2002, presented in Cairo (Egypt)
• Roger Needham (UK) in 2003, presented in Athens (Greece)
• Jean-Jacques Quisquater (Belgium) in 2004, presented in Toulouse (France)
• William List (UK) in 2005, presented in Tokyo-Chiba (Japan)
• Butler W. Lampson (USA) in 2006, presented in Karlstad (Sweden)
• Pierangela Samarati (Italy) in 2008, presented in Milano (Italy)
• Klaus Brunnstein (Germany) in 2009, presented in Pafos (Cyprus)
• Sebastiaan von Solms (South Africa) in 2010, presented in Brisbane (Australia)
• Ann Cavoukian (Canada) in 2011, to be presented in Lucerne (Switzerland)

5 The Future Role of TC-11

With the rising importance of ICT systems and society’s dependability on these
systems, the role of TC-11 and its topics has risen significantly over the last years, and
is still rising. TC-11 has taken up this challenge and is active on several fronts through
its Working Groups, its special conferences to discuss research developments, and
other dissemination services to member societies of IFIP and to the international
community in general. However a number of challenges remain and are even growing:

• Still relevant security and privacy issues are only considered relatively late in sys-
tem development processes – and often still too late.

• Security and privacy are “horizontal” subjects and orthogonal to many topics that
are cared for by other IFIP TCs.

• In many cases appropriate decisions with regard to security and privacy can only
be taken, if the respective (application) context is considered.

Therefore TC-11 is encouraging the inclusion of security and privacy topics in all
areas and actively cooperates with other TCs. This will hopefully contribute to a
situation, where relevant security and privacy considerations and measures are
embedded as a natural topic in all domains rather than coming in late.

 IFIP TC 11: Security and Privacy Protection in Information Processing Systems 325

6 Contact Information

TC-11 Homepage: www.ifiptc11.org

TC-11 Management:

TC-11 Chair

Prof. Dr. Kai Rannenberg
T-Mobile Chair of

Mobile Business & Multilateral Security
Goethe University Frankfurt

Postfach 66
Grüneburgplatz 1

60629 Frankfurt /Main, Germany
Tel: +49 69 798 34701
Fax: +49 69 798 35004
www.m-chair.net

kai.rannenberg@m-chair.net

TC-11 Vice-Chair

Prof. Dr. Rossouw von Solms
Nelson Mandela Metropolitan University

Institute for ICT Advancement, School of ICT
Summerstrand (North)

P.O. Box 77000
Port Elizabeth 6031

South Africa
Tel: +27 41 504 3604
Fax: +27 41 504 3313

rossouw.vonsolms@nmmu.ac.za

TC-11 Vice-Chair & WG Coordinator

Prof. Dr. Yuko Murayama
Faculty of Software and Information

Science
Iwate Prefectural University

152-52 Sugo, Takizawa,
Takizawa-mura
Iwate, 020-0193

Japan
Tel: +81 19-694-2548
Fax: +81 19-694-2549

murayama@iwate-pu.ac.jp

TC-11 Secretary

Prof. Dr. Lech Janczewski
The University of Auckland

Dept. of ISOM
Private Bag 92019

Owen G Glen Building
12 Grafton Road

Auckland, New Zealand
Tel: +64 9 923 7538
Fax: +64 9 373 7430

lech@auckland.ac.nz

TC-11 Webmaster:

Gökhan Bal
T-Mobile Chair of

Mobile Business & Multilateral Security
Goethe University Frankfurt

Grüneburgplatz 1
60629 Frankfurt /Main, Germany

Tel: +49 69 798 34701, Fax: +49 69 798 35004
www.m-chair.net

contact@ifiptc11.org

Author Index

Abramov, Raz 29
Alberdi, Ion 173
Alsbih, Amir 92
Anand, Kapil 154
Armando, Alessandro 68

Baecher, Paul 56
Barua, Rajeev 154
Basu, Anirban 223
Ben Ghorbel-Talbi, Meriam 197
Bhargava, Bharat 281
Bhatt, Sandeep 271
Boyd, Colin 104
Brereton, Margot 104
Büscher, Niklas 56

Campbell, Roy H. 210
Carbone, Roberto 68
Cavoukian, Ann 1
Chan, Ellick 210
Chen, Ping 142
Compagna, Luca 68
Cuellar, Jorge 68
Cuppens, Frédéric 197
Cuppens-Boulahia, Nora 197

Damopoulos, Dimitrios 17
Demay, Jonathan-Christofer 305
Dhillon, Gurpreet 185
Dowland, Paul 80

Fang, Yi 142
Fischli, Stephan 116
Fischlin, Marc 56
Freiling, Felix C. 41, 92
Furnell, Steven 80

Gonzalez Nieto, Juan 104
Gritzalis, Stefanos 17

Haenni, Rolf 116
Herzberg, Amir 29
Hongo, Sadayuki 223
Horne, William 271

Idika, Nwokedi 281
Ishii, Kazuhiko 223

Jali, Mohd 80
Jin, Hongxia 128
Jürjens, Jan 259

Kagawa, Daisuke 223
Kambourakis, Georgios 17
Kellermann, Benjamin 235
Keromytis, Angelos D. 154
Kikuchi, Hiroaki 223
Koenig, Reto 116
Kolkowska, Ella 185
Kotha, Aparna 154

Larson, Kevin 210
Le Métayer, Daniel 197
Lotspiech, Jeffrey 128

Majorczyk, Frédéric 305
Mao, Bing 142
Milde, Benjamin 56
Mondet, Sebastien 173
Montanari, Mirko 210

Nuseibeh, Bashar 259

O’Sullivan, Pádraig 154

Patzina, Lars 293
Patzina, Sven 293
Pellegrino, Giancarlo 68
Piolle, Guillaume 197
Plagemann, Thomas 173

Radke, Kenneth 104
Rannenberg, Kai 317
Rao, Prasad 271

Schindelhauer, Christian 92
Schinzel, Sebastian 41
Schürr, Andy 293
Smithson, Matthew 154
Sorniotti, Alessandro 68
Strous, Leon 317

328 Author Index

Taubenberger, Stefan 259
Terada, Masayuki 223
Totel, Eric 305
Tronel, Frédéric 305

von Solms, SH (Basie) 317

Xie, Li 142

Yoo, Wucherl 210
Yu, Yijun 259

Zhang, Ge 247

	Title
	Preface
	Organization
	Table of Contents
	Kristian Beckman Award Keynote
	Patience, Persistence, and Faith: Evolving the Gold Standard in Privacy and Data Protection
	PbD as a Fundmanetal Component of Privacy Frameworks
	PbD as a Fixture within Public and Private Sector Ecosystems
	A Generation of “Privacy Heroes”
	Innovative Applications of PbD
	Consistent Alignment between Business Practices and Consumer Expectations

	Malware, Information Flow and DoS Attacks
	iSAM: An iPhone Stealth Airborne Malware
	Introduction
	Preliminaries and Related Work
	Designing Principles and Requirements for iPhone
	The iSAM Malware
	iSAM Infection Methods
	iSAMScanner: Scan, Connect, Infect
	iSAMUpdate: Update, Command, Control
	iCollector: Gathers Private Information from the Device
	iSMSBomber: Sends Malicious SMS Messages in Stealth Mode
	iDoSApp: Denial of Application Services
	iDoSNet: Denial of Network Services

	Conclusion
	References

	TCP Ack Storm DoS Attacks
	Introduction
	Two-Packets Ack-Storm Attack
	The TCP RFC Flaw
	Attack Description
	Analysis
	Experiments

	The N-Packet Ack-Storm DoS Attack
	Analysis

	Everlasting Ack Storm Attack
	Analysis

	Preserving the Attack during Losses
	Conclusion and Future Work
	References

	Detecting Hidden Storage Side Channel Vulnerabilities in Networked Applications
	Introduction
	Hidden Storage Side Channels in Networked Applications
	Detecting Storage Side Channels in Networked Applications
	Application of Method to HTTP/HTML
	Conclusions
	References

	Authentication
	Breaking reCAPTCHA: A Holistic Approach via Shape Recognition
	Introduction
	Related Work
	Our Techniques
	Database Creation
	Preprocessing
	Ellipse Elimination
	Shape Contexts
	Efficient Word Matching

	Results
	Conclusions
	References

	From Multiple Credentials to Browser-Based Single Sign-On: Are We More Secure?
	Introduction
	The SAML 2.0 Web Browser SSO Profile
	Trust and Transport Protocol Assumptions
	Security Requirements

	An Authentication Flaw in the SAML SSO Protocol
	Exploitations in Actual Deployments
	Fixing the Vulnerability
	Related Work
	Conclusions
	References

	Quantifying the Effect of Graphical Password Guidelines for Better Security
	Motivation
	Methodology
	Results and Discussion
	Number of Attempt
	Timing
	Accuracy
	Pattern
	Users’ Feedback

	Conclusions and Future Work
	References

	Network Security and Security Protocols
	A Case Study in Practical Security of Cable Networks
	Introduction
	Motivation
	Context
	Related Work
	Contributions
	Paper Outline

	Background
	System Overview
	Physical Aspects and Frequency Bands
	The Interfaces of the Cable Modem
	CMTS and Access Control
	IP Layer
	VoIP via SIP

	Different Threat Models and Their Effects on the Provisioning Process
	Traditional Threat Model of the CNP
	Adapted Threat Model of the CNP/ISP
	The Provisioning Process and Its Weaknesses

	Attacking the Provisioning Process
	The Attack
	Why Is the Attack Possible?

	Countermeasures
	Adapted Threat Model
	Technical Countermeasures

	Conclusion
	References

	Ceremony Analysis: Strengths and Weaknesses
	Introduction
	Related Work
	Contribution
	Outline

	Ceremonies
	Ceremonies Example: HTTPS with MITM Attack

	Opera Mini Ceremony
	Opera Mini Design
	Opera Mini Ceremony Analysis

	Lessons Learned
	Investigation of a Provably Secure Protocol
	Conclusion
	References

	Preventing Board Flooding Attacks in Coercion-Resistant Electronic Voting Schemes
	Introduction
	Coercion-Resistant E-Voting
	Preventing Board Flooding Attacks
	The Modified JCJ-Scheme
	Discussion

	Conclusion
	References

	Piracy Protection for Streaming Content in Home Networks
	Introduction
	Piracy Threat for Streaming Content in Home Network
	Existing Traitor Tracing Schemes for Physical Media

	Preliminaries
	Content Protection System for Streaming Content
	License Agency: Manage Secure Content Sharing in Home Network
	Content Provider: Distribute Streaming Content
	Recording Devices: Encrypt Streaming Content
	Play-Back Devices: Decrypt Content

	Recording Keys Assignment
	Traitor Tracing Using Recording Keys
	Inner Tracing Scheme
	Outer Tracing Scheme
	Coalition Detection Algorithm set-cover

	Discussion
	Traceability Analysis
	Revocation after Traitor Detection
	Implementation Considerations

	Conclusion
	References

	Software Security
	JITDefender: A Defense against JIT Spraying Attacks
	Introduction
	Background: JIT Spraying
	Overview of JITDefender
	Design and Implementation
	Introduction of the Flash Engine
	Adapting the Flash Engine
	Javascript Engine

	Evaluation
	Effectiveness
	Performance Overhead

	Discussion
	JITDefender on Other VMs
	Circumventing JITDefender

	Related Work
	Heap Spraying Defenses
	JIT Spraying Mitigation
	Other Defenses

	Conclusions
	References

	Retrofitting Security in COTS Software with Binary Rewriting
	Introduction
	Related Work
	Catalog of Attack Techniques
	Catalog of Defense Techniques
	Related Work in Binary Rewriting

	Background on Binary Rewriting
	Innovations in SecondWrite
	Methods
	Experimental Evaluation
	Conclusions
	References

	Generating Optimised and Formally Checked Packet Parsing Code
	Introduction
	Packet Parsing Code Generation
	Input
	Output
	Current Limitations
	Trust Issues

	Experimental Results
	Related Work
	Conclusion
	References

	Policy Compliance and Obligations
	Organizational Power and Information Security Rule Compliance
	Introduction
	Security Rule Compliance and Organizational Power
	Theory and Methodology
	Dimensions of Power
	Research Methodology

	Analyzing Power Dimensions and Information Security Compliance
	Case Background
	Power of Resources
	Power of Processes
	Power of Meaning
	Power of System

	Discussion
	Conclusion
	References

	Delegation of Obligations and Responsibility
	Introduction
	Logical Model of Obligation and Responsibility
	Modelling Obligation Delegation
	Related Work and Discussion
	References

	Distributed Security Policy Conformance
	Introduction
	Related Work
	Policy Compliance
	The ODESSA System
	Rule Decomposition and Validation
	Decomposition
	Execution

	Implementation and Evaluation
	Concluding Remarks
	References

	Privacy Attacks and Privacy-Enhancing Technologies
	Scalable Privacy-Preserving Data Mining with Asynchronously Partitioned Datasets
	Introduction
	Building Blocks
	Na\"{i}ve Bayes Classifier
	Secure Scalar Product Based Scheme

	Proposed Scheme
	Idea
	Secure Set Intersection Protocol
	Proposed Protocol: Distorted Intersection

	Evaluation
	Performance evaluation
	Security

	Conclusion
	References

	Privacy-Enhanced Web-Based Event Scheduling with Majority Agreement
	Introduction
	Related Work
	Preventing(−1)-Attacks
	Verifiability
	Privacy

	Preventing (+2)-Attacks
	Verifiability
	Privacy
	Computational Complexity

	Implementation
	Conclusion
	References

	Analyzing Key-Click Patterns of PIN Input for Recognizing VoIP Users
	Introduction
	Background in VoIP Flows
	Attacking Method
	Experiments
	Data Collecting
	Data Processing
	Learning Algorithms
	Analysis and Results
	Discussion on Countermeasure

	Related Work
	Conclusion
	References

	Risk Analysis and Security Metrics
	Problem Analysis of Traditional IT-Security Risk Assessment Methods – An Experience Report from the Insurance and Auditing Domain
	Introduction
	Traditional Approaches to IT-Security Risk Assessment
	Qualitative and Quantitative Methods
	Risk Determination
	Selection and Classification of IT-Security Risk Assessment Methods

	Our Experiences with Traditional Approaches
	IT-Security Risk Assessment with a Traditional Approach
	Methodological and Estimation Problems
	Result Presentation and Perception

	Problem Analysis - Summary
	Conclusion
	References

	On Computing Enterprise IT Risk Metrics
	Introduction
	Related Work
	Defining Environmental Metrics
	Exposure and Impact
	An Application: Prioritizing Patches

	Experimental Results
	Network Description
	Experimental Approach
	Results and Their Interpretation

	Conclusions
	References

	A Kolmogorov Complexity Approach for Measuring Attack Path Complexity
	Introduction
	Kolmogorov Complexity Method (KCM)
	Representing Cycles in Attack Graphs
	Qualitative versus Quantitative Representations

	K-Step Capability Accumulation (KCA) Metric
	Evaluating with KCA
	Applying Kolmogorov Complexity Method to KCA

	Related Work
	Attack Path Complexity
	Attack Graph-Based Security Metrics

	Conclusion
	References

	Intrusion Detection
	Extending LSCs for Behavioral Signature Modeling
	Introduction
	Related Work
	Requirements
	LSCs as Behavioral Signature Modelling Language
	Conclusion and Future Work
	References

	Detecting Illegal System Calls Using a Data-Oriented Detection Model
	Introduction
	Related Work
	Intrusion Detection
	An Attack against Non-Control-Data
	Data Oriented Detection Model
	Generated Assertions

	Assessment of the Detection Mechanisms
	Simulation of Attacks against Non-Control Data
	Code Instrumentation and Fault Injection
	Evaluation Results

	Conclusion and Future Work
	References

	Appendix
	IFIP Technical Committee 11 Security and Privacy Protection in Information Processing Systems
	TC-11 – A Snapshot
	TC-11 Aims
	TC-11 Scope
	TC-11 Working Groups

	The Historical Background of TC-11 and Its Flagship Conference
	Main Development Trends in the Field of TC-11
	The 80es
	The 90es
	The Beginning of the New Millennium
	Current Challenges

	The Kristian Beckman Award
	The Future Role of TC-11
	Contact Information

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

