
Chapter 6

Rao-Blackwellised RFS Bayesian SLAM

6.1 Introduction

This chapter proposes an alternative Bayesian framework for feature-based
SLAM, again in the general case of uncertain feature number and data as-
sociation. As in Chapter 5, a first order solution, coined the probability hy-
pothesis density (PHD) SLAM filter, is used, which jointly propagates the
posterior PHD of the map and the posterior distribution of the vehicle tra-
jectory. In this chapter however, a Rao-Blackwellised (RB) implementation
of the PHD-SLAM filter is proposed based on the GM PHD filter for the map
and a particle filter for the vehicle trajectory, with initial results presented
in [56] and further refinements in [57].

A tractable PHD approximation to the SLAM problem is derived, which
propagates the posterior PHDs of multiple trajectory-conditioned maps and
the posterior distribution of the trajectory of the vehicle. Furthermore, this
approach to SLAM admits the concept of an ‘expected’ map via the PHD
construct, which is not available in previous SLAM approaches.

The chapter is organised as follows. Section 6.2 discusses the factorised
RFS SLAM recursion, in which the posterior density of the map, conditioned
on the trajectory, and the trajectory itself can be propagated jointly. The
RFS framework is then applied to this factorised solution, where it is demon-
strated that subtle differences, regarding the use of sets, make a direct, naive
implementation of FastSLAM to the RFS problem inappropriate. In particu-
lar, the likelihood of the measurement, conditioned on the trajectory, which
is necessary for the calculation of the particle weights, cannot be approxi-
mated under an EKF framework, as in FastSLAM [58]. Solutions, which give
a closed form solution to this problem, are presented in this section. Section
6.3 outlines a Rao-Blackwellised implementation of the PHD-SLAM filter.
The necessary steps to implement the PHD filter for the estimation of the
map and the vehicle trajectory are given, along with pseudo code. Section
6.4 presents and discusses the Rao-Blackwellised RFS SLAM performance.
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Demonstrations of simulated examples are given, due to the simplicity of
generating both trajectory and map ground truth values, necessary for true
performance evaluation assessment. This is followed by an implementation
with real, short range, millimetre wave (MMW) radar data, and a mobile
robot platform, in a car park environment. The advantages of these sensors
over other devices such as laser range finders is discussed in [16]. Data sets
from the radar are recorded, along with odometry and single axis gyro rate
data, from a moving vehicle. Comparisons are made with classical, vector
based, EKF SLAM which utilises the Joint Compatibility Branch and Bound
(JCBB) [39] data association method and FastSLAM with Multiple Hypoth-
esis (MH) data association. Further comparative results, in a much larger
scenario, where accurate SLAM performance in the presence of high clutter
is essential, are demonstrated at sea, in a coastal environment, using an “Au-
tonomous kayak” [59] as the vehicle and a commercially available X-Band
radar. The performance improvement, in the presence of clutter is clearly
demonstrated. Comparisons and discussions of the computational complex-
ity of the algorithms is also given.

6.2 The Rao-Blackwellised (RB) PHD-SLAM Filter

Since the full RFS-SLAM Bayes filter of equations 2.14 and 2.15 is numer-
ically intractable, it is again necessary to look for tractable but principled
approximations. This section derives a recursion that jointly propagates the
posterior PHD of the map and the posterior density of the vehicle trajec-
tory. Analogous to FastSLAM, the RFS-SLAM recursion can be factorised
as shown in Section 6.2.1. Section 6.2.2 discusses the PHD estimator in the
context of this factorised recursion, Section 6.2.3 addresses the PHD represen-
tation of the map component only while Section 6.2.4 extends this algorithm
to perform SLAM.

6.2.1 The Factorised RFS-SLAM Recursion

Using standard conditional probability, the joint posterior RFS-SLAM den-
sity of equation 2.15 can be decomposed as,

pk(Mk, X1:k|Z0:k, U0:k−1, X0) =
pk(X1:k|Z0:k, U0:k−1, X0)pk(Mk|Z0:k, X0:k). (6.1)

Thus, the recursion for the joint RFS map-trajectory posterior density ac-
cording to equation 2.15 is equivalent to jointly propagating the posterior
density of the map conditioned on the trajectory and the posterior density
of the trajectory. In this section, as before, for compactness,
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pk|k−1(Mk|X0:k) = pk|k−1(Mk|Z0:k−1, X0:k) (6.2)
pk(Mk|X0:k) = pk(Mk|Z0:k, X0:k) (6.3)

pk(X1:k) = pk(X1:k|Z0:k, U0:k−1, X0) (6.4)

and it follows that,

pk|k−1(Mk|X0:k) =
∫

fM(Mk|Mk−1, Xk)pk−1(Mk−1|X0:k−1)δMk−1

(6.5)

pk(Mk|X0:k) =
gk(Zk|Mk, Xk)pk|k−1(Mk|X0:k)

gk(Zk|Z0:k−1, X0:k)
(6.6)

pk(X1:k) = gk(Zk|Z0:k−1, X0:k)
fX(Xk|Xk−1, Uk−1)pk−1(X1:k−1)

gk(Zk|Z0:k−1)
. (6.7)

Apart from adopting RFS likelihoods for the measurement and map, the
recursion defined by equations 6.5, 6.6 and 6.7 is similar to that in Fast-
SLAM [58], [60]. However, the use of RFS likelihoods has important conse-
quences in the evaluation of equation 6.7, to be seen later in Section 6.2.4. In
FastSLAM, it should be noted that the map recursion of equation 6.6 is fur-
ther decomposed into the product of K independent densities for each of the
K features assumed to exist in the map. Furthermore, FastSLAM is condi-
tioned on the inherently unknown data association assignments. In contrast,
RFS-SLAM is not conditioned on any data association hypotheses to deter-
mine the number of features to estimate and the recursion of equation 6.6
is that of a RFS feature map. Consequently, the propagation of the map in-
volves probability densities of random finite sets and marginalisation over the
map involves set integrals. Similar to FastSLAM, the effect of the trajectory
conditioning on RFS-SLAM is to render each feature estimate conditionally
independent and thus the map correlations, critical to EKF-SLAM [1], are
not required.

6.2.2 The PHD in RFS-SLAM

Recall from Section 3.3.1, that an optimal estimator for a random vector is
the conditional expectation. Many state-of-the-art SLAM algorithms adopt
Sequential Monte Carlo (SMC) methods. It is well known that SMC tech-
niques are more amenable to expectation operations than maximisation oper-
ations, since if p is approximated by a set of weighted samples {η(i), X(i)}N

i=1,
then [61], [62],

N
∑

i=1

η(i)X(i) → E[X ] (6.8)
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as N→∞. However, in FastSLAM [58], it is common to choose the trajectory
sample with the highest weight as the estimate of the vehicle path, and its
corresponding map, as the estimate of the map. It is easier to establish con-
vergence in SMC implementations if we use the expected path and expected
map. However, it is not clear how the expected map is interpreted.

The PHD construct allows an alternative notion of expectation for maps,
thereby fully exploiting the advantage of an SMC approximation. The PHD,
v, is a function defined on the feature space satisfying equation 3.18. Recall
from Section 3.3.4.1, that the value of the PHD at a point gives the expected
number of features at that point while the integral over any given region
gives the expected number of features in that region. A salient property of
the PHD construct in map estimation is that the posterior PHD of the map is
indeed the expectation of the trajectory-conditioned PHDs. More concisely,

vk(m) = E [vk(m|X1:k)] , (6.9)

where the expectation is taken over the vehicle trajectory X1:k. This result
follows from the standard properties of the PHD (intensity function) of an
RFS, see for example classical texts such as [31], [32]. Thus the PHD con-
struct provides a natural framework to average feature map estimates, while
incorporating both unknown associations and different feature numbers. This
differs dramatically from vector based map averaging methods which require
feature identification tracking and rule-based combinations [63]. In contrast,
map averaging for grid-based maps is straight forward due to both known
grid alignments and number of cells. While the practical merits of an ex-
pected feature map estimate for SLAM using a single sensor may be unclear
at this time, related operations such as ‘feature map addition’ may be of
use in sensor fusion and multi-robot SLAM applications. Furthermore, the
PHD construct admits a Bayes optimal estimator for the map, as discussed
previously in Section 3.3.1.

6.2.3 PHD Mapping

This section details the trajectory-conditioned PHD mapping recursion of
equation 6.6, as was first proposed in [64]. The predicted and posterior RFS
maps are approximated by Poisson RFSs with PHDs vk|k−1(m|X0:k) and
vk(m|X0:k) respectively,

pk|k−1(Mk|X0:k) ≈
∏

m
vk|k−1(m|X0:k)

exp
(∫

vk|k−1(m|X0:k)dm
) (6.10)
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pk(Mk|X0:k) ≈

∏

m∈Mk

vk(m|X0:k)

exp
(∫

vk(m|X0:k)dm
) . (6.11)

In essence, this approximation assumes that features are IID and the number
of features is Poisson distributed. This PHD approximation has been proven
to be powerful and effective in multi-target tracking [3]. Poisson approxi-
mations for the number of new features have also been adopted in certain
SLAM solutions [14]. In light of the above advantages of representing an RFS
with sequential Monte Carlo methods, the PHD filter for the SLAM problem
can be implemented in Rao-Blackwellised form. Again, referring to the PHD
predictor – corrector of equations 3.23 and 3.24, substituting

Γk −→ m|X0:k (6.12)

the PHD predictor equation then becomes

vk|k−1(m|X0:k) = vk−1(m|X0:k−1) + b(m|Xk) (6.13)

where b(m|Xk) is the PHD of the new feature RFS, B(Xk), initially intro-
duced in Section 3.4.

The corresponding Rao-Blackwellised, PHD corrector equation is then

vk(m|X0:k) = vk|k−1(m|X0:k)
[

1 − PD(m|Xk)+

∑

z∈Zk

PD(m|Xk)gk(z|m,Xk)
ck(z|Xk) +

∫

PD(ξ|Xk)gk(z|ξ,Xk)vk|k−1(ξ|X0:k)dξ

]

(6.14)

where

PD(m|Xk) = the probability of detecting a feature at
m, from vehicle pose Xk.

ck(z|Xk) = PHD of the clutter RFS Ck(Xk) (in equation 2.10)
at time k and,

gk(z|m,Xk) = the measurement model of the sensor at time k.

(6.15)

In contrast to the “Brute force” SLAM approach of chapter 5, the RB PHD
SLAM filter estimates multiple, conditionally independent PHDs (intensity
functions). Each independent map PHD, is conditioned on each of the N hy-
pothesised vehicle trajectories (particles). Referring again to the GM example
representations of PHDs in figures 3.2 and 3.3, in any particular map PHD,
each Gaussian representing a/some possible feature(s) is conditioned on one
of the N hypothesised vehicle trajectories. N such conditionally independent
PHDs, one per hypothesised trajectory, are then propagated.



102 6 Rao-Blackwellised RFS Bayesian SLAM

6.2.4 PHD-SLAM

This section extends the trajectory-conditioned PHD mapping recursion to
the SLAM problem. With the hindsight of FastSLAM [58], the most obvious
extension of PHD mapping [64] to SLAM is to exploit the factorisation equa-
tions 6.5, 6.6 and 6.7, e.g. PHD for mapping and particle filtering for localisa-
tion. This technique requires the computation of the posterior density of the
vehicle trajectory in equation 6.7, in particular the term gk(Zk|Z0:k−1, X0:k),
which requires set integration,

gk(Zk|Z0:k−1, X0:k) =
∫

p(Zk,Mk|Z0:k−1, X0:k)δMk. (6.16)

This set integral is numerically intractable and a naive approach is to directly
apply the EKF approximation proposed for FastSLAM [65]. However, an EKF
approximation cannot be used since the likelihood equation 6.16, defined on
the space of finite-sets, and its FastSLAM counterpart, defined on a Euclidean
space, are two fundamentally different quantities and it is not known how they
are even related. Therefore, in this case, it is fundamentally incorrect to use
the EKF approximation in [58] as it will not result in a valid density, and
thus its product with equation 6.6 cannot give the joint posterior of the map
and pose. An EKF approximation requires a hypothesised data association
assignment. Since there is no concept of data association in the RFS-SLAM
framework (there is no fixed ordering of features or measurements in the
state), alternative methods of evaluation of equation 6.16 are required.

Fortunately, by rearranging equation 6.6, it can be seen that
gk(Zk|Z0:k−1, X0:k) is merely the normalising constant,

gk(Zk|Z0:k−1, X0:k) =
gk(Zk|Mk, Xk)pk|k−1(Mk|X0:k)

pk(Mk|X0:k)
. (6.17)

Note in the above, that the LHS does not contain the variable Mk, while
the RHS has Mk in both the denominator and numerator. In essence, Mk

in equation 6.17 is a dummy variable, and thus equation 6.17 holds for any
arbitrary choice of Mk. This allows the substitution of any choice of Mk to
evaluate gk(Zk|Z0:k−1, X0:k). This is an important result, which allows for
the likelihood of the measurement conditioned on the trajectory (but not the
map), to be calculated in closed-form, as opposed to using the EKF approxi-
mations in [58]. The following considers two simple choices: (derivations can
be seen in Appendix B.)

6.2.4.1 The Empty Strategy

It was mentioned in Section 3.3.4.4, that if the RFS Mk is Poisson dis-
tributed in its number, and the points within Mk are IID distributed, then
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the probability density of Mk can be recovered exactly from the PHD inten-
sity function according to equation 3.19. Similarly the predicted and posterior
RFS maps can be approximated by Poisson RFSs with PHDs vk|k−1(m|X0:k)
and vk(m|X0:k) respectively,

pk|k−1(Mk|X0:k) ≈

∏

m∈Mk

vk|k−1(m|X0:k)

exp
(∫

vk|k−1(m|X0:k)dm
) (6.18)

pk(Mk|X0:k) ≈

∏

m∈Mk

vk(m|X0:k)

exp
(∫

vk(m|X0:k)dm
) . (6.19)

Setting Mk = ∅, and using the Poisson RFS approximations, equation 6.18
and equation 6.19, as well as the RFS measurement likelihood, equation 5.4
shown in Section 5.2, it follows that (see Appendix B)

gk(Zk|Z0:k−1, X0:k) ≈ κZk

k exp
(

m̂k − m̂k|k−1 −
∫

ck(z|Xk)dz
)

, (6.20)

where, κZk

k =
∏

z∈Zk

ck(z|Xk) with, ck(z|Xk) being the PHD of the measure-

ment clutter RFS Ck(Xk). In addition, m̂k =
∫

vk(m|X0:k)dm and m̂k|k−1 =
∫

vk|k−1(m|X0:k)dm. Equation 6.20 gives the closed form likelihood of the
measurement, conditioned on the trajectory, and not on the map.

6.2.4.2 The Single Feature Strategy

In a similar manner, to evaluate the normalising constant for the case of
Mk = {m̄}, again using equations 6.18, 6.19, and 5.4,

gk(Zk|Z0:k−1, X0:k) ≈ 1
Γ

[(

(1 − PD(m̄|Xk))κZk

k +

PD(m̄|Xk)
∑

z∈Zk

κ
Zk−{z}
k gk(z|m̄,Xk)

)

vk|k−1(m̄|X0:k)
]

(6.21)

with,

Γ = exp
(

m̂k|k−1 − m̂k +
∫

ck(z)dz
)

vk(m̄|X0:k). (6.22)

For this choice of Mk, m̄ can be, for instance, the feature with the least uncer-
tainty or the maximum measurement likelihood. It is possible to choose Mk

with multiple features, however this will increase the computational burden.
Due to the presence of the measurement likelihood term gk(z|m̄,Xk), it is
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expected that, in general, the single feature map update will outperform that
of the empty map update. Note that in equation 6.17, every choice of Mk

would give the same result, however equations 6.20 and 6.21 use different ap-
proximations of pk(Mk|X0:k), yielding slightly different results. In principle,
any map strategy can be used including more features, however the computa-
tion required to evaluate the trajectory conditioned measurement likelihood
would also increase. The following section presents a Rao-Blackwellised im-
plementation of the proposed PHD-SLAM filter.

6.3 Rao-Blackwellised Implementation of the
PHD-SLAM Filter

Following the description of the PHD-SLAM filter in the previous section, a
Rao-Blackwellised (RB) implementation is detailed in this section. In essence,
a particle filter is used to propagate the vehicle trajectory (equation 6.7), and
a Gaussian mixture (GM) PHD filter is used to propagate each trajectory-
conditioned map PHD (equation 6.6). As such, let the PHD-SLAM density
at time k−1 be represented by a set of N particles,

{

η
(i)
k−1, X

(i)
0:k−1, v

(i)
k−1(m|X(i)

0:k−1)
}N

i=1

,

where X(i)
0:k−1 = [X0, X

(i)
1 , X

(i)
2 , . . . , X

(i)
k−1] is the ith hypothesised vehicle tra-

jectory and v
(i)
k−1(m|X(i)

0:k−1) is its map PHD. The filter then proceeds to
approximate the posterior density by a new set of weighted particles,

{

η
(i)
k , X

(i)
0:k, v

(i)
k (m|X(i)

0:k)
}N

i=1

,

as follows:

6.3.1 PHD Mapping – Implementation

Let the prior map PHD for the ith particle, v(i)
k−1(m|X(i)

k−1), be a Gaussian
mixture of the form,

v
(i)
k−1(m|X(i)

k−1) =
J

(i)
k−1
∑

j=1

ω
(i,j)
k−1N

(

m;μ(i,j)
k−1 , P

(i,j)
k−1

)

(6.23)
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which is a mixture of J (i)
k−1 Gaussians, with ω(i,j)

k−1 , μ(i,j)
k−1 and P (i,j)

k−1 being the
corresponding predicted weights, means and covariances respectively for the
jth Gaussian component of the map PHD of the ith trajectory. Let the new
feature intensity for the particle, b(m|Zk−1, X

(i)
k ), from the sampled pose,

X
(i)
k at time k also be a Gaussian mixture of the form

b(m|Zk−1, X
(i)
k ) =

J
(i)
b,k
∑

j=1

ω
(i,j)
b,k N (

m;μ(i,j)
b,k , P

(i,j)
b,k

)

(6.24)

where, J (i)
b,k defines the number of Gaussians in the new feature intensity at

time k and ω(i,j)
b,k , μ(i,j)

b,k and P (i,j)
b,k are the corresponding components. This is

analogous to the proposal distribution in the particle filter and provides an
initial estimate of the new features entering the map.

The predicted intensity is therefore also a Gaussian mixture,

v
(i)
k|k−1(m|X(i)

k ) =

J
(i)
k|k−1
∑

j=1

ω
(i,j)
k|k−1N

(

m;μ(i,j)
k|k−1, P

(i,j)
k|k−1

)

(6.25)

which consists of J (i)
k|k−1 = J

(i)
k−1 + J

(i)
b,k Gaussians representing the union of

the prior map intensity, vk−1(m|X(i)
k−1), and the proposed new feature inten-

sity according to equation 6.13. Since the measurement likelihood is also of
Gaussian form, it follows from equation 6.14 that the posterior map PHD,
v
(i)
k (m|X(i)

k ) is then also a Gaussian mixture given by

v
(i)
k (m|X(i)

k ) = v
(i)
k|k−1(m|X(i)

k )
[

1−PD(m|X(i)
k )+

∑

z∈Zk

J
(i)
k|k−1
∑

j=1

v
(i,j)
G,k (z,m|X(i)

k )
]

.

(6.26)
The components of the above equation are given by,

v
(i,j)
G,k (z,m|X(i)

k ) = ψ
(i,j)
k (z|X(i)

k )N (m;μ(i,j)
k|k , P

(i,j)
k|k ) (6.27)

ψ
(j)
k (z|X(i)

k ) =
PD(m|X(i)

k )ω(i,j)
k|k−1N

(

z;Hkμ
(i,j)
k|k−1, S

(i,j)
k

)

c(z) +

J
(i)
k|k−1
∑

�=1

PD(m|X(i)
k )ω(i,�)

k|k−1N
(

z;Hkμ
(i,�)
k|k−1, S

(i,�)
k

)

(6.28)

The terms μk|k, Pk|k and Sk can be obtained using any standard filtering
technique such as EKF or UKF [66]. In this chapter, the EKF updates are
adopted.
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The clutter RFS, Ck, is assumed Poisson distributed [14] in number and
uniformly spaced over the mapping region. Therefore the clutter intensity is
given by, c(z) = λc U(z), where λc is the average number of clutter measure-
ments and U(z) denotes a uniform distribution on the measurement space.
As with other feature-based GM implementations [38], pruning and merging
operations are required to curb the explosive growth in the number of Gaus-
sian components of the posterior map PHD. These operations are carried out
as in [33].

6.3.2 The Vehicle Trajectory – Implementation

The proposed filter adopts a particle approximation of the posterior vehicle
trajectory, pk(X1:k), which is sampled/re-sampled as follows:

Step 1: Sampling Step

• For i = 1, ..., N , sample ˜X
(i)
k ∼ fX( ˜X(i)

k |X(i)
k−1, Uk−1) and set

η̃
(i)
k =

gk(Zk|Z0:k−1, ˜X
(i)
0:k)fX( ˜X(i)

k |X(i)
k−1, Uk−1)

fX( ˜X(i)
k |X(i)

k−1, Uk−1)
η
(i)
k−1. (6.29)

• Normalise weights:
∑N

i=1 η̃
(i)
k = 1.

Step 2: Resampling Step

• Resample
{

η̃
(i)
k , ˜X

(i)
0:k

}N

i=1
to get

{

η
(i)
k , X

(i)
0:k

}N

i=1
.

Since the vehicle transition density is chosen as the proposal density as with
FastSLAM 1.0 [58],

η̃
(i)
k = gk(Zk|Z0:k−1, ˜X

(i)
0:k)η(i)

k−1 (6.30)

which can be evaluated in closed form according to Mk being the empty map
(equation 6.20) or Mk being a single feature map (equation 6.21), where

m̂
(i)
k|k−1 =

J
(i)
k|k−1
∑

j=1

ω
(i,j)
k|k−1 and m̂

(i)
k =

J
(i)
k
∑

j=1

ω
(i,j)
k . (6.31)

Note that the incorporation of the measurement conditioned proposal of Fast-
SLAM 2.0 can also be accommodated in this framework. This direction of
research focuses on more efficient SMC approximations and is an avenue for
further studies.
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6.3.3 SLAM State Estimation and Pseudo-code

As mentioned in the introduction, in contrast to previous SLAM algorithms,
the PHD map representation allows for a natural ability to average feature
maps. That is, independent map estimates from N independent trajectory
particles can be readily averaged into an expected estimate, even with map
estimates of different size and without having to resolve the intra-map feature
associations. Consequently, in the case of the RB-PHD-SLAM filter, both the
expected vehicle trajectory and feature map can be determined as follows:

Given the posterior set of weighted particles and corresponding map PHDs,

{

η
(i)
k , X

(i)
0:k, v

(i)
k (m|X(i)

0:k)
}N

i=1

,

and η̄ =
∑N

i=1 η
(i)
k then,

̂X0:k =
1
η̄

N
∑

i=1

η
(i)
k X

(i)
0:k. (6.32)

As demonstrated previously in Section 6.2.4, the posterior PHD of the map
is the expectation of the trajectory-conditioned PHDs and thus

vk(m|X0:k) =
1
η̄

N
∑

i=1

η
(i)
k v

(i)
k (m|X(i)

0:k). (6.33)

If m̂k =
∫

vk(m|X0:k)dm, is the mass of the posterior map PHD, the expected
map estimate can then be extracted by choosing the m̂k highest local maxima.
The pseudo-code for the RB-PHD-SLAM filter are provided in tables 6.1, 6.2,
while that of appropriate estimators is provided in Tables 6.3 and 6.4, which
continues as Table 6.4. The following section presents the results and analysis
of the proposed filter, with comparisons to standard SLAM algorithms.

6.4 Results and Analysis

This section presents the results and analysis of the proposed approach us-
ing both simulated and real experimental datasets. Initial comparisons are
made with the FastSLAM [58] algorithm with maximum likelihood data as-
sociation, using a mutual exclusion constraint and a 95% χ2 confidence gate.
These comparisons are demonstrated with a simulated single loop vehicle
trajectory carrying a simulated range – bearing measuring sensor and a real,
land based vehicle using a millimetre wave (MMW) radar for feature extrac-
tion. To further demonstrate the abilities of the RB-RFS-SLAM approach,
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Table 6.1 RB-PHD-SLAM-Predict

Algorithm RB-PHD-SLAM-Predict
({η(i)

k−1, X
(i)
0:k−1, v

(i)
k−1(m|Zk−1, X

(i)
k−1)}N

i=1,Zk−1, Uk−1

)

// Construct (6.25)
1. for i = 1 to N do
// Sample pose
2. X̃

(i)
k ∼ fX(X̃(i)

k |X(i)
k−1, Uk−1)

// Predict map
3. GMM-PHD-FBRM-Predict

(Zk−1, X
(i)
k−1, v

(i)
k−1(m|Zk−1, X

(i)
k−1)

4. end for
5. return

({η(i)
k−1, X̃

(i)
k , v

(i)
k|k−1(m|Zk−1, X

(i)
k−1)}N

i=1

)

Table 6.2 RB-PHD-SLAM-Update

Algorithm RB-PHD-SLAM-Update
({η(i)

k−1, X̃
(i)
k , v

(i)
k|k−1(m|Zk−1, X

(i)
k−1)}N

i=1,Zk

)

1. for i = 1 to N do
// Update map PHD
2. GMM-PHD-FBRM-Update

(Zk, X̃
(i)
k , v

(i)
k|k−1(m|Zk−1, X

(i)
k−1)

)

// Predicted PHD mass

3. m̂k|k−1 =
∑J

(i)
k|k−1

j=1 ω
(i,j)
k|k−1

// Updated PHD mass

4. m̂k =
∑J

(i)
k

j=1 ω
(i,j)
k

5. if( Empty Strategy TRUE ) do
// Updated trajectory weight of (6.20)
6. η̃

(i)
k =

(

c(z)|Zk| exp(m̂k−m̂k|k−1−λc)
)

η
(i)
k−1

7. end if
8. if( Single Feature Strategy TRUE ) do
// Select a given map state
9. j = {i = 1, . . . , J (i)

k |m(i,j) = m̄}
10. a = (1 − PD)c(z)|Zk| + PDω

(i,j)
k|k−1×

∑

z∈Zk

(c(z)|Zk|−1)N (z; z(i,j)
k|k−1, S

(i,j)
k )

11. b = exp(m̂k|k−1−m̂k+λc) ω
(i,j)
k

// Update trajectory weight of (6.21)
12. η̃

(i)
k =

a

b
η̃
(i)
k|k−1

13. end if
14. end for
15. return

({η̃(i)
k , X̃

(i)
k , v

(i)
k (m|Zk, Xk)}N

i=1

)
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Table 6.3 RB-PHD-SLAM-MAPestimate

Algorithm RB-PHD-SLAM-MAPestimate
({η(i)

k−1, X
(i)
k , v

(i)
k|k−1(m|Zk−1, Xk−1)}N

i=1,Zk, Tfeature

)

// Initialise the map estimate
1. M̂k = ∅
2. I = {1,. . . ,N}
// Get index of max weight component
3. j = arg max

i∈I
η
(i)
k

// Estimated Trajectory
4. X̂0:k = X

(j)
0:k

// Estimate Map from corresponding map PHD
5. for i = 1 to J (j)

k do
6. if ω(j,i)

k > Tfeature

// concatenate estimate
7. M̂k = [M̂k μ

(j,i)
k ]

8. end if
9. end for
// RB-PHD-SLAM MAP Estimate
10. return

(

X̂0:k,M̂k

)

further, somewhat more complicated, experiments are carried out in which
the benchmark algorithms used are the classical FastSLAM [58] but with
with Multiple Hypothesis Data association [67] and the Joint Compatibility
Branch and Bound (JCBB) EKF [39]. In this second set of experiments, in
the simulation, multiple vehicle loop trajectories are executed and for the real
experiment, a much larger scenario, where accurate SLAM performance in
the presence of high clutter is essential, is demonstrated at sea, in a coastal
environment, using an “Autonomous kayak” [59] as the vehicle and a com-
mercially available X-Band radar.

In all experiments, the ‘single feature map’ trajectory weighting of equation
6.21 is adopted for the proposed RB-PHD-SLAM filter. An implementation
using the ‘empty map update’ of equation 6.20 was presented in [56]. While
any feature can theoretically be selected to generate the trajectory weight-
ing, in this implementation, that which generates the maximum likelihood
amongst all measurements is chosen. A comprehensive study as to the best
suited feature selection strategies is left to future work.

Current SLAM filters deal with clutter through ‘feature management’
routines, such as the landmark’s quality [1] or a binary Bayes filter [58].
These operations are typically independent of the joint SLAM filter update,
whereas the proposed approach unifies feature management, data association
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Table 6.4 RB-PHD-SLAM-EAPestimate

Algorithm RB-PHD-SLAM-EAPestimate
({η(i)

k−1, X
(i)
k , v

(i)
k|k−1(m|Zk−1, Xk−1)}N

i=1,Zk, Tfeature, Dmin

)

1. Ωk = 0
2. for i = 1 to N do
3. Ωk = Ωk + η

(i)
k

4. end for
// expected trajectory

5. X̂0:k =
1
Ωk

N
∑

i=1

η
(i)
k X

(i)
0:k

// Initialise number of Gaussian components
6. l = 0
7. for i = 1 to N
8. for j = 1 to J (i)

k

9. l = l+1
10. ω̄

(l)
k = η

(i)
k ω

(i,j)
k

11. μ̄
(l)
k = μ

(i,j)
k

12. P̄
(l)
k = P

(i,j)
k

13. end for
14. end for
15. R = {1, . . . , l}
// Initialise number of merged Gaussian components
16. L = 0
// Gaussian merging
17. do while R �= ∅
// Increment component counter
18. L = L+1
// Get index of max weight component
19. j = arg max

r∈R
ω̄

(r)
k

// Cluster those within distance Dmin

20. K = {r ∈ R|(μ̄(r)
k − μ̄

(j)
k )T [P̄ (r)

k ]−1(μ̄(r)
k − μ̄

(j)
k ) ≤ Dmin}

// Combine component weights
21. ω̃

(L)
k =

∑

i∈K

ω̄
(i)
k

// Weighted average mean

22. μ̃
(L)
k =

1

ω̃
(L)
k

∑

i∈K

ω̄
(i)
k μ̄

(i)
k
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Table 6.4 (Continued)

/ / Combined covariance
// Remove K from R and repeat

23. P̃
(L)
k =

1

ω̃
(L)
k

∑

i∈K

ω̄
(i)
k

(

P̄
(i)
k + (μ̃(L)

k − μ̄
(i)
k )(μ̃(L)

k − μ̄
(i)
k )T

)

24. R = R−K
25. end while
26. for i = 1 to L do
27. if ω̃(i)

k > Tfeature

// concatenate estimate
28. M̂k = [M̂k μ̃

(i)
k ]

29. end if
30. end for
// RB-PHD-SLAM EAP Estimate
31. return

(

X̂0:k,M̂k

)

and state filtering into a single Bayesian update. While these methods have
been used successfully, they generally discard the sensor’s detection (PD) and
false alarm (PFA) probabilities and thus can be erroneous when subject to
large clutter rates and/or measurement noise. Since the proposed approach
assumes knowledge of these probabilities, as seen in equation 6.14, a modi-
fied feature management routine coined the ‘feature existence filter’ (see Ap-
pendix C), which incorporates both PD and PFA, is used with the benchmark
algorithms in an attempt to be ‘fairer’ to them in the comparisons.

To quantify the map estimation error, a metric must be adopted which
jointly evaluates the error in the feature location and number estimates.
Current methods typically examine the location estimates of a selected num-
ber of features and obtain their Mean Squared Error (MSE) using ground
truth [1]. As such, vector-based error metrics are applied to feature maps
and the error in the estimated number of features is neglected. While there
are several metrics for finite-set-valued estimation error, that of [23] has been
demonstrated to be most suitable [64], [56]. Therefore, the set map error
metric described in Chapter 4 (equation 4.6) is therefore once again used
to gauge the mapping performance in terms of estimated and actual feature
number, as well spatial error. In the following sections, this metric along with
the root mean squared error (RMSE) and graphical comparisons are used to
demonstrate the merits of the RB-PHD-SLAM filter.
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6.4.1 Simulated Datasets

Comparisons of RB-RFS-SLAM with standard vector based SLAM algo-
rithms are firstly presented in the form of simulated trials due to the ease of
generating known ground truth (trajectories and maps) for estimation error
evaluation.

6.4.1.1 Simulation: Single Loop Trajectory

The filter parameters used for the single loop trajectory simulated trial are
shown in Table 6.5. The measurement noise was inflated to hinder data as-

Table 6.5 Filter parameters used for the single loop trajectory trial.

Filter Parameter Value

Velocity input standard deviation (std) 1.5 m/s
Steering input std. 9.5o

Range measurement std. 1.75m
Bearing measurement std. 3.5o

Probability of Detection PD 0.95
Clutter rate λc 5m−2

Sensor maximum range 10m
Sensor Field-of-View (FoV) 360o

Feature existence threshold 0.5

sociation in the vector-based filter. For both filters, both the maximum a
posterior (MAP) and expected a posterior (EAP) trajectories are reported.
For FastSLAM, the map of the highest weighted trajectory estimate is used
as the map estimate, while for the proposed filter, both the map of the highest
weighted trajectory and the EAP map estimate are determined for compari-
son. 50 Monte Carlo (MC) trials were carried out.

Figure 6.1 shows a sample of the raw data used in the trials, with the
green circles depicting the true feature locations. A quantitative evaluation
of the estimation results is provided through the RMSE, along with stan-
dard deviations, of the trajectory estimate as shown in figure 6.2. Without
knowledge of PD and PFA, the benchmark approach can be made to ap-
pear highly erroneous due to poor feature management. Incorporating this
information can improve the result, however the feature management is still
effectively a post-filter update processing method. The RB-PHD-SLAM algo-
rithm is significantly more robust due to the RFS feature map representation
and Bayesian recursion which jointly performs feature management and state
estimation.
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Fig. 6.1 The simulated environment showing point features (green circles). A sam-
ple measurement history (black points) plotted from a sample noisy trajectory (blue
line) is also shown.

In terms of the map estimation, figure 6.3 depicts both the true and esti-
mated number of features as the robot explores the map, with the proposed
approach closely tracking the true number. Note that since this trial is a
simulation, the true number of features which have entered the vehicle’s FoV
during its entire trajectory, can be calculated exactly. Since this result does
not examine the locations of the estimated features, the set metric of equa-
tion 4.6 is used to compare map estimates, as shown in figure 6.4. The figure
shows the ‘ideal’ mapping error (i.e. every feature is instantly estimated by
its true coordinates when it enters the sensor FoV), which converges to zero
once all features in the map have been scanned. The mean and std of the
map estimates for both the benchmark and proposed approach are plotted,
with that of the RB-PHD-SLAM filter reporting less map estimation error.
A qualitative depiction of the posterior estimates from both approaches is
provided in figures 6.5 and 6.6, demonstrating the usefulness of the RFS ap-
proach and the associated RB-PHD-SLAM filter. In both figures, the green
line and circles represent the ground truth vehicle trajectory and feature lo-
cations respectively. The black crosses represent the estimated map. In the
case of FastSLAM, this is derived with respect to the MAP FastSLAM trajec-
tory estimate (the particle (trajectory) with the final maximum weight). In
each figure, the blue line indicates the MAP trajectory estimate, which cor-
responds to the particle with the maximum weight, at each time and the red
line corresponds to the expected trajectory estimate, which is the weighted
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average of all particles at each time (see Tables 6.3 and 6.4). Given that the
filter jointly incorporates data association and feature number uncertainty
into its Bayesian recursion, it is more robust to large sensing error, as it does
not rely on hard measurement-feature assignment decisions. Furthermore, it
jointly estimates the number of features and their locations, alleviating the
need for popular feature management methods [1], [58].
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Fig. 6.2 The mean and standard deviation of the expected trajectory estimates
of RB-PHD-SLAM vs. that of FastSLAM over 50 MC runs. LQ refers to an imple-
mentation with the ‘landmark quality’ method of [1].
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Fig. 6.3 The average estimated number of features in the map vs. ground truth
for each approach. The feature number estimate of RB-PHD-SLAM can be seen
to closely track that of the ground truth. Clearly there is no distinction between
correctly estimated feature and false feature in this result.
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Fig. 6.4 A comparative plot of the mean and standard deviation of the map es-
timation error vs. time. The error incorporates that of the number of features,
shown in figure 6.3 as well as their positional estimates. Note that the ‘ideal’ er-
ror converges to zero, an important property for SLAM filters and map estimation
comparisons.
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Fig. 6.5 A sample posterior estimate from FastSLAM showing error in the esti-
mated trajectory and feature map. The green circles and line show the ground truth
feature locations and path respectively. The black crosses show the FastSLAM es-
timated map (feature locations). The blue line shows the MAP trajectory estimate
and the red line shows the expected trajectory estimate.
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Fig. 6.6 The posterior estimate given the same inputs / measurements as those
used in figure 6.5. Again, the green circles and line show the ground truth fea-
ture locations and path respectively. The black crosses show the RB-PHD-SLAM
estimated map (feature locations). The RB-PHD-SLAM filter demonstrates its ro-
bustness and accuracy given high clutter and data association ambiguity.

6.4.1.2 Simulation: Multiple Loop Trajectories

The parameters for the more complex, multiple loop trajectory, simulated tri-
als are shown in table 6.6. A 95% validation gate is used throughout. For each

Table 6.6 Filter parameters used for the single loop trajectory trial.

Filter Parameter Value

Velocity input standard deviation (std) 2.0 m/s
Steering input std. 5.0o

Range measurement std. 1.00m
Bearing measurement std. 2.0o

Probability of Detection PD 0.95
Clutter rate λc 20m−2

Sensor maximum range 10m
Sensor Field-of-View (FoV) 360o

Feature existence threshold 0.5
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SLAM filter, 50 Monte Carlo (MC) trials were carried out in which all meth-
ods received identical sequences of control inputs and measurements. The
RB based filters used 50 trajectory particles each, while for MH-FastSLAM
a maximum limit of 2000 particles (number of hypotheses considered prior
to resampling) was used.
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Fig. 6.7 The simulated environment showing point features (green circles) and
true vehicle trajectory (green line). A sample measurement history plotted from a
sample noisy trajectory (red line) is also shown (black points).

Figure 6.7 shows a sample of the raw input data used in the trials, su-
perimposed onto the ground truth feature map and path. A comparison of
the average trajectory estimation errors for all three filters is then presented
in Figure 6.8. In terms of the estimated trajectory, the first order RB-PHD-
SLAM algorithm can be seen to outperform the vector based FastSLAM with
robust data association, but does not quite achieve the estimation accuracy
of JCBB-EKFSLAM. This is primarily due to the fact that JCBB is very
conservative in its choice of measurement-feature associations (jointly com-
patible constraint) resulting in very few false association pairs influencing
the trajectory estimation. However, later results in Figures 6.9, 6.10 and 6.12
highlight the drawbacks of achieving such impressive localisation results.

In terms of the map estimation component of each SLAM algorithm, Figure
6.9 depicts both the true and estimated number of features as the vehicle ex-
plores the map, with the proposed RB-PHD-SLAM approach seen to closely
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track the true number of features in the explored map. Erroneous associa-
tions for the MH-FastSLAM approach result in excessive feature declarations,
while the conservative (only including those which are jointly compatible)
association decisions of JCBB-EKF SLAM reduces the number of correct
associations. Since vector based feature management routines are typically
dependant on the data association decisions, this dramatically influences the
map estimation error.

Incorporating the estimation error in both the number and location of
features in the map, Figure 6.10 plots the map error distance of equation
4.6 for each approach. Note that in order to generate this result, the vector
based maps of FastSLAM and JCBB-EKFSLAM are temporarily ‘assumed’
to be sets. The proposed method can be seen to report the least mapping
error due it is robust ability to jointly incorporate uncertainty in feature
locations and numbers, while erroneous feature estimates contribute to in-
creased mapping error for the vector based approaches. A qualitative depic-
tion of the posterior estimates is provided in Figure 6.11, demonstrating the
usefulness of the RFS-SLAM framework and the proposed RB-PHD-SLAM
filter.
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Fig. 6.8 The mean and standard deviation of the trajectory estimates from each
filter over 50 MC runs versus time.

6.4.2 A Note on Computational Complexity

As can be observed from the implementation of Section 6.3, the computa-
tional complexity of RB-PHD-SLAM is, O(mkzkN) i.e. linear in the number
of features (in the FoV), linear in the number of measurements and linear in
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Fig. 6.9 The average estimated number of features in the map for each filter versus
time, compared to the ground truth number of features in the explored map Mk.
The feature number estimate of RB-PHD-SLAM can be seen to closely track that
of the ground truth.
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Fig. 6.10 A comparative plot of the mean and standard deviation of the map
estimation error for each filter vs. time. At any given time, for the ideal case, the
mapping error from equation 4.6 wrt. the explored map is zero.
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Fig. 6.11 Comparisons of the posterior SLAM estimates from MH-FastSLAM
(left, red) and the proposed RB-PHD-SLAM (right, blue). The ground truth tra-
jectory and map are represented by the green line and circles respectively. The
RB-PHD-SLAM filter demonstrates its robustness and accuracy given high clutter
and data association ambiguity.

the number of trajectory particles. The linear complexity of each particle in
the mapping filter was verified previously in Figure 4.8.

For a single thread implementation, Figure 6.12 shows that the computa-
tional time is comparable with that of the MH-FastSLAM algorithm, both
of which are less expensive than JCBB-EKF SLAM as its hypothesis tree
grows in the presence of high clutter. Note that due to the Rao-Blackwellised
structure of RB-PHD-SLAM, binary tree based enhancements, such as those
applied to traditional FastSLAM [58], can be readily developed to further
reduce the complexity to O(

zkN log(mk)
)

. Furthermore, in contrast to data
association based methods, the proposed approach admits numerous other
computational enhancements, since the map PHD update can be segmented,
executed in parallel and subsequently fused for state estimation. This is in
contrast to DA based approaches which are scalable.

6.4.3 Outdoor Experiments

6.4.3.1 Land Based SLAM with MMW Radar

This section discusses the performance of the proposed framework, using a
millimetre wave radar SLAM dataset in a university car park environment.
Millimetre wave radar offers numerous advantages over standard laser-based
systems, returning a power vs. range spectrum. This allows for customised
detection algorithms to be developed, however it can be prone to high clutter
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Fig. 6.12 A comparison of the computation time per measurement update for
RB-PHD-SLAM (blue), MH-FastSLAM (red) and JCBB-EKFSLAM (black).

rates [16]. The extracted radar point clusters, plotted relative to the odome-
try only pose estimates of the vehicle, as well as the odometry pose estimates
themselves are depicted in figure 6.13 (left). The information displayed in
this figure can be thought of as the information input to the SLAM algo-
rithms, which must be processed to yield the best estimated trajectory and
map. Given the tree coverage and surrounding buildings in the area, GPS is
generally not available. Ground truth was thus obtained by manually match-
ing successive scans from a laser range finder which was also mounted on the
vehicle, with graphical verification also provided in figure 6.13 (right). The
vehicle was driven at approximately 1.5m/s around 3 loops, with a control
input frequency of 10Hz and a radar measurement frequency of 2.5Hz. The
car park environment is comprised of buildings, bushes, trees, fire hydrants,
curbs, medians, a car etc.

Given the small-sized loop, the maximum range of the radar was set at 15m
and both FastSLAM, with maximum likelihood data association, and RB-
PHD-SLAM were executed on the dataset. Figure 6.14 depicts the posterior
estimated trajectory and map using the FastSLAM algorithm (left) and that
from RB-PHD-SLAM (right), given the same control input samples. Given
the noisy measurements from the radar sensor, the merits of the proposed
approach are demonstrated. It should be noted that, as is the case with any
experimental dataset, the ground truth feature map is extremely difficult to
obtain, making it challenging to evaluate the feature map estimation error.
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Fig. 6.13 Left: Odometery and extracted clusters from the radar data, represent-
ing the raw inputs to the SLAM algorithms. Right: The ground truth trajectory
(green) obtained by matching laser data due to a lack of GPS data.
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Fig. 6.14 Left: The posterior estimate from FastSLAM using the radar-based car
park dataset. Right: The posterior estimate from RB-PHD-SLAM using the same
dataset. The proposed integrated Bayesian framework for SLAM, incorporating DA
and feature management enhances the robustness of the SLAM algorithm given
noisy measurements.
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6.4.3.2 Sea Based SLAM with X-Band Radar

This section discusses the filter’s performance in a surface-based marine envi-
ronment, using an X-band radar mounted on a powerboat. In order to max-
imise the detection of all sea surface point features (comprising boats, buoys,
etc.), a low detection threshold is required, which subsequently increases the
clutter rate. GPS data is available for measuring the ground truth trajectory,
while sea charts and data from surrounding vessels’ Automatic Identification
Systems provide the feature map ground truth. The test site is off the South-
ern coast of Singapore, as shown in Figure 6.15, where the boat was driven in
a loop trajectory of 13Km. Adaptive thresholding methods were applied to
extract relative point measurements from the radar data [59]. The maximum
range of the radar, logging at 0.5Hz, was limited to 1Km. While heading
measurements were available via a low grade on-board single axis gyroscope,
due to the lack of Doppler velocity logs, the speed was estimated at 8 knots
(4.1 m/s).

Fig. 6.15 Overview of the test site (1o13′ N,103o43′ E), showing the GPS trajec-
tory (green line) and GPS coordinates-ordinates (green dots) of the point feature
map. The point feature measurement history is also provided (black dots).

Figure 6.16 compares the posterior SLAM estimates from MH-FastSLAM
and RB-PHD-SLAM, with Figure 6.17 comparing the estimated map sizes.
The proposed approach can be seen to generate more accurate localisation
and feature number estimates, however it can also be seen that some feature
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estimates are misplaced in comparison to the ground truth feature map. The
framework is still demonstrated to be useful for high clutter feature-based
SLAM applications.
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Fig. 6.16 Top: The posterior SLAM estimate (red) from MH-FastSLAM and Bot-
tom: The posterior SLAM estimate (blue) from RB-PHD-SLAM, in comparison to
the ground truth (green).

6.5 Summary

This chapter presented a tractable solution for the feature-based SLAM prob-
lem. The finite set representation of the map admits the notion of an expected
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Fig. 6.17 Comparison of the number of estimated features for each approach. The
noisy estimates are likely due to deviations from the Poisson clutter assumption in
places.

map in the form of a PHD or intensity function. A Rao-Blackwellised im-
plementation of the filter was proposed, in which the PHD of the map was
propagated using a Gaussian mixture PHD filter, and a particle filter propa-
gated the vehicle trajectory density. A closed form solution for the trajectory
weighting was also presented, alleviating the need for approximation, which
is commonly used.

Analysis was carried out, both in a simulated environment through Monte
Carlo trials and an outdoor SLAM experimental dataset based on a millimetre
wave radar sensor. Results demonstrated the robustness of the proposed filter,
particularly in the presence of large data association uncertainty and clutter,
illustrating the merits of adopting an RFS approach to SLAM.

In terms of its computational complexity, the Rao-Blackwellised SLAM fil-
ter was shown to be linear in the number of estimated features, measurements
and trajectory particles. It should be noted that computational enhancements
are possible, in terms of parallelisable operations, which are not possible with
vector based approaches requiring data association.

6.6 Bibliographical Remarks

The RFS approach to SLAM was first suggested in [54] with preliminary
studies using ‘brute force’ implementations shown in Chapter 5. The approach
modelled the joint vehicle trajectory and map as a single RFS, and recursively
propagated its first order moment.
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Initial results of a Rao-Blackwellised (RB) implementation of the PHD-
SLAM filter, were presented in [56]. This chapter extends [56], to present a
more rigorous analysis of the RFS approach to SLAM, an improved version
of the PHD-SLAM filter as well as real and simulated experimental results,
and is an extended version of [57]. The merits of the RFS approach are
demonstrated, particularly in situations of high clutter and data association
ambiguity.

A factorised approach to SLAM was established in the, now well known,
FastSLAM concept [58]. However, this chapter has shown that the same fac-
torisation method applied to vectors in FastSLAM, cannot be applied to
sets, since it results in invalid densities in the feature space. Therefore one
of the main contributions of this chapter is a technique which allows such a
factorisation to be applied to sets in a principled manner.
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