
K. Schmid  (Ed.): ICSR 2011, LNCS 6727, pp. 102–118, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Software Product Line Evolution with Cardinality-Based 
Feature Models 

Nadia Gamez and Lidia Fuentes 

Dpto de Lenguajes y Ciencias de la Comunicación, Universidad de Málaga 
{nadia,lff}@lcc.uma.es 

Abstract. Feature models are widely used for modelling variability present in a 
Software Product Line family. We propose using cardinality-based feature 
models and clonable features to model and manage the evolution of the struc-
tural variability present in pervasive systems, composed by a large variety of 
heterogeneous devices. The use of clonable features increases the expressive-
ness of feature models, but also greatly increases the complexity of the resulting 
configurations. So, supporting the evolution of product configurations becomes 
an intractable task to do it manually. In this paper, we propose a model driven 
development process to propagate changes made in an evolved feature model, 
into existing configurations. Furthermore, our process allows us to calculate the 
effort needed to perform the evolution changes in the customized products. To 
do this, we have defined two operators, one to calculate the differences between 
two configurations and another to create a new configuration from a previous 
one. Finally, we validate our approach, showing that by using our tool support 
we can generate new configurations for a family of products with thousands of 
cloned features.  

Keywords: Software Product Lines, Feature Models, Evolution. 

1   Introduction 

Recently, pervasive systems and Ambient Intelligence environments are gaining 
popularity to support people’s daily tasks. These systems are composed by a large 
variety of networked heterogeneous devices with embedded software. For instance, 
Ambient Assisted Living systems or Intelligent Transportation Systems (ITS) can be 
formed by a large number of sensor nodes (grouped in Wireless Sensors Networks, 
WSNs), smart phones, vehicles onboard computers or other devices with RFIDs or 
cameras. Application domains like pervasive systems, where heterogeneity is present 
at any level, can greatly benefit from Software Product Line (SPL) engineering [1], 
which is specifically focused on variability modelling. SPLs aim to provide tech-
niques for creating infrastructures that allow the rapid and systematic production of 
similar software systems, promoting the reuse of common core assets.  

Feature Models (FM) [2] have been widely adopted by the SPL community to 
specify which elements, or features, of the family of products are common, which are 
variable and the reasons why they are variable, i.e. if they are alternative elements or 
optional elements. Then, a feature model permits specifying where the variability is, 



 Software Product Line Evolution with Cardinality-Based Feature Models 103 

independently of the core asset, and enables reasoning about all the different possible 
configurations of a family of products.  

Specifically in heterogeneous pervasive environments, the most common variabil-
ity is the structural variability, defined as variations in type, cardinality or naming of 
elements [3]. We propose using cardinality-based features models and clonable fea-
tures [4] to model the structural variability present in the new generation of pervasive 
systems. The use of clonable features increases the expressiveness of FMs since they 
allow the creation of different configurations for the same kind of device using only 
one feature model. Using clonable features we can model so that a system has a vari-
able number of different kinds of devices (e.g. s sensors, c cameras, a alarms, or sm 
smartphones). The cloning of these device features leads to the cloning of the related 
structure (e.g. for 3 sensors, the configuration will contain s1, s2 and s3 clones of  
the sensor feature, joint with its sub-tree), increasing the complexity of the resulting 
configurations, and moreover the number of possible configurations increases a lot. 
Then, as the FM evolves, the impact of propagating changes made in the FM to the 
possible configurations is much higher in a cardinality-based FM. 

Evolving a FM may imply adding or removing a feature (e.g. adding a new encryp-
tion algorithm as a mandatory feature), which in a cardinality-based feature model 
may cause many changes in all the clones. Specifically in pervasive systems, configu-
rations could have hundred of clones composing a single product configuration.  
So, considering the evolution of a concrete SPL, it would be useful to automatically 
obtain the evolved configurations according to the changes introduced to the FM. 
From the point of view of the SPL engineer, it would be useful to know the necessary 
effort to evolve a previous existing product configuration to a new valid configuration 
after a FM modification was performed. This effort could be calculated by comparing 
the previous and the list of new possible configurations; which is not trivial to do at 
first glance due to the high number of cloned features. 

In this paper, we present how we manage automatically the evolution of an perva-
sive system software product lines using cardinality-based FM and clonable features. 
To do this, we have defined two operators between FM configurations that are not 
trivial for cardinality-based FM. The create_configuration operator allows the crea-
tion of a new configuration from a previous configuration and the features that  
must be added or removed in the new configuration. The differences operator calcu-
lates the differences between two configurations of a feature model. We use the  
create_configuration operator to create evolved configurations from the previous 
configuration and the evolved feature model. Furthermore, we use the differences 
operator to calculate the effort of evolving the product configurations of a SPL, reus-
ing and preserving the elements of the previous configuration. Finally, we validate 
our approach showing that by using our tool support we can easily evolve FMs with 
clonable features, automatically generating new configurations, for configurations 
with a high number of clones.  

The remainder of the paper is organized as follows. In Section 2, we present our 
motivation example and the challenges for evolving pervasive systems SPLs and how 
we achieve them. In Section 3, we show our approach and Section 4 details the differ-
ences and create_configuration operators. The validation and the tool support of our 
approach are presented in Section 5. In Section 6, we compare our approach with 
related work. Finally, in Section 7 we outline some conclusions. 



104 N. Gamez and L. Fuentes 

2   Motivation 

In this section we present a motivating example and we will discuss the special chal-
lenges of pervasive systems that make them good candidates to take advantage of the 
evolution process using SPL and cardinality-based FMs. 

2.1   Motivation Example 

One of the most popular pervasive systems are smart homes with a lot of appliances 
that helps the occupants of the house in their daily life. When the purpose of a smart 
home is to enhance the quality of life of dependant people, then we are talking about 
Ambient Assisted Living (AAL). In this paper our motivating example is a SPL of 
AAL homes, equipped with sensors, smartphones, alarms, and cameras as shows the 
FM of Fig. 1.a.  

Fig. 1.a represents a FM in Hydra1 (all the FM and configurations presented 
throughout this paper are modelled using our featuring modelling tool, Hydra). In a 
FM every feature has one parent except the root feature (as AALHome in Fig.1). The 
features can be mandatory (as Encryption), optional (as VideoSurveillance), or 
clonable (as Sensor that has a 0 to infinite cardinality). Apart from the features,  
Hydra also defines two groups of features: xor-group (as the group composed by the 
operating systems of the Smartphone: Android or iPhone) and or-group (as the one  
composed for the sensing units of the Sensor: Accelerometer, Light, Humidity, or 
Temperature). So in Hydra, we can distinguish two kinds of relations: between a 
feature and its children features (and-relationship, as in the relation between the 
AALHome and its Services) and between a feature and one group (as in the relation 
between the Sensor and its xor-group).  

Fig. 1.b shows a valid configuration for the AAL home family. A configuration of 
a feature model is the selection of a set of features belonging to the feature model. A 
configuration is valid if all features contained in the configuration and the deselection 
of all other specific features contained is allowed by the feature model [5, 6]. So, a 
valid configuration must satisfy the tree-constraints and the dependencies or interac-
tions between features (cross-tree constraints). In Hydra, the cross-tree constraints  
are expressed in a textual way using the combination of regular expressions, as for 
example, VideoSurveillance implies any Camera.   

The home of the configuration shown in Fig. 1.b has video surveillance facilities to 
transmit periodically video to the health centre. Also an automatic control of the lights 
and heat is provided. Furthermore all the data transmitted must be encrypted. This 
configuration has 10 sensors: the sensor S1 has a temperature sensing unit and offers 
temperature monitoring, the sensor S2 has in addition a humidity sensing unit and the 
sensors from S3 to S10 are identical and are equipped with accelerometers and light 
sensing units and offer light monitoring facilities. In this configuration there are also 2 
smartphones and 8 cameras. Note that the figure does not show all these devices for 
the sake of simplicity. The Phone 2 is an Android smartphone and provides an appli-
cation to transmit the video received from the camera to the health centre. Similarly, 
the cameras must transmit the video to the smartphones. Finally, all the devices have 
an encryption algorithm installed since this feature is mandatory.  

                                                           
1 http://caosd.lcc.uma.es/spl/hydra 



 Software Product Line Evolution with Cardinality-Based Feature Models 105 

Normally, only a subset of the family products are developed and marketed. Later, 
these products are mainly subject to two evolution scenarios: (1) one AAL home may 
focus on dependant people with movement difficulties. However, some of the  
dependant people may not have special movement problems, but problems due to 
diabetes, or both. So, this AAL home family of products must evolve in order to in-
corporate a glucose sensor device, specific for diabetic people. This means that the 
customers demand a new functionality to the family of products, so each product 
already developed, and even deployed in some houses, must be evolved in order to 
incorporate the new requirements; (2) the hardware and software technology for  
pervasive systems is continuously evolving. New operating systems (e.g. Android for 
mobile phones) or special sensors (e.g. new accelerometers) are frequently appearing. 
So, vendors must incorporate these new devices or facilities into their products  
already derived, in order to be competitive in the market. 

2.2   Challenges 

The heterogeneity present in pervasive systems is easily manageable with cardinality-
based feature models. Furthermore, these kinds of systems are continually evolving, 
as new devices, application facilities or requirements appear, and as a consequence of 
this some obsolete features disappear. So, the evolution of these systems must be 
properly supported by advanced tools. Now, we enumerate and detail the specific 
challenges to manage the evolution of pervasive systems using SPLs.  

- C1 Structural Variability Evolution: A special characteristic of pervasive systems 
is that many instances of the same device may compose the same product, but each 
device, although being of the same type may have a different configuration. In the 
AAL home presented, the device infrastructure would be similar for all products, 
but must be customized to the physical structure of each house or to the necessities 
of the dependant person. Such structural variability must be explicitly modelled in 
the SPL, but also its evolution must be part of a SPL engineering process. Achieving 
C1: We model such structural variability with clonable features, and manage its 
evolution, not at the feature, but at the clone level (see Section 3). So, it is possible 
to modify the configuration of sensor S1, but not of the other sensors.   

- C2 Automatic Change Propagation: When a SPL evolves, the changes must be 
propagated to the customized products of the family. Nevertheless in these kinds of 
systems with a high number of devices, each one with very specific characteristics 
 

 

Fig. 1. AAL Home Family Feature Model (a) and Configuration (b) 
 

Legend
Mandatory Feature

Optional Feature

0..*  Clonable Feature
XOR group

OR group

(a)

(b)



106 N. Gamez and L. Fuentes 

(Fig.1.a) the propagation of changes is very complex. So, we need an automatic proc-
ess that supports the evolution changes made in some characteristics of the SPL to  
all the derived products of this family. Achieving C2: We provide a tool support to 
automatically propagate the changes made at FM level into all customized configura-
tions (Section 3.1). Note that representing configurations graphically with many 
cloned features will complicate the management of configurations evolution. This is 
important, since some pervasive systems may be composed of hundreds of devices of 
the same type, so it would be impossible to handle changes one by one manually.  

- C3 Evolution Effort: Since most pervasive systems are composed of several or 
many different clones of each device, this implies that evolution changes must be 
performed in every clone in a different way. Let's imagine that we want to remove 
the encryption algorithm of the sensors in our AAL home family. But the applica-
tion architecture may be different for every sensor, so, the way to remove the  
encryption is also different. So, it is necessary to automatically evaluate the required 
effort to make the changes in the products of the family when the family evolves, 
since when we have several instances of similar devices, but with different architec-
tures, this is a very complex task. Achieving C3: We automatically calculate the  
differences between a previous configuration and the new evolved configuration for 
all the existing configurations (see Section 3.2). We use this difference, the FM and 
a mapping between every feature and the corresponding architecture to obtain which 
components of the architecture must be added or removed in every device. In this 
way, we can quantify the effort of evolving a product and the impact of change 
when the FM evolves. This may also help the SPL engineer to assess the persons per 
month required to produce upgraded versions of previous products.  

- C4 Preserve Compatibility: In pervasive systems, the applications installed in all 
devices normally interact and collaborate between them. This means that the SPL 
process must guarantee that the configurations running in every device of a certain 
pervasive system are compatible with each other. An example of compatibility in 
the context of sensor nodes is that all of them have to use the same routing protocol, 
otherwise the communication is impossible. The SPL evolution process must ensure 
that new configurations of different kinds of devices are compatible. Achieving C4: 
We also use the cross-tree constraints to guarantee that the configurations of all the 
devices (i.e. clones) of a certain system are compatible with each other (see Section 
3.1). This novel use of the constraints specified between clones makes it possible to 
specify which architectural elements must be present in all devices that interact. 

- C5 Efficiency: As many pervasive systems are composed of a large number of 
devices (as hundreds or thousands of sensor nodes executing several sensing tasks), 
the number of configurations of a simple FM would be really high. The FM con-
figuration of a particular system may contain thousands of features due to the  
cloning of each device related structure (sub-tree) for every device. So, we must en-
sure that the tool support for creating new evolved configurations or for searching 
the difference between the evolved and the previous configuration has to be effi-
cient. Achieving C5: We define and implement two operators difference and  
create_configuration (see Section 4) paying special attention to efficiency and as  
we will show in the evaluation (see Section 5), the execution time is efficient, being 
appropriate for thousands of features, typical of pervasive systems. 



 Software Product Line Evolution with Cardinality-Based Feature Models 107 

3   Evolution of Feature Models with Clonable Features 

We have proposed an automatic process to derive different system configurations 
depending on the input constraints, determined by mainly hardware and software 
requirements [7]. We apply model-driven and SPL engineering techniques to auto-
mate this configuration process. The first step when creating a SPL is to analyze  
the variability inherent in the application domain and create the FM. In the next step 
the global architecture of the system (named product line architecture or PLA), which 
contains both the commonalities and the variabilities specified by the FM is defined. 
A Feature Mapping between the FM and the PLA defines the correspondence be-
tween features and architectural components. We propose the use of the variability 
language VML [8], which was defined specifically to do this mapping. The customi-
zation of the architecture is determined by a set of high-level parameters (e.g. number 
and type of sensors or the necessary services). Using this set of parameters as input 
features, Hydra is able to automatically infer the rest of the features needed for each 
product making use of tree and cross-tree constraints (i.e. feature interaction), defined 
as part of the FM. So the output of Hydra is then a configuration of a product. This 
product configuration and the mapping between the FM and the PLA specified in 
VML are the inputs of a model transformation that automatically generates a custom-
ised architectural model. Finally, the architectural model of a product is the input of a 
model-to-text transformation, which produces the code for deploying the specific 
application inside the devices.  We detail how our process automatically propagates 
the changes made in a FM into current configurations, and also we evaluate the neces-
sary effort to propagate those changes to the final architecture.  

3.1   Feature Model Evolution 

As we have mentioned previously, the SPLs need to evolve in order to satisfy new 
user or application requirement or to incorporate new technological advances as for 
instance, devices with new operating systems or new facilities to achieve energy effi-
ciency or the security of the system. These evolution scenarios must be modelled as 
modifications in the FM. We have identified what elements of the FM may change as 
a consequence of an evolution scenario: (i) adding or removing features, (ii) adding or 
removing groups of features ('or' or 'xor' groups), (iii) adding or removing constraints 
between features and (iv) modifying the variability of a feature (e.g. a mandatory 
feature is transformed in optional). Note that the modification of a feature can be 
defined by means of removing a previous feature and adding a new one. The same 
happens with the modification of groups of features and with the constrains. 

Let’s imagine that we want to evolve the AAL home family with new services: 
glucose control for diabetic people and fall detection for people with movement prob-
lems or other illnesses that may provoke falls. Furthermore, due to the rapid loss of 
energy of the sensors, the removal of the encryption algorithm in those sensors where 
it is not strictly required is recommended. Fig. 2.a shows the FM of the AAL home 
with these evolution changes. The two new services are added as new optional fea-
tures (GlucoseControl and FallDetection) and since they can be used in any device, 
they are also added as children optional features of every device (as the glucose and  
 



108 N. Gamez and L. Fuentes 

fall monitoring in sensors or the diabetes application in the smartphones). Also the 
glucose sensing unit is added as a child of the sensor 'or' group. Furthermore, the 
Encryption mandatory feature is now an optional feature and we have added a new 
constraint for this feature: Encryption implies (PhEncryp and CamEncryp) to force 
both camera and mobile phone to transmit secure data. Finally, we have added other 
constraints related with the new services, for example, GlucoseControl implies Diabe-
tes or FallMonit implies Accelerometer.  

After evolving the FM we have to propagate the changes in all the previous con-
figurations, as the one shown in Fig.1.b. Our process automatically obtains the new 
configuration from the previous one, the new FM and the requirements with respect 
the evolved features for this specific product. Consider as these requirements, that for 
the configuration shown in Fig. 1.b either the customers or the vendor needs the fall 
detection and glucose control services. The output of our process after this evolution 
will be the configuration shown in Fig. 2.b. The modifications are: (1) two new  
features are added as children of the Services feature; (2) the Encryption feature is 
removed; (3) in all the sensors the SenEncryp feature has been deleted; (4) a new 
sensor S11 with a glucose sensing unit and with a glucose monitoring service is 
added; (5) in all the sensors equipped with accelerometers the fall monitoring feature 
is added; (6) the fall recording task is added to the cameras (7) and finally, the facility 
for controlling the diabetes and for transmitting the fall is added to the smartphones.  

We can observe that with this small example we have to manage many changes in 
several features, so in systems with hundreds of nodes the number of changes  
increases exponentially. Therefore, we need a tool support that creates this new con-
figuration in an efficient way, considering that the number of features of these kinds 
of systems may be really large. As is shown in Fig. 3.a, in order to automatically 
obtain this new configuration the Create Configuration facility of Hydra takes as 
input the evolved feature model, the previous configuration and the constraints with 
the requirements of this configuration for the evolved features, and it returns a set of 
constraints with all the features that we have to select in the new configuration. These 
constraints are used together with the new feature model by the Hydra facility to au-
tomatically generate a Minimal Valid Configuration. To implement the Create 
Configuration we use the create_configuration operator, defined in the Section 4, 
that obtains the features that must be selected in the new configuration for cardinality-
based feature models. Also, how Hydra gets the Minimal Valid Configuration is 
explained in Section 4. 

 

Fig. 2. AAL Home Family Evolved Feature Model (a) and Evolved Configuration (b) 



 Software Product Line Evolution with Cardinality-Based Feature Models 109 

 

Fig. 3. (a) Evolving FM Configurations and (b) Obtaining Architectural Differences 

3.2   Evolution of Existing Configurations  

In order to evaluate the impact of change when a FM is evolved, we need to know the 
specific differences between the previous configuration and the new evolved configu-
ration. To do this, as Fig. 3.b shows, the Differences facility of Hydra takes as inputs 
the previous, the new configurations and the four sets of variable features of a FM 
(clonable, optional, ‘or’ and ‘xor’ group) and it returns the difference between confi-
gurations by means of a set of features that must be selected and unselected in the 
new configuration. Obtaining the differences of FM configurations with clonable 
features is not a trivial task, since it cannot be calculated as a simple difference of sets 
as can be done for normal FMs. So, in the next section we have defined a difference 
operator for the special case of FM configurations with clonable features. Our process 
then uses this differences set of features and the mapping between FM and the PLA in 
VML to automatically produce the evolved architecture. Thanks to VML it is possible 
to automate the customization of the family architecture in an SPL context. Using 
VML, we specify which actions must be performed on the architectural model when a 
certain feature is selected or unselected. These mechanisms are basically adding and 
removing components, and connecting component interfaces. The family architecture 
is specified using the components model of UML 2.0.  

Figure 4.a shows an extract of the mapping between our AAL home FM and the 
UML components of the family architecture, including all the variants of the FM (i.e. 
mainly devices and services). We only include in Figure 4.a the mapping for the fea-
tures involved in the evolution changes, but in a full version of this VML file all the 
features which have an influence in the architecture are included. Lines 01-09 show 
the architectural modifications that must be performed when the SenEncryp feature is 
not selected, that is, the encryption-related components must be removed from all  
the applications installed in the sensor devices. Nevertheless, as we have explained 
previously, because the architecture in some sensors is different, how to remove the 
encryption-related components is also different for each sensor. We illustrate this for 
sensors S1 and S2 and sensors S3-S10. Lines 01-04 show the architectural mapping 
when SenEncryp and LightMonit features are not selected, which is the case of sen-
sors S1 and S2.  In this case, the elliptic curve cryptography algorithm component 
must be removed (line 02) and also the component that composes output messages 
with the data collected by the sensor (DataReady) must be connected through  
IData interface with the component that transmits the data through the network (Da-
taTransmission, line 03). We can see at the top of Fig.4.b the evolution of the archi-
tecture corresponding to these features. Nevertheless, as is shown at the bottom of 
Fig. 4.b., in sensors S3-S10 where the LightMonit feature is selected, we also have a 
component that is responsible for fusing the data using an aggregation function, with 
the goal of reducing the number of messages that are sent through the network. In the 



110 N. Gamez and L. Fuentes 

case, where SenEncryp is not selected, apart from removing the ECCALgorithm com-
ponent (line 06), the DataReady component must be connected with the DataFusion 
component (line 07) and this component in turn must be connected with the Data-
Transmission one (line 08). Here we show how we can manage automatically  
the architectural modifications in clones of the same feature (sensor S1 and S2 and 
sensors S3-S10) that have different architectures. In this figure we highlight only the 
components or architectural parts that are previously implemented so they can be 
reused in the new architecture.   

 
(a) 
01 variant for (not SenEncryp and not LightMonit){//Sensor 
02  remove(“ECCAlgorithm”); 
03  connect(“DataReady”, “DataTransmission”, “IData”); 
04 } 
05 variant for (not SenEncryp and LightMonit){//Sensor 
06  remove(“ECCAlgorithm”); 
07  connect(“DataReady”, “DataFusion”, “IData”); 
08  connect(“DataFusion”, “DataTransmission”, “IData”); 
09 } 
10 ...   
11 variant for FallMonit{//Sensor    
12  connect(“MovTracking”, “FallAlgorithm”, “IDetection”); 
13  connect(“FallAlgorithm”, “CameraSelection”, “ICamSel”); 
14  connect(“CameraSelection”, “DataReady”, “ICam”); 
15 } 

 
16 variant for FallTrans {//Smartphone    
17  connect(“Video”, “TransmissionHC”, “IVideo”); 
18 } 
19 variant for FallRec {//Camera    
20  connect(“Rec”, “Transmission”, “IVTrans”); 
21 } 
22 ...   
23 variant for GlucMonit {//Sensor    
24  connect(“GlRead”, “DataReady”, “IGluc”); 
25 } 
26 variant for Diebetes {//Phone   
27  connect(“GlReceive”, “GlAnalyze”, “IGlAnalyze”); 
28  connect(“GlucAnalyze”, “GlucLimit”, “ILimit”); 
29  connect(“GlucLimit”, “NotifyHC”, “INotify”); 
30  connect(“GlAnalyze”, “GlRegister”, “IRegister”); 
31 } 

(b)  

Fig. 4. (a) Mapping between Features and Architecture and (b) Removing the Encryption 

Now, we need to implement the new functionality. Firstly, an algorithm to detect 
possible falls and also that switches to the nearest camera when a fall is detected. This 
new component must be deployed in the 7 sensors equipped with an accelerometer. 
Also, the video captured by the camera has to be transmitted through the smartphone 
to the health centre. But, the components that implement this functionality were pre-
viously used for the video surveillance, so we simply reuse them. Lines 11-15 show 
the architecture corresponding with the selection of the FallMonit in sensor devices, 
lines 16-18 specify that in the smartphone we have to connect the Video with the 
component that transmits it to the health centre only if the FallTrans feature of the 
smartphone is selected. But all this functionality was already in the architecture, so we 
reuse the corresponding components. The same happens when the FallRec feature is 
selected in the camera (lines 19-21). Finally, a new sensor with glucose monitoring 
facilities must be incorporated (lines 23-25). Also, the components that analyze and 
register the glucose measures and that notify the health centre if any measure exceeds 
the limits is added in the smartphone (lines 26-31). These components are new, so the 
effort of adding this new sensor must take into account the effort of implementing all 
of them. In total, 9 components were added and the rest were reused. Our process is 
able to infer the list of these components automatically, helping the architect to assess 
the effort of evolving each existing product when the FM evolves. 



 Software Product Line Evolution with Cardinality-Based Feature Models 111 

4   Differences and Create Configuration Operators  

Differences Operator. The differences operator obtains the set of different features 
between two configurations of a FM. This set of difference contains the features that 
were selected in the Previous Configuration (PC) and are not selected in the New 
Configuration (NC) and the features selected in the NC but were not selected in the 
PC. When considering FM without cardinality the problem for getting the differences 
can be simplified to the differences between two sets. Likewise, if we rename all the 
cloned features with a unique name, a first approach could be to also reduce the prob-
lem of the difference of cardinality-based FM configurations, to a simple difference 
between sets. In order to have a unique name for every feature, we can prefix  
the name of all the clones with the original name of the feature (e.g. Sensor_S10)  
and all the features of the cloned structures with the name of the clone (e.g. 
S10_Accelerometer). So, to obtain the differences firstly we have to cover all the 
features of the NC in order to know which ones are not in the PC and secondly, we 
have to cover all the features of the PC in order to know which ones are not in the 
NC. This would be correct since all the differences are returned but it is not efficient. 
Firstly, we have to rename all the features. Then, we have to navigate through all the 
features of the PC and find them in the NC. After that, we have to do the same with 
all the features in the NC by navigating through the PC to find them. So, the main 
disadvantage of this approach is that all the features selected in the two configurations 
have to be searched twice. Furthermore, we know in advance that mandatory features 
are selected in both configurations so we do not need to search for them in order to 
obtain the differences. Apart from the mandatory features, other features will be se-
lected in both configurations, so the effort of searching the configuration tree twice is 
not justified. This approach would work well in small FMs and small configurations, 
i.e. configurations with a few cloned features, but this is not happening in real perva-
sive systems that may have hundreds of devices. Also, a FM representing a real SPL 
system usually has a big core asset, so they have many mandatory features. Finally, 
we may want to obtain the differences between two similar configurations, where 
only some of the features in a few clones are different, as is mainly happen with 
evolved configurations. To summarise, this approach for calculating the difference is 
extremely inefficient for real SPL of pervasive systems. And, as we will show in the 
evaluation section the time needed to find the differences between two configurations 
increases greatly when the number of clones increases. So, we have defined a more 
efficient algorithm in order to make our approach scalable to configurations with 
several thousands of total features.  

Syntactic Definition. ݂݂݀݅݁ݏ݁ܿ݊݁ݎ: ,ܥܲ ,ܥܰ ,݈ܿܨ ,ݐ݌݋ܨ ,ݎ݋ܨ ݎ݋ݔܨ ՜ ,ܮܧܵ ܷܰܵ It takes six 
sets of features as input arguments. The features selected in the PC and in the NC, the 
clonable and optional features and the features belonging to an ‘or’ and a ‘xor’ group.  
Also, it returns two sets of features. ܵܮܧ is the set of the features that are selected in 
the NC but were not selected in the PC. Similarly, ܷܰܵ is the set of the features that 
are not selected in the NC but were selected in the PC.  

For the evolved FM shown Fig. 2.a the sets of features are: 
݈ܿܨ  ൌ ሼܵ݁݊ݎ݋ݏ, ,݁݊݋݄݌ݐݎܽ݉ܵ ,݉ݎ݈ܽܣ ݐ݌݋ܨ  ሽܽݎ݁݉ܽܥ ൌ ሼ݈݋ݎݐ݊݋ܥ݁ݏ݋ܿݑ݈ܩ, ,݊݋݅ݐܿ݁ݐ݁ܦ݈݈ܽܨ ,݊݋݅ݐ݌ݕݎܿ݊ܧ … ሽ 



112 N. Gamez and L. Fuentes 

ݎ݋ܨ ൌ ሼݎ݁ݐ݁݉݋ݎ݈݁݁ܿܿܣ, ,݄ݐ݃݅ܮ ,݁ݎݑݐܽݎ݁݌݉݁ܶ ,݁ݏ݋ܿݑ݈ܩ ݎ݋ݔܨ  ሽݕݐ݅݀݅݉ݑܪ ൌ ሼ݀݅݋ݎ݀݊ܣ,   ሽ݁݊݋݄ܲ݅
For the configurations presented in Fig. 1.b and Fig 2.b, we have: ܲܥ ൌ ሼ݁݉݋ܪܮܣܣ, ,݈݈݁ܿ݊ܽ݅݁ݒݎݑܵ݋ܸ݁݀݅ :10ݎ݋ݏ݊݁ܵ ݎ݋ݏ݊݁ܵ ሼܵ݁݊݌ݕݎܿ݊ܧ, ,݄ݐ݃݅ܮ … ሽ,ܵ݉ܽ2݁݊݋݄ܲ ݁݊݋݄݌ݐݎ: ሼܸ݅݀݁݋, … ሽ, :4ܽݎ݁݉ܽܥ ܽݎ݁݉ܽܥ ሼܶ݊݋݅ݏݏ݅݉ݏ݊ܽݎ, … ሽ, … ሽ ܰܥ ൌ ሼ݁݉݋ܪܮܣܣ, ,݈݋ݎݐ݊݋ܥ݁ݏ݋ܿݑ݈ܩ ,݊݋݅ݐܿ݁ݐ݁ܦ݈݈ܽܨ :10ݎ݋ݏ݊݁ܵ ݎ݋ݏ݊݁ܵ ,݈݈݁ܿ݊ܽ݅݁ݒݎݑܵ݋ܸ݁݀݅ ሼݐ݅݊݋ܯ݈݈ܽܨ, ,ݐ݄݃݅ܮ … ሽ, :2݁݊݋݄ܲ ݁݊݋݄݌ݐݎܽ݉ܵ ሼܸ݅݀݁݋, ,ݏ݁ݐܾ݁ܽ݅ܦ … ሽ,  4ܽݎ݁݉ܽܥ ܽݎ݁݉ܽܥ: ሼܶ݊݋݅ݏ݅݉ݏ݊ܽݎ, ,݀ݎ݋ܴ݈݈ܿ݁ܽܨ … ሽ, … ሽ 
And as result of the differences operator, we will have to obtain: ܵܮܧ ൌ ሼ݈݋ݎݐ݊݋ܥ݁ݏ݋ܿݑ݈ܩ, :10ݎ݋ݏ݊݁ܵ ݎ݋ݏ݊݁ܵ   ,݊݋݅ݐܿ݁ݐ݁ܦ݈݈ܽܨ ሼݐ݅݊݋ܯ݈݈ܽܨሽ, :11ݎ݋ݏ݊݁ܵ ݎ݋ݏ݊݁ܵ ሼ݁ݏ݋ܿݑ݈ܩ, :2݁݊݋݄ܲ ݁݊݋݄݌ݐݎܽ݉ܵ,ሽݐ݅݊݋ܯ݁ݏ݋ܿݑ݈ܩ ሼݏ݁ݐܾ݁ܽ݅ܦ, ,ሽݏ݊ܽݎ݈݈ܶܽܨ :4ܽݎ݁݉ܽܥ ܽݎ݁݉ܽܥ ሼ ݀ݎ݋ܴ݈݈ܿ݁ܽܨሽሽ … ሽ ܷܰܵ ൌ ሼ݊݋݅ݐ݌ݕݎܿ݊ܧ, :10ݎ݋ݏ݊݁ܵ ݎ݋ݏ݊݁ܵ ሼܵ݁݊݌ݕݎܿ݊ܧሽ … ሽ 
 

Semantics. It is represented by the relationship that exists between the PC and the NC 
and the selected and unselected features. Intuitively, the NC minus the PC is equal to 
the selected set of features. And in the same way, the PC minus the NC is the unse-
lected features set. Then,  ܵܮܧ ൌ ܷܵܰ and ܥܲ\ ܥܰ ൌ    .ܥܰ \ ܥܲ

 

 
Algorithm 1.  Differences 
returns two sets of features: one (SEL) with the features that are selected in the NC and not selected in 
the PC and other set (UNS) with the features that were selected in the PC not selected in the NC.  
inputs six sets of features ܲܥ, ,ܥܰ ,݈ܿܨ ,ݐ݌݋ܨ ,ݎ݋ܨ   ݎ݋ݔܨ
output a tuple of two sets of features   ݂݂݀݅ ൌ ሺܵܮܧ, ܷܰܵሻ 
ܥ݈ܲ݁݌݉݅ܵ :1 ൌ׷   ሻܥሺܲݏ݁݊݋݈ܿ_݁ݒ݋݉݁ݎ
ܥ݈ܰ݁݌݉݅ܵ :2 ؔ ሻܥሺܰݏ݁݊݋݈ܿ_݁ݒ݋݉݁ݎ  
3: ሺܵܮܧ, ܷܰܵሻ: ൌ , ܥ݈ܲ݁݌ሺܵ݅݉ ݈݁݌݉݅ݏ_݂݂݅݀ , ܥ݈ܰ݁݌݉݅ܵ ,ݐ݌݋ܨ ,ݎ݋ܨ  ሻݎ݋ݔܨ
4: foreach ݂ א  do ݈ܿܨ 
5:     ሺܥ݈ܲܥ, ሻܥܲݐܵ ൌ׷  ,ܥሺܲ ݏ݁݊݋݈ܿ_ݐܿܽݎݐݔ݁ ݂ሻ 
6:     ሺܥ݈ܰܥ, ሻܥܰݐܵ ൌ׷  ,ܥሺܰ ݏ݁݊݋݈ܿ_ݐܿܽݎݐݔ݁ ݂ሻ 
7:     for ݅ ؔ 1. .  ሻ doܥ݈ܲܥሺ݄ݐ݈݃݊݁
8:  ܿ ൌ׷  ሺ݅ሻ //clone of the i positionܥ݈ܲܥ
9:  if ሺܿ א  ሻ thenܥ݈ܰܥ
10:         ݆ ൌ׷ ,ሺܿݏ݋݌  ሻ  //search for the position of the clone cܥ݈ܰܥ
11:         ሺܮܧܵܥ, :ሻܷܵܰܥ ൌ ,ሺ݅ሻܥܲݐሺܵ ݈݁݌݉݅ݏ_݂݂݅݀ ,ሺ݆ሻܥܰݐܵ ,ݐ݌݋ܨ ,ݎ݋ܨ   ሻݎ݋ݔܨ
ܮܧܵ           :12 ൌ׷ ׫ ܮܧܵ ,ሺܿݏ݁݊݋݈ܿ_݁݀݁ܿ݁ݎ݌   ሻܮܧܵܥ
13:           ܷܰܵ ൌ׷ ׫ ܷܵܰ ,ሺܿݏ݁݊݋݈ܿ_݁݀݁ܿ݁ݎ݌   ሻܷܵܰܥ
14:   else  
15:                   ܷܰܵ ൌ׷ ׫ ܷܵܰ ,൫ܿݏ݁݊݋݈ܿ_݁݀݁ܿ݁ݎ݌   ሺ݅ሻ൯ܥܲݐܵ
16:  end if  
17:    end for  
18:    for ݅ ؔ 1. .  ሻ doܥ݈ܰܥሺ݄ݐ݈݃݊݁
19:  ܿ ൌ׷  ሺ݅ሻܥ݈ܰܥ
20:  if ሺܿ ב  ሻ thenܥ݈ܲܥ
:ܮܧܵ      :21 ൌ ׫ ܮܧܵ ,൫ܿݏ݁݊݋݈ܿ_݁݀݁ܿ݁ݎ݌   ሺ݅ሻ൯ܥܰݐܵ
22: end if  
23:    end for  
24: end for  
25: ݂݂݀݅ ൌ׷ ሺܵܮܧ, ܷܰܵሻ     
26:return ݂݂݀݅  

 



 Software Product Line Evolution with Cardinality-Based Feature Models 113 

Algorithm. This algorithm firstly obtains the differences of the non clonable features. 
To do so, it uses the diff_simple algorithm (Algorithm 2) that obtains the difference 
between two configurations with non clonable features. diff_simple covers all the 
optional, ‘or’ and ‘xor’ features in order to know which ones are in the NC but were 
not in the PC to construct the SEL set, and which ones were in the PC but are not in 
the NC to construct the UNS set. Note that we avoid looking for the mandatory fea-
tures, since they will be selected in both configurations. Also, using this algorithm we 
avoid covering all the features for the PC and the NC twice.  

The differences algorithm uses diff_simple algorithm giving as input the PC minus 
the cloned structures, the NC minus the cloned structures and the optional, ‘or’ and 
‘xor’ features (Algorithm 2, lines 1-3). Then, for each clonable feature, the algorithm 
extracts the clones of the PC and NC (lines 5-6). The extract_clones function returns a 
tuple with the names of the clones and with the cloned structures. The cloned struc-
tures are the features under a clone but only those that are not clonable again, since 
they will be considered later in the algorithm. Then, for each clone of the PC, if they 
appear in the NC, the diff_simple algorithm calculates the differences between both 
corresponding cloned structures (line 11). If the clone it is not present in the NC, all 
the structure (preceding the feature with name of the clone) must be added to the UNS 
set (line 15). Following on, for each clone of the NC, if it does not appear in the PC, 
all the structure must be added to the SEL set (lines 18-21).  

Finally, we have to consider the possibility that some descendant features of a 
clonable feature will also be clonable (nested clones). Our algorithm takes into ac-
count this possibility since, as we mentioned before, the extract_clones function re-
turn all features in the cloned structure minus the clonable ones. And, as the algorithm 
covers all the clonable features, when the turn of a clone that belongs to a cloned 
structure comes, the extract_clones function obtain again the substructure of this 
clone  features (without clonable features).  

 
 

Algorithm 2.  diff_simple 
returns two set of features: one (SEL) with the features that are selected in the NC and not selected in 
the PC and other set (UNS) with the features that were selected in the PC and not selected in the NC.  
inputs five sets of features ܲܥ, ,ܥܰ ,ݐ݌݋ܨ ,ݎ݋ܨ   ݎ݋ݔܨ
output a tuple of two sets of features   ݂݂݀݅ ൌ ሺܵܮܧ, ܷܰܵሻ 1: ܮܧܵ ൌ׷ :2  ׎ ܷܰܵ ൌ׷    ׎
3: foreach ݂ א  ሺ׫ ݐ݌݋ܨ ׫ ݎ݋ܨ  ሻ doݎ݋ݔܨ
4: if ሺ݂ א ሻܥܰ ר ሺ݂ ב  ሻ thenܥܲ
ܮܧܵ  :5 ൌ׷ ׫ ܮܧܵ ሼ݂ሽ  
6:  elseif ሺ݂ א ሻܥܲ ר ሺ݂ ב  ሻ thenܥܰ
7:  ܷܰܵ ൌ׷ ׫ ܷܵܰ ሼ݂ሽ  
8: end if  
9: end for  10: ݂݂݀݅ ൌ׷ ሺܵܮܧ, ܷܰܵሻ   
11:return ݂݂݀݅  

 
Create Configuration Operator. The create_configuration operator creates a NC 
from a PC and the two sets of differences: the features that must be selected in a NC 
(SEL), and ones that must be unselected (UNS). To generate the NC, firstly, we have 
to remove the unselected features from the PC set. After, with this set plus the set of 
selected features we use the facility of Hydra to create a minimal valid configuration.  



114 N. Gamez and L. Fuentes 

Syntactic Definition. ܿ݊݋݅ݐܽݎݑ݂݃݅݊݋ܿ_݁ݐܽ݁ݎ: ,ܥܲ ,ܮܧܵ ܷܰܵ, ܯܨ ՜ ,ܥܰ ܸ݈ܽ݅݀ It takes 
three sets of features and the FM as input arguments: the features selected in the PC, 
the set of features that has to be selected in the NC but they were not selected in the 
PC, and the set of features that must not be selected in the NC but they were selected 
in the PC. The FM is given as input, represented by a propositional formula [6]. It 
returns the set features that must be selected in the NC and a Boolean that indicates if 
it is possible to create a valid configuration with those inputs. 

Semantics. It is represented by the relationship that exists between the PC and the 
NC. Similarly to the difference operator, the NC is equal to the PC minus the unse-
lected features plus the new selected features: ܰܥ ൌ ሺܲܥ\ܷܰܵሻ ׫   .ܮܧܵ
Algorithm. This algorithm firstly assigns to the NC the features of the PC (line 1). 
Then, for each feature of the UNS set checks if it is a clone, to remove it using the 
remove_clone function (lines 3-4). This function has two inputs, the clone and the 
features of the configuration. If the feature is not a clone, i.e. it is simple feature, the 
algorithm removes it directly (lines 5-6). Similarly, for each feature of the SEL set, 
checks if it is a clone, to add it using the add_clone function (lines 10-11). This func-
tion has two inputs, the clone and the set of features of the configuration. Finally, if 
the feature is not a clone, the algorithm adds it directly (lines 12-13).  

 
Algorithm 3.  create_configuration 
returns a tuple of a set of features of the new configuration and a Boolean value that indicates if for the 
inputs a valid configuration must be generated  
inputs three sets of features ܲܥ, ,ܮܧܵ ܷܰܵ and a feature model as a propositional formula ܯܨ 
output a tuple with the set of features of the new configuration ܰܥ and a Boolean value ܸ݈ܽ݅݀ 1: ܰܥ ൌ׷    ܥܲ
2: foreach ݂ א ܷܰܵ do 
3:     if ሺ݅݁݊݋݈ܿ_ݏሺ݂ሻ ሻ then 4:          ܰܥ ൌ׷ ,ሺ݂݁݊݋݈ܿ_݁ݒ݋݉݁ݎ    ሻܥܰ
5:     else  6:          ܰܥ ൌ׷      ;ሼ݂ሽ\ ܥܰ
7:   endif 
8:end for 
9: foreach ݂ א  do ܮܧܵ 
10:     if ሺ݅݁݊݋݈ܿ_ݏሺ݂ሻ ሻ then 11:          ܰܥ ൌ׷ ,ሺ݂݁݊݋݈ܿ_݀݀ܽ    ሻܥܰ
12:     else  13:          ܰܥ ൌ׷ ׫ ܥܰ ሼ݂ሽ;     
14:   endif 
15:end for 
16: ሺܰܥ, ܸ݈ܽ݅݀ሻ ൌ׷ ݂݊݋ܿ_݈݀݅ܽݒ_݈ܽ݉݅݊݅݉ ሺܰܥ,  ሻ // implemented by Hydraܯܨ
17: return ሺܰܥ, ܸ݈ܽ݅݀ሻ   

 
After all the features in UNS and in SEL sets are covered, we have all the features 

that we want that will be selected in a NC. Then, this NC set is given as input together 
with the propositional formula of the FM to the Hydra minimal valid configuration 
function (minimal_valid_conf, line 16). This function returns true if a valid configura-
tion can be generated (i.e. the NC given as initial constraints satisfy the tree and cross-
tree constraints) or false in the other case. Also, this function returns the definitive 
NC. Maybe other features must be added to satisfy some constraints. 



 Software Product Line Evolution with Cardinality-Based Feature Models 115 

In order to check if a configuration is valid, Hydra uses a java library for Con-
straint Satisfaction Problems (CSP) [9], called Choco [10]. A CSP is defined by a 
triplet (ܺ, ,ܦ  is a set of Domains for the variables ܦ ,ሻ, where ܺ is a set of Variablesܥ
and ܥ is a set of Constraints. Hydra models the configurations by a CSP where the 
Variables are the features of the FM, the Domain is ሼ0,1ሽ that corresponds with the 
semantic of the unselected feature or selected feature, and the Constraints include the 
implicit and the explicit cross-tree constraints. Furthermore, Hydra permits the auto-
matic generation of the minimal valid configuration given a set of initial constraints. 
This is the valid configuration with less numbers of features that satisfy these initial 
constraints that are formulated in the same way that the explicit cross-tree constraints. 
This time, the Constraints include also these initial constraints and to get a minimal 
configuration Hydra uses the CSP Objective Function. For our purpose the function 
to minimize is the number of features selected, i.e. the number of variables with 1 
value. So the objective function to minimize is ∑ ௜ ௡௜ୀଵݒ . 

5   Evaluation 

Hydra, was first implemented as an Ecore-based Eclipse plugin [13, 14], to provide 
support for the modelling of cardinality-based feature models in an intuitive and 
graphical way. Hydra also provides support for the configuration, validation and 
automatic generation of minimal configurations of this kind of FM with clonable 
features. Within the scope of the present work, we extended the tool to implement the 
differences and the create_configuration operators to help the evolution of FMs. In 
this section, we present the experimental results of using the evolution support of our 
feature modelling tool, Hydra. We will show that Hydra works well with FM with a 
large number of cloned features, as required by challenge C5.  

The time needed to create a configuration depends on the number of features se-
lected for the configurations. So, for our small example, it depends very much on the 
number of clones, as is shown in Fig. 5.a. The experiments were done in a PC Intel 
Core 2 Quad, 2,5GHz, 2 GB of memory and with 1.6 JVM. In our evolved FM (Fig. 
2.a), if we consider 30 sensors, 3 smartphones, 10 alarms and 10 cameras, the time 
needed to create a configuration is 1,7 seconds. It is a very reasonable time, since 
configurations of our feature model with 100 devices may have around 400 features.  

So, if we clone 500 devices (we have 4000 features) the time is around 2 minutes. 
Instead, the time required to know the differences between two configurations is re-
duced (Fig. 5.b). Concretely, for 500 clones it takes 49 seconds. This happens because 
when Hydra creates a new configuration, executing the create_configuration algo-
rithm it also has to paint the model of the configuration, which is the most time con-
suming task. By contrast, the difference only produces a file with the constraints. But 
both times are more than acceptable for huge configurations, so our approach is also 
scalable to configurations with around 4000 features.   

Although the results presented here can be applied to any SPL, we specifically 
have applied them to a family of middleware for pervasive systems (FamiWare [7]). 
With FamiWare we have developed many case studies from the domain of pervasive 
systems. Specifically, we have implemented several versions of smart homes, AAL  
 



116 N. Gamez and L. Fuentes 

0

20

40

60

80

100

120

140

1 100 200 300 400 500

D
iff

er
en

ce
s T

im
e

Number of Clones

0

20

40

60

80

100

120

140

1 100 200 300 400 500

Cr
ea

te
 C

on
fig

ur
at

io
n 

Ti
m

e

Number of Clones(a) (b)  

Fig. 5. Create Configuration (a) and Difference (b) operators time in seconds 

homes and ITSs, with good results, although the number of clonable features, specifi-
cally in the ITS, was in the hundreds. For the ITSs, with a variable (without an upper 
limit) number of devices, an undetermined large number of different configurations 
were obtained. For this and for case studies similar in size, is not possible to manage 
the configuration evolution manually due to the high number of possible configura-
tions and features per configuration. Since the ITS are novel, is very important that 
the SPL engineer can manage automatically the configuration evolution as proposed 
in our process, reducing the time to market for producing upgraded versions of this 
products. Although our process helps in the quantification of the effort required to 
produce the upgraded versions of previous products, it cannot calculate it in terms of 
the number of people per month. The output of our process for this is simply the list 
of components reused (those that were found in the component repository), and those 
which have to be implemented from scratch. So, the SPL engineer will have to assess 
the person per month per each new component and then make a final calculation of 
the estimated cost of evolving each product asset.  

One desirable situation is that running products must continue their execution after 
evolution, so the initial requirements imposed by both the physical infrastructure (e.g. 
number of rooms) and the customer, which continue to be valid, must be preserved in 
the upgraded versions. Our process preserves the requirements and architecture,  
introducing the architectural modifications in the least intrusive way possible.  

6   Related Works 

Previous works [4,13,14] proposed some operations with cardinality-based FM. In [4] 
a cardinality-based notation for FM, on which Hydra is based, is presented. Also, the 
concept of staged configuration based on the specialization of FM is defined, where in 
each stage the products described by the specialized models is a subset of the products 
described by the FM.  In [13] a verification of FM with clonable features using binary 
decision diagrams is presented. Both approaches are focused on cardinality-based FM 
but they do not deal with the evolution of this kind of FM. In [14] a synchronizing 
operation in cardinality-based FM is presented. They consider the possibility of 
propagating the changes produced in a FM to a existing specialization of this FM. So, 
in some way, they deal with the evolution of the FM and the corresponding changes 
to the specific products. Nevertheless, they do not provide a solution to the problem 
of propagating these changes at architecture level, as we do. Our model-driven proc-
ess to evolve SPLs is one of the most important contributions of our work, since it 
allows the creation of new products and the evaluation of the effort of the evolution.  



 Software Product Line Evolution with Cardinality-Based Feature Models 117 

A classification of the evolution of a FM via modifications as refactoring, speciali-
zations, generalizations or arbitrary edits is presented in [6, 15]. So, an algorithm for 
classifying feature models with differences is defined. Similarly, in [16] an insert 
operator (to add a feature to a FM) and a merge operator (to compose two FM) were 
proposed. With these operators, the development of large feature models by compos-
ing smaller feature models is enabled. These proposals tackle the evolution of FM but 
they do not address how to propagate the changes made at FM level into the configu-
ration level, as is the focus of our approach.  

At configuration level, in [17] the work presented has similar motivations as our 
approach, since the authors propose the necessity of automated diagnosis of configu-
rations in large FM. Also, they deal with the automatic configuration evolution.  
Nevertheless, they do not take into account the FM with clonable features, which are 
the main motivation of our work.  

7   Concluding Remarks 

We have presented an model-driven process for managing the evolution of SPL per-
vasive systems using a cardinality-based FM. Our process automatically propagates 
the evolution changes of the FMs into the existing configurations and also allows us 
to calculate the effort in performing the changes in every configuration. To do this, 
our tool Hydra creates new configurations from previous ones and the evolved FM. 
Furthermore, having the previous and the new configuration and using the variability 
language VML we can identify which parts of the architecture must be changed to 
evaluate the impact of the changes. We have defined the differences and the cre-
ate_configuration operators and we have developed efficient algorithms to show their 
functioning. We have shown that Hydra is able to create new configurations and to 
see differences for configurations with a large number of clones.   

References 

1. Pohl, K., Böckle, G., Linden, F.: Software Product Line Engineering – Foundations, Prin-
ciples, and Technique. Springer, Heidelberg (2005) 

2. Lee, K., Kang, K., Lee, J.: Concepts and guidelines of feature modeling for product line 
software engineering. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319, pp. 62–77. Sprin-
ger, Heidelberg (2002) 

3. Sánchez, P., Gámez, N., Fuentes, L., Loughran, N., Garcia, A.: A Metamodel for Design-
ing Software Architectures of Aspect-Oriented Software Product Lines. Technical Report 
D2.2, AMPLE Project (2007) 

4. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged Configuration through Specialization 
and Multilevel Configuration of Feature Models. Software Process: Improvement and 
Practice 10, 143–169 (2005) 

5. Batory, D.S.: Feature models, grammars, and propositional formulas. In: Obbink, J.H., 
Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005) 

6. Thüm, T., Batory, D., Kästner, C.: Reasoning about edits to feature models. In: Proceed-
ings of the 31st International Conference on Software Engineering (2009) 



118 N. Gamez and L. Fuentes 

7. Fuentes, L., Gámez, N.: Configuration Process of a Software Product Line for AmI Mid-
dleware. Journal of Universal Computer 16(12), 1592–1611 (2010) 

8. Loughran, N., Sanchez, P., Garcia, A., Fuentes, L.: Language Support for Managing Va-
riability in Architectural Models. LNCS, vol. 49, pp. 36–51 (2008) 

9. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1933) 
10. Choco Solver Home Page (December 2010), http://www.emn.fr/z-

info/choco-solver/index.html 
11. Stephan, M., Antkiewicz, M.: Ecore.fmp: A Tool for Editing and Instantiating Class Mod-

els as Feature Models. Technical Report 2008-08, University of Waterloo (2008) 
12. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling 

Framework. Addison-Wesley Professional, Reading (2003) 
13. Zhang, W., Yan, H., Zhao, H., Jin, Z.: A BDD-based approach to verifying clone-enabled 

feature models’ constraints and customization. In: Mei, H. (ed.) ICSR 2008. LNCS, 
vol. 5030, pp. 186–199. Springer, Heidelberg (2008) 

14. Kim, C.H.P., Czarnecki, K.: Synchronizing cardinality-based feature models and their spe-
cializations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp. 
331–348. Springer, Heidelberg (2005) 

15. Kuhlemann, M., Batory, D., Apel, S.: Refactoring feature modules. In: Edwards, S.H., 
Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791, pp. 106–115. Springer, Heidelberg 
(2009) 

16. Acher, M., Collet, P., Lahire, P., France, R.: Composing feature models. In: van den 
Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 62–81. Springer, 
Heidelberg (2010) 

17. White, J., et al.: Automated diagnosis of feature model configurations. Journal of Systems 
and Software 83(7), 1094–1107 (2010) 


	Software Product Line Evolution with Cardinality-Based Feature Models
	Introduction
	Motivation
	Motivation Example
	Challenges

	Evolution of Feature Models with Clonable Features
	Feature Model Evolution
	Evolution of Existing Configurations

	Differences and Create Configuration Operators
	Evaluation
	Related Works
	Concluding Remarks
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




