

Lecture Notes in Computer Science 6727
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Klaus Schmid (Ed.)

Top Productivity
through Software Reuse

12th International Conference
on Software Reuse, ICSR 2011
Pohang, South Korea, June 13-17, 2011
Proceedings

13

Volume Editor

Klaus Schmid
University of Hildesheim
Institute of Computer Science
Marienburger Platz 22
31141 Hildesheim, Germany
E-mail: schmid@sse.uni-hildesheim.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-21346-5 e-ISBN 978-3-642-21347-2
DOI 10.1007/978-3-642-21347-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2.13, D.2, D.3, D.1, D.3.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings accepted for the International Conference
on Software Reuse (ICSR 12) held during June 13–17, 2011 in Pohang, South
Korea.

The International Conference on Software Reuse is the premier international
event in the software reuse community. It has a long tradition going back 20
years: the first ICSR was held in 1991. During this period reuse has changed the
industry significantly on different levels and through different technologies and
methods. Examples are feature-based development, product line engineering,
or generation-based approaches. Many of these have created their own specific
communities. Of course this reflects back on ICSR. Thus, at this conference a
healthy mixture of contributions can be found: some are from areas intersecting
with other communities, while some either use novel approaches or look at soft-
ware reuse from a broad angle, which is particularly appropriate for the ICSR
conference. Besides being a melting pot for different research directions in soft-
ware reuse, this year’s ICSR also showed that it continues to attract both pure
research as well as practical contributions.

We received 43 submissions (excluding withdrawn and incomplete submis-
sions). Each submission was reviewed by at least three, and in several cases
four, Program Committee members. The committee decided to accept 16 papers
resulting in an acceptance rate of 37%. The program also included invited talks,
three workshops, a doctoral symposium and two tutorials. Abstracts of all these
are also included in this volume. The program was complemented by tool demos.

This conference was a collaborative effort that could only be realized through
many dedicated efforts. First of all I would like to thank Claudia Werner for her
work as General Chair. Kyo Kang worked intensively to make this event possible
in Pohang. This conference would not have been possible without him. Hong Mei
and Greg Kulczycki organized the workshop and the tutorial program. Jeffrey
Poulin organized the demonstrations and tools track, and Leonardo Murta was
Doctoral Symposium Chair. Hyesun Lee served very well as Web Chair, while
Kwanwoo Lee ensured the local organization. Personally, I would also like to
thank Leman Sözüçok and Sascha El-Sharkawy for their help in preparing the
conference proceedings.

Finally, we would like to thank POSTECH University for its organizational
and financial support of the conference, which was instrumental to conducting
the conference in Pohang, South Korea.

As the Program Chair of ICSR 2011, I would like to deeply thank the mem-
bers of the Program Committee and the additional reviewers for their detailed
and timely reviews as well as their participation in the intensive discussions of

VI Preface

the submissions. I would particularly like to thank those who took upon them
additional reviews in order to help clarify the situation in cases of difficult-to-
judge papers and those who accepted the additional work as a shepherd and
supported promising papers.

April 2011 Klaus Schmid

ICSR 2011 Conference Organization

General Chair Cláudia Maria Lima Werner
(Federal University of Rio de Janeiro,

Rio de Janeiro, Brazil)

Program Chair Klaus Schmid
(University of Hildesheim, Germany)

Workshop Chair Hong Mei
(Peking University, China)

Tutorial Chair Greg Kulczycki
(Virginia Tech, USA)

Demonstration and
Tools Chair

Jefferey Poulin
(Lockheed Martin, USA)

Doctoral Symposium
Chair

Leonardo Murta
(Fluminense Federal University, Niterói, Brazil)

Publicity Chair Maurizio Morisio
(Politecnico di Torino, Italy)

Local Chair Kwanwoo Lee
(Hansung University, South Korea)

Web Chair Hyesun Lee
(POSTECH, South Korea)

Corporate Donations
Chairs

Kyo Kang
(POSTECH, South Korea)

Eduardo Almeida
(Federal University of Bahia, Brazil)

Flavio Oquendo
(University of South Brittany, France)

Okan Yilmaz
(NeuStar Inc., USA)

VIII ICSR 2011 Conference Organization

Program Committee

Eduardo Almeida Federal University of Bahia, Brazil
Colin Atkinson University of Mannheim, Germany
Paris Avgeriou University of Groningen, The Netherlands
Ted J. Biggerstaff Software Generators, USA
Cornelia Boldyreff University of East London, UK
Jan Bosch Intuit, USA
Christian Bunse Univ. Appl. Sciences Stralsund, Germany
Reidar Conradi NTNU, Norway
Ivica Crnkovic Mälardalen University, Sweden
Davide Falessi Simula, Norway
John Favaro INTECS, Italy
William B. Frakes Virginia Tech, USA
Birgit Geppert Avaya Labs Research, USA
Paul Grünbacher JKU, Linz, Austria
Lothar Hotz HiTeC and University of Hamburg,

Germany
Oliver Hummel Mannheim University, Germany
Stan Jarzabek National University of Singapore,

Singapore
Isabel John Fraunhofer IESE, Germany
Kyo C. Kang POSTECH, Korea
Jaejoon Lee Lancaster University, UK
Juan Llorens Univ. Carlos III de Madrid, Spain
Ali Mili New Jersey Institute of Technology, USA
Maurizio Morisio Politecnico di Torino, Italy
Dirk Muthig Lufthansa Systems, Germany
Wolfgang Pree University of Salzburg, Austria
Jeffrey Poulin Lockheed Martin, USA
Ruben Prieto-Diaz Universidad Carlos III de Madrid, Spain
Andreas Rummler SAP, Germany
Christa Schwanninger Siemens, Germany
Michael Shin Texas Tech University, USA
Alberto Sillitti Free University of Bolzano, Italy
Murali Sitaraman Clemson University, USA
Michal Smialek Warsaw University of Technology, Poland
Judith Stafford Tufts University, USA
Clemens Szyperski Microsoft Research, USA
Uwe Zdun University of Vienna, Austria

ICSR 2011 Conference Organization IX

Additional Reviewers

Yasmine Arafa Suria R Asai
Andrea Capiluppi Frank Roessler
Hyunsik Choi Hampton Smith
Antonio Cicchetti Klaas-Jan Stol
Charles Cook Yu-Shan Sun
Trung Dinh-Trong Josef Templ
Matthias Galster Dan Tofan
Peter Hintenaus Anita Vulgarakis
Thomas Leveque

Sponsors

Software Generators, LLC.

Pohang University of Science and Technology

International Society for the Advancement of Software Education

Table of Contents

Keynote

Understanding Variability Abstraction and Realization 1
Krzysztof Czarnecki

Consistency and Constraints

Binary-Search Based Verification of Feature Models 4
Wei Zhang, Haiyan Zhao, and Hong Mei

Supporting Consistency Checking between Features and Software
Product Line Use Scenarios . 20

Mauricio Alférez, Roberto E. Lopez-Herrejon, Ana Moreira,
Vasco Amaral, and Alexander Egyed

Towards a More Fundamental Explanation of Constraints in Feature
Models: A Requirement-Oriented Approach . 36

Wei Zhang, Haiyan Zhao, Zhi Jin, and Hong Mei

Reconfiguration

Towards Feature-Oriented Variability Reconfiguration in Dynamic
Software Product Lines . 52

Liwei Shen, Xin Peng, Jindu Liu, and Wenyun Zhao

Reuse by Placement: A Paradigm for Cross-Domain Software Reuse
with High Level of Granularity . 69

Yingxiao Xu, Jay Ramanathan, Rajiv Ramnath, Nisheet Singh, and
Shubhanan Deshpande

Components

A Semi-supervised Approach for Component Recommendation Based
on Citations . 78

Sibo Cai, Yanzhen Zou, Lijie Wang, Bing Xie, and Weizhong Shao

Capability Assessment for Introducing Component Reuse 87
Hugo Rehesaar

XII Table of Contents

Evolution

Software Product Line Evolution with Cardinality-Based Feature
Models . 102

Nadia Gamez and Lidia Fuentes

Recovering Object-Oriented Framework for Software Product Line
Reengineering . 119

Yijian Wu, Yiming Yang, Xin Peng, Cheng Qiu, and Wenyun Zhao

Architecture Evolution in Software Product Line: An Industrial Case
Study . 135

Yijian Wu, Xin Peng, and Wenyun Zhao

Implementation

Improving Product Line Architecture Design and Customization by
Raising the Level of Variability Modeling . 151

Jiayi Zhu, Xin Peng, Stan Jarzabek, Zhenchang Xing,
Yinxing Xue, and Wenyun Zhao

Code Reuse with Language Oriented Programming 167
David H. Lorenz and Boaz Rosenan

Achieving Reuse with Pluggable Software Units . 183
Fernando J. Barros

Reuse in Practice

Eight Practical Considerations in Applying Feature Modeling for
Product Lines . 192

Juha Savolainen, Mikko Raatikainen, and Tomi Männistö

On the Extent and Nature of Software Reuse in Open Source Java
Projects . 207

Lars Heinemann, Florian Deissenboeck, Mario Gleirscher,
Benjamin Hummel, and Maximilian Irlbeck

University-Industry Collaboration Journey towards Product Lines 223
Stan Jarzabek, Ulf Pettersson, and Hongyu Zhang

Workshops

1st International ICSR Workshop on Comparing Software Retrieval
Approaches (CORA) . 238

Oliver Hummel and Werner Janjic

Table of Contents XIII

The 2nd International Workshop on Software Trustworthiness
(SoTrust2011) . 240

Xiaoguang Mao and Bing Xie

The 5th International Workshop on Software Reuse and Safety 242
William B. Frakes and John Favaro

The Doctoral Symposium of the 12th International Conference of
Software Reuse . 243

Leonardo Gresta Paulino Murta

Tutorials

Pragmatic Strategies for Variability Management in Software Product
Lines . 244

Stan Jarzabek

Software Reuse and Safety . 246
William B. Frakes and John Favaro

Author Index . 247

Understanding Variability
Abstraction and Realization

Krzysztof Czarnecki

Generative Software Development Lab, University of Waterloo, Canada
kczarnec@gsd.uwaterloo.ca

Software product line engineering (SPLE) emerged as a successful software reuse
paradigm. The essence of SPLE is the process of factoring out commonalities and
systematizing variabilities, that is, differences, among the products in a SPL. In
this talk, I will take the position that this process is the very act of abstraction.
Thus, as suggested by Coplien et al. [8], the purpose of abstraction mechanisms,
such as subroutines and inheritance in programming languages and architec-
tural patterns and platforms in architectural design, is to support factoring out
commonalities and making variabilities explicit.

Variability modeling is a key discipline in SPLE. It captures the variability
realized in the many development artifacts of an SPL, including code, models,
and documents, as a separate concern, into distinct variability models.

Variability modeling and abstraction are deeply intertwined. Essentially, any
abstraction mechanism achieves variability abstraction because it provides a lan-
guage to describe and differentiate among instances of an abstraction and a
function to map the instances to implementations [11,21].

This talk will explore the design space of languages that capture variabil-
ity, from feature modeling [15] and decision modeling [19] to highly expressive
domain-specific languages (DSLs). This design space embodies a progression
of structural complexity, from lists and trees of primitive-type parameters to
graphs, which correlates with the increasing closeness to implementation [12].

Further, I will identify a set of basic variability realization mechanisms, in-
cluding element optionality, alternatives, and substitution, iteration, and value
assignment [3,10,14,22,16]. These mechanisms have a natural correlation with
different choices in the design space of languages capturing variability; for ex-
ample, Boolean parameters naturally go with element optionality.

I will illustrate the variability abstraction and realization concepts using
Clafer, a modeling language designed to support these concepts using a min-
imal number of constructs [2]. Further, I will report on the real-world usage of
these concepts, based on studies of open-source platforms [5,20] and interviews
with practitioners form industry who work on closed-source SPLs. I will also
report on the progress towards a Common Variability Language (CVL), the Ob-
ject Management Group’s effort to standardize variability modeling [18], which
embodies many of the discussed concepts.

I will close with an outlook on the future research challenges, including the
need for (1) a comprehensive theory of variability (some progress has been al-
ready achieved, e.g., [3,1,13,6]), (2) a better understanding and guidance related

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 1–3, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 K. Czarnecki

to the use of variability mechanisms with existing languages (such as tradeoffs
between and the combined use of native and language-external variability mech-
anisms), and (3) an improved tool support (which requires further progress in
reasoning on variability abstraction and realization, e.g. [4,9,17,7]).

References

1. Apel, S., Lengauer, C., Möller, B., Kästner, C.: An algebra for features and feature
composition. In: Bevilacqua, V., Roşu, G. (eds.) AMAST 2008. LNCS, vol. 5140,
pp. 36–50. Springer, Heidelberg (2008)

2. Bąk, K., Czarnecki, K., Wąsowski, A.: Feature and meta-models in clafer: Mixed,
specialized, and coupled. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE
2010. LNCS, vol. 6563, pp. 102–122. Springer, Heidelberg (2011)

3. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE
TSE 30, 355–371 (2004)

4. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Information Systems 35(6) (2010)

5. Berger, T., She, S., Lotufo, R., Wąsowski, A., Czarnecki, K.: Variability modeling
in the real: a perspective from the operating systems domain. In: ASE (2010)

6. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract delta modeling. In: GPCE 2010
(2010)

7. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model checking
lots of systems: efficient verification of temporal properties in software product
lines. In: ICSE, pp. 335–344 (2010)

8. Coplien, J., Hoffman, D., Weiss, D.: Commonality and variability in software
engineering. IEEE Softw. 15, 37–45 (1998)

9. Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against
well-formedness OCL constraints. In: GPCE 2006 (2006)

10. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach
based on superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)

11. Czarnecki, K., Eisenecker, U.W.: Generative programming: methods, tools, and
applications. ACM Press/Addison-Wesley Publishing Co. (2000)

12. Czarnecki, K., Peter Kim, C.H., Kalleberg, K.T.: Feature models are views on
ontologies. In: SPLC (2006)

13. Erwig, M., Walkingshaw, E.: The choice calculus: A representation for software
variation. In: ACM TOSEM (to appear, 2011)

14. Haugen, O., Møller-Pedersen, B., Oldevik, J., Olsen, G.K., Svendsen, A.: Adding
standardized variability to domain specific languages. In: SPLC (2008)

15. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-21, CMU (1990)

16. Kästner, C.: Virtual Separation of Concerns: Toward Preprocessors 2.0. Ph.D. the-
sis, University of Magdeburg (May 2010)

17. Kästner, C., Apel, S., Thüm, T., Saake, G.: Type checking annotation-based
product lines. In: ACM TOSEM (to appear, 2011)

18. Object Management Group: Common variability language (CVL) RFP. Document
ad/2009-12-03 (2009)

Understanding Variability Abstraction and Realization 3

19. Schmid, K., Rabiser, R., Grünbacher, P.: A comparison of decision modeling
approaches in product lines. In: VaMoS, pp. 119–126 (2011)

20. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: The variability model
of the Linux kernel. In: VaMoS, pp. 45–51 (2010)

21. Veldhuizen, T.L.: Parsimony principles for software components and metalan-
guages. In: GPCE (2007)

22. Voelter, M., Groher, I.: Product line implementation using aspect-oriented and
model-driven software development. In: SPLC (2007)

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 4–19, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Binary-Search Based Verification of Feature Models

Wei Zhang, Haiyan Zhao, and Hong Mei

1 Key Laboratory of High Confidence Software Technology (Peking University),
Ministry of Education, China

2 Institute of Software, School of EECS, Peking University, Beijing, 100871, China
zhangw@sei.pku.edu.cn, zhhy@sei.pku.edu.cn, meih@pku.edu.cn

Abstract. The purpose of feature models’ verification is to detect deficiencies
in feature models, so as to avoid the transmission of these deficiencies into
subsequent core-asset and product development activities. Although many re-
searchers have observed that the verification problem of feature models can be
transformed into SAT problems and proposed to resolve this problem based on
third-party’s SAT-solver or model-checker tools, few of them point out how to
use these third-party tools efficiently. In this paper, we present a binary-search
based approach to feature models’ verification. Our motivation is to decrease
the number of times a SAT-solver is invoked during the verification of a feature
model, and thus improve the verification efficiency. The basic idea is to
change feature models’ verification from the linear-search based approach to a
binary-search approach, and thereby decrease the number of times to invoke a
SAT-solver. Preliminary experiments show that as the number of levels in fea-
ture models increases, our approach manifests a better scalability than the
linear-search based approach. This approach can be easily integrated into any
feature modeling environment as its verification component.

Keywords: Feature Model, Verification, Binary Search, SAT Solver.

1 Introduction

Feature models provide an effective approach to manage and reuse requirements in
software product lines [2,4]. One important problem related to feature models is
called the verification problem. The purpose of feature models’ verification is to de-
tect deficiencies in feature models, so as to avoid the transmission of these deficien-
cies into subsequent core-asset and product development activities. Although many
researchers have observed that the verification problem of feature models can be
transformed into SAT problems and proposed to resolve this problem based on third-
party’s SAT-solver or model-checker tools [1,3,7], few of them point out how to use
these third-party tools efficiently.

In this paper, we present a binary-search based approach to feature model verifica-
tion. The motivation of our approach is to decrease the number of times a SAT-solver
is invoked during the verification of a feature model, and thus improve the verifica-
tion efficiency. The basic idea is to change feature models’ verification from the
linear-search based approach to a binary-search approach, and thereby decrease the

 Binary-Search Based Verification of Feature Models 5

number of times to invoke a SAT-solver. In particular, we found that given a refine-
ment path in a feature model, there exists at most one critical point that brings defi-
ciencies into the feature model. For the detection of the critical point in a refinement
path, the complexity of a binary-search method is lower than that of a linear-search
method; the complexity of the former is O(log2n), while that of the latter is O(n/2).
Preliminary experiments show that as the number of levels in feature models increase,
our approach manifests a better scalability than the linear-search based approach.
This approach can be easily integrated into any feature modeling environment as its
verification component.

The rest of this paper is organized as follows. Section 2 gives some preliminaries
of feature models and the verification of feature models. Section 3 presents the bi-
nary-search based approach to feature models’ verification. Experiments and analysis
are shown in Section 4. Related works are discussed in Section 5. Finally, Section 6
concludes this paper with a short summary and future work.

2 Preliminaries

In this section, we introduce some preliminaries of our approach, with the purpose of
building a clear understanding of feature models and their verification.

2.1 Feature Models

The motivation behind feature models is to find a practical technique for the modeling
and reusing of reusable requirements in a software product line. This motivation is
derived from a paradigm for domain-oriented software reuse [15][3], which consists
of two basic activities: domain engineering (a.k.a. core asset development), and appli-
cation engineering (a.k.a. product development). In the former activity, reusable as-
sets in a software domain are produced or modeled based on existing applications in
this domain. In the latter one, these assets are consumed (i.e. reused) to produce new
applications/products in this domain. Directed by such a paradigm, feature models are
proposed to support the modeling and reusing of reusable assets at the requirements
level, that is, to support the modeling and reusing of reusable requirements.

F eature Model

R elation

F eature

R efinement

C ons traint

*

*

1

1 0..1 *

+parent

+child

1..*

*

Fig. 1. An abstract metamodel of feature models

The structure of feature models can be generally summarized as a set of features
with a set of relations among features (see Fig. 1). Each feature encapsulates a cohe-
sive set of individual requirements, and serves as a basic unit in requirements reuse.

6 W. Zhang, H. Zhao, and H. Mei

There are two common kinds of relation among features: refinement, and constraint.
The purpose of the refinement relation is to organize the usually large number of
features in a software product line into a tree structure, in which, high-level abstract
features are gradually refined into low-level concrete features. The purpose of the
constraints relation is to model the dependencies among features that must be satisfied
when doing customization on feature models.

A formal definition of feature models is described in the following definition.

Definition 1. A feature model is a 6-tuplet (F, Root, Refine, BS, RDC, EAC)1, where:

• F is a set of n features {f1, f2, …, fn}.
• Root is feature: Root ∈ F.
• Refine-1 is a partial function F → F, which satisfies ∀ f ∈ F ⋅ (f, f) ∉ Refine+ and ∀

f ∈ F ⋅ (f, Root) ∉ Refine. Through the Refine relation, features in F are formed as
a tree structure with Root as its root node. The physical meaning of a pair (fi, fj) ∈
Refine-1 is that fi is refined from fj. A Refine relation can be further specialized as
three subclasses: decompose, specialize, and has-an-attribute [10]. Since the dis-
tinguish between three subclasses are irrelevant to the verification of a feature
model, we will not explain them furthermore. For convenience, we call fj the par-
ent of fi and fi one of the children of fj. We use f.Refine to denote the feature set
consisting of f’s children.

• BS is a three-valued predicate F → {true, false, unknown}. For a feature fi, BS(fi)
denotes whether fi is selected (true), removed (false) from the feature model, or
still undecided (unknown). Initially, each feature’s binding-state is undecided (and
will be changed to selected or removed in later customization activities), except
the root feature Root, whose binding-state is selected initially and can not be
changed any more. BS is used to record the customization result of a feature
model. The customization of a feature model means to make customization
decisions to those undecided features. A customization decision to an undecided
feature decides whether to select this feature or to remove it from the current
feature model.

• RDC =def { BS(fi) ⇒ BS(fj) | (fi, fj) ∈ Refine-1} is a set of n-1 constraints. Since
these constraints are derived from the Refine relation, we call them refine-derived
constraints. The physical meaning of constraints in RDC is that any child feature
cannot be selected unless its parent feature has been selected.

• EAC is a set of m constraints {c1, c2, …, cm}, which are explicitly added by the
feature model’s constructors, and we call them explicitly-added constraints. For
simplicity, we suppose each constraint in EAC is a CNF clause (i.e. a disjunction
of literals), in which, a literal either has a form of BS(fi) or its negation.

1 It should be pointed out that this definition is a simplified definition of feature models, and the

purpose is to make this paper concentrate on the core aspects of feature models’ verification.
The main simplification is that the optionality attribute of features is omitted, and every fea-
ture is treated as optional, except the root feature that is mandatory to every product. Such
simplification will not change the essence of feature models’ verification, since that any fea-
ture model can be easily transformed into a unique feature model conforming to Definition 1,
by using the atomic-set technique proposed in our previous research [9].

 Binary-Search Based Verification of Feature Models 7

Customization

Verification
(Customization-Level)

Constraints
Violated?

true

false

Construction

Verification
(Model-Level)

Deficiencies
Exist?

false

true

Core-Asset Development

Product Development

Fig. 2. Reusing requirements in feature models

The reusing of requirements in feature models is usually carried out through a cus-
tomization-based approach (see Fig. 2). In the core-asset development activity, after a
feature model is constructed, the model-level verification is carried out to detect pos-
sible deficiencies in the feature model. If deficiencies are detected, then the feature
model should be reconstructed to eliminate these deficiencies; if no deficiency is
detected, then the feature model is allowed to be customized. In the product develop-
ment activity, after customization, the customization-level verification is carried out to
detect the violation of constraints. If any constraint is violated, a further customization
will be carried out to adjust the current result of customization, and thereby resolve
the constraint-violation problem.

2.2 Verification Criteria of Feature Models

In this paper, we only focus on the model-level verification of feature models. Based
our previous research [8,9], we extract three verification criteria to detect deficiencies
in feature models.

Given a feature model FM = (F, Root, Refine, BS, RDC, EAC), if any of the follow-
ing three criteria is not satisfied, then there must exist deficiencies in FM. In the
following, we use Cst to denote the conjunction of all constraints in RDC and EAC.
That is,

⎟
⎠
⎞⎜

⎝
⎛=

∪∈
∧ eCst

EACRDCe
def .

Criterion 1. There exists at least one set of customization decisions to all undecided
features in FM that satisfies all constraints in RDC and EAC. That is,

 Cst is satisfiable.

Criterion 2. For each undecided feature f ∈ F, in the premise that f’s parent feature is
selected without violating any constraint c ∈ RDC ∪ EAC, f can be selected without
violating any constraint c ∈ RDC ∪ EAC. That is,

Refineff cp ∈∀),(⋅

))((CstfBS p ∧ is satisfiable ⇒))()((CstfBSfBS cp ∧∧ is satisfiable.

Criterion 3. For each undecided feature f ∈ F, in the premise that f’s parent feature is
selected without violating any constraint c ∈ RDC ∪ EAC, f can be removed without
violating any constraint c ∈ RDC ∪ EAC. That is,

8 W. Zhang, H. Zhao, and H. Mei

Refineff cp ∈∀),(⋅

))((CstfBS p ∧ is satisfiable ⇒))()((CstfBSfBS cp ∧¬∧ is satisfiable.

According to the deficiency framework of feature models proposed by Maßen and
Lichter [5], the three verification criteria can detect all the anomaly and inconsistency
deficiencies in feature models. Due to space limitation, we will not give further
explanations about deficiencies in feature models and how these deficiencies are de-
tected by the three criteria. For more information, we refer to [5] and [10].

2.3 An Intuitive Analysis to SAT-Solver Based Verification of Feature Models

Based on their formal definitions, we can easily transform the three verification crite-
ria into a set of SAT problems, and thereby check the three criteria by invoking a SAT-
solver. In the following, we will give an intuitive analysis about the number of times a
SAT-solver should be invoked in order to check the three verification criteria.

Given a feature model FM, suppose it has n features, then:

 For Criterion 1, to check whether it is satisfied or not, we need to invoke a SAT-
solver only 1 time, since this criterion is a SAT problem itself.2

 For Criterion 2, to check whether it is satisfied or which features violate it, we
need to invoke a SAT-solver 3⋅(n-1)/2 times in a general case. The general case
is that, for each child feature fc and its parent fp, there is a 0.5 possibility that
(BS(fp) ∧ Cst) is satisfiable.

 For Criterion 3, based on the checking result of Criterion 2, to check whether it
is satisfied or which features violate it, we need to invoke a SAT-solver (n-1)/2
time in the general case.

That is, to detect deficiencies in a feature model with n features, in the general case,
we need to invoke a SAT-solver 2⋅(n-1) times.

As far as we have known, the ideas embodied in the analysis above do reflect the
common way to feature models’ verification used in most (if not all) of those ap-
proaches based on third-party’s SAT-solver or model-checker tools. At least, we do
not see any of these approaches that propose to use third-party tools in a very different
or more efficient way than the way embodied in the analysis above.

3 Verification of Feature Models

In this section, we first introduce two concepts of refinement paths and critical points
in a feature model, and clarify some properties related to the two concepts. After that,
we propose a binary-search based method for the verification of Criterion 2, and a
simple traversal method for the verification of Criterion 3, respectively.

2 In the following of this paper, we always suppose Criterion 1 is satisfied. Otherwise, if

Criterion 1 is unsatisfied, no feature in FM can satisfy Criterion 2 and 3, while the latter two
criteria are the real complexity of feature models’ verification.

 Binary-Search Based Verification of Feature Models 9

3.1 Refinement Paths and Critical Points

Definition 2. Given a feature model FM = (F, Root, Refine, BS, RDC, EAC) and a
feature sequence P = < p0, p1, …, pi, pj, …, pl >, P is called a refinement path in FM,
iff it satisfies the following two properties:

],0[li ∈∀ ⋅ Fpi ∈ , and

 Ppp ji in , ><∀ ⋅ Refinepp ji ∈),(.

Definition 3. Given a feature model FM = (F, Root, Refine, BS, RDC, EAC) and a
refinement path P = <p0, p1, …, pi, pj, …, pl> in FM, P is called a full refinement path,
iff it satisfies the following two properties:

 0p is the Root feature, and

 Ff ∈∀ ⋅ Refinefpl ∉),(.

Fig. 3 gives some examples of full refinement paths in a more straightforward way.
The right part shows a Refine relation and five full refinement paths in this relation.
The left part represents the relation through a tree diagram and marks the five refine-
ment paths as four dashed lines. From this figure, we can see that the physical mean-
ing of a full refinement path is actually a path in a tree started with the root node
and ended with a leaf node, while a refinement path is just a sub-sequence of a full
refinement path.

Refine ={
(a, b), (a, c), (b, d),
(b, e), (c, f), (d, g),
(d, h), (f , i), (f , j),

}

Full Refinement Paths:

P1 = < a, b, d, g >
P2 = < a, b, d, h >
P3 = < a, b, e >
P4 = < a, c, f, i >
P5 = < a, c, f, j >

a

b c

d e f

g i j

P1 P2 P4 P5

h

P3

Fig. 3. Examples of full refinement paths

Lemma 1. Given a feature model FM and two features fa and fd in FM, suppose (fa, fd)
∈ Refine+ (i.e. fa is an ancestor of fd), then

))((CstfBS d ∧ is satisfiable ⇒))((CstfBS a ∧ is satisfiable.

Proof: Suppose (BS(fd) ∧ Cst) is satisfiable, that is to say, there exists a set of cus-
tomization decisions D that satisfies BS(fd) and all constraints in RDC and EAC. From
Definition 1, we can deduce that Cst ⇒ (BS(fd) ⇒ BS(fa)), and consequently D also
satisfies (BS(fd) ⇒ BS(fa)). As a result, we can conclude that D satisfies both Cst and
BS(fa). Therefore, this lemma is proved.

10 W. Zhang, H. Zhao, and H. Mei

Lemma 2. Given a feature model FM and two features fa and fd in FM, suppose (fa, fd)
∈ Refine+ (i.e. fa is an ancestor of fd), then

))((CstfBS a ∧¬ ⇒))((CstfBS d ∧¬ .

Proof: Similar to the proof of Lemma 1.

Definition 4. Given a feature model FM and a refinement path P in FM, a feature in P
is called a critical point iff this feature violates Criterion 2.

Definition 5. Given a feature model FM and a feature f in FM, f is called a selectable
feature, iff (BS(f) ∧ Cst) is satisfiable; f is called an unselectable feature, iff
(BS(f) ∧ Cst) is unsatisfiable.

Obviously, to detect whether a feature is selectable or not, we only need to invoke a
SAT-solver one time.

Theorem 1. Given a feature model FM and a refinement path P in FM, there exists at
most one critical point in P.

Proof: Suppose there are two critical points py1 and py2 in P. For concise, we use px1
and px2 to denote the parent feature of py1 and py2, respectively. From Definition 4 and
Definition 5, we can know that px1 and px2 are selectable features, while py1 and py2 are
unselectable. Without losing the generality, we safely suppose that (px1, px2) ∈ Re-
fine+. Then, there are two possible cases about the relation between py1 and px2. The
first case is that py1 and px2 is the same feature. In this case, we deduce a conflict that
py1 is both selectable and unselectable. The second case is that (py1, px2) ∈ Refine+.
Since px2 is selectable, and according to Lemma 1, we can deduce that py1 is select-
able, which conflicts with the supposition. Therefore, this theorem is proved.

Corollary 1. Any ancestor of a critical point feature is a selectable feature, and any
descendant of a critical point feature is an unselectable feature.
Proof: From Theorem 1, Lemma 1 and Lemma 2.

3.2 Binary-Search Based Verification of Criterion 2

Theorem 2. Given a feature model FM = (F, Root, Refine, BS, RDC, EAC), Criterion
2 is equivalent to the following logic formula:

Refineff cp ∈∀),(⋅

))((CstfBS p ∧ is satisfiable ⇒))((CstfBS c ∧ is satisfiable.

Proof: To prove this theorem, we only need to prove the following formula is true.

Refineff cp ∈∀),(⋅

))((CstfBS c ∧ is satisfiable ⇔))()((CstfBSfBS cp ∧∧ is satisfiable.

Suppose (BS(fc) ∧ Cst) is satisfiable, that is, there exists a set of customization deci-
sions D that satisfies BS(fc) and Cst. From Definition 1, we know that (BS(fc)
⇒ BS(fp)) ∈ RDC. Consequently, D also satisfies (BS(fc) ⇒ BS(fp)). Since D satisfies
both BS(fc) and (BS(fc) ⇒ BS(fp)), we can deduce that D also satisfies BS(fp). As a

 Binary-Search Based Verification of Feature Models 11

result, we can conclude that D satisfies (BS(fp) ∧ BS(fc) ∧ Cst). Therefore, this theorem
is proved.

The combination of Theorem 1, Theorem 2 and Corollary 1 points out a binary-
search based method to detect the critical point in a refinement path. Fig. 4 demon-
strates this method through an illustrative refinement path. This path contains 10
features pi (i = 0, 1,.., 9) and one critical feature p5 (marked with gray background).
Initially, we suppose that p0 has been detected as a selectable feature. In step 1, p9 is
detected as an unselectable feature. Then, in step 2, p5 (i.e. a center feature between p0
and p9) is detected as unselectable. After that, in step 3, p3 (i.e. a center feature be-
tween p0 and p5) is detected as selectable. In step 4, p4 (i.e. the only feature between p3
and p5) is detected as selectable. After step 4, the critical point feature p5 is finally
detected. In such a detection process, the SAT-solver is invoked 4 times. Obviously,
the complexity of such a binary-search process is O(log2l), while that of a linear-
search process is O(l/2) (where, l is the length of a refinement path, i.e. the number of
features in the path).

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9
1

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9
2

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9
3

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9
4

Step 1:

Step 2:

Step 3:

Step 4:

Legend
A feature being checked as an unselectable feature.

A feature being checked as a selectable feature. A feature not being checked.

A feature out of consideration.

Fig. 4. Binary-search based detection of the critical point in a refinement path

Algorithm 1 gives an implementation of the binary-search based detection method
embodied in Fig. 4. This algorithm depends on the invoker providing a SAT-solver,
and outputs the critical point of the input refinement path.

Algorithm 1. An algorithm of detecting the critical point of a refinement path.

Input:

P : An refinement path in a feature model, and the first
element in P has been detected as a selectable
feature.

Cst : The conjunction of all constraints in the feature
model.

Sat : A SAT-Solver object that provide a satisfiable method
to check whether a propositional formula is
satisfiable or not.

Output:

a feature : The critical point of P. A null value means that
there is no critical point in P.

12 W. Zhang, H. Zhao, and H. Mei

Feature detect_critical_point(RefinementPath P,
Constraint Cst, SAT-Solver Sat){

Feature result = null;
Feature left, center, right;

left = P.elementAt(0);
left.index = 0;
left.selectable = true;

right = P.elementAt(p.length-1);
right.index = P.length-1;
right.selectable = Sat.satisfiable(Cst∧ BS(right));

if(right.selectable == false){

while((right.index - left.index) > 1){

int index = right.index – (right.index-left.index)/2;
center = P.elementAt(index);
center.index = index;
center.selectable = Sat.satisfiable(Cst∧ BS(center));

if(center.selectable == false){
right = center;
right.selectable = center.selectable;
right.index = center.index;

}else{
left = center;
left.selectable = center.selectable;
left.index = center.index;

}
}

result = right;
}

return result;
}

Based on Algorithm 1, we further develop an algorithm for the detection of all the
critical points in a feature model (see Algorithm 2). This algorithm accepts a set that
contains all the full refinement paths in a feature model as one of its input, and out-
puts all the critical points in the feature model. The detecting process consists of a
while-loop structure; in each loop, a refinement path is fetched from the refinement
path set and then detected for the critical point.

Algorithm 2. An algorithm of detecting critical points in a feature model.

Input:

FRP : A set that contains all the full refinement paths in
a feature model.

Cst : The conjunction of all constraints in the feature
model.

Sat : A SAT-Solver object as in Algorithm 1.

Output:

A feature
set

: The set contains all critical point features in the
feature model.

FeatureSet detect_critical_points(RefinementPathSet FRP,
Constraint Cst, SAT-Solver Sat){

FeatureSet Result = {};

while(FRP.isEmpty() == false){

 Binary-Search Based Verification of Feature Models 13

RefinementPath P = FRP.popAnElement();
Feature cp = detect_critical_point(P, Cst, Sat);

if (cp != null){
Result.add(cp);
FRP.remove(FRP.getAllPathsContaining(cp));

}

int index = (cp != null) ? P.getIndexOf(cp) : P.length-1;
for(int i = index-1; i > 0; i--){

Feature f = P.getElementAt(i);
RefinementPathSet RP = FRP.getAllPathsContaining(f);
for(each e in RP){
 e.removeElementBefore(f);
}

}
}

return Result;
}

The main characteristic of this algorithm is that it takes advantage of the overlap
among refinement paths to optimize the detecting process (i.e. to decrease the number
of times to invoke a SAT-solver). The optimization involves two cases: cp-detected
case and no-cp-detected case. The former denotes the case that a critical point is de-
tected from a refinement path fetched from the FRP set, while the latter denotes the
case that no critical point is detected from a fetched refinement path.

a

b

c d

e f g

P1 P2 P3

a

b

c d

e f g

P1 P2 P3

FRP ={
P2 = < a, b, c, f >
P3 = < a, b, d, g >

}

FRP ={
P3 = < b, d, g >

}

(a). The cp-detected case (b). The no-cp-detected case

FRP ={
P2 = < c, f >
P3 = < b, d, g >

}

After
optimization

After
optimization

Before
optimization

The first fetched path The first fetched path

Fig. 5. Utilizing overlaps among refinement paths in the detection of critical points

In the cp-detected case, two optimizing actions are performed:
 The first action is to remove those refinement paths that contain the detected
critical point from the FRP set, since that these refinement paths do not need to
be checked again for the critical point (see Theorem 1). This action will decrease
the size of the FRP set, and thereby decrease the number of times to invoke a
SAT-solver.
 The second action is to remove certain elements from some refinement paths in
the FRP set. That is, for each refinement path P in FRP that constrains an ances-
tor of the detected critical point, then all this ancestor’s ancestors will be re-
moved from P, since that these removed features all are selectable features and

14 W. Zhang, H. Zhao, and H. Mei

do not need to be checked again for whether selectable or not (see Corollary 1).
This action will decrease the length of certain refinement paths in the FRP set,
and thereby decrease the number of times to invoke a SAT-solver.

In the no-cp-detected case, an optimizing action similar to the second action in the cp-
detected case is performed to decrease the length of certain refinement paths in the
FRP set. That is, for each refinement path P in FRP that constrains a feature in the
fetched refinement path, all this feature’s ancestors will be removed from P.

Fig. 5 demonstrates the two cases and the effect of the optimizing actions through
an illustrative Refine relation. The left part shows an instance of the cp-detected case,
in which, we suppose c, d are two critical points, and P1 is the first element fetched
from the FRP set. As a result, c will be detected as a critical point. Before the two
optimizing actions are performed, the FRP set contains two refinement paths <a, b, c,
f> and <a, b, d, g>, while after optimization, the FRP set contains only one path <b,
d, g>. That is, after optimization, both the size of FPR and the length of elements in
FPR decrease. The right part shows an instance of the no-cp-detected case, in which,
we suppose d is the only critical point, and P1 also is the first fetched element. As a
result, no critical point will be detected. Before the optimizing action in the no-cp-
detected case is performed, the FRP set contains two paths <a, b, c, f> and <a, b, d,
g>, while after optimization, the FRP set contains two reduced paths <c, f> and <b, d,
g>. That is, after optimization, the length of elements in FPR decreases.

3.3 Traversal Based Verification of Criterion 3

Based on the verification results, we adopt a traversal based approach to Criterion 3’s
verification. That is, we traverse each selectable feature and check whether it satisfies
Criterion 3 or not. Algorithm 3 gives an implementation of this approach. The com-
plexity of this algorithm is O(n), where n is the number of selectable features in a
feature model, and the basic operation is to invoke a SAT-Solver. Since the idea be-
hind this algorithm is relatively simple and straightforward, we will not give further
explanation of it.

Algorithm 3. An algorithm of detecting features violating Criterion 3.

Input:

Refine : The Refine relation of a feature model.
CP : A set that contains all critical points in the

feature model
Cst : The conjunction of all constraints in the feature

model.
Sat : A SAT-Solver object as in Algorithm 1.

Output:

A feature
set

: The set contains all features that violate Criterion
3.

FeatureSet detect_features_violating_criterion3
(Refine, CP, Cst, Sat){

FeatureSet Result = {};

FeatureSet US = CP∪ CP.descendants();

 Binary-Search Based Verification of Feature Models 15

for(each e in Refine){
if(US.contains(e.parent)||US.contains(e.child)){

Refine.remove(e);
}

}

for(each e in Refine){
if(!Sat.satisfiable(Cst∧ BS(e.parent)∧ ¬ BS(e.child))){

Result.add(e.child);
}

}

return Result;
}

4 Experiments

In this section, we first introduce two families of feature models: the simple-branch
family and the binary-branch family, which serve as the test cases of our experiments,
and then apply our binary-search based approach and the top-down linear-search
based approach to the two families of feature models, respectively, to show the effec-
tiveness of our approach.

4.1 Two Families of Feature Models

Fig. 6 shows the simple-branch family of feature models, in which, a feature model
only branches at the root level, and all features in the middle level are critical points.
There are two parameters m, n to instance a feature model in this family: m is the
numbers of levels in a feature model, and n is the number of branches at the root
level.

f00

f11 f12 f1j f1n

fi1 fi2 fij fin

fm1 fm2 fmj fmn

f21 f22 f2j f2n

Instance method:
SBF(m, n).

Critical Points:
{ fij | i = m/2+1, m > 0, 0 < j ≤ n }

Fig. 6. The Simple-Branch Family of Feature Models

Fig. 7 shows the binary-branch family of feature models. The characteristic of this
family is that any feature model branches at the root level, each feature in the first
level has two branches, and all features in the middle level are critical points. Similar
to the simple-branch family, there are also two parameters m, n to instance a feature

16 W. Zhang, H. Zhao, and H. Mei

model in this family: m is the numbers of levels in a feature model, and n is the num-
ber of branches at the root level.

There are two issues that should be pointed out. First, in both of the two families,
critical points are all at the middle level. The reason is that we want to make a com-
parison between our approach and the top-down linear-search approach, for which, it
is a general case that critical points appear at the middle of a refinement path. Second,
although we cannot see constraints in these two families explicitly, constraints are
actually reflected by the critical points – that is, it is the constraints that caused the
existence of critical points. And in these two families, for flexibility, we just artifi-
cially assign critical points to features. If it is necessary, for every member in the two
families, a corresponding feature model with explicit constraints could be constructed,
which have the same refinement structure and the same distribution of critical points.

f00

f11 f12 f1j f1n

fi3 fi(2j)

fm3

f23

Instance method:
BBF(m, n).

Critical Points:
{ fij | i = m/2+1, m > 0, 0 < j ≤ n }

fi4

fm4

f24

fi(2j-1)

fm(2j-1)

f2(2j-1)

fi1

fm1

f21

fi2

fm2

f22 f2(2j) f2(2n-1) f2(2n)

fi(2n-1) fi(2n)

fm(2j) fm(2n-1) fm(2n)

Fig. 7. The Binary-Branch Family of Feature Models

4.2 Analysis of the Experiment Results

Table 1 shows the experiment results of applying our approach and the top-down
linear-search approach to two sets of feature models in the two families, respectively.
Each of the two sets contains 16 feature models with 10 as its n parameter, while the
m parameter increases from 1 to 16 gradually. In this table, the B columns show the
number of times a SAT-solver is invoked in the verification of Criterion 2 by using the
binary-search based approach, while the L columns show the number by using the
top-down linear-search based method.

From the experiment results, we can observe that, for both of the two familes, as
the number of levels in a feature model increases, although the numbers of invoking
times in the two methods are both increases, the number in the binary-search based
approach increases at a low rate than that of the linear-search based approach. That is,
as the number of levels in feature models increase, our approach manifests a better
scalability than the linear-search based approach.

 Binary-Search Based Verification of Feature Models 17

Table 1. Experiment Results

145

135

125

115

105

95

85

75

65

55

45

35

25

15

15

10

L

56%

63%

63%

57%

71%

67%

83%

80%

80%

100%

100%

100%

100%

150%

100%

100%

R atio (B /L)

50

45

45

40

45

40

45

40

40

35

35

30

30

25

15

10

B

B inary-B ranch F amily

90

80

80

70

70

60

60

50

50

40

40

30

30

20

20

10

L

S imple-B ranch F amilyP arameter

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

n

34%5016

33%5015

36%5014

35%4013

43%5012

42%4011

53%5010

53%409

62%408

64%407

78%406

86%305

120%304

167%303

100%202

100%101

R atio (B /L)Bm

145

135

125

115

105

95

85

75

65

55

45

35

25

15

15

10

L

56%

63%

63%

57%

71%

67%

83%

80%

80%

100%

100%

100%

100%

150%

100%

100%

R atio (B /L)

50

45

45

40

45

40

45

40

40

35

35

30

30

25

15

10

B

B inary-B ranch F amily

90

80

80

70

70

60

60

50

50

40

40

30

30

20

20

10

L

S imple-B ranch F amilyP arameter

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

n

34%5016

33%5015

36%5014

35%4013

43%5012

42%4011

53%5010

53%409

62%408

64%407

78%406

86%305

120%304

167%303

100%202

100%101

R atio (B /L)Bm

5 Related Work

The approach proposed in this paper is a succeeded work of our previous research on
the optimization of feature model verification. In our previous research, we have
proposed two techniques to reduce the number of features and constraints to be
checked during the verification of a feature model. One is the atomic-set technique
which treats a set of features as a single feature [9], and the other one is an optimiza-
tion strategy that removes verification-irrelevant features and constraints from a
feature model [8]. It should be pointed that, the approach proposed in this paper is
orthogonal to the above two techniques, and thus can be safely integrated with each
others in feature models’ verification.

Existing approaches to feature models’ verification can be generally classified into
two categories. One category consists of those approaches based on third-party tools.
In these approaches, the verification problem of feature models are firstly transformed
into SAT, CSP, or other kinds of well-resolved formal problems, and then a third-
party tool is invoked to find solutions of these transformed problems. The approach
proposed in this paper can be classified into this category. However, as far as our
knowledge, we do not observe any of these approaches that focus on how use third-
party tools in efficient ways.

The other category consists of approaches that develop specific algorithms for fea-
ture models’ verification. Unfortunately, there exist few approaches in this category.
One distinctive approach in this category is a simplified LTMS (Logic Truth Mainte-
nance Systems) algorithm proposed by Batory [1], considering the characteristics of
feature models’ verification. This algorithm aims to find those features that must be
removed or selected in the customization to feature models, through constraints

18 W. Zhang, H. Zhao, and H. Mei

propagation. This algorithm focuses on how to detect customization-level deficien-
cies, and thus can not detect all kinds of model-level deficiencies. For example, con-
sidering the following two constraints: ¬a∨b and ¬a∨b, this algorithm can not detect
that a is an unselectable feature until a user tries to select a. Although a full version
LTMS algorithm may detect such kind of model-level deficiencies, the direct invok-
ing on a full version LTMS algorithm is just like invoking on a third-party tool, which
still does not focus on the problem of how to invoke third-party tools in efficient
ways, while this problem is particularly concentrated in this paper.

6 Conclusions and Future Work

In this paper, we proposed a binary-search based approach to feature models’ verifica-
tion, an approach that employs the binary search method to locate critical points in
refinement paths, and thereby possesses a lower complexity. The motivation of this
approach is to decrease the number of times a SAT-solver is invoked during the verifi-
cation of a feature model, and thus improve the verification efficiency. Preliminary
experiments show that our approach manifests a better scalability than the linear-
search based approach, as the number of levels in feature models increases.

Our future work will focus efficient approaches for Criterion 2’s verification. That
is, how to detect optional features that actually can not be removed when its parent is
selected in efficient ways. In our current research, we only take a simple traversal
based approach to Criterion 2’s verification. The complexity of such an approach is
O(n), and we want to find new approaches that have a complexity lower than O(n).

Acknowledgments. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions. This work is supported in part by National
Natural Science Foundation of China under Grant No. 60821003, 60703065
and 60873059, National Basic Research Program of China (973) under Grant
No. 2009CB320701, and National Key Technology R&D Program under Grant
No. 2008BAH32B02.

References

1. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

2. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Boston (2002)

3. Czarnecki, K., Kim, C.H.P.: Cardinality-Based Feature Modeling and Constraints: A Pro-
gress Report. In: OOPSLA 2005 International Workshop on Software Factories (2005)

4. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Do-
main Analysis Feasibility Study. Technical Reports, SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University (1990)

5. von der Maßen, T., Lichter, H.: Deficiencies in feature models. In: Workshop on Software
Variability Management for Product Derivation, in Conjunction with the 3rd Software
Product Line Conference (2004)

6. Mannion, M.: Using First-Order Logic for Product Line Model Validation. In: Chastek,
G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 176–187. Springer, Heidelberg (2002)

 Binary-Search Based Verification of Feature Models 19

7. Trinidad, P., Benavides, D., Durán, A., Ruiz-Cortés, A., Toro, M.: Automated Error
Analysis for the Agilization of Feature Modeling. Journal of Systems and Software 81(6),
883–896 (2008)

8. Yan, H., Zhang, W., Zhao, H., Mei, H.: An Optimization Strategy to Feature Models’
Verification by Eliminating Verification-Irrelevant Features and Constraints. In: Edwards,
S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791, pp. 65–75. Springer, Heidelberg
(2009)

9. Zhang, W., Zhao, H., Mei, H.: A Propositional Logic-Based Method for Verification of
Feature Models. In: 6th International Conference on Formal Engineering Methods, pp.
115–130 (2004)

10. Zhang, W., Mei, H., Zhao, H.: Feature-Driven Requirements Dependency Analysis and
High-Level Software Design. Requirements Engineering Journal 11(3), 205–220 (2006)

Supporting Consistency Checking between Features and
Software Product Line Use Scenarios

Mauricio Alférez1, Roberto E. Lopez-Herrejon2, Ana Moreira1, Vasco Amaral1,
and Alexander Egyed2

1 CITI/Departamento de Informática, Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, Caparica, Portugal

2 Institute for Systems Engineering and Automation
Johannes Kepler University Linz, Austria

{mauricio.alferez,amm,vasco.amaral}@di.fct.unl.pt,
{roberto.lopez,alexander.egyed}@jku.at

Abstract. A key aspect for effective variability modeling of Software Product
Lines (SPL) is to harmonize the need to achieve separation of concerns with the
need to satisfy consistency of requirements and constraints. Techniques for vari-
ability modeling such as feature models used together with use scenarios help to
achieve separation of stakeholders’ concerns but ensuring their joint consistency
is largely unsupported. Therefore, inconsistent assumptions about system’s ex-
pected use scenarios and the way in which they vary according to the presence
or absence of features reduce the models usefulness and possibly renders invalid
SPL systems. In this paper we propose an approach to check consistency the
verification of semantic relationships among the models between features and
use scenarios that realize them. The novelty of this approach is that it is specially
tailored for the SPL domain and considers complex composition situations where
the customization of use scenarios for specific products depends on the presence
or absence of sets of features. We illustrate our approach and supporting tools
using variant constructs that specify how the inclusion of sets of variable fea-
tures (that refer to uncommon requirements between products of a SPL) adapt
use scenarios related to other features.

1 Introduction

A Software Product Line (SPL) can be defined as “a set of software–intensive systems
sharing a common, managed set of features that satisfy the specific needs of a particular
market segment or mission and that are developed from a common set of core assets in
a prescribed way”[7]. In SPLs, requirements are organized by features that are useful
to express product functionalities concisely [19]. There are common features between
all the products in the product line (sometimes called mandatory features), and there
are variable features that allow distinguishing between products in a product line. In
SPL development the problem space focuses on variability modeling and describes the
different features available in an SPL and their interdependencies. A common repre-
sentation to model variability are the feature models, where features are realized with
correspondent artifacts, for example use scenarios diagrams [8].

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 20–35, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Supporting Consistency Checking between Features and SPL Use Scenarios 21

To produce particular products from a SPL, feature realizations have to be composed
according to a specific selection of features from a feature model usually called product
configuration (also referred to feature model configuration). This process requires a
mapping between features from a feature model, and artifacts such as use scenarios
that realize them. A use scenario is a widely used technique that describes, step by
step, how an actor is intending to use a system [14]. A number of different approaches
have been proposed to create mappings among features and models [13,8,20]. However,
ensuring consistency between feature models and recurring requirements specifications
techniques such as use scenario modeling has not been thoroughly researched. In this
context, by consistency checking we mean the verification of semantic relationships
among features and use scenarios. Inconsistent assumptions about system’s expected
use scenarios and their variations according to the selection of different features, reduce
the models usefulness and possibly renders invalid systems. Therefore, it is essential in
SPL to determine whether the variability model and its use scenarios defined in the
domain requirements specification enable the derivation of any product requirements
specification that contains inconsistent requirements.

When a model-based approach is used to represent use scenarios (e.g., in form of use
cases or activity diagrams), consistency goes beyond syntactical or semantic errors of
each kind of model in isolation. For example, an actor that is not associated with any
use case, a dangling node, a loop without exit conditions in activity diagrams or specific
set of features that are both simultaneously (and incorrectly) declared as excluding and
depending. It means that we aim at taking into account constraints that are not merely
expressed in terms of only one language’s metamodel which is generally well supported
by UML editors in the case of use cases and activity diagrams (e.g., using OCL or
hard-coded restrictions particular of each editor) or feature model editors (e.g., using
domain constraints expressing features interdependencies, and hard-coded restrictions
that constrain the construction of the models to conform to their metamodel). In our
work, much of consistency checking difficulty lies on maintaining consistency among
several, interrelated models. This can become a time-consuming and error prone task
given that the number of ways to compose feature realizations grows exponentially with
the possible number of SPL features that can be used in a particular product.

In this paper, we present an approach whose driving objective is to enable consis-
tency checking in the problem space between requirements models such as use scenar-
ios and features. It transforms generic constraints expressions between single features to
rules specifically tailored for use scenarios and set of features. Then, it employs propo-
sitional formulas to relate these specialized rules to the models involved in the creation
of customized use scenarios for specific products. These propositional formulas are pro-
duced based on the relationships between: i) domain constraints that can be obtained
from the SPL feature model, ii) the meaning of the relationships between fragments
in the use scenarios and SPL features, and iii) a composition model that specifies how
to vary SPL use scenarios. Checking if all the products in an SPL satisfy consistency
constraints is based on searching for a satisfying assignment of a propositional formula.
Therefore, our tool translates propositional formulas that can be evaluated by satisfiabil-
ity (SAT) solvers [1]. In case there are constraints that are not satisfied by the SPL, our
tool presents to the developer the particular features and fragments of the use scenarios

22 M. Alférez et al.

involved in the violation of the constraint. In our home automation case study this infor-
mation was useful to take informed decisions about the modifications and additions of
domain constraints, use scenarios and its composition specification. The results of the
application of our approach are encoraging because they did not show scalability and
performance issues, however, we need more extensive validation of our approach with
different case studies.

2 Background and Motivation

To understand consistency between features and use scenarios let us introduce first the
models we use: features model, use case/activity diagrams, mapping model between
features and use cases/activity models, and a composition specification model. After
this, we exemplify inconsistency using these models.

2.1 Models Involved in Consistency Checking

Feature Model. A feature model describes a set of all possible valid product configu-
rations [8]. A configuration specifies a concrete product in terms of its features.

Figure 1-1 shows a sample feature model of part of our running example, the Smart
Home SPL [18]. Smart Home has four optional features, AUTOMATED WINDOWS(AW),
AUTOMATED HEATING (AH), REMOTE HEATING CONTROL (RHC) and INTERNET

as a mean to control the heater and other devices remotely. Also, it has a set of common
features, such as MANUAL WINDOWS and MANUAL HEATING that will be included
in all the target products to be produced using the Smart Home SPL.

Specific product configurations can be defined selecting optional features in the fea-
ture model 1-1. Figure 1-2 shows a sample product configuration of the Smart Home
SPL called PRODUCT-1 that will be used to illustrate consistency problems between
features and use scenarios. PRODUCT-1 has all features except AUTOMATED WIN-
DOWS (AW). Domain constraints in the feature model such as the REQUIRES rela-
tionship from RHC to INTERNET, can be added incrementally and in parallel with the
creation of use scenarios (discussed below).

��������	
��

�
���
��

�������

���
����	
��

SmartHome

������

�������

����������	
��	����	�

������

���
���

�
���
��

���
���

����
�����
����	
��

��

��
����
������

������
��������

Optional feature

Mandatory feature

��������	
��

�
���
��

�������

���
����	
��

Product-1

������

�������

������

���
���

�
���
��

���
���

����
����
����	
��

��

��
����
������

������

Selected featureUnSelected feature

��������	
����

Fig. 1. (1) Simplified sample of the Smart Home feature model; (2) Sample SmartHome configu-
ration that excludes the Automated Windows feature

Supporting Consistency Checking between Features and SPL Use Scenarios 23

Use Scenarios. Features can be realized with other models such as use scenarios. To
model use scenarios we employ use case and activity diagrams because they are com-
monly used in mainstream UML-based methods such as RUP [16] and, in contrast to
mere free-form textual scenario descriptions, they help to reduce ambiguity in the spec-
ifications [19].

Use case and activity diagrams provide a description of what products in the do-
main should do. Feature models determine which functionality can be selected when
engineering new products from the SPL. Therefore, product requirements specifica-
tions consist of customized use cases diagrams and specific paths through those use
cases represented in activity diagrams. The customization is guided by a composition
specification discussed in next subsection.

Figure 2-1 (Left) shows part of the final target model composed for PRODUCT-1.
The INCLUDES relationship describes the case where one use case, the base use case, in-
cludes the functionality of another use case, the inclusion use case. The INCLUDES rela-
tionship supports the reuse of functionality in a use case diagram and is used to express
that the behavior of the inclusion use case is common to two or more use cases. Note that
INCLUDES relationships between use cases may constrain the relationship between the
features related to them. For example, the INCLUDES relationship between the base use
case CTRLTEMPREMOTELY that includes the use case OPENANDCLOSEWINAUTO

may imply that feature REMOTEHEATINGCNTRL(SH) requires feature AUTOMATED-
WINDOWS (AW). We discuss this and other consistency constraints in Section 3.

Figure 2-1 (Right) shows an activity diagram that depicts the possible scenarios
for the use case CNTRLTEMPREMOTELY that comprises activities for the use cases
OPENANDCLOSEWINAUTO, CALCENERGYCONSUMPTION and ADJUSTHEATER-
VALUE. Within this activity diagram it is possible to select several scenarios that cor-
respond to different paths. Two of all the possible scenarios are: Scenario i) includes
reaching the in-home temperature and save energy by means of closing some windows,
and Scenario ii) to use the heater to reach the desired in-home temperature. It is im-
portant to note that the customization of activity diagrams and scenarios depends on
the features chosen for the SPL product and also on the relationship with the use case
model. For example, in PRODUCT-1 the feature AUTOMATEDWINDOWS was not se-
lected, therefore the WINACTUATOR actor in the use case diagram as well as the swim-
lane (also called activity partition) related to WINDOWSACTUATOR should not appear
in any diagram. Therefore, scenarios such as i) are not realizable because of the lack of
windows actuators. This and other constraints will be discussed in Section 3.

Composition Specification. To evidence consistency problems between features and
use scenarios we employ a composition process (also called, derivation process) for
use cases and activity diagrams. Languages such as the VML4RE (Variability Mod-
elling Language for Requirements) [20,4] help to specify how use scenarios can be
customized.

Figure 3 illustrates a composition specification that guides the specification of the
transformation of requirements specifications of products in the SmartHome SPL.
VML4RE [20,4] is a textual language that allows associating actions, that wrap a set of
model transformations for specific requirements models such as use cases and activity

24 M. Alférez et al.

�������

�	
���

�����������

����������

�����������

��������

���������������	��

���������

����������

���������

������

�������	���

������	

�������� ���������

�	
���

�����

��� ��

�����
���

������
�

�����
���

��������
�

�������	���

������	

��������

 �����

�������	��

!���"�����

#���$�������

#���$�
#���$�%�

!�������

#���$�%�

!�����&�����

�������	���

�������	��

�
�
�
��
�
�
�
�

!���"������&��	�

'�����	����%�!�������

�	
������
��

 �����������������

�	
��������������

��������
��

(����$����'�����	�����)

��������
���

(*��������)

�	
�����
���

'��������+�,������

�����������&�������

�
��
�
��
�
�
�	

��
�
�

��
�
�
�

�
�
�

�
�
	
�
�

��������	
����
���
��

�
�
�
��

��������������	
����������
������������������
��	�����������������
�
����
��	������
�������	��	�������

���������		

A-W variant

R-H variant

R-H variant

not composed

in Product-1

 ����������	�

Undefined

references

during

compostion

of

Product -1

...more activity Diagrams

8

9

11

11

11

Fig. 2. (1) Referencing undefined model fragments during composition for PRODUCT-1 in the
Use Case model (left side) and in the Activity Diagram for the CntrlTempRemotely scenario
(right side). (2) Mapping variants to model fragments.

diagrams, to combinations of features written as logic expressions that we call feature
expressions. Feature expressions can be i) atomic that represent single features such as
“Automated Windows” in Figure 3, Line 1, and ii) compound that also contain logic op-
erators such as AND, NOT and OR such as “And ("Remote Heating Ctrl","Automated
Heating","Internet")” in line 7. Feature expressions evaluation works as follows: if AU-
TOMATEDHEATING, REMOTE HEATING CTRL, AUTOMATED HEATING and INTER-
NET features are selected in a product configuration, the feature expression associated to
the variant named “R-H” (i.e., the compound feature expression: And ("Remote Heat-
ing Ctrl","Automated Heating","Internet")) will be evaluated to TRUE. The conse-
quence of this is that the actions that are inside the “R-H” variant block (Figure 3, lines
6-13) will be processed and applied to a base model. For example, the CNTRLTEM-
PREMOTELY use case will be inserted into the package HEATING and then it will be
related to other use cases using INCLUDES and EXTENDS relationships. If more than
one feature expression is evaluated to TRUE, the default composition order follows a
top-down sequence (which corresponds to a left-right sequence in Figure 3).

Fig. 3. Composition specification of variants A-W and R-H

Supporting Consistency Checking between Features and SPL Use Scenarios 25

Mapping Model. Figure 2-1 (Left) and (Right) show use case and activity diagrams
fragments, such as actors and use cases, related with the variants shown in Figure 3.
The base mechanism to relate requirements model fragments to features is to use a
correspondence table (or mapping table), as presented by [11], [19] and [3]. In our
case, we parse the composition specification to generate the mapping between variants
and parts of the use cases, therefore, for example if variant named A-W inserts the
OPENANDCLOSEWINAUTO use case, we link A-W to OPENANDCLOSEWINAUTO.
To facilitate the visualization of such relationships with the models, in the figure we
assign different gray tones to the models fragments according to the features that they
are related to (see mapping in Figure 2-2). Please note that specific model fragments
could be related also to more than one variant. This may be considered as a m-to-n (m
and n >= 1) mapping between variants and model fragments and is not illustrated in
Figure 2.

2.2 Consistency Checking Motivation

Consistency checking has to ensure that inconsistent requirements do not become part
of the requirements specifications of a given product. Our work aims at guaranteeing
that all the products that could be derived from a feature model indeed have consistent
requirements specifications. This is achieved through the description and verification of
semantic relationships between feature model and use scenarios. One of the possible
inconsistencies between features and use scenarios in the Smart Home SPL happens
between the relationship of variants R-H and A-W, and the INCLUDES relationship be-
tween the use cases CNTRLTEMPREMOTELY and OPENANDCLOSEWINAUTO which
are related to R-H and A-W variants respectively. The domain requirements are:

R1- Only one, none or both R-H and A-W variants can be included in a product. (This
is implicit in the feature model and composition model because all the features in
the feature expression of R-H variant are optional (i.e., REMOTE HEATING CNTRL,
AUTOMATED HEATING and INTERNET are optional features), and the only feature
in the feature expression A-W is also optional (i.e., the AUTOMATED WINDOWS

feature is optional)); and
R2- If the use case CNTRLTEMPREMOTELY is provided in a product then the use case

OPENANDCLOSEWINAUTO must be provided too, (This is implicit in the includes
relationship from the use case CNTRLTEMPREMOTELY to OPENANDCLOSEWIN-
AUTO in the use case diagram in Figure 2-1 (Left)).

Figure 2-1 shows PRODUCT-1 built using the composition model shown in Figure 3.
In PRODUCT-1 the feature expression of variant R-H (3, line 7) evaluates to TRUE.
However, because Figure 1-2 does not include the AUTOMATED WINDOWS feature, the
feature expression of variant A-W (i.e., AUTOMATED WINDOWS) (3, Line 1) evaluates
to FALSE and the actions inside its variant block are not processed. We annotated the
diagrams with numbers that represent the line in Figure 3 where a composition action is
specified. Note that we omitted some of the actions, for example, the insertion of some
actors such as WINSENSOR and WINACTUATOR and some partitions such as HEATER.

PRODUCT-1 presents inconsistent requirements R1 and R2. This is evident during
composition of use scenarios. See lines 10-11 when the action “Includes from UseCase

26 M. Alférez et al.

: "CtrlTempRemotely" to UseCase(s) : "NotifyByInternet" and "OpenAndCloseWin-
Auto" and "AdjustHeaterValue" ” references elements such as the use case OPENAND-
CLOSEWINAUTO that do not exist in the model. In this case, PRODUCT-1 fulfills
requirement R1, but not requirement R2. The result is that the functionality provided
by OPENANDCLOSEWINAUTO will not be present in the requirements of PRODUCT-1
and therefore it will not be taken into account in later stages of its development process.

It is not too difficult to check consistency manually in small examples with a re-
duced number of features such as the one mentioned previously. One solution to solve
the inconsistency for our example would be to guarantee the presence of the feature
AUTOMATED WINDOWS when AUTOMATIC HEATING or REMOTE HEATING CTRL

are selected, in every possible feature model configuration using a domain constraint
REQUIRES. Another solution is to establish that AUTOMATED WINDOWS will be a
mandatory feature in the SPL. However, the number of possible feature combinations
may grow exponentially with the number of features of the SPL. The result of this
explosion is that it becomes unfeasible to manually check the consistency of all the
products.

To guarantee that all the products that could be derived from a feature model in-
deed have consistent requirements specifications we take into account the relationships
between domain requirements specified using use scenarios and feature models to pro-
pose rules and constraints to support consistency checking in SPLs use scenarios as it
is shown in the next section.

3 Consistency Checking between Features and Use Scenarios

While some product configurations of a feature model may generate consistent use sce-
narios, other product configurations based on the same feature model could lead to in-
consistencies in the requirements specifications. In this section we present our approach
for consistency checking between SPL features and use scenarios.

3.1 Approach Overview

Figure 4 presents an overview of our approach. Section 2 explained and exemplified
the specification of a feature model, use scenarios (Figure 4, Step 1), and the mapping
between variants and fragments of the use scenarios (Step 2). Based on previous work
[17], we have developed a consistency checking approach for use scenario composition
based on variants. This approach relies on the domain evaluation of feature expressions,
written as propositional formulas that are associated to a variant and transformations of
use scenarios called actions. We denote Df the domain constraints that can be derived
from a feature model of an SPL and are expressed in terms of atomic featuresf (Step 3),
and CV ARf

denote composition constraints that will be derived in next section (Step 4)
and are expressed in terms of variants (V ARf). We use propositional logic to express
and relate Df and CV ARf

(Step 5). Because we are interested in verifying that all mem-
bers of the product line satisfy a given composition constraint, Equation 1 should not
be “satisfiable”. If it is satisfied, it means that there is a product of the product line that
does not meet constraint CV ARf

. The violating product configurations can be identified

Supporting Consistency Checking between Features and SPL Use Scenarios 27

if reqVARfVAR

fVARC

if confVARfVAR

fVar if reqVARfVar if confVAR

if

k

fVAR reqVARVARC
f

¬≅ ∧
..1

if

k

fVAR confVARVARC
f

∨≅
..1

fD

()
fVARf CD¬

fVARf CD ∧≅

Fig. 4. Overview of Our Consistency Checking Approach

using a SAT solver (Step 7 and 8). This can support the developer to take informed de-
cisions on modifications of the initial SPL models, for example, creating or modifying
domain constraints (Step 10).

¬ (
Df ⇒ CV ARf

)
(1)

Section 2-1 shows that at least one product (i.e., PRODUCT-1) from the products
that can be configured based on the feature model of the Smart Home SPL is incon-
sistent. In that case, composition constraints (also called implementation constraints)
between the elements in use scenarios such as the INCLUDES between use cases, imply
the application of domain constraints for example, turning the AUTOMATEDWINDOWS

feature from optional to mandatory or creating a REQUIRES dependency (also called
domain constraint) from AUTOMATEDHEATING to AUTOMATEDWINDOWS. That par-
ticular inconsistency that will help to explain our approach can be defined as:

– Rule Required Inclusion Use Case: at least one variant (V ARfreqi), defines an in-
clusion use case that must be selected in every feature configuration that contains the
variant (V ARf) which introduces a base use case linked to the inclusion use case.

3.2 Deriving Domain Constraints (Df)

Figure 4 - Step 3 shows that the domain constraints are derived from a SPL
feature model. Therefore the Df in a SPL is the same for all the possible products

28 M. Alférez et al.

configurations and do not vary depending on the consistency rule. Using a well-known
translation table between feature models and propositional formulas (see Figure 5) helps
to get Df in Equation 1. In Equation 2 we only show the HEATING-CTRL branch be-
cause it is the most complex branch in Figure 1-1 and relates directly with our ex-
emplar “Required Inclusion Use Case” rule. The translation obtained in the first line
of Equation 1 means that all products unconditionally must contain the root feature
SMARTHOME. The second line means that given that HEATING CTRL is a mandatory
feature, it must be included in all the products. The third line means that MANUAL-
HEATING is included in all the products that include their parent feature (i.e., HEAT-
INGCTRL), in contrast to AUTOMATEDHEATING and REMOTEHEATINGCTRL (lines
3-4), that may be or not included when their respective parents HEATINGCTRL and
AUTOMATEDHEATING are included in a product. Line 5 means that REMOTEHEAT-
INGCTRL requires of the INTERNET feature.

1.(SmartHome ⇔ TRUE)∧
2. (SmartHome ⇔ HeatingCtrl)∧
3. (HeatingCtrl ⇔ ManualHeating) ∧ (AutomatedHeating ⇒ HeatingCtrl)∧
4. (RemoteHeatingCtrl ⇒ AutomatedHeating)∧
5. (RemoteHeatingCtrl ⇒ Internet) (2)

Fig. 5. Mapping from Feature Model to Propositional Logic [6]

In this section we addressed Df , the first part of Equation 1. Next section presents
CV ARf

that comprises a set of constraints that are essential for consistency between
use scenarios and the set of domain constraints expressed in Equation 2.

3.3 Deriving Composition Constraints (CV ARf)

Composition constraints act as consistency rules describing the semantic relationships
that must hold among the different models. Figure 4-4 shows two kinds of composition
constraints that can be expressed in propositional logic. We classified them according
to the type of domain constraint that they relate with: i) a constraint that implies a
REQUIRES relationship between features that therefore implies dependencies between
variants (Figure 4- Step 4), and ii) a constraint that implies a EXCLUDES relationship
(Figure 4- Step 6) between features and therefore implies incompatibilities between
variants (Figure 4- Step 5). This section shows those constraint equations expressed in
propositional logic.

EXCLUDES Relationship: Let V ARf be a variant that defines a model element e. A
variant V ARfconf I conflicts with V ARf if V ARfconf I defines a model element c

Supporting Consistency Checking between Features and SPL Use Scenarios 29

which cannot be present in the same requirements specifications of a product where
element e is also present. Therefore, because of the incompatibility between elements
e and c, if variant V ARf is selected then variant V ARfconf I should not be selected
in the same product configuration. This is denoted in the following expression where k
represents the number of variants in the composition specification:

CV ARf ≡ V ARf ⇒ ¬
(∨

1..k (V ARfconf i)
)
≡ ¬V ARf ∨ ¬

(∨

1..k (V ARfconf i)
)

(3)

≡ V ARf ∧
∨

1..k V ARfconf i

REQUIRES Relationship: Let V ARf be a variant that refers to a model element e de-
fined by another variant. To be consistent, the requirements specifications of a product
that includes variant V ARf must also include at least one other variant V ARreqI (re-
quired variant) where element e is defined. This is denoted in the following expression
where k represents the number of variants in the composition model:

CV ARf ≡ V ARf ⇒
∨

1..k (V ARfreqi) ≡ ¬V ARf ∨
∨

1..k (V ARfreqi) (4)

≡ V ARf ∧
∧

1..k ¬V ARfreqi

The rule “Required Inclusion Use Case” mentioned at the beginning of this section
is an example of this last kind of constraint expression. An instance of this constraint
is found in our motivation example related to the use scenario of CNTRLTEMPRE-
MOTELY. For example, given that the variant V ARf = R-H is selected (i.e., a product
with REMOTE HEATING CNTRL, AUTOMATED HEATING and INTERNET features),
and it is related to the base use case CTRLTEMPREMOTELY, we want to guarantee that
there are at least one variant (e.g., V ARf reqI = A-W) related to the inclusion use case
OPENANDCLOSEWINAUTO (i.e., model element e = use case OPENANDCLOSEWIN-
AUTO), and that its feature expression evaluates to TRUE in all possible feature model
configurations. This way, we guarantee the presence of the functionality required by
CTRLTEMPREMOTELY, such as to include a WINDOWSACTUATOR that regulates the
temperature opening and closing windows. Thus, we can get a constraint instance re-
placing the variants by their corresponding feature expressions:

(RemoteHeatingCntrl ∧ AutomatedHeating ∧ Internet) (5)

∧¬(AutomatedWindows)

3.4 Replacing Terms in Equation

The replacing step depicted in Figure 4- Step 7 depends on the kind of constraint that
we created in previous section. If we replace CV ARf

of Equation 4 in Equation 1 and
perform some logic manipulation to translate expressions of the form x ⇒ y to ¬x ∨ y,
and x ∨ y to ¬x ∧ ¬y respectively, we obtain the expression in Equation 6.

REQUIRES : ¬
(
Df ⇒

(
V ARf ∧

∧

1..k¬V ARfreqi

))
≡ Df∧V ARf∧

∧

1..k¬V ARfreqi

(6)

Similarly, if we replace CV ARf
of Equation 3 in Equation 1, and perform some logic

manipulation, we obtain the expression in Equation 7.

30 M. Alférez et al.

EXCLUDES : ¬
(
Df ⇒

(
V ARf ∧

∨

1..kV ARf conf i

))
≡ Df∧V ARf∧

∨

1..kV ARfconf i

(7)

3.5 Checking SATisfability

Figure 4- Step 8 shows that the input for satisfability checking are expressions such as
the ones in 6 and 7. Each expression to be checked is instantiated with:

i) the specific domain constraints, Df of the SPL produced in Equation 2,
ii) the feature expressions related to the variants V ARf and either the set of required

variantsV ARf reqi, or the set of conflictant variants V ARf conf i.
Equation 4 evaluates to true when any action inside variant V ARf requires an ele-

ment or set of required elements that are not composed in the use scenarios. It happens
because none of the correspondent variants V ARf reqi that introduce the required el-
ements was selected in the product configuration. Also, expression 3 evaluates to false
when variant V ARf defines an element or set of elements that are introduced in the use
scenarios that also contain elements defined by other variant(s) V ARf confi .

3.6 Show Results and SPL Models Modification

The possible results generated by a SATisfability checker for each expression (Fig-
ure 4- Step 9) can be TRUE (satisfiable) or FALSE (insatisfiable). In case we obtain
FALSE for all the expressions, we know that the SPL is consistent because there are not
inconsistencies between the relationships and dependencies (e.g., excludes, optional,
mandatory, requires) between features depicted in the SPL feature model, and the use
scenarios. In case we obtain a TRUE in an expression, our tool based on the mapping
between variants and model elements in the use scenarios shows a list of the variants
and the model fragments related to the inconsistency. Taking the example of the Smart
Home feature model depicted in Figure 1, the result of the SAT solver for the Rule -
Required Inclusion Use Case is that it is satisfiable (i.e., it evaluates to TRUE). Which
means that there is an inconsistency between the features and use scenarios. An example
of the type of message generated by our tool to the user 4 is:

“...Inconsistent use scenario(s) [CTRLTEMPREMOTELLY] and feature(s) in feature ex-
pression(s) of variant(s) [A-W], [R-H]. The Action: [Includes from UseCase: “Ctrl-
TempRemotely” to Use Case(s) “OpenAndCloseWinAuto”] implies a [REQUIRES] re-
lationship between variant [R-H] and required variant(s) [A-W] that is not enforced in
the SPL feature model...”.

Based on this information, for the SAT solver to evaluate to FALSE, the developers may
consider for example to:

- Modify the feature model: the set of SPL domain constraints that can be extracted
from the feature model can be modified for example creating a REQUIRES relation-
ship for AUTOMATEDHEATING feature to AUTOMATEDWINDOWS, or changing the
AUTOMATEDWINDOWS feature from optional to mandatory.

- Modify use scenarios and composition model: for our particular rule, developers
may want to check if in fact the INCLUDES association between use cases CTRLTEM-
PREMOTELY and OPENANDCLOSEWINAUTO is mandatory for every single product
or not.

Supporting Consistency Checking between Features and SPL Use Scenarios 31

4 Tool Support

Tools for consistency checking can be highly effective for detecting errors in SPL re-
quirements specifications. Such tools not only can find errors people miss, but also they
can alleviate developers from the tedious and error-prone task of checking requirements
specifications for consistency. Our tool prototype Variability Consistency Checker for
Requirements (VCC4RE) [2] was designed to support the process described in Section
3.1 and consist on several components: (i) composition models editor for the VML4RE
language, (ii) two translators: one from propositional formulas in prefix notation to con-
junctive normal (CNF) form in DIMACS format [1], and the other from the CNF clauses
provided by the feature model editor to DIMACS format; and finally (iii) the consistency
checker.

We created the composition model editor using EMFTEXT 1. It provides the software
infraestructure to derive an initial concrete syntax and plug-in based on the metamodel
of our VML4RE language written in Ecore2. We employ this technology mostly be-
cause of two reasons: first, it separates concrete syntax and abstract syntax which eases
the maintenance of the language, and second, it provides a default Human Usable Nota-
tion (HUTN)3 as concrete syntax. Using the HUNT concrete syntax in comparison with
our previous tool version [20] allows a more usable and suitable notation for describing
requirements composition.

We created a translator for feature models created with the SPLOT editor4. We
chose SPLOT because it allows us to share and edit our models collaboratively via
web, and because it generates the CNF formula that represents the domain constraints
(Df) in our equations that later we transform to a widely accepted standard format for
boolean formulas in CNF called DIMACS.

Also, we created another translator to obtain the feature expressions related to each

variant in V ARf ∧
∧

1..k ¬V ARf reqi and V ARf ∧
∨

1..kV ARf conf i from our com-
position model. It translates from a prefix notation of propositional formulas of our
composition specification, to CNF formulas in DIMACS format. Composition model,
consistency rules, as well as the use cases and activity diagrams modelled in any Ecore-
based UML tool are interpreted by our consistency checker to produce a set of con-
straints expressions in CNF DIMACS format. Then, it is possible to use a standard SAT
solver to determine the satisfability of each formula. In our case, we experimented with
PicoSAT5 and SAT4J6.

5 Evaluation

The complete Smart Home SPL was used to evaluate our approach. We chose this case
study because, despite of being a large-scale embedded system, this can be understood

1 http://www.emftext.org/: Concrete syntax mapper.
2 http://www.eclipse.org/modeling/emf/: Eclipse Modelling Framework based on Ecore.
3 http://www.omg.org/spec/HUTN/: The OMG HUTN specification.
4 http://www.splot-research.org/: Software Product Line Online Tools.
5 http://fmv.jku.at/picosat/: PicoSAT: Pico satisfability solver.
6 http://sat4j.org/: SAT for Java.

32 M. Alférez et al.

by a general reader given its application in everyday’s life. Also, we had previous expe-
rience modelling variability and part of the use scenarios of the Smart Home supported
by one of our industrial partners who set the requirements of the system [18].

Table 1. Evaluation results using VCC4RE in the Smart Home SPL

Features 59 Variants 27
CNF clauses 79 Rules 6
Use Cases 36 Rule instances checked 74
Activity Diagrams 13 Domain constraints created after consistency checking 16
Scenarios 48 Time taken in consistency checking in milliseconds 810

Table 1 summarizes some information about the evaluation. The Smart Home has 59
features and comprises significant aspects of modern home automation domain such as
security, HVAC (Heating, Ventilating, and Air Conditioning), illumination control, fire
control and multiple user interfaces. These features describe variability at the use sce-
narios therefore, it is relevant to all kind of SPL stakeholders which are not necessarily
experts in domotics and its implementation technologies. When mapped to proposi-
tional formulas the feature model produced 79 clauses in CNF format.

We modelled the use scenarios manually using an open source Ecore-based UML
tool called Papyrus7. In total we modelled 36 use cases, 13 activity diagrams that can
represent 48 different possible scenarios, and an initial set of 6 rules for use scenario
consistency that follow a very similar reasoning than the rule Required Inclusion Use
Case explained in Section 2. They vary only in the kind of model elements and their
relationships with other model elements, for example: inclusion, generalization, spe-
cialization, aggregation and mapping between activity diagram partitions to actors and
use cases. Based on the scenarios and feature model we specify 27 variant modules us-
ing VML4RE. Before applying our approach for consistency checking, we found that
using the Smart Home feature model it was possible to generate ONE BILLION prod-
uct configurations. This information can be obtained using the feature model analyzer
provided by the SPLOT tool and allows us to evidence the complexity of checking con-
sistency without any approach and tool support such as the one that we proposed in this
paper.

In our experiments we found in total 74 rules instances to check. Using this infor-
mation we created 16 domain constraints, mainly dependencies of type REQUIRES
between features in the feature model that finally help us to solve consistency between
use scenarios and features. 16 errors is a significant number taking into account mainly
two things: i) Use scenarios, feature model and composition were first carefully mod-
eled and before applying our approach they were apparently “perfect”, and ii) The large
number of possible combinations of features, the number of variants and use scenarios
makes this task challenging, however our approach and tool support gives results in
a “blink of an eye”. The time taken to evaluate consistency rules using the Pico SAT
solver and produce the results is in the order of milliseconds when run on an Intel

7 http://www.eclipse.org/modeling/mdt/?project=papyrus : Papyrus.

Supporting Consistency Checking between Features and SPL Use Scenarios 33

Core-Duo i5 at 2.4 Ghz. Given that in VCC4RE, feature models and constraints are
mapped to clauses, the performance and scalability of our approach are proportional
to the efficiency of the SAT solvers which are able to handle large number of clauses
in industrial applications. However, though encouraging results, the scalability of our
approach needs to be more extensively validated with more complex case studies and
probably using more consistency rules. Doing that is part of our future work.

6 Discussion and Related Work

An issue in the development of SPLs is the lack efficient approaches for consistency
checking among all the artifacts, including requirements specifications. In model-driven
development this becomes a crucial issue as software is built by means of a chain of
transformations. This can start from assets such as requirements specification models,
to code-based assets that typically depend on a particular implementation technology.
In this setting, the quality of the final code of target products depends mostly on (i)
the transformations, (ii) the source models of each transformation and (iii) the informa-
tion added after each transformation. Therefore, to create constraints helps not only to
compose models that helps to understand the intended products to the SPL stakehold-
ers, but also to obtain good quality source models that are the base for deriving good
quality code.

The idea of this paper was to explore whether it was possible to use so called “hard”
methods for consistency checking as early as requirements analysis. Usually such meth-
ods are used much later in the development. We believe now that they can be used much
earlier and therefore some inconsistencies do not have to be left until later to be de-
tected. The use of these methods is transparent for the SPL developer and therefore, it
does not add extra complexity to the modeling process. SAT solvers are implemented
by libraries that are used internally by VCC4RE.

The effective use of use scenarios in SPL demands mechanisms for consistency
checking that cope with variability. However, to the best of our knowledge, this issue
has not been extensively researched except by Czarnecki, et al [9]. They observed that
implementation constraints should follow from domain constraints. Their findings ap-
ply to a different composition technique that uses model templates to generate concrete
models for product configurations. That work ensures that no ill-structured template
instances (i.e., concrete models of products) will be generated from a correct product
configuration. In comparison with that work, we check consistency between use sce-
narios and feature models of domain requirements specifications and we do not assume
that the feature model contains all domain constraints since its creation as it usually hap-
pens in incremental SPL development processes. In fact, our approach benefits from the
semantic of the use scenarios to deduce domain constraints.

There are different research areas related to our work and that have been taken
into account the importance of consistency constraints in models. In the field of well-
formedness of models for example Egyed [10]. Also, for single systems modeling, Ja-
cobson [15] used aspect-oriented use case models. However, none of those works check
consistency of SPL models, and their composition mechanism does not support model
weaving of model fragments as it is possible with a requirements-tailored composition
language as VML4RE.

34 M. Alférez et al.

Previous work [17] addressed consistency in composition in multi-view modeling
in SPL following a FOSD [5] approach for models closer to the product implementa-
tion. Also, Harhurin and Hartmann [12] provided denotational semantics and a notation
called Service Diagram to describe system functionality and variability. Both works fo-
cus only on depedencies between atomic features. Our work addresses composition of
requirements specifications and an advanced way for model composition based on an
aspect-oriented framework VML4RE that is capable to manage variants in addition to
atomic features.

7 Conclusions and Future Work

This paper establishes constraints and presents tool support for consistency checking be-
tween use scenarios and features in the SPL domain, using feature models and VML4RE.
However, our approach does not depend on the use of VML4RE. We use it because its
actions facilitate expressing the composition in use scenarios. The objective of check-
ing consistency is to guarantee that all the products that could be derived from a feature
model indeed have consistent requirements specifications. This means without omit-
ting information or containing conflicting requirements that eventually may cause errors
when transformed and implemented into more platform dependent models and code.

The feasibility of our approach was evaluated using a prototype tool and a home
automation case study. The results show that performance and scalability were not an
issue. However, these aspects need further assessment with larger and more complex
SPLs and consistency rules. Such assessment is part of our future work.

We think that the application of constraints is necessary but do not satisfy com-
pletely the problem of consistency checking of models. This problem also depends on
the composition order of the variants and in the application order of the actions inside
each variant block. Currently, we are researching algorithms to calculate the precedence
order between variants and its application in non-monotonic composition. Our proposal
here is a proof of concept. Our strategy can be extended for other models, for example
to model variability of system qualities, that is not within the scope of our paper and is
part of our future work. Here, we are addressing part of the problem for some models.

Acknowledgements

This work was partially supported by the CITI, Portugal, the European project AMPLE,
contract IST-33710 and the grant SFRH/BD/46194/2008 of Fundação para a Ciência e
a Tecnologia, Portugal. It was also partially funded by the Austrian FWF under agree-
ment P21321-N15 and Marie Curie Actions—IEF project number 254965. We thanks
to Alexander Nöhrer for its Java interface for PicoSAT.

References

1. Int. confs. on theory and applications of satisfiability testing, http://www.
satisfiability.org/

2. Alférez, M.: Variability consistency checking for requirements tool, http://citi.di.
fct.unl.pt/prototype/prototype.php?id=116

http://www.satisfiability.org/
http://www.satisfiability.org/
http://citi.di.fct.unl.pt/prototype/prototype.php?id=116
http://citi.di.fct.unl.pt/prototype/prototype.php?id=116

Supporting Consistency Checking between Features and SPL Use Scenarios 35

3. Alférez, M., Kulesza, U., Sousa, A., Santos, J., Moreira, A., Araújo, J., Amaral, V.: A model-
driven approach for software product lines requirements engineering. In: SEKE, pp. 779–784
(2008)

4. Alférez, M., Santos, J., Moreira, A., Garcia, A., Kulesza, U., Araújo, J., Amaral, V.: Multi-
view composition language for software product line requirements. In: van den Brand, M.,
Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 103–122. Springer, Heidelberg
(2010)

5. Batory, D.: Ahead tool suite, http://www.cs.utexas.edu/users/schwartz/
ATS.html

6. Benavides, D., Segura, S., Cortés, A.R.: Automated analysis of feature models 20 years later:
A literature review. Inf. Syst. 35(6), 615–636 (2010)

7. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley,
Boston (2002)

8. Czarnecki, K., Eisenecker, U.W.: Generative programming: methods, tools, and applications.
ACM Press/Addison-Wesley Publishing Co., New York (2000)

9. Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against well-
formedness ocl constraints. In: Proc. of the GPCE 2006, Portland, Oregon, USA, pp. 211–
220. ACM, New York (2006)

10. Egyed, A.: Fixing inconsistencies in UML design models. In: Proc. of the 29th Int. Conf. on
Software Engineering, ICSE 2007, pp. 292–301. IEEE Computer Society, Washington, DC,
USA (2007)

11. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. Addison Wesley Longman Publishing Co., Inc., Redwood
City (2004)

12. Harhurin, A., Hartmann, J.: Towards consistent specifications of product families. In: Cuellar,
J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 390–405. Springer, Heidelberg (2008)

13. Heidenreich, F., Kopcsek, J., Wende, C.: Featuremapper: mapping features to models. In:
Companion of the 30th Int. Conf. on Software Engineering, ICSE Companion 2008, Leipzig,
Germany, pp. 943–944. ACM, New York (2008)

14. Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach. Addison
Wesley Longman Publishing Co., Inc., Redwood City (2004)

15. Jacobson, I., Ng, P.-W.: Aspect-Oriented Software Development with Use Cases (Addison-
Wesley Object Technology Series). Addison-Wesley Professional, Reading (2004)

16. Kruchten, P.: The Rational Unified Process: An Introduction, 3rd edn. Addison-Wesley
Longman Publishing Co., Inc., Boston (2003)

17. Lopez-Herrejon, R.E., Egyed, A.: Detecting inconsistencies in multi-view models with vari-
ability. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS,
vol. 6138, pp. 217–232. Springer, Heidelberg (2010)

18. Morganho, H., Gomes, e.a.: Requirement specifications for industrial case studies. Deliver-
able D5.2, Ample Project (2008), www.ample-project.net

19. Pohl, K., Böckle, G., Linden, F.J.v.d.: Software Product Line Engineering: Foundations, Prin-
ciples and Techniques. Springer-Verlag New York, Inc., Secaucus (2005)

20. Zschaler, S., Sánchez, P., Santos, J., Alférez, M., Rashid, A., Fuentes, L., Moreira, A., Araújo,
J., Kulesza, U.: VML* – A family of languages for variability management in software prod-
uct lines. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp.
82–102. Springer, Heidelberg (2010)

http://www.cs.utexas.edu/users/schwartz/ATS.html
http://www.cs.utexas.edu/users/schwartz/ATS.html
www.ample-project.net

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 36–51, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Towards a More Fundamental
Explanation of Constraints in Feature Models:

A Requirement-Oriented Approach

Wei Zhang, Haiyan Zhao, Zhi Jin, and Hong Mei

1 Key Laboratory of High Confidence Software Technology (Peking University),
Ministry of Education, China

2 Institute of Software, School of EECS, Peking University, Beijing, 100871, China
zhangw@sei.pku.edu.cn, zhhy@sei.pku.edu.cn,

zhijin@sei.pku.edu.cn, meih@pku.edu.cn

Abstract. One basic construct in feature models (FMs) is the constraints be-
tween features, which play the role of ensuring the consistency and complete-
ness of any configuration of a FM. However, most of the existing research
about FMs views constraints between features as a kind of black-box entities,
and cares little about more fundamental problems relating to them, such as what
are the origins of them, and whether there is an insight explanation for their ex-
istence. In this paper, we try to provide a more fundamental explanation of con-
straints between features. The basic idea is that constraints among features are
not imposed by external, but rooted in the nature of features – that is, a feature
is a kind of container for requirements, and the constraints between features
naturally inherit from the constraints between requirements. Following this
idea, we identify two general situations that usually relate different require-
ments, and introduce a set of constraint-patterns based on the different composi-
tions of the two general situations. The value of this research is that it provides
a requirement-oriented approach to reflecting our current understanding of
constraints in FMs, and also provides us with more theory support to identify,
specify and explain constraints between features.

Keywords: Feature Model, Constraint, Semantic.

1 Introduction

One basic construct in feature models (FMs) is the constraints between features, which
play the role of ensuring the consistency and completeness of any configuration of a
FM. For example, for two features a and b, if there is a requires constraint between
them (i.e. a requires b), and if in a configuration a is selected and b is removed, then
we can confirm that this configuration is incomplete, since that b is not included in this
configuration. If there is an excludes constraint between the two features (i.e. a ex-
cludes b), and if in a configuration both of the two features is selected and bound, then
we can confirm that this configuration is inconsistent, since that two conflicting
features are bound in the same time. By explicitly identifying constraints between
features, feature models can be configured and reused more easily and efficiently.

 Towards a More Fundamental Explanation of Constraints in Feature Models 37

However, most of the existing research about FMs view constraints between fea-
tures as a kind of black-box entities – that is, they treat constraints between features as
accomplished facts, and care little about more fundamental problems relating to them,
such as what are the origins of them, and whether there is a theoretical explanation for
their existence. For example, for a requires constraint between two features a and b
(i.e. a requires b), most of the existing research cares only the surface meaning of this
constraint – that is, if a is selected then b should also be selected. Such a kind of
black-box view on constraint certainly is not wrong itself, since that it is sufficient for
the purpose of ensuring the consistency and completeness of configurations of a FM.
But if we want to extend our confidence from the configurations of a FM to the FM
itself – for example, to evaluate whether a constraints in a feature model is right or
wrong, such a kind of black-box view will be insufficient, and we have to transform
our focus to more essential aspects of constraints – that is, the origins that cause the
existence of constraints between features.

In this paper, we try to give a more fundamental explanation of constraints in feature
models. The basic idea is that constraints among features are not imposed by external,
but rooted in the nature of features. A lot of existing research has pointed out that a
feature essentially denotes a cohesive set of individual requirements [20,21,14,22]; in
other words, a feature is a kind of requirement container. Based on this understanding of
features, we believe that the constraints between features are actually caused by the
constraints between requirements – that is, the constraints between features naturally
inherit from the constraints between requirements. Following this belief, we investigate
the nature of requirements from a phenomenon-based view, identify two general situa-
tions that usually relate different requirements, and introduce a set of constraint-patterns
based on the different compositions of the two general situations. The value of this
research is that it provides a requirement-oriented approach to reflecting our current
understanding of constraints in FMs, and also provides us with more theory support to
identify, specify and explain constraints between features.

The rest of this paper is organized as follows. Section 2 introduces some prelimi-
naries. Section 3 gives two general situations about how different requirements could
be related with each other. Section 4 presents seven patterns that cause constraints
between features by composing the two general situations in different ways. Section 5
discusses related work. Finally, Section 6 concludes this paper with a short summary
and further work.

2 Preliminaries

In this section, we introduce some preliminaries, including a phenomenon-based un-
derstanding of requirements, a classification of phenomena, and three kinds of roles
that requirements plays to their referenced phenomena. We also give a simple exam-
ple containing four requirements, and show how these requirements reference to a set
of phenomena.

2.1 An Understanding of Requirements

In our research, we adopt a phenomenon-based understanding of requirements, which
is independently proposed by Jackson [11] and Parnas et al. [16], and then formalized

38 W. Zhang et al.

by Gunter et al. [10]. Generally, a phenomenon is something that is observed to hap-
pen in a time point or exist in a period of time. The core of this understanding is
the distinction between requirements, specifications, and domain properties. The
commonality of the three concepts is that all of them describe properties between
phenomena involved in a software system, and the differences between them exist in
two aspects, which are the different types of phenomena referenced by the three con-
cepts, and the different enforcers of the properties captured by the three concepts.
Properties between phenomena specify how two or more phenomenon are related
with each others – for example, causality is a kind of properties between phenomena,
which shows that the occurrence of one phenomena will lead to the occurrence of
other phenomena.

Generally, phenomena involved in a software system can be partitioned into four
types: Eh, Ev, Sv and Sh. The explanations of them are given in Table 1.

Table 1. Four types of phenomenon

Phenomenon Types Explanation

Eh ∀ p ∈ Eh, p is controlled by the environment, and not visible to the software.

Ev ∀ p ∈ Ev, p is controlled by the environment, and also visible to the software.

Sv ∀ p ∈ Sv, p is controlled by the software, and also visible to the environment.

Sh ∀ p ∈ Sv, p is controlled by the software, and not visible to the environment.

Table 2 shows the differences between the three concepts. The phenomena that

specifications can reference are those that are visible both to the software and the
environment, and the properties captured by specifications are enforced by the soft-
ware. That is, specifications describe the software’s behavior at the interface between
the software and the environment. The phenomena that requirements and domain
properties can reference are those that are visible to the environment. The differences
between them is that the properties described by domain properties are enforced
by the environment , while the properties captured by requirements are desired by
software stakeholders and could be enforced only after the software is successfully
deployed into the environment.

The relations between the three concepts could be expressed by the following for-
mula (in which, D, S and R denote domain properties, specifications and requirements,

Table 2. Differences between requirements, specifications, and domain properties

Concept Referenced
Phenomena

Enforcer

Domain Properties Eh ∪ Ev ∪ Sv Environment

Requirements Eh ∪ Ev ∪ Sv The conjunction of software and environment

Specifications Ev ∪ Sv Software

 Towards a More Fundamental Explanation of Constraints in Feature Models 39

respectively): D, S |= R. The meaning of this formula is that requirements can only be
satisfied when domain properties and specifications are both satisfied. For more de-
tailed information, we refer to [10], [11] and [16].

2.2 A Classification of Phenomena

As stated in Section 2.1, requirements capture desired properties between phenomena
– that is, these properties don’t exist naturally or previously, but will be exist if an
appropriate software system is developed and deployed. In the following, we give a
brief introduction to a simplified classification of phenomena. The original complete
classification is proposed by Jackson, and more information about it could be found
in [12].

Phenomenon

Individual Relation

Value Entity Event State

Role

11

1

1 *

*

* *

Fig. 1. A classification of phenomena

Fig. 1 shows an overview of this classification, in which, phenomena are parti-
tioned into two subclasses: individuals and relations. An individual is something that
can be named and reliably distinguished from other individuals [12]. Individuals are
further partitioned into three subclasses: entities, events and values. An entity is an
individual that exists over a period of time, and the states of an entity can be changed
with time. An event is an indivisible individual that occurs at a specific time point. A
value is a constant individual that is independent of time and space, such as numbers
and characters.

A relation is “a set of associations among individuals” [12]. Relations are further
partitioned into three subclasses: states and roles. A state is a relation between entities
and values. A role is a relation between events and individuals, which captures indi-
viduals participating in events.

2.3 Roles of Requirements to Their Referenced Phenomena

A requirement often plays different roles to their referenced phenomena. In this paper,
we distinguish three kinds of reference role.

Read-only (ro) reference: When a requirement references a phenomenon in a read-
only way, it means that the requirement is just an observer of the phenomenon, and
does not impose any constraint on the phenomenon.

40 W. Zhang et al.

Functional constraining (fc) reference: When a requirement references a phe-
nomenon in a functional constraining way, it means that the requirement imposes
certain temporal sequence constraints on the phenomenon (For example, the phe-
nomenon should occur only after the occurring of some other phenomenon).

Non-functional constraining (nfc) reference: When a requirement references a phe-
nomenon in a non-functional constraining way, it means that the requirement imposes
certain constraints on the phenomenon that cannot be represented by temporal se-
quences between phenomena, such as the timing constraints between phenomena and
the throughput constraints of software systems.

2.4 An Example

In the following, we introduce four requirements, and show the different reference
roles that they play to phenomena. The four requirements will be used in the rest of
this paper as a running example to demonstrate our main ideas. We could find the
four requirements in a software system that allows multiple users to log in to. Table 3
lists the four requirements. Fig. 2 shows the phenomena referenced by the four
requirements.

Table 3. Four requirements and their descriptions

ID Description

REQ-01
If a user provides correct user name and password, the system
should allow the user to log in.

REQ-02
After a user logs in to the system, a welcome message should be
send to the user.

REQ-03
The average interval between a user’s log-in and the welcome
message’s appearing should less than 5 seconds.

REQ-04
The system should allow at least 5000 users in the log-in state at
the same time.

From REQ-01’s description, we can identify an entity phenomenon: user, two

value phenomena: name and password, and a state phenomenon: log-in-state. REQ-01
references the former three phenomena in a read-only way – that is, REQ-01 does not
impose any restriction on who can try to log in, or which user name or password
should be provided, and anyone can freely provide any user name and password. But
REQ-01 does impose a functional constraint on the log-in-state phenomenon. That is,
after a user provides the correct name and password, the user’s log-in-state should be
changed from false to true.

From REQ-02’s description, we can find that it has two ro-references to the entity
phenomenon user and the event phenomenon log-in, and two fc-references to the
entity phenomenon wel-msg and the state phenomenon sending-state (That is, after a
user’s log-in, a wel-msg should be constructed, and its sending-state should be made
to be true by sending the wel-msg to the user).

REQ-03 and REQ-04 show two examples of nfc-references, respectively. One is a
nfc-reference to the occurring-time (a role phenomenon) of the event wel-msg-send-
out. The other is a nfc-reference to the log-in-state of users.

 Towards a More Fundamental Explanation of Constraints in Feature Models 41

REQ-02 REQ-03

REQ-04

E
ve

n
t

Log-In

E
v
en

t

Wel-Msg-
Send-out

V
al

u
e

Time
occurring-time

occurring
-time

E
n
ti
ty

User

V
a
lu

e

Boolean

V
al

u
e

Time

V
al

u
e

5 Seconds

log-in-state

V
al

u
e

5000

E
n
ti
ty

Wel-Msg

logged-user

sent-msg

Legend

Requirement

Individual
Phenomenon

Relation
Phenomenon

REQ-01

V
al

u
e

Name

V
al

u
e

Password

Non-functional
constraining reference

Read-only reference

Functional
constraining reference

V
a
lu

e

Boolean

sending-state

Fig. 2. Phenomena referenced by the four requirements

3 Two Elementary Situations

In this section, we give two elementary situations of how different requirements are
related with each other through those phenomena referenced by them.

3.1 Situation 1: Multiple References to the Same Phenomenon

The first situation we have observed is that two or more requirements reference the
same phenomenon. Fig. 3 illustrates such a situation, in which, two requirements
REQ-A and REQ-B both reference the phenomenon pheno-x.

This situation varies at two dimensions: the type of the referenced phenomenon,
and the type of reference role of involved requirements. For example, pheno-x could
be an entity or a state phenomenon, and REQ-A may have a ro-reference to pheno-x,
while REQ-B may have a fc- or nfc- reference to pheno-x.

REQ-A REQ-B

P
h
e
n
o

Pheno-X

Fig. 3. Multiple references to a same phenomenon

In a paper on requirements triage [6], Davis provides two simple requirements to
show the constraints between them. Here we investigate the two requirements from a
different view, and show how they fit into the situation illustrated in Fig. 4. The two
requirements are:

42 W. Zhang et al.

REQ-05 REQ-06

E
n
ti
ty

Button

V
al

u
e

Red

V
al

u
e

Color
color

V
al

u
e

Position
position

V
al

u
e

Upper-Right-Corner

Fig. 4. REQ-5, REQ-6 and their referenced phenomena

 REQ-05: The system shall provide a stop button in the upper right corner, and
 REQ-06: The stop button shall be red.

Fig. 4 shows how the two requirements reference a set of phenomena, in which, the
button is referenced by both of them, but with different roles; one is a fc-reference,
and the other is a ro-reference (see the filled area). The former exists because that
REQ-05 requires to import a button into the system, and the latter exists because that
REQ-06 only requires to set the color state of a pre-imported button.

3.2 Situation 2: Separated References to Related Phenomena

The second situation is that two requirements reference two different phenomena
respectively, and the two phenomena are related in a certain way. Fig. 5 illustrates
such a situation, in which, REQ-A and REQ-B reference two related phenomena
pheno-x and pheno-y respectively.

Besides the two dimensions as in situation 1, this situation also varies at the third
dimension of how those referenced phenomena are related. In our research, we iden-
tify two ways. The first way is that, two phenomena are related by the connection
between their semantics. One example of this case exists between the event phenome-
non log-in and the state phenomenon log-in-state (see Fig. 2). Log-in-state denotes
the relation between users and boolean values. The occurring of a log-in event means
that a certain user’s log-in-state is changed from false to true. When some constraints
are applied on log-in-state (for example, to satisfy REQ-01), a log-in event may also
occur correspondingly.

The second way is that, two phenomena are related by domain properties. One ex-
ample of this case could be found in the time-alarming service of most mobile
phones. This service contains two requirements:

REQ-A REQ-B

P
h
en

o

Pheno-X

Ph
e
n
o

Pheno-Y

Fig. 5. Separated references to related phenomena

 Towards a More Fundamental Explanation of Constraints in Feature Models 43

 REQ-07: When a pre-defined time point arrives, the bell should ring.

 REQ-08: When the off-button is pressed, the bell should stop ringing.

Fig. 6 shows how the two requirements reference a set of phenomena, in which, REQ-
07 has a fc-reference to the bell’s ringing-state, while REQ-08 has a ro-reference to
the button-pressed event (see the filled area). The two phenomena ringing-state and
button-pressed are related through the following process: when the bell’s ringing-
state is true, its sound will pass through the atmosphere into the user’s ears, and the
user will be woken up and then press the off-button, which further causes the occur-
ring of a button-pressed event. This process is supported by the following three
domain properties: the atmosphere’s physical property of transferring sounds, the
user’s physiological property of being woken up by sounds, and the user’s rational
decision of pressing the off-button to stop the ringing.

In addition, there are also relations between REQ-07 and REQ-08 that fit into situa-
tion 1. That is, both of them reference to the two phenomena: bell and ringing-state,
but impose different constraints on the ringing-state.

REQ-07 REQ-08

V
al

u
eTime-

Point E
n
ti
ty

Bell

V
al

u
e

True

V
al

u
e

Boolean

ringing-state

E
n
ti
ty

Off-Button

E
ve

n
t

Button-
Pressed

p
re

ss
ed

-b
u
tt

on

Problem domains

Fig. 6. REQ-07, REQ-08 and their referenced phenomena

4 Patterns for Constraints between Features

In this section, we present a set of patterns developed by composing the two situations
above in different ways, and show how these patterns cause constraints between re-
quirements. We first introduce two set of constraint patterns for the requires and the
excludes constraints, respectively. After that, we show how these patterns could be
further extended to cover more complex constraints between features.

4.1 Patterns of the Requires Constraints

For two requirements REQ-A and REQ-B, “REQ-B requires REQ-A” means that the
selection of REQ-B requires the selection of REQ-A. That is, it will have no sense to
introduce REQ-B into a software system, if REQ-A is not introduced.

We have identified four patterns that induce the requires constraints. Fig. 7 shows
the first pattern (called pattern 1). This pattern is developed from situation 1 and
captures such a scenario: REQ-A imports an entity-x into the software system, and
REQ-B has a ro-reference to the entity-x and a fc-reference to the entity-x’s state-z. In
this scenario, REQ-B requires REQ-A. The reason for this requires constraints is

44 W. Zhang et al.

obvious: if REQ-A is not introduced, the entity-x would not be imported into the sys-
tem, and thus REQ-B would never have a chance to apply his constraint on the entity-
x’s state-z.

REQ-A REQ-B

E
n
ti
ty

Entity-X

V
al

u
e

Value-Y
state-z

Pa
tte

rn
 1

. Importing an entity-x
into the software system.

Fig. 7. Pattern 1 of the requires constraints

Guided by pattern 1, we could find a requires constraint between REQ-05 and
REQ-06, that is, REQ-06 requires REQ-05.

Fig. 8 shows the second pattern (called pattern 2). This pattern is developed from
situation 2 and captures such a scenario: REQ-A applies a constraint on the entity-x’s
state-z, REQ-B has a ro-reference to the event-u, and the changing of state-z induces
the occurring of event-u. In this scenario, REQ-B requires REQ-A, because that if
REQ-A is not introduced into the software system, the event-u would not occur, and
thus REQ-B would never have a chance to reference the event-u, to say nothing of
how REQ-B would use the event-u to apply its constraints on other phenomena.

Guided by pattern 2, we could find four requires dependencies between those re-
quirements from REQ-01 to REQ-08: REQ-02 requires REQ-01, REQ-03 requires
REQ-01, REQ-03 requires REQ-02, and REQ-08 requires REQ-07.

Fig. 9 shows the third pattern (called pattern 3). This pattern is developed from
situation 1 and captures such a scenario: REQ-A and REQ-B both reference the entity-
x’s state-z, but impose different constraints on it: the former changes the entity-x’s
state-z from a default value to other values, while the latter recovers the entity-x’s
state-z to its default value. In this scenario, REQ-B requires REQ-A, because that if
REQ-A is not introduced into a software system, the entity-x’s state-z would always

P
at

te
rn

 2
.

REQ-A

E
n
ti
ty

Entity-X

V
al

u
e

Value-Y

state-z

E
ve

n
t

Event-U

REQ-B

Fig. 8. Pattern 2 of the requires constraints

P
at

te
rn

 3
.

E
n
ti
ty

Entity-X

V
a
lu

e

Value-Y
state-z

REQ-A REQ-B
Changing state-z’s
default value.

Recovering state-z to
its default value.

Fig. 9. Pattern 3 of the requires constraints

 Towards a More Fundamental Explanation of Constraints in Feature Models 45

keep its default value, and thus it would be unnecessary to introduce REQ-B to re-
cover the state-z to it default value.

Guided by pattern 3, we could find the requires constraint between REQ-07 and
REQ-08, that is, REQ-08 requires REQ-07. It is interesting to observe that this con-
straint could be identified either from pattern 2 or from pattern 3.

Fig. 10 shows the fourth pattern (called pattern 4). This pattern is developed from
situation 1 and captures such a scenario: REQ-A and REQ-B both reference the
pheno-x in a constraining way, but with different types: one is a fc-reference,
the other is a nfc-reference. In this scenario, REQ-B requires REQ-A, because that the
non-functional constraining usually bases itself on the functional constraining (for
example, imposing quality requirements on the functional constraining). This kind of
dependency conforms to the general relationships between functional and non-
functional requirements [19].

P
at

te
rn

 4
.

REQ-A REQ-B

P
h
e
n
o

Pheno-X

Fig. 10. Pattern 4 of the requires Constraints

Guided by pattern 4, we could find the requires constraint between REQ-01 and
REQ-04, that is, REQ-04 requires REQ-01.

4.2 Patterns of the Excludes Constraints

For two requirements REQ-A and REQ-B, “REQ-A excludes REQ-B” means that
when both of them are introduced into a software system, there may exist a scenario,
in which, the two requirements can not be satisfied at the same time, or the satisfac-
tion of both of them can lead to unexpected negative behavior of the software system.

We have identified three patterns that induce the excludes constraints. Fig. 11
shows the first pattern (called pattern 5). This pattern is developed from situation 1
and captures such a scenario: both of REQ-A and REQ-B have a ro-reference to the
event-x, but impose conflicting constraints on the pheno-y. In this scenario, REQ-A
excludes REQ-B, because that when the event-x occurs, their constraints on the pheno-
y could not be satisfied at the same time.

REQ-A REQ-B

E
ve

n
t

Event-X

P
h
en

o

Pheno-Y

Pa
tte

rn
 5

.

Fig. 11. Pattern 5 of the excludes constraints

46 W. Zhang et al.

One instance of pattern 5 could be found between the two requirements show-
caller-ID and block-caller-ID in the telecommunication systems [8]. Show-caller-ID
requires that “the caller’s phone number should be shown to the recipient”, while
block-caller-ID requires the inverse. When there is a call from one user who sub-
scribes to block-caller-ID to the other user who subscribes to show-caller-ID, the two
requirements can not be both satisfied.

Fig. 12 shows the second pattern (called pattern 6). This pattern is also developed
from situation 1, and captures such a scenario: REQ-A has a ro-reference to the event-
x, and imposes a constraint on the entity-v’s state-r; while REQ-B has a ro-reference
to the entity-y’s state-u, and imposes a constraint on the entity-v’s state-r, a constraint
conflicting with the one that REQ-A imposes on. REQ-A and REQ-B will conflict with
each other, when the event-x occurs and at the same time, the entity-y’s current state-u
causes REQ-B to keep its constraint on the entity-v’s state-r.

REQ-A REQ-B

E
ve

n
t

Event-X

Pa
tte

rn
 6

.

E
n
ti
ty

Entity-Y

V
al

u
e

Value-Z
state-u

E
n
ti
ty

Entity-V

V
a
lu

e

Value-W
state-r

Fig. 12. Pattern 6 of the excludes constraints

One instance of pattern 6 could be found between the time-alarming service and
the meeting-silence service of mobile phones. Two requirements involved in the two
services show the potential of conflicting with each other. One is REQ-07, which has
been introduced in Section 3.2. The other is a requirement in the meeting-silence
service:

 REQ-09: When the mobile phone is in the meeting state, the bell should not ring.

The two requirements exclude each other in the following scenario: a pre-defined
time point arrives, while the phone is in the meeting state.

REQ-A REQ-B

P
at

te
rn

 7
.

E
ve

n
t

Event-X

P
h
en

o

Pheno-V

P
h
en

o

Pheno-U

E
ve

n
t

Event-Y

Fig. 13. Pattern 7 of the excludes constraints

 Towards a More Fundamental Explanation of Constraints in Feature Models 47

A common kind of negative behavior of a software system is live lock – that is, the
system runs into an infinite loop. Based on this observation, we identify the third
pattern (called pattern 7, see Fig. 13). This pattern is developed from situation 2, and
captures such a scenario: REQ-A has a ro-reference to the event-y, and imposes a
constraint on the pheno-v, while REQ-B has a ro-reference to the event-x, and im-
poses a constraint on the pheno-u. These two requirements may run into an infinite
loop in the following scenario: REQ-A applies its constraint on the pheno-v, which
causes the occurring of event-x, and then REQ-B applies its constraint on the pheno-u,
which further causes the occurring of event-y and REQ-B’s constraint applying action
again.

4.3 Extended Patterns

The seven patterns introduced above can be extended in two ways. One way is to
extend each requirement in the seven patterns into a set of requirements, and each of
them has similar references with the original requirement.

REQ-An REQ-Bn

state-z1

Importing an entity-x
into the software system.

REQ-A1

E
n
ti
tyEntity

-X

V
al

u
eValue

-Y1

REQ-A2

REQ-B1

REQ-B2

V
a
lu

eValue
-Y2

V
a
lu

eValue
-Yn

state-z2

state-zn

Fig. 14. An extension to pattern 1

Fig. 14 shows an extension to pattern 1 following this way. In this new pattern,
REQ-A is extended into a set of requirements, and each of them has the capacity to
imposing a new entity-x into the software system. REQ-B is also extended into a set of
requirements, and each of them imposes on a constraint on one of the entity’s state.
Guided by this pattern, we could identify a new kind of requires constraint with the
following form: Multi(REQ-B1, B2,…, Bn) requires Multi(REQ-A1, A2,…, An).
The meaning of such a constraint is that when one or more requirements in the left
are introduced, one or more requirements in the right should also be introduced; it
will have no sense to just introduce the left requirements without any of the right
requirements.

Another way is to extend each requirement in the four patterns into a set of re-
quirements, but only the conjunction of all of them has similar references with the
original requirement.

Fig. 15 shows such an extension to pattern 1. Guided by this extension, we could
get another new kind of requires with the following form: All(REQ-B1, B2,…, Bn)
requires All(REQ-A1, A2,…, An). The meaning of such a dependency is that when
all the left requirements are introduced, all the right requirements should also be
introduced.

48 W. Zhang et al.

REQ-An REQ-Bn

Importing an entity-x
into the software system.

REQ-A1

E
n
ti
tyEntity

-XREQ-A2

REQ-B1

REQ-B2

V
al

u
eValue

-Y2state-z

Fig. 15. Another extension to pattern 1

Based on the two ways above, the seven patterns in Section 4.1 and 4.2 can be ex-
tended in more flexible styles. For example, only apply one of the two ways to one of
the two requirements in original patterns, or apply the two ways to the two require-
ments respectively. Consequently, we could get more kinds of extended requires and
excludes constraints, such as:

 REQ-B requires Multi(REQ-A1, A2,…, An),

 All(REQ-B1, B2,…, Bn) requires REQ-A,

 All(REQ-B1, B2,…, Bn) requires Multi(REQ-A1, A2,…, An),

 Multi(REQ-B1, B2,…, Bn) requires All(REQ-A1, A2,…, An).

 REQ-B excludes Multi(REQ-A1, A2,…, An),
 All(REQ-B1, B2,…, Bn) excludes REQ-A,

 All(REQ-B1, B2,…, Bn) excludes Multi(REQ-A1, A2,…, An),

 Multi(REQ-B1, B2,…, Bn) excludes All(REQ-A1, A2,…, An).

5 Related Work

Our work is inspired in part by Jackson’s research on problem frames [12]. Espe-
cially, our understanding of requirements and the classification of phenomena are
directly based on his work and other related research [10, 16]. The difference between
our work and the research on problem frames is that: while the latter focuses on those
reusable patterns existed in a single requirement or a set of closely-related require-
ments (called a problem), our work concentrates much on how different requirements
are related with each other. Such a difference also points out the possible combination
of the two approaches. For example, our approach could be used to analyze the
dependencies between those requirements contained in a problem, and thus make a
deep understanding of the problem. Similarly, our approach could also be used to
analyze dependencies between problems and evaluate how these problems could be
composed to resolve a more complex problem. In addition, we extend the constrain-
ing references in the problem frames into two distinct subclasses: functional and non-
functional references. Although in some contexts, a requirement may describe both
functional and non-functional constraints (For example, an requirement such as “after
the occurring of event A, event B should occurs in five seconds”), we think that the
explicit distinction between them could attain a high degree of separation of concerns

 Towards a More Fundamental Explanation of Constraints in Feature Models 49

in requirements specifications. The distinction also makes it possible to investigate
the dependencies between functional and non-functional requirements.

In software reuse, feature models [13,9,3] are proposed to improve the customiza-
bility of requirements. For this purpose, a feature model usually contains a set of
requires or excludes constraints between features. Pohl et al [18,1] pointed out the
importance of constraints between features for the variability modeling of software
product lines. In addition, many researchers also identified the value of con-
straints/dependencies between requirements in other software development activities.
For example, Moisiadis [15] and Davis [6] observed that the using of constraints
makes the requirements prioritizing activity more efficient and reduces effort in later
maintenance activities. Based on an industrial survey, Carlshamre et al. [2] identified
a set of dependency types (including requires and excludes dependencies), and
showed their influence on the release planning activity. In our previous research [23],
we found that the constraints could be used to identify interactions between compo-
nents. Ferber et al. [7] also showed the constraints’s value in the reengineering of
legacy software product lines. Our work in this paper could be used to improve the
above research by provide them a systematical way to identifying the constraints.

Much effort has also been made towards a systematic modeling framework for
different types of requirements dependency. The most significant work in this direc-
tion is conducted by Dahlstedt and Persson [4, 5]. In their research, they made an
extensive survey of different types of requirements dependencies in literature, and
classified them into a set of fundamental dependency types, based on a general de-
pendency model proposed by Pohl [17]. Dahlstedt and Persson also pointed out that
although we have recognized the importance of requirements dependencies for soft-
ware development, there are still many fundamental or practical problems relating to
requirements dependencies, such as what are the origins of requirements dependen-
cies, and how to identify requirements dependencies. Our research in this paper does
not try to resolve all these unresolved problems, but only focuses on a specific type of
requirements dependency, namely, the constraints. We locate the constraints’ origin in
the nature of requirements (that is, it is the requirements themselves that cause the
constraints between them), and introduce a set of patterns that cause constraints be-
tween requirements, based on a phenomenon-based understanding of requirements.

6 Conclusions and Future Work

In this paper, we present our preliminary research on the understanding of constraints
in feature models, from a requirement-oriented approach. We view features as a kind
of requirements container, and believe that constraints between features naturally
inherit from constraints between requirements. Based on this viewpoint, we conclude
two elementary situations of how different requirements are related with each other,
develop seven concrete by composing the two elementary situations in different ways,
and show how these patterns induce the constraints between requirements/features.

Our future work will focus on the automatic identification of the constraints be-
tween requirements/features. The key problem in attaining this goal is to find a formal
method to specify the relations between phenomena, and to specify the relations be-
tween requirements/features and their referenced phenomena. Based on such a formal

50 W. Zhang et al.

method, patterns inducing constraints could also be formalized, and algorithms could
be developed to identify those patterns automatically.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions. This work is supported in part by National
Natural Science Foundation of China under Grant No. 60821003, 60703065 and
60873059, National Basic Research Program of China (973) under Grant No.
2009CB320701, and National Key Technology R&D Program under Grant No.
2008BAH32B02.

References

1. Buhne, S., Lauenroth, K., Pohl, K.: Modelling Requirements Variability across Product
Lines. In: 13th IEEE International Conference on Requirements Engineering (RE 2005),
pp. 41–52. IEEE Computer Society, Los Alamitos (2005)

2. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Nattoch Dag, J.: An Industrial Sur-
vey of Requirements Interdependencies in Software Product Release Planning. In: 5th
IEEE International Symposium on Requirements Engineering (RE 2001), pp. 84–91. IEEE
Computer Society, Los Alamitos (2001)

3. Chastek, G., Donohoe, P., Kang, K.C., Thiel, S.: Product Line Analysis: A Practical Intro-
duction. SEI-2001-TR-001, Software Engineering Institute, Carnegie Mellon University
(2001)

4. Dahlstedt, A.G., Persson, A.: Requirements Interdependencies - Moulding the State of
Research into a Research Agenda. In: 9th International Workshop on Requirements Engi-
neering - Foundation for Software Quality (REFSQ 2003), Klagenfurt/Velden, Austria,
June 16-17, pp. 55–64 (2003)

5. Dahlstedt, A.G., Persson, A.: Requirements Interdependencies: State of the Art and Future
Challenges. In: Engineering and Managing Software Requirements, pp. 95–116. Springer,
Heidelberg (2006)

6. Davis, A.M.: The Art of Requirements Triage. IEEE Computer 36(3), 42–49 (2003)
7. Ferber, S., Haag, J., Savolainen, J.: Feature Interaction and Dependencies: Modeling Fea-

tures for Reengineering a Legacy Product Line. In: Chastek, G.J. (ed.) SPLC 2002. LNCS,
vol. 2379, pp. 235–256. Springer, Heidelberg (2002)

8. Fife, L.D.: Feature Interaction-How It Works in Telecommunication Software. IEEE
Potentials 15(4), 35–37 (1996)

9. Griss, M.L., Favaro, J., d’Alessandro, M.: Integrating Feature Modeling with the RSEB.
In: 5th International Conference on Software Reuse, pp. 76–85. IEEE Computer Society,
Los Alamitos (1998)

10. Gunter, C.A., Gunter, E.L., Jackson, M., Zave, P.: A Reference Model for Requirements
and Specifications. IEEE Software 17(3), 37–43 (2000)

11. Jackson, M.: Software Requirements and Specifications: A Lexicon of Practice, Principles
and Prejudices. Addison-Wesley, Reading (1995)

12. Jackson, M.: Problem Frames: Analyzing and Structuring Software Development Prob-
lems. Addison-Wesley, Reading (2001)

13. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented
Domain Analysis Feasibility Study. Technical Reports, SEI-90-TR-21, Software Engineer-
ing Institute, Carnegie Mellon University (1990)

14. Mehta, A., Heineman, G.T.: Evolving Legacy System Features into Fine-Grained Compo-
nents. In: 24th International Conference on Software Engineering, Florida, pp. 417–427
(May 2002)

 Towards a More Fundamental Explanation of Constraints in Feature Models 51

15. Moisiadis, F.: The Fundamentals of Prioritising Requirements. In: Systems Engineer-
ing/Test and Evaluation Conference, SETE 2002 (2002)

16. Parnas, D.L., Madey, J.: Functional Documents for Computer Systems. Science of
Computer Programming 25(1), 41–61 (1995)

17. Pohl, K.: Process-Centered Requirements Engineering. John Wiley & Sons, Inc., Reading
(1996)

18. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Founda-
tions, Principles and Techniques. Springer, Heidelberg (2005)

19. Sommerville, I.: Software Engineering. Addison-Wesley, Reading (2000)
20. Turner, C.R., Fuggetta, A., Lavazza, L., Wolf, A.L.: A Conceptual Basis for Feature Engi-

neering. Journal of Systems and Software 49(1), 3–15 (1999)
21. Wiegers, K.E.: Software Requirements. Microsoft Press, Redmond (1999)
22. Zhang, W., Mei, H., Zhao, H.: A Feature-Oriented Approach to Modeling Requirements

Dependencies. In: 13th IEEE International Conference on Requirements Engineering (RE
2005), pp. 273–282. IEEE Computer Society, Los Alamitos (2005)

23. Zhang, W., Mei, H., Zhao, H., Yang, J.: Transformation from CIM to PIM: A Feature-
Oriented Component-Based Approach. In: Briand, L.C., Williams, C. (eds.) MoDELS
2005. LNCS, vol. 3713, pp. 248–263. Springer, Heidelberg (2005)

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 52–68, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Towards Feature-Oriented Variability Reconfiguration
in Dynamic Software Product Lines

Liwei Shen, Xin Peng, Jindu Liu, and Wenyun Zhao

School of Computer Science, Fudan University, Shanghai, China
{shenliwei,pengxin,09212010014,wyzhao}@fudan.edu.cn

Abstract. Dynamic Software Product Line (DSPL) provides a new paradigm
for developing self-adaptive systems with the principles of software product
line engineering. DSPL emphasizes variability analysis and design at develop-
ment time and variability binding and reconfiguration at runtime, thus requires
some kinds of variability mechanisms to map high-level variations (usually
represented by features) to low-level implementation and support runtime
reconfiguration. Existing work on DSPL usually assumes that variation features
can be directly mapped to coarse-grained elements like services, components or
plug-ins, making the methods hard to be applied for traditional software sys-
tems. In this paper, we propose a feature-oriented method to support runtime
variability reconfiguration in DSPLs. The method introduces the concept of role
model, an intermediate level between feature variations and implementations to
improve their traceability. On the other hand, the method involves a reference
implementation framework based on dynamic aspect mechanisms to implement
the runtime reconfiguration. We illustrate the process of applying the proposed
method with a concrete case study, which helps to validate the effectiveness of
our method.

Keywords: Dynamic software product line, self-adaptation, dynamic AOP,
variability binding, reconfiguration.

1 Introduction

Software-intensive systems in areas like pervasive computing and online service sys-
tems are required to be more adaptive nowadays. Rather than behaving constantly,
these systems, also called self-adaptive systems, can automatically adapt their behav-
iors at runtime based on the environment and guided by objectives and needs of
stakeholders [1].

In the software reuse community, Dynamic Software Product Line (DSPL) [2] has
been proposed as an effective paradigm to develop self-adaptive systems with the
principle of software product line (SPL) engineering. DSPL identifies the reusable
and dynamically reconfigurable core assets at development time which are explicitly
modeled as dynamic variability. At runtime, DSPL application proposes to configure
and reconfigure runtime instances by the variability customization, which means to
adapt the binding decisions of the variations within the current system during execu-
tion. The business logic of a DSPL application covers the adaptable behaviors which

 Towards Feature-Oriented Variability Reconfiguration in DSPL 53

can be represented as a domain model, usually as a feature model [10, 11]. As a re-
sult, the dynamic reconfiguration strategies can be obtained and specified in a higher
feature level rather than the lower program level, which makes it easily be validated
and understood by the system users.

In order to implement the feature-oriented variability reconfiguration, DSPL re-
quires some kinds of variability mechanisms to map high-level feature variations to
low-level implementations. Existing work usually assumes that variation features can
be directly mapped to coarse-grained implementation elements like services [7, 8],
components [4] or plug-ins [3]. However, the variability traceability from features to
implementations in the traditional software systems may be more complicated. For
example, a single feature can be implemented by multiple program units, while a
program unit may also contain the functions for several features. Existing feature-
based methods do not provide the traceability naturally due to the big gap between the
problem space and the solution space [12, 13]. Thus, the program-level reconfigura-
tion driven by the feature level variation binding is hard to be performed.

In this paper, we propose a feature-oriented method to support runtime variability
reconfiguration in DSPLs. The method introduces the concept of role model, an in-
termediate level between feature variations and implementations to improve their
traceability. In a role model, each feature is implemented by a set of roles as well as
various role interactions, and roles will be further instantiated by elements in the im-
plementation level. In particular, a special type of roles, called control roles, is intro-
duced to manage the dynamic reconfiguration upon feature variations. On the other
hand, our method involves a reference implementation framework based on dynamic
aspect mechanisms to implement the runtime reconfiguration. Currently, we adopt
JBoss-AOP [18], a popular mechanism supporting dynamic aspect weaving. Follow-
ing our method, we conducted a concrete case study on a course selection system, and
the preliminary results help to validate the effectiveness of our method.

The remainder of this paper is organized as follows. Section 2 gives a background
introduction to the DSPL and analyzes research problems in feature-oriented variabil-
ity reconfiguration. Section 3 describes the role model as well as its capability to
support the runtime reconfiguration. Then Section 4 introduces our reference imple-
mentation framework based on dynamic aspect mechanisms. Section 5 presents the
case study with the discussion, and Section 6 introduces related work. Finally Section
7 draws the conclusion and plans our future work.

2 Background and Problems for Variability Reconfiguration

In this section, we will first briefly introduce the background of a DSPL. Then the
working example of a course selection system will be given out to derive the research
problems when realizing the feature variability reconfiguration.

2.1 Background of DSPLs

Complying with a traditional SPL, the feature model of a DSPL provides an inte-
grated business view emphasizing on possible variations and changes in its runtime
behaviors. Thus, the variability in DSPLs is bound or unbound during runtime and the
binding decisions on the variations may change several times in its lifetime [2].

54 L. Shen et al.

In our method, we consider two kinds of variation points (i.e. adaptation points at
runtime) in feature models which are optional and alternative. Since the binding status
of the variations can be changed several times during execution, all of their corre-
sponding implementations should be incorporated into the application initially. At
runtime, whether they are available will depend on the reconfiguration strategies
generated from the adaptation rules in a specific context.

We think an important engineering principle that DSPL can bring to self-adaptive
systems is the feature dependency and constraint mechanism. By feature constraints,
we can represent require or exclude dependencies among feature variations, and com-
bine them into runtime adaptation controls to help to ensure consistent and complete
feature bindings and reconfigurations.

2.2 DSPL Example of a Course Selection System (CSS)

The Course Selection System is a DSPL example whose feature model (in Figure 1)
as well as its adaptation rules (in Table 1) is identified before the system is running.
The system is endowed with the capability of self-adaptation so that it can provide a
stable online service facing the course-selecting demand from thousands of students
in a campus. The adaptation capabilities are formalized as the ECA (On Event If Con-
dition Do Action) [16] rules which indicate the operations upon the dynamic variation
points in the feature model.

Fig. 1. Feature model of the course-selecting system

The self-management capability helps to generate the variations in the business
model which represents the possible configurations that the system may behave at
runtime. For example in the figure, the feature OnlineTimeControl is an optional
feature that can be bound or unbound according to the changing concurrent accessing
number specified in the first rule. TemporaryReserve which can keep the unsaved user
operations for a period of time if the user is disconnected is required by OnlineTime-
Control. It means the former cannot be bound if the latter is not bound. Connec-
tionLimit is another optional feature whose binding status depends on the available
server memory. SaveResult is an alternative feature whose variants are SaveToDB and
SaveToLocalFile separately. Thus, the saving mode can be changed at runtime
conforming to the availability status of the database which is evaluated through the
response time shown in the third rule. PrintCourseInfo is similar with the previous

 Towards Feature-Oriented Variability Reconfiguration in DSPL 55

Table 1. The ECA rules for CCS

ON IF DO
CAN > 500 bind OnlineTimeControl the concurrent accessing number

(CAN) changes CAN < 450 unbind OnlineTimeControl
MU > 90% bind ConnectionLimit the memory utilization (MU)

changes MU < 80% unbind ConnectionLimit
DRT > 3s bind SaveToLocalFile database response time (DRT)

changes DRT < 1s bind SaveToDB
PS = out-of-service bind PrintAsFile

printer state (PS) changes
PS = in-service bind DirectPrint

alternative feature that its binding strategy of its variants depends on the availability
of the printer (the forth rule).

2.3 Research Problems in Feature-Oriented Variability Reconfiguration

During runtime, the DSPL application should monitor the current situation and acti-
vate the corresponding feature variability reconfiguration specified by the ECA rules.
However, when transferring the reconfiguration from the feature level to the imple-
mentation level, the following problems may emerge.

On the one hand, the complex mapping between the features and the implementa-
tion artefacts poses difficulty for the dynamic reconfiguration. Under the circum-
stance, a feature is not directly mapped to the coarse-grained component, service or
plug-in. However, a single feature variation may influence several fine-grained pro-
gram units. For example, if the feature OnlineTimeControl is bound to be available, it
will first introduce a list which is used to store the remaining online time of each
access to the module implementing UserAccessControl. Furthermore, it will also
append an operation to start the timing as soon as a new access is permitted. In addi-
tion, the feature will activate a thread which checks the time list all the time to find
out and stop the overtime access. Thus, without a clear traceability between the two
levels, what to do to reconfigure in the program artefacts is hard to be specified.

On the other hand, the underlying runtime collaboration between the features may
also influence the execution of the dynamic reconfiguration. For instance, if Connec-
tionLimit is bound, it can modify the behavior of Userlogin by determining whether to
execute it or not although the collaboration is not explicitly illustrated in the feature
model. If it is not bound, the constraint will not take effect. Another example is that
UserAccessControl may invoke OnlineTimeControl to initialize the timing for an ac-
cess if the latter feature is bound. The collaborations especially between the common
features and the variable features vary in different scenarios and can be dynamically
established or revoked during runtime. Therefore, without a comprehensive description
of the various feature collaboration, the reconfiguration is hard to be applied in the
program level, i.e. what kind of collaborations and how they can be reconfigured.

Existing coarse-grained mapping methods are not suitable for capturing the de-
composition of the feature’s responsibility as well as the underlying collaborations.
Therefore, an effective mapping method which provides explicit traceability from the
business model to the implementation artefacts is desired. In addition, a mechanism
towards the program level adaptation driven by the dynamic feature binding is conse-
quently necessary.

56 L. Shen et al.

Based on the considerations, we will introduce the role model as well as the refer-
ence implementation framework in Section 3 and 4 separately.

3 Role Model of DSPLs

In this section, we will first introduce the basic concepts of the role model by illustrat-
ing its meta-model. The included role interactions and their semantics are identified.
Then we will present the role-level interaction reconfiguration which is supported by
the special control roles.

3.1 The Role Meta-Model

Role model is the logic design model for the implementation of features [18]. It is
regarded as a type of domain architecture which relates the business features to the
actual program artefacts. Figure 2 depicts the role meta-model together with the fea-
tures and the code implementations.

Fig. 2. Meta-model of the role model

In the feature model, feature is the basic element which represents the business op-
eration of a DSPL. Mandatory features, optional features and alternative features are
expressed separately. Usually, parent features can be decomposed into the child features
which are organized in a tree-like style. Furthermore, variants are specific features that
are related to the parent alternative feature with the relationship isVariant.

In the architecture level, a feature is implemented by a feature implementation unit
which is combined with different kinds of roles. The concept of role here is similar to
the responsibility in [12] and the role in [9]. Compared with features, roles reserve the
knowledge of features as well as endow features with the implementation aspects, so it
can support the mapping from features to program artefacts in a more natural way [19].

From the meta-model, there are three kinds of roles with separate design concerns.
Firstly, a computational role denotes a logical unit or a responsibility which should be
taken by the program units for feature implementation. It refines the function of a
feature into a finer-grained level so that the existing feature tangling and scattering

 Towards Feature-Oriented Variability Reconfiguration in DSPL 57

problems can be alleviated. Furthermore, a computational role has a property isActive
which claims that the role runs in a recurrent way and requests other’s services if the
value is true, otherwise to be invoked by others if the value is false. An active role is
common in an information system that a lot of specific events are triggered by the
active inspection. Secondly, a resource role represents the specific internal or external
entity necessary for the implementation of a feature. It is usually cooperated with
other computational roles to fulfill a certain business goal. For example, it can be a
widget in the user interface and then a computational role can specify its content, or a
data structure used to store information which can be read or written by other compu-
tational roles. Thirdly, a control role is of much difference with the previous two
roles. It takes the responsibility in two respects. On one hand, it helps to manage the
status of the interactions (they will be described later) between the previous two roles.
Thus, it can control whether a specific interaction can be established or revoked dur-
ing runtime. On the other hand, it can also influence the active role to determine its
running status, i.e. to start it or to suspend it.

A feature may be implemented by a set of identified roles which organize a feature
implementation unit. Usually, a feature is certainly to be refined as one or more com-
putational roles. It also involves some resource roles on condition that the feature
works on some entities (UI widget, data structure, etc). The control role is not an
indispensable element. It exists only if the feature implementation unit corresponds to
a feature with variability. This kind of roles takes effect according to the binding
strategy of the features.

Furthermore, we do not define the variability property to the roles in the meta-
model since all the roles should be included in the product but available at different
times. However, for the sake of clearness, we distinguish the roles as base roles and
variability-related roles. The former resides in the feature implementation unit which
relates to a mandatory feature, while the latter is refined from the variation features.

In the implementation level, the computational roles as well as the resource roles
can be instantiated by program artefacts which compose the program part of a DSPL
application. The artefacts may be components, classes, methods, code segments or
configuration files with various granularities. However, they should be organized as an
encapsulated entity especially for the fine-grained units. Sometimes several roles will
be instantiated with the artefacts contained in a same encapsulation which is the result
of feature tangling. On the other hand, the control role is instantiated by the control
unit that contains the operations for managing the role interactions and the active com-
putational roles. It resides in the control part within the DSPL implementations.

Furthermore, there exist various kinds of interactions between the roles. They indi-
rectly denote the underlying collaborations between the features in order to reach the
system business goals. Following our previous work in [18], we list the five identified
interactions as well as their descriptions in Table 2. The involve and inform interac-
tions are the functional dependencies between two computational roles, however in
different invoking mode. The determine interaction is special that it is used to manage
the normal execution of the target role by means of the semantic of the source role.
The access and introduce interactions are built between a computational role and a
resource role with opposite directions.

It should also be noticed that the control links from a control role are not regarded
as a kind of role interaction as liste. In fact, it is of great importance for the role-level

58 L. Shen et al.

Table 2. Descriptions of the role interactions [18]

role interaction description

involve
a computational role requires a function from another computational role
in a synchronous mode

inform
a computational role activates the executing of another computational
role in an asynchronous mode

determine
a computational role decides the behavior of another computational role
by allowing or rejecting the operation of the target role

access
a computational role accesses a resource role by reading, writing or
modifying it

introduce
a resource role is introduced into an implementation unit of another
computational role to be a sub-element

interaction reconfiguration based on the feature-level variability reconfiguration
which will be represented in the next subsection.

3.2 Role-Level Interaction Reconfiguration

During the adaptation process, the feature variation reconfiguration is further mapped
to the role model. Under this circumstance, the variability-related roles can be adapted
to be available or unavailable when the runtime reconfiguration is performed. Since
the roles cannot be removed from the running application, the management of the role
interactions supports the reconfiguration, i.e. the interactions are variable and the
dynamic establishing or revoking of the role interactions can change the application’s
behavior during runtime. For example, if a base role A has an involve interaction
towards an optional-related role B, the interaction should be built when the optional
feature is bound. Otherwise, the interaction should be removed since the relationship
target does not exist anymore.

In our method, the interaction reconfiguration is supported by the control roles.
Figure 3 depicts the role-level interaction reconfiguration patterns by the control roles
which are related to the two kinds of variation points in the feature model.

For the sake of simplicity, we assume that each feature is implemented by one
computational or resource role. Furthermore, in the corresponding feature implemen-
tation unit, there exists a control role (CRx) if the feature is of variability. The seman-
tics of the patterns are as follows.

The pattern for the optional feature: Suppose Fb is an optional feature whose par-
ent feature is Fa. Under the separate situations of the interaction scenarios and the

Fig. 3. Role-level reconfiguration patterns by control roles

 Towards Feature-Oriented Variability Reconfiguration in DSPL 59

role types, there may exist all the five types of interactions between Ra and Rb, e.g.
usually Ra involve/inform/access Rb, or Rb determine/introduce Ra. The control role
CRb manages the existence of the interaction during execution, i.e. establish it when
feature Fb is bound, or revoke it when Fb is unbound.

The pattern for the alternative feature: Suppose Fa is an alternative feature and its
variants are Fb and Fc. Since the invocation to Fa may be transferred to any of its
variant, Ra can have involve or inform interactions towards Rb and Rc. However, the
underlying constraint indicates that the two interactions are mutually exclusive, which
means only one interaction can be established at a specific time. Therefore, the switch
between the interactions is controlled by CRa. Its operation includes two respects of
actions, i.e. remove the interaction towards one role and establish the interaction to-
wards another role.

Furthermore, the feature dependency should also be considered. It has nothing to
do with the reconfiguration patterns but to put the dependent reconfigurations together
in order to reach a valid runtime instance. For example, if an optional feature requires
another optional feature, the dependency will indicate that the reconfigurations of the
different feature implementation units should be performed at the same time.

Besides, the control role also takes the responsibility to start or suspend an active
role in a variability-related feature implementation unit. For example, an active role
Ra is refined from an optional feature Fa, and Ra continuously checks the modifica-
tion of an information list to trigger the events to be handled. Supposing Fa is not
bound, Ra’s running is meaningless and also wastes the system resource. Thus, it
should be stopped or suspended. On the contrary, if Fa is to be bound, Ra should be
started as soon as possible. Thus, it is the control role that manages the running status
of an active role.

4 The Reference Implementation Framework of DSPLs

The feature-oriented variability reconfigurations should be realized in the implemen-
tation layer with the support of the role model. In this section, we will describe the
referent implementation framework which adopts JBoss-AOP as the dynamic aspect
mechanism.

4.1 Dynamic-AOP in JBoss-AOP

Dynamic AOP is a powerful technique to realize the dynamic program adaptation [14,
15]. Similar with the traditional static AOP, it also involves the concepts of the bind-
ing from advice to pointcut. However, the key characteristic is that the binding can be
decided during runtime, i.e. the inclusion of the binding can be changed.

In our method, we adopt JBoss-AOP [15] as the underlying mechanism for the dy-
namic aspect weaving. In JBoss-AOP, an aspect is defined by an interceptor and a
pointcut. The interceptor is the same as the advice and it is programmed as a Java
class. The aspect bindings are prepared to be included.

When the dynamic aspect is to be woven, JBoss-AOP will dynamically insert or
remove the aspect binding through AspectManager. The binding establishing process
can be described in the following steps: 1) create a new aspect binding by a given

60 L. Shen et al.

name; 2) declare the pointcut of the base program in the created binding; 3) declare
the interceptor to the binding. On the other hand, the existing named aspect can also
be removed by means of the AspectManager.

4.2 Implementation-Level Composition Patterns

The roles are instantiated by the program units or control units. As mentioned in Sec-
tion 3, the program units can be any artefact in different granularity, including the
encapsulated components, classes, or scattered code segments. In our method, we
claim the following development principles for the implementations in order to sup-
port the runtime reconfiguration. Firstly, the base roles and the variability-related
roles should be instantiated by different program units. In particular, different base
roles can reside in the same unit while different variability-roles are suggested to be
located in separate entities. Secondly, the base roles are requested to correspond to the
program artefacts whose granularity is bigger than method so that they can be woven
by aspects, i.e. the pointcut can be defined around the methods declared. Thirdly, the
program which instantiates a variability-related role should be encapsulated as an
interceptor which is a regular Java class and implements the Interceptor interface.

When preparing a dynamic aspect, the expression of the pointcut as well as the
content of the interceptor depends on the type of the role interactions. Table 3 illus-
trates the composition patterns for the program artefacts separated by the various
interaction types. In this mapping, we simply assume that each role is instantiated by
a corresponding code encapsulation.

The direction of the aspect weaving (from the interceptor to the pointcut) does not
always conform to the direction of the original interaction. For example in the first
two rows, if Ra has an involve or inform interaction towards Rb, Ia is woven which
means Ib is able to adapt the behavior of Ia by appending additional functions in
an obliviousness way. However, the woven logic can be performed in different
modes. Usually, if a role is involved, the base program has to be suspended until the
finishing of the interceptor’s execution. On the contrary, the base program notifies the
interceptor to run in a new thread and continuous its execution if a role is informed.

Table 3. Composition patterns for different role interactions

role interaction composition pattern JBoss-AOP implementation

pointcut: before or after the execution of Ia
interceptor: Ib, runs in a synchronous mode
(the same thread)

pointcut: before or after the execution of Ia
interceptor: Ib, runs in an asynchronous
mode (a new thread)

pointcut: around the execution of Ib
interceptor: Ia, decides whether to proceed
Ib’s execution or not

pointcut: after the execution of Ib
interceptor: Ia, added into Ib as a new
member, be declared and instantiated after
the execution (constructor) of Ib

pointcut: before or after the execution of Ia
interceptor: Ib, the direct accessing of the
resources

 Towards Feature-Oriented Variability Reconfiguration in DSPL 61

In particular, the introduce interaction adopts a simple weaving mode since there is no
intertype support in JBoss-AOP like that in AspectJ [17]. Thus, the resource is intro-
duced to be a member of the target unit by appending the code segment which is used
to declare and instantiate the resource after the execution of the target implementa-
tion, usually after the constructor.

During runtime, the interactions between the roles can be established or revoked.
Therefore, the binding statuses of the dynamic aspects towards the various interac-
tions are decided by the implementations of the control roles.

4.3 The Reference Implementation Framework

The reference implementation framework based on JBoss-AOP is depicted in Figure
4. It is noticeable that the framework only works for the reconfiguration realization.
Therefore, how as well as when the adaptation needs are generated is out of scope.

When encountering a situation that triggers reconfiguration, the strategy of the fea-
ture variability reconfiguration is obtained based on the predefined ECA rules. The
strategy is the input to the framework and is handled by the two special ingredients
which are the global aspect manager and the local aspect manager.

Each local aspect manager is the instantiation of the control role in a single feature
implementation unit. It is responsible for establishing or removing the dynamic aspect
binding through the steps mentioned in Section 4.1. The local aspect manager is an
encapsulated entity composed of a set of operations. The semantics of the operations
follow the reconfiguration patterns in Figure 3. For example, in the case of an op-
tional feature, a local aspect manager has one operation to bind the dynamic aspect
and the other operation to remove it. As for an alternative feature, each operation has
to first remove the existing aspect binding and then to weave the one related to the
selected variant in a sequence. In addition, the local aspect managers should be im-
plemented before the system is running. Which operation will be invoked depends on
the reconfiguration strategy which is managed by the global aspect manger.

Fig. 4. The reference implementation framework based on JBoss-AOP

The global aspect manager, on the other hand, is an independent entity that is
responsible for distributing the reconfiguration tasks. As soon as it receives the strat-
egy of the feature variability reconfiguration, the global aspect manager validates

62 L. Shen et al.

the strategy based on the feature model as well as the feature dependencies defined.
Then the strategy is transferred to derive a set of role-level interaction reconfigura-
tions. The local aspect managers in the corresponding feature implementation units
can be identified based on the feature traceability knowledge. Finally it automatically
invokes the corresponding operations to implement the reconfiguration at the program
level by managing the dynamic aspects.

5 Case Study

In this section, we will go back to the course selection system in Figure 1 to give out
the role model for the DSPL application. Based on it, the program level artefacts
following the reference implementation framework are also illustrated.

5.1 The Role Model for the Course Selection System (CCS)

Based on the role meta-model introduced in Section 3, we have constructed the role
model for CCS, whose segments are depicted in Figure 5.

Fig. 5. Segments of the role model for CSS

Figure 5 represents the role model corresponding to the UserAccessControl
sub-tree in Figure 1. In the feature implementation unit of ConnectLimit, we have
identified a control role CR-LoginControl. It aims to control the determine interaction
towards the role login in another implementation unit. Furthermore, in the feature
implementation unit of OnlineTimeControl, the feature is implemented into several
roles. Supposing the corresponding feature is bound at runtime, a resource role
OnlineRemainingTimeList which represents an additional list column is introduced to
ActiveUserView. The interaction indicates to add a column to the list in the form
where the system administrator can check the left time for each user connection. In
addition, UserOnlineTimeControl is involved by ActiveUserMng once there is a new
connection. When it is invoked, it will access OnlineRemainingTimeList to insert a
record of the new access along with its maximal remaining time such as 15 minutes.

 Towards Feature-Oriented Variability Reconfiguration in DSPL 63

On the other hand, ObligedLogout is an active role which will continuously access
OnlineTime to discover the connection that has expired. DecreaseTime is also an
active role whose responsibility is to modify the time value in the list every three
minutes. In the feature implementation unit, the two interactions as well as the two
active roles are managed by CR-OnlineTimeCtl.

5.2 Reconfiguration Based on the Reference Implementation Framework

Before the DSPL application is running, the artefacts for the dynamic reconfiguration
should be implemented. As discussed in Section 4.2, the variability-related roles
should be instantiated by the interceptors. We take the resource role OnlineRemain-
ingTimeList as an example. Figure 6 depicts the code snippet of the interceptor which
instantiates the role.

public class TimeListInterceptor implements Interceptor {

@Override
public String getName() {

return "TimeListInterceptor";
}
@Override
public Object invoke(Invocation invocation) throws Throwable {

Object result = invocation.invokeNext();
//get the target object usersList
Object object = invocation.getTargetObject();
if (object instanceof UsersList) {

UsersList usersList = (UsersList) object;
//introduce the limit time column to the show table
TableColumn loginDateColumn = new TableColumn(usersList.userlistTable, SWT.LEFT);
loginDateColumn.setText("LimitTime");
loginDateColumn.setWidth(130);
//initialize the OnlineTimeList
AspectPanel.OnlineTimeList.clear();
Object[] userNames = usersList.getUsers().keySet().toArray();
for (Object userName : userNames) {

AspectPanel.OnlineTimeList.put(userName.toString(), AspectPanel.defaultTime);
}

}
return result;

}
}

Fig. 6. Code snippets of the role OnlineRemainingTimeList (as an interceptor)

The resource role is introduced into a user-visible form which is developed by
SWT (the Standard Widget Toolkit for Java). The interceptor then includes a method
that appends the codes about the declaration and initialization of the widget after the
execution of the pointcut.

On the other hand, CR-OnlineTimeCtl should be instantiated as a local aspect man-
ager which contains the operations to establish or revoke the related aspect bindings.
Figure 7 depicts the code snippet for the control role.

The local aspect manager is instantiated as a Java class. It first references to the
single instance of AspectManager provided by the JBoss-AOP API (it is not the same
as the global aspect manager in the framework). The two operations are represented
by the two methods, i.e. bindOnlineTime and unbindOnlineTime. In the former
method, two new aspect bindings are created which can be seen in the first two steps.
In sequence, the last two steps offer the instructions to start the programs which
instantiate the active roles. On the other hand, the latter method is responsible for
removing the named bindings and stopping the active roles’ execution.

64 L. Shen et al.

public class CR_OnlineTimeControl {
AspectManager manager = AspectManager.instance();
//This function wave two Interceptor.
public void bindOnlineTime() throws ParseException {

//1.bind the OnlineTimeInterceptor
//Here the pointcut is instrument using JBoss AOP expression "execution(...)"
AdviceBinding timeBinding = new AdviceBinding("OnlineTimeInterceptor",

"execution(public void swt.UsersList->registerUser(*))", null);
timeBinding.addInterceptor(OnlineTimeInterceptor.class);
manager.addBinding(timeBinding);
//2.bind the "TimeListInterceptor"
AdviceBinding timeListBinding = new AdviceBinding("TimeListInterceptor",

"execution(public * swt.UsersList->userToArray(*))", null);
timeListBinding.addInterceptor(timeListInterceptor.class);
manager.addBinding(timeListBinding);
//3.begin to force users who are timeout to logout
startObligedLogout();
//4.start to count down users' online time
startDecreaseTime();

}
//This function remove the bindings and stop timer

public void unbindOnlineTime() throws ParseException {
//1.stop forcing users out
stopObligedLogout();
//2.stop timer
stopDecreaseTime();
//3.remove the binding of OnlineTimeInterceptor
if (manager.getBindings().containsKey("OnlineTimeInterceptor"))

manager.removeBinding("OnlineTimeInterceptor");
//4.remove the binding of timeListInterceptor
if (manager.getBindings().containsKey("timeListInterceptor"))

manager.removeBinding("timeListInterceptor");
}
// startDecreaseTime(), stopDecreaseTime(),startObligedLogout() and stopObligedLogout() are eliminated here

}

Fig. 7. Code snippets of the control role (CR_OnlineContrl)

During execution, we assume the situation that the concurrent accessing number to
CCS has exceeded 500. Therefore, the adaptation is triggered and the action of the
first ECA rule in Table 1 (bind OnlineTimeControl) is to be performed. On the same
time, due to the feature dependency, the optional feature TemporaryReserve should
also be bound.

The feature variability reconfiguration strategy is input into the framework and the
reconfiguration is handled by the global aspect manager. During the process, it firstly
identifies the local aspect managers for OnlineTimeControl and TemporaryReserve.
Then it invokes the corresponding methods to accomplish the target of the runtime
reconfiguration, e.g. invokes bindOnlineTime method for realizing the binding of
OnlineTimeControl. As a result, the behavior of the DSPL has been modified without
recompiling the application.

5.3 Discussion

Based on the preliminary results from the case study, the proposed method can be
regarded as an effective way to help the feature-oriented variability reconfiguration in
DSPLs.

First, the role model helps to establish the dynamically reconfigurable artefacts
based on the refinement of the features. At the same time, it is also used to clarify the
complex mapping between the features and the implementation programs. When
refining, we use the computational and resource roles to cover the responsibility of a
feature. After that, the roles are instantiated by program artefacts. Thus, at the applica-
tion construction time, the role model can indicate the developers about the artefacts

 Towards Feature-Oriented Variability Reconfiguration in DSPL 65

that should be prepared for the dynamic reconfiguration, e.g. implementation for
the role OnlineRemainingTimeList as an interceptor and the implementation for the
control role CR-OnlineTimeCtl. In addition, during the reconfiguration process,
the artefacts can be located based on the clear traceability so that the reconfiguration
in the implementation level can be correctly implemented conforming to the feature
level strategy.

Second, the role interactions in the model contribute to clarify the underlying run-
time collaboration between the features. Besides the identified feature dependencies,
the semantic relationships between the features should also be captured. Therefore,
the role interactions describe the behavior of the application and explain how the
features can be collaborated to achieve the business goal in a finer-grained view. On
the other hand, we conclude the patterns for the different role interaction types based
on the AOP technique (see in Table 3) although the binding directions as well as the
definitions of the aspect elements vary between each other. Thus, the reconfiguration
on the feature variations can be transferred into the role level as the decision on the
binding status of a set of unified dynamic aspects, further identifying the reconfigura-
tion scope in the program level. Furthermore, the special control roles are necessary in
the DSPL applications that they help to interpret the reconfiguration from the features
to the roles.

In a word, the benefits provided by the role model help us to draw a systematic
process for the realization of the runtime adaptation, i.e. from the feature-level varia-
tion reconfiguration, to the role-level interaction reconfiguration, and finally to the
implementation-level code adaptation.

We also propose a reference implementation framework to support the reconfigura-
tion realization. The framework claims the program patterns for the role interactions
including the interceptors and the local aspect managers which should be developed
before the system is running. Based on it, the program-level reconfiguration can be
performed in a manageable way. On the other hand, the dynamic aspect mechanism
of JBoss-AOP is able to change the application’s behavior without intervening the
system running.

However, the method introduced still has several limitations. First, it may have dif-
ficulty for managing the artefacts when encountering large scale applications. Under
the circumstances, the domain model may contain thousands of features, which will
make the number of the roles as well as the program artefacts expand to a degree hard
to handle. Second, the role model is designed in an ad-hoc way. Furthermore, the
codes for the dynamic aspect binding are also developed by experienced developers
with the knowledge of JBoss-AOP. So, it lacks a supporting tool which can ease the
job for practical use. Third, the example DSPL application in our paper is simple that
it cannot cover all the applied capability for adaptation. In fact, we have not consid-
ered the scenarios where conflicts will emerge in the reconfiguration process.

6 Related Works

The method in this paper is the extension of our previous work in [18]. In that work,
the role model is introduced to ease the product derivation in the product line with
static variability. The role interactions are classified and implemented using AspectJ.

66 L. Shen et al.

However, our method applies the role model for a single DSPL application where
there is also the problem of the complex mapping between the features and the pro-
gram implementations. Under the circumstance, some new characteristics have been
addressed. First, we introduce a new kind of control role which is of great importance
to the role-level reconfiguration. Second, we adopt the dynamic-AOP technique
(JBoss-AOP) to support the implementation-level adaptation since AspectJ lacks the
capability for the dynamic aspect weaving. Third, we propose a reference implemen-
tation framework for the realization of the runtime reconfiguration.

Our work is close to the dynamic product reconfiguration. Lee et al. [5] propose a
systematic approach to developing dynamically reconfigurable core assets in product
line engineering as well as a reconfigurator model to manage the product configura-
tion at runtime. In their method, the feature binding analysis takes an important role in
identifying the granularity of the configuration units and the corresponding binding
time. On the other hand, the reconfigurator including the master and local configura-
tors is introduced to perform the consistent feature variation binding during runtime.
In addition, Lee et al. [6] further provide a formal representation mechanism to
analyze and specify the features that may vary as a part of reconfigurations within a
family of products, thus supporting the consistent reconfiguration. Our method also
aims at the goal of the dynamic product reconfiguration driven by the feature varia-
tion binding. However, it differs in the following aspects: We focus on the reconfigu-
ration of a single DSPL application and all the feature variations are incorporated into
the product initially. Furthermore, we also involve the activity to analyze features but
in an opposite direction that we refine them to imply the program artefacts in the finer
granularity level based on the role model.

There are other works concentrating on the dynamic reconfiguration upon the dif-
ferent kinds of program artefacts driven by the feature variation bindings. Trinidad et
al. [4] propose a method to map the feature models onto the component architecture
for building a DSPL. The mapping is direct and the self-adaptation can be realized by
the dynamic connection between the specific components. Wolfinger et al. [3] pro-
pose their method to support adaptation by means of the combination of the product
line engineering and the plug-in techniques. The adaptation is then realized by loading
and unloading the plug-ins at runtime. Lee and Kotonya [7, 8] introduce their work on
the service-oriented product line, where the features can be mapped to the workflow
or dynamic services through the service analysis. Thus, the variation of the features
can be dynamically bound during runtime by means of selecting the services with
right quality levels. These works are based on the clear mapping between the features
and the program artefacts with a well-designed feature model. However, the solution
to the complex mapping problem is not addressed. Our method takes it into considera-
tion and thus proposes the role model to clarify the complex mapping as well as
identify the program implementation in a finer-grained level.

7 Conclusion and Future Work

DSPL provides a new paradigm for developing and managing self-adaptive systems by
introducing the principles and techniques proposed in SPL engineering. By DSPL, we
can use feature models to capture runtime variations (i.e. adaptation points), as well as

 Towards Feature-Oriented Variability Reconfiguration in DSPL 67

their dependencies, to provide a high-level business view for adaptations. Similar to
product derivation in SPL engineering, DSPL requires some kinds of variability
mechanisms to map feature reconfigurations to implementation-level adaptations. In
this paper, we propose a feature-oriented method to support runtime variability recon-
figuration in DSPLs. In the method, the role model is introduced to clarify the complex
mappings between features and implementation elements. Furthermore, a reference
implementation framework based on dynamic aspect mechanisms is also proposed to
implement runtime reconfigurations. As a result, the runtime adaptation can be realized
in a more systematic way, from the feature-level variation reconfiguration, to the
role-level interaction reconfiguration, and finally to the implementation-level code
adaptation adopting dynamic AOP.

As for our future work, we will mostly concentrate on improving the limitations
discussed in 5.3. More concretely, we will take the tool and runtime infrastructure
development as the first step in our plan. The tool and infrastructure are anticipated to
support role modeling, feature traceability specification, and automatic code genera-
tion for dynamic aspect bindings.

Acknowledgments. This work is supported by National Natural Science Foundation
of China under Grant No. 90818009.

References

1. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM Systems
Journal 42(1), 5–18 (2003)

2. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic Software Product Line.
Computer 41(4), 93–95 (2008)

3. Wolfinger, R., Reiter, S., Dhungana, D., Grunbacher, P., Prahofer, H.: Supporting Runtime
System Adaptation through Product Line Engineering and Plug-in Techniques. In: Interna-
tional Conference on Composition-Based Software Systems (ICCBSS), pp. 21–30 (2008)

4. Trinidad, P., Ruiz-Cortes, A., Pena, J., Benavides, D.: Mapping Feature Models onto
Component Models to Build Dynamic Software Product Lines. In: International Workshop
on Dynamic Software Product Line, DSPL 2007 (2007)

5. Lee, J., Kang, K.C.: A Feature-Oriented Approach to Developing Dynamically Recon-
figurable Products in Product Line Engineering. In: International Software Product Line
Conference (SPLC), pp. 131–140 (2006)

6. Lee, J., Muthig, D.: Feature-Oriented Analysis and Specification of Dynamic Product Re-
configuration. In: Mei, H. (ed.) ICSR 2008. LNCS, vol. 5030, pp. 154–165. Springer, Hei-
delberg (2008)

7. Kotonya, G., Lee, J., Robinson, D.: A Consumer-Centred Approach for Service-Oriented
Product Line Development. In: Working IEEE/IFIP Conference on Software Architecture
(WICSA), pp. 211–220 (2009)

8. Lee, J., Kotonya, G.: Combining Service-Orientation with Product Line Engineering. IEEE
Software, 35–41 (2010)

9. Jansen, A.G.J., Smedinga, R., van Gurp, J., Bosch, J.: First class feature abstractions for
product derivation. IEE Proc.-Softw. 151(4) (2004)

68 L. Shen et al.

10. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented do-
main analysis feasibility study. In: Technical reports, SEI, Carnegie Mellon University
(1990)

11. Kang, K.C., et al.: FORM: A feature-oriented reuse method with domain-specific architec-
ture. Annals of Software Engineering 5, 143–168 (1998)

12. Zhang, W., Mei, H., Zhao, H.: Feature-driven requirement dependency analysis and high-
level software design. Requirements Eng. 11, 205–220 (2006)

13. Riebisch, M., Brcina, R.: Optimizing Design for Variability Using Traceability Links. In:
International Conference on Engineering of Computer Based Systems, pp. 235–244 (2008)

14. Bockisch, C., Haupt, M., Mezini, M., Ostermann, K.: Virtual Machine Support for Dy-
namic Join points. In: International Conference on Aspect-Oriented Software Develop-
ment, AOSD 2004 (2004)

15. Khan, D.: JBoss-AOP (2008), http://www.jboss.org/jbossaop/
16. Dittrich, K.R., Gatziu, S., Geppert, A.: The Active Database Management System Mani-

festo: A Rulebase of ADBMS Features. In: Sellis, T.K. (ed.) RIDS 1995. LNCS, vol. 985,
pp. 3–20. Springer, Heidelberg (1995)

17. AspectJ Team. AspectJ Project, http://www.eclipse.org/aspectj/
18. Peng, X., Shen, L., Zhao, W.: Feature Implementation Modeling Based Product Derivation

in Software Product Line. In: Mei, H. (ed.) ICSR 2008. LNCS, vol. 5030, pp. 142–153.
Springer, Heidelberg (2008)

19. Shen, L., Peng, X., Zhao, W.: A comprehensive feature-oriented traceability model for
software product line development. In: Australian Software Engineering Conference
(ASWEC), pp. 210–219 (2009)

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 69–77, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Reuse by Placement: A Paradigm for Cross-Domain
Software Reuse with High Level of Granularity

Yingxiao Xu1,2, Jay Ramanathan2,*, Rajiv Ramnath2, Nisheet Singh2,
and Shubhanan Deshpande2

1 Software School, Fudan University, 200433, Shanghai, China
2 CETI, Computer Science and Engineering, The Ohio State University,

43210, Columbus, OH, U.S.A.
xu.667@osu.edu, {jayram,ramnath,singhni}@cse.ohio-state.edu,

deshpande.34@osu.edu

Abstract. It is a challenge to reuse existing software at a high level of granular-
ity across different domains. Inspired by product placement for advertising
in markets, where a movie can be “reused” for advertising without losing the
function of the movie, this paper proposes a new paradigm for software reuse:
“reuse by placement”. This concept is illustrated in this paper using serious
games. A framework based on virtual interactions is presented to provide dy-
namic placement points with reusable services to facilitate implanting new
requirements intoop games in educational and human computation domains.

Keywords: Reuse, placement, implanting, human computation, serious game.

1 Introduction

"Software reuse is the process of creating software systems from existing software
rather than building software systems from scratch"[1]. The reuse granularity of
software may be at multiple levels – at a low level (i.e. reuse of design patterns), mid-
level (i.e. reuse of the software framework), or high level (such as when product line
techniques are used to identify reusable components). The higher the level of granu-
larity, the more difficult it is to reuse software across different domains. Consider as
an example, the fact that product lines typically only support reuse within the same
product family.

As software needs become complex, software reuse at a higher level of granularity
across different domains enables these needs to be met better and more cost-
effectively. For example, an educational software developer might lack skills to de-
sign software that is enjoyable and attractive for students. Since many enjoyable and
attractive games already exist, it would be of great benefit if the educational software
developer can reuse games for the purpose of education. This reuse is in fact, exhibit-
ing itself in the domain of serious games [2]. Another example of cross-domain reuse
is in the use of crowdsourcing or human computation [3] to solve computationally

* Corresponding author.

70 Y. Xu et al.

complex problems. Here, computationally difficult problems are broadcast to humans
(that make up the “crowd”) who use their unique abilities to generate solutions. For
example, in an optical character recognition (OCR) program, scanned characters that
are difficult to recognize may be delegated in real time to a human crowd, which does
the recognition. This technique is currently being used via security applications [4],
and games[5, 6] that use aggregated user responses in their decision making.

However, although there are examples of such reuse in serious games[6] and
human computation[4, 5] fields, this type of reuse has not been comprehensively
studied. Such an approach has not yet been formally proposed as a reuse paradigm,
and no tools exist to facilitate reuse from this perspective. In this paper, we propose a
new paradigm that we call "reuse by placement" as a start towards such a comprehen-
sive study.

The underlying idea is analogous to product placement [7, 8], an approach widely
used in the advertising market. A key problem to be addressed in designing an adver-
tisement is to make it reach its (hopefully large) target population. Product placement
leverages movies and television programs have already attracted these populations, by
placing or “implanting” the advertisement in them. Note that the advertisers are not
building a similar movie, or applying the additional skills required to turn a movie
into a revenue source. The movies and television programs are being reused as it is,
but are providing some points (or “hooks”) where different products may be adver-
tised without affecting the normal function of movie or television program.

This concept is what we propose to generalize into the conceptual model for “reuse
by placement”. We explore this generalization in Section 2, along with giving some
examples from the educational and human computation domains. In Section 3, we
develop a framework that facilitates the placement of education and human computa-
tion elements in reusable games. In Section 4 we provide a “case study” on how the
framework may be utilized for reuse. Section 5 describes related work, while Section
6 concludes the paper and motivates future work.

2 Conceptual Model for Reuse by Placement

Figure 1 illustrates the conceptual model behind reuse by placement. Here, an existing
piece of software meets a requirement in Domain 1. However, it also exhibits an at-
tribute (for example, the use of crowd-sourcing) that is a need within software to be
written for Domain 1. A placement point that exposes this attribute allows it to be
reused in Domain 1. Thus, when a new software capability in Domain 1, but with

Fig. 1. Conceptual Model of Reuse by Placement

 Reuse by Placement: A Paradigm for Cross-Domain Software Reuse 71

the attribute exposed from Domain 2, is needed, the developer implants the require-
ment from Domain 1 into the existing system in Domain 2 through use of the
placement point.

We illustrate this concept through examples of placement drawn from the educa-
tional and human computation domains:

 Reuse of a "dress up game" for memory improvement
In the traditional dress-up game, players can dress up models with clothes, hats, and
other apparel and accessories. This game has a significant following. To reuse this for
an educational purpose, like improving memory, we can refactor the game by config-
uring each object (cloth, hat etc.) with different pop-up descriptions that are to be
associated with a particular model and name. From a game perspective, the game now
becomes more challenging as the player has to determine and then remember a set of
clothes that the particular model likes, instead of choosing clothes arbitrarily (note
that the essential nature of the game has not changed; it is still a dress-up game).
However, the game can now be used to train users in memorization or assess their
ability to remember, because it requires matching the descriptions (configured to
clothes) with the concepts (configured to the model).

The placement point in this game is exposed through a configuration file. This file
configures in concepts from the memorization domain and implants it into the game
user-interface (in the pop-up dialogs that enable dress or accessory selection) and the
game logic (determined by the rules that determine whether a dress selection is
allowed).

 Reuse of existing "minesweeping game" for improving factual recall
In traditional minesweeping game, the player looks for mines by reasoning about the
information (i.e. the numbers of surrounding in the adjacent squares) about an uncov-
ered square. In order to make this game more enjoyable, a game developer (who is the
entertainment expert) may create a three-dimensional version of this game, have ob-
jects in the game environment provide cryptic clues as to mine locations, and have
mine variants that require the player to select an appropriate tool to sweep the mine.
This game may now be used as an educational program for improving factual recall.
The game can also now be used for training or assessing knowledge by associating
(through configuration) different images for each type of mine and configuring differ-
ent names for each tool. Now, in order to impart medical training related to cells, for
example, an image of a simple cuboidal epithelium may be configured to a mine.
When the player finds the mine, three sweep tools could appear, each configured with
a different name, "Simple squamous epithelium", "Simple cuboidal epithelium" and
"Simple columnar epithelium" respectively. Through the act of selecting a tool to
sweep the mine, the player may be trained or assessed in the ability to recognize the
different kinds of tissues in the images. In fact, this game may be taken even further
to achieve individualized training, because history data of players could be retained
and analyzed to control which images are configured in a game for the current player
at a given time. In this way, the game can be used to teach students in accordance
with their aptitude.

Note that the placement point of this game is also a configuration file (that controls
the game user interface and game logic as in the previous example).

72 Y. Xu et al.

 Reuse of a game to achieve human computation features
The minesweeping game may be (further) reused for medical diagnosis by incorporat-
ing human computation. For example, there could be photographs of tissues that need
to be recognized and categorized. This is a problem for which it is hard to find reli-
able computer algorithms. However, the human brain can do this task well (when
it already has the relevant knowledge). Assuming the minesweeping game has the
property that a lot of students use it to train in anatomy courses, we can further reuse
the educational game for recognizing otherwise difficult to characterize tissue photo-
graphs. This can be done by recording all the data during the game lifetime and ana-
lyze the performance of all the players. For example, if a photo is recognized as a
simple columnar epithelium by 90% of students, and these students get a high score in
most examinations, then it is very likely that these students are correct, and the image
is that of a simple columnar epithelium. Here also, the placement point is imple-
mented by a configuration file.

Note that, in these three examples, the original software is reused as a whole, and
at a very high level of granularity. Figure 2 (below) shows where reuse by placement
fits as a overall reuse paradigm.

Fig. 2. Illustrating the Reuse by Placement Approach on the Axes of Granularity and Extension
Across Domains

Note that the examples above have similarities in the technique used in the imple-
mentation of the placement point and in the framework services needed. These simi-
larities indicate why we believe that that a generic framework for placement-based
reuse may be possible. We describe this generic framework next. This framework will
focus on developing applications in the education and human computation domains,
through placement-based reuse of functionality in games in the gaming domain.

3 A Framework for Reuse-by-Placement in the Gaming Domain

Products and advertisement placements in movies only seek to show the product to
the audience as part of the movie narrative, which does not have change in order to
showcase the product or the advertisement. The challenge with placement-based reuse
of applications is that the satisfactory use of the placement point by other applications
could need changes to the user-interface and the logic of the original application. For
example, applications in the education and human computation domains need a high

 Reuse by Placement: A Paradigm for Cross-Domain Software Reuse 73

degree of participation from humans, not to mention a lot of data analysis. Thus, the
reuse framework needs to take into account human interaction and instance data
needs.

We show an architecture for a reuse-by-placement framework in the gaming do-
main in Fig. 3. We developed this architecture by abstracting the core (or stable) part
of the application and separating it from the reusable aspects of the application that
make for the placement points. The core of the framework is the game layer that ab-
stracts or “virtualizes” the game interactions. This layer makes its user-interface and
data-management layers reusable by adopting the concept learning objects [9] (thus
defining a knowledge base of related objects), which are used to organize knowledge
“chunks” and their related user-interfaces into digital education-related items that can
be reused in different contexts. The game logic is also made stable by architecting the
game engine as a set of agents with local decision-making capability and locally pro-
vided services. The data analysis component of the game is made stable through what
we term “interaction data virtualization”. The actual placement is enabled (as in the
examples in the previous section) through a configuration file and through rules that
are interpreted by the agents. We discuss the details below.

P
r
o
d
u
c

e

Fig. 3. Details of the "Reuse by Placement" framework

3.1 Game Layer

• Interaction and User Interface Virtualization
The idea used here is based on declarative computational models that describe games
as state transition systems[6, 10]. Essentially, a game can be looked at as agents that
interact with each other. Each agent receives events and executes state transitions in
response to these events, based on a set of configured rules. We use this technique to
implement placement points by extending the concept of an agent to include its

74 Y. Xu et al.

domain knowledge as well as its user-interface. A general engine can now be devel-
oped – that simply initiates the agents and drives their state transitions. We call the
use of these techniques – that make it possible to place new user interfaces and inter-
actions into existing games - "interaction virtualization".

• Interaction Data Virtualization
Agent interactions produce interaction data that are then processed using patterns that
are common in a given domain. We abstract these as "Interaction Data Virtualiza-
tion". For example, [5] categorizes (a subset of) games as output-agreement, input-
agreement and inversion-problem games. We therefore argue that common data man-
agement processes can be developed for games within each category. These common
processes make it possible to abstract the details of the game and reuse the interaction
data of another application.

Finally, since interaction data is human-driven, it is necessary to provide a unified
human identity and profile service across different games. This leads to another layer
of the framework, namely, the Virtual Human Layer.

3.2 Virtual Human Layer and Application Service Layer

Virtual human layer abstracts the concept of a virtual human, which enables the unifi-
cation of the human identity and behavior profile in multiple applications.

This now makes it possible to create a pool of reusable and exchangeable games
for different domains. For example, the human computation needs of the example in
section 2 simply needs game players with knowledge of anatomy.

Incidentally, to implement virtual humans, openID-based authentication can be
used to allow users to access different systems with a single digital identity. Data
mining and social influence analysis can also help in developing a unified identity and
profile, using data sources that combine game history data along with data from social
networks.

The top layer in Fig. 3 is the Application Service Layer. This layer uses service
composition to enable placement points to reuse games in different domains.

3.3 Building Game with Placement Capabilities Using the Framework

Finally, the framework defines and maintains a services ontology at different levels.
This ontology describes the relationship of each game, its objects and its services, as
well as the mapping of the game ontology with the pre-defined framework ontology.
This configuration is stored in files that we term the “Scape API”.

Thus, the construction of game using the framework can be divided into 4 steps. 1)
Describe storyline and scenario. 2) Identify game objects and build domain ontology
(users, interactions, goals and events). 3) Map the game ontology on the predefined
ontology in the framework. 4) Develop the user-interface, and (5) Develop the appli-
cation logic using the services provided in framework.

To place a new requirement, the game storyline or scenario will be revised to
incorporate the new requirement, and the Scape API will be revised for the new inter-
action and user-interface.

 Reuse by Placement: A Paradigm for Cross-Domain Software Reuse 75

4 Implementation Case Study

Within the Center for Experimental Research in Computing Systems (an NSF-funded
Industry University Collaborative Research Center) we have developed a knowledge-
based cyber-infrastructure we call Mirror [11, 12] and refactored it based on the
framework concepts described in this paper. It uses well-known design and software
architecture patterns to provide game services, which may be reused to address
requirements across domains.

4.1 A Health Game with Placement Points

To begin with, an interactive "Health Game" has been developed. In this game, one of
the scenarios is one that interacts with the user to determine whether he or she is
drunk. In this scenario, a view with an embedded image and data is sent to the player
(the view is defined through configuration). The players interact with the user-
interface of the view, the system gets the response, records it and publishes it to
Facebook. By invoking the transition rule according to player's response, the game
identifies the supposed alcohol level of the user and then transitions to the next state
depending on this alcohol level (a sequencer drives the state transitions - essentially
the Interaction Virtualization and Rules Engine shown in Figure 3.) It loads the sce-
nario specification from the configuration file that contains the necessary information
about the interaction, and then sends the proper user interface (the Game User Inter-
face component in Figure 3.) to the player. This process is repeated until the goal state
is reached. Finally, this application uses a Facebook service, as the virtual human
layer in Fig. 3. Interaction data is also collected in Facebook for analysis.

4.2 Placement-Based Reuse of the Health Game

We illustrate the placement-based reuse implementation of an “intelligent” applica-
tion that determines whether two sentences have the same meaning. This application
essentially implants the comparison task as a human computation task into the drunk
driving scenario above. A policeman (played by Player B) tests Player A to determine
whether he is drunk by essentially asking, "Can you tell me whether the following
two sentences have the same meaning?" Player A has to give correct answers to all
the questions to demonstrate that he is not drunk. In the game, if policeman finds
player A has all correct answers, a blood test will be conducted to make sure that he is
not drunk. Otherwise, player A will be judged (by Player B) as drunk directly based
on the wrong answers to the question.

Thus, by analyzing answers of Player A and the judgment of Player B in multiple
sessions, we will get the answer to the sentence comparison.

To implant this interaction, we simply add to the configuration file a human user
whose goal is to answer certain questions, an initial state that initiates the interaction
with the police, a user-interface for the presentation of the comparison questions, and
rules that drive this interaction. Thus the Health Game now becomes a human-
computation-based application that answers sentence comparison questions.

Note that although the game has been configured for a different purpose, the data-
management process is the same. However, the interaction data may be different.

76 Y. Xu et al.

5 Related Work

There is a fair amount of existing work that describes placement-based reuse in dif-
ferent forms. But this concept has not been methodically approached from a purely
reuse perspective. Also, no paradigm has so far been presented regarding the design
of a placement-based framework and tools that facilitate such reuse.

One related practice is public resource computing, which reuses screen savers for
crowdsourcing purposes, such as GIMPS [13], the Distributed.net project[14] and the
SETI@home project[15]. BOINC[16] and XtremWeb [17] are two examples of a
framework and tools developed to assist the creation of public resource computing
projects. Human computation reuse has been described in reCAPTCHA [4], and
GWAPs(Games With A Purpose) [5], both projects being designed to solve large-
scale human-computation problems. The practices above prove the effectiveness and
value of our proposed paradigm. Also, point-and-click game engines already exist,
such as the Adventure Game Studio[18] and the Wintermute Engine[19]. They pro-
vide editors to help create adventure games, and provide runtime engines to play the
game. [6] describes an education game based on a specially designed educational
game engine: e-Adventure. These engines use script languages to facilitate the devel-
opment of the game. However, all these focus on their specific domain – by providing
reusable components that specifically facilitate the development of adventure games,
while our work focuses on imposing new requirements on an existing game in order
to reuse it in a different domain or context. These requirements are incorporated into
placement points that determine the behavior of the game in a different context. Thus,
the unique feature of our framework is that it facilitates reuse of multiple games in
multiple domains for multiple purposes.

6 Conclusions and Future Work

Our paradigm of placement-based-reuse facilitates reuse of existing software at a high
level of granularity in different domains, as exemplified in the prototypes described
in Section 4.

The new paradigm identifies several potential areas for further study. Some of them
are: How to improve the framework for more complex scenarios in support of more
domains? Are there any new forms of placement points identifiable when extending
this concept to other domains? How do we quantify game attributes for appropriate
game selection during task routing? In general, how may we improve the choice of
games in the game pool for reuse? What attributes of the game would affect learning
and human computation the most, and how would this affect the reuse? How may we
reason about the existing functionality of the game that has been influenced by
placement? We seek to study these issues in our future work.

Acknowledgements

We wish to acknowledge the support of the National Science Foundation's IUCRC
program for CERCS and the industry sponsors and graduate students for generating
interesting ideas and discussion.

 Reuse by Placement: A Paradigm for Cross-Domain Software Reuse 77

References

1. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24, 131–183 (1992)
2. Vidani, A.C., Chittaro, L.: Using a Task Modeling Formalism in the Design of Serious

Games for Emergency Medical Procedures. In: Proceedings of the 2009 Conference in
Games and Virtual Worlds for Serious Applications, pp. 95–102. IEEE Computer Society,
Los Alamitos (2009)

3. von Ahn, L.: Human computation. In: 2008 IEEE 24th International Conference on Data
Engineering, vol. 1-3 1-2 (2008)

4. von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: reCAPTCHA: Human-
based character recognition via web security measures. Science 321, 1465–1468 (2008)

5. von Ahn, L., Dabbish, L.: Designing games with a purpose. Communications of the
ACM 51, 58–67 (2008)

6. Moreno-Ger, P., Burgos, D., Martinez-Ortiz, I., Sierra, J.L., Fernandez-Manjon, B.: Educa-
tional game design for online education. Computers in Human Behavior 24, 2530–2540
(2008)

7. Russell, C.A.: Toward a framework of product placement: Theoretical propositions. In:
Alba, J.W., Hutchinson, J.W. (eds.) Advances in Consumer Research, vol. 25, pp.
357–362. Assoc. Consumer Research, Provo. (1998)

8. Xu, C.S., Wan, K.W., Bui, S.H., Tian, Q.: Implanting virtual advertisement into broadcast
soccer video. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds.) PCM 2004. LNCS, vol. 3332,
pp. 264–271. Springer, Heidelberg (2004)

9. Vorvilas, G., Karalis, T., Ravani, K.: Applying Multimodal Discourse Analysis to Learn-
ing Objects user interface. Contemporary Educational Technology 1(3), 255–266 (2010)

10. Winskel, G.: The formal semantics of programming languages: an introduction. MIT
Press, Cambridge (1993)

11. Singh, N.: Sense Respond Environment for Adaptive Participatory Services. Computer
Science and Engineering, vol. Master. The Ohio State University (2010)

12. Deshpande, S.: Knowledge-based Cyberinfrastructures for Decision Making in Real World
Domains. Computer Science and Engineering, vol. Master. The Ohio State University
(2011)

13. Great Internet Mersenne Prime Search:GIMPS, http://www.mersenne.org/
14. Distributed.net Project, http://distributed.net
15. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home: An

experiment in public resource computing. Communications of the ACM 45, 56–61 (2002)
16. BONIC:Open-source software for volunteer computing and grid computing,

http://boinc.berkeley.edu
17. XtremWeb: the Open Source Platform for Desktop Grids,

http://www.xtremweb.net/
18. AGS: Adventure Game Studio, http://www.adventuregamestudio.co.uk/
19. Wintermute Engine, http://dead-code.org/

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 78–86, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Semi-supervised Approach for Component
Recommendation Based on Citations

Sibo Cai1,2, Yanzhen Zou1,2,*, Lijie Wang1,2, Bing Xie1,2, and Weizhong Shao1,2

1 Software Institute, School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, P.R. China

2 Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Beijing 100871, P.R. China

{caisb06,zouyz,wanglj07,xiebing}@sei.pku.edu.cn,
wzshao@pku.edu.cn

Abstract. Reusing existing components can help developers improve the de-
velopment productivity as well as reduce the cost. Reuse repositories in this
scenario act as a fundamental facility for acquiring needed components. While
retrieving components in reuse repositories, developers often face the problem
of choosing components from candidates which provide similar functionalities.
To address the problem, this paper proposes a semi-supervised method to
recommend developers components in reuse repositories. With a random walk
algorithm, our approach calculates the recommendation probability of compo-
nents based on their citations on the Internet to identify recommendable
components. We implemented our approach with a prototyping system and
conducted an experimental study to evaluate the effectiveness of the approach.

1 Introduction

It is widely believed that reusing existing components can help developers create
applications with less effect and improved quality [1]. In a typical process of reuse-
based software development, developers first need to work out a reuse plan and then
search reuse repositories to find proper components according to the reuse plan [2]. In
detail, the component retrieval process can be divided into two steps: Firstly, devel-
opers search reuse repositories to find component candidates that provide needed
functionalities. Secondly, developers select proper ones from the candidates and inte-
grate them together to build the target system.

Selecting components from candidates is very crucial for system integration.
Before the adaption and integration of the components, developers often have to pro-
totype a testing environment to validate the selected components to make sure that the
selected components could satisfy the detailed requirements [3]. A casual selection of
components may put developers into the risk of wasting a lot of time and effort.
Therefore, some user rating/review mechanisms have been developed to help devel-
opers make informed component selection decision in real world reuse repositories,
such as SourceForge [5] and ComponentSource [6]. User rating/review mechanisms

* Corresponding author

 A Semi-supervised Approach for Component Recommendation Based on Citations 79

can provide information to assist developers in making selection decision; however,
such mechanisms are always blamed for their shortage of rating/review due to the
user motivation problem [7]. In most cases, developers have to spend extra effort
collecting related information or try the retrieved candidates one by one to decide
which component to use. The selection process becomes inefficient.

To resolve the problem, we propose a novel component recommendation method
based on the citations of the components appearing on the Internet. With the devel-
opment of Internet, especially the emergence of Web 2.0, more and more reusable
components are likely to be involved on the Internet [8]. The appearance of compo-
nents on the Internet can be components for download (such as the components in
Download.com [12]), components at runtime (like Java Applet [9]) or component-
centric description or discussion (such as the appearance in Ohloh [13]). In general,
the more times a component appears on the Internet, the more probable it should be
recommended to developers since developers usually tend to choose components
cited by more websites (called host in this paper). Furthermore, when a host is known
to involve amounts of recommended components, then the components cited on this
host can be considered more probable to be recommendable ones.

In this paper, we propose a semi-supervised approach for component recommend-
ation in reuse repositories based on their citations on the Internet and implement
the approach in a prototyping system. In our approach, a crawler is designed to obtain
hosts which involve the components and build the associations between the compo-
nents and the hosts. Through exploring the associations with a random walk algo-
rithm, we work out the recommendation probabilities for all components. In order to
provide access to the components, a free-text based component retrieval mechanism is
also implemented. We evaluate our approach through an experimental study based on
real data. The results show that our approach can accurately identify recommendable
components.

The rest of this paper is organized as follows: Section 2 describes our proposed ap-
proach for recommending components. Section 3 presents our experimental study on
the proposed approach with the results analyzed. Section 4 presents some discussions
about our approach and the future work. Then in the last section, we conclude this
paper.

2 Our Approach

As presented in Fig. 1, our approach consists of three functional parts: the retriever,
the crawler and the recommend engine. The retriever obtains relevant component
candidates from the reuse repository according to the query submitted by developers
for further recommendation. The crawler obtains the hosts which involve the compo-
nents in the reuse repository from the Internet and builds associations between
the components and the hosts. The recommend engine calculates recommendation
probability for each component utilizing the associations generated by the crawler
and produces the recommendable components based on the retrieved candidates to
developers.

80 S. Cai et al.

Internet

Crawler

Retriever

Reuse
Repository

Query Candidates

Recommended
List

Recommend
Engine

Developer

Fig. 1. The architecture of our approach

2.1 The Retriever

In the retriever, we simply adopt free-text based approach [10] for component re-
trieval where components are indexed by name and descriptions. Note that although
we use free-text approach to acquire relevant components from the reuse repository,
our method for recommending components is not limited by the component retrieval
mechanisms. The retrieved component candidates will be further analyzed in the
recommend engine to get their recommendation probability.

2.2 The Crawler

The crawler is used to obtain the hosts which involve the components in the reuse
repository from the Internet and build the associations between the components and
the hosts. We use the web search engine Google1 to accomplish the hosts crawling
task. We search the components with component name as the query and extract URLs
from the returned result list. Since the most relevant results are usually distributed at
the top position, we only keep the top 30 URLs for each component (returned list less
than 30 URLs will all be kept). Then the list of hosts related to the component is iden-
tified using the URLs (we use the domain part of URL to represent a host. URLs with
the same domain part will be merged).

Since the returned results by Google do not always refer to the exact component if
we directly use the component name as the query, some strategies are adopted to
obtain the hosts and build the associations more accurately. Firstly, we validate the
returned results by using full match of the component name in both the title and the

1 http://www.google.com/

 A Semi-supervised Approach for Component Recommendation Based on Citations 81

snippet returned by Google. Secondly, we append the keyword “Software” to the
query to refine the returned results.

Formally, the associations between components and their hosts can be described as
a weighted bipartite graph , ,G COMP HOST EDGE=< > . The component set COMP

and the host set HOST constitute the partitions of the graph. Components and hosts
are nodes in the graph whose edges represent the associations between components
and hosts. Every association is a non-directional weighted edge (,)comp host EDGE∈

where comp COMP∈ and host HOST∈ . The association weight between a compo-

nent and a host denotes the relevance degree of the component to the host.

, :(,)

comp host
comp host host comp

c hc h c h EDGE

N
w w

N
−

− −
−∈

= =
∑

 (1)

In our approach, the association weight of a component related to a host is firstly
set as the number of URLs related to the component which are merged into the host.
Then, the weights of all associations are normalized using formula (1) where Ncomp-host
is the number of URLs related to the component comp and merged into the host.
Since the association is non-directional, the weight of a component related to a host
equals to the one in reverse order.

2.3 The Recommend Engine

The recommend engine calculates the recommendation probability for each compo-
nent using the associations and produces the recommendable components based on
the retrieved candidates to developers. Every component has a recommendation prob-
ability (called “component recommendation probability” in this paper), which means
the degree of the component to be recommended. We also set a weight (called “host
recommendation probability” in this paper) to every host. The host recommendation
probability denotes the degree of the host involving recommended components.

Based on the idea that the component recommendation probability and the host
recommendation probability will affect each other, we propose a propagation
algorithm to calculate the recommendation probability by adopting a random walk
algorithm with absorbing states [11]. The starting point of the propagation is some
components which are assigned high recommendation probability. We call this group
of components “seeds”. The algorithm is described in Fig. 2.

The input of the algorithm contains the seed set S, COMP-HOST bipartite graph G
and two parameters α and β . The transition probability α denotes that both the

components and the hosts have the probability to transfer to the absorbing state ω
[11]. The vanishing threshold β is used as the threshold to distinguish the recom-

mendable components. The output of the algorithm is the component recommendation
probability ()P comp for each component except for the seeds.

Initially, the component recommendation probability of the seeds is set to 1 (Line 1).
Then the algorithm iteratively calculates the probability for both the components and the
hosts (Line 3 to Line 10). In each iteration, the host recommendation probability

82 S. Cai et al.

Fig. 2. The propagation algorithm

(denoted as ()P host) for each host is calculated by aggregating the weighted component

recommendation probability of the components which have associations with the host.
C(host) in Line 4 denotes the components which are related to the host. The probability
then will be weakened by (1)α− . If the calculated probability is less than β , the prob-

ability will be set to 0. The calculation of the component recommendation probability of
the components is similar to the one of the hosts where H(comp) denotes the hosts
which involve the component (Line 8). The iteration will continue until the recommen-
dation probability of both the components and the hosts is convergent. Components
with the recommendation probability greater than 0 then will be regarded as
recommendable ones.

3 Experimental Study

3.1 Experimental Organization

To evaluate our approach, we applied it to the data collected from a real world reuse
repository, i.e. SourceForge, which now provides more than 370,000 open source
software projects. We selected the category “Software Development” as our evalua-
tion base, which contains 35,602 software projects at the time we carried out the
evaluation. We acquired the project information including project name, description,
user positive rating and negative rating etc. The 35,602 software projects constituted
the reuse repository in our approach. We used Lucene2 to index the software projects

2 http:// lucene.apache.org/

Input: the seed set S, COMP-HOST bipartite graph G, the vanishing
threshold β , the transition probability α to ω

Output: ()P comp , for every component except for the seeds

1: for each comp in S do () 1P comp =
2: repeat
3: for each host in HOST do
4:

: ()
() (1) ()host compcomp comp C host

P host w P compα −∈
= − ∑

5: if(() <P host β) then () 0=P host
6: end for
7: for each comp in COMP \ S do
8:

: ()
() (1) ()comp hosthost host H comp

P comp w P hostα −∈
= − ∑

9: if(()P comp β<) then () 0P comp =
10: end for
11: until convergence
12: output ()P comp , for every component except for the seeds

 A Semi-supervised Approach for Component Recommendation Based on Citations 83

and provide retrieval interface. In our experiment, each software project was viewed
as a component.

Based on the built reuse repository, we used Google to search for the hosts which
involve the components in the reuse repository and extracted associations between the
components and the hosts. We totally fetched 251,873 hosts as well as 937,016 asso-
ciations between the components and the hosts. We sorted the 35,602 projects accord-
ing to the user ratings provided by SourceForge and selected the top 100 projects as the
seed set (less than 0.3% of the component set). Finally, we set α to an empirically
small value 0.01 [11] and tune β to 5E-5 using the algorithm described in Fig. 3.

Fig. 3. Parameter tuning algorithm for β

3.2 Experimental Results

We evaluated the recommendation effectiveness of our approach by using developer
queries. We identified 11 queries based on the interviews with 7 graduate students in
Peking University and submitted the 11 queries to our prototyping system to retrieve
relevant components and more importantly the recommended ones. To validate the
recommended components, we adopted the user ratings provided by SourceForge. In
the experiment, components are regarded as recommended ones if their number of
positive ratings in SourceForge is more than the one of negative ratings.

To show the effectiveness of our approach, we first identified the recommended
components by SourceForge from the retrieved ones for each query and found out
whether our approach could also produce the recommended components identified by
SourceForge. The results are presented in Table 1. The queries are listed in the
“Query” column. Column “Retrieved” indicates the number of retrieved components
according to the query while the “Recommended” column represents the number of
recommended components by our approach contained in the recommended list of
SourceForge. The number of components recommended by SourceForge is also indi-
cated (in the bracket).

Through the comparison (exhibited in Table 1) with the recommended components
by SourceForge which are based on the user ratings, we preliminarily drew to the
conclusion that our approach possesses the ability to identify the recommended com-
ponents suggested by SourceForge. In order to show the effectiveness of our approach
in a better fashion, seeds (if retrieved) were excluded in the retrieval results.

Step 1: Randomly select 80 seeds from the seed set.
Step 2: Conduct the propagation algorithm with the parameter α set to 0.01
and β set to 0.

Step 3: Store the minimum value of the calculated probability of the remain-
ing 20 seeds.
Step 4: Repeat Step1, Step 2 and Step 3 in 5 runs and set β as the average

of the stored minimum values.

84 S. Cai et al.

Table 1. Recommended components by SourceForge compared to the ones by our approach

Query Recommended Retrieved
XML Parser 3(5) 14

Data Encryption 1(1) 7
Logging 9(11) 12

Math 5(5) 12
Statistics 5(5) 7

Data Compression 1(1) 10
Email 1(1) 6

File Upload 2(4) 14
Configuration File 3(3) 11

Network Utility 1(1) 11
IO Utility 2(2) 14

Table 2. Our recommended components compared to the ones by SourceForge

Query Recommended Retrieved
XML Parser 3(7) 14

Data Encryption 1(3) 7
Logging 9(9) 12

Math 5(8) 12
Statistics 5(6) 7

Data Compression 1(3) 10
Email 1(5) 6

File Upload 2(7) 14
Configuration File 3(7) 11

Network Utility 1(8) 11
IO Utility 2(6) 14

We also discussed the precision of the recommended components by our approach.

Precision here means the ratio of actual recommended components compared to the
ones suggested by our approach. We compared the number of recommended compo-
nents by our approach to the ones suggested by SourceForge. The 11 queries were
still used. Table 2 shows the results. In the column “Recommended”, the number of
recommended components of our approach is indicated in the bracket. In the recom-
mended list of our approach, the number of components which are also suggested by
SourceForge is indicated outside the bracket. In half cases, our approach performs
well and produces recommended components similar to the ones by SourceForge,
such as “Logging”, “Statistics”. While in the other half, our approach recommended
more components than SourceForge does, especially in the case “Network Utility”.

To explore the reason of this phenomenon, we investigated the recommended
components by our approach while not suggested by SourceForge. We found that
almost all these components received 0 positive rating and 0 negative rating in

 A Semi-supervised Approach for Component Recommendation Based on Citations 85

SourceForge. “GSA Simple XML Parser3” is one of the examples. However, through
our investigation of “GSA Simple XML Parser” on the Internet by hand, we finally
judged that this component should also be recommended.

4 Discussion and Future Work

4.1 Issues about the Association Refinement

In our approach, we refine the association between components and hosts using the
strategies described in section 2, but there are still some problems in building the
associations. The most extrusive case is that the name of a component is too general.
For example, an xml parser named “xml parser”. To search such keywords in Google,
the returned results are often irrelevant to the component. Such cases will reduce the
effectiveness of our approach and provide problematic recommended list to the de-
velopers. Nevertheless, we find that such examples only occupy a very small fraction
of the components in real world reuse repositories since people who develop compo-
nents are mostly intended to pick up a more meaningful name for their components.

4.2 How to Obtain the Seed Set

In our approach, one of the inputs to calculate the recommendation probability of the
components is the seed set. The effectiveness of our approach will be greatly reduced
if the seed set is hard to obtain. However, the seed set seems not so difficult to
identify in real world reuse repositories. Firstly, just like our experimental study,
components which have already received high user positive ratings can be considered.
Secondly, famous software projects are another option. Thirdly, components that
developed by famous companies or organizations, such as Apache, can also be taken
into consideration.

Another issue about the seed set is how to select a better seed set. The selection of
the seed set may influence the performance of our approach since it is the starting
point. Selecting seeds as divergent as possible may be one of the possible strategies
that can be used to enhance the performance of our approach. For instance, seeds can
be selected considering their application domains. Further study will be conducted in
our future work.

5 Conclusion

In this paper, we proposed a semi-supervised approach to produce recommendable
components to the developers to assist their selection of components in reuse reposi-
tories. The approach utilizes the associations between the components and the
involved hosts. With a group of components which are supposed to be recommended
and a propagation algorithm, the recommendation probability for each component is
calculated. We also implemented a prototyping system to validate our approach using

3 http://sourceforge.net/projects/gsa-simple-xml/

86 S. Cai et al.

real world data. The results show that our approach can accurately recommend com-
ponents to the developers comparing to the data from SourceForge.

Acknowledgement

We would like to thank Jing Jin for the experimental data collection. This research
was sponsored by the National Natural Science Foundation of China under Grant
No. 60821003, the National Basic Research Program of China (973) under Grant No.
2009CB320703 and the National High-Tech Research and Development Plan of
China under Grant No.2007AA010301-01.

References

1. Basili, V., Briand, L., Melo, W.: How reuse influences productivity in object-oriented sys-
tems. Communications of the ACM 39(10), 104–116 (1996)

2. Mili, H., Mili, A., Yacoub, S., Addy, E.: Reuse based software engineering: techniques,
organizations, and measurement. Wiley-Interscience Press, Chichester (2001)

3. Land, R., Alvaro, A., Crnkovic, I.: Towards efficient software component evaluation: an
examination of component selection and certification. In: 34th Euromicro Conference
Software Engineering and Advanced Applications, pp. 274–281 (2008)

4. Land, R., Blankers, L., Chaudron, M., Crnkovic, I.: COTS selection best practices in litera-
ture and in industry. In: Proceedings of the 10th International Conference on Software
Reuse: High Confidence Software Reuse in Large Systems, pp. 100–111 (2008)

5. SourceForge (2010), http://sourceforge.net/
6. ComponentSource (2010), http://www.componentsource.com/
7. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online

service provision. Decision Support Systems 43(2), 618–644 (2007)
8. Hummel, O., Atkinson, C.: Using the web as a reuse repository. In: Proceedings of the

International Conference on Software Reuse, pp. 298–311 (2006)
9. Seacord, R.C., Hissam, S.A., Wallnau, K.C.: AGORA: a search engine for software

components. IEEE Internet Computing 2(6), 62–70 (1998)
10. Maarek, Y.S., Berry, D.M., Kaiser, G.E.: An information retrieval approach for automati-

cally constructing software libraries. IEEE Transactions on Software Engineering 17(8),
800–813 (1991)

11. Fuxman, A., Tsaparas, P., Achan, K., Agrawal, R.: Using the wisdom of the crowds for
keyword generation. In: Proceeding of the 17th International Conference on World Wide
Web, pp. 61–70 (2008)

12. Download.com (2010), http://download.cnet.com/
13. Ohloh (2010), http://www.ohloh.net/

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 87–101, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Capability Assessment for Introducing Component Reuse

Hugo Rehesaar

Griffith University
Brisbane, Queensland, Australia

+61 414 597 171
hugo.rehesaar@griffithuni.edu.au

Abstract. Despite initial technical barriers having been overcome, organiza-
tional wide component reuse has not enjoyed universal acceptance. Research
has identified social and organizational factors as probable causes. This paper
describes the Social Factors for Reuse Model (SFR Model), a predictive capa-
bility model based on Keidel’s triadic model of the organization. It determines
an organization’s readiness for the introduction of Component Based Software
Engineering (CBSE); describing the social and organizational conditions that
should be met to maximize the chances of successful implementation. A sample
application of the Model is described.

Keywords: Component reuse, reuse capability assessment, component based
software engineering.

1 Introduction

The reuse of interchangeable components for software systems development was first
publicly discussed in 1968 at the NATO Science Committee Conference on Software
Engineering: Concepts and Techniques, at Garmisch, Germany [1]. McIlroy argued
that a “components industry could be immensely useful” and described the benefits of
the reuse of components. Since then, Component Based Software Engineering
(CBSE) has been shown to have benefits which include improvement of quality,
faster development, and reduction in costs of development and maintenance [2].

Initially, technical factors prevented its successful implementation. Over time, the
technical barriers have been all but overcome, and individuals have enthusiastically
embraced the reuse of components. Yet, the organization-wide implementation of
component reuse has yet to be adopted universally. [3],[4],[5],[6],[7],[8].

Research suggests that the reasons are related to socio-organizational barriers
[4],[9],[10]. In order to better understand these, there is a need for a model that for-
malizes the socio-organizational factors influencing the successful implementation of
component reuse. The model described in this paper, The Social Factors for Reuse
Model, is inspired by Keidel’s Triadic Model of organizations [11] and consists of
factors that influence the organization-wide implementation of component reuse in
the software engineering environment. It is intended that it will serve as a capability
model for assessing an organization’s readiness for the implementation of CBSE. By
applying this Model, the organization can better decide what must be done to prepare

88 H. Rehesaar

itself for Reuse. The results of the assessment can be entered into an appropriate
model to determine the economic and practical feasibility of making the required
changes. Thus a Go/No Go decision can be made with greater confidence than other-
wise would be possible.

For the purposes of this Model, component based software engineering (CBSE) is
defined as the development of a system by the reuse, wholly or partially, of existing
components. These components are not restricted to software artifacts or programs.
They may include all products of the software development process ranging from
requirement specifications and designs through to test data and implantation plans.
Processes are also included, for example the elicitation of users’ requirements and
training of users. The following terms are held to be synonymous with CBSE: organi-
zation-wide component reuse, systematic (component) reuse, and component based
software development [12]. Object Oriented Development and the use of Commercial
off the Shelf (COTS) components are specific implementations of CBSE.

2 Background

2.1 Benefits of CBSE

The expected benefits of the implementation of organization-wide component reuse are
well documented and tend to highlight savings in time and cost to develop
[13],[14],[15],[16],[17]. IEEE1517-1999(Rev. 2004) [2] lists the following: increase in
productivity; shorten software development time; move personnel, tools, and methods
more easily from project to project; reduce software development and maintenance
costs; produce higher quality software products; improve software product interopera-
bility; provide a competitive advantage to an organization that practices reuse.

It is not suggested that an organization would enjoy all of these benefits, however
any one of these would provide a sufficient reason to implement CBSE.

2.2 Non-technical Obstacles to Implementation

Initially, researchers and practitioners identified the technical obstacles to the success-
ful adoption of CBSE, requiring enhancements to existing technology as well as the
development and introduction of new technology.

Through the elimination of many of the technical issues in the 1980’s and 1990’s,
component based development gained favour with developers and, in the early 1990’s
became of growing interest to researchers in the field of software engineering [18],
[19],[20],[21],[22],[23]. Brown and Wallnau [24] offer two reasons for this, stating
“several underlying technologies have matured that permit building components and
assembling applications from sets of those components [and] the business and organ-
izational context within which applications are developed, deployed and maintained
has changed” in favour of component reuse.

More recently, 2009, it has been suggested [25] that the organization may have cul-
tures that are not conducive to systematic reuse and may lack the means to change its
infrastructure to support the processes of systematic reuse without major disruption to
its business. “Producing original software is sometimes more well-regarded than reus-
ing existing software. Changing attitudes and associated non-reuse behaviors can be

 Capability Assessment for Introducing Component Reuse 89

difficult. Policy changes and capital investments, which require senior management to
be firmly committed to the achievement of systematic reuse, may be necessary” [25].

Indeed, the MIT Center for Information Systems Research [26] held a special ses-
sion during its Summer Session, June 2010, and determined that companies do not
reuse for reasons relating to behavior, politics and corporate culture.

Hence, the cause for the continuing lack of successful adoption of organizational
wide reuse appears to lie most likely in the areas of organization and culture.

2.3 Reuse Models

Many models for reuse have been proposed, but not necessarily developed, for exam-
ple [27] in 1993 and more recently [28] in 2007 and [29] in 2009, as well as many
more in between. Several models have been developed as far back as 1992 [30] and as
recently as 2010 [31]. However, all of these propose or provide for analyses of exist-
ing reuse programs and are not intended as predictors of implementation success.

In the late 80’s and early 90’s, reuse economics gained favour. A review of 17
reuse economic models [32] observed that all the models described and analyzed
post-implementation reuse. It recommended that further research should be under-
taken into models that would enable not just the evaluation of, but more importantly,
the prediction of the costs, return-on-investments and other indicators. The Social
Factors for Reuse Model is one such predictive model.

3 The Social Factors for Reuse Model

3.1 Evolution of the SFR Model

The SFR Model was inspired by the Triadic Model of the Organization by Robert
Keidel [11]. The triadic shape “counterposes the three critical organizational vari-
ables: autonomy, control and co-operation” [11]. These correspond to the ways people
interact.

1. Autonomy relates to working on your own.
2. Control relates to a hierarchical structure.
3. Co-operation relates to working together towards a common goal.

This structure is well established in management literature and practice [11].
The influence on the implementation of CBSE of the 36 factors that comprise the

Model was obtained from literature and in-depth interviews with experienced
software engineers.

The Triadic Model is used to analyze the current state of an organization and also
describe the ideal state it needs to be in to successfully implement CBSE, as described
in 3.4. By comparing the two states, a determination can be made as to what must be
changed in order for the organization to best prepare itself for CBSE implementation.

3.2 Structure of the Model

In the Social Factors for Reuse Model, the Organization is represented by a three
tiered structure – see Table 1.

90 H. Rehesaar

(b) Control

 (a) Autonomy (c) Co-operation

Fig. 1. The Attribute Triad

Tier 1: The Organization is firstly broken down into 2 Dimensions.
(A) Organizational Strategy is concerned with planning and describes the proposed

future state of the organization. (B) Organizational Implementation is concerned with
processes and describes how the organization expects to achieve the future state.

Tier 2: Each of the Dimensions is further broken down into 6 Attributes: a total of
12. The Attributes for the SFR Model are based on the Keidel Model [11] and
been adapted to align them with the domain of software engineering.

Tier 3: Each Attribute comprises of 3 Factors, for a total of 36 factors. The three
factors in each Attribute correspond to

a) Autonomy,
b) Control, and
c) Co-operation.

The position of an organization on the triangle, Figure 1, describes its organizational
behavior. To effectively manage an organization, a balance must be stuck among
these three variables. For any given situation, the decision must be made as to which
of these three is the most important. At best, two can share importance, but not all
three. The triangular representation of the factors illustrates that you cannot fulfill all
three factors at the same time.

An organization that can be described by one of the corners, is said to exhibit
100% of that factor.

An organization that can be described by a point along one of the sides, will exhibit
a combination of the two factors at the corners of that side.

The centre area represents an organization that exhibits equal amounts of each of
the three factors. Porter describes such an organization as one that “engages in each
generic strategy, but fails to achieve any of them” [33].

3.3 Attribute Co-relations

The Attributes are not independent of each other and therefore cannot be assessed
independently. Table 1 shows the co-relations. They are

1) Meeting System, Decision System
2) Social Values, Organization’s Expectations, Employee’s Expectations, Reward

System

 Capability Assessment for Introducing Component Reuse 91

3) Employee’s Expectations, Developmental Plan
4) Reporting Lines, Physical Layout, Information Flow

3.4 The ‘Ideal’ Candidate for Reuse Implementation

The SFR Model, summarized in Table 1, can be used to describe a generic ideal state
for an organization that is about to embark on the implementation of organizational
component reuse. The exact definition of ‘ideal’ is dependent on a number of factors.
For any particular organization, this ideal state is called the ‘goal state’.

The SFR Model is not all-inclusive. This is not a failure of the model, but rather it
is intentional. No two organisations are alike. This applies to how they behave now
and in the future. Each organization that embarks on change will do it from a different
base and for different reasons. This was part of Keidel’s original design for his model,
and this philosophy has been adopted for the SFR Model. Some organizations have a
need for extra attributes that are peculiar to their products, process, or environment,
while others do not have the need for all of the attributes. An organization that enjoys
a monopoly, for example an internal IT department and sole supplier to the organiza-
tion as a whole, would not usually consider its Competitive Strategies. In like manner,
if an organization does not have a mature training function, it may need to consider
that as an additional attribute. One of the strong points of the SFR Model is that it
allows for tailoring to the particular needs of the subject organization, resulting in an
organization specific goal state.

As a minimum, the following should be considered when developing an organiza-
tion’s goal state: the size of the organization and subject I.T. division, company
ownership (government, listed, or private), the industry sector it is in, the effect of the
market, the country of origin and location (culture and socio-economics), and single
or multi location. Any one of these will affect the choice of factors, their influence
and consequent mitigation strategies. The following is presented as a generic Ideal.

With respect to the Organizational Strategy Dimension, such an organization can
be expected to have empowered its managers and developers with the ability to exert
an influence on the manner in which the implementation is to take place. It should
promote a culture of complementarity where all components are produced with the
expectation of possible future reuse. Adherence to standards and procedures should
be promoted, as too the acceptance that its employees are valuable and should be
cared for. Promotion is best done from inside and partnerships with other organiza-
tions should only be done if that organization already has a culture of reuse. It would
benefit from promoting it products’ unique characteristics and exercising cost control.

With respect to the Organizational Implementation Dimension, the organization
should promote formal and informal communications between all employees and
provide a physical environment that promotes ad hoc communications, resulting in
sharing of ideas and solutions. Its reward system should encourage co-operation
amongst employees in achieving the common goal of reuse. Its meetings should not
be simply talk-fests, but result in meaningful and practical solutions to problems as
well as promoting the formation of like-minded teams to implement the solutions.
Rather than mandating, the organization should have a delegatory style of decision
making based on the consensus of all those involved in the implementation.

92 H. Rehesaar

Table 1. The Social Factors for Reuse Model (Breakdown of the Organization Showing the
Influence of Factors)

Attribute co-relations are shown thus: (99). Like numbers connect the attributes that
are co-related.

A. ORGANIZATIONAL STRATEGY DIMENSION

ATTRIBUTES FACTORS INFLUENCE

1a Customers/ End users Zero
1b Managers positive

1 Stakeholders (1)
For whose benefit does the
Organization exist? 1c Developers positive

2a Diversity of Approach Negative
2b Uniformity of Identity Negative

2 Social Values (2)
What behavior does the organization
reward? 2c Complementarity positive

3a Self-reliance Negative
3b Compliance positive

3 Organization’s Expectations (2)
- from its employees.

3c Collaboration positive

4a Opportunity Negative
4b Security positive

4 Employee’s Expectations (2) (3)
- from the organization.

4c Community positive

5a From Outside Negative
5b From Inside positive

5 Developmental Plan (3)
How does the organization grow?

5c In Partnership positive

6a Differentiation positive
6b Cost positive

6 Competitive Strategies
How does the organization compete?

6c Flexibility Negative

B. ORGANIZATIONAL IMPLEMENTATION DIMENSION

7a Flat/clear Lines Zero
7b Steep/clear Lines Negative

7 Reporting Lines (4)
What is the form of our Reporting
and Communications relations? 7c Flat/amorphous Lines positive

8a Independent Action Negative
8b Programmed Action Negative

8 Physical Layout (4)
What interaction does our physical
design encourage? 8c Spontaneous Action positive

9a Pooled Negative
9b Sequential Negative

9 Information Flow (4)
How does our work/information
Flow? 9c Reciprocal positive

10a Individualistic Negative
10b Hierarchical Zero

10 Reward System (2)
What behaviors are reinforced
financially and non-financially? 10c Mutual positive

11a Forum Negative
11b Decision-making positive

11 Meeting System (1)
For what reason do people get
together? 11c Team-building positive

12a Delegatory positive
12b Mandatory Negative

12 Decision System (1)
How does the organization exercise
authority? 12c Collaboratory positive

 Capability Assessment for Introducing Component Reuse 93

4 Application of the SFR Model

For a model to be more than just a theory, it must be shown to be of practical use.
This section describes its application to an organization that has had a history of failed
CBSE implementations.

4.1 Steps in the Application of the Model

The following are the steps in the application of the SFR Model to assess the capabil-
ity of an organization and better prepare it for the implementation of component
reuse. Figure 2 shows the steps as a flowchart.

1. Use the SFR Model to assess the initial organizational state prior to the con-
sideration of CBSE implementation – OSI.

2. Use the SFR Model to develop the model of the goal state of the organization
– OSG. This model represents the state in which the organization should be in
order to maximize its likelihood of successful implementation.

3. Compare the results from Steps 1 and 2 to determine the difference between
the initial and goal states. This is an assessment of the organization’s initial
capability to successfully implement a reuse program - OCI. It will describe
the changes required to increase the likelihood of success in implementing
CBSE.

4. Implement the changes required to better prepare the organization for CBSE
implementation, resulting in a prepared organization. As an option, an eco-
nomic model can be applied prior to implementing the changes.

5. Use the SFR Model to assess the prepared organization’s state – OSP.
6. Assess the prepared organization’s capability by comparing the prepared

state with the goal state, resulting in the Prepared Organization’s Capability
– OCP.

A major part of the predictive nature of the SFR Model is the feasibility assessment of
the organizational change required to increase the likelihood of implementation success.
There are many economic models for reuse, but they all relate to an organization that is
already practicing reuse [32]. What is required is a model that is designed to be used
pre-implementation. One such model that appears to be suitable is Benefit Cost Analysis
[34]. The unique feature of this method is that it focuses on the benefits first and then
the cost to achieve them. Jules Dupuit, an eighteenth century French economist, was the
first to propose the concept central to benefit cost analysis of identifying the correct
project benefits, and then the cost measurement criteria through demand and supply
price mechanism. Applied to the introduction of reuse, it forces the quantification of the
benefits of implementing reuse and so facilitates the decision to spend, or not to spend,
the time and money needed for the required organizational change. A description of the
Benefit Cost Model as it can be applied to IT projects is provided in [34].

4.2 A Case Study

This section presents a summary of an application of the SFR Model, describing the
data collection method, results and recommendations for improving the subject

94 H. Rehesaar

organization’s position with respect to the implementation of organization wide com-
ponent reuse.

The data collection methods are based on those suggested by Keidel [11] and are
presented as examples only. Both the date collection methods and the recommenda-
tions will vary for each individual application of the SFR Model. Other methods may
prove to be more successful, depending on the subject organization. The recommen-
dations also may vary depending again on the subject organization and of course on
the particular results obtained.

Fig. 2. Flowchart of the Application of the SFR Model

Initial Organizational State Data

1. Assess Initial State 2. Develop Goal State

 OSI OSG

 3. Compare

Initial Capability OCI

4. Implement Identified Changes

 Prepared Organization

 5. Assess Prepared Organization’s State

 SFR
Model

Prepared Organization’s State OSP

6. Compare Prepared State with Goal State

Prepared Organization’s Capability OCP

 Capability Assessment for Introducing Component Reuse 95

The subject organization is a large multi-national company, which develops
embedded software for companies world-wide in a number of industries, as well for
its own products. The implementation of CBSE has had mixed results, ranging from
successes to outright failures. The successes have not been as a result of well thought
out plans.

The subject division, since its failed attempt, has implemented a number of
changes, which it believes will improve its implementation capability – OCP. The
following is a summary report of the subsequent application of the SFR Model to
this division to assess its new state. The assessment commenced at Step 5 and used
the generic ideal state as the goal state.

Organizational Strategy Dimension

4.2.1 Attribute 1: Stakeholders
Data Collection Method: Analysis of various archival documents, providing informa-
tion on the relative actual importance of the various stakeholders. In-depth interviews
with staff, both managers and developers.

Results: Documentation stated that staff at all levels have been given the necessary
delegation and authority appropriate to their jobs. This however was not supported by
many of the managers and developers, who reported that their managers often man-
dated actions that should have been the decision of the sub-ordinate. They felt that
they did not have the influence that they were meant, and consider that they deserve,
to have.

Recommendations: It is necessary for the organization to realize that there is difference
between statement and action. Their current attitude has resulted in dissatisfaction
among employees and is seen as one of the reasons for the previous failure. A review
of the Decision System is recommended. Refer to Attribute 12: Decision System.

4.2.2 Attribute 2: Social Values
Data Collection Method: In-depth interviews with managers representing all levels.

Results: There was unanimous agreement at (almost) all levels that working together
was the key to success both for the individual and the company. There was disagree-
ment amongst those in the highest of management, with some supporting co-operation.
A small majority felt that the company could not advance if it did not have some indi-
vidual ‘high flyers’. These people were felt to ward off risks of complacency.

Recommendations: It is felt that there is no threat to CBSE implementation and so
there is no recommendation to change.

4.2.3 Attribute 3: Organization’s Expectations
Data Collection Method: In-depth interviews with managers representing all levels.

Results: Apart high flyers (described in Attribute 2: Social Values), the management
expressed an expectation of compliance and promoted an environment of collaboration.

Recommendations: Organization Expectations are satisfactory and no recommenda-
tions are offered.

96 H. Rehesaar

4.2.4 Attribute 4: Employees’ Expectations

Data Collection Method: In-depth interviews with managers and developers.

Results: All but a few (and these corresponded with the individual’s identified by
management as being ‘high flyers’ - see Attribute 2: Social Values) were in align-
ment, to varying degrees, to the factors of ‘security’ and ‘community’.

Recommendations: Employee Expectations are satisfactory and no recommendations
are offered.

4.2.5 Attribute 5: Developmental Plan

Data Collection Method: Analysis of archival documents, providing historical infor-
mation on what plans, events and reasons for recruitment and partnerships/mergers.
In-depth interviews with staff.

Results: Staff at all levels admitted that promotion did occur from within. This was con-
firmed by the documents. However, they were resentful when an outsider was brought
in at a managerial level and was not aware of the existing culture (social values). Man-
agement stated that this was sometimes done in order “to change the way things were
done. To shake things up”. They were not concerned that some staff did not like it as
they were often the reason for the required change. The company very rarely partici-
pated in mergers or takeovers, preferring to start a new division from within.

Recommendations: Generally, the plan is satisfactory. However, care must be taken
that the engineered change is necessary as a whole and not simply to facilitate the
removal of undesired personnel. There are less disruptive ways to do this.

4.2.6 Attribute 6: Competitive Strategies

Data Collection Method: Analysis of archival documents. In-depth interviews with
management. Discussions with customers/clients to provide the ‘other’ view, that is,
the success or not of these strategies.

Results: The division had an established culture of producing ‘differentiated and qual-
ity’ products. This was supported by the majority of the customers/clients. All staff
recognized that a cheaper product was beneficial and were willing to do what was
needed to achieve this, without sacrificing quality.

Recommendations: Organization Strategies are satisfactory and no recommendations
are offered.

Organizational Implementation Dimension

4.2.7 Attribute 7: Reporting Lines
Data Collection Method: Analysis of the organizational chart and in-depth interviews
with manager and developers.

Results: Although the company as a whole exhibits all three styles of Reporting
Lines, this division has flat/amorphous reporting. The formation of individual teams is
flexible, dependent on specific project needs and availability of appropriates experi-
enced staff.

 Capability Assessment for Introducing Component Reuse 97

Recommendations: Reporting Lines are satisfactory and no recommendations are
offered.

4.2.8 Attribute 8: Physical Layout
Data Collection Method: Determination of who should be talking to whom by refer-
ence to project records and organizational chart. Comparison with locations of these
personnel.

Results: As this is a multi-national company, it was found that many projects spanned
countries and time zones. Small groups of developers were co-located (and there was
evidence of successful reuse within these groups), but many who would be expected
to have face-to-face communication were in fact in different time zones and countries.
Staff said that this did not present a problem because of excellent electronic commu-
nications being in place. Some found that the use of such facilities was preferred,
because it allowed for the other party to respond after thought had been given to the
problem. A small number found that these did not fully replace face-to-face.

Recommendations: While the physical layout is not ideal, communications seem to be
as good as they can be given the international nature of the company and its custom-
ers. No recommendations are offered.

4.2.9 Attribute 9: Information Flow
Data Collection Method: Network analysis of staff working on similar projects to
determine actual flow to compare with expected communication patterns based on the
needs of the projects.

Results: The expected patterns of communication co-related well with the actual
information flows.

Recommendations: Information Flow is satisfactory and no recommendations are
offered.

4.2.10 Attribute 10: Reward System
Data Collection Method: In-depth interviews with staff (managers and developers)
and analysis of archival documents relative to pay scales and bonuses over the previ-
ous three years.

Results: Bonus schemes do not exist in this division and employee’s are accepting
of this. Pays are reviewed annually and set commensurate with the employee’s job
description and their past performance. Employee’s are satisfied with this.

Recommendations: Management could consider a rewards system for reuse imple-
mentation, but considering that employee’s appear satisfied with current arrange-
ments, this is a suggestion only and no recommendations are offered.

4.2.11 Attribute 11: Meeting System
Data Collection Method: Ratios of the number of meetings and total time (man-
hours) spent on each type of meeting over the previous month. In-depth interviews
with staff, both managers and developers.

98 H. Rehesaar

Results: While the mangers saw the meetings as positive decision-making and team-
building in nature (an opinion supported by documentation), this was not the opinion
of the developers and lower managers. The decisions from the meetings were often
subsequently over-ruled by the manager, for reasons that were seen by the manager as
practical, and by the sub-ordinates as taking away their influence. They were in
agreement, that despite the claimed best intentions of the management, the reality was
that the majority of meetings ultimately resulted in being only “talk-fests” or forums.
They also believed that the managers did not have the authority to over-ride meetings’
decisions, but felt powerless to act.

Recommendations: The disparity between the apparent meeting style and the imple-
mentation is a real concern. If it is not possible to stop managers over-riding meeting
decisions, then the façade of co-operation should be discontinued. Meetings should be
openly announced as forums and managers authority made clear. This is not a good
solution. Although it clarifies an anomalous situation for the staff, it promotes a man-
datory style of management, which usually has a negative influence. Enforcing the
finality of decision made at meetings is the better alternative, though in practice more
difficult to enforce.

4.2.12 Attribute 12: Decision System
Data Collection Method: Analysis of archival documents over the previous three
months (meeting records, authorization and delegation lists, project plans and memos)
to determine the decisions made, how they were made and by whom. In-depth inter-
views with staff.

Results: The majority of decisions were made collaboratorially. However, there was a
tendency to mandate major decisions, including that of implementing reuse. Delega-
tion, although practiced widely, also tended to use a mandatory style and often the
delegation was not welcomed by the recipient, often being interpreted as a test of abil-
ity and in a few instances as ’traps’ to facilitate the dismissal of the employee. It was
found that managers often over-rode decisions made by a team and their immediate
subordinates.

Recommendations: At the very least, the next decision to implement reuse should
involve all divisional personnel. The details of the implementation must be agreed to
in a collaboratory way. Delegation should be seen as a reward and have the agreement
of the recipient. Refer to Attribute1: Stakeholders.

Concluding Remarks

The Division seems to have improved its Implementation Capability, although the
extent of this could not be determined with any precision owing to a lack of reliable
records of the changes that had already been made. There remain a number of areas
that require attention, which relate to the Attributes of Stakeholders, Development
Plan, Meeting System and Decision System. These centre on a disparity between the
organization’s stated intentions and the implementation of them, leaving staff
“on edge” and with a decreasing openness to change. It is recommended that an as-
sessment be done to determine the economic and social/organizational viability of

 Capability Assessment for Introducing Component Reuse 99

implementing these changes prior to the next attempt to implement division wide
component reuse.

5 Further Development

As it should be with any such model, the SFR Model is under regular review and a
number of developments and enhancements are described here.

The current Model also considers only the influence that the presence of a Factor
exerts on the implementation of CBSE. While it can be generalized that the absence
of a Factor equates to the absence of an influence, this is not always the case. A Fac-
tor can also exert an influence by its absence, for example the absence of a Develop-
ment Plan (Attribute 5) can have a negative influence on the Employee’s Expectations
(Attribute 4). Work is continuing to determine the influence of the absence of the
Attributes and Factors.

A similar situation arises when, for example, the result of a Collaboratory Decision
(Factor 12c) is to not implement component reuse, even though management is in
favour of it. While normally the Collaboratory Decision System would exert a posi-
tive influence, in this case the influence would be negative. Such instances need to be
incorporated into the Model.

As the SFR Model is a predictive model, it lends itself to being coupled with an ap-
propriate costing model for the changes that are identified as necessary for successful
implementation. The Benefit Cost Model [46] appears to be well suited to this task. Fur-
ther work is required to determine whether this or another cost model is most suitable.

6 Conclusions

Systematic component reuse has yet to be successfully adopted by the vast majority of
organizations, even though individuals have embraced it enthusiastically for decades.
The initial technical barriers have been all but overcome and tThe current barriers
appear to be based on socio-organizational factors.

The Social Factors for Reuse Model was developed from a perceived need for a
model for Component Based Software Engineering implementation that considered
the social and organizational factors. The SFR Model comprises 36 factors that pro-
vide a structure to describe an ideal state for an organization, against which it can be
assessed to determine its capability to embark on the implementation of CBSE. Such
an ideal state describes an organization that is not only sympathetic to the concept of
reuse, but also actively promotes its organization wide implementation.

When coupled with a suitable costing model, the organization can make an informed
decision whether or not to proceed with CBSE implementation. This then has the poten-
tial to greatly reduce the number and cost of unsuccessful CBSE implementations.

References

[1] McIlroy, M.D.: Mass-produced software components. In: Buxton, J.M., Naur, P., Ran-
dell, B. (eds.) Software Engineering Concepts and Techniques, 1968 Nato Conference on
Software Engineering, Garmisch, Germany, pp. 88–98 (1976)

100 H. Rehesaar

[2] IEEE1517-1999(Rev. 2004). IEEE1517 Standard for Information Technology - Software
Life Cycle Processes - Reuse Processes: 1999, reaffirmed 2004. Software Engineering
Standards Committee of the IEEE Computer Society, USA (2004)

[3] Garcia, V.C., Lucrédio, D., Alvaro, A., de Almeida, E.S., de Mattos Fortes, R.P., de
Lemos Meira, S.R.: Towards a maturity model for a reuse incremental adoption. In: The
1st Brazilian Symposium on Software Components, Architecture and Reuse, Campinas,
Sâo Paulo, Brazil, pp. 61–74 (2007)

[4] Chroust, G.: Motivation in component-based software development. In: Ghaoui, C. (ed.)
Encyclopedia of Human Computer Interaction. Idea Group Reference, Hershey (2006)

[5] Sherif, K., Vinze, A.S.: Barriers to adoption of software reuse: a qualitative study. Infor-
mation and Management 41(2), 159–175 (2003)

[6] Ravichandran, T.: Software reuseability as synchronous innovation: a test of four theo-
retical models. European Journal of Information Systems 8, 83–199 (1999)

[7] Allen, P.: Using CBD to improve your business. In: Component Strategies, vol. 2(1),
SIGS Publications, New York (1999)

[8] Kim, Y., Stohr, E.A.: Software reuse: Survey and Research Directions. Princeton Univer-
sity Press, Princeton (1998)

[9] Crooks, M.: Capitalizing on component reuse. In: Component Strategies, New York,
p. 44 (July 1999) ISSN: 10993673

[10] Kunda, D., Brooks, L.: Human, social and organizational influences on component-based
software engineering. In: Proceedings of the 21st International Conference on Software
Engineering, Los Angeles. IEEE Computer Society, Los Alamitos (1999)

[11] Keidel, R.: Seeing Organizational Patterns, 2nd edn. Beard Books, Washington (2005)
[12] Haines, C.G., Carney, D., Foreman, J.: Component-based Software Development/COTS

Integration, Software Engineering Institute, Carnegie Mellon University (1997)
[13] Waguespack, L., Schiano, W.T.: Component-based IS architecture. Information Systems

Management 21(3), 53–60 (2004)
[14] Vitharana, P.: Risks and challenges of component-based software development. Commu-

nications of the ACM 46(8), 67–72 (2003)
[15] Dué, R.T.: The economics of Component-based Development. Information Systems

Management 17(1), 92–95
[16] Kunda, D., Brooks, L.: Assessing organizational obstacles to component-based develop-

ment: a case study approach. Information and Software Technology 42(10), 715–725
(2000)

[17] Pour, G.: Moving toward component-based software development approach. In: Proceed-
ings of the 27th International Conference on Technology of Object-Oriented Languages
and Systems, Beijing, China, pp. 296–300. IEEE Computer Society Press, Los Alamitos
(1998)

[18] Hall, P.A.V.: Architecture driven software reuse. Information and Software Technol-
ogy 41 (1999)

[19] Kiely, D.: Are components the future of software? IEEE Computer 31(2), 10–11 (1998)
[20] Szyperski, C.: Component Software: Beyond Object-oriented Programming. Addison-

Wesley Longman, Reading (1998)
[21] Sametinger, J.: Software Engineering with Reusable Components. Springer, Heidelberg

(1997)
[22] Aoyama, M.: Componentware: building applications with software components. Journal

of the International Process Society of Japan 37(1), 71–79 (1996)
[23] Brown, A.W.: Component Based Software Engineering. IEEE Computer Press, Los

Alamitos (1996)
[24] Brown, A.W., Wallnau, K.C.: The current state of CBSE. IEEE Software 15(5), 37–46

(1998)

 Capability Assessment for Introducing Component Reuse 101

[25] IEEE1517-2009 D2. IEEE1517 Standard for Information Technology - Software Life
Cycle Processes - Reuse Processes: 2009 D2. Software Engineering Standards Committee
of the IEEE Computer Society, USA (2009)

[26] MIT. 2010 Summer Session, Barriers to design, process and code reuse. MIT Center for
Information Systems Research (June 2010),
http://www.ciodashboard.com/it-strategy/13-barriers-to-
reuse/ (Downloaded July 12, 2010)

[27] Davis, T.: The reuse capability model: a basis for improving an organization’s reuse
capability. In: The Proceedings of Advances in Software Reuse, Lucca, Italy, March
24-26. IEEE, Los Alamitos (1993)

[28] Alvaro, A., de Almeida, E.S., Meira, S.L.: A software component maturity model. In:
Proceedings of the 33rd EUROMICRO Conference on Software Engineering and Ad-
vanced Applications, SEAA 2007, Lűbeck, Germany, pp. 83–90. IEEE, Los Alamitos
(2007)

[29] Tripathi, A.K., Ratneshwer: Some observations on a maturity model for CBSE. In: 14th
IEEE International Conference on Engineering Complex Computer Systems, ICECCS
2009, Potsdam, Germany, June 02-04, pp. 274–282. IEEE, New York (2009)

[30] Creps, R.E., Simos, M.A., Prieo-Diaz, R.: The STARS conceptual framework for reuse
processes. In: The Proceedings of the Fifth Annual Workshop on Software Reuse, WISR
1992, Palo Alto, California, USA (October 1992)

[31] Jasmine, K.S., Vasantha, R.: A new capability maturity model for reuse based software
development process. IACSIT International Journal of Engineering and Technology 2(1),
112–116 (2010) ISSN 1793-8236

[32] Lim, W.C.: Reuse economics: a comparison of seventeen models and directions for future
research. In: Proceedings of the 4th International Conference on Software Reuse, pp.
41–50. IEEE Computer Society, DC, USA (1996)

[33] Porter, M.: Competitive Advantage: Creating and Sustaining Superior Performance, p. 16.
Free Press, New York (1985)

[34] Rehesaar, H., Mead, A.: An extension of Benefit Cost Analysis to IT Investments. Busi-
ness Review 4(1), 89–93 (2005) ISSN 1553-5827

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 102–118, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Software Product Line Evolution with Cardinality-Based
Feature Models

Nadia Gamez and Lidia Fuentes

Dpto de Lenguajes y Ciencias de la Comunicación, Universidad de Málaga
{nadia,lff}@lcc.uma.es

Abstract. Feature models are widely used for modelling variability present in a
Software Product Line family. We propose using cardinality-based feature
models and clonable features to model and manage the evolution of the struc-
tural variability present in pervasive systems, composed by a large variety of
heterogeneous devices. The use of clonable features increases the expressive-
ness of feature models, but also greatly increases the complexity of the resulting
configurations. So, supporting the evolution of product configurations becomes
an intractable task to do it manually. In this paper, we propose a model driven
development process to propagate changes made in an evolved feature model,
into existing configurations. Furthermore, our process allows us to calculate the
effort needed to perform the evolution changes in the customized products. To
do this, we have defined two operators, one to calculate the differences between
two configurations and another to create a new configuration from a previous
one. Finally, we validate our approach, showing that by using our tool support
we can generate new configurations for a family of products with thousands of
cloned features.

Keywords: Software Product Lines, Feature Models, Evolution.

1 Introduction

Recently, pervasive systems and Ambient Intelligence environments are gaining
popularity to support people’s daily tasks. These systems are composed by a large
variety of networked heterogeneous devices with embedded software. For instance,
Ambient Assisted Living systems or Intelligent Transportation Systems (ITS) can be
formed by a large number of sensor nodes (grouped in Wireless Sensors Networks,
WSNs), smart phones, vehicles onboard computers or other devices with RFIDs or
cameras. Application domains like pervasive systems, where heterogeneity is present
at any level, can greatly benefit from Software Product Line (SPL) engineering [1],
which is specifically focused on variability modelling. SPLs aim to provide tech-
niques for creating infrastructures that allow the rapid and systematic production of
similar software systems, promoting the reuse of common core assets.

Feature Models (FM) [2] have been widely adopted by the SPL community to
specify which elements, or features, of the family of products are common, which are
variable and the reasons why they are variable, i.e. if they are alternative elements or
optional elements. Then, a feature model permits specifying where the variability is,

 Software Product Line Evolution with Cardinality-Based Feature Models 103

independently of the core asset, and enables reasoning about all the different possible
configurations of a family of products.

Specifically in heterogeneous pervasive environments, the most common variabil-
ity is the structural variability, defined as variations in type, cardinality or naming of
elements [3]. We propose using cardinality-based features models and clonable fea-
tures [4] to model the structural variability present in the new generation of pervasive
systems. The use of clonable features increases the expressiveness of FMs since they
allow the creation of different configurations for the same kind of device using only
one feature model. Using clonable features we can model so that a system has a vari-
able number of different kinds of devices (e.g. s sensors, c cameras, a alarms, or sm
smartphones). The cloning of these device features leads to the cloning of the related
structure (e.g. for 3 sensors, the configuration will contain s1, s2 and s3 clones of
the sensor feature, joint with its sub-tree), increasing the complexity of the resulting
configurations, and moreover the number of possible configurations increases a lot.
Then, as the FM evolves, the impact of propagating changes made in the FM to the
possible configurations is much higher in a cardinality-based FM.

Evolving a FM may imply adding or removing a feature (e.g. adding a new encryp-
tion algorithm as a mandatory feature), which in a cardinality-based feature model
may cause many changes in all the clones. Specifically in pervasive systems, configu-
rations could have hundred of clones composing a single product configuration.
So, considering the evolution of a concrete SPL, it would be useful to automatically
obtain the evolved configurations according to the changes introduced to the FM.
From the point of view of the SPL engineer, it would be useful to know the necessary
effort to evolve a previous existing product configuration to a new valid configuration
after a FM modification was performed. This effort could be calculated by comparing
the previous and the list of new possible configurations; which is not trivial to do at
first glance due to the high number of cloned features.

In this paper, we present how we manage automatically the evolution of an perva-
sive system software product lines using cardinality-based FM and clonable features.
To do this, we have defined two operators between FM configurations that are not
trivial for cardinality-based FM. The create_configuration operator allows the crea-
tion of a new configuration from a previous configuration and the features that
must be added or removed in the new configuration. The differences operator calcu-
lates the differences between two configurations of a feature model. We use the
create_configuration operator to create evolved configurations from the previous
configuration and the evolved feature model. Furthermore, we use the differences
operator to calculate the effort of evolving the product configurations of a SPL, reus-
ing and preserving the elements of the previous configuration. Finally, we validate
our approach showing that by using our tool support we can easily evolve FMs with
clonable features, automatically generating new configurations, for configurations
with a high number of clones.

The remainder of the paper is organized as follows. In Section 2, we present our
motivation example and the challenges for evolving pervasive systems SPLs and how
we achieve them. In Section 3, we show our approach and Section 4 details the differ-
ences and create_configuration operators. The validation and the tool support of our
approach are presented in Section 5. In Section 6, we compare our approach with
related work. Finally, in Section 7 we outline some conclusions.

104 N. Gamez and L. Fuentes

2 Motivation

In this section we present a motivating example and we will discuss the special chal-
lenges of pervasive systems that make them good candidates to take advantage of the
evolution process using SPL and cardinality-based FMs.

2.1 Motivation Example

One of the most popular pervasive systems are smart homes with a lot of appliances
that helps the occupants of the house in their daily life. When the purpose of a smart
home is to enhance the quality of life of dependant people, then we are talking about
Ambient Assisted Living (AAL). In this paper our motivating example is a SPL of
AAL homes, equipped with sensors, smartphones, alarms, and cameras as shows the
FM of Fig. 1.a.

Fig. 1.a represents a FM in Hydra1 (all the FM and configurations presented
throughout this paper are modelled using our featuring modelling tool, Hydra). In a
FM every feature has one parent except the root feature (as AALHome in Fig.1). The
features can be mandatory (as Encryption), optional (as VideoSurveillance), or
clonable (as Sensor that has a 0 to infinite cardinality). Apart from the features,
Hydra also defines two groups of features: xor-group (as the group composed by the
operating systems of the Smartphone: Android or iPhone) and or-group (as the one
composed for the sensing units of the Sensor: Accelerometer, Light, Humidity, or
Temperature). So in Hydra, we can distinguish two kinds of relations: between a
feature and its children features (and-relationship, as in the relation between the
AALHome and its Services) and between a feature and one group (as in the relation
between the Sensor and its xor-group).

Fig. 1.b shows a valid configuration for the AAL home family. A configuration of
a feature model is the selection of a set of features belonging to the feature model. A
configuration is valid if all features contained in the configuration and the deselection
of all other specific features contained is allowed by the feature model [5, 6]. So, a
valid configuration must satisfy the tree-constraints and the dependencies or interac-
tions between features (cross-tree constraints). In Hydra, the cross-tree constraints
are expressed in a textual way using the combination of regular expressions, as for
example, VideoSurveillance implies any Camera.

The home of the configuration shown in Fig. 1.b has video surveillance facilities to
transmit periodically video to the health centre. Also an automatic control of the lights
and heat is provided. Furthermore all the data transmitted must be encrypted. This
configuration has 10 sensors: the sensor S1 has a temperature sensing unit and offers
temperature monitoring, the sensor S2 has in addition a humidity sensing unit and the
sensors from S3 to S10 are identical and are equipped with accelerometers and light
sensing units and offer light monitoring facilities. In this configuration there are also 2
smartphones and 8 cameras. Note that the figure does not show all these devices for
the sake of simplicity. The Phone 2 is an Android smartphone and provides an appli-
cation to transmit the video received from the camera to the health centre. Similarly,
the cameras must transmit the video to the smartphones. Finally, all the devices have
an encryption algorithm installed since this feature is mandatory.

1 http://caosd.lcc.uma.es/spl/hydra

 Software Product Line Evolution with Cardinality-Based Feature Models 105

Normally, only a subset of the family products are developed and marketed. Later,
these products are mainly subject to two evolution scenarios: (1) one AAL home may
focus on dependant people with movement difficulties. However, some of the
dependant people may not have special movement problems, but problems due to
diabetes, or both. So, this AAL home family of products must evolve in order to in-
corporate a glucose sensor device, specific for diabetic people. This means that the
customers demand a new functionality to the family of products, so each product
already developed, and even deployed in some houses, must be evolved in order to
incorporate the new requirements; (2) the hardware and software technology for
pervasive systems is continuously evolving. New operating systems (e.g. Android for
mobile phones) or special sensors (e.g. new accelerometers) are frequently appearing.
So, vendors must incorporate these new devices or facilities into their products
already derived, in order to be competitive in the market.

2.2 Challenges

The heterogeneity present in pervasive systems is easily manageable with cardinality-
based feature models. Furthermore, these kinds of systems are continually evolving,
as new devices, application facilities or requirements appear, and as a consequence of
this some obsolete features disappear. So, the evolution of these systems must be
properly supported by advanced tools. Now, we enumerate and detail the specific
challenges to manage the evolution of pervasive systems using SPLs.

- C1 Structural Variability Evolution: A special characteristic of pervasive systems
is that many instances of the same device may compose the same product, but each
device, although being of the same type may have a different configuration. In the
AAL home presented, the device infrastructure would be similar for all products,
but must be customized to the physical structure of each house or to the necessities
of the dependant person. Such structural variability must be explicitly modelled in
the SPL, but also its evolution must be part of a SPL engineering process. Achieving
C1: We model such structural variability with clonable features, and manage its
evolution, not at the feature, but at the clone level (see Section 3). So, it is possible
to modify the configuration of sensor S1, but not of the other sensors.

- C2 Automatic Change Propagation: When a SPL evolves, the changes must be
propagated to the customized products of the family. Nevertheless in these kinds of
systems with a high number of devices, each one with very specific characteristics

Fig. 1. AAL Home Family Feature Model (a) and Configuration (b)

Legend
Mandatory Feature

Optional Feature

0..* Clonable Feature
XOR group

OR group

(a)

(b)

106 N. Gamez and L. Fuentes

(Fig.1.a) the propagation of changes is very complex. So, we need an automatic proc-
ess that supports the evolution changes made in some characteristics of the SPL to
all the derived products of this family. Achieving C2: We provide a tool support to
automatically propagate the changes made at FM level into all customized configura-
tions (Section 3.1). Note that representing configurations graphically with many
cloned features will complicate the management of configurations evolution. This is
important, since some pervasive systems may be composed of hundreds of devices of
the same type, so it would be impossible to handle changes one by one manually.

- C3 Evolution Effort: Since most pervasive systems are composed of several or
many different clones of each device, this implies that evolution changes must be
performed in every clone in a different way. Let's imagine that we want to remove
the encryption algorithm of the sensors in our AAL home family. But the applica-
tion architecture may be different for every sensor, so, the way to remove the
encryption is also different. So, it is necessary to automatically evaluate the required
effort to make the changes in the products of the family when the family evolves,
since when we have several instances of similar devices, but with different architec-
tures, this is a very complex task. Achieving C3: We automatically calculate the
differences between a previous configuration and the new evolved configuration for
all the existing configurations (see Section 3.2). We use this difference, the FM and
a mapping between every feature and the corresponding architecture to obtain which
components of the architecture must be added or removed in every device. In this
way, we can quantify the effort of evolving a product and the impact of change
when the FM evolves. This may also help the SPL engineer to assess the persons per
month required to produce upgraded versions of previous products.

- C4 Preserve Compatibility: In pervasive systems, the applications installed in all
devices normally interact and collaborate between them. This means that the SPL
process must guarantee that the configurations running in every device of a certain
pervasive system are compatible with each other. An example of compatibility in
the context of sensor nodes is that all of them have to use the same routing protocol,
otherwise the communication is impossible. The SPL evolution process must ensure
that new configurations of different kinds of devices are compatible. Achieving C4:
We also use the cross-tree constraints to guarantee that the configurations of all the
devices (i.e. clones) of a certain system are compatible with each other (see Section
3.1). This novel use of the constraints specified between clones makes it possible to
specify which architectural elements must be present in all devices that interact.

- C5 Efficiency: As many pervasive systems are composed of a large number of
devices (as hundreds or thousands of sensor nodes executing several sensing tasks),
the number of configurations of a simple FM would be really high. The FM con-
figuration of a particular system may contain thousands of features due to the
cloning of each device related structure (sub-tree) for every device. So, we must en-
sure that the tool support for creating new evolved configurations or for searching
the difference between the evolved and the previous configuration has to be effi-
cient. Achieving C5: We define and implement two operators difference and
create_configuration (see Section 4) paying special attention to efficiency and as
we will show in the evaluation (see Section 5), the execution time is efficient, being
appropriate for thousands of features, typical of pervasive systems.

 Software Product Line Evolution with Cardinality-Based Feature Models 107

3 Evolution of Feature Models with Clonable Features

We have proposed an automatic process to derive different system configurations
depending on the input constraints, determined by mainly hardware and software
requirements [7]. We apply model-driven and SPL engineering techniques to auto-
mate this configuration process. The first step when creating a SPL is to analyze
the variability inherent in the application domain and create the FM. In the next step
the global architecture of the system (named product line architecture or PLA), which
contains both the commonalities and the variabilities specified by the FM is defined.
A Feature Mapping between the FM and the PLA defines the correspondence be-
tween features and architectural components. We propose the use of the variability
language VML [8], which was defined specifically to do this mapping. The customi-
zation of the architecture is determined by a set of high-level parameters (e.g. number
and type of sensors or the necessary services). Using this set of parameters as input
features, Hydra is able to automatically infer the rest of the features needed for each
product making use of tree and cross-tree constraints (i.e. feature interaction), defined
as part of the FM. So the output of Hydra is then a configuration of a product. This
product configuration and the mapping between the FM and the PLA specified in
VML are the inputs of a model transformation that automatically generates a custom-
ised architectural model. Finally, the architectural model of a product is the input of a
model-to-text transformation, which produces the code for deploying the specific
application inside the devices. We detail how our process automatically propagates
the changes made in a FM into current configurations, and also we evaluate the neces-
sary effort to propagate those changes to the final architecture.

3.1 Feature Model Evolution

As we have mentioned previously, the SPLs need to evolve in order to satisfy new
user or application requirement or to incorporate new technological advances as for
instance, devices with new operating systems or new facilities to achieve energy effi-
ciency or the security of the system. These evolution scenarios must be modelled as
modifications in the FM. We have identified what elements of the FM may change as
a consequence of an evolution scenario: (i) adding or removing features, (ii) adding or
removing groups of features ('or' or 'xor' groups), (iii) adding or removing constraints
between features and (iv) modifying the variability of a feature (e.g. a mandatory
feature is transformed in optional). Note that the modification of a feature can be
defined by means of removing a previous feature and adding a new one. The same
happens with the modification of groups of features and with the constrains.

Let’s imagine that we want to evolve the AAL home family with new services:
glucose control for diabetic people and fall detection for people with movement prob-
lems or other illnesses that may provoke falls. Furthermore, due to the rapid loss of
energy of the sensors, the removal of the encryption algorithm in those sensors where
it is not strictly required is recommended. Fig. 2.a shows the FM of the AAL home
with these evolution changes. The two new services are added as new optional fea-
tures (GlucoseControl and FallDetection) and since they can be used in any device,
they are also added as children optional features of every device (as the glucose and

108 N. Gamez and L. Fuentes

fall monitoring in sensors or the diabetes application in the smartphones). Also the
glucose sensing unit is added as a child of the sensor 'or' group. Furthermore, the
Encryption mandatory feature is now an optional feature and we have added a new
constraint for this feature: Encryption implies (PhEncryp and CamEncryp) to force
both camera and mobile phone to transmit secure data. Finally, we have added other
constraints related with the new services, for example, GlucoseControl implies Diabe-
tes or FallMonit implies Accelerometer.

After evolving the FM we have to propagate the changes in all the previous con-
figurations, as the one shown in Fig.1.b. Our process automatically obtains the new
configuration from the previous one, the new FM and the requirements with respect
the evolved features for this specific product. Consider as these requirements, that for
the configuration shown in Fig. 1.b either the customers or the vendor needs the fall
detection and glucose control services. The output of our process after this evolution
will be the configuration shown in Fig. 2.b. The modifications are: (1) two new
features are added as children of the Services feature; (2) the Encryption feature is
removed; (3) in all the sensors the SenEncryp feature has been deleted; (4) a new
sensor S11 with a glucose sensing unit and with a glucose monitoring service is
added; (5) in all the sensors equipped with accelerometers the fall monitoring feature
is added; (6) the fall recording task is added to the cameras (7) and finally, the facility
for controlling the diabetes and for transmitting the fall is added to the smartphones.

We can observe that with this small example we have to manage many changes in
several features, so in systems with hundreds of nodes the number of changes
increases exponentially. Therefore, we need a tool support that creates this new con-
figuration in an efficient way, considering that the number of features of these kinds
of systems may be really large. As is shown in Fig. 3.a, in order to automatically
obtain this new configuration the Create Configuration facility of Hydra takes as
input the evolved feature model, the previous configuration and the constraints with
the requirements of this configuration for the evolved features, and it returns a set of
constraints with all the features that we have to select in the new configuration. These
constraints are used together with the new feature model by the Hydra facility to au-
tomatically generate a Minimal Valid Configuration. To implement the Create
Configuration we use the create_configuration operator, defined in the Section 4,
that obtains the features that must be selected in the new configuration for cardinality-
based feature models. Also, how Hydra gets the Minimal Valid Configuration is
explained in Section 4.

Fig. 2. AAL Home Family Evolved Feature Model (a) and Evolved Configuration (b)

 Software Product Line Evolution with Cardinality-Based Feature Models 109

Fig. 3. (a) Evolving FM Configurations and (b) Obtaining Architectural Differences

3.2 Evolution of Existing Configurations

In order to evaluate the impact of change when a FM is evolved, we need to know the
specific differences between the previous configuration and the new evolved configu-
ration. To do this, as Fig. 3.b shows, the Differences facility of Hydra takes as inputs
the previous, the new configurations and the four sets of variable features of a FM
(clonable, optional, ‘or’ and ‘xor’ group) and it returns the difference between confi-
gurations by means of a set of features that must be selected and unselected in the
new configuration. Obtaining the differences of FM configurations with clonable
features is not a trivial task, since it cannot be calculated as a simple difference of sets
as can be done for normal FMs. So, in the next section we have defined a difference
operator for the special case of FM configurations with clonable features. Our process
then uses this differences set of features and the mapping between FM and the PLA in
VML to automatically produce the evolved architecture. Thanks to VML it is possible
to automate the customization of the family architecture in an SPL context. Using
VML, we specify which actions must be performed on the architectural model when a
certain feature is selected or unselected. These mechanisms are basically adding and
removing components, and connecting component interfaces. The family architecture
is specified using the components model of UML 2.0.

Figure 4.a shows an extract of the mapping between our AAL home FM and the
UML components of the family architecture, including all the variants of the FM (i.e.
mainly devices and services). We only include in Figure 4.a the mapping for the fea-
tures involved in the evolution changes, but in a full version of this VML file all the
features which have an influence in the architecture are included. Lines 01-09 show
the architectural modifications that must be performed when the SenEncryp feature is
not selected, that is, the encryption-related components must be removed from all
the applications installed in the sensor devices. Nevertheless, as we have explained
previously, because the architecture in some sensors is different, how to remove the
encryption-related components is also different for each sensor. We illustrate this for
sensors S1 and S2 and sensors S3-S10. Lines 01-04 show the architectural mapping
when SenEncryp and LightMonit features are not selected, which is the case of sen-
sors S1 and S2. In this case, the elliptic curve cryptography algorithm component
must be removed (line 02) and also the component that composes output messages
with the data collected by the sensor (DataReady) must be connected through
IData interface with the component that transmits the data through the network (Da-
taTransmission, line 03). We can see at the top of Fig.4.b the evolution of the archi-
tecture corresponding to these features. Nevertheless, as is shown at the bottom of
Fig. 4.b., in sensors S3-S10 where the LightMonit feature is selected, we also have a
component that is responsible for fusing the data using an aggregation function, with
the goal of reducing the number of messages that are sent through the network. In the

110 N. Gamez and L. Fuentes

case, where SenEncryp is not selected, apart from removing the ECCALgorithm com-
ponent (line 06), the DataReady component must be connected with the DataFusion
component (line 07) and this component in turn must be connected with the Data-
Transmission one (line 08). Here we show how we can manage automatically
the architectural modifications in clones of the same feature (sensor S1 and S2 and
sensors S3-S10) that have different architectures. In this figure we highlight only the
components or architectural parts that are previously implemented so they can be
reused in the new architecture.

(a)
01 variant for (not SenEncryp and not LightMonit){//Sensor
02 remove(“ECCAlgorithm”);
03 connect(“DataReady”, “DataTransmission”, “IData”);
04 }
05 variant for (not SenEncryp and LightMonit){//Sensor
06 remove(“ECCAlgorithm”);
07 connect(“DataReady”, “DataFusion”, “IData”);
08 connect(“DataFusion”, “DataTransmission”, “IData”);
09 }
10 ...
11 variant for FallMonit{//Sensor
12 connect(“MovTracking”, “FallAlgorithm”, “IDetection”);
13 connect(“FallAlgorithm”, “CameraSelection”, “ICamSel”);
14 connect(“CameraSelection”, “DataReady”, “ICam”);
15 }

16 variant for FallTrans {//Smartphone
17 connect(“Video”, “TransmissionHC”, “IVideo”);
18 }
19 variant for FallRec {//Camera
20 connect(“Rec”, “Transmission”, “IVTrans”);
21 }
22 ...
23 variant for GlucMonit {//Sensor
24 connect(“GlRead”, “DataReady”, “IGluc”);
25 }
26 variant for Diebetes {//Phone
27 connect(“GlReceive”, “GlAnalyze”, “IGlAnalyze”);
28 connect(“GlucAnalyze”, “GlucLimit”, “ILimit”);
29 connect(“GlucLimit”, “NotifyHC”, “INotify”);
30 connect(“GlAnalyze”, “GlRegister”, “IRegister”);
31 }

(b)

Fig. 4. (a) Mapping between Features and Architecture and (b) Removing the Encryption

Now, we need to implement the new functionality. Firstly, an algorithm to detect
possible falls and also that switches to the nearest camera when a fall is detected. This
new component must be deployed in the 7 sensors equipped with an accelerometer.
Also, the video captured by the camera has to be transmitted through the smartphone
to the health centre. But, the components that implement this functionality were pre-
viously used for the video surveillance, so we simply reuse them. Lines 11-15 show
the architecture corresponding with the selection of the FallMonit in sensor devices,
lines 16-18 specify that in the smartphone we have to connect the Video with the
component that transmits it to the health centre only if the FallTrans feature of the
smartphone is selected. But all this functionality was already in the architecture, so we
reuse the corresponding components. The same happens when the FallRec feature is
selected in the camera (lines 19-21). Finally, a new sensor with glucose monitoring
facilities must be incorporated (lines 23-25). Also, the components that analyze and
register the glucose measures and that notify the health centre if any measure exceeds
the limits is added in the smartphone (lines 26-31). These components are new, so the
effort of adding this new sensor must take into account the effort of implementing all
of them. In total, 9 components were added and the rest were reused. Our process is
able to infer the list of these components automatically, helping the architect to assess
the effort of evolving each existing product when the FM evolves.

 Software Product Line Evolution with Cardinality-Based Feature Models 111

4 Differences and Create Configuration Operators

Differences Operator. The differences operator obtains the set of different features
between two configurations of a FM. This set of difference contains the features that
were selected in the Previous Configuration (PC) and are not selected in the New
Configuration (NC) and the features selected in the NC but were not selected in the
PC. When considering FM without cardinality the problem for getting the differences
can be simplified to the differences between two sets. Likewise, if we rename all the
cloned features with a unique name, a first approach could be to also reduce the prob-
lem of the difference of cardinality-based FM configurations, to a simple difference
between sets. In order to have a unique name for every feature, we can prefix
the name of all the clones with the original name of the feature (e.g. Sensor_S10)
and all the features of the cloned structures with the name of the clone (e.g.
S10_Accelerometer). So, to obtain the differences firstly we have to cover all the
features of the NC in order to know which ones are not in the PC and secondly, we
have to cover all the features of the PC in order to know which ones are not in the
NC. This would be correct since all the differences are returned but it is not efficient.
Firstly, we have to rename all the features. Then, we have to navigate through all the
features of the PC and find them in the NC. After that, we have to do the same with
all the features in the NC by navigating through the PC to find them. So, the main
disadvantage of this approach is that all the features selected in the two configurations
have to be searched twice. Furthermore, we know in advance that mandatory features
are selected in both configurations so we do not need to search for them in order to
obtain the differences. Apart from the mandatory features, other features will be se-
lected in both configurations, so the effort of searching the configuration tree twice is
not justified. This approach would work well in small FMs and small configurations,
i.e. configurations with a few cloned features, but this is not happening in real perva-
sive systems that may have hundreds of devices. Also, a FM representing a real SPL
system usually has a big core asset, so they have many mandatory features. Finally,
we may want to obtain the differences between two similar configurations, where
only some of the features in a few clones are different, as is mainly happen with
evolved configurations. To summarise, this approach for calculating the difference is
extremely inefficient for real SPL of pervasive systems. And, as we will show in the
evaluation section the time needed to find the differences between two configurations
increases greatly when the number of clones increases. So, we have defined a more
efficient algorithm in order to make our approach scalable to configurations with
several thousands of total features.

Syntactic Definition. : , , , , , , It takes six
sets of features as input arguments. The features selected in the PC and in the NC, the
clonable and optional features and the features belonging to an ‘or’ and a ‘xor’ group.
Also, it returns two sets of features. is the set of the features that are selected in
the NC but were not selected in the PC. Similarly, is the set of the features that
are not selected in the NC but were selected in the PC.

For the evolved FM shown Fig. 2.a the sets of features are:
 , , , , , , …

112 N. Gamez and L. Fuentes

, , , , ,
For the configurations presented in Fig. 1.b and Fig 2.b, we have: , , 10: , , … , 2: , … , 4: , … , … , , , , 10: , , … , 2: , , … , 4: , , … , …
And as result of the differences operator, we will have to obtain: , , 10: , 11: , , 2: , , 4: … , 10: …

Semantics. It is represented by the relationship that exists between the PC and the NC
and the selected and unselected features. Intuitively, the NC minus the PC is equal to
the selected set of features. And in the same way, the PC minus the NC is the unse-
lected features set. Then, \ and \ .

Algorithm 1. Differences
returns two sets of features: one (SEL) with the features that are selected in the NC and not selected in
the PC and other set (UNS) with the features that were selected in the PC not selected in the NC.
inputs six sets of features , , , , ,
output a tuple of two sets of features ,
1: _
2: _
3: , : _ , , , ,
4: foreach do
5: , _ ,
6: , _ ,
7: for 1. . do
8: //clone of the i position
9: if then
10: , //search for the position of the clone c
11: , : _ , , , ,
12: _ ,
13: _ ,
14: else
15: _ ,
16: end if
17: end for
18: for 1. . do
19:
20: if then
21: : _ ,
22: end if
23: end for
24: end for
25: ,
26:return

 Software Product Line Evolution with Cardinality-Based Feature Models 113

Algorithm. This algorithm firstly obtains the differences of the non clonable features.
To do so, it uses the diff_simple algorithm (Algorithm 2) that obtains the difference
between two configurations with non clonable features. diff_simple covers all the
optional, ‘or’ and ‘xor’ features in order to know which ones are in the NC but were
not in the PC to construct the SEL set, and which ones were in the PC but are not in
the NC to construct the UNS set. Note that we avoid looking for the mandatory fea-
tures, since they will be selected in both configurations. Also, using this algorithm we
avoid covering all the features for the PC and the NC twice.

The differences algorithm uses diff_simple algorithm giving as input the PC minus
the cloned structures, the NC minus the cloned structures and the optional, ‘or’ and
‘xor’ features (Algorithm 2, lines 1-3). Then, for each clonable feature, the algorithm
extracts the clones of the PC and NC (lines 5-6). The extract_clones function returns a
tuple with the names of the clones and with the cloned structures. The cloned struc-
tures are the features under a clone but only those that are not clonable again, since
they will be considered later in the algorithm. Then, for each clone of the PC, if they
appear in the NC, the diff_simple algorithm calculates the differences between both
corresponding cloned structures (line 11). If the clone it is not present in the NC, all
the structure (preceding the feature with name of the clone) must be added to the UNS
set (line 15). Following on, for each clone of the NC, if it does not appear in the PC,
all the structure must be added to the SEL set (lines 18-21).

Finally, we have to consider the possibility that some descendant features of a
clonable feature will also be clonable (nested clones). Our algorithm takes into ac-
count this possibility since, as we mentioned before, the extract_clones function re-
turn all features in the cloned structure minus the clonable ones. And, as the algorithm
covers all the clonable features, when the turn of a clone that belongs to a cloned
structure comes, the extract_clones function obtain again the substructure of this
clone features (without clonable features).

Algorithm 2. diff_simple
returns two set of features: one (SEL) with the features that are selected in the NC and not selected in
the PC and other set (UNS) with the features that were selected in the PC and not selected in the NC.
inputs five sets of features , , , ,
output a tuple of two sets of features , 1: 2:
3: foreach do
4: if then
5:
6: elseif then
7:
8: end if
9: end for 10: ,
11:return

Create Configuration Operator. The create_configuration operator creates a NC
from a PC and the two sets of differences: the features that must be selected in a NC
(SEL), and ones that must be unselected (UNS). To generate the NC, firstly, we have
to remove the unselected features from the PC set. After, with this set plus the set of
selected features we use the facility of Hydra to create a minimal valid configuration.

114 N. Gamez and L. Fuentes

Syntactic Definition. _ : , , , , It takes
three sets of features and the FM as input arguments: the features selected in the PC,
the set of features that has to be selected in the NC but they were not selected in the
PC, and the set of features that must not be selected in the NC but they were selected
in the PC. The FM is given as input, represented by a propositional formula [6]. It
returns the set features that must be selected in the NC and a Boolean that indicates if
it is possible to create a valid configuration with those inputs.

Semantics. It is represented by the relationship that exists between the PC and the
NC. Similarly to the difference operator, the NC is equal to the PC minus the unse-
lected features plus the new selected features: \ .
Algorithm. This algorithm firstly assigns to the NC the features of the PC (line 1).
Then, for each feature of the UNS set checks if it is a clone, to remove it using the
remove_clone function (lines 3-4). This function has two inputs, the clone and the
features of the configuration. If the feature is not a clone, i.e. it is simple feature, the
algorithm removes it directly (lines 5-6). Similarly, for each feature of the SEL set,
checks if it is a clone, to add it using the add_clone function (lines 10-11). This func-
tion has two inputs, the clone and the set of features of the configuration. Finally, if
the feature is not a clone, the algorithm adds it directly (lines 12-13).

Algorithm 3. create_configuration
returns a tuple of a set of features of the new configuration and a Boolean value that indicates if for the
inputs a valid configuration must be generated
inputs three sets of features , , and a feature model as a propositional formula
output a tuple with the set of features of the new configuration and a Boolean value 1:
2: foreach do
3: if _ then 4: _ ,
5: else 6: \ ;
7: endif
8:end for
9: foreach do
10: if _ then 11: _ ,
12: else 13: ;
14: endif
15:end for
16: , _ _ , // implemented by Hydra
17: return ,

After all the features in UNS and in SEL sets are covered, we have all the features

that we want that will be selected in a NC. Then, this NC set is given as input together
with the propositional formula of the FM to the Hydra minimal valid configuration
function (minimal_valid_conf, line 16). This function returns true if a valid configura-
tion can be generated (i.e. the NC given as initial constraints satisfy the tree and cross-
tree constraints) or false in the other case. Also, this function returns the definitive
NC. Maybe other features must be added to satisfy some constraints.

 Software Product Line Evolution with Cardinality-Based Feature Models 115

In order to check if a configuration is valid, Hydra uses a java library for Con-
straint Satisfaction Problems (CSP) [9], called Choco [10]. A CSP is defined by a
triplet (, , , where is a set of Variables, is a set of Domains for the variables
and is a set of Constraints. Hydra models the configurations by a CSP where the
Variables are the features of the FM, the Domain is 0,1 that corresponds with the
semantic of the unselected feature or selected feature, and the Constraints include the
implicit and the explicit cross-tree constraints. Furthermore, Hydra permits the auto-
matic generation of the minimal valid configuration given a set of initial constraints.
This is the valid configuration with less numbers of features that satisfy these initial
constraints that are formulated in the same way that the explicit cross-tree constraints.
This time, the Constraints include also these initial constraints and to get a minimal
configuration Hydra uses the CSP Objective Function. For our purpose the function
to minimize is the number of features selected, i.e. the number of variables with 1
value. So the objective function to minimize is ∑ .
5 Evaluation

Hydra, was first implemented as an Ecore-based Eclipse plugin [13, 14], to provide
support for the modelling of cardinality-based feature models in an intuitive and
graphical way. Hydra also provides support for the configuration, validation and
automatic generation of minimal configurations of this kind of FM with clonable
features. Within the scope of the present work, we extended the tool to implement the
differences and the create_configuration operators to help the evolution of FMs. In
this section, we present the experimental results of using the evolution support of our
feature modelling tool, Hydra. We will show that Hydra works well with FM with a
large number of cloned features, as required by challenge C5.

The time needed to create a configuration depends on the number of features se-
lected for the configurations. So, for our small example, it depends very much on the
number of clones, as is shown in Fig. 5.a. The experiments were done in a PC Intel
Core 2 Quad, 2,5GHz, 2 GB of memory and with 1.6 JVM. In our evolved FM (Fig.
2.a), if we consider 30 sensors, 3 smartphones, 10 alarms and 10 cameras, the time
needed to create a configuration is 1,7 seconds. It is a very reasonable time, since
configurations of our feature model with 100 devices may have around 400 features.

So, if we clone 500 devices (we have 4000 features) the time is around 2 minutes.
Instead, the time required to know the differences between two configurations is re-
duced (Fig. 5.b). Concretely, for 500 clones it takes 49 seconds. This happens because
when Hydra creates a new configuration, executing the create_configuration algo-
rithm it also has to paint the model of the configuration, which is the most time con-
suming task. By contrast, the difference only produces a file with the constraints. But
both times are more than acceptable for huge configurations, so our approach is also
scalable to configurations with around 4000 features.

Although the results presented here can be applied to any SPL, we specifically
have applied them to a family of middleware for pervasive systems (FamiWare [7]).
With FamiWare we have developed many case studies from the domain of pervasive
systems. Specifically, we have implemented several versions of smart homes, AAL

116 N. Gamez and L. Fuentes

0

20

40

60

80

100

120

140

1 100 200 300 400 500

D
iff

er
en

ce
s T

im
e

Number of Clones

0

20

40

60

80

100

120

140

1 100 200 300 400 500

Cr
ea

te
 C

on
fig

ur
at

io
n

Ti
m

e

Number of Clones(a) (b)

Fig. 5. Create Configuration (a) and Difference (b) operators time in seconds

homes and ITSs, with good results, although the number of clonable features, specifi-
cally in the ITS, was in the hundreds. For the ITSs, with a variable (without an upper
limit) number of devices, an undetermined large number of different configurations
were obtained. For this and for case studies similar in size, is not possible to manage
the configuration evolution manually due to the high number of possible configura-
tions and features per configuration. Since the ITS are novel, is very important that
the SPL engineer can manage automatically the configuration evolution as proposed
in our process, reducing the time to market for producing upgraded versions of this
products. Although our process helps in the quantification of the effort required to
produce the upgraded versions of previous products, it cannot calculate it in terms of
the number of people per month. The output of our process for this is simply the list
of components reused (those that were found in the component repository), and those
which have to be implemented from scratch. So, the SPL engineer will have to assess
the person per month per each new component and then make a final calculation of
the estimated cost of evolving each product asset.

One desirable situation is that running products must continue their execution after
evolution, so the initial requirements imposed by both the physical infrastructure (e.g.
number of rooms) and the customer, which continue to be valid, must be preserved in
the upgraded versions. Our process preserves the requirements and architecture,
introducing the architectural modifications in the least intrusive way possible.

6 Related Works

Previous works [4,13,14] proposed some operations with cardinality-based FM. In [4]
a cardinality-based notation for FM, on which Hydra is based, is presented. Also, the
concept of staged configuration based on the specialization of FM is defined, where in
each stage the products described by the specialized models is a subset of the products
described by the FM. In [13] a verification of FM with clonable features using binary
decision diagrams is presented. Both approaches are focused on cardinality-based FM
but they do not deal with the evolution of this kind of FM. In [14] a synchronizing
operation in cardinality-based FM is presented. They consider the possibility of
propagating the changes produced in a FM to a existing specialization of this FM. So,
in some way, they deal with the evolution of the FM and the corresponding changes
to the specific products. Nevertheless, they do not provide a solution to the problem
of propagating these changes at architecture level, as we do. Our model-driven proc-
ess to evolve SPLs is one of the most important contributions of our work, since it
allows the creation of new products and the evaluation of the effort of the evolution.

 Software Product Line Evolution with Cardinality-Based Feature Models 117

A classification of the evolution of a FM via modifications as refactoring, speciali-
zations, generalizations or arbitrary edits is presented in [6, 15]. So, an algorithm for
classifying feature models with differences is defined. Similarly, in [16] an insert
operator (to add a feature to a FM) and a merge operator (to compose two FM) were
proposed. With these operators, the development of large feature models by compos-
ing smaller feature models is enabled. These proposals tackle the evolution of FM but
they do not address how to propagate the changes made at FM level into the configu-
ration level, as is the focus of our approach.

At configuration level, in [17] the work presented has similar motivations as our
approach, since the authors propose the necessity of automated diagnosis of configu-
rations in large FM. Also, they deal with the automatic configuration evolution.
Nevertheless, they do not take into account the FM with clonable features, which are
the main motivation of our work.

7 Concluding Remarks

We have presented an model-driven process for managing the evolution of SPL per-
vasive systems using a cardinality-based FM. Our process automatically propagates
the evolution changes of the FMs into the existing configurations and also allows us
to calculate the effort in performing the changes in every configuration. To do this,
our tool Hydra creates new configurations from previous ones and the evolved FM.
Furthermore, having the previous and the new configuration and using the variability
language VML we can identify which parts of the architecture must be changed to
evaluate the impact of the changes. We have defined the differences and the cre-
ate_configuration operators and we have developed efficient algorithms to show their
functioning. We have shown that Hydra is able to create new configurations and to
see differences for configurations with a large number of clones.

References

1. Pohl, K., Böckle, G., Linden, F.: Software Product Line Engineering – Foundations, Prin-
ciples, and Technique. Springer, Heidelberg (2005)

2. Lee, K., Kang, K., Lee, J.: Concepts and guidelines of feature modeling for product line
software engineering. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319, pp. 62–77. Sprin-
ger, Heidelberg (2002)

3. Sánchez, P., Gámez, N., Fuentes, L., Loughran, N., Garcia, A.: A Metamodel for Design-
ing Software Architectures of Aspect-Oriented Software Product Lines. Technical Report
D2.2, AMPLE Project (2007)

4. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged Configuration through Specialization
and Multilevel Configuration of Feature Models. Software Process: Improvement and
Practice 10, 143–169 (2005)

5. Batory, D.S.: Feature models, grammars, and propositional formulas. In: Obbink, J.H.,
Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

6. Thüm, T., Batory, D., Kästner, C.: Reasoning about edits to feature models. In: Proceed-
ings of the 31st International Conference on Software Engineering (2009)

118 N. Gamez and L. Fuentes

7. Fuentes, L., Gámez, N.: Configuration Process of a Software Product Line for AmI Mid-
dleware. Journal of Universal Computer 16(12), 1592–1611 (2010)

8. Loughran, N., Sanchez, P., Garcia, A., Fuentes, L.: Language Support for Managing Va-
riability in Architectural Models. LNCS, vol. 49, pp. 36–51 (2008)

9. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1933)
10. Choco Solver Home Page (December 2010), http://www.emn.fr/z-

info/choco-solver/index.html
11. Stephan, M., Antkiewicz, M.: Ecore.fmp: A Tool for Editing and Instantiating Class Mod-

els as Feature Models. Technical Report 2008-08, University of Waterloo (2008)
12. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling

Framework. Addison-Wesley Professional, Reading (2003)
13. Zhang, W., Yan, H., Zhao, H., Jin, Z.: A BDD-based approach to verifying clone-enabled

feature models’ constraints and customization. In: Mei, H. (ed.) ICSR 2008. LNCS,
vol. 5030, pp. 186–199. Springer, Heidelberg (2008)

14. Kim, C.H.P., Czarnecki, K.: Synchronizing cardinality-based feature models and their spe-
cializations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp.
331–348. Springer, Heidelberg (2005)

15. Kuhlemann, M., Batory, D., Apel, S.: Refactoring feature modules. In: Edwards, S.H.,
Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791, pp. 106–115. Springer, Heidelberg
(2009)

16. Acher, M., Collet, P., Lahire, P., France, R.: Composing feature models. In: van den
Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 62–81. Springer,
Heidelberg (2010)

17. White, J., et al.: Automated diagnosis of feature model configurations. Journal of Systems
and Software 83(7), 1094–1107 (2010)

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 119–134, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Recovering Object-Oriented Framework for Software
Product Line Reengineering

Yijian Wu, Yiming Yang, Xin Peng, Cheng Qiu, and Wenyun Zhao

School of Computer Science, Fudan University, Shanghai 201203, China
{wuyijian,051021056,pengxin,10212010021,wyzhao}@fudan.edu.cn

Abstract. A large number of software product lines (SPL) in practice are not
constructed from scratch, but reengineered from legacy variant products. In
order to transfer legacy products to SPL core assets, reverse variability analysis
should be involved to find commonality and differences among variant artifacts.
In this paper we concentrate on the recovery of SPL framework which can be
represented by an object-oriented design model with variation points. We pro-
pose a semi-automatic SPL framework recovery approach with the assumption
that involved legacy products have similar designs and implementations. In this
approach, we adopt a bottom-up process based on clone detection and context
analysis to identify corresponding mappings among design elements in different
products. Then we use a top-down process from class level to method level with
some heuristic rules to determine the commonality/variability classification and
the variability type for each design element. In order to evaluate the effective-
ness of our approach, we conduct a case study on an industrial product line and
present comprehensive analysis and discussions on the results.

1 Introduction

Software Product Line (SPL) has been recognized as an emerging and effective para-
digm for domain-specific software development with remarkable improvements on
productivity, time to market and quality. In real-world SPL practice, development of a
software product line rarely starts from scratch as product line engineering requires
sophisticated domain experience [1]. A more popular situation for SPL adoption is
that a company has already several variant products successfully developed in the
domain, usually by ad-hoc copy-paste code reuse. In order to reduce risk of SPL
adoption, the company usually chooses to reengineer those legacy variant products
into a product line rather than to build one from scratch.

Reengineering for SPL transferring usually involves a series of similar legacy
products in the same domain. Therefore, SPL reengineering should involve differenc-
ing and variability identifying for artifacts from different legacy products besides
extracting them from source code, documents or execution traces. Although there
have been some research on SPL reengineering and case studies [2-7], automatic
or semi-automatic approaches for artifact differencing and variability analysis are
seldom considered.

What we concentrate on in this paper is the recovery of SPL framework from leg-
acy products. A framework is a reusable, “semi-complete’’ application that can be

120 Y. Wu et al.

specialized to produce custom applications, and usually targeted for particular
business units and application domains [8]. By SPL framework, we mean an object-
oriented design model with variation points and extension points for application
product customization. For the purpose of SPL transferring, we try to recover an SPL
framework from multiple similar legacy products by recovering a common design
model (e.g. in UML class diagram) with variability. To that end, the following re-
search problems must be addressed: how to identify the corresponding mappings of
the design elements (e.g. classes, methods) among different legacy products; how to
determine a design element to be common or different; how to further evaluate the
variability type (optional, alternative or extensible) for each difference.

In this paper, we propose a semi-automatic SPL framework recovery approach
which includes two stages: 1) a mapping stage, in which corresponding mappings
among design elements from different products are established automatically; and 2) a
variability evaluation stage, in which the variability type for each design element is
identified. In the mapping stage, we adopt a bottom-up process based on clone detec-
tion and context analysis, first on method level and then class level. In the variability
evaluation stage, we employ a top-down process from class level to method level, and
use some heuristic rules to determine the commonality/variability classification and
variability types for design elements. The recovered SPL framework is ultimately
represented by an extended class diagram supporting variation point representation.

In order to evaluate the proposed approach, we conducted an experimental study on
an industrial product line DirectBank, which had several variant products developed
in different periods before they were reengineered into a product line. Our experiment
has confirmed the feasibility of semi-automatic SPL framework recovery from multi-
ple similar variant products by clone detection and context analysis. We also evaluate
the effectiveness of our approach from two aspects: precision and recall of reverse
variability analysis; the significance of the recovered SPL framework for further SPL
understanding and transferring.

The remainder of this paper is organized as follows. Section 2 presents an over-
view of our approach, including the background, rationale and process. Section 3 and
Section 4 describe the two stages of our approach respectively, i.e. mapping corre-
sponding design elements among different variant products and evaluating variability
types for all the mapped or unmapped elements. Section 5 evaluates the approach
with an experimental study and presents some discussion. Finally, Section 6 discusses
related work before Section 7 draws our conclusions.

2 Overview

In this section, we start with a general picture of our reverse variability analysis,
showing the rationale behind. We then introduce the main process of our approach.

2.1 Reverse Variability Analysis

In forward SPL engineering, core assets with variations are created to support prod-
uct-specific configuration and customization. In SPL reengineering, however, we
expect to recover these core assets (also variability) from existing similar legacy
products using a reverse engineering process.

 Recovering Object-Oriented Framework for Software Product Line Reengineering 121

A general picture of our reverse variability analysis is shown in Figure 1. The input
is a set of legacy artifacts (including models) extracted from different variant prod-
ucts. The output is an object-oriented framework with abstract variations. The
two stages (i.e. establishing element mappings and deciding types of variability) are
explicitly labeled. The mapping stage considers the correspondence between ele-
ments. The mappings usually can be computed based on the similarity (either literally
or structurally) between design elements. Specifically, two mapped elements do not
necessarily have the same implementation, but possibly a very similar topological
position in the design model. The variability evaluation stage is usually conducted
according to the mapping results. Intuitively, for example, two mapped elements with
completely different implementation are possibly variant elements.

Fig. 1. A general picture of reverse variability analysis

In this paper, our ultimate goal is to recover an object-oriented design framework,
especially a static class-based framework with variation points. A variation point here
means a group of design elements that can be customized in application engineering,
e.g. an optional element to be bound, an alternative element to be replaced by one of
its variants. Based on our observations, we identify five variability types of design
elements (see Table 1).

Table 1. Element variability in legacy products

Element variability Description
Identical mapped design elements that are exactly the same in different variant products
Variant mapped design elements that have different implementations
Similar mapped design elements that have some slight internal differences

Optional a non-mapped design element that exists in some of the variant products
Product-specific a non-mapped design element that exists in only one legacy product

The first three types (identical, variant and similar) are for mapped design elements

which can be mapped with corresponding design elements in other variant products.
The last two types (optional and product-specific) are for non-mapped design ele-
ments which cannot be mapped in all variant products. An optional element is not
necessary for all products, while a product-specific element exists in only one legacy
product. These different types indicate different variability intent in the recovered

122 Y. Wu et al.

SPL framework. For example, identical design elements usually belong to a common
part of the framework; similar elements are usually common designs with local varia-
tions; and variant elements imply alternatives in the framework.

2.2 Recovery Process

The recovery process of our approach is presented in Figure 2. In our approach, each
round of analysis takes two legacy variant products as inputs and tries to align design
elements to recover an SPL framework with variability. More variant products can be
incrementally compared and merged into the SPL framework.

B
ot

to
m

-u
p

Top-dow
nEl

em
en

t
G

ro
up

in
g

Fig. 2. An overview of our SPL framework recovery process

The major stages of our approach include mapping computation, variability evalua-
tion, and an additional visualization phase. Mapping computation tries to align corre-
sponding design elements for different legacy products. The mapping process follows
a bottom-up process that conducts method-level mapping first and then class-level
mapping (see Mapping Computation part in Figure 2). On method level, initial
mappings are detected by clone analysis, and then internal similarity and external
(context) similarity are considered to iteratively discover more mapping pairs. Simi-
larly, class-level mapping first uses method-level mappings to directly establish some
mapping pairs, and then employs design context to identify more mapping pairs.

After mapping computation, variability evaluation is conducted with a top-down
process from class-level to method-level (see Variability Evaluation part in Figure 2).
In class-level variability evaluation, each non-mapped class is evaluated to be op-
tional or product-specific, and each mapped class is evaluated to be identical, similar
or variant. For each similar class, method-level variability evaluation is conducted to
determine more detailed variability similarly. The element variability decision result
is then used for framework variability decision with design element groups.

Finally the recovered SPL framework is represented by framework visualization,
using variability-extended UML class diagram.

3 Mapping Computation

In this section, we first describe the rationale of our mapping computation process
with an illustrating example. Then we define a combined similarity measurement for
similarity computation, and introduce the sub-processes of method and class mapping
respectively.

 Recovering Object-Oriented Framework for Software Product Line Reengineering 123

3.1 Rationale

An illustrating example of mapping computation between two variant products is
shown in Figure 3. Intuitively, corresponding mappings can be identified by comput-
ing the similarity between two elements in a candidate pair. Some internal similarity
measurements can be computed directly on a candidate pair. For example, elements
Payment in both products (in Figure 3) are corresponding because they have the same
name; elements Auditing and Audit are also very likely corresponding because their
names are similar and (if we investigate their source code and find that) their source
codes are similar. Besides, we also need some external similarity measurements to
reflect similar roles that corresponding elements play in the design model. Usually,
this external similarity can be measured by their structural contexts.

Fig. 3. An illustrating example of mapping computation

In the example in Figure 3, elements Banking and MainSys do not share name and
(we assume that) their source code are not similar. Thus Banking and MainSys are not
internally similar enough to be declared as a mapping. We then consider their context
and find most of the context elements are mapped, which may lead us to believe that
they actually form up a mapping pair.

It should be noted that structural contexts for mapping are based on other element
pairs previously mapped. For example, if Banking and MainSys are mapped first, they
can provide usable contexts when considering the mapping between FormLogin and
SignIn, and vice versa.

3.2 Similarity Measurement

In this subsection, we formally define internal, external similarity and the combined
overall similarity between two design elements from different variant products.

3.2.1 Internal Similarity
Currently, we consider name similarity and content similarity as internal similarity.

Name similarity measures the similarity between the names of two design ele-
ments (methods or classes). The name of an element includes the name of the package
that the design element resides in. If the element is a class, we also consider the class
name. If the element is a method, the class name, the method name and the names of
the parameters (if exist) are also included.

Given two design elements ei, ej, their name similarity is defined as the following:

| |
(,)

(| | | |) / 2

i j
i jname type

i jtype

W W
SIM e e w

W W

∩=
+∑ ,(0 1, 1w w< < =∑) (1)

124 Y. Wu et al.

where W is the set of split words of the element e’s full name and w is the weight of
each type of name string. We believe that different parts of the name contribute dif-
ferently to the name similarity. For example, the method names and the parameters
play a more important role than package names when we decide whether two methods
are similar or not.

Content similarity measures the commonality of the content of two design ele-
ments. On the method level, the content means the source code, and thus the content
similarity can be measured by code clones. On the class level, we take methods as the
content. Thus the content similarity for classes is measured based on the number of
corresponding method pairs. Content similarity between two elements is generally
defined as the following:

| |
(,)

(| | | |) / 2
c

content i j
i j

T
SIM e e

T T
=

+
 (2)

where Tc is the collection of corresponding mapped contents within the scope of the
element, and Ti and Tj are the collections of contents of element ei and ej, respectively.
For methods, the contents are counted by the length of method (e.g. number of to-
kens); for classes, the contents are counted by the number of member methods.

3.2.2 External Similarity
We now consider context similarity[9] as external similarity. Context similarity here
presents structural similarity between two products. The context similarity of two
elements is computed based on topological structure. For a method, the structure is
the call graph, with a set of caller methods and another set of callee methods. We also
consider the method signature and the class it resides in. All these elements are con-
text of the method. For a class, the structure is a set of classes that have associations
with the class under consideration.

We denote the context of an element e as CT(e). To avoid considering all element
pairs from CT(ei)×CT(ej), we consider only those pairs in the DMS (Determined Map-
ping Set, see 3.3 for detail) which involve elements in CT(ei) or CT (ej). We define
Determined Context Mapping Set (DCMS) as a set of mapping pairs (eci, ecj) where
(eci, ecj) ∈DMS, eci∈CT(ei), and ecj∈CT(ej). Then context similarity of two elements
ei and ej is defined as the following:

| | *2
, if | () | | () | 0

| () | | () |(,)

0, if | () | | () | 0

i j
i jcontext i j

i j

DCMS
CT e CT e

CT e CT eSIM e e

CT e CT e

(3)

Particularly, if the context of both elements are not null and all elements in the con-
text of both elements are in the DMS, the contextual similarity is 1; if neither element
has a non-null context, the contextual similarity is 0.

In formula (3), a problem arise when the number of |CT(ei)|+|CT(ej)| is small,
meaning that the context of the element is not rich enough for analysis. Intuitively, we
believe that rich context will increase the confidence of the result of context similarity
analysis. Otherwise, context similarity will contribute less than internal similarity.
Therefore, we adopt the confidence as a weight balancing between external and inter-
nal similarity when calculating the combined similarity.

 Recovering Object-Oriented Framework for Software Product Line Reengineering 125

The confidence of context similarity is an additional, experimental value between
0 and 1 determined by the number of contextual elements. The richer the context is,
the higher value is the confidence. Particularly, if no caller/callee methods exist (thus
the contextual similarity is zero according to formula (3)), the confidence is not appli-
cable; if the number of caller/callee methods is over a certain value (for example,
five), the confidence can be one(1).

3.2.3 Combined Similarity
Each of the above similarity measures a specific aspect of combined similarity. We
believe that each aspect may contribute quite differently in different cases. Therefore,
we define a combined similarity as the following:

(,) (,) (1)((,) (,))*i j context i j name i j content i jname contentSIM e e conf SIM e e conf w SIM e e w SIM e e= + − + (4)

where wname and wcontent are weight for name and content similarity, respectively,

1w =∑ , and conf is the confidence of context similarity.

In our approach, content similarity is covered by clone detection. Therefore, we
simplify formula (4) into the following:

(,) * (,) (1) * (,)i j context i j name i jSIM e e conf SIM e e conf SIM e e= + − (4’)

Formula (4’) implies that, if confidence of context similarity is high, we may not take
name similarity into account when deciding a mapping between two elements. Also,
we will have to consider in the process to include the elements that are not discovered
by clone detection.

3.3 Clone Detection and Method Mapping

Theoretically, the mapping between any two methods can be decided by only calcu-
lating the values of combined similarities. But a practical problem is that calculating
the context similarities of all pairs of methods from two products is difficult. There-
fore, we perform clone detection before calculating name and context similarity to
limit the initial set of method pairs.

Our method mapping process is started with source code clone detection. Methods
are mapped based on the similarity value for each pair of methods. We define a
candidate mapping set (CMS) to store possible corresponding method pairs and a
determined mapping set (DMS) to store the mapping result. Basically, whether a
pair of methods is determined as a mapping (i.e. added to the DMS) is based on the
combined similarity value. The process is shown in Figure 4.

First, clone detection is applied to find method mappings across the (two) products
under investigation based on content similarity. We use a clone detection tool, Clone
Miner, provided by Basit and Jarzabek, to find both simple clone class (SCC) and
method clone class (MCC) [10]. The clone detection process provides a reduced result
set of method pairs so that methods with the most similarity can be found first while
less similar methods are filtered out, reducing unnecessary analysis work. Clone in-
stances of MCCs (cloned method pairs from different products) are taken as the initial

126 Y. Wu et al.

CMS. With all clone instances, we will calculate name similarity and context similar-
ity to find proper correspondences in the following steps.

The second step is to calculate name similarity for each method pair in the CMS.
For each pair of methods in the CMS, if the name similarity value is above a given
threshold, the method pair is moved to the DMS.

The third step is to add more method pairs to the DMS using context similarity. For
each method pair in the CMS, if the contextual similarity of a method pair exceeds a
certain threshold, the method pair is moved to the DMS. Once a method pair is moved
to the DMS, their context methods are paired up for internal similarity filtering; if their
internal similarity is not very low, they are added to the CMS as a candidate pair. This
operation is repeated until no method pairs are added to the DMS anymore.

Fig. 4. The process for method mapping

The result mapping across products could be one-to-one, one-to-many or many-to-
many. This cardinality will be used later when analyzing variability of the framework
by grouping (see 4.2). In this step, however, all method pairs are just stored as-is.

3.4 Class Mapping

Similarity between classes for establishing a mapping is calculated based on the simi-
larities between the two classes. The name similarity of classes is calculated with the
text string of the class’ full names, similar to that of methods. The content similarity
of two classes is defined by the number of corresponding mapped member methods
and the total number of member methods. The implementation of each class (thus
implementation of the methods) is not concerned. The context similarity of two
classes is defined by the overlapping context of the two classes. The context of a class
C includes three parts: the classes that C declares as a member, the classes that C
declares in its member methods as a parameter type, return type or a local variable
type, and the sub-/super-classes of C.

A class mapping is identified if the combined similarity of two classes is above a
threshold. Class mapping pairs also have to be grouped for framework variability
decision (see 4.2).

4 Variability Evaluation

In this section, we present the top-down variability evaluation process. We first iden-
tify element variability for each element pair in the mappings with some heuristic
rules, and then try to group elements in the mappings to decide framework variability.

 Recovering Object-Oriented Framework for Software Product Line Reengineering 127

4.1 Element Variability Decision

After element mapping, we have a collection of non-mapped elements and mapped
element pairs. We now try to decide variability for each non-mapped element and for
each mapped element pair. The decision process is shown in Figure 5, which is based
on the mapping result and follows some heuristic rules. The variability decision proc-
ess is top-down, from a class level to a detailed method level. It is also mentioned
in Figure 5 that identical classes/methods and similar classes need to be further inves-
tigated for framework variability, as will be discussed in Subsection 4.2.

VariantOptionalProduct-Specific

Mapped Class Pairs

Similar

Non-mapped Class

Identical

Class-level

Method-level

VariantSimilar with local variability

Mapped Method PairsUnmapped Method

Classes

OptionalProduct-Specific Identical

Class Mapping Results

Rule 1 Rule 2

Rule 3 Rule 4

Method Mapping
Results

Methods in Similar Classes

Element Variability
Decision

Element Variability
Decision

An element variability decision Also a framework variability decisionLegend:

Fig. 5. Decision tree for element variability evaluation

In class-level variability decision, we check whether a class is mapped or not, ac-
cording to class mapping computation. A non-mapped class can be either optional or
product-specific according to Rule 1. For a mapped class pair, we evaluate the two
classes in the pair to be identical, similar or variant according to Rule 2. As identi-
cal/variant classes represent exactly the same/different design elements, there is no
need to further analyze method-level variability for them. For similar class pairs,
further method-level evaluation is needed.

In method-level variability evaluation, we first check whether a method is mapped
according to the results of mapping computation. Non-mapped methods are deter-
mined to be either optional or product-specific according to Rule 3. Mapped methods
are evaluated to be identical, similar with local variability, or variant according to
Rule 4.

Details of all the four heuristic rules are listed in Table 2. A difficult part of the
rules is to distinguish product-specific and optional elements with Rules 1 and 3. In
fact, we can only expect an approximate rule in most cases: product-specific elements
only appear in one product, but optional elements usually appear in several but not all
products. Therefore, when considering only two variant products, we simply expect
the appearance of an optional element in other potential variant products.

Rule 2 and Rule 4 are used to distinguish among identical, similar and variant ele-
ments based on content similarity. Identical elements have nearly the same content.
Variant elements usually have quite different content, and they are mapped by their

128 Y. Wu et al.

external (context) similarity. Similar elements are those between identical elements
and variant elements, having considerable content and embody local differences at the
same time. Therefore, Rule 2 and Rule 4 use two content similarity thresholds respec-
tively to distinguish among identical, similar and variant elements.

Table 2. Heuristic rules for variability evaluation

Rule Description
Rule 1: distinguish between product-
specific and optional classes

If the corresponding classes of a class can be found in at least one other
variant product, then it is optional; otherwise, it is product-specific.

Rule 2: distinguish among identical,
similar and variant classes

If the content similarity among the corresponding classes is lower than
thresholdc1, then the class is a variant class; if the content similarity is
higher than thresholdc2 (thresholdc2 > thresholdc1), then it is an identical
class; otherwise it is a similar class.

Rule 3: distinguish between product-
specific and optional methods

If the corresponding methods of a class can be found in at least one other
variant product, then it is optional; otherwise, it is product-specific.

Rule 4: distinguish among identical,
similar and variant methods

If the content similarity among the corresponding methods is lower than
thresholdm1, then the method is a variant method; if the content similarity
is higher than thresholdm2 (thresholdm2 > thresholdm1), then it is an
identical class; otherwise it is a similar class.

4.2 Framework Variability Decision

With the approach provided in the previous subsections, we have identified variability
for design elements but there is still one step away from a framework with variability.
Therefore, we further give an approach to decide the variation points in the frame-
work based on element groups. That is, we try to group a set of mapped elements to
form up an element group as a variation point of the recovered framework.

An element group is a closure of all elements in a set of element mappings. For ex-
ample, we have two element mappings (e1, e2) and (e1, e3), where e1 is from product A
and e2 and e3 are from product B. We then infer instinctively that it is possibly the
case that e1, e2 and e3 are all variants in the recovered framework at a variation point.
Therefore, we group e1, e2 and e3 into an element group {e1, e2, e3} as a variation
point. An element group could be a class group (CG) or a method group (MG).

In the recovered framework, each class group presents a class-level variation point
and each class in the class group acts as a variant. Similarly, a method group presents
a method-level variation point.

In Figure 6, we have determined element variability. Here are some simple rules
for determine framework variability on class level.

Given a class group {Ci}, where Ci is a class from a certain legacy product. If any
two classes in the class group are identical, the class group can be converted to a
common class in the recovered framework. Otherwise, if at least one pair of classes in
the class group is similar and other classes are identical, the class group can also be
converted to a common class by accommodating some local differences. If at least
one pair of classes is variant, the class group should be converted to a variant class. In
any cases, if a null element is contained in the class group (i.e. there is a class not
mapped in a product), the framework class should be marked as optional.

For those variant classes, a detailed method level decision will be carried out. The
method-level process is similar and will not be discussed in detail in this paper.

 Recovering Object-Oriented Framework for Software Product Line Reengineering 129

5 Evaluation and Discussion

5.1 The DirectBank Project

We applied our approach in recovering a framework for two similar web-based legacy
products in the DirectBank project, namely DBankV1 and DBankV2. They were
developed for different customers, but the development of DBankV2 was based on
DBankV1. The overall structure remained untouched, while developers made some
modifications to DBankV1 to create DBankV2. The sizes of the two products are
quite similar, as shown in Table 3.

Table 3. Size comparison of the two DirectBank products

Product LOC #Class #Method #Method (excluding getter and setter)
DBankV1 10615 42 437 168
DBankV2 10517 41 424 160

5.2 Experiment Results

5.2.1 Mapping Results
In the mapping stage, we found 965 method mappings. Among them, 32 were one-to-
one method mappings with high content similarity, which were directly added
to DMS; 105 were added to CMS in the first iteration. The rest of mappings were
established by analyzing name similarity and context similarity.

For class mappings, only 2 classes in DBankV1 and 1 class in DBankV2 are not
mapped to classes in the other product. DBankV1 provides a class named
DownFTPFile for file transfer protocol (FTP) support and another class named
DBankUtils for specific byte-level operations. We cannot find correspondences for
these two classes in DBankV2. Meanwhile, DBankV2 has a class named BOCWeb to
extend functionality of class BOCDirectBank, but DBankV1 does not have the
class BOCDirectBank, thus BocWeb is not mapped to any classes in DBankV1.

All identified class-level mappings are meaningful. Only one potential mapping is
not discovered: the mapping between class framework.NcSockConnection in
DBankdV1 and class framework.NetworkSockConnection in DBankV2.
The reason is that the implementations of the two classes are too different and the
context is not rich enough. More evaluations will be discussed in Subsection 5.3.

5.2.2 Variability Analysis and Framework Recovery
After corresponding mappings are established, we try to harmonize all these map-
pings into element groups.

In our case, 33 class groups are created. Among them, there are 30 groups that each
contains only 2 classes (one from DBankV1, the other from DBankV2). This implies
that these classes are very likely common classes in the recovered framework.
Although there are possibly some differences between the two classes in the group,
the differences can be easily eliminated. For example, differences in class frame-
work.DateUtils in both products, which are caused by an upgrading, can be
easily merged into one class.

130 Y. Wu et al.

The other 3 groups contain more correspondingly mapped classes. For example, a
collection of business classes for bank payment (named after the name of the bank,
such as ICBCDirectBank, ABCDirectBank, BOCDirectBank, etc.). Such
classes usually present a variation point in the recovered framework, because different
products may support one or more banks. The other two groups are NetworkCon-
nection related classes and PaymentInfoTransfer related classes. Either
group shows a variation point.

There are 248 method groups containing 763 methods (~3.1 methods per group on
average). These method groups are later used for method-level variability decision for
variant classes, which will not be discussed in detail in this paper due to page limit.

Based on the class/method groups, we successfully recovered a framework with
variability. Figure 6 shows a partial framework at class level (a) with a zoomed-in
view (b). The “CG 15” stands for Class Group 15 created by our automatic tool,
which is a mapped class group consisting of banking payment classes in our experi-
ment products. If more semantics are provided, the “CG 15” can be replaced by some
meaningful name that helps a better understanding of the recovered framework.

Fig. 6. Recovered (partial) framework at class-level

5.3 Evaluation

We have evaluated the precision and recall of the mappings at both class level and
method level. The statistical result is shown in Table 4.

Table 4. Mapping results (class-level and method-level)

Mapping All All found True-Pos Precision Recall
class-level 52 51 51 1.00(51/51) 0.98(51/52)
method-level 787 957 770 0.80(770/957) 0.98(770/787)

In Table 4, we can see that for class-level mappings both the precision and recall are

quite high. For method-level mappings, we have checked all method mappings manu-
ally and find 770 method mappings out of 957 are meaningful, making a precision of

 Recovering Object-Oriented Framework for Software Product Line Reengineering 131

80%. The recall is a little bit difficult to calculate because the reference set of all poten-
tial method mappings is too large to identify manually. So we only checked all method
pairs with high literal similarity (i.e. methods with similar names), and used those pairs
confirmed by the developers as the reference mapping set. After analysis, we found
only 17 method mapping pairs are not involved in the 770 true-positive mapping pairs
(787 in total), making a recall of 98%.

After analysis, we find that an important contributor for the high precision and re-
call is the high similarity of our sample products. This implies that, if legacy variant
products are architecturally similar enough, it is likely that our approach can recover
precise mappings among classes and methods from different variant products.

On the other hand, we also confirmed that structural contexts help a lot in both
class-level and method-level mapping computation. Intuitively, considering more
structural contexts in mapping computation benefits the improvement of the precision
and recall. Currently, we try to make more use of method context information (such
as caller/callee methods) to identify potential mapping methods that have not so much
direct similarity. In the result, we find 181 mappings established primarily due to high
context similarity. These mappings were not detected by clone detection tool because
they were not similarly implemented or their similar clone segments were too small to
be detected. After applied the radical strategy, these contextually similar methods
were finally mapped and added to the DMS, bringing great improvement of recall.

5.4 Discussion

5.4.1 Prerequisites and Limitations to Our Approach
We adopt clone detection at the first step to process the source code to re-construct a
common structure of the potential SPL. Thus, similarity of source code and design is
necessary. Our approach will only apply to projects that satisfy the following prereq-
uisites: 1) the legacy systems under investigation are developed in the same object-
oriented language; 2) the legacy systems are similarly designed and coded, usually
developed by the same team or person(s).

Different OO languages or incompatible architectural designs will require other
approaches to identify mappings between systems under investigation. The frame-
work recovery process is not able to identify the differences across various languages
or design decisions.

Another limitation is the experiment settings. We tried several settings on Clone
Segment Length, similarity thresholds, and the context confidence value. We find
these values experimental and sometimes difficult to decide when applying our
approach in real SPL reengineering. Therefore, we suggest that the parameters of the
approach be set according to the code style, domain type and product characteristics
and be used only within an organization or development team.

5.4.2 How Precise Are the Mappings?
In our experiment, we also find some flaws of our approach. There are some specious
mappings of methods that are really difficult for us to decide what variability they
carry in the recovered framework.

Methods with antonyms. There are several mappings containing methods with an-
tonymous names, such as (DBankV1:MessageCenter.getSuccessXML(),

132 Y. Wu et al.

DBankV2:Message-Center.getErrorXML()). These antonymous methods
usually have similar names, implementation codes and invoking context.
Usually, if such mappings exist, methods with the same name also form up
mappings, such as (DBankV1:Message-Center.getErrorXML(), DBankV2:
MessageCenter.getErrorXML()). These two mapping cases will not be distin-
guishable unless more semantics are introduced. Fortunately, these method-level false
mappings do not affect the mappings at class level. In our experiment, the classes
named MessageCenter in both products are identical, and thus form up a common
class in the recovered framework.

Getter & Setter methods and other small methods. There are more than 300 Get-
ter&Setter methods in each of our experiment products. Usually these methods are too
small to be detected by clone analysis due to clone detection settings. But as we begin
to consider the Getter&Setters, we find they are quite useful for deciding class map-
pings. Also, there are many (> 400) small methods with the same name additionally
added to our method mapping set when two classes are mapped, which contributes a
lot in enriching the context.

Variability identification vs variability implementation. There are methods in a single
product with very similar names. These methods, such as BOCDirectBankpayTo-
Private(), CommDirectBankpayTo-PublicSingle(), ICBCDirectBank-
payToPrivateSingle(), are easily mapped to each other for their high similarity in
both name and context. Thus the variability is identified correctly. But as we look into
these cases, we find that how to implement the variability in the recovered framework is
arbitrary. We do not try to propose a guideline for refactoring existing implementation,
but provide with a high-level object-oriented framework as the beginning of further
engineering process.

5.4.3 Optional Elements vs. Product-Specific Elements
In our experiment, we do not identify any product-specific element. The reason is that
the designers believe most non-mapped elements are applicable to other (or future)
products. The decision of whether a non-mapped element is optional or product-
specific is experiential, as is also briefly discussed in Section 4.1.

Our sample products are comparatively small in size, and are similar enough.
There are not many non-mapped elements, especially few non-mapped classes. Tak-
ing a few non-mapped elements in the recovered framework as optional is not a big
threat for the complexity of the framework. In other cases where legacy products are
not so similar that much more non-mapped elements are found, it would not be feasi-
ble to include all these elements in the framework. To solve this problem, a product
plan or an SPL scope plan is needed for the project managers or architects to decide
whether to include a non-mapped element in the recovered SPL framework.

6 Related Work

Researchers and practitioners seek efficient approaches for integrating a family of
legacy systems into a consistent architecture with controllable variations. SEI pro-
posed Mining Architectures for Product line evaluation (MAP) [11] and Options

 Recovering Object-Oriented Framework for Software Product Line Reengineering 133

Analysis for Reengineering (OAR) [12] for architecture recovery and variants identi-
fication. While a road map and practice guidelines are brought out, detailed tech-
niques are not provided. Kolb [2] presents a case study in Ricoh company where a
legacy component is to be refactored to accommodate Fraunhofer’s PuLSE™-DSSA
approach when creating a new product line from legacy products. The approach ap-
plied clone detection and variability analysis to refactor the component, rather than to
recover a framework. Frenzel [4] provided a valuable extension to the reflexion
model[13] to support software variants comparison on architecture level, but they did
not “outline the technical details on how to reconstruct the architecture of the vari-
ants”. John [5] focused on reusing legacy documents when establishing an SPL from
legacy products. He argued a knowledge-rich approach for the process, but acquiring
accurate and rich documentation is only too difficult. Knodel [6] presented a quality-
driven approach to recover assets from existing systems and incorporate them in the
SPL. His approach applied static, dynamic and historic analysis and was compara-
tively high-level, while ours is based on object-oriented source code to find common-
ality and variability of multiple products. Bianchi[14] proposed an iterative approach
to reengineering legacy systems without interfering normal business operation and
minimized the risk of refactoring. Although with different purposes from our recovery
process, his process showed a feasible way to gradually reconstruct a new product
line based on legacy systems. There are also some other reengineering work focusing
on model recovery[15] and quality assurance[16].

The first stage (mapping stage) of our recovery process is closely related to re-
search work in model differencing. Several differencing approaches and tools[17-19]
could also be useful for establishing element mappings across products. In fact, any
mechanisms that can efficiently establish corresponding mappings between design
elements are applicable in our approach.

7 Conclusion and Future Work

Reengineering legacy products into software product lines is a practical choice for
many companies to transfer their product development to SPL platforms. In this pa-
per, we propose a semi-automatic method to support the recovery of SPL frameworks.
The method is based on clone analysis and involves a two-stage recovery process, i.e.
a bottom-up process for design element mapping and a top-down process for variabil-
ity evaluation. In order to evaluate the effectiveness of our method, we conduct a case
study on an industrial product line and the results have confirmed the effectiveness of
our method.

In our future work, we will try to extend our approach to efficiently handle more
complex mappings in reverse variability analysis, e.g. legacy variant products with
structural refactoring, to provide more practical techniques and tools for SPL reengi-
neering.

Acknowledgments. The work presented is supported by National Natural Science
Foundation of China (NSFC) under grants 60903013, 90818009 and 60703092.

134 Y. Wu et al.

References

1. Pohl, K., Metzger, A.: Variability management in software product line engineering. In:
ICSE 2006, pp. 1049–1050. ACM, New York (2006)

2. Kolb, R., Muthig, D., Patzke, T., Yamauchi, K.: A case study in refactoring a legacy com-
ponent for reuse in a product line. In: ICSM 2005, pp. 369–378. IEEE, Los Alamitos
(2005)

3. Lee, H., Choi, H., Kang, K.C., Kim, D., Lee, Z.: Experience report on using a domain
model-based extractive approach to software product line asset development. In: Edwards,
S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791, pp. 137–149. Springer, Heidel-
berg (2009)

4. Frenzel, P., Koschke, R., Breu, A.P.J., Angstmann, K.: Extending the reflexion method for
consolidating software variants into product lines. In: WCRE 2007, pp. 160–169. IEEE,
Los Alamitos (2007)

5. John, I.: Integrating legacy documentation assets into a product line. In: van der Linden,
F.J. (ed.) PFE 2002. LNCS, vol. 2290, pp. 78–101. Springer, Heidelberg (2002)

6. Knodel, J., John, I., Ganesan, D., Pinzger, M., Usero, F., Arciniegas, J.L., Riva, C.: Asset
recovery and their incorporation into product lines. In: WCRE 2005, pp. 120–132. IEEE,
Los Alamitos (2005)

7. Duszynski, S., Knodel, J., Naab, M., Hein, D., Schitter, C.: Variant comparison - A tech-
nique for visualizing software variants. In: WCRE 2008, pp. 229–233. IEEE, Los Alamitos
(2008)

8. Fayad, M.E., Schmidt, D.C.: Object-oriented application frameworks. Communications of
the ACM 40(10), 32–38 (1997)

9. Yang, Y.: A Software Product Line Oriented Development Model and Reverse Eliciting
Domain Components. Doctoral Dissertation. Fudan University (2010) (in Chinese)

10. Basit, H.A., Jarzabek, S.: A Data Mining Approach for Detecting Higher-Level Clones in
Software. IEEE Transactions on Software Engineering 35(4), 497–514 (2009)

11. Stoermer, C., O’Brien, L.: MAP - Mining Architectures for Product Line Evaluations. In:
WICSA 2001, p. 35. IEEE, Los Alamitos (2001)

12. Smith, D.B., Brien, L.O., Bergey, J.: Using the Options Analysis for Reengineering (OAR)
Method for Mining Components for a Product Line. In: Chastek, G.J. (ed.) SPLC 2002.
LNCS, vol. 2379, pp. 316–327. Springer, Heidelberg (2002)

13. Murphy, G.C., Notkin, D., Sullivan, K.J.: Software Reflexion Models: Bridging the Gap
between Design and Implementation. IEEE Trans. Softw. Eng. 27(4), 364–380 (2001)

14. Bianchi, A., Caivano, D., Marengo, V., Visaggio, G.: Iterative reengineering of legacy sys-
tems. IEEE Trans. Softw. Eng. 29(3), 225–241 (2003)

15. Nierstrasz, O., Kobel, M., Girba, T., Lanza, M., Bunke, H.: Example-driven reconstruction
of software models. In: CSMR 2007, pp. 275–284. IEEE, Los Alamitos (2007)

16. Tahvildari, L.: Quality-driven object-oriented re-engineering framework. In: ICSM 2004,
pp. 479–483. IEEE, Los Alamitos (2004)

17. Collard, M.L.: An infrastructure to support meta-differencing and refactoring of source
code. In: ASE 2003, pp. 377–380. IEEE, Los Alamitos (2003)

18. Maletic, J.I., Collard, M.L.: Supporting source code difference analysis. In: 20th IEEE
International Conference on Software Maintenance, pp. 210–219. IEEE, Los Alamitos
(2004)

19. Canfora, G., Cerulo, L., Penta, M.D.: Ldiff: An enhanced line differencing tool. In: 31st
International Conference on Software Engineering, pp. 595–598. IEEE, Los Alamitos
(2009)

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 135–150, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Architecture Evolution in Software Product Line:
An Industrial Case Study

Yijian Wu, Xin Peng, and Wenyun Zhao

School of Computer Science, Fudan University, Shanghai 201203, China
{wuyijian,pengxin,wyzhao}@fudan.edu.cn

Abstract. A software product line (SPL) usually involves a shared set of core
assets and a series of application products. To ensure consistency, the evolution
of the core assets and all the application products should be coordinated and
synchronized under a unified evolution process. Therefore, SPL evolution often
involves cross-product propagation and synchronization besides application
derivation based on core assets, presenting quite different characteristic from
the evolution of individual software products. As software architectures, includ-
ing the product line architecture (PLA) and application architectures, play a
central role in SPL engineering and evolution, architecture-based evolution
analysis is a natural way for analyzing and managing SPL evolution. In this
paper, we explore common practices of architecture evolution and the rationale
behind in industrial SPL development. To this end, we conduct a case study
with Wingsoft examination system product line (WES-PL), an industrial
product line with an evolution history of eight years and more than 10 applica-
tion products. In the case study, we reviewed the evolution history of WES-PL
architecture and analyzed several typical evolution cases. Based on the histori-
cal analysis, we identify some special problems in industrial SPL practice from
the aspect of architecture evolution and summarize some useful experiences
about SPL evolution decisions to complement classical SPL methodology. On
the other hand, we also propose some possible improvements for the evolution
management in WES-PL.

1 Introduction

Reuse of unmodified components has not produced the promised rewards because the
reusable components are seldom a precise fit to the reuse needs. One method of miti-
gating this shortcoming is to narrow the field of applicability to a software product
line (SPL). An SPL is a group of products that share a common, managed set of fea-
tures and that are developed from a common set of core assets in a prescribed way [1].
In the past decade, SPL is proven to be an efficient approach for both architecture-
and component-level reuse.

Similar to individual software products, an SPL evolves continuously with re-
quirement changes, scope extension and design refactoring. SPL evolution is usually
more complex than the evolution of individual software products because both the
core assets and a series of application products are involved. Successful SPL engi-
neering requires management and coordination of the development of core assets and
application products to meet the organization’s overall business goals [1]. To ensure

136 Y. Wu, X. Peng, and W. Zhao

the consistency and unity of the SPL, the evolution of the core assets and all the ap-
plication products should be coordinated and synchronized under a unified evolution
process. Therefore, SPL evolution often presents quite different characteristics from
the evolution of individual software products.

The product line architecture (PLA) in an SPL specifies the common structure of
all member products and centers in the development and evolution of both core assets
and application products [2]. Therefore, an architecture-based approach is a natural
way for analyzing and managing SPL evolution.

In order to explore SPL evolution practices, we conduct a case study on architecture
evolution in the Wingsoft examination system product line (WES-PL), an industrial
product line with an evolution history of eight years and more than 10 application
products. In the case study, we reviewed the evolution history of WES-PL and revealed
that real SPL evolution is usually much more complex than ideal due to practical
difficulties. For example, ideal SPL practices suggest that all application products be
derived from the PLA to keep consistency, but we find that some application products
occasionally and purposefully deviate from the core assets for some reasons (such as
market uncertainty). We categorize several common evolution types in SPL develop-
ment and identify some special real problems in SPL evolution. We also gather useful
experiences for evolution decisions from our historical study.

The rest of the paper is organized as follows. Section 2 introduces the business
background of the WES project and shows an overview of the evolution history.
Section 3 presents several evolution types discovered in the development history and
discusses typical evolution scenarios in real development. Section 4 describes some
high level findings and experiences in our study and proposes possible improvements
to WES-PL development. Section 5 discusses related work in both industry and
academia. Section 6 concludes our work.

2 Background

2.1 Overview of WES Product Family

WES is an industrial product family developed by Fudan Wingsoft Co. Ltd., a soft-
ware company with about 50 employees in Shanghai, China. The WES project was
started in late 2002 as a product development project for Shanghai Municipal Educa-
tion and Examination Authority (SMEEA). It was first developed as a computer-aided
oral examination software product [3]. In the following years, it gradually evolved
into a complete WES product family, covering the whole business process of com-
puter-aided educational examination as shown in Figure 1.

Each process in Figure 1 is supported by a product category (a set of WES
products) for various kinds of examinations. These examinations include high-end
ones, such as College Entrance Examination of the State, and low-end ones, such as
final examinations in high schools. The examinations also have various educational
purposes, such as oral exams, listening exams, debating exams, so on and so forth.

In the past eight years, the WES team has developed more than 16 application
products to support different examinations. These products are listed in Table 1 with
corresponding product category and a brief description. Each product has about
50~90K lines of Delphi code. Some products share more than 80% source code.

 Architecture Evolution in Software Product Line: An Industrial Case Study 137

Assessor

Examiner

Examinee/Learner

Designing
Exam Paper Examination

Scoring

Learning
Materials

Training

Exam Papers

Training Papers

Exam Papers Answer Sheets

Previewing
Exam Paper

Candidate
Exam Papers

Exam Paper
Designer

Exam
Repository

Answer Sheets

Fig. 1. Data flow chart of the computer-aided examination system

Table 1. A list of WES products developed

Product
Category

No Product Description

Exam Paper
Designing
(EPD)

P0 EPDS:
Exam Paper
Design System

Various examinations are supported in several versions. The latest
version covers all question types. This product provides
complicated algorithms for making exam papers.

P1 SOLO Each examinee orally answers questions played by the computer.
P2 DISCUSS Examinees are grouped in at most four and each group may

discuss orally on a given topic via network.
P3 DEBATE Same as DISCUSS, except that the group is of two examinees.
P4 LISTEN-SOLO: Supports both listening comprehension (multiple choice questions)

and oral examinations.

Examina-
tion

P5 ONLINE Supports internet-based listening and written examinations.
P6 PREVIEW Gives a live preview of SOLO exam papers.
P7 PREVIEW-LO Same as PREVIEW but supports LISTEN-SOLO exam papers.

Exam Paper
Preview

P8 PREVIEW-ON Same as PREVIEW but supports ONLINE exam papers.
P9 TRAIN@home Supports SOLO oral training. Training materials are delivered by

compact disks (CDs). Learners typically use the product at home.
P10 TRAIN@home2 Same as TRAIN@home but supports LISTEN-SOLO training.

Training

P11 TRAIN-ECLASS Supports SOLO exams. Training materials are stored on a server.
Typically used in classrooms with tutors’ guidance.

P12 ORALSCORE Scoring for SOLO exams. Assessors listen to audio records of
examinees and give a score anonymously.

P13 DISCORE Scoring for DISUSS and DEBATE exams. Preprocess is required
to merge grouped examinees’ audio into one stereo audio file.
Assessors give scores to each examinee anonymously.

P14 EClassSCORE Scoring for TRAIN-ECLASS. Assessors listen to and score audio
records of examinees, while name of each examinee is shown on
screen. (i.e. not anonymously). Used in in-class guided learning.

Scoring

P15 GRAPHSCORE Scoring for ONLINE exams. A graphical presentation of answers
is shown to assessors.

The products are developed basically according to 1) supports of question types; 2)

product category (e.g. examination, training, etc); and 3) how educational process will
be brought out (such as self-learning or guided-learning). Among these products, EPD
products shows most distinguishing features, since designing exam paper is quite
different from showing them to the designers, examinees or assessors. Thus, the EPD
category is not considered in the rest of our study. Also, Scoring product shows dif-
ferent features; thus not considered either. We will discuss the criteria for selecting

138 Y. Wu, X. Peng, and W. Zhao

products in our case study in Subsection 2.3. Before that, we first take a quick look at
the evolution history of these products.

2.2 A Brief Evolution History of WES Products

The WES products listed in Table 1 were developed in different historical periods as
shown in Figure 2 (excluding EPD products because they actually form up an indi-
vidual product family). The time dimension spans from 2002 to 2010, and the product
dimension covers four product categories. The evolution history of each product is
denoted by a bar, whose left side showing the beginning of the product and right side
fading out indicating the end of evolution. From Figure 2, it can be seen that some
products like P2, P4, P7, P11 and P14 are no longer maintained (but may still in use
with some customers).

Technical survey

Fig. 2. Development history of WES-PL (Four phases)

The evolution history presented in Figure 2 can be distinctly divided into the fol-
lowing four phases.

Phase I: Startup (2003-2004)
Basic products of four product categories, i.e. P1, P6, P9, and P12, were developed,
laying a foundation for future improvements. Moreover, products for group-discussion-
exams (P2 and P13) were initiated due to market anticipation.

Phase II: Expanding (2005-2007)
Basic products were maturing. Meanwhile, new product series for group-discussion,
debating and listening comprehension were released. In this period, the market of
WES products kept expanding, and accordingly the WES team was often required to
make quick responses to newly emerging or changing requirements. At the same time,
some features became obsolete after delivery to market (e.g. P2 was not maintained
since mid-2006) and was replace by some other products (e.g. P3).

Phase III: Maintenance and Refactoring (2008)
The theme of this phase was regular maintenance and refactoring. As traditional com-
puter-aided examination market had been nearly carved up, no new products were

 Architecture Evolution in Software Product Line: An Industrial Case Study 139

introduced in this phase. Therefore, the WES team had plenty of time to plan and
conduct design refactoring on both the domain and application levels, providing better
services or user experiences in existing products.

Phase IV: New Era of Development (2009-2010)
The WES team received new market opportunities, which is a driving force for deeper
refactoring and future development. New WES products combining the features of
listening and writing examinations were planned and developed by reusing existing
software assets. The PLA was actually refactored and the products are gradually syn-
chronized with the PLA to achieve higher development efficiency.

2.3 Scope of Our Case Study

Systematical architecture-based and comprehensive reuse-based product development
is an essential characteristic of SPL engineering. Therefore, we confine our case study
to Examination, Training and Preview products, because they share the essential
common features of exam paper packaging, distribution, displaying and answering,
and share a common PLA. EPD products and Scoring products, although mentioned
together with the WES product family and sharing some commonalities with other
products, are not included in the scope of our case study, since they do not share ar-
chitecture-level commonality with other produces. Thus, eleven (11) products, i.e.
P1~P11, are included in the scope of our case study. Among these products, Examina-
tion products (P1~P5) share almost the same architecture. The architecture of Preview
products (P6~P8) is approximately a subset of corresponding Examination products
(P1, P4 and P5). Training products P9 and P11 extend the architecture of P6 and are
modified based on P1; P10 is built based on P7 and is modified based on P4.

In the following sections, WES-PL specifically denotes Examination, Training and
Preview products.

3 Architecture Evolution in WES-PL

For better understanding of the architecture evolution history, we first give a brief
introduction to the most recent PLA skeleton of WES-PL. Then we describe the
architecture evolution types discovered in WES-PL evolution history. After that, we
present an architecture evolution roadmap of WES-PL with detailed description of
some typical evolution cases. Finally, we summarize architecture evolution in WES-
PL with both qualitative and quantitative analysis.

3.1 The PLA Skeleton

The most recent PLA skeleton is presented in Figure 3, showing commonality and
variability in all concerned products. The basic structure includes six variable compo-
nents (i.e. Network, Server, GUI, Authentication, and PaperReader) with several
variants each and other optional and variable accessory components (such as audio and
video components). The major architectural variations are described as the following:
1) Network protocol: Some products work on TCP/IP protocols; some others work on
HTTP protocol via Internet; even others do not need a network component (e.g. the

140 Y. Wu, X. Peng, and W. Zhao

Preview products). 2) Server component: Examination and Preview products need EPC
while Training products need LCM. There are also several variant for EPC and LCM.
3) GUI suite: Different products adopt various GUI suites for different examinations;
also, user interactions provided by UI suites are different (e.g. Examination products
typically provide only limited control for end users, while Training or Previewing
products provide more freedom for end user interactions). 4) A/V processors: The PL
has adopted several different audio/video components; some products need voice mul-
ticast; video playback support is an optional for certain examinations. 5) Other variants
are trivial, such as Database, Authentication and Exam Paper Reader.

The PLA has been evolved for eight years, and is very likely to be evolving in the
future. The skeleton is a quick snapshot of current PLA. In the following discussion,
we actually address the problem that how this version of PLA is achieved.

Fig. 3. The PLA skeleton of WES-PL

3.2 Typical Architectural Evolution Types

In our previous work [2], we have indicated that, besides application derivation,
there are continuous interactions between application architectures and the PLA
during the evolution of the PL. We now further categorize these architecture evolu-
tions into six types, namely linear evolution, derivation, merge, synchronization,
clone and propagation.

• Linear evolution: Linear evolution is driven by intrinsic factors of an application
or the PLA.

• Derivation: Derivation is to create the initial architecture of a new application
from the PLA by variability customization and extension.

• Merge: Architecture merge is a kind of periodic feedback from application archi-
tecture to the PLA. When merging, architects collect and analyze architectural
differences within all current application architectures and resolve possible archi-
tectural conflicts before changes are integrated to the PLA. Note that the PLA
may evolve after a merge to prepare for a synchronization to all products (see
Synchronization below). Before such a follow-up linear evolution, all application
architectures have to be frozen in order to prevent incompatibility or inconsistency.
Such a “frozen” is also depicted in Figure 4.

 Architecture Evolution in Software Product Line: An Industrial Case Study 141

• Synchronization: Synchronization is to reconcile application architectures
with the PLA. Usually, architectural conflicts should have been resolved before
synchronization.

• Clone: Architecture clone creates the initial architecture of a new application from
an existing application architecture. Architecture clone allows application architec-
tures to deviate from the PLA, although such deviations is ultimately to be resolved.

• Propagation: Architecture propagation is to propagate architectural modifications
among application architectures. Modifications to an application architecture could
be experimentally applied in sibling application architectures before merged into
the PLA.

A typical architecture evolution trace in a PL with these types can be exemplified in
Figure 4, followed by a short summary for each evolution type in Table 2.

With these types in mind, we further analyze the history of WES-PL architecture
evolution and find out how these evolution types actually take effect in real
development.

Fig. 4. Illustration of architecture evolution types

Table 2. A summary of evolution types

Modification Evolution type
From To

Comment

AppArch
next version of
AppArch

Usually involves proactive reuse considerations to better
feed future application development

Linear evolution
PLA

next version of
PLA

Usually reflects a quick response to changes in requirements
or environment

Derivation PLA new AppArch A traditional way to create a new application from the PLA

Merge AppArchs
next version of
PLA

Modifications on AppArchs are collected in the PLA

Synchronization PLA
all existing
AppArchs

New design features are spread from the PLA to all
applications

Clone AppArch new AppArch
An informal but useful way to create a new application from
an existing application

Propagation AppArch
some other existing
AppArchs

Architectural changes to an application can be
experimentally applied to another application

142 Y. Wu, X. Peng, and W. Zhao

3.3 A Roadmap of WES-PL Architecture Evolution

In this subsection, we show a more detailed evolution history than that in Section 2.2.
We do not investigate every revision in the evolution history, but focus on primary
milestones of each product. Figure 5 shows such a history, with the eleven products in
the scope, indicating the overall complexity of the evolution trace. The vertical axis
represents concerned products, while the horizontal axis indicates time.

Fig. 5. WES-PL architecture evolution history (since early 2003 till early 2010)

 Architecture Evolution in Software Product Line: An Industrial Case Study 143

Several special cases depicted in Figure 5 as NOTE(n) are worthy of mentioning.
The rationales behind will be discussed in subsection 3.4.

• NOTE(1): Initial of the PLA. The PLA is created from the first merge. In our case,
we find that the PLA is not designed purely in domain engineering processes, but
merged from P1 and P6.

• NOTE(2): Propagations before merges. Architectural changes are usually propa-
gated to at least one other product before being merged into the PLA. PLA ver-
sions 1.1, 2 and 3 take changes that have been made to at least two products.

• NOTE(3): Synchronization for lower complexity. At this point of time, developers
maintain several versions of sound recording control in at least five products. In
order to reduce the complexity, all related products are synchronized on the Sound
Recording Control subsystem after the new mechanism is proved to be usable and
effective in the previous versions of P2 and P9.

• NOTE(4): Merge, Refactor and Derive. Only a carefully designed architecture is
suitable for derivation. A derivation happens on PLA Version 4.1, rather than on
PLA Version 4 which is immediately after a merge. A careful redesign is made to
PLA v4 to achieve better maintainability.

• NOTE(5): Obsolete products. P7 is obsolete at the point of time when no more
customers are interested in its functionality. Most customers are interested either in
more stable, old products, or in the next generation of a new product (P8). Also
note that P8 is not cloned from P7, which is in the same product category, but from
P5, the examination correspondence with more similarity. Also, P11 is temporarily
obsolete for different reasons that potential users have not been inspired and that
current products (P9 and P10) have already fulfilled most of current requirements.

• NOTE(6): New product lines may be identified. P9~P11 are getting more and more
different than other products. While they are getting “too different”, the architect is
deciding to create a new PL for these products.

These practices give a quick glance at the industrial product line development reality.
More detailed analysis will be shown in the following subsection.

3.4 Summary of Architecture Evolution in WES-PL

A quantitative and qualitative summary of the evolution practices is listed in Table 3.

Table 3. An analysis for evolution types

Evolution type Count Comment
Linear evolution many Linear evolution is trivial in the whole development process. We only consider major

builds of products and versions of the PLA.
Clone 10 New products are typically cloned from similar products, rather than derived from PLA.

Synchronization >5 Existing products may take part of the modifications from the PLA. Future products are
not explicitly affected.

Derivation 1 In our case, “derivation” happens only when the new online examination system is
developed.

Merge >12 Architectural modifications are merged into the reference architecture. The reference
architecture then covers several products.

Propagation >5 There are at least 20 modifications propagated among products, but most of them are
between small revisions. If products share similar modules, then a modification to that
module will propagate to other products containing the same modules.

144 Y. Wu, X. Peng, and W. Zhao

As we review this history, we can find the answers to the following questions:
First, how a new product is created; second, how a new product line is created; third,
how the PLA evolves; and finally, what tends to be typical evolution decisions in an
industrial SPL development in the real world.

• Clone vs. Derivation
In real development, both derivation and architecture clone are ways of creating a
new product. Derivation from the PLA is regarded as a good and standard practice in
SPL development. But in our case, developers typically do not derive new products
from the PLA. Rather, they tend to create products by cloning the architecture
(usually also with source code) of an existing product. The reason is that cloning is
usually cheaper in early development, especially when the team of developers is sta-
ble. Moreover, a complete domain engineering process is usually not available due to
limited resources in the company. Thus, blindly deriving a product from the PLA is
only too risky for most developers. Therefore, the reality is that most new products
are built from older products, rather than derived from the PLA.

• Initiating a product line with actual products
The beginning of all these eleven products is not a design of the PLA, but actual
working products P1/P6. In real development in a medium-small company, there are
not enough time and resources to trade a working product for a PLA. It is only ac-
ceptable that, when there are several products working, the PLA can be tentatively
built and incrementally evolve. The PLA is not necessarily the source of all products
in the SPL, but provides a broader vision for all future products.

Meanwhile, new PLs may be created by “splitting” current PL when the applica-
tion architecture shows too many differences. As is noted in Figure 5, a Training-PL
may be created by considering all Training products in the future.

• The evolution of the PLA
There are two cases that drive PLA evolution: 1) merge and 2) redesign. We find that
architectural changes in the PLA are primarily driven by merge from various prod-
ucts. In our case, the architect did not frequently directly modify/redesign the PLA
actively. He believed that a modification to the architecture was risky; therefore,
unless there was a significant reason (say, for improving performance or for a clear
and splendid future), the architect was not willing to modify the PLA proactively[6].

If such a significant reason is present, architectural refactoring happens periodi-
cally and inevitably, which triggers a pure linear evolution of the PLA.

In practice, a relaxed approach is adopted: modifications are experimentally made
to a single product. Such modifications are cheap and safe, because they are restricted
within one single product. If the modifications are proven to be not useful or not
acceptable to the market, the features are simply abandoned, and the PLA remains
untouched.

• The PMS pattern: accepting new features in SPL
We find in our case that a typical path to add a new feature to all products follows the
Propagating-Merging-Synchronizing (PMS) pattern, meaning that a feature should not
be integrated in the SPL unless it is propagated to more than one product.

First, a linear evolution is carried out for the specified product (Product A).
Then the modification is propagated to another product (Product B) sharing the same

 Architecture Evolution in Software Product Line: An Industrial Case Study 145

components relative to the modifications. If Product B shows the modification rea-
sonable, then the modification is a candidate to be collected in the PLA. After the
architect identifies the new feature as a common one, the modification is then merged
in the PLA. Before the modification is synchronized to all other products, the
architect should further evaluate the quality of the new architecture. Typically, a
refactoring will be carried out, leading to a linear evolution of PLA. After that, the
new features can be finally synchronized to all other products in the SPL.

4 Evaluation and Discussion

Before evaluation and discussion, we have to mention that, although the architecture
evolution trace observed in our case study with the six evolution types faithfully re-
flects the actual development history, we still find some limitations in our study. One
is that our case is with a medium-small software company developing products of its
own. Therefore, our case may not be applicable to large, international software
companies or outsourcing companies. Another is that our study is based on only one
PL developed continuously by one team. Some complicated architectural evolution
phenomena (such as those with collaboration issues) may not be observed.

The threats do exist and may provide some new perspectives for our future study.
However, we can still elicit common practices valuable within the scope of our case
study. In the following discussions, we highlight some special problems in industrial
SPL practice from the aspect of architecture evolution and discover some useful ex-
periences about SPL evolution decision to complement classic SPL methodology. On
the other hand, we also realize that the current development practice in WES-PL is far
from perfect, so we would like to propose some possible improvements for evolution
management in WES-PL.

4.1 Proactive Evolution vs. Reactive Evolution

McGregor [7] describes two approaches in SPL engineering: the proactive approach,
which leads to a risk of developing possible useless assets, and the reactive approach,
which implies more effort in reactively prepare assets for later reuse. Our case con-
firms this conclusion. Moreover, we also find that, regardless future conformance
with PLA, reactive approach may achieve short time-to-market because short-sighted
modification may be more light-weighted and thus captures short-termed opportuni-
ties (such as in a bidding).

Proactive reuse-based strategy is the foundation of SPL development, promising
benefits like improved quality and reduction of development costs and time to market.
However, reactive strategy can significantly reduce the upfront investment, requiring
closer coordination within the SPL project [1].

In fact, after an SPL is established, both proactive and reactive evolutions exist. In
proactive evolution, feedbacks from application engineering to domain engineering
are also allowed, but evolution decisions must be initiated on the PLA before applied
to application architectures. In Figure 5, proactive architecture evolution only
involves architecture derivation and synchronization besides PLA linear evolution.
On the contrary, reactive architecture evolution allows application architectures to

146 Y. Wu, X. Peng, and W. Zhao

temporarily deviate from the PLA by clone or self evolution and then synchronize
with the PLA by consequent merging and synchronization.

Apparently, proactive evolution is consistent with the SPL principle of proactive
reuse, thus should benefit the SPL promises on quality, cost and time to market. How-
ever, we find reactive evolution has its rationality in SPL practice, especially in small
or middle-sized SPL projects facing intense market competition. The SPL promise of
reducing time to market by proactive reuse is on the premise of accurately predicting
emerging and changing product requirements. However, in a competitive and rapidly
changing market like computer-aided online examinations, such long-term predictions
are not realistic. For example, when preparing for a bid, urgent new features may
come from competing products and/or potential customers (usually the bid inviters).
In such a situation, the SPL team is always under the pressure of rapid responses to
the new features even if the new features are out of the scope of the PL. Thus, appli-
cation engineers usually choose to clone from a most similar exiting product rather
than start a proactive evolution process.

Besides response time, the risk of overdesign for uncertain features can also be
reduced by reactive evolution. Due to immaturity of the market and uncertainty of
requirements, newly planned features may finally be abandoned. Implementing such a
feature in an experimental product would be much cheaper than incorporating it in the
PLA as a variation point. If the uncertain new feature is validated in one or more
products before incorporated into the PLA, unnecessary time and efforts would be
saved.

Reactive evolution may make application architectures deviate from the PLA. In
order to reconcile them, architecture merge and synchronization should be conducted,
usually when the whole SPL is relatively stable. This means that new features have
been fully validated by the market, and that the whole SPL team can focus more on
refactoring the PLA and coordinating all application architectures with the PLA.

4.2 Business Strategy and Technical Decisions

SPL methodology is market-oriented, so technical decisions should undoubtedly sup-
port and serve the business strategy. The technical decision of proactive or reactive
evolution discussed above actually reflects this principle. The experiences from WES-
PL confirmed that the technical choice of whether adopting a proactive approach or a
reactive approach largely depends on the market position of the SPL organization. If
it has the leading position in the target market, the organization usually takes the ini-
tiative in SPL evolution and prefers a proactive strategy. On the contrary, if it is in the
expanding stage struggling to earn a place in the market, the team often passively
absorbs emerging ideas from competitors and customers. Therefore, the reactive evo-
lution strategy is better for rapid responses to emerging features and reducing the risk
of misestimating the evolution trends.

On the other hand, technical decisions can adversely affect the business strategy of
the organization by providing feedbacks. The technical decisions have great influence
on the cost aspect of business considerations, and the influences are usually hard to be
evaluated at the business level. For example, the scoring products were initially
included in the WES-PL from the business perspective, since they share some com-
ponents in common with examination products. However, according to the feedback

 Architecture Evolution in Software Product Line: An Industrial Case Study 147

from reactive architecture merging (not shown in our case study), too many differ-
ences are found and too much complexity is included. Thus, scoring products were
excluded from the WES-PL finally. A similar demerge chance can be found in the
Training product category, which is mentioned as a “split” in subsection 3.4.

4.3 Possible Improvements

Proactive evolution and reactive evolution essentially reflect the tradeoff between
unity and agility in SPL development. In WES-PL, reactive evolution decisions like
architecture clone and propagation are adopted for agility. Architecture merge and
synchronization should be continually enforced to keep balance between unity and
agility.

However, we find the current development practice in WES-PL emphasizes agility
over unity too much. Related problems include 1) loose control on reactive architec-
ture evolution, 2) long synchronization cycle and 3) incomplete synchronization.
Intense market competition and tight time arrangement make the SPL team overuse
reactive evolution approaches, which partly causes these problems.

Loose control and long synchronization cycle are resolvable by adjusting team
organization and development process. But such adjustments should be based on a
stable profit of existing products to the company. The problem of incomplete syn-
chronization can be resolved by PLA refactoring. As inconsistent designs exist across
the application architectures, PLA refactoring involves adaptations to the variability
design to accommodate the inconsistencies among application architectures and
deviations away from the PLA. We find the PLA refactoring practices are not well
established in WES-PL.

All these problems reflect the shortcomings of reactive evolution in WES-PL, i.e.
the basic role of the PLA in reuse-based SPL engineering is crippled. If no effective
measures taken, the product line may degenerate to a series of individual product
projects with manual copy/paste-based code reuse. Based on the above analysis, we
suggest possible improvements to the current WES-PL practice. From the aspect of
management, we suggest strict control over reactive evolution. The synchronization
cycle should be shortened and formulated in the organization or within the team.
From the technical aspect, we suggest more effort on PLA-level refactoring to better
reconcile application architectures and the PLA.

5 Related Work

There are several industrial case studies on SPLE, focusing on adopting SPL method-
ology in software development [8,10,13,14,15]. But there is not yet a widely adopted
or general approach for industry to easily and efficiently transit from traditional single
product development to software mass customization [9]. There are also challenges in
contemporary industrial SPL development in managing continuous changing and
emerging variabilities [10]. In a newly created product line, changes to the reused
core assets and their customized instances also need to be efficiently propagated and
managed [11]. Our case study actually shows such attempts that a medium-small

148 Y. Wu, X. Peng, and W. Zhao

company focusing on a particular market tried to adapt the SPL methodology in the
past eight years to maximize the throughput of customized products.

Svahnberg and Bosch [12] conducted a detailed evolution analysis on two software
product lines with a history of nearly 10 years since 1990. Among several generations
and releases of products, they identified several categorizations of SPL evolutions on
requirements, architectures and components, and provided some guidelines for software
product line evolution. We have adopted a similar methodology with their work. Our
case study, however, tries to find some special practices other than standard PL devel-
opment. We explore deep into one particular product line, and focus specifically on the
architecture evolution. We believe our findings in our case present more recent SPL
engineering in medium-small companies, including both standard and agile practices.

There are also researches and case studies on interactions, integrations and feed-
backs between single products and common assets in an SPL, including military
development with US Navy [16] and commercial organizations [1,17,18,19]. Our case
study further discusses what exactly these interactions and feedbacks are, and what
other interactions exists between the core assets and instantiated applications.

More research and industrial groups reported their SPL engineering and reengineer-
ing practices, showing adoption SPL methodology in traditional development. These
research and practices include adopting product line development without the use of a
PLA [20], reusing legacy components in a product line [21], and migrate legacy sys-
tems into product lines [22,23]. There are also researches on incrementally introducing
features in product line development with proactive scheduling and road mapping [24].

In these cases and researches, we find side effects when adopting non-standard SPLE
process, but such practices also bring some effectiveness to industrial development.

Despite of all these non-standard SPLE practices, researchers pointed out that
SPLE in commercial organizations is ultimately evolving towards high maturity, both
technically and organizationally [25,26]. Our WES project is actually at a relatively
low maturity level and evolves towards higher maturity, as the PLA gradually
integrates all features and variability from other existing or potential products. The
evolution direction of an SPL can be anticipated by long-term forecasting [27], con-
tributing to SPL design decisions in current development. This is why we believe the
possible improvements proposed in Subsection 4.3 are reasonable.

The SPL development in Wingsoft also shows something in common with agile
software product line method [7]. A successful integration of SPL development prac-
tices and agile software development practices is described by M.A. Babar [28].

In our previous work, Peng [2] has outlined an architecture-based evolution man-
agement method, which illustrates several architecture evolution cases. In another
product line with Wingsoft, we identified common implementation mechanisms
for product variations [4]. We also tried to manage interleaved interactions between
the core assets (including PLA) and application architectures (including instantiated
artifacts) [5].

6 Conclusion and Future Work

In this paper, we report an industrial case study on architecture evolution in SPL en-
gineering. We identify a series of architecture evolution types and several typical

 Architecture Evolution in Software Product Line: An Industrial Case Study 149

evolution paths. Some evolution types, such as propagation and clone between prod-
ucts, usually causing architectural deviations, are quite common in the evolution his-
tory, showing a typical reactive style. We find that such reactive evolution plays an
important role in small or middle-sized SPL projects facing intense competitions and
market uncertainty. Although not conforming to classical SPL methodology, reactive
evolution has rationality in SPL practice due to its rapid responsibility to emerging
features and low risk of overdesigning. To keep the unity across all products, periodi-
cal merges and synchronizations are performed. In particular, architectural unifica-
tions are reasonably derived from specific variant products, rather than totally
designed proactively. Based on the industrial case, we also propose some possible
improvements for the evolution management in similar industrial product lines.
Although our experiences may not apply to large, international PL development, we
believe our case represents the reality of PL practices in medium-small companies.

Our case study highlights some real industrial SPL practices on the perspective of
architecture evolution and provides useful experiences about SPL evolution manage-
ment to complement classical SPL methodology. In our follow-up study, we plan to
introduce knowledge-based method to model SPL design decisions and explore
knowledge-based SPL evolution analysis from the perspective of design decisions.

Acknowledgments. The work presented is supported by National Natural Science
Foundation of China (NSFC) under grants 60903013, 90818009 and 60703092. The
authors would also thank Xiaofeng Qian and Shunxiong Ma in Wingsoft for their help
in the case study.

References

1. Clements, P.C., Jones, L.G., Northrop, L.M., McGregor, J.D.: Project Management in a
Software Product Line Organization. IEEE Software 22(5), 54–62 (2005)

2. Peng, X., Shen, L., Zhao, W.: An Architecture-based Evolution Management Method for
Software Product Line. In: SEKE 2009, pp. 135–140. KSI Graduate School, IL (2009)

3. Wu, Y., Zhao, W., Peng, X., Xue, Y.: A Concept Model for Computer-based Spoken Lan-
guage Tests. In: AICT-ICIW 2006, pp. 19–24. IEEE Computer Society, Los Alamitos (2006)

4. Ye, P., Peng, X., Xue, Y., Jarzabek, S.: A Case Study of Variation Mechanism in an Indus-
trial Product Line. In: Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791,
pp. 126–136. Springer, Heidelberg (2009)

5. Shen, L., Peng, X., Zhu, J., Zhao, W.: Synchronized Architecture Evolution in Software
Product Line using Bidirectional Transformation. In: COMPSAC 2010, pp. 389–394 (2010)

6. McGregor, J.D.: The Evolution of Product Line Assets. Techinal report, CMU/SEI-2003-
TR-005, ESC-TR-2003-005 (2003)

7. McGregor, J.D.: Agile Software Product Lines, Deconstructed. Journal of Object Technol-
ogy 7(8), 7–19 (2008)

8. Jiang, M., Zhang, J.: Maintaining Software Product Lines – an Industrial Practice. In:
ICSM 2008, pp. 444–447 (2008)

9. Krueger, C.W.: Easing the Transition to Software Mass Customization. In: van der Linden,
F.J. (ed.) PFE 2002. LNCS, vol. 2290, pp. 282–293. Springer, Heidelberg (2002)

10. Chen, L., Babar, M.A.: Variability Management in Software Product Lines: An Investiga-
tion of Contemporary Industrial Challenges. In: Bosch, J., Lee, J. (eds.) SPLC 2010.
LNCS, vol. 6287, pp. 166–180. Springer, Heidelberg (2010)

150 Y. Wu, X. Peng, and W. Zhao

11. Anastasopoulos, M.: Increasing Efficiency and Effectiveness of Software Product Line
Evolution–An Infrastructure on Top of Configuration Management. In: Joint International
and Annual ERCIM Workshops on Principles of Software Evolution (IWPSE) and Soft-
ware Evolution (Evol) Workshops, pp. 47–56. ACM, New York (2009)

12. Svahnberg, M., Bosch, J.: Evolution in Software Product Lines: Two cases. Journal of
Software Maintenance 11(6), 391–422 (1999)

13. Bosch, J.: Product-line architectures in industry: a case study. In: ICSE 1999, pp. 544–554.
ACM, New York (1999)

14. Maccari, A.: Experiences in assessing product family software architecture for evolution.
In: ICSE 2002, pp. 585–592. ACM, New York (2002)

15. Axelsson, J.: Evolutionary Architecting of Embedded Automotive Product Lines: An In-
dustrial Case Study. In: WICSA 2009, pp. 101–110. IEEE, Cambridge (2009)

16. Brownsword, L., Clements, P.: A Case Study in Successful Product Line Development.
Technical report. CMU/SEI, CMU/SEI-96-TR-016 (2006)

17. Riva, C., Rosso, C.D.: Experiences with Software Product Family Evolution. In: 6th Inter-
national Workshop on Principles of Software Evolution, pp. 161–169. IEEE, Los Alamitos
(2003)

18. Takebe, Y., Fukaya, N., Chikahisa, M., Hanawa, T., Shirai, O.: Experiences with software
product line engineering in product development oriented organization. In: SPLC 2009, pp.
275–283. CMU, Pittsburgh (2009)

19. Lee, H., Choi, H., Kang, K.C., Kim, D., Lee, Z.: Experience Report on Using a Domain
Model-Based Extractive Approach to Software Product Line Asset Development. In: Ed-
wards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791, pp. 137–149. Springer,
Heidelberg (2009)

20. Staples, M., Hill, D.: Experiences Adopting Software Product Line Development without a
Product Line Architecture. In: 11th Asia-Pacific Software Engineering Conference, pp.
176–183. IEEE, Los Alamitos (2004)

21. Kolb, R., Muthig, D., Patzke, T., Yamauchi, K.: A Case Study in Refactoring a Legacy
Component for Reuse in a Product Line. In: ICSM 2005, pp. 369–378. IEEE Press, Los
Alamitos (2005)

22. Breivold, H.P., Larsson, S., Land, R.: Migrating Industrial Systems towards Software
Product Lines: Experiences and Observations through Case Studies. In: 34th Euromicro
Conference Software Engineering and Advanced Applications, pp. 232–239. IEEE, Los
Alamitos (2008)

23. Hanssen, G.K.: Opening Up Software Product Line Engineering. In: The 2010 ICSE
Workshop on Product Line Approaches in Software Engineering, pp. 1–7. ACM, New
York (2010)

24. Savolainen, J., Kuusela, J.: Scheduling Product Line Features for Effective Roadmapping.
In: The 15th Asia-Pacific Software Engineering Conference, pp. 195–202. IEEE, Los
Alamitos (2008)

25. Bosch, J.: Maturity and evolution in software product lines: Approaches, artefacts and or-
ganization. In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 247–262. Springer,
Heidelberg (2002)

26. Ahmed, F., Capretz, L.F.: An organizational maturity model of software product line engi-
neering. Software Quality Journal 18(2), 195–225 (2010)

27. Chen, Y., Gannod, G.C., Collofello, J.S., Sarjoughian, H.S.: Using simulation to facilitate
the study of software product line evolution. In: 7th International Workshop on Principles
of Software Evolution, pp. 103–112. IEEE, Los Alamitos (2004)

28. Babar, M.A., Ihme, T., Pikkarainen, M.: An Industrial Case of Exploiting Product Line
Architectures in Agile Software Development. In: SPLC 2009, pp. 171–179. CMU, Pitts-
burgh (2009)

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 151–166, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Improving Product Line Architecture Design and
Customization by Raising the Level of Variability

Modeling

Jiayi Zhu1,2, Xin Peng1,2, Stan Jarzabek3, Zhenchang Xing3, Yinxing Xue3,
and Wenyun Zhao1,2

1 Shanghai Key Laboratory of Intelligent Information Processing
2 School of Computer Science, Fudan University, Shanghai, China

3 School of Computing, National University of Singapore, Singapore
{072021130,pengxin,wyzhao}@fudan.edu.cn,
{stan,xingzc,yinxing}@comp.nus.edu.sg

Abstract. Product Line Architecture (PLA) plays a central role in software
product line development. In order to support architecture-level variability
modeling, most architecture description languages (ADLs) introduce architec-
tural variation elements, such as optional component, connector and interface,
which must be customized during product derivation. Variation elements are
many, and design and customization of PLA at the level of individual variation
elements are difficult and error-prone. We observed that developers usually
perceive architecture variability from the perspective of variant features or
variant design decisions that are mapped into groups of architecture variation
elements. In the paper, we describe heuristics to identify configurations of
variation elements that typically form such groups. We call them variation
constructs. We developed an architecture variability management method and
a tool that allow developers to work at the variation construct level rather than
at the level of individual variation elements. We have applied and evaluated
the proposed method in the development and maintenance of a medium-size
financial product line. Our experience indicates that by raising variability
modeling from variation element to construct level, architecture design and
customizations become more intuitive. Not only does our method reduce the
design and customization effort, but also better ensures consistent configura-
tion of architectural variation elements, avoiding errors.

Keywords: software product line, architecture, variability, ADL.

1 Introduction

Product Line Architecture (PLA) plays a central role in software product line devel-
opment. A PLA differs from traditional software architecture for a single product in
that it must be customizable for different products. Therefore, product line architec-
ture description languages (ADLs), e.g. xADL 2.0 [1], introduced architectural
variation elements such as optional component, connector and interface.

152 J. Zhu et al.

Designers usually perceive architecture variability from the perspective of variant
features or variant design decisions that are mapped into configurations of architec-
ture variation elements. Figure 1 shows a typical design of the optional feature Log in
a PLA. The architecture is depicted using boxes for components, small boxes with
arrows for interfaces (inward arrows represent supplier interfaces; outward ones
represent client interfaces), lines for links and ellipses for connectors. Dashed lines
indicate optional elements. In order to model architectural representation of Log, an
optional component Log, an optional interface in component OnlinePayment, two
optional links and an optional connector have to be introduced. As discussed in
Section 2, a simple composition between two components may induce 211 combina-
tions of basic variation elements. It is difficult and error-prone to model, customize
and modify a PLA at the level of individual variation elements. For example, if we
select the optional client interface in component OnlinePayment, we must also select
relevant connector, links and component Log, or else the architecture after customiza-
tion will not be valid.

Fig. 1. A typical design of optional feature Log

We observed that in general it is the case that certain groups of variation elements
must be configured together in certain way to ensure correctness of the product archi-
tecture. We refer to valid group of variation elements that must be managed together
as variation construct in the rest of the paper. In the design shown in Figure 1, op-
tional feature Log is mapped into a single variation construct, but in general we have
many-to-many mappings between features and variation constructs in PLA, which
means a variant feature may involve several variation constructs. We hypothesized
that it might be easier for designers to work with variation constructs instead of varia-
tion elements. We thought that variation constructs can simplify PLA design and
customization, and make it less error-prone.

To test the hypothesis, we developed architecture variability modeling and cus-
tomization method, and a tool that implements the method. In the method, we specify
rules to help identify valid combinations of variation elements, mostly from the aspect
of syntax. Then we further identify useful variation constructs according to some
principles and clarify their different intention of variability design, as basic blocks for
variability design and customization. We have successfully applied the proposed
method in the development and maintenance of a medium-size financial product line.
Our experience indicates that by raising the level of variability modeling and man-
agement not only do we reduce the design and customization effort, but also better
ensure consistent configuration of architectural variation elements.

The remainder of this paper is organized as follows. Section 2 analyzes the prob-
lems in architectural-level variability design and customization after some background
introduction. Section 3 defines PLA variation rules based on a PLA meta-model.
Section 4 introduces our variation constructs with some examples. Section 5 presents

Improving PLA Design and Customization by Raising the Level of Variability Modeling 153

our prototype tool implemented and evaluates our method with a case study on an
enterprise product line. Finally, Section 6 discusses related work before Section 7
draws our conclusions.

2 Background and Problem Analysis

Software architecture reveals abstract views of the structure, behavior, and key proper-
ties of a software system [2]. In our work, we concentrate of structural architectural
views that are typically expressed in terms of components, connectors, and constraints
on the interactions among components. Different from single product architecture,
product line architecture (PLA) defines a reference architecture shared by a family of
products in a given business domain [3, 18, 19]. Architectures for custom products are
derived from PLA. To enable such derivation, PLA must accommodate concepts of
variability.

ADLs provide notational frameworks for architecture modeling. Examples of popu-
lar ADLs include Acme [4], C2 [5], Darwin [6], Rapide [7], UniCon [8], and Wright
[9]. Among few ADLs that support PLA modeling we found xADL 2.0 [1], Koala [10]
and ABC/ADL [25]. ADLs for PLA support variation elements to model product-
specific differences. Typical variation elements are optional component/interface/
connector/link and alternative component. During PLA customization, the application
architect determines whether an optional element should be selected or not, and which
variant of an alternative element is to be included in the product architecture.

At the level of variation elements, the number of possible customizations explodes
in combinatorial way. Any two interacting components may involve as many as nine
variation elements, namely the two components, one connector, four interfaces and
two links; the two components can further be alternative (with variants). Among 211
combinations of those variation elements, only a small number is valid. As an exam-
ple, Figure 2 shows an invalid design for the optional feature Log. In comparison with
the design in Figure 1, we can see that the mandatory connection between optional
component Log and its client OnlinePayment component are used in Figure 2. Design
of Figure 2 does not correctly reflect the interaction between the optional component
Log and its client OnlinePayment. Furthermore, if the component Log is removed
during customization, it is likely to overlook the necessary customization to its
clients, for example, leaving a dangling link in the product architecture. For this prob-
lem, we expect to identify a set of rules to help eliminate those invalid combinations.

Fig. 2. A meaningless design of optional feature Log

The other problem is that different valid combinations of variation elements may
have similar structures but different meanings. For example, design of Figure 3 is
similar to Figure 1, but the meaning is quite different. In Figure 1, mandatory
OnlinePayment service is provided with or without logging. On the contrary, in the
design of Figure 3 OnlinePayment is an optional service, but it must be provided with
logging if OnlinePayment is selected.

154 J. Zhu et al.

Fig. 3. A design of optional feature OnlinePayment

In the next section, we introduce the concept of variation construct to combat the
above problems.

3 PLA Meta-model and Variation Combination Rules

This section first presents a PLA meta-model defining architecture modeling concepts
found in many ADLs. Then based on the meta-model, we derive a set of rules that can
be used to identify valid combinations of variation elements.

3.1 PLA Meta-model

To present our approach in ADL-independent way, we define essential PLA modeling
elements as a meta-model shown in Figure 4. Architecture modeling elements include
components, connectors, interfaces and links. Each component can have a possibly
empty set of supplier interfaces and client interfaces. A connector must be connected
to at least one supplier component and one client component via its interfaces. Each
link establishes connection from a client interface to a supplier interface. The addi-
tional constraint to links in the meta-model prescribes that links can only be estab-
lished between component interfaces and client interfaces. That means components
can only be composed via connectors.

Fig. 4. A meta-model of product line architecture

Variability in PLA is represented by optional and alternative architecture elements.
Components, connectors, interfaces and links can be optional. For simplicity, we
assume that only a component can be alternative. Some ADLs (e.g., xADL 2.0 [1])
include alternative connectors , but they are not frequently used.

Improving PLA Design and Customization by Raising the Level of Variability Modeling 155

An optional component or connector may be selected or removed during PLA cus-
tomization. When de-selected, all corresponding interfaces of an optional element
must be removed. It should be noted that a component/connector being optional does
not imply that its interfaces must also be optional. An optional interface can be se-
lected or removed for its owner component or connector: a removed supplier interface
means the service is not provided; a removed client interface means the service
request is not activated. Optional links usually are used together with optional com-
ponents, connectors or interfaces to represent optional interactions. An alternative
component has 0 to multiple variant components for customization. If no predefined
variant is provided, it can be regarded as an abstract component with product-specific
implementation that can only be provided in application engineering.

3.2 Rules to Identify Valid Combinations of Variation Elements

Some valid combinations of variation elements are implied by PLA meta-model. For
example, the rules annotated for link in Figure 4. Here we further explore constraints
related to combination of variation elements as shown in Table 1. The predicate
op(ele) denotes that architectural element ele is optional, and alt(ele) denotes that ele
is alternative.

Table 1. Rules for variation constructs

R1 link∈Link∧(op(link.from)∨op(link.to)∨op(link.from.owner)∨op(link.to.owner)) → op(link)

R2 link∈Link∧op(link) → op(link.from)∨op(link.from.owner)

R3 serIF∈SupplierInterface∧op(serIF)∧serIF.owner.Type=Connector → ∃serIF’∈SupplierInterface
∧ serIF’≠serIF∧serIF’.owner=serIF.owner

R4 cliIF∈ClientInterface∧ op(cliIF)∧ cliIF.owner.Type=Connector → ∃ cliIF’∈ClientInterface∧
cliIF’≠ cliIF∧cliIF’.owner= cliIF.owner

R5 serIF∈SupplierInterface∧op(serIF)∧serIF.owner.Type=Component → alt(serIF.owner)

PLA variation constraints are derived from general observations about what forms

a correct configuration of variation elements during customization. First, links cannot
be dangling, i.e., a link must not be selected unless either of the interfaces it connects
to is selected during PLA customization. This constraint makes the first rule (R1)
in Table 1, stating that for each link link, if either of the interfaces or either of the
components it connects to is optional, it must be optional.

Second, if we select a client interface then we must also select a corresponding
service provider for it. The second rule (R2) in Table 1 is derived from this point: if a
link is optional, the interface or the component at its client side must be optional.

Third, to ensure a connector connects to at least one supplier component and one
client component, a supplier (client) interface of a connector must be mandatory if it
is the only supplier (client) interface. This constraint is reflected by the third and
fourth rules (R3, R4) in Table 1.

Fourth, an optional supplier interface means the service can be provided or not.
This usually tells that the owner component has several variants and they are not
consistent in providing the service. The fifth rule (R5) describes this constraint.

156 J. Zhu et al.

Fig. 5. The set of variation constructs with the constraint of one-to-one connector

With these rules, we can formally eliminate most invalid combinations of variation
elements. For example, the combination in Figure 2 can be determined to be invalid
according to rule R1. We developed a tool to identify valid combinations of variation
elements, i.e. variation constructs. For a composition between two components with-
out alternative components, the tool produces 44 variation constructs, and all of them
are meaningful according to our validation.

It should be emphasized that these rules are only the minimum constraint set with
the PLA meta-model given in Figure 4. Given additional specific architectural styles,
more rules can also be extended. For example, if each connector is restricted to be
shared by exact two components, a much stronger rule telling that connector inter-
faces cannot be optional can be derived from the third and fourth rule. Then we can
identify a set of 5 variation constructs as shown in Figure 5 according to rule R1-R5.

4 Variation Constructs in PLA

In our method, a variation construct is defined as a group of architectural elements in
a PLA that represent a meaningful functional variation point in the architecture and
must be managed together as a whole in PLA evolution and customization. In PLA
design, variation constructs can be instantiated and composed with other variation
construct instances. And instances of variation constructs can overlap, that is, one
architectural element can belong to two or more instances of variation constructs.

In this section, we first introduce the principles in identifying useful variation
constructs, then present those identified variation constructs according to the categori-
zation of optional construct and alternative construct with some examples. Those
examples are extracted from the Wingsoft Financial Management System Product
Line (WFMS-PL). The initial version of WFMS-PL was developed in 2003 and it has
evolved into a product line with more than 100 customers today, including major
universities in China such as Fudan University, Shanghai Jiaotong University, Zheji-
ang University [13].

4.1 Principles in Identifying Useful Variation Constructs

The rules given in 3.2 specify the minimum constraint set of valid combinations of
variation elements. For example, as mentioned in 3.2, we can identify 44 variation

Improving PLA Design and Customization by Raising the Level of Variability Modeling 157

constructs for a composition between two components without alternative compo-
nents. They are still a little more than a compact variation construct set for reuse, and
we also found some of those variation constructs are not as useful as others. Therefore
for those combinations satisfying all the rules, we still need to identify useful varia-
tion constructs with clarified variability meaning for developers to use.

There are some principles that can be used as guidance to identify variation con-
structs. These principles involve both the syntax aspect and semantic aspect, i.e. the
intention of the design, of architectural variability modeling.

The first principle (P1) is reusing modeling elements among connections as many
as possible. In our construct library, both the link and the connector can be reused.
The third variation construct of Figure 7 presents such an example. Its link between
the connector and ExceptionHandle component is used by two connections. Not only
can this principle reduce the variation elements but it can also enable the connector to
coordinate the interactions between ExceptionHandle component and the other parts
of the system.

The second principle (P2) is to clearly distinguish the two different intentions of
optional interface in alternative components. The first intention is to represent the
optional attribute of the component’s function that is consistently involved in all the
variant components. The second one is to indicate that the interface is only provided
by a part of the variants of the alternative component. As the two different intentions
have quite different instructions on component implementation, they should be distin-
guished in the PLA design and reflected in different constructs. For example, for
the latter case, the dependence between the variant component and the other parts of
the system should be eliminated.

The third principle (P3) is that optional interactions between two components
should be modeled at the client side using optional client interface rather than the
supplier side. This kind of optional interactions usually reflect internal variation
points within components. Then a supplier interface can only be optional when the
interface is introduced by different behaviors of the variants of an alternative compo-
nent (see rule R5 in Table 1). In that case, the optional supplier interface is defined to
eliminate the dependency between an alternative component and other parts of the
system.

Guided by these principles, we propose to identify different kinds of meaningful
combinations of variation elements as architecture-level variation constructs, and
further support PLA variability design and customization by variation constructs
rather than individual variation elements. In this paper, we report our initial study on
the variation constructs between two interacting components. The constructs are di-
vided into two categories according to the two typical kinds of architectural variation
points, i.e. optional constructs and alternative constructs. In the following subsections,
we will describe variation constructs of the two categories with some typical exam-
ples from our case study.

4.2 Optional Constructs

An optional construct means it can be selected or removed during PLA customization.
In the PLA, an optional construct is usually modeled using optional component and
optional composition between components. An optional composition denotes that the

158 J. Zhu et al.

interaction between two components can be selectively included in specific products,
and is usually modeled as optional interfaces, connectors and likes.

Figure 6 shows three examples that use optional component to model an optional
construct. The first example represents the situation that optional component provide
optional feature for the system, implying that only some products require to log the
online payment history. According to rule R1 and R2 (see Table 1), an optional com-
ponent Log is introduced, together with an optional connector and two optional links,
to model the optional feature Log. These two rules are elementary, and almost all the
constructs involve the application of them. Note that the interface in Log component
is mandatory. However, the interface in its client component OnlinePayment is op-
tional, since the availability of Log is not known until the customization phase. Ac-
cording to the third principle (P3), this kind of variation points is better to be modeled
in the client side rather than in the supplier side. Optional components sometimes may
invoke other parts of system, which is the case in the second example. The optional
component AdditionalCharge reflects the fact that only some products need to charge
additional fee. Since the charge strategy is very complex, AdditionalCharge delegates
to another component CommonOperation to calculate the tax rate.

Fig. 6. Optional constructs by optional component

The connectors in the above two examples are both optional, and only serve the
connection for the optional component. In some cases the connector for optional con-
struct is at least used once, it should then be mandatory. As shown in the third example
of Figure 6, RewardDelivery provides online delivery of additional reward for staffs
and students in university. If selected, the component RewardDelivery depends on the
service provided by the component ProjectMgmt to deduct the amount from corre-
sponding project fund. As some universities tend to deliver salary offline, RewardDe-
livery is designed to be optional. The amount deduction service provided by Project is
also required by other mandatory components such as EquipFeeDelivery, so the
connector is at least necessary by one component. According to the first principle (P1),
the connector is modeled to be mandatory. The only entrance of amount deduction
service also brings benefit of easy management for payment control.

Optional composition represents finer-grained variability than optional component.
Figure 7 shows three examples that use optional composition to model optional con-
struct. In the first example, Budget and ProjectMgmt are two mandatory business
components for budget management and project management respectively. Budget,
when is executed for project budget making, involves an internal variation point of
whether performing balance control (provided by ProjectMgmt) or not. According to
P3, the optional client interface of Budget and related optional connector and links are

Improving PLA Design and Customization by Raising the Level of Variability Modeling 159

employed to model this internal variation point. The component Initiation in the
second example is responsible for initializing the system’s basic information, such as
the mode of payment and the student state. The initialization of the student state is
optional, which is also a fine-grained variation point and modeled as an optional inter-
face in component Initiation. The difference from the first example is that the service
provided via the supplier interface of Utility is also required by other mandatory com-
ponents. According to R3 that a supplier (client) interface of a connector must be
mandatory if it is the only supplier (client) interface, the interface in the connector
which links to Utility must be mandatory. So according to P1, the connector and the
composition to Utility are modeled as mandatory elements. Optional composition can
also exist between optional components. As an interface will be removed together
with its owner, the interfaces of an optional component usually do not need to be
modeled to be optional. But sometimes an interface of an optional component should
still be modeled to be optional to represent another finer-grained variation point. As
shown in the third example in Figure 7, WFMS-PL can support normal payment as
well as web service payment. The exceptions thrown by the component WebService-
Payment can be handled inside itself or by the ExceptionHandle component.
That means the client interface of WebServicePayment may be removed even when
WebServicePayment is selected, so the interface and related link and connector inter-
face are modeled to be optional.

Fig. 7. Optional constructs by optional compositions

4.3 Alternative Constructs

An alternative construct means that it can be replaced by different variants during
application customization. Figure 8 presents three examples that use alternative com-
ponents to model an alternative construct. Alternative component is shown in a large
box containing variants in smaller boxes. The first example describes the case that all
the variants of a component exhibit the same interface. WFMS-PL support many banks
that the application engineers can configure and adopt a subset of them in their prod-
uct. The interfaces of different banks are the same as each other. There is no need to
introduce additional variation elements to the Bank component for this alternative
construct since the selection of different variants does not impact the rest of the system.

However, as shown in the second and third examples in Figure 8, there are also
some cases in which only part of the variants of an alternative component provide
certain services. For example, as shown in the second example of Figure 8, in WFMS-
PL there are three different modes of fee payment, i.e. ByItem, ByYear and
ByYearOrder. ByItem means user can pay their fee item by item. ByYear means user

160 J. Zhu et al.

can only pay the fee year by year (each fee item belongs to one year) in any order.
ByYearOrder means user can only pay year by year following the time order. Only
the variant ByYearOrder may raise exception and requires the service provided by
ExceptionHandle. According to P2, the alternative component must use optional
interfaces to identify those interfaces that are not exposed by all of its variants [11].
Only if the variant ByYearOrder is selected, the optional interface in FeeItemSelec-
tion will be selected as well. Similarly, in the third example in Figure 8 only the vari-
ant Operation of the alternative component LockFeeItem provides the interface for
OnlinePayment. In contrast to general principle P3 that the variability is better to be
modeled in the client side rather than in the supplier side, it is interesting to note that
the variability introduced by the Operation variant of the LockFeeItem component is
modeled on the supplier side. This is because that this optional interface is introduced
for eliminating the unnecessary dependencies between the other variants of the com-
ponent LockFeeItem (e.g. Delegation) and the rest of the system (e.g. OnlinePay-
ment). This kind of variability cannot be moved to the client side.

Fig. 8. Alternative Constructs

5 Implementation and Case Study

5.1 Implementation

In order to validate the proposed approach, we developed an Architecture Centric
Software Product Line (ACSPL) tool that supports construct-based variability man-
agement, as shown in Figure 9. The tool is equipped with a graphical editor for PLA
modeling (the upper right editor in Figure 9). In the lower left view, the tool lists all
the instances of variation constructs in the PLA under development. In the construct
view, the construct instances are divided into two categories, i.e. optional construct
and alternative construct. Each construct instance contains all its related variation
elements. The user can apply adaptive, corrective, and perfective [12] operations to
the constructs and their contained variation elements, such as adding or removing a
construct, changing the construct type.

(1) Add a variation construct
This situation happens when developer is designing a new variant feature. In ACSPL,
developer has two options modeling this requirement. The first one is the traditional
way in which developer edits the variation elements individually. The second one is
to select an intention such as optional construct by optional connection and choose

Improving PLA Design and Customization by Raising the Level of Variability Modeling 161

from candidate constructs provided by the tool. Then a skeleton variation construct
will be added by the tool.

(2) Remove a variation construct
Removing a variation construct does not mean to remove the construct’s elements but
the elements’ variability. With ACSPL, developer just needs to operate on one con-
struct to eliminate the variability of all the relevant variation elements. After
this operation, optional element becomes mandatory and alternative component to
selected variants.

(3) Change the type of variation construct
This situation happens in PLA evolution [24]. For example, the need for more fine-
grained control over a variation point could requires changing the type of variation
construct from optional component construct category to optional composition con-
struct category. In traditional way, in order to keep consistency, developer firstly
needs to remove all the related elements’ variability and then applies the change
operations. ACSPL have documented the structures of the constructs, developer can
be ensured the operation is consistency applied and also can clearly see the change
impact before bringing it into effect.

Fig. 9. Architecture Centric Software Product Line (ACSPL) Tool

5.2 Case Study

We have developed and maintained Wingsoft Financial Management System Product
Line (WFMS-PL) using the proposed construct-based variability management ap-
proach. We have identified 21 key variation constructs during the development and
evolution of WFMS-PL. The 22 variants of the key constructs have also been identi-
fied. Among the current 43 constructs in the catalog, the instances of 7 constructs,
which is shown in Table 2, account for 70 percent of construct instances identified in
the WFMS-PL.

The variation constructs raise the level of abstraction in PLA design and customi-
zation. We no longer model and manage variability at the detailed level of variation
elements and their relationships. We only need to manage 53 variation constructs and

162 J. Zhu et al.

Table 2. Different Constructs used in WFMS

Variability Constructs #Instance

11

7

6

5

4

3

3

Others 14

42 relationships among them, in comparison with the 217 individual variation ele-
ments and 279 relationships among them.

In the past, in order to keep the consistency of the product architecture, variation
elements usually inherit variability from its contained or linked elements. For exam-
ple, a link connect to an optional interface is inherited optional. Thus they are selected
or unselected together in the customization phase. This can certainly solve a part of
inconsistency evolution problem. But not all the relations between variation elements
are so transparent. As shown in Figure 10, the component Initiation is responsible for
initializing the system’s basic information, such as the mode of payment and the stu-
dent state. Both the initialization of the student state and the mode of payment are
optional, which is modeled as two optional interfaces in component Initiation. Since
the connector is mandatory, it takes time to figure out the correspondent relations
between two sides of the connector, which makes the evolution error prone. If the
construct is introduced and becomes the management unit, in the lower left view of
Figure 9, all the correlated variation elements are listed explicitly and this alleviates
the inconsistency problem. Compared with traditional way, variation construct also
gains benefits that variation elements in a construct can be different granularity. If the
interface’s variability is inherited from its contained components, they will be se-
lected or unselected according to their components. But in some cases, the optional
component is included and its optional interface is unselected. On the other hand, if
the construct is the basic management unit, a variation element can be contained by
many constructs and unless all the constructs are unselected the variation element is
unselected. Thus the elements in one construct may have different bound conditions
and granularities.

The core assets of the WFMS-PL were designed and implemented by few domain
engineers. The maintainer of the system is changed continually. Thus it takes signifi-
cant amount of time for a new member of the project team to familiarize himself with

Improving PLA Design and Customization by Raising the Level of Variability Modeling 163

the system and all possible variants. Through our case study, we find out that there
exists certain connection between the construct and the implementation. For example,
construct like Figure 1 is implemented through reflection mechanism in WFMS-PL.
Thus with our construct, developer can not only understand the architecture easily
but also get some insights of the implementation, which can greatly speed up their
learning process.

Fig. 10. An error prone situation of customization

Fig. 11. Syntactically same but semantically different

Furthermore, the variation constructs help to reveal the distinctive meanings of the
variability designs in PLA and eliminate the ambiguity. Take the two construct in-
stances in Figure 11 as an example. The two instances are syntactically same in that
they involve the same set of variation elements. However, the optional interface in
alternative component Bank is exposed by all its variants, such as CMB and ICBC.
This optional interface is introduced because some customers have to pay the fees for
the bank online service while others do not. In contrast, the optional interface in alter-
native component FeeItemSelection is introduced because it is only exposed by
the variant SelectByYearOrder. The variant ByYear and ByItem do not provide this
interface. Clearly, the semantics of the two cases are completely different. In fact,
they are the instances of the two different variation constructs from optional construct
category and alternative construct category respectively.

Although we need more systematic quantitative study, our experience indicates
that, by categorizing the variation constructs and providing the tool support, the
proposed approach provides not only an efficient way to document and manage the
variation points in PLA, but also help to flatten the learning curve of the new comers
who joined the project later and reduce the errors due to the inconsistent modifica-
tions to variation points.

6 Related Work

As a fundamental aspect of software product line, variability management has at-
tracted a lot of research. Among them, some focus on the development of variability

164 J. Zhu et al.

model, e.g. OVM (Orthogonal Variability Model) [14] and PuLSE [15]. The others
aim at variation implementation mechanism, e.g. XVCL [16]. However, architecture-
level variation management is much less explored.

In the past two decades, many architecture description languages (ADLs), e.g.
xADL2.0 [1] and ACME [4], have been proposed to support formal architecture mod-
eling and analysis. In these ADLs, the architectural elements, such as component,
connector, interface (port) and link are commonly used to model software architec-
ture. To support PLA, some ADLs, e.g. xADL2.0 [1], further introduce the variability
mechanisms to these architectural elements. However, such ADLs lack of mechanism
to model structural variation constructs. Furthermore, they do not provide any effec-
tive mechanism to manage the large amount of variation elements and the possibly
even larger number of dependencies between these variation elements [17].

In order to improve architecture-level variability management, Hendrickson et al.
[18] have proposed the change-based methods for PLA modeling, in which PLA
variations are modeled by change sets and relationships. However, they acknowl-
edged that state-based PLA modeling, in which variability is represented by variation
elements inside the architectural specification, is still the mainstream of product line
architecture design [19]. In this paper, we propose a construct-based method, which
provides state-based variation mechanism for PLA modeling.

For effective management and composition of architectural variability, Neil
Loughran et al [20] have proposed a variability modeling language (VML). VML
supports compositions involving both fine-grained and coarse-grained variabilities in
an orthogonal fashion. With our method, VML will reference variation constructs
instead of primitive variation elements. Thus our approach can complement this ap-
proach rather than replace it.

There has been some work on using patterns to model variability in product lines.
The proposed patterns [21, 22] work close to the system implementation. For exam-
ple, they use adapter pattern to model the alternative function [21]. In contrast, our
variation constructs are at a higher level of abstraction. We focus on the variation
constructs in component based product line architecture, consisting of components
and their interactions represented by interfaces and connectors.

7 Conclusion and Future Work

In this paper, we presented an architectural variability modeling method by structural
construct for the design and customization of software product line architecture
(PLA). With our method, the architect can conceive and model the variability design
for each variant feature by structural construct rather than individual variation ele-
ment. The proposed approached has been implemented in a software product line tool
and has been evaluated on an industrial financial system. Our preliminary results
indicate that the raising of variability modeling level by structural constructs improves
PLA design and customization by reducing the complexity and inconsistency of the
variability modeling.

We plan to extend this work in two directions. First, the current construct catalog
has been extracted and validated on the WFMS-PL. But we believe that they would
be applicable in other software product lines, since the principles underlying these

Improving PLA Design and Customization by Raising the Level of Variability Modeling 165

constructs are not specific to a given system. We plan to further refine and enrich the
current construct catalog with more subject systems. Furthermore, the current varia-
tion constructs involve only two components and their interactions. We are also inter-
ested in extending the concept to the constructs involving multiple components.

Second, we plan to explore the backward and forward traceability between the ar-
chitecture-level variation constructs and the variation points in the analysis models,
such as feature models [23], and in the product line implementations, such as XVCL
[16]. We believe that architecture-level variation constructs can serve as an interme-
diate layer that helps to trace and manage the variations across different levels of
abstraction. We would like to investigate if they can facilitate the consistent feature-
driven derivation of application products. Furthermore, we want to investigate if they
can improve the evolution of software product line, e.g. helping to populate variation
points with new variants, to prune old, no longer used, variants, as well as to distrib-
ute new and/or changed variants to the already installed products.

Acknowledgments. This work is supported by National Natural Science Foundation
of China under Grant No. 90818009, Shanghai Committee of Science and Technol-
ogy, China under Grant No. 08DZ2271800 and 09DZ2272800, Shanghai Leading
Academic Discipline Project under Grant No. B114.

References

1. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: A comprehensive approach for the devel-
opment of modular software architecture description languages. ACM Transactions on
Software Engineering and Methodology 14(2), 199–245 (2005)

2. Medvidovic, N., Taylor, R.N.: A Classification and Comparison Framework for Software
Architecture De-scription Languages. IEEE Transactions on Software Engineering 26(1),
70–93 (2000)

3. Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns. Addison-
Wesley, New York (2002)

4. Garlan, D., Monroe, R., Wile, D.: ACME: An Architecture Description Interchange Lan-
guage. In: Proceedings of the 1997 Conference of the Centre for Advanced Studies on
Collaborative Research, CASCON (1997)

5. Medvidovic, N., Oreizy, P., Robbins, J.E., Taylor, R.N.: Using object-oriented typing to
support architectural design in the C2 style. In: Proceedings of the 4th ACM Symposium
on the Foundations of Software Engineering, FSE (1996)

6. Magee, J., Kramer, J.: Dynamic Structure in Software Architectures. In: Proceedings of the
4th Symposium on the Foundations of Software Engineering (1996)

7. Luckham, D.C., Vera, J.: An Event-Based Architecture Definition Language. IEEE Trans-
actions on Software Engineering 21(9), 717–734 (1995)

8. Shaw, M., et al.: Abstractions for Software Architecture and Tools to Support Them. IEEE
Transactions on Software Engineering 21(4), 314–335 (1995)

9. Allen, R., Garlan, D.: A Formal Basis for Architectural Connection. ACM Transactions on
Software Engineering and Methodology 6(3), 213–249 (1997)

10. van Ommering, R., et al.: The Koala Component Model for Consumer Electronics Soft-
ware. Computer 33(3), 78–85 (2000)

166 J. Zhu et al.

11. Roshandel, R., van der Hoek, A., Mikic-Rakic, M., Medvidovic, N.: Mae—a system model
and environment for managing architectural evolution. ACM Transactions on Software
Engineering and Methodology 13(2), 240–276 (2004)

12. Swanson, E.B.: The dimensions of maintenance. In: Proceedings of the 2nd International
Conference on Software Engineering (ICSE), pp. 492–497 (1976)

13. Ye, P., Peng, X., Xue, Y., Jarzabek, S.: A Case Study of Variation Mechanism in an Indus-
trial Product Line. In: Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791,
pp. 126–136. Springer, Heidelberg (2009)

14. Pohl, K., Metzger, A.: Variability management in software product line engineering. In:
Proceedings of the 28th International Conference on Software Engineering, ICSE (2006)

15. Schmid, K., John, I.: A customizable approach to full lifecycle variability management.
Science of Computer Programming 53(3), 259–284 (2004)

16. Jarzabek, S., Bassett, P., Zhang, H., Zhang, W.: XVCL: XML-based variant configuration
language. In: Proceedings of the 25th International Conference on Software Engineering,
ICSE (2003)

17. Deelstra, S., Sinnema, M., Bosch, J.: Experiences in Software Product Families: Problems
and Issues During Product Derivation. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154,
pp. 165–182. Springer, Heidelberg (2004)

18. Hendrickson, S.A., van der Hoek, A.: Modeling Product Line Architectures Through
Change Sets and Relationships. In: Proceedings of the 29th International Conference on
Software Engineering (ICSE), Minneapolis, USA, pp. 189–198 (2007)

19. López, N., Casallas, R., van der Hoek, A.: Issues in Mapping Change-Based Product Line
Architectures to Configuration Management Systems. In: Proceedings of the 13th Software
Product Lines Conference (SPLC), pp. 21–30 (2009)

20. Loughran, N., Sánchez, P., Garcia, A., Fuentes, L.: Language Support for Managing Vari-
ability in Architectural Models. In: Pautasso, C., Tanter, É. (eds.) SC 2008. LNCS,
vol. 4954, pp. 36–51. Springer, Heidelberg (2008)

21. Keepance, B., Mannion, M.: Using patterns to model variability in product families. IEEE
Software 16(4), 102–108 (1999)

22. Jiang, J., Ruokonen, A., Systä, T.: Pattern-based variability management in Web service
development. In: Proceedings of the 3rd European Conference on Web Services, ECOWS
2005 (2005)

23. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Spencer Peterson, A.: Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh, PA

24. Peng, X., Shen, L., Zhao, W.: An Architecture-based Evolution Management Method for
Software Product Line. In: Proceedings of the 21st International Conference on Software
Engineering and Knowledge Engineering, SEKE (2009)

25. Mei, H., Chen, F., Wang, Q., Feng, Y.-D.: ABC/ADL: An ADL Supporting Component
Composition. In: George, C.W., Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, p. 38.
Springer, Heidelberg (2002)

Code Reuse with
Language Oriented Programming�

David H. Lorenz and Boaz Rosenan

Open University of Israel
1 University Rd., P.O. Box 808, Raanana 43107 Israel
lorenz@openu.ac.il, brosenan@cslab.openu.ac.il

Abstract. There is a gap between our ability to reuse high-level con-
cepts in software design and our ability to reuse the code implementing
them. Language Oriented Programming (LOP) is a software development
paradigm that aims to close this gap, through extensive use of Domain
Specific Languages (DSLs). With LOP, the high-level reusable concepts
become reusable DSL constructs, and their translation into code level
concepts is done in the DSL implementation. Particular products are
implemented using DSL code, thus reusing only high-level concepts. In
this paper we provide a comparison between two implementation ap-
proaches for LOP: (a) using external DSLs with a projectional language
workbench (MPS); and (b) using internal DSLs with an LOP language
(Cedalion). To demonstrate how reuse is achieved in each approach, we
present a small case study, where LOP is used to build a Software Prod-
uct Line (SPL) of calculator software.

1 Introduction

A key issue with software reuse is the gap between concept reuse and code
reuse. Many abstract concepts, such as a state machine, are often reused across
substantially different software products. However, on the code level, their im-
plementations are tangled with details of particular products and often cannot
be reused.

This loss of reuse can be attributed to the abstraction gap between the high-
level (concept level) and the low-level (code level) representations of the solution.
When programmers implement a high-level concept, such as a state machine,
they “compile” the high-level concept into code in a manual process. The prod-
uct of this process is code that integrates, often in an inseparable manner, the
reusable knowledge of how to code such a concept in the programming language
in use (e.g., a state machine design patterns), with the specifics of the particular
instance of the concept (e.g., a particular instance of a state machine).

One solution to this problem is the use of Domain-Specific Languages (DSLs).
Programmers use DSLs to code high-level concepts directly. The DSL imple-
mentation is responsible for specifying the meaning of these concepts in terms
� This research was supported in part by the Israel Science Foundation (ISF) under

grant No. 926/08.

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 167–182, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

168 D.H. Lorenz and B. Rosenan

of lower-level concepts. This can be done either by compiling the DSL code into
code in some pre-existing language, or by interpreting it. Either way, the applica-
tion code now consists of two parts: the DSL code and the DSL implementation.
The DSL code conveys the specifics of the application, which is generally not
reusable but very concise. The DSL implementation conveys the knowledge of
expressing high-level concepts in terms of low-level ones, which is often compli-
cated, but highly reusable. This method thus allows us to take reusable concepts
and turn them into reusable code, expressed as the DSL implementation.

Indeed, DSLs can be used to solve this abstraction gap and achieve higher
code reusability. However, for this method to take effect in real-life software
development, it has to be applied systematically throughout the code. Real-
life software is complex and diverse. It usually uses many kinds of high-level
concepts. Some are globally relevant (e.g., a state machine), but some are only
relevant to an industry or a particular software product-line (SPL).

Using DSLs for these concepts can allow reusing the logic behind them. This
means that DSLs must be developed for various aspects of the software, and that
these DSLs need to be able to interact, in the places where one high-level concept
touches another, e.g., when a network event (one high-level concept) triggers a
state transition in a state machine (another high-level concept). Having such
interactions requires that the DSLs be implemented over some common platform
that allows DSLs to interact, both syntactically and semantically. This approach
to software development, which advocates the use of interoperable DSLs to write
software, is called Language Oriented Programming (LOP) [11,1,2].

The main challenge for realizing LOP in real-life software lies in the need
to develop and use DSLs. Here, the choice of techniques and tools used for
DSL implementation bears a great significance on the practicality of LOP. For
example, the traditional approach of using standard compiler-generator tools
such as Lex and Yacc or ANTLR to implement DSLs can work properly for a
pre-determined, limited set of concepts, but will not allow DSLs to be defined
as separate, reusable but interoperable components.

One important decision one needs to make is the choice between internal
and external DSLs [2]. External DSLs are DSLs implemented in form of a com-
piler, translator or interpreter for the DSLs, while internal DSLs (or embedded
DSLs [3]) DSLs are “sub-languages” defined from within a host language. Inter-
nal and external DSLs have inherent trade-offs. On the one hand, external DSLs
provide more freedom in defining syntax and semantics, but place the burden of
implementing the language on the DSL developer. On the other hand, internal
DSLs are much easier to implement, as they reuse most of the facilities provided
by the host language, but are constrained by its syntax and semantics. In ad-
dition, DSL interoperability is supported naturally by internal DSLs (where all
the DSLs are actually code in the same host language), while interoperability is
much harder to achieve using external DSLs.

To date, two approaches have been presented to overcome these trade-offs,
namely language workbenches and LOP languages. Both of these approaches

Code Reuse with Language Oriented Programming 169

allow to develop one kind of DSLs, while mitigating its limitations relative to
the other kind:

Language Workbenches. Language workbenches are integrated development
environments (IDEs) for developing external DSLs. They ease the task of
defining and implementing DSLs by providing (meta) DSLs dedicated for
that task. They provide some tooling (auto-completion, definition search,
etc.) for the DSLs for free, or at very little cost, by leveraging the DSL
definition. Language workbenches, in contrast to other compiler-generation
tools, are made to support DSL interoperability. The most notable language
workbenches are MPS [1] and the Intentional Domain Workbench [8]. They
both use projectional editing, an approach were the program is a model
edited through a view, as a replacement for using text editing and parsing.
This allows syntactic integration of DSLs without causing ambiguity. With
projectional editing, disambiguation is done when entering the code, e.g., by
selecting the intended construct from a list or a menu.

LOP Languages. This is a new concept presented by our group [7]. These
are programming languages oriented towards LOP, similarly to how object-
oriented programming languages are oriented towards OOP. By our defini-
tion, LOP languages are made to host internal DSLs, while providing two
important features previously associated with language workbenches and ex-
ternal DSLs. These are: projectional editing, and the ability to define and
enforce DSL schemata. The Cedalion language [5] is an example of such an
LOP language, based on logic programming for hosting internal DSLs, with
a static type system to provide a basic notion of DSL schema.

The main difference between these two approaches is in the relationships between
languages in each framework. In language workbench we can identify three: the
DSL code, the DSL implementation (the meta level), and the workbench pro-
vided DSLs for implementing DSLs (the meta-meta level). LOP languages, on
the other hand, provide all these function from within a single programming
language. In a way, this is their advantage, allowing reuse across these levels.

In this work we implemented twice, as a case study, a simple SPL of calculator
software, using two LOP techniques. One of the implementations is based on
external DSLs and the other on internal DSLs. The differences between the two
implementations provides a comparison in terms of the cost of reuse between
external and internal DSL. It also provides a deeper understanding of LOP and
how LOP can generally address the issue of code reuse in SPLs.

Specifically, we implemented the complete SPL in MPS and another complete
implementation in Cedalion. We present the two implementations and discuss
the pros and cons of each method. The choice of MPS and Cedalion as the
implementation tools for this paper was made due the fact that their main dif-
ference is in the choice of external (MPS) versus internal (Cedalion) DSLs, thus
providing a comparison between these two approaches. In other LOP respects
they are similar (projectional editing, DSL schema).We concentrate on the cost
of achieving code reuse in these two approaches. We conclude that both ap-
proaches indeed support reusability by providing easy-to-use DSLs that hide

170 D.H. Lorenz and B. Rosenan

the complexity of translating high-level concepts into low-level, executable ones.
However, the difference between these LOP approaches lies in the DSL imple-
mentation. Implementing internal DSLs over a declarative language is easier
and more straightforward than implementing external DSLs over an imperative
language.

2 Case Study: Calculator Product Line

To get the feel of how practical and useful LOP can be, and to study the implica-
tions of using internal versus external DSLs, we present here a small comparative
case study, where we use LOP to create a tiny SPL for calculator software. Our
measurements will be both qualitative (how well did we manage to reuse code)
and quantitative (the cost, in terms of implementation time). We conduct this
study using two tools: the MPS language workbench, and the Cedalion LOP
language.

Meta-ProgrammingSystem (MPS). This is a projectional language work-
bench (i.e., a language workbench using projectional editing) developed by
Dmitriev and his team at Jetbrain’s [1]. It is mostly open source, and can
be freely downloaded. This made it a good candidate for this case study. Its
website contains examples and tutorials to help new users get up-to-speed.
It features relatively mature and very powerful projectional editing capa-
bilities, overcoming some of the usability problems traditionally associated
with projectional editing. DSL implementation is typically done by generat-
ing code in a language called the “base language,” which is, for all practical
purposes, Java. Implementing a DSL in MPS requires creating templates and
conversions for all DSL constructs into lower-level languages, and eventually,
into the base language.

Cedalion. Cedalion is an LOP programming language, based on logic program-
ming. Logic programming provides a declarative way to define DSL seman-
tics, while its static type system provides a structural definition (a schema)
for the DSL. Like MPS, it features projectional editing, which allows syn-
tactic freedom for DSL developers, without the danger of creating ambigui-
ties, since disambiguation is done when entering the code. Cedalion is open
source (http://cedalion.sourceforge.net). Its projectional editor is im-
plemented as an Eclipse plug-in, using a Prolog back-end. Cedalion, however,
is a research tool developed as a proof-of-concept and as such lacks the ma-
turity that MPS provides. Nevertheless, Cedalion is more than capable to
implement the case study at hand.

2.1 The Problem Statement

To examine the value of LOP for code reuse, and to compare between internal
and external DSLs for this purpose, we define a problem, which we shall solve
using the above tools. The problem statement is as follows:

http://cedalion.sourceforge.net

Code Reuse with Language Oriented Programming 171

Develop an SPL of calculator software. All calculators have a key-pad
and a line-display. On the key-pad there are numerous keys for digits,
operators and functions. Pressing these keys simply append characters
to the line-display. There is also an “execute” or “=” button, which, when
pressed, replaces the expression in the display with either the number
to which the expression evaluates to, or the string “Syntax Error”, if the
expression is invalid.

Since we are interested in a SPL, we refer to a whole product-line of such calcu-
lators. These calculators differ in their choice of operators, functions, and even
digits (e.g., a hexadecimal calculator), and how they evaluate to numbers. Our
goal in this case study would be to try and reuse as much code as possible
between different calculators in this SPL.

2.2 General Guidelines

In this case study we focus on the part of the software that parses and evaluates
the string into a value, assuming the rest of the software (e.g., the line editing)
are inherently reusable between different calculators.

We will implement these calculators using LOP. This means that we will first
identify the high-level concepts we need to describe a calculator, regardless of
the specific instance (scientific, financial, etc.). We then define a DSL to express
these concepts formally, and implement it. In this case study we ignore any
pre-existing DSLs that may address these concepts, since we would like to aim
for the real-life scenario where such DSLs are often unavailable or inapplicable
for various reasons. We then implement each calculator using the DSL we de-
veloped. These implementations are expected to be concise and very high-level,
expressing the syntax of each particular calculator. All the logic common across
calculators is expressed in the DSL implementation. Reuse of calculator features
expected to be common to different calculators (such as the parsing of numbers
and basic arithmetic operations) is beyond the scope of the case study, and will
be addressed briefly in Sections 3.3 and 4.2.

3 SPL Implementation in MPS

We now describe the calculator SPL implementation in MPS. Due to space
limitation we keep the MPS-related implementation details as brief as possible.

3.1 Defining the DSL

We begin by analyzing our calculator SPL, in order to figure out what kind of
DSL(s) we need to define for it. Our software needs to do two things: (1) parse
a string, according to some grammar; and (2) calculate a numeric value based
on that parsing. We therefore wish to implement our calculator using a DSL
that combines a grammar (context-free) and the evaluation of expressions. This
is somewhat similar to an attribute grammar, where each production rule is

172 D.H. Lorenz and B. Rosenan

associated with a single value. Existing DSLs, such as Yacc [4] can be considered
here. However, as stated in Section 2.2, for the purpose of the case study we
ignore pre-existing DSLs and implement the ones we need. For the purpose of
this discussion we consider the ’+’ operator. Its syntax can be defined as:

expr ::= expr, ′+′, multExpr (1)

We would evaluate expr for Eq. 1 by summing the values of the derived expr
and multExpr non-terminals. This could be formulated as:

expr ::= a = expr, ′+′, b = multExpr {a + b} (2)

by binding the result of evaluating both arguments with variables a and b (using
the = operator), and then specifying that the entire phrase evaluates to a + b,
inside the curly braces.

This notation is clear and concise, however, making it executable is far from
trivial. The grammar in Eq. 1 has a head recursion, making it non-LL (this is
actually an LR grammar). Parsing LR grammars is significantly harder than
parsing LL grammars. LL grammars can be parsed using recursive descent,
with reasonable effort. Generating a parser for even a subclass of LR (such as
LALR(1)) is a much harder task [4]. We therefore would like to restrict ourselves
to LL grammars, and for that we need to avoid head recursion. To make Eq. 1
an LL grammar, we need to replace the head recursion with a tail recursion:

expr ::= multExpr , exprSuffix
exprSuffix ::= ′+′, expr

(3)

This changes the way we calculate the value. We need to adopt a top-down
approach for the evaluation. Such calculation can be formalized as follows:

expr ::= a = multExpr , s = exprSuffix(a) {s}
exprSuffix(a) ::= ′+′, b = expr {a + b} (4)

An expr consists of a prefix (multExpr) and a suffix (exprSuffix). We first parse
the prefix and bind its value to variable a. Then we parse the suffix, providing it
the value of a as argument. The suffix modifies the value by adding the right-hand
value (variable b) to the parameter a. Finally, expr returns the value returned
from the suffix.

The notation used in the example in Eq. 4 is sufficient for expressing the logic
of an entire calculator in our case study.

DSL Schema. Now that we understand what our DSL looks like, we need
to break it down and understanding which constructs our DSL has, and more
importantly, how they are classified. The notation in Eq. 4 holds four “fami-
lies” of constructs: Rules, Patterns, Reducibles and Expressions. Most impor-
tant is the distinction between patterns and reducibles. Both patterns and re-
ducibles define languages of strings, however, a reducible reduces a string to a
single value, whereas a pattern reduces a string into a set of variable bindings.

Code Reuse with Language Oriented Programming 173

(a) Concept definition (b) Editor definition

Fig. 1. Definition of the Concatenation concept in MPS

For example, ′+′, e = expr is a pattern, as it produces the bindings for e, while
the more complete term ′+′, e = expr {p + e} is reducible, since it defines a
single value (p + e) for the string being parsed.

DSLs in MPS can rely on other languages. In this case, we use the Expression
concept defined in the MPS base-language [1] as our expression type, so our
language will inherit the wealth of expressions supported by the base language
with no effort on our part. We do, however, need to define two expression con-
cepts of our own: a reference to an argument (such as p in the term {p + e} in
Eq. 4), and to a bound variable (such as e in the term {p + e} in Eq. 4). These
new expression concepts will integrate seamlessly into base-language expression
concepts such as the ’+’ expression.

In MPS, a DSL schema is defined by defining the language’s structure model.
This model consists of concepts, which are each defined using its own form. The
concept definition resembles a class definition. It contains the concept’s name,
base-concept, implemented interfaces, child concepts, referenced concepts, prop-
erties, etc. For child and referenced concepts, cardinality should be provided.
Table 1 lists the concept in our DSL. Figure 1a shows the definition of Concate-
nation, as an example for a concept definition. Note that this is a screenshot and
not code listing, due to MPS’s projectional nature.

Defining the Editors. To allow projectional editing, we need to define how
each concept is visualized and edited. In MPS we do this by defining an editor
model. Figure 1b shows the editor definition for the Concatenation concept.

174 D.H. Lorenz and B. Rosenan

Table 1. List of concepts in the Grammar DSL

Concept Base
Concept

Projection Description

Alternative Reducible a |
b

Choice between two reducibles

Concatenation Pattern a, b Concatenation of two patterns
Empty Pattern < empty > A pattern matching an empty

string

Grammar - grammar name
rules...

A full grammar

NamedPattern Pattern v = r Assigning a name to the value
produced by reducible r

NamedPattern
Reference

Expression name An expression evaluating to the
value returned from parsing the
reducible associated with name

NonTerminal Reducible name(args...) References the rule named name,
providing it arguments args

PatternValue Reducible p{e} Evaluates to the value of e, with
the variable bindings received from

p

Rule - name(args...)::=r A production rule in the grammar
RuleArgReference Expression name An expression evaluating to the

value of an argument given to the
rule

RuleArgument - name A formal argument for a rule
Terminal Pattern ′string′ A pattern matching a constant

string

Language Refinements. Now the language is defined, although we have not
yet implemented it. However, two refinements are in order:

1. Limiting the scope of rule arguments to the rule they are defined in, and
limiting the scope of variables to the pattern they are defined in. These are
done by defining a constraints model for these concepts.

2. Making the type of both variables and arguments “double,” when used in
expressions. In addition, expressions associated with patterns must also eval-
uate to “double.” These rules are specified in a type system model.

We omit screenshot of these definitions due to space limitations.

3.2 Implementing the DSL

A generator translates the DSL code into a lower-level, executable language,
making the DSL executable. This translation defines the semantics of our DSL.
Before implementing a generator we need to decide on a target language. In
MPS, if Java is an acceptable output language, the MPS base-language [1] will

Code Reuse with Language Oriented Programming 175

be a natural choice. This is an adaptation of Java to MPS including most of its
features (MPS1.1 does not yet support generics), but like all other MPS-based
languages, it is edited using a projectional editor.

The more interesting question we need to ask is how do we wish to see our
DSL program translated to that target language (i.e., Java). In our case, this
means how do we wish to implement a parser or evaluator in Java (or a Java-
like language). We already mentioned that we prefer top-down parsing (LL)
over bottom-up (LR), since the latter requires some heavy algorithms which
we wish to avoid in this case. Therefore, we need to understand how to imple-
ment a recursive descent parser in Java. There are several ways to do that with
performance–simplicity trade-offs. Here we prefer simplicity over performance,
and specifically we prefer the simplicity of the generator, and not necessarily
that of the generated code.

The biggest challenge in this translation is the need for backtracking. In this
case, backtracking is used to support look-ahead. With backtracking, the parser
can go forward several characters following a certain alternative, not find what
it is looking for, and then backtrack to the point when it made the choice and re-
parse the text using a new alternative. This technique is expected to be simpler
(in terms of generator code) then a possible alternative of turning the non-
deterministic state machine into a deterministic one, with no backtracking. One
of the main challenges of introducing backtracking is with regard to variable
bindings. In our DSL we bind values to variables. These values may change due
to backtracking. We need a way to save not only the state of parsing, but also
the value of variables, and restore them when backtracking. Some declarative
languages, such as Prolog, provide natural support for backtracking. Variable
bindings in these languages obey backtracking. In fact, variables in these lan-
guages do not change their value with time except with backtracking.

The semantics of Java (and hence the MPS base-language) does not have
natural support for backtracking. Therefore, one of our challenges would be to
build backtracking “from scratch.”

Implementing a Generator. Here we define the semantics of our DSL. This is
done using mapping rules and reduction rules. Mapping rules define how concepts
in the model map into top-level concepts in the generated code. A class in the
base-language is a top-level concept, so we map each grammar to a class, using
a mapping rule. The mapping rule specifies a template of the class, which lays
out the general structure of a class generated to implement a grammar. This
template uses macros to customize the output class based on the properties
and children of the grammar. One kind of macro, COPY_SRC, is used to copy
child nodes into place in the template. This “copying” includes reduction where
needed, following the reduction rules specified for the generator. Reduction rules
define how a DSL concept is translated to lower-level concepts, usually concepts
of the base language. In our DSL, reducibles and patterns have reduction rules,
transforming them into expressions in the base-language, resulting in an object
implementing IReducible and IPattern respectively. Figure 2 shows the reduction
rule associated with the Concatenation concept. It produces an instance that

176 D.H. Lorenz and B. Rosenan

Fig. 2. Reduction rule for Concatenation

Fig. 3. A calculator implementation

when getting a string it will first pass it through the IPattern associated with
its left-hand argument, passing each result (received using a callback) to the
IPattern associated with its right-hand argument. The COPY_SRC macros
replace the null values with the reduction of the left and right-hand arguments
of the concatenation.

3.3 Implementing the Calculator

Now that our DSL is defined and implemented we can move forward to using
it to implement a concrete calculator. Figure 3 shows an implementation of a
simple calculator, accepting numbers, the four basic arithmetic operations and
parentheses. This definition is indeed short, concise, and contains nothing of
the algorithm required to actually parse the string and to evaluate it. It only
contains the rules by which this will be done.

Code Reuse with Language Oriented Programming 177

Each member of our product line should have such a definition, defining its
precise syntax and semantics. Since all implementation details are encapsulated
in the DSL definition (the generator model), they are fully reused between these
SPL instances.

DSL Code Reuse. As concise as it may be, with complex enough calculators
it may not be enough to reuse the logic hidden in the DSL implementation. DSL
code duplication may become a problem as well. For example, the features de-
fined in Figure 3 may be desired in all calculators. Scientific calculators may add,
e.g., trigonometric functions, and financial calculators may add percentage calcu-
lations; but both will keep this core behavior. One simple solution for that would
be to use inheritance, thus the scientific and financial calculator grammars will
inherit from the basic calculator grammar, adding their own specific functional-
ity. However, inheritance can go only a certain way. Supporting an assortment
of calculator, each with an arbitrary selection of features will not work well with
inheritance. Völter [9] presents an approach to SPL engineering of DSL code in
projectional language workbenches, and has implemented it in MPS. With his
approach, DSL code can be annotated with feature-specific markers. A config-
uration selecting the desired features controls code generation, so that only the
code that contributes to desired features takes effect. This approach can be ap-
plied here, associating grammar rules with features. Consequently, by enabling
and disabling features we can control the insertion and removal of grammar
rules.

4 SPL Implementation in Cedalion

4.1 Defining and Implementing the DSL

We wish to define and implement a DSL similar to the one described in Sec-
tion 3.1, but this time, we use the internal DSL approach, where we implement
each language construct directly, and not by implementing a code generator for
the language. This difference allowed us to separate the language definition into
two separate DSLs: (1) A “generic” DSL for BNF grammars, and (2) an ex-
tension of that DSL to support evaluation (“Functional BNF”, or FBNF). The
concepts of Pattern and Reducible exist here too, but the “generic” BNF DSL
only supports patterns, while the FBNF DSL introduces reducibles. FBNF uses
Cedalion’s Functional DSL (a functional programming language over Cedalion)
for expressions. Table 2 shows all concepts in both DSLs. There are only five
of them (four in BNF and one in FBNF). This is due to the fact that some
concepts (e.g., variables, alternatives) are inherent in Cedalion, due to its logic
programming nature. Other concepts, such as the name(args...) reducible, will
be defined concretely for each reducible type, in the calculator definitions.

Figure 4 shows how a concept (in this case, A, B), is defined and implemented
in Cedalion. The first line is the type signature (comparable with the concept
definition in MPS). It defines A, B to be a pattern, given that both A and B are
patterns. The second line is the projection definition, comparable with MPS’s

178 D.H. Lorenz and B. Rosenan

Table 2. List of concepts in the Cedalion BNF DSL

DSL Concept Type Description
BNF A, B pattern Concatenation of two patterns
BNF ε pattern A pattern matching an empty

string
BNF head::=body statement A production rule. Both head and

body are of type pattern.
BNF ′string′ pattern A pattern matching a constant

string
FBNF Reducible →Type Expression pattern A pattern that associates a

Reducible with an Expression of
type Type.

Fig. 4. Implementation of the conc concept in Cedalion

editor definition. It states that this concept shall be displayed as a horizontal
list (the tiny “h”) of visuals, starting with a placeholder for the projection of
A, followed by a comma, followed by a placeholder for the projection of B. The
third line defines an alias for this concept, allowing the user to type a comma and
get auto-completion suggesting this concept. The last line defines the semantics
of A, B. It does so in a Prolog-like manner, by contributing a clause to the
Pattern ⇒ Text/Residue predicate. This predicate states that Pattern derives a
prefix Pref of Text , such that Text = Pref ·Residue. The clause here parses Text
as A, B by first parsing Text as A, taking the residue Mid and parsing it as B.
The residue now is the overall residue. Similar definitions exist for all the other
concepts. Backtracking and variable bindings are handled implicitly, as they are
inherent in logic programming, simplifying the implementation significantly.

4.2 Implementing the Calculator

Figure 5a shows part of the implementation of a simple calculator in Cedalion,
using the BNF and FBNF DSLs we defined. We omitted the part that defines
the syntax of numbers, due to space limitations. This definition is more elabo-
rate then the one in Figure 3 due to the need to specify type signatures for all
reducibles. Unlike MPS, where concept definitions exist only in the DSL defini-
tion, in Cedalion the DSL code is allowed and encouraged to define new concepts.
This allows safe usage of not only DSL constructs, but also of concepts defined by

Code Reuse with Language Oriented Programming 179

(a) General expression syntax in Cedalion

(b) Trigonometric functions for scientific cal-
culators

(c) Configuration
example

Fig. 5. Calculator implementation in Cedalion

the user, relieving the DSL developer from specifying custom type system rules.
While insisting on having type signatures present in the code, Cedalion offers
to add them automatically. The syntax here is slightly different then the one we
defined with MPS, because while the DSL in MPS was designed as one monolithic
DSL, here we see a composition of two DSLs, trying to reuse their language
constructs as best we can. This is why we have the Reducible →Type Expression
concept on both sides of the production rules (on the right, replacing the MPS
NamedPattern concept, and on the left, replacing the PatternValue concept (see
Table 1). The Alternative in the MPS implementation is not needed here, as
different statements (or in this case, production rules), are taken as having an
or relation, due to the nature of logic programming.

DSL Code Reuse. As in Section 3.3, two approaches can be considered here:
grammar inheritance or associating rules with features. Since our BNF DSL does
not have a concept of a grammar, the first option is inapplicable (recall that this
option has significant drawbacks). However, associating rules with features is
easy, and can be done from outside the DSL [9]. Even though only full statement
can be associated with features, with feature variability [9] this is not a limitation
here, because we only intend to do so with full production rules, which are
statements. Figure 5b shows how do we support trigonometric functions only
if the scientific feature is enabled. Figure 5c shows a configuration, where the
financial feature is enabled, but the scientific feature is not.

180 D.H. Lorenz and B. Rosenan

5 Results, Discussion and Related Work

In previous sections we described a case study, where we used two different tools:
MPS and Cedalion, representing two different approaches to DSLs, external us-
ing imperative base languages and internal using a declarative host language,
to construct a SPL of calculator software, to achieve the goal of maximum code
reuse between products. Indeed, the use of DSLs (regardless of their implemen-
tation approach) improved reusability by placing the complexity in a shared
asset, the DSL implementation. The particular assets in both implementations
are stated in a high-level language, capturing the high-level concepts of the prob-
lem domain. With methods for associating DSL code with specific features, we
can maximize code reuse even at the DSL level, bringing code duplication to
zero. We therefore can conclude that we have achieved our goal of code reuse
through LOP.

But at what cost? Here the choice of tools takes effect. We measured the
time it took to implement and test the first, simplest calculator (four arithmetic
operations and parentheses), including the time it took to define and implement
the DSL behind it. With MPS it took us about eight hours of work, most of which
were dedicated to creating the generator, which was not trivial (implementing
backtracking and variable bindings that adhere to backtracking in a Java-like
language). In Cedalion it took about two hours. The main challenge there was
dealing with the tool’s sensitivity to user errors (i.e., its tendency to crash due to
them). As evidence for this difference in effort, one can look at the complexity of
the DSLs we defined in both tools. It takes significantly less time to implement
five constructs than to implement twelve. Moreover, backtracking and variable
binding were given for free by the host language. No type system extensions were
needed, apart from defining a type signature for each construct. Once the DSLs
were defined and implemented, using them was relatively similar in effort. MPS
is more mature and therefore is more usable. Cedalion requires type signatures
for each new concept (including ones defined in DSL code), which takes a little
effort and makes the code a bit more elaborate. However, these differences are
minor relative to the difference in effort in implementing DSLs. We therefore
conclude that from the view point of this case study, internal DSLs seam to be
a more cost effective for achieving code reuse through LOP.

5.1 Threats to Validity

In this work we used implementation time to measure cost efficiency. It may be
argued that our familiarity with Cedalion introduced a bias in its favor. However,
we took that into account, and familiarized ourselves with MPS well enough
before starting this case study, so that the eight hours the implementation took
did not include any of the “learning curve.”

Another concern that may rise is the fact that we defined the case study
ourselves, and it may therefore be biased in favor of internal DSLs, and Cedalion
in particular. Specifically, the need for backtracking and variable bindings turns
the tables in favor of Cedalion. However, these concepts are needed for many

Code Reuse with Language Oriented Programming 181

declarative notations. This is why they are so fundamental in logic programming.
We chose this case study because it is relatively small and self contained, and at
the same time not trivial.

5.2 Related Work

The first notable work on code reuse through systematic use of DSLs was done by
Neighbor [6]. This work introduces Draco, a generative DSL framework. Draco’s
limitation in comparison with MPS and Cedalion is in its dependence on parsing,
which is sensitive to conflicts that can arise when fusing the syntax of several
DSLs together.

The term LOP has been coined by Ward [11], who mentioned reuse as one
of its primary goals. It was then used by Dmitriev [1] and Fowler [2]. Their
notion of LOP is a bit different than Ward’s, as they emphasis the need for DSL
interoperability. DSL interoperability widens the opportunities for code reuse
as the DSLs become small, reusable components. However, Dmitriev [1] and
Fowler [2] do not explicitly mention code reuse as a goal for LOP.

At the heart of this paper is a comparison of two approaches to LOP: internal
and external DSLs. To our knowledge, not many such comparisons have been
proposed. The Language Workbench Competition (LWC) [10] provides a sugges-
tion for comparison between language workbenches. It provides a common task
that should be implemented on different workbenches to allow learning about
their trade-offs. However, this task does not tell a full story. It specifies a par-
ticular DSL, but does not specify the semantics for that DSL. As a result, we
found the LWC not helpful for assessing reuse, and therefore turned to define
our own.

6 Conclusion

In this paper, we demonstrated how LOP can be used for code reuse, allowing a
separation-of-concerns between the generic, reusable high-level concepts used to
describe the problem and its solution, and the concrete definition of a particular
instance in a SPL. We showed that by defining DSLs to capture high-level con-
cepts we hide the complexity of transforming them into low-level concepts inside
the DSL implementation. The DSL implementation becomes an asset shared
across the SPL.

This LOP goal was achieved regardless of the choice of approach, internal
DSLs over a declarative language or external DSLs over an imperative language.
However, the cost of doing that differs significantly. In our case study, using
internal DSLs proved to be nearly four times more cost-effective than using
external DSLs. While the numbers may vary based on the nature of the SPL
and the ratio between the size of the DSL implementations and the amount of
DSL code, the advantage of using internal DSLs is evident.

From a reuse perspective, internal DSLs provide an additional advantage.
Our ability to construct our DSL from two different DSLs (BNF and FBNF)

182 D.H. Lorenz and B. Rosenan

in the Cedalion implementation opens opportunities for reuse, since the BNF
DSL can be used by itself, possibly for totally different kinds of products, and in
conjunction with other DSLs. With MPS and external DSLs, combining DSLs
is also possible, however, because of the code generation nature of the tool, we
could not support such a separation in our case study. We actually started with
a generic BNF DSL, but found it inapplicable for our needs, since it did not
support variable bindings.

The case study in this paper provides the reader unfamiliar with LOP with
a sense of how LOP can be leveraged for code reuse, and how language work-
benches and LOP languages can help performing that task. Our case study shows
an advantage for using declarative over the use of imperative programming as a
base language. Surprisingly, despite this demonstrated (dis)advantage, the cur-
rent state of the art is implementing LOP mainly using imperative languages
(through language workbenches), instead of using declarative languages such as
Cedalion.

Acknowledgement. We thank Michał Śmiałek for his helpful comments.

References

1. Dmitriev, S.: Language oriented programming: The next programming paradigm.
JetBrains on Board 1(2) (2004)

2. Fowler, M.: Language workbenches: The killer-app for domain specific languages
(2005), http://www.martinfowler.com/articles/languageWorkbench.html

3. Hudak, P.: Building domain-specific embedded languages. ACM Computing
Surveys (CSUR) 28(4es) (1996)

4. Johnson, S.C.: Yacc: Yet another compiler-compiler. Technical Report CSTR32,
Bell Laboratories, Murray Hill, NJ (1975)

5. Lorenz, D.H., Rosenan, B.: Cedalion: A language-oriented programming language.
In: IBM Programming Languages and Development Environments Seminar, Haifa,
Israel (April 2010)

6. Neighbors, J.M.: The Draco approach to constructing software from reusable com-
ponents. IEEE Trans. Software Eng. 10(5), 564–574 (1984)

7. Rosenan, B.: Designing language-oriented programming languages. In: Companion
to the ACM International Conference on Systems, Programming Languages, and
Applications: Software for Humanity (SPLASH 2010), pp. 207–208. ACM, Reno
(2010)

8. Simonyi, C., Christerson, M., Clifford, S.: Intentional software. ACM SIGPLAN
Notices 41(10), 451–464 (2006)

9. Völter, M.: Implementing feature variability for models and code with projec-
tional language workbenches. In: Proceedings of the 2nd International Workshop
on Feature-Oriented Software Development (FOSD 2010), pp. 41–48. ACM, Eind-
hoven (2010)

10. Völter, M., Visser, E., Kelly, S., Hulshout, A., Warmer, J., Molina, P.J., Merkle,
B., Thoms, K.: Language workbench competition (2011),
http://www.languageworkbenches.net

11. Ward, M.P.: Language-oriented programming. Software-Concepts and Tools 15(4),
147–161 (1994)

http://www.martinfowler.com/articles/languageWorkbench.html
http://www.languageworkbenches.net

Achieving Reuse with Pluggable Software Units�

Fernando J. Barros

Departamento de Engenharia Informática
Universidade de Coimbra

Coimbra, Portugal
barros@dei.uc.pt

Abstract. In this paper we present a solution to software reuse based
on Pluggable Units (PUs) that can be used to compose new applications
from existing parts. Although this goal has been achieved in hardware
design through the creation of integrated circuits (ICs), the attempts to
build a software equivalent were not fully successful. Pluggable units are
a full fledged software implementation of the IC concept while providing
new features not existing in hardware, namely the ability to compose
software hierarchically. An application example is provided in JUse, a
new Java-based language supporting pluggable units and in JWidget,
a pluggable version of Java/Swing.

1 Introduction

Increasing software productivity was identified as one of the grand challenges
facing Information Technologies [1]. Although many tools and development pro-
cesses have been created, the efficient exploitation of reusable code looks the
most encouraging way to greatly increase programmer productivity [1].

Reuse has been achieved in many areas, and it has the potential of reduc-
ing costs and dramatically improve productivity. Nowadays, standardization is
common in the computer hardware industry leading to large cost reductions.
The main responsible for hardware standardization and reuse was the creation
of Integrated Circuits (ICs) that has allowed the mass production of electronic
devices at low cost and the development of new hardware based on existing ICs.

Although the IC paradigm looks promising for achieving cost reduction in
software development, software ICs were never fully achieved [31] and adopted
by the software industry [30]. Moreover, pessimistic authors argued that software
is intrinsically different from hardware and, thus, software reuse may be never
fully accomplished [12].

Hierarchical and modular principles have been used as a powerful heuristic
for handling complex problems [8]. We have adapted these concepts to program-
ming language design and we have developed Connectons [9], a formalism that
defines independent and reusable software units. Connectons merge a modular

� This work is supported by the Portuguese Foundation for Science and Technology,
under grant PTDC/EIA-EIA/100752/2008.

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 183–191, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

184 F.J. Barros

and hierarchal description, with request-reply communication protocol [9]. The
result is a new language based on independent and pluggable (software) units
(PUs) that allows the development of applications by assembling existing soft-
ware. Pluggable units provide a realization of software ICs, taking the concept to
a level that was not achieved by hardware ICs. These features include the abil-
ity to define PUs by composition of other PUs being the result indistinguishable
from a basic PU. Another characteristic is the ability to change the composition
and coupling of software ICs during runtime operation. This feature also allows
PUs to be moved across networks of PUs [10].

In this paper we introduce JUse, an implementation of pluggable software
units in the Java/Groovy language. We demonstrate the use of JUse with a sim-
ple application and we show that JUse yields to simpler and reusable software
when compared with the corresponding solution based on object-oriented using
design patterns [15]. Other approaches have been developed to tackle software
reuse with software components. This related work is described in Section 3.

This paper focus on some of the key aspects enabling software reuse. The
benefits of reuse on quality, productivity and lead-time reduction have been
demonstrated [18, 20, 23, 28].

2 Pluggable Software Units

Pluggable (software) units (PUs) provide a realization of independent and reusa-
ble software. PUs permit the development of software by composition of existing
assets enabling the benefits associated with software reuse [28].

We define two types of pluggable software units: basic and network. Basic PUs
provide method invocation, whereas networks are a composition of PUs provid-
ing message passing operations. Network composition and coupling is dynamic
permitting the definition of self-adaptive topologies [10].

To manage complex systems, PUs can be hierarchically composed being the
resultant pluggable unit indistinguishable from a basic PU. This ability permits
to handle, in a homogeneous form, both basic and network software units. The
network is managed by a special PU termed here by network executive.

Pluggable software units are supported by JUse, a Java/Groovy implemen-
tation of PUs. We show that PUs provide full reuse support for two reasons.
First, reuse is achieved by removing any external dependency from PUs defini-
tion. This enables the definition of PUs independently from the context they will
be used. Second, the combination of arbitrary PUs is greatly simplified by the
introduction of adapting filters that can transform parameters between incom-
patible interfaces [9]. These two features offer the basic framework for a solution
to the reuse problem. JUse implements most of the concept defined in Con-
nectons [9], and it provides a similar implementation to the original Smalltalk
realization. Both versions are based on the Meta-Object Protocol (MOP) and
current work is being made to improve MOP performance. The PU concept is
orthogonal to thread-based programming and actually no threads are required
to JUse applications. Threads can obviously be used, but JUse does not of-
fer any particular support for thread synchronization that need to be enforced

Achieving Reuse with Pluggable Software Units 185

through conventional constructs. Also, under development is the type system,
already described in Connectons [9], in order to make JUse more amenable to
syntax checking. A detailed description of the Smalltalk version of PUs can be
found in [9]. JUse uses a similar implementation based on MOP.

2.1 Basic Pluggable Unit

We start the description of the basic pluggable units by defining the Pull PU.
This unit performs the following sequence of actions: a) send a request; b) receive
the answer; c) send a new request with this answer; c) receive a new answer; d)
return the last answer. To fulfill the specification we define the input gate get,
and two output gates get and send as depicted in Figure 1.

Fig. 1. The Pull software unit

JUse definition of the Pull software unit is shown in Listing 1.1. Class
Connecton is the base class of all PUs. This class defines variable out used
to access all external PUs.

1public class Pull extends Connecton {

2public GateCollection inGates() {return super.inGates().add("get")}

3public GateCollection outGates() {return super.outGates().add("get").add("send")}

4public Object get() {

5Object value = out.get();

6Object answer = out.send(value);

7return answer;

8}

9}

Listing 1.1. Pull definition in JUse

Method inGates defines Pull input gates while method outGates defines
PU output gates. For each input gate we need to define the corresponding action
(method). Output gates provide the construct to achieve the independence of
software units and they are used to discriminate massages sent through the
pseudo-variable out. The actual invocation of external actions depends on the
context the PU is inserted.

Action get defines the Pull behavior. Line 5 gets a value from the output
gate get. This value is sent through gate send (Line 6). The answer is returned
in Line 7. In spite of its simplicity, the Pull PU combines Event-Based Program-
ming (EBP), point-to-point communication and request-reply communication.

186 F.J. Barros

EBP would require the creation of an event to request a value, the creation of
an additional event to signal the answer, and finally, the creation of a new event
to send the answer. PUs effectively combine request-reply communication with
fully independence, characteristic of EBP, to achieve a framework that extends
object-oriented programming without incurring in the cumbersome specifications
of EBP.

At this point, we emphasize that the definition of the Pull unit is completely
independent from any other software units, making it fully reusable, since it does
not depend on any external entity.

The definition of PUs imposes strongly typed gates with input and output
signatures [9]. However, this typing system poses no constraint on gate linkage
since PUs enable the definition of both forward and reverse filters to make the
match between incompatible signatures as we show in the next Section.

2.2 Network Pluggable Unit

Pluggable units can be composed to define networks of software units. To demon-
strate the concept of network pluggable software unit we describe here the audio
system presented in [15] and originally designed with the Model-View-Controller
pattern. We model this application as a composition of reusable software units,
as shown in JUse/CAD depicted in Figure 2. The corresponding JUse definition
of the Audio application is made in Listing 1.2.

Application rendering is depicted in Figure 3, where the left frame defines
the beat value and the right frame shows the last value sampled from the audio
volume. CButtons have the output gate buttonUp that signal a mouse click. The
Sampler PU stores the current sampling rate (or beat). The beat can be entered
directly through the CTextField and set when the users presses button Set. The
beat can also be changed by the Up/Down buttons that increment/decrement its
value by one unit. The Sampler uses the beat value to sample the audio volume.
This value is read by the Sampler and then displayed on a progress bar. The
Audio Executive (top-left unit) is responsible for defining the topology of the
network pluggable unit. This unit also supports the run time adaptation of the
topology.

This application was developed using the JWidget library. JWidget wraps
Swing objects, like JFrame and JButton, and Swing events in order to achieve a
pluggable version of GUI widgets. JWidget enables the seamless integration of
GUI elements in any application since no event model is required for the GUI,
making the overall application homogenous and based on the same communica-
tion paradigm.

Same PUs have incompatible interfaces and require adaptation. This is the
case of CTextField that requires a String to be displayed. Since the Sampler
produces int values, a filter [9], is required to make the matching between String
and int types. This adaptation involves the method toString(), as defined in
Listing 1.2, Line 21. In general, filters (forward and reverse) can make the match
of any two signatures, freeing the user from creating additional PUs to act as
adapters.

Achieving Reuse with Pluggable Software Units 187

Fig. 2. Audio software topology represented in JUse/CAD

Fig. 3. Audio volume GUI

1public void topology() {

2super.topology();

3add(CFrame, "Frame", {CFrame frame -> frame.setTitle("Audio Volume")});

4add(CFrame, "Audio", {CFrame frame -> frame.setTitle("Audio Beat")});

5add(CButton, "Up");

6add(CButton, "Down");

7add(CButton, "Set");

8add(Controller, "Controller");

9add(CProgressBar, "Bar");

10add(CTextField, "Value");

11add(Sampler, "Sampler");

12add(Pull, "Pull");

13...

14link("Up", "buttonUp", "Controller", "up");

15link("Down", "buttonUp", "Controller", "down");

16link("Set", "buttonUp", "Pull", "get");

17link("Pull", "get", "Value", "getText");

18link("Pull", "send", "Controller", "set");

188 F.J. Barros

19link("Controller", "set", "Sampler", "setSR");

20link("Controller", "get", "Sampler", "getSR");

21link("Controller", "set", "Value", "setText", "{[int x]->[x.toString()]}", "{Object

x->x}");

22link("Sampler", "update", "Bar", "setValue");

23link("Sampler", "sample", "Network", "sample");

24...

25}

Listing 1.2. JUse definition of the Audio application

The Audio PU can be be developed using a text editor or, in alternative, in
the CAD of Figure 2, an interactive manipulation tool that simplifies topology
definition. A new CAD is currently being developed in a widespread rich client
platform.

In spite of its simplicity, this application shows several keys aspects involved
in software reuse. Some of the PUs composing the application already existed
in JWidget. Only two new PUs were created to develop the application. The
Sampler PU stores the sampling rate and it is specific of this software. The logic
of the application is unique, requiring also the development of a specific software
topology, materialized in the creation of a new Executive PU.

The Audio network PU is reusable by design and it can be used in other
projects that require read/display a signal. In particular, it can be reused through
inheritance of topology as defined in [9]. In general a software project involving
PUs reuses existing code, requires the creation of new code that can be lat-
ter reused, and the development of code very specific to a domain with little
possibility of reuse.

Although, some domain specific languages approaches, like AppInventor [4],
address GUI development they are actually very different from JWidget and
not directly related to JUse. In particular, AppInventor does not support the
concept of output gate suffering from the same limitations of object-oriented
programming in enabling large scale reuse. In fact, AppInventor uses the event
paradigm to support GUI development being, is this aspect, similar to more
conventional systems like Java/Swing.

3 Related Work

Hierarchical and modular principles have been used as a powerful heuristic for
handling complex problems in many fields. One of the first formal descriptions
of modular decomposition have been made in the area of General Systems The-
ory [22, 34]. An earlier use of modularly in software was made in [17], where a
synchronous programming language was defined.

The main limitation of general systems formalism is due to its asynchronous
nature that is not compliant with the request-reply communication protocol
used by most programming languages. This feature added to the imposition of
a determinist execution of timed systems, prevents systems theory to be used in
practice in software engineering [8].

Achieving Reuse with Pluggable Software Units 189

Software engineering first mention modularity is made in [26]. However, this
work did not go beyond general principles, since no implementation or a for-
mal definition was provided. The decomposition of software into modules has
later been advocated in software engineering [11]. On this latter work, however,
the hierarchical decomposition of software has not been really introduced but
rather hierarchy is used as synonymous of layered (software). Again no working
definition of modularity was provided.

Pluggable units relate to the overlapping areas of software architectures [21]
and software components [19]. Formal definitions of software architectures have
been created [3, 5, 25, 13]. Likewise systems theory representations, these for-
malisms based on CSP, synchronous programming or π-calculus are not compli-
ant with the request-reply communication protocol, imposing awkward software
specifications. Given these limitations, most formal models are of little use for
developing software applications.

To overcome the limitations of formal descriptions, so called Architecture Def-
inition Languages (ADLs) have been developed [16, 21, 29]. However, ADLs are
mainly façades decoupling specification from implementation as pointed in [2].
ADLs need thus to be translated into a programming language. This process is,
in some aspects, similar to the one used by the Unified Modeling Language [6]
with the limitations and drawbacks of separating specification from implemen-
tation [32].

Many current approaches are generative [13,14,33], with the inherent limita-
tions. We also consider that generative approaches make it difficult to develop
libraries of independent and reusable software units as we have achieved with
the JWidget library described in the last section. In fact we found that GUIs
are commonly treated as monolithic systems that need to be generated to every
application [32]. Little evidence has been provided that GUIs are currently being
developed in software architectures from reusable and independent widgets. An
excellent overview of the plethora of existing ADLs and their limitations is given
in [7].

To bridge the gap between specification and implementation, hierarchical and
modular constructs have been introduced into existing programming languages
[2]. However, this approach does not provide the general support to modular
hierarchal software as provided by PUs. Limitations include the lack of filters
and input/output functions defined by PUs [9]. Additionally, ArchJava does not
provide full support for topology adaptation. In particular this system does not
support operators to remove component and links, being incapable to represent
mobile PUs as defined in [10].

We found it difficult to compare JUse with related approaches since research
papers do not, in general, provide detailed solutions to well defined problems
like, for example, those addressed by design patterns. Exceptions include, for
example, Aspect Programming [27], and the Scala language [24] that describe
how to represent several design patterns. Taking, for example, the Observer
pattern, we found that that PUs provide a simpler and more reusable solution [9],
than the alternative representations provided in [24, 27].

190 F.J. Barros

Components are often pointed as providing supporting independent and com-
posable software units [31]. However, no agreement on the definition of com-
ponent has been established. In particular, the definition of component given
in [31] points to an entity without permanent state. This is incompatible with
our definition of PUs as given in [9]. For this reason we choose to not use this
overloaded and ambiguous term.

4 Conclusions

Pluggable units (PUs) provide independent and fully reusable software. PUs
implement the concept of IC in software, taking it to limits not yet attainable
by hardware ICs. PUs enable software creation by composition of existing parts
avoiding the costly development of software from scratch. We conjecture that
reusable software units will enable a new software development cycle enabling
improved programmer productivity, as large repositories of reusable software
units become available in the different application domains. JUse provides a
Java/Groovy implementation of pluggable software units leveraging systematic
reusable to software engineers. We are currently developing several libraries in
order to show the ability of pluggable units to represent arbitrary systems.

References

1. Gartner identifies seven grand challenges facing IT (2008),
http://www.gartner.com/it/page.jsp?id=643117

2. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting software architec-
ture to implementation. In: International Conference on Software Engineering, pp.
187–197 (2002)

3. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Transac-
tions on Software Engineering and Methodology 6(3), 213–249 (1997)

4. AppInventor, http://appinventor.googlelabs.com/
5. Arbab, F.: Reo: A channel-based coordination model for component composition.

Mathematical Structures in Computer Science 14, 329–366 (2004)
6. Arlow, J., Neustadt, I.: UML 2 and the Unified Process: Practical Object-Oriented

Analysis and Design. Addison, London (2005)
7. Barais, O., Meur, A., Duchien, L., Lawall, J.: Software architecture evolution. In:

Software Evolution, pp. 233–262. Springer, Heidelberg (2008)

8. Barros, F.: Modeling formalisms for dynamic structure systems. ACM Transactions
on Modeling and Computer Simulation 7(12), 505–515 (1997)

9. Barros, F.: System and method for programming using independent and reusable
software units. US Patent 6851104 B1 (Filed August 2000) (February 2005)

10. Barros, F.: Representing hierarchical mobility in software architectures. In: In-
ternational Workshop on Software Engineering for Adaptive and Self-Managing
Systems (2007)

11. Batory, D., O’Malley, S.: The design and implementation of hierarchical software
systems with reusable components. ACM Transactions on Software Engineering
and Methodology 1(4), 355–398 (1992)

http://www.gartner.com/it/page.jsp?id=643117
http://appinventor.googlelabs.com/

Achieving Reuse with Pluggable Software Units 191

12. Brooks, F.: No silver bullet: Essence and accidents of software engineering. In:
Information Processing 1986, pp. 1069–1076 (1986)

13. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.: The FRACTAL
component model and its support in Java. Software Practice and Experience 36(11-
12), 1257–1284 (2006)

14. Bureš, T., Hnětynka, P., Plášil, F.: Dynamic reconfiguration and access to
services in hierarchical component models. In: International Conference on Soft-
ware Engineering Research, Management and Apllications, pp. 40–48 (2006)

15. Freeman, E., Freeman, E., Sierra, K., Bates, B.: Head First Design Patterns. O’
Reilly, Sebastopol (2004)

16. Garlan, D., Monroe, R., Wile, D.: ACME: An architecture description interchange
language. In: Conference of the Centre for Advanced Studies on Collaborative
Research (1997)

17. Kahn, G.: The semantics of a simple language for parallel programming. In: Infor-
mation Processing, pp. 471–475 (1974)

18. Khoshgoftaar, T., Allen, E., Kalaichelvan, K., Goel, N.: The impact of software
evolution and reuse on software quality. Empirical Software Enginnering, 31–44
(1996)

19. Lau, K.-K., Wang, Z.: Software component models. IEEE Transactions on Software
Engineering 33(10), 709–724 (2007)

20. Lim, W.: The effects of reuse on quality, productivity, and economics. IEEE Soft-
ware, 23–30 (1994)

21. Medvidovic, N., Taylor, R.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Transactions on Software Engineer-
ing 26(1), 70–93 (2000)

22. Mesarovic, M., Takahara, Y.: General Systems Theory: A Mathematical Founda-
tion. Academic Press, London (1975)

23. Mohagheghi, P., Conradi, R.: Quality, productivity, and economics benefits of soft-
ware reuse: A review of industrial studies. Empirical Software Engineering 12,
471–516 (2007)

24. Odersky, M., Zenger, M.: Scalable component abstractions. In: Object-Oriented
Programming Systems Languages and Applications, pp. 41–57 (2005)

25. Oquendo, F.: Formally modelling software architectures with the UML 2.0 profile
for π-ADL. ACM SIGSOFT Software Engineering Notes 31(1), 1–13 (2006)

26. Parnas, D.: On the criteria to be used in decomposing systems into modules. Com-
munications of the ACM 15(12), 1053–1058 (1972)

27. Pawlak, R., Seinturier, L., Retaillé, J.-P.: Foundations of AOP for J2EE Develop-
ment. A-Press (2006)

28. Sametinger, J.: Software Engineering with Reusable Components. Springer,
Heidelberg (1997)

29. Shaw, M., Clements, P.: The golden age of software architectures: A comprehensive
survey.TechnicalReportCMU-ISRI-06-101,Carnegie-MellonUniversity,USA(2006)

30. Sommerville, I.: Software Engineering 8. Addison-Wesley, Reading (2007)
31. Szyperski, C.: Component Software: Beyond Object-Oriented Software. Addison-

Wesley, Reading (1998)
32. Taylor, R., Medvidović, N., Dashofy, E.: Software Architecture. Wiley, Chichester

(2010)
33. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala compo-

nent model for consumer electronics software. Computer 33(3), 75–85 (2000)
34. Wymore, A.: A Mathematical Theory of Systems Engineering: The Elements.

Krieger (1967)

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 192–206, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Eight Practical Considerations in Applying Feature
Modeling for Product Lines

Juha Savolainen1, Mikko Raatikainen2, and Tomi Männistö2

1 Nokia Research Center, Itämerenkatu 11-13, 00180 Helsinki, Finland
juha.e.savolainen@nokia.com

2 Software Business and Engineering Institute, Aalto University, PL 19210 Aalto, Finland
{Mikko.Raatikainen,Tomi.Mannisto}@aalto.fi

Abstract. Feature modeling has enjoyed success as a widely used variability
modeling method in companies utilizing product lines. A number of different
feature modeling methods have been proposed with expanded notational
concepts and ability to model various dependencies among features. Despite
popular usage and relatively simple concepts, different feature modeling
methods tend not to explicate their purposes and assumptions and, in particular,
how exactly the model is intended to be used. Consequently, many practitioners
have a hard time evaluating whether a particular method is good for their
purposes. In this paper, we intend to discuss the practical considerations when
applying feature models. On the one hand, discussion of these considerations in
research papers would clarify the intent of a proposed method. On the other
hand, the considerations could help practitioners in clarifying the guiding
principles for their feature modeling. In total, we expose eight points of
practical considerations that are rarely discussed in research papers. These
observations are based our experience of practice and research carried out in
close cooperation with several companies.

Keywords: feature modeling, industrial experience, software architecture.

1 Introduction

Feature modeling is a popular variability modeling approach in software product
lines, which is an approach to reuse software among product variants. In general, a
feature in a feature model refers to an end-user visible characteristic of a system, or a
distinguishable characteristic of a concept (e.g., system, component, and so on) that is
relevant to some stakeholder of the concept [2]. Therefore, feature models are also a
meaningful means to represent variability both internally and externally, e.g., to
engineers as well as to customer.

Recently, research has focused on feature modeling languages that include formal
semantics, parsimony, and much expressive power. In addition, tools supporting these
languages in analysis, use, and construction have been developed. In fact, since the
emergence of the original feature modeling approach, FODA [1], several extensions
have been developed [2,3,4], various formalizations of feature models have been
developed [5,6,7], and comparisons have been made [8] that all contribute to these

 Eight Practical Considerations in Applying Feature Modeling for Product Lines 193

targets. Currently, the resulting feature models are able to express modeled software
unambiguously and parsimoniously.

However, from practitioners’ point of view, a central criterion of any method is
utility. Here, utility means adhering to dictionary-definition, i.e., fitness for some
desirable purpose or valuable end [11], including costs and benefits. To increase
utility, less expressive modeling notations can be used that are also easier to use or
easier in maintenance (cf. [9]). For example, sometimes a feature model on a
whiteboard is the best model for the purpose of maximizing utility. Although, at least
in the long term, engineering research tries to fulfill the needs of the practice, the
state of the art in feature modeling seems to be that there are several considerations
that are rarely addressed from the point of view of practitioners in the research.
Therefore, practitioners have challenges in assessing the methods and models for their
specific needs. Often, these considerations are implicit and represent a choice between
equally valid alternatives having practical implications. The choice depends on the
application domain, context, usage, and other factors. A universally applicable feature
modeling approach is unlikely to exist. Rather, different methods address different
considerations in different ways.

In this paper, we identify eight practical considerations that should be considered
when developing a new feature model or using an existing one or applying feature
modeling in practice. Despite not being extensive, the considerations are relevant
for the utility of a feature model according to our experience in practice and
research carried out in close cooperation with several companies. We argue that
the considerations are also worth taking into account by researchers developing new
or extending existing feature modeling methods. The considerations are discussed in
light of an example of a mobile phone product line.

2 The Eight Considerations

2.1 Cost–Benefit

The most fundamental consideration in feature modeling is what is cost-efficiently
meaningful to model. From the practical point of view, a feature model is an
investment in terms of work effort. Too many details without a clear usage of these
details lead to wasted work that could have been used better otherwise. Having a good
model provides clear benefits, such as better manageability and understanding.
However, if only a sketch of a product line is needed for communication, why make a
complete feature model with fancy constraints? The point of choice is how much and
what to model.

Our experience is that existing feature modeling concepts and tools make it
possible to construct a feature model of practically any software. However, despite
being possible, the cost-efficiency of such modeling efforts remains questionable.
On the one hand, constructing a model itself can be laborious. On the other hand, the
understanding and use of the model can be impractical.

Besides making a decision on how much should be modeled, even a larger
investment consideration is often the actual maintenance of the model when, e.g.,
software, domain, or business decisions change. Each change can spread to the feature
model and force large changes that are expensive to make. That is, although modeling

194 J. Savolainen, M. Raatikainen, and T. Männistö

itself can be laborious, it is still relatively easy and cheap to develop a comprehensive
feature model compared to the costs required to maintain the same model. Our
experience is that, even in complex situations, the creation of a feature model may
well succeed but then fail in the maintenance. In fact, even in simple situations,
failures are usually based on maintenance and keeping the model up to date.

The cost-benefit analysis should be the responsibility not only of the companies but
also of research on feature modeling methods, including notations. That is, any
extension or other further development of methods or tools should be assessed in
terms of cost-benefits.

Overall, making good choices regarding the cost and benefit is one of the most
difficult decisions during product line development. Making good decisions requires
an excellent understanding of the company’s needs and available methods to suit
those needs. Three central issues in feature modeling are the costs and benefits of
constructing, using, and maintaining the model. The decision about how, what, and
how much to model has an influence on many other following considerations.

2.2 Completeness

A consideration closely related to how much to model in terms of cost-benefit is the
completeness of a feature model. A feature model specifies the constraints of the
ways in which the features can be combined. Ultimately, the feature model may be so
restrictive that it represents only correct feature configurations; i.e., every feature
configuration derived from the feature model represents a correct product variant.
However, if not all constraints are defined, derivation can typically produce at least all
correct configurations but also some incorrect ones.

Typically, increasing completeness adds something, such as constraints, to the
feature model and makes a model contain more information, making it more complex
to understand. Increasing complexity also increases the likelihood of introducing
errors in the model as well as making the long-term management of the model harder.
The more constraints the model has, the more opportunities for changes are also
present. This is especially true if one chooses to model constraints that do not have a
solid technical or domain background.

An advantage of modeling all details is that various automations can be
conveniently applied, such as automatically deriving the different variants, the analysis
of correctness of feature configurations against the feature model, or finding out
whether some constraints in the feature model are obsolete. In practice, automation
requires a large number of different products to justify the investment in modeling all
details. An example of such automatic derivation is when sales representatives or
customers do the derivation. However, even with an incomplete feature model,
analysis and derivation can be carried out, although the outcome needs to be carefully
assessed.

Typically, in industrial product lines, the feature model is not complete. In
particular, some of the most obvious decisions are left to the product manager to take
care of when making decisions about the product features. A feature model includes
non-trivial dependencies and constraints.

The challenge with respect to constructing a complete feature model is not in the
capabilities of methods or notations. Rather, the challenge for research and practice is
the usability of methods, notations, and supporting tools.

 Eight Practical Considerations in Applying Feature Modeling for Product Lines 195

2.3 Stakeholders

An important question in a feature modeling is: what stakeholders is the feature model
meant for, and what are their concerns for the model? The feature model is intended
for a specific purpose and stakeholders. In practice, employees construct and use the
feature model, although tools such as analysis tools can be used as well.

Feature modeling was, originally, an approach to model a problem or solution
domain and, typically, a tool of software engineers or other technical designers.
However, a feature model can also be used by a wider audience. An example is using
a feature model in internal product segmentation within product management or even
for marketing or sales. That is, the stakeholders of the feature model can include
product developers, product managers, sales, and even customers or users.

In the case of non-technical use, a feature model may be a sketch intended to help
in, e.g., product planning or work organization. Such a model does not strive for
completeness and unambiguousness but, rather, to communicate the main ideas of the
product line. A feature model can function as a tool in the communication and
elaboration of product line planning, even with non-technical stakeholders. Especially
in such a case, the simplicity and clarity of the feature model overweight rigor.
A model is useless if it is too complex or detailed to be understood by the relevant
stakeholder.

If a feature model is used as a basis for product architecture, more rigor needs to be
put into the modeling, e.g., in terms of constraints and correct structure. When the
model is used in technical planning, even automated tool assistance can be applied
and analyses carried out that require a certain level of correctness of the model.

A key point is the differences of these stakeholders who have a different
background as well as different knowledge of the domain and the product line. A
detailed technical model is not necessarily understandable or meaningful to non-
technical stakeholders since they are not necessarily familiar with the details of
software implementation. The details of technical constraints or relationships can
create confusion, at best, among non-technical stakeholders. Even the feature
modeling notations can be unintuitive for non-technical stakeholders. Respectively,
technical stakeholders are not familiar with business constraints or what should be
revealed to customers and how best to communicate with customers.

The stakeholders who are responsible for constructing and managing the model can
be different from the stakeholders who benefit from the model. Consequently,
researchers who propose a modeling method should consider and discuss who would
construct and use the model. Similarly, the practitioners should think before starting
to build models and clearly identify the stakeholders in their organization.

To sum up, there are stakeholders who, on the one hand, construct and maintain the
model and, on the other hand, use the model. Each of these stakeholders has different
knowledge about feature modeling in general and the product line in question.

2.4 Domain

An important question in feature modeling is whether a resulting feature model is
intended to represent the problem or solution domain. The domain is not necessarily
obvious from the model. If the feature model represents the problem domain, then the

196 J. Savolainen, M. Raatikainen, and T. Männistö

representation tries to capture the domain characteristics as the main features and their
interactions. In a technical sense, features can be considered as corresponding with
possible requirements. However, these requirements are general in the sense that they
are not necessarily implemented yet or might not even be planned to be implemented
in the product line. The feature model, including its constraints, thus, represents what
is meaningful or feasible in the domain. The domain, per se, does not restrict the
existence of the feature even if the feature combinations are not feasible
commercially. For example, a domain model would not require a mobile phone to
have a camera, although most, if not all, mobile phones today have a camera.
However, a feature of making a phone call being optional does not make sense in a
domain model of a mobile phone.

Alternatively, a feature model can represent the solution domain of a product line.
The feature model, thus, corresponds with elements in the actual product line. The
feature model excludes the characteristics of the domain that are not considered as
being within the scope of the product line. The constraints and relationships are based
on the decisions made about the product line. The decisions can be based on various
reasons, including but not limited to technical constraints and product strategies.

Another consideration related to the usage of a feature model is the horizon to the
future that the model is intended to capture. A feature model may aim to represent
only the current situation of the product line, e.g., the variability as it exists now. As a
result, when the software product line changes, respectively, the feature model needs
to change. However, a feature model can also represent planned or roadmapped
software, thus capturing future variability. When a feature model is used in derivation,
the nature derivation differs so that, if the feature model represents current product
line features, selection means selecting and adapting features, whereas, in the case of
future plans, feature selection means that selected features need to be implemented.

Whether a feature model represents the problem or solution domain is relevant to
research in developing the feature modeling methods. Methods that result in a feature
model should include, in addition to notations, a means to study a domain. For
practitioners, the question is relevant especially when selecting the feature modeling
method and, during the use of the resulting model, understanding whether the model
represents a domain or product line.

2.5 Commonality

A feature model can be intended to focus only on those features that vary. In this case,
the details of common functionality provided by all products in a product line are not
represented in the feature model. Representing only variability may be problematic,
e.g., if a customer makes decisions about her purchases on the basis of a feature
model. For example, a music player can be present in all mobile phones of a product
line and, therefore, as a common feature, it would not be included in a feature model
representing only varying features. However, if a customer makes a decision about
her phone on a basis of a feature model and she wants to listen to music with her
mobile phone, then the common music playing feature should be included in the
feature model. A compromise approach is that commonalities are expressed at the
higher level of abstraction without describing the details to make the model more
understandable.

 Eight Practical Considerations in Applying Feature Modeling for Product Lines 197

Alternatively, a feature model can represent the model of an entire product line,
including mandatory and variable features. Such a feature model, thus, provides
documentation of all features of the entire product line. Each product’s individual
model, derived from the feature model, includes all features of the product. For
example, if a customer does derivation, it is meaningful to show all features, including
common features, rather than only the varying features. A feature model can then be
used to represent the entire software rather than UML or some other common
modeling method that could have been used. In fact, few existing modeling methods
for software provide, per se, a means of modeling variability. Rather, extensions or
misuse of constructs are needed to represent variability. An advantage of modeling the
entire software is to have all features in place, whereas a disadvantage is that the model
size increases, especially if variability focuses only on a specific part of software,
which is typically the case.

The question of how much a feature model represents is a particular challenge for
notations and tools. When representing an entire model, it might be reasonable for
only part of a model to be shown or for a model to consist of several fragments since
models can become large. In the case of representing only variability, the variability
needs to be associated with a specific part of the software since only a fraction of the
software is represented in the feature model.

2.6 Correspondence

Another consideration is the elements that the features in a feature model correspond
to. Typically, a feature corresponds to requirements or high-level implementation
elements such as hardware components or static or dynamic software components.
Rarely, features correspond to low-level implementation artifacts. Rather, means
other than features can be used to specify details such as attributes of the features or
constructs beyond feature modeling. For example, software can have a large number
of parameters or other adaptation means that are not feasible to represent in a feature
model.

A feature model can even consist of several different feature models at different
levels of detail or granularity, as described above. For example, one feature model can
represent a specific part of the software where all details in the component level are
modeled, whereas another model represents another part of the software where
general architectural components are modeled. The former model, then, typically
describes variability, whereas the latter describes common parts, as described above.
Alternatively, one feature model represents the general architectural components,
whereas other models, such as UML diagrams, represent the details of each
architectural component. Consequently, besides general rules for what the feature
models represent, if there are several feature models, it needs to be taken into account
that the feature models might not be equal and do not need to be equal.

Another point of view is that a feature model has a specific structure that is aligned
toward something. One option is to align the feature model with the software
structure. In the case of structuring the feature model with the software, most, if not
all, real features are in the leaf nodes. Here, real features are the features that have
been provided with an actual implementation in software. All other features exist only
to structure the real features, as in software packages that organize real features.

198 J. Savolainen, M. Raatikainen, and T. Männistö

These structuring features represent the structure of the software, and the leaf nodes
represent real choices in software. When a feature model is aligned with the software
structure, there is a mapping from the features to the software components. The
mapping does not need to be one-to-one, as more complex mappings can be used as
well. Aligning the feature model to the software structure tends to create models that
are very close to the actual software implementation. Each of these software
components may be organized such that they can be independently switched on or off
using, for example, compile time flags.

Although alignment with software is relatively common, a feature model can be
aligned with other concerns such as market segmentation or marketing decisions.

The key considerations for research and practice are that the feature modeling
method provides necessary constructs that can be used to represent modeled elements,
such as software components. There can be even a need to provide mapping between
the modeled elements and the feature model.

2.7 Constraints

Feature modeling includes a structure that organizes the features into a hierarchy and
constraints for resolving variability. That is, selecting a child feature typically means
that the parent feature should also be selected. This relationship represents a
mandatory feature. Typically, the features are structured as a tree, where some
constraints are represented in the structure of the tree, whereas the remaining
constraints must be specified by some other means, such as cross-branch relations
between the nodes of the tree. The decomposition criterion used when constructing a
feature tree has a significant impact on what constraints can be represented in the
structure of the tree. In the worst case, the structure of the software and the best
structure to represent the constraints may be contradictory. In these cases, the main
dependencies exist in cross-branch relationships that tend to be less obvious from the
model.

If cross-branch relations are allowed in the feature tree, there are a number of
alternatives to represent them. First, one can use a set of rules to represent constraints
that cannot be represented as the structure of the tree. Second, a separate model can be
created to represent all feature dependencies. Separating the feature dependencies into
their own model simplifies the management of dependencies and allows the
dependencies to be considered separately. This is particularly useful if the main
feature structure is composed primarily of optional features. This would mean that
nearly all constraints on the selection of features originate from the feature
dependency model. If the feature dependencies are represented separately from the
feature model, overlapping specifications can easily happen. However, it is important
to remember that, in more complex feature trees, there is no direct link between
something being mandatory and being always selected. If any feature between a
mandatory feature and its root feature is non-mandatory, then, in practice, this feature
can be excluded from the product configuration. That is, this feature may not be
selected regardless of being mandatory. The requirement relationship between two
features does often a better job of highlighting the fact that this relationship applies
only between these features and that this is dependent on the actual selection of
features.

 Eight Practical Considerations in Applying Feature Modeling for Product Lines 199

An alternative to the tree structure is to use more general data models to represent
variability constraints. Some researchers [15] use a graph to represent variability
among features. While this is clearly a more general approach, it has not enjoyed
adaptation from the industry, most likely because feature trees are easier to
understand and analyze than a general graph form.

The challenge of constraints is highlighted by the fact that the constraints can
emerge from various sources such as business decisions, including marketing and
product segmentation, restrictions enforced by technology, or the architectural
constraints of existing software. Some of the constraints can be soft, meaning that the
constraint can but should not be violated. Consequently, the source and nature of
constraints vary largely, but all of them need to be taken into account to achieve a
complete model.

As a result of the heterogeneity of the sources of the constraints, one can include
even duplicate information in the feature model when both variability and feature
dependencies are modeled. Clearly, including the same constraint twice is a wasted
effort. However, sometimes, duplicate work can actually be beneficial from the
evolution perspective. If two different constraints actually communicate different
rationales, combining them may be a mistake. If an organization has a clear
understanding of the role of variability and dependencies, it may be able to model
marketing decisions using variability in the structure and functional dependencies and
technical limitations using feature dependencies. Thus, these two aspects communicate
different rationales and may help evolution through a better understanding of the
interplay between marketing requirements and technical solutions.

The challenges are, thus, managing and representing constraints efficiently. The
heterogeneity of the sources of the constraints also should be taken into account, e.g.,
by separating the different source as concerns.

2.8 Notation

The feature models used in practice need to be understandable to the product experts.
This requires that the modeling method allows for the expression of domain
variability in a natural manner so that the concepts and structures used match the
practical way of describing products. However, as described earlier, there are also
other usages, such as analyses and automated derivation. The issue is what concepts
and notations best serve the different usages.

As a comparison, in a comparative field of research, that of product configuration,
approaches with multiple levels of abstraction in the development of configuration
modeling concepts have been used. For example, to keep the definition of the
semantics clear, a specific product configuration modeling language (PCML) has
been defined based on the conceptualization introduced in [18]. As the PCML is still
somewhat clumsy to use in actual modeling and tool development, more appropriate
modeling concepts are used in configuration models, and they are then mapped to
PCML. The semantics for PCML and the consequent ability to make inferences are
provided by a mapping to a general knowledge representation language that is
particularly suitable for configuration tasks (namely WCRL) [19]. In fact, the general
knowledge representation language used is, further, given semantics by mapping them
to a propositional logic. This multitude of levels helps in separating the modeling

200 J. Savolainen, M. Raatikainen, and T. Männistö

concerns of the product experts of a particular company, configuration modeling
experts and tool developers, researchers or developers providing or extending the
semantics for the variability modeling and configuration tools, and the inference
engine developers.

The point we want to make here is not to suggest a specific approach but to raise
questions about the various concerns and needs for modeling. For example, different
variability expressions, such as optional, alternative, or exclusive alternative features,
can be defined with a smaller set of general concepts and still used to model the
product variants in a natural manner. Similarly, it may make sense to define a set of
typical feature dependencies for the use of product experts, such as Requires and Is-
incompatible-with, although they can be expressed by means of a more generic
constraints, e.g., “not A OR B” and “not (A AND B).”

Another, potentially even more important, point is to be clear about the need for
and usefulness of particular modeling concepts. A generic logic is more powerful in
the sense that it allows the expression of a large variety of constraints between
features. However, being general does not imply usefulness. From the perspective of a
practitioner, the selection of two constraints, such as Requires and Is-incompatible-
with, is probably better than the opportunity to write arbitrary Boolean expressions.
This means that extending a feature modeling approach to allow larger expressivity is
not self-evidently an improvement.

By providing the aforementioned multiple levels of abstraction and mappings
between them, different concepts and notations can be tailored to modelers, non-
technical persons doing product derivation, and tools assisting with feature modeling.
When the underlying semantics of the model have appropriate semantics, the power
of existing theories and tools can be used to manipulate the models and automate the
derivation tasks. The latter can be provided by various logical formalisms and related
approaches, such as constraint satisfaction methods or propositional logic, which
clearly are not suitable modeling approaches for most product experts.

The key consideration in selecting the notation for variability modeling is to
provide as much syntactical and notational support as possible for expressing the
variability in an effective manner from the perspective of a practitioner without
making the assumption that more flexibility and generality would be better.

3 Discussion

This paper intends to improve understanding of the considerations that need to be
taken into account when using feature modeling methods in practice in a company. In
addition, the considerations provide researchers working with feature modeling with a
set of considerations to keep in mind when assessing the utility of their work. A
summary of the considerations with the most important question about each
consideration is provided in Table 1.

To concretize the considerations, we use a simple example from the mobile phone
domain, shown in Figure 1, which has three features: Camera, Flash, and Redeye
reduction. The notation that is typically used in feature modeling specifies that all
these features are optional, meaning that features can be selected or left out. Both
Camera and Flash have two further alternative sub-features, meaning that, if the
parent is selected, exactly one of the sub-features needs to be selected.

 Eight Practical Considerations in Applying Feature Modeling for Product Lines 201

Table 1. Summary of the eight considerations

Consideration Key questions
Cost-benefit What is the optimal model in terms of cost-benefit when taking

into account construction, usage, and maintenance?
Completeness How complete is the feature model?
Stakeholders Who puts effort into and who gains the benefits of the model?

What knowledge about feature modeling methods in general
and the product line in question do the stakeholders have?

Domain

Does the model represent the problem or solution domain?
Does the model represent a current or planned product line?

Commonality How much commonality is represented?
Correspondence What elements of the product line does the feature model

correspond to?
Constraints What do the constraints represent?
Notation What constructs and representation should different

stakeholders use?

From this simple model, one can derive 18 different configurations of a mobile

phone. However, a number of these configurations do not represent choices that would
be derived in practice. It is hard to imagine a mobile phone with a range-adaptable
flash without a camera. In addition, this model allows the derivation of a mobile phone
without any other features than the root. Nevertheless, the model is relatively simple
and communicates the basic features of the mobile phone product line.

Fig. 1. A simple feature model

When considering only the domain, one could deduct that a mobile phone may or
may not have a camera. A camera is not a necessary feature of a mobile phone. In that
respect, the feature model in Figure 1 can be considered a domain. In addition, in the
case of a mobile phone domain, a feature model represents all the possible cameras
that are meaningful for a mobile phone, such as fixed optics and optical zoom still
cameras. A feature model of a current mobile phone product line would be restricted,
at least in the low-end models, to fixed optics cameras.

202 J. Savolainen, M. Raatikainen, and T. Männistö

Figure 1 represents the domain also in a manner that allows the derivation of
products that are not meaningful. To increase the completeness of the model, one can
add more constraints to the selection of features, e.g., by removing optionality or
adding cross-branch dependencies. Figure 2 shows a modified feature model in which
Camera has become a mandatory feature and two dependencies have been added:
Redeye reduction requires Flash and Zoom requires Adaptable flash.

Making Camera mandatory is a marketing decision. One can easily envision a
mobile phone without a camera, but it has been decided that, from this product line,
no mobile phones without a camera will be derived. Zoom requiring Adaptable flash
seems to be partially a marketing decision, but with a solid technical basis. Having a
basic flash with a zoom lens will affect the user’s ability to take good pictures inside
buildings or in darkness outside when using the zoom feature. However, one could
still use zoom when taking pictures outside in daylight. It seems, though, that the
marketing department has decided not to sell mobile phones with Zoom but without
Adaptable flash. Such a decision can also affect implementation so that basic flash
does not even support redeye reduction.

Fig. 2. A feature model with dependencies

For Redeye reduction requiring a Flash, there is a clear functional reason. The
intent of Redeye reduction is to help avoid red eyes when taking pictures of people
with a flash. The redeye reduction feature guides the flash to blink a number of times
to reduce the chance of the eyes appearing red in the final pictures. Including Redeye
reduction in mobile phones without a Flash is unnecessary. However, if the Redeye
reduction were a pure software feature, then it could be independently selected, if so
chosen for marketing reasons. Consequently, the added constraints are a mix of
technical and marketing decisions. The resulting model restricts the range of possible
feature configurations to be derived. In addition to the variability in the feature
structure, one can further add constraints to the model in terms of feature
dependencies. One such possibility is shown in Figure 3. Here, Flash has become a
mandatory feature. In addition, two new dependencies have been added. Camera now
requires Flash and Fixed optics requires Basic flash.

 Eight Practical Considerations in Applying Feature Modeling for Product Lines 203

Fig. 3. “Complete” feature model

The fact that Camera requires Flash appears to be mainly a marketing decision. It
says that we want the customers to know that, if they buy a mobile phone from this
product line, they will always have a camera with a flash. However, because Flash has
also been defined as mandatory, these specification overlap. This happens because
Camera is mandatory and, in this small example, it is always selected. When Camera
requires Flash, in theory, making Flash mandatory is redundant, or the requirement
relationship between Camera and Flash could be removed.

Fig. 4. Three different ways to represent a camera feature

There are many viewpoints on how to model the camera feature in the mobile
phone product line. For simplicity, we reduce the feature model here only to the
camera part. If we choose to model the cardinalities based on the current product line,
we could decide to model them as shown in Figure 4a. This model defines that a
mobile phone can have zero, one, or two cameras. Two cameras are typical in mobile
devices that allow video conferencing features. The second option is to choose to
model software and hardware capabilities. Based on the understanding of the
software architecture and the multimedia middleware, one could model the features as
shown in Figure 4b. The model says that, based on the combination of current
software and hardware, one could have up to four cameras. Naturally, after
introducing a new hardware platform, one could be forced to change the upper limit
of the cardinality. Finally, we could choose to model the software implementation
such that the exact number of cameras is not restricted, which is shown in Figure 4c.

204 J. Savolainen, M. Raatikainen, and T. Männistö

This is because, in the implementation, one can theoretically instantiate an unlimited
number of cameras.

In addition to a graphical notation of a feature model, other representations may be
used. For example, the concepts offered for a practitioner could be those used in
Fig. 3. They can be listed as: concept (root feature), feature, feature-tree, mandatory
feature, optional feature, alternative features, and requires constraint. In a tool, e.g., a
feature modeler, the implementation of the concept can be based on a more general
mechanism. For example, a general expression of the form FeatRel(f, S, min, max) for
defining a relation from feature f to a set of features S with min and max values to
express how many features need to be selected from the set S if f is selected. To
continue our example, the concepts needed for the model shown in Fig. 3 could be
defined by means of FeatRel, as shown in Table 2.

Table 2. Textual definitions of some variability concepts

Mandatory feature relation between a parent feature and a child feature:
 MandRel(parent, child) = FeatRel(parent, {child}, 1, 1)

Optional feature relation between a parent and a child feature:
 OptRel(parent, child) = FeatRel(parent, {child}, 0, 1)

Alternative features:
 AltRel(parent, {alternative1, …, alternativeN}) =

FeatRel(parent, {alternative1, …, alternativeN}, 1, 1)

Requires relation between a requiring feature and a required feature:
 RegRel(requiring, required) = FeatRel(requiring, {required}, 1, 1)

With these definitions, the model of Fig. 3 can be expressed in textual form, as

exemplified in Table 3.

Table 3. Example of a textual representation of a feature model

 MandRel(Mobile phone, Camera),

 MandRel(Mobile phone, Flash),

 OptRel(Mobile phone, Redeye reduction),

 AltRel(Camera, {Fixed optics, Zoom}),

 ReqRel(Camera, Flash), …

Such textual representation makes the processing, storing, and transfer easy and

understandable, e.g., between modeling tools and derivation support tools.
Finally, the complete feature model can be represented to a customer who is

making a purchasing decision to communicate the choices she can make. However,
the incomplete feature models can result in the customer’s selecting and desiring a
configuration that is not meaningful or desired. Showing the feature trees can also be

 Eight Practical Considerations in Applying Feature Modeling for Product Lines 205

confusing. As an alternative, the features can be represented to a customer so that she
can select either fixed or zoom optics and an optional redeye reduction feature.
Marketing has determined that the user is not interested in selecting the flash, but the
flash will be automatically selected on the basis of optics. In addition, the choices are
restricted so that, if redeye reduction is selected, then zoom will be selected
automatically. If the user first selects fixed optics and then tries to select redeye, her
selection is not accepted and an explanation is provided about the conflict.
Respectively, if the user selects redeye reduction first, she cannot select fixed optics.

4 Conclusion

We have described eight considerations in applying feature modeling. However, there
are also other approaches to represent variability. For example, there can even be a
separate model that is not feature-specific for modeling variability, as in the case of an
orthogonal variability model [12] or Covamof [13]. A similar approach to representing
variability in a separate model is also in the decision models [14]. Feature modeling
can be also compared with creating a configuration in the manufacturing industry. One
such approach is exemplified by a configurator called WeCoTin [16].

Another approach is to define the domain-related concepts from the perspective of
the practical variability modeling and give them the semantics by means of mapping
to a particular logical formalism. Comparative approaches can be found from
programming languages and domain-specific languages that provide a mapping for
lower-level constructs. However, the mapping may be non-trivial, thus making the
semantics hard to understand from the mapping and, therefore, make the further
development of the model difficult.

Compared with these related approaches, some of the considerations seem to be
relevant. For example, a decision model needs to be complete to be meaningful, so
completeness consideration is not relevant. However, the consideration of stakeholders
is also relevant in decision models. Nevertheless, the applicability of the presented
eight considerations can be applicable in other approaches but needs to be assessed.

To sum up, since feature modeling has been used extensively, it may appear as a
well-understood and fully known set of methods. However, in practice, engineers
must face a number of issues when applying feature modeling for real product lines.
Based on our experience, we have exposed eight practical considerations for applying
feature modeling.

This work has been based on doing feature and variability modeling projects in
several different companies accompanied with more basic research about variability
modeling concepts. In different projects, a widely different approach for features
modeling has been used with good results. However, we were initially surprised by
the inability of practitioners to evaluate feature models. After consideration, it has
become obvious that determining whether a feature model is good and appropriate in
the current context is a complex and difficult question.

We hope that this paper will help researchers to better explain how they expect their
results to be used and to give better insight into the challenges faced by the practitioners
in their daily work. Practitioners, it is hoped, will gain a better understanding of the
various concerns that affect how to apply feature modeling in their organizations.

206 J. Savolainen, M. Raatikainen, and T. Männistö

References

[1] Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A Feature-Oriented
Reuse Method with Domain-Specific Reference Architectures. Annals of Software
Engineering 5, 143–168 (1998)

[2] Griss, M., Favaro, J., d’Alessandro, M.: Integrating Feature Modelling with the RSEB.
In: Proceedings of the Fifth International Conference on Software Reuse 1998, pp. 76–85
(1998)

[3] Czarnecki, K., Eisenecker, U.W.: Generative Programming. Addison-Wesley, Boston
(2000)

[4] Czarnecki, K., Bednasch, T., Unger, P., Eisenecker, U.: Generative Programming for
Embedded Software: An Industrial Experience Report. In: Generative Programming and
Component Engineering 2002, pp. 156–172 (2002)

[5] Janota, M., Kiniry, J.: Reasoning about Feature Models in Higher-Order Logic. In:
Software Product Line Conference, vol. 1, pp. 13–22 (2007)

[6] Asikainen, T., Männistö, T., Soininen, T.: A Unified Conceptual Foundation for Feature
Modelling. In: Software Product Line Conference, pp. 31–40 (2006)

[7] Heymans, P., Schobbens, P.-Y., Trigaux, J.-C., Matulevicius, R., Classen, A., Bontemps,
Y.: Towards the Comparative Evaluation of Feature Diagram Languages. In: SVM-WS
(2007)

[8] Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., Bontemps, Y.: Generic Semantics of
Feature Diagrams Computer Networks, pp. 456–479. Elsevier, Amsterdam (2007)

[9] Niiniluoto, I.: The aim and structure of applied research. Erkenntnis 38, 121 (1993)
[10] Asikainen, T., Männistö, T.: Nivel—A metamodelling language with a formal semantics.

Software and Systems Modeling 8(4), 521–549 (2009)
[11] Oxford English Dictionary (2010), http://www.oed.com
[12] Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering:

Foundations, Principles, and Techniques. Springer, Heidelberg (2005)
[13] Sinnema, M., Deelstra, S., Hoekstra, P.: The COVAMOF Derivation Process. In:

International Conference on Software Reuse, ICSR (2005)
[14] Rabiser, R., Grunbacher, P., Dhungana, D.: Supporting Product Derivation by Adapting

and Augmenting Variability Models. In: SPLC, pp. 141–150 (2007)
[15] Mannion, M.: Using first-order logic for product line model validation. In: Chastek, G.J.

(ed.) SPLC 2002. LNCS, vol. 2379, pp. 176–187. Springer, Heidelberg (2002)
[16] Tiihonen, J., Soininen, T., Niemelä, I., Sulonen, R.: A Practical Tool for

Masscustomising Configurable Products. In: ICED 2003 (2003)
[17] Ferber, S., Haag, J., Savolainen, J.: Feature interaction and dependencies: Modeling

features for reengineering a legacy product line. In: Chastek, G.J. (ed.) SPLC 2002.
LNCS, vol. 2379, pp. 235–256. Springer, Heidelberg (2002)

[18] Soininen, T., Tiihonen, J., Männistö, T., Sulonen, R.: Towards a General Ontology of
Configuration. AI EDAM 12(04), 357–372 (1998)

[19] Soininen, T., Niemelä, I., Tiihonen, J., Sulonen, R.: Representing Configuration
Knowledge with Weight Constraint Rules. In: AAAI Spring Symposium on Answer Set
Programming: Towards Efficient and Scalable Knowledge (2001)

On the Extent and Nature of Software Reuse

in Open Source Java Projects

Lars Heinemann, Florian Deissenboeck, Mario Gleirscher,
Benjamin Hummel, and Maximilian Irlbeck

Institut für Informatik, Technische Universität München, Germany
{heineman,deissenb,gleirsch,hummelb,irlbeck}@in.tum.de

Abstract. Code repositories on the Internet provide a tremendous
amount of freely available open source code that can be reused for build-
ing new software. It has been argued that only software reuse can bring
the gain of productivity in software construction demanded by the mar-
ket. However, knowledge about the extent of reuse in software projects
is only sparse. To remedy this, we report on an empirical study about
software reuse in 20 open source Java projects with a total of 3.3 MLOC.
The study investigates (1) whether open source projects reuse third party
code and (2) how much white-box and black-box reuse occurs. To an-
swer these questions, we utilize static dependency analysis for quantifying
black-box reuse and code clone detection for detecting white-box reuse
from a corpus with 6.1 MLOC of reusable Java libraries. Our results in-
dicate that software reuse is common among open source Java projects
and that black-box reuse is the predominant form of reuse.

1 Introduction

Software reuse involves the use of existing software artifacts for the construc-
tion of new software [9]. Reuse has multiple positive effects on the competitive-
ness of a development organization. By reusing mature software components,
the overall quality of the resulting software product is increased. Moreover, the
development costs as well as the time to market are reduced [7, 11]. Finally,
maintenance costs are reduced, since maintenance tasks concerning the reused
parts are “outsourced” to other organizations. It has even been stated that there
are few alternatives to software reuse that are capable of providing the gain of
productivity and quality in software projects demanded by the industry [15].

Today, practitioners and researchers alike fret about the failure of reuse in
form of a software components subindustry as imagined by McIlroy over 40 years
ago [13]. Newer approaches, such as software product lines [2] or the development
of product specific modeling languages and code generation [8], typically focus
on reuse within a single product family and a single development organization.
However, reuse of existing third party code is—from our observation—a common
practice in almost all software projects of significant size. Software repositories
on the Internet provide a tremendous amount of freely reusable source code,
frameworks and libraries for many recurring problems. Popular examples are

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 207–222, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

208 L. Heinemann et al.

the frameworks for web applications provided by the Apache Foundation and
the Eclipse platform for the development of rich client applications. Due to its
ubiquitous availability in software development, the Internet itself has become
an interesting reuse repository for software projects [3, 6]. Search engines like
Google Code Search1 provide powerful search capabilities and direct access to
millions of source code files written in a multitude of programming languages.
Open source software repositories like Sourceforge2, which currently hosts almost
a quarter million projects, offer the possibility for open source software projects
to conveniently share their code with a world-wide audience.

Research problem. Despite the widely recognized importance of software reuse
and its proven positive effects on quality, productivity and time to market, it
remains largely unknown to what extent current software projects make use of
the extensive reuse opportunities provided by code repositories on the Internet.
Literature is scarce on how much software reuse occurs in software projects. It
is also unclear how much code is reused in black-box or white-box fashion. We
consider this lack of empirical knowledge about the extent and nature of software
reuse in practice problematic and argue that a solid basis of data is required in
order to assess the success of software reuse.

Contribution. This paper extends the empirical knowledge about the extent and
nature of code reuse in open source projects. Concretely, we present quantitative
data on reuse in 20 open source projects that was acquired with different types
of static analysis techniques. The data describes the reuse rate of each project
and the relation between white-box and black-box reuse. The provided data
helps to substantiate the academical discussion about the success or failure of
software reuse and supports practitioners by providing them with a benchmark
for software reuse in 20 successful open source projects.

2 Terms

This section briefly introduces the fundamental terms this study is based on.

Software reuse. In this paper, we use a rather simple notion of software reuse:
software reuse is considered as the utilization of code developed by third parties
besides the functionality provided by the operating system and the programming
platform.

We distinguish between two reuse strategies, namely black-box and white-box
reuse. Our definitions of these strategies follow the notions from [17].

White-box reuse. We consider the reuse of code to be of the white-box type, if
it is incorporated in the project files in source form, i. e., the internals of the
reused code are exposed to the developers of the software. This implies that the
1 http://www.google.com/codesearch
2 http://sourceforge.net

http://www.google.com/codesearch
http://sourceforge.net

On the Extent and Nature of Software Reuse in Open Source Java Projects 209

code may potentially be modified. The reuse rate for white-box reuse is defined
as the ratio between the amount of reused lines of code and the total amount of
lines of code (incl. reused source code).

Black-box reuse. We consider the reuse of code to be of the black-box type, if it is
incorporated in the project in binary form, i. e., the internals of the reused code
are hidden from the developers and maintainers of the software. This implies
that the code is reused as is, i. e., without modifications. For black-box reuse
the reuse rate is given by the ratio between the size of the reused binary code
and the size of the binary code of the whole software system (incl. reused binary
code).

3 Methodology

This section describes the empirical study that was performed to analyze the
extent and nature of software reuse in open source projects.

3.1 Study Design

We use the Goal-Question-Metric template from [20] for defining this study:

We analyze open source projects for the purpose of understanding the
state of the practice in software reuse with respect to its extent and na-
ture from the viewpoint of the developers and maintainers in the context
of Java open source software.

To achieve this, we investigate the following three research questions.

RQ 1 Do open source projects reuse software? The first question of the study asks
whether open source projects reuse software at all, according to our definition.

RQ 2 How much white-box reuse occurs? For those projects that do reuse existing
software, we ask how much of the code is reused in a white-box fashion as defined
in Section 2. We use as metrics the number of copied lines of code from external
sources as well as the reuse rate for white-box reuse.

RQ 3 How much black-box reuse occurs? We further ask how much of the code
is reused in a black-box fashion according to our definition. For this question we
use as metrics the aggregated byte code size of the reused classes from external
libraries and the reuse rate for black-box reuse. Although not covered by our
definition of software reuse, we separately measure the numbers for black-box
reuse of the Java API, since one could argue that this is also a form of software
reuse.

3.2 Study Objects

This section describes how we selected the projects that were analyzed in the
study and how they were preprocessed in advance to the reuse analyses.

210 L. Heinemann et al.

Table 1. The 20 studied Java applications

System Version Description LOC Size (KB)

Azureus/Vuze 4504 P2P File Sharing Client 786,865 22,761
Buddi 3.4.0.3 Budgeting Program 27,690 1,149
DavMail 3.8.5-1480 Mail Gateway 29,545 932
DrJava stable-20100913-r5387 Java Programming Env. 160,256 6,199
FreeMind 0.9.0 RC 9 Mind Mapper 71,133 2,352
HSQLDB 1.8.1.3 Relational Database Engine 144,394 2,032
iReport-Designer 3.7.5 Visual Reporting Tool 338,819 10,783
JabRef 2.6 BibTeX Reference Manager 109,373 3,598
JEdit 4.3.2 Text Editor 176,672 4,010
MediathekView 2.2.0 Media Center Management 23,789 933
Mobile Atlas Creator 1.8 beta 2 Atlas Creation Tool 36,701 1,259
OpenProj 1.4 Project Management 151,910 3,885
PDF Split and Merge 0.0.6 PDF Manipulation Tool 411 17
RODIN 2.0 RC 1 Service Development 273,080 8,834
soapUI 3.6 Web Service Testing Tool 238,375 9,712
SQuirreL SQL Client Snapshot-20100918 1811 Graphical SQL Client 328,156 10,918
subsonic 4.1 Web-based Music Streamer 30,641 1,050
Sweet Home 3D 2.6 Interior Design Application 77,336 3,498
TV-Browser 3.0 RC 1 TV Guide 187,216 6,064
YouTube Downloader 1.9 Video Download Utility 2,969 99

Overall 3,195,331 100,085

Selection Process. We chose 20 projects from the open source software repos-
itory Sourceforge as study objects. Sourceforge is the largest repository of open
source applications on the Internet. It currently hosts 240,000 software projects
and has 2.6 million users3.

We used the following procedure for selecting the study objects4. We searched
for Java projects with the development status Production/Stable. We then sorted
the resulting list descending by number of weekly downloads. We stepped through
the list beginning from the top and selected each project that was a standalone
application, purely implemented in Java, based on the Java SE Platform and
had a source download. All of the 20 study objects selected by this procedure
were among the 50 most downloaded projects. Thereby, we obtained a set of
successful projects in terms of user acceptance. The application domains of the
projects were diverse and included accounting, file sharing, e-mail, software de-
velopment and visualization. The size of the downloaded packages (zipped files)
had a broad variety, ranging from 40 KB to 53 MB.

Table 1 shows overview information about the study objects. The LOC col-
umn denotes the total number of lines in Java source files in the downloaded
and preprocessed source package as described below. The Size column shows
the bytecode sizes of the study objects.

Preprocessing. We deleted test code from the projects following a set of simple
heuristics (e.g. folders named test/tests). In few cases, we had to remove code
that was not compilable. For one project we omitted code that referenced a
commercial library.

3 http://sourceforge.net/about
4 The project selection was performed on October 5th, 2010.

http://sourceforge.net/about

On the Extent and Nature of Software Reuse in Open Source Java Projects 211

Table 2. The 22 libraries used as potential sources for white-box reuse

Library Description Version LOC

ANTLR Parser Generator 3.2 66,864
Apache Ant Build Support 1.8.1 251,315
Apache Commons Utility Methods 5/Oct/2010 1,221,669
log4j Logging 1.2.16 68,612
ASM Byte-Code Analysis 3.3 3,710
Batik SVG Rendering and Manipulation 1.7 366,507
BCEL Byte-Code Analysis 5.2 48,166
Eclipse Rich Platform Framework 3.5 1,404,122
HSQLDB Database 1.8.1.3 157,935
Jaxen XML Parsing 1.1.3 48,451
JCommon Utility Methods 1.0.16 67,807
JDOM XML Parsing 1.1.1 32,575
Berkeley DB Java Edition Database 4.0.103 367,715
JFreeChart Chart Rendering 1.0.13 313,268
JGraphT Graph Algorithms and Layout 0.8.1 41,887
JUNG Graph Algorithms and Layout 2.0.1 67,024
Jython Scripting Language 2.5.1 252,062
Lucene Text Indexing 3.0.2 274,270
Spring Framework J2EE Framework 3.0.3 619,334
SVNKit Subversion Access 1.3.4 178,953
Velocity Engine Template Engine 1.6.4 70,804
Xerces-J XML Parsing 2.9.0 226,389

Overall 6,149,439

We also added missing libraries that we downloaded separately in order to
make the source code compilable. We either obtained the libraries from the
binary package of the project or from the library’s website. In the latter case we
chose the latest version of the library.

3.3 Study Implementation and Execution

This section details how the study was implemented and executed on the study
objects. All automated analyses were implemented in Java on top of our open
source quality analysis framework ConQAT5, which provides—among others—
clone detection algorithms and basis functionality for static code analysis.

Detecting White-Box Reuse. As white-box reuse involves copying external
source code into the project’s code, the sources of reuse are not limited to li-
braries available at compile time, but can virtually span all existing Java source
code. The best approximation of all existing Java source code is probably pro-
vided by the indices of the large code search engines, such as Google Code Search
or Koders. Unfortunately, access to these engines is typically limited and does
not allow to search for large amounts of code, such as the 3 MLOC of our study
objects. Consequently, we only considered a selection of commonly used Java li-
braries and frameworks as potential sources for white-box reuse. We selected 22
libraries which are commonly reused based on our experience with both own de-
velopment projects and systems we analyzed during earlier studies. The libraries

5 http://www.conqat.org

http://www.conqat.org

212 L. Heinemann et al.

are listed in Table 2 and comprise more than 6 MLOC. For the sake of presen-
tation, we treated the Apache Commons as a single library, although it consists
of 39 individual libraries that are developed and versioned independently. The
same holds for Eclipse, where we chose a selection of its plug-ins.

To find potentially copied code, we used our clone detection algorithm pre-
sented in [5] to find duplications between the selected libraries and the study
objects. We computed all clones consisting of at least 15 statements with nor-
malization of formatting and identifiers (type-2 clones), which allowed us to also
find partially copied files (or files which are not fully identical due to further
independent evolution), while keeping the rate of false positives low. All clones
reported by our tool were also inspected manually, to remove any remaining false
positives.

We complemented the clone detection approach by manual inspection of the
source code of all study objects. The size of the study objects only allows a very
shallow inspection, based on the names of files and directories (which correspond
to Java packages). For this we scanned the directory trees of the projects for files
residing in separate source folders or in packages that were significantly different
from the package names used for the project itself. The files found this way were
then inspected and their source identified based on header comments or a web
search. Of course this step only can find large scale reuse, where multiple files
are copied into a project and the original package names are preserved (which
are typically different from the project’s package names). However, during this
inspection we are not limited to the 22 selected libraries, but potentially can find
other reused code as well.

Detecting Black-Box Reuse. The primary way of black-box reuse in Java
programs is the inclusion of libraries. Technically, these are Java Archive Files
(JAR), which are zipped files containing the byte code of the Java types. Ideally,
one would measure the reuse rate based on the source code of the libraries.
However, obtaining the source code for such libraries is error-prone as many
projects do not document the exact version of the used libraries. In certain
cases, the source code of libraries is not available at all. To avoid these problems
and prevent measurement inaccuracies, we performed the analysis of black-box
reuse directly on the Java byte code stored in the JAR files.

While JAR files are the standard way of packaging reusable functionality in
Java, the JAR files themselves are not directly reused. They merely represent a
container for Java types (classes, interfaces, enumerations and annotations) that
are referenced by other types. Hence, the type is the main entity of reuse in Java6.
Our black-box reuse analysis determines which types from libraries are referenced
from the types of the project code. The dependencies are defined by the Java
Constant Pool [12], a part of the Java class file that holds information about
all referenced types. References are method calls and all type usages, induced
e. g., by local variables or inheritance. Our analysis transitively traverses the

6 In addition to JAR files, Java provides a package concept that resembles a logical
modularization concept. Packages, however, cannot directly be reused.

On the Extent and Nature of Software Reuse in Open Source Java Projects 213

dependency graph, i. e., also those types that are indirectly referenced by reused
types are included in the resulting set of reused types. The analysis approach
ensures that in contrast to counting the whole library as reused code, only the
subset that is actually referenced by the project is considered. The rationale for
this is that a project can incorporate a large library but use only a small fraction
of it. To quantify black-box reuse, the analysis measures the size of the reused
types by computing their aggregated byte code size. The black-box analysis is
based on the BCEL library7 that provides byte code processing functionality.

Our analysis can lead to an overestimation of reuse as we always include
whole types although only specific methods of a type may actually be reused.
Moreover, a method may reference certain types but the method itself could be
unreachable. On the other hand, our approach can lead to an underestimation
of reuse as the implementations of interfaces are not considered as reused unless
they are discovered on another path of the dependency search. Details regarding
this potential error can be found in the section that discusses the threats to
validity (Section 6).

Although reuse of the Java API is not covered by our definition of software
reuse, we also measured reuse of the Java API, since potential variations in
the reuse rates of the Java API are worthwhile to investigate. Since every Java
class inherits from java.lang.Object and thereby (transitively) references a
significant part of the Java API classes, even a trivial Java program exhibits—
according to our analysis—a certain amount of black-box reuse. To determine
this baseline, we performed the analysis for an artificial minimal Java program
that only consists of an empty main method. This baseline of black-box reuse
of the Java API consisted of 2,082 types and accounted for about 5 MB of byte
code. We investigated the reason for this rather large baseline and found that
Object has a reference to Class which in turn references ClassLoader and
SecurityManager. These classes belong to the core functionality for running
Java applications. Other referenced parts include the Reflection API and the
Collection API. Due to the special role of the Java API, we captured the numbers
for black-box reuse of the Java API separately. All black-box reuse analyses were
performed with a Sun Java Runtime Environment for Linux 64 Bit in version
1.6.0.20.

4 Results

This section contains the results of the study in the order of the research
questions.

4.1 RQ 1: Do Open Source Projects Reuse Software?

The reuse analyses revealed that 18 of the 20 projects do reuse software from
third parties, i. e., of the analyzed projects 90% reuse code. HSQLDB and
YouTube Downloader were the only projects for which no reuse—neither black-
box nor white-box—was found.
7 http://jakarta.apache.org/bcel

214 L. Heinemann et al.

4.2 RQ 2: How Much White-Box Reuse Occurs?

We attempt to answer this question by a combination of automatic techniques
(clone detection) and manual inspections. The clone detection between the code
of the study objects and the libraries from Table 2 reported 337 clone classes
(i. e., groups of clones) with 791 clone instances all together. These numbers only
include clones between a study object and one or more libraries; clones within
the study objects or the libraries were not considered. As we had HSQLDB both
in our set of study objects and the libraries used, we discarded all clones between
these two.

Manual inspection of these clones led to the observation that, typically, all
clones are in just a few of the file pairs which are nearly completely covered by
clones. So, the unit of reuse (as far as we found it) is the file/class level; single
methods (or sets of methods) were not copied. Most of the copied files where not
completely identical. These changes are caused either by minor modifications to
the files after copying them to the study objects, or (more likely) due to different
versions of the libraries used. As the differences between the files were minor, we
counted the entire file as copied if the major part of it was covered by clones.

By manual inspection of the study objects we found entire libraries copied
in four of the study objects. These libraries were either less well-known (GNU
ritopt), no longer available as individual project (microstar XML parser), or
not released as an individual project but rather extracted from another project
(OSM JMapViewer). All of these could not be found by the clone detection
algorithm, as the corresponding libraries were not part of our original set.

The results for the duplicated code found by clone detection and the code
found during manual inspection are summarized in Table 3. The last column
gives the overall amount of white-box reused code relative to the project’s size

Table 3. Amount of white-box reuse found by clone detection and manual inspection

System Clone Detection (LOC) Manual Inspection (LOC) Overall Percent

Azureus/Vuze 1040 57,086 7.39%
Buddi —
DavMail —
DrJava —
FreeMind —
HSQLDB —
iReport-Designer 298 0.09%
JabRef 7,725 7.06%
JEdit 7,261 9,333 9.39%
MediathekView —
Mobile Atlas Creator 2,577 7.02%
OpenProj 87 0.06%
PDF Split and Merge —
RODIN 382 0.14%
soapUI 2,120 0.89%
SQuirreL SQL Client —
subsonic —
Sweet Home 3D —
TV-Browser 513 0.27%
YouTube Downloader —

Overall 11,701 76,721 n.a.

On the Extent and Nature of Software Reuse in Open Source Java Projects 215

 0

10

20

30

40

50

60

70

iR
ep

or
t-D

es
ig

ne
r

so
ap

U
I

R
O

D
IN

S
Q

ui
rr

eL
 S

Q
L

C
lie

nt

A
zu

re
us

/V
uz

e

O
pe

nP
ro

j

TV
-B

ro
w

se
r

D
rJ

av
a

S
w

ee
t H

om
e

3D

Ja
bR

ef

M
ob

ile
 A

tla
s

C
re

at
or

Je
di

t

B
ud

di

D
av

M
ai

l

Fr
ee

M
in

d

H
S

Q
LD

B

P
D

F
S

pl
it

an
d

M
er

ge

M
ed

ia
th

ek
 V

ie
w

su
bs

on
ic

Y
ou

Tu
be

 D
ow

nl
oa

de
r

Java API
Java API Baseline

3rd party
own

Fig. 1. Absolute bytecode size distribution (MB)

in LOC. For 11 of the 20 study objects no white-box reuse whatsoever could
be proven. For another 5 of them, reuse is below 1%. However, there are also
4 projects with white-box reuse in the range of 7% to 10%. The overall LOC
numbers shown in the last row indicate that the amount of code that results
from copying entire libraries outnumbers by far the code reused by more selective
copy&paste.

4.3 RQ 3: How Much Black-Box Reuse Occurs?

Figure 1 illustrates the absolute bytecode size distributions between the project
code (own), the reused parts of the libraries (3rd party) and the Java API ordered
descending by the total amount of bytecode. The horizontal line indicates the
baseline usage of the Java API. The reuse of third party libraries ranged between
0 MB and 42.2 MB. The amount of reuse of the Java API was similar among
the analyzed projects and ranged between 12.9 MB and 16.6 MB. The median
was 2.4 MB for third party libraries and 13.3 MB for the Java API. The project
iReport-Designer reused the most functionality in a black-box fashion both from
libraries and from the Java API. The project with the smallest extent of black-
box reuse was YouTube Downloader.

Figure 2 is based on the same data but shows the relative distributions of
the bytecode size. The projects are ordered descending by the total amount of
relative reuse. The relative reuse from third party libraries was 0% to 61.7%
with a median of 11.8%. The relative amount of reused code from the Java API
ranged between 23.0% and 99.3% with a median of 73.0%. Overall (third party
and Java API combined), the relative amount of reused code ranged between
41.3% and 99.9% with a median of 85.4%. The project iReport-Designer had
the highest black-box reuse rate. YouTube Downloader used the most code from
the Java API relative to its own code size. For 19 of the 20 projects, the amount
of reused code was larger than the amount of own code. Of the overall amount
of reused code in the sample projects, 34% stemmed from third party libraries
and 66% from the Java API.

216 L. Heinemann et al.

 0

 20

 40

 60

 80

100

P
D

F
 S

pl
it

an
d

M
er

ge

Y
ou

T
ub

e
D

ow
nl

oa
de

r

D
av

M
ai

l

M
ed

ia
th

ek
 V

ie
w

B
ud

di

M
ob

ile
 A

tla
s

C
re

at
or

su
bs

on
ic

H
S

Q
LD

B

F
re

eM
in

d

O
pe

nP
ro

j

S
w

ee
t H

om
e

3D

iR
ep

or
t-

D
es

ig
ne

r

Ja
bR

ef

so
ap

U
I

R
O

D
IN

Je
di

t

T
V

-B
ro

w
se

r

D
rJ

av
a

S
Q

ui
rr

eL
 S

Q
L

C
lie

nt

A
zu

re
us

/V
uz

e

Java API 3rd Party own

Fig. 2. Relative bytecode size distribution (%)

 0

 20

 40

 60

 80

100

P
D

F
 S

pl
it

an
d

M
er

ge

iR
ep

or
t-

D
es

ig
ne

r

D
av

M
ai

l

B
ud

di

so
ap

U
I

O
pe

nP
ro

j

R
O

D
IN

M
ob

ile
 A

tla
s

C
re

at
or

S
Q

ui
rr

eL
 S

Q
L

C
lie

nt

D
rJ

av
a

S
w

ee
t H

om
e

3D

T
V

-B
ro

w
se

r

Ja
bR

ef

F
re

eM
in

d

M
ed

ia
th

ek
 V

ie
w

JE
di

t

su
bs

on
ic

A
zu

re
us

/V
uz

e

H
S

Q
LD

B

Y
ou

T
ub

e
D

ow
nl

oa
de

r

3rd Party own

Fig. 3. Relative bytecode size distribution (%) without Java API

Figure 3 illustrates the relative byte code size distributions between the own
code and third party libraries, i. e., without considering the Java API as a reused
library. The projects are ordered descending by reuse rate. The relative amount
of reused library code ranged from 0% to 98.9% with a median of 45.1%. For
9 of the 20 projects the amount of reused code from third party libraries was
larger than the amount of own code.

5 Discussion

The data presented in the previous sections lead to interesting insights into
the current state of open source Java development, but also open new questions
which were not part of our study setup. We discuss both in the following sections.

On the Extent and Nature of Software Reuse in Open Source Java Projects 217

5.1 Extent of Reuse

Our study reveals that software reuse is common among open source Java
projects, with black-box reuse as the predominant form. None of the 20 projects
analyzed has less than 40% black-box reuse when including the Java API. Even
when not considering the Java API the median reuse rate is still above 40% and
only 4 projects are below the 10% threshold. Contrary, white-box reuse is only
found in about half of the projects at all and never exceeds 10% of the code.

This difference can probably be explained by the increased maintenance efforts
that are commonly associated with white-box reuse as described by Jacobson
et al. [7] and Mili et al. [14]. The detailed results of RQ 2 also revealed that
larger parts consisting of multiple files were mostly copied if either the originating
library was no longer maintained or the files were never released as an individual
library. In both cases the project’s developers would have to maintain the reused
code in any case, which removes the major criticism of white-box reuse.

It also seems that the amount of reused third party libraries seldom exceeds
the amount of code reused from the Java API. The only projects for which this
is not the case are iReport-Designer, RODIN and soapUI, from which the first
two are built upon NetBeans respectively Eclipse, which provide rich platforms
on top of the Java API.

Based on our data, it is obvious that the early visions of reusable components
that only have to be connected by small amounts of glue code and would lead
to reuse rates beyond 90% are not realistic today. On the other hand, the reuse
rates we found are high enough to have a significant impact on the development
effort. We would expect that reuse of software, as it is also fostered by the open
source movement, has a huge contribution to the rich set of applications available
today.

5.2 Influence of Project Size on Reuse Rate

The amount of reuse ranges significantly between the different projects. While
PDF Split and Merge is just a very thin wrapper around existing libraries, there
are also large projects which have (relatively) small reuse rates (e. g., less than
10% for Azureus without counting the Java API).

Motivated by a study by Lee and Litecky [10], we investigated a possible
correlation between code size and reuse rate in our data set. Their study was
based on a survey in the domain of commercial Ada development on 73 samples
and found a negative influence of software size on the rate of reuse. For the
reuse rate without the Java API (only third party code) we found a Spearman
correlation coefficient of 0.05 with the size of the project’s own code (two-tailed
p-value: 0.83). Thus, we can infer no dependence between these values. If we use
the overall reuse rate (including the Java API), the Spearman coefficient is -0.93
(p-value < 0.0001), which indicates a significant and strong negative correlation.
This confirms the results of [10] that project size typically reduces the reuse rate.

218 L. Heinemann et al.

5.3 Types of Reused Functionality

It is interesting to investigate what kind of functionality is actually reused
by software. Therefore, we tried to categorize all reused libraries into differ-
ent groups of common functionality. Consequently, we analyzed the purpose of
each reused library and divided them into seven categories (e. g., Networking,
Text/XML, Rich Cient Platforms or Graphics/UI). To determine to which ex-
tent a certain type of functionality is reused we employed our black-box reuse
detection algorithm presented in Section 3.3 to calculate the amount of bytecode
for each library that is reused inside a project.

We observed that there is no predominant type of reused functionality and
that nearly all projects are reusing functionality belonging to more than one
category. We believe that there is no significant insight we can report except
that reuse seems to be diverse among the categories and is not concentrated on
a single purpose.

6 Threats to Validity

This section discusses potential threats to the internal and external validity of
the results presented in this paper.

6.1 Internal Validity

The amount of reuse measured fundamentally depends on the definition of soft-
ware reuse and the techniques used to measure it. We discuss possible flaws
that can lead to an overestimation of the actual reuse, an underestimation, or
otherwise threaten our results.

Overestimation of reuse. The measurement of white-box reuse used the re-
sults of a clone detection, which could contain false positives. Thus, not all
reported clones indicate actual reuse. To mitigate this, we manually inspected
the clones found. Additionally, for both the automatically and manually found
duplicates, it is not known whether the code was copied into the study objects
or rather from them. However, all findings were manually verified, for example
by checking the header comments, we ensured that the code was actually copied
from the library into the study object.

Our estimation of black-box reuse is based on static references in the byte-
code. We consider a class as completely reused if it is referenced, which may
not be the case. For example, the method holding the reference to another class
might never be called. Another possibility would be to use dynamic analysis
and execution traces to determine the amount of reused functionality. However,
this approach has the disadvantage that only a finite subset of all execution
traces could be considered, leading to a potentially large underestimation of
reuse.

On the Extent and Nature of Software Reuse in Open Source Java Projects 219

Underestimation of reuse. The application of clone detection was limited to
a fixed set of libraries. Thus, copied code could be missed as the source it was
taken from was not included in our comparison set. Additionally, the detector
might miss actual clones (low recall) due to weak normalization settings. To
adress this, we chose settings that yield higher recall (at the cost of precision).
The manual inspection of the study objects’ code for further white-box reuse is
inherently incomplete; due to the large amounts of code only the most obvious
copied parts could be found.

The static analysis used to determine black-box reuse misses certain depen-
dencies, such as method calls performed via Java’s reflection mechanism or
classes that are loaded based on configuration information. Additionally, our
analysis can not penetrate the boundaries created by Java interfaces. The ac-
tual implementations used at run-time (and their dependencies) might not be
included in our reuse estimate. To mitigate this, one could search for an imple-
menting class and include the first match into the further dependency search
and the result set. However, preliminary experiments showed that this approach
leads to a large overestimation. For example a command line program that ref-
erences an interface that is also implemented by a UI class could lead us to the
false conclusion that the program reuses UI code.

There are many other forms of software reuse that are not covered by our
approach. One example are reusable generators. If a project uses a code generator
to generate source code from models, this would not be detected as a form of
reuse by our approach. Moreover, there are many other ways in which software
components can interact with each other besides use dependencies in the source
code. Examples are inter-process communication, web services that utilize other
services via SOAP calls, or the integration of a database via an SQL interface.

6.2 External Validity

While we tried to use a comprehensible way of sampling the study objects, it is
not clear to what extent they are representative for the class of open source Java
programs. First, the choice of Sourceforge as source for the study objects could
bias our selection, as a certain kind of open source developers could prefer other
project repositories (such as Google Code). Second, we selected the projects from
the 50 most downloaded ones, which could bias our results.

As the scope of the study are open source Java programs, transferability of the
results to other programming languages or commercially developed software is
unclear. Especially the programming language is expected to have a huge impact
on reuse, as the availability of both open source and commercial reusable code
heavily depends on the language used.

7 Related Work

Software reuse is a research field with an extensive body of literature. An overview
of different reuse approaches can be found in the survey from Krueger [9]. In the

220 L. Heinemann et al.

following, we focus on empirical work that aims at quantifying the extent of
software reuse in real software projects.

In [18], Sojer et al. investigate the usage of existing open source code for the
development of new open source software by conducting a survey among 686
open source developers. They analyze the degree of code reuse with respect to
developer and project characteristics. They report that software reuse plays an
important role in open source development. Their study reveals that a mean of
30% of the implemented functionality in the projects of the survey participants
is based on reused code. Since Sojer et al. use a survey to analyze the extent of
code reuse, the results may be subject to inaccurate estimates of the respondents.
Our approach analyzes the source code of the projects and therefore avoids this
potential inaccuracy. Our results are confirmed by their study, since they also
report that software reuse is common in open source projects.

Haefliger et al. [4] analyzed code reuse within six open source projects by
performing interviews with developers as well as inspecting source code, code
modification comments, mailing lists and project web pages. Their study revealed
that all sample projects reuse software. Moreover, the authors found that by far
the dominant form of reuse within their sample was black-box reuse. In the
sample of 6 MLOC, 55 components which in total account for 16.9 MLOC were
reused. Of the 6 MLOC, only about 38 kLOC were reused in a white-box fashion.
The developers also confirmed that this form of reuse occurs only infrequently
and in small quantities. Their study is related to ours, however the granularity
for the black-box analysis was different. While they treated whole components
as reusable entities, we measured the fraction of the library that is actually used.
Since they use code repository commit comments for identifying white-box reuse,
their results are sensitive with regards to the accuracy of these comments. In
contrast, our method utilizes clone detection and is therefore not dependent on
correct commit comments. Their study confirms our finding that black-box is
the by far predominant form of reuse.

In [16], Mockus investigates large-scale code reuse in open source projects by
identifying components that are reused among several projects. The approach
looks for directories in the projects that share a certain fraction of files with
equal names. He investigates how much of the files are reused among the sample
projects and identify what type of components are reused the most. In the stud-
ied projects, about 50% of the files were used in more than one project. Libraries
reused in a black-box fashion are not considered by his approach. While Mockus’
work quantifies how often code entities are reused, our work quantifies the frac-
tion of reused code compared to the own code within projects. Moreover, reused
entities that are smaller than a group of files are not considered. However, their
results are in line with our findings regarding the observation that code reuse is
commonly practiced in open source projects.

In [10], Lee et al. report on an empirical study that investigates how organi-
zations employ reuse technologies and how different criteria influence the reuse
rate in organizations using Ada technologies. They surveyed 500 Ada profession-
als from the ACM Special Interest Group on Ada with a one-page questionnaire.

On the Extent and Nature of Software Reuse in Open Source Java Projects 221

The authors determine the amount of reuse with a survey. Therefore their results
may be inaccurate due to subjective judgement of the respondents. Again, our
approach mitigates this risk by analyzing the source code of the project.

In [19], von Krogh et al. report on an exploratory study that analyzes knowl-
edge reuse in open source software. The authors surveyed the developers of 15
open source projects to find out whether knowledge is reused among the projects
and to identify conceptual categories of reuse. They analyze commit comments
from the code repository to identify accredited lines of code as a direct form of
knowledge reuse. Their study reveals that all the considered projects do reuse
software components. Our observation that software reuse is common in open
source development is therefore confirmed by their study. Like Haefliger et al.,
Krogh et al. rely on commit comments of the code repository with the already
mentioned potential drawbacks.

Basili et al. [1] investigated the influence of reuse on productivity and quality
in object-oriented systems. Within their study, they determine the reuse rate for
8 projects developed by students with a size ranging from about 5 kSLOCs to
14 kSLOCs. While they report reuse rates in a similar range as those from our
results, they analyzed rather small programs written by students in the context
of the study. In contrast to that, we analyzed open source projects.

8 Conclusions and Future Work

Software reuse, often called the holy grail of software engineering, has certainly
not been found in the form of reusable components that simply need to be
plugged together. However, our study not only shows that reuse is common
in almost all open source Java projects but also that significant amounts of
software are reused: Of the analyzed 20 projects 9 projects have reuse rates of
more than 50%—even if reuse of the Java API is not considered. Reassuringly,
these reuse rates are to a great extent realized through black-box reuse and not
by copy&pasting source code.

We conclude that in the world of open-source Java development, high reuse
rates are not a theoretical option but are achieved in practice. Especially, the
availability of reusable functionality, which is a necessary prerequisite for reuse
to occur, is well-established for the Java platform.

As a next step, we plan to extend our studies to other programming eco-
systems and other development models. In particular, we are interested in the
extent and nature of reuse for projects implemented in legacy languages like
COBOL and PL/1 on the one hand and currently hyped languages like Python
and Scala on the other hand. Moreover, our future studies will include commer-
cial software systems to investigate to what extent the open-source development
model promotes reuse.

Acknowledgment

The authors want to thank Elmar Juergens for inspiring discussions and helpful
comments on the paper.

222 L. Heinemann et al.

References

1. Basili, V., Briand, L., Melo, W.: How reuse influences productivity in object-
oriented systems. Communications of the ACM 39(10), 116 (1996)

2. Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns, 6th
edn. Addison-Wesley, Reading (2007)

3. Frakes, W., Kang, K.: Software reuse research: Status and future. IEEE Transac-
tions on Software Engineering 31(7), 529–536 (2005)

4. Haefliger, S., Von Krogh, G., Spaeth, S.: Code Reuse in Open Source Software.
Management Science 54(1), 180–193 (2008)

5. Hummel, B., Juergens, E., Heinemann, L., Conradt, M.: Index-Based Code Clone
Detection: Incremental, Distributed, Scalable. In: ICSM 2010 (2010)

6. Hummel, O., Atkinson, C.: Using the web as a reuse repository. In: Morisio, M.
(ed.) ICSR 2006. LNCS, vol. 4039, pp. 298–311. Springer, Heidelberg (2006)

7. Jacobson, I., Griss, M., Jonsson, P.: Software reuse: architecture, process and
organization for business success. Addison-Wesley, Reading (1997)

8. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling. Wiley, Chichester (2008)
9. Krueger, C.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (1992)

10. Lee, N., Litecky, C.: An empirical study of software reuse with special attention to
Ada. IEEE Transactions on Software Engineering 23(9), 537–549 (1997)

11. Lim, W.: Effects of reuse on quality, productivity, and economics. IEEE Soft-
ware 11(5), 23–30 (2002)

12. Lindholm, T., Yellin, F.: Java virtual machine specification. Addison-Wesley Long-
man Publishing Co., Inc., Boston (1999)

13. McIlroy, M., Buxton, J., Naur, P., Randell, B.: Mass produced software compo-
nents. In: Software Engineering Concepts and Techniques, pp. 88–98 (1969)

14. Mili, H., Mili, A., Yacoub, S., Addy, E.: Reuse-Based Software Engineering: Tech-
niques, Organizations, and Controls. Wiley Interscience, Hoboken (2001)

15. Mili, H., Mili, F., Mili, A.: Reusing software: Issues and research directions. IEEE
Transactions on Software Engineering 21(6), 528–562 (1995)

16. Mockus, A.: Large-scale code reuse in open source software. In: FLOSS 2007 (2007)
17. Ravichandran, T., Rothenberger, M.: Software reuse strategies and component

markets. Communications of the ACM 46(8), 109–114 (2003)
18. Sojer, M., Henkel, J.: Code Reuse in Open Source Software Development: Quanti-

tative Evidence, Drivers, and Impediments. JAIS (to appear, 2011)
19. von Krogh, G., Spaeth, S., Haefliger, S.: Knowledge Reuse in Open Source Software:

An Exploratory Study of 15 Open Source Projects. In: HICSS 2005 (2005)
20. Wohlin, C., Runeson, P., Höst, M.: Experimentation in software engineering: An

introduction. Kluwer Academic, Dordrecht (2000)

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 223–237, 2011.
© Springer-Verlag Berlin Heidelberg 2011

University-Industry Collaboration Journey towards
Product Lines

Stan Jarzabek1, Ulf Pettersson2, and Hongyu Zhang3

1 School of Computing, National Univerisity of Singapore, Singapore
stan@comp.nus.edu.sg

2 Technology Office, ST Electronics (Info-Software Systems) Pte. Ltd.
ulfp@stee.stengg.com

3 School of Software, Tsinghua University, Beijing 100084, China
hongyu@tsinghua.edu.cn

Abstract. Product Lines for mission critical Command and Control systems
was a starting point for a long lasting research collaboration between National
University of Singapore (NUS) and ST Electronics (Info-Software Systems) Pte
Ltd (STEE-InfoSoft). Collaboration was intensified by a joint research project,
also involving University of Waterloo and Netron Inc. that led to development
of reuse technology called XVCL. The contribution of this paper is twofold:
First, we describe collaboration modes, factors that were critical to sustain
collaboration, and benefits for university and industry gained over years.
Among the main benefits, STEE-InfoSoft advanced its reuse practice by
applying XVCL in several software Product Line projects, while NUS team
received early feedback from STEE-InfoSoft which helped refine XVCL reuse
methods and keep academic research in sync with industrial realities. Academic
findings and industrial pilots have opened new unexpected research directions.
Second, we draw lessons learned from many projects, to explain the general
nature and significance of problems addressed with the XVCL approach.

Keywords: Software Product Lines, Industry collaboration, Variability
management, Generative technique.

1 Introduction

Even though component-based reuse has yielded significant benefits in the past, the
depth of success in the industry has been rather limited. While there are reuse success
stories, even advanced Product Line reuse approach [6][7] has not penetrated the
industrial software development deep enough to become a standard practice. Some
problems with realizing reuse strategies have been reported [10].

ST Electronics (Info-Software Systems) Pte Ltd (STEE-InfoSoft) is a Singapore-
based company developing turn-key software solutions in a wide range of domains,
for local and international markets including defense and home-land security
applications. In 1998, STEE-InfoSoft started a programme to develop a Common
Application Platform (CAP) with the objective of providing fast and cost effective
customized solutions in the Command and Control domain. Around the same time, a

224 S. Jarzabek, U. Pettersson, and H. Zhang

collaboration agreement was signed between STEE-InfoSoft and National University
of Singapore (NUS), as a vehicle for joint research. As a result, students from NUS
were attached to the company to help in development of CAP.

CAP was built to form a foundation of reusable components designed to serve as
low-level reuse libraries as well as higher-level services designed to facilitate
implementation of design patterns. Even though the reuse solutions developed for
CAP have been used in many projects across STEE-InfoSoft, and the programme has
been considered as a big success, certain weaknesses of component-based reuse have
been also exposed.

In particular, as STEE-InfoSoft deployed its reusable components to different
customers, specific adaptations were often required in areas of business logic and
almost always in the area of user interface. To address such customer specific
variations, the underlying component platforms and conventional design techniques
proved ineffective in defining generic solutions to avoid explosion of many similar
components. Because of these difficulties, the reuse of CAP solutions was limited to
functional areas where variations were few and could be easily managed with
conventional design techniques, while for other areas cut-paste-modify was applied
resulting in explosion of similar components. For those reasons, without
complementary techniques, the component-based approach would not have been able
to keep up with the customer evolving expectations of shorter time to market and more
cost effective solutions.

We believe challenges that STEE-InfoSoft experienced to some extent affect other
attempts to implement reuse strategies. Component-based reuse facilitated by modern
component platforms is mostly limited to common services and middleware layers.
Reuse potentials on a system-wide scale, especially in the application domain-specific
areas of business logic and user interfaces, are more difficult to realize with
component-based techniques. Furthermore, in our experience, the benefits of reuse
and component platforms are mainly observed during new development, but are less
evident in long-term evolution of successful products.

In an effort to overcome identified problems and better address customer
expectations, STEE-InfoSoft and NUS teamed up with Netron Inc. (Toronto) and
University of Waterloo to start a joint Singapore-Ontario research project in the area
of “Software Reuse Framework for Reliable Mission-Critical Systems”. Our intention
was to evolve the frame-based Product Line techniques [3] used by Netron into a new
language-independent and modern platform contexts, to facilitate development of
Command and Control (C2) Product Lines. The result of this project was the XVCL
language [21][12], the XVCL Processor and also the first pilot application of XVCL
by STEE-InfoSoft in a C2 Environment.

By June 2002, the Singapore-Ontario project was over, but NUS and STEE-
InfoSoft continued their collaboration at an increasing intensity level, even though
the collaboration no longer was driven by any specific research project agreement.
This collaboration resulted in several interesting XVCL projects that will be described
in Section 4.

The contribution of this paper is twofold: First, we distil lessons-learned from 10-
years of our project collaboration, focusing on collaboration modes, factors that
were critical to sustain collaboration, and benefits for university and industry gained
over years. Among the main benefits, STEE-InfoSoft advanced its reuse practice by

 University-Industry Collaboration Journey towards Product Lines 225

applying XVCL in several software Product Line projects, while NUS team received
early feedback from STEE-InfoSoft which helped refine XVCL reuse methods and
keep academic research in sync with industrial realities. Academic findings and
industrial pilots have opened new unexpected research directions.

Second, we generalize experiences from many projects, most of which we
described in earlier papers. Based on that, we explain the general nature, significance
and unique contribution of XVCL to the today’s toolbox of software methods, and
argue about the merits of the XVCL approach on a more general ground than we
could do in earlier papers.

In Sections 2, we describe the history and models of our collaboration. In Section
3, we explain the process that led to formulation and application of variability
technique of XVCL that was subject of our collaboration. In Section 4, we recap
experiences from several projects with XVCL, highlighting the impact of the results
and trade-offs involved in application of XVCL. We summarize lessons learned in
Section 5. Conclusions end the paper.

2 The History of Collaboration

2.1 First Phase: MOU

Our collaboration started in 1998 when a Memorandum Of Understanding (MOU)
was established between the School of Computing at the National University of
Singapore (later referred to as NUS) and ST Electronics (Info-Software Systems) Pte
Ltd (later referred to as STEE-InfoSoft).

Initial collaboration was facilitated through an Industrial Attachment, where
Honours and Master students were attached to STEE-InfoSoft for research projects
related to reuse frameworks. First few projects were focused on reliable use of
DCOM (http://msdn.microsoft.com/library/) in Mission Critical Command and
Control Systems. These first projects delivered concrete and useful benefits to both
sides, helping STEE-InfoSoft in technology selection and helping NUS to bring
industry-related projects to their students. Positive experiences acted as a booster for
the collaborative spirit and brought the two sides closer together looking for more and
bigger exploration in the area of Product Lines.

2.2 Second Phase: Singapore-Ontario Project

The governments of Singapore and Ontario, Canada, have established a joint research
programme to boost collaboration among universities, and involving industrial
partners from both countries. Under this research scheme, in 2000, we started a
project to investigate methods for cost-effective, reuse-based development of reliable
mission-critical software systems. The project involved four partners, namely NUS,
STEE-InfoSoft, Netron Inc. (Toronto), and University of Waterloo. NUS provided
software engineering and reuse expertise. University of Waterloo contributed in areas
of software reliability – failure detection, fault tolerance and availability. STEE-
InfoSoft has been developing command and control mission-critical systems for
customers in Singapore (such as Ministry of Defense, police and civil defense) as
well as abroad, and had extensive experience in mission-critical system domain.

226 S. Jarzabek, U. Pettersson, and H. Zhang

STEE-InfoSoft was also a potential client for the technology we intended to develop
in this project. Our Canadian industrial partner, Netron, Inc. contributed to our project
with reuse tools and their rich experience in implementing reuse solutions in
companies.

Before formulating the joint project proposal, we had already established a
working relationship among project partners, though not all four of them together and
not in the exact scope of the proposed project. NUS and University of Waterloo had
been planning to pursue joint research on the interplay between reuse and reliability,
during sabbatical leave of one of the authors at the University of Waterloo. As
mentioned earlier, the link between STEE-InfoSoft and NUS was already established
through the MOU and close collaboration was already in place. Finally, the NUS team
worked with Frame Technology developed by Netron, Inc. before the joint Singapore-
Ontario project, and had accumulated experiences in that area and described them in
publications. These existing links helped a lot the four partners in two countries agree
on common research goal, and on the approach to working towards the goal.

As our project progressed, the following three focus areas emerged:

 Definition of the XVCL language.
 Implementation of the XVCL Processor [21].
 XVCL-based pilot project [17].

Definition of the XVCL language was facilitated primarily through collaboration
between NUS and Netron, where Netron shared their use of frame technologies both
through visits to Singapore and through short attachments of NUS students at their
Toronto office. The frame-related experiences and feedback provided by Netron (and
in particular by Paul Bassett) was essential to the successful definition of a simple yet
practical XVCL language.

Implementation of the XVCL Processor was done by students at NUS. As we
chose XML as a vehicle for defining and then implementing XVCL, we could benefit
from use of open-source components. In 2002, the resulting processor was also made
public at SourceForge [21].

Experimentation with XVCL-based Product Lines was done through a pilot project
for Computer Aided Dispatch (CAD) in the domain of Police and Fire emergency
dispatch. This pilot project started with definition of use cases and study of feature
variants both within a police system but also across other areas of the civil defense
domain. We worked with software requirements (use cases). Use cases abstracted
from real-world projects, contributed by the STEE-InfoSoft, established an
understanding of requirements, while NUS students explored how XVCL could be
applied to handle feature variants across the Product Line. Implementation was done
jointly by NUS students and STEE-InfoSoft staff. The pilot project demonstrated that
the XVCL approach was very capable of handling variants in CAD Product Lines,
and the result formed an incubator for new experimentation and application of the
XVCL technique.

These empirical studies were instrumental in gaining insights into the design of
“flexible software”, i.e., software that is easy to change and adapt to fit various reuse
contexts. We tested the limits of what could be achieved to this end by conventional
architecture-centric, OO and component-based programming techniques, and with this

 University-Industry Collaboration Journey towards Product Lines 227

understanding it became possible to observe the value of meta-level enhancements
implemented into the XVCL method.

In Singapore, overall control and evolution was facilitated through weekly (or bi
weekly) research working sessions with participation from both NUS and STEE-
InfoSoft. These sessions served as communication channel where:

 Result, ideas and findings were shared.
 Feedback was provided.
 Future work was brainstormed and outlined.

Working sessions served as a vehicle for sharing of experiences and findings well
before publications were written, resulting in faster and more agile direction changes.
We believe it helped us a lot to accelerate and effectively shape our research.

Initial sessions focused on clarifying requirements and documenting them in a
standard way. Subsequent sessions concentrated on discussing novel approaches to
modeling “requirements with variants” [15], as it was needed for reuse via Product
Line approach, and on novel techniques for designing generic software architectures,
capable of handling variant requirements in an effective and simple way.

Working sessions played an increasingly important coordination role as over time,
more and more parallel and incremental projects branched out from the second phase.

Finally, working sessions have helped us to strengthen the partnership between
NUS and STEE-InfoSoft, and served as a vehicle for continued collaboration beyond
the second phase. Through these meetings, the collaboration entered into a third
phase, where new projects were initiated, executed and shared without any formal
agreement between the parties (apart from the general MOU).

2.3 Third Phase: Continuous Collaboration

In the third phase (still ongoing), we leverage on the XVCL technique to explore
Product Lines and reuse in various domains, and we also venture into other research
areas inspired by results we were getting on the way. The projects of the third phase
are described in later sections, once we have briefly explained motivation and
concepts of a XVCL approach to software development.

3 The Development of the XVCL Approach

In this section, we describe the role of our collaboration in development of the XVCL
approach to variability management in software Product Lines. The three phases in
XVCL development correspond to the three phases of our collaboration described in
the previous section.

3.1 Initial Phase

In this phase, the idea of XVCL was initially formulated. XVCL is based on principles
of Frame Technology™ by Netron, Inc. [3]. A number of frame-based systems have
been implemented in industry and at universities, and we believe any of those systems
can handle engineering problems we addressed in our projects. Frames have been

228 S. Jarzabek, U. Pettersson, and H. Zhang

extensively applied to maintain multi-million-line COBOL-based information systems.
An independent assessment by QSM Associates, Inc. showed that frames could
achieve up to 90% reuse, reduce project costs by over 84% and their time-to-market by
70%, when compared to industry norms [3].

The successes of Frame Technology motivated us to explore it further. Designed in
1970s and 1980s, frame commands and tools are very much influenced by the
COBOL language and do not address many contemporary design methods and
language features. Frame technology should be enhanced to blend into contemporary
software development practices (such as architecture-centric, component-based
product line development). We thus proposed XVCL to refines frame concepts into a
general-purpose language and tool. XVCL can be applied on top of the contemporary
programming paradigms to achieve enhanced flexibility and genericity. We also
planned to apply XVCL to the practices of STEE-InfoSoft.

3.2 Second Phase

In this phase, the idea of XVCL was developed. In our studies, we found that
similarities are omnipresent in software. We repeatedly apply similar design solutions
to solve similar problems. In new, well-designed programs, we often find 50%-90%
of code contained in similar program structures of various types and granularity,
repeated many times (often called clones in the literature). For example, the extent of
the redundant code in Java Buffer library was 68% [13], in parts of STL (C++) - over
50% [2], in J2EE Web Portals – 61% [22], and in certain ASP Web portal modules –
up to 90% [17]. Similar results have been observed in studies of Open Source web
projects [19]. Most of the repetitions that we found represented some important
concepts from requirement or design spaces. In our judgment, repetitions were
counter-productive for maintenance and signified untapped reuse opportunities.

Software similarities, especially large granularity, design-level similarity patterns,
create opportunities for reuse within a given system, or even across similar systems.
Unfortunately, at times, conventional methods – component based, architecture-
centric approaches as well as language-level features such as generics – fail to provide
effective means to reap benefits offered by software similarities. Common sense
suggests that we should be able to express our design and code without unwanted
repetitions, whenever we wish to do so.

The goal of XVCL is to provide a systematic treatment for the above problems.
Developers still use one of the programming languages to define the behavioral core
of their program solutions (e.g., user interfaces, business logic or databases).
However, when repetitions become evidently counter-productive, and conventional
techniques are not sufficient to achieve generic design, rather than using ad hoc
solutions, developers can escape to the well thought-out mechanisms to deal with the
problem. XVCL defines such mechanisms. XVCL complements conventional OO,
component-based and modularization techniques to fully exploit the engineering
potential of software similarities.

With XVCL, we represent each group of recurring similar program structures of
significant importance with a generic, adaptable structure. XVCL representation
maintains a complete picture of similarities and differences among specific program
structures, instances of the generic structure, as well as their location in a program.

 University-Industry Collaboration Journey towards Product Lines 229

Variations among instances are specified as deltas from the generic structure and
automatically propagated to the respective instances. These specifications are both
human-readable and executable by the XVCL Processor. Based on the specifications,
the Processor adapts generic structures to generate specific program structures in their
required variant forms.

3.3 Third Phase

In this phase, we applied XVCL to several projects, including:

 Application of XVCL to strengthen conventional OO techniques in the area of
generic design, demonstrated in studies on unifying similarity patterns in Java Buffer
library [13] and STL [2].

 Application of XVCL to support a Web Portal Product Line [17] in Active Server
Pages (http://msdn.microsoft.com/library/) environment.

 Application of XVCL for reconstruction and reuse within Web Portals in J2EE™
environment [22].

 Application of XVCL to manage variability in a role-playing game Product Line
for mobile devices [24], which demonstrated that reuse may go hand-in-hand with
improving, rather than compromising, the performance.

 Techniques for detecting design-level similar program structures, so-called
structural clones [1], which extended current techniques focusing mainly on detecting
similar code fragments.

The above projects already applied good practices of conventional software design,
before considering XVCL. Still, the XVCL helped us to raise reuse rates, typically by
60%, which also led to significant simplification of the subject software and
productivity improvements. These encouraging results triggered exploration into other
research areas such as: tools/techniques to identify, classify and understand design-
level similarity patterns in legacy code [1], tools for XVCL development (such as
smart editor, static/dynamic analyzer, and debugger), and XVCL language integration
into Integrated Development Environments such as Visual Studio .NET™ and
JBuilder™.

4 Summary of Typical Projects

To highlight the significance of our results, we briefly discuss representative projects
and variability problems we tackled with XVCL. The first project initiated our
collaboration; in the second one, we show how variability technique can enhance
design of class libraries; in the third project, STEE-InfoSoft’s applied XVCL to
manage variability in Web Portal Product Line.

4.1 Pilot CAD project

Internet-enabled Computer Aided Dispatch Systems (CAD for short) was our first
pilot project. Fig. 1 depicts a basic operational scenario in a CAD system for Police.
An Operator receives information about an incident and informs a Dispatcher about
the incident. The Dispatcher examines the “Situation Display” that shows a map of

230 S. Jarzabek, U. Pettersson, and H. Zhang

the area where the incident happened. Then, the Dispatcher assigns a task of handling
the incident to a Police Unit taking into account the distance of a Unit to the place of
incident and possibly other criteria. The Police Unit approaches the place of incident
and handles the problem. The Police Unit informs the Task Manager about the
progress of action. The Task Manager monitors the situation and at the end – closes
the case. The information about current and past incidents is stored in the database.

incident!

Call Taker

Dispatcher

Task Manager Resources (police units)

monitor

assign task

phone
call

Incident

handle
incident

Situation
display

Network

Fig. 1. CAD system for Police

CAD systems are used by police, fire & rescue, and health organizations. At the
basic operational level, all CAD systems are similar – basically, they support the
dispatch of units to incidents. However, there are also differences across CAD
systems. The specific context of the operation (such as police or fire & rescue) results
in many variations on the basic operational scheme. For example, CAD systems differ
in rules of how resources are assigned to tasks, monitoring, reporting and timing
requirements, specific information to be stored in a database, system component
deployment strategies, reliability and availability requirements, and so on. If we
ignore commonalities, then each CAD system in a specific context becomes a unique
application that must be developed from scratch and maintained as a separate product
– an expensive and inefficient solution. In our project, we applied a Product Line
approach [6][7] to exploit commonalities and engineer CAD systems from a common
base of reusable software assets, so-called Product Line architecture. We expected
such a reuse-based approach to radically cut development and maintenance cost.

CAD systems offer high potential for reuse and, at the same time, pose important
challenges for reliability. A typical CAD system must be pretty reliable – for
example, 999 call reports should never be lost. So cost reduction must not come at the
expense of reliability. CAD project allowed us to understand the interplay between
reuse and reliability.

Basing CAD systems on internet, while meeting their real-time and reliability
requirements in a manner that would allow high degree of software reuse posed
significant research challenges for the project. Given that, and also the fact that we
were applying XVCL for the first time, we kept the scope of CAD project simple:
Java/XVCL CAD Product Line architecture contained 82 x-frames unifying groups of
similar components in user interface and business logic layers. We addressed 24
variants that differentiated CAD systems. In each of the two new CAD systems

 University-Industry Collaboration Journey towards Product Lines 231

developed based on the Java/XVCL Product Line architecture we achieved reuse
ratios of 84%. Reuse ratio is defined as (Reused LOC) / (Total CAD LOC)*100%),
where LOC are physical lines of code without blanks or comments. Further details of
this project are described in [23].

The CAD project played two roles: First, it established trust and effective modes of
collaboration among parties. We got a sense of benefits that collaboration could bring
on both ends. Second, we could observe the strengths of conventional component-
based techniques to support reuse, and also their limits in exploiting similarity
patterns by means of generic design. We understood how mixed XVCL could help us
overcome some of those limits.

4.2 Java Buffer Library and STL

These two projects allowed us to better see the roots of the similarity phenomenon
and understand the essence of the problem we were addressing with XVCL in the
context of OO techniques such as generics (or templates in C++), inheritance, abstract
classes and dynamic binding. As we have described these results in detail in other
publications [13][2], here we only recap the main findings.

Classes in the Buffer library JDK 1.5 differ in features such as a memory scheme:
Heap or Direct; element type: byte, char, int, double, float, long, or short; access
mode: writable or read-only; byte ordering: S – non-native or U – native; B –
BigEndian or L – LittleEndian. Each legal combination of features yields a unique
buffer class, with much similarity among classes. Analysis of similarity patterns in the
Buffer library revealed seven groups of classes, each containing 7-13 classes similar
to each other. Most of the variations among similar classes could be traced to feature
combinations affecting classes or methods. Many similar classes or methods occurred
due to the inability to unify variations in otherwise the same classes or methods.

Furthermore, any attempt to unify similarities would have to be synergistic with
other design goals such as usability, conceptual clarity and good performance of
buffer classes. In some situations, designers could introduce a new abstract class or a
suitable design pattern to avoid repetitions. However, such a solution would
compromise these goals, and therefore was not implemented. Java generics proved
not effective in unifying similar classes either [13].

In a Java/XVCL solution, we could unify classes in each of the seven groups with
generic x-frames. XVCL Processor generated Buffer classes from the Buffer class x-
framework. This unification reduced program complexity as perceived by developers,
also reducing the original code size by 68% percent. A controlled maintenance
experiment revealed higher effort to maintain the original Buffer library as compared
to its Java/XVCL representation: For example, the number of modifications to
implement a new Complex buffer in Java/XVCL representation was 11, as compared
to 91 modifications required for the same purpose in the original Java classes. Non-
redundancy achieved by unifying similar classes made modifications easier, enhancing
the visibility of ripple effects, and reducing the risk of update anomalies.

The Standard Template Library (STL) strengthened observations made in the
Buffer Library [2]. Parameterization mechanism of C++ templates is more powerful
than that of Java generics, due to light integration of templates with the C++ language
core. STL uses the most advanced template features and design solutions (e.g.,

232 S. Jarzabek, U. Pettersson, and H. Zhang

iterators), and is widely accepted in the research and industrial communities as a
premier example of a generic programming methodology.

Still, we found much repetitions in some STL areas that could not be unified with
conventional techniques. For example, four ‘sorted’ associative containers and four
‘hashed’ associative containers could be unified with two generic C++/XVCL
containers, achieving 57% reduction in the related code. Stack and queue contained
37% of cloned code. Algorithms set union, intersection, difference, and symmetric
difference (along with their overloaded versions) formed a set of eight clones that
could be unified by a generic XVCL set operation, eliminating 52% of code.

4.3 Industrial Applications of XVCL

Web Portal (WP) Product Line was the first STEE-InfoSoft’s application of XVCL in
a business product and on a wider scale. A Team Collaboration Portal (TCP) was a
starting point for this project. TCP was implemented in ASP. STEE-InfoSoft applied
state-of-the-art design methods to maximize reusability of TCP in other contexts.
Still, a number of problem areas were observed that could be improved by applying
XVCL to increase the genericity of a conventional solution. The benefits of an
ASP/XVCL solution for TCP were the following:

 Short time (less than 2 weeks) and small effort (2 persons) to transform the TCP
into the first version of the ASP/XVCL solution.

 High productivity in building new portals from the ASP/XVCL solution. Based on
the ASP/XVCL solution, STEE-InfoSoft could build new portal modules by
writing as little as 10% of unique custom code, while the rest of code could be
reused. This code reduction translated into an estimated eight-fold reduction of
effort required to build new portals.

 Significant reduction of maintenance effort when enhancing individual portals.
The overall managed code lines for nine portals were 22% less than the original
single portal.

 Wide range of portals differing in a large number of inter-dependent features
supported by the ASP/XVCL solution.

The reader may find full details of this project in [17]. In another industrial project,
XVCL was applied to manage variability in a role-playing game Product Line for
mobile devices [24]. This project demonstrated that reuse may go hand-in-hand with
improving, rather than compromising, the performance.

4.4 Discussion of Project Experiences: Benefits and Trade-Offs

We believe the benefits observed in the above projects are not accidental, but are the
result of effective treatment of some problems that are not easily solved with
programming language and component platform mechanisms. At the same time, these
problems have significant impact on software productivity.

With XVCL, we represent each of the important groups of similar program
structures in a unique generic, but adaptable form, along with the information
necessary to obtain its instances (i.e., specific program structures). Such a non-
redundant program view reduces program complexity as perceived by developers, and
reduces the risk of update anomalies which helps in maintenance. At the same time,

 University-Industry Collaboration Journey towards Product Lines 233

non-redundancy is difficult to achieve with architecture-centric and component
approaches alone.

XVCL program representation contains much information about program design
that is useful for maintenance and reuse, in the form that is fully integrated with
complete information about the subject program(s) itself. This, for example, includes
explicit representation of a program design in terms of its subsystems, architecture,
component layers, components and classes, down to every detail of code implementing
the above program structures.

As a variation technique in the design of Software Product Line core assets, XVCL
allows domain engineers to clearly mark the impact of variant features on product
architecture and code components. Product developers can trace and understand this
impact, and then use XVCL Processor to automatically generate custom products with
required features.

An important add-in value that XVCL brings to component-based reuse is its ability
to handle product-specific variants separately from generic, reusable components. This
unique feature of XVCL allows developers to evolve the many products we have
derived from the generic components according to the specific needs of their
customers, without ever disconnecting them from the generic components. Product-
specific variants do not pollute generic components, and do not affect other products
derived from those components, if this is not required. This feature, along with the
ability to represent any group of similar programs structures in a generic, adaptable
form allows XVCL to exploit reuse opportunities that are often missed by conventional
component-based design techniques.

Conventional component-based reuse is most effective when combined with
architecture-centric, pattern-driven development which is now supported by the major
platforms (such as .NET™ and J2EE™). Patterns lead to beneficial standardization of
program solutions and are basic means to achieve reuse of common service
components. Our projects demonstrated that further improvements are possible by
applying XVCL on top of these modern development practices. By packaging
patterns into XVCL structures we enhance the visibility of pattern application. In
particular, XVCL representation shows the exact location of pattern application, as
well as the exact differences among pattern instances in a program.

Industrial applications have demonstrated that XVCL technique is easy and fast to
learn, and its benefit may outweigh the cost of the added complexity [17]. At the same
time, the return on investment may be quick and substantial. Industrial applications
have also revealed a number of further problems. Flexibility that we gain with XVCL
does not come for free. As we relax the coupling between the parameterization
mechanism and the rules (syntax and semantics) of the underlying programming
language, the power of the parameterization mechanism increases. We can address
genericity concerns without compromising program runtime properties. But as we
move towards less restrictive parameterization mechanisms, we also decrease type-
safety of parameterized program solutions.

Designing generic, reusable and maintainable solutions is always a challenge
which requires more talent and skill than building a concrete program. XVCL is not a
substitute for thinking, on contrary, it requires more thinking and up-front investment
for future benefits. XVCL targets at long-lived programs that undergo extensive
evolutionary changes, or need be tailored to needs of multiple customers.

234 S. Jarzabek, U. Pettersson, and H. Zhang

XVCL software representation is expressed at two inter-mixed levels, in base
programming language(s) and XVCL. This creates extra difficulties, especially for
debugging. However, we must keep in mind that XVCL representation contains much
useful information for maintenance and reuse, in addition to complete information
about the subject program(s) itself. There is a great opportunity here for XVCL-
support tools to help developers work with XVCL software representation.

The current form of XVCL can be seen as an assembly language for generic
design. XVCL’s explicit and direct articulation is the source of its expressive power,
e.g., we can unify arbitrary types of variations across similar program structures, but it
also adds a certain amount of complexity to the problem. Specification, analysis and
validation methods for XVCL representations are yet to be discovered.

Engineering processes play an important role in industrial software development.
Currently, we know how XVCL-enabled solutions can raise productivity of small
teams of highly-skilled expert software developers. We have yet to learn what it takes
to inject XVCL into more complex team structures and industrial development
processes. Working on those issues is an important direction for our future work, but
we realize difficulties involved.

Adopting a new technique always brings some overheads and XVCL is no
different. It is essential to understand and evaluate trade-offs involved. In future we
will also focus on empirical studies in various application domains and interpretation
of the results and comparative studies of XVCL.

Other generative techniques such as AOP [16], MDSC [20] or AHEAD [5], exploit
separation of concerns as means to simplify software development and maintenance.
Separation of concerns makes software components more generic, reusable in
multiple contexts, and easier to maintain. XVCL shares similar engineering goals with
other generative techniques, but uses different means to achieve these goals. The
emphasis on identifying any kinds of similarity patterns, and capability to unify
arbitrary differences among similar program structures is a unique characteristic and
contribution of XVCL, and frame principles in general.

5 Lessons Learned

We learned the following lessons from our collaboration:

• The importance of early feedback on research progress from industry: From
the beginning of the project, we worked with requirements provided by our
industry partner. We worked together on technical solutions, and on method
formulation. Industry partner shared with research team the knowledge and
constraints of industry practices which helped us modify our approach early to
stay relevant to practice. We were meeting regularly, getting invaluable feedback.
We think these were critical factors that allowed us to progress fast. Everybody
involved in the project was benefiting. One PhD thesis, six Master thesis and
many undergraduate research projects were completed during the initial three
years of our collaboration, and many more sparked from the initial results. Three
students involved in project were subsequently employed by ST Electronics (Info-
Software Systems). Undergraduate students worked as interns in the company.
The project responsibilities did not delay their degrees. On the contrary, helped

 University-Industry Collaboration Journey towards Product Lines 235

them faster complete their theses. The fact that we could evaluate the effectiveness
of our approach in real industrial environment could appear difficult initially, but
was most beneficial in long run. In the course of our collaboration, STEE-InfoSoft
advanced its reuse practice by applying XVCL in several software product line
projects. NUS team received early feedback from STEE-InfoSoft which helped
refine XVCL reuse methods and keep academic research in sync with industrial
realities. Academic findings and industrial pilots have guided our research in new
unexpected directions.

• Broad, fundamental research base for collaboration: Our collaboration
evolved around reuse techniques for software Product Lines, a very broad and
fundamental research theme, encompassing domain modelling, conventional
design methods and variability management, in our case, realized by XVCL.
XVCL is to software engineering what a Generic Application Platform is to
software development. It is foundation method that can be applied on many
technologies and application domains such as Command and Control, Web, or
Hand held Applications. This characteristic helped us find a continuous flow of
new projects and sustain collaborative research. This characteristic allowed us to
progress from one project to another in cycles involving working on a project,
assessing the results, extraction of ideas and formulating spin-off-new-project.
Each time we learned something, we got ideas about new areas where benefits of
XVCL might be significant. We think that in case of narrower, less fundamental
(and more vertical) themes for collaborative research it may be difficult to sustain
and find new projects time-after-time.

• Free, problem-oriented, result-driven collaboration style: It is most important
to work on problems of mutual interest and benefit. Our collaboration was fueled
by mutual interest of academic and industry partners in project findings. We
believe this was a single most important factor to sustain high level of enthusiasm
for collaboration in long-term. Often collaboration between university and
industry is restricted to a certain topic/theme, with a well-planned schedule. Our
collaboration was in a fairly informal, problem-oriented way, focusing on
specific projects around XVCL. We made very little long-term plans for our
collaborative work. We let the results so far and the current needs drive the
selection of projects we embarked on. Such a relaxed and open attitude towards
collaboration requires much trust. In return, we can always focus on our
strengths, and not miss the best opportunities that current situation has to offer.
For example, STEE-InfoSoft applied XVCL to support a Web Portal Product
Line under unexpected business pressure, without much prior planning. The
results were so good that NUS initiated a number of research studies in the Web
domain that revealed unique opportunities for our techniques in this new domain.
In a short time, we advanced our understanding of the interplay and synergy
between advanced Web technologies and our technique, and learned what it took
to turn these findings into further improvements of our approach.

• The importance of effective communication: Industrial people tend to describe
problems in pragmatic terms, while academic people tend to use “jargons” from
recent research conferences or journals. Therefore, it is important to achieve
effective communications so that each party can understand the other’s concerns
and appreciate the other’s efforts. Furthermore, our project involved people from

236 S. Jarzabek, U. Pettersson, and H. Zhang

multiple countries (Singaporean, Polish-Canadian, Swedish, Chinese, Myanmar,
etc.), with different languages, social and cultural backgrounds. The multi-
cultural/country aspect collectively gave us a broader brain-base for ideas thus
also contributing to the spin-off of more projects. But such diverse backgrounds
influence the way people think, feel, and act under different circumstances. This
may create communication challenges. Establishing effective communication
channels is important for a multi-national collaboration project like ours to
succeed. Frequent face-to-face discussions and social events allowing team
members interact in relaxed and informal setting helped us build mutual
understanding, trust and team spirit.

6 Conclusions

This experience report documents ten years of university-industry collaboration
between National university of Singapore and ST Electronics (Info-Software
Systems) Pte. Ltd. The project was of mutual interest and brought benefits for both
sides. In particular, collaboration led to industrial application of variability technique
developed at the university. Numerous graduate (PhD and Master) thesis and
undergraduate research projects benefited from collaboration. Three students involved
in project were subsequently employed by STEE-InfoSoft. We hope that our
experiences and lesson learned described in the paper can be beneficial to others.

Acknowledgments

We thank STEE-InfoSoft staff and NUS students who participated in various phases
of our collaborative project. Paul Bassett’s advice was invaluable in formalizing
XVCL and understanding its applications.

References

1. Basit, A.H., Jarzabek, S.: Detecting Higher-level Similarity Patterns in Programs. In:
European Software Engineering Conference and ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC-FSE 2005, Lisbon, pp. 156–165. ACM Press,
New York (2005)

2. Basit, H.A., Rajapakse, D.C., Jarzabek, S.: Beyond Templates: a Study of Clones in the
STL and Some General Implications. In: Int. Conf. Software Engineering, ICSE 2005, St.
Louis, USA, pp. 451–459 (May 2005)

3. Bassett, P.: Framing software reuse - lessons from real world. Yourdon Press, Prentice
Hall (1997)

4. Batory, D., Singhai, V., Sirkin, M., Thomas, J.: Scalable software libraries. In: ACM
SIGSOFT 1993: Symp. on the Foundations of Software Engineering, Los Angeles,
California, pp. 191–199 (December 1993)

5. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. In: Proc. Int.
Conf. on Software Engineering, ICSE 2003, Portland, Oregon, pp. 187–197 (May 2003)

6. Bosch, J.: Design and Use of Software Architectures – Adopting and evolving a product-
line approach. Addison-Wesley, Reading (2000)

7. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Reading (2002)

 University-Industry Collaboration Journey towards Product Lines 237

8. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, Reading (2000)

9. CPG-Nuke home, http://www.cpgnuke.com/
10. Deelstra, S., Sinnema, M., Bosch, J.: Experiences in Software Product Families: Problems

and Issues During Product Derivation. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154,
pp. 165–182. Springer, Heidelberg (2004)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

12. Jarzabek, S.: Effective Software Maintenance and Evolution: Reuse-based Approach. CRC
Press. Taylor & Francis (2007)

13. Jarzabek, S., Li, S.: Eliminating Redundancies with a “Composition with Adaptation”
Meta-programming Technique. In: Proc. of ESEC-FSE 2003, European Software
Engineering Conf. and ACM SIGSOFT Symp. on the Foundations of Software
Engineering, Helsinki, pp. 237–246. ACM Press, New York (2003)

14. Jarzabek, S., Seviora, R.: Engineering components for ease of customization and
evolution. IEE Proceedings - Software 147(6), 237–248 (2000); a special issue on
Component-based Software Engineering

15. Jarzabek, S., Zhang, H.: XML-based Method and Tool for Handling Variant Requirements
in Domain Models. In: Proc. 5th International Symposium on Requirements Engineering,
RE 2001, Toronto, Canada, pp. 166–173 (August 2001)

16. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,
J.: Aspect-Oriented Programming. In: Liu, Y., Auletta, V. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

17. Pettersson, U., Jarzabek, S.: Industrial Experience with Building a Web Portal Product
Line using a Lightweight, Reactive Approach. In: Europ. Soft. Eng. Conf. and Symp. on
the Foundations of Software Engineering, ESEC-FSE 2005, Lisbon, pp. 326–335. ACM
Press, New York (2005)

18. Rajapakse, D.C., Jarzabek, S.: Using Server Pages to Unify Clones in Web Applications:
A Trade-off Analysis. In: Int. Conf. Software Engineering, ICSE 2007, Minneapolis, USA
(May 2007)

19. Rajapakse, D., Jarzabek, S.: An Investigation of Cloning in Web Portals. In: Int. Conf. on
Web Engineering, Sydney (July 2005); also poster at WWW 2005

20. Tarr, P., Ossher, H., Harrison, W., Sutton, S.: N Degrees of Separation: Multi-Dimensional
Separation of Concerns. In: Proc. International Conference on Software Engineering, ICSE
1999, Los Angeles, pp. 107–119 (1999)

21. XML-based Variant Configuration Language, http://xvcl.comp.nus.edu.sg
22. Yang, J., Jarzabek, S.: Applying a Generative Technique for Enhanced Genericity and

Maintainability on the J2EE Platform. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS,
vol. 3676, pp. 237–255. Springer, Heidelberg (2005)

23. Zhang, H., Jarzabek, S.: A Mechanism for Handling Variants in Software Product Lines.
Special Issue on Software Variability Management, Science of Computer
Programming 53(3), 255–436 (2004)

24. Zhang, W., Jarzabek, S.: Reuse without Compromising Performance: Industrial Experience
from RPG Software Product Line for Mobile Devices. In: Obbink, H., Pohl, K. (eds.)
SPLC 2005. LNCS, vol. 3714, pp. 57–69. Springer, Heidelberg (2005)

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 238–239, 2011.
© Springer-Verlag Berlin Heidelberg 2011

1st International ICSR Workshop on Comparing
Software Retrieval Approaches (CORA)

Oliver Hummel and Werner Janjic

Software Engineering Group, University of Mannheim
68131 Mannheim, Germany

{hummel,janjic}@informatik.uni-mannheim.de
http://swt.informatik.uni-mannheim.de

Abstract. For the first time in more than four decades, the recent advent of the
open source movement and the availability of service-oriented architectures has
enabled researchers in software reuse to collect a larger amount of potentially
reusable software artifacts. Hence, various communities have recently devel-
oped a new wave of interesting software and service search, retrieval and
matching approaches. However, to date most of these approaches have been
created independently from each other and are evaluated on proprietary data
only. Thus, their performance is not easily comparable with each other (if at
all). The goal of this workshop is to bring together researcher from the above
communities and practitioners interested in applying the mentioned technolo-
gies in order to establish a common understanding of the challenges involved in
evaluating software retrieval systems and a community working on solutions to
overcome them. An important long-term goal is the creation of a reference col-
lection with reusable material that can be used as a common baseline for the
comparison of all kinds of software search, retrieval and matching tools.

1 Motivation

For more than four decades, immense benefits have been attributed to the reuse of
software [1] and a large number of seminal software retrieval approaches have been
developed mainly for this purpose [2]. The recent advent of the open source move-
ment [3] and service-oriented architectures has triggered a new wave of interesting
research in this direction. Clearly, all kinds of techniques for software search, retrieval
and matching form an important foundation for the practical application of software
reuse, but obviously, they can be applied in various other contexts as well: a special-
ized software search that goes beyond mere text matching, for instance, may be bene-
ficial in other areas such as programming, program understanding, as well as for
software evolution and maintenance etc. Furthermore, sophisticated retrieval and
matching capabilities cannot only be used for source code, but for (binary) compo-
nents, services and even test cases as well.

However, beyond infrequent initial efforts in collecting potential application sce-
narios [6][7], there has been neither a systematic collection of such scenarios nor a
recent comprehensive evaluation of classic scenarios (such as component retrieval for

 1st International ICSR Workshop on Comparing Software Retrieval Approaches 239

reuse). The last systematic work in this direction is almost 15 years old [2], but since
then other communities also recognized that the ability to compare software retrieval
and matching tools is important [5].

2 Goals and Conclusion

This workshop aims to bring together researchers and practitioners from numerous
communities in order to collate innovative application scenarios for software search
and retrieval and investigate effective ways of evaluating them. We especially wel-
come contributions that work towards a common baseline for a standard collection of
software artifacts and benchmarks that can be used for future evaluation of software
retrieval, reuse and evolution approaches. Nevertheless new application scenarios for
software retrieval tools are as welcome as overviews and investigations of existing
approaches and surveys of individual evaluations that have been performed so far.

The concrete goal of this first workshop on comparing software retrieval
approaches is forming a platform for researchers and practitioners interested in the
mentioned technologies and establishing a first overview of potential application sce-
narios. Depending on the interests of participants we also aim on discussing concrete
evaluation strategies for some of these scenarios. Consider, for example, the recently
proposed idea of creating an “internet-scale” reference collection of reusable artifacts
[4] that suggests building on previous experience in related areas [5]. Nevertheless, it
raises a number of interesting research challenges, such as the questions what are ex-
pressive as well as representative and thus useful queries for such a collection or
when can a reuse candidate be considered as a relevant result for a given query at all?
These questions can only be answered by a community of experts with different back-
grounds that agrees upon challenges that can be used for comparing software retrieval
approaches in the future.

References

1. Krueger, C.W.: Software Reuse. ACM Computing Surveys 24(2) (1992)
2. Mili, A., Mili, R., Mittermeir, R.: A Survey of Software Reuse Libraries. Annals of Soft-

ware Engineering 5 (1998)
3. Hummel, O., Atkinson, C.: Using the Web as a Reuse Repository. In: Morisio, M. (ed.)

ICSR 2006. LNCS, vol. 4039, pp. 298–311. Springer, Heidelberg (2006)
4. Hummel, O.: Facilitating the Comparison of Software Retrieval Systems through a Refer-

ence Reuse Collection. In: Int. Workshop on Search-Driven Development, SUITE 2010
(2010)

5. Küster, U., König-Ries, B.: Towards standard test collections for the empirical evaluation
of semantic web service approaches. Int. Journal Semantic Computing 2(3) (2008)

6. Sim, S., Clarke, C., Holt, R.: Archetypal source code searches: A survey of software
developers and maintainers. In: Int. Workshop on Program Comprehension (1998)

7. Janjic, W., Hummel, O., Atkinson, C.: More Archetypal Usage Scenarios for Software
Search Engines. In: Int. Workshop on Search-Driven Development, SUITE 2010 (2010)

The 2nd International Workshop on Software

Trustworthiness (SoTrust2011)

Xiaoguang Mao1 and Bing Xie2

1 School of Computer, National University of Defense Technology,
Changsha, Hunan, China

xgmao@nudt.edu.cn
2 School of Electronics Engineering and Computer Science, Peking University,

Beijing, China
xiebing@sei.pku.edu.cn

Abstract. With the pervasive of computing facilities in people’s work
and daily life, humans run into a revolution in communication and think-
ing, which brings forward computing thinking and social computing. Hu-
mans are socially blind and unsure, and thus, trustworthiness has been
put on the spot to answer questions including: Can computing facilities
be trusted? Can information systems be dependable? Can unknown peo-
ple in the other end be trustworthy? That’s the motivation to establish
a workshop named SoTrust. To assure trustworthiness in social comput-
ing, extensive reuse, of various resources such as components, services,
product lines, patterns, frameworks and etc, is identified as a critical
approach. SoTrust2011 aims at bringing together software scientists, in-
dustrial engineers, and researchers from different communities to discuss
and exchange their new achievements, novel ideas, experiments, work-
in-progress, and case studies in software trustworthiness with respect
to reuse approaches. This year, SoTrust focuses on metrics and evalua-
tion of software resource with respect to the property of trustworthiness;
techniques and methodologies for the construction, reuse and evolution
of trustworthy resources, and industrial experience.

1 Motivation

With the pervasive of computing facilities in people’s work and daily life, humans
run into a revolution in communication and thinking, which brings forward com-
puting thinking and social computing. In the cyber space, being ties, humans are
socially blind and unsure [1]. That is the reason why trustworthiness has been
put on the spot these several years [2,3,4,5,6]. Trustworthiness is presented to
answer questions such as: Can computing facilities be trusted? Can information
systems be dependable? Can unknown people in the other end be trustworthy?

Extensive reuse of software resources has become an important contributor
to trustworthiness among computing facilities. These software resources [7] can
be components, services, product lines, patterns, frameworks and etc. How can
software reuse approaches contribute to the trustworthiness of software systems?
How can trustworthy systems rely on reused resources?

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 240–241, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The 2nd International Workshop on Software Trustworthiness (SoTrust2011) 241

2 Goals and Conclusion

SoTrust2011 is to bring together software scientists, industrial engineers, and re-
searchers from different communities to discuss and exchange their new achieve-
ments, novel ideas, experiments, work-in-progress, and case studies in software
trustworthiness with respect to reuse approaches.

SoTrust2011 is the next event of SoTrust2010, which was successfully held
with ATC2010 [8] in China last year. The long-term goal of SoTrust is to es-
tablish a platform for researchers and engineers to exchange achievements and
ideas on software trustworthiness, especially for ultra-scale software systems un-
der the vision of social computing. This year, ICSR brings together outstand-
ing researchers on software reuse, and gives SoTrust an opportunity to delve
into solutions, on the direction of reusing various resources adaptively, for soft-
ware trustworthiness. SoTrust2011 focuses on theoretical foundations, including
metrics and evaluation of software resource with respect to the property of trust-
worthiness; techniques and methodologies, including the construction of trust-
worthy reusable resources and reuse approaches to enhance trustworthiness; and
industrial experience in reusing software resources for trustworthiness. Besides,
SoTrust2011 emphasizes reuse and evolution mechanism for the trustworthiness
of on-service software systems, after deployed.

References

1. Social computing group of ibm research (October 2010), http://www.research.

ibm.com/Social-Computing/index.html

2. Ifip 10.4 working group on dependable computing and fault tolerance (2010),
http://www.dependability.org

3. Trusted computing group (2010), http://www.trustedcomputinggroup.org
4. High confidence software and systems coordinating group, interagency working

group on information technology research and development, high confidence soft-
ware and systems research needs (2001),
http://www.itrd.gov/pubs/hcss-research.pdf

5. Microsoft trustworthy computing (2010),
http://www.microsoft.com/twc

6. Trustworthiness in wiktionary (2010),
http://en.wiktionary.org/wiki/trustworthiness

7. The trustie project (2011), http://www.trustie.net
8. The 1st international workshop on software trustworthiness (sotrust, 2010),

http://www.nwpu.edu.cn/atc2010/Workshops/

http://www.research.ibm.com/Social-Computing/index.html
http://www.research.ibm.com/Social-Computing/index.html
http://www.dependability.org
http://www.trustedcomputinggroup.org
http://www.itrd.gov/pubs/hcss-research.pdf
http://www.microsoft.com/twc
http://en.wiktionary.org/wiki/trustworthiness
http://www.trustie.net
http://www.nwpu.edu.cn/atc2010/Workshops/

K. Schmid (Ed.): ICSR 2011, LNCS 6727, p. 242, 2011.
© Springer-Verlag Berlin Heidelberg 2011

The 5th International Workshop on Software Reuse and
Safety

William B. Frakes1 and John Favaro2

1 Department of Computer Science, Virginia Tech,
7054 Haycock Rd., Falls Church VA 22043

frakes@cs.vt.edu
2 Intecs SpA, Via Giannessi 5, 56100 Pisa, Italy

john.favaro@intecs.it

Abstract. There is one domain in which software reuse is looked upon with
suspicion: the domain of safety critical systems. This workshop
(http://www.favaro.net/john/RESAFE2011/) addresses the related issues, build-
ing upon the results of previous workshops. Updates to current activities in a
number of safety-critical domains are discussed, ranging from space and rail-
way to automotive and medical.

1 Safety Relevant Characteristics of Reusable Software

In her book Safeware, Leveson observes that a common problem in much current
work in the area is the tendency to consider safety together with other nonfunctional
properties such as reliability, availability, and dependability, leading to the impression
that improvement in any of the other areas will automatically lead to improvements in
its safety-related characteristics. But current standards for safety-critical software
development insist on separate treatment of safety, requiring “safety lifecycles,” sepa-
rate safety analyses, and specific process-related roles for personnel among other
issues – and special treatment of reuse in safety-critical development.

2 Roadmap for Research in Software Reuse and Safety

One contribution of this workshop is the identification of areas in which researchers
can work to advance the state of the art with respect to reuse and safety, improving
upon the roadmap developed in the preceding editions of this workshop. Current
themes addressed in this edition include the relationship of software safety to archi-
tectural frameworks emerging in various safety-critical domains, as well as issues
arising from the emergence of model-based development as a paradigm in many of
these domains.

K. Schmid (Ed.): ICSR 2011, LNCS 6727, p. 243, 2011.
© Springer-Verlag Berlin Heidelberg 2011

The Doctoral Symposium of the
12th International Conference of Software Reuse

Leonardo Gresta Paulino Murta

Computing Institute – Fluminense Federal University
Niterói, RJ, Brazil

leomurta@ic.uff.br

Abstract. This short paper provides an overview of the Doctoral Symposium of
the 12th International Conference on Software Reuse. Four submissions were
received and evaluated by an expert panel composed of five renowned profes-
sors. The selected papers were presented in the Doctoral Symposium and
received feedback from the expert panel.

1 Summary

This year, the International Conference on Software Reuse continued with its the
traditional Doctoral Symposium. The goal of the Doctoral Symposium is to bring
together doctoral students working in the area of software reuse and to provide feed-
back on their current and proposed research. Participants were asked to prepare a 20-
minute presentation including a discussion of the main research challenges, solution
directions, results obtained thus far, evaluation plan, and research plan towards the
completion of their Ph.D. studies.

Four papers were submitted to this edition of the Doctoral Symposium. The two
hottest topics in this edition were Software Product Lines and Model-driven Devel-
opment. All Doctoral Symposium papers were evaluated by an expert panel com-
posed of five renowned professors of software reuse and software engineering in
general: Prof. Colin Atkinson, University of Mannheim, Germany; Prof. William B.
Frakes, Virginia Tech, United States; Prof. Alessandro Garcia, PUC-Rio, Brazil; Prof.
Maurizio Morisio, Politecnico di Torino, Italy; and Prof. Kyo C. Kang, POSTECH,
Korea. The selected papers were presented in the Doctoral Symposium and members
of the expert panel provided feedback to help students shape their work. These papers
are available through the International Conference of Software Reuse website at
http://icsr12.postech.ac.kr.

I would like to thank all Ph.D. students that submitted their works, the members of
the expert panel that helped in the construction of a productive and useful Doctoral
Symposium, Hyesun Lee, who built and maintained the Doctoral Symposium website,
Cláudia Werner and Klaus Schmid, who provided extreme helpful and relevant feed-
back during the organization of this edition of the Doctoral Symposium, and all other
people from the organization committee who directly or indirectly helped in making
the Doctoral Symposium a reality.

K. Schmid (Ed.): ICSR 2011, LNCS 6727, pp. 244–245, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Pragmatic Strategies for Variability Management in
Software Product Lines

Stan Jarzabek

School of Computing, National Univeristy of Singapore, Singapore
stan@comp.nus.edu.sg

Abstract. After general introduction to Software Product Lines (SPL), we focus
on variability management, a key technical challenge for effective reuse. We
discuss reasons why commonly used variation techniques (pre-processing, con-
figuration files) do not scale well. We present merits (visibility of feature im-
pact on core assets, automation of product derivation, support for evolution and
scalability), and trade-offs (need for skilful design and training) in applying uni-
form variation technique, design specifically to manage variability in SPLs.

Keywords: Software Product Lines, Variability management, Generation.

The starting point for most of the Software Product Lines (SPL) is a single successful
software product. This original product evolves into similar products for other
customers who need functionality that the original product provides, but with some
modifications or extra features. This initial evolution often happens with ad hoc reuse
- copy and modify - of source code files of the original product. Versions of source
files pertinent to different products are stored under a Software Configuration Man-
agement (SCM) tool such as CVS or SVN. As the number of customers and relevant
product variants increases, such ad hoc reuse shows its limits: Product size grows as
we implement new features in response to customer requests. At the same time, we
need maintain all the released product variants, so we have more and more code to
maintain. Also with a growing customer base (good for our business!), increasing
product variability becomes a challenge for ad hoc reuse: How do we know which
versions of source files should be selected from SCM repository for reuse in devel-
opment of a new product? How should we customize them and then integrate to build
a new product? These problems may become taxing on company resources.

We can already start observing initial symptoms of the above problems as the
number of product variants reaches 4-5. As maintaining product variants and imple-
menting new ones becomes more and more time-consuming, more systematic reuse
practice becomes necessary for a company to exploit business opportunities of a suc-
cessful product, and to sustain the business growth.

Stabilizing a common architecture for products is the first step in migrating product
variants developed in ad hoc way into a Software Product Line (SPL). Reusable SPL
core assets – code components, documentation, test cases – are designed around SPL
architecture. Conventional architectural design plays important role, as some variant
features of products can be nicely mapped into architectural components. Handling
such features becomes easy with plug-in components.

 Pragmatic Strategies for Variability Management in Software Product Lines 245

However, there is a limit to what we can achieve in terms of reuse with conven-
tional modularization, and mechanisms of modern component platforms. Components
provide effective reuse solutions at the middleware level. However, in application
domain-specific areas such as business logic or user interface, despite many similari-
ties, software is still developed very much from scratch. One of the reasons why this
happens is that the impact of features spreads freely across many components, affect-
ing their code at many variation points. To manage such “troublesome” variability,
companies typically adopt variation techniques such as preprocessing, manually
commenting out variant feature code, parameter configuration files, Ant, or annota-
tions (Java/JEE).

Such variation techniques are simple and available for free. Most developers can
understand them without training. But as SPL grows, problems usually emerge: Fea-
tures get complicated; One variant feature may be mapped to many variation points,
in many components, and it is difficult to figure out to which ones and how; Features
often are inter-dependent, and inclusion of one feature into a custom product must be
properly coordinated with modifications of yet other features.

In the second part of the tutorial, we examine uniform variation technique of
XVCL (xvcl.comp.nus.edu.sg) that exercises total control over SPL variability, from
architecture, to component configuration, to any detail of code (e.g., variations at the
source statement, expression or keyword level). XVCL streamlines and automates
customizations involved in implementation of selected variant features into custom
products, from component re-configuration, to detailed customizations of component
code. The approach replaces the need for multiple variation techniques, and scales to
SPLs with large number of inter-dependent features.

References

[1] Jarzabek, S.: Effective Software Maintenance and Evolution: Reuse-based Approach.
Taylor & Francis, CRC Press (2007)

[2] Pettersson, U., Jarzabek, S.: Industrial Experience with Building a Web Portal Product
Line using a Lightweight, Reactive Approach. In: Europ. Soft. Eng. Conf. and Symp. on
the Foundations of Software Engineering, ESEC-FSE 2005, Lisbon, pp. 326–335. ACM
Press, New York (2005)

[3] Ye, P., Peng, X., Xue, Y., Jarzabek, S.: A case study of variation mechanism in an indus-
trial product line. In: Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791,
pp. 126–136. Springer, Heidelberg (2009)

K. Schmid (Ed.): ICSR 2011, LNCS 6727, p. 246, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Software Reuse and Safety

William B. Frakes1 and John Favaro2

1 Department of Computer Science, Virginia Tech,
7054 Haycock Rd., Falls Church VA 22043

frakes@cs.vt.edu
2 Intecs SpA, Via Giannessi 5,

56100 Pisa, Italy
john.favaro@intecs.it

Abstract. This tutorial addresses issues and current practices regarding the
important topic of the interaction of software reuse and safety. This topic has
become very relevant to modern embedded systems in domains from aerospace
to automotive, as new architectures are introduced that encourage the develop-
ment and use of reusable components. The two sections of the tutorial provide
first an introduction to the theoretical concepts relevant to safety-related soft-
ware development, and then an introduction and discussion of concrete exam-
ples in today’s industry. Current examples of standards regulating reusable
software components in safety-critical domains are presented. An example from
the automotive industry is presented in more detail.

1 Software Safety and Reuse

Topics covered include: safety definitions, a discussion of software safety myths,
presentation of real world software safety disasters, a categorization of types of reuse,
an introduction to the most prominent reuse and safety issues, a presentation of the
key concept of safety integrity levels, and a discussion of the relationship between
dependability and safety.

2 Current Industrial Practice in Software Reuse and Safety

Topics include: an overview of reuse standards and practice in selected safety critical
sectors (aerospace, railway, space); a discussion of current safety-related reuse
concepts in industry (e.g. problems related to achieving certification, and the imple-
mentation of so-called ‘proven in use’ concepts); and an in-depth presentation of
reuse-oriented issues in the automotive industry today, including a discussion of the
new AUTOSAR architecture and ISO 26262 safety standard.

Author Index

Alférez, Mauricio 20
Amaral, Vasco 20

Barros, Fernando J. 183

Cai, Sibo 78
Czarnecki, Krzysztof 1

Deissenboeck, Florian 207
Deshpande, Shubhanan 69

Egyed, Alexander 20

Favaro, John 242, 246
Frakes, William B. 242, 246
Fuentes, Lidia 102

Gamez, Nadia 102
Gleirscher, Mario 207

Heinemann, Lars 207
Hummel, Benjamin 207
Hummel, Oliver 238

Irlbeck, Maximilian 207

Janjic, Werner 238
Jarzabek, Stan 151, 223, 244
Jin, Zhi 36

Liu, Jindu 52
Lopez-Herrejon, Roberto E. 20
Lorenz, David H. 167

Männistö, Tomi 192
Mao, Xiaoguang 240

Mei, Hong 4, 36
Moreira, Ana 20
Murta, Leonardo Gresta Paulino 243

Peng, Xin 52, 119, 135, 151
Pettersson, Ulf 223

Qiu, Cheng 119

Raatikainen, Mikko 192
Ramanathan, Jay 69
Ramnath, Rajiv 69
Rehesaar, Hugo 87
Rosenan, Boaz 167

Savolainen, Juha 192
Shao, Weizhong 78
Shen, Liwei 52
Singh, Nisheet 69

Wang, Lijie 78
Wu, Yijian 119, 135

Xie, Bing 78, 240
Xing, Zhenchang 151
Xu, Yingxiao 69
Xue, Yinxing 151

Yang, Yiming 119

Zhang, Hongyu 223
Zhang, Wei 4, 36
Zhao, Haiyan 4, 36
Zhao, Wenyun 52, 119, 135, 151
Zhu, Jiayi 151
Zou, Yanzhen 78

	Title Page
	Preface
	ICSR 2011 Conference Organization
	Table of Contents
	Keynote
	Understanding Variability Abstraction and Realization
	References

	Consistency and Constraints
	Binary-Search Based Verification of Feature Models
	Introduction
	Preliminaries
	Feature Models
	Verification Criteria of Feature Models
	An Intuitive Analysis to $SAT-Solver$ Based Verification of Feature Models

	Verification of Feature Models
	Refinement Paths and Critical Points
	Binary-Search Based Verification of Criterion 2
	Traversal Based Verification of Criterion 3

	Experiments
	Two Families of Feature Models
	Analysis of the Experiment Results

	Related Work
	Conclusions and Future Work
	References

	Supporting Consistency Checking between Features and Software Product Line Use Scenarios
	Introduction
	Background and Motivation
	Models Involved in Consistency Checking
	Consistency Checking Motivation

	Consistency Checking between Features and Use Scenarios
	Approach Overview
	Deriving Domain Constraints (D_f)
	Deriving Composition Constraints ($C_VARf $)
	Replacing Terms in Equation
	Checking SATisfability
	Show Results and SPL Models Modification

	Tool Support
	Evaluation
	Discussion and Related Work
	Conclusions and Future Work
	References

	Towards a More Fundamental Explanation of Constraints in Feature Models: A Requirement-Oriented Approach
	Introduction
	Preliminaries
	An Understanding of Requirements
	A Classification of Phenomena
	Roles of Requirements to Their Referenced Phenomena
	An Example

	Two Elementary Situations
	Situation 1: Multiple References to the Same Phenomenon
	Situation 2: Separated References to Related Phenomena

	Patterns for Constraints between Features
	Patterns of the $Requires$ Constraints
	Patterns of the $Excludes$ Constraints
	Extended Patterns

	Related Work
	Conclusions and Future Work
	References

	Reconfiguration
	Towards Feature-Oriented Variability Reconfiguration in Dynamic Software Product Lines
	Introduction
	Background and Problems for Variability Reconfiguration
	Background of DSPLs
	DSPL Example of a Course Selection System (CSS)
	Research Problems in Feature-Oriented Variability Reconfiguration

	Role Model of DSPLs
	The Role Meta-Model
	Role-Level Interaction Reconfiguration

	The Reference Implementation Framework of DSPLs
	Dynamic-AOP in $JBoss-AOP$
	Implementation-Level Composition Patterns
	The Reference Implementation Framework

	Case Study
	Role Model for the Course Selection System (CCS)
	Reconfiguration Based on the Reference Implementation Framework
	Discussion

	Related Works
	Conclusion and Future Work
	References

	Reuse by Placement: A Paradigm for Cross-Domain Software Reuse with High Level of Granularity
	Introduction
	Conceptual Model for Reuse by Placement
	A Framework for Reuse-by-Placement in the Gaming Domain
	Game Layer
	Virtual Human Layer and Application Service Layer
	Building Game with Placement Capabilities Using the Framework

	Implementation Case Study
	A Health Game with Placement Points
	Placement-Based Reuse of the Health Game

	Related Work
	Conclusions and Future Work
	References

	Components
	A Semi-supervised Approach for Component Recommendation Based on Citations
	Introduction
	Our Approach
	The Retriever
	The Crawler
	The Recommend Engine

	Experimental Study
	Experimental Organization
	Experimental Results

	Discussion and Future Work
	Issues about the Association Refinement
	How to Obtain the Seed Set

	Conclusion
	References

	Capability Assessment for Introducing Component Reuse
	Introduction
	Background
	Benefits of CBSE
	Non-technical Obstacles to Implementation
	Reuse Models

	The Social Factors for Reuse Model
	Evolution of the SFR Model
	Structure of the Model
	Attribute Co-relations
	The ‘Ideal’ Candidate for Reuse Implementation

	Application of the SFR Model
	Steps in the Application of the Model
	A Case Study

	Further Development
	Conclusions
	References

	Evolution
	Software Product Line Evolution with Cardinality-Based Feature Models
	Introduction
	Motivation
	Motivation Example
	Challenges

	Evolution of Feature Models with Clonable Features
	Feature Model Evolution
	Evolution of Existing Configurations

	Differences and Create Configuration Operators
	Evaluation
	Related Works
	Concluding Remarks
	References

	Recovering Object-Oriented Framework for Software Product Line Reengineering
	Introduction
	Overview
	Reverse Variability Analysis
	Recovery Process

	Mapping Computation
	Rationale
	Similarity Measurement
	Clone Detection and Method Mapping
	Class Mapping

	Variability Evaluation
	Element Variability Decision
	Framework Variability Decision

	Evaluation and Discussion
	The DirectBank Project
	Experiment Results
	Evaluation
	Discussion

	Related Work
	Conclusion and Future Work
	References

	Architecture Evolution in Software Product Line: An Industrial Case Study
	Introduction
	Background
	Overview of WES Product Family
	A Brief Evolution History of WES Products
	Scope of Our Case Study

	Architecture Evolution in WES-PL
	The PLA Skeleton
	Typical Architectural Evolution Types
	A Roadmap of WES-PL Architecture Evolution
	Summary of Architecture Evolution in WES-PL

	Evaluation and Discussion
	Proactive Evolution vs. Reactive Evolution
	Business Strategy and Technical Decisions
	Possible Improvements

	Related Work
	Conclusion and Future Work
	References

	Implementation
	Improving Product Line Architecture Design and Customization by Raising the Level of Variability Modeling
	Introduction
	Background and Problem Analysis
	PLA Meta-model and Variation Combination Rules
	PLA Meta-model
	Rules to Identify Valid Combinations of Variation Elements

	Variation Constructs in PLA
	Principles in Identifying Useful Variation Constructs
	Optional Constructs
	Alternative Constructs

	Implementation and Case Study
	Implementation
	Case Study

	Related Work
	Conclusion and Future Work
	References

	Code Reuse with Language Oriented Programming
	Introduction
	Case Study: Calculator Product Line
	The Problem Statement
	General Guidelines

	SPL Implementation in MPS
	Defining the DSL
	Implementing the DSL
	Implementing the Calculator

	SPL Implementation in Cedalion
	Defining and Implementing the DSL
	Implementing the Calculator

	Results, Discussion and Related Work
	Threats to Validity
	Related Work

	Conclusion
	References

	Achieving Reuse with Pluggable Software Units
	Introduction
	Pluggable Software Units
	Basic Pluggable Unit
	Network Pluggable Unit

	Related Work
	Conclusions
	References

	Reuse in Practice
	Eight Practical Considerations in Applying Feature Modeling for Product Lines
	Introduction
	The Eight Considerations
	Cost–Benefit
	Completeness
	Stakeholders
	Domain
	Commonality
	Correspondence
	Constraints
	Notation

	Discussion
	Conclusion
	References

	On the Extent and Nature of Software Reuse in Open Source Java Projects
	Introduction
	Terms
	Methodology
	Study Design
	Study Objects
	Study Implementation and Execution

	Results
	RQ 1: Do Open Source Projects Reuse Software?
	RQ 2: How Much White-Box Reuse Occurs?
	RQ 3: How Much Black-Box Reuse Occurs?

	Discussion
	Extent of Reuse
	Influence of Project Size on Reuse Rate
	Types of Reused Functionality

	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Conclusions and Future Work
	References

	University-Industry Collaboration Journey towards Product Lines
	Introduction
	The History of Collaboration
	First Phase: MOU
	Second Phase: Singapore-Ontario Project
	Third Phase: Continuous Collaboration

	The Development of the XVCL Approach
	Initial Phase
	Second Phase
	Third Phase

	Summary of Typical Projects
	Pilot CAD project
	Java Buffer Library and STL
	Industrial Applications of XVCL
	Discussion of Project Experiences: Benefits and Trade-Offs

	Lessons Learned
	Conclusions
	References

	Workshops
	1st International ICSR Workshop on Comparing Software Retrieval Approaches (CORA)
	Motivation
	Goals and Conclusion
	References

	The 2nd International Workshop on Software Trustworthiness (SoTrust2011)
	Motivation
	Goals and Conclusion
	References

	The 5th International Workshop on Software Reuse and Safety
	Safety Relevant Characteristics of Reusable Software
	Roadmap for Research in Software Reuse and Safety

	The Doctoral Symposium of the 12th International Conference of Software Reuse
	Summary

	Tutorials
	Pragmatic Strategies for Variability Management in Software Product Lines
	References

	Software Reuse and Safety
	Software Safety and Reuse
	Current Industrial Practice in Software Reuse and Safety

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

